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Preface

Welcome to the third edition of Data Abstraction and Problem Solving with
Java: Walls and Mirrors. Java is a popular language for beginning computer
science courses. It is particularly suitable to teaching data abstraction in an
object-oriented way.

This book is based on the original Intermediate Problem Solving and Data
Structures: Walls and Mirrors by Paul Helman and Robert Veroff (© 1986 by
Benjamin Cummings Publishing Company, Inc.). This work builds on their
organizational framework and overall perspective and includes technical and
textual content, examples, figures, and exercises derived from the original
work. Professors Helman and Veroff introduced two powerful analogies, walls
and mirrors, that have made it easier for us to teach—and to learn—computer
science.

With its focus on data abstraction and other problem-solving tools, this
book is designed for a second course in computer science. In recognition of
the dynamic nature of the discipline and the great diversity in undergraduate
computer science curricula, this book includes comprehensive coverage of
enough topics to make it appropriate for other courses as well. For example,
you can use this book in courses such as introductory data structures or
advanced programming and problem solving. The goal remains to give stu-
dents a superior foundation in data abstraction, object-oriented programming,
and other modern problem-solving techniques.

New in this edition

Uses Java 6: This edition has been thoroughly revised to be compatible with
the latest release of Java, known as Java 6. All code has been completely revised
to be Java 6 compliant. Generics are also an important part of Java 6, and this
material is discussed in depth in Chapter 9, and then used throughout the
remainder of the collections in the text.

Enhanced Early Review of Java: We have increased the amount of coverage of
the Java language in the first chapter of the book to help students make the transi-
tion from their introduction to Java course to this course. Chapter 1 provides a
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concise review of important Java material, including brief discussions on
constructors, object equality, inheritance, and the Array class. A discus-
sion of the Console class from Java 6 was also added to Chapter 1.
Chapter 9 focuses on advanced Java techniques, and includes an enhanced
discussion of how to create an iterator class.

Linked List: The node class for linked lists has been simplified. The implemen-
tation now assumes the node class is package access only, and the other classes in
the same package have direct access to the data within a node. Students are asked
to explore the implications of making the data private in a node as an exercise.

Updates the Use of the Java Collections Framework: The Java Collections
Framework is discussed throughout the text, with a section added to show the JFC
classes that parallel those presented in the text. The Deque class, added in Java 6, is
presented in Chapter 8.

Other enhancements: Additional changes aimed at improving the overall
usability of the text include new exercises and a new cleaner design that
enhances the book’s readability.

TO THE STUDENT

Thousands of students before you have read and learned from Walls and Mirrors.
The walls and mirrors in the title represent two fundamental problem-solving
techniques that appear throughout the book. Data abstraction isolates and hides
the implementation details of a module from the rest of the program, much as a
wall can isolate and hide you from your neighbor. Recursion is a repetitive tech-
nique that solves a problem by solving smaller problems of exactly the same type,
much as mirror images that grow smaller with each reflection.

This book was written with you in mind. As former college students, and as
educators who are constantly learning, we appreciate the importance of a clear
presentation. Our goal is to make this book as understandable as possible. To
help you learn and to review for exams, we have included such learning aids as
margin notes, chapter summaries, self-test exercises with answers, and a glossary.
As a help during programming, you will find Java reference materials in
Chapter 1, and inside the covers. You should review the list of this book’s fea-
tures given later in this preface under the section “Pedagogical Features.”

The presentation makes some basic assumptions about your knowledge of
Java as reviewed in Chapter 1. Some of you may need to review this language
or learn it for the first time by consulting this chapter. Others will find that
they already know most of the constructs presented in Chapter 1. You will
need to know about the selection statements if and switch; the iteration
statements for, while, and do; classes, methods, and arguments; arrays;
strings; and files. In addition to the material in Chapter 1, this book discusses
advanced Java topics such as generics and iterators in Chapter 9. We assume no
experience with recursive methods, which are included in Chapters 3 and 6.
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All of the Java source code that appears in this book is available for your
use. Later in this preface, the description of supplementary materials explains
how to obtain these files. See page 21—Supplemental Materials—for instruc-
tions on how to access these files.

TO THE INSTRUCTOR

This edition of Walls and Mirrors uses Java 6 to enhance its emphasis on data
abstraction and data structures. The book carefully accounts for the strengths
and weaknesses of the Java language and remains committed to a pedagogical
approach that makes the material accessible to students at the introductory level.

Prerequisites
We assume that readers either know the fundamentals of Java or know another
language and have an instructor who will help them make the transition to Java.
By using Chapter 1, students without a strong Java background can quickly pick
up what they need to know to be successful in the course. In addition, the book
formally discusses Java classes. Included are the basic concepts of a class, inherit-
ance, polymorphism, interfaces, and packages. Although the book provides an
introduction to these topics in connection with the implementations of abstract
data types (ADTs) as classes, the emphasis of the book remains on the ADTs, not
on Java. The material is presented in the context of object-based programming,
but it assumes that future courses will cover object-oriented design and software
engineering in detail, so that the focus can remain on data abstraction. We do,
however, introduce the Unified Modeling Language (UML) as a design tool.

Organization
The chapters in this book are organized into two parts. In most cases, Chapters 1
through 11 will form the core of a one-semester course. Chapters 1 or 2 might
be review material for your students. The coverage given to Chapters 11
through 15 will depend on the role the course plays in your curriculum.

Flexibility
The extensive coverage of this book should provide you with the material that
you want for your course. You can select the topics you desire and present them
in an order that fits your schedule. A chapter dependency chart follows, and
shows which chapters should be covered before a given chapter can be taught. 

Part 1: Problem-Solving Techniques. The first two chapters in Part 1
resemble an extension of an introductory course in that their emphasis is on
major issues in programming and software engineering. Chapter 3 introduces
recursion for those students who have had little exposure to this important
topic. The ability to think recursively is one of the most useful skills that a
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Chapter 2 
Principles Chapter 1

Java review

Chapter 3
Recursion

Chapter 6
More recursion

Chapter 7
Stacks

Chapter 8
Queues

Chapter 9
Advanced Java

Chapter 11
Trees

Chapter 14
Graphs

Chapter 13
Advanced tables

Chapter 12
Tables, priority queues

Chapter 10
Algorithm efficiency, sorting

Section on 
external tables

Chapter 4
Data abstraction

Chapter 5
Linked lists

Section on 
external sorting

Chapter 15

Dependency by one section of chapter

Dependency that you can ignore

Knowledge of Java helpful to begin these chapters
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computer scientist can possess and is often of great value in helping one to
understand better the nature of a problem. Recursion is discussed extensively
in this chapter and again in Chapter 6 and is used throughout the book.
Included examples range from simple recursive definitions to recursive algo-
rithms for language recognition, searching, and sorting.

Chapter 4 discusses data abstraction and abstract data types (ADTs) in
detail. After a discussion of the specification and use of an ADT, the chapter
discusses Java classes, interfaces, and packages, and uses them to implement
ADTs. Chapter 5 presents additional implementation tools in its discussion of
Java reference variables and linked lists.

You can choose among the topics in Part 1 according to the background
of your students and cover these topics in several orders.

Part 2: Problem Solving with Abstract Data Types. Part 2 continues the
use of data abstraction as a problem-solving technique. Basic abstract data types
such as the stack, queue, binary tree, binary search tree, table, heap, and priority
queue are first specified and then implemented as classes. The ADTs are used in
examples and their implementations are compared.

Chapter 9 extends the treatment of Java classes by covering inheritance,
the relationships among classes, generics, and iterators. Chapter 10 formalizes
the earlier discussions of an algorithm’s efficiency by introducing order-of-
magnitude analysis and Big O notation. The chapter examines the efficiency of
several searching and sorting algorithms, including the recursive mergesort and
quicksort.

Part 2 also includes advanced topics—such as balanced search trees (2-3,
2-3-4, red-black, and AVL trees) and hashing—that are examined as table
implementations. These implementations are analyzed to determine the table
operations that each supports best.

Finally, data storage in external direct access files is considered. Mergesort
is modified to sort such data, and external hashing and B-tree indexes are used
to search it. These searching algorithms are generalizations of the internal
hashing schemes and 2-3 trees already developed.

In Part 1, you can choose among topics according to your students’ back-
ground. Three of the chapters in this part provide an extensive introduction to
data abstraction and recursion. Both topics are important, and there are
various opinions about which should be taught first. Although in this book a
chapter on recursion both precedes and follows the chapter on data abstrac-
tion, you can simply rearrange this order.

Part 2 treats topics that you can also cover in a flexible order. For exam-
ple, you can cover all or parts of Chapter 9 on advanced Java topics either
before or after you cover stacks (Chapter 7). You can cover algorithm effi-
ciency and sorting (Chapter 10) any time after Chapter 6. You can introduce
trees before queues or graphs before tables, or cover hashing, balanced search
trees, or priority queues any time after tables and in any order. You also can
cover external methods (Chapter 15) earlier in the course. For example, you
can cover external sorting after you cover mergesort in Chapter 10.
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Data Abstraction
The design and use of abstract data types (ADTs) permeate this book’s
problem-solving approach. Several examples demonstrate how to design an
ADT as part of the overall design of a solution. All ADTs are first specified—in
both English and pseudocode—and then used in simple applications before
implementation issues are considered. The distinction between an ADT and
the data structure that implements it remains in the forefront throughout the
discussion. The book explains both encapsulation and Java classes early. Stu-
dents see how Java classes hide an implementation’s data structure from the
client of the ADT. Abstract data types such as lists, stacks, queues, trees, tables,
heaps, and priority queues form the basis of our discussions.

Problem Solving
This book helps students learn to integrate problem-solving and program-
ming abilities by emphasizing both the thought processes and the techniques
that computer scientists use. Learning how a computer scientist develops, ana-
lyzes, and implements a solution is just as important as learning the mechanics
of the algorithm; a cookbook approach to the material is insufficient.

The presentation includes analytical techniques for the development of
solutions within the context of example problems. Abstraction, the successive
refinement of both algorithms and data structures, and recursion are used to
design solutions to problems throughout the book. 

Java references and linked list processing are introduced early and used
in building data structures. The book also introduces at an elementary level
the order-of-magnitude analysis of algorithms. This approach allows the
consideration—first at an informal level, and then more quantitatively—of
the advantages and disadvantages of array-based and reference-based data
structures. An emphasis on the trade-offs among potential solutions and
implementations is a central problem-solving theme.

Finally, programming style, documentation including preconditions and
postconditions, debugging aids, and loop invariants are important parts of the
problem-solving methodology used to implement and verify solutions. These
topics are covered throughout the book.

Applications
Classic application areas arise in the context of the major topics of this book.
For example, the binary search, quicksort, and mergesort algorithms provide
important applications of recursion and introduce order-of-magnitude analy-
sis. Such topics as balanced search trees, hashing, and file indexing continue
the discussion of searching. Searching and sorting are considered again in the
context of external files.

Algorithms for recognizing and evaluating algebraic expressions are first
introduced in the context of recursion and are considered again later as an
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application of stacks. Other applications include, for example, the Eight
Queens problem as an example of backtracking, event-driven simulation as an
application of queues, and graph searching and traversals as other important
applications of stacks and queues.

Pedagogical Features
The pedagogical features and organization of this book were carefully
designed to facilitate learning and to allow instructors to tailor the material
easily to a particular course. This book contains the following features that
help students not only during their first reading of the material, but also
during subsequent review:

� Chapter outlines and previews

� Key Concepts boxes

� Margin notes

� Chapter summaries

� Cautionary warnings about common errors and misconceptions

� Self-test exercises with answers

� Chapter exercises and programming problems. The most challenging exer-
cises are labeled with asterisks. Answers to the exercises appear in the
Instructor’s Resource Manual.

� Specifications for all major ADTs in both English and pseudocode

� Java class definitions for all major ADTs

� Examples that illustrate the role of ADTs in the problem-solving process

� Appendixes, including a review of Java

� Glossary of terms

SUPPLEMENTAL MATERIALS

The following supplementary materials are available online to all readers of this
book at www.pearsonhighered.com/cssupport.

� Source code of all the Java classes, methods, and programs that appear in
the book

� Errata: We have tried not to make mistakes, but mistakes are inevitable. A
list of detected errors is available and updated as necessary. You are invited
to contribute your finds.
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The following instructor supplements are only available to qualified
instructors. Please visit Addison-Wesley’s Instructor Resource Center
(www.pearsonhighered.com/irc) or contact your local Addison-Wesley
Sales Representative to access them.

� Instructor’s Guide with Solutions: This manual contains teaching hints,
sample syllabi, and solutions to all the end-of-chapter exercises in the
book.

� Test Bank: A collection of multiple choice, true/false, and short-answer
questions

� PowerPoint Lectures: Lecture notes with figures from the book

TALK TO US

This book continues to evolve. Your comments, suggestions, and correc-
tions will be greatly appreciated. You can contact us through the publisher at
computing@aw.com, or:

Computer Science Editorial Office
Addison-Wesley
501 Boylston Street, Suite 900
Boston, MA 02116
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PART ONE

Problem-Solving
Techniques

he primary concern of the six chapters in Part One of this book is to
develop a repertoire of problem-solving techniques that form the basis

of the rest of the book. Chapter 1 begins by providing a brief overview of
Java fundamentals. Chapter 2 describes the characteristics of a good solu-
tion and the ways to achieve one. These techniques emphasize abstraction,
modularity, and information hiding. The remainder of Part One discusses
data abstraction for solution design, more Java for use in implementations,
and recursion as a problem-solving strategy.

T
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CHAPTER 1

Review of Java 
Fundamentals

his book assumes that you already know how to write
programs in a modern programming language. If that

language is Java, you can probably skip this chapter, return-
ing to it for reference as necessary. If instead you know a
language such as C++, this chapter will introduce you to
Java.

It isn’t possible to cover all of Java in these pages.
Instead this chapter focuses on the parts of the language
used in this book. First we discuss basic language con-
structs such as variables, data types, expressions, opera-
tors, arrays, decision constructs, and looping constructs.
Then we look at the basics of program structure, including
packages, classes, and methods, with a brief introduction to
inheritance. We continue with useful Java classes, excep-
tions, text input and output, and files.

1.1 Language Basics
Comments
Identifiers and Keywords
Variables
Primitive Data Types
References
Literal Constants
Named Constants
Assignments and Expressions
Arrays

1.2 Selection Statements
The if Statement
The switch Statement

1.3 Iteration Statements
The while Statement
The for Statement
The do Statement

1.4 Program Structure
Packages
Classes
Data Fields
Methods
How to Access Members of an Object

1.5 Useful Java Classes
The Object Class
String Classes

1.6 Java Exceptions
Catching Exceptions
Throwing Exceptions

1.7 Text Input and Output 
Input
Output

1.8 File Input and Output
Text Files
Object Serialization

Summary

Cautions

T
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1.1 Language Basics

Let’s begin with the elements of the language that allow you to perform
simple actions within a program. The following sections provide a brief over-
view of the basic language constructs of Java.

Comments
Each comment line in Java begins with two slashes (//) and continues until the
end of the line. You can also begin a multiple-line comment with the characters
/* and end it with */. Although the programs in this book do not use /* and */,
it is a good idea to use this notation during debugging. That is, to isolate an
error, you can temporarily ignore a portion of a program by enclosing it within
/* and */. However, a comment that begins with /* and ends with */ cannot
contain another comment that begins with /* and ends with */. Java also has a
third kind of comment that is used to generate documentation automatically
using javadoc, a documentation utility available in the Software Development
Kit (SDK). This comment uses a /** to start and a */ to end.

Identifiers and Keywords
A Java identifier is a sequence of letters, digits, underscores, and dollar signs
that must begin with either a letter or an underscore. Java distinguishes
between uppercase and lowercase letters, so be careful when typing identifiers.

You use identifiers to name various parts of the program. Certain identifi-
ers, however, are reserved by Java as keywords, and you should not use them
for other purposes. A list of all Java keywords appears inside the front cover of
this book. The keywords that occur within Java statements in this book are in
boldface.

Variables
A variable, whose name is a Java identifier, represents a memory location that
contains a value of a primitive data type or a reference. You declare a variable’s
data type by preceding the variable name with the data type, as in

double radius;  // radius of a sphere
String name;    // reference to a String object

Note that the second declaration does not create a String object, only a vari-
able that stores the location of a String object. You must use the new operator
to create a new object.

A variety of com-
menting styles are 
available in Java

Java is case 
sensitive

A variable contains 
either the value of a 
primitive data type 
or a reference to an 
object
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Primitive Data Types
The primitive data types in Java are organized into four categories: boolean,
character, integer, and floating point. For example, the following two lines
declare variables of the primitive type double.

double radius;
double radiusCubed;

Some of the data types are available in two forms and sizes. Figure 1-1 lists
the available primitive data types. 

A boolean value can be either true or false. You represent characters by
enclosing them in single quotes or by providing their Unicode integer value
(see Appendix B). Integer values are signed and allow numbers such as –5 and
+98. The floating-point types provide for real numbers that have both an
integer portion and a fractional portion. Character and integer types are called
integral types. Integral and floating-point types are called arithmetic types.

A value of a primitive type is not considered to be an object and thus
cannot be used in situations where an object type is expected. For this reason,
the package java.lang provides corresponding wrapper classes for each of
the primitive types. Figure 1-1 also lists the wrapper class corresponding to
each of the primitive types.

Each of these classes provides a constructor to convert a value of a primi-
tive type to an object when necessary. Once such an object has been created,
the value contained within the object cannot be modified. Here is a simple
example involving integers:

int x = 9;
Integer intObject = new Integer(x);
System.out.println("The value stored in intObject = "

+ intObject.intValue());

Category

Boolean

Character

Integer

Floating point 

Data Type

boolean

char

byte

short

int

long

float

double

Wrapper Class

Boolean

Character

Byte

Short

Integer

Long

Float

Double

Primitive data types and corresponding wrapper classes

FIGURE 1-1

A wrapper class is 
available for each 
primitive data type

You can represent 
the value of a 
primitive data type 
by using a wrapper 
class
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The class Integer has a method intValue that retrieves the value stored
in an Integer object. Classes corresponding to the other primitive types
provide methods with similar functionality.

Java has a feature called autoboxing that makes it easier to convert from a
primitive type to their equivalent wrapper class counterparts. In the previous
example, we explicitly created a new Integer object to store the value 9. With
autoboxing, we can simply write

Integer intObject = 9;

The compiler automatically adds the code to convert the integer value into the
proper class (Integer in this example).

The reverse process of converting an object of one of the wrapper
classes into a value of the corresponding primitive type is called auto-unboxing.
In the example

int x = intObject + 1;

the compiler again automatically generates the code to convert the Integer
object intObject to a primitive type (int in this example) so that the expres-
sion can be evaluated.

References
Java has one other type, called a reference, that is used to locate an object.
Unlike other languages, such as C++, Java does not allow the programmer to
perform any operations on the reference value. When an object is created using
the new operator, the location of the object in memory is returned and can be
assigned to a reference variable. For example, the following line shows the ref-
erence variable name being assigned the location of a new string object:

String name = new String("Sarah");

A special reference value of null is provided to indicate that a reference vari-
able has no object to reference.

Literal Constants
You use literal constants to indicate particular values within a program. In the
following expression, the 4 and 3 are examples of literal constants that are used
within a computation. 

4 * Math.PI * radiusCubed / 3

A reference variable 
contains an object’s 
location in memory

Literal constants 
indicate particular 
values within a 
program
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You can also use a literal constant to initialize the value of a variable. For exam-
ple, you use true and false as the values of a boolean variable, as we men-
tioned previously. 

You write decimal integer constants without commas, decimal points, or
leading zeros.1 The default data type of such a constant is either int, if small
enough, or long.

You write floating constants, which have a default type of double, with a
decimal point. You can specify an optional power-of-10 multiplier by writing e
or E followed by the power of 10. For example, 1.2e-3 means 1.2 × 10–3.

Character constants are enclosed in single quotes—for example, 'A' and
'2'—and have a default type of char. You write a literal character string as a
sequence of characters enclosed in double quotes.

Several characters have names that use a backslash notation, as given in
Figure 1-2. This notation is useful when you want to embed one of these char-
acters within a literal character string. For example, the statement

System.out.println("Hello\n Let\'s get started!");

uses the new-line character \n to place a new-line character after the string
Hello. You will learn about this use of \n in the discussion of output later in this
chapter. You also use the backslash notation to specify either a single quote as a
character constant ( \') or a double quote ( \") within a character string.

Named Constants
Unlike variables, whose values can change during program execution, named
constants have values that do not change. The declaration of a named con-
stant is like that of a variable, but the keyword final precedes the data type.
For example, 

final float DEFAULT_RADIUS = 1.0;

1. Octal and hexadecimal constants are also available, but they are not used in this 
book. An octal constant begins with 0, a hex constant with 0x or 0X.

Do not begin a 
decimal integer 
constant with zero

Constant

\n

\t

\'

\"

\0

Name

New line

Tab

Single quote

Double quote

Zero

Some special character constants
FIGURE 1-2

The value of a 
named constant 
does not change
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declares DEFAULT_RADIUS as a named floating-point constant. Once a named
constant such as DEFAULT_RADIUS is declared, you can use it, but you cannot
assign it another value. By using named constants, you make your program
both easier to read and easier to modify.

Assignments and Expressions
You form an expression by combining variables, constants, operators, and
parentheses. The assignment statement

radius = initialRadius;

assigns to a previously declared variable radius the value of the expression on the
right-hand side of the assignment operator =, assuming that initialRadius has
a value. The assignment statement 

double radiusCubed = radius * radius * radius;

also declares radiusCubed’s data type, and assigns it a value.

Arithmetic expressions. You can combine variables and constants with
arithmetic operators and parentheses to form arithmetic expressions. The
arithmetic operators are

The operators *, /, and % have the same precedence,2 which is higher than that
of + and -; unary operators3 have a higher precedence than binary operators.
The following examples demonstrate operator precedence:

a - b / c means a - (b / c) ( precedence of / over -)

-5 / a means (-5) / a ( precedence of unary operator -)

a / -5 means a / (-5) ( precedence of unary operator -)

Arithmetic operators and most other operators are left-associative. That
is, operators of the same precedence execute from left to right within an
expression. Thus,

* Multiply + Binary add or unary plus
/ Divide - Binary subtract or unary minus
% Remainder after division

2. A list of all Java operators and their precedences appears inside the back cover of this 
book.
3. A unary operator requires only one operand, for example, the - in -5. A binary 
operator requires two operands, for example, the + in 2 + 3.

Named constants 
make a program 
easier to read and 
modify

An assignment 
statement assigns 
the value of an 
expression to a 
variable

Operators have a 
set precedence
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a / b * c 

means

(a / b) * c

The assignment operator and all unary operators are right-associative, as you
will see later. You can use parentheses to override operator precedence and
associativity.

Relational and logical expressions. You can combine variables and con-
stants with parentheses; with the relational, or comparison, operators <, <=,
>=, and >; and with the equality operators == (equal to) and != (not equal to)
to form a relational expression. Such an expression evaluates to false if the
specified relation is false and to true if it is true. For example, the expression
5 != 4 has a value of true because 5 is not equal to 4. Note that equality
operators have a lower precedence than relational operators. Also note that the
equality operators work correctly only with the primitive types and references.
The == operator determines only whether two reference variables are referenc-
ing the same object, but not whether two objects are equal.

You can combine variables and constants of the arithmetic types, rela-
tional expressions, and the logical operators && (and) and || (or) to form
logical expressions, which evaluate to false if false and to true if true. Java
evaluates logical expressions from left to right and stops as soon as the value of
the entire expression is apparent; that is, Java uses short-circuit evaluation.
For example, Java determines the value of each of the following expressions
without evaluating (a < b):

(5 == 4) && (a < b)  // false since (5 == 4) is false
(5 == 5) || (a < b)  // true since (5 == 5) is true

Implicit type conversions for the primitive numeric types. Automatic con-
versions from one numeric data type to another can occur during assignment
and during expression evaluation. For assignments, the data type of the expres-
sion on the right-hand side of the assignment operator is converted to the data
type of the item on the left-hand side just before the assignment occurs. Float-
ing-point values are truncated—not rounded—when they are converted to
integral values.

During the evaluation of an expression, any values of type byte, char, or
short are converted to int. These conversions are called integral promo-
tions. After these conversions, if the operands of an operator differ in data
type, the data type that is lower in the following hierarchy is converted to one
that is higher (int is lowest):

int → long → float → double

Operators are 
either left- or right-
associative

Equality operators 
work correctly only 
with primitive types 
and references

Logical expressions 
are evaluated from 
left to right

Sometimes the 
value of a logical 
expression is 
apparent before it 
is completely 
examined

Conversions from 
one data type to 
another occur 
during both assign-
ment and expres-
sion evaluation
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For example, if A is long and B is float, A + B is float. A copy of A’s long value
is converted to float prior to the addition; the value stored at A is unchanged.

Explicit type conversions for primitive numeric types. Numeric conversions
from one type to another are possible by means of a cast. The cast operator is a
unary operator formed by enclosing the desired data type within parentheses.
Thus, the sequence

double volume = 14.9;
System.out.print((int)volume);

displays 14. 

Multiple assignment. If you omit the semicolon from an assignment state-
ment, you get an assignment expression. You can embed assignment expres-
sions within assignment expressions, as in a = 5 + (b = 4).

This expression first assigns 4 to b and then 9 to a. This notation contributes to
the terseness of Java and is sometimes convenient, but it can be confusing. The
assignment operator is right-associative. Thus, a = b = c means a = (b = c).

Other assignment operators. In addition to the assignment operator =, Java
provides several two-character assignment operators that perform another
operation before assignment. For example, 

a += b  means a = a + b

Other operators, such as -=, *=, /=, and %=, have analogous meanings.
Two more operators, ++ and --, provide convenient incrementing and

decrementing operations:

++a  means a += 1,  which means a = a + 1

Similarly,

--a  means a -= 1,  which means a = a - 1

The operators ++ and -- can either precede their operands, as you just saw, or
follow them. Although a++, for instance, has the same effect as ++a, the results
differ when the operations are combined with assignment. For example,

b = ++a  means a = a + 1; b = a

Here, the ++ operator acts on a before the assignment to b of a’s new value. In
contrast,

b = a++  means b = a; a = a + 1

The assignment operator assigns a’s old value to b before the ++ operator acts
on a. That is, the ++ operator acts on a after the assignment. The operators ++

You convert from 
one numeric type 
to another by using 
a cast

The operators ++
and -- are useful 
for incrementing 
and decrementing 
a variable



Language Basics 35

and -- are often used within loops and with array indexes, as you will see later
in this chapter.

In addition to the operators described here, Java provides several other
operators. A summary of all Java operators and their precedences appears
inside the back cover of this book.

Arrays
An array is a collection of elements, items, or values that have the same data
type. Array elements have an order: An array has a first element, a second ele-
ment, and so on, as well as a last element. That is, an array contains a finite,
limited number of elements. Like objects, an array does not come into exist-
ence until it is allocated using the new statement. At that time, you specify the
desired size of the array. Because you can access the array elements directly and
in any order, an array is a direct access, or random access, data structure.

One-dimensional arrays. When you decide to use an array in your pro-
gram, you must declare it and, in doing so, indicate the data type of its ele-
ments. The following statements declare a one-dimensional array, maxTemps,
which contains the daily maximum temperatures for a given week:

final int DAYS_PER_WEEK = 7;
double [] maxTemps = new double[DAYS_PER_WEEK];

The bracket notation [] declares maxTemps as an array. The array is then allo-
cated memory for seven floating-point elements. 

The declared length of an array is accessible using the data field length
associated with the array. For example, maxTemps.length is 7. You can refer
to any of the floating-point elements in maxTemps directly by using an
expression, which is called the index, or subscript, enclosed in square brack-
ets. In Java, array indexes must have integer values in the range 0 to length
– 1, where length is the data field just described. The indexes for maxTemps
range from 0 to DAYS_PER_WEEK – 1. For example, maxTemps[4] is the fifth
element in the array. If k is an integer variable whose value is 4, maxTemps[k]
is the fifth element in the array, and maxTemps[k+1] is the sixth element.
Also, maxTemps[++k] adds 1 to k and then uses the new value of k to index
maxTemps, whereas maxTemps[k++] accesses maxTemps[k] before adding 1
to k. Note that you use one index to refer to an element in a one-dimen-
sional array.

Figure 1-3 illustrates the array maxTemps, which at present contains only
five temperatures. The last value in the array is maxTemps[4]; the values of
maxTemps[5] and maxTemps[6] are 0.0, the default initial value for floating-
point numbers. 

You can initialize the elements of an array when you declare it by specify-
ing an initializer list. The initializer list is a list of values separated by commas
and enclosed in braces. For example,

An array is a collec-
tion of data that has 
the same type

You can access 
array elements 
directly and in 
any order

Use an index to 
specify a particular 
element in an array

An array index has 
an integer value 
greater than or 
equal to 0
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double [] weekDayTemps = {82.0, 71.5, 61.8, 75.0, 88.3};

initializes the array weekDayTemps to have five elements with the values listed.
Thus, weekDayTemps[0] is 82.0, weekDayTemps[1] is 71.5, and so on.

You can also declare an array of object references. The declaration is
similar to that of an array of primitive types. Here is a declaration of an array
for ten String references:

String[] stuNames = new String[10];

Note that all of the references will have the initial value null until actual
String objects are created for them to reference. The following statement
creates a String object for the first element of the array:

stuName[0] = new String("Andrew");

Multidimensional arrays. You can use a one-dimensional array, which has
one index, for a simple collection of data. For example, you can organize 52
temperatures linearly, one after another. A one-dimensional array of these tem-
peratures can represent this organization. 

You can also declare multidimensional arrays. You use more than one
index to designate an element in a multidimensional array. Suppose that you
wanted to represent the minimum temperature for each day during 52 weeks.
The following statements declare a two-dimensional array, minTemps:

final int DAYS_PER_WEEK = 7;
final int WEEKS_PER_YEAR = 52;

double[][] minTemps = new
                      double[DAYS_PER_WEEK][WEEKS_PER_YEAR];

These statements specify the ranges for two indexes: The first index can range
from 0 to 6, while the second index can range from 0 to 51. Most people picture
a two-dimensional array as a rectangular arrangement, or matrix, of elements

82.0 71.5 61.8 75.0 88.3 0.0 0.0

0 1 2 3 4 5 6 Index

Unused at present

maxTemps

maxTemps[4]

A one-dimensional array of at most seven elements
FIGURE 1-3

You can initialize an 
array when you 
declare it

An array can have 
more than one 
dimension
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that form rows and columns, as Figure 1-4 indicates. The first dimension given
in the definition of minTemps is the number of rows. Thus, minTemps has 7 rows
and 52 columns. Each column in this matrix represents the seven daily minimum
temperatures for a particular week.

To reference an element in a two-dimensional array, you must indicate both
the row and the column that contain the element. You make these indications of
row and column by writing two indexes, each enclosed in brackets. For example,
minTemps[1][51] is the element in the 2nd row and the 52nd column. In the
context of the temperature example, this element is the minimum temperature
recorded for the 2nd day (Monday) of the 52nd week. The rules for the indexes of
a one-dimensional array also apply to the indexes of multidimensional arrays.

As an example of how to use a two-dimensional array in a program, con-
sider the following program segment, which determines the smallest value in
the previously described array minTemps:

// minTemps is a two-dimensional array of daily minimum 
// temperatures for 52 weeks, where each column of the
// array contains temperatures for one week.

// initially, assume the lowest temperature is 
// first in the array
double lowestTemp = minTemps[0][0];
int dayOfWeek = 0;
int weekOfYear = 0;

Columns

0

0

1

6

1 51

Rows

A two-dimensional array

FIGURE 1-4

In a two-dimensional 
array, the first 
index represents 
the row, the second 
index represents the 
column

An example of using 
a two-dimensional 
array
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// search array for lowest temperature
for (int weekIndex = 0; weekIndex < WEEKS_PER_YEAR; 
                                         ++weekIndex) {

for (int dayIndex = 0; dayIndex < DAYS_PER_WEEK;
                                         ++dayIndex) {

if (lowestTemp > minTemps[dayIndex][weekIndex]) {
      lowestTemp = minTemps[dayIndex][weekIndex];
      dayOfWeek = dayIndex;
      weekOfYear = weekIndex;
    }  // end if
  } // end for
} // end for
// Assertion: lowestTemp is the smallest value in
// minTemps and occurs on the day and week given by
// dayOfWeek and weekOfYear; that is, lowestTemp ==
// minTemps[dayOfWeek][weekOfYear].

It is entirely possible to declare minTemps as a one-dimensional array of
364 (7 * 52) elements, in which case you might use minTemps[81] instead of
minTemps[4][11] to access the minimum temperature on the 4th day of the
11th week. However, doing so will make your program harder to understand!

Although you can declare arrays with more than two dimensions, it is unusual
to have an array with more than three dimensions. The techniques for working
with such arrays, however, are analogous to those for two-dimensional arrays.

You can initialize the elements of a two-dimensional array just as you
initialize a one-dimensional array. You list the initial values row by row. For
example, the statement

int[][] x = {{1,2,3},{4,5,6}};

initializes a 2-by-3 array x so that it appears as

That is, the statement initializes the elements x[0][0], x[0][1], x[0][2],
x[1][0], x[1][1], and x[1][2] in that order. In general, when you assign
initial values to a multidimensional array, it is the last, or rightmost, index that
increases the fastest.

1.2 Selection Statements

Selection statements allow you to choose among several courses of action
according to the value of an expression. In this category of statements, Java
provides the if statement and the switch statement.

1 2 3

4 5 6
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The if Statement
You can write an if statement in one of two ways:

if (expression)
statement1

or

if (expression)
statement1

else
statement2

where statement1 and statement2 represent any Java statement. Such statements can be
compound; a compound statement, or block, is a sequence of statements enclosed
in braces. Though not a requirement of Java, this text will always use a compound
statement in language constructs, even if only a single statement is required. 

If the value of expression is true, statement1 is executed. Otherwise, the
first form of the if statement does nothing, whereas the second form executes
statement2. Note that the parentheses around expression are required.

For example, the following if statements each compare the values of two
integer variables a and b:

if (a > b) {
  System.out.println(a + " is larger than " + b + ".");
} // end if
System.out.println("This statement is always executed.");

if (a > b) { 
  larger = a;
  System.out.println(a + " is larger than " + b + ".");
}
else {
  larger = b;
  System.out.println(b + " is larger than " + a + ".");
} // end if

System.out.println(larger + " is the larger value.");

An if statement has 
two basic forms

Parentheses around 
the expression in 
an if statement 
are required
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You can nest if statements in several ways, since either statement1 or statement2
can itself be an if statement. The following example, which determines the largest
of three integer variables a, b, and c, shows a common way to nest if statements:

if ((a >= b) && (a >= c)) {
  largest = a;
}
else if (b >= c) {    // a is not largest at this point
  largest = b;
}
else {
  largest = c;
} // end if

The switch Statement
When you must choose among more than two courses of action, the if state-
ment can become unwieldy. If your choice is to be made according to the
value of an integral expression, you can use a switch statement. 

For example, the following statement determines the number of days in a
month. The int variable month designates the month as an integer from 1 to 12.

switch (month) {
  // 30 days hath Sept., Apr., June, and Nov.

case 9: case 4: case 6: case 11: 
      daysInMonth = 30;

break;
    // all the rest have 31

case 1: case 3: case 5: case 7: case 8: case 10: case 12:
      daysInMonth = 31;

break;

    // except February
case 2:  // assume leapYear is true if leap 

             // year, else is false
if (leapYear) {

         daysInMonth = 29; 
      }

else {
         daysInMonth = 28;
      } // end if

break;

default:
      System.out.println("Incorrect value for Month.");
}  // end switch

You can nest if
statements

A switch state-
ment provides 
a choice of several 
actions according to 
the value of an inte-
gral expression

Without a break
statement, execu-
tion of a case will 
continue into the 
next case
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Parentheses must enclose the integral switch expression—month, in this
example. The case labels have the form

case expression:

where expression is a constant integral expression. After the switch expression
is evaluated, execution continues at the case label whose expression has the
same value as the switch expression. Subsequent statements execute until
either a break or a return is encountered or the switch statement ends. 

It bears repeating that unless you terminate a case with either a break or a
return, execution of the switch statement continues. Although this action can be
useful, omitting the break statements in the previous example would be incorrect.

If no case label matches the current value of the switch expression, the
statements that follow the default label, if one exists, are executed. If no
default exists, the switch statement exits.

1.3 Iteration Statements

Java has three statements—the while, for, and do statements—that provide
for repetition by iteration—that is, loops. Each statement controls the number
of times that another Java statement—the body—is executed. The body can be
a single statement, though this text will always use a compound statement.

The while Statement
The general form of the while statement is

while (expression)
statement

As long as the value of expression is true, statement is executed. Because expression
is evaluated before statement is executed, it is possible that statement will not
execute at all. Note that the parentheses around expression are required.

Suppose that you wanted to compute the sum of a list of integers stored in
an array called myArray. The following while loop accomplishes this task:

int sum = 0;
int index = 0;
while (index <= myArray.length) {
  sum += myArray[index];
} // end while

The break and continue statements. You can use the break statement—
which you saw earlier within a switch statement—within any of the iteration state-
ments. A break statement within the body of a loop causes the loop to exit immedi-
ately. Execution continues with the statement that follows the loop. This use of
break within a while, for, or do statement is generally considered poor style.

A while statement 
executes as long 
as the expression 
is true

Use of a break
statement within a 
loop is generally 
poor style
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The continue statement stops only the current iteration of the loop and
begins the next iteration at the top of the loop. The continue statement is
valid only within while, for, or do statements.

The for Statement
The for statement provides for counted loops and has the general form

for (initialize; test; update)
statement

where initialize, test, and update are expressions. Typically, initialize is an
assignment expression that initializes a counter to control the loop. This ini-
tialization occurs only once. Then, if test, which is usually a logical expression,
is true, statement executes. The expression update executes next, usually incre-
menting or decrementing the counter. This sequence of events repeats, begin-
ning with the evaluation of test, until the value of test is false. As with the
previous constructs, statement is usually a compound statement.

For example, the following for statement sums the integers from 1 to n:

int sum = 0;
for (int counter = 1; counter <= n; ++counter) {
  sum += counter;
} // end for

// this statement is always executed
int x = 0;   

If n is less than 1, the for statement does not execute at all. Thus, the previous
statements are equivalent to the following while loop:

int sum = 0;
int counter = 1;
while (counter <= n) {
   sum += counter;
   ++counter;
}  // end while
// this statement is always executed
int x = 0;   

In general, the logic of a for statement is equivalent to

initialize;
while (test) {

statement;
update;

} // end while

A for statement 
lists the initializa-
tion, testing, and 
updating steps in 
one location

A for statement is 
equivalent to a 
while statement
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with the understanding that if statement contains a continue, update will
execute before test is evaluated again.

The following two examples demonstrate the flexibility of the for statement:

for (byte ch = 'z'; ch >= 'a'; --ch) {
// ch ranges from 'z' to 'a'

  statements to process ch
}  // end for

for (double x = 1.5; x < 10; x += 0.25) {
// x ranges from 1.5 to 9.75 at steps of 0.25

  statements to process x
}  // end for

The initialize and update portions of a for statement each can contain
several expressions separated by commas, thus performing more than one
action. For example, the following loop raises a floating-point value to an
integer power by using multiplication:

// floating-point power equals floating-point x
// raised to int n; assumes integer expon
for (power = 1.0, expon = 1; expon <= n; ++expon){
   power *= x;
}   // end for

Both power and expon are assigned values before the body of the loop exe-
cutes for the first time.

Because the for statement consolidates the initialization, testing, and
updating steps of a loop into one statement, Java programmers tend to favor it
over the while statement. For example, notice how the following while loop
sums the values in an array x:

sum = 0;
int i = 0;
while (i < x.length) { 
   sum += x[i];
   i++; 
} // end while

This loop is equivalent to the following for statement:

for (int i = 0, sum = 0; i < x.length; sum += x[i++]) {
}

In fact, this for statement has an empty body!

A for statement is 
usually favored over 
the while statement
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You can omit any of the expressions initialize, test, or update from a for
statement, but you cannot omit the semicolons. For example, you can move
the update step from the previous for statement to the body of the loop:

for (int i = 0, sum = 0; i < x.length; ) {
   sum += x[i++];
} // end for

You also could omit both the initialization and the update steps, as in the fol-
lowing loop:

for ( ; x > 0; ) {
statements to process nextValue in inputLine

} // end for

This for statement offers no advantage over the equivalent while
statement:

while (x > 0)

Although you can omit the test expression from for, you probably will not
want to do so, because then the loop would be infinite.

The for loop and arrays. Java provides a loop construct that simplifies iter-
ation through the elements of an array. A logical name for this loop construct
would be the “foreach” loop, but the language developers wanted to avoid
adding a new keyword to the language. So the new form of the for loop is
often referred to as the “enhanced for loop.”
The syntax for the enhanced for loop when used with arrays is as follows:

for (ArrayElementType variableName : arrayName)
statement

where ArrayElementType is the type of each element in the array, and arrayName
is the name of the array you wish to process element by element. The loop
begins with the variableName assigned the first element in the array. With each
iteration of the loop, variableName is associated with the next element in the
array. This continues until all of the elements in the array have been processed.
For example:

String[] nameList = { "Janet", "Frank", "Mike", "Doug"};
for (string name: nameList) { // for each name in nameList
   System.out.println(name);
} // end for

You can omit any 
of the initialization, 
testing, and updat-
ing steps in a for
statement, but you 
cannot omit the 
semicolons
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is equivalent to the following:

String[] nameList = { "Janet", "Frank", "Mike", "Doug"};
for (int index=0; index < nameList.length; index++) {
   System.out.println(nameList[index]);
} // end for

The do Statement
Use the do statement when you want to execute a loop at least once. Its
general form is

do {
statement

} while (expression);

Here, statement executes until the value of expression is false.
For example, suppose that you execute a sequence of statements and then

ask the user whether to execute them again. The do statement is appropriate,
because you execute the statements before you decide whether to repeat them:

char response;
do {
   . . . (a sequence of statements)

ask the user if they want to do it again
store user’s response in response

} while ( (response == 'Y') || (response == 'y') );

1.4 Program Structure

Let’s begin our discussion of program structure with the simple Java applica-
tion in Figure 1-5 that computes the volume of a sphere. It consists of two
classes, SimpleSphere and TestClass. Each of these classes is contained in a
separate file that has the same name as the class, with .java appended to the
end. A typical Java program consists of several classes, some of which you write
and some of which you use from the Java Application Programming Interface
(API). A Java application has one class that contains a method main, the start-
ing point for program execution. Running the program in Figure 1-5 produces
the following output:

The volume of a sphere of radius 19.1 inches is 29186.95

This application includes all of the basic elements of Java program struc-
ture (packages, classes, data fields, and methods). The sections that follow
discuss each of these elements.

A do statement 
loops at least once

Each Java applica-
tion must contain at 
least one class that 
has a method main
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Packages
Java packages provide a mechanism for grouping related classes. To indicate
that a class is part of a package, you include a package statement as the first
program line of your code. For example, lines 1 and 17 in Figure 1-5 indicate

1. Indicates SimpleSphere is part of a package ---->

  2. Indicates class Math is used by SimpleSphere -->

  3. Begins class SimpleSphere --------------------------> 

4. Declares a private data field radius ----------------->

5. Declares a constant ---------------------------------------> 

6. A default constructor ------------------------------------>

  7. Assignment statement  ----------------------------------> 

  8. A second constructor ------------------------------------> 

  9. Assignment statement ----------------------------------->

10. Begins method getRadius ---------------------------> 

11. Returns data field radius ----------------------------->

12. Begins method getVolume  ---------------------------> 

13. A comment ------------------------------------------------->

14. Declares and assigns a local variable ------------------> 

15. Returns result of computation ------------------------->

16. Ends class SimpleSphere ---------------------------->

17. Indicates TestClass is part of a package --------->

18. Begins class TestClass ------------------------------->

19. Begins method main ----------------------------------->

20. Declares reference ball --------------------------------> 

21. Creates a SimpleSphere object -------------------->

22. Outputs results -------------------------------------------->

23. Continuation of output string -------------------------->

24. Continuation of output string -------------------------->

25. Ends class TestClass ---------------------------------->

package MyPackage;

import java.lang.Math;

public class SimpleSphere {

private double radius;

public static final double DEFAULT_RADIUS = 1.0;

public SimpleSphere() {

    radius = DEFAULT_RADIUS;

  } // end default constructor

public SimpleSphere(double initialRadius) {

    radius = initialRadius;

  } // end constructor

public double getRadius() {

return radius;

  } // end getRadius 

public double getVolume() {

  // Computes the volume of the sphere.

double radiusCubed = radius * radius * radius;

return 4 * Math.PI * radiusCubed / 3;

  } // end getVolume

} // end SimpleSphere

File TestClass.java

package MyPackage;

public class TestClass {

  static public void main(String[] args) {

    SimpleSphere ball;

    ball = new SimpleSphere(19.1);

    System.out.println("The volume of a sphere of radius " 

           + ball.getRadius() + " inches is " 

           + (float)ball.getVolume()

           + "cubic inches\n");

  } //end main

} // end TestClass

File SimpleSphere.java

A simple Java application

FIGURE 1-5



Program Structure 47

that both of these classes, SimpleSphere and TestClass, are in the package
MyPackage. The format of the package statement is

package package-name;

Java assumes that all of the classes in a particular package are contained in the
same directory. Furthermore, this directory must have the same name as the package.

The Java API actually consists of many predefined packages. Some of the
more common of these packages are java.lang, java.util, and java.io.
The dot notation in these package names directly relates to the directory struc-
ture containing these packages. In this case, all of the directories correspond-
ing to these packages are contained in a parent directory called java.

import statement. The import statement allows you to use classes con-
tained in other packages. The format of the import statement is as follows:

import package-name.class-name;

For example, line 2 in Figure 1-5 imports the class Math from the package
java.lang. The following line also could have been used:

import java.lang.*;

In this case, the * indicates that all of the items from the package
java.lang should be imported. Actually, this particular line can be omitted
from the program, since java.lang is implicitly imported to all Java code.
Explicitly importing java.lang.Math makes it clear to others who read your
code that you are using the class Math in this code.

Classes
An object in Java is an instance of a class. You can think of a class as a data type that
specifies the data and methods that are available for instances of the class. A class
definition includes an optional subclassing modifier, an optional access modifier,
the keyword class, an optional extends clause, an optional implements clause,
and a class body. Figure 1-6 describes each of the components of a class.

When a new class is created in Java, it is either specifically made a subclass
of another class through the use of the extends clause or it is implicitly a sub-
class of the Java class Object. Creating a subclass is known as inheritance and
is discussed briefly in Chapter 4 and in depth in Chapter 9 of this text.

To create an object or instance of a class, you use the new operator. For
example, the expression

new SimpleSphere()

creates an instance of the type SimpleSphere.

To include a class in 
a package, begin 
the class’s source 
file with a package
statement

Place the files that 
contain a package’s 
classes in the same 
directory

The import state-
ment provides 
access to classes 
within a package

An object is an 
instance of a class

A Java class defines 
a new data type
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Now let’s briefly examine the contents of the class body: data fields and
methods.

Data Fields
Data fields are class members that are either variables or constants. Data field
declarations can contain modifiers that control the availability of the data field
(access modifiers) or that modify the way the data field can be used (use modi-
fiers). The access modifiers are effective only if the class is declared public.
Although this text uses only a subset of the modifiers, Figure 1-7 shows them
all for completeness.

Component Syntax Description

Subclassing
modifier
(use only one)

abstract Class must be extended to be useful.

final Class cannot be extended.

Access
modifiers

public Class is available outside of package.

no access modifier Class is available only within package.

Keyword 
class

class class-name Class should be contained in a file called 
class-name.java.

extends
clause

extends
superclass-name

Indicates that this class is a subclass of the class 
superclass-name in the extends clause.

implements
clause

implements
interface-list

Indicates the interfaces that this class implements. 
The interface-list is a comma-separated list of 
interface names.

Class body Enclosed in braces Contains data fields and methods for the class.

Components of a class

FIGURE 1-6
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Data fields are typically declared private or protected within a class, with
access provided by methods in the class. Hence, a method within a class has
access to all of the data fields declared in the class. This allows the developer of
the class to maintain control over how the data stored within the class is used. 

Type of modifier Keyword Description

Access modifier
(use only one)

public Data field is available everywhere (when the class is 
also declared public).

private Data field is available only within the class.

protected Data field is available within the class, available in 
subclasses, and available to classes within the same 
package.

No access 
modifier

Data field is available within the class and within 
the package.

Use modifiers
(all can be used at 
once)

static Indicates that only one such data field is available 
for all instances of this class. Without this modifier, 
each instance has its own copy of a data field.

final The value provided for the data field cannot be 
modified (a constant).

transient The data field is not part of the persistent state of 
the object.

volatile The value provided for the data field can be 
accessed by multiple threads of control. Java 
ensures that the freshest copy of the data field is 
always used.

Modifiers used in data field declarations

FIGURE 1-7

A class’s data fields 
should be private
or protected
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Methods
Methods are used to implement operations. The syntax of a method declara-
tion is as follows:

access-modifier use-modifiers return-type 
                method-name (formal-parameter-list) {
  method-body
}

Usually, each method should perform one well-defined task. For example,
the following method returns the larger of two integers:

public static int max(int x, int y) {
if (x > y) {

return x;
  }

else {
return y;

  } // end if
}  // end max

Method modifiers can be categorized as access modifiers and use modifi-
ers, with the access modifier typically appearing first. In the example just given,
the access modifier public appears first, followed by the use modifier static.
Again, although this text uses only a subset of modifiers, Figure 1-8 shows
them all for completeness.

The return type of a valued method—one that returns a value—is the
data type of the value that the method will return. The body of a valued
method must contain a statement of the form

return expression;

where expression has the value to be returned. A method can also return a ref-
erence to an object. For the method max, the return type is int. The type of
the value must be specified immediately before the method name. If the
method does not have a value to return, the return type is specified as void.

After the method name, the formal parameter list appears in parentheses.
You declare a formal parameter by writing a data type and a parameter name,
separating it from other formal parameter declarations with a comma, as in

int x, int y

A method definition 
implements a 
method’s task

A valued method 
must use return to 
return a value
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When you call, or invoke, the method max, you pass it actual arguments that
correspond to the formal parameters with respect to number, order, and data
type. For example, the following method contains two calls to max:

public void printLargest(int a, int b, int c) {
   int largerAB = max(a, b);
   System.out.println("The largest of "+ a + ", " + b + ", " 
                 + " and " + c + " is " + max(largerAB, c));
} // end printLargest

Type of modifier Keyword Description

Access modifier
(use only one)

public Method is available everywhere (when the class is 
also declared as public).

private Method is available only within the class (cannot 
be declared abstract).

protected Method is available within the class, available in 
subclasses, and available to classes within the same 
package.

No access 
modifier

Method is available within the class and to classes 
within the package.

Use modifiers
(all can be used at 
once)

static Indicates that only one such method is available 
for all instances of this class. Since a static
method is shared by all instances, the method can 
refer only to data fields that are also declared 
static and shared by all instances.

final The method cannot be overridden in a subclass.

abstract The method must be overridden in a subclass.

native The body of the method is not written in Java but 
in some other programming language.

synchronized The method can be run by only one thread of 
control at a time.

Modifiers used in a method declaration

FIGURE 1-8

When you call a 
method, you pass it 
actual arguments 
that correspond to 
the formal 
parameters in 
number, order, and 
data type



52  Chapter 1 Review of Java Fundamentals

Arguments passed to Java methods are passed by value. That is, the
method makes local copies of the values of the actual arguments—a and b,
for example—and uses these copies wherever x and y appear in the method
definition. Thus, the method cannot alter the actual arguments that you
pass to it.

Passing an array to a method. If you want a method to compute the
average of the first n elements of a one-dimensional array, you could declare
the method as follows:

public static double averageTemp(double[] temps, int n)

You can invoke the method by writing

double avg = averageTemp(maxTemps, 6);

where maxTemps is declared an integer array of any length, and maxTemps is the
previously defined array.

The location of the array is passed to the method. You cannot return a new
array through this value, but the method can modify the contents of the array.
This restriction avoids the copying of perhaps many array elements. Thus, the
method averageTemp could modify the elements of maxTemps.

So note that when the formal parameter is an object or an array, the actual
argument is a reference value that is copied. This means that you can change
the contents of the array or object, but not the value of the reference itself. For
example, you cannot have a method that creates a new object for a reference in
the parameter list. If it does, the new reference value will simply be discarded
when the method terminates, and the original reference to the object will be
left intact.

Java has a feature that allows a method to have a variable number of argu-
ments of the same type. When defining the method, the rightmost parameter of
the method uses the ellipses (three consecutive dots) to indicate that any number
of arguments of that type can be specified. For example:

public static int max(int... numbers) {

   int maximum = Integer.MIN_VALUE;
   for (int num : numbers) {
     if (maximum < num){

maximum = num;
} // end if

} // end for
   return maximum;
} // end max

An actual argument 
passed by value is 
copied within the 
method

Arrays are always 
passed by refer-
ence to a method

An argument that is 
a reference can be 
used to directly 
access the object or 
array
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Note that the variable arguments can be accessed as an array, where the formal
parameter name is used as the name of the array within the method. This also
means that you can use the same techniques you use to process arrays, such as
using the enhanced for loop as demonstrated here.

Constructors. There is one special kind of method called a constructor.
Constructor methods have the same name as the class and no return type. The
constructor is executed only when a new instance of the class is created. A class
can contain multiple constructors, differentiated by the number and types of
the parameters. The actual arguments you provide when creating a new
instance determine which constructor is executed. 

A constructor allocates memory for an object and can initialize the object's
data to particular values. A class can have more than one constructor, as is the
case for the class SimpleSphere.

The first constructor in SimpleSphere is the default constructor. A
default constructor by definition has no parameters. Typically, a default con-
structor initializes data fields to values that the class implementation chooses.
For example, the implementation

public SimpleSphere() {
  radius = DEFAULT_VALUE; // DEFAULT_VALUE = 1.0
} // end default constructor

sets radius to 1.0. The following statement invokes the default constructor,
which creates the object unitSphere and sets its radius to 1.0:

SimpleSphere unitSphere = new SimpleSphere();

The next constructor in SimpleSphere is

public SimpleSphere(double initialRadius) {
  setRadius(initialRadius);
} // end constructor

It creates a sphere object of radius initialRadius. You invoke this construc-
tor by writing a declaration such as

SimpleSphere mySphere = new SimpleSphere(5.1);

In this case, the object mySphere has a radius of 5.1.
If you omit all constructors from your class, the compiler will generate a

default constructor—that is, one with no parameters—for you. A compiler
generated default constructor, however, might not initialize data fields to
values that you will find suitable.
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If you define a constructor that has parameters, but you omit the default
constructor, the compiler will not generate one for you. Thus, you will not be
able to write statements such as

SimpleSphere defaultSphere = new SimpleSphere();

How to Access Members of an Object
You can access data fields and methods that are declared public by naming the
object, followed by a period, followed by the member name:

static public void main(String[] args) {
  SimpleSphere ball = new SimpleSphere(19.1);
  System.out.println("The volume of a sphere of radius "
                    + ball.getRadius() + " inches is "
                    + (float)ball.getVolume()
                    + "cubic inches\n");
} //end main

An object such as ball can, upon request, return its radius and compute its
volume. These requests to an object are called messages and are simply calls to
methods. Thus, an object responds to a message by acting on its data. To invoke
an object’s method, you qualify the method’s name—such as getRadius—with
the object variable—such as ball.

The previous program is an example of a client of a class. A client of a
particular class is simply a program or module that uses the class. We will
reserve the term user for the person who uses a program. You can also
access members of a class that are declared static (data fields or methods
that are shared by all instances of the class) by using the class name fol-
lowed by the name of the static member. For example, the static field
DEFAULT_RADIUS declared in line 5 of Figure 1-5 can be accessed outside of
the class as follows:

SimpleSphere.DEFAULT_RADIUS;

Class Inheritance
A brief discussion of inheritance is provided here, since it is a common way to
create new classes in Java. A more complete discussion of inheritance appears
in Chapter 9.

Suppose that we want to create a class for colored spheres, knowing that
we have already developed the class SimpleSphere. We could write -an
entirely new class for the colored spheres, but if the colored spheres are actu-
ally like the spheres in the class SimpleSphere, we can reuse the SimpleSphere
implementation and add color operations and characteristics by using

A reference to the 
private data field 
radius would be 
illegal within this 
program



Program Structure 55

inheritance. Here is an implementation of the class ColoredSphere that
uses inheritance:

import java.awt.Color;
public class ColoredSphere extends SimpleSphere {
  private Color color;

  public ColoredSphere(Color c) {
super();

    color = c;
  } // end constructor

  public ColoredSphere(Color c, double initialRadius) {
    super(initialRadius);
    color = c;
  } // end constructor

  public void setColor(Color c) {
    color = c;
  } // end setColor

  public Color getColor() {
return color;

  } // end getColor
} // end ColoredSphere

SimpleSphere is called the base class or superclass, and ColoredSphere is
called the derived class or subclass of the class SimpleSphere. The definition
of the subclass includes an extends clause that indicates the superclass to be
used. When you declare a class without an extends clause, you are implicitly
extending the class Object, so Object is its superclass.

The subclass inherits the contents of the superclass, details of which are dis-
cussed in Chapter 9. For the moment, suffice it to say that the subclass will have
all of the public members of the superclass available. Any instance of the subclass
is also considered to be an instance of the superclass and can be used in a program
anywhere that an instance of the superclass can be used. Also, any of the publicly
defined methods or variables that can be used with instances of the superclass can
be used with instances of the subclass. The subclass instances also have the
methods and variables that are publicly defined in the subclass definition.

In the constructor for the ColoredSphere class, notice the use of the
keyword super. You use this keyword to call the constructor of the superclass, so
super() calls the constructor SimpleSphere(), and super(initialRadius)
calls the constructor SimpleSphere(double initialRadius). If the subclass
constructor explicitly calls the superclass constructor, the call to super must
precede all other statements in the subclass constructor. Note that if a subclass

A class derived 
from the class 
SimpleSphere

Public members of 
the superclass are 
available in the 
subclass

A constructor in a 
subclass should 
invoke super to call 
the constructor of 
the superclass 
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constructor contains no call to the superclass constructor, the default superclass
constructor is implicitly called.

If a subclass needs to call a method defined in the superclass, the call is pre-
ceded by the keyword super.  For example, to make a call to the method
getVolume from within the class ColoredSphere, you would write the following:

super.getVolume()

Here is an example of a method that uses the ColoredSphere class:

public void useColoredSphere() {
  ColoredSphere redBall = 

new ColoredSphere(java.awt.Color.red);
  System.out.println("The ball volume is " +
                     redBall.getVolume());
  System.out.println("The ball color is " +
                     redBall.getColor());
  // other code here...
} // end useColorSphere

This method uses the constructor and the method getColor from the
subclass ColoredSphere. It also uses the method getVolume that is defined in
the superclass SimpleSphere.

1.5 Useful Java Classes

The Java Application Programming Interface (API) provides a number of useful
classes. The classes mentioned here are ones that are used within this text.

The Object Class
Java supports a single class inheritance hierarchy, with the class Object as the
root. Thus, the class Object provides a number of useful methods that are
inherited by every Java class. In some cases, it is common for a class to rede-
fine, or override, the version of the method inherited from Object. The para-
graphs that follow summarize some of the more useful methods from the
class Object.

public boolean equals(Object obj)

Indicates whether some other object is “equal to” this one. As defined
in the class Object, equality is based upon references—that is, upon
whether both of the references are referencing the same object. This is
referred to as shallow equality. 

Every Java class 
inherits the methods 
of the class Object

Default equals as 
defined in the class 
Object compares 
two references
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Let’s examine the equals method for objects a bit further. Suppose we have the
following code:

SimpleSphere s1 = new SimpleSphere();
SimpleSphere s2 = s1;
if (s1.equals(s2)) {
  System.out.println("s1 and s2 are the same object" );
} // end if

This will produce the following output:

s1 and s2 are the same object

It is common for a class to redefine this method for deep equality—in other
words, to check the equality of the contents of the objects. 

Suppose that you want to determine whether two spheres have the same
radius. For example,

SimpleSphere s1 = new SimpleSphere(2.0);
SimpleSphere s3 = new SimpleSphere(2.0);
if (s1.equals(s3)) {
  System.out.println("s1 and s3 have the same radius");
}
else {
  System.out.println("s1 and s3 have different radii");
} // end if

will produce the output

s1 and s3 have different radii

which is not true! Both s1 and s3 have a radius of 2.0. Remember that the
default equals compares two references; they differ here because they refer-
ence two distinct objects. If you want to have equals check the values con-
tained in the object for equality, you must redefine equals in the class. Here is
an example of such an equals for the class SimpleSphere:

public boolean equals(Object rhs) {
  return ((rhs instanceof SimpleSphere) &&
          (radius == ((SimpleSphere)rhs).radius));
} // end equals

Notice that the parameter of equals is of type Object. Remember, we
are overriding this method as inherited from the class Object, and the
parameter list and return value must match. Also notice that we are explicitly
checking to make sure that the object parameter rhs is an instance of the

Customizing
equals for a class

An equals method 
that determines 
whether two spheres 
have the same 
radius
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class SimpleSphere by using the instanceof operator. If the incoming
object rhs is an instance of the class Simplephere (or one of its subclasses),
instanceof will return true; otherwise, the operator returns false. Thus,
the equals method will return false when rhs is of a class other than
Sphere. If the instanceof operator returns true, the boolean expression
proceeds to check whether the data fields are equal. In this example, the data
field of the class SimpleSphere is a primitive type. If an object is used as a
data field, equals may have to be defined for that object’s class as well. It is
up to the designer to decide how “deep” the equality checks must be for a
particular class.

Other useful Object methods include the following:

protected void finalize()

Java has a garbage collection mechanism to destroy objects that a program
no longer needs. When a program no longer references an object, the Java
runtime environment marks it for garbage collection. Periodically, the Java
runtime environment executes a method that returns the memory used by
these marked objects to the system for future use. The garbage collector
calls the finalize method on an object when it determines that there are
no more references to the object.

public int hashCode()

Associated with each object is a unique identifying value called a hash
code. This method returns the hash code for the object as an integer. 

public String toString()

Returns a string that “textually represents” this object. As defined in the
class Object, this method returns a string that contains the name of the
class of which the object is an instance, followed by the at sign character
(@), and ending with the unsigned hexadecimal representation of the hash
code of the object. For example, given the statement

Sphere mySphere = new Sphere();

the method call mySphere.toString() will return a string similar to
Sphere@733f42ab.

The Array Class
This class contains various static methods for manipulating arrays. Many of the
methods have unique specifications for each of the primitive types (boolean,
byte, char, short, int, long, float, double). To simplify the presentation of
these methods, ptype will be used as a placeholder for a primitive type.
Though only the methods for the primitive types are specifically discussed,
many of the methods also support an array of elements of type Object and
generic types. 
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public static ptype[] copyOf(ptype[] original, int newLength)

Copies the specified array of primitive types, truncating or padding (if
needed) so the copy has the specified length. If padding is necessary,
the numeric types will pad with zero, char will pad with null, and
boolean will pad with false.

public static ptype[] copyOfRange(ptype[] original, 
int beginIndex, int endIndex)

Copies the range beginIndex to endIndex-1 of the specified array
into a new array. The index beginIndex must lie between zero and
original.length, inclusive. As long as there are values to copy, the
value at original[beginIndex] is placed into the first element of the
new array, with subsequent elements in the original array placed into
subsequent elements in the new array. Note that beginIndex must be
less than or equal to endIndex. The length of the returned array will
be endIndex- beginIndex.

public static String toString(ptype[] a)

Returns a string representation of the contents of the specified array.
The resulting string consists of a list of the array’s elements, separated
by a comma and a space, enclosed in square brackets ("[]"). It returns
null if the array is null.

public static int binarySearch(ptype[] a, ptype key)

Searches the array for the key value using the binary search algorithm.
The array must be sorted before making this call. If it is not sorted, the
results are undefined. If the array contains duplicate elements with the
key value, there is no guarantee which one will be found. For floating
point types, this method considers all NaN values to be equivalent and
equal. The method is not defined for boolean or short.

public static void sort(ptype[] a)

Sorts the array into ascending order. For floating point values, the
method uses the total order imposed by the appropriate compareTo
method and all NaN values are considered equivalent and equal. This
method is not defined for boolean or short.

String Classes
Java provides three classes that are useful when working with strings: String,
StringBuffer, and StringTokenizer. The class String is a nonmutable
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string type; once the value of the string has been set, it cannot be modified.
The class StringBuffer implements a mutable sequence of characters; it pro-
vides many of the same operations as the String class plus others for chang-
ing the characters stored in the string. Although at first glance it would seem
reasonable for us to simply study StringBuffer, using String is more effi-
cient. In fact, many methods within the Java API use the class String. The last
class, StringTokenizer, provides methods for breaking strings into pieces.

The class String. Earlier, you saw that Java provides literal character strings,
such as

"This is a string."

This section describes how you can create and use variables that contain such
strings. Java provides a class String in the package java.lang to support non-
mutable strings. A nonmutable string is one that cannot be changed once it
has been created. Instances of the String class can be combined to form new
strings, and numerous methods are provided for examining String objects.
Our presentation includes only some of the possible operations on strings.

You can declare a string reference title by writing

String title;

When you initialize a string variable with a string literal, Java actually creates a
String object to store the string literal and assigns the reference to the vari-
able. Thus, you can assign a String reference by writing

String title = "Walls and Mirrors";

You can subsequently assign another string to title by using an assignment
statement such as

title = "J Perfect's Diary";

Note that this actually creates a new String instance for title to reference. 
In each of the previous examples, title has a length of 17. You use the

method length to determine the current length of a string. Thus,
title.length() is equal to 17. 

You can reference the individual characters in a string by using the method
charAt with the same index that you would use for an array. Thus, in the
previous example, title.charAt(0) contains the character J, and
title.charAt(16) contains the character y.

You should not use the == operator to test whether two strings are equal.
Using the == operator determines only whether the references to the strings
are the same; it does not compare the contents of the String instances.

Use the method 
length to 
determine a string’s 
length

Use charAt to 
reference any char-
acter within a string
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You can compare strings by using the compareTo method. Not only can
you determine whether two strings are equal, but you can also determine
which of two strings comes before the other according to the Unicode table.
The compareTo method is used as follows:

string1.compareto(string2)

The character sequence represented by the String object string1 is com-
pared to the character sequence represented by the argument string2. The
result is a negative integer if string1 precedes string2. The result is a posi-
tive integer if string1 follows string2. The result is zero if the strings are
equal. The ordering of two strings is analogous to alphabetic ordering, but you
use the Unicode table instead of the alphabet. The following expressions dem-
onstrate the behavior of compareTo:

"dig".compareTo("dog")      //returns negative
"Star".compareTo("star")    //returns negative
"abc".compareTo("abc")      //returns zero
"start".compareTo("star")   //returns positive
"d".compareTo("abc")        //returns positive

You can concatenate two strings to form another string by using the +
operator. That is, you place one string after another to form another string.
For example, if

String s = "Com";

the statements 

String t = s + "puter";
s += "puter";

assign the string "Computer" to each of t and s. Similarly, you can append a
single character to a string, as in

s += 's';

Besides adding two strings together, you can also concatenate a string and
a value of a primitive type together by using the + operator. For example,

String monthName = "December";
int day = 31;
int year = 02;
String date = monthName + " " + day + ", 20" + year;

assigns the string "December 31, 2002" to date.

Use compareTo to 
compare two strings

Use the + operator 
to concatenate two 
strings
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As we mentioned earlier, the class Object has a method called toString that
returns a string that “textually represents” an object. The result of the toString
method is often combined with other strings by means of the + operator.

You can examine a portion of a string by using the method

public String substring(int beginIndex, int endIndex)

The first parameter, beginIndex, specifies the position of the beginning of the
substring. (Remember that 0 is the position of the first character in the string.)
The end of the substring is at position endIndex - 1. For example, in

title = "J Perfect's Diary";

title.substring(2, 9) is the string "Perfect".
Other useful String methods include the following:

public int indexOf(String str, int fromIndex)

Returns the index of the first substring equal to str, starting from the
index fromIndex.

public String replace(char oldChar, char newChar)

Returns a string that is obtained by replacing all characters oldChar in the
string with newChar.

public String trim()

Returns a string that has all leading and trailing spaces in the original
string removed.

The class StringBuffer. In some situations, it is useful to be able to alter
the sequence of characters stored in a string. But class String supports only
nonmutable strings. To create mutable strings (strings that can be modified)
use the class StringBuffer from the package java.lang. This class provides
the same functionality as the class String, plus the following methods that
actually modify the value stored in the StringBuffer object:

public StringBuffer append(String str)

Appends the string str to this string buffer. 

public StringBuffer insert(int offset, String str)

The string str is inserted into this string buffer at the index indicated by
offset. Any characters originally above that position are moved up and
the length of this string buffer increased by the length of str. If str is
null, the string "null" is inserted into this string buffer. 

Use substring
to access part of 
a string

Other useful String
methods

Instances of the 
class String-
Buffer are strings 
that you can alter
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public StringBuffer delete(int start, int end)

Removes the characters in a substring of this string buffer starting at index
start and extending to the character at index end - 1 or to the end of
the string buffer if no such character exists. If start is equal to end, no
changes are made. This method may throw StringIndexOutOfBoundsEx-
ception if the value of start is negative, greater than the length of the
string buffer, or greater than end.

public void setCharAt(int index, char ch)

The character at index index of this string buffer is set to ch. This method
may throw IndexOutOfBoundsException if the value of index is negative
or is greater than or equal to the length of the string buffer.

public StringBuffer replace(int start, int end,
                            String str)

Replaces the characters in a substring of this string buffer with characters in
the specified string str. The substring to be replaced begins at index start
and extends to the character at index end - 1 or to the end of the string
buffer if no such character exists. The substring is removed from the string
buffer, and then the string str is inserted at index start. If necessary, the
string buffer is lengthened to accommodate the string str. This method
may throw StringIndexOutOfBoundsException if the value of start is
negative, greater than the length of the string buffer, or greater than end.

The class StringTokenizer. Another useful class when working with
strings is StringTokenizer in the package java.util. This class allows a
program to break a string into pieces or tokens. The tokens are separated by
characters known as delimiters. When you create a StringTokenizer
instance, you must specify the string to be tokenized. Other constructors
within StringTokenizer allow you to specify the delimiting characters and
whether the delimiting characters themselves should be returned as tokens.
Here is brief description of the three constructors for StringTokenizer:

public StringTokenizer(String str)

This constructor creates a string tokenizer for the specified string str. The
tokenizer uses the default delimiter set, which is the space character, the tab
character, the newline character, the carriage-return character, and the form-
feed character. Delimiter characters themselves are not treated as tokens.

public StringTokenizer(String str, String delim)

This constructor creates a string tokenizer for the specified string str. All
characters in the delim string are the delimiters for separating tokens.
Delimiter characters themselves are not treated as tokens.

Instances of the 
class String-
Tokenizer are 
strings that you can 
break into pieces 
called tokens
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public StringTokenizer(String str, String delim, 
boolean returnTokens)

This constructor creates a string tokenizer for the specified string str. All
characters in the delim string are the delimiters for separating tokens. If the
returnTokens flag is true, the delimiter characters are also returned as
tokens. Each delimiter is returned as a string of length 1. If the flag is false, the
delimiter characters are skipped and serve only as separators between tokens.

StringTokenizer also provides the following methods for retrieving
tokens from the string: 

public String nextToken()

Returns the next token in the string. If there are no more tokens in the
string, it throws the exception NoSuchElementException. Exceptions are
discussed in the next section.

public boolean hasMoreTokens()

Returns true if the string contains more tokens.

1.6 Java Exceptions

Many programming languages, including Java, support a mechanism known as
an exception, which handles an error during execution. A method indicates
that an error has occurred by throwing an exception. The exception returns to
the point at which you invoked the method, where you catch the exception
and deal with the error condition. 

Catching Exceptions 
To handle an exception, Java provides try-catch blocks. You place the state-
ment that might throw an exception within a try block. The try block must
be followed by one or more catch blocks. Each catch block indicates the type
of exception you want to handle. A try block can have many catch blocks
associated with it, since even a single statement may be capable of throwing
more than one type of exception. Also, the try block can contain many state-
ments, any of which might throw an exception. Here is the general syntax for a
try block:

try {
statement(s);

}

An exception is a 
mechanism for han-
dling an error during 
execution

Use a try block for 
statements that can 
throw an exception
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The syntax for a catch block is as follows:

catch (exceptionClass identifier) {
statement(s);

}

When a statement in the try block actually throws an exception, the
remainder of the try block is abandoned, and control is passed to the catch
block that corresponds to the type of exception thrown. The statements in the
catch block then execute, and upon completion of the catch block, execution
resumes at the point following the last catch block. 

The system decides which catch block to execute by considering the
catch blocks in the order in which they appear, using the first one that pro-
duces a legal assignment of the thrown exception and the argument specified
in the catch block. Thus, you must order the catch blocks so that the most
specific exception classes appear before the more general exception classes; oth-
erwise, the code will not compile. For example,

try {
int result = 99 / 0;

  // other statements appear here
} // end try
catch (Exception e) {
  System.out.println("Something else was caught");
} // end catch
catch (ArithmeticException e) {
  System.out.println("ArithmeticException caught");
} // end catch

compiles with an error message similar to the following:

TestExceptionExample.java:43: exception
  java.lang.ArithmeticException has already been caught
    catch (ArithmeticException e) {
    ^
1 error

To get the code to compile successfully, you must switch the order of the
catch blocks.

The following program demonstrates what happens when an exception is
thrown and not caught. Figure 1-9 illustrates these events.

class ExceptionExample {
private int [] myArray;

public ExceptionExample() {
    myArray = new int[10];
  }  // end default constructor

Use a catch block 
for each type of 
exception that you 
handle

The order of these 
two catch blocks is 
incorrect

This program does 
not handle the 
exception that is 
thrown and, there-
fore, execution 
terminates
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public void addValue(int n, int value) {
    // add value to element n by calling addOne n times

for (int i = 1; i <= value; i++) {
      addOne(n);
    } // end for
  } // end addValue

public void addOne(int n) {
    // add 1 to the element n
      myArray[n] += 1;
  } // end addOne
} end ExceptionExample

public class TestExceptionExample {
public static void main(String[] args) {

    ExceptionExample e1 = new ExceptionExample();
    e1.addValue(99, 3); // add 3 to element 99
  } // end main
} // end TestExceptionExample

The method addOne causes ArrayIndexOutOfBoundsException from
java.lang to be thrown when an attempt is made to access myArray[99].
Since addOne does not provide a handler for the exception (Point 1 in Figure 1-9),
the method terminates and the exception is propagated back to addValue to the
point where addOne was called. The method addValue also does not provide an
exception handler, so it also terminates (Point 2 in Figure 1-9) and the exception
is propagated back to main. Since main is the main method of the program, and
the exception is not handled in main (Point 3 in Figure 1-9), the program termi-
nates, and an error message similar to the following is displayed on the screen:

java.lang.ArrayIndexOutOfBoundsException: 99
  at ExceptionExample.addOne(ExceptionExample.java)
  at ExceptionExample.addValue(Compiled Code)
  at TestExceptionExample.main(TestExceptionExample.java)

Notice that the error message for the exception includes a stack trace, the
sequence of method calls that led to the exception being thrown. This is the
default behavior when no exception handler is provided. The message may also
contain information specific to the exception at hand; in this case, it contains
the index value 99 that caused the exception to be thrown.

