Data Absraction & Problem
Solving with JAVA™

WALLS & MIRRORS

Third Edition

Janet J. Prichard
Frank M. Carrano

| Data Abstraction
& Problem Solving
with JAVA™

~ WALLS
AND |
MIRRORS

This page intentionally left blank

Data Abstraction

& Problem Solving
with JAVA™

WALLS
AND |
MIRRORS

3" Edition

Janet J. Prichard
Bryant University

Frank Carvano
University of Rhode Island

International Edition contributions by
Indrajit Banerjee

Bengal Engineering and Science University

PEARSON
e

Boston Columbus_ Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton Acquisitions Editor, International Edition:

Editor-in-Chief: Michael Hirsch Arunabha Deb

Editorial Assistant: Stephanie Sellinger Publishing Assistant, International Edition:
Marketing Manager: Yezan Alayan Shokhi Shah

Marketing Coordinator: Kathryn Ferranti Senior Operations Supervisor: Alan Fischer
Vice President, Production: Vince O’Brien Operations Specialist: Lisa McDowell
Managing Editor: Jeff Holcomb Text Designer: Sandra Rigney

Senior Production Project Manager: Marilyn Lloyd Cover Designer: Jodi Notowitz

Publisher, International Edition: Angshuman Cover Image: Getty Images/Steve Wall
Chakraborty Full-Service Vendor: GEX Publishing Services

Printer/Binder: Courier Stoughton

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this text-
book appear on appropriate page within text.

Authorized adaptation from the United States edition, entitled Data Abstraction and Problem Solving with
Java: Walls and Mirrors, 3rd edition, ISBN 978-0-13-212230-6 by Frank M. Carrano and Janet J. Prichard
published by Pearson Education © 2011.

If you purchased this book within the United States or Canada you should be aware that it has been imported
without the approval of the Publisher or the Author.

Copyright © 2011 Pearson Education Limited, Edinburgh Gate, Harlow.

All rights reserved. Manufactured in the United States of America. This publication is protected by
Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or likewise.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designa-

tions have been printed in initial caps or all caps.

10987654321 —CRS—14 13121110

PEARSON ISBN 10: 0-273-75120-4
— ISBN 13: 978-0-273-75120-5

Brief Contents

PART ONE

Problem-Solving Techniques 25

1 Review of Java Fundamentals 27
2 Principles of Programming and Software Engineering
3 Recursion: The Mirrors 161
4 Data Abstraction: The Walls 221
5 Linked Lists 265
PART TWO

Problem Solving with Abstract

Data Types 337

6 Recursion as a Problem-Solving Technique 339

7 Stacks 375

8 Queues 433

9 Advanced Java Topics 479

10 Algorithm Efficiency and Sorting 529

11 Trees 585

12 Tables and Priority Queues 667

13 Advanced Implementations of Tables 723
14 Graphs 801

15 External Methods 847

APPENDICES
A A Comparison of Java to C++ 887
B Unicode Character Codes (ASCII Subset)
C Java Resources 892
D Mathematical Induction 894

Glossary 901
Self-Test Answers 921
Index 945

105

This page intentionally left blank

Contents

Preface 15
Chapter Dependency Chart 18

PART ONE
Problem-Solving Techniques

1
1.1

1.2

1.3

1.4

Review of Java Fundamentals

Language Basics 28
Comments 28

Identifiers and Keywords 28
Variables 28

Primitive Data Types 29
References 30

Literal Constants 30

Named Constants 31
Assignments and Expressions 32
Arrays 35

Selection Statements 38
The if Statement 39
The switch Statement 40

Iteration Statements 41
The while Statement 41
The for Statement 42
The do Statement 45

Program Structure 45

Packages 46

Classes 47

Data Fields 48

Methods 50

How to Access Members of an Object 54
Class Inheritance 54

25
27

Contents

1.5

1.6

1.7

1.8

2.3

Useful Java Classes 56
The object Class 56
The Array Class 58
String Classes 59

Java Exceptions 64
Catching Exceptions 64
Throwing Exceptions 71
Text Input and Output 73
Input 73

Output 75

The console Class 78

File Input and Output 80

Text Files 82

Object Serialization 90

Summary 93 Cautions 96 Self-Test Exercises 96
Exercises 97 Programming Problems 102

Principles of Programming and
Software Engineering 105
Problem Solving and Software Engineering 106
What Is Problem Solving? 106

The Life Cycle of Software 107

What Is a Good Solution? 117

Achieving an Object-Oriented Design 119
Abstraction and Information Hiding 120
Object-Oriented Design 122

Functional Decomposition 124

General Design Guidelines 125

Modeling Object-Oriented Designs Using UML 126
Advantages of an Object-Oriented Approach 130
A Summary of Key Issues in Programming 131
Modularity 131

Modifiability 133

Ease of Use 135

Fail-Safe Programming 136

Style 142

Debugging 146

Summary 149 Cautions 150 Self-Test Exercises 150
Exercises 151 Programming Problems 156

Recursion: The Mirrors 161

Recursive Solutions 162
A Recursive Valued Method: The Factorial of n 165
A Recursive void Method: Writing a String Backward 172

3.2

3.3

3.4

3.5

a1
4.2

4.3

5.2

Contents

Counting Things 183

Multiplying Rabbits (The Fibonacci Sequence) 183
Organizing a Parade 185

Mr. Spock’s Dilemma (Choosing k out of nThings) 188

Searching an Array 190

Finding the Largest ltem in an Array 191
Binary Search 192

Finding the k" Smallest ltem in an Array 196
Organizing Data 200

The Towers of Hanoi 200

Recursion and Efficiency 204
Summary 211 Cautions 211 Self-Test Exercises 212
Exercises 213 Programming Problems 219

Data Abstraction: The Walls 221
Abstract Data Types 222

Specifying ADTs 227

The ADT List 228

The ADT Sorted List 233

Designing an ADT 235

Axioms (Optional) 239

Implementing ADTs 242

Java Classes Revisited 243

Java Interfaces 245

Java Packages 248

An Array-Based Implementation of the ADT List 250

Summary 257 Cautions 257 Self-Test Exercises 258

Exercises 259 Programming Problems 262

Linked Lists 265

Preliminaries 266

Object References 266
Resizeable Arrays 272
Reference-Based Linked Lists 273

Programming with Linked Lists 277

Displaying the Contents of a Linked List 277

Deleting a Specified Node from a Linked List 279

Inserting a Node into a Specified Position of a Linked List 282

A Reference-Based Implementation of the ADT List 288

Comparing Array-Based and Reference-Based Implementations 292
Passing a Linked List to a Method 295

Processing Linked Lists Recursively 295

10

Contents

5.3

Variations of the Linked List 301
Tail References 301

Circular Linked Lists 302

Dummy Head Nodes 304

Doubly Linked Lists 304

5.4 Application: Maintaining an Inventory 308
5.5 The Java Collections Framework 314
Generics 315
lterators 316
The Java Collection’s Framework List Interface 319
Summary 322 Cautions 324 Self-Test Exercises 325
Exercises 327 Programming Problems 331
PART TWO
Problem Solving with Abstract
Data Types 337
6 Recursion as a Problem-Solving Technique 339
6.1 Backtracking 340
The Eight Queens Problem 340
6.2 Defining Languages 345
The Basics of Grammars 346
Two Simple Languages 347
Algebraic Expressions 350
6.3 The Relationship Between Recursion and Mathematical Induction 360
The Correctness of the Recursive Factorial Method 360
The Cost of Towers of Hanoi 361
Summary 363 Cautions 363 Self-Test Exercises 364
Exercises 364 Programming Problems 368
7 Stacks 375
7.1 The Abstract Data Type Stack 376
Developing an ADT During the Design of a Solution 376
7.2 Simple Applications of the ADT Stack 382
Checking for Balanced Braces 382
Recognizing Strings in a Language 386
7.3 Implementations of the ADT Stack 387
An Array-Based Implementation of the ADT Stack 389
A Reference-Based Implementation of the ADT Stack 391
An Implementation That Uses the ADT List 393
Comparing Implementations 395
The Java Collections Framework Class Stack 395
7.4 Application: Algebraic Expressions 397

Evaluating Postfix Expressions 397
Converting Infix Expressions to Equivalent Postfix Expressions 399

7.5

7.6

8.1
8.2

8.3

8.4
8.5

9.2

9.3

9.4

9.5

Contents

Application: A Search Problem 402

A Nonrecursive Solution That Uses a Stack 404

A Recursive Solution 412

The Relationship Between Stacks and Recursion 415
Summary 417 Cautions 417 Self-Test Exercises 418
Exercises 419 Programming Problems 424

Queues 433
The Abstract Data Type Queue 434

Simple Applications of the ADT Queue 436

Reading a String of Characters 436

Recognizing Palindromes 437

Implementations of the ADT Queue 438

A Reference-Based Implementation 440

An Array-Based Implementation 443

An Implementation That Uses the ADT List 449

The JCF Interfaces Queue and peque 450

Comparing Implementations 456

A Summary of Position-Oriented ADTs 457

Application: Simulation 458

Summary 468 Cautions 469 Self-Test Exercises 469
Exercises 470 Programming Problems 474

Advanced Java Topics a7
Inheritance Revisited 480

Java Access Modifiers 486

Is-a and Has-a Relationships 488

Dynamic Binding and Abstract Classes 490

Abstract Classes 493

Java Interfaces Revisited 498

Java Generics 499

Generic Classes 499

Generic Wildcards 501

Generic Classes and Inheritance 502

Generic Implementation of the Class List 505

Generic Methods 507

The ADTs List and Sorted List Revisited 508

Implementations of the ADT Sorted List That Use the ADT List 509
Iterators 513

Summary 517 Cautions 518 Self-Test Exercises 518
Exercises 519 Programming Problems 524

11

12

Contents
10 Algorithm Efficiency and Sorting 529
10.1 Measuring the Efficiency of Algorithms 530

10.2

11
11.1
11.2

11.3

11.4

12
12.1

The Execution Time of Algorithms 531

Algorithm Growth Rates 533

Order-of-Magnitude Analysis and Big O Notation 533
Keeping Your Perspective 539

The Efficiency of Searching Algorithms 541

Sorting Algorithms and Their Efficiency 542
Selection Sort 543

Bubble Sort 547

Insertion Sort 549

Mergesort 551

Quicksort 557

Radix Sort 569

A Comparison of Sorting Algorithms 571

The Java Collections Framework Sort Algorithm 572
Summary 576 Cautions 577 Self-Test Exercises 577

Exercises 578 Programming Problems 582

Trees 585
Terminology 586

The ADT Binary Tree 594

Basic Operations of the ADT Binary Tree 594

General Operations of the ADT Binary Tree 595

Traversals of a Binary Tree 598

Possible Representations of a Binary Tree 601

A Reference-Based Implementation of the ADT Binary Tree 605
Tree Traversals Using an lterator 610

The ADT Binary Search Tree 618

Algorithms for the Operations of the ADT Binary Search Tree 624
A Reference-Based Implementation

of the ADT Binary Search Tree 639

The Efficiency of Binary Search Tree Operations 643

Treesort 648

Saving a Binary Search Tree in a File 649

The JCF Binary Search Algorithm 652

General Trees 653

Summary 655 Cautions 656 Self-Test Exercises 656

Exercises 658 Programming Problems 664

Tables and Priority Queues 667
The ADT Table 668

Selecting an Implementation 675

A Sorted Array-Based Implementation of the ADT Table 682

A Binary Search Tree Implementation of the ADT Table 685

12.2

12.3

13
13.1

13.2

13.3

14
14.1
14.2

14.3

14.4

Contents

The ADT Priority Queue: A Variation of the ADT Table 687
Heaps 691

A Heap Implementation of the ADT Priority Queue 700
Heapsort 702

Tables and Priority Queues in the JCF 705
The JCF Map Interface 705

The JCF set Interface 709

The JCF PriorityQueue Class 713

Summary 715 Cautions 716 Self-Test Exercises 716
Exercises 717 Programming Problems 720

Advanced Implementations of Tables 723

Balanced Search Trees 724

2-3Trees 725

2-3-4 Trees 745

Red-Black Trees 752

AVL Trees 755

Hashing 761

Hash Functions 765

Resolving Collisions 767

The Efficiency of Hashing 776

What Constitutes a Good Hash Function? 779
Table Traversal: An Inefficient Operation under Hashing 781
The JCF Hashtable and TreeMap Classes 782
The Hashtable Class 782

The TreeMap Class 785

Data with Multiple Organizations 788
Summary 793 Cautions 794 Self-Test Exercises 795
Exercises 795 Programming Problems 798

Graphs 801
Terminology 802

Graphs as ADTs 805
Implementing Graphs 806
Implementing a Graph Class Using the JCF 809

Graph Traversals 812

Depth-First Search 814

Breadth-First Search 815

Implementing a BFS lterator Class Using the JCF 817

Applications of Graphs 820
Topological Sorting 820
Spanning Trees 823
Minimum Spanning Trees 828

13

14

Contents

1S
15.1
15.2
15.3

Shortest Paths 831
Circuits 835
Some Difficult Problems 838

Summary 839 Cautions 840 Self-Test Exercises 840
Exercises 841 Programming Problems 844

External Methods 847
A Look at External Storage 848

Sorting Data in an External File 851

External Tables 859

Indexing an External File 861

External Hashing 865

B-Trees 869

Traversals 879

Multiple Indexing 881

Summary 882 Cautions 883 Self-Test Exercises 883
Exercises 883 Programming Problems 886

A Comparison of Java to C++ 887
Unicode Character Codes (ASCII Subset) 891

Java Resources 892

Java Web Sites 892

Using Java SE6 892

Integrated Development Environments (IDEs) 893

Mathematical Induction 894
Example 1 894
Example 2 895
Example 3 896
Example 4 897
Example 5 897

Self-Test Exercises 898 Exercises 898
Glossary 901

Self-Test Answers 921

Index 945

Preface

Welcome to the third edition of Data Abstraction and Problem Solving with
Java: Walls and Mirrors. Java is a popular language for beginning computer
science courses. It is particularly suitable to teaching data abstraction in an
object-oriented way.

This book is based on the original Intermediate Problem Solving and Data
Structuves: Walls and Mirrors by Paul Helman and Robert Veroft (© 1986 by
Benjamin Cummings Publishing Company, Inc.). This work builds on their
organizational framework and overall perspective and includes technical and
textual content, examples, figures, and exercises derived from the original
work. Professors Helman and Veroff introduced two powerful analogies, walls
and mirrors, that have made it easier for us to teach—and to learn—computer
science.

With its focus on data abstraction and other problem-solving tools, this
book is designed for a second course in computer science. In recognition of
the dynamic nature of the discipline and the great diversity in undergraduate
computer science curricula, this book includes comprehensive coverage of
enough topics to make it appropriate for other courses as well. For example,
you can use this book in courses such as introductory data structures or
advanced programming and problem solving. The goal remains to give stu-
dents a superior foundation in data abstraction, object-oriented programming,
and other modern problem-solving techniques.

New in this edition

Uses Java 6: This edition has been thoroughly revised to be compatible with
the latest release of Java, known as Java 6. All code has been completely revised
to be Java 6 compliant. Generics are also an important part of Java 6, and this
material is discussed in depth in Chapter 9, and then used throughout the
remainder of the collections in the text.

Enhanced Early Review of Java: We have increased the amount of coverage of
the Java language in the first chapter of the book to help students make the transi-
tion from their introduction to Java course to this course. Chapter 1 provides a

15

16

Preface

concise review of important Java material, including brief discussions on
constructors, object equality, inheritance, and the Array class. A discus-
sion of the Console class from Java 6 was also added to Chapter 1.
Chapter 9 focuses on advanced Java techniques, and includes an enhanced
discussion of how to create an iterator class.

Linked List: The node class for linked lists has been simplified. The implemen-
tation now assumes the node class is package access only, and the other classes in
the same package have direct access to the data within a node. Students are asked
to explore the implications of making the data private in a node as an exercise.

Updates the Use of the Java Collections Framework: The Java Collections
Framework is discussed throughout the text, with a section added to show the JEC
classes that parallel those presented in the text. The Deque class, added in Java 6, is
presented in Chapter 8.

Other enhancements: Additional changes aimed at improving the overall
usability of the text include new exercises and a new cleaner design that
enhances the book’s readability.

TO THE STUDENT

Thousands of students before you have read and learned from Walls and Mirrors.
The walls and mirrors in the title represent two fundamental problem-solving
techniques that appear throughout the book. Data abstraction isolates and hides
the implementation details of a module from the rest of the program, much as a
wall can isolate and hide you from your neighbor. Recursion is a repetitive tech-
nique that solves a problem by solving smaller problems of exactly the same type,
much as mirror images that grow smaller with each reflection.

This book was written with you in mind. As former college students, and as
educators who are constantly learning, we appreciate the importance of a clear
presentation. Our goal is to make this book as understandable as possible. To
help you learn and to review for exams, we have included such learning aids as
margin notes, chapter summaries, self-test exercises with answers, and a glossary.
As a help during programming, you will find Java reference materials in
Chapter 1, and inside the covers. You should review the list of this book’s fea-
tures given later in this preface under the section “Pedagogical Features.”

The presentation makes some basic assumptions about your knowledge of
Java as reviewed in Chapter 1. Some of you may need to review this language
or learn it for the first time by consulting this chapter. Others will find that
they already know most of the constructs presented in Chapter 1. You will
need to know about the selection statements if and switch; the iteration
statements for, while, and do; classes, methods, and arguments; arrays;
strings; and files. In addition to the material in Chapter 1, this book discusses
advanced Java topics such as generics and iterators in Chapter 9. We assume no
experience with recursive methods, which are included in Chapters 3 and 6.

Preface

All of the Java source code that appears in this book is available for your
use. Later in this preface, the description of supplementary materials explains
how to obtain these files. See page 21—Supplemental Materials—for instruc-
tions on how to access these files.

TO THE INSTRUCTOR

This edition of Walls and Mirrors uses Java 6 to enhance its emphasis on data
abstraction and data structures. The book carefully accounts for the strengths
and weaknesses of the Java language and remains committed to a pedagogical
approach that makes the material accessible to students at the introductory level.

Prerequisites

We assume that readers either know the fundamentals of Java or know another
language and have an instructor who will help them make the transition to Java.
By using Chapter 1, students without a strong Java background can quickly pick
up what they need to know to be successful in the course. In addition, the book
formally discusses Java classes. Included are the basic concepts of a class, inherit-
ance, polymorphism, interfaces, and packages. Although the book provides an
introduction to these topics in connection with the implementations of abstract
data types (ADTs) as classes, the emphasis of the book remains on the ADTs, not
on Java. The material is presented in the context of object-based programming,
but it assumes that future courses will cover object-oriented design and software
engineering in detail, so that the focus can remain on data abstraction. We do,
however, introduce the Unified Modeling Language (UML) as a design tool.

Organization

The chapters in this book are organized into two parts. In most cases, Chapters 1
through 11 will form the core of a one-semester course. Chapters 1 or 2 might
be review material for your students. The coverage given to Chapters 11
through 15 will depend on the role the course plays in your curriculum.

Flexibility

The extensive coverage of this book should provide you with the material that
you want for your course. You can select the topics you desire and present them
in an order that fits your schedule. A chapter dependency chart follows, and
shows which chapters should be covered before a given chapter can be taught.

Part 1: Problem-Solving Techniques. The first two chapters in Part 1
resemble an extension of an introductory course in that their emphasis is on
major issues in programming and software engineering. Chapter 3 introduces
recursion for those students who have had little exposure to this important
topic. The ability to think recursively is one of the most useful skills that a

17

18 Preface
Chapter 2
Principles Chapter 1
Java review
y
Chapter4 |
Data abstraction \ 4
€ e e e e e _. __| Chapter3
/ Recursion
Chapter 5
Linked lists y
Chapter 6
\ More recursion
\d v \4
Chapter 7 »| Chapter 8 ly.| | Chapter9 Chapter 10
Stacks Queues Advanced Java Algorithm efficiency, sorting
.. »‘..............;
\
Chapter 11
Trees
\d
\d Chapter 12
Chapter 14 Tables, priority queues v
Graphs v Chapter 15
Chapter 13 Section on Section on

Advanced tables

Dependency by one section of

chapter

Dependency that you can ignore

external tables

external sorting

Knowledge of Java helpful to begin these chapters

Preface

computer scientist can possess and is often of great value in helping one to
understand better the nature of a problem. Recursion is discussed extensively
in this chapter and again in Chapter 6 and is used throughout the book.
Included examples range from simple recursive definitions to recursive algo-
rithms for language recognition, searching, and sorting.

Chapter 4 discusses data abstraction and abstract data types (ADTs) in
detail. After a discussion of the specification and use of an ADT, the chapter
discusses Java classes, interfaces, and packages, and uses them to implement
ADTs. Chapter 5 presents additional implementation tools in its discussion of
Java reference variables and linked lists.

You can choose among the topics in Part 1 according to the background
of your students and cover these topics in several orders.

Part 2: Problem Solving with Abstract Data Types. Part 2 continues the
use of data abstraction as a problem-solving technique. Basic abstract data types
such as the stack, queue, binary tree, binary search tree, table, heap, and priority
queue are first specified and then implemented as classes. The ADTs are used in
examples and their implementations are compared.

Chapter 9 extends the treatment of Java classes by covering inheritance,
the relationships among classes, generics, and iterators. Chapter 10 formalizes
the ecarlier discussions of an algorithm’s efficiency by introducing order-of-
magnitude analysis and Big O notation. The chapter examines the efficiency of
several searching and sorting algorithms, including the recursive mergesort and
quicksort.

Part 2 also includes advanced topics—such as balanced search trees (2-3,
2-3-4, red-black, and AVL trees) and hashing—that are examined as table
implementations. These implementations are analyzed to determine the table
operations that each supports best.

Finally, data storage in external direct access files is considered. Mergesort
is modified to sort such data, and external hashing and B-tree indexes are used
to search it. These searching algorithms are generalizations of the internal
hashing schemes and 2-3 trees already developed.

In Part 1, you can choose among topics according to your students’ back-
ground. Three of the chapters in this part provide an extensive introduction to
data abstraction and recursion. Both topics are important, and there are
various opinions about which should be taught first. Although in this book a
chapter on recursion both precedes and follows the chapter on data abstrac-
tion, you can simply rearrange this order.

Part 2 treats topics that you can also cover in a flexible order. For exam-
ple, you can cover all or parts of Chapter 9 on advanced Java topics either
before or after you cover stacks (Chapter 7). You can cover algorithm effi-
ciency and sorting (Chapter 10) any time after Chapter 6. You can introduce
trees before queues or graphs before tables, or cover hashing, balanced search
trees, or priority queues any time after tables and in any order. You also can
cover external methods (Chapter 15) earlier in the course. For example, you
can cover external sorting after you cover mergesort in Chapter 10.

19

20

Preface

Data Abstraction

The design and use of abstract data types (ADTs) permeate this book’s
problem-solving approach. Several examples demonstrate how to design an
ADT as part of the overall design of a solution. All ADTs are first specified—in
both English and pseudocode—and then used in simple applications before
implementation issues are considered. The distinction between an ADT and
the data structure that implements it remains in the forefront throughout the
discussion. The book explains both encapsulation and Java classes early. Stu-
dents see how Java classes hide an implementation’s data structure from the
client of the ADT. Abstract data types such as lists, stacks, queues, trees, tables,
heaps, and priority queues form the basis of our discussions.

Problem Solving

This book helps students learn to integrate problem-solving and program-
ming abilities by emphasizing both the thought processes and the techniques
that computer scientists use. Learning how a computer scientist develops, ana-
lyzes, and implements a solution is just as important as learning the mechanics
of the algorithm; a cookbook approach to the material is insufficient.

The presentation includes analytical techniques for the development of
solutions within the context of example problems. Abstraction, the successive
refinement of both algorithms and data structures, and recursion are used to
design solutions to problems throughout the book.

Java references and linked list processing are introduced early and used
in building data structures. The book also introduces at an elementary level
the order-of-magnitude analysis of algorithms. This approach allows the
consideration—first at an informal level, and then more quantitatively—of
the advantages and disadvantages of array-based and reference-based data
structures. An emphasis on the trade-offs among potential solutions and
implementations is a central problem-solving theme.

Finally, programming style, documentation including preconditions and
postconditions, debugging aids, and loop invariants are important parts of the
problem-solving methodology used to implement and verify solutions. These
topics are covered throughout the book.

Applications

Classic application areas arise in the context of the major topics of this book.
For example, the binary search, quicksort, and mergesort algorithms provide
important applications of recursion and introduce order-of-magnitude analy-
sis. Such topics as balanced search trees, hashing, and file indexing continue
the discussion of searching. Searching and sorting are considered again in the
context of external files.

Algorithms for recognizing and evaluating algebraic expressions are first
introduced in the context of recursion and are considered again later as an

Preface

application of stacks. Other applications include, for example, the Eight
Queens problem as an example of backtracking, event-driven simulation as an
application of queues, and graph searching and traversals as other important
applications of stacks and queues.