This code does not indicate that the method addOne might throw the
exception ArrayIndexOutOfBoundsException. The method’s documenta-
tion should indicate the exceptions it might throw.
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The exception ArrayIndexOutOfBoundsException could be caught at
any point in the sequence of method calls. For example, addOne in the class
ExceptionExample could be rewritten as follows to catch the exception:

public void addOne(int n) {
try {
myArray[n] += 1;

} // end try
catch (ArrayIndexOutOfBoundsException e) {
System.out.println("The element you requested, " +

n + ", is not available.");
} // end catch

} // end addOne

public static void main(String[] args) {
  ExceptionExample e1 = new ExceptionExample();
  e1.addValue(99, 3); // add 3 to element 99
} // end main

ExceptionExample e1 = new ExceptionExample();

public void addValue(int n, int value) {
    // add value to element n by calling addOne n times

for (int i = 1; i <= value; i++) {
      addOne(n);
    } // end for
  } // end addValue

public void addOne(int n) {
    // add 1 to the element n
      myArray[n] += 1;
  } // end addOne

myArray

0  0  0  0  0  0  0  0  0  0 

The element you requested, 99 is not available.
java.lang.ArrayIndexOutOfBoundsException: 99
  at ExceptionExample.addOne(ExceptionExample.java)
  at ExceptionExample.addValue(Compiled Code)
  at TestExceptionExample.main(TestExceptionExample.java)

Output:

1

3

2

4

The method main

Flow of control in a simple Java application

FIGURE 1-9

An example of han-
dling an exception
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This version of addOne produces the following output:

The element you requested, 99, is not available.
The element you requested, 99, is not available.
The element you requested, 99, is not available.

The method addOne is called three times by addValue when
e1.addValue(99,3) executes, and hence the exception is thrown three times.
When the exception was not handled, the program terminated the first time
the exception occurred. By adding a catch block to handle the exception, we
allow the code to continue execution.

Although the addOne method is where ArrayIndexOutOfBounds-
Exception is thrown, it is not necessarily the best place to handle the exception.
For example, if the call e1.addValue(99, 10000) executed, the message printed
by addOne would have appeared 10,000 times! In this case it makes more sense for
the handler to appear in the addValue method, and not in the addOne method.
This assumes that addOne no longer handles the exception but propagates it back
to addValue. Here is the code for addValue with the exception handler:

public void addValue(int n, int value) {
try {
for (int i = 1; i <= value; i++) {
addOne(n);

} // end for
} // end try
catch (ArrayIndexOutOfBoundsException e) {
System.out.println("The element you requested, " +

n + " is not available.");
e.printStackTrace();

} // end catch
} // end addValue

This method produces the following output:

The element you requested, 99 is not available.
java.lang.ArrayIndexOutOfBoundsException: 99
  at ExceptionExample.addOne(ExceptionExample.java)
  at ExceptionExample.addValue(Compiled Code)
  at TestExceptionExample.main(TestExceptionExample.java)

When addOne throws the exception ArrayIndexOutOfBoundsException,
it is propagated back to addValue. The method addValue abandons execution
of the statements in the try block, executes the statement in the catch block,
and resumes execution after the last catch block. The message is printed only
once, since the for loop is inside the try block, which is abandoned when the
exception occurs. If the try block was placed inside the for loop (around the

An improved way to 
handle an exception
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call to addOne), the exception would be thrown and handled at each iteration of
the loop, causing the message to be printed multiple times.

The catch block also contains the method call e.printStackTrace().
Recall that the catch block specifies the type of exception handled and an iden-
tifier. This identifier provides a name for the caught exception that can be used
within the catch block. In this case, the method printStackTrace is called for
the exception object e. The printStackTrace method is one of many methods
available to exception objects. Other uses of the exception name in the catch
block are discussed in the next section on throwing exceptions.

You may have noticed that some exceptions from the Java API cannot
be totally ignored. You must provide a handler for these exceptions. For
example, in the class java.io.FileInputStream, the constructor will throw
java.io.FileNotFoundException if the file specified cannot be found. In
this case, the compiler will complain if no exception handler is provided. For
example, compiling the following code:

import java.io.*;
public class TestExceptionExample  {
public static void getInput(String fileName) {
FileInputStream fis;
fis = new FileInputStream(fileName);
// file processing code appears here

} // end getInput

static public void main(String[] args) {
getInput("test.dat");

} // end main
} // end TestExceptionExample

produces a compilation error message similar to the following:

TestExceptionExample.java:5: unreported exception
java.io.FileNotFoundException must be caught, or declared 
to be thrown
    fis = new FileInputStream(fileName);
          ^
1 error

One way to resolve this error message is to provide an exception handler
within the getInput method as follows:

public static void getInput(String fileName) {
FileInputStream fis; 
try {
fis = new FileInputStream(fileName);
// file processing code appears here

} // end try

Some exceptions 
must be handled
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catch (FileNotFoundException e) {
System.out.println("The file " + fileName + 

" is not available");
System.out.println(e);

} // end catch
System.out.println("After try-catch blocks");

} // end getInput

Output similar to the following results when the file named test.dat does not exist:

The file test.dat is not available
java.io.FileNotFoundException: test.dat
  at java.io.FileInputStream.<init>(FileInputStream.java:56)
  at TestExceptionExample.getInput(TestExceptionExample.java)
  at TestExceptionExample.main(TestExceptionExample.java)
After try-catch blocks

Java has two types of exceptions: checked exceptions and runtime exceptions.
The exception java.io.FileNotFoundException is an example of a checked
exception. Checked exceptions are instances of classes that are subclasses of the
java.lang.Exception class. They must be handled locally or explicitly thrown
from the method (as discussed in the next section). They are typically used when
the method encounters a serious problem. In some cases, the error may be consid-
ered serious enough that the program should be terminated.

Runtime exceptions occur when the error is not considered as serious.
These types of exceptions can often be prevented by fail-safe programming.
For example, it is fairly easy to avoid allowing an array index to go out of
range, a situation that causes the runtime exception ArrayIndexOutOfBounds-
Exception to be thrown. Runtime exceptions are instances of classes that are
subclasses of the java.lang.RuntimeException class. RuntimeException is a
subclass of java.lang.Exception that relaxes the requirement forcing the
exception to be either handled locally or explicitly thrown by the method.

The finally block. As an option, you can follow the last catch block with
a finally block that has the following form:

finally {
statement(s);

}

This block is executed whether or not an exception is thrown within the try
block. If an exception is thrown, the appropriate catch block executes and
then the finally block executes. If no exception is thrown, the finally
block executes upon completion of the try block. Note that you can have a
finally block even if no catch block is present. Later in this chapter—in the
section File Input and Output—you will see an example of a finally block
that deals with a file when the program no longer needs it.

Two types of 
exceptions: checked 
and runtime
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Throwing Exceptions
As we’ve mentioned, all exceptions in Java are instances of the class
java.lang.Exception or one of its subclasses. When a method specification
contains a throws clause, it also specifies the type of exception that the
method can throw. If the method can throw more than one type of excep-
tion, each is listed after the throws clause, separated by commas. For exam-
ple, here is the method header for one of the constructors for
FileInputStream:

public FileInputStream(String name)  
throws FileNotFoundException

The throws clause indicates that a method may throw an exception if an error
occurs during its execution. In this case, the constructor will throw the excep-
tion FileNotFoundException if the file specified by name can’t be opened.

An exception is thrown when the throw statement is executed. The syntax
of this statement is

throw reference

where reference refers to an instance of a subclass of the class
java.lang.Exception. When the throw statement executes, the remaining
code in the try block or method is ignored. Typically, a throw statement will
appear as follows:

throw new exceptionClass(stringArgument);

where exceptionClass is the type of exception you want to throw, and
stringArgument is an argument to the exceptionClass constructor that
specifies the detail message, a more detailed description of what may have
caused the exception.

In certain situations, the Java API will have a predefined exception class
that will suit the exception needs of your program. For example, the Java API
has an exception java.lang.IndexOutOfBoundsException that could be
used when an array’s index is out of range.

You may also want to define your own exception class. Usually, you use
Exception or RuntimeException as the base class for the exception. Base
your decision as to which one to use upon how you want other parts of the
program to treat the exception. If you don’t want the exception to be ignored,
extend Exception. If you don’t care whether the exception is ignored, or if
you have indicated in your precondition how the exception could be avoided,
you might choose to extend RuntimeException. In either case, your class will

A throws clause 
indicates that 
a method might 
throw an exception

Use a throw
statement to throw 
an exception

You can define your 
own exception class
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inherit the same set of methods. Often, a constructor that includes a string
parameter is provided. For example,

class MyRuntimeException extends RuntimeException {
public MyRuntimeException(String s) {
super(s);

  } // end constructor
  // All other methods are inherited.
}  // end MyRuntimeException

class MyException extends Exception {
public MyException(String s) {
super(s);

  } // end constructor
  // All other methods are inherited. 
// This exception must be handled in or

  // propagated from the method in which it occurs.
}  // end MyException

Once you’ve defined the new exception class, you can use it in the throw
statement and catch blocks of your program. The constructor provides a way
to identify the condition that caused the exception to occur. When construct-
ing the new exception, you can include a string that describes the error condi-
tion. For example,

throw new MyException("MyException: Provide reason");

A variety of methods available for exception objects provide access to this
detailed message. For example, the methods printStackTrace, getMessage,
and toString are just a few of the methods that include this detailed message
in their output.

If you throw an exception that is not an instance of RuntimeException
or one of its subclasses, you must either handle the exception within the
method, using try-catch blocks, or throw the exception explicitly from the
method. To indicate that the exception will be thrown by the method, you
include a throws clause in the method’s specification as follows:

public void myMethod() throws MyException {
// some code here...
throw new MyException("MyException was thrown: reason");

} // end myMethod

Any method that calls myMethod must either provide a catch block for
instances of MyException or contain a throws clause of its own for
MyException.
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1.7 Text Input and Output

Some Java applications read input from a keyboard and write output to a mon-
itor, often referred to as console I/O. Such input and output consist of
streams, which are simply sequences of characters that either come from an
input source or go to an output destination. 

The class of an input stream is InputStream, and the class of an output
stream is PrintStream. The package java.io provides these classes and others
related to input and output. The class java.lang.System provides three
Standard streams: System.in for the standard input stream, System.out for
the standard output stream, and System.err for the standard error stream,
which also is an output stream. Java 6 introduced the Console class as an
alternative to the Standard Streams. This section provides a brief introduction to
simple input and output followed by a discussion of the Console class.

Input
As we just mentioned, the input stream System.in typically corresponds to
keyboard input. But this source in its raw form—a sequence of bytes—cannot
readily be used. Java provides a number of classes that facilitate getting the raw
data into a form that is easily used within a program. The discussion here will
present two approaches to getting input from the console; the first is based on
character streams, and the second on the Scanner class.

Character Streams. The class InputStreamReader transforms a given raw
byte stream into a sequence of characters. But dealing with an input stream on
a character-by-character basis is tedious. The class BufferedReader provides
additional facilities that allow the character data to be read as a block or line of
characters at a time. BufferedReader works with a given instance of Input-
StreamReader. The following code shows how to use these classes to read a
line of input into the string nextLine:

BufferedReader stdin = new BufferedReader(
new InputStreamReader(System.in));

String nextLine = stdin.readLine();

The BufferedReader method readLine() retrieves the next line of input as
an instance of String.

But what if the program needs to view the characters in the string next-
Line as a sequence of integers instead of as a sequence of characters? When the
desired input value is not a string, it is usually a value of a primitive type. All of
the primitive types provide a method for converting a string to the primitive
type. For example, the class Integer provides the method parseInt. First,
you extract the string containing the primitive type from nextLine, using the

A stream is a 
sequence of 
characters that 
either come from 
or go to an I/O 
device

InputStream-
Reader converts 
a stream of bytes 
to a sequence of 
characters

Using Buffered-
Reader with 
InputStream
allows the read-
Line method to 
be used
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StringTokenizer class seen earlier. Then, you apply the method that converts
the string to a primitive type value. The following code demonstrates this tech-
nique by extracting two integers x and y from nextLine:

BufferedReader stdin = new BufferedReader(
new InputStreamReader(System.in));

String nextLine = stdin.readLine();

StringTokenizer input = new StringTokenizer(nextLine);
x = Integer.parseInt(input.nextToken());
y = Integer.parseInt(input.nextToken());

The Scanner Class. The Scanner class makes it easier to get strings and
primitive types from keyboard input, String objects, and files. The Scanner
class is located in the java.util package, so any code that uses the Scanner
class should include the statement

import java.util.Scanner;

A Scanner object can be used to break its input into tokens using a delimiter pat-
tern. The default pattern matches any white space, including blanks, tabs, and car-
riage returns. This pattern can be set and changed using various methods in the
Scanner class in conjunction with the Pattern class. The Scanner class also pro-
vides various next methods to retrieve tokens from the input and convert them to
primitive type values and strings. Here is a brief summary of the more useful next
methods as described in the Java API:

Method Description

String next() Finds and returns the next com-
plete token from this scanner.

boolean nextBoolean() Scans the next token of the 
input into a boolean value and 
returns that value.

double nextDouble() Scans the next token of the 
input as a double.

float nextFloat() Scans the next token of the 
input as a float.

int nextInt() Scans the next token of the 
input as an int.

Use String-
Tokenizer to 
break the string into 
tokens, then convert 
each token to a 
value of the primi-
tive type
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Note that these methods scan the next token of the input and convert the
value to the specified type. If the next token cannot be properly interpreted as
the specified type (for example float in the case of nextFloat()), then an
InputMismatchException is thrown. These methods will also throw
NoSuchElementException if the input has been exhausted, and Illegal-
StateException if the scanner is closed.

Suppose that you wanted to compute the sum of integers that you enter at
the keyboard. Note that the Scanner class does not provide any easy way to
detect the end of an input line, so we will use a negative value or zero to indi-
cate the end of the list of integers. The following code accomplishes this task:

int nextValue;
int sum=0;
Scanner kbInput = new Scanner(System.in);

nextValue = kbInput.nextInt();
while (nextValue > 0) {
  sum += nextValue;
  nextValue = kbInput.nextInt();
} // end while
kbInput.close();

Note the use of the Scanner class constructor with System.in (of type
InputStream) to specify that the input will be from the keyboard. The
Scanner class also provides constructors for the String and File data types.
The method close simply closes the Scanner object.

If you are concerned that the user might enter a non-integer value in the list,
you can use exception handling to react to that error. You can also use the method
hasNextInt. This method returns true if the next token is an integer value,
false otherwise. Similar methods exist for the other primitive types and strings.

Output
Java provides the methods print and println to write character strings, prim-
itive types, and objects to the standard output stream System.out. The
method println differs from print in that it terminates a line of output so
that subsequent output will start on the next line. When the argument is a

String nextLine() Advances this scanner past the 
current line and returns the 
input that was skipped.

long nextLong() Scans the next token of the 
input as a long.

short nextShort() Scans the next token of the 
input as a short.

The methods print
and println write 
to an output stream
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string, it is simply placed in the output stream. For example, the following
program segment uses println with a String argument:

int count = 5;
double average = 20.3;
System.out.println("The average of the " + count
     + " distances read is " + average 
     + " miles.");

produces the following output:

The average of the 5 distances read is 20.3 miles.

As we mentioned in the section on strings, the operator + can be used to
concatenate strings with other strings, primitive types, and objects. Thus, the
previous statements concatenate the string “The average of the ” to the
string that represents the value of count, and so on.

When println’s argument is a primitive type or an object, the static
method valueOf from the String class is used to determine the correspond-
ing string value that is placed on the output stream. For primitive types, this is
a simple string representation of the value. For objects, this is ultimately the
value returned by the object’s toString method. Thus, for example, using the
method toString as defined in the class Object, the statements

SimpleSphere mySphere = new SimpleSphere();
System.out.println(mySphere);

will produce output similar to

SimpleSphere@733f42ab

You usually override toString with your own version. Here is an example
that could be used in the class SimpleSphere:

public String toString() {
return ("SimpleSphere: radius = " + radius);

} // end toString

Now if you execute the statements

SimpleSphere mySphere = new SimpleSphere();
System.out.println(mySphere);

the output appears as follows:

SimpleSphere: radius = 1.0

The method 
toString is 
implicitly invoked 
when an object is 
an argument of 
println
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One of the problems with the print and println methods is the lack of for-
matting abilities. Java provides a C-style formatted output method called printf.
This method uses the new variable arguments feature, and has the following format:

printf(String format, Object... args)

With the new autoboxing feature, the arguments can also be of a primi-
tive type. The format string may contain fixed text and one or more embed-
ded format specifiers. For example:

String name = "Jamie";
int x = 5, y = 6;
int sum = x + y;
System.out.printf("%s, %d + %d = %d", name, x, y, sum);

produces the output:

Jamie, 5 + 6 = 11

In this example, each of the format specifiers has a corresponding argu-
ment value that is placed into the format string upon output. The format spec-
ifiers in this example are of the simplest form—they start with the % character
and contain only a conversion character. The conversion characters for
common data types are:

A more complete form of the format specifier is as follows:

%[width][.precision]conversion

The width specifies the minimum field width that the value should be
printed within. When printing decimals numbers, the precision specifies the
number of digits of precision to be printed after the decimal point. When

Conversion Character Data Type

b boolean

s String — this is also used with 
objects and the toString method

c character

d decimal integer

e decimal number (formatted in 
computerized scientific 
notation)

f decimal number
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using precision with strings, it represents a maximum number of characters.
Figure 1-10 shows some examples with the corresponding output.

The Console Class
Java 6 introduced the Console class to access the character-based console
device associated with the current Java virtual machine. Java provides a pre-
defined object of type Console, as defined in the package java.io, that has
many of the same capabilities provided by the Standard streams. This Console
object can be accessed as follows:

Console myConsole = System.console();

If the JVM running this code has a console available, it returns a reference to it.
But if the JVM does not have a console device available, this call will return null.
So code such as the following often accompanies an attempt to access the console:

if (myConsole == null) {
            System.err.println("No console available.");
            System.exit(1);
        } // end if

Similar to the BufferedReader class, the Console class also provides a read-
Line() method to retrieve a line of text from the console. It also defines a
second readLine method of the form

String readLine(String fmt, Object... args)

This version provides the ability to create a formatted prompt, and then reads a
single line of text from the console. The formatting of the prompt string works
much like the printf method described earlier in this section.

Output

1 2 3 4 5 6 7 8 9 10 11

S a r a

S a 
1 4 5 

1 . 1 0 e + 0 4 
1 0 1 2 3 . 3 5 

1 0 1 2 3 . 3 4 5 6 9 

String name = "Sarah";
double y = 10123.34568;
int n = 145;
System.out.printf("%.4s\n", name);
System.out.printf("%10.2s\n", name);
System.out.printf("%10d\n", n);
System.out.printf("%10.2e\n", y);
System.out.printf("%10.2f\n", y);
System.out.printf("%5.5f\n", y); 

Column number

Formatting examples with printf

FIGURE 1-10
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The Console class also provides two methods for the input of a user password:

char[] readPassword() 
char[] readPassword(String fmt, Object... args) 

These methods behave similarly to the readLine method, but have two
important differences. First, when the user enters data at a point in the
program where readPassword is being executed, it is not echoed back to
the console, so it can’t be seen by the user (this is what we expect when we
type in a password).  This is an important feature for helping users maintain
password security. Second, the characters typed for the password are
entered into a character array, not a String. Once the password has been
verified, it is strongly suggested that the array holding the password be
overwritten with blanks or some other character to minimize the lifetime of
the password in memory. 

Output to the console is accomplished using the following method:

Console printf(String format, Object... args) 

Alternatively, you can use this method

PrintWriter writer() 

to retrieve a Printwriter object that has methods print and println similar to
those used with System.out.

The following example shows how the Console class could be used to
prompt for a username and password.

import java.io.Console;
import java.util.Arrays;
import java.io.Printwriter;

public class ConsoleExample {

static boolean validateLogin(String username, 
                               char[] password) {
    // Would put code in here to validate the user login

return true;
  }  // end validateLogin

public static void main (String args[]){
    Console cons = System.console();

if (cons == null) {
      System.err.println("No console available.");
      System.exit(1);
    } // end if
    PrintWriter consOutput = cons.writer();
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    String username = cons.readLine("Username: ");
char [] password = cons.readPassword("Password: ");

if (validateLogin(username, password)) {
      // At this point you have validated the password 
      consOutput.println("User " + username + 
                         "successfully logged in");
      // Now wipe out the password from memory
      Arrays.fill(password, ' ');
      // And let the user start his or her session...
    } // end if

  } // end main
} // end ConsoleExample

One interesting thing to note here is that if you try to use the
Console class from some of the Integrated Development Environments
(IDEs) such as Eclipse or NetBeans, the IDE may run the JVM in the
background, and hence when you execute the above code you will most
likely get the message "No console available." But if you execute the
program from the command prompt using the java command, it will
work as expected.

1.8 File Input and Output

You have used files ever since you wrote your first program. In fact, your Java
source program is in a file that you probably created by using a text editor. You
can create and access such files outside of and independently of any particular
program. Files can also contain data that is either read or written by your pro-
gram. It is this type of file that concerns us here.

A file is a sequence of components of the same data type that resides
in auxiliary storage, often a disk. Files are useful because they can be large
and can exist after program execution terminates. In contrast, variables of
primitive data types and objects, for example, represent memory that is
accessible only within the program that creates them. When program exe-
cution terminates, the operating system reuses this memory and changes
its contents. 

Since files can exist after program execution, they not only provide a per-
manent record for human users, they also allow communication between pro-
grams. Program A can write its output into a file that program B can use later
for input. However, files that you discard after program execution are also not
unusual. You use such a file as a scratch pad during program execution when
you have too much data to retain conveniently in memory all at once. 

It is useful to contrast files with their closest Java relatives, arrays. Files
and arrays are similar in that they are both collections of components of the

A file is a sequence 
of components of 
the same data type
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same type. For example, just as you can have an array of elements whose
type is char, so also can you have a file of elements whose type is char. In
both cases, the components are characters. However, in addition to the
previous distinction between files and all other data types—files can exist
after program execution and arrays cannot—files and arrays have two other
differences:

■ Files grow in size as needed; arrays have a fixed size. When you declare
an array, you specify its maximum size. Thus, a fixed amount of memory
represents the array. A well-written program always checks that an array
can accommodate a new piece of data before attempting to insert it. If the
array cannot accommodate the data, the program might have to terminate
with a message of explanation. You can increase the array size—hopefully
by changing the value of a named constant—and compile and run the
program again.4 On the other hand, if you declare the array’s maximum
size to be larger than you need, you waste memory. In contrast, the size of
a file is not fixed. When the system first creates a file, the file requires
almost no storage space. As a program adds data to the file, the file’s size
increases as necessary, up to the limit of the storage device. Thus, at any
given time, the file occupies only as much space as it actually requires. This
dynamic nature is a great advantage.

■ Files provide both sequential and random access; arrays provide
random access. If you want the 100th element in the one-dimensional
array x, you can access it directly by writing x[99]; you do not need to
look at the elements x[0] through x[98] first. You could choose, of
course, to process an array’s elements sequentially, but you would do so
by accessing each successive element directly and independently of any
other element.

However, you can access elements in a file either directly or sequen-
tially. If you want the 100th element in a file, you can access it directly by
position without first reading past the 99 elements that precede it. On the
other hand, you could also read all of the first 100 elements one at a time,
in sequential order, without specifying any element’s position.

Files are classified as follows. A text file is a file of characters that are orga-
nized into lines. The files that you create—by using an editor—to contain your
Java programs are text files. Because text files consist of characters, and access-
ing characters by position number is usually not convenient, you typically
process a text file sequentially. A file that is not a text file is called a binary file
or sometimes a general file or a nontext file. 

4. Chapter 4 describes resizable arrays. If you reach the end of such an array, you can 
increase its size during execution. However, this process requires copying the old array 
into the new array.
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Text Files
Text files are designed for easy communication with people. As such, they are
flexible and easy to use, but they are not as efficient with respect to computer
time and storage as binary files. 

One special aspect of text files is that they appear to be divided into lines.
This illusion is often the source of much confusion. In reality, a text file—like
any other file—is a sequence of components of the same type. That is, a text
file is a sequence of characters. A special end-of-line symbol creates the illu-
sion that a text file contains lines by making the file behave as if it were divided
into lines. On some systems this end-of-line symbol is simply a carriage return,
while on others it consists of a carriage return and line feed character. You
need not worry about how your system actually views the end-of-line symbol;
this is taken care of by the Java runtime system.

When you create a text file by typing data at your keyboard, each time
you press the Enter or Return key, you insert one end-of-line symbol into
the file. When an output device, such as a printer or monitor, encounters
an end-of-line symbol in a text file, the device moves to the beginning of
the next line. In Java, you can specify this end-of-line symbol by using the
character \n.

In addition, you can think of a special end-of-file symbol that follows the
last component in a file. Such a symbol may or may not actually exist in the
file, but Java behaves as if one did. Figure 1-11 depicts a text file with these
special symbols.

Note that the Scanner class presented in the previous section can be used
to process text files in a manner very similar to the way we handled input from
the keyboard. The Scanner class has two constructors that can be used to
create Scanner objects for input files:

Scanner(InputStream source)

Constructs a new Scanner that produces values scanned from the speci-
fied input stream.

Scanner(File source)

Constructs a new Scanner that produces values scanned from the specified file.

A text file 
contains lines 
of characters

Files end with a 
special end-of-file 
symbol

eof

eof

eolneolneolneoln

eoln

T o d a y i s i t

is the end-of-line symbol

is the end-of-file symbol

A text file with end-of-line and end-of-file symbols 

FIGURE 1-11
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The first constructor allows for any type of InputStream, including
System.in and objects of the subclass FileInputStream. The second con-
structor is based upon the class File. This class is part of the java.io pack-
age. It provides an abstraction for the file within a program. Instances of
the class File are not used directly for input and output, but for getting
characteristics of a file, such as its access mode. The first constructor creates
a scanner for the specified file using the File class. Here is a simple
example that uses the Scanner class to read a first name, last name, and age
from each line of a file called Ages.dat and prints it to standard output:

String fname, lname;
int age;
Scanner fileInput;
File inFile = new File("Ages.dat");

try {
  fileInput = new Scanner(inFile);

  while (fileInput.hasNext()) {
    fname = fileInput.next();
    lname = fileInput.next();
    age = fileInput.nextInt();
    age = fileInput.nextInt();
    System.out.printf("%s %s is %d years old.\n", 
                    fname, lname, age);
  } // end while

  fileInput.close();

} // end try
catch (FileNotFoundException e) {
  System.out.println(e);
} // end catch

Note that here the hasNext method is used to determine if the end-of-file
symbol has been reached—when the end-of-file is reached, there are no more
tokens in the file to be processed. Also, the code above would need to import
the classes File and FileNotFoundException from the package java.io, and
the Scanner class from the package java.util.

Alternatively, text input files can be processed using the classes
FileInputStream and FileReader. Output files are also supported by two
main classes: FileOutputStream and PrintWriter. When using these classes,
actual read or write access to the file is done through streams. A variety of tasks
related to processing files using streams are now presented.

Opening a stream to a file. Before you can read from or write to a file, you
need to open a stream to the file. That is, you need to create a stream instance.

Use streams to 
access a file

You must initialize, 
or open, a stream 
before you can 
use it
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One way to open a stream to a file for reading is to use the class FileReader
and provide the file’s name when you declare the file stream. For example,

FileReader inStream = new FileReader("Ages.dat"); 

declares an input stream variable inStream and associates it with the file
named Ages.dat. The file name can be either a literal c-onstant, as it is here,
or a string variable.

Alternatively, you can use an instance of File by writing

File inFile = new File("Ages.dat");
FileReader inStream = new FileReader(inFile);

Unfortunately, the methods available from the class FileReader do not
lend themselves very well to text processing. Because of this, the stream instance
is usually embedded within an instance of the class BufferedReader. (This is
the same class that we used to read input from the keyboard.) BufferedReader
provides the method readLine for obtaining a line of text as a String object. A
line is considered to be terminated by an end-of-line character, as we mentioned
earlier. Here is an example of opening a stream to a file and adding the function-
ality of the class BufferedReader:

FileReader fr = new FileReader("Ages.dat");
BufferedReader input = new BufferedReader(fr);

Often, this is combined into a single statement:

BufferedReader input = new BufferedReader(
                       new FileReader("Ages.dat"));

Note that the FileReader constructor will throw the exception File-
NotFoundException if the file is not found. Since this is a checked exception,
the statement must be enclosed in a try block. Therefore, the actual code
used to open a stream to a text file would be similar to the following:

BufferedReader input;
try {
  input = new BufferedReader(new FileReader("Ages.dat"));
  // read data from file
} // end try
catch (FileNotFoundException e) {
  e.printStackTrace();
  System.exit(1); // File not found so exit
} // end catch

Now, using the instance of BufferedReader, data can be read from the
file. As with keyboard input, you can use a StringTokenizer to break up the

The method read-
Line reads a line of 
text as a string

If the file is not 
found, an exception 
is thrown



File Input and Output 85

string returned by readLine into tokens for easier processing. But how do you
know when you have read all of the data in the file? BufferedReader provides
a method ready that determines whether the underlying character stream is
ready. This method returns a boolean value that can be used in a while loop to
determine whether more data is available in the file, as follows:

StringTokenizer line;
while (input.ready()) {
    line = new StringTokenizer(input.readLine());
    // process line of data
    ...

}  // end while

You can also detect when the end of the file is reached by checking
whether the method readLine returns null. For example, the following loop
will process all of the lines in the file:

StringTokenizer line;
String inputLine;
while ((inputLine = input.readLine()) != null) {
  line = new StringTokenizer(inputLine);
  // process line of data
  ...

} // end while

The method readLine can throw the exception IOException, another
checked exception. Also, readLine must appear within the same try block that
creates the BufferedReader instance; otherwise, the compiler won’t be able to
verify that the instance has been initialized properly. One way you can handle
this is simply to add another catch block for the IOException to the try state-
ment. Or, since FileNotFoundException is a subclass of IOException, you
can use a single catch block as follows:

BufferedReader input;
StringTokenizer line;
String inputLine;
try {
  input = new BufferedReader(new FileReader("Ages.dat"));
while ((inputLine = input.readLine()) != null) {

    line = new StringTokenizer(inputLine);
    // process line of data
    ...

  }
} // end try

The method ready
can be used to 
determine whether 
the file contains 
more data
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catch (IOException e) {
  System.out.println(e);
  System.exit(1); // I/O error, exit the program
} // end catch

File output. To write text to a file, you need to open an output stream to
the file. One way to open a file for writing is to use the class FileWriter and
provide the file’s name when you declare the file stream. For example,

FileWriter outStream = new FileWriter("Results.dat"); 

declares an output stream variable outStream and associates it with the file named
Results.dat. The file name can be a literal constant, as it is here, or a string vari-
able. If the file Results.dat does not exist, a new empty file with this name is cre-
ated. If the file Results.dat already exists, opening it erases5 the data in the file.

Like FileReader, the FileWriter class itself does not provide useful methods
for writing data to the file. Another class, PrintWriter, provides two methods:
print and println. These methods are already familiar to you; they are the same
methods used by System.out. Here is a simple example of writing data to a file:

try {
  PrintWriter output = new PrintWriter( 

new FileWriter("Results.dat"));
  output.println("Results of the survey"); 
  output.println("Number of males: " + numMales); 
  output.println("Number of females: " + numFemales); 

  // other code and output appears here...
} // end try

catch (IOException e) {
  System.out.println(e);
  System.exit(1); // I/O error, exit the program
} // end catch

Closing a file. When you have finished using a file, you should close the
stream associated with that file. To close a stream (input or output), you use
the method close as follows:

myStream.close();

The file associated with this stream is no longer available for input or output
until you open it again.

5. The data might not actually be erased, but the file will behave as if it were empty.

Open an output 
stream to a file 
before writing to it

When you are 
finished using a file, 
call close to close 
the stream
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Adding to a text file. When you open a stream to a file for writing, you can
specify a second argument in addition to the file’s name to indicate whether
the file should be replaced or appended. If this second argument to the
FileOutputStream constructor is true, the file is appended rather than
replaced. For example,

PrintWriter ofStream = new PrintWriter( 
new FileOutputStream("Results.dat", true));

This retains the old contents of the file Results.dat, and you can write
additional components. 

Copying a text file. Suppose that you wanted to make a copy of the text
file associated with the stream variable original. Copying a text file requires
some work and provides a good example of the statements you have just
studied. The approach taken by the following method copies the file one line
at a time:

public static void copyTextFile(String originalFileName, 
                                String copyFileName) {
// ---------------------------------------------------------
// Makes a duplicate copy of a text file.
// Precondition: originalFileName is the name of an existing
// external text file, and copyFileName is the name of the
// text file to be created.
// Postcondition: The text file named copyFileName is a
// duplicate of the file named originalFileName.
// ---------------------------------------------------------
  BufferedReader ifStream = null;
  PrintWriter ofStream = null;

try {
    ifStream = new BufferedReader(

new FileReader(originalFileName));
    ofStream = new PrintWriter(new FileWriter(copyFileName));
    String line;

    // copy lines one at a time from given file
    // to new file

while ((line = ifStream.readLine()) != null) {
      ofStream.println(line);
    }  // end while
  }  // end try

catch (IOException e) {
    System.out.println("Error copying file");
  }  // end catch

You can append 
data to a file
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finally {
try {

      ifStream.close(); // close the files
      ofStream.close();
    } // end try

catch (IOException e) {
     e.printStackTrace();
    }  // end catch
  } // end finally
}  // end copyTextFile

The finally block allows the files to be closed regardless of whether an
exception is thrown. It is executed after correct execution of the try block or
after an exception is handled in a catch block.

Searching a text file sequentially. Suppose that you have a text file of data
about a company’s employees. For simplicity, assume that this file contains two
consecutive lines for each employee. The first line contains the employee’s
name, and the next line contains data such as salary.

Given the name of an employee, you can search the file for that name and
then determine other information about this person. A sequential search
examines the names in the order in which they appear in the file until the
desired name is located. The following method performs such a sequential
search, given a class to represent a person:

public class Person {
private String name;
private double salary;

public Person(String n, double s) {
    name = n;
    salary = s;
  }  // end constructor
  // other methods appear here
}  // end Person

public static Person searchFileSequentially(
                        String fileName, String desiredName) {
  // --------------------------------------------------------
  // Searches a text file sequentially for a desired person.
  // Precondition: fileName is the name of a text file of
  // names and data about people. Each person is represented
  // by two lines in the file: The first line contains the
  // person's name, and the second line contains the person's
  // salary. desiredName is the name of the person sought.
  // Postcondition: If desiredName was found in the file,
  // a Person object that contains the person's
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  // name and data is returned. Otherwise, the value null
  // is returned to indicate that the desiredName was not
  // found. The file is unchanged and closed.
  // --------------------------------------------------------
  BufferedReader ifStream = null;
  String nextName = null;
  String nextSalary = null;

boolean found = false;

try {
    ifStream = new BufferedReader(new FileReader(fileName));

while (!found &&
           (nextName = ifStream.readLine()) != null) {
      nextSalary = ifStream.readLine();

if (nextName.compareTo(desiredName) == 0) {
        found = true;
      } // end if
    } // end while
  } // end try

catch (IOException e) {
    System.out.println("Error processing file");

return null;
  } // end catch

finally {
if(ifStream != null) {

try {
        ifStream.close(); // close the file
      } // end try

catch (IOException e) {
        System.out.println("Error closing file");
      } // end catch
    } // end if
  } // end finally

if (found) {
return new Person(nextName,

                      Double.parseDouble(nextSalary));
  }

else {
return null;

  } // end if
} // end searchFileSequentially

This method needs to look at all the names in the file before determining
that a particular name does not occur. If the names were in alphabetical order,
you could determine when the search had passed the place in the file that
should have contained the desired name, if it existed. In this way, you could
terminate the search before you needlessly searched the rest of the file.
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Object Serialization
In the method searchFileSequentially, we assumed that all of the informa-
tion about a person had been placed in a text file in a very specific format. In that
example, the data fields were strings and primitive values, so it was simply a matter
of writing the name data field on one line and the salary on the next line. But what
about situations in which the data is more complex? For example, suppose that the
Person class also kept track of the person’s dependents by using an ADT list.6 To
save this information to a text file involves a more complicated scheme, since we
may not know beforehand how many dependents an employee has. 

When data is stored to a file for later use by the same program or another
program, it is called data persistence. Normally, any information stored in the
various variables and data structures in a program is lost when the program ter-
minates execution. In many cases, however, it is desirable to save the data to a
file for later retrieval before terminating the program. Java provides a mecha-
nism for creating persistent objects, called object serialization. Serialization is
the process of transforming an object into a sequence of bytes that represents
the object. Deserialization is the process of transforming a sequence of bytes
back into an object. Once an object is serialized, it can be stored in a file and
read back at a later time using deserialization.

Any object that is to be saved using object serialization must implement
the interface java.io.Serializable. This interface is somewhat unique in
that it contains no methods. It is used to signal the compiler that the instances
of this class may need to have their state serialized or deserialized.

One interesting aspect of object serialization is that when an object is seri-
alized, all objects that it references are also serialized, as long as the referenced
objects are instances of a class that implements the Serializable interface.
For example, suppose that the following is the Person class described earlier:

import java.io.Serializable;

public class Person implements Serializable {
private String name;
private double salary;
private Person[] dependents;

  private int numDepend = 0;

public Person(String n, double s) {
    name = n;
    salary = s;
    // assume that ListArrayBased also implements the 
    // Serializable interface
    dependents = new Person[25];
  } // end constructor

6. Chapter 4 introduces the ADT list.

Object serialization 
transforms an object 
into a sequence of 
bytes
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public void addDependent(Person p) {
    numDepend++;
    dependents[numDepend] = p;
  } // end addDependent

public String getName() {
return name;

  } // end getName

  // other methods for class appear here
} // end Person

When an instance of the Person class is serialized, all of the referenced
objects are also serialized—the String object name and the list dependents.
You accomplish the actual serialization of an object by using the writeObject
method of the stream class ObjectOutputStream. Much like PrintWriter,
ObjectOutputStream adds functionality to FileOutputStream. The follow-
ing statements save a Person object p to a file EmployeeDB.dat:

ObjectOutputStream ooStream = new ObjectOutputStream( 
new FileOutputStream("EmployeeDB.dat"));

ooStream.writeObject(p);

When the object is deserialized, both it and the objects it originally refer-
enced will be restored to their original state. To do this, use the readObject
method of the stream class ObjectInputStream. Like the BufferedReader,
ObjectInputStream adds functionality to FileInputStream. The following
statements retrieve a Person object p from a file EmployeeDB.dat:

ioStream = new ObjectInputStream(
                       new FileInputStream("EmployeeDB.dat"));
nextPerson = (Person)ioStream.readObject());

The following method demonstrates how the file could be searched
sequentially for a particular person (this method parallels the method given for
text files):

public static Person searchFileSequentially(
                     String fileName, String desiredName) {
  // --------------------------------------------------------
  // Searches a text file sequentially for a desired person.
  // Precondition: fileName is the name of a binary file
  // of Person objects. desiredName is the name of the person
  // sought.
  // Postcondition: If desiredName was found in the file,
  // a Person object that contains the person's
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  // name and data is returned. Otherwise, the value null
  // is returned to indicate that desiredName was not
  // found. The file is unchanged and closed.
  // --------------------------------------------------------
  ObjectInputStream ioStream = null;
  Person nextPerson = null;

boolean found = false;

try {
    ioStream = new ObjectInputStream(

new FileInputStream(fileName));
while (!found && (nextPerson =

             (Person)ioStream.readObject()) != null) {
if (nextPerson.getName().compareTo(desiredName) == 0) {

        found = true;
      } // end if
    } // end while
  } // end try

catch (IOException e) {
    System.out.println("Error processing file");

return null;
  } // end catch

catch (ClassNotFoundException e) {
    System.out.println("Unexpected object type in file");

return null;
  } // end catch

finally {
    //Close the ObjectInputStream

try {
if (ioStream != null) {

        ioStream.close();
      }
    } catch (IOException ex) {
      ex.printStackTrace();
    } // end catch
  } // end finally

if (found) {
return nextPerson;

  }
else {

return null;
  } // end if

} // end searchFileSequentially
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1. Each comment line in Java begins with two slashes (//) and continues until the
end of the line.

2. A Java identifier is a sequence of letters, digits, underscores, and dollar signs that
must begin with either a letter or an underscore.

3. The primitive data types in Java are organized into four types: integer, character,
floating point, and boolean.

4. A Java reference is used to locate an object. When an object is created using the
new operator, the location of the object in memory is returned and can be assigned
to a reference variable.

5. You define named constants by using a statement of the form

final type-identifier = value;

6. Java uses short-circuit evaluation for expressions that contain the logical operators
&& (and) and || (or). That is, evaluation proceeds from left to right and stops as
soon as the value of the entire expression is apparent.

7. An array is a collection of references that have the same data type. You can refer to
the elements of an array by using an index that begins with zero. First the array
must be instantiated with the number of elements desired. Then you can assign the
references of the array an object.

8. The general form of the if statement is

if (expression)
statement1

else
statement2

If expression is true, statement1 executes; otherwise, statement2 executes.

9. The general form of the switch statement is

switch (expression) {
case constant1:

statement1
    break;
. . .
case constantn: case constantn+1:

statementn
break;

default:
statement

}

The appropriate statement executes according to the value of expression. Typically, break
(or sometimes return) follows the statement or statements after each case. Omitting
break causes execution to continue to the statement(s) of the case that follows.

Summary
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10. The general form of the while statement is

while (expression)
statement

As long as expression is true, statement executes. Thus, it is possible that statement
will never execute.

11. The general form of the for statement is

for (initialize; test; update)
statement

where initialize, test, and update are expressions. Typically, initialize is an assign-
ment expression that occurs only once. Then if test, which is usually a logical
expression, is true, statement executes. The expression update executes next,
usually incrementing or decrementing a counter. This sequence of events repeats,
beginning with the evaluation of test, until test is false. 

12. The enhanced for loop makes it easier to process arrays. The general form of this loop is:

for (ArrayElementType variableName: arrayName)
statement

13. The general form of the do statement is

do
statement

while (expression);

Here, statement executes until the value of expression is false. Note that state-
ment always executes at least once.

14. The filename for a Java source code file has the same name as the class it contains,
with .java appended to the end.

15. Java packages provide a mechanism for grouping related classes. To indicate that a
class is part of a package, you include a package statement as the first program line
of your code.

16. To use classes contained in other packages, you must include an import statement
before the class definition. The format of the import statement is

import package-name.class-name;

17. An object in Java is an instance of a class. A class can be thought of as a data type that
specifies the data and methods that are available for instances of the class. A class defini-
tion includes an optional subclassing modifier, an optional access modifier, the keyword
class, an optional extends clause, an optional implements clause, and a class body.

18. Data fields are class members that are either variables or constants. Data field decla-
rations can contain modifiers that control the availability of the data field (access
modifiers) or that modify the way the data field can be used (use modifiers).
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19. Methods are used to implement object behaviors. The general form of a method
definition is

access-modifier  use-modifier  type  name(formal-parameter-list) {
body

}

A valued method returns a value by using the return statement. A void
method can use return to exit. 

20. When you invoke a method, the actual arguments must correspond to the formal
parameters in number, order, and type.

21. A method makes local copies of the values of any arguments that are passed. Thus,
the arguments remain unchanged by the method. When the argument is a refer-
ence, a method can modify the object it references, but not the value of the refer-
ence variable itself.

22. Members of a class should be declared as public or private. The client of the
class—that is, the program that uses the class—cannot use members that are
private. However, the implementations of methods within the class imple-
mentation can use them. Typically, you should make the data fields of a class
private and provide public methods to access some or all of the data fields.

23. You can access data fields and methods that are declared public by naming the
object, followed by a period, followed by the member name.

24. A Java class contains at least one constructor, which is an initialization method.

25. If you do not define any constructors for a class, the compiler will generate a
default constructor—that is, one without parameters—for you. 

26. Inheritance allows a new class to be defined based on the data fields and methods
of an existing class while adding its own functionality. This enhances our ability to
reuse code.

27. A class that is derived from another class is called the derived class or subclass. The
class from which the subclass is derived is called the base class or superclass. 

28. When defining a subclass, the class name is followed by an extends clause that names
the superclass. If there is no extends clause, the class is implicitly a subclass of Object.

29. The equals method defined in the class Object is based on reference equality; it
simply checks to see if two references refer to the same object. This is known as
shallow equality.

30. It is common for a class to redefine the equals method for deep equality—in other
words, to check the equality of the contents of the objects.

31. The Array class contains various static methods for manipulating arrays.

32. A string is a sequence of characters. The String class supports nonmutable strings,
while the StringBuffer class supports mutable strings. In the String class, you
can access the entire string, a substring, or the individual characters. In the
StringBuffer class, you can access and actually manipulate the entire string, a
substring, or the individual characters.
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33. Exceptions are used to handle errors during execution. A method indicates that an
error has occurred by throwing an exception. When an exception occurs, the state-
ments within the catch block that correspond to the exception are executed.

34. The method System.out.println places a value into an output stream. Reading
a value from an input stream is easier when the Scanner class is used.

35. In Java, files are accessed using the Scanner class or streams. 

36. The Console class provides an alternative way to get input and output from the
console of the current program execution environment.

37. Data persistence is supported in Java through object serialization. You serialize an object
by using the method writeObject from the stream class ObjectOutputStream, and
you deserialize an object by using the method readObject from the stream class
ObjectInputStream.

1. Remember that = is the assignment operator; == is the equality operator.

2. Do not begin a decimal integer constant with zero. A constant that begins with
zero is either an octal constant or a hexadecimal constant.

3. Without a break statement, execution of a case within a switch statement will
continue into the next case.

4. You must be careful that an array index does not exceed the size of the array. Java
will throw the exception ArrayIndexOutOfBounds if an index value is less than
zero or greater than or equal to the length of the array.

5. If you define a constructor for a class but do not also define a default constructor,
the compiler will not generate one for you. In this case, a statement such as

MyNewClass test = new MyNewClass();

is illegal.

6. When using an IDE, the Console object is often not accessible since the JVM exe-
cutes as a background process.

7. Opening an existing file for output erases the data in the file, unless you specify
append mode.

1. To use each of the following Java classes in your program, indicate an import statement
that would allow the program to use each of the following methods.  If one is not needed,
then state so. You may need to do a little research to determine the appropriate package.

a. static int round(float a) in the class Math

b. void println(String x) in the class PrintWriter

c. boolean isEmpty() in the class Vector

d. int getErrorCode() in the class SQLException

Cautions

Self-Test Exercises
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2. What are the differences between the three types of comments in Java?

3. The syntax of a method declaration is as follows:

access-modifier use-modifiers return-type 
                method-name (formal-parameter-list) {
  // method-body
}

What are the possible values for access-modifier and use-modifier?

4. Using the SimpleSphere class shown in Figure 1-5, and the following declara-
tions, are the statements below correct or will they generate a compiler error? If
they will generate a compiler error, explain why.

SimpleSphere myBall = new SimpleSphere(4.695);

a. myBall.radius = 5.0;

b. int rad = myBall.getRadius();

c. float d = myBall.getDiameter();

d. myBall.DEFAULT_RADIUS = 5.0;

5. What is meant by “short circuit operator” in a boolean expression?  Give an example. 

6.  What is the difference between checked exceptions and unchecked exceptions?

1. What is the output of the following program?

class SwitchDemo {
  public static void main(String[] args) {

    int month = 3;
    switch (month) {
      case 1:  System.out.print("January"); break;
      case 2:  System.out.print("February"); break;
      case 3:  System.out.print("March");
      case 4:  System.out.print("April"); 
      case 5:  System.out.print("May"); break;
      case 6:  System.out.print("June"); break;
    }
  }
}

2. Evaluate the following expressions:

a. 4 + 3 * 11 / 2.0 – (-2)

b. 4.6 – 2.0 + 3.2 – 1.1 * 2

c. 23 % 4 – 23 / 4

d. 12 / 3 * 2 + (int)(2.5 * 10)

Exercises
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3. The following code results in compile time error storing the values of an int variable
to a byte variable. Identify the problem with the code and provide the solution.

public static void coversion () 
{
  int a = 1100;
  byte b = a;
  System.out.println("Value of Byte Variable b = "+b );
}

4. What is the output of the following program? If it is an infinite loop, state so.

class Sample {
  public static void main(String[] args) {
    byte c = 0;
    for (; c <= 127; c++);
    System.out.println("c = "+c);
  }
}

5. What is the problem with the following code?

if (amount = 0) {
  System.out.println("Sorry, there are none left");
}

6. Given the following if statement:

if (x <= 0) {
  if (x <= 100)
    System.out.println("Statement A");

else
    System.out.println("Statement B");
}
else {
  if (x > 10)
    System.out.println("Statement C");

else
    System.out.println("Statement D");
}

Using relational operators, give the range of values for x that produce the follow-
ing output:

a. Statement A

b. Statement B

c. Statement C

d. Statement D



Exercises 99

7. Write a program that reads the value of x and evaluates the following function

using

a. nested if statements

b. else if statements 

8. What is the output of the following statement?

System.out.println("John said \"It should be located in" +
                   "C:\\myfiles\" \n in a worried tone.\"");

9. For each set of following statements, indicate the number of times the statement
System.out.print("x"); is executed.  If it is an infinite loop, indicate so.

10. Correct the code to rectify the compile time error.

public class Forloop
{
  public static void main(String[] args)
    {
      int factorial = 1;
        for (int count=1; count < 11)
        {
          System.out.println(factorial *= count);
          count ++;
        }
    }
}

a. x = 12;
while (x > 0) {
  System.out.print("x");
  x = x - 2;
}  // end while

b. x = 3;
do {
  System.out.print("x");
  x--;
} while (x < 0);

c. x = 5;
while (x > 0) {
  System.out.print("x");
}  // end while

d. x = 3;
do {
  System.out.print("x");
  x = x + 2;
} while (x <= 9);

e. for (i = 0; i <= 99; i++)
  System.out.print("x");

f. for (i = 84; i <= 96; i++)
for (j = 7; j < 10; j++ )

    System.out.println("x");

   1 for x > 0
   0 for x = 0
– 1 for x < 0

y =
⎩
⎨
⎧
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11. Given a class Pet as started in the following example, add two constructors—one
to create pets with a name, the other to create pets with a name and an age.

  class Pet {
    private String name;
    private int age;
    // add constructors here

12. Suppose you have the following class: 

class Second {
private int x;
public int z;

public int sum() {
return x + y + z;

  } // end sum

private void reset(int a, int b, int c) {
    x = a;  y = b;  c = z;
  } // end reset

public boolean check(float x) {
return x < 0;

  } // end check
}  // end Second

Given the following declaration,

Second myClass = new Second();

indicate for each statement (which might appear in testing code) if it is legal or
illegal (will cause an error).

a. myClass.x = 5;

b. myClass.z = 5;

c. myClass.sum(x);

d. int ans = myClass.sum();

e. myClass.reset(1, 2, 3);

f. boolean x = myClass.check(11.2);

13. Given the following class Complex, complete the following questions: 

class Complex {
private int real;
private int imaginary;
public Complex(int r, int i) {

    real = r;
    imaginary = i;
  }  // end constructor



Exercises 101

public String toString() {
return real + " + " + imaginary + "i";

  } // end toString
} //end class Complex

a. Write a statement that creates a complex number 3 + 2i called c1.

b. Write a statement that creates a complex number 4 - 5i called c2.

c. Write a statement that prints a complex number called c1.

d. For the class Complex, modify the toString method so that if the real or imag-
inary part is zero, it is not placed in the string.  If both are zero, then just print
zero. Finally, if the imaginary part is 1 or -1, simply print + i instead of + 1i
and – i instead of - 1i.

e. For the class Complex, add the following methods:

public Complex add(Complex val)
// returns a Complex number whose value is (this + val)
public Complex subtract(Complex val)
// returns a Complex number whose value is (this - val)
public Complex multiply(Complex val)
// returns a Complex number whose value is (this * val)

f. Add a main program with test code that demonstrates that the above methods
are working properly.

14. Write a class Address that contains the street, city, and zip code.  Provide one or
more methods to initialize these values, and a method called toString that
returns a String representation that contains all of these values.

15. Identify the error in the following code.

class Sample {
  public static void main(String[] args) {
    int i = 200;
    {
        int i = 100;
    }
  }
}

16. Given this code segment, 

try {
  // statements appear here...
}
catch (IOException ex) {
  System.out.println("I/O error!");
}
catch (NumberFormatException ex) {
  System.out.println("Bad input!");
}
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finally {
  System.out.println("Finally!");
}
System.out.println("Done!");

a. what will be printed if an FileNotFoundException occurs in the try block? 

b. what will be printed if an ArrayIndexOutOfBounds occurs in the try block?

c. what will be printed if no exception occurs in the try block?

d. what would happen if the following catch clause was added as the first catch
clause in the code? 

catch (Exception ex) {
  System.out.println("Error!");
}

17. What is the output of the following code?

class Sample {
  public static void main(String[] args) {
    int a = 200;
    if ( a = 100 )
    {
      System.out.println(" hello ");
    }
    else
    {
      System.out.println(" world ");
    }
  }
}

1. Create an application called Registrar that has the following classes:

A Student class that minimally stores the following data fields for a student:

■ name

■ student id number

■ number of credits

■ total grade points earned

The following methods should also be provided:

■ A constructor that initializes the name and id fields 

■ A method that returns the student name field

■ A method that returns the student ID field

■ A method that determines if two student objects are equal if their student
id numbers are the same (override equals from the class Object)

■ Methods to set and retrieve the total number of credits

Programming Problems
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■ Methods to set and retrieve the total number of grade points earned

■ A method that returns the GPA (grade points divided by credits)

An Instructor class that minimally stores the following data fields for an instructor:

■ name

■ faculty id number

■ department

The following methods should also be provided:

■ A constructor that initializes the name and id fields 

■ Methods to set and retrieve the instructor’s department

A Course class that minimally stores the following data for a course:

■ name of the course

■ course registration code

■ maximum number of 35 students

■ instructor

■ number of students

■ students registered in the course (an array)

The following methods should also be provided:

■ A constructor that initializes the name, registration code, and maximum
number of students

■ Methods to set and retrieve the instructor

■ A method to search for a student in the course; the search should be
based on an ID number.

■ A method to add a student to the course. If the course is full, then an
exception with an appropriate message should be raised (try creating your
own exception class for this).  Also, be sure that the student is not already
registered in the course. The list of students should be in the order that
they registered.

■ A method to remove a student from the course. If the student is not
found, then an exception with an appropriate message should be raised
(use the same exception class mentioned above).

■ A method that will allow Course objects to be output to a file using
object serialization

■ A method that will allow Course objects to be read in from a file created
with Object serializtion

You will note that the Student and Instructor classes described above have
some commonality.  Create a Person class that captures this commonality and uses
it as a base class for Student and Instructor. This class should be responsible for
the name and id fields and also provide a toString method that returns a string of
the form name, id. This will be the inherited toString method for the Student
and Instructor classes.
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a. Draw a UML diagram for this application.

b. Implement the previous classes in Java.  Write a main program that can serve as a test
class that tests all of the methods created and demonstrates that they are working.

c. Write a second main program that provides a menu to allow the user to 

i. create a course, prompting the user for all of the course information,

ii. add students to the course,

iii. check to see if a student is registered in the course, and

iv. remove a student from the course.

d. Add to the previous menu the ability to save a course using object serialization.
Also add a menu choice to read in a course from a file given the course code.
Come up with a system of naming the file so that the user need only be asked
the course code to load the course information from a file.
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CHAPTER 2

Principles of 
Programming and 
Software Engineering

his chapter summarizes several fundamental principles
that serve as the basis for dealing with the complexities

of large programs. The discussion both reinforces the basic
principles of programming and demonstrates that writing well-
designed and well-documented programs is cost-effective.
The chapter also presents a brief discussion of algorithms
and data abstraction and indicates how these topics relate to
the book’s main theme of developing problem-solving and
programming skills. In subsequent chapters, the focus will
shift from programming principles to ways of organizing and
using data. Even when the focus of discussion is on these
new techniques, you should note how all solutions adhere to
the basic principles discussed in this chapter.

2.1 Problem Solving and Software 
Engineering

What Is Problem Solving?
The Life Cycle of Software
What Is a Good Solution?

2.2 Achieving an Object-Oriented 
Design

Abstraction and Information Hiding
Object-Oriented Design
Functional Decomposition
General Design Guidelines
Modeling Object-Oriented Designs 

Using UML
Advantages of an Object-Oriented 

Approach

2.3 A Summary of Key Issues in 
Programming

Modularity
Modifiability
Ease of Use
Fail-Safe Programming
Style
Debugging

Summary

Cautions

Self-Test Exercises

Exercises

Programming Problems

T
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2.1 Problem Solving and Software 
Engineering

Where did you begin when you wrote your last program? After reading the
problem specifications and procrastinating for a certain amount of time, most
novice programmers simply begin to write code. Obviously, their goal is to get
their programs to execute, preferably with correct results. Therefore, they run
their programs, examine error messages, insert semicolons, change the logic,
delete semicolons, pray, and otherwise torture their programs until they work.
Most of their time is probably spent checking both syntax and program logic.
Certainly, your programming skills are better now than when you wrote your
first program, but will you be able to write a really large program by using the
approach just described? Maybe, but there are better ways.

Realize that an extremely large software development project generally
requires a team of programmers rather than a single individual. Teamwork
requires an overall plan, organization, and communication. A haphazard
approach to programming will not serve a team programmer well and will not
be cost-effective. Fortunately, an emerging engineering field related to a
branch of computer science—software engineering—provides techniques to
facilitate the development of computer programs.

Whereas a first course in computer science typically emphasizes program-
ming issues, the focus in this book will be on the broader issues of problem
solving. This chapter begins with an overview of the problem-solving process
and the various ways of approaching a problem.

What Is Problem Solving?
Here the term problem solving refers to the entire process of taking the state-
ment of a problem and developing a computer program that solves that prob-
lem. This process requires you to pass through many phases, from gaining an
understanding of the problem to be solved, through designing a conceptual
solution, to implementing the solution with a computer program.

Exactly what is a solution? Typically, a solution consists of two compo-
nents: algorithms and ways to store data. An algorithm is a step-by-step speci-
fication of a method to solve a problem within a finite amount of time. One
action that an algorithm often performs is to operate on a collection of data.
For example, an algorithm may have to put new data into a collection, remove
data from a collection, or ask questions about a collection of data. 

Perhaps this description of a solution leaves the false impression that all the
cleverness in problem solving goes into developing the algorithm and that how
you store your data plays only a supporting role. This impression is far from
the truth. You need to do much more than simply store your data. When con-
structing a solution, you must organize your data collection so that you can
operate on the data easily in the manner that the algorithm requires. In fact,
most of this book describes ways of organizing data.
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When you design a solution to a given problem, you can use several tech-
niques that will make your task easier. This chapter introduces those tech-
niques, and subsequent chapters will provide more detail.

The Life Cycle of Software
The development of good software involves a lengthy and continuing process
known as the software’s life cycle. This process begins with an initial idea,
includes the writing and debugging of programs, and continues for years to
involve corrections and enhancements to the original software. Figure 2-1 pic-
tures the nine phases of the software life cycle as segments on a water wheel.1

This arrangement suggests that the phases are part of a cycle and are not
simply a linear list. Although you start by specifying a problem, typically you
move from any phase to any other phase. For example, testing a program can
suggest changes to either the problem specifications or the solution design.
Also notice that the nine phases surround a documentation core in the figure.
Documentation is not a separate phase, as you might expect. Rather, it is inte-
grated into all phases of the software life cycle.

1. Thanks to Raymond L. Paden for suggesting that the “wheel” be a “water wheel.”
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Within the last few years, incremental and iterative development methods
have emerged. These methods apply the first seven phases (specification,
design, risk analysis, verification, coding, testing, and refinement) incremen-
tally in a circular pattern. The refinement phase is where the next changes (or
refinements) to the system are considered, leading the development back to
the specification phase. Using this approach, a portion of the overall system is
developed initially, and then refinements to the solution are incorporated.
Once the system is complete, it then moves to the production and mainte-
nance phases. When using an object-oriented language such as Java, this means
that the initial development may involve building a subset of objects, then
incrementally enhancing these objects and adding new objects until the system
is complete and ready for production.

Here, then, are the phases in the life cycle of typical software. Although all
phases are important, only those that are most relevant to this book are dis-
cussed in detail.

Phase 1: Specification. Given an initial statement of the software’s purpose,
you must specify clearly all aspects of the problem. Often the people who describe
the problem are not programmers, so the initial problem statement might be
imprecise. The specification phase, then, requires that you bring precision and
detail to the original problem statement and that you communicate with both pro-
grammers and nonprogrammers.

Here are some questions that you must answer as you write the specifica-
tions for the software: What is the input data? What data is valid and what data is
invalid? Who will use the software and what user interface should be used? What
error detection and error messages are desirable? What assumptions are possi-
ble? Are there special cases? What is the form of the output? What documenta-
tion is necessary? What enhancements to the program are likely in the future?

One way to improve communication among people and to clarify the soft-
ware specifications is to write a prototype program that simulates the behav-
ior of portions of the desired software product. For example, a simple—even
inefficient—program could demonstrate the proposed user interface for analy-
sis. It is better to discover any difficulties or to change your mind now than to
do so after programming is underway or even complete.

Your previous programming assignments probably stated the program
specifications for you. Perhaps aspects of these specifications were unclear and
you had to seek clarification, but most likely you have had little practice in
writing your own program specifications.

Phase 2: Design. Once you have completed the specification phase, you
must design a solution to the problem. Most people who design solutions of
moderate size and complexity find it difficult to cope with the entire program
at once. The best way to simplify the problem-solving process is to divide a
large problem into small, manageable parts. The resulting program will
contain modules, which are self-contained units of code. 

When using an object-oriented language such as Java, these modules take
the form of objects. As discussed in Chapter 1, objects are implemented using
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classes. Classes should be designed so that the objects are independent, or
loosely coupled. Coupling is the degree to which objects in a program are
interdependent. If every object in a program is connected to every other object
in the program, that is called highly coupled, and it means that the flow of infor-
mation between objects is potentially high. If the objects are loosely coupled,
changes in one object will have minimal effects on other objects in the program.

Classes should also be designed so that objects are highly cohesive. Cohe-
sion is the degree to which the data and methods of an object are related. Ide-
ally, each object should represent one component in the solution. Methods
within an object should also be highly cohesive, each should perform one well-
defined task.

During the design phase, it is also important that you clearly specify the
object interactions. Objects interact by sending messages to each other
through method calls, which in turn represents the data flow among objects.
When designing the methods, you should provide answers to these questions:
What data within the object is utilized by the method? What does the method
assume? What actions does the method perform, and is the data stored in the
object changed after the method executes? Thus you should specify in detail
the assumptions, input, and output for each method.

For example, if you as program designer needed to provide a method for a
shape object that moves it to a new location on the screen, you might write the
following specification:

The method will receive an (x, y) coordinate.
The method will move the shape to the new location on the screen.

You can view these specifications as the terms of a contract between your
method and the code that calls it. 

If you alone write the entire program, this contract helps you systemati-
cally decompose the problem into smaller tasks. If the program is a team
project, the contract helps delineate responsibilities. Whoever writes the move
method must live up to this contract. After the move method has been written
and tested, the contract tells the rest of the program how to call the move
method properly and lets it know the result of doing so.

It is important to notice, however, that a method’s contract does not
commit the method to a particular way of performing its task. If another part
of the program assumes anything about the method, it does so at its own risk.
Thus, for example, if at some later date you rewrite your method to use a dif-
ferent algorithm for moving the shape on the screen, you should not need to
change the rest of the program at all. As long as the new method honors the
terms of the original contract, the rest of the program should be oblivious to
the change.

This discussion should not be news to you. Although you might not have
explicitly used the term “contract” before, the concept should be familiar. You
write a contract when you write a method’s precondition, which is a state-
ment of the conditions that must exist at the beginning of a method, as well as
when you write its postcondition, which is a statement of the conditions at
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the end of a method. For example, the move method that adheres to the previ-
ous contract could appear in pseudocode2 as

move(x, y)
// Moves a shape to a new location on the screen.
// Precondition: The calling code provides an 
// (x, y) pair, both integers.
// Postcondition: The shape is moved to the new 
// location.

These particular pre- and postconditions are actually deficient, as may be
the case in a first-draft contract. For example, does “moved” mean that the
shape is moved relative to its previous location by (x, y) or that the shape is
moved to the new coordinate location (x, y)? What is the range of values for
x and y? While implementing this method, you might assume that “moved”
means the shape is moved to a new coordinate location (x, y) and that the
range for x and y is 0 through 100. Imagine the difficulties that can arise when
another person tries to use move to move a shape relative to its previous loca-
tion using (-5, -5). This user does not know your assumptions unless you
document them by revising the pre- and postconditions, as follows:

move(x, y)
// Moves a shape to coordinate (x, y) on the screen.
// Precondition: The calling code provides an 
// (x, y) pair, both integers, where 
// 0 <= x <= MAX_XCOOR, 0 <= y <= MAX_YCOOR, where 
// MAX_XCOOR and MAX_YCOOR are class constants that 
// specify the maximum coordinate values.
// Postcondition: The shape is moved to coordinate 
// (x, y).

When you write a precondition, begin by describing the method’s formal
parameters, mention any class named constants that the method uses, and
finally list any assumptions that the method makes. Similarly, when you write a
postcondition, begin by describing the method’s effect on its parameters—or
in the case of a valued method, the value it returns—and then describe any
other action that has occurred. (Although people tend to use the words
parameter and argument interchangeably, we will use parameter to mean
formal parameter and argument to mean actual argument.)

In an object-oriented system, a method may also change the state of an
object. Object state refers to the data that an object holds. In this example, a
shape object has two data values that represent its location on the screen. The
move method actually modifies these values within the object so that the effect

2. Pseudocode in this book appears in italics.
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is to move the shape to a different location on the screen. Note that the post-
condition in the move method reflects this change of object state. 

Novice programmers tend to dismiss the importance of precise documen-
tation, particularly when they are simultaneously designer, programmer, and
user of a small program. If you design move but do not write down the terms
of the contract, will you remember them when you later implement the
method? Will you remember how to use move weeks after you have written it?
To refresh your memory, would you rather examine your Java code or read a
simple set of pre- and postconditions? As the size of a program increases, good
documentation becomes even more important, regardless of whether you are
the sole author or part of a team.

You should not ignore the possibility that you or someone else has already
implemented some of the required objects and methods. Java facilitates the
reuse of software components, which are typically organized into class libraries
that group classes into packages containing compiled code. That is, you will
not always have access to a method’s Java code. The Java Application Pro-
gramming Interface (API) is an example of one such collection of preexisting
software. For example, you know how to use the static method sqrt con-
tained in the Java API package java.lang.Math, yet you do not have access
to its source statements, because it is precompiled. You know, however, that if
you pass sqrt an expression of type double, it will return the square root of
the value of that expression as a double. You can use java.lang.Math.sqrt
even though you do not know its implementation. Furthermore, it may be
that java.lang.Math.sqrt was written in a language other than Java! There
is so much about java.lang.Math.sqrt that you do not know, yet you can
use it in your program without concern, as long as you know its specifications.

If, in the past, you have spent little or no time in the design phase for your
programs, you must change this habit! The end result of the design phase
should be a solution that is easy to translate into the constructs of a particular
programming language. By spending adequate time in the design phase, you
will spend less time when you write and debug your program.

We will resume our discussion of design later.

Phase 3: Risk analysis. Building software entails risks. Some risks are the
same for all software projects and some are peculiar to a particular project. You
can predict some risks, while others are unknown. Risks can affect a project’s
timetable or cost, the success of a business, or the health and lives of people. You
can eliminate or reduce some risks but not others. Techniques exist to identify,
assess, and manage the risks of creating a software product. You will learn these
techniques if you study software engineering in a subsequent course. The
outcome of risk analysis will affect the other phases of the life cycle. 

Phase 4: Verification. Formal, theoretical methods are available for proving
that an algorithm is correct. Although research in this area is incomplete, it is
useful to mention some aspects of the verification process.
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An assertion is a statement about a particular condition at a certain point
in an algorithm. Preconditions and postconditions are simply assertions about
conditions at the beginning and end of methods. 

Java supports an assertion statement that allows you to test a condition at
a certain point in a program. The Java assertion statement has two forms:

assert booleanExpression;
assert booleanExpression : valueExpression;

In the first form, if booleanExpression is false, an AssertionError is thrown
with no further detail information. In the second form, if booleanExpression
is false, the valueExpression is evaluated and sent to the AssertionError
constructor so as to provide more detailed information about the failed
assertion. In many instances, the valueExpression is simply a string that
describes the problem. Here is a simple example of an assert statement in
a program:

public static void main(String[] args) {
  Scanner reader = new Scanner(System.in);
  System.out.print("Enter your score: ");

int score = reader.nextInt();
assert score>=0 && score <= 100 : 

         "Score "+score+" is not in range 0-100";
  // Continue processing score
  System.out.println("Processing score...");
}

So if a value out of range is entered by the user, a message similar to the fol-
lowing will appear:

Exception in thread "main" java.lang.AssertionError: 
       Score -23 is not in range 0-100
       at AssertionClass.main(AssertionClass.java:9)

Note that for the assert statement to be executed in a program, you must
make sure that the compiler settings enable assertions. In most Integrated
Development Environments (IDEs), this feature is usually turned off by
default, and so the assertion statements will be ignored.

An invariant is a condition that is always true at a particular point in an
algorithm. A loop invariant is a condition that is true before and after each
execution of an algorithm’s loop. As you will see, loop invariants can help you
to write correct loops. By using invariants, you can detect errors before you
begin coding and thereby reduce your debugging and testing time. Overall,
invariants can save you time.

Proving that an algorithm is correct is like proving a theorem in geome-
try. For example, to prove that a method is correct, you would start with its
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preconditions—which are analogous to the axioms and assumptions in
geometry—and demonstrate that the steps of the algorithm lead to the post-
conditions. To do so, you would consider each step in the algorithm and show
that an assertion before the step leads to a particular assertion after the step. 

By proving the validity of individual statements, you can prove that
sequences of statements, and then methods, and finally the program itself are
correct. For example, suppose you show that if assertion A1 is true and state-
ment S1 executes, assertion A2 is true. Also, suppose you have shown that
assertion A2 and statement S2 lead to assertion A3. You can then conclude that
if assertion A1 is true, executing the sequence of statements S1 and S2 will lead
to assertion A3. By continuing in this manner, you eventually will be able to
show that the program is correct.

Clearly, if you discovered an error during the verification process, you
would correct your algorithm and possibly modify the problem specifications.
Thus, by using invariants, it is likely that your algorithm will contain fewer
errors before you begin coding. As a result, you will spend less time debugging
your program.

You can formally prove that particular constructs such as if statements,
loops, and assignments are correct. An important technique uses loop invari-
ants to demonstrate the correctness of iterative algorithms. For example, we
will prove that the following simple loop computes the sum of the first n ele-
ments in the array item:

// computes the sum of item[0], item[1], . . ., 
// item[n-1] for any n >= 1
int sum = 0;
int j = 0;
while (j < n) {
  sum += item[j];
  ++j;
}  // end while

Before this loop begins execution, sum is 0 and j is 0. After the loop exe-
cutes once, sum is item[0] and j is 1. In general,

sum is the sum of the elements item[0] through item[j-1]

This statement is the invariant for this loop. The invariant for a correct loop is
true at the following points:

■ Initially, after any initialization steps, but before the loop begins execution

■ Before every iteration of the loop

■ After every iteration of the loop

■ After the loop terminates

Loop invariant
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For the previous loop example, these points are as follows:

int sum = 0;
int j = 0;

←the invariant is true here
while (j < n) {

←the invariant is true here
  sum += item[j];
  ++j;

←the invariant is true here
}  // end while

←the invariant is true here

You can use these observations to prove the correctness of an iterative
algorithm. For the previous example, you must show that each of the follow-
ing four points is true:

1. The invariant must be true initially, before the loop begins execution
for the first time. In the previous example, sum is 0 and j is 0 initially. In
this case, the invariant states that sum contains the sum of the elements
item[0] through item[-1]; the invariant is true because there are no ele-
ments in this range.

2. An execution of the loop must preserve the invariant. That is, if the
invariant is true before any given iteration of the loop, you must show that
it is true after the iteration. In the example, the loop adds item[j] to sum
and then increments j by 1. Thus, after an execution of the loop, the most
recent element added to sum is item[j-1]; that is, the invariant is true
after the iteration.

3. The invariant must capture the correctness of the algorithm. That is,
you must show that if the invariant is true when the loop terminates, the
algorithm is correct. When the loop in the previous example terminates,
j contains n, and the invariant is true: sum contains the sum of the ele-
ments item[0] through item[n-1], which is the sum that you intended
to compute.

4. The loop must terminate. That is, you must show that the loop will ter-
minate after a finite number of iterations. In the example, j begins at 0
and then increases by 1 at each execution of the loop. Thus, j eventually
will equal n for any n ≥ 1. This fact and the nature of the while statement
guarantee that the loop will terminate.

Not only can you use invariants to show that your loop is correct, but you
can also use them to show that your loop is wrong. For example, suppose that
the expression in the previous while statement was j <= n instead of j < n.
Steps 1 and 2 of the previous demonstration would be the same, but Step 3
would differ: When the loop terminated, j would contain n + 1 and, because
the invariant would be true, sum would contain the sum of the elements
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item[0] through item[n]. Since this is not the desired sum, you know that
something is wrong with your loop.

Notice the clear connection between Steps 1 through 4 and mathematical
induction.3 Showing the invariant to be true initially, which establishes the base
case, is analogous to establishing that a property of the natural numbers is true
for zero. Showing that each iteration of the loop preserves the invariant is the
inductive step. This step is analogous to showing that if a property is true for an
arbitrary natural number k, then the property is true for the natural number
k + 1. After proving the four points just described, you can conclude that the
invariant is true after every iteration of the loop—just as mathematical induc-
tion allows you to conclude that a property is true for every natural number.

Identifying loop invariants will help you to write correct loops. You should
state the invariant as a comment that either precedes or begins each loop, as appro-
priate. For example, in the previous example, you might write the following:

// Invariant: 0 <= j <= n and 
// sum = item[0] +...+ item[j-1]
while (j < n)
   . . .

You should confirm that the invariants for the following unrelated loops
are correct. Remember that each invariant must be true both before the loop
begins and after each iteration of the loop, including the final one. Also, you
might find it easier to understand the invariant for a for loop if you tempo-
rarily convert it to an equivalent while loop.

For example, a for loop of the form

for (initialize; test; update) {
statement(s)

} // end for

can be rewritten as 

initialize;
while (test) {

statement(s)
update;

} // end while

3. A review of mathematical induction appears in Appendix D.

State loop invariants 
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Here are a few more examples of loop invariants:

// Computes an approximation to ex for a real x
double t = 1.0, s = 1.0;
int k = 1; 
// Invariant: t == xk-1/(k-1)! and 
// s == 1+x+x2/2!+...+xk-1/(k-1)!
while (k <= n) {
  t *= x/k;
  s += t;
  ++k;
}  // end while

// Computes n! for an integer n >= 0 
int f = 1;
// Invariant: f == (j-1)!
for (int j = 1; j <= n; ++j) {
  f *= j;
}  // end for

Phase 5: Coding. The coding phase involves translating the design into a
particular programming language and removing the syntax errors. Although
this phase is probably your concept of what programming is all about, it is
important to realize that the coding phase is not the major part of the life
cycle for most software—actually, it is a relatively minor part.

Phase 6: Testing. During the testing phase, you need to remove as many
logical errors as you can. One approach is to test the individual methods of the
objects first, using valid input data that leads to a known result. If certain data
must lie within a range, include values at the endpoints of the range. For
example, if the input value for n can range from 1 to 10, be sure to include test
cases in which n is 1 and 10. Also, include invalid data to test the error-
detection capability of the program. Try some random data, and finally try
some actual data. Testing is both a science and an art. You will learn more
about testing in subsequent courses.

Phase 7: Refining the solution. The result of Phases 1 through 6 of the
solution process is a working program, which you have tested extensively and
debugged as necessary. If you have a program that solves your original problem,
you might wonder about the significance of this phase of the solution process.

Often the best approach to solving a problem is first to make some simpli-
fying assumptions during the design of the solution—for example, you could
assume that the input will be in a certain format and will be correct—and next
to develop a complete working program under these assumptions. You can
then add more sophisticated input and output routines, additional features,
and more error checks to the working program. 
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 Thus, the approach of simplifying the problem initially makes a refine-
ment step necessary in the solution process. Of course, you must take care to
ensure that the final refinements do not require a complete redesign of the
solution. You can usually make these additions cleanly, however, particularly
when you have used a modular design. In fact, the ability to proceed in this
manner is one of the key advantages of having a modular design! Also, realize
that any time you modify a program—no matter how trivial the changes might
seem—you must thoroughly test it again.

This discussion illustrates that the phases within the life cycle of software
are not completely isolated from one another and are not linear. To make real-
istic simplifying assumptions early in the design process, you should have some
idea of how you will account for those assumptions later on. Testing a program
can suggest changes to its design, but changes to a program require that you
test the program again.

Phase 8: Production. When the software product is complete, it is distrib-
uted to its intended users, installed on their computers, and used.

Phase 9: Maintenance. Maintaining a program is not like maintaining a car.
Software does not wear out if you neglect it. However, users of your software
invariably will detect errors that you did not discover during the testing phase.
Correcting these errors is part of maintaining the software. Another aspect of
the maintenance phase involves enhancing the software by adding more fea-
tures or by modifying existing portions to suit the users better. Rarely will the
people who design and implement the original program perform this mainte-
nance step. Good documentation then becomes even more important.

Is a program’s life cycle relevant to your life? It definitely should be! You
should view Phases 1 through 7 as the steps in a problem-solving process.
Using this strategy, you first design and implement a solution (Phases 1
through 6) based on some initial simplifying assumptions. The outcome is a
well-structured program that solves a somewhat simplified problem. The last
step of the solution process (Phase 7) refines your work into a sophisticated
program that meets the original problem specifications.

What Is a Good Solution?
Before you devote your time and energy to the study of problem-solving tech-
niques, it seems only fair that you see at the outset why mastery of these tech-
niques will help to make you a good problem solver. An obvious statement is
that the use of these techniques will produce good solutions. This statement,
however, leads to the more fundamental question, what is a good solution? A
brief attempt at answering this question concludes this section.

Because a computer program is the final form your solutions will take,
consider what constitutes a good computer program. Presumably, you write a
program to perform some task. In the course of performing that task, there is a
real and tangible cost. This cost includes such factors as the computer resources
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(computing time and memory) that the program consumes, any difficulties
encountered by those who use the program, and the consequences of a
program that does not behave correctly.

However, the costs just mentioned do not give the whole picture. They
pertain to only one phase of the life cycle of a solution—the phase in which it
is an operational program. In assessing whether or not a solution is good, you
also must consider the phases during which you developed the solution and
the phases after you wrote the initial program that implemented the solution.
Each of these phases incurs costs, too. The total cost of a solution must take
into account the value of the time of the people who developed, refined,
coded, debugged, and tested it. A solution’s cost must also include the cost of
maintaining, modifying, and expanding it.

Thus, when calculating the overall cost of a solution, you must include a
diverse set of factors. If you adopt such a multidimensional view of cost, it is
reasonable to evaluate a solution against the following criterion:

A solution is good if the total cost it incurs over all phases of its life cycle is
minimal.

It is interesting to consider how the relative importance of the various compo-
nents of this cost has changed since the early days of computing. In the begin-
ning, the cost of computer time relative to human time was extremely high. In
addition, people tended to write programs to perform very specific, narrowly
defined tasks. If the task changed somewhat, a new program was written.
Program maintenance was probably not much of an issue, so there was little
concern if a program was hard to read. A program typically had only one user,
its author. As a consequence, programmers tended not to worry about misuse
or ease of use of their programs; a program’s interface generally was not con-
sidered important.

In this type of environment, one cost clearly overshadowed all others:
computer resources. If two programs performed the same task, the one that
required less time and memory was better. How things have changed! Since
the early days of computers, computing costs have dropped dramatically, thus
making the value of the problem solver’s and programmer’s time a much more
significant factor in the cost of a solution. Another consequence of the drop in
computing costs is that computers now are used to perform tasks in a wide
variety of areas, many of them nonscientific. People who interact with comput-
ers often have no technical expertise and no knowledge of the workings of pro-
grams. People want their software to be easy to use.

Today, programs are larger and more complex than ever before. They are
often so large that many people are involved in their design, use, and mainte-
nance. Good structure and documentation are thus of the utmost importance.
As programs perform more highly critical tasks, the prices for malfunctions will
soar. Thus, society needs both well-structured programs and techniques for
formally verifying their correctness. People will not and should not entrust
their livelihoods—or their lives—to a program that only its authors can under-
stand and maintain.
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These developments have made obsolete the notion that the most effi-
cient solution is always the best. If two programs perform the same task, it is
no longer true that the faster one is necessarily better. Programmers who use
every trick in the book to save a few microseconds of computing time at the
expense of clarity are not in tune with the cost structure of today’s world. You
must write programs with people as well as computers in mind.

At the same time, do not get the false impression that the efficiency of a
solution is no longer important. To the contrary, in many situations efficiency
is the prime determinant of whether a solution is even usable. The point is that
a solution’s efficiency is only one of many factors that you must consider. If
two solutions have approximately the same efficiency, other factors should
dominate the comparison. However, when the efficiencies of solutions differ
significantly, this difference can be the overriding concern. The stages of the
problem-solving process at which you should be most concerned about effi-
ciency are those during which you develop the underlying methods of solu-
tion. The choice of a solution’s components—the algorithms and ways to
store data—rather than the code you write, leads to significant differences in
efficiency.

Another factor in software development costs is code reusability. Making
use of existing code can reduce the cost and time needed to develop a solution.
It also reduces maintenance costs since reused components are generally well
designed and more comprehensively tested. Within the software development
process, code reuse typically emerges in two ways. First, components available
from code libraries and open source repositories can often be adapted and used
in a system. Note that the original design of these off-the-shelf components is
completely independent of the current software development activity, yet these
components are adapted and refined to be part of the current solution. The
second way that code reuse emerges is when components within a project are
designed in such a way that allows them to be the basis for more specific com-
ponents later in the development process.

This book advocates a problem-solving philosophy that views the cost of a
solution as multidimensional. This philosophy is reasonable in today’s world,
and it likely will be reasonable in the years to come.

2.2 Achieving an Object-Oriented Design

You have seen the importance of specifying the objects during the design of a
solution, but how do you determine the objects in the first place? The tech-
niques that help you determine the objects for a particular solution are the
subject of entire texts and future courses; these techniques quickly go beyond
this book’s scope. This section will provide an overview of two general design
techniques—abstraction and information hiding—which is followed by a dis-
cussion of object-oriented design and functional decomposition.
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Abstraction and Information Hiding

Procedural abstraction. When you design a method as part of a solution to
a problem, each method begins as a box that states what it does but not how it
does it. No one box may “know” how any other box performs its task—it may
know only what that task is. For example, if one part of a solution is to sort
some data, one of the boxes will be a sorting algorithm, as Figure 2-2 illus-
trates. The other boxes will know that the sorting box sorts, but they will not
know how it sorts. In this way, the various components of a solution are kept
isolated from one another.

Procedural abstraction separates the purpose of a method from its imple-
mentation. Abstraction specifies each method clearly before you implement it in
a programming language. For example, what does the method assume and
what action does it take? Such specifications will clarify the design of your solu-
tion because you will be able to focus on its high-level functionality without
the distraction of implementation details. In addition, these principles allow
you to modify one part of a solution without significantly affecting the other
parts. For example, you should be able to change the sorting algorithm in the
previous example without affecting the rest of the solution.

As the problem-solving process proceeds, you gradually refine the boxes
until eventually you implement their actions by writing actual Java code. Once
a method is written, you can use it without knowing the particulars of its algo-
rithm as long as you have a statement of its purpose and a description of its
parameters. Assuming that the method is documented properly, you will be
able to use it knowing only its declaration and its initial descriptive comments;
you will not need to look at its implementation.

Procedural abstraction is essential to team projects. After all, in a team situation,
you will have to use methods written by others, frequently without knowledge of

Specify what to do, 
not how to do it

sort

aBox

Unorganized data Data sorted into
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Sort this data for
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you do it.

The details of the sorting algorithm are hidden from other parts of the solution

FIGURE 2-2
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their algorithms. Will you actually be able to use such a method without studying its
code? In fact, you do so each time you use a method from the Java API, such as
Math.sqrt, as was noted earlier.

Data abstraction. Consider now a collection of data and a set of operations
on the data. The operations might include ones that add new data to the col-
lection, remove data from the collection, or search for some data. Data
abstraction focuses on what the operations do instead of on how you will
implement them. The other modules of the solution will “know” what opera-
tions they can perform, but they will not know how the data is stored or how
the operations are performed.

For example, you have used an array, but have you ever stopped to think
about what an array actually is? You will see many pictures of arrays throughout
this book. This artist’s conception of an array might resemble the way a Java
array is implemented on a computer, and then again it might not. The point is
that you are able to use an array without knowing what it “looks like”—that is,
how it is implemented. Although different systems may implement arrays in dif-
ferent ways, the differences are transparent to the programmer. For instance,
regardless of how the array years is implemented, you can always store the value
1492 in location index of the array by using the statement

years[index] = 1492;

and later write out that value by using the statement

System.out.println(years[index]);

Thus, you can use an array without knowing the details of its implementation,
just as you can use the method Math.sqrt without knowing the details of its
implementation.

Most of this book is about data abstraction. To enable you to think
abstractly about data—that is, to focus on what operations you will perform
on the data instead of how you will perform them—you should define an
abstract data type, or ADT. An ADT is a collection of data and a set of oper-
ations on the data. You can use an ADT’s operations, if you know their specifi-
cations, without knowing how the operations are implemented or how the
data is stored.

Ultimately, someone—perhaps you—will implement the ADT by using a
data structure, which is a construct that you can define within a programming
language to store a collection of data. For example, you might store some data
in a Java array of integers or in an array of objects or in an array of arrays.

Within problem solving, abstract data types support algorithms, and algo-
rithms are part of what constitutes an abstract data type. As you design a solu-
tion, you should develop algorithms and ADTs in tandem. The global algorithm
that solves a problem suggests operations that you need to perform on the data,
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which in turn suggest ADTs and algorithms for performing the operations on
the data. However, the development of the solution may proceed in the opposite
direction as well. The kinds of ADTs that you are able to design can influence
the strategy of your global algorithm for solving a problem. That is, your knowl-
edge of which data operations are easy to perform and which are difficult can
have a large effect on how you approach a problem.

As you probably have surmised from this discussion, you often cannot
sharply distinguish between an “algorithms problem” and a “data structures
problem.” Frequently, you can look at a program from one perspective and
feel that the data structures support a clever algorithm and then look at the
same program from another perspective and feel that the algorithms support a
clever data structure.

Information hiding. As you have seen, abstraction tells you to write specifica-
tions for each module that describe its outside, or public, view. However, abstrac-
tion also helps you to identify details that you should hide from public view—
details that should not be in the specifications but should be private. The principle
of information hiding tells you not only to hide such details within a module, but
also ensures that no other module can tamper with these hidden details.

Information hiding limits the ways in which you need to deal with methods
and data. As a user of a module, you do not worry about the details of its imple-
mentation. As an implementer of a module, you do not worry about its uses.

Object-Oriented Design
One way to achieve an object-oriented design is to develop objects that
combine data and operations to produce a representation of a real-life entity or
abstraction. Such an object-oriented approach to modularity produces a col-
lection of objects that have behaviors. 

Although you may have never thought about it before, you can view many of
the things around you as objects. The alarm clock that awoke you this morning
encapsulates both time and operations such as “set the alarm.” To encapsulate
means to encase or enclose; thus, encapsulation is a technique that hides inner
details. Whereas methods encapsulate actions, objects encapsulate data as well as
actions. Even though you request the clock to perform certain operations, you
cannot see how it works. You see only the results of those operations.

Suppose that you want to write a program to display a clock on your com-
puter screen. To simplify the example, consider a digital clock without an
alarm, as Figure 2-3 illustrates. You would begin the task of designing a
modular solution by identifying the objects in the problem. 

Several techniques are available for identifying objects, but no single one is
always the best approach. One simple technique4 considers the nouns and

4. This technique is not foolproof. The problem specification must use nouns and verbs consis-
tently. If, for example, “display” is sometimes a verb and sometimes a noun, identifying objects 
and their operations can be unclear.
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verbs in the problem specifications. The nouns will suggest objects whose
actions are indicated by the verbs. For example, you could specify the clock
problem as follows:

The program will maintain a digital clock that displays the time in hours
and minutes. The hour indicator and minute indicator are both digital
devices that display values from 1 to 12 and 0 to 59, respectively. You
should be able to set the time by setting the hour and minute indicators,
and the clock should maintain the time by updating these indicators.

Even without a detailed problem specification, you know that one of the
objects is the clock itself. The clock performs operations such as

Set the time
Advance the time
Display the time

The hour indicator and minute indicator are also objects and are quite similar
to each other. Each indicator performs operations such as

Set its value
Advance its value
Display its value

In fact, both indicators can be the same type of object. A set of objects
that have the same type is called a class. Thus, what you need to specify is not
a particular object, but a class of objects. In fact, you need a class of clocks and
a class of indicators. A clock object, which is an instance of the clock class, will
then contain two indicator objects, which are instances of the indicator class.

Chapter 4 discusses encapsulation further and, in particular, its relationship
to Java classes. In subsequent chapters, you will study various ADTs and their
implementations as Java classes. The focus will be on data abstraction and
encapsulation. This approach to programming is object based.

A digital clock

FIGURE 2-3
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Object-oriented programming, or OOP, adds two more principles to
encapsulation:

Classes can inherit properties from other classes. For example, once you
have defined a class of clocks, you can design a class of alarm clocks that inher-
its the properties of a clock but adds operations to provide an alarm. You will
be able to produce an alarm clock quickly because the clock portion is done.
Thus, inheritance allows you to reuse classes that you defined earlier—
perhaps for different but related purposes—with appropriate modification.

Inheritance may make it impossible for the compiler to determine which
operation you require in a particular situation. However, polymorphism—
which literally means many forms—enables this determination to be made at
execution time. That is, the outcome of a particular operation depends upon
the objects on which the operation acts. For example, if you use the + operator
with numeric operands in Java, addition occurs, but if you use it with string
operands, concatenation occurs. Although in this simple example, the com-
piler can determine the correct meaning of +, polymorphism allows situations
in which the meaning of an operation is unknown until execution time.

Chapter 8 discusses inheritance and polymorphism further.

Functional Decomposition
Generally, an object-oriented approach initially focuses on the data aspects of
the design. But equally important is the design of the methods that imple-
ment the behavior of the objects. Recall that we want the methods within a
class to be highly cohesive—they should represent a single task to be per-
formed in an object. Functional decomposition (also referred to as top down
design) can help us break down complex tasks within an object into more
manageable single-purpose tasks and subtasks.

The philosophy of functional decomposition is that you should address a task at
successively lower levels of detail. Consider a simple example. Suppose that you
wanted to find the median among a collection of test scores. Figure 2-4 uses a
structure chart to illustrate the hierarchy of, and interaction among, the methods
that solve this problem. At first, each method is little more than a statement of what
it needs to solve and is devoid of detail. You refine each method by partitioning it
into additional smaller methods. The result is a hierarchy of methods; each method is
refined by its successors, which solve smaller problems and contain more detail about
how to solve the problem than their predecessors. The refinement process continues

Three Principles of Object-Oriented Programming
1. Encapsulation: Objects combine data and operations.
2. Inheritance: Classes can inherit properties from other classes.
3. Polymorphism: Objects can determine appropriate operations at 

execution time.

KEY CONCEPTS
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until the methods at the bottom of the hierarchy are simple enough for you to trans-
late directly into Java code that solves very small, independent problems. 

Notice in Figure 2-4 that you can break the solution down into three
independent tasks:

Read the test scores
Sort the scores
Get the "middle" score

If the three methods in this example perform their tasks, then by calling them
in order you will correctly find the median, regardless of how each method per-
forms its task.

You begin to develop each method by dividing it into subtasks. For exam-
ple, you can refine the task of reading the test scores by dividing it into the fol-
lowing two subtasks:

Prompt the user for a score
Place the score into an array

You continue the solution process by developing, in a similar manner, methods
for each of these two tasks. Finally, you can use pseudocode to specify the
details of the algorithms.

General Design Guidelines
Typically, you use object-oriented design (OOD), functional decomposition
(FD), abstraction, and information hiding when you design a solution to a
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problem. The following design guidelines summarize an approach that leads to
modular solutions.

Modeling Object-Oriented Designs Using UML
The Unified Modeling Language (UML) is a modeling language used to
express object-oriented designs. UML provides specifications for both dia-
grams and text-based descriptions. The diagrams are particularly useful in
showing the overall design of a solution, including class specifications and the
various ways that the classes interact with each other. It is fairly common to
have a number of classes involved in a solution, and thus the ability to show
the interaction among classes is one of the strengths of UML.

This text focuses on the design of the classes themselves, and there-
fore only the class diagrams and associated syntax are presented here.
Class diagrams specify the name of the class, the data members of the
class, and the operations. Figure 2-5 shows a class diagram for the class
Clock discussed earlier. The top section contains the class name. The
middle section contains the data members that represent the data in the
class, and the bottom section contains the operations. Note that the
diagram is quite general; it does not really dictate how the class is actually
implemented. It typically represents a conceptual model of the class that
is language independent.

In conjuction with the class diagrams, UML also provides a text-based
notation to represent the data members and operations for classes. This nota-
tion can be incorporated into the class diagrams, but usually not to the fullest
extent because it tends to clutter the diagrams. This text-based representation
is used to describe the classes in this text, because it provides a more complete
specification than the diagrams. 

The UML syntax for data members is 

visibility name: type = defaultValue

Design Guidelines
1. Use OOD and FD together to produce modular solutions. That is,

develop abstract data types and algorithms in tandem.
2. Use OOD for problems that primarily involve data.
3. Use FD to design algorithms for an object’s operations.
4. Consider FD to design solutions to problems that emphasize algo-

rithms over data.
5. Focus on what, not how, when designing both ADTs and algorithms.
6. Consider incorporating previously written software components into 

your design.

KEY CONCEPTS
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where

■ visibility is + (public) or – (private). A third possibility is # (protected),
which is discussed in Chapter 9.

■ name is the name of the data member.

■ type is the data type of the data member.

■ defaultValue is an initial value for the data member.

As seen in the class diagrams, at a minimum the name should be provided.
The defaultValue is used only in situations where a default value is appropri-
ate. In some cases you may also want to omit the type of the data member and
leave it to the implementation to provide that detail. This text will use the fol-
lowing names for common argument types: integer for integer values, float
for floating-point values, boolean for boolean values, and string for string
values. Note that these names do not necessarily match the corresponding Java
data types because this notation is meant to be language independent.

Here is the text-based notation for the data members in the class Clock
shown in Figure 2-5:

-hour: integer

-minute: integer

-second: integer

The data members hour, minute, and second are declared private, as sug-
gested by the concept of information hiding.

The UML syntax for operations is more involved: 

visibility name(parameter-list): return-type {property-string}

Clock

hour

minute

second

setTime()

advanceTime()

displayTime()

UML diagram for the class Clock

FIGURE 2-5
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where

■ visibility is the same as specified for data members.

■ name is the name of the operation.

■ parameter-list contains comma-separated parameters whose syntax is
as follows:

direction name: type = defaultValue

where

■ direction is used to show whether the parameter is used for input (in),
output (out), or both (inout).

■ name is the parameter.

■ type is the data type of the parameter.

■ defaultValue is a value that should be used for the parameter if no argu-
ment is provided.

■ return-type is the data type of the result of the operation. If the operation
does not return a value, this is left blank.

■ property-string indicates property values that apply to the operation.

Like the class diagrams for data members, the class diagrams for operations
at a minimum provide the name of the operation. Sometimes the parameter-list
is included if it clarifies the understanding of the class functionality.

The property-string has a variety of possible values, but of interest in this
text is the property query. It is a way to indicate that the operation does not
modify any data in the class.

Here is the text-based notation for the operations in the class Clock:

+setTime(in hr: integer, in min: integer, in sec: integer)
-advanceTime()
+displayTime() {query}

Here we specified the operations setTime and displayTime as public, and
advanceTime as private. The function displayTime also has the property
query specified, as an indication that it does not change any of the data; the
function is used only to display the data.

UML class diagrams provide additional notation to illustrate relationships
between classes. Suppose that you are asked to model a banking system appli-
cation. The specification is as follows:

Design a banking system that assigns checking and savings accounts to
customers. The bank information includes a name and routing
number. Both types of accounts allow balance retrieval, deposits, and
withdrawals. A customer may have multiple accounts. Each customer’s
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name and address are stored in the system, and each account has a
number assigned to it. Savings accounts earn interest and checking
accounts charge for each check when the balance falls below a
minimum amount. These adjustments are reflected when the cus-
tomer requests the current account balance. 

Several classes might be designed to represent the various aspects of a bank,
as illustrated in Figure 2-6. These classes include a Bank class, an Account class,
and a Customer class. Associations between classes are shown with a line, with
the option to specify the cardinality between the associations. For example, a
customer can have one or more accounts, which is illustrated with the notation
"1…*" (one to many). Classes may also have different types of relationships
with each other. For example, the Savings and Checking account classes are
both derived from the Account class, and they inherit the Account class’s data
members and operations. Inheritance is represented with an open triangle point-
ing to the parent class. Note that the Checking and Savings classes have their

Bank

-name: string
-routingNum: int

-createAccount()

Account

-accountNum: integer
-balance: float

Customer

-custname: string
-address: string

+getBalance() {query}
+withdraw()
+deposit

-chargePerCheck: float
-numCheck: integer
-minBalance: float

Savings

-interestRate: float

+getBalance() {query}

+getBalance() {query} 

Checking

* 1

*

1

UML diagram for a banking system
FIGURE 2-6
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own getBalance functions, which override, or replace, the getBalance func-
tion of the parent class, in order to make the necessary calculations for charges
and interest. A class may also have a relationship with another class by contain-
ing an instance of that class as part of its definition. In the banking example, a
bank contains one or more accounts. This type of relationship is called contain-
ment and is represented by positioning a diamond next to the containing class.
Inheritance and containment are discussed in more detail in Chapter 9.

Advantages of an Object-Oriented Approach
The time that you expend on program design can increase when you use
object-oriented programming (OOP). In addition, the solution that OOP
techniques produce will typically be more general than is absolutely necessary
to solve the problem at hand. The extra effort that OOP requires, however, is
usually worth it.

When using object-oriented design in the solution to a problem, you need
to identify the classes that are involved. You identify the purpose of each class
and how it interacts with other classes. This leads to a specification for each
class that identifies the operations and data. You then focus on the implemen-
tation details for each of the classes, including the use of top-down design to
facilitate the development of the operations. It is easier to do the implementa-
tion when you focus on one class at a time.

Once you have implemented a class, you must test it at two different
levels. First, you must test the class operations. This is usually done by writing
a small program that calls the various operations and tests the results against
the specifications provided for the operation. Once you have tested each indi-
vidual class in this way, you should test scenarios in which the classes are
expected to work together to solve the larger problem.

When you identify the classes involved in your solution, you will often find
that you want a family of related classes. This stage of the design process is
time-consuming, particularly if you have no existing classes upon which to
build. Once you have implemented a class (called the ancestor class), the
implementation of each new class (the descendant class) proceeds more rap-
idly, because you can reuse the properties and operations of the ancestor class.
For example, as was mentioned earlier, once you have defined a class of clocks,
you can design a class of alarm clocks that inherits the properties of a clock but
adds operations to provide an alarm. The implementation of the class of alarm
clocks would have been much more time-consuming if you did not have a class
of clocks on which to base it. Looking ahead, you can reuse previously imple-
mented classes in future programs, either as is or with modifications that can
include new classes derived from your existing ones. This reuse of classes can
actually reduce the time requirements of an object-oriented design.

OOP also has a positive effect on other phases of the software life cycle,
such as program maintenance and verification. You can make one modification
to an ancestor class and affect all of its descendants. Without inheritance, you
would need to make the same change to many modules. In addition, you can
add new features to a program by adding descendant classes that do not affect
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their ancestors and, therefore, do not introduce errors into the rest of the pro-
gram. You can also add a descendant class that modifies its ancestor’s original
behavior, even though that ancestor was written and compiled long ago.

2.3 A Summary of Key Issues in 
Programming

Given that a good solution is one that, in the course of its life cycle, incurs a
small cost, the next questions to ask are, what are the specific characteristics of
good solutions, and how can you construct good solutions? This section sum-
marizes the answers to these very difficult questions.

The programming issues that this section discusses should be familiar to
you. However, it is usually the case that the novice programmer does not truly
appreciate their importance. After the first course in programming, many stu-
dents still simply want to “get the thing to run.” The discussion that follows
should help you realize just how important these issues really are.

One of the most widespread misconceptions held by novice programmers
is that a computer program is “read” only by a computer. As a consequence,
they tend to consider only whether the computer will be able to “understand”
the program—that is, will the program compile, execute, and produce the
correct output? The truth is, of course, that other people often must read and
modify programs. In a typical programming environment, many individuals share
a program. One person may write a program, which other people use in conjunc-
tion with other programs written by other people, and a year later, a different
person may modify the program. It is therefore essential that you take great care
to design a program that is easy to read and understand.

You should always keep in mind the following six issues of program struc-
ture and design:

Modularity
Using object-oriented design for software development inherently leads to a
modular design. As this book will continually emphasize, you should strive for
modularity in all phases of the problem-solving process, beginning with the

People read 
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1. Modularity
2. Modifiability
3. Ease of use
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initial design of a solution. You know from the earlier discussion of object-
oriented design that many programming tasks become more difficult as the
size and complexity of a program grows. Modularity slows the rate at which
the level of difficulty grows. More specifically, modularity has a favorable
impact on the following aspects of programming:

■ Constructing the program. The primary difference between a small
modular program and a large modular program is simply the number of
modules each contains. Because the modules are independent, writing one
large modular program is not very different from writing many small,
independent programs. On the other hand, working on a large nonmodu-
lar program is more like working on many interrelated programs simulta-
neously. Modularity also permits team programming, where several
programmers work independently on their own modules before combin-
ing them into one program. 

■ Debugging the program. Debugging a large program can be a mon-
strous task. Imagine that you type a 10,000-line program and eventually
get it to compile. Neither of these tasks would be much fun. Now imagine
that you execute your program and, after a few hundred lines of output,
you notice an incorrect number. You should anticipate spending the next
day or so tracing through the intricacies of your program before discover-
ing a problem such as an erroneous arithmetic expression.

A great advantage of modularity is that the task of debugging a large
program is reduced to one of debugging many small programs. When you
begin to code a module, you should be almost certain that all other
modules coded so far are correct. That is, before you consider a module
finished, you should test it extensively, both separately and in context with
the other modules, by calling it with actual arguments carefully chosen to
induce all possible behaviors of the modules. If this testing is done thor-
oughly, you can feel fairly sure that any problem is a result of an error in
the last module added. Modularity isolates errors.

More theoretically, as was mentioned before, you can use formal 
methods to establish the correctness of a program. Modular programs are
amenable to this verification process.

■ Reading the program. A person reading a large program may have
trouble seeing the forest for the trees. Just as a modular design helps the
programmer cope with the complexities of solving a problem, so too will a
modular program help its reader understand how the program works. A
modular program is easy to follow because the reader can get a good idea
of what is going on without reading any of the code. A well-written
method can be understood fairly well from only its name, initial com-
ments, and the names of the other methods that it calls. Readers of a
program need to study actual code only if they require a detailed under-
standing of how the program operates. Program readability is discussed
further in the section on style later in this chapter.

Modularity facili-
tates programming

Modularity isolates 
errors

Modular programs 
are easy to read
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■ Modifying the program. Modifiability is the topic of the next section,
but as the modularity of a program has a direct bearing on its modifiabil-
ity, a brief mention is appropriate here. A small change in the require-
ments of a program should require only a small change in the code. If
this is not the case, it is likely that the program is poorly written and, in
particular, that it is not modular. To accommodate a small change in the
requirements, a modular program usually requires a change in only a few
of its modules, particularly when the modules are independent (that is,
loosely coupled) and each module performs a single well-defined task
(that is, is highly cohesive).

When making changes to a program, it is best to make a few at a time. 
By maintaining a modular design, you can reduce a fairly large modifica-
tion to a set of small and relatively simple modifications to isolated parts of
the program. Modularity isolates modifications.

■ Eliminating redundant code. Another advantage of modular design is
that you can identify a computation that occurs in many different parts of
the program and implement it as a method. Thus, the code for the compu-
tation will appear only once, resulting in an increase in both readability
and modifiability. The example in the next section demonstrates this point.

Modifiability
Imagine that the specification for a program changes after some period of time.
Frequently, people require that a program do something differently than they
specified originally, or they ask that it do more than they requested originally.
This section offers two examples of how you can make a program easy to
modify: through the use of methods and named constants.

Methods. Suppose that a library has a large program to catalog its books. At
several points, the program displays the information about a requested book. At
each of these points, the program could include a System.out.println state-
ment to display the book’s call number, author, and title. You could also replace
each occurrence of this statement with a call to a method displayBook that dis-
plays the same information about the book. Alternatively, you could provide an
implementation of the method toString in the book class that contains the
information you want to display about a book. The method toString is
invoked when a book object appears in a System.out.println statement.

Not only does the use of a method such as displayBook have the obvious
advantage of eliminating redundant code, it also makes the resulting program
easier to modify. For example, to change the format of the output, you need to
change only the implementation of displayBook instead of numerous occur-
rences of the System.out.println statement. If you had not used a method,
the modification would have required you to make changes at each point
where the program displays the information. Merely finding each of these
points could be difficult, and you probably would overlook a few. In this
simple example, the advantages of using methods should be clear.

Modularity isolates 
modifications

Modularity elimi-
nates redundancies
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For another illustration, recall the earlier example of a solution that, as one
of its tasks, sorted some data. Developing the sorting algorithm as an indepen-
dent module and eventually implementing it as a method would make the
program easier to modify. For instance, if you found that the sorting algorithm
was too slow, you could replace the sort method without even looking at the rest
of the program. You could simply “cut out” the old method and “paste in” the
new one. If instead the sort was integrated into the program, the required
surgery might be quite intricate.

In general, be concerned if you need to rewrite a program to accommodate
small modifications. Usually, it is easy to modify a well-structured program
slightly: Because each module solves only a small part of the overall problem, a
small change in problem specifications usually affects only a few of the modules.

Named constants. The use of named constants is another way to enhance
the modifiability of a program. For example, the restriction that an array must
be of a predefined, fixed size causes a bit of difficulty. Suppose that a program
uses an array to process the SAT scores of the computer science majors at your
university. When the program was written, there were 202 computer science
majors, so the array was declared by

int [] scores = new int[202];

The program processes the array in several ways. For example, it reads the
scores, writes the scores, and averages the scores. The pseudocode for each of
these tasks contains a construct such as

for (index = 0 through 201)
   Process the score

If the number of majors changes, not only must you revise the declaration of
scores, but you must also change each loop that processes the array to reflect
the new array size. In addition, other statements in the program might depend
on the size of the array. A 202 here, a 201 there—which to change?

On the other hand, if you use a named constant such as

final int NUMBER_OF_MAJORS = 202;

you can declare the array by using

int [] scores = new int[NUMBER_OF_MAJORS];

and write the pseudocode for the processing loops in this form:

for (index = 0 through NUMBER_OF_MAJORS - 1)
   Process the score

Named constants 
make a program 
easier to modify
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If you write expressions that depend on the size of the array in terms of the
constant NUMBER_OF_MAJORS (such as NUMBER_OF_MAJORS - 1), you can
change the array size simply by changing the definition of the constant and
compiling the program again.

Ease of Use
Another area in which you need to keep people in mind is the design of the
user interface. Humans often process a program’s input and output. Here are a
few obvious points:

■ In an interactive environment, the program should always prompt the
user for input in a manner that makes it quite clear what it expects.
For example, the prompt “?” is not nearly as enlightening as the
prompt “Please enter account number for deposit.” You should never
assume that the users of your program will know what response the
program requires.

■ A program should always echo its input. Whenever a program reads data,
either from a user or from a file, the program should include the values it
reads in its output. This inclusion serves two purposes: First, it gives the
user a check on the data entered—a guard against typos and errors in data
transmission. This check is particularly useful in the case of interactive
input. Second, the output is more meaningful and self-explanatory when it
contains a record of what input generated the output.

■ The output should be well labeled and easy to read. An output of

1800  6  1
Jones, Q.  223 2234.00 1088.19  N, J  Smith, T. 111
110.23 I,  Harris, V.  44  44000.00 22222.22

is more prone to misinterpretation than

CUSTOMER ACCOUNTS AS OF 1800 HOURS ON JUNE 1

Account status codes: N=new, J=joint, I=inactive

NAME         ACC#   CHECKING    SAVINGS     STATUS

Jones, Q.    223    $ 2234.00   $ 1088.19   N, J
Smith, T.    111    $  110.23   ---------   I
Harris, V.    44    $44000.00   $22222.22   ------

These characteristics of a good user interface are only the basics. Several
more subtle points separate a program that is merely usable from one that is
user friendly. Students tend to ignore a good user interface, but by investing a
little extra time here, you can make a big difference: the difference between a
good program and one that only solves the problem. For example, consider a
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program that requires a user to enter a line of data in some fixed format, with
exactly one blank between the items. A free-form input that allows any number
of blanks between the items would be much more convenient for the user. It
takes so little time to write code that skips blanks, so why require the user to
follow an exact format? Once you have made this small additional effort, it is a
permanent part of both your program and your library of techniques. The user
of your program never has to think about input format.

Fail-Safe Programming
A fail-safe program is one that will perform reasonably no matter how anyone
uses it. Unfortunately, this goal is usually unattainable. A more realistic goal is
to anticipate the ways that people might misuse the program and to guard
carefully against these abuses.

This discussion considers two types of errors. The first type is an error in
input data. For example, suppose that a program expects a nonnegative
integer but reads –12. When a program encounters this type of problem, it
should not produce incorrect results or abort with a vague error message.
Instead, a fail-safe program provides a message such as

-12 is not a valid number of children.
Please enter this number again.

The second type of error is an error in the program logic. Although a
discussion of this type of error belongs in the debugging section at the
end of this chapter, detecting errors in program logic is also an issue of
fail-safe programming. A program that appears to have been running cor-
rectly may, at some point, behave unexpectedly, even if the data that it
reads is valid. For example, the program may not have accounted for the
particular data that elicited the surprise behavior, even though you tried
your best to test the program’s logic. Or perhaps you modified the
program and that modification invalidated an assumption that you made
in some other part of the program. Whatever the difficulty, a program
should have built-in safeguards against these kinds of errors. It should
monitor itself and be able to indicate that something is wrong and you
should not trust the results.

Guarding against errors in input data. Suppose that you are computing
statistics about the people in income brackets between $10,000 and
$100,000. The brackets are rounded to the nearest thousand dollars:
$10,000, $11,000, and so on to $100,000. The raw data is a file of one or
more lines of the form

G   N

where N is the number of people with an income that falls into the
G-thousand-dollar group. If several people have compiled the data, several
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entries for the same value of G might occur. As the user enters data, the
program must add up and record the number of people for each value of G.
From the problem’s context, it is clear that G is an integer in the range 10 to
100 inclusive, and N is a nonnegative integer.

As an example of how to guard against errors in input, consider an input
method for this problem. The first attempt at writing this method will illustrate
several common ways in which a program can fall short of the fail-safe ideal.
Eventually you will see an input method that is much closer to the fail-safe
ideal than the original solution.

A first attempt at the class and methods might be

import java.util.Scanner;
public class IncomeStatistics {

final static int LOW_END = 10;    // low end of incomes
 final static int HIGH_END = 100;  // high end of incomes

  final static int TABLE_SIZE = HIGH_END - LOW_END + 1;

  int[] incomeData;    // used to store the income data,
      // incomeData[G] stores the total number of
      // people that fall into the G-thousand-dollar 
      // group

public IncomeStatistics() {
    incomeData = new int[TABLE_SIZE];
  }  // end constructor

public void readData() {
  // -----------------------------------------------------
  // Reads and organizes income statistics.
  // Precondition: The calling code gives directions and
  // prompts the user. Input data is error-free, and each 
  // input line is in the form G N, where N is the number of 
  // people with an income in the G-thousand-dollar group 
  // and LOW_END <= G <= HIGH_END. An input line with values 
  // of zero for both G and N terminates the input.
  // Postcondition: incomeData[G-LOW_END] = total number of
  // people with an income in the G-thousand-dollar group 
  // for each G read. The values read are displayed. 
  // -------------------------------------------------------

int group, number;                        // input values
    Scanner input = new Scanner(System.in);

for (group = LOW_END; group <= HIGH_END; ++group)  {
      // clear array
      incomeData[index(group)] = 0;
    }  // end for

This method is not 
fail-safe
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    group = input.nextInt();
    number = input.nextInt();

while ((group != 0) || (number != 0)) {
      System.out.println("Income group "+group+" contains " +

number + " people.");
      incomeData[index(group)] += number;

      group = input.nextInt();
      number = input.nextInt();
    }  // end while
  }  // end readData

private int index(int group) {
  // Returns the array index corresponding to group number.

return group - LOW_END;
  }  // end index

// other methods for class IncomeStatistics would follow

} // end IncomeStatistics

The readData method has some problems. If an input line contains unex-
pected data, the program will not behave reasonably. Consider two specific
possibilities:

■ The first integer on the input line, which the method assigns to group,
is not in the range LOW_END to HIGH_END. The reference income-
Data[index(group)] will then throw the exception IndexOutOfBounds-
Exception.

■ The second number on the input line, which the method assigns to
number, is negative. Although a negative value for number is invalid
because you cannot have a negative number of people in an income group,
the method will add number to the group’s array entry. Thus, the array
incomeData will be incorrect.

After the method reads values for group and number, it must check to see
whether group is in the range LOW_END to HIGH_END and whether number is
positive. If either value is not in range, you must handle the input error.

Instead of checking number, you might think to check the value of
incomeData[index(group)], after adding number, to see whether it is posi-
tive. This approach is insufficient. First, notice that it is possible to add a nega-
tive value to an entry of incomeData without that entry becoming negative.
For example, if number is – 4,000 and the corresponding entry in incomeData
is 10,000, the sum is 6,000. Thus, a negative value for number could remain
undetected and invalidate the results of the rest of the program.

Test for invalid input 
data
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One possible course of action for the method to take when it detects invalid
data is to raise an exception. If this is done when the bad input is detected, the
exception is thrown to the point in the program where the method was called,
and no further input is accepted from the user. Another possibility is for the
method to set an error flag, ignore the bad input line, and continue taking input
from the user. When the user has completed data entry, the method could either
throw an exception back to the calling code, or simply return a Boolean value of
false to indicate that an input error has occurred. If the input error is a rare
event, using an exception would be a good way to handle this situation. But if
the input errors are common, and it is acceptable to remove erroneous input
from the results, the return of the Boolean value is a better choice. 

The following readData method attempts to be as universally applicable as
possible and to make the program that uses it as modifiable as possible. When the
method encounters an error in input, it sets a flag, ignores the data line, and con-
tinues. By setting a flag and later returning its value, the method leaves it to the
calling module to determine the appropriate action—such as abort or continue—
when an input error occurs. Thus, you can use the same input method in many
contexts and can easily modify the action taken upon encountering an error.

public boolean readData() {
  // -----------------------------------------------------
  // Reads and organizes income statistics.
  // Precondition: The calling code gives directions and
  // prompts the user. Each input line contains exactly two 
  // integers in the form G N, where N is the number of 
  // people with an income in the G-thousand-dollar group 
  // and LOW_END <= G <= HIGH_END. An input line with 
  // values of zero for both G and N terminates the input.
  // Postcondition: incomeData[G-LOW_END] = total number
  // of people with an income in the G-thousand-dollar 
  // group. The values read are displayed. If either 
  // G or N is erroneous (G and N are not both 0, and
  // either G < LOW_END, G > HIGH_END, or N <0), 
  // the method prints a message indicating the line 
  // will be ignored, sets the return value to false, and
  // continues. In this case, the calling code should take 
  // action. The return value is true if the data is error 
  // free. 
  // -----------------------------------------------------

int group, number;              // input values
boolean dataCorrect = true;     // no data error found yet

    Scanner input = new Scanner(System.in);

for (group = LOW_END; group <= HIGH_END; ++group)  {
        // clear array
        incomeData[index(group)] = 0;
    }  // end for

A method 
that includes
fail-safe
programming
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    group = input.nextInt();
    number = input.nextInt();

while ((group != 0) || (number != 0)) {
    // Invariant: group and number are not both 0
      System.out.print("Income group "+group+" contains " +
                          number + " people.  ");

if ((group >= LOW_END) && (group <= HIGH_END) &&
                (number >=0)) {
        incomeData[index(group)] += number;
        System.out.println();
      }

else {
        System.out.println("Data not valid - ignored.");
        dataCorrect = false;
      } // end if 

      group = input.nextInt();
      number = input.nextInt();

      }  // end while
return dataCorrect;

  }  // end readData

Although this input method will behave gracefully in the face of most
common input errors, it is not completely fail-safe. What happens if an input
line contains only one integer? What happens if an input line contains a nonin-
teger? The method  would be more fail-safe if it read its input one line at a
time, and verified that the line actually contains two integer values by using the
hasnextInt() method from the Scanner class. In some contexts, this process-
ing would be a bit extreme. However, if the people who enter the data fre-
quently err by typing nonintegers, you could alter the input method easily
because the method is an isolated module. In any case, the method’s initial
comments should include any assumptions it makes about the data and an
indication of what might make the program abort abnormally.

Guarding against errors in program logic. Now consider the second type
of error that a program should guard against: errors in its own logic. These are
errors that you may not have caught when you debugged the program or that
you may have introduced through program modification.

Unfortunately, a program cannot reliably let you know when something is
wrong with it. (Could you rely on a program to tell you that something is
wrong with its mechanism for telling you that something is wrong?) You can,
however, build into a program checks that ensure that certain conditions
always hold when the program is correctly implementing its algorithm. As was
mentioned earlier, such conditions are called invariants.
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As a simple example of an invariant, consider again the previous
example. All integers in the array incomeData must be greater than or
equal to zero. Although the previous discussion argued that the method
readData should not check the validity of the entries of incomeData
instead of checking number, it could do so in addition to checking number.
For example, if the method finds that an element in the array incomeData
is outside some range of believability, it can signal a potential problem to
its users.

Another general way in which you should make a program fail-safe is to
make each method check its precondition. For example, consider the follow-
ing method, factorial, which returns the factorial of an integer:

public static int factorial(int n) {
// ---------------------------------------------------
// Computes the factorial of an integer.
// Precondition: n >= 0.
// Postcondition: Returns n * (n-1)*...*1, if n > 0; 
// returns 1 if n = 0.
// ----------------------------------------------------

int result = 1;

for (int i = n; i > 1; --i) {
    result *= i;
  }  // end for

return result;
} // end factorial

The initial comments in this method contain a precondition—informa-
tion about what assumptions are made—as should always be the case. The
value that this method returns is valid only if the precondition is met. If n is
less than zero, the method will return the incorrect value of 1.

In the context of the program for which this method was written, it may
be reasonable to make the assumption that n will never be negative. That is,
if the rest of the program is working correctly, it will call factorial only
with correct values of n. Ironically, this last observation gives you a good
reason for factorial to check the value of n : If n  is less than zero, the
warning that results from the check indicates that something may be wrong
elsewhere in the program.

Another reason the method factorial should check whether n is less than
zero is that the method should be correct outside the context of its program.
That is, if you borrow the method for use in another program, the method
should warn you if you use it incorrectly by passing it an n that is negative. A
stronger check than simply the statement of the precondition in a comment is
desirable. Thus, a method should state its assumptions and, when possible, check that
its arguments conform to these assumptions.

Methods should 
check their 
invariants
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In this example, factorial could check the value of n and, if it is negative,
return zero, since factorials are never zero. The program that uses factorial
could then check for this unusual value. 

Alternatively, factorial could abort execution if its argument was negative.
Many programming languages, such as Java, support a mechanism for error han-
dling called an exception. As discussed in Chapter 1, a module indicates that an
error has occurred by throwing an exception. A module reacts to an exception
that another module throws by catching the exception and executing code to
deal with the error condition. Error handling is discussed further in the next
section about programming style. 

Style
This section considers the following five issues of personal style in programming:

Admittedly, much of the following discussion reflects the personal taste of the
authors; certainly other good programming styles are possible.

Extensive use of methods. It is difficult to overuse methods. If a set of
statements performs an identifiable, recurring task, it should be a method.
However, a task need not be recurrent to justify the use of a method.

Although a program with all its code in-line runs faster than one that
calls methods, programs without methods are not cheaper to use. The use of
methods is cost-effective if you consider human time as a significant compo-
nent of the program’s cost. You have already seen the advantages of a
modular program. 

Use of private data fields. Each object has a set of methods that repre-
sents the operations that can be performed on the object. The object also
contains data fields to store information within the object. You should hide
the exact representation of these data fields from modules that use the object
by making all of the data fields private. Doing so supports the principle of
information hiding. The details of the object’s implementation are hidden
from view, with methods providing the only mechanism to get information
to and from the object. Even in a situation where the only operations
involved with a particular data field are read and write, the object should

Five Issues of Style
1. Extensive use of methods 
2. Use of private data fields
3. Error handling
4. Readability
5. Documentation

KEY CONCEPTS
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provide a simple method—called an accessor—that returns the data field’s
value and another method—called a mutator—that sets the data field’s
value. For example, a Person object could provide access to the data field
theName through the methods getname() to return the person’s name and
setName() to change the person’s name.

Error handling. A fail-safe program checks for errors in both its input and
its logic and attempts to behave gracefully when it encounters them. A method
should check for certain types of errors, such as invalid input or argument
values. What action should a method take when it encounters an error?
Depending on context, the appropriate action in the face of an error can range
from ignoring erroneous data and continuing execution to terminating the
program. The method readData in the income statistics program earlier in this
chapter returned a boolean value to the calling module to indicate that it had
encountered an invalid line of data. Thus, the method left it to the calling
module to decide on the appropriate action. In general, methods should
return a value or throw an exception instead of displaying a message when an
error occurs. 

In some situations, it is more appropriate for the method itself to take the
action in case of an error. In the case of a fatal error that calls for termination
of the program, Java provides a class java.lang.Error. The program will
throw an object of type java.lang.Error when the error encountered in the
program is too severe to warrant continued execution of the program. Divid-
ing an integer by zero is a simple example of a situation that will cause the
program to terminate abnormally in this manner.

Readability. For a program to be easy to follow, it should have a good struc-
ture and design, a good choice of identifiers, good indentation and use of
blank lines, and good documentation. Avoid clever programming tricks that
save a little computer time at the expense of much human time. You will see
examples of these points in programs throughout the book.

Choose identifiers that describe their purpose, that is, are self-
documenting. Distinguish between keywords, such as int, and user-defined
identifiers. This book uses the following conventions:

■ Keywords are lowercase and appear in boldface.

■ User-defined identifiers use both upper- and lowercase letters, as follows: 

� Class names are nouns, with each word in the identifier capitalized. 

� Method names are verbs, with the first letter lowercase and subsequent 
internal words capitalized. Variables begin with a lowercase letter. Remain-
ing words in multiple-word identifiers each begin with an uppercase letter.

� Named constants are entirely uppercase and use underscores to sepa-
rate words.

Use a good indentation style to enhance the readability of a program.
The layout of a program should make it easy for a reader to identify the

In case of an error, 
methods should 
return a value or 
throw an exception, 
but not display a 
message

Identifier style



144  Chapter 2 Principles of Programming and Software Engineering

program’s modules. Use blank lines to offset each method. Also, within
methods, you should indent individual blocks of code visibly and offset
them with blank lines. These blocks are generally—but are not limited
to—the actions performed within a control structure, such as a while loop
or an if statement.

You can choose from among several good indentation styles. The five most
important general requirements of an indentation style are as follows:

■ Blocks should be indented sufficiently so that they stand out clearly.

■ Indentation should be consistent: Always indent the same type of con-
struct in the same manner.

■ The indentation style should provide a reasonable way to handle the
problem of rightward drift, the problem of nested blocks bumping
against the right-hand margin of the page.

■ In a compound statement, the opening brace should be at the end of
the line that begins the compound statement; the closing brace
should line up with the beginning of the line that begins the com-
pound statement:

while (i > 0) {
statement(s)

}  // end while

■ Braces are used around all statements, even single statements, when they
are part of a control structure, such as an if-else or for statement. This
makes it easier to add statements without accidentally introducing bugs
due to forgetting to add braces.

Within these guidelines there is room for personal taste. Here is a summary of
the style you will see in this book.

■ A for or while statement is written for a simple or compound action as

while (expression) {
statement(s)

}  // end while

■ A do statement is written for a simple or compound action as

do {
statement(s)

} while (expression);

Guidelines for inden-
tation style

Indentation style in 
this book
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■ An if statement is written for simple or compound actions as

if (expression) {
statement(s)

}
else {

statement(s)
}  // end if

Nested if statements that choose among three or more different
courses of action are written as

if (condition1) {
action1

}
else if (condition2) {

action2
}
else if (condition3) {

action3
}  // end if

This indentation style better reflects the nature of the construct, which
is like a generalized switch statement:

switch (expression) {
case constant1 : action1; break;
case constant2 : action2; break;
case constant3 : action3; break;

}  // end switch

Documentation. A program should be well documented so that others can
read, use, and modify it easily. Many acceptable styles for documentation are in
use today, and exactly what you should include often depends on the particular
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program or your individual circumstances. The following are the essential fea-
tures of any program’s documentation:

Beginning programmers tend to downplay the importance of documenta-
tion because the computer does not read comments. By now, you should
realize that people also read programs. Your comments must be clear enough
for someone else to either use your method in a program or modify it. Thus,
some of your comments are for people who want to use your method, while
others are for people who will revise its implementation. You should distin-
guish between different kinds of comments.

Beginners have a tendency to document programs as a last step. You
should, however, write documentation as you develop the program. Since the
task of writing a large program might extend over a period of several weeks,
you may find that the method that seemed so obvious when you wrote it
seems confusing when you try to revise it a week later. Why not benefit from
your own documentation by writing it now, while it’s fresh in your mind?

Debugging
No matter how much care you take in writing a program, it will contain errors
that you need to track down. Fortunately, programs that are modular, clear,
and well documented are generally amenable to debugging. Fail-safe tech-
niques, which guard against certain errors and report them when they are
encountered, are also a great aid in debugging.

Many students seem to be totally baffled by errors in their programs and
have no idea how to proceed. These students simply have not learned to track

Essential Features of Program Documentation
1. An initial comment for the program that includes

a. Statement of purpose
b. Author and date
c. Description of the program’s input and output
d. Description of how to use the program
e. Assumptions such as the type of data expected
f. Statement of exceptions, that is, what could go wrong
g. Brief description of the major classes

2. Initial comments in each class that state its purpose and describe 
the data contained in the class (constants and variables)

3. Initial comments in each method that state its purpose, precondi-
tions, postconditions, and methods called

4. Comments in the body of each method to explain important fea-
tures or subtle logic

KEY CONCEPTS

Consider who 
will read your 
comments when 
you write them

You benefit 
from your own 
documentation
by writing 
it now instead 
of later
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down errors systematically. Without a systematic approach, finding a small
mistake in a large program can indeed be a difficult task.

The difficulty that many people have in debugging a program is perhaps
due in part to a desire to believe that their program is really doing what it is
supposed to do. For example, on receiving an execution-time error message at
line 1098, a student might say, “That’s impossible. The statement at line 1098
was not even executed, because it is in the else clause, and I am positive that
it was not executed.” This student must do more than simply protest. The
proper approach is either to trace the program’s execution by using available
debugging facilities or to add System.out.println statements that show
which part of the if statement was executed. By doing so, you verify the value
of the expression in the if statement. If the expression is 0 when you expect it
to be 1, the next step is to determine how it became 0.

How can you find the point in a program where something becomes other
than what it should be? Typically, a programming environment allows you to
trace a program’s execution either by single-stepping through the statements
in the program or by setting breakpoints at which execution will halt. You
also can examine the contents of particular variables by either establishing
watches or inserting temporary System.out.println statements. The key to
debugging is simply to use these techniques to tell you what is going on. This
may sound pretty mundane, but the real trick is to use these debugging aids in
an effective manner. After all, you do not simply put breakpoints, watches, and
System.out.println statements at random points in the program and have
them report random information.

The main idea is systematically to locate the points of the program that
cause the problem. A program’s logic implies that certain conditions should be
true at various points in the program. (Recall that these conditions are called
invariants.) If the program’s results differ from your expectations as stated in
the invariants (you did write invariants, didn’t you?), an error occurs. To
correct the error, you must find the first point in the program at which this dif-
ference is evident. By inserting either breakpoints and watches or Sys-
tem.out.println statements at strategic locations of a program—such as at
the entry and departure points of loops and methods—you can systematically
isolate the error.

These diagnostic techniques should inform you whether things start going
wrong before or after a given point in the program. Thus, after you run the
program with an initial set of diagnostics, you should be able to trap the error
between two points. For example, suppose that things are fine before you call
method M1, but something is wrong by the time you call M2. This kind of
information allows you to focus your attention between these two points. You
continue the process until eventually the search is limited to only a few state-
ments. There is really no place in a program for an error to hide.

The ability to place breakpoints, watches, and System.out.println state-
ments in appropriate locations and to have them report appropriate information
comes in part from thinking logically about the problem and in part from experi-
ence. Here are a few general guidelines.

Use either watches 
or temporary 
System.out.
println state-
ments to find logic 

Systematically
check a program’s 
logic to determine 
where an error 
occurs
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Debugging methods. You should examine the values of a method’s argu-
ments at its beginning and end by using either watches or System.out.println
statements. Ideally, you should debug each major method separately before using
it in your program.

Debugging loops. You should examine the values of key variables at the
beginnings and ends of loops, as the comments in this example indicate:

// check values of start and stop before entering loop
for (index = start; index <= stop; ++index) {
  // check values of index and key variables
  // at beginning of iteration
      .
      .
      .

  // check values of index and key variables
  // at end of iteration
}  // end for
// check values of start and stop after exiting loop

Debugging if statements. Just before an if statement, you should examine
the values of the variables within its expression. You can use either breakpoints
or System.out.println statements to determine which branch the if state-
ment takes, as this example indicates:

// check variables within expression before executing if 
if (expression) {
  System.out.println("Value of expression is true");
  . . .
}
else {
  System.out.println("Value of expression is false");
  . . .
}  // end if

Using System.out.println statements. System.out.println statements
can sometimes be more convenient than watches. Such statements should report
both the values of key variables and the location in the program at which the vari-
ables have those values. You can use a comment to label the location, as follows:

// This is point A 
System.out.println("At point A method compute:\n" + 
                   "x = " + x + ", y = " + y );
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Remember to either comment out or remove these statements when your
program finally works.

Using special dump methods. Often the variables whose values you wish to
examine are arrays or other, more complex data structures. If so, you should
write dump methods to display the data structures in a highly readable manner.
You can easily move the single statement that calls each dump method from
one point in the program to another as you track down an error. The time that
you spend on these methods often proves to be worthwhile, as you can call
them repeatedly while debugging different parts of the program.

Hopefully, this discussion has conveyed the importance of the effective use
of diagnostic aids in debugging. Even the best programmers have to spend
some time debugging. Thus, to be a truly good programmer, you must be a
good debugger.

1. Software engineering is a branch of computer science that studies ways to facilitate
the development of computer programs.

2. The life cycle of software consists of several phases: specifying the problem, design-
ing the algorithm, analyzing the risks, verifying the algorithm, coding the pro-
grams, testing the programs, refining the solution, using the software, and
maintaining the software.

3. A loop invariant is a property of an algorithm that is true before and after each iter-
ation of a loop. Loop invariants are useful in developing iterative algorithms and
establishing their correctness.

4. Java supports an assert statement that allows you to verify that a condition is true
at a given point in a program. 

5. When evaluating the quality of a solution, you must consider a diverse set of fac-
tors: the solution’s correctness, its efficiency, the time that went into its develop-
ment, its ease of use, and the cost of modifying and expanding it.

6. A combination of object-oriented and functional decomposition techniques will
lead to a modular solution. For problems that primarily involve data manage-
ment, encapsulate data with operations on that data by designing classes. The
nouns in the problem statement can help you to identify appropriate classes.
Break algorithmic tasks into independent subtasks that you gradually refine. In
all cases, practice abstraction; that is, focus on what a module does instead of
how it does it.

7. Take great care to ensure that your final solution is as easy to modify as possible.
Generally, a modular program is easy to modify because changes in the problem’s
requirements frequently affect only a handful of the modules. Programs should not
depend on the particular implementations of its modules.

8. A method should be as independent as possible and perform one well-defined task.

Summary
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9. A method should always include an initial comment that states its purpose, its
precondition—that is, the conditions that must exist at the beginning of a
module—and its postcondition—the conditions at the end of a module.

10. A program should be as fail-safe as possible. For example, a program should guard
against errors in input and errors in its own logic. By checking invariants—which
are conditions that are true at certain points in a program—you can monitor
correct program execution.

11. The effective use of available diagnostic aids is one of the keys to debugging. You
should use watches or System.out.println statements to report the values of
key variables at key locations. These locations include the beginnings and ends of
methods and loops, and the branches of selection statements.

12. To make it easier to examine the contents of arrays and other, more complex data
structures while debugging, you should write dump methods that display the con-
tents of the data structures. You can easily move calls to such methods as you track
down an error.

1. Your programs should guard against errors. A fail-safe program checks that an input
value is within some acceptable range and reports if it is not. An error in input should
not cause a program to terminate before it clearly reports what the error was. A fail-safe
program also attempts to detect errors in its own logic. For example, in many situa-
tions, methods should check that their arguments have valid values.

2. If you want to use the assert statement in a Java program, you must make sure
that assertions are enabled when you compile the code.

3. You can write better, correct programs in less time if you pay attention to the fol-
lowing guidelines: Write precise specifications for the program. Use a modular
design. Write pre- and postconditions for each method before you implement it.
Use meaningful identifiers and consistent indentation. Write comments, including
assertions and invariants.

The answers to all Self-Test Exercises are at the back of this book.

1. Think about the way that a cell phone manages a contact list. 

a. Write a specification for this problem. Be sure to account for the fact that there
may be many different ways to contact a single person, including e-mail.

b. Design a solution to this problem. Design at least two objects (no code here,
we are in phase 2 of the software life cycle), one for each entry in the contact
list, the other for the contact list itself. What are the data fields and methods for
these objects? Also include preconditions and postconditions for the methods.

c. Create a UML diagram that reflects your design in part b.

Cautions

Self-Test Exercises
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2. What is the loop invariant for the following?

int index = 0;
int sum = item[0];

while (index < n) {
  ++index;
  sum += item[index];
}  // end while

3. What is the loop invariant for the following? (Hint: Convert to a while loop first.)

for (int index = 0; index < n; index++) {
  sum += item[index];
}

4. Consider the following method, which interactively reads and writes the identification
number, age, salary (in thousands of dollars), and name of each individual in a group of
employees. How can you improve the program? Some of the issues are obvious, while
others are more subtle. Try to keep in mind all the topics discussed in this chapter.

public static void main(String args[]) {
int x1, x2, x3;

    String name;
    Scanner input = new Scanner(System.in);

    x1 = input.nextInt();
    x2 = input.nextInt();
    x3 = input.nextInt();

while (x1 != 0) {
      name = input.next();
      System.out.println(x1 + " " + x2 + " " + x3 + name);

      x1 = input.nextInt();
      x2 = input.nextInt();
      x3 = input.nextInt();
    }  // end while

}  // end main

5. Suppose that, due to some severe error, you must abort a program from a location
deep inside nested method calls, while loops, and if statements. Write a diagnos-
tic method that you can call from anywhere in a program. This method should take
an error code as an argument, display an appropriate error message, and terminate
program execution.

1. The greatest common divisor (GCD) of two integers is the largest positive integer
that divides both numbers without a remainder. Write a specification for a method
that computes the GCD of two integers. Include a statement of purpose, the pre-
and postconditions, and a description of the parameters.

Exercises
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2. The price of an item that you want to buy is given in dollars and cents. You pay for
it in cash by giving the clerk d dollars and c cents. Write specifications for a method
that computes the change, if any, that you should receive. Include a statement of
purpose, the pre- and postconditions, and a description of the parameters.

3. The time of day consists of an hour, minute, second, and time zone. Integer values
can be used to represent the hour (0-23) and minute (0-59). Seconds can be repre-
sented using a decimal value depending on how often the time is updated (for
example, every millisecond). The time zone can be represented using a string. So
for example, 2:30 p.m. Eastern time is 14 hours, 30 minutes with a time zone of
“EDT.” The seconds are not noted here, but will be a value between 0 and 60-for
example, 03.120 is 3 seconds and 120 milliseconds.

a. Write specifications for a method that advances any given date by one day.
Include a statement of purpose, the pre- and postconditions, and a description
of the parameters.

b. Write a Java implementation of this method. Design and specify any other
methods that you need. Include comments that will be helpful to someone who
will maintain your implementation in the future.

4. The following program counts the number of occurrences of a given word in a file,
but has many problems.  It is written using poor style, and it contains syntax errors
and even some logic errors. Identify and provide corrections for these problems so
that the program follows the style guideline in this chapter and executes properly.

import java.io.*;

public Class countWord {

static final String 
         prompt1 = "Enter the name of the text file: ";

static final String 
         PROMPT2 = "Enter the word to be counted in the file: ";

public static void main(String args) {
    // Purpose: To count the number of occurrences of a word in a 
    // text file. The user provides both the word and the text 
    // file.

    Scanner input = new Scanner(System.out);

    String Filename = input.nextLine();
    System.out.print(prompt1);

    Scanner fileInput = null;
try {

    fileInput = new Scanner(new File(Filename));
    } catch (FileNotFoundException e) {
    e.printStackTrace();
    }
    // Use anything but a letter as a delimiter
    fileInput.useDelimiter("[^a-zA-Z]+");
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    String word = input.next();
    System.out.print(PROMPT2);

while (fileInput.hasNext()) {
    String fileWord = fileInput.next();
    System.out.println(fileWord);

int color = 0;
if (Word.equalsIgnoreCase(fileWord)) {

    color++;
    }
    } // end while
    fileInput.close();
    System.out.println("The word " + word + "appeared " 

+ color + " times in the file" + Filename);
  }
} // end countWord

5. Social networking sites make it easy for people to stay in touch. Suppose you need
to design a very simple social networking program that allows a user to post mes-
sages to all of his or her friends, so that when one of the user’s friends logs into the
program, the friend sees the message. Assume that friends must be confirmed, and
that once a friendship is confirmed, each user is a friend of the other.

a. Write a specification for this problem. Note that a person may have many friends. 

b. Design a solution to this problem. Determine what objects (with their data
fields and methods) would be necessary to solve this problem.

c. Draw a UML diagram that reflects your design in part b.

6. Draw a UML diagram for an Automobile class that could be used by a car rental
company.  The data members should include the make, model, year, license plate,
mileage, amount of gasoline in the tank, and current location. When deciding on
the operations to include, be aware that only some of these data members should
be updateable, while others are read only.

7. Design a student registration system that manages student enrollment in courses. Each
course can have many students enrolled in it, but only one instructor. Information
stored on students and instructors is similar in that they all have a name, home address,
and ID.  Students also have their campus address and major stored, while instructors
have department and salary. Courses have a title, course code, meeting time, and a list
of the students enrolled in the class. Model this application using UML.

8. One way to compute the quotient and remainder of two numbers num and den is
to use repeated subtraction as shown in the following code:

int q = 0;     // the quotient
int rem = num; // the remainder

while (rem >= den) {
  rem = rem - den;
  q++;
} // end while
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The invariant for this code is

rem >= 0 and
num = q * den + rem

For the values num = 17, den = 4, prove that the invariant is true before the loop
begins, after each iteration (pass) of the loop, and when the loop terminates by
completing the following table (you may not need all passes shown). The initial
values are shown:

9. Write pre- and postconditions for the following methods:

a. A method that takes an array of test scores and returns the average 

b. A method that computes a person’s Body Mass Index (BMI), given the height
in inches and the body weight in pounds 

c. A method that computes the monthly payment for a loan given the loan
amount, the interest rate, and the loan term in months

10. Do you think that the assertion statement in Java can help you debug your pro-
gram?  Explain your answer.

11. What is the problem with the following code fragment?

num = 50;
while (num >= 0) {
     System.out.println (num);
     num = num + 1;
} // end while

12. The Fibonacci sequence is a sequence of integers, starting with 0 and 1, where
every number is the sum of the previous two. Write a program to calculate and
print the first twenty numbers of the Fibonacci sequence.

13. This chapter stressed the importance of adding fail-safe checks to a program wher-
ever possible. What can go wrong with the following method? How can you
protect yourself?

public static double getAverage(double[] x, int numItems) {
double sum = 0;
for (int i=0; i<numItems; i++){

    sum += x[i];
  } // end for

return sum/numItems;
} // end getAverage

pass q rem rem >= 0 num = q * den + rem

initially 0 17 true 17 = 0 * 17 + 17, true

1

2

3

4

5
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14. Write the loop invariants for the code segments shown:

a. int i = 10;
while (i < 100) 
  i++;

b. int product = 1;
for (int i = 2; i <= n; i++)
  product = product * (2 * i - 1);

c. int c = 0;
int p = 1;
while (c < b) {
  p = p * a;
  c++;
} // end while

15. In the following code, assume that the array item has been initialized with random
integer values. Write the loop invariant for the following:.

int index = 0;
while (index < item.length)

if (item[index] > 0) {
         sum += item[index];
   } // end if
   ++index;
} // end while

16. Using a for loop, write a program that displays the squares of prime numbers
greater than 0 and less than or equal to a given number n.

17. The following code is supposed to compute the floor of the square root of its input
value x. (The floor of a number n is the largest integer less than or equal to n. )

  // Computes and writes floor(sqrt(x)) for
  // an input value x >= 0.

public static void main(String args[]) {
int x;  // input value

    Scanner input = new Scanner(System.in);

    // initialize
int result = 0;  // will equal floor of sqrt(x)
int temp1 = 1;
int temp2 = 1;

    // read input 
    x = input.nextInt();

    // compute floor
while (temp1 < x) {

      ++result;
      temp2 += 2;
      temp1 += temp2;
    }  // end while
    System.out.println("The floor of the square root of "
                       + x + " is " + result);

}  // end main
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This program contains an error.

a. What output does the program produce when x = 64?

b. Run the program and remove the error. Describe the steps that you took to find
the error.

c. How can you make the program more user friendly and fail-safe?

18. Create a class where one method reads and writes, through the terminal, the values
of an array of any dimension chosen by the user. Another method of the same class
performs the addition and multiplication of two arrays. Your program should have
guard against errors.

19. Using a for loop, write a program that prints the following triangle

1
0 1
0 1 0
1 0 1 0
1 0 1 0 1
0 1 0 1 0 1

1. Consider a program that will read student information into an array of objects, sort the
array by student identification number, write out the sorted array, and compute various
statistics on the data, such as the average GPA of a student. Write complete UML specifi-
cations for this problem that reflect an object-oriented solution. What classes and
methods did you identify during the design of your solution? Write specifications, includ-
ing preconditions and postconditions, for each method.

2. Write a program that sorts and evaluates bridge hands.
The input is a stream of character pairs that represent playing cards. For example,

2C  QD  TC  AD  6C  3D  TD  3H  5H  7H  AS  JH  KH

represents the 2 of clubs, queen of diamonds, 10 of clubs, ace of diamonds, and so
on. Each pair consists of a rank followed by a suit, where rank is A, 2, . . . , 9, T, J,
Q, or K, and suit is C, D, H, or S. You can assume that each input line represents
exactly 13 cards and is error-free. Input is terminated by an end-of-file. 

For each line of input, form a hand of 13 cards. Display each hand in a readable
form arranged both by suits and by rank within suit (aces are high). Then evaluate
the hand by using the following standard bridge values:

Aces count 4
Kings count 3
Queens count 2
Jacks count 1
Voids (no cards in a suit) count 3
Singletons (one card in a suit) count 2
Doubletons (two cards in a suit) count 1
Long suits with more than 5 cards in the suit 
count 1 for each card over 5 in number

Programming Problems
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For example, for the previous sample input line, the program should produce
the output

CLUBS        10    6    2
DIAMONDS     A     Q   10    3
HEARTS       K     J    7    5    3
SPADES       A
Points = 16

because there are 2 aces, 1 king, 1 queen, 1 jack, 1 singleton, no doubletons, and
no long suits. (The singleton ace of spades counts as both an ace and a singleton.)

Optional: See how much more flexible and fail-safe you can make your program.
That is, try to remove as many of the previous assumptions in input as you can.

3. A polynomial of a single variable x with integer coefficients is an expression of the form

p(x) = c0 + c1x + c2x2 + … + cnxn,

where ci, i = 0, 1, …, n, are integers.
Create a class for polynomials up to the nth degree.  A specification of the

methods for this class is provided next:

■ public Polynomial(int maxDegree)

Constructs a new polynomial of degree maxDegree with all of the coefficients
set to zero

■ public Polynomial(int[] coef)

Constructs a new polynomial with the corresponding coefficients passed in the coef
array, with the highest degree as coef[0] and the constant term in
coef[coef.length-1]. So the array {3, 2, 1} creates the polynomial 3x2 + 2x + 1.

■ public int getCoefficient(int power)

Returns an integer representing the coefficient of the xpower term 

■ public void setCoefficient(int coef, int power)

Sets the coefficient of the xpower term to coef

■ public String toString()

Returns the String representation of the polynomial.  For example, 3x2 + 2x +
1 would be returned as 3 * x^2 + 2 * x + 1 or, more simply, 3x^2 + 2x +
1. Any term whose coefficient is zero should not appear in the string unless the
polynomial has only a single constant term of zero.

■ public double evaluate(double x)

Evaluates the polynomial for the value x and returns the result p(x)

■ public static Polynomial derivative(Polynomial p)

Returns a Polynomial representing the derivative of the polynomial p

■ public double bisection(double a, double b)
throws java.lang.IllegalArgumentException

Returns a double representing the root of the Polynomial using the
Bisection Method. The bisection method requires two initial points a and b
such that p(x) and p(x) have opposite signs; if they do not, then
java.lang.IllegalArgumentException should be thrown. Though there
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could be multiple roots between a and b, the method will return the first root
it finds such that evaluating the polynomial at p(root) < 0.000001.

One method that can be used to easily evaluate a polynomial is based upon Horner’s
rule.  Note that the fourth degree polynomial 2x4+ x3 – 4x2 + 3x + 5 can be evaluated as

  result = (((((((2 * x) + 1) * x) - 4) * x) + 3) * x) + 5

or, in more general terms

  result = (((((((c4 * x) + c3) * x) + c2) * x) + c1) * x) + c0

To find the derivative of a polynomial, you simply find the derivative of each
term in the polynomial. The derivative of a term cix

i is (i*ci)xi-1. So for example,
the derivative of

p(x) = 4x2 + 3x + 1  is

p'(x) = 8x + 3

To test the Polynomial class, create a second class called TestPolynomial.  This
class should support the following interaction with the user (user input is shaded):

Please enter the polynomial you wish to work with. You will be 
prompted to enter the coefficient for each term in the 
polynomial. You may enter zero if the term is absent from the 
polynomial.

What degree polynomial would you like to create? 

Please enter the coefficients:
   Coefficient for x^4: 
   Coefficient for x^3: 
   Coefficient for x^2: 
   Coefficient for x^1: 
   Coefficient for x^0: 

  p(x) = 2x^4 + x^3 - x^2 + 3x + 5

What would you like to do with this polynomial?
  (E/e) Evaluate it for a particular value of x
  (D/d) Get the derivative of the polynomial
  (R/r) Find the root of the polynomial

Enter option: 

For what value of x would you like to evaluate the polynomial? 

p(2.5) = 81.25

Would you like to select another option? (y/n) 

What would you like to do with this polynomial?
  (E/e) Evaluate it for a particular value of x
  (D/d) Get the derivative of the polynomial
  (R/r) Find the root of the polynomial

4

2
1
-4
3
5

e

2.5

y
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Enter option: 
p'(x) = 8 x^3 + 3 x^2 - 8 x + 3

Would you like to select another option? (y/n) 
Would you like to enter another polynomial? (y/n) 

4. Java provides a class java.lang.BigInteger that can be used to handle very large
integers. Implement a similar class, called BigInt, that can be used to do simple
calculations with very large nonnegative integers. Design this class carefully. You
will need the following:

■ A data structure to represent large numbers: for example, a string or an array for
the digits in a number.