Pedagogical Features

The pedagogical features and organization of this book were carefully
designed to facilitate learning and to allow instructors to tailor the material
easily to a particular course. This book contains the following features that
help students not only during their first reading of the material, but also
during subsequent review:

m Chapter outlines and previews

m Key Concepts boxes

m Margin notes

m Chapter summaries

m Cautionary warnings about common errors and misconceptions
m Self-test exercises with answers

m Chapter exercises and programming problems. The most challenging exer-
cises are labeled with asterisks. Answers to the exercises appear in the
Instructor’s Resource Manual.

m Specifications for all major ADTs in both English and pseudocode

m Java class definitions for all major ADTs

m Examples that illustrate the role of ADTs in the problem-solving process
m Appendixes, including a review of Java

m Glossary of terms

SUPPLEMENTAL MATERIALS

The following supplementary materials are available online to all readers of this
book at www.pearsonhighered.com/cssupport.

m Source code of all the Java classes, methods, and programs that appear in
the book

m Errata: We have tried not to make mistakes, but mistakes are inevitable. A
list of detected errors is available and updated as necessary. You are invited
to contribute your finds.

21

22

Preface

The following instructor supplements are only available to qualified
instructors. Please visit Addison-Wesley’s Instructor Resource Center
(www.pearsonhighered.com/irc) or contact your local Addison-Wesley
Sales Representative to access them.

Instructor’s Guide with Solutions: This manual contains teaching hints,
sample syllabi, and solutions to all the end-of-chapter exercises in the
book.

Test Bank: A collection of multiple choice, true/false, and short-answer
questions

PowerPoint Lectures: Lecture notes with figures from the book

TALK TO US

This book continues to evolve. Your comments, suggestions, and correc-
tions will be greatly appreciated. You can contact us through the publisher at
computing@aw.com, Or:

Computer Science Editorial Office
Addison-Wesley

501 Boylston Street, Suite 900
Boston, MA 02116

ACKNOWLEDGMENTS

The suggestions from outstanding reviewers have, through the past few editions,
contributed greatly to this book’s present form. In alphabetical order, they are:

Ronald Alferez— University of California at Santa Barbara
Claude W. Anderson—Rose-Hulman Institute of Technology
Don Bailey—Carieton University

N. Dwight Barnette—Virginia Tech

Jack Beidler— University of Scranton

Elizabeth Sugar Boese—Colorado State University

Debra Burhans—Canisius College

Tom Capaul—Eastern Washington University

Eleanor Boyle Chlan—Johns Hopkins University

Chakib Chraibi—Barry University

Jack N. Donato—Jefferson Community College

Susan Gauch— University of Kansas

Mark Holliday— Western Carolina University

Lily Hou—SUN Microsystems, Inc.

Helen H. Hu— Westminster College

Lester I. McCann—The University of Arizona

Rameen Mohammadi—SUNY, Oswego

Narayan Murthy—Pace University

Thaddeus F. Pawlicki— University of Rochester

Preface

Timothy Rolfe— Eastern Washington University
Hongjun Song— University of Memphis

For their peer reviews of the international edition, we would like to thank:

Arup Kumar Bhattacharjee—RCC Institute of Information Technology
Soumen Mukherjee—RCC Institute of Information Technology

We especially thank the people who produced this book. Our editors at
Addison-Wesley, Michael Hirsch and Stephanie Sellinger, provided invaluable
guidance and assistance. Also, Marilyn Lloyd, Linda Knowles, Yez Alayan and
Kathryn Ferranti contributed their expertise and care during the final produc-
tion and in the marketing of the book.

Many other wonderful people have contributed in various ways. They are
Doug McCreadie, Michael Hayden, Sarah Hayden, Andrew Hayden, Albert
Prichard, Frances Prichard, Sarah Mason, Karen Mellor, Maybeth Conway, Ted
Emmott, Lorraine Berube, Marge White, James Kowalski, Ed Lamagna, Gerard
Baudet, Joan Peckham, Victor Fay-Wolfe, Bala Ravikumar, Karl Abrahamson,
Ronnie Smith, James Wirth, Randy Hale, John Cardin, Gail Armstrong, Tom
Manning, Jim Abreu, Bill Harding, Hal Records, Lauric MacDonald, Ken
Fougere, Ken Sousa, Chen Zhang, Suhong Li, Richard Glass, and Aby
Chaudhury. In special memory of Wallace Wood.

Numerous other people provided input for the previous editions of Walls and
Mirrors at various stages of its development. All of their comments were useful and
greatly appreciated. In alphabetical order, they are: Stephen Alberg, Vicki Allan,
Jihad Almahayni, James Ames, Andrew Azzinaro, Tony Baiching, Don Bailey,
Wolfgang W. Bein, Sto Bell, David Berard, John Black, Richard Botting, Wolfin
Brumley, Philip Carrigan, Stephen Clamage, Michael Clancy, David Clayton,
Michael Cleron, Chris Constantino, Shaun Cooper, Charles Denault, Vincent J.
DiPippo, Suzanne Dorney, Colleen Dunn, Carl Eckberg, Karla Steinbrugge Fant,
Jean Foltz, Marguerite Hafen, George Hamer, Judy Hankins, Lisa Hellerstein, Mary
Lou Hines, Jack Hodges, Stephaniec Horoschak, John Hubbard, Kris Jensen,
Thomas Judson, Laura Kenney, Roger King, Ladislav Kohout, Jim LaBonte, Jean
Lake, Janusz Laski, Cathie LeBlanc, Urban LeJeune, John M. Linebarger, Ken
Lord, Paul Luker, Manisha Mande, Pierre-Arnoul de Marnefte, John Marsaglia, Jane
Wallace Mayo, Mark McCormick, Dan McCracken, Vivian McDougal, Shirley
McGuire, Sue Medeiros, Jim Miller, Guy Mills, Cleve Moler, Paul Nagin, Rayno
Niemi, Paul Nagin, John O’Donnell, Andrew Oldroyd, Larry Olsen, Raymond L.
Paden, Roy Pargas, Brenda C. Parker, Keith Pierce, Lucasz Pruski, George B. Purdy,
David Radford, Steve Ratering, Stuart Regis, J. D. Robertson, John Rowe, Michael
E. Rupp, Sharon Salveter, Charles Saxon, Chandra Sekharan, Linda Shapiro, Yujian
Sheng, Mary Shields, Carl Spicola, Richard Snodgrass, Neil Snyder, Chris Spannabel,
Paul Spirakis, Clinton Staley, Matt Stallman, Mark Stehlick, Harriet Taylor, David
Teague, David Tetreault, John Turner, Susan Wallace, James E. Warren, Jerry Weltman,
Nancy Wiegand, Howard Williams, Brad Wilson, Salih Yurttas, and Alan Zaring.

Thank you all.
F. M. C.
J.J.D

23

This page intentionally left blank

PART ONE

Problem-Solving
Techniques

he primary concern of the six chapters in Part One of this book is to

develop a repertoire of problem-solving techniques that form the basis
of the rest of the book. Chapter 1 begins by providing a brief overview of
Java fundamentals. Chapter 2 describes the characteristics of a good solu-
tion and the ways to achieve one. These techniques emphasize abstraction,
modularity, and information hiding. The remainder of Part One discusses
data abstraction for solution design, more Java for use in implementations,
and recursion as a problem-solving strategy.

This page intentionally left blank

CHAPTER 1

Review of Java

Fundamentals

his book assumes that you already know how to write

programs in a modern programming language. If that
language is Java, you can probably skip this chapter, return-
ing to it for reference as necessary. If instead you know a
language such as C++, this chapter will introduce you to
Java.

It isn’'t possible to cover all of Java in these pages.
Instead this chapter focuses on the parts of the language
used in this book. First we discuss basic language con-
structs such as variables, data types, expressions, opera-
tors, arrays, decision constructs, and looping constructs.
Then we look at the basics of program structure, including
packages, classes, and methods, with a brief introduction to
inheritance. We continue with useful Java classes, excep-
tions, text input and output, and files.

Summary

1.1 Language Basics
Comments
Identifiers and Keywords
Variables
Primitive Data Types
References
Literal Constants
Named Constants
Assignments and Expressions
Arrays

1.2 Selection Statements
The if Statement
The switch Statement

1.3 lteration Statements
The while Statement
The for Statement
The do Statement

1.4 Program Structure
Packages
Classes
Data Fields
Methods
How to Access Members of an Object

1.5 Useful Java Classes

The Object Class
String Classes

1.6 Java Exceptions

Catching Exceptions
Throwing Exceptions

1.7 Text Input and Output

Input
Output

1.8 File Input and Output

Text Files
Object Serialization

Cautions

27

28 Chapter 1

A variety of com-
menting styles are
available in Java

Java is case
sensitive

A variable contains
either the value of a
primitive data type
or a reference to an
object

Review of Java Fundamentals

1.1 Language Basics

Let’s begin with the elements of the language that allow you to perform
simple actions within a program. The following sections provide a brief over-
view of the basic language constructs of Java.

Comments

Each comment line in Java begins with two slashes (//) and continues until the
end of the line. You can also begin a multiple-line comment with the characters
/* and end it with */. Although the programs in this book do not use /* and */,
it is a good idea to use this notation during debugging. That is, to isolate an
error, you can temporarily ignore a portion of a program by enclosing it within
/* and */. However, a comment that begins with /* and ends with */ cannot
contain another comment that begins with /* and ends with */. Java also has a
third kind of comment that is used to generate documentation automatically
using javadoc, a documentation utility available in the Software Development
Kit (SDK). This comment uses a /** to start and a */ to end.

Identifiers and Keywords

A Java identifier is a sequence of letters, digits, underscores, and dollar signs
that must begin with either a letter or an underscore. Java distinguishes
between uppercase and lowercase letters, so be careful when typing identifiers.

You use identifiers to name various parts of the program. Certain identifi-
ers, however, are reserved by Java as keywords, and you should not use them
for other purposes. A list of all Java keywords appears inside the front cover of
this book. The keywords that occur within Java statements in this book are in
boldface.

Variables

A variable, whose name is a Java identifier, represents a memory location that
contains a value of a primitive data type or a reference. You declare a variable’s
data type by preceding the variable name with the data type, as in

double radius; // radius of a sphere
String name; // reference to a String object

Note that the second declaration does not create a String object, only a vari-
able that stores the location of a String object. You must use the new operator
to create a new object.

Language Basics

Primitive Data Types

The primitive data types in Java are organized into four categories: boolean,
character, integer, and floating point. For example, the following two lines
declare variables of the primitive type double.

double radius;
double radiusCubed;

Some of the data types are available in two forms and sizes. Figure 1-1 lists
the available primitive data types.

A boolean value can be either true or false. You represent characters by
enclosing them in single quotes or by providing their Unicode integer value
(see Appendix B). Integer values are signed and allow numbers such as =5 and
+98. The floating-point types provide for real numbers that have both an
integer portion and a fractional portion. Character and integer types are called
integral types. Integral and floating-point types are called arithmetic types.

A value of a primitive type is not considered to be an object and thus
cannot be used in situations where an object type is expected. For this reason,
the package java.lang provides corresponding wrapper classes for each of
the primitive types. Figure 1-1 also lists the wrapper class corresponding to
each of the primitive types.

Each of these classes provides a constructor to convert a value of a primi-
tive type to an object when necessary. Once such an object has been created,
the value contained within the object cannot be modified. Here is a simple
example involving integers:

int x = 9;

Integer intObject = new Integer(x);

System.out.println("The value stored in intObject = "
+ intObject.intValue());

Category Data Type Wrapper Class
Boolean boolean Boolean
Character char Character
Integer byte Byte
short Short
int Integer
long Long
Floating point float Float
double Double

Primitive data types and corresponding wrapper classes

29

A wrapper class is
available for each
primitive data type

You can represent
the value of a
primitive data type
by using a wrapper
class

30 Chapter 1

A reference variable
contains an object’s
location in memory

Literal constants
indicate particular
values within a
program

Review of Java Fundamentals

The class Integer has a method intvalue that retrieves the value stored
in an Integer object. Classes corresponding to the other primitive types
provide methods with similar functionality.

Java has a feature called autoboxing that makes it easier to convert from a
primitive type to their equivalent wrapper class counterparts. In the previous
example, we explicitly created a new Integer object to store the value 9. With
autoboxing, we can simply write

Integer intObject = 9;

The compiler automatically adds the code to convert the integer value into the
proper class (Integer in this example).

The reverse process of converting an object of one of the wrapper
classes into a value of the corresponding primitive type is called auto-unboxing.
In the example

int x = intObject + 1;

the compiler again automatically generates the code to convert the Integer
object intObject to a primitive type (int in this example) so that the expres-
sion can be evaluated.

References

Java has one other type, called a reference, that is used to locate an object.
Unlike other languages, such as C++, Java does not allow the programmer to
perform any operations on the reference value. When an object is created using
the new operator, the location of the object in memory is returned and can be
assigned to a reference variable. For example, the following line shows the ref-
erence variable name being assigned the location of a new string object:

String name = new String("Sarah");

A special reference value of null is provided to indicate that a reference vari-
able has no object to reference.

Literal Constants

You use literal constants to indicate particular values within a program. In the
following expression, the 4 and 3 are examples of literal constants that are used
within a computation.

4 * Math.PI * radiusCubed / 3

Language Basics

You can also use a literal constant to initialize the value of a variable. For exam-
ple, you use true and false as the values of a boolean variable, as we men-
tioned previously.

You write decimal integer constants without commas, decimal points, or
leading zeros.! The default data type of such a constant is either int, if small
enough, or Iong.

You write floating constants, which have a default type of double, with a
decimal point. You can specify an optional power-of-10 multiplier by writing e
or E followed by the power of 10. For example, 1.2e-3 means 1.2 x 1073,

Character constants are enclosed in single quotes—for example, 'A' and
'2'—and have a default type of char. You write a literal character string as a
sequence of characters enclosed in double quotes.

Several characters have names that use a backslash notation, as given in
Figure 1-2. This notation is useful when you want to embed one of these char-
acters within a literal character string. For example, the statement

System.out.println("Hello\n Let\'s get started!");

uses the new-line character \n to place a new-line character after the string
Hello. You will learn about this use of \n in the discussion of output later in this
chapter. You also use the backslash notation to specify cither a single quote as a
character constant (\ ') or a double quote (\") within a character string.

Named Constants

Unlike variables, whose values can change during program execution, named
constants have values that do not change. The declaration of a named con-
stant is like that of a variable, but the keyword final precedes the data type.
For example,

final float DEFAULT RADIUS = 1.0;

Constant Name

\n New line

\t Tab

\' Single quote
\" Double quote
\0 Zero

Some special character constants

1. Octal and hexadecimal constants are also available, but they are not used in this
book. An octal constant begins with 0, a hex constant with 0x or 0X.

31

Do not begin a
decimal integer
constant with zero

The value of a
named constant
does not change

32 Chapter 1

Named constants
make a program
easier to read and
modify

An assignment
statement assigns
the value of an
expression to a
variable

Operators have a
set precedence

Review of Java Fundamentals

declares DEFAULT RADIUS as a named floating-point constant. Once a named
constant such as DEFAULT RADIUS is declared, you can use it, but you cannot
assign it another value. By using named constants, you make your program
both easier to read and easier to modify.

Assignments and Expressions
You form an expression by combining variables, constants, operators, and
parentheses. The assignment statement

radius = initialRadius;

assigns to a previously declared variable radius the value of the expression on the
right-hand side of the assignment operator =, assuming that initialRadius has
avalue. The assignment statement

double radiusCubed = radius * radius * radius;
also declares radiusCubed’s data type, and assigns it a value.

Arithmetic expressions. You can combine variables and constants with
arithmetic operators and parentheses to form arithmetic expressions. The
arithmetic operators are

* Multiply + Binary add or unary plus
/ Divide - Binary subtract or unary minus

% Remainder after division

The operators *, /, and % have the same precedence,? which is higher than that
of + and -; unary operators® have a higher precedence than binary operators.
The following examples demonstrate operator precedence:

a-b/c means a - (b/ c) (precedenceof/ over -)
-5/ a means (-5) / a (precedence of unary operator -)
a/ -5 means a / (-5) (precedence of unary operator -)

Arithmetic operators and most other operators are left-associative. That
is, operators of the same precedence execute from left to right within an
expression. Thus,

2. Alist of all Java operators and their precedences appears inside the back cover of this
book.

3. A unary operator requires only one operand, for example, the - in -5. A binary
operator requires two operands, for example, the +in 2 + 3.

Language Basics

a/ b =*c
means
(a / b) * ¢

The assignment operator and all unary operators are right-associative, as you
will see later. You can use parentheses to override operator precedence and
associativity.

Relational and logical expressions. You can combine variables and con-
stants with parentheses; with the relational, or comparison, operators <, <=,
>=,and >; and with the equality operators == (equal to) and != (not equal to)
to form a relational expression. Such an expression evaluates to false if the
specified relation is false and to true if it is true. For example, the expression
5 != 4 has a value of true because 5 is not equal to 4. Note that equality
operators have a lower precedence than relational operators. Also note that the
cquality operators work correctly only with the primitive types and references.
The == operator determines only whether two reference variables are referenc-
ing the same object, but not whether two objects are equal.

You can combine variables and constants of the arithmetic types, rela-
tional expressions, and the logical operators && (and) and || (or) to form
logical expressions, which evaluate to false if false and to true if true. Java
evaluates logical expressions from left to right and stops as soon as the value of
the entire expression is apparent; that is, Java uses short-circuit evaluation.
For example, Java determines the value of each of the following expressions
without evaluating (a < b):

(5 == 4) && (a < b)
(5 ==5) || (a <b)

// false since (5 ==
// true since (5 ==

4) is false
5) is true

Implicit type conversions for the primitive numeric types. Automatic con-
versions from one numeric data type to another can occur during assignment
and during expression evaluation. For assignments, the data type of the expres-
sion on the right-hand side of the assignment operator is converted to the data
type of the item on the left-hand side just before the assignment occurs. Float-
ing-point values are truncated—not rounded—when they are converted to
integral values.

During the evaluation of an expression, any values of type byte, char, or
short are converted to int. These conversions are called integral promo-
tions. After these conversions, if the operands of an operator differ in data
type, the data type that is lower in the following hierarchy is converted to one
that is higher (int is lowest):

int —» long — float — double

33

Operators are
either left- or right-
associative

Equality operators

work correctly only
with primitive types
and references

Logical expressions
are evaluated from
left to right

Sometimes the
value of a logical
expression is
apparent before it
is completely
examined

Conversions from
one data type to
another occur
during both assign-
ment and expres-
sion evaluation

34 Chapter 1

You convert from
one numeric type
to another by using
a cast

The operators ++
and -- are useful
for incrementing
and decrementing
a variable

Review of Java Fundamentals

For example, if A is long and B is float, A + Bis float. A copy of A’s long value
is converted to float prior to the addition; the value stored at A is unchanged.

Explicit type conversions for primitive numeric types. Numeric conversions
from one type to another are possible by means of a cast. The cast operator is a
unary operator formed by enclosing the desired data type within parentheses.
Thus, the sequence

double volume = 14.9;
System.out.print((int)volume);

displays 14.

Multiple assignment. If you omit the semicolon from an assignment state-
ment, you get an assignment expression. You can embed assignment expres-
sions within assignment expressions, asina = 5 + (b = 4).

This expression first assigns 4 to b and then 9 to a. This notation contributes to
the terseness of Java and is sometimes convenient, but it can be confusing. The
assignment operator is right-associative. Thus,a=b=c meansa= (b=c).

Other assignment operators. In addition to the assignment operator =, Java
provides several two-character assignment operators that perform another
operation before assignment. For example,

at+=b meansa =a + b

Other operators, such as -=, *=, /=, and %=, have analogous meanings.
Two more operators, ++ and --, provide convenient incrementing and
decrementing operations:

++a means a += 1, which means a = a + 1
Similarly,
--a means a -= 1, whichmeans a = a - 1

The operators ++ and -- can either precede their operands, as you just saw, or
follow them. Although a++, for instance, has the same effect as ++a, the results
differ when the operations are combined with assignment. For example,

b = ++ta meansa = a + 1; b = a

Here, the ++ operator acts on a before the assignment to b of a’s new value. In
contrast,

b = at+ means b = a; a = a + 1

The assignment operator assigns a’s old value to b before the ++ operator acts
on a. That is, the ++ operator acts on a after the assignment. The operators ++

Language Basics

and -- are often used within loops and with array indexes, as you will see later
in this chapter.

In addition to the operators described here, Java provides several other
operators. A summary of all Java operators and their precedences appears
inside the back cover of this book.

Arrays

An array is a collection of elements, items, or values that have the same data
type. Array elements have an order: An array has a first element, a second ele-
ment, and so on, as well as a last element. That is, an array contains a finite,
limited number of elements. Like objects, an array does not come into exist-
ence until it is allocated using the new statement. At that time, you specify the
desired size of the array. Because you can access the array elements directly and
in any order, an array is a direct access, or random access, data structure.

One-dimensional arrays. When you decide to use an array in your pro-
gram, you must declare it and, in doing so, indicate the data type of its ele-
ments. The following statements declare a one-dimensional array, maxTemps,
which contains the daily maximum temperatures for a given week:

final int DAYS PER WEEK = 7;
double [] maxTemps = new double[DAYS PER WEEK];

The bracket notation [] declares maxTemps as an array. The array is then allo-
cated memory for seven floating-point elements.

The declared length of an array is accessible using the data field Iength
associated with the array. For example, maxTemps.length is 7. You can refer
to any of the floating-point elements in maxTemps directly by using an
expression, which is called the index, or subscript, enclosed in square brack-
ets. In Java, array indexes must have integer values in the range 0 to length
— 1, where Iength is the data field just described. The indexes for maxTemps
range from 0 to DAYS PER WEEK — 1. For example, maxTemps[4] is the fifth
element in the array. If k is an integer variable whose value is 4, maxTemps [k]
is the fifth element in the array, and maxTemps[k+1] is the sixth element.
Also, maxTemps [++k] adds 1 to k and then uses the new value of k to index
maxTemps, whereas maxTemps [k++] accesses maxTemps[k] before adding 1
to k. Note that you use one index to refer to an element in a one-dimen-
sional array.

Figure 1-3 illustrates the array maxTemps, which at present contains only
five temperatures. The last value in the array is maxTemps[4]; the values of
maxTemps[5] and maxTemps[6] are 0.0, the default initial value for floating-
point numbers.

You can initialize the elements of an array when you declare it by specify-
ing an initializer list. The initializer list is a list of values separated by commas
and enclosed in braces. For example,

35

An array is a collec-
tion of data that has
the same type

You can access
array elements
directly and in
any order

Use an index to
specify a particular
element in an array

An array index has
an integer value
greater than or
equalto 0

36 Chapter 1

You can initialize an
array when you
declare it

An array can have
more than one
dimension

Review of Java Fundamentals

0 1 2 3 4 5 6 <€— Index

maxTemps | 820 | 715 | 61.8 | 75.0 | 883 0.0 0.0

maxTemps[4]——J

Unused at present

A one-dimensional array of at most seven elements

double [] weekDayTemps = {82.0, 71.5, 61.8, 75.0, 88.3};

initializes the array weekDayTemps to have five elements with the values listed.
Thus, weekDayTemps[0] is 82 .0, weekDayTemps[1] is 71.5, and so on.

You can also declare an array of object references. The declaration is
similar to that of an array of primitive types. Here is a declaration of an array
for ten String references:

String[] stuNames = new String[10];

Note that all of the references will have the initial value null until actual
String objects are created for them to reference. The following statement
creates a String object for the first element of the array:

stuName[0] = new String("Andrew");

Multidimensional arrays. You can use a one-dimensional array, which has
one index, for a simple collection of data. For example, you can organize 52
temperatures linearly, one after another. A one-dimensional array of these tem-
peratures can represent this organization.

You can also declare multidimensional arrays. You use more than one
index to designate an element in a multidimensional array. Suppose that you
wanted to represent the minimum temperature for each day during 52 weeks.
The following statements declare a two-dimensional array, minTemps:

final int DAYS_PER WEEK = 7;
final int WEEKS_PER YEAR = 52;

double[][] minTemps = new
double[DAYS_PER_WEEK][WEEKS_PER_YEAR];

These statements specity the ranges for two indexes: The first index can range
from 0 to 6, while the second index can range from 0 to 51. Most people picture
a two-dimensional array as a rectangular arrangement, or matrix, of elements

Language Basics

Columns
A

Rows <

.

-

A two-dimensional array

that form rows and columns, as Figure 1-4 indicates. The first dimension given
in the definition of minTemps is the number of rows. Thus, minTemps has 7 rows
and 52 columns. Each column in this matrix represents the seven daily minimum
temperatures for a particular week.

To reference an element in a two-dimensional array, you must indicate both
the row and the column that contain the element. You make these indications of
row and column by writing two indexes, each enclosed in brackets. For example,
minTemps[1][51] is the element in the 274 yow and the 52" column. In the
context of the tem gerature example, this element is the minimum temperature
recorded for the 2" day (Monday) of the 52"4 week. The rules for the indexes of
a one-dimensional array also apply to the indexes of multidimensional arrays.