■ public BigInt(String val)

A constructor that uses a string representation of the integer for initialization.
The string may contain leading zeros. Do not forget that zero is a valid number.

■ public String toString()

Returns the String representation of this BigInt. It should not include
leading zeros, but if the number consists of all zeros, it should return a String
with a single zero.

■ public BigInt max(BigInt val)

A method that returns a BigInt whose value is the maximum of val and the
instance of BigInt that invokes max.

■ public BigInt min(BigInt val)

A method that returns a BigInt whose value is the minimum of val and the
instance of BigInt that invokes min.

■ public BigInt add(BigInt val)

A method that returns a BigInt whose value is the sum of val and the instance
of BigInt that invokes add.

■ public BigInt multiply(BigInt val)

A method that returns a BigInt whose value is the product of val and the
instance of BigInt that invokes multiply.

Write a program that acts as an interactive calculator capable of handling very
large nonnegative integers that uses the BigInt class. This calculator need perform
only the operations of addition and multiplication.

In this program each input line is of the form

num1   op   num2

and should produce output such as

num1
op num2
--------

num3

where num1 and num2 are (possibly very large) nonnegative integers, op is the
single character + or *, and num3 is the integer that results from the desired calcu-
lation. Be sure your interface is user friendly.

Optional: Allow signed integers (negative as well as positive integers), and write
a method for subtraction.

d

n
n
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CHAPTER 3

Recursion: The Mirrors

he goal of this chapter is to ensure that you have a
basic understanding of recursion, which is one of the

most powerful techniques of solution available to the com-
puter scientist. This chapter assumes that you have had lit-
tle or no previous introduction to recursion. If, however, you
already have studied recursion, you can review this chapter
as necessary. 

By presenting several relatively simple problems, the
chapter demonstrates the thought processes that lead to
recursive solutions. These problems are diverse and include
examples of counting, searching, and organizing data. In
addition to presenting recursion from a conceptual viewpoint,
this chapter discusses techniques that will help you to under-
stand the mechanics of recursion. These techniques are par-
ticularly useful for tracing and debugging recursive methods.

Some recursive solutions are far more elegant and con-
cise than the best of their nonrecursive counterparts. For
example, the classic Towers of Hanoi problem appears to
be quite difficult, yet it has an extremely simple recursive
solution. On the other hand, some recursive solutions are
terribly inefficient, as you will see, and should not be used. 

Chapter 6 continues the formal discussion of recursion
by examining more-difficult problems. Recursion will play a
major role in many of the solutions that appear throughout
the remainder of this book. 

3.1 Recursive Solutions
A Recursive Valued Method: 

The Factorial of n
A Recursive void Method: Writing a 

String Backward

3.2 Counting Things
Multiplying Rabbits (The Fibonacci 

Sequence)
Organizing a Parade
Mr. Spock’s Dilemma (Choosing k out 

of n Things)

3.3 Searching an Array
Finding the Largest Item in an Array
Binary Search

Finding the kth Smallest Item in an 
Array

3.4 Organizing Data
The Towers of Hanoi

3.5 Recursion and Efficiency

Summary

Cautions

Self-Test Exercises

Exercises
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3.1 Recursive Solutions

Recursion is an extremely powerful problem-solving technique. Problems that
at first appear to be quite difficult often have simple recursive solutions. Like
top-down design, recursion breaks a problem into several smaller problems.
What is striking about recursion is that these smaller problems are of exactly the
same type as the original problem—mirror images, so to speak.

Did you ever hold a mirror in front of another mirror so that the two mirrors
face each other? You will see many images of yourself, each behind and slightly
smaller than the other. Recursion is like these mirror images. That is, a recursive
solution solves a problem by solving a smaller instance of the same problem! It
solves this new problem by solving an even smaller instance of the same problem.
Eventually, the new problem will be so small that its solution will be either
obvious or known. This solution will lead to the solution of the original problem.

For example, suppose that you could solve problem P1 if you had the solu-
tion to problem P2, which is a smaller instance of P1. Suppose further that you
could solve problem P2 if you had the solution to problem P3, which is a
smaller instance of P2. If you knew the solution to P3 because it was small
enough to be trivial, you would be able to solve P2. You could then use the
solution to P2 to solve the original problem P1.

Recursion can seem like magic, especially at first, but as you will see, it is a
very real and important problem-solving approach that is an alternative to itera-
tion. An iterative solution involves loops. You should know at the outset that
not all recursive solutions are better than iterative solutions. In fact, some recur-
sive solutions are impractical because they are so inefficient. Recursion, however,
can provide elegantly simple solutions to problems of great complexity. 

As an illustration of the elements in a recursive solution, consider the
problem of looking up a word in a dictionary. Suppose you wanted to look up
the word “vademecum.” Imagine starting at the beginning of the dictionary
and looking at every word in order until you found “vademecum.” That is pre-
cisely what a sequential search does, and, for obvious reasons, you want a
faster way to perform the search. 

One such method is the binary search, which in spirit is similar to the way
in which you actually use a dictionary. You open the dictionary—probably to a
point near its middle—and by glancing at the page, determine which “half” of
the dictionary contains the desired word. The following pseudocode is a first
attempt to formalize this process:

// Search a dictionary for a word by using a recursive 
// binary search

if (the dictionary contains only one page) {
    Scan the page for the word
  }

else {
    Open the dictionary to a point near the middle
    Determine which half of the dictionary contains the
      word

Recursion breaks a 
problem into smaller 
identical problems 

Some recursion 
solutions are 
inefficient and 
impractical

Complex problems 
can have simple 
recursive solutions

A binary search of a 
dictionary



Recursive Solutions 163

if (the word is in the first half of the dictionary) {
      Search the first half of the dictionary for the word
    }

else {
      Search the second half of the dictionary for the word
    }  // end if
  }  // end if

Parts of this solution are intentionally vague: How do you scan a single
page? How do you find the middle of the dictionary? Once the middle is
found, how do you determine which half contains the word? The answers to
these questions are not difficult, but they will only obscure the solution strat-
egy right now.

The previous search strategy reduces the problem of searching the dictio-
nary for a word to a problem of searching half of the dictionary for the word,
as Figure 3-1 illustrates. Notice two important points. First, once you have
divided the dictionary in half, you already know how to search the appropriate
half: You can use exactly the same strategy that you employed to search the
original dictionary. Second, note that there is a special case that is different
from all the other cases: After you have divided the dictionary so many times
that you are left with only a single page, the halving ceases. At this point, the
problem is sufficiently small that you can solve it directly by scanning the single
page that remains for the word. This special case is called the base case (or
basis or degenerate case).

This strategy is one of divide and conquer. You solve the dictionary
search problem by first dividing the dictionary into two halves and then con-
quering the appropriate half. You solve the smaller problem by using the same
divide-and-conquer strategy. The dividing continues until you reach the base
case. As you will see, this strategy is inherent in many recursive solutions.

To further explore the nature of the solution to the dictionary problem,
consider a slightly more rigorous formulation.

search(in theDictionary:Dictionary, in aWord: string)

if (theDictionary is one page in size) {
    Scan the page for aWord

Search first half of dictionary Search second half of dictionary

OR

Search dictionary

A recursive solution

FIGURE 3-1

A base case is a 
special case whose 
solution you know

A binary search 
uses a divide-and-
conquer strategy
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  }
else {

    Open theDictionary to a point near the middle
    Determine which half of theDictionary contains aWord

if (aWord is in the first half of theDictionary) {
      search(first half of theDictionary, aWord)
    }

else {
      search(second half of theDictionary, aWord)
    }  // end if
  }  // end if

Writing the solution as a method allows several important observations:

1. One of the actions of the method is to call itself; that is, the method search
calls the method search. This action is what makes the solution recursive.
The solution strategy is to split theDictionary in half, determine which
half contains aWord, and apply the same strategy to the appropriate half.

2. Each call to the method search made from within the method search
passes a dictionary that is one-half the size of the previous dictionary. That
is, at each successive call to search (theDictionary, aWord), the size of
theDictionary is cut in half. The method solves the search problem by
solving another search problem that is identical in nature but smaller in size.

3. There is one search problem that you handle differently from all of the
others. When theDictionary contains only a single page, you use another
technique: You scan the page directly. Searching a one-page dictionary is
the base case of the search problem. When you reach the base case, the
recursive calls stop and you solve the problem directly.

4. The manner in which the size of the problem diminishes ensures that you
will eventually reach the base case.

These facts describe the general form of a recursive solution. Though not
all recursive solutions fit these criteria as nicely as this solution does, the simi-
larities are far greater than the differences. As you attempt to construct a new
recursive solution, you should keep in mind the following four questions:

A recursive method 
calls itself

Each recursive call 
solves an identical, 
but smaller, problem

A test for the base 
case enables the 
recursive calls 
to stop

Eventually, one of 
the smaller prob-
lems must be the 
base case

Four Questions for Constructing Recursive 
Solutions
1. How can you define the problem in terms of a smaller problem

of the same type?
2. How does each recursive call diminish the size of the problem?
3. What instance of the problem can serve as the base case?
4. As the problem size diminishes, will you reach this base case?

KEY CONCEPTS
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Now consider two relatively simple problems: computing the factorial of a
number and writing a string backward. Their recursive solutions further illus-
trate the points raised by the solution to the dictionary search problem. These
examples also illustrate the difference between a recursive valued method and a
recursive void method.

A Recursive Valued Method: The Factorial of n
Consider a recursive solution to the problem of computing the factorial of an
integer n. This problem is a good first example because its recursive solution is
easy to understand and neatly fits the mold described earlier. However, because
the problem has a simple and efficient iterative solution, you should not use
the recursive solution in practice.

To begin, consider the familiar iterative definition of factorial(n) (more
commonly written n!):

factorial(n) = n * (n – 1) * (n – 2) * . . . * 1 for any integer n > 0

factorial(0) = 1

The factorial of a negative integer is undefined. You should have no trouble
writing an iterative factorial method based on this definition.

To define factorial(n) recursively, you first need to define factorial(n) in
terms of the factorial of a smaller number. To do so, simply observe that the
factorial of n is equal to the factorial of (n – 1) multiplied by n; that is,

factorial(n) = n * [(n – 1) * (n – 2) * . . . * 1]

= n * factorial(n – 1)

The definition of factorial(n) in terms of factorial(n – 1), which is an example
of a recurrence relation, implies that you can also define factorial(n – 1) in
terms of factorial(n – 2), and so on. This process is analogous to the dictionary
search solution, in which you search a dictionary by searching a smaller dic-
tionary in exactly the same way.

The definition of factorial(n) lacks one key element: the base case. As was
done in the dictionary search solution, here you must define one case differ-
ently from all the others, or else the recursion will never stop. The base case for
the factorial method is factorial(0), which you know is 1. Because n originally
is greater than or equal to zero and each call to factorial decrements n by 1,
you will always reach the base case. With the addition of the base case, the
complete recursive definition of the factorial method is

To be sure that you understand this recursive definition, apply it to the
computation of factorial(4). Since 4 > 0, the recursive definition states that

factorial(4) = 4 * factorial(3)

Do not use recur-
sion if a problem has 
a simple, 
efficient iterative 
solution

An iterative definition 
of factorial

A recurrence relation

⎩
⎨
⎧ 1 if n = 0

n * factorial(n – 1) if n > 0
factorial(n) = A recursive defini-

tion of factorial
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Similarly,

factorial(3) = 3 * factorial(2)

factorial(2) = 2 * factorial(1)

factorial(1) = 1 * factorial(0)

You have reached the base case, and the definition directly states that

factorial(0) = 1

At this point, the application of the recursive definition stops and you still
do not know the answer to the original question: What is factorial(4)? How-
ever, the information to answer this question is now available:

Since factorial(0) = 1, then factorial(1) = 1 * 1 = 1

Since factorial(1) = 1, then factorial(2) = 2 * 1 = 2

Since factorial(2) = 2, then factorial(3) = 3 * 2 = 6

Since factorial(3) = 6, then factorial(4) = 4 * 6 = 24

You can think of recursion as a process that divides a problem into a task
that you can do and a task that a friend can do for you. For example, if I ask
you to compute factorial(4), you could first determine whether you know
the answer immediately. You know immediately that factorial(0) is 1—that
is, you know the base case—but you do not know the value of factorial(4)
immediately. However, if your friend computes factorial(3) for you, you
could compute factorial(4) by multiplying factorial(3) by 4. Thus, your task
will be to do this multiplication, and your friend’s task will be to compute
factorial(3).

Your friend now uses the same process to compute factorial(3) as you are
using to compute factorial(4). Thus, your friend determines that factorial(3)
is not the base case, and so asks another friend to compute factorial(2).
Knowing factorial(2) enables your friend to compute factorial(3), and
when you learn the value of factorial(3) from your friend, you can compute
factorial(4).

Notice that the recursive definition of factorial(4) yields the same result as
the iterative definition, which gives 4 * 3 * 2 * 1 = 24. To prove that the two
definitions of factorial are equivalent for all nonnegative integers, you would
use mathematical induction. (See Appendix D.) Chapter 5 discusses the close
tie between recursion and mathematical induction.

The recursive definition of the factorial method has illustrated two points:
(1) Intuitively, you can define factorial(n) in terms of factorial(n – 1), and (2)
mechanically, you can apply the definition to determine the value of a given
factorial. Even in this simple example, applying the recursive definition
required quite a bit of work. That, of course, is where the computer comes in.
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Once you have a recursive definition of factorial(n), it is easy to construct
a Java method that implements the definition:

public static int fact(int n) {
// ---------------------------------------------------
// Computes the factorial of a nonnegative integer.
// Precondition: n must be greater than or equal to 0.
// Postcondition: Returns the factorial of n.
// ---------------------------------------------------

if (n == 0) {
return 1;

   } 
else {

return n * fact(n-1);
   }  // end if
}  // end fact

Suppose that you use the statement 

System.out.println(fact(3));

to call the method. Figure 3-2 depicts the sequence of computations that this
call would require.

Note that the fact method is defined as static. This means that fact is a
class method; it is invoked independently of any instance of the class that contains
fact. Instances of the class share the fact method, and if the static method is

return 3*fact(2)

3*2

return 2*fact(1)

2*1

System.out.println(fact(3));
6

return 1*fact(0)

1*1

return 1

fact(3)

FIGURE 3-2
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public, other objects can access it through the class name. For example,
java.lang.Math.sqrt provides access to the static method sqrt contained in
the class java.lang.Math. Methods that don’t need access to instance variables
and are self-contained (except for parameter input) are good candidates to be des-
ignated as static methods. For this reason, all of the recursive methods in this
chapter are declared static.

The fact method fits the model of a recursive solution given earlier in this
chapter as follows:

1. One action of fact is to call itself.

2. At each recursive call to fact, the integer whose factorial you need to
compute is diminished by 1.

3. The method handles the factorial of 0 differently from all the other factori-
als: It does not generate a recursive call. Rather, you know that fact(0) is
1. Thus, the base case occurs when n is 0.

4. Given that n is nonnegative, item 2 of this list assures you that you will
always reach the base case.

At an intuitive level, it should be clear that the method fact implements
the recursive definition of factorial. Now consider the mechanics of executing
this recursive method. The logic of fact is straightforward except perhaps for
the expression in the else clause. This expression has the following effect:

1. Each operand of the product n * fact(n-1) is evaluated.

2. The second operand—fact(n-1)— is a call to the method fact. Although
this is a recursive call (the method fact calls the method fact), there really
is nothing special about it. Imagine substituting a call to another method—
the Java API method java.lang.Math.abs, for example—for the recur-
sive call to fact. The principle is the same: Simply evaluate the method.

In theory, evaluating a recursive method is no more difficult than evaluat-
ing a nonrecursive method. In practice, however, the bookkeeping can quickly
get out of hand. The box trace is a systematic way to trace the actions of a
recursive method. You can use the box trace both to help you to understand
recursion and to debug recursive methods. However, such a mechanical device
is no substitute for an intuitive understanding of recursion. The box trace illus-
trates how compilers frequently implement recursion. As you read the follow-
ing description of the method, realize that each box roughly corresponds to an
activation record, which a compiler typically uses in its implementation of a
method call. Chapter 7 will discuss this implementation further.

The box trace. The box trace is illustrated here for the recursive method
fact. As you will see in the next section, this trace is somewhat simpler for a
void method, as no value needs to be returned.

1. Label each recursive call in the body of the recursive method. Several recur-
sive calls might occur within a method, and it will be important to distin-

fact satisfies the 
four criteria of a 
recursive solution

An activation record 
is created for each 
method call
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guish among them. These labels help you to keep track of the correct place
to which you must return after a method call completes. For example, mark
the expression fact(n-1) within the body of the method with the letter A:
if (n == 0) {

return 1;
   } 

else {
return n * fact(n-1);

   }  // end if

You return to point A after each recursive call, substitute the computed
value for fact(n-1), and continue execution by evaluating the expression
n * fact(n-1).

2. Represent each call to the method during the course of execution by a new
box in which you note the method’s local environment. More specifically,
each box will contain

a. The values of the references and primitive types of the method’s arguments.

b. The method’s local variables.

c. A placeholder for the value returned by each recursive call from the current 
box. Label this placeholder to correspond to the labeling in Step 1.

d. The value of the method itself.

When you first create a box, you will know only the values of the input
arguments. You fill in the values of the other items as you determine them
from the method’s execution. For example, you would create the box in
Figure 3-3 for the call fact(3). (You will see in later examples that you
must handle reference arguments [objects] somewhat differently from
value arguments [primitive types] and local variables.)

3. Draw an arrow from the statement that initiates the recursive process to the
first box. Then, when you create a new box after a recursive call, as described
in Step 2, you draw an arrow from the box that makes the call to the newly
created box. Label each arrow to correspond to the label (from Step 1) of
the recursive call; this label indicates exactly where to return after the call
completes. For example, Figure 3-4 shows the first two boxes generated by
the call to fact in the statement System.out.println(fact(3)).

Label each 
recursive call in 
the method

A

Each time a method 
is called, a new box 
represents its local 
environment

A box

FIGURE 3-3

n = 3
A: fact(n-1) = ?
return ?
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4. After you create the new box and arrow as described in Steps 2 and 3, start
executing the body of the method. Each reference to an item in the
method’s local environment references the corresponding value in the
current box, regardless of how you generated the current box.

5. On exiting the method, cross off the current box and follow its arrow back
to the box that called the method. This box now becomes the current box,
and the label on the arrow specifies the exact location at which execution
of the method should continue. Substitute the value returned by the just-
terminated method call into the appropriate item in the current box.
Figure 3-5 is a complete box trace for the call fact(3). In the sequence of

diagrams in this figure, the current box is the deepest along the path of arrows
and is shaded, whereas crossed-off boxes have a dashed outline.

The beginning of the box trace

FIGURE 3-4

n = 3
A: fact(n-1) = ?
return ?

n = 2
A: fact(n-1) = ?
return ?

A

System.out.println(fact(3));

n = 3
A: fact(n-1)=?
return ?

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

The initial call is made, and method fact begins execution:

At point A a recursive call is made, and the new invocation of the method fact begins execution:

At point A a recursive call is made, and the new invocation of the method fact begins execution:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n = 1
A: fact(n-1)=?
return ?

A A

A

At point A a recursive call is made, and the new invocation of the method fact begins execution:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n = 1
A: fact(n-1)=?
return ?

n = 0

return ?

A A A

This is the base case, so this invocation of fact completes:

(continues)Box trace of fact(3)

FIGURE 3-5
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(continued)

FIGURE 3-5

This is the base case, so this invocation of fact completes:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n = 1
A: fact(n-1)=?
return ?

n = 0

return 1

The method value is returned to the calling box, which continues execution:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n= 1
A: fact(n-1)=1
return ?

n = 0

return 1

The current invocation of fact completes:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

A A A

A A

A A

The method value is returned to the calling box, which continues execution:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=1
return ?

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

The current invocation of fact completes:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=1
return 2

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

The method value is returned to the calling box, which continues execution:

n = 3
A: fact(n-1)=2
return ?

n = 2
A: fact(n-1)=1
return 2

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

The current invocation of fact completes:

The value 6 is returned to the initial call.

n = 3
A: fact(n-1)=2
return 6

n = 2
A: fact(n-1)=1
return 2

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

A

A
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Invariants. Writing invariants for recursive methods is as important as
writing them for iterative methods, and is often simpler. For example, con-
sider the recursive method fact:

public static int fact(int n) {
// Precondition: n must be greater than or equal to 0.
// Postcondition: Returns the factorial of n.

if (n == 0) {
return 1;

  } 
else { // Invariant: n > 0, so n-1 >= 0. 

         // Thus, fact(n-1) returns (n-1)!
return n * fact(n-1);  // n * (n-1)! is n!

  } // end if
}  // end fact

The method requires as its precondition a nonnegative value of n. At the time of
the recursive call fact(n-1), n is positive, so n – 1 is nonnegative. Since the
recursive call satisfies fact’s precondition, you can expect from the postcondi-
tion that fact(n-1) will return the factorial of n – 1. Therefore, n * fact(n-1)
is the factorial of n. Chapter 6 uses mathematical induction to prove formally
that fact(n) returns the factorial of n.

If you ever violated fact’s precondition, the method would not behave cor-
rectly. That is, if the calling program ever passed a negative value to fact, an
infinite sequence of recursive calls, terminated only by a system-defined limit,
would occur because the method would never reach the base case. For example,
fact(-4) would call fact(-5), which would call fact(-6), and so on. 

The method ideally should protect itself by testing for a negative n. If n < 0,
the method could, for example, either return zero to indicate an error or throw an
exception. Chapter 2 discussed error checking in the two sections “Fail-Safe Pro-
gramming” and “Style”; you might want to review that discussion at this time.

A Recursive void Method: Writing a String Backward
Now consider a problem that is slightly more difficult: Given a string of char-
acters, write it in reverse order. For example, write the string “cat” as “tac”. To
construct a recursive solution, you should ask the four questions in the Key
Concepts box on page 164.

You can construct a solution to the problem of writing a string of length n
backward in terms of the problem of writing a string of length n – 1 back-
ward. That is, each recursive step of the solution diminishes by 1 the length of
the string to be written backward. The fact that the strings get shorter and
shorter suggests that the problem of writing some very short strings backward
can serve as the base case. One very short string is the empty string, the string
of length zero. Thus, you can choose for the base case the problem

Write the empty string backward

Expect a recursive 
call’s postcondition 
to be true if the pre-
condition is true

Violating fact’s pre-
condition causes 
“infinite” recursion

The base case
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The solution to this problem is to do nothing at all—a very straightforward solu-
tion indeed! (Alternatively, you could use the string of length 1 as the base case.)

Exactly how can you use the solution to the problem of writing a string of
length n – 1 backward to solve the problem of writing a string of length n
backward? This approach is analogous to the one used to construct the solu-
tion to the factorial problem, where you specified how to use factorial(n – 1)
in the computation of factorial(n). Unlike the factorial problem, however, the
string problem does not suggest an immediately clear way to proceed. Obvi-
ously, not any string of length n – 1 will do. For example, there is no relation
between writing “apple” (a string of length 5) backward and writing “pear” (a
string of length 4) backward. You must choose the smaller problem carefully
so that you can use its solution in the solution to the original problem.

The string of length n – 1 that you choose must be a substring (part) of
the original string. Suppose that you strip away one character from the origi-
nal string, leaving a substring of length n – 1. For the recursive solution to be
valid, the ability to write the substring backward, combined with the ability to
perform some minor task, must result in the ability to write the original string
backward. Compare this approach with the way you computed factorial recur-
sively: The ability to compute factorial(n – 1), combined with the ability to
multiply this value by n, resulted in the ability to compute factorial(n).

You need to decide which character to strip away and which minor task to
perform. Consider the minor task first. Since you are writing characters, a likely
candidate for the minor task is writing a single character. As for the character
that you should strip away from the string, there are several possible alterna-
tives. Two of the more intuitive alternatives are

Strip away the last character

or

Strip away the first character

Consider the first of these alternatives, stripping away the last character, as
Figure 3-6 illustrates.

How can you write 
an n-character
string backward, if 
you can write an 
(n – 1)-character 
string backward?

writeBackward(s)

writeBackward(s minus last character)

A recursive solution

FIGURE 3-6
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For the solution to be valid, you must write the last character in the string
first. Therefore, you must write the last character before you write the remain-
der of the string backward. A high-level recursive solution, given the string s, is

writeBackward(in s:string)

if (the string s is empty) {
     Do nothing -- this is the base case
   } 

else {
     Write the last character of s
     writeBackward(s minus its last character)
   }  // end if

This solution to the problem is conceptual. To obtain a Java method, you
must resolve a few implementation issues. Suppose that the method will
receive one argument: a string s to be written backward. Note that the string
begins at position 0 and ends at position s.length() – 1. That is, all charac-
ters, including blanks, in that range are part of the string. The Java method
writeBackward appears as follows:

public static void writeBackward(String s) {
// ---------------------------------------------------
// Writes a character string backward.
// Precondition: None.
// Postcondition: The string is written backward
// ---------------------------------------------------

if (s.length() > 0) {
    // write the last character
    System.out.println(s.substring(s.charAt(s.length()-1)));

    // write the rest of the string backward,
    // s minus the last character
    writeBackward(s.substring(0, s.length()-1));  // Point A
  }  // end if
  // size == 0 is the base case - do nothing
}  // end writeBackward

Notice that the recursive calls to writeBackward use successively smaller
strings. Each recursive call has the effect of stripping away the last character of
the string, which ensures that the base case will be reached.

You can trace the execution of writeBackward by using the box trace. As was
true for the method fact, each box contains the local environment of the recur-
sive call—in this case, the input argument. The trace will differ somewhat from the
trace of fact shown in Figure 3-5 because, as a void method, writeBackward

writeBackward
writes a string 
backward

writeBackward
does not return a 
computed value
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does not use a return statement to return a computed value. Figure 3-7 traces
the call to the method writeBackward with the string “cat”.

Now consider a slightly different approach to the problem. Recall the two
alternatives for the character that you could strip away from the string: the last
character or the first character. The solution just given strips away the last char-
acter of the string. It will now be interesting to construct a solution based on
the second alternative:

Strip away the first character

To begin, consider a simple modification of the previous pseudocode solu-
tion that replaces each occurrence of “last” with “first.” Thus, the method
writes the first character rather than the last and then recursively writes the
remainder of the string backward.

writeBackward1(in s:string)

if (the string s is empty) {
     Do nothing -- this is the base case
   } 

else {
     Write the first character of s
     writeBackward1(s minus its first character)
   }  // end if

Does this solution do what you want it to? If you think about this method,
you will realize that it writes the string in its normal left-to-right direction
instead of backward. After all, the steps in the pseudocode are

Write the first character of s
Write the rest of s

These steps simply write the string s. Naming the method writeBackward1
does not guarantee that it will actually write the string backward—recursion
really is not magic!

You can write s backward correctly by using the following recursive
formulation:

Write string s minus its first character backward
Write the first character of string s

In other words, you write the first character of s only after you have written the
rest of s backward. This approach leads to the following pseudocode solution:

writeBackward2(in s:string) writeBackward2
writes a string 
backward
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Box trace of writeBackward("cat")

FIGURE 3-7

s = "cat"
s.length() = 3

s = "cat"
s.length() = 3

s = "ca"
s.length() = 2

The initial call is made, and the method begins execution:

Output line: t

Point A (writeBackward(s)) is reached, and the recursive call is made.

The new invocation begins execution:

Output line: ta

Point A is reached, and the recursive call is made.

The new invocation begins execution:

A

s = "cat"
s.length() = 3

s = "ca"
s.length() = 2

A s = "c"
s.length() = 1

A

Output line: tac

Point A is reached, and the recursive call is made.

The new invocation begins execution:

s = "cat"
s.length() = 3

s = "ca"
s.length() = 2

A s = "c"
s.length() = 1

A s = "" 
s.length() = 0

A

This is the base case, so this invocation completes.

Control returns to the calling box, which continues execution:

s = "cat"
s.length() = 3

s = "ca"
s.length() = 2

A s = "c"
s.length() = 1

A s = "" 
s.length() = 0

This invocation completes. Control returns to the calling box, which continues execution:

s = "cat"
s.length() = 3

s = "ca"
s.length() = 2

A s = "c"
s.length() = 1

s = "" 
s.length() = 0

This invocation completes. Control returns to the calling box, which continues execution:

This invocation completes. Control returns to the statement following the initial call.

s = "cat"
s.length() = 3

s = "ca"
s.length() = 2

s = "c"
s.length() = 1

s = "" 
s.length() = 0
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if (the string s is empty) {
      Do nothing -- this is the base case
   } 

else {
      writeBackward2(s minus its first character)
      Write the first character of s
   }  // end if

The translation of writeBackward2 into Java is similar to that of the original
writeBackward method and is left as an exercise.

It is instructive to carefully trace the actions of the two pseudocode
methods writeBackward and writeBackward2. First, add statements to each
method to provide output that is useful to the trace, as follows:

writeBackward(in s:string)

  System.out.println("Enter writeBackward, string: " + s ); 
if (the string s is empty) {

    Do nothing -- this is the base case
  } 

else {
    System.out.println("About to write last character of " +
                       "string: " + s);
    Write the last character of s
    writeBackward(s minus its last character)  // Point A
  }  // end if
  System.out.println("Leave writeBackward, string: " + s);

writeBackward2(in s:string)

  System.out.println("Enter writeBackward2, string: " + s);
if (the string s is empty) {

    Do nothing -- this is the base case
  } 

else {
    writeBackward2(s minus its first character) // Point A
    System.out.println("About to write first character of" +
                       "string: " + s);
    Write the first character of s
  }  // end if
  System.out.println("Leave writeBackward2, string: " + s);

Figures 3-8 and 3-9 show the output of the revised pseudocode methods
writeBackward and writeBackward2, when initially given the string “cat”. 

You need to be comfortable with the differences between these two meth-
ods. The recursive calls that the two methods make generate a different sequence

Output statements 
can help you trace 
the logic of a recur-
sive method
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s = "cat"

The initial call is made, and the method begins execution:

Output stream:

Enter writeBackward, string: cat
About to write last character of string: cat
t

Enter writeBackward, string: cat
About to write last character of string: cat
t
Enter writeBackward, string: ca
About to write last character of string: ca
a
Enter writeBackward, string: c
About to write last character of string: c

This invocation completes execution, and a return is made.

Output stream:

s = "cat" s = "ca"

Enter writeBackward, string: cat
About to write last character of string: cat
t
Enter writeBackward, string: ca
About to write last character of string: ca
a

Enter writeBackward, string: cat
About to write last character of string: cat
t
Enter writeBackward, string: ca
About to write last character of string: ca
a
Enter writeBackward, string: c
About to write last character of string: c
c

Output stream:

A

s = "cat" s = "ca"
A

s = "c"
A

Output stream:

Point A is reached, and the recursive call is made. The new invocation begins execution:

s = "cat" s = "ca"
A

s = "c"
A

s = " "
A

Point A is reached, and the recursive call is made. The new invocation begins execution:

Point A is reached, and the recursive call is made. The new invocation begins execution:

Box trace of writeBackward("cat") in pseudocode

FIGURE 3-8
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Enter writeBackward, string: ca
About to write last character of string: ca
a
Enter writeBackward, string: c
About to write last character of string: c
c
Enter writeBackward, string:
Leave writeBackward, string:

This invocation completes execution, and a return is made.

s = "cat" s = "ca"
A

s = "c"
A

s = " "

Enter writeBackward string: cat

This invocation completes execution, and a return is made.

Output stream:

Enter writeBackward, string: cat
About to write last character of string: cat
t
Enter writeBackward, string: ca
About to write last character of string: ca
a
Enter writeBackward, string: c
About to write last character of string: c
c
Enter writeBackward, string:
Leave writeBackward, string:
Leave writeBackward, string: c

Enter writeBackward, string: cat
About to write last character of string: cat
t
Enter writeBackward, string: ca
About to write last character of string: ca
a
Enter writeBackward, string: c
About to write last character of string: c
c
Enter writeBackward, string:
Leave writeBackward, string:
Leave writeBackward, string: c
Leave writeBackward, string: ca

Output stream:

This invocation completes execution, and a return is made.

Output stream:

s = "cat" s = "ca"
A

s = "c" s = " "

s = "cat" s = "ca" s = "c" s = " "

(continues)
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Enter writeBackward, string: cat
About to write last character of string: cat
t
Enter writeBackward, string: ca
About to write last character of string: ca
a
Enter writeBackward, string: c
About to write last character of string: c
c
Enter writeBackward, string:
Leave writeBackward, string:
Leave writeBackward, string: c
Leave writeBackward, string: ca
Leave writeBackward, string: cat

This invocation completes execution, and a return is made.

Output stream:

s = "cat" s = "ca" s = "c" s = " "

(continued)

FIGURE 3-8

s = "cat"

s = "cat" s = "at"

The initial call is made, and the method begins execution:

Output stream:

Enter writeBackward2, string: cat

Enter writeBackward2, string: cat
Enter writeBackward2, string: at

Enter writeBackward2, string: cat
Enter writeBackward2, string: at
Enter writeBackward2, string: t

Output stream:

A

s = "cat" s = "at"
A

s = "t"
A

Output stream:

Point A is reached, and the recursive call is made. The new invocation begins execution:

Point A is reached, and the recursive call is made. The new invocation begins execution:

This invocation completes execution and a return is made

Point A is reached, and the recursive call is made. The new invocation begins execution:

s = "cat" s = "at"
A

s = "t"
A A

s = " "
Box trace of writeBackward2("cat")in pseudocode

FIGURE 3-9
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Enter writeBackward2, string: cat
Enter writeBackward2, string: at
Enter writeBackward2, string: t
Enter writeBackward2, string:
Leave writeBackward2, string:

Enter writeBackward2, string: cat
Enter writeBackward2, string: at
Enter writeBackward2, string: t
Enter writeBackward2, string:
Leave writeBackward2, string:
About to write first character of string: t
t
Leave writeBackward2, string: t

This invocation completes execution, and a return is made.

Output stream:

Point A is reached, and the recursive call is made. The new invocation begins execution:

This invocation completes execution, and a return is made.

Output stream:

s = "cat" s = "at"
A

s = "t"
A A

s = " "

s = "cat" s = "at"
A A

s = "t" s = " "

Enter writeBackward2, string: cat
Enter writeBackward2, string: at
Enter writeBackward2, string: t
Enter writeBackward2, string:
Leave writeBackward2, string:
About to write first character of string: t
t
Leave writeBackward2, string: t
About to write first character of string: at
a
Leave writeBackward2, string: at

This invocation completes execution, and a return is made.

Output stream:

A
s = "cat" s = "at" s = "t" s = " "

s = "cat" s = "at" s = "t" s = " "

Output stream:

This invocation completes execution, and a return is made.

(continues)
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of values for the argument s. Despite this fact, both methods correctly write the
string argument backward. They compensate for the difference in the sequence
of values for s by writing different characters in the string at different times rela-
tive to the recursive calls. In terms of the box traces in Figures 3-8 and 3-9,
writeBackward writes a character just before generating a new box (just before
a new recursive call), whereas writeBackward2 writes a character just after
crossing off a box (just after returning from a recursive call). When these differ-
ences are put together, the result is two methods that employ different strategies
to accomplish the same task.

This example also illustrates the value of the box trace, combined with
well-placed System.out.println statements, in debugging recursive meth-
ods. The System.out.println statements at the beginning, interior, and end
of the recursive methods report the value of the argument s. In general, when
debugging a recursive method, you should also report both the values of local
variables and the point in the method where each recursive call occurred, as in
this example:

abc(...)

  System.out.println("Calling abc from point A.");
  abc(...)  // this is point A

  System.out.println("Calling abc from point B.");
  abc(... )  // this is point B

About to write first character of string: at
a
Leave writeBackward2, string: at

s = "cat" s = "at" s = "t" s = " "

Enter writeBackward2, string: cat
Enter writeBackward2, string: at
Enter writeBackward2, string: t
Enter writeBackward2, string:
Leave writeBackward2, string:
About to write first character of string: t
t
Leave writeBackward2, string: t
About to write first character of string: at
a
Leave writeBackward2, string: at
About to write first character of string: cat
c
Leave writeBackward2, string: cat

Output stream:

This invocation completes execution, and a return is made.

(continued)

FIGURE 3-9

Well-placed but 
temporary Sys-
tem.out.println
statements can help 
you to debug a 
recursive method
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Realize that the System.out.println statements do not belong in the final
version of the method.

3.2 Counting Things

The next three problems require you to count certain events or combinations of
events or things. They are good examples of problems with more than one base
case. They also provide good examples of tremendously inefficient recursive
solutions. Do not let this inefficiency discourage you. Your goal right now is to
understand recursion by examining simple problems. Soon you will see useful
and efficient recursive solutions.

Multiplying Rabbits (The Fibonacci Sequence)
Rabbits are very prolific breeders. If rabbits did not die, their population
would quickly get out of hand. Suppose we assume the following “facts,”
which were obtained in a recent survey of randomly selected rabbits:

■ Rabbits never die.

■ A rabbit reaches sexual maturity exactly two months after birth, that is, at
the beginning of its third month of life.

■ Rabbits are always born in male-female pairs. At the beginning of every
month, each sexually mature male-female pair gives birth to exactly one
male-female pair.

Suppose you started with a single newborn male-female pair. How many
pairs would there be in month 6, counting the births that took place at the
beginning of month 6? Since 6 is a relatively small number, you can figure out
the solution easily:

You can now construct a recursive solution for computing rabbit(n), the
number of pairs alive in month n. You must determine how you can use rab-

Month 1: 1 pair, the original rabbits.

Month 2: 1 pair still, since it is not yet sexually mature.

Month 3: 2 pairs; the original pair has reached sexual maturity and has 
given birth to a second pair.

Month 4: 3 pairs; the original pair has given birth again, but the pair 
born at the beginning of month 3 is not yet sexually mature.

Month 5: 5 pairs; all rabbits alive in month 3 (2 pairs) are now sexually 
mature. Add their offspring to those pairs alive in month 4 (3 
pairs) to yield 5 pairs.

Month 6: 8 pairs; 3 newborn pairs from the pairs alive in month 4 plus 5 
pairs alive in month 5.

Remove Sys-
tem.out.println
statements after you 
have debugged 
the method
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bit(n – 1) to compute rabbit(n). Observe that rabbit(n) is the sum of the
number of pairs alive just prior to the start of month n and the number of pairs
born at the start of month n. Just prior to the start of month n, there are rab-
bit(n – 1) pairs of rabbits. Not all of these rabbits are sexually mature at the
start of month n. Only those who were alive in month n – 2 are ready to
reproduce at the start of month n. That is, the number of pairs born at the
start of month n is rabbit(n – 2). Therefore, you have the recurrence relation

rabbit(n) = rabbit(n – 1) + rabbit(n – 2)

Figure 3-10 illustrates this relationship.
This recurrence relation introduces a new point. In some cases, you solve a

problem by solving more than one smaller problem of the same type. This
change does not add much conceptual difficulty, but you must be very careful
when selecting the base case. The temptation is simply to say that rabbit(1)
should be the base case because its value is 1 according to the problem’s state-
ment. But what about rabbit(2)? Applying the recursive definition to rabbit(2)
would yield

rabbit(2) = rabbit(1) + rabbit(0)

Thus, the recursive definition would need to specify the number of pairs alive
in month 0—an undefined quantity.

One possible solution is to define rabbit(0) to be 0, but this approach
seems artificial. A slightly more attractive alternative is to treat rabbit(2) itself
as a special case with the value of 1. Thus, the recursive definition has two base
cases, rabbit(2) and rabbit(1). The recursive definition becomes

Incidentally, the series of numbers rabbit(1), rabbit(2), rabbit(3), and so on is
known as the Fibonacci sequence, which models many naturally occurring
phenomena.

A Java method to compute rabbit(n) is easy to write from the previous
definition:

rabbit(n-1) rabbit(n-2)

rabbit(n)

Recursive solution to the rabbit problem

FIGURE 3-10

Two base cases are 
necessary because 
there are two smaller 
problems of the 
same type

⎩
⎨
⎧1 if n is 1 or 2

rabbit(n – 1) + rabbit(n – 2) if n > 2rabbit(n) = 
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public static int rabbit(int n) {
// ---------------------------------------------------
// Computes a term in the Fibonacci sequence.
// Precondition: n is a positive integer.
// Postcondition: Returns the nth Fibonacci number.
// ---------------------------------------------------

if (n <= 2) {
return 1;

   } 
else  { // n > 2, so n–1 > 0 and n–2 > 0

return rabbit(n–1) + rabbit(n–2);
   }  // end if
}  // end rabbit

Should you actually use this method? Figure 3-11 illustrates the recursive
calls that rabbit(7) generates. Think about the number of recursive calls that
rabbit(10) generates. At best, the method rabbit is inefficient. Thus, its use
is not feasible for large values of n. This problem is discussed in more detail at
the end of this chapter, at which time you will see some techniques for gener-
ating a more efficient solution from this same recursive relationship.

Organizing a Parade
You have been asked to organize the Fourth of July parade, which will consist
of bands and floats in a single line. Last year, adjacent bands tried to outplay
each other. To avoid this problem, the sponsors have asked you never to place
one band immediately after another. In how many ways can you organize a
parade of length n?

Assume that you have at least n marching bands and n floats from which
to choose. When counting the number of ways to organize the parade, assume
that the sequences band-float and float-band, for example, are different enti-
ties and count as two ways.

The parade can end with either a float or a band. The number of ways to
organize the parade is simply the sum of the number of parades of each type.
That is, let

P(n) be the number of ways to organize a parade of length n

F(n) be the number of parades of length n that end with a float

B(n) be the number of parades of length n that end with a band

Then

P(n) = F(n) + B(n)

First, consider F(n). You will have a parade of length n that ends with a float
simply by placing a float at the end of any acceptable parade of length n –1.

rabbit computes 
the Fibonacci 
sequence but does 
so inefficiently
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rabbit(7)

return rabbit(6) + rabbit(5)

rabbit(6)

return rabbit(5) + rabbit(4)

rabbit(5)

return rabbit(4) + rabbit(3)

rabbit(5)

return rabbit(4) + rabbit(3)

rabbit(4)

return rabbit(3) + rabbit(2)

rabbit(4)

return rabbit(3) + rabbit(2)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(4)

return rabbit(3) + rabbit(2)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(1)

return 1

rabbit(1)

return 1

rabbit(2)

return 1

rabbit(2)

return 1

rabbit(1)

return 1

rabbit(2)

return 1

rabbit(2)

return 1

rabbit(1)

return 1

rabbit(2)

return 1

rabbit(1)

return 1

rabbit(2)

return 1

rabbit(2)

return 1

rabbit(2)

return 1

The recursive calls that rabbit(7) generates

FIGURE 3-11
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Hence, the number of acceptable parades of length n that end with a float is pre-
cisely equal to the total number of acceptable parades of length n – 1; that is,

F(n) = P(n – 1)

Next, consider B(n). The only way a parade can end with a band is if the
unit just before the end is a float. (If it is a band, you will have two adjacent
bands.) Thus, the only way to organize an acceptable parade of length n that
ends with a band is first to organize a parade of length n – 1 that ends with a
float and then add a band to the end. Therefore, the number of acceptable
parades of length n that end with a band is precisely equal to the number of
acceptable parades of length n – 1 that end with a float:

B(n) = F(n – 1)

You use the earlier fact that F(n) = P(n – 1) to obtain

B(n) = P(n – 2)

Thus, you have solved F(n) and B(n) in terms of the smaller problems P(n – 1)
and P(n – 2), respectively. You then use

P(n) = F(n) + B(n)

to obtain

P(n) = P(n – 1) + P(n – 2)

The form of this recurrence relation is identical to the solution for the multi-
plying rabbits problem.

As you saw in the rabbit problem, two base cases are necessary because the
recurrence relation defines a problem in terms of two smaller problems. As you
did for the rabbit problem, you can choose n = 1 and n = 2 for the base cases.
Although both problems use the same n’s for their base cases, there is no reason
to expect that they use the same values for these base cases. That is, there is no
reason to expect that rabbit(1) is equal to P(1) and that rabbit(2) is equal to P(2).

A little thought reveals that for the parade problem,

P(1) = 2 (The parades of length 1 are float and band.)

P(2) = 3 (The parades of length 2 are float-float, band-float, and float-
band.)

In summary, the solution to this problem is

P(1) = 2

P(2) = 3

P(n) = P(n – 1) + P(n – 2)    for n > 2

The number of 
acceptable
parades of length n
that end with a float

The number of 
acceptable parades 
of length n that end 
with a band

The number of 
acceptable parades 
of length n

Two base cases are 
necessary because 
there are two smaller 
problems of the 
same type

A recursive solution
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This example demonstrates the following points about recursion:

■ Sometimes you can solve a problem by breaking it up into cases—for
example, parades that end with a float and parades that end with a band.

■ The values that you use for the base cases are extremely important.
Although the recurrence relations for P and rabbit are the same, the differ-
ent values for their base cases (n = 1 or 2) cause different values for larger
values of n. For example, rabbit(20) = 6,765, while P(20) = 17,711. The
larger the value of n, the larger the discrepancy. You should think about
why this is so.

Mr. Spock’s Dilemma (Choosing k out of n Things)
The five-year mission of the U.S.S. Enterprise is to explore new worlds. The
five years are almost up, but the Enterprise has just entered an unexplored solar
system that contains n planets. Unfortunately, time will allow for visits to only
k planets. Mr. Spock begins to ponder how many different choices are possible
for exploring k planets out of the n planets in the solar system. Because time is
short, he does not care about the order in which he visits the same k planets.

Mr. Spock is especially fascinated by one particular planet, Planet X. He
begins to think—in terms of Planet X—about how to pick k planets out of the
n. “There are two possibilities: Either we visit Planet X, or we do not visit Planet
X. If we do visit Planet X, I will have to choose k – 1 other planets to visit from
the n – 1 remaining planets. On the other hand, if we do not visit Planet X, I
will have to choose k planets to visit from the remaining n – 1 planets.”

Mr. Spock is on his way to a recursive method of counting how many
groups of k planets he can possibly choose out of n. Let c(n, k) be the number
of groups of k planets chosen from n. Then, in terms of Planet X, Mr. Spock
deduces that

c(n, k) = (the number of groups of k planets that 
include Planet X)

+

(the number of groups of k planets that 
do not include Planet X)

But Mr. Spock has already reasoned that the number of groups that include
Planet X is c(n – 1, k – 1), and the number of groups that do not include
Planet X is c(n – 1, k). Mr. Spock has figured out a way to solve his counting
problem in terms of two smaller counting problems of the same type:

c(n, k) = c(n – 1, k – 1) + c(n – 1, k)

Mr. Spock now has to worry about the base case(s). He also needs to dem-
onstrate that each of the two smaller problems eventually reaches a base case.
First, what selection problem does he immediately know the answer to? If
the Enterprise had time to visit all the planets (that is, if k = n), no decision

The number of ways 
to choose k out of n
things is the sum of 
the number of ways 
to choose k – 1 out 
of n – 1 things and 
the number of ways 
to choose k out of 
n – 1 things
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would be necessary; there is only one group of all the planets. Thus, the first
base case is

c(k, k) = 1

If k < n, it is easy to see that the second term in the recursive definition,
c(n – 1, k), is “closer” to the base case c(k, k) than is c(n, k). However, the
first term, c(n – 1, k – 1), is not closer to c(k, k) than is c(n, k)—they are the
same “distance” apart. When you solve a problem by solving two (or more)
smaller problems, each of the smaller problems must be closer to a base case than the
original problem.

Mr. Spock realizes that the first term does, in fact, approach another trivial
selection problem. This problem is the counterpart of his first base case,
c(k, k). Just as there is only one group of all the planets (k = n), there is also
only one group of zero planets (k = 0). When there is no time to visit any of
the planets, the Enterprise must head home without any exploration. Thus, the
second base case is

c(n, 0) = 1

This base case does indeed have the property that c(n – 1, k – 1) is closer to it
than is c(n, k). (Alternatively, you could define the second base case to be
c(n, 1) = n.)

Mr. Spock adds one final part to his solution:

c(n, k) = 0    if k > n

Although k could not be greater than n in the context of this problem, the
addition of this case makes the recursive solution more generally applicable.

To summarize, the following recursive solution solves the problem of
choosing k out of n things:

You can easily derive the following method from this recursive definition:

public static int c(int n, int k) {
// ---------------------------------------------------
// Computes the number of groups of k out of n things.
// Precondition: n and k are nonnegative integers.
// Postcondition: Returns c(n, k).
// ---------------------------------------------------

if ( (k == 0) || (k == n) ) {
return 1;

  } 

Base case: There 
is one group of 
everything

Base case: There is 
one group of nothing

The number of 
groups of k things 
recursively chosen 
out of n things 

1 if k = 0
1 if k = n
0 if k > n
c(n – 1, k – 1) + c(n – 1, k) if 0 < k < n

c(n, k) = 

⎩
⎪
⎪
⎨
⎪
⎪
⎧
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else if (k > n) {
return 0;

  } 
else {

return c(n-1, k-1) + c(n-1, k);
  }  // end if
}  // end c

Like the rabbit method, this method is inefficient and not practical to
use. Figure 3-12 shows the number of recursive calls that the computation of
c(4, 2) requires.

3.3 Searching an Array

Searching is an important task that occurs frequently. This chapter began with
an intuitive approach to a binary search algorithm. This section develops the
binary search and examines other searching problems that have recursive solu-
tions. The goal is to develop further your notion of recursion.

c(4,2)

return c(3,1) + c(3,2)

c(3,1)

return c(2,0) + c(2,1)

c(3,2)

return c(2,1) + c(2,2)

c(2,1)

return c(1,0) + c(1,1)

c(2,1)

return c(1,0) + c(1,1)

c(1,0)

return 1

c(1,1)

return 1

c(1,0)

return 1

c(1,1)

return 1

c(2,2)

return 1

c(2,0)

return 1

The recursive calls that c(4, 2) generates

FIGURE 3-12
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Finding the Largest Item in an Array
Suppose that you have an array anArray of integers and you want to find the
largest one. You could construct an iterative solution without too much diffi-
culty, but instead consider a recursive formulation:

if (anArray has only one item) {
   maxArray(anArray) is the item in anArray
}
else if (anArray has more than one item) {
   maxArray(anArray) is the maximum of 
      maxArray(left half of anArray) and
      maxArray(right half of anArray)
}  // end if

Notice that this strategy fits the divide-and-conquer model that the binary
search algorithm used at the beginning of this chapter. That is, the algorithm
proceeds by dividing the problem and conquering the subproblems, as Figure
3-13 illustrates. However, there is a difference between this algorithm and the
binary search algorithm. While the binary search algorithm conquers only one
of its subproblems at each step, maxArray conquers both. In addition, after
maxArray conquers the subproblems, it must reconcile the two solutions—
that is, it must find the maximum of the two maximums. Figure 3-14 illus-
trates the computations that are necessary to find the largest integer in the
array that contains 1, 6, 8, and 3 (denoted here by <1, 6, 8, 3>).

You should develop a recursive solution based on this strategy. In so
doing, you may stumble on several subtle programming issues. The binary
search problem that follows raises virtually all of these issues, but this is a good
opportunity for you to get some practice implementing a recursive solution.

maxArray(left half of anArray) maxArray(right half of anArray)

maxArray(anArray)

Recursive solution to the largest-item problem

FIGURE 3-13

maxArray con-
quers both of its 
subproblems at 
each step
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Binary Search
The beginning of this chapter presented—at a high level—a recursive binary
search algorithm for finding a word in a dictionary. We now develop this algo-
rithm fully and illustrate some important programming issues.

Recall the earlier solution to the dictionary problem:

search(in theDictionary:Dictionary, in aWord: string)
if (theDictionary is one page in size) {

    Scan the page for aWord
  } 

else {
    Open theDictionary to a point near the middle
    Determine which half of theDictionary contains 
        aWord

if (aWord is in first half of theDictionary) {
      search(first half of theDictionary, aWord)
    } 

else {
      search(second half of theDictionary, aWord)
    }  // end if
  }  // end if

The recursive calls that maxArray(<1,6,8,3>) generates

FIGURE 3-14

return max(maxArray(<1,6>), maxArray(<8,3>))

 maxArray(<1,6,8,3>)

return 3

maxArray(<3>)

return 8

maxArray(<8>)

return 6

maxArray(<6>)

return 1

maxArray(<1>)

maxArray(<1,6>)

return max(maxArray(<1>), maxArray(<6>))

maxArray(<8,3>)

return max(maxArray(<8>), maxArray(<3>))
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Now alter the problem slightly by searching an array anArray of integers
for a given value. The array, like the dictionary, must be sorted, or else a binary
search is not applicable. Hence, assume that

anArray[0] ≤ anArray[1] ≤ anArray[2] ≤ · · · ≤ anArray[size-1] 

where size is the size of the array. A high-level binary search for the array
problem is

binarySearch(in anArray:ArrayType, in value:ItemType)

if (anArray is of size 1) {
    Determine if anArray’s item is equal to value
  } 

else {
    Find the midpoint of anArray
    Determine which half of anArray contains value

if (value is in the first half of anArray) {
      binarySearch(first half of anArray, value)
    } 

else {
      binarySearch(second half of anArray, value)
    }  // end if
  }  // end if

Although the solution is conceptually sound, you must consider several
details before you can implement the algorithm:

1. How will you pass “half of anArray” to the recursive calls
to binarySearch? You can pass the entire array at each call but have
binarySearch search only anArray[first..last],1 that is, the portion
anArray[first] through anArray[last]. Thus, you would also pass the
integers first and last to binarySearch:

binarySearch(anArray, first, last, value)

With this convention, the new midpoint is given by

mid = (first + last)/2

Then binarySearch(first half of anArray, value) becomes

binarySearch(anArray, first, mid-1, value)

1. You will see this notation in the rest of the book to represent a portion of an array.

An array must be 
sorted before you 
can apply a binary 
search to it

The array halves 
are anArray
[first..mid-1]
and anArray
[mid+1..last];
neither half contains 
anArray[mid]
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and binarySearch(second half of anArray, value) becomes

binarySearch(anArray, mid+1, last, value)

2. How do you determine which half of the array contains value? One
possible implementation of

if (value is in the first half of anArray)

is

if (value < anArray[mid])

However, there is no test for equality between value and anArray[mid].
This omission can cause the algorithm to miss value. After the previous
halving algorithm splits anArray into halves, anArray[mid] is not in
either half of the array. (In this case, two halves do not make a whole!)
Therefore, you must determine whether anArray[mid] is the value you
seek now because later it will not be in the remaining half of the array. The
interaction between the halving criterion and the termination condition
(the base case) is subtle and is often a source of error. We need to rethink
the base case.

3. What should the base case(s) be? As it is written, binarySearch termi-
nates only when an array of size 1 occurs; this is the only base case. By
changing the halving process so that anArray[mid] remains in one of the
halves, it is possible to implement the binary search correctly so that it has
only this single base case. However, it can be clearer to have two distinct
base cases as follows:

a. first > last. You will reach this base case when value is not in the 
original array.

b. value == anArray[mid]. You will reach this base case when value is in 
the original array.

These base cases are a bit different from any you have encountered previ-
ously. In a sense, the algorithm determines the answer to the problem
from the base case it reaches. Many search problems have this flavor.

4. How will binarySearch indicate the result of the search? If binary-
Search successfully locates value in the array, it could return the index of
the array item that is equal to value. Since this index would never be neg-
ative, binarySearch could return a negative value if it does not find
value in the array.

The Java method binarySearch that follows implements these ideas. The
two recursive calls to binarySearch are labeled as X and Y for use in a later
box trace of this method.

Determine whether 
anArray[mid] is 
the value you seek

Two base cases
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public static int binarySearch(int anArray[], int first, 
int last, int value) {

// Searches the array items anArray[first] through
// anArray[last] for value by using a binary search.
// Precondition: 0 <= first, last <= SIZE-1, where
// SIZE is the maximum size of the array, and
// anArray[first] <= anArray[first+1] <= ... <= 
// anArray[last].
// Postcondition: If value is in the array, the method
// returns the index of the array item that equals value;
// otherwise the method returns -1.

int index;
if (first > last) {

    index = -1;      // value not in original array
  } 

else {
    // Invariant: If value is in anArray, 
    //            anArray[first] <= value <= anArray[last]

int mid = (first + last)/2;
if (value == anArray[mid]) {

      index = mid;  // value found at anArray[mid]
    } 

else if (value < anArray[mid]) {
     // point X
      index = binarySearch(anArray, first, mid-1, value);
    } 

else {
     // point Y
      index = binarySearch(anArray, mid+1, last, value);
    } // end if
  }  // end if

return index;
}  // end binarySearch

Notice that binarySearch has the following invariant: If value occurs in the
array, then anArray[first] ≤ value ≤ anArray[last].

Figure 3-15 shows box traces of binarySearch when it searches the array
containing 1, 5, 9, 12, 15, 21, 29, and 31. Notice how the labels X and Y of
the two recursive calls to binarySearch appear in the diagram. Exercise 16 at
the end of this chapter asks you to perform other box traces with this method.

There is another implementation issue—one that deals specifically with
Java —to consider. Recall that an array is an object, and when the method
binarySearch is called, only the reference to the array is copied to the
method, not the entire array contents. This aspect of Java is particularly useful
in a recursive method such as binarySearch. If the array anArray is large,
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many recursive calls to binarySearch may be necessary. If each call copied
anArray, much memory and time would be wasted. 

A box trace of a recursive method that has an array argument requires a
new consideration. Because only the reference to anArray is passed and it is
not a local variable, the contents of the array are not a part of the method’s
local environment and should not appear within each box. Therefore, as
Figure 3-16 shows, you represent anArray outside the boxes, and all refer-
ences to anArray affect this single representation. 

Finding the kth Smallest Item in an Array
Our discussion of searching concludes with a more difficult problem. Although
you could skip this example now, Chapter 10 uses aspects of it in a sorting
algorithm.

The previous two examples presented recursive methods for finding the
largest item in an arbitrary array and for finding an arbitrary item in a sorted
array. This example describes a recursive solution for finding the kth smallest
item in an arbitrary array anArray. Would you ever be interested in such an

value = 6

first = 0

last = 7

mid =     = 3

value < anArray[3]

___

 2

X Y X

value = 6

first = 0

last = 2

mid =     =

value > anArray[1]

value = 6

first = 2

last = 2

mid =     =

value < anArray[2]

value = 6

first = 2

last = 1

first

return -1

last0+7 ___

 2

0+2 ___

 2

2+2 >1 2

X Y

value = 9

first = 0

last = 7

mid =      = 3

value < anArray[3]

____

2

value = 9

first = 0

last = 2

mid =      = 1

value > anArray[1]

____

2

value = 9

first = 2

last = 2

mid =      = 2

value = anArray[2]

return 2

0+7

____

2

2+2

0+2

(a)

(b)

Box traces of binarySearch with anArray = <1,5,9,12,15,21,29,31>:
(a) a successful search for 9; (b) an unsuccessful search for 6

FIGURE 3-15
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item? Statisticians often want the median value in a collection of data. The
median value in an ordered collection of data occurs in the middle of the col-
lection. In an unordered collection of data, there are about the same number
of values smaller than the median value as there are larger values. Thus, if you
have 49 items, the 25th smallest item is the median value.

Obviously, you could solve this problem by sorting the array. Then the kth

smallest item would be anArray[k-1]. Although this approach is a legitimate
solution, it does more than the problem requires; a more efficient solution is
possible. The solution outlined here finds the kth smallest item without com-
pletely sorting the array.

By now, you know that you solve a problem recursively by writing its solu-
tion in terms of one or more smaller problems of the same type in such a way
that this notion of smaller ensures that you will always reach a base case. For all
of the earlier recursive solutions, the reduction in problem size between recur-
sive calls is predictable. For example, the factorial method always decreases the
problem size by 1; the binary search always halves the problem size. In addi-
tion, the base cases for all the previous problems except the binary search have
a static, predefined size. Thus, by knowing only the size of the original
problem, you can determine the number of recursive calls that are necessary
before you reach the base case.

The solution that you are about to see for finding the kth smallest item
departs from these traditions. Although you solve the problem in terms of a
smaller problem, just how much smaller this problem is depends on the items
in the array and cannot be predicted in advance. Also, the size of the base

value = 6

first = 0

last = 7

mid = 3

anArray =

value = 6

first = 0

last = 2

mid = 1

anArray =

X Y

1 5 9 12 15 21 29 31

anArray

Box trace with a reference to an array

FIGURE 3-16

For all previous 
examples, you know 
the amount of reduc-
tion made in the 
problem size by 
each recursive call

You cannot predict 
in advance the size 
of either the smaller 
problems or the 
base case in the 
recursive solution to 
the k th smallest item 
problem
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case depends on the items in the array, as it did for the binary search. (Recall
that you reach a base case for a binary search when the middle item is the
one sought.) 

This “unpredictable” type of solution is caused by the nature of the prob-
lem: The relationship between the rankings of the items in any predetermined
parts of the array and the ranking of the items in the entire array is not strong
enough to determine the kth smallest item. For example, suppose that anArray
contains the items shown in Figure 3-17. Notice that 6, which is in
anArray[3], is the third smallest item in the first half of anArray and that 8,
which is in anArray[4], is the third smallest item in the second half of anArray.
Can you conclude from these observations anything about the location of the
third smallest item in all of anArray? The answer is no; these facts about parts of
the array do not allow you to draw any useful conclusions about the entire array.
You should experiment with other fixed splitting schemes as well.

The recursive solution proceeds by

1. Selecting a pivot item in the array

2. Cleverly arranging, or partitioning, the items in the array about this pivot
item

3. Recursively applying the strategy to one of the partitions

Consider the details of the recursive solution: You want to find the kth

smallest item in the array segment anArray[first..last]. Let the pivot p
be any item of the array segment. (For now, ignore how to choose p.) You can
partition the items of anArray[first..last] into three regions: S1, which
contains the items less than p; the pivot p itself; and S2, which contains the
items greater than or equal to p. This partition implies that all the items in S1
are smaller than all the items in S2. Figure 3-18 illustrates this partition.

All items in anArray[first..pivotIndex-1], in terms of array sub-
scripts, are less than p, and all items in anArray[pivotIndex+1..last] are
greater than or equal to p. Notice that the sizes of the regions S1 and S2
depend on both p and the other items of anArray[first..last].

This partition induces three “smaller problems,” such that the solution to
one of the problems will solve the original problem:

1. If S1 contains k or more items, S1 contains the k smallest items of the array
segment anArray[first..last]. In this case, the kth smallest item must

4 7 3 6 8 1 9 2

0 1 2 3 4 5 6 7

First half Second half

A sample array

FIGURE 3-17

Partition anArray into 
three parts: items 
< p, p, and items ≥ p
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be in S1. Since S1 is the array segment anArray [first..pivotIndex–
1], this case occurs if k < pivotIndex – first + 1.

2. If S1 contains k – 1 items, the kth smallest item must be the pivot p. This is
the base case; it occurs if k = pivotIndex – first + 1.

3. If S1 contains fewer than k – 1 items, the kth smallest item in anAr-
ray[first..last] must be in S2. Because S1 contains pivotIndex –
first items, the kth smallest item in anArray [first..last] is the (k –
(pivotIndex – first + 1))th smallest item in S2. This case occurs if k >
pivotIndex – first + 1.

A recursive definition can summarize this discussion. Let

kSmall(k, anArray, first, last) = 
kth smallest item in anArray[first..last]

After you select the pivot item p and partition anArray[first..last] into
S1 and S2, you have that

kSmall(k, anArray, first, last)

There is always a pivot, and since it is not part of either S1 or S2, the size
of the array segment to be searched decreases by at least 1 at each step. Thus,
you will eventually reach the base case: The desired item is a pivot. A high-level
pseudocode solution is as follows:

kSmall(in k:integer, in anArray:ArrayType, in first:integer, 
       in last:integer)
// Returns the kth smallest value in anArray[first..last].

   Choose a pivot item p from anArray[first..last]
   Partition the items of anArray[first..last] about p

S2S1

< p ≥ pp

first last

pivotIndex

A partition about a pivot

FIGURE 3-18

The kth smallest 
item in anArray
[first..last]

kSmall(k, anArray, first, pivotIndex-1)
if k < pivotIndex – first + 1

p if k = pivotIndex – first + 1
kSmall(k-(pivotIndex-first+1), anArray, 

pivotIndex+1, last) if k > pivotIndex – first + 1

=

⎩
⎪
⎨
⎪
⎧
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if (k < pivotIndex - first + 1) {
return kSmall(k, anArray, first, pivotIndex-1)

   }
else if (k == pivotIndex - first + 1) {

return p
   }

else {
return kSmall(k-(pivotIndex-first+1), anArray,

                     pivotIndex+1, last)
   }  // end if

This pseudocode is not far from a Java method. The only questions that
remain are how to choose the pivot item p and how to partition the array
about the chosen p. The choice of p is arbitrary. Any p in the array will work,
although the sequence of choices will affect how soon you reach the base case.
Chapter 10 gives an algorithm for partitioning the items about p. There you
will see how to turn the method kSmall into a sorting algorithm.

3.4 Organizing Data

Given some data organized in one way, you might need to organize the data in
another way. Thus, you will actually change some aspect of the data and not, for
example, simply search it. The problem in this section is called the Towers of
Hanoi. Although this classic problem probably has no direct real-world applica-
tion, we consider it because its solution so well illustrates the use of recursion.

The Towers of Hanoi
Many, many years ago, in a distant part of the Orient—in the Vietnamese city
of Hanoi—the Emperor’s wiseperson passed on to join his ancestors. The
Emperor needed a replacement wiseperson. Being a rather wise person himself,
the Emperor devised a puzzle, declaring that its solver could have the job of
wiseperson.

The Emperor’s puzzle consisted of n disks (he didn’t say exactly how
many) and three poles: A (the source), B (the destination), and C (the spare).
The disks were of different sizes and had holes in the middle so that they could
fit on the poles. Because of their great weight, the disks could be placed only
on top of disks larger than themselves. Initially, all the disks were on pole A, as
shown in Figure 3-19a. The puzzle was to move the disks, one by one, from
pole A to pole B. A person could also use pole C in the course of the transfer,
but again a disk could be placed only on top of a disk larger than itself.

As the position of wiseperson was generally known to be a soft job, there
were many applicants. Scholars and peasants alike brought the Emperor their
solutions. Many solutions were thousands of steps long, and many contained
goto’s. “I can’t understand these solutions,” bellowed the Emperor. “There
must be an easy way to solve this puzzle.”
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And indeed there was. A great Buddhist monk came out of the mountains
to see the Emperor. “My son,” he said, “the puzzle is so easy, it almost solves
itself.” The Emperor’s security chief wanted to throw this strange person out,
but the Emperor let him continue.

“If you have only one disk (that is, n = 1), move it from pole A to pole B.”
So far, so good, but even the village idiot got that part right. “If you have
more than one disk (that is, n > 1), simply

1. “Ignore the bottom disk and solve the problem for n – 1 disks, with the
small modification that pole C is the destination and pole B is the spare.”
(See Figure 3-19b.)

2. “After you have done this, n – 1 disks will be on pole C, and the largest
disk will remain on pole A. So solve the problem for n = 1 (recall that even
the village idiot could do this) by moving the large disk from A to B.” (See
Figure 3-19c.)

A B C

A B C

A B C

A B C

(a)

(b)

(c)

(d)

(a) The initial state; (b) move n – 1 disks from A to C; (c) move one disk from 
A to B; (d) move n – 1 disks from C to B

FIGURE 3-19
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3. “Now all you have to do is move the n – 1 disks from pole C to pole B;
that is, solve the problem with pole C as the source, pole B as the destina-
tion, and pole A as the spare.” (See Figure 3-19d.)

There was silence for a few moments, and finally the Emperor said impa-
tiently, “Well, are you going to tell us your solution or not?” The monk simply
gave an all-knowing smile and vanished.

The Emperor obviously was not a recursive thinker, but you should realize
that the monk’s solution is perfectly correct. The key to the solution is the
observation that you can solve the Towers problem of n disks by solving three
smaller—in the sense of number of disks—Towers problems. Let
towers(count, source, destination, spare) denote the problem of
moving count disks from pole source to pole destination, using pole
spare as a spare. Notice that this definition makes sense even if there are more
than count disks on pole source; in this case, you concern yourself with only
the top count disks and ignore the others. Similarly, the poles destination
and spare might have disks on them before you begin; you ignore these, too,
except that you may place only smaller disks on top of them.

You can restate the Emperor’s problem as follows: Beginning with n disks
on pole A and 0 disks on poles B and C, solve towers(n, A, B, C). You can
state the monk’s solution as follows:

Step 1. Starting in the initial state—with all the disks on pole A—solve the 
problem

towers(n-1, A, C, B)

That is, ignore the bottom (largest) disk and move the top n – 1 
disks from pole A to pole C, using pole B as a spare. When you are 
finished, the largest disk will remain on pole A, and all the other disks 
will be on pole C.

Step 2. Now, with the largest disk on pole A and all others on pole C, solve
the problem

towers(1, A, B, C)

That is, move the largest disk from pole A to pole B. Because this disk 
is larger than the disks already on the spare pole C, you really could not 
use the spare. However, fortunately—and obviously—you do not 
need to use the spare in this base case. When you are done, the largest 
disk will be on pole B and all other disks will remain on pole C.

Step 3. Finally, with the largest disk on pole B and all the other disks on pole 
C, solve the problem

towers(n-1, C, B, A)

That is, move the n – 1 disks from pole C to pole B, using A as a 
spare. Notice that the destination pole B already has the largest disk, 
which you ignore. When you are done, you will have solved the origi-
nal problem: All the disks will be on pole B.

The problem 
statement

The solution
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The problem towers(count, source, destination, spare) has the follow-
ing pseudocode solution:

solveTowers(in count:integer, in source:Pole, 
            in destination:Pole, in spare:Pole)

if (count is 1) {
     Move a disk directly from source to destination
  } 

else {
     solveTowers(count-1, source, spare, destination)
     solveTowers(1, source, destination, spare)
     solveTowers(count-1, spare, destination, source)
   }  // end if

This recursive solution follows the same basic pattern as the recursive solu-
tions you saw earlier in this chapter:

1. You solve a Towers problem by solving other Towers problems.

2. These other Towers problems are smaller than the original problem; they
have fewer disks to move. In particular, the number of disks decreases by 1
at each recursive call.

3. When a problem has only one disk—the base case—the solution is easy to
solve directly.

4. The way that the problems become smaller ensures that you will reach a
base case.

Solving the Towers problem requires you to solve many smaller Towers
problems recursively. Figure 3-20 illustrates the resulting recursive calls and
their order when you solve the problem for three disks. 

Now consider a Java implementation of this algorithm. Notice that since
most computers do not have arms (at the time of this writing), the method
moves a disk by giving directions to a human. Thus, the formal parameters
that represent the poles are of type char, and the corresponding actual argu-
ments could be 'A', 'B', and 'C'. The call solveTowers(3, 'A', 'B',
'C') produces this output:

Move top disk from pole A to pole B
Move top disk from pole A to pole C
Move top disk from pole B to pole C
Move top disk from pole A to pole B
Move top disk from pole C to pole A
Move top disk from pole C to pole B
Move top disk from pole A to pole B

The solution to 
the Towers problem 
satisfies the four 
criteria of a recur-
sive solution

The solution for 
three disks
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The Java method follows:

public static void solveTowers(int count, char source, 
char destination, char spare) {

if (count == 1) {
    System.out.println("Move top disk from pole " + source +
                       " to pole " + destination);
  } 

else {
    solveTowers(count-1, source, spare, destination); // X
    solveTowers(1, source, destination, spare);       // Y
    solveTowers(count-1, spare, destination, source); // Z
  }  // end if
}  // end solveTowers

The three recursive calls in the method are labeled X, Y, and Z. These
labels appear in the box trace of solveTowers(3, 'A', 'B', 'C') in
Figure 3-21. The recursive calls are also numbered to correspond to the
numbers used in Figure 3-20. (Figure 3-21 abbreviates destination as dest
to save space.)

3.5 Recursion and Efficiency

Recursion is a powerful problem-solving technique that often produces very
clean solutions to even the most complex problems. Recursive solutions can be
easier to understand and to describe than iterative solutions. By using recur-
sion, you can often write simple, short implementations of your solution.

The order of recursive calls that results from solveTowers(3, A, B, C)

FIGURE 3-20
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This is the base case, so a disk is moved, the return is made, and the method continues execution.

At point Y, recursive call 4 is made, and the new invocation of the method begins execution:

This is the base case, so a disk is moved, the return is made, and the method continues execution.

At point Z, recursive call 5 is made, and the new invocation of the method begins execution:
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Box trace of solveTowers(3, 'A', 'B', 'C') (continues)

FIGURE 3-21
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This invocation completes, the return is made, and the method continues execution.

At point Y, recursive call 6 is made, and the new invocation of the method begins execution:

This is the base case, so a disk is moved, the return is made, and the method continues execution.
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At point X, recursive call 8 is made, and the new invocation of the method begins execution:

This is the base case, so a disk is moved, the return is made, and the method continues execution.

(continued)
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The overriding concern of this chapter has been to give you a solid under-
standing of recursion so that you will be able to construct recursive solutions
on your own. Most of our examples, therefore, have been simple. Unfortu-
nately, many of the recursive solutions in this chapter are so inefficient that you
should not use them. The recursive methods binarySearch and solveTow-
ers are the notable exceptions, as they are quite efficient.2

Two factors contribute to the inefficiency of some recursive solutions:

■ The overhead associated with method calls

■ The inherent inefficiency of some recursive algorithms

2. Chapters 6 and 10 present other practical, efficient applications of recursion.
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This invocation completes, the return is made, and the method continues execution.

FIGURE 3-21
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The first of these factors does not pertain specifically to recursive methods
but is true of methods in general. In most implementations of Java and other
high-level programming languages, a method call incurs a bookkeeping over-
head. As was mentioned earlier, each method call produces an activation
record, which is analogous to a box in the box trace. Recursive methods
magnify this overhead because a single initial call to the method can generate a
large number of recursive calls. For example, the call fact(n) generates n
recursive calls. 

How the parameters are passed to a recursive method can also increase the
amount of overhead. Look at the implementation of writeBackward that was
presented earlier in the chapter.  In each recursive call, a new string was generated
that was one character shorter than the previous string, and sent as a parameter to
the next recursive call. An alternative way to implement writeBackward is to
include a second parameter size, which indicates the size of the string stored in s
to write backward:

public static void writeBackward(String s, int size) {
if (size > 0) {

    // write the last character
    System.out.println(s.charAt(size-1));
    // write the rest of the string backward
    writeBackward(s, size-1); 
  } // end if
  // size == 0 is the base case - do nothing
} // end writeBackward

Note that, in this implementation, just the reference to the string s is sent to
the next recursive call—not another string object. Hence, this reduces the
overhead associated with each recursive call. This technique was also employed
by many of the recursive algorithms in this chapter that involved arrays.

Note that the use of recursion, as is true with modularity in general, can
greatly clarify complex programs. This clarification frequently more than com-
pensates for the additional overhead. Thus, the use of recursion is often consis-
tent with the multidimensional view of the cost of a computer program, as
Chapter 2 describes.