As an example of how to use a two-dimensional array in a program, con-
sider the following program segment, which determines the smallest value in
the previously described array minTemps:

// minTemps is a two-dimensional array of daily minimum
// temperatures for 52 weeks, where each column of the
// array contains temperatures for one week.

// initially, assume the lowest temperature is
// first in the array

double lowestTemp = minTemps[0][0];

int dayOfWeek = 0;

int weekOfYear = 0;

37

In a two-dimensional
array, the first

index represents
the row, the second
index represents the
column

An example of using
a two-dimensional
array

38

Chapter 1

Review of Java Fundamentals

// search array for lowest temperature
for (int weekIndex = 0; weekIndex < WEEKS_ PER YEAR;
++weekIndex) {
for (int dayIndex = 0; dayIndex < DAYS PER _WEEK;
++dayIndex) {
if (lowestTemp > minTemps[dayIndex][weekIndex]) {
lowestTemp = minTemps[dayIndex][weekIndex];
dayOfWeek = dayIndex;
weekOfYear = weekIndex;
} // end if
} // end for
} // end for
// Assertion: lowestTemp is the smallest value in
// minTemps and occurs on the day and week given by
// dayOfWeek and weekOfYear; that is, lowestTemp ==
// minTemps[dayOfWeek][weekOfYear].

It is entirely possible to declare minTemps as a one-dimensional array of
364 (7 * 52) elements, in which case you might use minTemps[81] instead of
minTemps[4][11] to access the minimum temperature on the 4th day of the
11™ week. However, doing so will make your program harder to understand!

Although you can declare arrays with more than two dimensions, it is unusual
to have an array with more than three dimensions. The techniques for working
with such arrays, however, are analogous to those for two-dimensional arrays.

You can initialize the elements of a two-dimensional array just as you
initialize a one-dimensional array. You list the initial values row by row. For
example, the statement

int[1[] x = {{1,2,3},{4,5,6}};

initializes a 2-by-3 array x so that it appears as

1 2 3
4 5 6

That is, the statement initializes the elements x[0][0], x[0][1], x[0][2],
x[1][0], x[1][1], and x[1][2] in that order. In general, when you assign
initial values to a multidimensional array, it is the last, or rightmost, index that
increases the fastest.

1.2 Selection Statements

Selection statements allow you to choose among several courses of action
according to the value of an expression. In this category of statements, Java
provides the if statement and the switch statement.

Selection Statements

The i f Statement

You can write an if statement in one of two ways:

if (expression)
statementy

or

if (expression)
statementy

else
statement,

where statement; and statement, represent any Java statement. Such statements can be
compound; a compound statement, or block, is a sequence of statements enclosed
in braces. Though not a requirement of Java, this text will always use a compound
statement in language constructs, even if only a single statement is required.

If the value of expression is true, statement) is executed. Otherwise, the
first form of the if statement does nothing, whereas the second form executes
statement,. Note that the parentheses around expression are required.

For example, the following if statements each compare the values of two
integer variables a and b:

if (a > b) {
System.out.println(a + " is larger than " + b + ".");
} // end if
System.out.println("This statement is always executed.");

if (a > b) {
larger = a;

System.out.println(a + " is larger than " + b + ".");
}
else {

larger = b;

System.out.println(b + " is larger than " + a + ".");
} // end if

System.out.println(larger + " is the larger value.");

39

An i f statement has
two basic forms

Parentheses around
the expression in
an if statement
are required

40 Chapter 1

You can nest i f
statements

A switch state-
ment provides

a choice of several
actions according to
the value of an inte-
gral expression

Without a break
statement, execu-
tion of a case will
continue into the
next case

Review of Java Fundamentals

You can nest if statements in several ways, since either statement, or statement,
can itself be an if statement. The following example, which determines the largest
of three integer variables a, b, and ¢, shows a common way to nest i f statements:

if ((a >= b) && (a >= c)) {
largest = a;

}

else if (b >= c¢) {
largest = b;

// a is not largest at this point

}
else {

largest = c;
} // end if

The switch Statement

When you must choose among more than two courses of action, the if state-
ment can become unwieldy. If your choice is to be made according to the
value of an integral expression, you can use a switch statement.

For example, the following statement determines the number of days in a
month. The int variable month designates the month as an integer from 1 to 12.

switch (month) {
// 30 days hath Sept., Apr., June, and Nov.

case 9: case 4: case 6: case 11:
daysInMonth = 30;
break;
// all the rest have 31
case 1: case 3: case 5: case 7: case 8: case 10: case 12:
daysInMonth = 31;
break;

// except February
case 2: // assume leapYear is true if leap
// year, else is false
if (leapYear) {
daysInMonth = 29;
}
else {
daysInMonth = 28;
} // end if
break;

default:
System.out.println("Incorrect value for Month.");
} // end switch

lteration Statements

Parentheses must enclose the integral switch expression—month, in this
example. The case labels have the form

case expression:

where expression is a constant integral expression. After the switch expression
is evaluated, execution continues at the case label whose expression has the
same value as the switch expression. Subsequent statements execute until
either a break or a return is encountered or the switch statement ends.

It bears repeating that unless you terminate a case with either a break or a
return, execution of the switch statement continues. Although this action can be
useful, omitting the break statements in the previous example would be incorrect.

If no case label matches the current value of the switch expression, the
statements that follow the default label, if one exists, are executed. If no
default exists, the switch statement exits.

1.3 Iteration Statements

Java has three statements—the while, for, and do statements—that provide
for repetition by iteration—that is, loops. Each statement controls the number
of times that another Java statement—the body—is executed. The body can be
a single statement, though this text will always use a compound statement.

The while Statement

The general form of the while statement is

while (expression)
statement

As long as the value of expression is true, statement is executed. Because expression
is evaluated before statement is executed, it is possible that statement will not
execute at all. Note that the parentheses around expression are required.

Suppose that you wanted to compute the sum of a list of integers stored in
an array called myArray. The following while loop accomplishes this task:

int sum = 0;

int index = 0;

while (index <= myArray.length) {
sum += myArray[index];

} // end while

The break and continue statements. You can use the break statement—
which you saw earlier within a switch statement—within any of the iteration state-
ments. A break statement within the body of a loop causes the loop to exit immedi-
ately. Execution continues with the statement that follows the loop. This use of
break within awhile, for, or do statement is generally considered poor style.

41

A while statement
executes as long
as the expression
is true

Use of a break
statement within a
loop is generally
poor style

42 Chapter 1 Review of Java Fundamentals

The continue statement stops only the current iteration of the loop and
begins the next iteration at the top of the loop. The continue statement is
valid only within while, for, or do statements.

The for Statement

The for statement provides for counted loops and has the general form

A for statement for (imitialize; test; update)
lists the initializa- statement
tion, testing, and

updating steps in . . T
P g step where initialize, test, and update are expressions. Typically, initialize is an

one location . . L .
assignment expression that initializes a counter to control the loop. This ini-
tialization occurs only once. Then, if zesz, which is usually a logical expression,
is true, statement executes. The expression update executes next, usually incre-
menting or decrementing the counter. This sequence of events repeats, begin-
ning with the evaluation of test, until the value of test is false. As with the
previous constructs, statement is usually a compound statement.

For example, the following for statement sums the integers from 1 to n:
int sum = 0;
for (int counter = 1; counter <= n; ++counter) {

sum += counter;

} // end for
// this statement is always executed
int x = 0;
If n is less than 1, the for statement does not execute at all. Thus, the previous
statements are equivalent to the following while loop:
int sum = 0;
int counter = 1;
while (counter <= n) {

sum += counter;

++counter;
} // end while
// this statement is always executed
int x = 0;

In general, the logic of a for statement is equivalent to

A for statement is initinlize;

equivalent to a while (test) {

while statement statement;

update;
} // end while

lteration Statements

with the understanding that if statement contains a continue, update will
execute before zest is evaluated again.
The following two examples demonstrate the flexibility of the for statement:

for (byte ch = 'z'; ch >= 'a'; --ch) {
// ch ranges from 'z' to 'a’'

statements to process ch
} // end for

for (double x = 1.5; x < 10; x += 0.25) {

// x ranges from 1.5 to 9.75 at steps of 0.25
statements to process x

} // end for

The initialize and update portions of a for statement cach can contain
several expressions separated by commas, thus performing more than one
action. For example, the following loop raises a floating-point value to an
integer power by using multiplication:

// floating-point power equals floating-point x

// raised to int n; assumes integer expon

for (power = 1.0, expon = 1; expon <= n; ++expon){
power *= Xx;

} // end for

Both power and expon are assigned values before the body of the loop exe-
cutes for the first time.

Because the for statement consolidates the initialization, testing, and
updating steps of a loop into one statement, Java programmers tend to favor it
over the while statement. For example, notice how the following while loop
sums the values in an array x:

sum = 0;

int 1 = 0;

while (i < x.length) {
sum += x[1i];
i++;

} // end while

This loop is equivalent to the following for statement:

for (int i = 0, sum = 0; i < x.length; sum += x[i++]) {

}

In fact, this for statement has an empty body!

43

A for statement is
usually favored over
the while statement

44 Chapter 1

You can omit any
of the initialization,
testing, and updat-
ing steps in a for
statement, but you
cannot omit the
semicolons

Review of Java Fundamentals

You can omit any of the expressions initialize, test, or update from a for
statement, but you cannot omit the semicolons. For example, you can move
the update step from the previous for statement to the body of the loop:

for (int i = 0, sum = 0; i < x.length;) {
sum += x[i++];
} // end for

You also could omit both the initialization and the update steps, as in the fol-
lowing loop:

for (; x> 0;) {
statements to process nextValue in inputLine
} // end for

This for statement offers no advantage over the equivalent while
statement:

while (x > 0)

Although you can omit the zest expression from for, you probably will not
want to do so, because then the loop would be infinite.

The for loop and arrays. Java provides a loop construct that simplifies iter-
ation through the elements of an array. A logical name for this loop construct
would be the “foreach” loop, but the language developers wanted to avoid
adding a new keyword to the language. So the new form of the for loop is
often referred to as the “enhanced for loop.”

The syntax for the enhanced for loop when used with arrays is as follows:

for (AwrayElementType vaviableName : arrayName)
statement

where ArrayElementType is the type of each element in the array, and arrayName
is the name of the array you wish to process element by element. The loop
begins with the variableName assigned the first element in the array. With each
iteration of the loop, variableName is associated with the next element in the
array. This continues until all of the elements in the array have been processed.
For example:

String[] nameList = { "Janet", "Frank", "Mike", "Doug"};

for (string name: namelList) { // for each name in nameList
System.out.println(name);

} // end for

Program Structure

is equivalent to the following:

String[] nameList = { "Janet", "Frank", "Mike", "Doug"};

for (int index=0; index < nameList.length; index++) {
System.out.println(nameList[index]);

} // end for

The do Statement

Use the do statement when you want to execute a loop at least once. Its
general form is

do {
statement
} while (expression);

Here, statement executes until the value of expression is false.

For example, suppose that you execute a sequence of statements and then
ask the user whether to execute them again. The do statement is appropriate,
because you execute the statements before you decide whether to repeat them:

char response;
do {
(& sequence of statements)
ask the user if they want to do it again
store user’s response in response
} while ((response == 'Y') || (response == 'y'));

1.4 Program Structure

Let’s begin our discussion of program structure with the simple Java applica-
tion in Figure 1-5 that computes the volume of a sphere. It consists of two
classes, SimpleSphere and TestClass. Each of these classes is contained in a
separate file that has the same name as the class, with .java appended to the
end. A typical Java program consists of several classes, some of which you write
and some of which you use from the Java Application Programming Interface
(API). A Java application has one class that contains a method main, the start-
ing point for program execution. Running the program in Figure 1-5 produces
the following output:

The volume of a sphere of radius 19.1 inches is 29186.95
This application includes all of the basic elements of Java program struc-

ture (packages, classes, data fields, and methods). The sections that follow
discuss each of these elements.

45

A do statement
loops at least once

Each Java applica-
tion must contain at
least one class that
has a method main

46

Chapter 1 Review of Java Fundamentals

/ File SimpleSphere.java \
1. Indicates SimpleSphere is part of a package ---->| package MyPackage;
2. Indicates class Math is used by SimpleSphere -->| import java.lang.Math;
3. Begins class SimpleSphere ---------------z=---cmmmmn >| public class SimpleSphere {
4. Declares a private data field radius ----------------- >| private double radius;
5. Declares a constant > public static final double DEFAULT_ RADIUS = 1.0;
6. A default constructor >/ public SimpleSphere() {
7. Assignment statement > radius = DEFAULT RADIUS;
} // end default constructor
8. A second constructor > public SimpleSphere(double initialRadius) {
9. Assignment statement > radius = initialRadius;
} // end constructor
10. Begins method getRadius -------------==--===nn-oeu >| public double getRadius() {
11. Returns data field radius > return radius;
} // end getRadius
12. Begins method getVolume ----------n-m-nmmmmmmmmmens > public double getVolume() {
13. A comment > // Computes the volume of the sphere.
14. Declares and assigns a local variable ----------------—- > double radiusCubed = radius * radius * radius;
15. Returns result of computation --------=--=-=-===--==--- > return 4 * Math.PI * radiusCubed / 3;
} // end getVolume
16. Ends class SimpleSphere ------------------cemmeeeeee > } // end SimpleSphere
File TestClass.java
17. Indicates TestClass is part of a package --------- >| package MyPackage;
18. Begins class TestClass >| public class TestClass {
19. Begins method main >| static public void main(String[] args) {
20. Declares reference ball > SimpleSphere ball;
21. Creates a SimpleSphere object -------------------- > ball = new SimpleSphere(19.1);
22. Outputs results > System.out.println("The volume of a sphere of radius "
23. Continuation of output string ------------------=-----—- > + ball.getRadius() + " inches is "
24. Continuation of output string ----------------=-=------- > + (float)ball.getVolume()
+ "cubic inches\n");
} //end main
QS. Ends class TestClass >/ } // end TestClass /

A simple Java application

Packages

Java packages provide a mechanism for grouping related classes. To indicate
that a class is part of a package, you include a package statement as the first
program line of your code. For example, lines 1 and 17 in Figure 1-5 indicate

Program Structure

that both of these classes, SimpleSphere and TestClass, are in the package
MyPackage. The format of the package statement is

package package-name;

Java assumes that all of the classes in a particular package are contained in the
same directory. Furthermore, this directory must have the same name as the package.

The Java API actually consists of many predefined packages. Some of the
more common of these packages are java.lang, java.util, and java.io.
The dot notation in these package names directly relates to the directory struc-
ture containing these packages. In this case, all of the directories correspond-
ing to these packages are contained in a parent directory called java.

import statement. The import statement allows you to use classes con-
tained in other packages. The format of the import statement is as follows:

import package-name.class-name;

For example, line 2 in Figure 1-5 imports the class Math from the package
java.lang. The following line also could have been used:

import java.lang.*;

In this case, the * indicates that all of the items from the package
java.lang should be imported. Actually, this particular line can be omitted
from the program, since java.lang is implicitly imported to all Java code.
Explicitly importing java.lang.Math makes it clear to others who read your
code that you are using the class Math in this code.

Classes

An object in Java is an instance of a class. You can think of a class as a data type that
specifies the data and methods that are available for instances of the class. A class
definition includes an optional subclassing modifier, an optional access modifier,
the keyword class, an optional extends clause, an optional implements clause,
and a class body. Figure 1-6 describes each of the components of a class.

When a new class is created in Java, it is either specifically made a subclass
of another class through the use of the extends clause or it is implicitly a sub-
class of the Java class object. Creating a subclass is known as inheritance and
is discussed briefly in Chapter 4 and in depth in Chapter 9 of this text.

To create an object or instance of a class, you use the new operator. For
example, the expression

new SimpleSphere()

creates an instance of the type SimpleSphere.

a7

To include a class in
a package, begin
the class’s source
file with a package
statement

Place the files that
contain a package’s
classes in the same
directory

The import state-
ment provides
access to classes
within a package

An object is an
instance of a class

A Java class defines
a new data type

48

Chapter 1 Review of Java Fundamentals
Component Syntax Description
Subclassing abstract Class must be extended to be useful.
modifier
(usc only one) | ginal Class cannot be extended.
Access public Class is available outside of package.
modifiers
no access modifier Class is available only within package.
Keyword class class-name Class should be contained in a file called
class class-name.java.
extends extends Indicates that this class is a subclass of the class
clause superclass-name superclass-name in the extends clause.
implements implements Indicates the interfaces that this class implements.
clause interface-list The interface-1ist is a comma-separated list of
interface names.
Class body Enclosed in braces Contains data fields and methods for the class.

Components of a class

Now let’s briefly examine the contents of the class body: data fields and
methods.

Data Fields

Data fields are class members that are either variables or constants. Data field
declarations can contain modifiers that control the availability of the data field
(access modifiers) or that modify the way the data field can be used (use modi-
fiers). The access modifiers are effective only if the class is declared public.
Although this text uses only a subset of the modifiers, Figure 1-7 shows them
all for completeness.

Program Structure

Type of modifier | Keyword Description
Access modifier public Data field is available everywhere (when the class is
(use only one) also declared public).
private Data field is available only within the class.
protected | Data field is available within the class, available in
subclasses, and available to classes within the same
package.
No access Data field is available within the class and within
modifier the package.
Use modifiers static Indicates that only one such data field is available
(all can be used at for all instances of this class. Without this modifier,
once) cach instance has its own copy of a data field.
final The value provided for the data field cannot be
modified (a constant).
transient | The data field is not part of the persistent state of
the object.
volatile | The value provided for the data field can be

accessed by multiple threads of control. Java
ensures that the freshest copy of the data field is
always used.

Modifiers used in data field declarations

49

Data fields are typically declared private or protected within a class, with A class’s data fields

access provided by methods in the class. Hence, a method within a class has
access to all of the data fields declared in the class. This allows the developer of ~©f Protected

the class to maintain control over how the data stored within the class is used.

should be private

50 Chapter 1

A method definition
implements a
method’s task

A valued method
must use return to
return a value

Review of Java Fundamentals

Methods

Methods are used to implement operations. The syntax of a method declara-
tion is as follows:

access-modifier use-modifiers return-type
method-name (formal-parameter-list) {
method-body

Usually, each method should perform one well-defined task. For example,
the following method returns the larger of two integers:

public static int max(int x, int y) {
if (x > y) |
return x;
}
else {
return y;
} // end if
} // end max

Method modifiers can be categorized as access modifiers and use modifi-
ers, with the access modifier typically appearing first. In the example just given,
the access modifier public appears first, followed by the use modifier static.
Again, although this text uses only a subset of modifiers, Figure 1-8 shows
them all for completeness.

The return type of a valued method—one that returns a value—is the
data type of the value that the method will return. The body of a valued
method must contain a statement of the form

return expression;

where expression has the value to be returned. A method can also return a ref-
erence to an object. For the method max, the return type is int. The type of
the value must be specified immediately before the method name. If the
method does not have a value to return, the return type is specified as void.
After the method name, the formal parameter list appears in parentheses.
You declare a formal parameter by writing a data type and a parameter name,
separating it from other formal parameter declarations with a comma, as in

int x, int y

Program Structure

Type of modifier | Keyword Description
Access modifier public Method is available everywhere (when the class is
(use only one) also declared as public).
private Method is available only within the class (cannot
be declared abstract).
protected Method is available within the class, available in
subclasses, and available to classes within the same
package.
No access Method is available within the class and to classes
modifier within the package.
Use modifiers static Indicates that only one such method is available
(all can be used at for all instances of this class. Since a static
once) method is shared by all instances, the method can
refer only to data fields that are also declared
static and shared by all instances.
final The method cannot be overridden in a subclass.
abstract The method must be overridden in a subclass.
native The body of the method is not written in Java but
in some other programming language.
synchronized | The method can be run by only one thread of
control at a time.

Modifiers used in a method declaration

51

When you call, or invoke, the method max, you pass it actual arguments that
correspond to the formal parameters with respect to number, order, and data
type. For example, the following method contains two calls to max:

public void printLargest(int a, int b, int c) {
int largerAB = max(a, b);
System.out.println("The largest of "+ a + ", " + b + ", "
+ " and " + ¢ + " is " + max(largerAB, c));
} // end printLargest

When you call a
method, you pass it
actual arguments
that correspond to
the formal
parameters in
number, order, and
data type

52 Chapter 1

An actual argument
passed by value is
copied within the
method

Arrays are always
passed by refer-
ence to a method

An argument that is
a reference can be
used to directly
access the object or
array

Review of Java Fundamentals

Arguments passed to Java methods are passed by value. That is, the
method makes local copies of the values of the actual arguments—a and b,
for example—and uses these copies wherever x and y appear in the method
definition. Thus, the method cannot alter the actual arguments that you
pass to it.

Passing an array to a method. If you want a method to compute the
average of the first # elements of a one-dimensional array, you could declare
the method as follows:

public static double averageTemp(double[] temps, int n)

You can invoke the method by writing
double avg = averageTemp(maxTemps, 6);

where maxTemps is declared an integer array of any length, and maxTemps is the
previously defined array.

The location of the array is passed to the method. You cannot return a new
array through this value, but the method can modify the contents of the array.
This restriction avoids the copying of perhaps many array elements. Thus, the
method averageTemp could modify the elements of maxTemps.

So note that when the formal parameter is an object or an array, the actual
argument is a reference value that is copied. This means that you can change
the contents of the array or object, but not the value of the reference itself. For
example, you cannot have a method that creates a new object for a reference in
the parameter list. If it does, the new reference value will simply be discarded
when the method terminates, and the original reference to the object will be
left intact.

Java has a feature that allows a method to have a variable number of argu-
ments of the same type. When defining the method, the rightmost parameter of
the method uses the ellipses (three consecutive dots) to indicate that any number
of arguments of that type can be specified. For example:
public static int max(int... numbers) {

int maximum = Integer.MIN VALUE;

for (int num : numbers) {

if (maximum < num){
maximum = num;
} // end if
} // end for
return maximum;
} // end max

Program Structure

Note that the variable arguments can be accessed as an array, where the formal
parameter name is used as the name of the array within the method. This also
means that you can use the same techniques you use to process arrays, such as
using the enhanced for loop as demonstrated here.

Constructors. There is one special kind of method called a constructor.
Constructor methods have the same name as the class and no return type. The
constructor is executed only when a new instance of the class is created. A class
can contain multiple constructors, differentiated by the number and types of
the parameters. The actual arguments you provide when creating a new
instance determine which constructor is executed.

A constructor allocates memory for an object and can initialize the object's
data to particular values. A class can have more than one constructor, as is the
casc for the class SimpleSphere.

The first constructor in SimpleSphere is the default constructor. A
default constructor by definition has no parameters. Typically, a default con-
structor initializes data fields to values that the class implementation chooses.
For example, the implementation

public SimpleSphere() {
radius = DEFAULT_VALUE; // DEFAULT_VALUE = 1.0
} // end default constructor

sets radius to 1.0. The following statement invokes the default constructor,
which creates the object unitSphere and sets its radius to 1.0:

SimpleSphere unitSphere = new SimpleSphere();
The next constructor in SimpleSphere is

public SimpleSphere(double initialRadius) {
setRadius(initialRadius);
} // end constructor

It creates a sphere object of radius initialRadius. You invoke this construc-
tor by writing a declaration such as

SimpleSphere mySphere = new SimpleSphere(5.1);

In this case, the object mySphere has a radius of 5.1.

If you omit all constructors from your class, the compiler will generate a
default constructor—that is, one with no parameters—for you. A compiler
generated default constructor, however, might not initialize data fields to
values that you will find suitable.

53

54 Chapter 1

A reference to the
private data field
radius would be
illegal within this
program

Review of Java Fundamentals

If you define a constructor that has parameters, but you omit the defanlt
constructor, the compiler will not generate one for you. Thus, you will not be
able to write statements such as

SimpleSphere defaultSphere = new SimpleSphere();

How to Access Members of an Object

You can access data fields and methods that are declared public by naming the
object, followed by a period, followed by the member name:

static public void main(String[] args) {
SimpleSphere ball = new SimpleSphere(19.1);
System.out.println("The volume of a sphere of radius "
+ ball.getRadius() + " inches is "
+ (float)ball.getVolume()
+ "cubic inches\n");
} //end main

An object such as ball can, upon request, return its radius and compute its
volume. These requests to an object are called messages and are simply calls to
methods. Thus, an object responds to a message by acting on its data. To invoke
an object’s method, you qualify the method’s name—such as getRadius—with
the object variable—such as ball.

The previous program is an example of a client of a class. A client of a
particular class is simply a program or module that uses the class. We will
reserve the term user for the person who uses a program. You can also
access members of a class that are declared static (data fields or methods
that are shared by all instances of the class) by using the class name fol-
lowed by the name of the static member. For example, the static field
DEFAULT_RADIUS declared in line 5 of Figure 1-5 can be accessed outside of
the class as follows:

SimpleSphere.DEFAULT RADIUS;

Class Inheritance

A brief discussion of inheritance is provided here, since it is a common way to
create new classes in Java. A more complete discussion of inheritance appears
in Chapter 9.