However, you should not use recursion just for the sake of using recur-
sion. For example, you probably should not use the recursive factorial
method in practice. You easily can write an iterative factorial method given
the iterative definition that was stated earlier in this chapter. The iterative
method is almost as clear as the recursive one and is more efficient. There is
no reason to incur the overhead of recursion when its use does not gain
anything. Recursion is truly valuable when a problem has no simple iterative
solutions.

The second point about recursion and efficiency is that some recursive
algorithms are inherently inefficient. This inefficiency is a very different issue
than that of overhead. It has nothing to do with how a compiler happens to

Recursion can 
clarify complex 
solutions

Do not use a 
recursive solution 
if it is inefficient and 
you have a clear, 
efficient iterative 
solution
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implement a recursive method but rather is related to the method of solution
that the algorithm employs.

As an example, recall the recursive solution for the multiplying rabbits
problem that you saw earlier in this chapter:

The diagram in Figure 3-11 illustrated the computation of rabbit(7). Earlier,
you were asked to think about what the diagram would look like for rabbit(10).
If you thought about this question, you may have come to the conclusion that
such a diagram would fill up most of this chapter. The diagram for rabbit(100)
would fill up most of this universe!

The fundamental problem with rabbit is that it computes the same values
over and over again. For example, in the diagram for rabbit(7), you can see
that rabbit(3) is computed five times. When n is moderately large, many of the
values are recomputed literally trillions of times. This enormous number of
computations makes the solution infeasible, even if each computation required
only a trivial amount of work (for example, if you could perform 100 million
of these computations per second).

However, do not conclude that the recurrence relation is of no use.
One way to solve the rabbit problem is to construct an iterative solution
based on this same recurrence relation. The iterative solution goes
forward instead of backward and computes each value only once. You can
use the following iterative method to compute rabbit(n) even for very
large values of n.

public static int iterativeRabbit(int n) {
// Iterative solution to the rabbit problem.
  // initialize base cases:

int previous = 1;   // initially rabbit(1)
int current = 1;    // initially rabbit(2)
int next = 1;       // result when n is 1 or 2

  // compute next rabbit values when n >= 3
for (int i = 3; i <= n; i++) {

    // current is rabbit(i-1), previous is rabbit(i-2)
    next = current + previous;  // rabbit(i)

    previous = current;         // get ready for
    current = next;             // next iteration
  }  // end for

return next;
}  // end iterativeRabbit

⎩
⎨
⎧ 1 if n is 1 or 2

rabbit(n – 1) + rabbit(n – 2) if n > 2
rabbit(n) = The recursive 

version of rabbit is 
inherently inefficient

You can use 
rabbit’s recur-
rence relation 
to construct an 
efficient iterative 
solution
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Thus, an iterative solution can be more efficient than a recursive solution.
In certain cases, however, it may be easier to discover a recursive solution than
an iterative solution. Therefore, you may need to convert a recursive solution
to an iterative solution. This conversion process is easier if your recursive
method calls itself once, instead of several times. Be careful when deciding
whether your method calls itself more than once. Although the method
rabbit calls itself twice, the method binarySearch calls itself once, even
though you see two calls in the Java code. Those two calls appear within an if
statement; only one of them will be executed.

Converting a recursive solution to an iterative solution is even easier when
the solitary recursive call is the last action that the method takes. This situa-
tion is called tail recursion. For example, the method writeBackward exhib-
its tail recursion because its recursive call is the last action that the method
takes. Before you conclude that this is obvious, consider the method fact.
Although its recursive call appears last in the method definition, fact’s last
action is the multiplication. Thus, fact is not tail recursive.

Recall the definition of writeBackward presented earlier in this section:

public static void writeBackward(String s, int size) {
if (size > 0) {

    // write the last character
    System.out.println(s.substring(size-1, size));
    writeBackward(s, size - 1);      // write rest 
  }  // end if
}  // end writeBackward

Because this method is tail recursive, its last recursive call simply repeats the
method’s action with altered arguments. You can perform this repetitive action
by using an iteration that will be straightforward and often more efficient. For
example, the following definition of writeBackward is iterative:

public static void writeBackward(String s, int size) {
// Iterative version.

while (size > 0) {
      System.out.println(s.substring(size-1, size));
      --size;
   }  // end while
}  // end writeBackward

Because tail-recursive methods are often less efficient than their iterative
counterparts and because the conversion of a tail-recursive method to an
equivalent iterative method is rather mechanical, some compilers automatically
replace tail recursion with iteration. Eliminating other forms of recursion is
usually more complex, as you will see in Chapter 7, and is a task that you
would need to undertake, if necessary.

Convert from recur-
sion to iteration if it 
is easier to discover 
a recursive solution 
but more efficient 
to use an iterative 
solution

A tail-recursive 
method

Removing tail 
recursion is often 
straightforward
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Some recursive algorithms, such as rabbit, are inherently inefficient, while
other recursive algorithms, such as the binary search,3 are extremely efficient.
You will learn how to determine the relative efficiency of a recursive algorithm
in more advanced courses concerned with the analysis of algorithms. Chapter
10 introduces some of these techniques briefly. 

Chapter 6 will continue the discussion of recursion by examining several
difficult problems that have straightforward recursive solutions. Other chap-
ters in this book use recursion as a matter of course.

1. Recursion is a technique that solves a problem by solving a smaller problem of the
same type.

2. When constructing a recursive solution, keep the following four questions in mind:

a. How can you define the problem in terms of a smaller problem of the same type?

b. How does each recursive call diminish the size of the problem?

c. What instance of the problem can serve as the base case?

d. As the problem size diminishes, will you reach this base case?

3. When constructing a recursive solution, you should assume that a recursive call’s
postcondition is true if its precondition is true. 

4. You can use the box trace to trace the actions of a recursive method. These boxes
resemble activation records, which many compilers use to implement recursion.
(Chapter 6 discusses implementing recursion further.) Although the box trace is
useful, it cannot replace an intuitive understanding of recursion.

5. Recursion allows you to solve problems—such as the Towers of Hanoi—whose
iterative solutions are difficult to conceptualize. Even the most complex problems
often have straightforward recursive solutions. Such solutions can be easier to
understand, describe, and implement than iterative solutions. 

6. Some recursive solutions are much less efficient than a corresponding iterative
solution, due to their inherently inefficient algorithms and the overhead of method
calls. In such cases, the iterative solution can be preferable. You can use the recur-
sive solution, however, to derive the iterative solution.

7. If you can easily, clearly, and efficiently solve a problem by using iteration, you
should do so.

1. A recursive algorithm must have a base case, whose solution you know directly
without making any recursive calls. Without a base case, a recursive method will

3. The binary search algorithm also has an iterative formulation.

Summary

Cautions
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generate an infinite sequence of calls. When a recursive method contains more than
one recursive call, you will often need more than one base case.

2. A recursive solution must involve one or more smaller problems that are each
closer to a base case than is the original problem. You must be sure that these
smaller problems eventually reach the base case. Failure to do so could result in an
algorithm that does not terminate. 

3. When developing a recursive solution, you must be sure that the solutions to the
smaller problems really do give you a solution to the original problem. For exam-
ple, binarySearch works because each smaller array is sorted and the value sought
is between its first and last items.

4. The box trace, together with well-placed System.out.println statements, can be
a good aid in debugging recursive methods. Such statements should report the
point in the program from which each recursive call occurs as well as the values of
input arguments and local variables at both entry to and exit from the methods. Be
sure to remove these statements from the final version of the method.

5. A recursive solution that recomputes certain values frequently can be quite ineffi-
cient. In such cases, iteration may be preferable to recursion.

1. The following method computes the sum of the first n ≥ 1 real numbers in an
array. Show how this method satisfies the properties of a recursive method.

public static double sum(double anArray[], int n) {
// Precondition: 1 <= n <= max size of anArray.
// Postcondition: Returns the sum of the first n 
// items in anArray; anArray is unchanged.

if (n == 1) {
return anArray[0];

  } 
else {

return anArray[n-1] + sum(anArray, n-1);
  }  // end if
}  // end product

2. Given an integer n > 0, write a recursive method count that writes the integers 1,
2, ..., n – 1, n. Hint: What task can you do and what task can you ask a friend to
do for you?

3. Write a recursive method that computes the product of the items in the array
anArray[first..last].

4. Of the following recursive methods that you saw in this chapter, identify those that
exhibit tail recursion: fact, writeBackward, writeBackward2, rabbit, c in the
Spock problem, p in the parade problem, maxArray, binarySearch, and kSmall.
Are the methods in Self-Test Exercises 1 through 3 tail recursive?

5. Compute c(5,1) in the Spock problem.

6. Trace the execution of the method solveTowers to solve the Towers of Hanoi
problem for solveTowers(3, 'C', 'A', 'B'). So in this case, 'C' is the original
source, 'A' is the destination, and 'B' is the spare.

Self-Test Exercises
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1. The following recursive method getNumberEqual searches the array x of n integers
for occurrences of the integer val. It returns the number of integers in x that are
equal to val. For example, if x contains the 9 integers 1, 2, 4, 4, 5, 6, 7, 8, and 9,
then getNumberEqual(x, 9, 4) returns the value 2 because 4 occurs twice in x.

public static int getNumberEqual(int x[], int n, int val) {
if (n <= 0) {

return 0;
  }

else {
if (x[n-1] == val) {

return getNumberEqual(x, n-1, val) + 1;
    }

else {
return getNumberEqual(x, n-1, val);

    } // end if
  } // end if
} // end getNumberEqual

Demonstrate that this method is recursive by listing the criteria of a recursive
solution and stating how the method meets each criterion.

2. Perform a box trace of the following calls to recursive methods that appear in this
chapter. Clearly indicate each subsequent recursive call.

a. rabbit(4)

b. writeBackward("loop") (Use the version that strips the last character.) 

c. maxArray Find the maximum element in the array {4, 10, 12, 1, 8, 3, 6, 9} 

d. kSmall Search for the 3rd smallest element in the array {4, 10, 12, 1, 8, 3, 6, 9} 

3. Write a recursive algorithm that converts a string of characters representing
numbers to its numerical equivalent. For example, the string “1234” should
convert to the number 1234.

4. A palindrome is a word that has the same spelling forwards and backwards, like
“MADAM”. Write a recursive Java method to check if a string is a palindrome.

5. Add output code to the Spock method c(n, k) that shows the actual sequence of
calls that are made and the value that they will return when the method is exe-
cuted.  For example, c(3, 2) outputs the following:

c(3, 2) = c(2, 1) + c(2, 2)
c(2, 1) = c(1, 0) + c(1, 1)
c(1, 0) = 1
c(1, 1) = 1
c(2, 2) = 1

Use your modified version to run c(4,2) to show the actual order that the
methods are called in Figure 3-12.

Exercises
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6. Given the following recursive method, answer each of the following questions.

public static void countDownByTwo(int n) {
if (n != 1) {

    System.out.println(n + " ");
    countDownByTwo(n-2);
  } // end if
}  // end countDownByTwo

a. What happens when you execute the method with n = 7?

b. What happens when you execute the method with n = 6?

c. Answer the four questions for constructive recursive solutions to prove or dis-
prove the correctness of this recursive solution.

d. If the answer to one or more of the questions in part c. indicates that this solution is
incorrect, how would you change the method in such a way as to fix the problem?

7. Write a program which will read any string from the keyboard and then print it on the
monitor in reverse order.

8. Write a program that reads a string from the keyboard, and includes a method that
removes the character ‘m’ from that string recursively.

9. Write a recursive method that converts an integer to a hexadecimal number.

10. a. Write a recursive Java method writeLine that writes a character repeatedly to
form a line of n characters. For example, writeLine(‘*’, 5) produces the
line *****.

b. Now write a recursive method writeBlock that uses writeLine to write m
lines of n characters each. For example, writeBlock(‘*’, 5, 3) produces the
output

*****
*****
*****

11. What output does the following program produce?

import java.util.Arrays;
public class Exercise11 {

public static int guess(int[] c, int x) {
if (c.length==1) {

      System.out.printf("z(%d) = %d\n", c.length-1, c[0]);
return c[0];

    }
else {

        System.out.printf("z(%d) = %d * z(%d) + %d\n", 
                          c.length-1, x, c.length-2, c[0]);

return
        x*guess(Arrays.copyOfRange(c, 1, c.length), x) + c[0];
    } // end if
  }  // end guess
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public static void main(String[] args) {
int[] x = {2, 4, 1};

    System.out.println(guess(x, 5));
  } // end main
} // end Exercise11

12. What output does the following program produce? Try running it with a couple of
different values for n. Can you guess what this computes?

public class Exercise12 {

private static int search(int a, int b, int n) {
int returnValue;

int mid = (a + b)/2;
    System.out.printf("Enter: a = %2d, b = %2d, mid = %2d\n", 
                      a, b, mid);

if ((mid * mid <= n) && (n < (mid+1) * (mid+1))) {
      returnValue = mid;
    }

else if (mid * mid > n) {
      returnValue = search(a, mid-1, n);
    }

else {
      returnValue = search(mid+1, b, n);
    }  // end if
    System.out.printf("Leave: a = %2d, b = %2d, mid = %2d\n", 
                      a, b, mid);

return returnValue;
  }  // end search

public static void main(String[] args) {
int n = 64;

    System.out.printf("For n = %2d, the result is %d\n",
                      n, search(1, n, n));
  }  // end main
}  //end Exercise12

13. Consider the following method that converts a positive decimal number to base 8
and displays the result.

public static void displayOctal(int n) {
if (n > 0) {

if (n/8 > 0) {
         displayOctal(n/8);
      }  // end if
      System.out.println(n%8);
   }  // end if
}  // end displayOctal

a. Trace the method with n = 88.

b. Describe how this method answers the four questions for constructing a recur-
sive solution.
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14. Consider the following program:

public class Exercise14 {

public static int f(int n) {
  // Precondition: n >= 0.
    System.out.printf("Enter f: n = %d\n", n);

switch (n) {
case 1: case 2: case 3:

return n + 1;
default:

return f(n-1) * f(n-3);
    }  // end switch
  }  // end f

public static void main(String[] args) {
    System.out.println("f(8) is equal to " + f(8));
  } // end main
} // end Exercise14

Show the exact output of the program. What argument values, if any, could you
pass to the method f to cause the program to run forever?

15. Consider the following method

int  CallMe ( int a , int b )
{
  If ( a< b)
  return 6;
  else 
  return ( CallMe (a+5, b+6-a));
}

What would be the value returned if the call is

a. CallMe (6,7)?

b. CallMe (6-2,6)?

c. CallMe (6-1, -5)?

16. Perform a box trace of the recursive method binarySearch, which appears in the
section “Binary Search,” with the array 2, 4, 5, 8, 9, 12, 15, 16, 20 for each of the
following search values: 

17. Imagine that you have 101 dalmatians; no two dalmatians have the same number of
spots. Suppose that you create an array of 101 integers: The first integer is the
number of spots on the first dalmatian, the second integer is the number of spots on
the second dalmatian, and so on. 

Your friend wants to know whether you have a dalmatian with 99 spots. Thus, 
you need to determine whether the array contains the integer 99. 

a. 5 b. 21 c. 32
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a. If you plan to use a binary search to look for the 99, what, if anything, would
you do to the array before searching it? 

b. What is the index of the integer in the array that a binary search would examine
first?

c. If all your dalmatians have more than 99 spots, exactly how many comparisons
will a binary search require to determine that 99 is not in the array?

18. This problem considers several ways to compute xn for some n ≥ 0. 

a. Write an iterative method power1 to compute xn for n ≥ 0. 

b. Write a recursive method power2 to compute xn by using the following recur-
sive formulation:

x0 = 1
xn = x * xn – 1  if n > 0

c. Write a recursive method power3 to compute xn by using the following recur-
sive formulation:

x0 = 1
xn = (xn/2)2 if n > 0 and n is even
xn = x * (xn/2)2 if n > 0 and n is odd

d. How many multiplications will each of the methods power1, power2, and
power3 perform when computing 332? 319?

e. How many recursive calls will power2 and power3 make when computing 332?
319?

19. Modify the recursive rabbit method so that it is visually easy to follow the flow
of execution. Instead of just adding “Enter” and “Leave” messages, indent the
trace messages according to how “deep” the current recursive call is. For exam-
ple, the call rabbit (4) should produce the output

Enter rabbit:   n = 4
    Enter rabbit:   n = 3
        Enter rabbit:   n = 2
        Leave rabbit:   n = 2   value = 1
        Enter rabbit:   n = 1
        Leave rabbit:   n = 1   value = 1
    Leave rabbit:   n = 3   value = 2
    Enter rabbit:   n = 2
    Leave rabbit:   n = 2   value = 1
Leave rabbit:   n = 4   value = 3

Note how this output corresponds to figures such as Figure 3-11.

20. Consider the following recurrence relation:

f(1) = 1; f(2) = 2; f(3) = 3; f(4) = 2; f(5) = 4;

f(n) = 2 * f(n – 1) + f(n – 5) for all n > 5.

a. Compute f(n) for the following values of n: 6, 7, 10, 12.
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b. If you were careful, rather than computing f(15) from scratch (the way a recur-
sive Java method would compute it), you would have computed f(6), then f(7),
then f(8), and so on up to f(15), recording the values as you computed them.
This ordering would have saved you the effort of ever computing the same
value more than once. (Recall the nonrecursive version of the rabbit method
discussed at the end of this chapter.)

Note that during the computation, you never need to remember all the previ-
ously computed values—only the last five. By taking advantage of these obser-
vations, write a Java method that computes f(n) for arbitrary values of n.

21. Write a recursive function that calculates the number of occurrences of a specific
character within a given string.

22. Write a recursive program that will read ten integers from the command line and
then store the corresponding octal values into a file octal.txt.

23. Consider the problem of finding the greatest common divisor (gcd) of two posi-
tive integers a and b. The algorithm presented here is a variation of Euclid’s algo-
rithm, which is based on the following theorem:4

THEOREM. If a and b are positive integers with a > b such that b is not a divisor
of a, then gcd(a, b) = gcd(b, a mod b).

This relationship between gcd(a, b) and gcd(b, a mod b) is the heart of the 
recursive solution. It specifies how you can solve the problem of computing
gcd(a, b) in terms of another problem of the same type. Also, if b does divide a,
then b = gcd(a, b), so an appropriate choice for the base case is (a mod b) = 0.

This theorem leads to the following recursive definition:

The following method implements this recursive algorithm:

public static int gcd(int a, int b) {
if (a % b == 0) { // base case

return b;
   } 

else {
return gcd(b, a % b);

   }  // end if 
}  // end gcd

a. Prove the theorem.

b. What happens if b > a?

c. How is the problem getting smaller? (That is, do you always approach a base
case?) Why is the base case appropriate?

24. Let C(n) be the number of different groups of integers that can be chosen from
the integers 1 through n – 1 so that the integers in each group add up to n (for

4. This book uses mod as an abbreviation for the mathematical operation modulo. In 
Java, the modulo operator is %.

*

⎩
⎨
⎧ b if (a mod b) = 0

gcd(b, a mod b) otherwisegcd(a, b) =

*
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example, 4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 2 + 2 . . .). Write recursive definitions for
C(n) under the following variations:

a. You count permutations. For example, 1, 2, 1 and 1, 1, 2 are two groups that
each add up to 4.

b. You ignore permutations.

25. Consider the following recursive definition:

This function, called Ackermann’s function, is of interest because it grows
rapidly with respect to the sizes of m and n. What is Acker(1, 2)? Implement the
function as a method in Java and do a box trace of Acker(1, 2). (Caution: Even for
modest values of m and n, Ackermann’s function requires many recursive calls.)

1. Write a program that will first accept an integer from the user and then compute
the sum of the digits using the recursive method.

2. You have been offered a one month job that pays as follows: On the first day of the
month, you are paid 1 cent. On the second day, 2 cents, on the third, 4 cents, and so
forth; the amount doubles every day. Write a recursive method that, given the day
number, computes the amount of money paid that day. Would you want this job?

3. Implement maxArray, discussed in the section “Finding the Largest Item in an
Array,” as a Java method. What other recursive definitions of maxArray can you
describe?

4. Implement the binarySearch algorithm presented in this chapter for an array of
strings.

5. Implement kSmall, discussed in the section “Finding the kth Smallest Item in an
Array,” as a Java method. Use the first item of the array as the pivot.

n + 1 if m = 0
Acker(m – 1, 1) if n = 0
Acker(m – 1, Acker(m, n – 1)) otherwise

Acker(m, n) =
⎩
⎨
⎧

Programming Problems



This page intentionally left blank 



221

CHAPTER 4

Data Abstraction: 
The Walls   

his chapter elaborates on data abstraction, which was
introduced in Chapter 2 as a technique for increasing

the modularity of a program—for building “walls” between a
program and its data structures. During the design of a
solution, you will discover that you need to support several
operations on the data and therefore need to define
abstract data types (ADTs). This chapter introduces some
simple abstract data types and uses them to demonstrate
the advantages of abstract data types in general. In Part
Two of this book, you will see several other important ADTs.

Only after you have clearly specified the operations of
an abstract data type should you consider data structures
for implementing it. This chapter explores implementation
issues and introduces Java classes as a way to hide the
implementation of an ADT from its users.

4.1 Abstract Data Types

4.2 Specifying ADTs
The ADT List
The ADT Sorted List
Designing an ADT
Axioms (Optional)

4.3 Implementing ADTs
Java Classes Revisited
Java Interfaces
Java Packages
An Array-Based Implementation of 

the ADT List

Summary

Cautions

Self-Test Exercises

Exercises

Programming Problems

T
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4.1 Abstract Data Types

Modularity is a technique that keeps the complexity of a large program man-
ageable by systematically controlling the interaction of its components. You
can focus on one task at a time in a modular program without other distrac-
tions. Thus, a modular program is easier to write, read, and modify. Modular-
ity also isolates errors and eliminates redundancies. 

You can develop modular programs by piecing together existing software
components with methods that have yet to be written. In doing so, you should
focus on what a module does and not on how it does it. To use existing soft-
ware, you need a clear set of specifications that details how the modules
behave. To write new methods, you need to decide what you would like them
to do and proceed under the assumption that they exist and work. In this way
you can write the methods in relative isolation from one another, knowing
what each one will do but not necessarily how each will eventually do it. That
is, you should practice procedural abstraction.

While writing a module’s specifications, you must identify details that you
can hide within the module. The principle of information hiding involves not
only hiding these details, but also making them inaccessible from outside a
module. One way to understand information hiding is to imagine walls
around the various tasks a program performs. These walls prevent the tasks
from becoming entangled. The wall around each task T prevents the other
tasks from “seeing” how T is performed. Thus, if task Q uses task T, and if the
method for performing task T changes, task Q will not be affected. As Figure
4-1 illustrates, the wall prevents task Q’s method of solution from depending
on task T’s method of solution.

A modular program 
is easier to write, 
read, and modify

Write specifications 
for each module 
before implement-
ing it

Isolate the imple-
mentation details of 
a module from other 
modules

Isolated tasks: the implementation of task T does not affect task Q

FIGURE 4-1

T
First

implemen-
tation

T
Second

implemen-
tation

Q
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The isolation of the modules cannot be total, however. Although task Q
does not know how task T is performed, it must know what task T is and how
to initiate it. For example, suppose that a program needs to operate on a
sorted array of names. The program may, for instance, need to search the array
for a given name or display the names in alphabetical order. The program thus
needs a method S that sorts an array of names. Although the rest of the
program knows that method S will sort an array, it should not care how S
accomplishes its task. Thus, imagine a tiny slit in each wall, as Figure 4-2 illus-
trates. The slit is not large enough to allow the outside world to see the
method’s inner workings, but things can pass through the slit into and out of
the method. For example, you can pass the array into the sort method, and the
method can pass the sorted array out to you. What goes in and comes out is
governed by the terms of the method’s specifications, or contract: If you use
the method in this way, this is exactly what it will do for you.

Often the solution to a problem requires operations on data. Such opera-
tions are broadly described in one of three ways:

■ Add data to a data collection.

■ Remove data from a data collection.

■ Ask questions about the data in a data collection.

The details of the operations, of course, vary from application to application,
but the overall theme is the management of data. Realize, however, that not all
problems use or require these operations.

Data abstraction asks that you think in terms of what you can do to a col-
lection of data independently of how you do it. Data abstraction is a technique
that allows you to develop each data structure in relative isolation from the rest
of the solution. The other modules of the solution will “know” what opera-
tions they can perform on the data, but they should not depend on how the
data is stored or how the operations are performed. Again, the terms of the

A slit in the wall

FIGURE 4-2

Request to perform operation Implementation
of method S

Program
that uses
method S

Result of operation

Typical operations 
on data

Both procedural and 
data abstraction ask 
you to think “what,” 
not “how ”
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contract are what and not how. Thus, data abstraction is a natural extension of
procedural abstraction.

A collection of data together with a set of operations on that data are called
an abstract data type, or ADT. For example, suppose that you need to store a
collection of names in a manner that allows you to search rapidly for a given
name. The binary search algorithm described in Chapter 3 enables you to search
an array efficiently, if the array is sorted. Thus, one solution to this problem is to
store the names sorted in an array and to use a binary search algorithm to search
the array for a specified name. You can view the sorted array together with the
binary search algorithm as an ADT that solves this problem.

The description of an ADT’s operations must be rigorous enough to
specify completely their effect on the data, yet it must not specify how to store
the data nor how to carry out the operations. For example, the ADT opera-
tions should not specify whether to store the data in consecutive memory loca-
tions or in disjoint memory locations. You choose a particular data structure
when you implement an ADT. 

Recall that a data structure is a construct that you can define within a pro-
gramming language to store a collection of data. For example, arrays, which
are built into Java, are data structures. However, you can invent other data
structures. For example, suppose that you wanted a data structure to store
both the names and salaries of a group of employees. You could use the follow-
ing Java statements:

final int MAX_NUMBER = 500;
String[] names = new String[MAX_NUMBER];
double[] salaries = new double[MAX_NUMBER];

Here the employee names[i] has a salary of salaries[i]. The two arrays
names and salaries together form a data structure, yet Java has no single
data type to describe it.

When a program must perform data operations that are not directly sup-
ported by the language, you should first design an abstract data type and care-
fully specify what the ADT operations are to do (the contract). Then—and
only then—should you implement the operations with a data structure. If you
implement the operations properly, the rest of the program will be able to
assume that the operations perform as specified—that is, that the terms of the
contract are honored. However, the program must not depend on a particular
approach for supporting the operations.

An abstract data type is not another name for a data structure. 
To give you a better idea of the conceptual difference between an ADT

and a data structure, consider a refrigerator’s ice dispenser, as Figure 4-3 illus-
trates. It has water as input and produces as output either chilled water,
crushed ice, or ice cubes, according to which one of the three buttons you
push. It also has an indicator that lights when no ice is presently available. The
dispenser is analogous to an abstract data type. The water is analogous to data;
the operations are chill, crush, cube, and isEmpty. At this level of design, you are
not concerned with how the dispenser will perform its operations, only that it

An ADT is a collec-
tion of data and a 
set of operations on 
that data

Specifications
indicate what ADT 
operations do, but 
not how to imple-
ment them

Data structures are 
part of an ADT’s 
implementation

Carefully specify an 
ADT’s operations 
before you 
implement them

ADTs and data 
structures are not 
the same
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performs them. If you want crushed ice, do you really care how the dispenser
accomplishes its task as long as it does so correctly? Thus, after you have speci-
fied the dispenser’s methods, you can design many uses for crushed ice
without knowing how the dispenser accomplishes its tasks and without the
distraction of engineering details.

Eventually, however, someone must build the dispenser. Exactly how will
this machine produce crushed ice, for example? It could first make ice cubes
and then either crush them between two steel rollers or smash them into small
pieces by using hammers. Many other techniques are possible. The internal
structure of the dispenser corresponds to the implementation of the ADT in a
programming language—that is, to a data structure. 

Although the owner of the dispenser does not care about its inner workings,
he or she does want a design that is as efficient in its operation as possible. Simi-
larly, the dispenser’s manufacturer wants a design that is as easy and cheap to
build as possible. You should have these same concerns when you choose a data
structure to implement an ADT in Java. Even if you do not implement the ADT
yourself, but instead use an already implemented ADT, you—like the person who
buys a refrigerator—should care at least about the ADT’s efficiency.

Notice that the dispenser is surrounded by steel walls. The only breaks in the
walls accommodate the input (water) to the machine and its output (chilled
water, crushed ice, or ice cubes). Thus, the machine’s interior mechanisms are
not only hidden from the user but also are inaccessible. In addition, the mecha-
nism of one operation is hidden from and inaccessible to another operation. 

ADTs Versus Data Structures
■ An abstract data type is a collection of data and a set of operations

on that data.
■ A data structure is a construct within a programming language that

stores a collection of data.

KEY CONCEPTS
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A dispenser of chilled water, crushed ice, and ice cubes

FIGURE 4-3
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This modular design has benefits. For example, you can improve the oper-
ation crush by modifying its module without affecting the other modules. You
could also add an operation by adding another module to the machine without
affecting the original three operations. Thus, both abstraction and informa-
tion hiding are at work here.

To summarize, data abstraction results in a wall of ADT operations
between data structures and the program that accesses the data within these
data structures, as Figure 4-4 illustrates. If you are on the program’s side of
the wall, you will see an interface that enables you to communicate with the
data structure. That is, you request the ADT operations to manipulate the
data in the data structure, and they pass the results of these manipulations
back to you. 

This process is analogous to using a vending machine. You press buttons
to communicate with the machine and obtain something in return. The
machine’s external design dictates how you use it, much as an ADT’s specifica-
tions govern what its operations are and what they do. As long as you use a
vending machine according to its design, you can ignore its inner technology.
As long as you agree to access data only by using ADT operations, your
program can be oblivious to any change in the data structures that implement
the ADT.

The following pages describe how to use an abstract data type to realize data
abstraction’s goal of separating the operations on data from the implementation
of these operations. In doing so, we will look at several examples of ADTs.

A program should 
not depend on the 
details of an ADT’s 
implementation

A wall of ADT operations isolates a data structure from the program that 
uses it 

FIGURE 4-4
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4.2 Specifying ADTs

To elaborate on the notion of an abstract data type, consider a list that you
might encounter, such as a list of chores, a list of important dates, a list of
addresses, or the grocery list pictured in Figure 4-5. As you write a grocery
list, where do you put new items? Assuming that you write a neat one-column
list, you probably add new items to the end of the list. You could just as well
add items to the beginning of the list or add them so that your list is sorted
alphabetically. Regardless, the items on a list appear in a sequence. The list has
one first item and one last item. Except for the first and last items, each item
has a unique predecessor and a unique successor. The first item—the head or
front of the list—does not have a predecessor, and the last item—the tail or
end of the list—does not have a successor.

Lists contain items of the same type: You can have a list of grocery items
or a list of phone numbers. What can you do to the items on a list? You might
count the items to determine the length of the list, add an item to the list,
remove an item from the list, or look at (retrieve) an item. The items on a list,
together with operations that you can perform on the items, form an abstract
data type. You must specify the behavior of the ADT’s operations on its data,
that is, the list items. It is important that you focus only on specifying the
operations and not on how you will implement them. In other words, do not
bring to this discussion any preconceived notion of a data structure that the
term “list” might suggest.

Where do you add a new item and which item do you want to look at?
The various answers to these questions lead to several kinds of lists. You might
decide to add, delete, and retrieve items only at the end of the list or only at
the front of the list or at both the front and end of the list. The specifications
of these lists are left as an exercise; next we will discuss a more general list.

milk
eggs

butter
apples
bread

chicken

A grocery list

FIGURE 4-5
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The ADT List
Once again, consider the grocery list pictured in Figure 4-5. The previously
described lists, which manipulate items at one or both ends of the list, are not
really adequate for an actual grocery list. You would probably want to access
items anywhere on the list. That is, you might look at the item at position i,
delete the item at position i, or insert an item at position i on the list. Such
operations are part of the ADT list.

Note that it is customary to include an initialization operation that creates
an empty list. Other operations that determine whether the list is empty or the
length of the list are also useful. 

Although the six items on the list in Figure 4-5 have a sequential order,
they are not necessarily sorted by name. Perhaps the items appear in the order
in which they occur on the grocer’s shelves, but more likely they appear in the
order in which they occurred to you as you wrote the list. The ADT list is
simply an ordered collection of items that you reference by position number.
But to make this ADT list more like other built-in ADTs you will find in Java,
the position number will start at zero.  Note this is similar to the way that Java
indexes an array, the subscript of the first element in an array is zero.

The following pseudocode specifies the operations for the ADT list in
more detail. Figure 4-6 shows the UML diagram for this ADT.

To get a more precise idea of how the operations work, apply them to the
grocery list

milk, eggs, butter, apples, bread, chicken

where milk is the first item on the list and chicken is the last item. To begin,
consider how you can construct this list by using the operations of the ADT

You reference list 
items by their posi-
tion within the list

ADT List Operations
1. Create an empty list.
2. Determine whether a list is empty.
3. Determine the number of items on a list.
4. Add an item at a given position in the list.
5. Remove the item at a given position in the list.
6. Remove all the items from the list.
7. Retrieve (get) the item at a given position in the list.

KEY CONCEPTS
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list. One way is first to create an empty list aList and then use a series of inser-
tion operations to append successively the items to the list as follows:

aList.createList()
aList.add(0, milk)
aList.add(1, eggs)
aList.add(2, butter)
aList.add(3, apple)
aList.add(4, bread)
aList.add(5, chicken)

The notation1 aList.O indicates that an operation O applies to the list aList.
Notice that the list’s insertion operation can insert new items into any

position of the list, not just at its front or end. According to add’s specifica-
tion, if a new item is inserted into position i, the position of each item that was
at a position of i or greater is increased by 1. Thus, for example, if you start
with the previous grocery list and you perform the operation

aList.add(3, nuts)

the list aList becomes

milk, eggs, butter, nuts, apples, bread, chicken

1. This notation is similar to the Java implementation of the ADT.

List

items

createList()

destroyList()

isEmpty()

getLength()

insert()

remove()

retrieve()

UML diagram for ADT List

FIGURE 4-6
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All items that had position numbers greater than or equal to 3 before the insertion
now have their position numbers increased by 1 after the insertion.

Pseudocode for the ADT List Operations

+createList()
// Creates an empty list.

+isEmpty():boolean {query}
// Determines whether a list is empty.

+size():integer {query}
// Returns the number of items that are in a list. 

+add(in index:integer, in item:ListItemType)
// Inserts item at position index of a list, if
// 0 <= index <= size(). 
// If index < size(), items are renumbered as 
// follows: The item at index becomes the item at 
// index+1, the item at index+1 becomes the 
// item at index+2, and so on. 
// Throws an exception when index is out of range or if
// the item cannot be placed on the list (list full).

+remove(in index:integer)
// Removes the item at position index of a list, if
// 0 <= index < size(). If index < size()-1, items are
// renumbered as follows: The item at index+1 becomes 
// the item at index, the item at index+2 becomes the
// item at index+1, and so on. 
// Throws an exception when index is out of range or if
// the list is empty.

+removeAll()
// Removes all the items in the list.

+get(index):ListItemType {query}
// Returns the item at position index of a list  
// if 0 <= index < size(). The list is 
// left unchanged by this operation. 
// Throws an exception if index is out of range.

KEY CONCEPTS
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Similarly, the deletion operation specifies that if an item is deleted from
position i, the position of each item that was at a position greater than i is
decreased by 1. Thus, for example, if aList is the list

milk, eggs, butter, nuts, apples, bread, chicken

and you perform the operation

aList.remove(4)

the list becomes

milk, eggs, butter, nuts, bread, chicken

All items that had position numbers greater than 4 before the deletion now
have their position numbers decreased by 1 after the deletion.

These examples illustrate that an ADT can specify the effects of its opera-
tions without having to indicate how to store the data. The specifications of
the seven operations are the sole terms of the contract for the ADT list: If you
request that these operations be performed, this is what will happen. The specifica-
tions contain no mention of how to store the list or how to perform the opera-
tions; they tell you only what you can do to the list. It is of fundamental
importance that the specification of an ADT not include implementation
issues. This restriction on the specification of an ADT is what allows you to
build a wall between an implementation of an ADT and the program that uses
it. (Such a program is called a client.) The behavior of the operations is the
only thing on which a program should depend.

Note that the insertion, deletion, and retrieval operations throw an excep-
tion when the argument index is out of range. This technique provides the
ADT with a simple mechanism to communicate operation failure to its client.
For example, if you try to delete the tenth item from a five-item list, remove
can throw an exception indicating that index is out of range. Exceptions enable
the client to handle error situations in an implementation-independent way.

What does the specification of the ADT list tell you about its behavior? It
is apparent that the list operations fall into the three broad categories pre-
sented earlier in this chapter.

■ The operation add adds data to a data collection.

■ The operations remove and removeAll remove data from a data collection.

■ The operations isEmpty, size, and get ask questions about the data in a
data collection.

Once you have satisfactorily specified the behavior of an ADT, you can design
applications that access and manipulate the ADT’s data solely in terms of its opera-
tions and without regard for its implementation. As a simple example, suppose that
you want to display the items in a list. Even though the wall between the implemen-
tation of the ADT list and the rest of the program prevents you from knowing how

An ADT specifica-
tion should not 
include implementa-
tion issues

A program should 
depend only on the 
behavior of the ADT
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the list is stored, you can write a method displayList in terms of the operations
that define the ADT list. The pseudocode for such a method follows:2

displayList(in aList:List)
// Displays the items on the list aList.

for (index = 0 through aList.size()-1) {
      dataItem = aList.get(index)
      Display dataItem
   }  // end for

Notice that as long as the ADT list is implemented correctly, the displayList
method will perform its task. In this case, get successfully retrieves each list item,
because index’s value is always valid.

The method displayList does not depend on how you implement the
list. That is, the method will work regardless of whether you use an array or
some other data structure to store the list’s data. This feature is a definite
advantage of abstract data types. In addition, by thinking in terms of the avail-
able ADT operations, you will not be distracted by implementation details.
Figure 4-7 illustrates the wall between displayList and the implementation
of the ADT list. 

As another application of the ADT operations, suppose that you want a
method replace that replaces the item in position i with a new item. If the ith

item exists, replace deletes the item and inserts the new item at position i, as
follows:

replace(in aList:List, in i:integer, 
        in newItem:ListItemType
// Replaces the ith item on the list aList with
// newItem.

if (i >=0 and i < aList.size()) {
      aList.remove(i)
      aList.add(i, newItem)
   }  // end if

In both of the preceding examples, notice how you can focus on the task
at hand without the distraction of implementation details such as arrays. With
less to worry about, you are less likely to make an error in your logic when you
use the ADT operations in applications such as displayList and replace.
Likewise, when you finally implement the ADT operations in Java, you will not
be distracted by these applications. In addition, because displayList and
replace do not depend on any implementation decisions that you make for

2. In this example, displayList is not an ADT operation, so a procedural notation 
that specifies aList as a parameter is used.

An implementation-
independent
application of the 
ADT list

You can use 
ADT operations 
in an application 
without the distrac-
tion of implemen-
tation details
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the ADT list, they are not altered by your decisions. These assertions assume
that you do not change the specifications of the ADT operations when you
implement them. However, as Chapter 2 pointed out, developing software is
not a linear process. You may realize during implementation that you need to
refine your specifications. Clearly, changes to the specification of any module
affect any already-designed uses of that module.

To summarize, you can specify the behavior of an ADT independently of
its implementation. Given such a specification, and without any knowledge of
how the ADT will be implemented, you can design applications that use the
ADT’s operations to access its data.

The ADT Sorted List
One of the most frequently performed computing tasks is the maintenance, in
some specified order, of a collection of data. Many examples immediately come
to mind: students placed in order by their names, baseball players listed in
order by their batting averages, and corporations listed in order by their assets.
These orders are called sorted. In contrast, the items on a grocery list might
be ordered—the order in which they appear on the grocer’s shelves, for
example—but they are probably not sorted by name.

The problem of maintaining sorted data requires more than simply
sorting the data. Often you need to insert some new data item into its proper,
sorted place. Similarly, you often need to delete some data item. For example,

The wall between displayList and the implementation of the ADT list

FIGURE 4-7
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suppose your university maintains an alphabetical list of the students who are
currently enrolled. The registrar must insert names into and delete names from
this list because students constantly enroll in and leave school. These opera-
tions should preserve the sorted order of the data.

The following specifications define the operations for the ADT sorted list.

The ADT sorted list differs from the ADT list in that a sorted list inserts and
deletes items by their values and not by their positions. For example, sortedAdd
determines the proper position for item according to its value. Also,
locateIndex—which determines the position of any item, given its value—is a
sorted list operation but not a list operation. However, sortedGet is like list’s get:
Both operations retrieve an item, given its position. The method sortedGet enables
you, for example, to retrieve and then display each item in a sorted list.

The ADT sorted list 
maintains items in 
sorted order

Pseudocode for the ADT Sorted List Operations

+createSortedList()
// Creates an empty sorted list.

+sortedIsEmpty():boolean {query}
// Determines whether a sorted list is empty.

+sortedSize():integer {query}
// Returns the number of items that are in a sorted list. 

+sortedAdd(in item:ListItemType)
// Inserts item into its proper sorted position in a 
// sorted list. Throws an exception if the item 
// cannot be placed on the list (list full).

+sortedRemove(in item:ListItemType)
// Deletes item from a sorted list.
// Throws an exception if the item is not found.

+sortedGet(in index:integer)
// Returns the item at position index of a 
// sorted list, if 0 <= index < sortedSize(). 
// The list is left unchanged by this operation. 
// Throws an exception if the index is out of range.

+locateIndex(in item:ListItemType):integer {query}
// Returns the position where item belongs or 
// exists in a sorted list; item and the list are 
// unchanged.

KEY CONCEPTS
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Designing an ADT
The design of an abstract data type should evolve naturally during the
problem-solving process. As an example of how this process might occur,
suppose that you want to determine the dates of all the holidays in a given
year. One way to do this is to examine a calendar. That is, you could consider
each day in the year and ascertain whether that day is a holiday. The following
pseudocode is thus a possible solution to this problem:

listHolidays(in year:integer)
// Displays the dates of all holidays in a given year.

   date = date of first day of year
while (date is before the first day of year+1) {

if (date is a holiday) {
         write (date + " is a holiday")
      }  // end if
      date = date of next day
   }  // end while

What data is involved here? Clearly, this problem operates on dates, where a date
consists of a month, day, and year. What operations will you need to solve the
holiday problem? Your ADT must specify and restrict the legal operations on the
dates just as the fundamental data type int restricts you to operations such as addi-
tion and comparison. You can see from the previous pseudocode that you must

■ Determine the date of the first day of a given year

■ Determine whether a date is before another date

■ Determine whether a date is a holiday

■ Determine the date of the day that follows a given date

Thus, you could define the following operations for your ADT:

+firstDay(in year:integer):Date {query}
// Returns the date of the first day of a given year.

+isBefore(in date1:Date, 
          in date2:Date) : boolean {query}
// Returns true if date1 is before date2,
// otherwise returns false.

+isHoliday(in aDate:Date) : boolean {query}
// Returns true if date is a holiday,
// otherwise returns false.

What data does a 
problem require?

What operations 
does a problem 
require?
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+nextDay(in aDate:Date) : Date
// Returns the date of the day after a given date.

The listHolidays pseudocode now appears as follows:

listHolidays(in year:integer)
// Displays the dates of all holidays in a given year.

   date = firstDay(year)
while (isBefore(date, firstDay(year+1))) {

if (isHoliday(date)) {
         write (date + " is a holiday ")
      }  // end if
      date = nextDay(date)
   }  // end while

Thus, you can design an ADT by identifying data and choosing operations
that are suitable to your problem. After specifying the operations, you use them
to solve your problem independently of the implementation details of the ADT.

An appointment book. As another example of an ADT design, imagine
that you want to create a computerized appointment book that spans a one-
year period. Suppose that you make appointments only on the hour and half
hour between 8 A.M. and 5 P.M. For simplicity, assume that all appointments
are 30 minutes in duration. You want your system to store a brief notation
about the nature of each appointment along with the date and time.

To solve this problem, you can define an ADT appointment book. The data
items in this ADT are the appointments, where an appointment consists of a
date, time, and purpose. What are the operations? Two obvious operations are

■ Make an appointment for a certain date, time, and purpose. (You will want to
be careful that you do not make an appointment at an already occupied time.)

■ Cancel the appointment for a certain date and time.

In addition to these operations, it is likely that you will want to

■ Ask whether you have an appointment at a given time.

■ Determine the nature of your appointment at a given time.

Finally, ADTs typically have initialization operations.
Thus, the ADT appointment book can have the following operations:

+createAppointmentBook()
// Creates an empty appointment book.

+isAppointment(in apptDate:Date, 
               in apptTime:Time):boolean {query}
// Returns true if an appointment exists for the date
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// and time specified; otherwise returns false.

+makeAppointment(in apptDate:Date, in apptTime:Time, 
                 in purpose:string):boolean
// Inserts the appointment for the date, time, and purpose
// specified as long as it does not conflict with an 
// existing appointment.
// Returns true if successful, false otherwise.

+cancelAppointment(in apptDate:Date, 
                   in apptTime:Time):boolean
// Deletes the appointment for the date and time specified.
// Returns true if successful, false otherwise.

+checkAppointment(in apptDate:Date, 
                 in apptTime:Time):string {query}
// Returns the purpose of the appointment at
// the given date/time, if one exists. Otherwise, returns
// null.

You can use these ADT operations to design other operations on the
appointments. For example, suppose that you want to change the date or time
of a particular appointment within the existing appointment book apptBook.
The following pseudocode indicates how to accomplish this task by using the
previous ADT operations:

// change the date or time of an appointment

read (oldDate, oldTime, newDate, newTime)
// get purpose of appointment
purpose = apptBook.checkAppointment(oldDate, oldTime)
if (purpose exists) {
  // see if new date/time is available 

if (apptBook.isAppointment(newDate, newTime)) {
    // new date/time is booked 
    write ("You already have an appointment at " + newTime +
           " on " + newDate)
  } 

else  { // new date/time is available
    apptBook.cancelAppointment(oldDate, oldTime))

if (apptBook.makeAppointment(newDate, newTime,
        purpose)){
      write ("Your appointment has been rescheduled to" + 
              newTime + " on " + newDate)
    }  //end if
  }  // end if
}
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else { 
  write ("You do not have an appointment at " + oldTime +
         " on " + oldDate)
}  // end if

Again notice that you can design applications of ADT operations without
knowing how the ADT is implemented. The exercises at the end of this
chapter provide examples of other tasks that you can perform with this ADT.

ADTs that suggest other ADTs. Both of the previous examples require  you
to represent a date; the appointment book example also requires you to repre-
sent the time. Java has a java.util.Date class that you can use to represent the
date and time. You can also design ADTs to represent these items. It is not
unusual for the design of one ADT to suggest other ADTs. In fact, you can use
one ADT to implement another ADT. The programming problems at the end of
this chapter ask you to design and implement the simple ADTs date and time. 

This final example also describes an ADT that suggests other ADTs for its
implementation. Suppose that you want to design a database of recipes. You
could think of this database as an ADT: The recipes are the data items, and
some typical operations on the recipes could include the following:

+insertRecipe(in aRecipe:Recipe)
// Inserts recipe into the database.

+deleteRecipe(in aRecipe:Recipe)
// Deletes recipe from the database.

+retrieveRecipe(in name:string):Recipe {query}
// Retrieves the named recipe from the database.

This level of the design does not indicate such details as where insertRecipe
will place a recipe into the database.

Now imagine that you want to write a method that scales a recipe retrieved
from the database: If the recipe is for n people, you want to revise it so that it
will serve m people. Suppose that the recipe contains measurements such as 21⁄2
cups, 1 tablespoon, and 1⁄4 teaspoon. That is, the quantities are given as mixed
numbers—integers and fractions—in units of cups, tablespoons, and teaspoons.

This problem suggests another ADT—measurement—with the following
operations:

+getMeasure():Measurement {query}
// Returns the measure.

+setMeasure(in m:Measurement)
// Sets the measure.

You can use an ADT 
without knowledge 
of its implementation

You can use an 
ADT to implement 
another ADT
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+scaleMeasure(in scaleFactor: float):Measurement
// Multiplies measure by a fractional scaleFactor, which
// has no units, and returns the result.

+convertMeasure(in oldUnits:MeasureUnit, 
               in newUnits:MeasureUnit):Measurement {query}
// Converts measure from its old units to a measure in
// new units, and returns the result.

Suppose that you want the ADT measurement to perform exact fractional
arithmetic. Because our planned implementation language Java does not have a
data type for fractions and floating-point arithmetic is not exact, another ADT
called fraction is in order. Its operations could include addition, subtraction,
multiplication, and division of fractions. For example, you could specify addi-
tion as

// Adds two fractions and returns the sum reduced to lowest
// terms.

Moreover, you could include operations to convert a mixed number to a frac-
tion and to convert a fraction to a mixed number when feasible.

When you finally implement the ADT measurement, you can use the ADT
fraction. That is, you can use one ADT to implement another ADT. 

Axioms (Optional)
The previous specifications for ADT operations have been stated rather infor-
mally. For example, they rely on your intuition to know the meaning of “an
item is at position i” in an ADT list. This notion is simple, and most people
will understand its intentions. However, some abstract data types are much
more complex and less intuitive than a list. For such ADTs, you should use a
more rigorous method of defining the behavior of their operations: You must
supply a set of mathematical rules—called axioms—that precisely specify the
behavior of each ADT operation. 

An axiom is actually an invariant—a true statement—for an ADT opera-
tion. For example, you are familiar with axioms for algebraic operations; in par-
ticular, you know the following rules for multiplication:

(a × b) × c = a × (b × c)

a × b = b × a

a × 1 = a

a × 0 = 0

These rules, or axioms, are true for any numeric values of a, b, and c, and they
describe the behavior of the multiplication operator ×.

addFractions(in first:Fraction, in second:Fraction):Fraction

An axiom is a 
mathematical rule

Axioms for 
multiplication
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In a similar fashion, you can write a set of axioms that completely describes
the behavior of the operations for the ADT list. For example, 

A newly created list is empty

is an axiom since it is true for all newly created lists. You can state this axiom
succinctly in terms of the operations of the ADT list as follows:

(aList.createList()).isEmpty() is true

That is, the list aList is empty. 
The statement

If you insert an item x into the ith position of an ADT list, retrieving the ith

item will result in x

is true for all lists, and so it is an axiom. You can state this axiom in terms of
the operations of the ADT list as follows:3

(aList.add(i, x)).get(i) = x

That is, get retrieves from position i of list aList the item x that add has
put there.

The following axioms formally define the ADT list:

3. The = notation within these axioms denotes algebraic equality.

Axioms specify 
the behavior 
of an ADT

Axioms for the ADT List
1. (aList.createList()).size() = 0 

2. (aList.add(i, x)).size() = aList.size() + 1 

3. (aList.remove(i)).size() = aList.size() - 1 

4. (aList.createList()).isEmpty() = true

5. (aList.add(i, item)).isEmpty() = false 

6. (aList.createList()).remove(i) = error 

7. (aList.add(i, x)).remove(i) = aList 

8. (aList.createList()).get(i) = error 

9. (aList.add(i, x)).get(i) = x 

10. aList.get(i) = (aList.add(i, x)).get(i+1)

11. aList.get(i+1) = (aList.remove(i)).get(i)

KEY CONCEPTS
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A set of axioms does not make the pre- and postconditions for an ADT’s
operations unnecessary. For example, the previous axioms do not describe
add’s behavior when you try to insert an item into position 50 of a list of
2 items. One way to handle this situation is to include the restriction

0 <= index <= size()

in add’s precondition. Another way—which you will see when we implement
the ADT list later in this chapter—does not restrict index, but rather throws
an exception if index is outside the previous range. Thus, you need both a set
of axioms and a set of pre- and postconditions to define the behavior of an
ADT’s operations completely.

You can use axioms to determine the outcome of a sequence of ADT oper-
ations. For example, if aList is a list of characters, how does the sequence of
operations

aList.add(0, b)
aList.add(0, a)

affect aList? We will show that a is the first item in this list and that b is the
second item by using get to retrieve these items. 

You can write the previous sequence of operations in another way as

(aList.add(0, b)).add(0, a)

or

tempList.add(0, a)

where tempList represents aList.add(0, b). Now retrieve the first and
second items in the list tempList.add(0, a), as follows:

(tempList.add(0, a)).get(0) = a by axiom 9

and

(tempList.add(0, a)).get(1)
= tempList.get(0) by axiom 10

= b by axiom 9

Thus, a is the first item in the list and b is the second item.
Axioms are treated further in exercises in the rest of the book.

Use axioms to deter-
mine the effect of a 
sequence of ADT 
operations

= (aList.add(0, b)).get(0) by definition of tempList
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4.3 Implementing ADTs

The previous sections emphasized the specification of an abstract data type.
When you design an ADT, you concentrate on what its operations do, but you
ignore how you will implement them. The result should be a set of clearly
specified ADT operations. 

How do you implement an ADT once its operations are clearly specified?
That is, how do you store the ADT’s data and carry out its operations? Earlier
in this chapter you learned that when implementing an ADT, you choose data
structures to represent the ADT’s data. Thus, your first reaction to the imple-
mentation question might be to choose a data structure and then to write
methods that access it in accordance with the ADT operations. Although this
point of view is not incorrect, hopefully you have learned not to jump right
into code. In general, you should refine an ADT through successive levels of
abstraction. That is, you should use a top-down approach to designing an
algorithm for each of the ADT operations. You can view each of the succes-
sively more concrete descriptions of the ADT as implementing its more
abstract predecessors. The refinement process stops when you reach data struc-
tures that are available in your programming language. The more primitive
your language, the more levels of implementation you will require.

The choices that you make at each level of the implementation can affect its
efficiency. For now, our analyses will be intuitive, but Chapter 10 will introduce
you to quantitative techniques that you can use to weigh the trade-offs involved. 

Recall that the program that uses the ADT should see only a wall of avail-
able operations that act on data. Figure 4-8 illustrates this wall once again.
Both the data structure that you choose to contain the data and the implemen-
tations of the ADT operations are hidden behind the wall. By now, you should
realize the advantage of this wall.

In a non-object-oriented implementation, both the data structure and the
ADT operations are distinct pieces. The client agrees to honor the wall by

Data structures are 
part of an ADT’s 
implementation

ADT operations provide access to a data structure

FIGURE 4-8
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using only the ADT operations to access the data structure. Unfortunately, the
data structure is hidden only if the client does not look over the wall! Thus,
the client can violate the wall—either intentionally or accidentally—by access-
ing the data structure directly, as Figure 4-9 illustrates. Why is such an action
undesirable? Later, this chapter will use an array items to store an ADT list’s
items. In a program that uses such a list, you might, for example, accidentally
access the first item in the list by writing 

firstItem = items[0];

instead of by invoking the list operation get. If you changed to another imple-
mentation of the list, your program would be incorrect. To correct your pro-
gram, you would need to locate and change all occurrences of items[0]—but
first you would have to realize that items[0] is in error!

Object-oriented languages such as Java provide a way for you to enforce
the wall of an ADT, thereby preventing access of the data structure in any way
other than by using the ADT operations. We will spend some time now
exploring this aspect of Java by discussing classes, interfaces, and exceptions.

Java Classes Revisited
Recall from Chapter 2 that object-oriented programming, or OOP, views a
program not as a sequence of actions but as a collection of components called
objects. Encapsulation—one of OOP’s three fundamental principles4—enables

4. The other principles are inheritance and polymorphism, which Chapter 9 will discuss.

Violating the wall of ADT operations

FIGURE 4-9
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you to enforce the walls of an ADT. It is, therefore, essential to an ADT’s
implementation and our main focus here.

Encapsulation combines an ADT’s data with its operations—called
methods—to form an object. Rather than thinking of the many components
of the ADT in Figure 4-8, you can think at a higher level of abstraction when
you consider the object in Figure 4-10 because it is a single entity. The object
hides its inner detail from the programmer who uses it. Thus, an ADT’s opera-
tions become an object’s behaviors.

We could use a ball as an example of an object. Because thinking of a bas-
ketball, volleyball, tennis ball, or soccer ball probably suggests images of the
game rather than the object itself, let’s abstract the notion of a ball by pictur-
ing a sphere. A sphere of a given radius has attributes such as volume and
surface area. A sphere as an object should be able to report its radius, volume,
surface area, and so on. That is, the sphere object has methods that return
such values. This section will develop the notion of a sphere as an object.
Later, in Chapter 9, you will see how to derive a ball from a sphere.

In Java, a class is a new data type whose instances are objects. A class con-
tains data fields and methods, collectively known as class members. Methods
typically act on the data fields. By default, all members in a class are private—
they are not directly accessible by your program—unless you designate them as
public. The implementations of a class’s methods, however, can use any
private members of that class.

You should almost always declare a class’s data fields as private. Typically,
as was mentioned in Chapter 2, you provide methods—such as setDataField
and getDataField—to access the data fields. In this way, you control how and
whether the rest of the program can access the data fields. This design principle
should lead to programs that not only are easier to debug, but also have fewer
logical errors from the beginning.

Request

Results

Methods

Data

An object’s data and methods are encapsulated

FIGURE 4-10
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You should also distinguish between a class’s data fields and any local vari-
ables that the implementation of a method requires. In Java, data fields are vari-
ables that are shared by all of the methods in the class. Data fields have initial
default values, based on their type, and thus do not need to be explicitly initial-
ized. But it is considered to be good programming practice to explicitly initial-
ize data fields in the constructors when necessary. Local variables are used only
within a single method and must be initialized explicitly before they are used.

The ADTs that you saw earlier had an operation for their creation. Classes
have such methods, called constructors. A constructor creates and initializes
new instances of a class. A typical class has several constructors. A constructor
has the same name as the class. Constructors have no return type—not even
void—and cannot use return to return a value. They can, however, have
parameters. We will discuss constructors in more detail shortly, after we look at
an example of a class definition.

Java has a garbage collection mechanism to destroy objects that a program
no longer needs. When a program no longer references an object, the Java
runtime environment marks it for garbage collection. Periodically, the Java
runtime environment executes a method that returns the memory used by
these marked objects to the system for future use. Sometimes when an object
is destroyed, other tasks beyond memory deallocation are necessary. In these
cases, you define a finalize method for the object. 

Java Interfaces 
Often it is convenient to be able to specify a set of methods that you might
want to provide in many different classes. One way to do this is to define a
superclass that contains these methods and then use inheritance to create the
different classes that need to provide those methods. This could pose a prob-
lem, however, if the subclass also needs to extend another superclass. Java
allows only one class to appear in the extends clause. 

To address this situation, Java provides interfaces. An interface provides a
way to specify methods and constants, but supplies no implementation details for
the methods. Interfaces enable you to specify some desired common behavior
that may be useful over many different types of objects. You can then design a
method to work with a variety of object types that exhibit this common behav-
ior by specifying the interface as the parameter type for the method, instead of a
class. This allows the method to use the common behavior in its implementa-
tion, as long as the arguments to the method have implemented the interface.

The Java API has many predefined interfaces. For example, java.util.
Collection is an interface that provides methods for managing a collection of
objects. Here are two of the methods specified in the Collection interface:

public boolean add(Object o);
public boolean contains(Object o);

A constructor 
creates and 
initializes an object

Java destroys 
objects that a 
program no longer 
references

An interface 
specifies methods 
and constants 
but supplies no 
implementations
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If you want to have your class provide the methods in this interface, you must
indicate your intent to implement the interface by including an implements
clause in your class definition and provide implementations of the methods:

public class CardCollection
                      implements java.util.Collection {
  ...

public boolean add(Object o) {
    // implementation of add method
  } // end add

public boolean contains(Object o) {
    // implementation of contains method
  }  // end contains

  // and so on...
}  // end CardCollection

Suppose there is a print(Collection c) method. Instances of
CardCollection are now eligible to be used as arguments to this method,
since CardCollection implements the interface Collection.

To define your own interface, you use the keyword interface instead of
class, and you provide only method specifications and constants in the inter-
face definition. For example,

public interface MyInterface {
public final int f1 = 0;
public void method1();
public int method2(int a, int b);

}  // end MyInterface

This defines an interface MyInterface that has one constant f1 and two
methods method1 and method2. Note that the name of the interface ends with
Interface. This is another coding convention that we will use throughout
this text.

Interfaces will be used to specify the ADTs that are developed in this
text. The implementation of the ADT list presented later in this chapter
will provide a more complete example of a user-defined interface and how it
can be used.

Object Comparison. Earlier we saw the use of the equals method to deter-
mine the equality of two objects. Sometimes it is useful to also be able to
determine not only the equality of objects, but if one object is greater or less
than another object.

When comparing objects in this way, the determination of what makes
one object “less” than another object can be specified by implementing the

A class that imple-
ments an interface

An example of an 
interface
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java.lang.Comparable interface. This interface contains one method,
compareTo, that returns a negative integer, zero, or a positive integer if the
current object is less than, equal to, or greater than the specified object.
Here is an example showing the SimpleSphere class implementing the
Comparable interface:

class SimpleSphere implements java.lang.Comparable<Object> {

  // same methods as before

  public int compareTo(Object rhs){
  // Compares rhs object with this object
  // Precondition: The object rhs should be a Sphere object
  // Postcondition: If this sphere has the same radius as the 
  // rhs sphere, returns zero. If this sphere has a larger 
  // radius than the rhs sphere, a positive integer is 
  // returned. If this sphere has a smaller radius than the 
  // rhs sphere, a negative integer is returned.
  // Throws: ClassCastException if the rhs object is not a 
  // Sphere object.

    // Throws ClassCastException if rhs cannot be cast to
    // Sphere
    Sphere other = (Sphere)rhs;

if (radius == other.radius) {
       return 0;  //Equal
    } else if (radius < other.radius) {
       return -1;
    } else {  // radius > other.radius
        return 1;
    }
  } // end compareTo
} // end SimpleSphere class

In this example, the criterion for comparison is based solely in the radius of the
sphere. Spheres with a smaller radius value are considered “less than” spheres with
a larger radius. Sometimes, the criterion used to compare objects depends on
multiple values. For example, suppose you want to compare the names of people,
consisting of a first name and a last name. Simply examining the last name might
be sufficient unless you have two people with the same last name, then you would
resort to comparing the two first names. The following example defines a
FullName class, and demonstrates how such a comparison could be defined:

private String firstName;
private String lastName;

public class FullName implements java.lang.Comparable<Object> { 
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public FullName(String first, String last) {
    firstName = first;
    lastName = last;
  } // end constructor

public int compareTo(Object rhs) {

  // Postcondition: Returns 0 if all fields match
  //    if lastName equals rhs.lastName and 
  //    firstName is greater than rhs.firstName.
  // Returns -1 if lastName is less than rhs.lastName or 
  //    if lastName equals rhs.lastName and 
  //    firstName is less than rhs.firstName

  // object.

    FullName other = (FullName)rhs;

if (lastName.compareTo(((FullName)other).lastName)==0){

    } 
else {

      return lastName.compareTo(((FullName)other).lastName);
    } // end if
  } // end compareTo
} // end class FullName

Java Packages
Java packages provide a way to group related classes together. To create a
package, you place a package statement at the top of each class file that is part
of the package. For example, Java source files that are part of a drawing
package would include the following line at the top of the file (Java package
names usually begin with a lowercase letter):

package drawingPackage;

Just as you must use the same name for both a Java class and the file
that contains the class, you must use the same name for a package and the
directory that contains all the classes in the package. Thus, the source
files for the drawing package must be contained in a directory called
drawingPackage.

When declaring classes within a package, the keyword public must appear in
front of the class keyword to make the class available to clients of the package. If

// Precondition: The object rhs should be a Fullname object

// Throws: ClassCastException if the rhs object is not a Fullname

   // Throws ClassCastException if rhs cannot be cast to Fullname

return firstName.compareTo(((FullName)other).firstName);

To include a class in 
a package, begin 
the class’s source 
file with a package
statement

Place the files that 
contain a package’s 
classes in the same 
directory
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the drawing package contains a class Palette, the source file for Palette begins
as follows:

package drawingPackage;
public class Palette {
...

Omitting the keyword public will make the class available only to other
classes within the package. Sometimes, such restricted access is desirable.

When a class is publicly available within a package, it can also be used
as a superclass for any new class, even those appearing in other packages.
This is actually done often within the Java API. For example, the excep-
tion class java.lang.RuntimeException is the superclass for the class
java.util.NoSuchElementException.

A package can contain other packages as well. If shapePackage is a
package in drawingPackage, the directory for shapePackage must be a subdi-
rectory of the drawingPackage directory. The package name consists of the
hierarchy of package names, separated by periods. For example, if the Java
source file for the class Sphere is part of shapePackage, the following line
must appear at the top of the file Sphere.java:

package drawingPackage.shapePackage;

You already use packages in your programs when you place an import
statement in your code. When you write a statement such as 

import java.io.*;

you indicate to the compiler that you want to use classes in the package
java.io. The * is a way to indicate that you might use any class in java.io,
but if you know the specific class from the java.io package that you plan to
use, you replace the * with the name of that class. For example, the statement

import java.io.DataStream;

indicates that you will use the class DataStream from the package java.io.
If you omit the package declaration from the source file for a class, the

class is added to a default, unnamed package. If all the classes in a group are
declared this way, they are all considered to be within this same unnamed
package and hence do not require an import statement. But if you are devel-
oping a package, and you want to use a class that is contained in the unnamed
package, you will need to import the class. In this case, since the package has
no name, the class name itself is sufficient in the import statement.

Access to a 
package’s classes 
can be public or 
restricted

Using a package
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An Array-Based Implementation of the ADT List
We will now implement the ADT list as a class. Recall that the ADT list opera-
tions are

+createList()
+isEmpty():boolean
+size():integer
+add(in index:integer, in newItem:ListItemType)
+remove(in index:integer)
+removeAll()
+get(in index:integer):ListItemType

You need to represent the items in the ADT list and its length. Your first
thought is probably to store the list’s items in an array items. In fact, you
might believe that the list is simply a fancy name for an array. This belief is not
quite true, however. An array-based implementation is a natural choice
because both an array and a list identify their items by number. However, the
ADT list has operations such as removeAll that an array does not. In the next
chapter you will see another implementation of the ADT list that does not use
an array.

In any case, you can store a list’s kth item in items[k]. How much of the
array will the list occupy? Possibly all of it, but probably not. That is, you need
to keep track of the array elements that you have assigned to the list and those
that are available for use in the future. The maximum length of the array—its
physical size—is a known, fixed value such as MAX_LIST. You can keep track of
the current number of items in the list—that is, the list’s length or logical
size—in a variable numItems. An obvious benefit of this approach is that
implementing the operation size will be easy. Thus, we could use the follow-
ing statements to implement a list of integers:

private final int MAX_LIST = 100; // max length of list
private int items[MAX_LIST];     // array of list items
private int numItems;           // length of list

Figure 4-11 illustrates the data fields for an array-based implementation of
an ADT list of integers. To insert a new item at a given position in the array of
list items, you must shift to the right the items from this position on, and
insert the new item in the newly created opening. Figure 4-12 depicts this
insertion.

Now consider how to delete an item from the list. You could blank it out,
but this strategy can lead to gaps in the array, as Figure 4-13a illustrates. An
array that is full of gaps has three significant problems:

Shift array elements 
to insert an item
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■ numItems – 1 is no longer the index of the last item in the array. You need
another variable, lastPosition, to contain this index.

■ Because the items are spread out, the method get might have to look at
every cell of the array even when only a few items are present.

■ When items[MAX_LIST - 1] is occupied, the list could appear full, even
when fewer than MAX_LIST items are present.

Thus, what you really need to do is shift the elements of the array to fill the
gap left by the deleted item, as shown in Figure 4-13b.

You should implement each ADT operation as a method of a class. Each
operation will require access to both the array items and the list’s length
numItems, so make items and numItems data fields of the class. To hide items
and numItems from the clients of the class, make these data fields private. 

If one of the operations is provided an index value that is out of range, an
exception should be thrown. Here is a definition of an exception that can be
used for an out-of-bounds list index called ListIndexOutOfBoundsExcep-
tion. It is based upon the more general IndexOutOfBoundsException from
the Java API: 

An array-based implementation of the ADT list

FIGURE 4-11
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public class ListIndexOutOfBoundsException 
extends IndexOutOfBoundsException {

public ListIndexOutOfBoundsException(String s) {
super(s);

  }  // end constructor
}  // end ListIndexOutOfBoundsException

Also, the exception ListException is needed when the array storing the
list becomes full. Here is the exception ListException:

public class ListException extends RuntimeException {
public ListException(String s) {

super(s);
  }  // end constructor
}  // end ListException

The following interface IntegerListInterface provides the specifica-
tions for the list operations. The ADT operation createList does not appear
in the interface because it will be implemented as a constructor.

// ********************************************************
// Interface IntegerListInterface for the ADT list.
// *********************************************************

(a) Deletion causes a gap; (b) fill gap by shifting

FIGURE 4-13
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public interface IntegerListInterface {
public boolean isEmpty();

   // Determines whether a list is empty.
   // Precondition: None.
   // Postcondition: Returns true if the list is empty,
   // otherwise returns false.
   // Throws: None.

public int size();
   // Determines the length of a list.
   // Precondition: None.
   // Postcondition: Returns the number of items that are
   // currently in the list.
   // Throws: None.

public void removeAll();
   // Deletes all the items from the list.
   // Precondition: None.
   // Postcondition: The list is empty.
   // Throws: None.

public void add(int index, int item) 
throws ListIndexOutOfBoundsException,

                   ListException;
   // Adds an item to the list at position index.
   // Precondition: index indicates the position at which
   // the item should be inserted in the list.
   // Postcondition: If insertion is successful, item is 
   // at position index in the list, and other items are
   // renumbered accordingly.
   // Throws: ListIndexOutOfBoundsException if index < 0 or 
   // index > size().
   // Throws: ListException if item cannot be placed on 
   // the list.

public int get(int index) throws
         ListIndexOutOfBoundsException;
   // Retrieves a list item by position.
   // Precondition: index is the number of the item to be
   // retrieved.
   // Postcondition: If 0 <= index < size(), the item at
   // position index in the list is returned.
   // Throws: ListIndexOutOfBoundsException if index < 0 or 
   // index > size()-1.

public void remove(int index) 
throws ListIndexOutOfBoundsException;
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   // Deletes an item from the list at a given position.
   // Precondition: index indicates where the deletion 
   // should occur. 
   // Postcondition: If 0 <= index < size(), the item at 
   // position index in the list is deleted, and other items
   // are renumbered accordingly.
   // Throws: ListIndexOutOfBoundsException if index < 0 or 
   // index > size()-1.

} // end IntegerListInterface

The notion of a list and of the operations that you perform on the list are
really independent of the type of items that are stored in the list. The defini-
tion just given is very limiting in that it will support only a list of integers. If
you use the class Object as the type for the list’s elements, the specification
will be far more flexible. Every class in Java is ultimately derived from the class
Object through inheritance. This means that any class created in Java could be
used as an item in the list class that implements the new list interface. 

What happens if you want to have a list of integers? If the list item type is
Object, you can no longer use the primitive type int as the item type, since
int is not derived from the class Object. In cases where you want a list to
contain items of a primitive type, you will need to use a corresponding wrapper
class from the Java API. For example, instead of using items of type int in the
list, the items would be of the type java.lang.Integer, a subclass of Object.

Here is a revised version, called ListInterface, that uses the class Object
for the list elements. The comments, which are the same as those in Integer-
ListInterface, are left out to save space:

// ********************************************************
// Interface ListInterface for the ADT list.
// *********************************************************
public interface ListInterface {

public boolean isEmpty();
public int size();
public void add(int index, Object item) 

throws ListIndexOutOfBoundsException,
                         ListException;

public Object get(int index) 
throws ListIndexOutOfBoundsException;

public void remove(int index) 
throws ListIndexOutOfBoundsException;

public void removeAll();
}  // end ListInterface

The following class implements the interface ListInterface, using arrays.

Use Object as the
type of list elements

Interface for a list of 
objects
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// ********************************************************
// Array-based implementation of the ADT list.
// *********************************************************
public class ListArrayBased implements ListInterface {

private static final int MAX_LIST = 50;
private Object items[];  // an array of list items
private int numItems;  // number of items in list

public ListArrayBased() {
    items = new Object[MAX_LIST];
    numItems = 0;
  }  // end default constructor

public boolean isEmpty() {
return (numItems == 0);

  } // end isEmpty

public int size() {
return numItems;

  }  // end size

public void removeAll() {
    // Creates a new array; marks old array for 
    // garbage collection.
    items = new Object[MAX_LIST];
    numItems = 0;
  } // end removeAll

public void add(int index, Object item) 
throws  ListIndexOutOfBoundsException {

if (numItems > MAX_LIST) {
throw new ListException("ListException on add");

    }  // end if
if (index >= 0 && index <= numItems) {

      // make room for new element by shifting all items at 
      // positions >= index toward the end of the 
      // list (no shift if index == numItems+1)

for (int pos = numItems; pos >= index; pos--) {
          items[pos+1] = items[pos];
      } // end for
      // insert new item
      items[index] = item;
      numItems++;
    } 

else {  // index out of range
throw new ListIndexOutOfBoundsException(

       "ListIndexOutOfBoundsException on add");

Implementation file
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    }  // end if
  } //end add

public Object get(int index) 
throws ListIndexOutOfBoundsException {

if (index >= 0 && index < numItems) {
return items[index];

    }
else  {  // index out of range

throw new ListIndexOutOfBoundsException(
        "ListIndexOutOfBoundsException on get");
    }  // end if
  } // end get

public void remove(int index) 
throws ListIndexOutOfBoundsException {

if (index >= 0 && index < numItems) {
      // delete item by shifting all items at 
      // positions > index toward the beginning of the list
      // (no shift if index == size)

for (int pos = index+1; pos <= size(); pos++) {
        items[pos-1] = items[pos];
      }  // end for
      numItems--;
    }

else {  // index out of range
throw new ListIndexOutOfBoundsException(

        "ListIndexOutOfBoundsException on remove");
    }  // end if
  } // end remove

}  // end ListArrayBased

The following program segment demonstrates the use of ListArrayBased:

static public void main(String args[]) {
   • • •
   ListArrayBased aList = new ListArrayBased();
   String dataItem;

   aList.add(0, "Cathryn");
   • • •
   dataItem = (String)aList.get(0);
   • • •
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Note that references within this program such as aList.numItems and
aList.items[4] would be illegal because numItems and items are private
members of the class.

In summary, to implement an ADT, given implementation-independent spec-
ifications of the ADT operations, you first must choose a data structure to
contain the data. Next, you define and implement a class within a Java source
file. The ADT operations are public methods within the class, and the ADT
data is represented as data fields that are typically private. You then implement
the class’s methods within an implementation file. The program that uses the
class will be able to access the data only by using the ADT operations.

1. Data abstraction is a technique for controlling the interaction between a program
and its data structures. It builds walls around a  program’s data structures,  just  as
other  aspects  of modularity build walls around a program’s algorithms. Such walls
make programs easier to design, implement, read, and modify.

2. The specification of a set of data-management operations together with the data
values upon which they operate define an abstract data type (ADT).

3. The formal mathematical study of ADTs uses systems of axioms to specify the
behavior of ADT operations.

4. Only after you have fully defined an ADT should you think about how to imple-
ment it. The proper choice of a data structure to implement an ADT depends both
on the details of the ADT operations and on the context in which you will use the
operations.

5. Even after you have selected a data structure as an implementation for an ADT, the
remainder of the program should not depend on your particular choice. That is,
you should access the data structure by using only the ADT operations. Thus, you
hide the implementation behind a wall of ADT operations. To enforce the wall
within Java, you define the ADT as a class, thus hiding the ADT’s implementation
from the program that uses the ADT. 

6. An object encapsulates both data and operations on that data. In Java, objects are
instances of a class, which is a programmer-defined data type.

1. After you design a class, try writing some code that uses your class before you
commit to your design. Not only will you see whether your design works for the
problem at hand, but you will also test your understanding of your own design and
check the comments that document your specifications.

2. When you implement a class, you might discover problems with either your class
design or your specifications. If these problems occur, change your design and

A client of the class 
cannot access the 
class’s private 
members directly

Summary

Cautions
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specifications, try using the class again, and continue implementing. These com-
ments are consistent with the discussion of software life cycle in Chapter 1.

3. A program should not depend upon the particular implementations of its ADTs.
By using a class to implement an ADT, you encapsulate the ADT’s data and opera-
tions. In this way, you can hide implementation details from the program that uses
the ADT. In particular, by making the class’s data fields private, you can change the
class’s implementation without affecting the client.

4. By making a class’s data fields private, you make it easier to locate errors in a pro-
gram’s logic. An ADT—and hence a class—is responsible for maintaining its data.
If an error occurs, you look at the class’s implementation for the source of the
error. If the client could manipulate this data directly because the data was public,
you would not know where to look for errors.

5. Variables that are local to a method’s implementation should not be data fields of
the class.

6. An array-based implementation of an ADT restricts the number of items that you
can store. Chapter 5 will discuss a way to avoid this problem.

1. What is the significance of “wall” and “contract”? Why do these notions help you to
become a better problem solver? 

2. Write a pseudocode method swap(aList, i, j) that interchanges the items cur-
rently in positions i and j of a list. Define the method in terms of the operations of
the ADT list, so that it is independent of any particular implementation of the list.
Assume that the list, in fact, has items at positions i and j. What impact does this
assumption have on your solution? (See Exercise 2.)

3. What grocery list results from the following sequence of ADT list operations?

aList.createList()
aList.add(0, butter)
aList.add(1, eggs)
aList.add(0, cereal)
aList.add(1, milk)
aList.add(0, coffee)
aList.add(1, bread)

4. Write specifications for a list whose insertion, deletion, and retrieval operations are
at the beginning of the list.

5. In mathematics, a set is a group of distinct items. Specify an ADT Set that
includes operations such as equality, subset, union, and intersection. Can you think
of any other operations?

6. Write a pseudocode method that creates a sorted list sortedList from the list
aList by using the operations of the ADTs list and sorted list.

Self-Test Exercises
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7. The specifications of the ADTs list and sorted list do not mention the case in which
two or more items have the same value. Are these specifications sufficient to cover
this case, or must they be revised?

8. Specify operations that are a part of the ADT character string. Include typical operations
such as length computation and concatenation (appending one string to another).

1. Write an ADT for a library management system which stores the title (string),
author (string), ISBN (string), list price (positive integers), edition (numbers), and
publisher (string).

2. Implement the method swap, as described in Self-Test Exercise 2, but remove the
assumption that the i th and j th items in the list exist. Throw an exception
ListIndexOutOfBoundsException if i or j is out of range.

3. Explain what, if any, the difference is between the algorithm of an application
program and the algorithm of any abstract data type.

4. The section “The ADT List” describes the methods displayList and replace.
As given in this chapter, these operations exist outside of the ADT; that is, they are
not operations of the ADT list. Instead, their implementations are written in terms
of the ADT list’s operations.

a. What is an advantage and a disadvantage of the way that displayList and
replace are implemented?

b. What is an advantage and a disadvantage of adding the operations displayList
and replace to the ADT list?

5. The ADT Bag is a group of items, much like what you might have with a bag of gro-
ceries. Note that the items in the bag are in no particular order and that the bag may
contain duplicate items. Specify operations to put an item in the bag, remove the last
item put in the bag, remove a random item from the bag, check how many items are
in the bag, check to see if the bag is full or empty, and completely empty the bag.

6. Design and implement an ADT that represents a credit card. The data of the ADT
should include the customer name, the account number, the next due date, the reward
points, and the account balance. The initialization operation should set the data to client-
supplied values. Include operations for a credit card charge, a cash advance, a payment,
the addition of interest to the balance, and the display of the statistics of the account. 

7. Specify operations that are a part of the ADT fraction. Include typical operations
such as addition, subtraction, and reduce (reduce fraction to lowest terms).

8. Suppose you want to write a program to play the card game War. Create an ADT for a
card, a second ADT for a deck of cards, and a third ADT for a hand.  What operations
will you need on each of these ADTs to play the game of War? Note that in the game of
War, you must be able to determine the higher card (Ace is high), and the winner wins all
of the cards in that round and places those cards at the bottom of his or her hand. When
there is a tie, a “war” is dealt with three cards face down, then the fourth face up, and
again the winner wins all the cards. If there is a tie again, “war” is played again until the
tie is broken. If a player runs out of cards in his or her hand, that last card is always played
face up, even if it is in the middle of a “war.”

Exercises
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9. Write pseudocode implementations of the operations of an ADT that represents a
trapezoid. Include typical operations, such as setting and retrieving the dimensions
of the trapezoid, finding the area and the perimeter of the trapezoid, and display-
ing the statistics of the trapezoid.

10. Write the ADT constructive specification for storing a student’s name (string),
address (string), phone number (integers),and test score (positive decimal integers).

11. Write a pseudocode method in terms of the ADT appointment book, described in
the section “Designing an ADT,” for each of the following tasks:

a. Change the purpose of the appointment at a given date and time.

b. Display all the appointments for a given date.

Do you need to add operations to the ADT to perform these tasks?

12. Consider the ADT polynomial—in a single variable x—whose operations include
the following:

+degree():integer {query}
// Returns the degree of a polynomial.
+getCoefficient(in power:integer):integer
// Returns the coefficient of the xpower term.
+changeCoefficient(in newCoef:integer, 
                   in power:integer)
// Replaces the coefficient of the xpower term
// with newCoef.

For this problem, consider only polynomials whose exponents are nonnegative
integers. For example, 

p = 4x5 + 7x3 – x2 + 9

The following examples demonstrate the ADT operations on this polynomial.

p.degree() is 5 (the highest power of a term with a nonzero coefficient)

p.getCoefficient(3) is 7 (the coefficient of the x3 term)

p.getCoefficient(4) is 0 (the coefficient of a missing term is implicitly 0)

p.changeCoefficient(-3, 7) produces the polynomial

p = –3x7 + 4x5 + 7x3 – x2 + 9

Using only the ADT operations provided, write statements to perform the
following tasks:

a. Display the constant term (the coefficient for the x0 term).

b. Change each coefficient in the polynomial by multiplying them by 5.

c. For a given polynomial such as p = –3x7 + 4x5 + 7x3 – x2 + 9, display the
expression in the form - 3x^7 + 4x^5 + 7x^3 - 1x^2 + 9.

d. Change the polynomial to its derivative—for example, p = –3x7 + 4x5 + 7x3 – x2 + 9
becomes p = –21x6 + 20x4 + 21x2 – 2x1.
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13. Design and implement an ADT for a Playing Card and a Deck of playing cards.
Each Playing Card must keep track of its suit (heart, diamond, club, spade), rank
(2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, Ace), and value (2 through 10 are
face value, Jack is 11, Queen is 12, King is 13, and Ace is 14). The Deck of
cards is all 52 cards—assume no Jokers will be used. The Deck ADT should ini-
tialize the 52 cards by suit (hearts, diamonds, clubs, spades) and within each suit
as 2 through Ace. Operations for the Deck ADT should minimally include shuf-
fling the deck and dealing a card from the deck.

14. Imagine an unknown implementation of an ADT sorted list of integers. This ADT
organizes its items into ascending order. Suppose that you have just read N inte-
gers into a one-dimensional array of integers called data. Write some Java state-
ments that use the operations of the ADT sorted list to sort the array into
ascending order.

15. Use the axioms for the ADT list, as given in this chapter in the section “Axioms,”
to prove that the sequence of operations

Insert A into position 2
Insert B into position 3
Insert C into position 2

has the same effect on a nonempty list of characters as the sequence

Insert B into position 2
Insert A into position 2
Insert C into position 2

16. Define a set of axioms for the ADT sorted list and use them to prove that the
sorted list of characters, which is defined by the sequence of operations

Create an empty sorted list
Insert S
Insert T
Insert R
Delete T

is exactly the same as the sorted list defined by the sequence

Create an empty sorted list
Insert T
Insert R
Delete T
Insert S

17. An organisation wishes to increase every employee’s wages by 30%. Write a pseudo
code algorithm for calculating this increase on every salary entered.

18. Write a pseudo code algorithm that builds a frequency array of data values in the
range of 5 bits and then prints their histogram. The data has to be read from the
command line.
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1. Design and implement an ADT that represents a triangle. The data for the ADT
should include the three sides of the triangle but could also include the triangle’s three
angles. This data should be declared private in the class that implements the ADT.

Include at least two initialization operations: One that provides default values
for the ADT’s data (in this case a 3, 4, 5 right triangle), and another that sets this
data to client-supplied values. These operations are the class’s constructors. 

The ADT also should include operations that look at the values of the ADT’s data;
change the values of the ADT’s data; compute the triangle’s area; and determine
whether the triangle is a right triangle, an equilateral triangle, or an isosceles triangle. 

2. Design and implement an ADT that represents the time of day. Represent the time
as hours, minutes, and seconds on a 24-hour clock. The hours, minutes, and
seconds are the private data fields of the class that implements the ADT. 

Include at least two initialization operations: One that provides a default value
for the time (midnight, all fields zero), and another that sets the time to a client-sup-
plied value. These operations are the class’s constructors. 

Include operations that set the time, increase the time by 1 second, return the
number of seconds between the time and a given time, increase the present time by
a number of minutes, and two operations to display the time in 12-hour and 24-
hour notations. 

3. Design and implement an ADT that represents a calendar date. You can represent a
date’s month, day, and year as integers (for example, 5/15/2011). Include opera-
tions that advance the date by one day and provide two operations to display the date
by using either numbers (05/16/2011) or words for the months (May 16, 2011).
As an enhancement, include the name of the day.

4. Design and implement an ADT that represents a price in U.S. currency as dollars
and cents. After you complete the implementation, write a client method that com-
putes the change due a customer who pays x for an item whose price is y.

5. Define a class for an array-based implementation of the ADT sorted list. Consider a
recursive implementation for locateIndex. Should sortedAdd and sortedRemove
call locateIndex?

6. Write recursive array-based implementations of the insertion, deletion, and retrieval
operations for the ADTs list and sorted list.

7. Implement the ADT bag that you specified in Exercise 5 by using only arrays and
simple variables. 

8. Implement the ADT character string that you specified in Self-Test Exercise 8.

9. Write a program to play the card game War. Use the Playing Card and Card Deck
ADTs developed in Exercise 13. You will also need to create an ADT for the
player’s cards that keeps track of the cards in the player’s hand. 

The game begins by evenly dividing the deck between two players and creating a
hand for each player, which they hold face down. Then, each player shows a card.
The player whose card has a higher point value (as provided by the Playing Card
ADT) wins both cards and has them added to the “bottom” of his or her hand. If
the two cards have the same point value, then it is “war”: Each player plays three

Programming Problems
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cards face down, with a fourth card face up. In this case, the player whose card has a
higher point value wins all 10 cards (the 2 original cards in the tie, plus the 6 face
down cards, and the last 2 face up cards), and again, adds them to the bottom of his
or her hand. Should a player “run out” of cards in the midst of a “war,” his or her
last card is the face up card.  If there is a tie in a “war,” then another “war” is played,
with the winner taking all of the cards and adding them to the bottom of his or her
hand. Play continues as long as a player has cards in his or her hand—once they run
out, the other player is declared the winner.

10. Implement the ADT appointment book, described in the section “Designing an
ADT.” Add operations as necessary. For example, you should add operations to
read and write appointments.

11. a. Implement the ADT fraction that you specified in Exercise 7. Provide operations
that read, write, add, subtract, multiply, and divide fractions. The results of all arith-
metic operations should be in lowest terms, so include a private method
reduceToLowestTerms. Exercise 23 in Chapter 3 will help you with the details of
this method. (Should your read and write operations call reduceToLowestTerms?)
To simplify the determination of a fraction’s sign, you should maintain the denomi-
nator of the fraction as a positive value, and keep the sign on the numerator.

b. Specify and implement an ADT for mixed numbers, each of which contains an
integer portion and a fractional portion in lowest terms. Assume the existence
of the ADT fraction (see part a). Provide operations that read, write, add, sub-
tract, multiply, and divide mixed numbers. The results of all arithmetic opera-
tions should have fractional portions that are in lowest terms. Also include an
operation that converts a fraction to a mixed number.

12. Implement the recipe database as described in the section “Designing an ADT”
and, in doing so, also implement the ADTs recipe and measurement. A recipe has a
title, a list of ingredients with measurements, and a list of directions. Add opera-
tions as necessary. For example, you should add operations to the ADT recipe data-
base to read, write, and scale recipes.

13. Implement a program based on the UML specification in Programming Problem 1
of Chapter 2.

14. In mathematics, a set is a group of distinct items.  Design and implement (using an
array) an ADT Set that supports the following operations:

+createSet()
// creates an empty set

+isEmpty():boolean {query}
// Determines whether a set is empty

+size():integer {query}
// Returns the number of elements in this set (its 
// cardinality)

+add(in item:integer)
// Adds the specified element to this set if it is not already 
// present

+contains(in item:integer):boolean {query}
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// Determines if this set contains the specified item

+union(in other:Set):Set
// Creates a new set containing all of the elements of this 
// set and the other set (no duplicates) and returns the 
// resulting set

+intersection(in other:Set):Set
// Creates a new set of elements that appear in both this set 
// and the other set and returns the resulting set

+removeAll()
// Removes all of the items in the set
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CHAPTER 5

 Linked Lists

his chapter reviews Java references and introduces
you to the data structure linked list. You will see algo-

rithms for fundamental linked list operations such as inser-
tion and deletion. The chapter also describes several
variations of the basic linked list. As you will see, you can
use a linked list and its variations when implementing many
of the ADTs that appear throughout the remainder of this
book. The material in this chapter is thus essential to much
of the presentation in the following chapters.
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5.1 Preliminaries

The ADT list, as described in the previous chapter, has operations to insert,
delete, and retrieve items, given their positions within the list. A close examina-
tion of the array-based implementation of the ADT list reveals that an array is
not always the best data structure to use to maintain a collection of data. An
array has a fixed size—at least in most commonly used programming lan-
guages—but the ADT list can have an arbitrary length. Thus, in the strict
sense, you cannot use an array to implement a list because it is certainly possi-
ble for the number of items in the list to exceed the fixed size of the array.
When developing implementations for ADTs, you often are confronted with
this fixed-size problem. In many contexts, you must reject an implementation
that has a fixed size in favor of one that can grow dynamically.

In addition, although the most intuitive means of imposing an order on
data is to sequence it physically, this approach has its disadvantages. In a physi-
cal ordering, the successor of an item x is the next data item in sequence after
x, that is, the item “to the right” of x. An array orders its items physically and,
as you saw in the previous chapter, when you use an array to implement a list,
you must shift data when you insert or delete an item at a specified position.
Shifting data can be a time-consuming process that you should avoid, if possi-
ble. What alternatives to shifting data are available?

To get a conceptual notion of a list implementation that does not involve
shifting, consider Figure 5-1. This figure should help free you from the notion
that the only way to maintain a given order of data is to store the data in that
order. In these diagrams, each item of the list is actually linked to the next item.
Thus, if you know where an item is, you can determine its successor, which can
be anywhere physically. This flexibility not only allows you to insert and delete
data items without shifting data, but it also allows you to increase the size of
the list easily. If you need to insert a new item, you simply find its place in the
list and set two links. Similarly, to delete an item, you find the item and
change a link to bypass the item.

Because the items in this data structure are linked to one another, it is
called a linked list. As you will see shortly, a linked list is able to grow as
needed, whereas an array can hold only a fixed number of data items. In many
applications, this flexibility gives a linked list a significant advantage. 

Before we examine linked lists and their use in the implementation of an
ADT, we will examine how Java references can be used to implement a linked
list. Like many programming languages, Java allows one object to reference
another, and you can use this ability to build a linked list. The next section
reviews the mechanics of these references.

Object References
When you declare a variable that refers to an object of a given class, you are
creating a reference to the object. Note that an object of that class does not
come into existence until you apply the new operator. A reference variable, or
simply a reference, contains the location, or address in memory, of an object.

An item in a linked 
list references its 
successor

A reference con-
tains the address of 
an object



Preliminaries 267

By using a reference to a particular object, you can locate the object and, for
example, access the object’s public members.

Let’s look at an example using the class java.lang.Integer to help us
visualize this scenario:

Integer intRef;
intRef = new Integer(5);

The first line declares a reference variable intRef that can be used to
locate an Integer object. The second line actually instantiates an Integer
object and assigns its location to intRef. Figure 5-2 illustrates that there are
now two separate entities in our program: an Integer object and a reference
variable intRef that provides the location of that Integer object.

When you declare a reference variable as a data field within a class but do
not instantiate an object for it in a constructor, it is initialized to null. You can
use this constant null as the value of a reference to any type of object. This
use indicates that the reference variable does not currently reference any
object. For example, if intRef is declared as a data field, and you attempt to
use it before you instantiate an Integer object for it, the exception
java.lang.NullPointerException will be thrown at runtime. This excep-
tion indicates that you attempted to access an object by using a reference vari-
able that contains a null value.

When you declare a reference variable to be local to a method, no default
value is provided. For example, let p be declared as a reference to an Integer
object. If you attempt to use p to access an object before p is initialized, the
compiler will give you the error message "Variable p may not have been
initialized."

(a) A linked list of integers; (b) insertion; (c) deletion

FIGURE 5-1
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When one reference variable is assigned to another reference variable, both
references then refer to the same object. For example,

Integer p, q;
p = new Integer(6);
q = p;

Figure 5-3d illustrates the result of this assignment. Now the Integer object
has two references to it, p and q. The effect of the assignment operator is to
cause the reference variable on the left side of the assignment to reference the
same object as referenced by the right side of the assignment operator. Alterna-
tively, you could let q reference a new object, as Figure 5-3e shows.

Suppose that you no longer need the value in a reference variable. That is,
you do not want the reference variable to locate any particular object. You can
explicitly assign the constant value null, discussed earlier, to a reference vari-
able to indicate that it no longer references any object. When you remove all
references to an object, the system marks the object for garbage collection, as
shown in Figures 5-3c and 5-3f. The Java runtime environment will periodi-
cally run a method that returns the memory allocated to the marked objects
back to the system for future use. In other programming languages, such as
C++, the programmer must explicitly deallocate memory using special lan-
guage constructs.

A reference to an Integer object

FIGURE 5-2

Reference intRef

This view only shows the data
members for simplicity. This
is the view used throughout
the text.

5

Integer object

(b)

data field

5

Integer(int value)

int compareTo(Integer value)

int intValue()

Reference intRef
This view shows the data members
and methods for the object.

Integer object

(a)

The system marks 
unreferenced 
objects for garbage 
collection
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When you declare an array of objects and apply the new operator, an array
of references  is actually created, not an array of objects. For example,

Integer[] scores = new Integer[30];

?
p

?
q

   p = new Integer(5);(b)

   Integer p;
   Integer q;
(a)

   p = new Integer(6);(c)

   q = new Integer(9);(e)

   p = null;(f)

   q = p;(d)

   q = p;(g)

p
5

p
6

p
6

p

q
7

q
9

q
9

p
6

q

9

p

6

5

(a) Declaring reference variables; (b) allocating an object; (c) allocating another 
object, with the dereferenced object marked for garbage collection; (d) assigning a 
reference; (e) allocating an object; (f) assigning null to a reference variable; (g) 
assigning a reference with a null value

FIGURE 5-3

An array of objects 
is actually an array 
of references to the 
objects
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creates an array of 30 references for Integer objects. You must instantiate
actual Integer objects for each of the array references. For example, you
might instantiate objects for the array just created as follows:

scores[0] = new Integer(7);
scores[1] = new Integer(9); // and so on ...

When you use the equality operators (== and !=), you are actually compar-
ing the values of the reference variables, not the objects that they reference.
Suppose that you have the following class definition:

public class MyNumber {
private int num;

public MyNumber(int n) {
num = n;

} // end constructor

public String toString() {
return "My number is " + num;

} // end toString
} // end class MyNumber

and you declare the following:

MyNumber x = new MyNumber(9);
MyNumber y = new MyNumber(9);
MyNumber z = x;

Although objects x and y contain the same data, the == operator returns
false, since x and y refer to different objects. The expression x == z is true
because the assignment statement z = x causes z to refer to the same object
that x references. If you need to be able to compare objects field by field, you
must redefine the equals method for the class, as discussed in Chapter 1.

Parameter passing in Java can also be discussed in terms of reference vari-
ables. When a method is called and has parameters that are objects, the refer-
ence value of the actual argument is copied to a formal parameter reference
variable. During the execution of the method, the object is accessed through
the formal parameter reference variable. This provides the same result as if the
original reference was used. Upon completion of the method, the references
stored in these formal parameters are discarded, although the objects that the
parameters reference may be retained. 

This method of parameter passing helps to explain why the use of the new
operator with a formal parameter in a method can produce unexpected results.
For example, suppose you have the following method changeNumber, which
uses the MyNumber class:

Equality operators 
compare values of 
reference variables, 
not the objects that 
they reference

When you pass an 
object to a method 
as an argument, the 
reference to the 
object is copied to 
the method’s formal 
parameter
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public void changeNumber(MyNumber n) {
n = new MyNumber(5);

} // end changeNumber

and the following Java statements:

MyNumber x = new MyNumber(9);
changeNumber(x); // attempts to assign 5 to x
System.out.println(x);

The output is “My number is 9”. Figure 5-4 demonstrates why this is the case.
When the changeNumber method is invoked, the reference to object x is copied to
the formal parameter reference n of changeNumber. During the execution of
changeNumber, a new object is created for n to reference. But when the change-
Number method completes execution, the reference variable n is discarded. This
causes the newly created object containing 5 to be marked for garbage collection.
The value of the reference variable x remains unchanged; it still references the same
object (containing 9) that it did before the changeNumber method was executed.

Note that ADT implementations and data structures that use Java refer-
ences are said to be reference based.

Java Reference Variables
1. The declaration

Integer intRef;

statically allocates a reference variable intRef whose value is
null. When a reference variable contains null, it does not refer-
ence anything.

2. intRef can reference an Integer object. The statement

intRef = new Integer(5);

dynamically allocates an Integer object referenced by intRef. (How-
ever, see item 3 on this list.)

3. If, for some reason, new cannot instantiate an object of the class 
represented, it may throw a java.lang.InstantiationException
or a java.lang.IllegalAccessException. Thus, you can place the
following statement within a try block to test whether memory was
successfully allocated:

intRef = new Integer(5);

4. When the last reference to an object is removed, the object is 
marked for garbage collection.

KEY CONCEPTS
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Resizeable Arrays
When you declare an array in Java by using statements such as

final int MAX_SIZE = 50;
double[] myArray = new double[MAX_SIZE];

the Java runtime environment reserves a specific number—MAX_SIZE, in this
case—of references for the array. Once the array has been instantiated, it has a
fixed size for the remainder of its lifetime. We have already discussed the
problem this fixed-size data structure causes when your program has more
than MAX_SIZE items to place into the array.

You can create the illusion of a resizeable array—an array that grows and
shrinks as the program executes—by using an allocate and copy strategy with
fixed-size arrays. If the array that you are currently using in the program
reaches its capacity, you allocate a larger array and copy the references stored in
the original array to the larger array. How much larger should the new array
be? The increment size can be a fixed number of elements or a multiple of the
current array size. The following statements demonstrate how you could
accomplish this task for an array myArray:

if (capacityIncrement == 0) {
capacity *= 2;

}
else {

capacity += capacityIncrement;
}
// now create a new array using the updated 
// capacity value
double [] newArray = new double[capacity];
// copy the contents of the original array
// to the new array
for (int i = 0; i < myArray.length; i++) {

newArray[i] = myArray[i];
} // end for

The value of a parameter does not affect the argument’s value

FIGURE 5-4
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// now change the reference to the original array
// to the new array
myArray = newArray;

In this example, capacity and capacityIncrement represent the capac-
ity of the array and the size of the increment, respectively. Once you exceed
the capacity of myArray, you allocate a larger array newArray according to the
value of capacityIncrement. Note that if the capacityIncrement is zero,
the array capacity doubles instead of increasing by a fixed amount. You must
copy the values from the original array to the new array and then change the
original array reference to reference the new array. 

The classes java.util.Vector and java.util.ArrayList use a similar tech-
nique to implement a growable array of objects. The underlying implementation of
java.util.Vector uses a fixed array of size capacity and has a capacityIn-
crement that you can change to suit your needs. Exercise 20 asks you to
explore the java.util.Vector class to determine when resizing the underly-
ing array will occur.

Subsequent discussion in this book will refer to both fixed-sized and
resizeable arrays. Our array-based ADT implementations will use fixed-sized
arrays for simplicity. The programming problems will ask you to create array-
based implementations that use resizeable arrays.

Reference-Based Linked Lists
A linked list, such as the one in Figure 5-1, contains components that are
linked to one another. Each component—usually called a node—contains both
data and a “link” to the next item. Typically, such links are Java reference vari-
ables; another possibility is mentioned at the end of this section. Although you
have seen most of the mechanics of references, using references to implement a
linked list is probably not yet completely clear to you. Consider now how you
can set up such a linked list.

Each node of the list can be implemented as an object. For example, if you
want to create a linked list of integers, you could use the following class defini-
tion, as  Figure 5-5 illustrates:

public class IntegerNode {
public int item;
public IntegerNode next;

} // end class IntegerNode

However, this type of definition violates our rule that data fields must be
declared private, especially in public classes. But what if the IntegerNode class
is not declared public, and is only used as a building block in the actual list
implementation? In Java, classes can be declared as public using the access
modifier public, or as package-private if no access modifier is used. Hence, it
is possible to make a class available only for other classes within the same
package by declaring it package-private. This effectively prevents the user of
the package from gaining access to the underlying implementation. Should the

A node in a linked 
list is an object

item next

A node

FIGURE 5-5

A node definition 
that is not desirable 
because its data 
fields are public
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underlying implementation be changed, no code outside of the package will be
affected. So, we could rewrite the IntegerNode class as follows:

package IntegerList;
class IntegerNode {

int item;
  IntegerNode next;
} // end class IntegerNode

and use this class as follows:

IntegerNode n1 = new IntegerNode();
IntegerNode n2 = new IntegerNode();
n1.item = 5; // set item in first node
n2.item = 9; // set item in second node
n1.next = n2; // link the nodes

This scenario is depicted in Figure 5-6. The item field is initialized for
each node. The next field for the node n1 is then set to n2, which in effect
links the nodes by making the first node reference the second. Exercise 8 will
ask you to explore the declaration of a node class with private data fields.

We could improve this class by adding constructors, as follows:

package IntegerList;
class IntegerNode {

int item;
IntegerNode next;

IntegerNode(int newItem) {
item = newItem;
next = null;

} // end constructor

A node for a linked 
list of integers

Defining a refer-
ence to a node

The result of linking two instances of IntegerNode

FIGURE 5-6
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  IntegerNode(int newItem, IntegerNode nextNode) {
item = newItem;
next = nextNode;

} // end constructor
}   // end class IntegerNode

This definition of a node restricts the data to a single integer field. Since
we would like to have this class be as reusable as possible, it would be better to
change the data field to be of type Object. Recall that every class in Java is
ultimately derived from the class Object through inheritance. This means that
any class created in Java could use this node definition for storing objects. Let’s
first examine the revised class, using objects for data:

package List;

class Node {
Object item;
Node next;

Node(Object newItem) {
item = newItem;
next = null;

} // end constructor

Node(Object newItem, Node nextNode) {
item = newItem;
next = nextNode;

} // end constructor
} // end class Node

You can use this class as follows:

Node n = new Node(new Integer(6));
Node first = new Node(new Integer(9), n);

Figure 5-7 illustrates this scenario. The constructors are used to initialize
the data field and a link value that is either null or provided as an argument.
Although the data portion of each node in a linked list can reference an
instance of any class, the figure illustrates data items that are instances of the
class java.lang.Integer.

To complete our general description of the linked list, we must consider
two other issues. First, what is the value of the data field next in the last node
in the list? By setting this field to null, you can easily detect when you are at
the end of the linked list.

A node for a linked 
list of objects
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Second, nothing so far references the beginning of the linked list. If you
cannot get to the beginning of the list, you cannot get to the second node in
the list, and if you cannot get to the second node in the list, you cannot get to
the third node in the list, and so on. The solution is to have an additional ref-
erence variable whose sole purpose is to locate the first node in the linked list.
Such a variable is often called head.

Observe in Figure 5-8 that the reference variable head is different from
the other reference variables in the diagram in that it is not within one of the
nodes. Rather, it is a simple reference variable that is external to the linked list,
whereas the next data fields are internal reference variables within the nodes of
the list. The variable head simply enables you to access the list’s beginning.
Also, note that head always exists, even at times when there are no nodes in
the linked list. The statement

Node head = null;

creates the variable head, whose value is initially null. This indicates that head
does not reference anything, and therefore that this list is empty.

It is a common mistake to think that before you can assign head a value,
you must execute the statement head = new Node(). This misconception is
rooted in the belief that the variable head does not exist unless you create a
new node. This is not at all true; head is a reference variable waiting to be

first
Node first = new Node(new Integer(9), n);

n

Node n = new Node(new Integer(6));

9

?6

Using the Node constructor to initialize a data field and a link value

FIGURE 5-7
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assigned a value. Thus, for example, you can assign null to head without first
using new. In fact, the sequence

head = new Node();  // Don’t really need to use new here
head = null;   // since we lose the new Node object here

destroys the contents of the only reference—head—to the newly created node,
as Figure 5-9 illustrates. Thus, you have needlessly created a new node and
then made it inaccessible. Remember that when you remove the last reference
from a node, the system marks it for garbage collection. 

As was mentioned earlier, you do not need references to implement a
linked list. Programming Problem 10 at the end of this chapter discusses an
implementation that uses an array to represent the items in a linked list.
Although sometimes useful, such implementations are unusual.

5.2 Programming with Linked Lists

The previous section illustrated how you can use reference variables to imple-
ment a linked list. This section begins by developing algorithms for displaying the
data portions of such a linked list and for inserting items into and deleting items
from a linked list. These linked list operations are the basis of many of the data
structures that appear throughout the remainder of the book. Thus, the material
in this section is essential to much of the discussion in the following chapters.

Displaying the Contents of a Linked List
Suppose now that you have a linked list, as was pictured in Figure 5-8, and that
you want to display the data in the list. A high-level pseudocode solution is

Let a variable curr reference the first node in
    the linked list
while (the curr reference is not null) {
  Display the data portion of the current node
  Set the curr reference to the next field of the
      current node
}  // end while

A common 
misconception

head

head = new Node(new Integer(5));

head

head = null;

5 ?5

A lost node

FIGURE 5-9
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This solution requires that you keep track of the current position within the
linked list. Thus, you need a reference variable curr that references the current
node. Initially, curr must reference the first node. Since head references the
first node, simply copy head into curr by writing

Node curr = head;

To display the data portion of the current node, you can use the statement1

System.out.println(curr.item);

Finally, to advance the current position to the next node, you write

curr = curr.next;

Figure 5-10 illustrates this action. If the previous assignment statement is
not clear, consider

temp = curr.next;
curr = temp;

and then convince yourself that the intermediate variable temp is not necessary.
These ideas lead to the following loop in Java:

// Display the data in a linked list that head
// references.
// Loop invariant: curr references the next node to be 
// displayed

1. See Chapter 1 for a discussion of System.out.println with object parameters.

The effect of the assignment curr = curr.next

FIGURE 5-10
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for (Node curr = head; curr != null; curr = curr.next) {
  System.out.println(curr.item);
} // end for

The variable curr references each node in a nonempty linked list during
the course of the for loop’s execution, and so the data portion of each node is
displayed. After the last node is displayed, curr becomes null and the for
loop terminates. When the list is empty—that is, when head is null—the for
loop is correctly skipped.

A common error in the for statement is to compare curr.next instead of
curr with null. When curr references the last node of a nonempty linked list,
curr.next is null, and so the for loop would terminate before displaying the
data in the last node. In addition, when the list is empty—that is, when head and
therefore curr are null—curr.next will throw a NullPointerException.
Such references are incorrect and should be avoided.

Displaying a linked list is an example of a common operation, list traversal.
A traversal sequentially visits each node in the list until it reaches the end of the
list. Our example displays the data portion of each node when it visits the node.
Later in this book, you will see that you can do other useful things to a node
during a visit.

Displaying a linked list does not alter it; you will now see operations that
modify a linked list by deleting and inserting nodes. These operations assume
that the linked list has already been created. Ultimately, you will see how to
build a linked list by inserting nodes into an initially empty list.

Deleting a Specified Node from a Linked List
So that you can focus on how to delete a particular node from a linked list,
assume that the linked list shown in Figure 5-11 already exists. Notice that, in
addition to head, the diagram includes two external reference variables, curr
and prev. The task is to delete the node that curr references. As you soon will
see, you also need prev to complete the deletion. For the moment, do not
worry about how to establish curr and prev.

A traverse operation 
visits each node in 
the linked list

Deleting a node from a linked list
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As Figure 5-11 indicates, you can delete a node N, which curr refer-
ences, by altering the value of the reference next in the node that precedes N.
You need to set this data field to reference the node that follows N, thus
bypassing N on the chain. (The dashed line indicates the old reference value.)
Notice that this reference change does not directly affect node N. Since curr
still references node N, the node remains in existence, and it references the
same node that it referenced before the deletion. However, the node has effec-
tively been deleted from the linked list. For example, the method display-
List from the previous section would not display the contents of node N. If
curr is the only reference to node N, when we change curr to reference
another node or set it equal to null, node N is marked for garbage collection.

To accomplish this deletion, notice first that if only the reference curr
points to N, you would have no direct way to access the node that precedes N.
After all, you cannot follow the links in the list backward. However, notice that
the reference variable prev in Figure 5-11 references the node that precedes N
and makes it possible for you to alter that node’s next data field. Doing so
deletes node N from the linked list. The following assignment statement is all
that you need to delete the node that curr references:

prev.next = curr.next;

A question comes to mind at this point:

■ Does the previous method work for any node N, regardless of where in the
linked list it appears? 

No, the method does not work if the node to be deleted is the first node in the
list, because it certainly does not make sense to assert that prev references the
node that precedes this node! Thus, deletion of the first node in a linked list is a
special case, as Figure 5-12 depicts. In this case, curr references the first node
and prev is null.

When you delete the first node of the list, you must change the value of
head to reflect the fact that, after the deletion, the list has a new first node.

Deleting an interior 
node

Deleting the first node

FIGURE 5-12
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That is, the node that was second prior to the deletion is now first. You make
this change to head by using the assignment statement

head = head.next; 

As was the case for the deletion of an interior node, the head reference now
bypasses the old first node. Notice also that if the node to be deleted is the only
node in the list—and thus it is both the first node and the last node—the pre-
vious assignment statement assigns the value null to the variable head. Recall
that the value null in head indicates an empty list, and so this assignment
statement handles the deletion of the only node in a list correctly.

If the node N is no longer needed, you should change the next data field
of the node N to null and also the value of curr to null, as the following
statements show:

curr.next = null;
curr = null;

This serves two purposes. First, the reference variables curr and next (in
node N ) can’t be inadvertently followed, leading to subtle errors later in the
program. Second, the system can now use this returned memory and possibly
even reallocate it to your program as a result of the new operator.

So far, we have deleted the node N that curr references, given a reference
variable prev to the node that precedes N. However, another question
remains:

■ How did the variables curr and prev come to reference the appropriate
nodes?

To answer this question, consider the context in which you might expect to
delete a node. In one common situation, you need to delete a node that you
specify by position. Such is the case if you use a linked list to implement an
ADT list. In another situation, you need to delete a node that contains a par-
ticular data value. Such is the case if you use a linked list to implement an
ADT sorted list. In both of these situations, you do not pass the values of
curr and prev to the deletion method, but instead the method establishes
these values as its first step by searching the linked list for the node N that
either is at a specified position or contains the data value to be deleted. Once
the method finds the node N—and the node that precedes N—the deletion
of N proceeds as described previously. The details of determining curr and
prev for deletion are actually the same as for insertion, and they appear in
the next section.

Deleting the first 
node is a special 
case
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To summarize, the deletion process has three high-level steps:

1. Locate the node that you want to delete.

2. Disconnect this node from the linked list by changing references.

3. Return the node to the system.

Later in this chapter, we will incorporate this deletion process into the imple-
mentation of the ADT list.

Inserting a Node into a Specified Position of a Linked List
Figure 5-13 illustrates the technique of inserting a new node into a specified
position of a linked list. You insert the new node, which the reference variable
newNode references, between the two nodes that prev and curr reference. As
the diagram suggests, you can accomplish the insertion by using the following
pair of assignment statements:

newNode.next = curr;
prev.next = newNode;

The following two questions are analogous to those previously asked
about the deletion of a node:

■ How did the variables newNode, curr, and prev come to reference the
appropriate nodes?

■ Does the method work for inserting a node into any position of a
linked list?

The answer to the first question, like the answer to the analogous ques-
tion for deletion, is found by considering the context in which you will use
the insertion operation. You establish the values of curr and prev by tra-
versing the linked list until you find the proper position for the new item.

Three steps to 
delete a node from 
a linked list

Inserting a new node into a linked list

FIGURE 5-13

prev curr

newNode

20 40

30

100

Inserting a node 
between nodes



Programming with Linked Lists 283

You then use the new operator to create a new node that references the
item as follows:

newNode = new Node(item);

You can now insert the node into the list, as was just described.
The answer to the second question is that insertion, like deletion, must

account for special cases. First, consider the insertion of a node at the begin-
ning of the linked list, as shown in Figure 5-14. You must make head reference
the new node, and the new node must reference the node that had been at the
beginning of the list. You accomplish this by using these statements:

newNode.next = head;
head = newNode;

Observe that if the list is empty before the insertion, head is null, so the next
reference of the new item is set to null. This step is correct because the new
item is the last item—as well as the first item—on the list.

Figure 5-15 shows the insertion of a new node at the end of a linked list.
This insertion is potentially a special case because the intention of the pair of
assignment statements

newNode.next = curr;
prev.next = newNode;

is to insert the new node between the node that curr references and the node
that prev references. If you are to insert the new node at the end of the list,
what node should curr reference? In this situation, it makes sense to view the
value of curr as null because, as you traverse the list, curr becomes null as it
moves past the end of the list. Observe that if curr has the value null and

Creating a node for 
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Inserting at the beginning of a linked list
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prev references the last node on the list, the previous pair of assignment state-
ments will indeed insert the new node at the end of the list. Thus, insertion at
the end of a linked list is not a special case.

To summarize, the insertion process requires three high-level steps:

1. Determine the point of insertion.

2. Create a new node and store the new data in it.

3. Connect the new node to the linked list by changing references.

Determining curr and prev. Let us now examine in more detail how
to determine the references curr and prev for the insertion operation just
described. As was mentioned, this determination depends on the context in
which you will insert a node. As an example, consider a linked list of integers
that are sorted into ascending order using the IntegerNode class in the previ-
ous section. To simplify the discussion, assume that the integers are distinct;
that is, no duplicates are present in the list.

To determine the point at which the value newValue should be inserted
into a sorted linked list, you must traverse the list from its beginning until
you find the appropriate place for newValue. This appropriate place is just
before the node that contains the first data item greater than newValue. You
know that you will need a reference curr to the node that is to follow the
new node; that is, curr references the node that contains the first data item
greater than newValue. You also need a reference prev to the node that is to
precede the new node; that is, prev references the node that contains the last
data item smaller than newValue. Thus, as you traverse the linked list, you
keep both a current reference curr and a trailing reference prev. When you
reach the node that contains the first value larger than newValue, the trailing
reference prev references the previous node. At this time, you can insert the
new node between the two nodes that prev and curr reference, as was
described earlier.

Inserting at the end of a linked list

FIGURE 5-15

curr

newNodeprev

10296 100

Formerly null

Three steps to insert 
a new node into a 
linked list



Programming with Linked Lists 285

A first attempt at some pseudocode follows:

// determine the point of insertion into a sorted 
// linked list
// initialize prev and curr to start the traversal 
// from the beginning of the list
prev = null
curr = head

// advance prev and curr as long as 
// newValue > the current data item
// Loop invariant: newValue > data items in all
// nodes at and before the node that prev references
while (newValue > curr.item) { // causes a problem!
  prev = curr
  curr = curr.next 
}  // end while

Unfortunately, the while loop causes a problem when the new value is
greater than all the values in the list, that is, when the insertion will be at the
end of the linked list (or when the linked list is empty). Eventually, the while
statement compares newValue to the value in the last node. During that exe-
cution of the loop, curr is assigned the value null. After this iteration,
newValue is again compared to curr.item, which, when curr is null, will
throw the exception NullPointerException.

To solve this problem, you need another test in the termination condition
of the while statement so that the loop exits when curr becomes null. Thus,
you replace the while statement with

while (curr != null && newValue > curr.item)

The revised pseudocode is

// determine the point of insertion into a sorted 
// linked list
// initialize prev and curr to start the traversal 
// from the beginning of the list
prev = null
curr = head

// advance prev and curr as long as newValue > the 
// current data item; do not go beyond end of list
// Loop invariant: newValue > data items in all
// nodes at and before the node that prev references
while (curr != null && newValue > curr.item) {
  prev = curr
  curr = curr.next 
}  // end while

A first attempt at a 
solution

The correct solution
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Notice how the while statement also solves the problem of inserting a
node at the end of the linked list. In the case where newValue is greater than
all the values in the list, prev references the last node in the list and curr
becomes null, thus terminating the while loop. (See Figure 5-16.) Therefore,
as you saw earlier, you can insert the new node at the end of the list by using
the standard pair of assignment statements

newNode.next = curr;
prev.next = newNode;

Now consider the insertion of a node at the beginning of the linked list.
This situation arises when the value to be inserted is smaller than all the values
currently in the list. In this case, the while loop in the previous pseudocode is
never entered, so prev and curr maintain their original values, as Figure 5-17
illustrates. In particular, prev maintains its original value of null. This is the
only situation in which the value of prev is equal to null after execution of
the while loop ends. Thus, you can detect an insertion at the beginning of the
list by comparing prev to null.

Observe that the solution also correctly handles insertion into an empty
linked list as an insertion at the beginning of the list. When the list is empty,
the statement curr = head assigns curr an initial value of null, and thus the
while loop is never entered. Therefore, prev maintains its original value of
null, indicating an insertion at the beginning of the list. 

A little thought should convince you that the solution that determines the
point of insertion also works for deletion. If you want to delete a given integer
from a linked list of sorted integers, you obviously want to traverse the list
until you find the node that contains the value sought. The previous
pseudocode will do just that: curr will reference the desired node and prev
either will reference the preceding node or, if the desired node is first on the
list, will be null, as shown in Figure 5-17.

When prev references the last node and curr is null, insertion will be at the end of 
the linked list

FIGURE 5-16
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The following Java statements implement the previous pseudocode:

// determine the point of insertion or deletion 
// for a sorted linked list
// Loop invariant: newValue > data items in all
// nodes at and before the node that prev references
for ( prev = null, curr = head; 
      (curr != null) && (newValue > curr.item); 
      prev = curr, curr = curr.next ) {
  // no statements in loop body
} // end for 

Recall that the && (and) operator in Java does not evaluate its second operand if its
first operand is false. Thus, when curr becomes null, the loop exits without
attempting to evaluate curr.item. It is, therefore, essential that curr != null be
first in the logical expression.

Notice that this implementation relies on the ability to compare one value
to another by using the built-in greater than (>) operation for the primitive
data type int. Suppose instead that the items in the list are of data type
Object. As mentioned in Chapter 4, you can compare objects if they imple-
ment the interface java.lang.Comparable and have an implementation of the
method compareTo.

You can then use the following code to find the location of the item
newValue of type Comparable within the list:

// determine the point of insertion or deletion 
// for a sorted linked list of objects
// Loop invariant: newValue > data items (using
// compareTo method) in all nodes at and before 
// the node that prev references
for ( prev = null, curr = head; 
      (curr != null ) &&
      (newValue.compareTo(curr.item) > 0);
      prev = curr, curr = curr.next ) {
} // end for

currprev

head

When prev is null and curr references the first node, insertion or deletion will be 
at the beginning of the linked list
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The compareTo method defines the criteria to decide when objects are
equal or when one object is less than or greater than another. This in turn can
be used to create a sorted list of objects based upon the criteria defined by the
new comparison method. 

Determining the values of curr and prev is simpler when you insert or
delete a node by position instead of by its value. This determination is neces-
sary when you use a linked list to implement the ADT list, as you will see next.

A Reference-Based Implementation of the ADT List
This section considers how you can use Java references instead of an array to
implement the ADT list. Unlike the array-based implementation, a reference-
based implementation does not shift items during insertion and deletion oper-
ations. It also does not impose a fixed maximum length on the list—except, of
course, as imposed by the storage limits of the system.

As in Chapter 4, and as we will do in the rest of the book, we will implement
this ADT as a Java class. For the array-based implementation, we wrote declara-
tions for public methods corresponding to the operation of the ADT list. These
declarations will appear unchanged in the reference-based implementation.

You need to represent the items in the ADT list and its length. Figure 5-18
indicates one possible way to represent this data by using references. The variable
head references a linked list of the items in the ADT list, where the first node in
the linked list contains the first item in the ADT list and so on. The variable
numItems is an integer that is the current number of items in the list. Both head
and numItems will be private data fields of our class.

As you saw previously, you use two references—curr and prev—to
manipulate a linked list. These reference variables will be local to the methods
that need them; they are not appropriate data fields of the class.

Recall that the ADT list operations for insertion, deletion, and retrieval
specify the position number i of the relevant item. Assume that position
number 0 is the first node in the list, referenced by head. In an attempt to
obtain values for curr and prev from i, suppose that you define a method
find(i) that returns a reference to the i th node in the linked list. If find pro-
vides a reference curr to the i th node, how will you get a reference prev to
the previous node, that is, to the (i – 1)th node? You can get the value of prev
by invoking find(i-1). Instead of calling find twice, however, note that once
you have prev, curr is simply prev.next. The only exception to using find in
this way is for the first node, but you know immediately from i whether the
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operation involves the first node. If it does, you know the reference to the first
node, namely head, without invoking find.

The method find is not an ADT operation. Because find returns a refer-
ence, you would not want any client to call it. Such clients should be able to use
the ADT without knowledge of the references that the implementation uses. It
is perfectly reasonable for the implementation of an ADT to define variables
and methods that the rest of the program should not access. Therefore, find is
a private method that only the implementations of the ADT operations call.

The following interface specification developed in Chapter 4 will be used
for the reference-based implementation of the ADT list. The pre- and postcon-
ditions for the ADT list operations are the same as for the array-based imple-
mentation that you saw in Chapter 4; they are omitted here to save space.

package List;
// ****************************************************
// Interface for the ADT list
// ****************************************************
public interface ListInterface {
  // list operations:

public boolean isEmpty();
public int size();
public void add(int index, Object item)

throws ListIndexOutOfBoundsException;
public void remove(int index)

throws ListIndexOutOfBoundsException;
public Object get(int index) 

throws ListIndexOutOfBoundsException;
public void removeAll(); 

} // end ListInterface

The implementation of the list begins as follows:

package List;
// ****************************************************
// Reference-based implementation of ADT list.
// ****************************************************
public class ListReferenceBased implements ListInterface {
  // reference to linked list of items

private Node head; 
private int numItems; // number of items in list

  // definitions of constructors and methods
    . . .

You include the implementations of the class’s methods at this point in the
class as well as any private methods that may be needed. We now examine each
of these implementations.

find is a private 
method
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Default constructor. The default constructor simply initializes the data
fields numItems and head:

public ListReferenceBased() {
  numItems = 0;
  head = null;
}  // end default constructor

Since the variables numItems and head are initialized to these same values by
default, this constructor is really not necessary. But if you have other construc-
tors defined and you want to allow for a constructor without parameters, it
must be defined explicitly. In general, it’s a good idea to define all construc-
tors explicitly. 

List operations. The methods isEmpty and size have straightforward
implementations:

public boolean isEmpty() {
return numItems == 0;

}  // end isEmpty

public int size() {
return numItems;

}  // end size

Because a linked list does not provide direct access to a specified position,
the retrieval, insertion, and deletion operations must all traverse the list from
its beginning until the specified point is reached. The method find performs
this traversal and has the following implementation:

private Node find(int index) {
// --------------------------------------------------
// Locates a specified node in a linked list.
// Precondition: index is the number of the desired
// node. Assumes that 1 <= index <= numItems+1
// Postcondition: Returns a reference to the desired 
// node.
// --------------------------------------------------
  Node curr = head;

for (int skip = 0; skip < index; skip++) {
    curr = curr.next;
  } // end for

return curr;
} // end find

Default constructor

Private method to 
locate a particular 
node



Programming with Linked Lists 291

 The precondition for find requires the index to be in the proper range.
The get operation calls find to locate the desired node:

public Object get(int index) 
throws ListIndexOutOfBoundsException {

if (index >= 0 && index < numItems) {
    // get reference to node, then data in node
    Node curr = find(index);
    Object dataItem = curr.item;

return dataItem;
  } 

else {
throw new ListIndexOutOfBoundsException(

"List index out of bounds on get");
  } // end if
} // end get

The reference-based implementations of the insertion and deletion opera-
tions use the linked list processing techniques developed earlier in this chapter.
To insert an item after the first item of a list, you must first obtain a reference
to the preceding item. Insertion into the first position of a list is a special case.

public void add(int index, Object item)
throws ListIndexOutOfBoundsException {

if (index >= 0 && index < numItems+1) {
if (index == 0) {

      // insert the new node containing item at
      // beginning of list
      Node newNode = new Node(item, head);
      head = newNode;
    } 

else {
      Node prev = find(index-1);

      // insert the new node containing item after 
      // the node that prev references
      Node newNode = new Node(item, prev.next);
      prev.next = newNode;
    } // end if
    numItems++;
  } 

else {
throw new ListIndexOutOfBoundsException(

"List index out of bounds on add");
  } // end if
}  // end add

Retrieved by 
position

Insertion at a given 
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The remove operation is analogous to insertion. To delete an item that
occurs after the first item of a list, you must first obtain a reference to the item
that precedes it. Removal from the first position of a list is a special case. 

public void remove(int index) 
throws ListIndexOutOfBoundsException {

if (index >= 0 && index < numItems) {
if (index == 0) {

      // delete the first node from the list
      head = head.next;
    } 

else {
      Node prev = find(index-1);
      // delete the node after the node that prev
      // references, save reference to node
      Node curr = prev.next; 
      prev.next = curr.next;
    } // end if
    numItems--;
  } // end if

else {
throw new ListIndexOutOfBoundsException(

                  "List index out of bounds on remove");
  } // end if
}   // end remove

The removeAll operation simply sets the head reference to null, making
the nodes in the list unreachable and thus marking them for garbage collection.

public void removeAll() {
  // setting head to null causes list to be
  // unreachable and thus marked for garbage 
  // collection
  head = null;
  numItems = 0;
} // end removeAll

Comparing Array-Based and Reference-Based 
Implementations
Typically, the various implementations that a programmer contemplates for a
particular ADT have advantages and disadvantages. When you must select an
implementation, you should weigh these advantages and disadvantages before
you make your choice. As you will see, the decision among possible implemen-
tations of an ADT is one that you must make time and time again. This section
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compares the two implementations of the ADT list that you have seen as an
example of how you should proceed in general.

The array-based implementation that you saw in Chapter 4 appears to be a
reasonable approach. An array behaves like a list, and arrays are easy to use.
However, as was already mentioned, an array has a fixed size; it is possible for
the number of items in the list to exceed this fixed size. In practice, when
choosing among implementations of an ADT, you must ask the question, does
the fixed-size restriction of an array-based implementation present a problem
in the context of a particular application? The answer to this question depends
on two factors. The obvious factor is whether or not, for a given application,
you can predict in advance the maximum number of items in the ADT at any
one time. If you cannot, it is quite possible that an operation—and hence the
entire program—will fail because the ADT in the context of a particular appli-
cation requires more storage than the array can provide.

On the other hand, if, for a given application, you can predict in advance
the maximum number of items in the ADT list at any one time, you must
explore a more subtle factor: Would you waste storage by declaring an array to
be large enough to accommodate this maximum number of items? Consider a
case in which the maximum number of items is large, but you suspect that this
number rarely will be reached. For example, suppose that your list could
contain as many as 10,000 items, but the actual number of items in the list
rarely exceeds 50. If you declare 10,000 array locations at compilation time, at
least 9,950 array locations will be wasted most of the time. In both of the
previous cases, the array-based implementation given in Chapter 4 is not
desirable.

What if you used a resizeable array? Because you would use the new opera-
tor to allocate a larger array dynamically, you would be able to provide as much
storage as the list needs (within the bounds of the particular computer, of
course). Thus, you would not have to predict the maximum size of the list.
However, if you doubled the size of the array each time you reached the end of
the array—which is a reasonable approach to enlarging the array—you still
might have many unused array locations. In the example just given, you could
allocate an array of 50 locations initially. If you actually have 10,000 items in
your list, array doubling will eventually give you an array of 12,800 locations,
2,800 more than you need. Remember also that you waste time by copying
the array each time you need more space.

Now suppose that your list will never contain more than 25 items. You
could allocate enough storage in the array for the list and know that you would
waste little storage when the list contained only a few items. With respect to its
size, an array-based implementation is perfectly acceptable in this case.

A reference-based implementation can solve any difficulties related to the
fixed size of an array-based implementation. You use the new operator to allo-
cate storage dynamically, so you do not need to predict the maximum size of
the list. Because you allocate memory one item at a time, the list will be allo-
cated only as much storage as it needs. Thus, you will not waste storage.

There are other differences between the array-based and reference-based
implementations. These differences affect both the time and memory
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requirements of the implementations. Any time you store a collection of data
in an array or a linked list, the data items become ordered; that is, there is a
first item, a second item, and so on. This order implies that a typical item has a
predecessor and a successor. In an array anArray, the location of the next item
after the item in anArray[i] is implicit—it is in anArray[i+1]. In a linked
list, however, you explicitly determine the location of the next item by using
the reference in the current node. This notion of an implicit versus explicit
next item is one of the primary differences between an array and a linked list.
Therefore, an advantage of an array-based implementation is that it does not
have to store explicit information about where to find the next data item, thus
requiring less memory than a reference-based implementation.

Another, more important advantage of an array-based implementation is
that it can provide direct access to a specified item. For example, if you use the
array items to implement the ADT list, you know that the item associated
with list position i is stored in items[i-1]. Accessing either items[0] or
items[49] takes the same amount of time. That is, the access time is con-
stant for an array. 

On the other hand, if you use a linked list to implement the ADT list, you
have no way of immediately accessing the node that contains the ith item. To
get to the appropriate node, you use the next data fields to traverse the linked
list from its beginning until you reach the i th node. That is, you access the first
node and get the reference to the second node, access the second node and get
the reference to the third node, and so on until you finally access the i th node.
Clearly, the time it takes you to access the first node is less than the time it
takes to access the 50th node. The access time for the ith node depends on i.

The type of implementation chosen will affect the efficiency of the opera-
tions of the ADT list. An array-based get is almost instantaneous, regardless of
which list item you access. A reference-based retrieval operation like get, how-
ever, requires i steps to access the i th item in the list.

You already know that the array-based implementation of the ADT list
requires you to shift the data when you insert items into or delete items from the
list. For example, if you delete the first item of a 20-item list, you must shift 19
items. In general, deleting the ith item of a list of n items requires n – i shifts.
Thus, remove requires n – 1 shifts to delete the first item, but zero shifts to
delete the last item. The list insertion operation add has similar requirements. 

In contrast, you do not need to shift the data when you insert items into
or delete items from the linked list of a reference-based implementation. The
methods add and remove require essentially the same effort, regardless of the
length of the list or the position of the operation within the list, once you
know the point of insertion or deletion. Finding this point, however, requires a
list traversal, the time for which will vary depending on where in the list the
operation will occur. Recall that the private method find performs this tra-
versal. If you examine the definition of find, you will see that find(i)
requires i assignment operations. Thus, find’s effort increases with i.

We will continue to compare various solutions to a problem throughout
this book. Chapter 10 will introduce a more formal way to discuss the effi-
ciency of algorithms. Until then, our discussions will be informal.
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Passing a Linked List to a Method
How can a method access a linked list? It is sufficient for the method to have
access to the list’s head reference. From this variable alone, the method can
access the entire linked list. In the reference-based implementation of the ADT
list that you saw earlier in this chapter, the head reference head to the linked
list that contains the ADT’s items is a private data field of the class ListRefer-
enceBased. The methods of this class use head directly to manipulate the
linked list. 

Would you ever want head to be an argument of a method? Certainly not for
methods outside of the class, because such methods should not have access to
the class’s underlying data structure. Although on the surface, it would seem
that you would never need to pass the head reference to a method, that is not
the case. Recursive methods, for example, might need the head reference as an
argument. You will see examples of such methods in the next section. Realize
that these methods must not be public members of their class. If they were,
clients could access the linked list directly, thereby violating the ADT’s wall.

As Figure 5-19 illustrates, when head is an actual argument to a method,
its value is copied into the corresponding formal parameter. The method then
can access and alter the nodes in the list. However, the method cannot modify
head’s value (recall our earlier example in Figure 5-4). This is fine for situa-
tions, such as a search method, that do not modify the list. But what should
you do if you want to write a method that may need to modify the head refer-
ence? For example, a method that inserts a node at the beginning of the list
will need to modify the head reference. One solution is for the return value of
the method to be the new value for the head reference. Such an example will
appear in the next section.

Processing Linked Lists Recursively
It is possible, and sometimes desirable, to process linked lists recursively. This
section examines recursive traversal and insertion operations on a linked list. If
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the recursive methods in this section are members of a class, they should not
be public because they require the linked list’s head reference as an argument.

Traversal. Suppose that you want to display the elements in a list referenced
by head. That is, you want to write the objects in the order in which they
appear in the linked list. The recursive strategy is simply

Write the first node of the list
Write the list minus its first node

The following Java method implements this strategy:

private static void writeList(Node nextNode) {
// ---------------------------------------------------------
// Writes a list of objects.
// Precondition: The linked list is referenced by nextNode.
// Postcondition: The list is displayed. The linked list
// and nextNode are unchanged.
// ---------------------------------------------------------

if (nextNode != null) {
    // write the first data object
    System.out.println(nextNode.item);
    // write the list minus its first node
    writeList(nextNode.next);
  }  // end if
}  // end writeList

This method is uncomplicated. It requires that you have direct access only to
the first node of the list. The linked list provides this direct access because the
list’s first node, referenced by head, contains the list’s first data item. Further-
more, you can easily pass the list minus its first node to writeList. If head
references the beginning of the list, head.next references the list minus its
first node. You should compare writeList to the iterative technique that we
used earlier in this chapter to display a linked list. 

Now suppose that you want to display the list backward. Chapter 3 already
developed two recursive strategies for writing a string s backward. Recall that
the strategy of the method writeBackward is

Write the last character of string s
Write string s minus its last character backward

The strategy of the method writeBackward2 is

Write string s minus its first character backward
Write the first character of string s

A recursive 
traversal method

Compare the recur-
sive writeList to
the iterative tech-
nique on page 277

writeBackward
strategy

writeBackward2
strategy
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We can easily translate these strategies to linked lists. The method writeBack-
ward translates to

Write the last node of the list
Write the list minus its last node backward

and the strategy of the method writeBackward2 translates to

Write the list minus its first node backward
Write the first node of the list

You saw that these two strategies work equally well when an array is used.
However, when a linked list is used, the first strategy is very difficult to imple-
ment: If nextNode references the node that contains the first node of the list,
how do you get to the last node? Even if you had some way to get to the last
node in the list quickly, it would be very difficult for you to move toward the
front of the list at each recursive call. That is, it would be difficult for you to
access the ends of the successively shorter lists that the recursive calls generate.
(Later you will see a doubly linked list, which would solve this problem.)

This discussion illustrates one of the primary disadvantages of linked lists:
Whereas an array provides direct access to any of its items, a linked list does
not. Fortunately, however, the strategy of method writeBackward2 requires
that you have direct access only to the first character of the string. This access
is the same that writeListBackward2 requires: The list’s head reference
nextNode locates the first node in the list, and nextNode.next references the
list minus the first node.

The following Java method implements the writeListBackward2 strat-
egy for a linked list:

private static void writeListBackward2(Node nextNode) {
// ----------------------------------------------------
// Writes a list of objects backwards.
// Precondition: The linked list is referenced by 
// nextNode.
// Postcondition: The list is displayed backwards. The 
// linked list and nextNode are unchanged.
// ----------------------------------------------------

if (nextNode != null) {
// write the list minus its first node backward
writeListBackward2(nextNode.next);
// write the data object in the first node
System.out.println(nextNode.item);

} // end if
}   // end writeListBackward2 

writeListBack-
ward strategy

writeListBack-
ward2 strategy

writeListBack-
ward2 is much 
easier to implement 
recursively than 
writeListBack-
ward
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Self-Test Exercise 8 asks you to trace this method. This trace will be similar
to the box trace in Figure 3-9. Exercise 5 asks you to write an iterative version
of this method. Which version is more efficient? 

Insertion. Now view the insertion of a node into a sorted linked list from a
new perspective—that is, recursively. Later in this book you will need a recur-
sive algorithm to perform an insertion into a linked structure. Interestingly,
recursive insertion eliminates the need for both a trailing reference and a
special case for inserting into the beginning of the list.

Consider the following recursive view of a sorted linked list: A linked list is
sorted if its first data item is less than its second data item and the list that
begins with the second data item is sorted. More formally, you can state this
definition as follows:

The linked list that head references is a sorted linked list if 

head is null (the empty list is a sorted linked list)

or

head.next is null (a list with a single node is a sorted linked list)

or

head.item < head.next.item, and head.next references a sorted 
linked list

You can base a recursive insertion on this definition. Notice that the following
method inserts the node at one of the base cases—either when the list is empty
or when the new data item is smaller than all the data items in the list. In both
cases, you need to insert the new data item at the beginning of the list.

private static Node insertRecursive(Node headNode, 
java.lang.Comparable newItem) {

if ( (headNode == null) || 
(newItem.compareTo(headNode.item) < 0) ) {

// base case: insert newItem at the beginning of the
// linked list that nextNode references
Node newNode = new Node(newItem, headNode);
headNode = newNode;

}
else { //insert into rest of linked list

    headNode.next = nextNode;
} // end if
return headNode;

}  // end insertRecursive

First, consider the context for insertRecursive. Recall from Chapter 4
that the ADT operation sortedAdd(newItem) inserts newItem into its proper

Node nextNode = insertRecursive(headNode.next,newItem);
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order in the sorted list. As a public method of the class, sortedAdd would call
insertRecursive to do the insertion recursively. However, insertRecursive
requires the linked list’s head reference as an argument. Since the reference head
is private and hidden from the client, you would not want insertRecursive to
be an ADT operation. Thus, you would make it private.

To see how insertRecursive works, consider that sortedAdd will invoke
insertRecursive by using the statement

head = insertRecursive(head, newItem);

Although insertRecursive does not maintain a trailing reference, inserting
the new node is easy when the base case is reached. Note that within
insertRecursive, headNode references the beginning of the sorted linked
list. You use headNode to make the new node reference the first node in the
original list and then change headNode so that it references the new node.
Since insertRecursive returns headNode, sortedAdd’s assignment to head
makes head reference the new node as required.

To understand the previous remarks, consider the case in which the new item
is to be inserted at the beginning of the original list that has the external reference
head. In this case, no recursive calls are made, and consequently when the base
case is reached—that is, when newItem.compareTo(headNode.item) < 0—the
actual argument that corresponds to headNode is head, as Figure 5-20a illustrates.

Insertion occurs at 
the base case

head

(a)

↕
headNode

(b)
Old value

newNode

↕

2

1

4 6

head

headNode

2 4 6

(a) A sorted linked list; (b) the assignment made for insertion at the beginning of 
the list

FIGURE 5-20
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The assignment headNode = newNode then sets the method’s return value to
reference the new node. Upon return of insertRecursive, the statement

head = insertRecursive(head, newItem);

assigns the return value to head, as Figure 5-20b shows.
The general case in which the new item is inserted into the interior of the

list that head references is similar. When insertRecursive is first called, the
else clause of the if statement executes, making a recursive call to
insertRecursive. When the base case is reached, what is the actual argument
that corresponds to headNode? It is the next reference of the node that should
precede the new node, as Figure 5-21 illustrates. Therefore, the base case
returns a reference to the new node. The else clause assigns this reference to
nextNode, and sets the next reference of the appropriate node to reference the
new node.

head

(b)

(c)
Old value

newNode

1

3

2 4

head

(a)

↕
headNode

↕
headNode

↕
headNode

1 2 4 6

6

head

1 2 4 6

(a) The initial call insertRecursive(head,newItem); (b) the first recursive call; (c) the second 
recursive call inserts at the beginning of the list that headNode references

FIGURE 5-21
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When the original call to insertRecursive returns headNode, its value is
unchanged from its original value of head. Thus, the assignment

head = insertRecursive(head, newItem);

leaves the value of head unchanged.
Although it could be argued that you should perform the operations on a

sorted linked list recursively (after all, recursion does eliminate special cases and
the need for a trailing reference), the primary purpose in presenting the recur-
sive insertRecursive is to prepare you for the binary search tree algorithms
to be presented in Chapter 11. 

5.3 Variations of the Linked List

This section briefly introduces several variations of the linked list that you have
just seen. These variations are often useful, and you will encounter them later
in this text. Many of the implementation details are left as exercises. Note that
in addition to the data structures discussed in this section, it is possible to have
other data structures, such as arrays of references to linked lists and linked lists
of linked lists. These data structures are also left as exercises.

Tail References
In many situations, you simply want to add an item to the end of a list. For
example, maintaining a list of requests for a popular book at the local library
would require that new requests for the book be placed at the end of a waiting
list. You could use an ADT list called waitingList as follows:

waitingList.add(request, waitingList.size()+1);

This statement adds request to the end of waitingList. Recall that in
implementing add to insert an item at the position indicated, we used the
method find to traverse the list to that position. Note that this statement
actually performs these four steps:

1. Allocate a new node for the linked list.

2. Set the reference in the last node in the list to reference the new node.

3. Put the new request in the new node.

4. Set the reference in the new node to null.

Each time you add a new request, you must get to the last node in the
linked list. One way to accomplish this is to traverse the list each time you add
a new request. A much more efficient method uses a tail reference tail to
remember where the end of the linked list is—just as head remembers where
the beginning of the list is. Like head, tail is external to the list. Figure 5-22
illustrates a linked list of integers that has both head and tail references.

Use a tail refer-
ence to facilitate 
adding nodes to the 
end of a linked list
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With tail pointing to the end of the linked list, you can perform Steps 1
through 4 by using the single statement

tail.next = new Node(request, null);

This statement sets the next reference in the last node in the list to point to a
newly allocated node. You then update tail so that it references the new last
node by writing tail = tail.next;. You thus have an easy method for
adding a new item to the end of the list. Initially, however, when you insert the
first item into an empty linked list, tail—like head—is null. We leave the
details of a solution as an exercise.

Circular Linked Lists
When you use a computer that is part of a network, you share the services of
another computer—called a server—with many other users. A similar sharing
of resources occurs when you access a central computer by using a remote ter-
minal. The system must organize the users so that only one user at a time has
access to the shared computer. By ordering the users, the system can give each
user a turn. Because users regularly enter and exit the system (by logging on or
logging off), a linked list of user names allows the system to maintain order
without shifting names when it makes insertions to and deletions from the list.
Thus, the system can traverse the linked list from the beginning and give each
user on the list a turn on the shared computer. What must the system do when
it reaches the end of the list? It must return to the beginning of the list. How-
ever, the fact that the last node of a linked list does not reference another node
can be an inconvenience.

If you want to access the first node of a linked list after accessing the last
node, you must resort to the head reference. Suppose that you change the next
portion of the list’s last node so that, instead of containing null, it references
the first node. The result is a circular linked list, as illustrated in Figure 5-23.
In contrast, the linked list you saw earlier is said to be a linear linked list.

Every node in a circular linked list references a successor, so you can start
at any node and traverse the entire list. Although you could think of a circular

A linked list with head and tail references

FIGURE 5-22
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list as not having either a beginning or an end, you still would have an exter-
nal reference to one of the nodes in the list. Thus, it remains natural to think
of both a first and a last node in a circular list. If the external reference locates
the “first” node, you still would have to traverse the list to get to the last
node. However, if the external reference—call it list—references the “last”
node, as it does in Figure 5-24, you can access both the first and last nodes
without a traversal, because list.next references the first node.

A null value in the external reference indicates an empty list, as it did for a
linear list. However, no node in a circular list contains null in its next reference.
Thus, you must alter the algorithm for detecting when you have traversed an
entire list. By simply comparing the current reference curr to the external refer-
ence list, you can determine when you have traversed the entire circular list.
For example, the following Java statements display the data portions of every
node in a circular list, assuming that list references the “last” node:

// display the data in a circular linked list;
// list references its last node
if (list != null) {
  // list is not empty
  Node first = list.next; // reference first node

  Node curr = first;        // start at first node

A circular linked list

FIGURE 5-23
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  // Loop invariant: curr references next node to display
do {

    // write data portion
    System.out.println(curr.item);
    curr = curr.next;      // reference next node 
  } while (curr != first);      // list traversed?
}  // end if

Operations such as insertion into and deletion from a circular linked list
are left as exercises.

Dummy Head Nodes
Both the insertion and deletion algorithms presented earlier for linear linked
lists require a special case to handle action at the first position of a list. Many
people prefer a method that eliminates the need for the special case. One such
method is to add a dummy head node—as Figure 5-25 depicts—that is always
present, even when the linked list is empty. In this way, the item at the first
position of the list is actually in the second node. Also, the insertion and dele-
tion algorithms initialize prev to reference the dummy head node, rather than
null. Thus, for example, in the deletion algorithm, the statement

prev.next = curr.next;

deletes from the list the node that curr references, regardless of whether or
not this node is the first element in the list.

Despite the fact that a dummy head node eliminates the need for a special
case, handling the first list position separately can, in general, be less distracting
than altering the list’s structure by adding a dummy head node. However,
dummy head nodes are useful with doubly linked lists, as you will see in the
next section.

Doubly Linked Lists
Suppose that you wanted to delete a particular node from a linked list. If you were
able to locate the node directly without a traversal, you would not have estab-
lished a trailing reference to the node that precedes it in the list. Without a trailing
reference, you would be unable to delete the node. You could overcome this

A dummy head node

FIGURE 5-25
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Dummy head nodehead
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problem if you had a way to back up from the node that you wished to delete to
the node that precedes it. A doubly linked list solves this problem because each
of its nodes has references to both the next node and the previous node.

Consider a sorted linked list of customer names such that each node con-
tains, in addition to its data field, two reference variables, preceding and
next. As usual, the next reference of node N references the node that follows
N in the list. The preceding data field references the node that precedes N in
the list. Figure 5-26 shows the form of this sorted linked list of customers.

Notice that if curr references a node N, you can get a reference to the
node that precedes N in the list by using the assignment statement

prev = curr.preceding;

A doubly linked list thus allows you to delete a node without traversing the list
to establish a trailing reference.

Because there are more references to set, the mechanics of inserting into
and deleting from a doubly linked list are a bit more involved than for a singly
linked list. In addition, the special cases at the beginning or the end of the list
are more complicated. It is common to eliminate the special cases by using a
dummy head node. Although dummy head nodes may not be worthwhile for
singly linked lists, the more complicated special cases for doubly linked lists
make them very attractive.

As Figure 5-27a shows, the external reference listHead always references
the dummy head node. Notice that the dummy head node has the same data
type as the other nodes in the list; thus it also contains preceding and next ref-
erences. You can link the list so that it becomes a circular doubly linked list.
The next reference of the dummy head node then references the first “real
node”—for example, the first customer name—in the list, and the preceding
reference of the first real node refers back to the dummy head node. Similarly,
the preceding reference of the dummy head node references the last node in
the list, and the next reference of the last node references the dummy head
node. Note that the dummy head node is present even when the list is empty. In
this case, both reference variables of the dummy head node reference the head
node itself, as Figure 5-27b illustrates.

Each node in a 
doubly linked list 
references both its 
predecessor and 
its successor
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By using a circular doubly linked list, you can perform insertions and deletions
without special cases: Inserting into and deleting from the first or last position is
the same as for any other position. Consider, for example, how to delete the node
N that curr references. As Figure 5-28 illustrates, you need to

1. Change the next reference of the node that precedes N so that it refer-
ences the node that follows N.

2. Change the preceding reference of the node that follows N so that it ref-
erences the node that precedes N.

(a) A circular doubly linked list with a dummy head node; (b) an empty list with a dummy head node

FIGURE 5-27
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The following Java statements accomplish these two steps:

// delete the node that curr references
curr.preceding.next = curr.next;
curr.next.preceding = curr.preceding;

You should convince yourself that these statements work even when the node
to be deleted is the first, last, or only data (nonhead) node in the list. 

Now consider how to insert a node into a circular doubly linked list. In
general, the fact that the list is doubly linked does not mean that you avoid tra-
versing the list to find the proper place for the new item. For example, if you
insert a new customer name, you must find the proper place within the sorted
linked list for the new node. The following pseudocode sets curr to reference
the node that contains the first name greater than newName. Thus, curr will
reference the node that is to follow the new node on the list:

// find the insertion point
curr = listHead.next // reference first node, if any
while (curr != listHead and newName > curr.item) {
  curr = curr.next
} // end while

Notice that if you want to insert the new node either at the end of the list or
into an empty list, the loop will set curr to reference the dummy head node. 

As Figure 5-29 illustrates, once curr references the node that is to follow
the new node, you need to

1. Set the next reference in the new node to reference the node that is to
follow it.

2. Set the preceding reference in the new node to reference the node that is
to precede it.

Deleting a node

Traverse the list 
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insertion point

Reference changes for insertion
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3. Set the preceding reference in the node that is to follow the new node so
that it references the new node.