Suppose that we want to create a class for colored spheres, knowing that
we have already developed the class SimpleSphere. We could write -an
entirely new class for the colored spheres, but if the colored spheres are actu-
ally like the spheres in the class SimpleSphere, we can reuse the SimpleSphere
implementation and add color operations and characteristics by using

Program Structure

inheritance. Here is an implementation of the class ColoredSphere that
uses inheritance:

import java.awt.Color;
public class ColoredSphere extends SimpleSphere {
private Color color;

public ColoredSphere(Color c) {
super();
color = c;

} // end constructor

public ColoredSphere(Color c, double initialRadius) {
super (initialRadius);
color = c;

} // end constructor

public void setColor(Color c) {
color = c;
} // end setColor

public Color getColor() {
return color;
} // end getColor
} // end ColoredSphere

SimpleSphere is called the base class or superclass, and ColoredSphere is
called the derived class or subclass of the class SimpleSphere. The definition
of the subclass includes an extends clause that indicates the superclass to be
used. When you declare a class without an extends clause, you are implicitly
extending the class 0bject, so Object is its superclass.

The subclass inherits the contents of the superclass, details of which are dis-
cussed in Chapter 9. For the moment, suffice it to say that the subclass will have
all of the public members of the superclass available. Any instance of the subclass
is also considered to be an instance of the superclass and can be used in a program
anywhere that an instance of the superclass can be used. Also, any of the publicly
defined methods or variables that can be used with instances of the superclass can
be used with instances of the subclass. The subclass instances also have the
methods and variables that are publicly defined in the subclass definition.

In the constructor for the ColoredSphere class, notice the use of the
keyword super. You use this keyword to call the constructor of the superclass, so
super () calls the constructor SimpleSphere(), and super(initialRadius)
calls the constructor SimpleSphere(double initialRadius). If the subclass
constructor explicitly calls the superclass constructor, the call to super must
precede all other statements in the subclass constructor. Note that if a subclass

55

A class derived
from the class
SimpleSphere

Public members of
the superclass are
available in the
subclass

A constructor in a
subclass should
invoke super to call
the constructor of
the superclass

56 Chapter 1

Every Java class
inherits the methods
of the class Oobject

Default equals as
defined in the class
Object compares
two references

Review of Java Fundamentals

constructor contains no call to the superclass constructor, the default superclass
constructor is implicitly called.

It a subclass needs to call a method defined in the superclass, the call is pre-
ceded by the keyword super. For example, to make a call to the method
getVolume from within the class ColoredSphere, you would write the following:

super.getVolume()
Here is an example of a method that uses the coloredsphere class:

public void useColoredSphere() {
ColoredSphere redBall =
new ColoredSphere(java.awt.Color.red);
System.out.println("The ball volume is " +
redBall.getVolume());
System.out.println("The ball color is " +
redBall.getColor());
// other code here...
} // end useColorSphere

This method uses the constructor and the method getColor from the
subclass Coloredsphere. It also uses the method getVolume that is defined in
the superclass SimpleSphere.

1.5 Useful Java Classes

The Java Application Programming Interface (API) provides a number of useful
classes. The classes mentioned here are ones that are used within this text.

The object Class

Java supports a single class inheritance hierarchy, with the class object as the
root. Thus, the class object provides a number of useful methods that are
inherited by every Java class. In some cases, it is common for a class to rede-
fine, or override, the version of the method inherited from object. The para-
graphs that follow summarize some of the more useful methods from the
class object.

public boolean equals(Object obj)

Indicates whether some other object is “equal to” this one. As defined
in the class object, equality is based upon references—that is, upon
whether both of the references are referencing the same object. This is
referred to as shallow equality.

Useful Java Classes

Let’s examine the equals method for objects a bit further. Suppose we have the
following code:

SimpleSphere sl = new SimpleSphere();

SimpleSphere s2 sl;
if (sl.equals(s2)) {

System.out.println("sl and s2 are the same object");
} // end if

This will produce the following output:
sl and s2 are the same object

It is common for a class to redefine this method for deep equality—in other
words, to check the equality of the contents of the objects.

Suppose that you want to determine whether two spheres have the same
radius. For example,

SimpleSphere sl = new SimpleSphere(2.0);
SimpleSphere s3 = new SimpleSphere(2.0);
if (sl.equals(s3)) {

System.out.println("sl and s3 have the same radius");
}
else {

System.out.println("sl and s3 have different radii");
} // end if

will produce the output
sl and s3 have different radii

which is not true! Both sI and s3 have a radius of 2.0. Remember that the
default equals compares two references; they differ here because they refer-
ence two distinct objects. If you want to have equals check the values con-
tained in the object for equality, you must redefine equals in the class. Here is
an example of such an equals for the class SimpleSphere:

public boolean equals(Object rhs) {
return ((rhs instanceof SimpleSphere) &&
(radius == ((SimpleSphere)rhs).radius));
} // end equals

Notice that the parameter of equals is of type Object. Remember, we
are overriding this method as inherited from the class object, and the
parameter list and return value must match. Also notice that we are explicitly
checking to make sure that the object parameter rhs is an instance of the

57

Customizing
equals for a class

An equals method
that determines
whether two spheres
have the same
radius

58

Chapter 1

Review of Java Fundamentals

class simpleSphere by using the instanceof operator. If the incoming
object rhs is an instance of the class Simplephere (or one of its subclasses),
instanceof will return true; otherwise, the operator returns false. Thus,
the equals method will return false when rhs is of a class other than
Sphere. If the instanceof operator returns true, the boolean expression
proceeds to check whether the data fields are equal. In this example, the data
field of the class SimpleSphere is a primitive type. If an object is used as a
data field, equals may have to be defined for that object’s class as well. It is
up to the designer to decide how “deep” the equality checks must be for a
particular class.
Other useful object methods include the following:

protected void finalize()

Java has a garbage collection mechanism to destroy objects that a program
no longer needs. When a program no longer references an object, the Java
runtime environment marks it for garbage collection. Periodically, the Java
runtime environment executes a method that returns the memory used by
these marked objects to the system for future use. The garbage collector
calls the finalize method on an object when it determines that there are
no more references to the object.

public int hashCode()

Associated with each object is a unique identifying value called a hash
code. This method returns the hash code for the object as an integer.

public String toString()

Returns a string that “textually represents” this object. As defined in the
class object, this method returns a string that contains the name of the
class of which the object is an instance, followed by the at sign character
(@), and ending with the unsigned hexadecimal representation of the hash
code of the object. For example, given the statement

Sphere mySphere = new Sphere();

the method call mySphere.toString() will return a string similar to
Sphere@733f42ab.

The Array Class

This class contains various static methods for manipulating arrays. Many of the
methods have unique specifications for each of the primitive types (boolean,
byte, char, short, int, long, float, double). To simplify the presentation of
these methods, ptype will be used as a placeholder for a primitive type.
Though only the methods for the primitive types are specifically discussed,
many of the methods also support an array of elements of type Object and
generic types.

Useful Java Classes

public static ptype[] copyOf(ptype[] original, int newLength)

Copies the specified array of primitive types, truncating or padding (if
needed) so the copy has the specified length. If padding is necessary,
the numeric types will pad with zero, char will pad with null, and
boolean will pad with false.

public static ptype[] copyOfRange(ptype[] original,
int beginIndex, int endIndex)

Copies the range beginIndex to endIndex-1 of the specified array
into a new array. The index beginIndex must liec between zero and
original.length, inclusive. As long as there are values to copy, the
value at original [beginIndex] is placed into the first element of the
new array, with subsequent elements in the original array placed into
subsequent elements in the new array. Note that beginIndex must be
less than or equal to endIndex. The length of the returned array will
be endIndex- beginIndex.

public static String toString(ptype[] a)

Returns a string representation of the contents of the specified array.
The resulting string consists of a list of the array’s elements, separated
by a comma and a space, enclosed in square brackets ("[]"). It returns
null if the array is null.

public static int binarySearch(ptype[] a, ptype key)

Searches the array for the key value using the binary search algorithm.
The array must be sorted before making this call. If it is not sorted, the
results are undefined. If the array contains duplicate elements with the
key value, there is no guarantee which one will be found. For floating
point types, this method considers all Nan values to be equivalent and
equal. The method is not defined for boolean or short.

public static void sort(ptype[] a)

Sorts the array into ascending order. For floating point values, the
method uses the total order imposed by the appropriate compareTo
method and all NaN values are considered equivalent and equal. This
method is not defined for boolean or short.

String Classes

Java provides three classes that are useful when working with strings: String,
StringBuffer, and StringTokenizer. The class String is a nonmutable

60 Chapter 1

Use the method
length to
determine a string’s
length

Use charAt to
reference any char-
acter within a string

Review of Java Fundamentals

string type; once the value of the string has been set, it cannot be modified.
The class StringBuffer implements a mutable sequence of characters; it pro-
vides many of the same operations as the String class plus others for chang-
ing the characters stored in the string. Although at first glance it would seem
reasonable for us to simply study StringBuffer, using String is more effi-
cient. In fact, many methods within the Java API use the class String. The last
class, StringTokenizer, provides methods for breaking strings into pieces.

The class String. Earlier, you saw that Java provides literal character strings,
such as

"This is a string."

This section describes how you can create and use variables that contain such
strings. Java provides a class String in the package java.lang to support non-
mutable strings. A nonmutable string is one that cannot be changed once it
has been created. Instances of the String class can be combined to form new
strings, and numerous methods are provided for examining String objects.
Our presentation includes only some of the possible operations on strings.

You can declare a string reference title by writing

String title;

When you initialize a string variable with a string literal, Java actually creates a
String object to store the string literal and assigns the reference to the vari-
able. Thus, you can assign a String reference by writing

String title = "Walls and Mirrors";

You can subsequently assign another string to title by using an assignment
statement such as

title = "J Perfect's Diary";

Note that this actually creates a new String instance for title to reference.

In each of the previous examples, title has a length of 17. You use the
method length to determine the current length of a string. Thus,
title.length() is equal to 17.

You can reference the individual characters in a string by using the method
charAt with the same index that you would use for an array. Thus, in the
previous example, title.charAt(0) contains the character J, and
title.charAt(16) contains the character y.

You should not use the == operator to test whether two strings are equal.
Using the == operator determines only whether the references to the strings
are the same; it does not compare the contents of the String instances.

Useful Java Classes 61

You can compare strings by using the compareTo method. Not only can
you determine whether two strings are equal, but you can also determine
which of two strings comes before the other according to the Unicode table.
The compareTo method is used as follows:

stringl.compareto(string2) Use compareTo 0
compare two strings

The character sequence represented by the String object stringl is com-

pared to the character sequence represented by the argument string2. The

result is a negative integer if stringl precedes string2. The result is a posi-

tive integer if stringl follows string2. The result is zero if the strings are

cqual. The ordering of two strings is analogous to alphabetic ordering, but you

use the Unicode table instead of the alphabet. The following expressions dem-

onstrate the behavior of compareTo:

"dig".compareTo("dog") //returns negative
"Star" .compareTo("star") //returns negative
"abc" .compareTo("abc") //returns zero

"start".compareTo("star") //returns positive
"d".compareTo("abc") //returns positive

You can concatenate two strings to form another string by using the +
operator. That is, you place one string after another to form another string.
For example, if

String s = "Com";

the statements

String t = s + "puter"; Use the + operator
s += "puter"; to concatenate two
strings

assign the string "Computer" to each of t and s. Similarly, you can append a
single character to a string, as in

s += 's';

Besides adding two strings together, you can also concatenate a string and
a value of a primitive type together by using the + operator. For example,

String monthName = "December";

int day = 31;

int year = 02;

String date = monthName + " " + day + ", 20" + year;

assigns the string "December 31, 2002" to date.

62 Chapter 1

Use substring
to access part of
a string

Other useful String
methods

Instances of the
class String-
Buffer are strings
that you can alter

Review of Java Fundamentals

As we mentioned earlier, the class object has a method called toString that
returns a string that “textually represents” an object. The result of the toString
method is often combined with other strings by means of the + operator.

You can examine a portion of a string by using the method

public String substring(int beginIndex, int endIndex)

The first parameter, beginIndex, specifies the position of the beginning of the
substring. (Remember that 0 is the position of the first character in the string.)
The end of the substring is at position endIndex - 1. For example, in

title = "J Perfect's Diary";

title.substring(2, 9) is the string "Perfect".
Other useful string methods include the following:

public int indexOf(String str, int fromIndex)
Returns the index of the first substring equal to str, starting from the
index fromIndex.

public String replace(char oldChar, char newChar)
Returns a string that is obtained by replacing all characters oldChar in the
string with newChar.

public String trim()

Returns a string that has all leading and trailing spaces in the original
string removed.

The class StringBuffer. In some situations, it is useful to be able to alter
the sequence of characters stored in a string. But class String supports only
nonmutable strings. To create mutable strings (strings that can be modified)
use the class StringBuffer from the package java.lang. This class provides
the same functionality as the class String, plus the following methods that
actually modify the value stored in the StringBuffer object:

public StringBuffer append(String str)
Appends the string str to this string buffer.

public StringBuffer insert(int offset, String str)

The string str is inserted into this string buffer at the index indicated by
offset. Any characters originally above that position are moved up and
the length of this string buffer increased by the length of str. If str is
null, the string "null" is inserted into this string buffer.

Useful Java Classes

public StringBuffer delete(int start, int end)

Removes the characters in a substring of this string buffer starting at index
start and extending to the character at index end - 1 or to the end of
the string buffer if no such character exists. If start is equal to end, no
changes are made. This method may throw StringIndexOutOfBoundsEx-
ception if the value of start is negative, greater than the length of the
string buffer, or greater than end.

public void setCharAt(int index, char ch)

The character at index index of this string buffer is set to ch. This method
may throw IndexOutOfBoundsException if the value of index is negative
or is greater than or equal to the length of the string buftfer.

public StringBuffer replace(int start, int end,
String str)

Replaces the characters in a substring of this string buffer with characters in
the specified string str. The substring to be replaced begins at index start
and extends to the character at index end - 1 or to the end of the string
buffer if no such character exists. The substring is removed from the string
buffer, and then the string str is inserted at index start. If necessary, the
string buffer is lengthened to accommodate the string str. This method
may throw StringIndexOutOfBoundsException if the value of start is
negative, greater than the length of the string buffer, or greater than end.

The class StringTokenizer. Another useful class when working with
strings is StringTokenizer in the package java.util. This class allows a
program to break a string into pieces or tokens. The tokens are separated by
characters known as delimiters. When you create a StringTokenizer
instance, you must specify the string to be tokenized. Other constructors
within StringTokenizer allow you to specify the delimiting characters and
whether the delimiting characters themselves should be returned as tokens.
Here is brief description of the three constructors for StringTokenizer:

public StringTokenizer(String str)

This constructor creates a string tokenizer for the specified string str. The
tokenizer uses the default delimiter set, which is the space character, the tab
character, the newline character, the carriage-return character, and the form-
feed character. Delimiter characters themselves are not treated as tokens.

public StringTokenizer(String str, String delim)

This constructor creates a string tokenizer for the specified string str. All
characters in the delim string are the delimiters for separating tokens.
Delimiter characters themselves are not treated as tokens.

63

Instances of the
class String-
Tokenizer are
strings that you can
break into pieces
called tokens

64 Chapter 1 Review of Java Fundamentals

public StringTokenizer(String str, String delim,
boolean returnTokens)

This constructor creates a string tokenizer for the specified string str. All
characters in the delim string are the delimiters for separating tokens. If the
returnTokens flag is true, the delimiter characters are also returned as
tokens. Each delimiter is returned as a string of length 1. If the flag is false, the
delimiter characters are skipped and serve only as separators between tokens.

StringTokenizer also provides the following methods for retrieving
tokens from the string;:

public String nextToken()

Returns the next token in the string. If there are no more tokens in the
string, it throws the exception NoSuchElementException. Exceptions are
discussed in the next section.

public boolean hasMoreTokens()

Returns true if the string contains more tokens.

1.6 Java Exceptions

Many programming languages, including Java, support a mechanism known as

. an exception, which handles an error during execution. A method indicates
An exception is a

mechanism for han- that an error has occurred by throwing an exception. The exception returns to
dling an error during the point at which you invoked the method, where you catch the exception
execution and deal with the error condition.

Catching Exceptions

To handle an exception, Java provides try-catch blocks. You place the state-
ment that might throw an exception within a try block. The try block must
be followed by one or more catch blocks. Each catch block indicates the type
of exception you want to handle. A try block can have many catch blocks
associated with it, since even a single statement may be capable of throwing
more than one type of exception. Also, the try block can contain many state-
ments, any of which might throw an exception. Here is the general syntax for a
try block:

Use a try block for try {
statements that can statement (s);
throw an exception

Java Exceptions

The syntax for a catch block is as follows:

catch (exceptionClass identifier) {
statement(s);

When a statement in the try block actually throws an exception, the
remainder of the try block is abandoned, and control is passed to the catch
block that corresponds to the type of exception thrown. The statements in the
catch block then execute, and upon completion of the catch block, execution
resumes at the point following the last catch block.

The system decides which catch block to execute by considering the
catch blocks in the order in which they appear, using the first one that pro-
duces a legal assignment of the thrown exception and the argument specified
in the catch block. Thus, you must order the catch blocks so that the most
specific exception classes appear before the more general exception classes; oth-
erwise, the code will not compile. For example,

try {
int result = 99 / 0;
// other statements appear here
} // end try
catch (Exception e) {
System.out.println("Something else was caught");
} // end catch
catch (ArithmeticException e) {
System.out.println("ArithmeticException caught");
} // end catch

compiles with an error message similar to the following;:

TestExceptionExample.java:43: exception
java.lang.ArithmeticException has already been caught
catch (ArithmeticException e) {

A

1 error

To get the code to compile successfully, you must switch the order of the
catch blocks.

The following program demonstrates what happens when an exception is
thrown and not caught. Figure 1-9 illustrates these events.

class ExceptionExample {
private int [] myArray;

public ExceptionExample() {
myArray = new int[10];
} // end default constructor

65

Use a catch block
for each type of
exception that you
handle

The order of these
two catch blocks is
incorrect

This program does
not handle the
exception that is
thrown and, there-
fore, execution
terminates

66

Chapter 1

Review of Java Fundamentals

public void addvalue(int n, int value) {
// add value to element n by calling addOne n times
for (int i = 1; i <= value; i++) {
addOne(n);
} // end for
} // end addvalue

public void addOne(int n) {
// add 1 to the element n
myArray[n] += 1;
} // end addOne
} end ExceptionExample

public class TestExceptionExample {
public static void main(String[] args) {
ExceptionExample el = new ExceptionExample();
el.addvalue(99, 3); // add 3 to element 99
} // end main
} // end TestExceptionExample

The method addone causes ArrayIndexOutOfBoundsException from
java.lang to be thrown when an attempt is made to access myArray[99].
Since addone does not provide a handler for the exception (Point 1 in Figure 1-9),
the method terminates and the exception is propagated back to addvalue to the
point where addone was called. The method addvalue also does not provide an
exception handler, so it also terminates (Point 2 in Figure 1-9) and the exception
is propagated back to main. Since main is the main method of the program, and
the exception is not handled in main (Point 3 in Figure 1-9), the program termi-
nates, and an error message similar to the following is displayed on the screen:

java.lang.ArrayIndexOutOfBoundsException: 99
at ExceptionExample.addOne (ExceptionExample.java)
at ExceptionExample.addValue(Compiled Code)
at TestExceptionExample.main(TestExceptionExample.java)

Notice that the error message for the exception includes a stack trace, the
sequence of method calls that led to the exception being thrown. This is the
default behavior when no exception handler is provided. The message may also
contain information specific to the exception at hand; in this case, it contains
the index value 99 that caused the exception to be thrown.

This code does not indicate that the method addone might throw the
exception ArrayIndexOutOfBoundsException. The method’s documenta-
tion should indicate the exceptions it might throw.

Java Exceptions 67

ExceptionExample el = new ExceptionExample();

ﬂnyArray \

Lofofofofofofofofo]o]

public void addvalue(int n, int value) {
// add value to element n by calling addOne n times
for (int i = 1; i <= value; i++) {

addOne(n) ;
} // end for

} // end addvalue

public void addOne(int n)
// add 1 to the element n
myArray[n] += 1;
} // end addOne

\— AN

The method main \

public static void main(String[] args) {
ExceptionExample el = new ExceptionExample(); <::>
el.addvalue(99, 3); // add 3 to element 99 q\\\

} // end main

Output: ‘/@

The element you requested, 99 is not avallable
java.lang.ArrayIndexOutOfBoundsException:

at ExceptionExample.addOne(ExceptionExample.java)

at ExceptionExample.addValue(Compiled Code)

at TestExceptionExample.main(TestExceptionExample.java)

Flow of control in a simple Java application

The exception ArrayIndexOutOfBoundsException could be caught at
any point in the sequence of method calls. For example, addone in the class
ExceptionExample could be rewritten as follows to catch the exception:

public void addOne(int n) { An example of han-
try { dling an exception
myArray[n] += 1;
} // end try
catch (ArrayIndexOutOfBoundsException e) {
System.out.println("The element you requested, " +
n + ", is not available.");
} // end catch
} // end addOne

68 Chapter 1

An improved way to
handle an exception

Review of Java Fundamentals

This version of addone produces the following output:

The element you requested, 99, is not available.
The element you requested, 99, is not available.
The element you requested, 99, is not available.

The method addone 1is called three times by addvalue when
el.addvalue(99,3) executes, and hence the exception is thrown three times.
When the exception was not handled, the program terminated the first time
the exception occurred. By adding a catch block to handle the exception, we
allow the code to continue execution.

Although the addone method is where ArrayIndexOutOfBounds-
Exception is thrown, it is not necessarily the best place to handle the exception.
For example, if the call e1.addvalue(99, 10000) executed, the message printed
by addone would have appeared 10,000 times! In this case it makes more sense for
the handler to appear in the addvalue method, and not in the addone method.
This assumes that addone no longer handles the exception but propagates it back
to addvalue. Here is the code for addvalue with the exception handler:

public void addValue(int n, int value) {

try {
for (int i = 1; i <= value; i++) {
addOne(n);

} // end for

} // end try

catch (ArrayIndexOutOfBoundsException e) {
System.out.println("The element you requested, " +

n + " is not available.");

e.printStackTrace();

} // end catch

} // end addvalue

This method produces the following output:

The element you requested, 99 is not available.
java.lang.ArrayIndexOutOfBoundsException: 99

at ExceptionExample.addOne(ExceptionExample.java)

at ExceptionExample.addValue(Compiled Code)

at TestExceptionExample.main(TestExceptionExample.java)

When addone throws the exception ArrayIndexOutOfBoundsException,
it is propagated back to addvalue. The method addvalue abandons execution
of the statements in the try block, executes the statement in the catch block,
and resumes execution after the last catch block. The message is printed only
once, since the for loop is inside the try block, which is abandoned when the
exception occurs. If the try block was placed inside the for loop (around the

Java Exceptions 69

call to addone), the exception would be thrown and handled at each iteration of
the loop, causing the message to be printed multiple times.

The catch block also contains the method call e.printStackTrace().
Recall that the catch block specifies the type of exception handled and an iden-
tifier. This identifier provides a name for the caught exception that can be used
within the catch block. In this case, the method printStackTrace is called for
the exception object e. The printStackTrace method is one of many methods
available to exception objects. Other uses of the exception name in the catch
block are discussed in the next section on throwing exceptions.

You may have noticed that some exceptions from the Java API cannot Some exceptions
be totally ignored. You must provide a handler for these exceptions. For ~mustbe handled
example, in the class java.io.FileInputStream, the constructor will throw
java.io.FileNotFoundException if the file specified cannot be found. In
this case, the compiler will complain if no exception handler is provided. For
example, compiling the following code:

import java.io.*;
public class TestExceptionExample ({
public static void getInput(String fileName) {
FileInputStream fis;
fis = new FileInputStream(fileName);
// file processing code appears here
} // end getInput

static public void main(String[] args) {
getInput("test.dat");
} // end main
} // end TestExceptionExample

produces a compilation error message similar to the following:

TestExceptionExample.java:5: unreported exception
java.io.FileNotFoundException must be caught, or declared
to be thrown

fis = new FileInputStream(fileName);

S

1 error

One way to resolve this error message is to provide an exception handler
within the getInput method as follows:

public static void getInput(String fileName) {
FileInputStream fis;
try {
fis = new FileInputStream(fileName);
// file processing code appears here
} // end try

70 Chapter 1

Two types of
exceptions: checked
and runtime

Review of Java Fundamentals

catch (FileNotFoundException e) {
System.out.println("The file " + fileName +
" is not available");
System.out.println(e);
} // end catch
System.out.println("After try-catch blocks");
} // end getInput

Output similar to the following results when the file named test .dat does not exist:

The file test.dat is not available
java.io.FileNotFoundException: test.dat
at java.io.FileInputStream.<init>(FileInputStream.java:56)
at TestExceptionExample.getInput(TestExceptionExample.java)
at TestExceptionExample.main(TestExceptionExample.java)
After try-catch blocks

Java has two types of exceptions: checked exceptions and runtime exceptions.
The exception java.io.FileNotFoundException is an example of a checked
exception. Checked exceptions are instances of classes that are subclasses of the
java.lang.Exception class. They must be handled locally or explicitly thrown
from the method (as discussed in the next section). They are typically used when
the method encounters a serious problem. In some cases, the error may be consid-
ered serious enough that the program should be terminated.

Runtime exceptions occur when the error is not considered as serious.
These types of exceptions can often be prevented by fail-safe programming.
For example, it is fairly easy to avoid allowing an array index to go out of
range, a situation that causes the runtime exception ArrayIndexOutOfBounds-
Exception to be thrown. Runtime exceptions are instances of classes that are
subclasses of the java.lang.RuntimeException class. RuntimeException is a
subclass of java.lang.Exception that relaxes the requirement forcing the
exception to be either handled locally or explicitly thrown by the method.

The finally block. As an option, you can follow the last catch block with
a finally block that has the following form:

finally {
statement(s);

This block is executed whether or not an exception is thrown within the try
block. If an exception is thrown, the appropriate catch block executes and
then the finally block executes. If no exception is thrown, the finally
block executes upon completion of the try block. Note that you can have a
finally block even if no catch block is present. Later in this chapter—in the
section File Input and Output—you will see an example of a finally block
that deals with a file when the program no longer needs it.

Java Exceptions

Throwing Exceptions

As we’ve mentioned, all exceptions in Java are instances of the class
java.lang.Exception or one of its subclasses. When a method specification
contains a throws clause, it also specifies the type of exception that the
method can throw. If the method can throw more than one type of excep-
tion, each is listed after the throws clause, separated by commas. For exam-
ple, here is the method header for one of the constructors for
FileInputStream:

public FileInputStream(String name)
throws FileNotFoundException

The throws clause indicates that a method may throw an exception if an error
occurs during its execution. In this case, the constructor will throw the excep-
tion FileNotFoundException if the file specified by name can’t be opened.

An exception is thrown when the throw statement is executed. The syntax
of this statement is

throw reference

where reference refers to an instance of a subclass of the class
java.lang.Exception. When the throw statement executes, the remaining
code in the try block or method is ignored. Typically, a throw statement will
appear as follows:

throw new exceptionClass(stringArgument);

where exceptionClass is the type of exception you want to throw, and
stringArgument is an argument to the exceptionClass constructor that
specifies the detail message, a more detailed description of what may have
caused the exception.

In certain situations, the Java API will have a predefined exception class
that will suit the exception needs of your program. For example, the Java API
has an exception java.lang.IndexOutOfBoundsException that could be
used when an array’s index is out of range.

You may also want to define your own exception class. Usually, you use
Exception or RuntimeException as the base class for the exception. Base
your decision as to which one to use upon how you want other parts of the
program to treat the exception. If you don’t want the exception to be ignored,
extend Exception. If you don’t care whether the exception is ignored, or if
you have indicated in your precondition how the exception could be avoided,
you might choose to extend RuntimeException. In either case, your class will

71

A throws clause
indicates that

a method might
throw an exception

Use a throw
statement to throw
an exception

You can define your
own exception class

72

Chapter 1

Review of Java Fundamentals

inherit the same set of methods. Often, a constructor that includes a string
parameter is provided. For example,

class MyRuntimeException extends RuntimeException {
public MyRuntimeException(String s) {
super(s);
} // end constructor
// All other methods are inherited.
} // end MyRuntimeException

class MyException extends Exception {

public MyException(String s) {

super(s);

} // end constructor

// All other methods are inherited.

// This exception must be handled in or

// propagated from the method in which it occurs.
} // end MyException

Once you’ve defined the new exception class, you can use it in the throw
statement and catch blocks of your program. The constructor provides a way
to identify the condition that caused the exception to occur. When construct-
ing the new exception, you can include a string that describes the error condi-
tion. For example,

throw new MyException("MyException: Provide reason");

A variety of methods available for exception objects provide access to this
detailed message. For example, the methods printStackTrace, getMessage,
and toString are just a few of the methods that include this detailed message
in their output.

If you throw an exception that is not an instance of RuntimeException
or one of its subclasses, you must either handle the exception within the
method, using try-catch blocks, or throw the exception explicitly from the
method. To indicate that the exception will be thrown by the method, you
include a throws clause in the method’s specification as follows:

public void myMethod() throws MyException {

// some code here...

throw new MyException("MyException was thrown: reason");
} // end myMethod

Any method that calls myMethod must either provide a catch block for
instances of MyException or contain a throws clause of its own for
MyException.

Text Input and Output

1.7 Text Input and Output

Some Java applications read input from a keyboard and write output to a mon-
itor, often referred to as console 1/0. Such input and output consist of
streams, which are simply sequences of characters that either come from an
input source or go to an output destination.

The class of an input stream is InputStream, and the class of an output
stream is PrintStream. The package java.io provides these classes and others
related to input and output. The class java.lang.System provides three
Standard streams: System.in for the standard input stream, System.out for
the standard output stream, and System.err for the standard error stream,
which also is an output stream. Java 6 introduced the Console class as an
alternative to the Standard Streams. This section provides a brief introduction to
simple input and output followed by a discussion of the Console class.

Input

As we just mentioned, the input stream System.in typically corresponds to
keyboard input. But this source in its raw form—a sequence of bytes—cannot
readily be used. Java provides a number of classes that facilitate getting the raw
data into a form that is easily used within a program. The discussion here will
present two approaches to getting input from the console; the first is based on
character streams, and the second on the Scanner class.

Character Streams. The class InputStreamReader transforms a given raw
byte stream into a sequence of characters. But dealing with an input stream on
a character-by-character basis is tedious. The class BufferedReader provides
additional facilities that allow the character data to be read as a block or line of
characters at a time. BufferedReader works with a given instance of Input-
StreamReader. The following code shows how to use these classes to read a
line of input into the string nextLine:

BufferedReader stdin = new BufferedReader (
new InputStreamReader (System.in));

String nextLine = stdin.readLine();

The BufferedReader method readLine() retrieves the next line of input as
an instance of String.

But what if the program needs to view the characters in the string next-
Line as a sequence of integers instead of as a sequence of characters? When the
desired input value is not a string, it is usually a value of a primitive type. All of
the primitive types provide a method for converting a string to the primitive
type. For example, the class Integer provides the method parsernt. First,
you extract the string containing the primitive type from nextLine, using the

73

A stream is a
sequence of
characters that
either come from
orgotoanl/O
device

InputStream-
Reader converts
a stream of bytes
to a sequence of
characters

Using Buffered-
Reader with
InputStream
allows the read-
Line method to
be used

74 Chapter 1

Use String-
Tokenizer tO
break the string into
tokens, then convert
each token to a
value of the primi-
tive type

Review of Java Fundamentals

StringTokenizer class seen earlier. Then, you apply the method that converts
the string to a primitive type value. The following code demonstrates this tech-
nique by extracting two integers x and y from nextLine:

BufferedReader stdin = new BufferedReader (
new InputStreamReader(System.in));

String nextLine = stdin.readLine();

StringTokenizer input = new StringTokenizer (nextLine);
x = Integer.parselnt(input.nextToken());
y = Integer.parselnt(input.nextToken());

The scanner Class. The Scanner class makes it easier to get strings and
primitive types from keyboard input, String objects, and files. The Scanner
class is located in the java.util package, so any code that uses the Scanner
class should include the statement

import java.util.Scanner;

A Scanner object can be used to break its input into tokens using a delimiter pat-
tern. The default pattern matches any white space, including blanks, tabs, and car-
riage returns. This pattern can be set and changed using various methods in the
Scanner class in conjunction with the Pattern class. The Scanner class also pro-
vides various next methods to retrieve tokens from the input and convert them to
primitive type values and strings. Here is a brief summary of the more useful next
methods as described in the Java API:

Method Description

String next() Finds and returns the next com-
plete token from this scanner.

boolean nextBoolean() Scans the next token of the
input into a boolean value and
returns that value.

double nextDouble() Scans the next token of the
input as a double.

float nextFloat() Scans the next token of the
input as a float.

int nextInt() Scans the next token of the
input as an int.

Text Input and Output

String nextLine() Advances this scanner past the
current line and returns the
input that was skipped.

long nextLong() Scans the next token of the
input as a long.

short nextShort() Scans the next token of the
input as a short.

Note that these methods scan the next token of the input and convert the
value to the specified type. If the next token cannot be properly interpreted as
the specified type (for example float in the case of nextFloat()), then an
InputMismatchException is thrown. These methods will also throw
NoSuchElementException if the input has been exhausted, and Illegal-
StateException if the scanner is closed.

Suppose that you wanted to compute the sum of integers that you enter at
the keyboard. Note that the Scanner class does not provide any easy way to
detect the end of an input line, so we will use a negative value or zero to indi-
cate the end of the list of integers. The following code accomplishes this task:

int nextValue;
int sum=0;
Scanner kbInput = new Scanner(System.in);

nextValue = kbInput.nextInt();
while (nextValue > 0) {

sum += nextValue;

nextValue = kbInput.nextInt();
} // end while
kbInput.close();

Note the use of the Scanner class constructor with System.in (of type
InputStream) to specify that the input will be from the keyboard. The
Scanner class also provides constructors for the String and File data types.
The method close simply closes the Scanner object.

If you are concerned that the user might enter a non-integer value in the list,
you can use exception handling to react to that error. You can also use the method
hasNextInt. This method returns true if the next token is an integer value,
false otherwise. Similar methods exist for the other primitive types and strings.

Output

Java provides the methods print and println to write character strings, prim-
itive types, and objects to the standard output stream System.out. The
method println differs from print in that it terminates a line of output so
that subsequent output will start on the next line. When the argument is a

75

The methods print
and println write
to an output stream

76 Chapter 1

The method
toString is
implicitly invoked
when an object is
an argument of
println

Review of Java Fundamentals

string, it is simply placed in the output stream. For example, the following
program segment uses println with a String argument:

int count = 5;

double average = 20.3;

System.out.println("The average of the " + count
+ " distances read is " + average
+ " miles.");

produces the following output:
The average of the 5 distances read is 20.3 miles.

As we mentioned in the section on strings, the operator + can be used to
concatenate strings with other strings, primitive types, and objects. Thus, the
previous statements concatenate the string “The average of the ” to the
string that represents the value of count, and so on.

When println’s argument is a primitive type or an object, the static
method valueof from the String class is used to determine the correspond-
ing string value that is placed on the output stream. For primitive types, this is
a simple string representation of the value. For objects, this is ultimately the
value returned by the object’s toString method. Thus, for example, using the
method toString as defined in the class Object, the statements

SimpleSphere mySphere = new SimpleSphere();
System.out.println(mySphere);

will produce output similar to
SimpleSphere@733f42ab

You usually override toString with your own version. Here is an example
that could be used in the class SimpleSphere:

public String toString() {
return ("SimpleSphere: radius = " + radius);
} // end toString

Now if you execute the statements

SimpleSphere mySphere = new SimpleSphere();
System.out.println(mySphere);

the output appears as follows:

SimpleSphere: radius = 1.0

Text Input and Output

One of the problems with the print and println methods is the lack of for-
matting abilities. Java provides a C-style formatted output method called printf.
This method uses the new variable arguments feature, and has the following format:

printf(String format, Object... args)

With the new autoboxing feature, the arguments can also be of a primi-
tive type. The format string may contain fixed text and one or more embed-
ded format specifiers. For example:

String name = "Jamie";

int x =5, y = 6;

int sum = x + y;

System.out.printf("%s, %d + %d = %d", name, x, y, sum);

produces the output:
Jamie, 5 + 6 = 11

In this example, each of the format specifiers has a corresponding argu-
ment value that is placed into the format string upon output. The format spec-
ifiers in this example are of the simplest form—they start with the % character
and contain only a conversion character. The conversion characters for
common data types are:

Conversion Character Data Type
b boolean
s String — this is also used with

objects and the toString method

c character

d decimal integer

e decimal number (formatted in
computerized scientific
notation)

f decimal number

A more complete form of the format specifier is as follows:
$[width][.precision]conversion
The width specifies the minimum field width that the value should be

printed within. When printing decimals numbers, the precision specifies the
number of digits of precision to be printed after the decimal point. When

77

78

Chapter 1

Review of Java Fundamentals

using precision with strings, it represents a maximum number of characters.
Figure 1-10 shows some examples with the corresponding output.

The console Class

Java 6 introduced the Console class to access the character-based console
device associated with the current Java virtual machine. Java provides a pre-
defined object of type Console, as defined in the package java.io, that has
many of the same capabilities provided by the Standard streams. This console
object can be accessed as follows:

Console myConsole = System.console();

If the JVM running this code has a console available, it returns a reference to it.
But if the JVM does not have a console device available, this call will return null.
So code such as the following often accompanies an attempt to access the console:

if (myConsole == null) {
System.err.println("No console available.");
System.exit(1);

} // end if

Similar to the BufferedReader class, the Console class also provides a read-
Line() method to retrieve a line of text from the console. It also defines a
second readLine method of the form

String readLine(String fmt, Object... args)
This version provides the ability to create a formatted prompt, and then reads a

single line of text from the console. The formatting of the prompt string works
much like the printf method described earlier in this section.

Output
Sla|r|a String name = "Sarah";
double y = 10123.34568;
int n = 145;
System.out.printf("%.4s\n", name);
S|a System.out.printf("%10.2s\n", name);
1/4|5 System.out.printf("%10d\n", n);
1|.|1|0[e|+|0|4 System.out.printf("%10.2e\n", y);
1{0[1{2[3|.[3(5 System.out.printf("%10.2f\n", y);
1{0[1{2|3|.|3|4|5|6|9 System.out.printf("%5.5f\n", y);

123456789101
Column number

Formatting examples with print£

Text Input and Output

The Console class also provides two methods for the input of a user password:

char[] readPassword()
char[] readPassword(String fmt, Object... args)

These methods behave similarly to the readLine method, but have two
important differences. First, when the user enters data at a point in the
program where readPassword is being executed, it is not echoed back to
the console, so it can’t be seen by the user (this is what we expect when we
type in a password). This is an important feature for helping users maintain
password security. Second, the characters typed for the password are
entered into a character array, not a String. Once the password has been
verified, it is strongly suggested that the array holding the password be
overwritten with blanks or some other character to minimize the lifetime of
the password in memory.
Output to the console is accomplished using the following method:

Console printf(String format, Object... args)
Alternatively, you can use this method

PrintWriter writer()

to retrieve a Printwriter object that has methods print and println similar to
those used with System.out.

The following example shows how the Console class could be used to
prompt for a username and password.

import java.io.Console;
import java.util.Arrays;
import java.io.Printwriter;

public class ConsoleExample {

static boolean validatelLogin(String username,
char[] password) {
// Would put code in here to validate the user login
return true;
} // end validateLogin

public static void main (String args[]){
Console cons = System.console();
if (cons == null) {
System.err.println("No console available.");
System.exit(1l);
} // end if
PrintWriter consOutput = cons.writer();

79

80 Chapter 1

A file is a sequence
of components of
the same data type

Review of Java Fundamentals

String username = cons.readLine("Username: ");
char [] password = cons.readPassword("Password: ");

if (validateLogin(username, password)) {
// At this point you have validated the password
consOutput.println("User " + username +
"successfully logged in");
// Now wipe out the password from memory
Arrays.fill(password, ' ');
// And let the user start his or her session...
} // end if

} // end main
} // end ConsoleExample

One interesting thing to note here is that if you try to use the
Console class from some of the Integrated Development Environments
(IDEs) such as Eclipse or NetBeans, the IDE may run the JVM in the
background, and hence when you execute the above code you will most
likely get the message "No console available." But if you execute the
program from the command prompt using the java command, it will
work as expected.

1.8 File Input and Output

You have used files ever since you wrote your first program. In fact, your Java
source program is in a file that you probably created by using a text editor. You
can create and access such files outside of and independently of any particular
program. Files can also contain data that is either read or written by your pro-
gram. It is this type of file that concerns us here.

A file is a sequence of components of the same data type that resides
in auxiliary storage, often a disk. Files are useful because they can be large
and can exist after program execution terminates. In contrast, variables of
primitive data types and objects, for example, represent memory that is
accessible only within the program that creates them. When program exe-
cution terminates, the operating system reuses this memory and changes
its contents.

Since files can exist after program execution, they not only provide a per-
manent record for human users, they also allow communication between pro-
grams. Program A can write its output into a file that program B can use later
for input. However, files that you discard after program execution are also not
unusual. You use such a file as a scratch pad during program execution when
you have too much data to retain conveniently in memory all at once.

It is useful to contrast files with their closest Java relatives, arrays. Files
and arrays are similar in that they are both collections of components of the

File Input and Output

same type. For example, just as you can have an array of elements whose
type is char, so also can you have a file of elements whose type is char. In
both cases, the components are characters. However, in addition to the
previous distinction between files and all other data types—files can exist
after program execution and arrays cannot—files and arrays have two other
differences:

m Files grow in size as needed; arrays have a fixed size. When you declare
an array, you specify its maximum size. Thus, a fixed amount of memory
represents the array. A well-written program always checks that an array
can accommodate a new piece of data before attempting to insert it. If the
array cannot accommodate the data, the program might have to terminate
with a message of explanation. You can increase the array size—hopetully
by changing the value of a named constant—and compile and run the
program again.* On the other hand, if you declare the array’s maximum
size to be larger than you need, you waste memory. In contrast, the size of
a file is not fixed. When the system first creates a file, the file requires
almost no storage space. As a program adds data to the file, the file’s size
increases as necessary, up to the limit of the storage device. Thus, at any
given time, the file occupies only as much space as it actually requires. This
dynamic nature is a great advantage.

m Files provide both sequential and random access; arrays provide
random access. If you want the 100™ element in the one-dimensional
array x, you can access it directly by writing x[99]; you do not need to
look at the elements x[0] through x[98] first. You could choose, of
course, to process an array’s elements sequentially, but you would do so
by accessing each successive element directly and independently of any
other element.

However, you can access elements in a file either directly or sequen-
tially. If you want the 100™ element in a file, you can access it directly by
position without first reading past the 99 elements that precede it. On the
other hand, you could also read all of the first 100 elements one at a time,
in sequential order, without specifying any element’s position.

Files are classified as follows. A text file is a file of characters that are orga-
nized into lines. The files that you create—by using an editor—to contain your
Java programs are text files. Because text files consist of characters, and access-
ing characters by position number is usually not convenient, you typically
process a text file sequentially. A file that is not a text file is called a binary file
or sometimes a general file or a nontext file.

4. Chapter 4 describes resizable arrays. If you reach the end of such an array, you can
increase its size during execution. However, this process requires copying the old array
into the new array.

81

82 Chapter 1

A text file
contains lines
of characters

Files end with a
special end-of-file
symbol

Review of Java Fundamentals

Text Files

Text files are designed for easy communication with people. As such, they are
flexible and easy to use, but they are not as efficient with respect to computer
time and storage as binary files.

One special aspect of text files is that they appear to be divided into lines.
This illusion is often the source of much confusion. In reality, a text file—like
any other file—is a sequence of components of the same type. That is, a text
file is a sequence of characters. A special end-of-line symbol creates the illu-
sion that a text file contains lines by making the file behave as if it were divided
into lines. On some systems this end-of-line symbol is simply a carriage return,
while on others it consists of a carriage return and line feed character. You
need not worry about how your system actually views the end-of-line symbol;
this is taken care of by the Java runtime system.

When you create a text file by typing data at your keyboard, each time
you press the Enter or Return key, you insert one end-of-line symbol into
the file. When an output device, such as a printer or monitor, encounters
an end-of-line symbol in a text file, the device moves to the beginning of
the next line. In Java, you can specify this end-of-line symbol by using the
character \n.

In addition, you can think of a special end-of-file symbol that follows the
last component in a file. Such a symbol may or may not actually exist in the
file, but Java behaves as if one did. Figure 1-11 depicts a text file with these
special symbols.

Note that the Scanner class presented in the previous section can be used
to process text files in a manner very similar to the way we handled input from
the keyboard. The Scanner class has two constructors that can be used to
create Scanner objects for input files:

Scanner (InputStream source)

Constructs a new Scanner that produces values scanned from the speci-
fied input stream.

Scanner (File source)

Constructs a new Scanner that produces values scanned from the specified file.

is the end-of-line symbol
is the end-of-file symbol

A text file with end-of-line and end-of-file symbols

File Input and Output

The first constructor allows for any type of InputStream, including
System.in and objects of the subclass FileInputStream. The second con-
structor is based upon the class File. This class is part of the java.io pack-
age. It provides an abstraction for the file within a program. Instances of
the class File are not used directly for input and output, but for getting
characteristics of a file, such as its access mode. The first constructor creates
a scanner for the specified file using the File class. Here is a simple
example that uses the Scanner class to read a first name, last name, and age
from each line of a file called Ages.dat and prints it to standard output:

String fname, lname;

int age;

Scanner filelInput;

File inFile = new File("Ages.dat");

try {
fileInput = new Scanner(inFile);

while (fileInput.hasNext()) {
fname = fileInput.next();
lname = fileInput.next();
age = fileInput.nextInt();
age = fileInput.nextInt();
System.out.printf("%s %s is %d years old.\n",
fname, lname, age);
} // end while

fileInput.close();

} // end try

catch (FileNotFoundException e) {
System.out.println(e);

} // end catch

Note that here the hasNext method is used to determine if the end-of-file
symbol has been reached—when the end-of-file is reached, there are no more
tokens in the file to be processed. Also, the code above would need to import
the classes File and FileNotFoundException from the package java.io, and
the Scanner class from the package java.util.

Alternatively, text input files can be processed using the classes
FileInputStream and FileReader. Output files are also supported by two
main classes: FileOutputStream and Printwriter. When using these classes,
actual read or write access to the file is done through streams. A variety of tasks
related to processing files using streams are now presented.

Opening a stream to a file. Before you can read from or write to a file, you
need to open a stream to the file. That is, you need to create a stream instance.

83

Use streams to
access a file

You must initialize,
or open, a stream
before you can
use it

84 Chapter 1

The method read-
Line reads a line of
text as a string

If the file is not
found, an exception
is thrown

Review of Java Fundamentals

One way to open a stream to a file for reading is to use the class FileReader
and provide the file’s name when you declare the file stream. For example,

FileReader inStream = new FileReader("Ages.dat");

declares an input stream variable inStream and associates it with the file
named Ages.dat. The file name can be ecither a literal c-onstant, as it is here,
or a string variable.

Alternatively, you can use an instance of File by writing

File inFile = new File("Ages.dat");
FileReader inStream = new FileReader(inFile);

Unfortunately, the methods available from the class FileReader do not
lend themselves very well to text processing. Because of this, the stream instance
is usually embedded within an instance of the class BufferedrReader. (This is
the same class that we used to read input from the keyboard.) Buf feredrReader
provides the method readLine for obtaining a line of text as a String object. A
line is considered to be terminated by an end-of-line character, as we mentioned
carlier. Here is an example of opening a stream to a file and adding the function-
ality of the class BufferedReader:

FileReader fr = new FileReader("Ages.dat");
BufferedReader input = new BufferedReader(fr);

Often, this is combined into a single statement:

BufferedReader input = new BufferedReader
new FileReader("Ages.dat"));

Note that the FileReader constructor will throw the exception File-
NotFoundException if the file is not found. Since this is a checked exception,
the statement must be enclosed in a try block. Therefore, the actual code
used to open a stream to a text file would be similar to the following:

BufferedReader input;
try {
input = new BufferedReader (new FileReader("Ages.dat"));
// read data from file
} // end try
catch (FileNotFoundException e) {
e.printStackTrace();
System.exit(1l); // File not found so exit
} // end catch

Now, using the instance of BufferedReader, data can be read from the
file. As with keyboard input, you can use a StringTokenizer to break up the

File Input and Output 85

string returned by readLine into tokens for easier processing. But how do you
know when you have read all of the data in the file? Buf feredReader provides he method ready
a method ready that determines whether the underlying character stream is 2" be used to

. . . determine whether
ready. This method returns a boolean value that can be used in a while loop to

. . . . the file contains
determine whether more data is available in the file, as follows: more data

StringTokenizer line;

while (input.ready()) {
line = new StringTokenizer(input.readLine());
// process line of data

} // end while

You can also detect when the end of the file is reached by checking
whether the method readLine returns null. For example, the following loop
will process all of the lines in the file:

StringTokenizer line;

String inputLine;

while ((inputLine = input.readLine()) != null) {
line = new StringTokenizer(inputLine);
// process line of data

} // end while

The method readrLine can throw the exception IOException, another
checked exception. Also, readLine must appear within the same try block that
creates the BufferedReader instance; otherwise, the compiler won’t be able to
verify that the instance has been initialized properly. One way you can handle
this is simply to add another catch block for the I0Exception to the try state-
ment. Or, since FileNotFoundException is a subclass of I0Exception, you
can use a single catch block as follows:

BufferedReader input;
StringTokenizer line;
String inputLine;
try {
input = new BufferedReader (new FileReader ("Ages.dat"));
while ((inputLine = input.readLine()) != null) {
line = new StringTokenizer(inputLine);
// process line of data

}
} // end try

86 Chapter 1

Open an output
stream to a file
before writing to it

When you are
finished using a file,
call close to close
the stream

Review of Java Fundamentals

catch (IOException e) {

System.out.println(e);

System.exit(1l); // I/0 error, exit the program
} // end catch

File output. To write text to a file, you need to open an output stream to
the file. One way to open a file for writing is to use the class FileWwriter and
provide the file’s name when you declare the file stream. For example,

FileWriter outStream = new FileWriter("Results.dat");

declares an output stream variable outStream and associates it with the file named
Results.dat. The file name can be a literal constant, as it is here, or a string vari-
able. If the file Results.dat does not exist, a new empty file with this name is cre-
ated. If the file Results.dat already exists, opening it erases® the data in the file.
Like FileReader, the FileWriter class itself does not provide useful methods
for writing data to the file. Another class, PrintWriter, provides two methods:
print and printin. These methods are already familiar to you; they are the same
methods used by System.out. Here is a simple example of writing data to a file:

try {
PrintWriter output = new PrintWriter(
new FileWriter("Results.dat"));
output.println("Results of the survey");
output.println("Number of males: " + numMales);
output.println("Number of females: " + numFemales);

// other code and output appears here...
} // end try

catch (IOException e) {

System.out.println(e);

System.exit(1l); // I/0 error, exit the program
} // end catch

Closing a file. When you have finished using a file, you should close the
stream associated with that file. To close a stream (input or output), you use
the method close as follows:

myStream.close();

The file associated with this stream is no longer available for input or output
until you open it again.