4. Set the next reference in the node that is to precede the new node so that
it references the new node.

The following Java statements accomplish these four steps, assuming that
newNode references the new node:

// insert the new node that newNode references before
// the node referenced by curr
newNode.next = curr;
newNode.preceding = curr.preceding;
curr.preceding = newNode;
newNode.preceding.next = newNode;

You should convince yourself that these statements work even when you insert
the node into the beginning of a list; at the end of a list, in which case curr
references the head node; or into an empty list, in which case curr also refer-
ences the head node.

5.4 Application: Maintaining an Inventory

Imagine that you have a part-time job at the local movie rental store. Realizing
that you know a good deal about computers, the store owner asks you to write
an interactive program that will maintain the store’s inventory of DVDs that
are for sale. The inventory consists of a list of movie titles and the following
information associated with each title:

■ Have value: number of DVDs currently in stock.

■ Want value: number of DVDs that should be in stock. (When the have
value is less than the want value, more DVDs are ordered.)

■ Wait list: list of names of people waiting for the title if it is sold out.

Because the owner plans to turn off the power to the computer when the store
is closed, your inventory program will not be running at all times. Therefore,
the program must save the inventory in a file before execution terminates and
later restore the inventory when it is run again.

Program input and output are as follows:

Input

■ A file that contains a previously saved inventory.

■ A file that contains information on an incoming shipment of DVDs. (See
command D.)

■ Single-letter commands—with arguments where necessary—that inquire
about or modify the inventory and that the user will enter interactively.

Inserting a node
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Output

■ A file that contains the updated inventory. (Note that you remove from
the inventory all items whose have values and want values are zero and
whose wait lists are empty. Thus, such items do not appear in the file.)

■ Output as specified by the individual commands.

The program should be able to execute the following commands:

The problem-solving process that starts with a statement of the problem
and ends with a program that effectively solves the problem—that is, a
program that meets its specification—has three main stages:

1. The design of a solution

2. The implementation of the solution

3. The final set of refinements to the program

H (help) Provide a summary of the available commands.

I <title> (inquire) Display the inventory information for a specified title.

L (list) List the entire inventory (in alphabetical order by 
title).

A <title> (add) Add a new title to the inventory. Prompt for initial 
want value.

M <title> (modify) Modify the want value for a specified title.

D (delivery) Take delivery of a shipment of DVDs, assuming that 
the clerk has entered the shipment information (titles 
and counts) into a file. Read the file, reserve DVDs 
for the people on the wait list, and update the have 
values in the inventory accordingly. Note that the 
program must add an item to the inventory if a deliv-
ered title is not present in the current inventory.

O (order) Write a purchase order for additional DVDs based on 
a comparison of the have and want values in the 
inventory, so that the have value is brought up to the 
want value.

R (return) Write a return order based on a comparison of the 
have and want values in the inventory and decrease the 
have values accordingly (make the return). The 
purpose is to reduce the have value to the want value.

S <title> (sell) Decrease the count for the specified title by 1. If the 
title is sold out, put a name on the wait list for the title.

Q (quit) Save the inventory and wait lists in a file and termi-
nate execution.

Program commands
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Realize, however, that you cannot complete one stage in total isolation from
the others. Also realize that at many steps in the development of a solution,
you must make choices. Although the following discussion may give the
impression that the choices are clear-cut, this is not always the case. In reality,
both the trade-offs between choices and the false starts (wrong choices consid-
ered) are often numerous. 

This problem primarily involves data management and requires certain
program commands. These commands suggest the following operations on the
inventory:

■ List the inventory in alphabetical order by title (L command).

■ Find the inventory item associated with a title (I, M, D, O, and S commands).

■ Replace the inventory item associated with a title (M, D, R, and S commands). 

■ Insert new inventory items (A and D commands).

Recall that each title might have an associated wait list of people who are
waiting for that title. You must be able to 

■ Add new people to the end of the wait list when they want a DVD that is
sold out (S command).

■ Delete people from the beginning of the wait list when new DVDs are
delivered (D command).

■ Display the names on a wait list for a particular title (I and L commands).

In addition, you must be able to 

■ Save the current inventory and associated wait lists when program execu-
tion terminates (Q command).

■ Restore the current inventory and associated wait lists when program exe-
cution begins again.

You could think of these operations as part of an ADT inventory. Your
next step should be to specify each of the operations fully. Since this chapter is
about linked lists and implementation issues, the completion of the specifica-
tions will be left as an exercise. We will turn our attention to a data structure
that could implement the inventory.

Each data item in the ADT inventory represents a movie and contains a title,
the number of DVDs in stock (a have value), the number desired (a want value),
and a wait list. How will you represent the wait list? First, you need to decide
what information you want to store in the wait list. For example, you might want
to keep track of the full name and phone number of each person, and create a
class Customer containing data fields for the first and last names along with the
telephone number of the person. This class might be structured as follows:

public class Customer {
private String lastName;

Operations on the 
inventory

A customer in the 
wait list
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private String firstName;
private String phone;

  public Customer(String first, String last, String phone) {
    // to be implemented
    . . .
  } // end constructor

public String toString() {
    // to be implemented
    . . .
  } // end toString
} // end class Customer

This definition contains the minimum number of methods required to use
instances of the Customer class in our inventory problem. You may also decide
that you want to keep additional information about a person, such as their
address. The toString method is provided for printing purposes.

Now that you have decided what information to keep in the wait list,
how will you implement the wait list itself in the ADT inventory? Could
you use any of the implementations of the ADT list we developed previously?
To make this decision, you must review the requirements of the wait list
as stated in the inventory problem and then see if the ADT list will be able
to meet these requirements. The inventory problem requires you to be able
to add to the end of the wait list and delete from the beginning of the wait
list. Clearly, removing an item from the beginning of the list is easy: You
can simply use the ADT list operation remove with an index value of 1.
Adding an item to the end of the list is also fairly easy. You know the size of
the list from the ADT list operation size(), and you could use the ADT list
operation add with an index value of size() + 1 to place an item at the end of
the wait list.

One of the requirements of the inventory problem is that the L command
list the inventory in alphabetical order by movie title. Will you be able to use
the ADT list in a way that will support this requirement? Not easily, since the
ADT list is based on index position, not on a sorted order. A better choice is
the ADT sorted list. Not only does it maintain the data in a sorted order for
us, but it also provides an operation locateIndex(item) that can be used to
search for an item in the sorted list.

If the ADT sorted list is not yet implemented, should you use an array-
based implementation or a reference-based implementation? If you use an
array to contain the items, you can use a binary search. Inserting and deleting
items, however, requires you to shift array elements. Using a linked list for the
items avoids these data shifts but makes a binary search impractical. (How do
you quickly locate the middle item in a linked list?) Weighing these trade-offs,
we choose a linked list to implement the ADT sorted list.

The ADT list is not 
the best choice for 
data that must be in 
alphabetical order
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To summarize, we have made the following choices:

■ The inventory is a sorted list of data items (the ADT sorted list implemented
as a linked list of data items), sorted by the title that each item represents.

■ Each inventory item contains a title, a have value, a want value, and a list
of customers (the wait list).

Figure 5-30 and the following Java statements summarize these choices:

public class StockItem implements java.lang.Comparable {
private String title;
private int have, want;
private ListReferenceBased waitingList;

  // various constructors for StockItem
  . . .

A sorted list 
represents the 
inventory

(a) Inventory list node; (b) wait list node; (c) orthogonal structure for the inventory

FIGURE 5-30
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public void addToWaitingList(String lastName, 

  // add a person to the waiting list
    waitingList.addSorted(

new Customer(lastName, firstName, phone);
  } // end addToWaitingList

public String toString() {
    // for displaying StockItem instances
    . . .
  } // end toString

public int compareTo(Object rhs) {
  // define how StockItems are compared, only by title

return title.compareTo(((StockItem)rhs).title);
  } // end compareTo

// mutator and accessor methods for other data fields
  . . .

}  // end class StockItem

You declare the inventory as follows:

SortedList inventory = new SortedList();

Before you can proceed with the implementation, you must consider how
you will save the inventory in a file. Java provides object serialization, a process
that transforms an object into a stream of bytes that you can save and restore
from a file. The most powerful aspect of object serialization is that when you
write any object to a file, any other objects that are referenced by that object are
also written to the file. As mentioned in Chapter 1, to enable this feature, you
place an implements Serializable clause in each class that has instances that
will be written to the file. Thus, to write the inventory successfully, you would
include the clause in the classes ListReferenceBased, Node, SortedList,
StockItem, and Customer. Then, when you write an inventory object to a file,
all of the stock items in the inventory list and their wait lists are also be placed in
the file. Here is the code that accomplishes that task:

try {
  FileOutputStream fos = new
                       FileOutputStream("inventory.dat");
  ObjectOutputStream oos = new ObjectOutputStream(fos);
  oos.writeObject(inventory);
  fos.close();
} // end try
catch (Exception e) {

String firstName, String phone) {
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  System.out.println(e);
} // end catch

Restoring the inventory is also straightforward:

ListReferenceBased restoredInventory;
try {
  FileInputStream fis = new
                      FileInputStream("inventory.dat");
  ObjectInputStream ois = new ObjectInputStream(fis);
  Object o = ois.readObject();
  restoredInventory = (ListReferencedBased) o;
  System.out.println(restoredInventory);
} // end try
catch (Exception e) {
  System.out.println(e);
} // end catch

The completion of this solution is left as an exercise.

5.5 The Java Collections Framework

Many modern programming languages, such as Java, provide classes that imple-
ment many of the more commonly used ADTs. In Java, many of these classes
are defined in the Java Collections Framework or JCF. The JCF contains a
number of classes and interfaces that can be applied to nearly any type of data.

Many of the ADTs that are presented in this text have a corresponding
class or interface in the JCF. For example, a List interface is defined in the
JCF that is similar to the ListInterface specification presented earlier in this
chapter. You may be wondering why we spend so much time developing ADTs
in this text if they are already provided in the JCF. There are many reasons for
doing so; here are just a few:

■ Developing simple ADTs provides a foundation for learning other ADTs.

■ You may find yourself working in a language that does not provide any
predefined ADTs. You need to have the ability to develop ADTs on your
own, and hence understand the process.

■ If the ADTs defined by the language you are using are not sufficient, you
may need to develop your own or enhance existing ones.

A collections framework is a unified architecture for representing and
manipulating collections. It includes interfaces, or ADTs representing collec-
tions; implementations, or concrete implementations of collection interfaces; and
algorithms, or methods that perform useful computations, such as sorting and
searching, on objects that implement collection interfaces. These algorithms are
polymorphic because the same method can be used on many different implemen-
tations of the appropriate collections interface.

The Java Collec-
tions Framework 
(JCF) provides 
classes for common 
ADTs

A collections frame-
work includes 
interfaces, imple-
mentations, and 
algorithms
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The JCF also contains iterators. Iterators provide a way to cycle through
the contents of a collection. Before we can discuss the JCF further, we will give
a brief overview of generics and iterators.

Generics
The JCF relies heavily on Java generics. Generics allow you to develop classes
and interfaces and defer certain data-type information until you are actually
ready to use the class or interface. For example, our list interface was devel-
oped independently from the type of the list items by using the Object class.
With generics, this data type is left as a data-type parameter in the definition of
the class or interface. The start of the definition of the class or interface is fol-
lowed by <E>, where the data-type parameter E represents the data type that
the client code will specify. Here is an example of a simple generic class:

public class MyClass<E> {
private E theData;
private int n;

public MyClass() {
    n = 0;
  } // end constructor

public MyClass(E initData, int num) {
    n = num;
    theData = initData;
  } // end constructor

public void setData(E newData) {
    theData = newData;
  } // end setData

public E getData() {
return theData;

  } // end get Data

public int getNum() {
return n;

  } // end getNum
} // end MyClass

Chapter 9 describes in more detail how to create your own generics.
When you (the client) declare instances of the class, you specify the actual

data type that the parameter represents. This data type cannot be a primitive
type, only object types are allowed. For example, a simple program that uses
this generic class could begin as follows:

Generic classes 
allow data-type 
information to be 
deferred

Only object types 
are allowed for data 
type parameters
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static public void main(String[] args) {
  MyClass<String> a = new MyClass<String>();
  Double d = new Double(6.4);
  MyClass<Double> b = new MyClass<Double>(d, 51);

  a.setData("Sarah");
  System.out.println(a.getData() + ", " + b.getData());
  System.out.println(a.getNum() + ", " + b.getNum());

Notice how the declarations of a and b specify the data type of MyClass’s data
member theData. Also note that when we previously used Object as the
return type, we often had to cast the result back to the desired type that is no
longer required when using generics.

Iterators
An iterator is an object that gives you the ability to cycle through the items in
a collection in much the same way that we used a reference to traverse a linked
list. If you have an iterator call iter, you can access the next item in the collec-
tion by using the notation iter.next().

The JFC provides two primary iterator interfaces, java.util.Iterator
and java.util.ListIterator. Note that all interface methods are implicitly
public, so the Iterator interface is defined as follows:

public interface Iterator<E> {
boolean hasNext(); 

    // Returns true if the iteration has more elements.

  E next(); 
    // Returns the next element in the iteration.

void remove() throws UnsupportedOperationException, 
                       IllegalStateException;
    // Removes from the underlying collection the last 
    // element returned by the iterator (optional 
    // operation).
} // end Iterator

The method next is used to return the next element in the collection.
When an iterator is initially created, it is positioned so that the first call to next
on the iterator object will return the initial element in the collection. The
method hasNext can be used to determine if another element is available in
the collection. 

Notice that one of the operations, remove, can throw the exception
UnsupportedOperationException. The expectation is that the remove opera-
tion will simply throw this exception if the operation is not available in the
class that implements the interface. 

Iterators are used to 
cycle through items 
in a collection

Unsupported itera-
tor methods will 
throw an exception
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Iterators are an integral part of all of the classes and interfaces used
for representing collections in the JCF. Note that just as you can use inherit-
ance to derive new classes, you can use inheritance to derive new interfaces,
often called subinterfaces. The basis for the ADT collections in the JCF is
the  interface java.util.Iterable, with the subinterface java.util.
Collection:

public interface Iterable<E> {
  Iterator<E> iterator(); 

} // end Iterable
public interface Collection<E> extends Iterable<E> {

  // See the J2SE documentation for a complete listing of 
  // methods

boolean add(E o); 
    // Ensures that this collection contains the specified 
    // element (optional operation). 

boolean remove(Object o); 

void clear(); 
    // Removes all of the elements from this collection 
    // (optional operation). 

boolean contains(Object o); 

    // element. 

boolean equals(Object o); 

    // equality. 

boolean isEmpty() 
    // Returns true if this collection contains no elements. 

int size(); 
    // Returns the number of elements in this collection. 

  Object[] toArray(); 

    // collection. 
} // end Collection

// Returns an iterator over the elements in this collection

// Only a portion of the Collection interface is shown here.

// Removes a single instance of the specified element from
// this collection, if it is present (optional operation).

// Returns true if this collection contains the specified

// Compares the specified object with this collection for

//Returns an array containing all of the elements in this
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Thus, every ADT collection in the JCF will have a method to return an itera-
tor object for the underlying collection. The following example shows how an
iterator can be used with the JCF list class LinkedList:

import java.util.LinkedList;
import java.util.Iterator;

public class TestLinkedList {
static public void main(String[] args) {

    LinkedList<Integer> myList = new LinkedList<Integer>();

    Iterator iter = myList.iterator();
if (!iter.hasNext()) {

      System.out.println("The list is empty");
    } // end if

for (int i=1; i <= 5; i++) {
      myList.add(new Integer(i));
    } // end for

      iter = myList.iterator();
while (iter.hasNext()) {

       System.out.println(iter.next());
     } // end while
  } // end main
} // end TestLinkedList

The behavior of an iterator is unspecified if the underlying collection is
modified while the iteration is in progress in any way other than by calling the
remove method.

Another example of a subinterface in the JCF is java.util.ListItera-
tor, derived from the java.util.Iterator interface:

public interface ListIterator<E> extends Iterator<E> {

void add(E o); 

    // operation). 

boolean hasNext();

    // traversing the list in the forward direction. 

boolean hasPrevious();

    // traversing the list in the reverse direction. 

// Inserts the specified element into the list (optional

// Returns true if this list iterator has more elements when

// Returns true if this list iterator has more elements when
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  E next();
    // Returns the next element in the list. 

int nextIndex();

    // by a subsequent call to next. 

  E previous();
    // Returns the previous element in the list. 

int previousIndex();
    // Returns the index of the element that would be returned
    // by a subsequent call to previous. 

void remove();
    // Removes from the list the last element that was 
    // returned by next or previous (optional operation). 

void set(E o);
    // Replaces the last element returned by next or previous
    // with the specified element (optional operation).
} // end ListIterator

The ListIterator interface extends Iterator by providing support for
bidirectional access to the collection as well as adding or changing elements in
the collection. A bidirectional iterator enables you to move to either the next
or previous element in the collection.

Chapter 9 describes how to create your own iterator.

The Java Collection’s Framework List Interface
The JCF provides an interface java.util.List that is quite similar to the list
interface created in Chapter 4. The JCF List interface supports an ordered
collection, also known as a sequence. Like the ListInterface presented in
this text, users can specify by position (integer index) where elements are
added to and removed from the list, and the position numbering starts at zero
(as in ListInterface). Though the interface provides methods based upon
positional access to the elements, the time to execute these methods may be
proportional to the index value, depending on the implementing class. As
such, it is usually preferable to use an iterator instead of index access when pos-
sible to locate and process elements in a list.

Declarations for all the methods in the List interface are shown here,
even the ones inherited from the Collection interface. Notice that the
methods iterator, add, remove, and equals place additional stipulations
beyond those specified in the Collection interface. The List interface also
provides other methods not shown here that allow multiple elements to be
inserted and removed at any point in the list. 

// Returns the index of the element that would be returned

Bidirectional itera-
tors allow you to 
move forward or 
back through a 
collection

The JCF List inter-
face supports an 
ordered collection

The List interface 
inherits methods 
from the Collec-
tion interface



320  Chapter 5 Linked Lists

Notice that the List interface provides a ListIterator that allows
bidirectional access in addition to the normal operations that the Iterator
interface provides. There is also a method to obtain a list iterator that starts
at a specified position in the list. 

The JCF List interface is derived from the JCF Collection interface:

public interface List<E> extends Collection<E>
  // Only a portion of the List interface is shown here.
  // See the J2SE documentation for a complete listing of 
  // methods

boolean add(E o); 
    // Appends the specified element to the end of this list 
    // (optional operation). 

void add(int index, E element); 

    // this list (optional operation). 

void clear(); 
    // Removes all of the elements from this list (optional 
    // operation). 

boolean contains(Object o); 

boolean equals(Object o); 

  E get(int index); 
    // Returns the element at the specified position in this 
    // list. 

int indexOf(Object o); 

    // this element. 

boolean isEmpty(); 
    // Returns true if this list contains no elements. 

  Iterator<E> iterator(); 
    // Returns an iterator over the elements in this list in 
    // proper sequence. 

  ListIterator<E> listIterator(); 

    // proper sequence). 

// Inserts the specified element at the specified position in

// Returns true if this list contains the specified element.

// Compares the specified object with this list for equality.

// Returns the index in this list of the first occurrence of
// the specified element, or -1 if this list does not contain

// Returns a list iterator of the elements in this list (in
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  ListIterator<E> listIterator(int index); 

    // this list. 

  E remove(int index); 

    // (optional operation). 

boolean remove(Object o); 

    // element (optional operation). 

  E set(int index, E element); 
    // Replaces the element at the specified position in this
    // list with the specified element (optional operation).

int size(); 
    // Returns the number of elements in this list. 

  List<E> subList(int fromIndex, int toIndex); 
    // Returns a view of the portion of this list between the
    // specified fromIndex, inclusive, and toIndex, 
    // exclusive.

  Object[] toArray();

    // list in proper sequence. 
} // end List

The JCF provides numerous classes that implement the List interface,
including LinkedList, ArrayList, and Vector. Here is an example of how
the JCF class ArrayList is used to maintain a grocery list:

import java.util.ArrayList;
import java.util.Iterator;

public class GroceryList {

static public void main(String[] args) {
    ArrayList<String> groceryList = new ArrayList<String>();
    Iterator<String> iter;

    groceryList.add("apples");
    groceryList.add("bread");
    groceryList.add("juice");

// Returns a list iterator of the elements in this list (in 
// proper sequence), starting at the specified position in

// Removes the element at the specified position in this list 

// Removes the first occurrence in this list of the specified

// Returns an array containing all of the elements in this 
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    groceryList.add("carrots");
    groceryList.add("ice cream");

                       + groceryList.size());
    System.out.println("Items are: ");
    iter = groceryList.listIterator();

while (iter.hasNext()) {
      String nextItem = iter.next();
      System.out.println(groceryList.indexOf(nextItem)+") " 
                         + nextItem);
    } // end while

  } // end main

} // end GroceryList

The output of this program is 

Number of items on my grocery list: 5
Items are: 
0) apples
1) bread
2) juice
3) carrots
4) ice cream

Clearly it is more efficient to use a counter to number the items than to use
the method indexOf; it was done for illustrative purposes. 

1. You can use reference variables to implement the data structure known as a linked
list by using a class definition such as the following:

package List;

class Node {
  Object item;
  Node next;

  Node(Object newItem) {
    item = newItem;
    next = null;
  } // end constructor

System.out.println("Number of items on my grocery list: "

Summary
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  Node (Object newItem, Node nextNode) {
    item = newItem;
    next = nextNode;
  } // end constructor
} // end class Node

2. Each reference in a linked list is a reference to the next node in the list. For exam-
ple, if nodeRef is a variable of type Node that references a node in this linked list, 

■ nodeRef.item is the data portion of the node.

■ nodeRef.next references the next node.

3. Algorithms for inserting data into and deleting data from a linked list both involve
these steps: Traverse the list from the beginning until you reach the appropriate posi-
tion; perform reference changes to alter the structure of the list. In addition, you use
the new operator to dynamically allocate a new node for insertion. When all refer-
ences to a node are removed, the node is automatically marked for garbage collection.

4. Inserting a new node at the beginning of a linked list or deleting the first node of a
linked list are cases that you treat differently from insertions and deletions any-
where else in the list.

5. An array-based implementation uses an implicit ordering scheme—for example, the
item that follows anArray[i] is stored in anArray[i+1]. A reference-based
implementation uses an explicit ordering scheme—for example, to find the item
that follows the one in node N, you follow node N’s reference.

6. You can access any element of an array directly, but you must traverse a linked list to
access a particular node. Therefore, the access time for an array is constant, whereas
the access time for a linked list depends upon the location of the node within the list.

7. You can insert items into and delete items from a reference-based linked list
without shifting data. This characteristic is an important advantage of a linked list
over an array.

8. Although you can use the new operator to allocate memory dynamically for either
an array or a linked list, you can increase the size of a linked list one node at a time
more efficiently than an array. When you increase the size of a resizeable array, you
must copy the original array elements into the new array and then deallocate the
original array. 

9. A binary search of a linked list is impractical because you cannot quickly locate its
middle item.

10. You can use recursion to perform operations on a linked list. Such use will elimi-
nate special cases and the need for a trailing reference.

11. The recursive insertion algorithm for a sorted linked list works because each smaller
linked list is also sorted. When the algorithm makes an insertion at the beginning of
one of these lists, the inserted node will be in the proper position in the original list.
The algorithm is guaranteed to terminate because each smaller list contains one fewer
node than the preceding list and because the empty list is a base case.
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12. A tail reference can be used to facilitate locating the end of a list. This is especially
useful when an append operation is required.

13. In a circular linked list, the last node references the first node, so that every node
has a successor. If the list’s external reference references the last node instead of the
first node, you can access both the last node and the first node without traversing
the list.

14. Dummy head nodes provide a method for eliminating the special cases for inser-
tion into and deletion from the beginning of a linked list. The use of dummy head
nodes is a matter of personal taste for singly linked lists, but it is helpful for a
doubly linked list.

15. A doubly linked list allows you to traverse the list in either direction. Each node
references its successor as well as its predecessor. Because insertions and deletions
with a doubly linked list are more involved than with a singly linked list, it is conve-
nient to use both a dummy head node and a circular organization to eliminate
complicated special cases for the beginning and end of the list.

16. If you plan on storing the data contained in a linked list to a file, be sure to place
the implements Serializable clause in each class that has instances that will be
written to the file.

17. A generic class or interface enables you to defer the choice of certain data-type
information until its use.

18. The Java Collections Framework contains interfaces, implementations, and algo-
rithms for many common ADTs.

19. A collection is an object that holds other objects. An iterator cycles through the
contents of a collection.

1. An uninitialized reference variable has the value null. Attempting to use a refer-
ence with a value of null will cause a NullPointerException to be thrown.

2. The sequence

Integer intRef = new Integer(5);
intRef = null;

allocates a memory cell and then destroys the only means of accessing it. Do not
use new when you simply want to assign a value to a reference.

3. Insertions into and deletions from the beginning of a linked list are special cases
unless you use a dummy head node. Failure to recognize this fact can result in a
null reference being used, causing a NullPointerException to be thrown.

Cautions
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4. When traversing a linked list by using the reference variable curr, you must be
careful not to reference curr after it has “passed” the last node in the list, because
it will have the value null at that point. For example, the loop

while (value > curr.item)
  curr = curr.next;

is incorrect if value is greater than all the data values in the linked list, because
curr becomes null. Instead, you should write

while ((curr != null) && (value > curr.item))
  curr = curr.next;

Because Java uses short-circuit evaluation of logical expressions, if curr becomes
null, the expression curr.item is not evaluated.

5. A doubly linked list is a data structure that programmers tend to overuse. How-
ever, a doubly linked list is appropriate to use when you have direct access to a
node. In such cases, you would not have traversed the list from its beginning. If
the list were singly linked, you would not have a reference to the preceding node.
Because doubly linking the list provides an easy way to get to the node’s predeces-
sor as well as its successor, you can, for example, delete the node readily.

1. Given the following declarations, and the list shown, draw a picture which shows
the result of each sequence of statements given below.  If something illegal is done
(as noted by the compiler), circle the offending statement and explain why it is ille-
gal.  Assume they all begin with this list:

package IntegerList;

class IntegerNode {
int item;

  IntegerNode next;

  Node (Object newItem) {
    item = newItem;
    next = null;
  } // end constructor

  Node(Object newItem, Node nextNode) {
    item = newItem;
    next = nextNode;
  } // end constructor

} // end IntegerNode

Self-Test Exercises

5 7

head

9
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IntegerNode head, p, q;
int x;

2. Consider the algorithm for deleting a node from a linked list that this chapter
describes.

a. Is the deletion of the first node of a linked list a special case? Explain.

b. Is deletion of the last node of a linked list a special case? Explain.

c. Is deletion of the only node of a one-node linked list a special case? Explain.

d. Does deleting the first node take more effort than deleting the last node?
Explain.

3. a. Write Java statements that create the linked list pictured in Figure 5-31, as fol-
lows. Beginning with an empty linked list, first create and attach a node for K,
then create and attach a node for M, and finally create and attach a node for S.

b. Repeat Part a, but instead create and attach nodes in the order B, E, J.

4. Consider the sorted linked list of single characters in Figure 5-31. Suppose that
prev references the first node in this list and curr references the second node.

a. Write Java statements that delete the second node. (Hint: First modify
Figure 5-31.)

b. Now assume that curr references the first node of the remaining two nodes of
the original list. Write Java statements that delete the last node.

c. Now head references the only node that is left in the list. Write Java state-
ments that insert a new node that contains J into the list so that the list
remains sorted.

d. Revise Figure 5-31 so that your new diagram reflects the results of the previous
deletions and insertion.

a. p = new IntegerNode(); b. p = new IntegerNode(1, head);

c. p = new IntegerNode(1);
q = new IntegerNode(3, p);
p.next = head;
head = q;

d. x = 3;
p = new IntegerNode(x, head);
q = new IntegerNode(p);
head = q;

e. IntegerNode curr = head;
while (curr != null) {
  curr.item++;
  curr = curr.next;
}

f. x = 3;
p = new IntegerNode(x, 
head.next);
head = p;

Linked list for Self-Test Exercises 3, 4, and 7

FIGURE 5-31
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5. There were many types of linked lists discussed in the chapter. What was common
in the nodes used in all of these classes? 

6. How many assignment operations does the method that you wrote for Self-Test
Exercise 5 require?

7. Do a box trace of writeBackwards2(head), where head references the linked
list of characters pictured in Figure 5-31. Show which node head points to in
each recursive call. The method writebackwards2 appears on page 297 of
this chapter.

1. For each of the following, write the Java statements that perform the requested
operation on the list shown in Figure 5-32. Also draw a picture of the status of the
list after each operation is complete. When you delete a node from the list, make
sure it will eventually be returned to the system. All insertions into the list should
maintain the list’s sorted order. Do not use any of the methods that were presented
in this chapter.

a. Assume that prev references the first node and curr references the second
node. Insert L into the list.

b. Assume that prev references the second node and that curr references the third
node of the list after you revised it in Part a. Delete the last node of the list.

c. Assume that prev references the last node of the list after you revised it in Part
b, and assume that curr is null. Insert Q into the list.

2. Consider a linked list of items that are in no particular order.

a. Write a method that inserts a node at the beginning of the linked list and a
method that deletes the first node of the linked list.

b. Repeat Part a, but this time perform the insertion and deletion at the end of the
list instead of at the beginning. Assume the list has only a head reference.

c. Repeat Part b, but this time assume that the list has a tail reference as well as a
head reference.

3. Write a method that randomly removes and returns an item from a linked list.
Write the method such that

a. the method uses only the ADT List operations; that is, it is independent of the
list’s implementation.

Exercises

J K

head

M P

Linked list for Exercise 1

FIGURE 5-32
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b. the method assumes and uses the reference-based implementation of the ADT List.

c. the method assumes and uses the array-based implementation of the ADT List.

4. Given the following Student class:

class Student {
private String name;
private int age;

public Student(String n, int a) {
    name = n;
    age = a;
  } // end constructor

public String getName() {
return name;

  } // end getName

public int getAge() {
return age;

  } // end getAge
} // end Student

Write a Java method that displays only the name of the ith student in a linked list of
students. Assume that i ≥ 0 and that the linked list contains at least i nodes.

5. Using the Student class in Exercise 4, write a recursive version of the method that dis-
plays only the name of the ith student in a linked list of students. Assume that i ≥ 1 and
that the linked list contains at least i nodes. (Hint: If i = 0, print the name of the first
student in the list; otherwise, print the (i – 1)th student name from the rest of the list.)

6. The section “Processing Linked Lists Recursively” discussed the traversal of a
linked list. 

a. Compare the efficiencies of an iterative method that displays a linked list with
the method writeList.

b. Write an iterative method that displays a linked list backward. Compare the effi-
ciencies of your method with the method writeListBackward2.

7. Write a method to merge two linked lists of integers that are sorted into descending
order. The result should be a third linked list that is the sorted combination of the
original lists. Do not destroy the original lists.

8. The Node class presented in this chapter assumed that it would be declared
package-private; hence, the data fields were declared for package access only.  

a. Suppose that the data fields were declared private. Write accessor and mutator
methods for both the item and next fields.

b. Give at least three different examples of how the code in the ListReferenceBased
implementation would have to be changed.

9. Assume that the reference list references the last node of a circular linked list like
the one in Figure 5-24. Write a loop that searches for an item in the list and if
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found, returns its position. If it is not found, return –1. Assume that the node ref-
erenced by list.next is the node in the first position.

10. A polynomial is stored in a linked list. Write a method that adds two such polyno-
mials and calculates the final polynomial.

11. Write a method L.reverse(), which reverses the order of node list L1. For
example, if L1=(BRZ, ARG, SPAIN), executing L.reverse() changes L1 to be
(SPAIN, ARG, BRZ).

12. The following method has been written to find the last node of a list L and return a
reference to it. What is the problem with it?

public List lastNode( )
{
  List N = firstNode;
  If (N != null)
  {
    do {
      N= N.link;
      }while (N.link !=null);
  }
  return N;
}

13. Write a method that traverses a linked list and deletes all duplicate data entries in the list.

14. Write a program that implements a two dimensional array using a linked list.

15. Imagine a circular linked list of integers that are sorted into ascending order, as
Figure 5-33a illustrates. The external reference list references the last node,
which contains the largest integer. Write a method that revises the list so that its
data elements are sorted into descending order, as Figure 5-33b illustrates. Do not
allocate new nodes.

Two circular linked lists

FIGURE 5-33
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16. Write a program that merges two ordered doubly linked lists into a single doubly
linked list.

17. Write a program that creates a database of all your friends’ telephone numbers and
full names using a linked list. Write a method for the addition, modification and
deletion of numbers, and a searching procedure that uses the first name.

18. Consider the sorted doubly linked list shown in Figure 5-27. This list is a circular
doubly linked list and has a dummy head node. Write methods for the following
operation for a sorted list:

+sortedAdd(in item:ListItemType)
// Inserts item into its proper sorted position in a
// sorted list. 

+sortedRemove(in item:ListItemType)
// Deletes item from a sorted list.
// Throws an exception if the item is not found.

19. Repeat Exercise 18 for the sorted doubly linked list shown in Figure 5-26. This list
is not circular and does not have a dummy head node. Watch out for the special
cases at the beginning and end of the list.

20. You can have a linked list of linked lists, as Figure 5-30 indicates. Assume the Java
definitions on page 288-289. Suppose that curr references a desired stock item
(node) in the inventory list. Write some Java statements that add yourself as a cus-
tomer to the end of the wait list associated with the node referenced by curr.

21. Write a method that sorts a double linked list in descending order.

22. Write a method to interchange the second last and the last elements of a list.

1. Chapter 4 introduced the ADT sorted list, which maintains its data in sorted order.
For example, a sorted list of names would be maintained in alphabetical order, and
a sorted list of numbers would be maintained in either increasing or decreasing
order. The operations for a sorted list are summarized on page 234.

Some operations—sortedIsEmpty, sortedSize, and sortedGet, for example—
are just like those for the ADT list. Insertion and deletion operations, however,
are by value, not by position as they are for a list. For example, when you insert
an item into a sorted list, you do not specify where in the list the item belongs.
Instead, the insertion operation determines the correct position of the item by
comparing its value with those of the existing items on the list. A new operation,
locateIndex, determines from the value of an item its numerical position within
the sorted list.

Note that the specifications given in Chapter 4 do not say anything about dupli-
cate entries in the sorted list. Depending on your application, you might allow
duplicates, or you might want to prevent duplicates from entering the list. For
example, a sorted list of Social Security numbers probably should disallow dupli-
cate entries. In this example, an attempt to insert a Social Security number that
already exists in the sorted list would fail.

Programming Problems
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Write a nonrecursive, reference-based implementation of the ADT sorted list of
objects as a Java class SortedListRefBased such that

a. Duplicates are allowed

b. Duplicates are not allowed, and operations must prevent duplicates from enter-
ing the list

2. Repeat Programming Problem 1, but write a recursive, reference-based implemen-
tation instead. Recall from this chapter that the recursive methods must be in the
private section of the class.

3. Write an implementation of the ADT list interface ListInterface that uses the
JFC Vector class to represent the list items.

4. Write a reference-based implementation of the ADT two-ended list, which has
insertion and deletion operations at both ends of the list,

a. Without a tail reference

b. With a tail reference

5. Implement the node structure, including the constructors, for a circular doubly
linked list with a dummy head node, assuming it will be package-private. Write an
implementation of the ListInterface using a circular doubly linked list. Note that
the section “Doubly Linked Lists” has a discussion on how to insert and delete
nodes from such a list.

6. Implement the ADT character string as the class LinkedString by using a linked
list of characters. Include the following LinkedString constructors and methods:

LinkedString(char[] value) 

Allocates a new character linked list so that it represents the sequence of charac-
ters currently contained in the character array argument.

LinkedString(String original) 

Initializes a new character linked list so that it represents the same sequence of
characters as the argument.

char charAt(int index) 

Returns the char value at the specified index. The first character in the linked
character string is in position zero.

LinkedString concat(LinkedStringstr) 

Concatenates the specified linked character string to the end of this linked
character string.

boolean isEmpty() 

Returns true if, and only if, length() is 0.

int length() 

Returns the length of this linked character string.
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LinkedString substring(int beginIndex, int endIndex) 

Returns a new linked character string that is a substring of this linked character
string.

Implement LinkedString so that it is consistent with the String class. For
example, character positions start at zero. Also, keep track of the number of char-
acters in the string; the length should be determined without traversing the linked
list and counting.

7. A polynomial of a single variable x with integer coefficients is an expression of the form

p(x) = c0 + c1x + c2x2 + … + cnxn,

where ci, i = 0, 1, …, n, are integers.

Consider a sparse implementation of the ADT polynomials up to the
nth degree that stores only the terms with nonzero coefficients. For example,
the polynomial

p = –3x7 + 4x5 + 7x3 – x2 + 9

can be represented using the linked list shown in Figure 5-35. Complete the class
Polynomial based on this sparse implementation. Assume Polynomial has the
following methods:

Polynomial()

Constructs a new polynomial of degree zero.

int getCoefficient(int power) 

Returns an integer representing the coefficient of the xpower term. 

void setCoefficient(int coef, int power) 

Sets the coefficient of the xpower term to coef.

String toString() 

Returns the String representation of the polynomial.  For example, 3x2 + 2x + 1
would be returned as 3 * x^2 + 2 * x + 1 or, more simply, 3x^2 + 2x + 1.
Any term whose coefficient is zero should not appear in the string unless the
polynomial has only a single constant term of zero.

A sparse polynomial

FIGURE 5-34
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double evaluate(double x) 

Evaluates the polynomial for the value x and returns the result p(x).

Polynomial double add(Polynomial other) 

Add to this polynomial the polynomial other and return the resulting
polynomial.

8. Round-robin (RR) is a simple scheduling algorithm for processes using the
CPU. Each process is given a slice of time on the CPU in equal portions and in
circular order. The algorithm assumes that we know the burst time for each
process—this is the amount of time that the process needs the CPU before the
next I/O request. 

a. Design an ADT to represent a process.  Each process has an id and keeps track
of the burst time.

b. Design an ADT that keeps track of a group of processes using the CPU with
round-robin scheduling. Use a circular linked list as the data structure that
keeps track of the processes wanting to use the CPU. Run the schedule by tra-
versing through the list, simulating each process getting a slice of the CPU,
assuming that the process gets a 100 millisecond time slice, and that its burst
time is then reduced by 100 milliseconds. Each time the process has the CPU,
print to the console the process id and burst time remaining after the process
uses the CPU. If a process completes execution (on its last time slice it has 100
milliseconds or less), remove it from the list. When the list of processes is empty,
the schedule is complete.

c. Write a test program that demonstrates your ADT completely. Your program
should try many different scenarios—for example, the process with the shortest
burst time first, all the processes with the same burst time, and processes with
burst times that are not multiples of 100 milliseconds.

9. Occasionally, a linked structure that does not use references is useful. One such
structure uses an array whose items are “linked” by array indexes. Figure 5-35a
illustrates an array of nodes that represents the linked list in Figure 5-31. Each
node has two data fields, item and next. The next data field is an integer index to
the array element that contains the next node in the linked list. Note that the next
data field of the last node contains –1. The integer variable head contains the index
of the first node in the list. 

The array elements that currently are not a part of the linked list make up a free
list of available nodes. These nodes form another linked list, with the integer vari-
able free containing the index of the first free node. To insert an item into the
original linked list, you take a free node from the beginning of the free list and
insert it into the linked list (Figure 5-35b). When you delete an item from the
linked list, you insert the node into the beginning of the free list (Figure 5-35c). In
this way, you can avoid shifting data items.
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Implement the ADT list by using this array-based linked list.

10. Write the program for the DVD inventory problem that this chapter describes.

11. Modify and expand the inventory program that you wrote for the previous pro-
gramming problem. Here are a few suggestions:

a. Add the ability to manipulate more than one inventory with the single program.

b. Add the ability to keep various statistics about each of the inventory items (such
as the average number sold per week for the last 10 weeks).

(a) An array-based implementation of the linked list in Figure 5-31; (b) after 
inserting D in sorted order; (c) after deleting B

FIGURE 5-35
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c. Add the ability to modify the have value for an inventory item (for example,
when a DVD is damaged or returned by a customer). Consider the implica-
tions for maintaining the relationship between a have value and the size of the
corresponding wait list.

d. Make the wait lists more sophisticated. For example, keep names and addresses;
mail letters automatically when a DVD comes in.

e. Make the ordering mechanism more sophisticated. For instance, do not order
DVDs that have already been ordered but have not yet been delivered.
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PART TWO

Problem Solving 
with Abstract 
Data Types

art One of this book reviewed aspects of problem solving that are
closely related to programming issues, presented data abstraction as

a technique for solution design that permeates our approach to problem
solving, introduced Java classes as a way to hide a solution’s imple-
mentation details and to increase its modularity, introduced the linked list as
a data structure that you will see throughout this book, and developed recur-
sion as a problem-solving technique that is useful in the construction of algo-
rithms. The primary concerns of the remainder of this book are the aspects
of problem solving that involve the management of data—that is, the identifi-
cation and implementation of some of the more common data-management
operations.

You saw in Part One that you can organize data either by position—as in
the ADT list—or by value—as in the ADT sorted list. In general, these orga-
nizations are appropriate for applications of rather different natures. For
example, if an application needs to ask a question about the first person in a
line, you should organize the data by position. On the other hand, if an appli-
cation needs to ask a question about the employee named Smith, you
should organize the data by value. In Part Two, you will see other ADTs that
use these two data organizations.

Our study of data management has three goals. The first is to identify
useful sets of operations—that is, to identify abstract data types. The second
goal is to examine applications that use these abstract data types. The third
goal is to construct implementations for the abstract data types—that is, to
develop data structures and classes. As you will discover, the nature of the
operations of an abstract data type, along with the application in which you
will use it, greatly influences the choice of its implementation.

P
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CHAPTER 6

Recursion as a 
Problem-Solving Technique

hapter 3 presented the basic concepts of recursion,
and now this chapter moves on to some extremely

useful and somewhat complex applications in computer sci-
ence. The recursive solutions to the problems you will see
are far more elegant and concise than the best of their non-
recursive counterparts. 

This chapter introduces two new concepts, backtrack-
ing and formal grammars. Backtracking is a problem-
solving technique that involves guesses at a solution. For-
mal grammars enable you to define, for example, syntacti-
cally correct algebraic expressions. The chapter concludes
with a discussion of the close relationship between recur-
sion and mathematical induction; you will learn how to use
mathematical induction to study properties of algorithms.

More applications of recursion appear in subsequent
chapters.

6.1 Backtracking
The Eight Queens Problem

6.2 Defining Languages
The Basics of Grammars
Two Simple Languages
Algebraic Expressions

6.3 The Relationship Between Recur-
sion and Mathematical Induction

The Correctness of the Recursive 
Factorial Method

The Cost of Towers of Hanoi

Summary

Cautions

Self-Test Exercises

Exercises

Programming Problems

C
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6.1 Backtracking

This section considers an organized way to make successive guesses at a solu-
tion. If a particular guess leads to a dead end, you back up to that guess and
replace it with a different guess. This strategy of retracing steps in reverse order
and then trying a new sequence of steps is called backtracking. You can
combine recursion and backtracking to solve the problem that follows.

The Eight Queens Problem
A chessboard contains 64 squares that form 8 rows and 8 columns. The most
powerful piece in the game of chess is the queen because it can attack any
other piece within its row, within its column, or along its diagonal. The Eight
Queens problem asks you to place eight queens on the chessboard so that no
queen can attack any other queen.

One strategy is to guess at a solution. However, there are c(64,8) =
4,426,165,368 ways to arrange 8 queens on a chessboard of 64 squares—so
many ways that it would be exhausting to check all of them for a solution to
this problem. Nevertheless, a simple observation eliminates many arrange-
ments from consideration: No queen can reside in a row or a column that con-
tains another queen. In other words, each row and column can contain exactly
one queen. Thus, attacks along rows or columns are eliminated, leaving only
8! = 40,320 arrangements of queens to be checked for attacks along diago-
nals. A solution now appears more feasible.

Suppose that you provide some organization for the guessing strategy by
placing one queen per column, beginning with the first square of column 1.
When you consider column 2, you eliminate its first square because row 1 con-
tains a queen, you eliminate its second square because of a diagonal attack, and
you finally place a queen in the third square of column 2. Figure 6-1a shows
the placement of five queens as a result of this procedure. The dots in the
figure indicate squares that are rejected because a queen in that square is
subject to attack by another queen in an earlier column.

Notice that the five queens in Figure 6-1a can attack any square in column
6. Therefore, you cannot place a queen in column 6, so you must back up to
column 5 and move its queen. As Figure 6-1b indicates, the next possible
square in column 5 is in the last row. When you consider column 6 once again,
there are still no choices for a queen in that column. As you have exhausted
the possibilities in column 5, you must back up to column 4. The next possible
square in column 4 is in row 7, as Figure 6-1c indicates. You then consider
column 5 again and place a queen in row 2.

How can you use recursion in the solution that was just described? Con-
sider an algorithm that places a queen in a column, given that you have placed
queens correctly in the preceding columns. First, if there are no more columns
to consider, you are finished; this is the base case. Otherwise, after you success-
fully place a queen in the current column, you need to consider the next
column. That is, you need to solve the same problem with one fewer column;
this is the recursive step. Thus, you begin with eight columns, consider smaller

Backtracking is a 
strategy for guess-
ing at a solution and 
backing up when an 
impasse is reached

Place eight queens 
on the chessboard 
so that no queen 
can attack any other 
queen

Place queens one 
column at a time

If you reach an 
impasse, backtrack 
to the previous 
column
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problems that decrease in size by one column at each recursive step, and reach
the base case when you have a problem with no columns.

This solution appears to satisfy the criteria for a recursive solution. How-
ever, you do not know whether you can successfully place a queen in the
current column. If you can, you recursively consider the next column. If you
cannot place a queen in the current column, you need to backtrack, as has
already been described. The following pseudocode describes the algorithm for
placing queens in columns, given that the previous columns contain queens
that cannot attack one another:

placeQueens(in currColumn:integer)
// Places queens in columns numbered currColumn through 8.

if (currColumn > 8) {
    The problem is solved
  }

else {
while ( unconsidered squares exist in currColumn

            and the problem is unsolved ) {
      Determine the next square in column currColumn that 
           is not under attack by a queen in an earlier 
           column

if (such a square exists) {
        Place a queen in the square
        placeQueens(currColumn+1)  // try next column

if (no queen is possible in column currColumn+1) {
          Remove queen from column currColumn and consider
                 the next square in that column

(a) Five queens that cannot attack each other, but that can attack all 
of column 6; (b) backtracking to column 5 to try another square for the queen; 
(c) backtracking to column 4 to try another square for the queen and then 
considering column 5 again

FIGURE 6-1
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        }  // end if
      }  // end if
    }  // end while
  }  // end if

The method placeQueens is used in the following context:

Clear all squares on the board
placeQueens(1)          // begin with the first 
                        // column
if (a solution exists) {
  Display solution
}
else {
  Display message      // no solution found
}  // end if

This context suggests the following class. For simplicity, the class uses a
two-dimensional array to represent the board. Each square on the board either
contains a queen or is empty.

public class Queens {
// squares per row or column
public static final int BOARD_SIZE = 8; 

// used to indicate an empty square
public static final int EMPTY = 0; 

// used to indicate square contains a queen
public static final int QUEEN = 1; 

private int board[][]; // chess board
public Queens() {
// -------------------------------------------------
// Constructor: Creates an empty square board.
// -------------------------------------------------

board = new int[BOARD_SIZE][BOARD_SIZE];
} // end constructor

public void clearBoard() {
// -------------------------------------------------
// Clears the board.
// Precondition: None.
// Postcondition: Sets all squares to EMPTY.
// -------------------------------------------------

// To be implemented in Programming Problem 1
} // end clearBoard

Using placeQueens
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public void displayBoard() {
// -------------------------------------------------
// Displays the board.
// Precondition: None.
// Postcondition: Board is written to standard 
// output; zero is an EMPTY square, one is a square 
// containing a queen (QUEEN).
// -------------------------------------------------

// To be implemented in Programming Problem 1
} // end displayBoard

public boolean placeQueens(int column) {
// -------------------------------------------------
// Places queens in columns of the board beginning 
// at the column specified.
// Precondition: Queens are placed correctly in 
// columns 1 through column-1.
// Postcondition: If a solution is found, each 
// column of the board contains one queen and method 
// returns true; otherwise, returns false (no 
// solution exists for a queen anywhere in column 
// specified).
// -------------------------------------------------

if (column > BOARD_SIZE) {
return true;  // base case

}
else {

boolean queenPlaced = false;
int row = 1;  // number of square in column

while ( !queenPlaced && (row <= BOARD_SIZE) )  {
// if square can be attacked
if (isUnderAttack(row, column)) {

++row;  // consider next square in column
} // end if
else { // place queen and consider next column

setQueen(row, column);
queenPlaced = placeQueens(column+1);
// if no queen is possible in next column,
if (!queenPlaced) {

// backtrack: remove queen placed earlier
// and try next square in column
removeQueen(row, column);
++row;

} // end if
} // end if

} // end while
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return queenPlaced;
} // end if

} // end placeQueens

private void setQueen(int row, int column) {
// --------------------------------------------------
// Sets a queen at square indicated by row and 
// column.
// Precondition: None.
// Postcondition: Sets the square on the board in a 
// given row and column to QUEEN.
// --------------------------------------------------

// To be implemented in Programming Problem 1
} // end setQueen

private void removeQueen(int row, int column) {
// --------------------------------------------------
// Removes a queen at square indicated by row and
// column.
// Precondition: None.
// Postcondition: Sets the square on the board in a 
// given row and column to EMPTY.
// --------------------------------------------------

// To be implemented in Programming Problem 1
} // end removeQueen

private boolean isUnderAttack(int row, int column) {
// --------------------------------------------------
// Determines whether the square on the board at a 
// given row and column is under attack by any queens 
// in the columns 1 through column-1.
// Precondition: Each column between 1 and column-1 
// has a queen placed in a square at a specific row. 
// None of these queens can be attacked by any other
// queen.
// Postcondition: If the designated square is under 
// attack, returns true; otherwise, returns false.
// --------------------------------------------------

// To be implemented in Programming Problem 1
} // end isUnderAttack

private int index(int number) {
// --------------------------------------------------
// Returns the array index that corresponds to
// a row or column number.
// Precondition: 1 <= number <= BOARD_SIZE.
// Postcondition: Returns adjusted index value.
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// --------------------------------------------------
// To be implemented in Programming Problem 1

} // end index
} // end Queens

Figure 6-2 indicates the solution that the previous algorithm finds.
By modifying how you use placeQueens, you can discover other solu-

tions to the Eight Queens problem. You can also improve this algorithm.
Although we used an 8-by-8 array to represent the board because it simplified
the implementation, such an array wastes space; after all, only 8 squares out of
64 are used. The programming problems at the end of this chapter consider
modifications and improvements to this algorithm.

6.2 Defining Languages

English and Java are two languages with which you are familiar. A language is
nothing more than a set of strings of symbols from a finite alphabet. For exam-
ple, if you view a Java program as one long string of characters, you can define
the set of all syntactically correct Java programs. This set is the language 

JavaPrograms = {strings w : w is a syntactically correct Java program}

Notice that whereas all programs are strings, not all strings are programs.
A Java compiler is a program that, among other things, determines whether a
given string is a member of the language JavaPrograms; that is, the compiler
determines whether the string is a syntactically correct Java program. Of
course, this definition of JavaPrograms is not descriptive enough to allow the
construction of a compiler. The definition specifies a characteristic of the
strings in the set JavaPrograms: The strings are syntactically correct Java pro-
grams. However, this definition does not give the rules for determining

1 2 3 4 5 6 7 8

A solution to the Eight Queens problem

FIGURE 6-2
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whether a string is in the set or not; that is, the definition does not specify
what is meant by a syntactically correct Java program.

The word “language” does not necessarily mean a programming language
or a communication language. For example, the set of algebraic expressions
forms a language

AlgebraicExpressions = {w : w is an algebraic expression}

The language AlgebraicExpressions is the set of strings that meets certain rules
of syntax; however, the set’s definition does not give these rules.

In both examples, the rules for forming a string within the language are
missing. A grammar states the rules of a language. The grammars that you will
see in this chapter are recursive in nature. One of the great benefits of using
such a grammar to define a language is that you can often write a straightfor-
ward recursive algorithm, based on the grammar, that determines whether a
given string is in the language. Such an algorithm is called a recognition algo-
rithm for the language. 

As it is a complex task to present a grammar for the set JavaPrograms, we
instead will look at grammars for some simpler languages, including several
common languages of algebraic expressions.

The Basics of Grammars
A grammar uses several special symbols:

■ x | y means x or y.

■ x y means x followed by y. (When the context requires clarification, the
notation x • y will be used. The symbol • means concatenate, or append.)

■ < word > means any instance of word that the definition defines.

A grammar for the language

JavaIds = {w : w is a legal Java identifier}

is simple, so we begin with it. As you know, a legal Java identifier begins with a
letter and is followed by zero or more letters and digits. In this context, the
underscore ( _ ) and dollar sign ($) are letters. One way to represent this defi-
nition of an identifier is with a syntax diagram, as shown in Figure 6-3.

A grammar states 
the rules for forming 
the strings in a 
language

Symbols that gram-
mars use

A syntax diagram for Java identifiers

FIGURE 6-3

Letter
Digit

Letter
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A syntax diagram is convenient for people to use, but a grammar is a better
starting point if you want to write a method that will recognize an identifier. A
grammar for the language JavaIds is

< identifier > = < letter > | < identifier > < letter > | < identifier > < digit > |
$<identifier> | _<identifier>

< letter > = a | b | · · · | z | A | B | · · · | Z
< digit > = 0 | 1 | · · · | 9

The definition reads as follows:

An identifier is a letter, or an identifier followed by a letter, or an identi-
fier followed by a digit.

The most striking aspect of this definition is that identifier appears in its own
definition: This grammar is recursive, as are many grammars.

Given a string w, you can determine whether it is in the language JavaIds
by using the grammar to construct the following recognition algorithm: If w is
of length 1, it is in the language if the character is a letter. (This statement is
the base case, so to speak.) If w is of length greater than 1, it is in the lan-
guage if the last character of w is either a letter or a digit, and w minus its last
character is an identifier.

The pseudocode for a recursive valued method that determines whether a
string is in JavaIds follows:

isId(in w:string):boolean
// Returns true if w is a legal Java identifier;
// otherwise returns false.

if (w is of length 1)  { // base case
if (w is a letter) {

return true
    } 

else {
return false

    }  // end if 
  }

else if (the last character of w is a letter or a digit) {
return isId(w minus its last character)  // Point X

  } 
else  {

return false
  } // end if

Figure 6-4 contains a trace of this method for the string A2B.

Two Simple Languages
Now consider two more simple examples of languages, their grammars, and
resulting recognition algorithms.

A grammar for the 
language of Java 
identifiers

Many grammars are 
recursive

A recognition 
algorithm for Java 
identifiers
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Palindromes. A palindrome is a string that reads the same from left to right
as it does from right to left. For example, “radar” and “deed” are both palin-
dromes. You can define the language of palindromes as follows:

Palindromes = {w : w reads the same left to right as right to left}

How can you use a grammar to define the language Palindromes? You
need to devise a rule that allows you to determine whether a given string w is a
palindrome. In the spirit of recursive definitions, you should state this rule in
terms of determining whether a smaller string is a palindrome. Your first
instinct might be to choose w minus its last (or first) character for the smaller
string. However, this does not work because there is no relationship between
the statements

w is a palindrome

and

w minus its last character is a palindrome

Trace of isId(“A2B”)

FIGURE 6-4
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That is, w might be a palindrome, although w minus its last character is not, as
is the case for “deed.” Similarly, w minus its last character might be a palin-
drome, although w is not, as is the case for “deeds.”

A little thought reveals that you must consider characters in pairs: There is
a relationship between the statements

w is a palindrome

and

w minus its first and last characters is a palindrome

Specifically, w is a palindrome if and only if

■ The first and last characters of w are the same

and

■ w minus its first and last characters is a palindrome

You need a base case that you will reach after stripping away enough pairs
of characters. If w has an even number of characters, you will eventually be left
with two characters, and then, after you strip away another pair, you will be left
with zero characters. A string of length zero is called the empty string and is a
palindrome. If w has an odd number of characters, you will eventually be left
with one character, after which you cannot strip away another pair. Hence, you
must have a second base case: A string of length 1 is a palindrome.

This discussion leads to the following grammar for the language Palindromes:

< pal > = empty string | < ch > | a < pal > a | b < pal > b | · · · 
| Z < pal > Z

< ch > = a | b | · · · | z | A | B | · · · | Z

Based on this grammar, you can construct a recursive valued method for rec-
ognizing palindromes. The pseudocode for such a method follows:

isPal(in w:string):boolean
// Returns true if the string w of letters is a palindrome;
// otherwise returns false.

if (w is the empty string or w is of length 1) {
return true

  }
else if (w's first and last characters are the same

           letter) {
return isPal(w minus its first and last characters)

  }
else {

return false
  }  // end if

A recursive descrip-
tion of a palindrome

Strings of length 0 or 
1 are the base 
cases

A grammar for 
the language of 
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A recognition 
algorithm for 
palindromes
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Strings of the form AnBn. The symbol AnBn is standard notation for the
string that consists of n consecutive A’s followed by n consecutive B’s. Another
simple language consists of such strings:

L = {w : w is of the form AnBn for some n ≥ 0}

The grammar for this language is actually very similar to the grammar for pal-
indromes. You must strip away both the first and last characters and check to
see that the first character is an A and the last character is a B. Thus, the
grammar is

< legal-word > = empty string | A < legal-word > B

The pseudocode for a recognition method for this language follows:

isAnBn(in w:string):boolean
// Returns true if w is of the form AnBn;
// otherwise returns false.

if (the length of w is zero) {
return true

  }
else if (w begins with the character A and ends with the 

           character B) {
return isAnBn(w minus its first and last characters)

  }
else {

return false
  }  // end if

Algebraic Expressions
One of the tasks a compiler must perform is to recognize and evaluate alge-
braic expressions. For example, consider the Java assignment statement

y = x + z * (w/k + z * (7 * 6));

A Java compiler must determine whether the right side is a syntactically legal
algebraic expression; if so, the compiler must then indicate how to compute
the expression’s value.

There are several common definitions for a “syntactically legal” algebraic
expression. Some definitions force an expression to be fully parenthesized, that
is, to have parentheses around each pair of operands together with their opera-
tor. Thus, you would have to write ((a * b) * c) rather than a * b * c. In gen-
eral, the stricter a definition, the easier it is to recognize a syntactically legal
expression. On the other hand, conforming to overly strict rules of syntax is an
inconvenience for programmers.

This section presents three different languages for algebraic expressions.
The expressions in these languages are easy to recognize and evaluate but are
generally inconvenient to use. However, these languages provide us with good,

A grammar for the 
language of strings 
An Bn

A recognition algo-
rithm for strings 
An B n
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nontrivial applications of grammars. We will see other languages of algebraic
expressions whose members are difficult to recognize and evaluate but are con-
venient to use. To avoid unnecessary complications, assume that you have only
the binary operators +, –, *, and / (no unary operators or exponentiation).
Also, assume that all operands in the expression are single-letter identifiers.

Infix, prefix, and postfix expressions. The algebraic expressions you learned
about in school are called infix expressions. The term “infix” indicates that every
binary operator appears between its operands. For example, in the expression

a + b

the operator + is between its operands a and b. This convention necessitates
associativity rules, precedence rules, and the use of parentheses to avoid ambi-
guity. For example, the expression

a + b * c

is ambiguous. What is the second operand of the +? Is it b or is it (b * c)? Simi-
larly, the first operand of the * could be either b or (a + b). The rule that * has
higher precedence than + removes the ambiguity by specifying that b is the first
operand of the * and that (b * c) is the second operand of the +. If you want
another interpretation, you must use parentheses:

(a + b) * c

Even with precedence rules, an expression like

a / b * c

is ambiguous. Typically, / and * have equal precedence, so you could inter-
pret the expression either as (a / b) * c or as a / (b * c). The common practice
is to associate from left to right, thus yielding the first interpretation.

Two alternatives to the traditional infix convention are prefix and postfix.
Under these conventions, an operator appears either before its operands (pre-
fix) or after its operands (postfix). Thus, the infix expression

a + b

is written in prefix form as

+ a b

and in postfix form as

a b +

To further illustrate the conventions, consider the two interpretations of
the infix expression a + b * c just considered. You write the expression 

a + (b * c)

in prefix form as

+ a * b c

In a prefix expres-
sion, an operator 
precedes its 
operands

In a postfix expres-
sion, an operator 
follows its operands



352  Chapter 6 Recursion as a Problem-Solving Technique

The + appears before its operands a and (* b c), and the * appears before its
operands b and c. The same expression is written in postfix form as

a b c * +

The * appears after its operands b and c, and the + appears after its operands a
and (b c *).

Similarly, you write the expression

(a + b) * c

in prefix form as

* + a b c

The * appears before its operands (+ a b) and c, and the + appears before its
operands a and b. The same expression is written in postfix form as 

a b + c *

The + appears after its operands a and b, and the * appears after its operands
(a b +) and c.

If the infix expression is fully parenthesized, converting it to either prefix
or postfix form is straightforward. Because each operator then corresponds to a
pair of parentheses, you simply move the operator to the position marked by
either the “(” if you want to convert to prefix form or the “)” if you want to
convert to postfix form. This position either precedes or follows the operands
of the operator. All parentheses would then be removed. 

For example, consider the fully parenthesized infix expression

((a + b) * c)

To convert this expression to prefix form, you first move each operator to the
position marked by its corresponding open parenthesis:

( ( a b ) c )

* +

Next, you remove the parentheses to get the desired prefix expression:

* + a b c

Similarly, to convert the infix expression to postfix form, you move each
operator to the position marked by its corresponding closing parenthesis:

( ( a b ) c )

         +  *

Then you remove the parentheses:

a b + c *

When an infix expression is not fully parenthesized, these conversions are
more complex. Chapter 7 discusses the general case of converting an infix
expression to postfix form.

Converting to prefix 
form

Converting to postfix 
form
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The advantage of prefix and postfix expressions is that they never need
precedence rules, association rules, and parentheses. Therefore, the grammars
for prefix and postfix expressions are quite simple. In addition, the algorithms
that recognize and evaluate these expressions are relatively straightforward.

Prefix expressions. A grammar that defines the language of all prefix expres-
sions is

< prefix > = < identifier > | < operator > < prefix > < prefix >

< operator > = + | – | * | /

< identifier > = a | b | · · · | z

From this grammar you can construct a recursive algorithm that recog-
nizes prefix expressions. Suppose that you treat the expression in question as a
substring of a String variable strExp, from index first through last. If the
expression is of length 1, it is a prefix expression if and only if strExp is a
single lowercase letter. Expressions of length 1 can be the base case. If the
length of the expression is greater than 1, then for it to be a legal prefix expres-
sion, it must be of the form

< operator > < prefix > < prefix >

Thus, the algorithm must check to see that

■ The first character of strExp is an operator

and

■ The remainder of strExp (index first + 1 through last) consists of two
consecutive prefix expressions

The first task is trivial, but the second is a bit tricky. How can you deter-
mine whether you are looking at two consecutive prefix expressions? A key
observation is that if you add any string of nonblank characters to the end of a
prefix expression, you will no longer have a prefix expression. That is, if E is a
prefix expression and Y is any nonempty string of nonblank characters, then
E Y cannot be a prefix expression. This is a subtle point; Exercise 17 at the end
of this chapter asks you to prove it.

Given this observation, you can begin to determine whether the substring
of strExp starting after the operator consists of two consecutive prefix expres-
sions by identifying a first prefix expression. If you cannot find one, the origi-
nal string itself is not a prefix expression. If you do find one, you need to know
where it ends. Notice that the previous observation implies that only one end-
point is possible for this first expression: Given that the substring of strExp
from index first + 1 through end1 is a prefix expression, no other prefix
expression can begin at position first + 1. That is, it is not possible that
another substring of strExp from index first + 1 through end2 is a prefix
expression for any end2 not equal to end1.

If you find that the first prefix expression ends at position end1, you then
attempt to find a second prefix expression beginning at position end1 + 1 and

Prefix and postfix 
expressions never 
need precedence 
rules, association 
rules, and 
parentheses

If E is a prefix 
expression, E Y
cannot be
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ending at or before position last. If you find the second expression, you must
check that you are at the end of the string in question.

By using these ideas, you can show, for example, that +/ab–cd is a prefix
expression. For +/ab–cd to be a prefix expression, it must be of the form
+E1E2, where E1 and E2 are prefix expressions. Now you can write

E1 = /E3E4 where

E3 = a

E4 = b

Since E3 and E4 are prefix expressions, E1 is a prefix expression. Similarly, you
can write

E2 = -E5E6 where

E5 = c

E6 = d

and see that E2 is a prefix expression.
If we assume that the class for prefix expressions has a private data field

strExp, you can write a method in the same class to determine whether the
expression is a prefix expression. First, you construct a recursive valued method
endPre(first, last) that returns either the index of the end of the prefix
expression strExp or the value –1, which signals that no prefix expression
begins at strExp. The method appears in pseudocode as follows:

endPre(in first:integer, in second:integer):integer
// Finds the end of a prefix expression, if one exists.
// Precondition: The substring of strExp from index first
// through last contains no blank characters.
// Postcondition: Returns the index of the last character
// in strExp that begins at index first, if one exists, or
// returns -1 if no such prefix expression exists.

if (first < 0 or first > last) { 
return -1

  }  // end if
  ch = character at position first of strExp

if (ch is an identifier) {
    // index of last character in simple prefix expression

return first 
  }

else if (ch is an operator) {
    // find the end of the first prefix expression
    firstEnd = endPre(first + 1, last)           // Point X

    // if the end of the first expression was found
    // find the end of the second prefix expression

endPre determines 
the end of a prefix 
expression
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if (firstEnd > -1) {
return endPre(firstEnd + 1, last)         // Point Y

    } 
else {

return -1
    }  // end if
  }

else {
return -1

  }  // end if

Figure 6-5 contains a trace of endPre when the initial expression is +/ab–cd.

Trace of endPre(first, last), where strExp is +/ab-cd
(continues)

FIGURE 6-5
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Now you can use the method endPre to determine whether the data field
strExp is a prefix expression as follows:

isPre():boolean
// Determines whether the string expression in this class 
// is a prefix expression.

(continued)

FIGURE 6-5
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// Precondition: The class has a data field strExp that
// has been initialized with a string expression that
// contains no blank characters.
// Postcondition: Returns true if the expression is in
// prefix form; otherwise returns false.

  size = length of expression strExp
  lastChar = endPre(0, size - 1)

if (lastChar >= 0 and lastChar == size-1) {
return true

  }
else {

return false
  }  // end if

Having determined that your string is a prefix expression, how can you
evaluate it? Since each operator is followed by its two operands, you can look
ahead in the expression for them. However, such operands can themselves be
prefix expressions, which you must evaluate first. These prefix expressions are
subexpressions of the original expression and must therefore be “smaller.” A
recursive solution to this problem seems natural. 

The following method, which appears in pseudocode, evaluates a
prefix  expression. This algorithm is simpler than one that evaluates infix
expressions.

evaluatePrefix(in strExp:string):float
// Evaluates the prefix expression strExp.
// Precondition: strExp is a string consisting of a valid 
// prefix expression containing no blanks.
// Postcondition: Returns the value of the prefix 
// expression.   
  ch = first character of expression strExp
  Delete first character from strExp

if (ch is an identifier) {
    // base case - single identifier

return value of the identifier
  }

else if (ch is an operator named op) {
    operand1 = evaluatePrefix(strExp)
    operand2 = evaluatePrefix(strExp)

return operand1 op operand2
  } // end if

Notice that each recursive call to evaluatePrefix removes from strExp
the most recently evaluated prefix expression. The resulting substring is then
used in the next recursive call of evaluatePrefix. To implement this method

An algorithm to 
evaluate a prefix 
expression
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in Java requires that the parameter of evaluatePrefix be a mutable string
type such as java.lang.StringBuffer. (See Appendix A for a discussion of
mutable strings.)

Postfix expressions. A grammar that defines the language of all postfix
expressions is

< postfix > = < identifier > | < postfix > < postfix > < operator >

< operator > = + | – | * | /

< identifier > = a | b | · · · | z

Some calculators require that you enter two numbers before you enter the
operation that you want to perform. Such calculators, in fact, require you to
enter postfix expressions. 

Here we will develop an algorithm for converting a prefix expression to a
postfix expression. Chapter 7 presents a nonrecursive algorithm for evaluating
postfix expressions. Together these two algorithms give you another method
for evaluating a prefix expression. To simplify the conversion algorithm,
assume that the prefix recognition algorithm has identified this as a syntacti-
cally correct prefix expression.

If you think recursively, the conversion from prefix form to postfix form is
straightforward. If the prefix expression exp is a single letter, then

postfix(exp) = exp

Otherwise exp must be of the form

< operator > < prefix1 > < prefix2 >

The corresponding postfix expression is then

< postfix1 > < postfix2 > < operator >

where < prefix1 > converts to < postfix1 > and < prefix2 > converts to
< postfix2 >. Therefore,

postfix(exp) = postfix(prefix1) + postfix(prefix2) + operator 

Thus, at a high level, the conversion algorithm is

if (exp is a single letter) {
return exp

}
else {

return postfix(prefix1) + postfix(prefix2) + operator

} // end if

The following pseudocode method convert refines this algorithm.  As in
evaluatePrefix, the parameter pre should be a mutable string type.

An algorithm that 
converts a prefix 
expression to postfix 
form
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convert(in pre:string):string
// Converts a prefix expression pre to postfix form.
// Precondition: The expression in the string pre is a 
// valid prefix expression.
// Postcondition: Returns the equivalent postfix expression
// as a string.

  // check the first character of the given string
  ch = first character of pre       // get first character
  Delete first character of pre

if (ch is a lowercase letter) {  // check character
    // base case - single identifier expression

return ch as a string
  }

else  { // ch is an operator
    // do the conversion recursively
    postfix1 = convert(pre)
    postfix2 = convert(pre)

return postfix1 + postfix2 + ch  // concatenate operator
  }  // end if

Fully parenthesized expressions. Most programmers would object to using
prefix or postfix notation for their algebraic expressions, so most programming
languages use infix notation. However, infix notation requires precedence rules,
rules for association, and parentheses to avoid ambiguity within the expressions.

You can make precedence and association rules unnecessary by placing
parentheses around each pair of operands together with their operator, thereby
avoiding any ambiguity. A grammar for the language of all fully parenthesized
infix expressions is

< infix > = < identifier > | (< infix > < operator > < infix >)

< operator > = + | – | * | /

< identifier > = a | b | · · · | z

Although the grammar is simple, the language is rather inconvenient for
programmers.

Therefore, most programming languages support a definition of algebraic
expressions that includes both precedence rules for the operators and rules of
association so that fully parenthesized expressions are not required. However,
the grammars for defining such languages are more involved, and the algo-
rithms for recognizing and evaluating their expressions are more difficult than
those you have seen in this section. Programming Problem 7 at the end of this
chapter describes such a grammar without left-to-right association rules and
asks you to write a recognition algorithm. Chapter 7 presents a nonrecursive
evaluation algorithm for algebraic expressions that follows both precedence
and left-to-right association rules.

A recursive algo-
rithm that converts a 
prefix expression to 
postfix form

A grammar for the 
language of fully 
parenthesized alge-
braic expressions
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6.3 The Relationship Between Recursion 
and Mathematical Induction

A very strong relationship exists between recursion and mathematical induc-
tion. Recursion solves a problem by specifying a solution to one or more base
cases and then demonstrating how to derive the solution to a problem of an
arbitrary size from the solutions to smaller problems of the same type. Simi-
larly, mathematical induction proves a property about the natural numbers by
proving the property about a base case—usually 0 or 1—and then proving that
the property must be true for an arbitrary natural number N if it is true for the
natural numbers smaller than N.

Given the similarities between recursion and mathematical induction, it
should not be surprising that induction is often employed to prove properties
about recursive algorithms. What types of properties? You can, for example, prove
that an algorithm actually performs the task that you intended. As an illustration,
we will prove that the recursive factorial algorithm of Chapter 3 does indeed
compute the factorial of its argument. Another use of mathematical induction is
to prove that a recursive algorithm performs a certain amount of work. For exam-
ple, we will prove that the solution to the Towers of Hanoi problem—also from
Chapter 3—makes exactly 2N – 1 moves when it starts with N disks.

The Correctness of the Recursive Factorial Method
The following pseudocode describes a recursive method that computes the fac-
torial of a nonnegative integer n:

fact(in n:integer):integer

if (n is 0) {
return 1

  }
else {

return n * fact(n - 1)
  }  // end if

You can prove that the method fact returns the values

fact(0) = 0! = 1

fact(n) = n! = n * (n – 1) * (n – 2) * · · · * 1   if n > 0

The proof is by induction on n.

Basis. Show that the property is true for n = 0. That is, you must show that
fact(0) returns 1. But this result is simply the base case of the method:
fact(0) returns 1 by its definition.

You now must establish that

property is true for an arbitrary k ⇒ property is true for k + 1

You can use induc-
tion to prove that a 
recursive algorithm 
either is correct or 
performs a certain 
amount of work
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Inductive hypothesis. Assume that the property is true for n = k. That is,
assume that 

fact(k) = k * (k – 1) * (k – 2) * · · · * 2 * 1

Inductive conclusion. Show that the property is true for n = k + 1. That is, you
must show that fact(k + 1) returns the value

(k + 1) * k * (k – 1) * (k – 2) * · · · * 2 * 1

By definition of the method fact, fact(k + 1) returns the value

(k + 1) * fact(k)

But by the inductive hypothesis, fact(k) returns the value

k * (k – 1) * (k – 2) * · · · * 2 * 1

Thus, fact(k + 1) returns the value

(k + 1) * k * (k – 1) * (k – 2) * · · · * 2 * 1

which is what you needed to show to establish that

property is true for an arbitrary k ⇒ property is true for k + 1

The inductive proof is thus complete.

The Cost of Towers of Hanoi
In Chapter 3, you saw the following solution to the Towers of Hanoi problem:

solveTowers(in count:integer, in source:Pole, 
            in destination:Pole, in spare:Pole)

if (count is 1) {
    Move a disk directly from source to destination
  } 

else {
    solveTowers(count-1, source, spare, destination)
    solveTowers(1, source, destination, spare)
    solveTowers(count-1, spare, destination, source)
  }  // end if

We now pose the following question: If you begin with N disks, how many
moves does solveTowers make to solve the problem?