5. The data might not actually be erased, but the file will behave as if it were empty.

File Input and Output

Adding to a text file. When you open a stream to a file for writing, you can
specify a second argument in addition to the file’s name to indicate whether
the file should be replaced or appended. If this second argument to the
FileOutputStream constructor is true, the file is appended rather than
replaced. For example,

PrintWriter ofStream = new PrintWriter(
new FileOutputStream("Results.dat", true));

This retains the old contents of the file Results.dat, and you can write
additional components.

Copying a text file. Suppose that you wanted to make a copy of the text
file associated with the stream variable original. Copying a text file requires
some work and provides a good example of the statements you have just
studied. The approach taken by the following method copies the file one line
at a time:

public static void copyTextFile(String originalFileName,
String copyFileName) {

// Makes a duplicate copy of a text file.

// Precondition: originalFileName is the name of an existing
// external text file, and copyFileName is the name of the
// text file to be created.

// Postcondition: The text file named copyFileName is a

// duplicate of the file named originalFileName.

BufferedReader ifStream = null;
PrintWriter ofStream = null;

try {
ifStream = new BufferedReader (

new FileReader (originalFileName));
ofStream = new PrintWriter(new FileWriter (copyFileName));
String line;

// copy lines one at a time from given file
// to new file
while ((line = ifStream.readLine()) != null) {
ofStream.println(line);
} // end while
} // end try
catch (IOException e) {
System.out.println("Error copying file");
} // end catch

You can append
data to afile

87

88

Chapter 1

Review of Java Fundamentals

finally {
try {
ifStream.close(); // close the files
ofStream.close();
} // end try
catch (IOException e) {
e.printStackTrace();
} // end catch
} // end finally
} // end copyTextFile

The finally block allows the files to be closed regardless of whether an
exception is thrown. It is executed after correct execution of the try block or
after an exception is handled in a catch block.

Searching a text file sequentially. Suppose that you have a text file of data
about a company’s employees. For simplicity, assume that this file contains two
consecutive lines for each employee. The first line contains the employee’s
name, and the next line contains data such as salary.

Given the name of an employee, you can search the file for that name and
then determine other information about this person. A sequential search
examines the names in the order in which they appear in the file until the
desired name is located. The following method performs such a sequential
search, given a class to represent a person:

public class Person {
private String name;
private double salary;

public Person(String n, double s) {
name = n;
salary = s;
} // end constructor
// other methods appear here
} // end Person

public static Person searchFileSequentially(
String fileName, String desiredName) {

// Searches a text file sequentially for a desired person.

// Precondition: fileName is the name of a text file of

// names and data about people. Each person is represented

// by two lines in the file: The first line contains the

// person's name, and the second line contains the person's
// salary. desiredName is the name of the person sought.

// Postcondition: If desiredName was found in the file,

// a Person object that contains the person's

File Input and Output

// name and data is returned. Otherwise, the value null

// is returned to indicate that the desiredName was not

// found. The file is unchanged and closed.

[/ mmm e
BufferedReader ifStream = null;

String nextName = null;

String nextSalary = null;

boolean found = false;

try {
ifStream = new BufferedReader (new FileReader (fileName));

while (!found &&
(nextName = ifStream.readLine()) != null) {
nextSalary = ifStream.readLine();
if (nextName.compareTo(desiredName) == 0) {
found = true;
} // end if
} // end while
} // end try
catch (IOException e) {
System.out.println("Error processing file");
return null;
} // end catch
finally {
if(ifStream != null) {
try {
ifStream.close(); // close the file
} // end try
catch (IOException e) {
System.out.println("Error closing file");
} // end catch
} // end if
} // end finally
if (found) {
return new Person(nextName,
Double.parseDouble(nextSalary));
¥
else {
return null;
} // end if
} // end searchFileSequentially

This method needs to look at all the names in the file before determining
that a particular name does not occur. If the names were in alphabetical order,
you could determine when the search had passed the place in the file that
should have contained the desired name, if it existed. In this way, you could
terminate the search before you needlessly searched the rest of the file.

89

90 Chapter 1

Object serialization
transforms an object
into a sequence of
bytes

Review of Java Fundamentals

Object Serialization

In the method searchFileSequentially, we assumed that all of the informa-
tion about a person had been placed in a text file in a very specific format. In that
example, the data fields were strings and primitive values, so it was simply a matter
of writing the name data field on one line and the salary on the next line. But what
about situations in which the data is more complex? For example, suppose that the
person class also kept track of the person’s dependents by using an ADT list.® To
save this information to a text file involves a more complicated scheme, since we
may not know beforehand how many dependents an employee has.

When data is stored to a file for later use by the same program or another
program, it is called data persistence. Normally, any information stored in the
various variables and data structures in a program is lost when the program ter-
minates execution. In many cases, however, it is desirable to save the data to a
file for later retrieval before terminating the program. Java provides a mecha-
nism for creating persistent objects, called object serialization. Serialization is
the process of transforming an object into a sequence of bytes that represents
the object. Deserialization is the process of transforming a sequence of bytes
back into an object. Once an object is serialized, it can be stored in a file and
read back at a later time using deserialization.

Any object that is to be saved using object serialization must implement
the interface java.io.Serializable. This interface is somewhat unique in
that it contains no methods. It is used to signal the compiler that the instances
of this class may need to have their state serialized or deserialized.

One interesting aspect of object serialization is that when an object is seri-
alized, all objects that it references are also serialized, as long as the referenced
objects are instances of a class that implements the Serializable interface.
For example, suppose that the following is the Person class described earlier:

import java.io.Serializable;

public class Person implements Serializable {
private String name;
private double salary;
private Person[] dependents;
private int numDepend = 0;

public Person(String n, double s) {
name = nj;
salary = s;
// assume that ListArrayBased also implements the
// Serializable interface
dependents = new Person[25];
} // end constructor

6. Chapter 4 introduces the ADT list.

File Input and Output

public void addDependent(Person p) {
numDepend++;
dependents[numDepend] = p;

} // end addDependent

public String getName() {
return name;
} // end getName

// other methods for class appear here
} // end Person

When an instance of the Person class is serialized, all of the referenced
objects are also serialized—the String object name and the list dependents.
You accomplish the actual serialization of an object by using the writeObject
method of the stream class ObjectOutputStream. Much like Printwriter,
ObjectOutputStream adds functionality to FileOutputStream. The follow-
ing statements save a Person object p to a file EmployeeDB.dat:

ObjectOutputStream ooStream = new ObjectOutputStream(
new FileOutputStream("EmployeeDB.dat"));
ooStream.writeObject(p);

When the object is deserialized, both it and the objects it originally refer-
enced will be restored to their original state. To do this, use the readobject
method of the stream class ObjectInputStream. Like the BufferedReader,
ObjectInputStream adds functionality to FileInputStream. The following
statements retrieve a Person object p from a file EmployeeDB.dat:

ioStream = new ObjectInputStream(
new FileInputStream("EmployeeDB.dat"));
nextPerson = (Person)ioStream.readObject());

The following method demonstrates how the file could be searched
sequentially for a particular person (this method parallels the method given for
text files):

public static Person searchFileSequentially(
String fileName, String desiredName) {

// Searches a text file sequentially for a desired person.
// Precondition: fileName is the name of a binary file

// of Person objects. desiredName is the name of the person
// sought.

// Postcondition: If desiredName was found in the file,

// a Person object that contains the person's

o1

92 Chapter 1 Review of Java Fundamentals

// name and data is returned. Otherwise, the value null

// is returned to indicate that desiredName was not

// found. The file is unchanged and closed.

/] e
ObjectInputStream ioStream = null;

Person nextPerson = null;

boolean found = false;

try {
ioStream = new ObjectInputStream(
new FileInputStream(fileName));

while (!found && (nextPerson =

(Person)ioStream.readObject()) != null) {
if (nextPerson.getName().compareTo(desiredName) == 0) {
found = true;
} // end if

} // end while

} // end try

catch (IOException e) {
System.out.println("Error processing file");
return null;

} // end catch

catch (ClassNotFoundException e) {
System.out.println("Unexpected object type in file");
return null;

} // end catch

finally {
//Close the ObjectInputStream
try {
if (ioStream != null) {

ioStream.close();
}
} catch (IOException ex) {
ex.printStackTrace();
} // end catch
} // end finally
if (found) {
return nextPerson;
}
else {
return null;
} // end if

} // end searchFileSequentially

Summary

Each comment line in Java begins with two slashes (//) and continues until the
end of the line.

. A Java identifier is a sequence of letters, digits, underscores, and dollar signs that
must begin with either a letter or an underscore.

The primitive data types in Java are organized into four types: integer, character,
floating point, and boolean.

. A Java reference is used to locate an object. When an object is created using the
new operator, the location of the object in memory is returned and can be assigned
to a reference variable.

. You define named constants by using a statement of the form

final type-identifier = value;

Java uses short-circuit evaluation for expressions that contain the logical operators
&& (and) and || (or). That is, evaluation proceeds from left to right and stops as
soon as the value of the entire expression is apparent.

. An array is a collection of references that have the same data type. You can refer to
the elements of an array by using an index that begins with zero. First the array
must be instantiated with the number of elements desired. Then you can assign the
references of the array an object.

The general form of the if statement is

if (expression)
statement

else
statement,

If expression is true, statement; executes; otherwise, statement, executes.

The general form of the switch statement is

switch (expression) {

case constanty:
statement
break;

case constant,: case COnstant,, j:
statement,,
break;

default:
statement

The appropriate statement executes according to the value of expression. Typically, break
(or sometimes return) follows the statement or statements after each case. Omitting
break causes execution to continue to the statement(s) of the case that follows.

93

94

Chapter 1

Review of Java Fundamentals

10.

11.

12.

13.

14.

15.

16.

17.

18.

The general form of the while statement is

while (expression)
statement

As long as expression is true, statement executes. Thus, it is possible that statement
will never execute.

The general form of the for statement is

for (inmitinlize; test; update)
statement

where initinlize, test, and update are expressions. Typically, initialize is an assign-
ment expression that occurs only once. Then if zest, which is usually a logical
expression, is true, statement executes. The expression update executes next,
usually incrementing or decrementing a counter. This sequence of events repeats,
beginning with the evaluation of test, until zest is false.

The enhanced for loop makes it easier to process arrays. The general form of this loop is:

for (ArrayElementType variableName: arrayName)
statement

The general form of the do statement is

do
statement
while (expression);

Here, statement executes until the value of expression is false. Note that state-
ment always executes at least once.

The filename for a Java source code file has the same name as the class it contains,
with .java appended to the end.

Java packages provide a mechanism for grouping related classes. To indicate that a
class is part of a package, you include a package statement as the first program line
of your code.

To use classes contained in other packages, you must include an import statement
before the class definition. The format of the import statement is

import package-name.class-name;

An object in Java is an instance of a class. A class can be thought of as a data type that
specifies the data and methods that are available for instances of the class. A class defini-
tion includes an optional subclassing modifier, an optional access modifier, the keyword
class, an optional extends clause, an optional implements clause, and a class body.

Data fields are class members that are either variables or constants. Data field decla-
rations can contain modifiers that control the availability of the data field (access
modifiers) or that modify the way the data field can be used (use modifiers).

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.
32.

Summary

Methods are used to implement object behaviors. The general form of a method
definition is

access-modifier use-modifier type name(formal-pavameter-list) {
body

A valued method returns a value by using the return statement. A void
method can use return to exit.

When you invoke a method, the actual arguments must correspond to the formal
parameters in number, order, and type.

A method makes local copies of the values of any arguments that are passed. Thus,
the arguments remain unchanged by the method. When the argument is a refer-
ence, a method can modify the object it references, but not the value of the refer-
ence variable itself.

Members of a class should be declared as public or private. The client of the
class—that is, the program that uses the class—cannot use members that are
private. However, the implementations of methods within the class imple-
mentation can use them. Typically, you should make the data fields of a class
private and provide public methods to access some or all of the data fields.

You can access data fields and methods that are declared public by naming the
object, followed by a period, followed by the member name.

A Java class contains at least one constructor, which is an initialization method.

If you do not define any constructors for a class, the compiler will generate a
default constructor—that is, one without parameters—for you.

Inheritance allows a new class to be defined based on the data fields and methods
of an existing class while adding its own functionality. This enhances our ability to
reuse code.

A class that is derived from another class is called the derived class or subclass. The
class from which the subclass is derived is called the base class or superclass.

When defining a subclass, the class name is followed by an extends clause that names
the superclass. If there is no extends clause, the class is implicitly a subclass of object.

The equals method defined in the class object is based on reference equality; it
simply checks to see if two references refer to the same object. This is known as
shallow equality.

It is common for a class to redefine the equals method for deep equality—in other
words, to check the equality of the contents of the objects.

The Array class contains various static methods for manipulating arrays.

A string is a sequence of characters. The String class supports nonmutable strings,
while the StringBuffer class supports mutable strings. In the String class, you
can access the entire string, a substring, or the individual characters. In the
StringBuffer class, you can access and actually manipulate the entire string, a
substring, or the individual characters.

95

96

Chapter 1

Review of Java Fundamentals

33.

34.

35.
36.

37.

Self-Test Exercises

1.

Exceptions are used to handle errors during execution. A method indicates that an
error has occurred by throwing an exception. When an exception occurs, the state-
ments within the catch block that correspond to the exception are executed.

The method System.out.println places a value into an output stream. Reading
a value from an input stream is easier when the Scanner class is used.

In Java, files are accessed using the Scanner class or streams.

The console class provides an alternative way to get input and output from the
console of the current program execution environment.

Data persistence is supported in Java through object serialization. You serialize an object
by using the method writeobject from the stream class ObjectOutputStream, and
you deserialize an object by using the method readobject from the stream class
ObjectInputStream.

Remember that = is the assignment operator; == is the equality operator.

Do not begin a decimal integer constant with zero. A constant that begins with
zero is either an octal constant or a hexadecimal constant.

Without a break statement, execution of a case within a switch statement will
continue into the next case.

You must be careful that an array index does not exceed the size of the array. Java
will throw the exception ArrayIndexOutOfBounds if an index value is less than
zero or greater than or equal to the length of the array.

If you define a constructor for a class but do not also define a default constructor,
the compiler will not generate one for you. In this case, a statement such as

MyNewClass test = new MyNewClass();

is illegal.

When using an IDE, the console object is often not accessible since the JVM exe-
cutes as a background process.

Opening an existing file for output erases the data in the file, unless you specify
append mode.

To use each of the following Java classes in your program, indicate an import statement
that would allow the program to use each of the following methods. If one is not needed,
then state so. You may need to do a little research to determine the appropriate package.

a. static int round(float a) in the class Math
b. void println(String x) in the class PrintWriter
c. boolean isEmpty() in the class Vector

d. int getErrorCode() in the class SQLException

Exercises

2. What are the differences between the three types of comments in Java?

3. The syntax of a method declaration is as follows:

access-modifier use-modifiers return-type
method-name (formal-parameter-list) {
// method-body

What are the possible values for access-modifier and use-modifier?

4. Using the simpleSphere class shown in Figure 1-5, and the following declara-
tions, are the statements below correct or will they generate a compiler error? If
they will generate a compiler error, explain why.

SimpleSphere myBall = new SimpleSphere(4.695);

a. myBall.radius = 5.0;
b. int rad = myBall.getRadius();
c. float d = myBall.getDiameter();

d.myBall.DEFAULT_RADIUS = 5.0;
5. What is meant by “short circuit operator” in a boolean expression? Give an example.

6. What is the difference between checked exceptions and unchecked exceptions?

1. What is the output of the following program?

class SwitchDemo {
public static void main(String[] args) {

int month = 3;

switch (month) {
case 1: System.out.print("January"); break;
case 2: System.out.print("February"); break;

case 3: System.out.print("March");
case 4: System.out.print("April");
case 5: System.out.print("May"); break;
case 6: System.out.print("June"); break;

2. Evaluate the following expressions:
a. 4 + 3 %11 / 2.0 — (-2)
b. 4.6 — 2.0 + 3.2 —1.1 % 2
C. 23 %4 —23/ 4

d. 12 / 3 * 2 + (int)(2.5 * 10)

98 Chapter 1 Review of Java Fundamentals

3. The following code results in compile time error storing the values of an int variable
to a byte variable. Identify the problem with the code and provide the solution.

public static void coversion ()

{
int a = 1100;
byte b = a;
System.out.println("Value of Byte Variable b = "+b);

4. What is the output of the following program? If it is an infinite loop, state so.

class Sample {
public static void main(String[] args) {
byte ¢ = 0;
for (; c <= 127; c++);
System.out.println("c = "+c);

5. What is the problem with the following code?

if (amount = 0) {
System.out.println("Sorry, there are none left");

6. Given the following if statement:

if (x <= 0) {
if (x <= 100)
System.out.println("Statement A");
else
System.out.println("Statement B");
}

else {
if (x > 10)
System.out.println("Statement C");
else
System.out.println("Statement D");

Using relational operators, give the range of values for x that produce the follow-
ing output:

a. Statement A
b. Sstatement B
C. Statement C

d. statement D

Exercises

7. Write a program that reads the value of x and evaluates the following function

1 forx>0
Y= 0 forx=0
-1 forx<0

using
a. nested if statements

b. else if statements

8. What is the output of the following statement?

System.out.println("John said \"It should be located in" +
"C:\\myfiles\" \n in a worried tone.\"");

9. For each set of following statements, indicate the number of times the statement
System.out.print("x"); is executed. Ifitis an infinite loop, indicate so.

a. x = 12; b. x = 3;
while (x > 0) { do {
System.out.print("x"); System.out.print("x");
X =X - 2; X——;
} // end while } while (x < 0);
C. x =5; d =x-= 3;
while (x > 0) { do {
System.out.print("x"); System.out.print("x");
} // end while X =x + 2;
} while (x <= 9);
€. for (i = 0; i <= 99; i++) f. for (i = 84; i <= 96; i++)

System.out.print("x");

for (j = 7; j < 10; j++)
System.out.println("x");

10. Correct the code to rectify the compile time error.

public class Forloop

{

public static void main(String[] args)

{
int factorial = 1;
for (int count=1; count < 11)
{
System.out.println(factorial *= count);
count ++;
}
}

99

100 Chapter 1 Review of Java Fundamentals

11. Given a class Pet as started in the following example, add two constructors—one
to create pets with a name, the other to create pets with a name and an age.

class Pet {
private String name;
private int age;
// add constructors here

12. Suppose you have the following class:

class Second {
private int x;
public int z;

public int sum() {
return x + y + z;
} // end sum

private void reset(int a, int b, int c) {
X =a; y=Db; c=2z;
} // end reset

public boolean check(float x) {
return x < 0;
} // end check
} // end Second

Given the following declaration,

Second myClass = new Second();

indicate for each statement (which might appear in testing code) if it is legal or
tllegal (will cause an error).

a. myClass.x = 5;

b. myClass.z = 5;

C. myClass.sum(Xx);

d. int ans = myClass.sum();

¢. myClass.reset(1l, 2, 3);

f. boolean x = myClass.check(11.2);

13. Given the following class Complex, complete the following questions:

class Complex {
private int real;
private int imaginary;
public Complex(int r, int i) {
real = r;
imaginary = i;
} // end constructor

14.

15.

16.

Exercises

public String toString() {
return real + " + " + imaginary + "i";
} // end toString
} //end class Complex

a. Write a statement that creates a complex number 3 + 2i called c1.
b. Write a statement that creates a complex number 4 - 5i called c2.
c. Write a statement that prints a complex number called c1.

d. For the class complex, modify the tostring method so that if the real or imag-
inary part is zero, it is not placed in the string. If both are zero, then just print
zero. Finally, if the imaginary part is 1 or -1, simply print + i instead of + 1i
and — i instead of - 1i.

e. For the class complex, add the following methods:

public Complex add(Complex val)

// returns a Complex number whose value is (this + val)
public Complex subtract(Complex val)

// returns a Complex number whose value is (this - val)
public Complex multiply(Complex val)

// returns a Complex number whose value is (this * val)

f. Add a main program with test code that demonstrates that the above methods
are working properly.

Write a class Address that contains the street, city, and zip code. Provide one or
more methods to initialize these values, and a method called toString that
returns a String representation that contains all of these values.

Identify the error in the following code.

class Sample {
public static void main(String[] args) {
int i = 200;
{
int i = 100;

Given this code segment,

try {
// statements appear here...

}

catch (IOException ex) {
System.out.println("I/O error!");

}

catch (NumberFormatException ex) {
System.out.println("Bad input!");

101

102 Chapter 1 Review of Java Fundamentals

finally {
System.out.println("Finally!");
}

System.out.println("Done!");

a. what will be printed if an FileNotFoundException occurs in the try block?
b. what will be printed if an ArrayIndexoutOfBounds occurs in the try block?
c. what will be printed if no exception occurs in the try block?

d. what would happen if the following catch clause was added as the first catch
clause in the code?

catch (Exception ex) {
System.out.println("Error!");

}

17. What is the output of the following code?

class Sample {
public static void main(String[] args) {
int a = 200;
if (a = 100)

{

System.out.println(" hello ");
}
else
{

System.out.println(" world ");
}

Programming Problems

1. Create an application called Registrar that has the following classes:

A Student class that minimally stores the following data fields for a student:
® name
m student id number
m number of credits
u

total grade points earned

The following methods should also be provided:
®m A constructor that initializes the name and id fields
® A method that returns the student name field
m A method that returns the student ID field
n

A method that determines if two student objects are equal if their student
id numbers are the same (override equals from the class object)

m Methods to set and retrieve the total number of credits

Programming Problems

Methods to set and retrieve the total number of grade points earned

A method that returns the GPA (grade points divided by credits)

An Instructor class that minimally stores the following data fields for an instructor:

name
faculty id number

department

The following methods should also be provided:

A constructor that initializes the name and id fields

Methods to set and retrieve the instructor’s department

A course class that minimally stores the following data for a course:

name of the course

course registration code
maximum number of 35 students
instructor

number of students

students registered in the course (an array)

The following methods should also be provided:

A constructor that initializes the name, registration code, and maximum
number of students

Methods to set and retrieve the instructor

A method to search for a student in the course; the search should be
based on an ID number.

A method to add a student to the course. If the course is full, then an
exception with an appropriate message should be raised (try creating your
own exception class for this). Also, be sure that the student is not already
registered in the course. The list of students should be in the order that
they registered.

A method to remove a student from the course. If the student is not
found, then an exception with an appropriate message should be raised
(use the same exception class mentioned above).

A method that will allow Course objects to be output to a file using
object serialization

A method that will allow Course objects to be read in from a file created
with Object serializtion

You will note that the Student and Instructor classes described above have
some commonality. Create a Person class that captures this commonality and uses
it as a base class for Student and Instructor. This class should be responsible for
the name and id fields and also provide a toString method that returns a string of
the form name, id. This will be the inherited toString method for the student
and Instructor classes.

103

104

Chapter 1

Review of Java Fundamentals

Draw a UML diagram for this application.

. Implement the previous classes in Java. Write a main program that can serve as a test

class that tests all of the methods created and demonstrates that they are working.

. Write a second main program that provides a menu to allow the user to

i. create a course, prompting the user for all of the course information,
ii. add students to the course,
iii. check to see if a student is registered in the course, and

iv. remove a student from the course.

. Add to the previous menu the ability to save a course using object serialization.

Also add a menu choice to read in a course from a file given the course code.
Come up with a system of naming the file so that the user need only be asked
the course code to load the course information from a file.

CHAPTER 2

Principles of

Programming and
Software Engineering

his chapter summarizes several fundamental principles

that serve as the basis for dealing with the complexities
of large programs. The discussion both reinforces the basic
principles of programming and demonstrates that writing well-
designed and well-documented programs is cost-effective.
The chapter also presents a brief discussion of algorithms
and data abstraction and indicates how these topics relate to
the book’s main theme of developing problem-solving and
programming skills. In subsequent chapters, the focus will
shift from programming principles to ways of organizing and
using data. Even when the focus of discussion is on these
new techniques, you should note how all solutions adhere to
the basic principles discussed in this chapter.

2.1 Problem Solving and Software
Engineering

What Is Problem Solving?

The Life Cycle of Software

What Is a Good Solution?

2.2 Achieving an Object-Oriented
Design
Abstraction and Information Hiding
Object-Oriented Design
Functional Decomposition
General Design Guidelines
Modeling Object-Oriented Designs
Using UML
Advantages of an Object-Oriented
Approach

2.3 A Summary of Key Issues in
Programming
Modularity
Modifiability
Ease of Use
Fail-Safe Programming
Style
Debugging
Summary
Cautions
Self-Test Exercises
Exercises

Programming Problems

105

106 Chapter 2

Coding without a
solution design
increases debug-
ging time

Software engineer-
ing facilitates devel-
opment of programs

A solution specifies
algorithms and ways
to store data

Principles of Programming and Software Engineering

2.1 Problem Solving and Software
Engineering

Where did you begin when you wrote your last program? After reading the
problem specifications and procrastinating for a certain amount of time, most
novice programmers simply begin to write code. Obviously, their goal is to get
their programs to execute, preferably with correct results. Therefore, they run
their programs, examine error messages, insert semicolons, change the logic,
delete semicolons, pray, and otherwise torture their programs until they work.
Most of their time is probably spent checking both syntax and program logic.
Certainly, your programming skills are better now than when you wrote your
first program, but will you be able to write a really large program by using the
approach just described? Maybe, but there are better ways.

Realize that an extremely large software development project generally
requires a team of programmers rather than a single individual. Teamwork
requires an overall plan, organization, and communication. A haphazard
approach to programming will not serve a team programmer well and will not
be cost-effective. Fortunately, an emerging engineering field related to a
branch of computer science—software engineering—provides techniques to
facilitate the development of computer programs.

Whereas a first course in computer science typically emphasizes program-
ming issues, the focus in this book will be on the broader issues of problem
solving. This chapter begins with an overview of the problem-solving process
and the various ways of approaching a problem.

What Is Problem Solving?

Here the term problem solving refers to the entire process of taking the state-
ment of a problem and developing a computer program that solves that prob-
lem. This process requires you to pass through many phases, from gaining an
understanding of the problem to be solved, through designing a conceptual
solution, to implementing the solution with a computer program.

Exactly what is a solution? Typically, a solution consists of two compo-
nents: algorithms and ways to store data. An algorithm is a step-by-step speci-
fication of a method to solve a problem within a finite amount of time. One
action that an algorithm often performs is to operate on a collection of data.
For example, an algorithm may have to put new data into a collection, remove
data from a collection, or ask questions about a collection of data.

Perhaps this description of a solution leaves the false impression that all the
cleverness in problem solving goes into developing the algorithm and that how
you store your data plays only a supporting role. This impression is far from
the truth. You need to do much more than simply store your data. When con-
structing a solution, you must organize your data collection so that you can
operate on the data easily in the manner that the algorithm requires. In fact,
most of this book describes ways of organizing data.

Problem Solving and Software Engineering

When you design a solution to a given problem, you can use several tech-
niques that will make your task easier. This chapter introduces those tech-
niques, and subsequent chapters will provide more detail.

The Life Cycle of Software

The development of good software involves a lengthy and continuing process
known as the software’s life cycle. This process begins with an initial idea,
includes the writing and debugging of programs, and continues for years to
involve corrections and enhancements to the original software. Figure 2-1 pic-
tures the nine phases of the software life cycle as segments on a water wheel.!
This arrangement suggests that the phases are part of a cycle and are not
simply a linear list. Although you start by specitying a problem, typically you
move from any phase to any other phase. For example, testing a program can
suggest changes to either the problem specifications or the solution design.
Also notice that the nine phases surround a documentation core in the figure.
Documentation is not a separate phase, as you might expect. Rather, it is inte-
grated into all phases of the software life cycle.

The life cycle of software as a water wheel that can rotate from one phase to any
other phase

1. Thanks to Raymond L. Paden for suggesting that the “wheel” be a “water wheel.”

107

108 Chapter 2

Make the problem
statement precise
and detailed

Prototype programs
can clarify the
problem

Principles of Programming and Software Engineering

Within the last few years, incremental and iterative development methods
have emerged. These methods apply the first seven phases (specification,
design, risk analysis, verification, coding, testing, and refinement) incremen-
tally in a circular pattern. The refinement phase is where the next changes (or
refinements) to the system are considered, leading the development back to
the specification phase. Using this approach, a portion of the overall system is
developed initially, and then refinements to the solution are incorporated.
Once the system is complete, it then moves to the production and mainte-
nance phases. When using an object-oriented language such as Java, this means
that the initial development may involve building a subset of objects, then
incrementally enhancing these objects and adding new objects until the system
is complete and ready for production.

Here, then, are the phases in the life cycle of typical software. Although all
phases are important, only those that are most relevant to this book are dis-
cussed in detail.

Phase 1: Specification. Given an initial statement of the software’s purpose,
you must specify clearly all aspects of the problem. Often the people who describe
the problem are not programmers, so the initial problem statement might be
imprecise. The specification phase, then, requires that you bring precision and
detail to the original problem statement and that you communicate with both pro-
grammers and nonprogrammers.

Here are some questions that you must answer as you write the specifica-
tions for the software: What is the input data? What data is valid and what data is
invalid? Who will use the software and what user interface should be used? What
error detection and error messages are desirable? What assumptions are possi-
ble? Are there special cases? What is the form of the output? What documenta-
tion is necessary? What enhancements to the program are likely in the future?

One way to improve communication among people and to clarify the soft-
ware specifications is to write a prototype program that simulates the behav-
ior of portions of the desired software product. For example, a simple—even
inefficient—program could demonstrate the proposed user interface for analy-
sis. It is better to discover any difficulties or to change your mind now than to
do so after programming is underway or even complete.

Your previous programming assignments probably stated the program
specifications for you. Perhaps aspects of these specifications were unclear and
you had to seek clarification, but most likely you have had little practice in
writing your own program specifications.

Phase 2: Design. Once you have completed the specification phase, you
must design a solution to the problem. Most people who design solutions of
moderate size and complexity find it difficult to cope with the entire program
at once. The best way to simplify the problem-solving process is to divide a
large problem into small, manageable parts. The resulting program will
contain modules, which are self-contained units of code.

When using an object-oriented language such as Java, these modules take
the form of objects. As discussed in Chapter 1, objects are implemented using

Problem Solving and Software Engineering

classes. Classes should be designed so that the objects are independent, or
loosely coupled. Coupling is the degree to which objects in a program are
interdependent. If every object in a program is connected to every other object
in the program, that is called highly coupled, and it means that the flow of infor-
mation between objects is potentially high. If the objects are loosely coupled,
changes in one object will have minimal effects on other objects in the program.

Classes should also be designed so that objects are highly cohesive. Cohe-
sion is the degree to which the data and methods of an object are related. Ide-
ally, each object should represent one component in the solution. Methods
within an object should also be highly cohesive, each should perform one well-
defined task.

During the design phase, it is also important that you clearly specify the
object interactions. Objects interact by sending messages to each other
through method calls, which in turn represents the data flow among objects.
When designing the methods, you should provide answers to these questions:
What data within the object is utilized by the method? What does the method
assume? What actions does the method perform, and is the data stored in the
object changed after the method executes? Thus you should specify in detail
the assumptions, input, and output for each method.

For example, if you as program designer needed to provide a method for a
shape object that moves it to a new location on the screen, you might write the
following specification:

The method will receive an («, y) coordinate.
The method will move the shape to the new location on the screen.

You can view these specifications as the terms of a contract between your
method and the code that calls it.

If you alone write the entire program, this contract helps you systemati-
cally decompose the problem into smaller tasks. If the program is a team
project, the contract helps delineate responsibilities. Whoever writes the move
method must live up to this contract. After the move method has been written
and tested, the contract tells the rest of the program how to call the move
method properly and lets it know the result of doing so.

It is important to notice, however, that a method’s contract does not
commit the method to a particular way of performing its task. If another part
of the program assumes anything about the method, it does so at its own risk.
Thus, for example, if at some later date you rewrite your method to use a dif-
ferent algorithm for moving the shape on the screen, you should not need to
change the rest of the program at all. As long as the new method honors the
terms of the original contract, the rest of the program should be oblivious to
the change.

This discussion should not be news to you. Although you might not have
explicitly used the term “contract” before, the concept should be familiar. You
write a contract when you write a method’s precondition, which is a state-
ment of the conditions that must exist at the beginning of a method, as well as
when you write its postcondition, which is a statement of the conditions at

109

Loosely coupled
objects are
independent

Highly cohesive
methods each
perform one well-
defined task

Specify each
method’s purpose,
assumptions, input,
and output

Specifications as a
contract

A method’s specifi-
cation should not
describe a method
of solution

Method specifica-
tions include precise
preconditions and
postconditions

110 Chapter 2 Principles of Programming and Software Engineering

First-draft
specifications

Revised
specifications

the end of a method. For example, the move method that adheres to the previ-
ous contract could appear in pseudocode? as

move(x, y)

// Moves a shape to a new location on the screen.
// Precondition: The calling code provides an

// (x, y) pair, both integers.

// Postcondition: The shape is moved to the new
// location.

These particular pre- and postconditions are actually deficient, as may be
the case in a first-draft contract. For example, does “moved” mean that the
shape is moved relative to its previous location by (x, y) or that the shape is
moved to the new coordinate location (x, y)? What is the range of values for
x and y? While implementing this method, you might assume that “moved”
means the shape is moved to a new coordinate location (x, y) and that the
range for x and y is 0 through 100. Imagine the difficulties that can arise when
another person tries to use move to move a shape relative to its previous loca-
tion using (-5, -5). This user does not know your assumptions unless you
document them by revising the pre- and postconditions, as follows:

move(x, y)

// Moves a shape to coordinate (x, y) on the screen.
// Precondition: The calling code provides an

// (x, y) pair, both integers, where

// 0 <= x <= MAX XCOOR, 0 <= y <= MAX YCOOR, where
// MAX XCOOR and MAX YCOOR are class constants that
// specify the maximum coordinate values.

// Postcondition: The shape is moved to coordinate
/!l (%, ¥)-.

When you write a precondition, begin by describing the method’s formal
parameters, mention any class named constants that the method uses, and
finally list any assumptions that the method makes. Similarly, when you write a
postcondition, begin by describing the method’s effect on its parameters—or
in the case of a valued method, the value it returns—and then describe any
other action that has occurred. (Although people tend to use the words
parameter and argument interchangeably, we will use parameter to mean
formal parameter and argument to mean actual argument.)

In an object-oriented system, a method may also change the state of an
object. Object state refers to the data that an object holds. In this example, a
shape object has two data values that represent its location on the screen. The
move method actually modifies these values within the object so that the effect

2. Pseudocode in this book appears in italics.

Problem Solving and Software Engineering

is to move the shape to a different location on the screen. Note that the post-
condition in the move method reflects this change of object state.

Novice programmers tend to dismiss the importance of precise documen-
tation, particularly when they are simultancously designer, programmer, and
user of a small program. If you design move but do not write down the terms
of the contract, will you remember them when you later implement the
method? Will you remember how to use move weeks after you have written it?
To refresh your memory, would you rather examine your Java code or read a
simple set of pre- and postconditions? As the size of a program increases, good
documentation becomes even more important, regardless of whether you are
the sole author or part of a team.

You should not ignore the possibility that you or someone else has already
implemented some of the required objects and methods. Java facilitates the
reuse of software components, which are typically organized into class libraries
that group classes into packages containing compiled code. That is, you will
not always have access to a method’s Java code. The Java Application Pro-
gramming Interface (API) is an example of one such collection of preexisting
software. For example, you know how to use the static method sgrt con-
tained in the Java API package java.lang.Math, yet you do not have access
to its source statements, because it is precompiled. You know, however, that if
you pass sgrt an expression of type double, it will return the square root of
the value of that expression as a double. You can use java.lang.Math.sqrt
even though you do not know its implementation. Furthermore, it may be
that java.lang.Math.sgrt was written in a language other than Java! There
is so much about java.lang.Math.sgrt that you do not know, yet you can
use it in your program without concern, as long as you know its specifications.

If, in the past, you have spent little or no time in the design phase for your
programs, you must change this habit! The end result of the design phase
should be a solution that is easy to translate into the constructs of a particular
programming language. By spending adequate time in the design phase, you
will spend less time when you write and debug your program.

We will resume our discussion of design later.

Phase 3: Risk analysis. Building software entails risks. Some risks are the
same for all software projects and some are peculiar to a particular project. You
can predict some risks, while others are unknown. Risks can affect a project’s
timetable or cost, the success of a business, or the health and lives of people. You
can eliminate or reduce some risks but not others. Techniques exist to identify,
assess, and manage the risks of creating a software product. You will learn these
techniques if you study software engineering in a subsequent course. The
outcome of risk analysis will affect the other phases of the life cycle.

Phase 4: Verification. Formal, theoretical methods are available for proving
that an algorithm is correct. Although research in this area is incomplete, it is
useful to mention some aspects of the verification process.

111

Precise
documentation
is essential

Incorporate
existing software
components into
your design

You can predict and
manage some, but
not all, risks

112 Chapter 2

You can prove the
correctness of some
algorithms

Principles of Programming and Software Engineering

An assertion is a statement about a particular condition at a certain point
in an algorithm. Preconditions and postconditions are simply assertions about
conditions at the beginning and end of methods.

Java supports an assertion statement that allows you to test a condition at
a certain point in a program. The Java assertion statement has two forms:

assert booleanExpression;
assert booleanExpression : valueExpression;

In the first form, if booleanExpression is false, an AssertionError is thrown
with no further detail information. In the second form, it booleanExpression
is false, the valueExpression is evaluated and sent to the AssertionError
constructor so as to provide more detailed information about the failed
assertion. In many instances, the valueExpression is simply a string that
describes the problem. Here is a simple example of an assert statement in
a program:

public static void main(String[] args) {
Scanner reader = new Scanner(System.in);
System.out.print("Enter your score: ");
int score = reader.nextInt();
assert score>=0 && score <= 100 :

"Score "+scoret+" is not in range 0-100";

// Continue processing score
System.out.println("Processing score...");

So if a value out of range is entered by the user, a message similar to the fol-
lowing will appear:

Exception in thread "main" java.lang.AssertionError:
Score -23 is not in range 0-100
at AssertionClass.main(AssertionClass.java:9)

Note that for the assert statement to be executed in a program, you must
make sure that the compiler settings enable assertions. In most Integrated
Development Environments (IDEs), this feature is usually turned off by
default, and so the assertion statements will be ignored.

An invariant is a condition that is always true at a particular point in an
algorithm. A loop invariant is a condition that is true before and after each
execution of an algorithm’s loop. As you will see, loop invariants can help you
to write correct loops. By using invariants, you can detect errors before you
begin coding and thereby reduce your debugging and testing time. Overall,
invariants can save you time.

Proving that an algorithm is correct is like proving a theorem in geome-
try. For example, to prove that a method is correct, you would start with its

Problem Solving and Software Engineering

preconditions—which are analogous to the axioms and assumptions in
geometry—and demonstrate that the steps of the algorithm lead to the post-
conditions. To do so, you would consider each step in the algorithm and show
that an assertion before the step leads to a particular assertion after the step.

By proving the validity of individual statements, you can prove that
sequences of statements, and then methods, and finally the program itself are
correct. For example, suppose you show that if assertion A; is true and state-
ment §; executes, assertion A, is true. Also, suppose you have shown that
assertion A, and statement S, lead to assertion Ajz. You can then conclude that
if assertion A, is true, executing the sequence of statements §; and S, will lead
to assertion Az. By continuing in this manner, you eventually will be able to
show that the program is correct.

Clearly, if you discovered an error during the verification process, you
would correct your algorithm and possibly modify the problem specifications.
Thus, by using invariants, it is likely that your algorithm will contain fewer
errors before you begin coding. As a result, you will spend less time debugging
your program.

You can formally prove that particular constructs such as if statements,
loops, and assignments are correct. An important technique uses loop invari-
ants to demonstrate the correctness of iterative algorithms. For example, we
will prove that the following simple loop computes the sum of the first n ele-
ments in the array item:

// computes the sum of item[0], item[1l], . . .,
// item[n-1] for any n >= 1
int sum = 0;
int j = 0;
while (j < n) {
sum += item[]];
++3;
} // end while

Before this loop begins execution, sum is 0 and j is 0. After the loop exe-
cutes once, sumis item[0] and j is 1. In general,
sum is the sum of the elements item[0] through item[j-1]

This statement is the invariant for this loop. The invariant for a correct loop is
true at the following points:

m Initially, after any initialization steps, but before the loop begins execution
m Before every iteration of the loop
m After every iteration of the loop

m After the loop terminates

Loop invariant

113

114 Chapter 2

Steps to establish
the correctness of
an algorithm

Pri

nciples of Programming and Software Engineering

For the previous loop example, these points are as follows:

int sum = 0;

int j = 0;

«—the invariant is true here

while (j < n) {

}

<« the invariant is true here
sum += item[Jj];
++3;
<« the invariant is true here
// end while
<« the invariant is true here

You can use these observations to prove the correctness of an iterative

algorithm. For the previous example, you must show that each of the follow-
ing four points is true:

1.

The invariant must be true initially, before the loop begins execution
for the first time. In the previous example, sum is 0 and j is O initially. In
this case, the invariant states that sum contains the sum of the elements
item[0] through item[-1]; the invariant is true because there are no ele-
ments in this range.

. An execution of the loop must preserve the invariant. That is, if the
invariant is true before any given iteration of the loop, you must show that
it is true after the iteration. In the example, the loop adds item[j] to sum
and then increments j by 1. Thus, after an execution of the loop, the most
recent element added to sum is item[j-1]; that is, the invariant is true
after the iteration.

. The invariant must capture the correctness of the algorithm. That is,
you must show that if the invariant is true when the loop terminates, the
algorithm is correct. When the loop in the previous example terminates,
j contains n, and the invariant is true: sum contains the sum of the ele-
ments item[0] through item[n-1], which is the sum that you intended
to compute.

4. The loop must terminate. That is, you must show that the loop will ter-

minate after a finite number of iterations. In the example, j begins at 0
and then increases by 1 at each execution of the loop. Thus, j eventually
will equal n for any n > 1. This fact and the nature of the while statement
guarantee that the loop will terminate.

Not only can you use invariants to show that your loop is correct, but you

can also use them to show that your loop is wrong. For example, suppose that
the expression in the previous while statement was j <= n instead of j <n.
Steps 1 and 2 of the previous demonstration would be the same, but Step 3
would differ: When the loop terminated, 7 would contain n + 1 and, because
the invariant would be true, sum would contain the sum of the clements

Problem Solving and Software Engineering

item[0] through item[n]. Since this is not the desired sum, you know that
something is wrong with your loop.

Notice the clear connection between Steps 1 through 4 and mathematical
induction.? Showing the invariant to be true initially, which establishes the base
case, is analogous to establishing that a property of the natural numbers is true
for zero. Showing that each iteration of the loop preserves the invariant is the
inductive step. This step is analogous to showing that if a property is true for an
arbitrary natural number %, then the property is true for the natural number
k+ 1. After proving the four points just described, you can conclude that the
invariant is true after every iteration of the loop—just as mathematical induc-
tion allows you to conclude that a property is true for every natural number.

Identifying loop invariants will help you to write correct loops. You should
state the invariant as a comment that either precedes or begins each loop, as appro-
priate. For example, in the previous example, you might write the following;:

// Invariant: 0 <= j <= n and
// sum = item[0] +...+ item[j-1]
while (j < n)

You should confirm that the invariants for the following unrelated loops
are correct. Remember that each invariant must be true both before the loop
begins and after each iteration of the loop, including the final one. Also, you
might find it easier to understand the invariant for a for loop if you tempo-
rarily convert it to an equivalent while loop.

For example, a for loop of the form

for (imitinlize; test; update) {
statement (s)
} // end for

can be rewritten as

initinlize;

while (zest) {
statement (s)
update;

} // end while

3. A review of mathematical induction appears in Appendix D.

115

State loop invariants
in your programs

116 Chapter 2

Examples of loop
invariants

Coding is arelatively
minor phase in the
software life cycle

Design a set of test
data to test your
program

Develop a working
program under
simplifying assump-
tions; then add refin-
ing sophistication

Principles of Programming and Software Engineering

Here are a few more examples of loop invariants:

// Computes an approximation to e* for a real x

double t = 1.0, s = 1.0;
int k = 1;
// Invariant: t == x¥"1/(k-1)! and
/] s == l+x+x%/21+...+x57 1/ (k-1)!
while (k <= n) {

t *= x/k;

s += t;

++k;

} // end while

// Computes n! for
int £ = 1;
// Invariant: ==

an integer n >= 0

(3-1)!

for (int j = 1; j <= n; ++3j) {
£ = 73;

} // end for

Phase 5: Coding. The coding phase involves translating the design into a
particular programming language and removing the syntax errors. Although
this phase is probably your concept of what programming is all about, it is
important to realize that the coding phase is not the major part of the life
cycle for most software—actually, it is a relatively minor part.

Phase 6: Testing. During the testing phase, you need to remove as many
logical errors as you can. One approach is to test the individual methods of the
objects first, using valid input data that leads to a known result. If certain data
must lie within a range, include values at the endpoints of the range. For
example, if the input value for n can range from 1 to 10, be sure to include test
cases in which n is 1 and 10. Also, include invalid data to test the error-
detection capability of the program. Try some random data, and finally try
some actual data. Testing is both a science and an art. You will learn more
about testing in subsequent courses.

Phase 7: Refining the solution. The result of Phases 1 through 6 of the
solution process is a working program, which you have tested extensively and
debugged as necessary. If you have a program that solves your original problem,
you might wonder about the significance of this phase of the solution process.

Often the best approach to solving a problem is first to make some simpli-
fying assumptions during the design of the solution—for example, you could
assume that the input will be in a certain format and will be correct—and next
to develop a complete working program under these assumptions. You can
then add more sophisticated input and output routines, additional features,
and more error checks to the working program.

Problem Solving and Software Engineering

Thus, the approach of simplifying the problem initially makes a refine-
ment step necessary in the solution process. Of course, you must take care to
ensure that the final refinements do not require a complete redesign of the
solution. You can usually make these additions cleanly, however, particularly
when you have used a modular design. In fact, the ability to proceed in this
manner is one of the key advantages of having a modular design! Also, realize
that any time you modify a program—no matter how trivial the changes might
seem—you must thoroughly test it again.

This discussion illustrates that the phases within the life cycle of software
are not completely isolated from one another and are not linear. To make real-
istic simplifying assumptions early in the design process, you should have some
idea of how you will account for those assumptions later on. Testing a program
can suggest changes to its design, but changes to a program require that you
test the program again.

Phase 8: Production. When the software product is complete, it is distrib-
uted to its intended users, installed on their computers, and used.

Phase 9: Maintenance. Maintaining a program is not like maintaining a car.
Software does not wear out if you neglect it. However, users of your software
invariably will detect errors that you did not discover during the testing phase.
Correcting these errors is part of maintaining the software. Another aspect of
the maintenance phase involves enhancing the software by adding more fea-
tures or by modifying existing portions to suit the users better. Rarely will the
people who design and implement the original program perform this mainte-
nance step. Good documentation then becomes even more important.

Is a program’s life cycle relevant to your life? It definitely should be! You
should view Phases 1 through 7 as the steps in a problem-solving process.
Using this strategy, you first design and implement a solution (Phases 1
through 6) based on some initial simplifying assumptions. The outcome is a
well-structured program that solves a somewhat simplified problem. The last
step of the solution process (Phase 7) refines your work into a sophisticated
program that meets the original problem specifications.

What Is a Good Solution?

Before you devote your time and energy to the study of problem-solving tech-
niques, it seems only fair that you see at the outset why mastery of these tech-
niques will help to make you a good problem solver. An obvious statement is
that the use of these techniques will produce good solutions. This statement,
however, leads to the more fundamental question, what is a good solution? A
brief attempt at answering this question concludes this section.

Because a computer program is the final form your solutions will take,
consider what constitutes a good computer program. Presumably, you write a
program to perform some task. In the course of performing that task, there is a
real and tangible cost. This cost includes such factors as the computer resources

117

Changesto a
program require that
you test it again

Correcting user-
detected errors and
adding features are
aspects of software
maintenance

118 Chapter 2

A multidimensional
view of a solution’s
cost

Programs must be
well structured and
documented

Principles of Programming and Software Engineering

(computing time and memory) that the program consumes, any difficulties
encountered by those who use the program, and the consequences of a
program that does not behave correctly.

However, the costs just mentioned do not give the whole picture. They
pertain to only one phase of the life cycle of a solution—the phase in which it
is an operational program. In assessing whether or not a solution is good, you
also must consider the phases during which you developed the solution and
the phases after you wrote the initial program that implemented the solution.
Each of these phases incurs costs, too. The total cost of a solution must take
into account the value of the time of the people who developed, refined,
coded, debugged, and tested it. A solution’s cost must also include the cost of
maintaining, modifying, and expanding it.

Thus, when calculating the overall cost of a solution, you must include a
diverse set of factors. If you adopt such a multidimensional view of cost, it is
reasonable to evaluate a solution against the following criterion:

A solution is good if the total cost it incurs over all phases of its life cycle is
minimal.

It is interesting to consider how the relative importance of the various compo-
nents of this cost has changed since the early days of computing. In the begin-
ning, the cost of computer time relative to human time was extremely high. In
addition, people tended to write programs to perform very specific, narrowly
defined tasks. If the task changed somewhat, a new program was written.
Program maintenance was probably not much of an issue, so there was little
concern if a program was hard to read. A program typically had only one user,
its author. As a consequence, programmers tended not to worry about misuse
or case of use of their programs; a program’s interface generally was not con-
sidered important.

In this type of environment, one cost clearly overshadowed all others:
computer resources. If two programs performed the same task, the one that
required less time and memory was better. How things have changed! Since
the early days of computers, computing costs have dropped dramatically, thus
making the value of the problem solver’s and programmer’s time a much more
significant factor in the cost of a solution. Another consequence of the drop in
computing costs is that computers now are used to perform tasks in a wide
variety of areas, many of them nonscientific. People who interact with comput-
ers often have no technical expertise and no knowledge of the workings of pro-
grams. People want their software to be easy to use.

Today, programs are larger and more complex than ever before. They are
often so large that many people are involved in their design, use, and mainte-
nance. Good structure and documentation are thus of the utmost importance.
As programs perform more highly critical tasks, the prices for malfunctions will
soar. Thus, society needs both well-structured programs and techniques for
formally verifying their correctness. People will not and should not entrust
their livelihoods—or their lives—to a program that only its authors can under-
stand and maintain.

Achieving an Object-Oriented Design

These developments have made obsolete the notion that the most effi-
cient solution is always the best. If two programs perform the same task, it is
no longer true that the faster one is necessarily better. Programmers who use
every trick in the book to save a few microseconds of computing time at the
expense of clarity are not in tune with the cost structure of today’s world. You
must write programs with people as well as computers in mind.

At the same time, do not get the false impression that the efficiency of a
solution is no longer important. To the contrary, in many situations efficiency
is the prime determinant of whether a solution is even usable. The point is that
a solution’s efficiency is only one of many factors that you must consider. If
two solutions have approximately the same efficiency, other factors should
dominate the comparison. However, when the efficiencies of solutions differ
sygnificantly, this difference can be the overriding concern. The stages of the
problem-solving process at which you should be most concerned about effi-
ciency are those during which you develop the underlying methods of solu-
tion. The choice of a solution’s components—the algorithms and ways to
store data—rather than the code you write, leads to significant differences in
efficiency.

Another factor in software development costs is code reusability. Making
use of existing code can reduce the cost and time needed to develop a solution.
It also reduces maintenance costs since reused components are generally well
designed and more comprehensively tested. Within the software development
process, code reuse typically emerges in two ways. First, components available
from code libraries and open source repositories can often be adapted and used
in a system. Note that the original design of these off-the-shelf components is
completely independent of the current software development activity, yet these
components are adapted and refined to be part of the current solution. The
second way that code reuse emerges is when components within a project are
designed in such a way that allows them to be the basis for more specific com-
ponents later in the development process.

This book advocates a problem-solving philosophy that views the cost of a
solution as multidimensional. This philosophy is reasonable in today’s world,
and it likely will be reasonable in the years to come.

2.2 Achieving an Object-Oriented Design

You have seen the importance of specifying the objects during the design of a
solution, but how do you determine the objects in the first place? The tech-
niques that help you determine the objects for a particular solution are the
subject of entire texts and future courses; these techniques quickly go beyond
this book’s scope. This section will provide an overview of two general design
techniques—abstraction and information hiding—which is followed by a dis-
cussion of object-oriented design and functional decomposition.

119

Efficiency is only
one aspect of a
solution’s cost

Code reuse
can reduce a
solution’s cost

120 Chapter 2

Specify what to do,
not how to do it

Specify what a
method does, not
how to do it

Specifications do
not indicate how to
implement a method

Principles of Programming and Software Engineering

Abstraction and Information Hiding

Procedural abstraction. When you design a method as part of a solution to
a problem, each method begins as a box that states what it does but not how it
does it. No one box may “know” how any other box performs its task—it may
know only what that task is. For example, if one part of a solution is to sort
some data, one of the boxes will be a sorting algorithm, as Figure 2-2 illus-
trates. The other boxes will know that the sorting box sorts, but they will not
know how it sorts. In this way, the various components of a solution are kept
isolated from one another.

Procedural abstraction separates the purpose of a method from its imple-
mentation. Abstraction specifies each method clearly &efore you implement it in
a programming language. For example, what does the method assume and
what action does it take? Such specifications will clarify the design of your solu-
tion because you will be able to focus on its high-level functionality without
the distraction of implementation details. In addition, these principles allow
you to modify one part of a solution without significantly affecting the other
parts. For example, you should be able to change the sorting algorithm in the
previous example without affecting the rest of the solution.

As the problem-solving process proceeds, you gradually refine the boxes
until eventually you implement their actions by writing actual Java code. Once
a method is written, you can use it without knowing the particulars of its algo-
rithm as long as you have a statement of its purpose and a description of its
parameters. Assuming that the method is documented properly, you will be
able to use it knowing only its declaration and its initial descriptive comments;
you will not need to look at its implementation.

Procedural abstraction is essential to team projects. After all, in a team situation,
you will have to use methods written by others, frequently without knowledge of

| can sort data
into ascending order.

»| sort
Unorganized data Data sorted into
ascending order

Sort this data for
me; | don't care how
you do it.

aBox |«

The details of the sorting algorithm are hidden from other parts of the solution

Achieving an Object-Oriented Design

their algorithms. Will you actually be able to use such a method without studying its
code? In fact, you do so each time you use a method from the Java APL, such as
Math.sqrt, as was noted earlier.

Data abstraction. Consider now a collection of data and a set of operations
on the data. The operations might include ones that add new data to the col-
lection, remove data from the collection, or search for some data. Data
abstraction focuses on what the operations do instead of on how you will
implement them. The other modules of the solution will “know” what opera-
tions they can perform, but they will not know how the data is stored or how
the operations are performed.

For example, you have used an array, but have you ever stopped to think
about what an array actually is? You will see many pictures of arrays throughout
this book. This artist’s conception of an array might resemble the way a Java
array is implemented on a computer, and then again it might not. The point is
that you are able to use an array without knowing what it “looks like” —that is,
how it is implemented. Although different systems may implement arrays in dif-
ferent ways, the differences are transparent to the programmer. For instance,
regardless of how the array years is implemented, you can always store the value
1492 in location index of the array by using the statement

years[index] = 1492;
and later write out that value by using the statement
System.out.println(years[index]);

Thus, you can use an array without knowing the details of its implementation,
just as you can use the method Math.sgrt without knowing the details of its
implementation.

Most of this book is about data abstraction. To enable you to think
abstractly about data—that is, to focus on what operations you will perform
on the data instead of how you will perform them—you should define an
abstract data type, or ADT. An ADT is a collection of data and a set of oper-
ations on the data. You can use an ADT’s operations, if you know their specifi-
cations, without knowing how the operations are implemented or how the
data is stored.

Ultimately, someone—perhaps you—will implement the ADT by using a
data structure, which is a construct that you can define within a programming
language to store a collection of data. For example, you might store some data
in a Java array of integers or in an array of objects or in an array of arrays.

Within problem solving, abstract data types support algorithms, and algo-
rithms are part of what constitutes an abstract data type. As you design a solu-
tion, you should develop algorithms and ADTs in tandem. The global algorithm
that solves a problem suggests operations that you need to perform on the data,

121

Specify what you
will do to data, not
how to do it

An ADT is not a
fancy name
for a data structure

Develop algorithms
and ADTs
in tandem

122 Chapter 2

All modules and
ADTs should hide
something

Objects encapsu-
late data and
operations

Encapsulation hides
inner details

Principles of Programming and Software Engineering

which in turn suggest ADTs and algorithms for performing the operations on
the data. However, the development of the solution may proceed in the opposite
direction as well. The kinds of ADTs that you are able to design can influence
the strategy of your global algorithm for solving a problem. That is, your knowl-
edge of which data operations are easy to perform and which are difficult can
have a large effect on how you approach a problem.

As you probably have surmised from this discussion, you often cannot
sharply distinguish between an “algorithms problem” and a “data structures
problem.” Frequently, you can look at a program from one perspective and
feel that the data structures support a clever algorithm and then look at the
same program from another perspective and feel that the algorithms support a
clever data structure.

Information hiding. As you have seen, abstraction tells you to write specifica-
tions for each module that describe its outside, or public, view. However, abstrac-
tion also helps you to identify details that you should hide from public view—
details that should not be in the specifications but should be private. The principle
of information hiding tells you not only to hide such details within a module, but
also ensures that no other module can tamper with these hidden details.
Information hiding limits the ways in which you need to deal with methods
and data. As a user of a module, you do not worry about the details of its imple-
mentation. As an implementer of a module, you do not worry about its uses.

Object-Oriented Design

One way to achieve an object-oriented design is to develop objects that
combine data and operations to produce a representation of a real-life entity or
abstraction. Such an object-oriented approach to modularity produces a col-
lection of objects that have behaviors.

Although you may have never thought about it before, you can view many of
the things around you as objects. The alarm clock that awoke you this morning
encapsulates both time and operations such as “set the alarm.” To encapsulate
means to encase or enclose; thus, encapsulation is a technique that hides inner
details. Whereas methods encapsulate actions, objects encapsulate data as well as
actions. Even though you request the clock to perform certain operations, you
cannot see how it works. You see only the results of those operations.

Suppose that you want to write a program to display a clock on your com-
puter screen. To simplify the example, consider a digital clock without an
alarm, as Figure 2-3 illustrates. You would begin the task of designing a
modular solution by identifying the objects in the problem.

Several techniques are available for identifying objects, but no single one is
always the best approach. One simple technique* considers the nouns and

4. This technique is not foolproof. The problem specification must use nouns and verbs consis-
tently. If, for example, “display” is sometimes a verb and sometimes a noun, identifying objects
and their operations can be unclear.

Achieving an Object-Oriented Design 123

A digital clock

verbs in the problem specifications. The nouns will suggest objects whose
actions are indicated by the verbs. For example, you could specify the clock
problem as follows:

The program will maintain a digital clock that displays the time in hours Specifications for a
and minutes. The hour indicator and minute indicator are both digital program that dis-
devices that display values from 1 to 12 and 0 to 59, respectively. You plays a digital clock
should be able to set the time by setting the hour and minute indicators,

and the clock should maintain the time by updating these indicators.

Even without a detailed problem specification, you know that one of the
objects is the clock itself. The clock performs operations such as

Set the time
Advance the time
Display the time

The hour indicator and minute indicator are also objects and are quite similar
to cach other. Each indicator performs operations such as

Set its value
Advance its value
Display its value

In fact, both indicators can be the same type of object. A set of objects
that have the same type is called a class. Thus, what you need to specify is not
a particular object, but a class of objects. In fact, you need a class of clocks and
a class of indicators. A clock object, which is an instance of the clock class, will ~ An object is
then contain two indicator objects, which are instances of the indicator class. an instance
Chapter 4 discusses encapsulation further and, in particular, its relationship of a class
to Java classes. In subsequent chapters, you will study various ADTs and their
implementations as Java classes. The focus will be on data abstraction and
encapsulation. This approach to programming is object based.

124 Chapter 2 Principles of Programming and Software Engineering

The + operator has
multiple meanings

A structure
chart shows

the relationship
among methods

gmm_(EY CONCEPTS _

Object-oriented programming, or OOP, adds two more principles to
encapsulation:

Three Principles of Object-Oriented Programming
1. Encapsulation: Objects combine data and operations.
2. Inheritance: Classes can inherit properties from other classes.

3. Polymorphism: Objects can determine appropriate operations at
execution time.

Classes can inherit properties from other classes. For example, once you
have defined a class of clocks, you can design a class of alarm clocks that inher-
its the properties of a clock but adds operations to provide an alarm. You will
be able to produce an alarm clock quickly because the clock portion is done.
Thus, inheritance allows you to reuse classes that you defined earlier—
perhaps for different but related purposes—with appropriate modification.

Inheritance may make it impossible for the compiler to determine which
operation you require in a particular situation. However, polymorphism—
which literally means many forms—enables this determination to be made at
execution time. That is, the outcome of a particular operation depends upon
the objects on which the operation acts. For example, if you use the + operator
with numeric operands in Java, addition occurs, but if you use it with string
operands, concatenation occurs. Although in this simple example, the com-
piler can determine the correct meaning of +, polymorphism allows situations
in which the meaning of an operation is unknown until execution time.

Chapter 8 discusses inheritance and polymorphism further.

Functional Decomposition

Generally, an object-oriented approach initially focuses on the data aspects of
the design. But equally important is the design of the methods that imple-
ment the behavior of the objects. Recall that we want the methods within a
class to be highly cohesive—they should represent a single task to be per-
formed in an object. Functional decomposition (also referred to as top down
design) can help us break down complex tasks within an object into more
manageable single-purpose tasks and subtasks.

The philosophy of functional decomposition is that you should address a task at
successively lower levels of detail. Consider a simple example. Suppose that you
wanted to find the median among a collection of test scores. Figure 2-4 uses a
structure chart to illustrate the hierarchy of, and interaction among, the methods
that solve this problem. At first, each method is little more than a statement of what
it needs to solve and is devoid of detail. You refine each method by partitioning it
into additional smaller methods. The result is a hierarchy of methods; each method is
refined by its successors, which solve smaller problems and contain more detail about
how to solve the problem than their predecessors. The refinement process continues

Achieving an Object-Oriented Design 125

Find the
median
l \/ \
Read the Sort the Get the
scores scores middle score

\ \i

user for a score into an array

Prompt the Place the score : | : |
| |
| |

A structure chart showing the hierarchy of methods

until the methods at the bottom of the hierarchy are simple enough for you to trans-
late directly into Java code that solves very small, independent problems.

Notice in Figure 2-4 that you can break the solution down into three
independent tasks:

Read the test scores A solution consist-
Sort the scores ing of independent
tasks

Get the "middle" score

If the three methods in this example perform their tasks, then by calling them
in order you will correctly find the median, regardless of sow each method per-
forms its task.

You begin to develop each method by dividing it into subtasks. For exam-
ple, you can refine the task of reading the test scores by dividing it into the fol-
lowing two subtasks:

Prompt the user for a score Subtasks
Place the score into an array

You continue the solution process by developing, in a similar manner, methods
for each of these two tasks. Finally, you can use pseudocode to specify the
details of the algorithms.

General Design Guidelines

Typically, you use object-oriented design (OOD), functional decomposition
(FD), abstraction, and information hiding when you design a solution to a

126

gmm_'(EY CONCEPTS _

Chapter 2 Principles of Programming and Software Engineering

problem. The following design guidelines summarize an approach that leads to
modular solutions.

Design Guidelines

1. Use OOD and FD together to produce modular solutions. That is,
develop abstract data types and algorithms in tandem.

2. Use OOD for problems that primarily involve data.
3. Use FD to design algorithms for an object’s operations.
a4

. Consider FD to design solutions to problems that emphasize algo-
rithms over data.

5. Focus on what, not how, when designing both ADTs and algorithms.

6. Consider incorporating previously written software components into
your design.

Modeling Object-Oriented Designs Using UML

The Unified Modeling Language (UML) is a modeling language used to
express object-oriented designs. UML provides specifications for both dia-
grams and text-based descriptions. The diagrams are particularly useful in
showing the overall design of a solution, including class specifications and the
various ways that the classes interact with each other. It is fairly common to
have a number of classes involved in a solution, and thus the ability to show
the interaction among classes is one of the strengths of UML.

This text focuses on the design of the classes themselves, and there-
fore only the class diagrams and associated syntax are presented here.
Class diagrams specify the name of the class, the data members of the
class, and the operations. Figure 2-5 shows a class diagram for the class
Clock discussed earlier. The top section contains the class name. The
middle section contains the data members that represent the data in the
class, and the bottom section contains the operations. Note that the
diagram is quite general; it does not really dictate how the class is actually
implemented. It typically represents a conceptual model of the class that
is language independent.

In conjuction with the class diagrams, UML also provides a text-based
notation to represent the data members and operations for classes. This nota-
tion can be incorporated into the class diagrams, but usually not to the fullest
extent because it tends to clutter the diagrams. This text-based representation
is used to describe the classes in this text, because it provides a more complete
specification than the diagrams.

The UML syntax for data members is

visibility name: type = defaultValue

Achieving an Object-Oriented Design

Clock

hour
minute

second

setTime()
advanceTime()

displayTime()

UML diagram for the class clock

where

m visibility is + (public) or — (private). A third possibility is # (protected),
which is discussed in Chapter 9.

m name is the name of the data member.
m type is the data type of the data member.
® defanltValue is an initial value for the data member.

As seen in the class diagrams, at a minimum the name should be provided.
The defauitValue is used only in situations where a default value is appropri-
ate. In some cases you may also want to omit the #ype of the data member and
leave it to the implementation to provide that detail. This text will use the fol-
lowing names for common argument types: integer for integer values, float
for floating-point values, boolean for boolean values, and string for string
values. Note that these names do not necessarily match the corresponding Java
data types because this notation is meant to be language independent.

Here is the text-based notation for the data members in the class clock
shown in Figure 2-5:

-hour: integer
-minute: integer
-second: integer

The data members hour, minute, and second are declared private, as sug-
gested by the concept of information hiding.
The UML syntax for operations is more involved:

visibility name (pavameter-list): veturn-type {property-string}

127

128 Chapter 2 Principles of Programming and Software Engineering

where
m visibility is the same as specified for data members.
m name is the name of the operation.

B parameter-list contains comma-separated parameters whose syntax is
as follows:

direction name: type = defanitValue
where

m divection is used to show whether the parameter is used for input (in),
output (out), or both (inout).

B nameis the parameter.
m pypeis the data type of the parameter.

m defanitValue is a value that should be used for the parameter if no argu-
ment is provided.

B return-type is the data type of the result of the operation. If the operation
does not return a value, this is left blank.

B property-string indicates property values that apply to the operation.

Like the class diagrams for data members, the class diagrams for operations
at a minimum provide the name of the operation. Sometimes the parameter-list
is included if it clarifies the understanding of the class functionality.

The property-string has a variety of possible values, but of interest in this
text is the property query. It is a way to indicate that the operation does not
modify any data in the class.

Here is the text-based notation for the operations in the class Clock:

+setTime(in hr: integer, in min: integer, in sec: integer)
-advanceTime ()
+displayTime() {query}

Here we specified the operations setTime and displayTime as public, and
advanceTime as private. The function displayTime also has the property
query specified, as an indication that it does not change any of the data; the
function is used only to display the data.

UML class diagrams provide additional notation to illustrate relationships
between classes. Suppose that you are asked to model a banking system appli-
cation. The specification is as follows:

Design a banking system that assigns checking and savings accounts to
customers. The bank information includes a name and routing
number. Both types of accounts allow balance retrieval, deposits, and
withdrawals. A customer may have multiple accounts. Each customer’s

Achieving an Object-Oriented Design

name and address are stored in the system, and each account has a
number assigned to it. Savings accounts earn interest and checking
accounts charge for each check when the balance falls below a
minimum amount. These adjustments are reflected when the cus-
tomer requests the current account balance.

Several classes might be designed to represent the various aspects of a bank,
as illustrated in Figure 2-6. These classes include a Bank class, an Account class,
and a Customer class. Associations between classes are shown with a line, with
the option to specify the cardinality between the associations. For example, a
customer can have one or more accounts, which is illustrated with the notation
"l...+" (one to many). Classes may also have different types of relationships
with each other. For example, the Savings and Checking account classes are
both derived from the Account class, and they inherit the Account class’s data
members and operations. Inheritance is represented with an open triangle point-
ing to the parent class. Note that the Checking and Savings classes have their

Bank

-name: string

-minBalance:

-chargePerCheck: float
-numCheck: integer

float

+getBalance ()

{query}

-interestRate: float

+getBalance () {query}

-routingNum: int
-createAccount ()
1
*
Account Customer
-accountNum: integer -custname: string
-balance: float -address: string
* 1
+getBalance () {query}
+withdraw ()
+deposit
A
Checking Savings

UML diagram for a banking system

129

130 Chapter 2

A family of related
classes

Reuse existing
classes

Program mainte-
nance and
verification are
easier when you
use inheritance

Principles of Programming and Software Engineering

own getBalance functions, which override, or replace, the getBalance func-
tion of the parent class, in order to make the necessary calculations for charges
and interest. A class may also have a relationship with another class by contain-
ing an instance of that class as part of its definition. In the banking example, a
bank contains one or more accounts. This type of relationship is called contain-
ment and is represented by positioning a diamond next to the containing class.
Inheritance and containment are discussed in more detail in Chapter 9.

Advantages of an Object-Oriented Approach

The time that you expend on program design can increase when you use
object-oriented programming (OOP). In addition, the solution that OOP
techniques produce will typically be more general than is absolutely necessary
to solve the problem at hand. The extra effort that OOP requires, however, is
usually worth it.

When using object-oriented design in the solution to a problem, you need
to identify the classes that are involved. You identify the purpose of each class
and how it interacts with other classes. This leads to a specification for each
class that identifies the operations and data. You then focus on the implemen-
tation details for each of the classes, including the use of top-down design to
facilitate the development of the operations. It is easier to do the implementa-
tion when you focus on one class at a time.

Once you have implemented a class, you must test it at two different
levels. First, you must test the class operations. This is usually done by writing
a small program that calls the various operations and tests the results against
the specifications provided for the operation. Once you have tested each indi-
vidual class in this way, you should test scenarios in which the classes are
expected to work together to solve the larger problem.

When you identify the classes involved in your solution, you will often find
that you want a family of related classes. This stage of the design process is
time-consuming, particularly if you have no existing classes upon which to
build. Once you have implemented a class (called the ancestor class), the
implementation of each new class (the descendant class) proceeds more rap-
idly, because you can reuse the properties and operations of the ancestor class.
For example, as was mentioned earlier, once you have defined a class of clocks,
you can design a class of alarm clocks that inherits the properties of a clock but
adds operations to provide an alarm. The implementation of the class of alarm
clocks would have been much more time-consuming if you did not have a class
of clocks on which to base it. Looking ahead, you can reuse previously imple-
mented classes in future programs, either as is or with modifications that can
include new classes derived from your existing ones. This reuse of classes can
actually reduce the time requirements of an object-oriented design.

OOP also has a positive effect on other phases of the software life cycle,
such as program maintenance and verification. You can make one modification
to an ancestor class and affect all of its descendants. Without inheritance, you
would need to make the same change to many modules. In addition, you can
add new features to a program by adding descendant classes that do not affect

A Summary of Key Issues in Programming

their ancestors and, therefore, do not introduce errors into the rest of the pro-
gram. You can also add a descendant class that modifies its ancestor’s original
behavior, even though that ancestor was written and compiled long ago.

2.3 A Summary of Key Issues in
Programming

Given that a good solution is one that, in the course of its life cycle, incurs a
small cost, the next questions to ask are, what are the specific characteristics of
good solutions, and how can you construct good solutions? This section sum-
marizes the answers to these very difficult questions.

The programming issues that this section discusses should be familiar to
you. However, it is usually the case that the novice programmer does not truly
appreciate their importance. After the first course in programming, many stu-
dents still simply want to “get the thing to run.” The discussion that follows
should help you realize just how important these issues really are.

One of the most widespread misconceptions held by novice programmers
is that a computer program is “read” only by a computer. As a consequence,
they tend to consider only whether the computer will be able to “understand”
the program—that is, will the program compile, execute, and produce the
correct output? Th