Let moves(N) be the number of moves made starting with N disks. When
N = 1, the answer is easy:

moves(1) = 1

When N > 1, the value of moves(N) is not so apparent. An inspection of the
solveTowers algorithm, however, reveals three recursive calls. Therefore, if
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you knew how many moves solveTowers made starting with N – 1 disks, you
could figure out how many moves it made starting with N disks; that is,

moves(N) = moves(N – 1) + moves(1) + moves(N – 1)

Thus, you have a recurrence relation for the number of moves required for N
disks:

moves(1) = 1

moves(N) = 2 * moves(N – 1) + 1 if N > 1

For example, you can determine moves(3) as follows:

moves(3) = 2 * moves(2) + 1

= 2 * (2 * moves(1) + 1) + 1

= 2 * (2 * 1 + 1) + 1

= 7

Although the recurrence relation gives you a way to compute moves(N), a
closed-form formula—such as an algebraic expression—would be more satis-
factory because you could substitute any given value for N and obtain the
number of moves made. However, the recurrence relation is useful because
there are techniques for obtaining a closed-form formula from it. Since these
techniques are not relevant to us right now, we simply pull the formula out of
the blue and use mathematical induction to prove that it is correct.

The solution to the previous recurrence relation is

moves(N) = 2N – 1, for all N > 1

Notice that 23 – 1 agrees with the value 7 that was just computed for moves(3).

The proof that moves(N) = 2N – 1 is by induction on N.

Basis. Show that the property is true for N = 1. Here, 21 – 1 = 1, which is
consistent with the recurrence relation’s specification that moves(1) = 1.

You now must establish that

property is true for an arbitrary k ⇒ property is true for k + 1

Inductive hypothesis. Assume that the property is true for N = k. That is,
assume

moves(k) = 2k – 1

Inductive conclusion. Show that the property is true for N = k + 1. That is,
you must show that moves(k + 1) = 2k+1 – 1. Now

moves(k + 1) = 2 * moves(k) + 1 from the recurrence relation

= 2 * (2k – 1) + 1 by the inductive hypothesis

= 2k+1 – 1

A recurrence relation 
for the number of 
moves that 
solveTowers
requires for N disks

A closed-form 
formula for the 
number of moves 
that solveTowers
requires for N disks
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which is what you needed to show to establish that

property is true for an arbitrary k ⇒ property is true for k + 1

The inductive proof is thus complete.
Do not get the false impression that proving properties of programs is an

easy matter. These two proofs are about as easy as any will be. However, well-
structured programs are far more amenable to these techniques than are poorly
structured programs.

Appendix D provides more information about mathematical induction.

1. Backtracking is a solution strategy that involves both recursion and a sequence of
guesses that ultimately lead to a solution. If a particular guess leads to an impasse,
you retrace your steps in reverse order, replace that guess, and try to complete the
solution again.

2. A grammar is a device for defining a language, which is a set of strings of symbols.
By using a grammar to define a language, you often can construct a recognition
algorithm that is directly based on the grammar. Grammars are frequently recur-
sive, thus allowing you to describe vast languages concisely.

3. To illustrate the use of grammars, we defined several different languages of alge-
braic expressions. These different languages have their relative advantages and dis-
advantages. Prefix and postfix expressions, while difficult for people to use, have
simple grammars and eliminate problems of ambiguity. On the other hand, infix
expressions are easier for people to use but require parentheses, precedence rules,
and rules of association to eliminate ambiguity. Therefore, the grammar for infix
expressions is more involved.

4. A close relationship between mathematical induction and recursion exists. You can
use induction to prove properties about a recursive algorithm. For example, you
can prove that a recursive algorithm is correct, and you can derive the amount of
work it requires.

1. The subproblems that a recursive solution generates eventually must reach a base
case. Failure to do so could result in an algorithm that does not terminate. Solu-
tions that involve backtracking are particularly subject to this kind of error.

2. Grammars, like recursive algorithms, must have carefully chosen base cases. You
must ensure that when a string is decomposed far enough, it will always reach the
form of one of the grammar’s base cases.

3. The subtleties of some of the algorithms you encountered in this chapter indicate
the need for mathematical techniques to prove their correctness. The application of
these techniques during the design of the various components of a solution can
help to eliminate errors in logic before they appear in the program. One such tech-
nique is mathematical induction; another is the use of loop invariants, which we
discussed in Chapter 2 and will discuss again in subsequent chapters.

Summary

Cautions
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1. Consider a Four Queens problem, which has the same rules as the Eight Queens
problem but uses a 4-by-4 board. Find all solutions to this new problem by apply-
ing backtracking by hand.

2. Write a recursive grammar for the language of octal numbers in Java. Recall that an
octal number starts with a zero.

3. A number 12345 would be written in scientific notation as 1.2345E+4. Note that
the number has a coefficient of 1.2345 (a decimal number greater than or equal to 1
and less than 10), followed by E, followed by a signed number for the exponent of
10. Write a recursive grammar for the language of numbers in scientific notation. 

4. Consider the language of these strings: $, cc$d, cccc$dd, cccccc$ddd, and so on.
Write a recursive grammar for this language.

5. For the following infix expression, write the equivalent prefix and postfix expressions:
(a*b-c)/d*e-(f-g)

6. Write the infix and postfix expressions that represent the following prefix expres-
sion: – – a/b+ c*def

7. Is the following string a prefix expression? + – /abc* + def*gh

8. Use mathematical induction to show that the recurrence relation f(n) = 2n + f(n-1)
has the closed-form solution f(n) = n(n-1).

1. Trace the following recursive methods:

a. isPal with the string “abccda”

b. isAnBn with the string “AAAB”

c. endPre where strExp = "*+ab-cd"

2. Write a Java program that implements this factorial using stacks. 

3. Write a program that checks whether the given parentheses are right or wrong.

(A + B ) / ((C * D) + (E / F) * D + C 

4. What is the postfix expression for the following infix: (a + b*(c - a) - d)

a. d b c a - * a + -

b. a b c a d - - * +

c. a b c a - * + d -

d. None of the above.

Self-Test Exercises

Exercises

1 : if n = 0 & n > 0
n * fact(n – 1) : if n > 1

Fact(n)
⎩
⎨
⎧
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5. Here is an infix expression: 4+3*(6*3-12). Suppose that the usual stack algorithm
is used to convert the expression from an infix to postfix notation. What is the
maximum number of symbols that will appear on the stack at one time during the
conversion of this expression? 

a. 1 

b. 2 

c. 3 

d. 4 

e. 5 

6. Consider a language of words, where each word is a string of dots and dashes. The
following grammar describes this language:

< word > = < dot > | < dash > < word > | < word > < dot > 

< dot > = •

< dash > = –

a. Write all three-character strings that are in this language.

b. Is the string • • • • – – in this language? Explain.

c. Write a seven-character string that contains more dashes than dots and is in the
language. Show how you know that your answer is correct.

d. Write pseudocode for a recursive recognition method isIn(str) that returns
true if the string str is in this language and returns false otherwise.

7. What is the value of the postfix expression |2|3|2|4|+| - | * |

a. Something between -15 and -100 

b. Something between -5 and -15 

c. Something between 5 and -5 

d. Something between 5 and 15 

e. Something between 15 and 100 

8. Consider a language that the following grammar defines:

<G> = empty string | <E> | <V> <E> | <E> <G> <V>

<E> = & | #

<V> = W | A

a. Write pseudocode for a recursive method that determines whether the string w
is in this language.

b. Is the string &W#W in this language?

9. Let L be the language

L = {S : S is of the form A2n Bn, for some n > 0}
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Thus, a string is in L if and only if it starts with a sequence of A’s and is followed by
a sequence of half as many B’s. For example, AAAABB is in L, but ABBB,
BAABAA, and the empty string are not.

a. Give a grammar for the language L.

b. Write a recursive method that determines whether the string str is in L.

10. Consider the language that the following grammar defines:

< S > = < L > | < S > < S > < D >

< L > = A | B

< D > = 1 | 2

a. Write all four-character strings that are in this language.

b. Write one string in this language that contains more than four characters.

11. Consider a language of the following strings: The letter A, the letter B, the letter C
preceded by a string that is in the language, the letter D preceded by a string in the
language. For example, these strings are in this language: A, AC, ACC, ACD, B,
BC, BCC, BD, BCDC.

a. Write a grammar for this language.

b. Is BAC in this language? Explain.

c. Write a recursive recognition algorithm for this language.

12. Consider the language that the following grammar defines:

< word > = $ | a< word >a | b< word >b | · · · | y< word >y | z< word >z

Equivalently,

L = {w$reverse(w) : w is a string of letters of length > 0}

Note that this language is very similar to the language of palindromes, but there is
a special middle character here.

The algorithm that this chapter gave for recognizing palindromes can be
adapted easily to this language. The algorithm, which is recursive and processes the
string str from both ends toward the middle, is based on the following facts:

■ A string with no characters is not in the language.

■ A string with exactly one character is in the language if the character is a $.

■ A longer string is in the language if the ends are identical letters and the inner
substring (from the second character to the next to the last character of str) is
in the language.

Describe a recursive recognition algorithm that processes the string from left to
right, reading one character at a time and not explicitly saving the string for future
reference. Write a Java method that implements your algorithm.

13. Write a Java program that resolves the following postfix expression: 8416+*122/-

14. Is  abc*+*def/gh-* a postfix expression? Explain in terms of the grammar for postfix
expressions.
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15. Prove the following for single-letter operands: If E is a prefix expression and Y is a
nonempty string of nonblank characters, then E Y cannot be a legal prefix expres-
sion. (Hint: Use a proof by induction on the length of E.)

16. Consider the following recursive method:

public static int p(int x) {
if (x < 3) {

return x;
  } 

else {
return p(x-1) * p(x-3);

  }  // end if
}  // end p

Let m(x) be the number of multiplication operations that the execution of p(x)
performs. 

a. Write a recursive definition of m(x).

b. Prove that your answer to Part a is correct by using mathematical induction.

17. Consider numeric palindromes that consist only of digits, such as 34943 and 1001, but
not 1121, 1A1, or “abba.” Let p(n) be the number of numeric palindromes of length n.

a. Write a recursive definition of p(n).

b. Prove that your answer to Part a is correct by using mathematical induction.

18. Suppose we have the following recurrence relation for f(n):

f (0)= 0 for n = 0;

f (n) = f(n – 1) + 3n for n > 0;

Prove by induction on n that the following is a closed-form formula for f:

f(n) = 3n(n + 1)/2

19. Suppose we have the following recurrence relation for f(n):

f (0)= 1 for n = 0;

f (n) = 2f(n – 1) + 3 for n > 0;

Prove by induction on n that the following is a closed-form formula for f:

f(n) = 2n+2 – 3

20. Chapter 3 gave the following definition for c(n, k), where n and k are assumed to
be nonnegative integers:

Prove by induction on n that the following is a closed form for c(n, k):

1 if k = 0
1 if k = n
0 if k > n
c(n – 1, k – 1) + c(n – 1, k) if 0 <  k < n

c(n, k) = 

⎩
⎪
⎪
⎨
⎪
⎪
⎧

c n k,( ) n!

n k–( )!k!
------------------------=
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1. Complete the program that solves the Eight Queens problem.

2. Revise the program that you just wrote for the Eight Queens problem so that it
answers the following questions:

a. How many backtracks occur? That is, how many times does the program
remove a queen from the board?

b. How many calls to isUnderAttack are there?

c. How many recursive calls to placeQueens are there?

d. Can you make isUnderAttack more efficient? For example, as soon as you
detect that a queen can attack a given square, do you still look for another
queen?

3. You can begin the Eight Queens problem by placing a queen in the second square
of the first column instead of the first square. You can then call placeQueens to
begin with the second column. This revision should lead you to a new solution.
Write a program that finds all solutions to the Eight Queens problem.

4. Instead of using an 8-by-8 array to represent the board in the Eight Queens pro-
gram, you can use a one-dimensional array to represent only the squares that
contain a queen. Let col be an array of eight integers such that

col[k] = row index of the queen in column k + 1

For example, if col[2] is 3, then a queen is in the fourth row (square) of the third
column—that is, in board[3][2]. Thus, you use col[k] to represent a queen
instead of board[col[k]][k].

This scheme requires that you also store information about whether each queen
is subject to attack. Because only one queen per column is permitted, you do not
have to check columns. To check for a row attack, define an array rowAttack such
that rowAttack[k] is nonzero if the queen in column k + 1 can be attacked by a
queen in its row.

To check for diagonal attacks, observe that diagonals have either a positive slope
or a negative slope. Those with a positive slope are parallel to the diagonal that
runs from the lower left corner of the board to the upper right corner. Diago-
nals with a negative slope are parallel to the diagonal that runs from the upper left
corner to the lower right corner. Convince yourself that if board[i][j] represents
a square, then i + j is constant for squares that are in a diagonal with a positive
slope, and i – j is constant for squares that are in a diagonal with a negative slope.
You will find that i + j ranges from 0 to 14 and that i – j ranges from –7 to +7.
Thus, define arrays posDiagonal and negDiagonal such that

posDiagonal[k] is true if the queen in column k + 1 can be attacked by a queen
in its positive-sloped diagonal, and

negDiagonal[k] is true if the queen in column k + 1 can be attacked by a queen
in its negative-sloped diagonal.

Use these ideas to write a program that solves the Eight Queens problem.

Programming Problems

*
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5. Do you know how to find your way through a maze? After you write this pro-
gram, you will never be lost again!

Assume that a maze is a rectangular array of squares, some of which are blocked to
represent walls. The maze has one entrance and one exit. For example, if x’s repre-
sent the walls, a maze could appear as:

xxxxxxxxxxxxxxxxxx x
x     x       xxxx x
x xxxxx xxxxx   xx x
x xxxxx xxxxxxx xx x
x x          xx xx x
x xxxxxxxxxx xx    x
xxxxxxxxxxxxoxxxxxxx

A creature, indicated in the previous diagram by o, sits just inside the maze at
the entrance. Assume that the creature can move in only four directions: north,
south, east, and west. In the diagram, north is up, south is down, east is to the
right, and west is to the left. The problem is to move the creature through the
maze from the entrance to the exit, if possible. As the creature moves, it should
mark its path. At the conclusion of the trip through the maze, you should see both
the correct path and incorrect attempts.

Squares in the maze have one of several states: CLEAR (the square is clear),
WALL (the square is blocked and represents part of the wall), PATH (the square
lies on the path to the exit), and VISITED (the square was visited, but going that
way led to an impasse).

This problem uses two ADTs that must interact. The ADT creature represents
the creature’s current position and contains operations that move the creature. The
creature should be able to move north, south, east, and west one square at a time.
It should also be able to report its position and mark its trail. 

The ADT maze represents the maze itself, which is a two-dimensional rectangu-
lar arrangement of squares. Suppose that we number the rows of squares from the
top beginning with zero, and we number the columns of squares from the left
beginning with zero. Thus, you can use a row number and a column number to
identify uniquely any square within the maze. The ADT clearly needs a data struc-
ture to represent the maze. It also needs such data as the height and width of the
maze, given in numbers of squares; the length of a side of a square; and the row
and column coordinates of both the entrance to and the exit from the maze.

The ADT maze should also contain, for example, operations that create a spe-
cific maze, given a text file of data; display a maze; determine whether a particular
square is part of the wall; determine whether a particular square is part of the path;
and so on. 

The text file that you will use to represent a maze is simple. An example of how
this can be done for the previously given maze is:

20   7 width and height of maze in squares
0    18 row  and column coordinate of maze exit
6    12 row  and column coordinate of maze entrance
xxxxxxxxxxxxxxxxxx x
x     x       xxxx x
x xxxxx xxxxx   xx x
x xxxxx xxxxxxx xx x
x x          xx xx x
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x xxxxxxxxxx xx    x
xxxxxxxxxxxx xxxxxxx

Each line in the file corresponds to a row in the maze; each character in a line cor-
responds to a column in the maze. X’s indicate blocked squares (the walls), and
blanks indicate clear squares. This notation is convenient because you can see what
the maze looks like as you design it.

If you are at the maze’s entrance, you can systematically find your way out of
the maze by using the following search algorithm. It involves backtracking—that
is, retracing your steps when you reach an impasse. 

1. First, check whether you are at the exit. If you are, you’re done (a very simple
maze); if you are not, go to Step 2.

2. Try to move to the square directly to the north by calling the method goNorth
(described later).

3. If goNorth was successful, you are done. If it was unsuccessful, try to move to
the square directly to the west by calling the method goWest (described later).

4. If goWest was successful, you are done. If it was unsuccessful, try to move to the
square directly to the south by calling the method goSouth (described later).

5. If goSouth was successful, you are done. If it was unsuccessful, try to move to
the square directly to the east by calling the method goEast (described later).

6. If goEast was successful, you are done. If it was unsuccessful, you are still done,
because no path exists from the entrance to the exit.

The method goNorth will examine all the paths that start at the square to the
north of the present square as follows. If the square directly to the north is clear, is
inside the maze, and has not been visited before, move into this square and mark it
as part of the path. (Note that you are moving from the south.) Check whether
you are at the exit. If you are, you’re done. Otherwise, try to find a path to the exit
from here by trying all paths leaving this square except the one going south (going
south would put you back in the square from which you just came) as follows. Call
goNorth; if it is not successful, call goWest and, if it is not successful, call goEast. If
goEast is not successful, mark this square as visited, move back into the square to
the south, and return.

The following pseudocode describes the goNorth algorithm:

goNorth(maze, creature)

if (the square to the north is clear, 
      inside the maze, and unvisited) {
    Move to the north
    Mark the square as part of the path

if (at exit) {
      success = true
    }

else {
      success = goNorth(maze, creature)

if (!success) {
        success = goWest(maze, creature)

if (!success) {
          success = goEast(maze, creature)

if (!success) {
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            Mark square visited
            Backtrack south
          } // end if
        } // end if
      } // end if
    } // end if
  }

else {
    success = false
  }  // end if

return success

The goWest method will examine all the paths that start at the square to the
west of the present square as follows. If the square directly to the west is clear, is
inside the maze, and has not been visited before, move into this square and mark it
as part of the path. (Note that you are moving from the east.) Check whether you
are at the exit. If you are, you’re done. Otherwise, try to find a path to the exit
from here by trying all paths leaving this square except the one going east (this
would put you back in the square from which you just came) as follows. Call
goNorth; if it is not successful, call goWest and, if it is not successful, call goSouth.
If goSouth is not successful, mark this square as visited, move back into the square
to the east, and return.

The methods goEast and goSouth are analogous to the methods just
described.

6. You may have heard of a puzzle where you must fill in squares for a 9x9 grid with
the digits one through nine using the following rules.  The digits can appear only
once in each row and column. Furthermore, the 9x9 grid is divided into nine
regions of 3x3 grids, and the digits can only appear once in each region. Given
the following puzzle, write a recursive solution using backtracking that solves
such a puzzle.

7. Write a program that gives all of the permutations of characters stored in an array.
For example:

  char[] charArr = {'A', 'B', 'C'};
  findPermuations(charArr);

produces the following result:
[A, B, C]

[A, C, B]

3 8 2
6 3 9

9 7 1 4
9 2 5 4 3

8 4 1
4 6 2 7 1
1 6 3 9
8 9 3 6

3 6 7
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[B, A, C]

[B, C, A]

[C, A, B]

[C, B, A]

Note that the strategy here is to start with an array of n items, and solve this
problem in terms of permuting n-1 items—so notice that the program starts by
finding permutations that start with A, leaving the problem of finding permuta-
tions of B and C. Once that is completed, you must go back and start again with B,
and find permutations of A and C, and so on until each element in the array has
been used as the first element. So the problem starts to look like this:

p({A, B, C}) = A + p({B, C}) producing [A, B, C]

[A, C, B]

B + p({A, C}) producing [B, A, C]

[B, C, A]

C + p({A, B})producing [C, A, B]

[C, B, A]

Rather than trying to work with a portion of the array, it will be helpful to include
an index that keeps track of which element you are working on.  For example, the
initial call should include a parameter 0 (representing the fact that you are starting
with the first element), and subsequent calls increment this index, so now we have

p({A, B, C}, 0) = p({A, B, C}, 1) producing [A, B, C]

[A, C, B]

p({B, A, C}, 1) producing [B, A, C]

[B, C, A]

p({C, A, B}, 1) producing [C, A, B]

[C, B, A]

Since each subsequent call needs to change the order of the elements, you should make
a copy of the array and use that in the recursive call. Also, think about what would be
the base case—and when it is reached, print the array using ArraytoString.

8. Write a program that implements the tower of Hanoi using 3 stacks.Consider three
rods and a number of disks of different sizes which can be slide onto any rod. The
puzzle starts with the disks in a stack, in ascending order of size on one rod, the
smallest at the top, thus making a conical shape. Hint: In programming, the disks
are replaced by numbers.

9. The following is a grammar that allows you to omit parentheses in infix algebraic
expressions when the precedence rules remove ambiguity. For example, a + b * c
means a + (b * c). However, the grammar requires parentheses when ambiguity
would otherwise result. That is, the grammar does not permit left-to-right associa-
tion when several operators have the same precedence. For example, a ⁄ b * c is ille-
gal. Notice that the definitions introduce factors and terms.

< expression > = < term > | < term > + < term > | < term > – < term >

< term > = < factor > | < factor > * < factor > | < factor > / < factor >
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< factor > = < letter > | (< expression >)

< letter > = a | b | · · · | z

The recognition algorithm is based on a recursive chain of subtasks: find an
expression → find a term → find a factor. What makes this a recursive chain is that
find an expression uses find a term, which in turn uses find a factor. Find a factor
either detects a base case or uses find an expression, thus forming the recursive
chain.

The pseudocode for the recognition algorithm follows:

FIND AN EXPRESSION
// The grammar specifies that an expression is either
// a single term or a term followed by a + or a -,
// which then must be followed by a second term.

  Find a term 
if (the next symbol is a + or a -) {

    Find a term
  }  // end if

FIND A TERM
// The grammar specifies that a term is either a 
// single factor or a factor followed by a * or a /,
// which must then be followed by a second factor.

  Find a factor 
if (the next symbol is a * or a /) {

    Find a factor
  }  // end if

FIND A FACTOR
// The grammar specifies that a factor is either a 
// single letter (the base case) or an 
// expression enclosed in parentheses.

if (the first symbol is a letter) {
    Done
  }

else if (the first symbol is a '(') {
    Find an expression starting at character after '('
    Check for ')' 
  }

else {
    No factor exists
  }  // end if

Design and implement a class of infix expressions, as described by the given
grammar. Include a method to recognize a legal infix expression.
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CHAPTER 7

Stacks

his chapter introduces a well-known ADT called a
stack and presents both its applications and imple-

mentations. You will see how the operations on a stack give
it a last-in, first-out behavior. Two of the several applications
of a stack that the chapter considers are evaluating alge-
braic expressions and searching for a path between two
points. Finally, the chapter discusses the important relation-
ship between stacks and recursion.

7.1 The Abstract Data Type Stack
Developing an ADT During the Design 

of a Solution

7.2 Simple Applications of the ADT 
Stack

Checking for Balanced Braces
Recognizing Strings in a Language

7.3 Implementations of the ADT Stack
An Array-Based Implementation of the 

ADT Stack
A Reference-Based Implementation of 

the ADT Stack
An Implementation That Uses the ADT 

List
Comparing Implementations
The Java Collections Framework 

Class Stack

7.4 Application: Algebraic Expressions
Evaluating Postfix Expressions
Converting Infix Expressions to Equiv-

alent Postfix Expressions

7.5 Application: A Search Problem
A Nonrecursive Solution That Uses 

a Stack
A Recursive Solution

7.6 The Relationship Between Stacks 
and Recursion

Summary

Cautions

Self-Test Exercises
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7.1 The Abstract Data Type Stack

The specification of an abstract data type that you can use to solve a particular
problem can emerge during the design of the problem’s solution. The ADT devel-
oped in the following example happens to be an important one: the ADT stack.

Developing an ADT During the Design of a Solution
When you type a line of text on a keyboard, you are likely to make mistakes. If
you use the backspace key to correct these mistakes, each backspace erases the
previous character entered. Consecutive backspaces are applied in sequence
and so erase several characters. For instance, if you type the line

abcc←ddde←←←ef←fg

where ← represents the backspace character, the corrected input would be

abcdefg

How can a program read the original line and get the correct input? In
designing a solution to this problem, you eventually must decide how to store
the input line. In accordance with the ADT approach, you should postpone
this decision until you have a better idea of what operations you will need to
perform on the data. 

A first attempt at a solution leads to the following pseudocode:

// read the line, correcting mistakes along the way
while (not end of line) {
  Read a new character ch

if (ch is not a '←') {
    Add ch to the ADT
  }

else {
    Remove from the ADT the item added most recently
  }  // end if
}  // end while

This solution calls to attention two of the operations that the ADT will have to
include:

■ Add a new item to the ADT.

■ Remove from the ADT the item that was added most recently.

Notice that potential trouble lurks if you type a ← when the ADT is
empty, that is, when the ADT contains no characters. If this situation should
occur, you have two options: (1) have the program terminate and write an
error message, or (2) have the program ignore the ← and continue. Either
option is reasonable, so let’s suppose that you decide to ignore the ← and con-
tinue. Therefore, the algorithm becomes

Initial draft of a 
solution

Two ADT operations 
that are required
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// read the line, correcting mistakes along the way
while (not end of line) {
  Read a new character ch

if (ch is not a '←') {
    Add ch to the ADT
  }

else if (the ADT is not empty) {
    Remove from the ADT the item added most recently
  }

else {
    Ignore the '←'
  }  // end if
}  // end while

From this pseudocode you can identify a third operation required by the ADT:

■ Determine whether the ADT is empty.

This solution places the corrected input line in the ADT. Now suppose
that you want to display the line. At first, it appears that you can accomplish
this task by using the ADT operations already identified, as follows:

// write the line
while (the ADT is not empty) {
  Remove from the ADT the item added most recently
  Write .....Uh-oh!
}  // end while

This pseudocode is incorrect for two reasons: 

1. When you remove an item from the ADT, the item is gone, so you cannot
write it. What you should have done was to retrieve from the ADT the
item that was added most recently. A retrieval operation means to look at,
but leave unchanged. Only after retrieving and writing the item should you
remove it from the ADT. 

2. The most recently added item is the last character of the input line. You
certainly do not want to write it first. The resolution of this particular diffi-
culty is left to you as an exercise.

If we address only the first difficulty, the following pseudocode writes the
input line in reversed order:

// write the line in reversed order
while (the ADT is not empty) {
  Retrieve from the ADT the item that was
     added most recently and put it in ch
  Write ch
  Remove from the ADT the item added most recently
}  // end while

The “read and cor-
rect” algorithm

Another required 
ADT operation 

A false start at 
writing the line

Reasons why the 
attempted solution is 
incorrect

The write-backward 
algorithm
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Thus, a fourth operation is required by the ADT:

■ Retrieve from the ADT the item that was added most recently.

Although you have yet to think about an implementation of the ADT, you
know that you must be able to perform four specific operations.1 These opera-
tions define the required ADT, which happens to be well known: It is usually
called a stack. As you saw in Chapter 4, it is customary to include initializa-
tion operations in an ADT. Thus, the following operations define the ADT
stack.

The term “stack” is intended to conjure up visions of things encountered
in daily life, such as a stack of dishes in the school cafeteria, a stack of books on
your desk, or a stack of assignments waiting for you to work on them. In
common English usage, “stack of” and “pile of” are synonymous. To
computer scientists, however, a stack is not just any old pile. A stack has
the property that the last item placed on the stack will be the first item
removed. This property is commonly referred to as last-in, first-out, or simply
LIFO.

A stack of dishes in a cafeteria makes a very good analogy of the abstract
data type stack, as Figure 7-1 illustrates. As new dishes are added, the old
dishes drop farther into the well beneath the surface. At any particular time,
only the dish last placed on the stack is above the surface and visible. This dish
is at the top of the stack and is the one that must be removed next. In general,
the dishes are removed in exactly the opposite order from that in which they
were added.

The LIFO property of stacks seems inherently unfair. Think of the poor
person who finally gets the last dish on the cafeteria’s stack, a dish that may
have been placed there six years ago. Or how would you like to be the first
person to arrive on the stack for a movie—as opposed to the line for a movie.

1. As you will learn if you complete Exercise 8 at the end of this chapter, the final algo-
rithm to write the line correctly instead of in reversed order does not require additional 
ADT operations.

Another required 
ADT operation 

ADT Stack Operations
1. Create an empty stack.
2. Determine whether a stack is empty.
3. Add a new item to the stack.
4. Remove from the stack the item that was added most recently.
5. Remove all the items from the stack.
6. Retrieve from the stack the item that was added most recently.

KEY CONCEPTS

Last-in, first-out
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You would be the last person allowed in! These examples demonstrate the
reason that stacks are not especially prevalent in everyday life. The property
that we usually desire in our daily lives is first in, first out, or FIFO. A queue,
which you will study in the next chapter, is the abstract data type with the
FIFO property. Most people would much prefer to wait in a movie queue—as a
line is called in Britain—than in a movie stack. However, while the LIFO prop-
erty of stacks is not appropriate for very many day-to-day situations, it is pre-
cisely what is needed for a large number of problems that arise in computer
science.

Notice how well the analogy holds between the abstract data type stack
and the stack of cafeteria dishes. The operations that manipulate data in the
ADT stack are the only such operations, and they correspond to the only
things that you can do to a stack of dishes. You can determine whether the
stack of dishes is empty but not how many dishes are on the stack; you can
inspect the top dish but no other dish; you can place a dish on top of the stack
but at no other position; and you can remove a dish from the top of the stack
but from no other position. If any of these operations was not available, or if
you were permitted to perform any other operations, the ADT would not be a
stack.

Although the stack of cafeteria dishes suggests that, as you add or remove
dishes, the other dishes move, do not have this expectation of the ADT stack.
The stack operations involve only the top item and imply only that the other
items in the stack remain in sequence. Implementations of the ADT stack
operations might or might not move the stack’s items. The implementations
given in this chapter do not move data items.

Refining the definition of the ADT stack. Before we specify the details of
the stack operations, consider the removal and retrieval operations more care-
fully. The current definition enables you to remove the stack’s top without
inspecting it, or to inspect the stack’s top without removing it. Both tasks are
reasonable and occur in practice. However, if you wanted to inspect and
remove the top item of a stack—a task that is not unusual—you would need
the sequence of operations

■ Retrieve from the stack the item that was added most recently.

■ Remove from the stack the item that was added most recently.

Stack of cafeteria dishes

FIGURE 7-1
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An operation that retrieves and then removes the top of a stack would allow
you to perform this common task in one operation.

The following pseudocode specifies the operations for the ADT stack in
more detail, and includes a combined retrieval and removal operation. The
names given here for the operations that add and remove items are conven-
tional for stacks. Figure 7-2 shows a UML diagram for the class Stack.

Recall that Chapter 2 urged you to focus on the specification of a module
before you considered its implementation. After specifying an ADT’s opera-
tions in pseudocode, you should try to use them as a check of your design.
Such a test can highlight any deficiencies in your specifications or design. For
example, you can use the previous stack operations to refine the algorithms
developed earlier in this chapter.

Using the ADT stack in a solution. You now can refine the algorithms
developed earlier in this chapter by using the stack operations:

+displayBackward(in aStack:Stack)
// Displays the input line in reversed order by 

Pseudocode for the ADT Stack Operations

// StackItemType is the type of the items stored in the stack.

+createStack()
// Creates an empty stack.

+isEmpty():boolean {query}
// Determines whether a stack is empty.

+push(in newItem:StackItemType) throws StackException
// Adds newItem to the top of the stack. Throws 
// StackException if the insertion is not successful.

+pop():StackItemType throws StackException
// Retrieves and then removes the top of the stack (the 
// item that was added most recently). Throws 
// StackException if the deletion is not successful.

+popAll()
// Removes all items from the stack.

+peek():StackItemType {query} throws StackException
// Retrieves the top of the stack. That is, peek
// retrieves the item that was added most recently.
// Retrieval does not change the stack. Throws 
// StackException if the retrieval is not successful.

KEY CONCEPTS

The refined 
algorithms
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// writing the contents of stack.
  aStack = readAndCorrect()

while (!aStack.isEmpty()) {
    newChar = aStack.pop()
    Write newChar
  }  // end while

  Advance to new line

+readAndCorrect():Stack
// Reads the input line and returns the corrected
// version as a stack. For each character read, 
// either enters it into the stack or, if it 
// is '←', corrects the contents of stack.

  aStack.createStack()2

  Read newChar
while (newChar is not the end-of-line symbol) {

if (newChar is not '←') {
      aStack.push(newChar)
    }

else if (!aStack.isEmpty()) {
      oldChar = aStack.pop()

2. You implement the step aStack.createStack() in Java by declaring aStack as 
an instance of the stack class, since createStack is implemented as the class’s 
constructor.

Stack

top

items

createStack()

popAll()

isEmpty()

push()

pop()

peek()

UML diagram for the class Stack

FIGURE 7-2
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    }  // end if
    Read newChar
  }  // end while

return aStack

We have used the stack operations without knowing their implementa-
tions or even what a stack looks like. Because the ADT approach builds a wall
around the implementation of the stack, your program can use a stack inde-
pendently of the stack’s implementation. As long as the program correctly uses
the ADT operations—that is, as long as it honors the contract—it will work
regardless of how you implement the ADT. 

The contract, therefore, must be written precisely. That is, before you
implement any ADT operations, you should specify both their preconditions
and their postconditions. Realize, however, that during program design, the
first attempt at specification is often informal and is only later made precise by
the writing of preconditions and postconditions. 

Axioms (optional ). As Chapter 4 noted, intuitive specifications, such as
those given previously for the stack operations, are not really sufficient to
define an ADT formally. For example, to capture formally the intuitive notion
that the last item inserted into aStack is the first item to be removed, you
could write an axiom such as

(aStack.push(newItem)).pop() = aStack

That is, if you push newItem onto aStack and then pop it, you are left with
the original stack aStack. Exercise 16 at the end of this chapter discusses the
axioms for a stack further.

7.2 Simple Applications of the ADT Stack

This section presents two rather simple examples for which the LIFO property
of stacks is appropriate. Note that we will be using the operations of the ADT
stack, even though we have not discussed their implementations yet. 

Checking for Balanced Braces
Java uses curly braces, “{” and “}”, to delimit groups of statements. For exam-
ple, braces begin and end a method’s body. If you treat a Java program as a
string of characters, you can use a stack to verify that a program contains bal-
anced braces. For example, the braces in the string

abc{defg{ijk}{l{mn}}op}qr

are balanced, while the braces in the string

abc{def}}{ghij{kl}m

An example of an 
axiom
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are not balanced. You can check whether a string contains balanced braces by
traversing it from left to right. As you move from left to right, you match each
successive close brace “}” with the most recently encountered unmatched open
brace “{”; that is, the “{” must be to the left of the current “}”. The braces are
balanced if

1. Each time you encounter a “}”, it matches an already encountered “{”

2. When you reach the end of the string, you have matched each “{”

The solution requires that you keep track of each unmatched “{” and
discard one each time you encounter a “}”. One way to perform this task is to
push each “{” encountered onto a stack and pop one off each time you
encounter a “}”. Thus, a first-draft pseudocode solution is

while (not at the end of the string) {
if (the next character is a '{') {

    aStack.push('{')
  }

else if (the character is a '}') {
    openBrace = aStack.pop()
  }  // end if
}  // end while

Although this solution correctly keeps track of braces, missing from it are
the checks that conditions 1 and 2 are met—that is, that the braces are indeed
balanced. To verify condition 1 when a “}” is encountered, you must check to
see whether the stack is empty before popping from it. If it is empty, you ter-
minate the loop and report that the string is not balanced. To verify condition
2, you must check that the stack is empty when the end of the string is
reached.

Thus, the pseudocode solution to check for balanced braces in aString
becomes

aStack.createStack()
balancedSoFar = true
i = 0

while (balancedSoFar and i < length of aString) {
  ch = character at position i in aString
  ++i
  // push an open brace

if (ch is '{') {
    aStack.push('{')
  }
  // close brace

else if (ch is '}') {
if (!aStack.isEmpty()) {

Requirements for 
balanced braces

Initial draft of a 
solution

A detailed 
pseudocode solu-
tion to check a string 
for balanced braces
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      openBrace = aStack.pop()   // pop a matching open brace
    }

else {                      // no matching open brace
      balancedSoFar = false
    }  // end if
  }  // end if
  // ignore all characters other than braces
}  // end while

if (balancedSoFar and aStack.isEmpty()) {
  aString has balanced braces
}
else {
  aString does not have balanced braces
}  // end if

Figure 7-3 shows the stacks that result when this algorithm is applied to several
simple examples.

It may have occurred to you that a simpler solution to this problem is pos-
sible. You need only keep a count of the current number of unmatched open
braces.3 You need not actually store the open braces in a stack. However, the

3. Each time you encounter an open brace, you increment the count; each time you 
encounter a close brace, you decrement the count. If this count ever falls below zero or 
if it is greater than zero when the end of the string is reached, the string is unbalanced.

{
{
{ {

{
{
{ {

{

Stack as algorithm executesInput string

{a{b}c}

{a{bc}

{ab}c}

1. push "{"
2. push "{"
3. pop
4. pop
Stack empty          balanced

1. push "{"
2. push "{"
3. pop
Stack not empty          not balanced

1. push "{"
2. pop
Stack empty when last "}" encountered         not balanced

1. 2. 3. 4.

Traces of the algorithm that checks for balanced braces

FIGURE 7-3
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stack-based solution is conceptually useful as it previews more legitimate uses
of stacks. For example, Exercise 9 at the end of this chapter asks you to extend
the algorithm given here to check for balanced parentheses and square brackets
in addition to braces.

The exception StackException. Although the previous algorithm—in its
present state of refinement—ignores the exception StackException, a Java
implementation should not. The implementation either should take precau-
tions to avoid an exception or should provide try and catch blocks to handle
a possible exception. Suppose that push or pop throws StackException.
Exactly how should you interpret this event?

The informality of the ADT specifications given earlier complicates
the interpretation of StackException. For example, as it is specified,
StackException is thrown if pop is not successful. Later, this chapter will
clarify this particular specification: pop will be unsuccessful if it tries to delete
an item from an empty stack. Under this assumption, you can refine the
pseudocode

  // close brace
else if (ch is '}') {

if (!aStack.isEmpty()) {
      openBrace = aStack.pop()  // pop open brace
    }

else {                     // no open brace
      balancedSoFar = false
    }  // end if
  }  // end if

in the previous algorithm to

  // close brace
else if (ch is '}') {

try {
      // try to pop open brace
      openBrace = aStack.pop()
    }  // end try

catch (StackException e) {
      balancedSoFar = false  // no open brace
    }  // end catch
  }  // end if

The push operation can fail for implementation-dependent reasons. For
example, push throws StackException if the array in an array-based implemen-
tation is full. In the spirit of fail-safe programming, a method that implements
this balanced-braces algorithm should check for a thrown StackException after
push and report an unsuccessful insertion.

This section of the 
previous algorithm 
ignores Stack-
Exception

Revision that makes 
use of Stack-
Exception
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Recognizing Strings in a Language
Consider the problem of recognizing whether a particular string is in the
language

L = {w$w' : w is a possibly empty string of characters other than $,
w' = reverse (w) }

For example, the strings A$A, ABC$CBA, and $ are in L, but AB$AB and
ABC$CB are not. (Exercise 14 in Chapter 6 introduced a similar language.)
This language is like the language of palindromes that you saw in Chapter 6,
but strings in this language have a special middle character. 

A stack is useful in determining whether a given string is in L. Suppose you
traverse the first half of the string and push each character onto a stack. When
you reach the $, you can undo the process: For each character in the second
half of the string, you pop a character off the stack. However, you must match
the popped character with the current character in the string to ensure that the
second half of the string is the reverse of the first half. The stack must be
empty when—and only when—you reach the end of the string; otherwise, one
“half” of the string is longer than the other, and so the string is not in L.

The following algorithm uses this strategy. To avoid unnecessary complica-
tions, assume that aString contains exactly one $.

aStack.createStack()

// push the characters before $, that is, the
// characters in w, onto the stack
i = 0
ch = character at position i in aString
while (ch is not '$') {
  aStack.push(ch)
  ++i
  ch = character at position i in aString
}  // end while

// skip the $
++i

// match the reverse of w
inLanguage = true  // assume string is in language
while (inLanguage and i < length of aString) {
  ch = character at position i in aString

try {
    stackTop = aStack.pop()

if (stackTop equals ch) {
      ++i  // characters match
    } 

else {

A pseudocode rec-
ognition algorithm 
for the language L
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      //  top of stack is not ch (characters do not match)
      inLanguage = false  // reject string
    }  // end if
  }  // end try

catch (StackException e) { 
    // aStack.pop() failed, aStack is empty (first half of
    // string is shorter than second half)
    inLanguage = false
  }  // end catch
}  // end while

if (inLanguage and aStack.isEmpty()) {
   aString is in language
}
else {
   aString is not in language 
}  // end if

Notice that the two algorithms presented in this section depend only on
the specifications of the stack operations and not on their implementations.

7.3 Implementations of the ADT Stack

This section develops three Java implementations of the ADT stack. The first
implementation uses an array to represent the stack, the second uses a linked
list, and the third uses the ADT list. Figure 7-4 illustrates these three imple-
mentations. The following interface StackInterface is used to provide a
common specification for the three implementations.

public interface StackInterface {
public boolean isEmpty();
// Determines whether the stack is empty.
// Precondition: None.
// Postcondition: Returns true if the stack is empty;
// otherwise returns false.

public void popAll();
// Removes all the items from the stack.
// Precondition: None.
// Postcondition: Stack is empty.

public void push(Object newItem) throws StackException;
// Adds an item to the top of a stack.
// Precondition: newItem is the item to be added.
// Postcondition: If insertion is successful, newItem
// is on the top of the stack.
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// Exception: Some implementations may throw 
// StackException when newItem cannot be placed on
// the stack.

public Object pop() throws StackException;
// Removes the top of a stack.
// Precondition: None.
// Postcondition: If the stack is not empty, the item 
// that was added most recently is removed from the
// stack and returned.
// Exception: Throws StackException if the stack is 
// empty.

public Object peek() throws StackException;
// Retrieves the top of a stack.
// Precondition: None.
// Postcondition: If the stack is not empty, the item
// that was added most recently is returned. The 
// stack is unchanged. 
// Exception: Throws StackException if the stack is 
// empty.

} // end StackInterface

Here is the class StackException that is used in StackInterface:

(a) (b)

30
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top30

10

20

top

Array

(c)

30

10

20

top

Linked list

ADT list

Implementations of the ADT stack that use (a) an array; (b) a linked list; (c) an 
ADT list

FIGURE 7-4
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public class StackException 
extends java.lang.RuntimeException {

public StackException(String s) {
super(s);

  }  // end constructor
}  // end StackException

Note that StackException extends java.lang.RuntimeException, so
that the calls to methods that throw StackException do not have to be
enclosed in try blocks. This is a reasonable choice for the operations pop and
peek, since you can avoid the exception by checking to see whether the stack is
empty before calling these operations. But push can also throw StackExcep-
tion in an array-based implementation when a fixed-size array is used and
becomes full. You can avoid this exception in an array-based implementation
by providing a method isFull that determines whether the stack is full; you
call isFull before you call push.

In a reference-based implementation, this isFull method would not be
necessary. Also, although the push method throws StackException in the
interface specification, the throws clause could be omitted in a reference-based
implementation of push.

An Array-Based Implementation of the ADT Stack
Figure 7-5 suggests that you use an array of Objects called items to represent
the items in a stack and an index top such that items[top] is the stack’s top.
We want to define a class whose instances are stacks and whose private data
fields are items and top.

The following class is an array-based implementation of the ADT stack.
The default constructor for this class corresponds to and replaces the ADT
operation createStack. Note that the preconditions and postconditions
given earlier in StackInterface apply here as well, and so are omitted to save
space.

public class StackArrayBased implements StackInterface {
final int MAX_STACK = 50;  // maximum size of stack
private Object items[];
private int top;

itemstop

K 5 13 7 10

0 1 2 k MAX_STACK–1 Array indexes

An array-based implementation

FIGURE 7-5



390  Chapter 7 Stacks

public StackArrayBased() {
    items = new Object[MAX_STACK]; 
    top = -1; 
  }  // end default constructor

public boolean isEmpty() {
return top < 0;

  }  // end isEmpty

public boolean isFull() {
return top == MAX_STACK-1;

  }  // end isFull

public void push(Object newItem) throws StackException {
if (!isFull()) {

      items[++top] = newItem;
    } 

else {
throw new StackException("StackException on " +

                               "push: stack full");
    }  // end if
  }  // end push

public void popAll() {
    items = new Object[MAX_STACK]; 
    top = -1; 
  }  // end popAll

public Object pop() throws StackException {
if (!isEmpty()) {

return items[top--];
    }

else {
throw new StackException("StackException on " +

                               "pop: stack empty");
    }  // end if
  }  // end pop

public Object peek() throws StackException {
if (!isEmpty()) {

return items[top];
    }

else {
throw new StackException("Stack exception on " +

                               "peek - stack empty");
    }  // end if
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  }  // end peek
}  // end StackArrayBased

A program that uses a stack could begin as follows:

public class StackTest {
public static final int MAX_ITEMS = 15;

public static void main(String[] args) {
    StackArrayBased stack = new StackArrayBased();
    Integer items[] = new Integer[MAX_ITEMS];

for (int i=0; i<MAX_ITEMS; i++) {
      items[i] = new Integer(i);

if (!stack.isFull()) {
        stack.push(items[i]);
      }  // end if
    }  // end for
    while (!stack.isEmpty()) {
      // cast result of pop to Integer
      System.out.println((Integer)(stack.pop()));
    }  // end while
    ...

By implementing the stack as a class, and by declaring items and top as
private, you ensure that the client cannot violate the ADT’s walls. If you did
not hide your implementation within a class, or if you made the array items
public, the client could access the elements in items directly instead of by
using the operations of the ADT stack. Thus, the client could access any ele-
ments in the stack, not just its top element. You might find this capability
attractive, but in fact it violates the specifications of the ADT stack. If you truly
need to access all the items of your ADT randomly, do not use a stack!

Again, note that StackException provides a simple way for the imple-
menter to indicate to the stack’s client unusual circumstances, such as an
attempted insertion into a full stack or a deletion from an empty stack.

Finally, note that instances of StackArrayBased cannot contain items of a
primitive type such as int, because int is not derived from Object. If you
need a stack of integers, for example, you will have to use the corresponding
wrapper class, which in this case is Integer. Finally, pop and peek return an
item that is an instance of Object. You must cast this item back to the subtype
of Object that you pushed onto the stack. Otherwise, methods available for the
subtype will not be accessible.

A Reference-Based Implementation of the ADT Stack
Many applications require a reference-based implementation of a stack so that the
stack can grow and shrink dynamically. Figure 7-6 illustrates a reference-based

Private data fields 
are hidden from the 
client

StackException
provides a simple 
way to indicate 
unusual events



392  Chapter 7 Stacks

implementation of a stack where top is a reference to the head of a linked list of
items. The implementation uses the same node class developed for the linked list
in Chapter 5.

Note that the preconditions and postconditions given earlier in Stack-
Interface apply here as well, and so are omitted to save space.

public class StackReferenceBased 
implements StackInterface {

private Node top;

public StackReferenceBased() {
    top = null; 
  }  // end default constructor

public boolean isEmpty() {
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top

A reference-based implementation

FIGURE 7-6
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return top == null;
  }  // end isEmpty

public void push(Object newItem) {
    top = new Node(newItem, top);
  }  // end push

public Object pop() throws StackException {
if (!isEmpty()) {

      Node temp = top;
      top = top.next;

return temp.item;
    }

else {
throw new StackException("StackException on " +

                               "pop: stack empty");
    }  // end if
  }  // end pop

public void popAll() {
    top = null;
  }  // end popAll

public Object peek() throws StackException {
if (!isEmpty()) {

return top.item;
    }

else {
throw new StackException("StackException on " +

                               "peek: stack empty");
    }  // end if
  }  // end peek
}  // end StackReferenceBased

An Implementation That Uses the ADT List
You can use the ADT list to represent the items in a stack, as Figure 7-7 illus-
trates. If the item in position 0 of a list represents the top of the stack, you can
implement the stack operation push(newItem) as add(0, newItem). Simi-
larly, you can implement the stack operation pop() using get(0) and
remove(0) and the stack operation peek() as get(0).

Recall that Chapter 5 presented the ADT list as the class List-
ReferenceBased. (See page 289.) The following class for the ADT stack uses
an instance of ListReferenceBased to represent the stack. 

public class StackListBased implements StackInterface {
private ListInterface list;
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public StackListBased() {
    list = new ListReferenceBased(); 
  }  // end default constructor

public boolean isEmpty() {
return list.isEmpty();

  }  // end isEmpty

public void push(Object newItem) {
    list.add(0, newItem);
  }  // end push

public Object pop() throws StackException {
if (!list.isEmpty()) {

      Object temp = list.get(0);
      list.remove(0);

return temp;
    }

else {
throw new StackException("StackException on " + 

                               "pop: stack empty");
    }  // end if
  }  // end pop

public void popAll() {
    list.removeAll();
  }  // end popAll

public Object peek() throws StackException {
if (!isEmpty()) {

return list.get(0);
    }
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An implementation that uses the ADT list
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else {
throw new StackException("StackException on " +

                               "peek: stack empty");
    }  // end if
  }  // end peek
}  // end StackListBased

The data field list is an instance of the class ListReferenceBased. Also,
the class ListReferenceBased’s constructor is called by StackList-Based’s
constructor. 

Comparing Implementations
You have seen implementations of the ADT stack that use an array, a linked
list, and the ADT list to represent the items in a stack. We have treated the
array and linked list as data structures, but the list is an ADT that we have
implemented by using either an array or a linked list. Thus, all our implemen-
tations of the ADT stack are ultimately array based or reference based.

Once again the reasons for making the choice between array-based and
reference-based implementations are the same as those discussed in earlier
chapters. The array-based implementation given in this chapter uses fixed-sized
arrays. As such, it prevents the push operation from adding an item to the
stack if the stack’s size limit, which is the size of the array, has been reached. If
this restriction is not acceptable, you must use either a resizeable array or a
reference-based implementation. For the problem that reads and corrects an
input line, for example, the fixed-size restriction might not present a difficulty:
If the system allows a line length of only 80 characters, you could reasonably
use a statically allocated array to represent the stack.

Suppose that you decide to use a reference-based implementation. Should
you choose the implementation that uses a linked list or the one that uses a
reference-based implementation of the ADT list? Because a linked list actually
represents the items on the ADT list, you might feel that using an ADT list to
represent a stack is not as efficient as using a linked list directly. You would be
right, but notice that the ADT list approach is much simpler to write. If you
have battled references to produce a correct reference-based implementation of
the ADT list, why do so again when you can reuse your work in the implemen-
tation of the stack? Which approach would you choose to produce a correct
implementation of the stack in the least time? Chapter 9 discusses further the
reuse of previously written classes.

The Java Collections Framework Class Stack
Chapter 5 introduced the Java Collections Framework (JCF) and the interface
List that was used for the implementation of JCF list classes such as
LinkedList and ArrayList. The JCF also contains an implementation of a
stack class called Stack. Like many of the classes and interfaces we have seen so
far from the JCF, the Stack class is a generic class.

Fixed size versus 
dynamic size

Reuse of an already 
implemented class 
saves you time
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The Stack class is derived from the class Vector—a growable array of
objects. It extends the Vector class with five methods that allow for a LIFO
stack of objects. Most of these methods are quite similar to the ones presented
in this chapter: push, pop, empty, and peek. An additional method, called
search, allows you to determine how far an item is from the top of the stack.
Here is the specification for the JCF Stack collection as it is derived from
Vector, only the method headings are shown:

public class Stack<E> extends Vector<E> {

public Stack() 
  // Creates an empty Stack

public boolean empty() 
  // Tests if this stack is empty. 

public E peek() throws EmptyStackException
  // Looks at the object at the top of this stack without
  // removing it from the stack.

public E pop() throws EmptyStackException
  // Removes the object at the top of this stack and 
  // returns that object as the value of this function.

public E push(E item) 
  // Pushes an item onto the top of this stack. 

public int search(Object o)  
  // Returns the 1-based position where an object is on this 
  // stack. The topmost item on the stack is considered to be 
  // at distance 1.

} // end Stack

Note that the Stack has one data-type parameter for the items contained in
the stack. Here is an example of how the JCF Stack is used:

import java.util.Stack;

public class TestStack {

static public void main(String[] args) {
    Stack<Integer> aStack = new Stack<Integer>();

if (aStack.empty()) {
      System.out.println("The stack is empty");
    } // end if
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for (int i = 0; i < 5; i++) {
      aStack.push(i); // With autoboxing, this is the same
                      // as aStack.push(new Integer(i))
    } // end for

while (!aStack.empty()) {
      System.out.print(aStack.pop()+ " ");
    } // end while
    System.out.println();

  } // end main

} // end TestStack

The output of this program is

  The stack is empty
  4 3 2 1 0 

7.4 Application: Algebraic Expressions

This section contains two more problems that you can solve neatly by using
the ADT stack. Keep in mind throughout that you are using the ADT stack to
solve the problems. You can use the stack operations, but you may not assume
any particular implementation. You choose a specific implementation only as a
last step.

Chapter 6 presented recursive grammars that specified the syntax of alge-
braic expressions. Recall that prefix and postfix expressions avoid the ambiguity
inherent in the evaluation of infix expressions. We will now consider stack-
based solutions to the problems of evaluating infix and postfix expressions. To
avoid distracting programming issues, we will allow only the binary operators
*, ⁄, +, and –, and disallow exponentiation and unary operators.

The strategy we shall adopt here is first to develop an algorithm for evalu-
ating postfix expressions and then to develop an algorithm for transforming an
infix expression into an equivalent postfix expression. Taken together, these
two algorithms provide a way to evaluate infix expressions. This strategy elimi-
nates the need for an algorithm that directly evaluates infix expressions, a
somewhat more difficult problem that Programming Problem 7 at the end of
this chapter considers.

Evaluating Postfix Expressions
As we mentioned in Chapter 6, some calculators require you to enter postfix
expressions. For example, to compute the value of

2 * (3 + 4)
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operations should 
not depend on its 
implementation

To evaluate an infix 
expression, first 
convert it to postfix 
form and then evalu-
ate the postfix 
expression



398  Chapter 7 Stacks

by using a postfix calculator, you would enter the sequence 2, 3, 4, +, *, which
corresponds to the postfix expression

2 3 4 + *

Recall that an operator in a postfix expression applies to the two operands
that immediately precede it. Thus, the calculator must be able to retrieve the
operands entered most recently. The ADT stack provides this capability. In fact,
each time you enter an operand, the calculator pushes it onto a stack. When
you enter an operator, the calculator applies it to the top two operands on the
stack, pops the operands from the stack, and pushes the result of the operation
onto the stack. Figure 7-8 shows the action of the calculator for the previous
sequence of operands and operators. The final result, 14, is on the top of the
stack.

You can formalize the action of the calculator to obtain an algorithm that
evaluates a postfix expression, which is entered as a string of characters. To
avoid issues that cloud the algorithm with programming details, assume that

■ The string is a syntactically correct postfix expression

■ No unary operators are present

■ No exponentiation operators are present

■ Operands are single lowercase letters that represent integer values

The pseudocode algorithm is then

for (each character ch in the string) {
if (ch is an operand) {

    Push value that operand ch represents onto stack
  }

Key entered Calculator action Stack (bottom to top)

push 2
push 3
push 4

operand2 = pop stack (4)
operand1 = pop stack (3)

result = operand1 + operand2 (7)
push result

operand2 = pop stack (7)
operand1 = pop stack (2)

result = operand1 * operand2 (14)
push result 

2
3
4

+

*

2
2  3
2  3  4

2  3 
2

2
2  7

2

14

The action of a postfix calculator when evaluating the expression
2 * (3 + 4)

FIGURE 7-8
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else {  // ch is an operator named op
    // evaluate and push the result
    operand2 = Pop the top of the stack
    operand1 = Pop the top of the stack
    result = operand1 op operand2
    Push result onto stack
  }  // end if
}  // end for

Upon termination of the algorithm, the value of the expression will be on the
top of the stack. Programming Problem 4 at the end of this chapter asks you
to implement this algorithm.

Converting Infix Expressions to Equivalent 
Postfix Expressions
Now that you know how to evaluate a postfix expression, you will be able
to evaluate an infix expression, if you first can convert it into an equivalent
postfix expression. The infix expressions here are the familiar ones, such as
(a + b) * c ⁄ d – e. They allow parentheses, operator precedence, and left-to-
right association.

Will you ever want to evaluate an infix expression? Certainly, you have
written such expressions in programs. The compiler that translated your pro-
grams had to generate machine instructions to evaluate the expressions. To do
so, the compiler first transformed each infix expression into postfix form.
Knowing how to convert an expression from infix to postfix notation not only
will lead to an algorithm to evaluate infix expressions, but also will give you
some insight into the compilation process.

If you manually convert a few infix expressions to postfix form, you will
discover three important facts:

■ The operands always stay in the same order with respect to one another.

■ An operator will move only “to the right” with respect to the operands;
that is, if, in the infix expression, the operand x precedes the operator op, it
is also true that in the postfix expression, the operand x precedes the oper-
ator op.

■ All parentheses are removed.

As a consequence of these three facts, the primary task of the conversion algo-
rithm is determining where to place each operator.

The following pseudocode describes a first attempt at converting an infix
expression to an equivalent postfix expression postfixExp:

Initialize postfixExp to the null string
for (each character ch in the infix expression) {

switch (ch) {

Facts about convert-
ing from infix to 
postfix

First draft of an algo-
rithm to convert an 
infix expression to 
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case ch is an operand:
      Append ch to the end of postfixExp

break
case ch is an operator: 

      Store ch until you know where to place it
break

case ch is '(' or ')':
      Discard ch

break
}  // end switch

}  //  end for

You may have guessed that you really do not want to simply discard the
parentheses, as they play an important role in determining the placement of
the operators. In any infix expression, a set of matching parentheses defines an
isolated subexpression that consists of an operator and its two operands.
Therefore, the algorithm must evaluate the subexpression independently of the
rest of the expression. Regardless of what the rest of the expression looks like,
the operator within the subexpression belongs with the operands in that subex-
pression. The parentheses tell the rest of the expression

You can have the value of this subexpression after it is evaluated; simply ignore
everything inside.

Parentheses are thus one of the factors that determine the placement of the
operators in the postfix expression. The other factors are precedence and left-
to-right association.

In Chapter 6, you saw a simple way to convert a fully parenthesized infix
expression to postfix form. Because each operator corresponded to a pair of
parentheses, you simply moved each operator to the position marked by its
closing parenthesis, and finally removed the parentheses.

The actual problem is more difficult, however, because the infix expres-
sion is not always fully parenthesized. Instead, the problem allows precedence
and left-to-right association, and therefore requires a more complex algo-
rithm. The following is a high-level description of what you must do when you
encounter each character as you read the infix string from left to right.

1. When you encounter an operand, append it to the output string
postfixExp. Justification: The order of the operands in the postfix expres-
sion is the same as the order in the infix expression, and the operands that
appear to the left of an operator in the infix expression also appear to its
left in the postfix expression.

2. Push each "(" onto the stack.

3. When you encounter an operator, if the stack is empty, push the operator
onto the stack. However, if the stack is not empty, pop operators of greater
or equal precedence from the stack and append them to postfixExp. You
stop when you encounter either a "(" or an operator of lower precedence

Parentheses, opera-
tor precedence, and 
left-to-right associa-
tion determine 
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or when the stack becomes empty. You then push the new operator onto the
stack. Thus, this step orders the operators by precedence and in accordance
with left-to-right association. Notice that you continue popping from the
stack until you encounter an operator of strictly lower precedence than the
current operator in the infix expression. You do not stop on equality,
because the left-to-right association rule says that in case of a tie in prece-
dence, the leftmost operator is applied first—and this operator is the one
that is already on the stack.

4. When you encounter a “)”, pop operators off the stack and append them
to the end of postfixExp until you encounter the matching “(”. Justifica-
tion: Within a pair of parentheses, precedence and left-to-right association
determine the order of the operators, and Step 3 has already ordered the
operators in accordance with these rules.

5. When you reach the end of the string, you append the remaining contents
of the stack to postfixExp.

For example, Figure 7-9 traces the action of the algorithm on the infix
expression a – (b + c * d)/e, assuming that the stack and the string postfix-
Exp are initially empty. At the end of the algorithm, postfixExp contains the
resulting postfix expression abcd*+e/–.

You can use the previous five-step description of the algorithm to develop
a fairly concise pseudocode solution, which follows. The symbol + means con-
catenate (append), so postfixExp + x means concatenate the string currently
in postfixExp and the character x—that is, follow the string in postfixExp
with the character x. Both the stack stack and the postfix expression postfix-
Exp are initially empty. 

ch stack (bottom to top) postfixExp

a
–
(
b
+
c

*
d
)

/
e

–
– (
– (
– ( +
– ( +
– ( + *
– ( + *
– ( +
– (
–
– /
– /

a
a
a
ab
ab
abc
abc
abcd
abcd*
abcd*+
abcd*+
abcd*+
abcd*+e
abcd*+e/–

Move operators 
from stack to
postfixExp until " ( "

Copy operators from 
stack to postfixExp

A trace of the algorithm that converts the infix expression a – (b + c * d)/e to postfix 
form

FIGURE 7-9
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for (each character ch in the infix expression) {
switch (ch) {

case operand:  // append operand to end of postfixExp
      postfixExp = postfixExp + ch

break
case '(':      // save '(' on stack

      aStack.push(ch)
break

case ')':      // pop stack until matching '('
while (top of stack is not '(') {

        postfixExp = postfixExp + aStack.pop()
}  // end while

      openParen = aStack.pop() // remove the open parenthesis
break

case operator:            // process stack operators of 
                              // greater precedence

while ( !aStack.isEmpty() and
              top of stack is not '(' and
              precedence(ch) <= precedence(top of stack) ) {
        postfixExp = postfixExp + aStack.pop()

}  // end while

      aStack.push(ch)  // save new operator
break

}  // end switch
}  // end for
// append to postfixExp the operators remaining in the stack
while (!aStack.isEmpty()) {
   postfixExp = postfixExp + aStack.pop()
}  // end while

Because this algorithm assumes that the given infix expression is syntacti-
cally correct, it can ignore the possibility of a StackException on pop. Pro-
gramming Problem 6 at the end of this chapter asks you to remove this
assumption. In doing so, you will find that you must provide try and catch
blocks for the stack operations.

7.5 Application: A Search Problem

This final application of stacks will introduce you to a general type of search
problem. In this particular problem, you must find a path from some point of
origin to some destination point. We will solve this problem first by using
stacks and then by using recursion. The recursive solution will bring to light
the close relationship between stacks and recursion.

The High Planes Airline Company (HPAir) wants a program to process
customer requests to fly from some origin city to some destination city. So that

A pseudocode algo-
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you can focus on the issue at hand—the use of stacks during problem
solving—we will simplify the problem: For each customer request, just indi-
cate whether a sequence of HPAir flights exists from the origin city to the des-
tination city. The more realistic problem of actually producing an itinerary—
that is, the sequence of flights—is considered in Programming Problem 12 at
the end of this chapter.

Imagine three input text files that specify all of the flight information for
the airline as follows:

■ The names of the cities that HPAir serves

■ Pairs of city names; each pair represents the origin and destination of one
of HPAir’s flights

■ Pairs of city names; each pair represents a request to fly from some origin
to some destination

The program should then produce output such as

Request is to fly from Providence to San Francisco.
HPAir flies from Providence to San Francisco.

Request is to fly from Philadelphia to Albuquerque.
Sorry. HPAir does not fly from Philadelphia to Albuquerque.

Request is to fly from Salt Lake City to Paris.
Sorry. HPAir does not serve Paris.

Representing the flight data. The flight map in Figure 7-10 represents the
routes that HPAir flies. An arrow from city C1 to city C2 indicates a flight from
C1 to C2. In this case C2 is adjacent to C1 and the path from C1 to C2 is
called a directed path. Notice that if C2 is adjacent to C1, it does not follow
that C1 is adjacent to C2. For example, in Figure 7-10, there is a flight from
city R to city X, but not from city X to city R. As you will see in Chapter 14,
the map in Figure 7-10 is called a directed graph.

Determine whether 
HPAir flies from one 
city to another

C2 is adjacent to C1
if there is a directed 
path from C1 to C2

Z

S

T

Y

W

PR

X Q

Flight map for HPAir

FIGURE 7-10



404  Chapter 7 Stacks

A Nonrecursive Solution That Uses a Stack
When processing a customer’s request to fly from some origin city to some
destination city, you must determine from the flight map whether there is a
route from the origin to the destination. For example, by examining the flight
map in Figure 7-10, you can see that a customer could fly from city P to city Z
by flying first to city W, then to city Y, and finally to city Z; that is, there is a
directed path from P to Z: P → W, W → Y, Y → Z. Thus, you must develop an
algorithm that searches the flight map for a directed path from the origin city
to the destination city. Such a path might involve either a single flight or a
sequence of flights. The solution developed here performs an exhaustive
search. That is, beginning at the origin city, the solution will try every possi-
ble sequence of flights until either it finds a sequence that gets to the destina-
tion city or it determines that no such sequence exists. You will see that the
ADT stack is useful in organizing this search.

First consider how you might perform the search by hand. One approach
is to start at the origin city C0 and select an arbitrary path to travel—that is,
select an arbitrary flight departing from the origin city. This flight will lead you
to a new city, C1. If city C1 happens to be the destination city, you are done;
otherwise, you must attempt to get from C1 to the destination city. To do this,
you select a path to travel out of C1. This path will lead you to a city C2. If C2
is the destination, you are done; otherwise, you must attempt to get from C2
to the destination city, and so on.

Consider the possible outcomes of applying the previous strategy:

1. You eventually reach the destination city and can conclude that it is possi-
ble to fly from the origin to the destination.

2. You reach a city C from which there are no departing flights.

3. You go around in circles. For example, from C1 you go to C2, from C2
you go to C3, and from C3 you go back to C1. You might continue this
tour of the three cities forever; that is, the algorithm might enter an infi-
nite loop.

If you always obtained the first outcome, everyone would be happy. How-
ever, because HPAir does not fly between all pairs of cities, you certainly
cannot expect that the algorithm will always find a path from the origin city to
the destination. For example, if city P in Figure 7-10 is the origin city and city
Q is the destination city, the algorithm could not possibly find a path from city
P to city Q.

Even if there were a sequence of flights from the origin city to the destina-
tion, it would take a bit of luck for the previous strategy to discover it—the algo-
rithm would have to select a “correct” flight at each step. For example, even
though there is a way to get from city P to city Z in Figure 7-10, the algorithm
might not find it and instead might reach outcome 2 or 3. That is, suppose
that from city P the algorithm chose to go to city R. From city R, the algo-
rithm would have to go to city X, from which there are no flights out (out-
come 2). On the other hand, suppose that the algorithm chose to go to city W

Use a stack to orga-
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from city P. From city W, the algorithm might choose to go to city S. It would
then have to go to city T and then back to W. From W it might once again
choose to go to city S and continue to go around in circles (outcome 3).

You thus need to make the algorithm more sophisticated, so that it always
finds a path from the origin to the destination, if such a path exists, and other-
wise terminates with the conclusion that there is no such path. Suppose that the
earlier strategy results in outcome 2: You reach a city C from which there are no
departing flights. This certainly does not imply that there is no way to get from
the origin to the destination; it implies only that there is no way to get from city
C to the destination. In other words, it was a mistake to go to city C. After dis-
covering such a mistake, the algorithm can retrace its steps, or backtrack, to the
city C′ that was visited just before city C was visited. Once back at city C′, the
algorithm can select a flight to some city other than C. Notice that it is possible
that there are no other flights out of city C′. If this were the case, it would
mean that it was a mistake to visit city C′, and thus you would want to back-
track again, this time to the city that was visited just before city C′.

For example, you saw that, in trying to get from city P to city Z in Figure
7-10, the algorithm might first choose to go from city P to city R and then on
to city X. As there are no departing flights from city X, the algorithm must
backtrack to city R, the city visited before city X. Once back at city R, the
algorithm would attempt to go to some city other than city X, but would dis-
cover that this is not possible. The algorithm would thus backtrack once more,
this time to city P, which was visited just before city R. From city P, the algo-
rithm would choose to go to city W, which is a step in the right direction!

For the algorithm to implement this new strategy, it must maintain infor-
mation about the order in which it visits the cities. First notice that when the
algorithm backtracks from a city C, it must retreat to the city that it visited most
recently before C. This observation suggests that you maintain the sequence of
visited cities in a stack. That is, each time you decide to visit a city, you push its
name onto the stack, as parts a, b, and c of Figure 7-11 illustrate for the flights
from P to R to X in the previous example. You select the next city to visit from
those adjacent to the city on the top of the stack. When you need to backtrack
from the city C at the top of the stack (for example, because there are no flights
out of the city), you simply pop a city from the stack, as shown in Figure 7-11d.
After the pop, the city on the top of the stack is the city on the current path
that you visited most recently before C. Parts e and f of Figure 7-11 illustrate
the backtrack to city P and the subsequent flight to W.
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The algorithm, as developed so far, is

aStack.createStack()

aStack.push(originCity)  // push origin city onto stack

while (a sequence of flights from the origin to the 
                          destination has not been found){

if (you need to backtrack from the city on the 
         top of the stack) {
      temp = aStack.pop()
  }

else {
     Select a destination city C for a flight from
     the city on the top of the stack
     aStack.push(C)
   }  // end if
}  // end while

Notice that at any point in the algorithm, the contents of the stack correspond to
the sequence of flights currently under consideration. The city on the top of the
stack is the city you are visiting currently, directly “below” it is the city visited pre-
viously, and so forth down to the bottom city, which is the first city visited in the
sequence, or the origin city. In other words, an invariant of the while loop is that

The stack contains a directed path from the origin city at the bottom of the
stack to the city at the top of the stack. 

You can therefore always retrace your steps as far back through the sequence as
needed.

Now consider the question of when to

Backtrack from the city on the top of the stack.

You have already seen one case when backtracking is necessary. You must back-
track from the city on the top of the stack when there are no flights out of that
city. Another time when you need to backtrack is related to the problem of
going around in circles, described previously as the third possible outcome of
the original strategy.

A key observation that will tell you when to backtrack is, you never want to
visit a city that the search has already visited. As a consequence, you must back-
track from a city whenever there are no more unvisited cities to fly to. To see
why you never want to visit a city a second time, consider two cases:

■ If you have visited city C and it is still somewhere in the stack—that is, it is
part of the sequence of cities that you are exploring currently—you do not
want to visit C again. Any sequence that goes from C through C1, C2, ...,
Ck, back to C, and then to C ′ might just as well skip the intermediate
cities and go from C directly to C ′.
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For example, suppose that the algorithm starts at P in Figure 7-10 and,
in trying to find a path to Y, visits W, S, and T. There is now no reason for
the algorithm to consider the flight from T to W because W is already in the
stack. Anywhere you could fly to by going from W to S, from S to T, and
then back to W, such as city Y, you could fly to directly from W without first
going through S and T. Because you do not allow the algorithm to visit W a
second time, it will backtrack from S and T to W and then go from W directly
to Y. Figure 7-12 shows how the stack would appear if revisits were allowed
and how it looks after backtracking when revisits are not allowed. Notice that
backtracking to W is very different from visiting W for a second time.

■ If you have visited city C, but it is no longer in the stack—because you
backtracked from it and popped it from the stack—you do not want to
visit C again. This situation is subtle; consider two cases that depend on
why you backtracked from the city.

If you backtracked from C because there were no flights out of it, then
you certainly do not ever want to try going through C again. For example,
if, starting at P in Figure 7-10, the algorithm goes to R and then to X, it
will backtrack from X to R. At this point, although X is no longer in the
stack, you certainly do not want to visit it again, because you know there
are no flights out of X.

Now suppose that you backtracked from city C because all cities adja-
cent to it had been visited. This situation implies that you have already
tried all possible flights from C and have failed to find a way to get to the
destination city. There is thus no reason to go to C again. For example,
suppose that starting from P in Figure 7-10, the algorithm executes the
following sequence: Visit R, visit X, backtrack to R (because there are no
flights out of X), backtrack to P (because there are no more unvisited cities
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adjacent to R), visit W, visit Y. At this point the stack contains P-W-Y,
with Y on top, as Figure 7-12b shows. You need to choose a flight out of Y.
You do not want to fly from Y to R, because you have visited R already
and tried all possible flights out of R.

In both cases, visiting a city a second time does not gain you anything,
and in fact it may cause you to go around in circles.

To implement the rule of not visiting a city more than once, you simply
mark a city when it has been visited. When choosing the next city to visit, you
restrict consideration to unmarked cities adjacent to the city on the top of the
stack. The algorithm thus becomes

aStack.createStack()
Clear marks on all cities
aStack.push(originCity)  // push origin city onto stack
Mark the origin as visited
while (a sequence of flights from the origin to the 
                          destination has not been found) {
   // loop invariant: The stack contains a directed path 
   // from the origin city at the bottom of the stack to 
   // the city at the top of the stack

if (no flights exist from the city on the
         top of the stack to unvisited cities) {
     temp = aStack.pop()  // backtrack

}
else {

      Select an unvisited destination city C for a
        flight from the city on the top of the stack
      aStack.push(C)
      Mark C as visited

}  // end if
}  // end while

Finally, you need to refine the condition in the while statement. That is,
you need to refine the algorithm’s final determination of whether a path exists
from the origin to the destination. The loop invariant, which states that the
stack contains a directed path from the origin city to the city on the top of the
stack, implies that the algorithm can reach an affirmative conclusion if the city
at the top of the stack is the destination city. On the other hand, the algorithm
can reach a negative conclusion only after it has exhausted all possibilities—
that is, after the algorithm has backtracked to the origin and there remain no
unvisited cities to fly to from the origin. At that point, the algorithm will pop
the origin city from the stack and the stack will become empty.

With this refinement, the algorithm appears as follows:

+searchS(in originCity:City, in destinationCity:City)
// Searches for a sequence of flights from 

Mark the visited 
cities

Next draft of the 
search algorithm

The final version of 
the search algorithm
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// originCity to destinationCity

  aStack.createStack()
  Clear marks on all cities

  aStack.push(originCity)  // push origin onto stack
  Mark the origin as visited

while (!aStack.isEmpty() and
         destinationCity is not at the top of the stack) {
    // Loop invariant: The stack contains a directed path 
    // from the origin city at the bottom of the stack to  
    // the city at the top of the stack

if (no flights exist from the city on the
            top of the stack to unvisited cities) {

temp = aStack.pop()  // backtrack
}
else {

      Select an unvisited destination city C for a 
          flight from the city on the top of the stack
      aStack.push(C)
      Mark C as visited

}  // end if
}  // end while

if (aStack.isEmpty()) {
return false  // no path exists

}
else {

return true   // path exists
}  // end if

Notice that the algorithm does not specify the order of selection for the
unvisited cities. It really does not matter what selection criteria the algorithm
uses, because the choice will not affect the final outcome: Either a sequence of
flights exists or it does not. The choice, however, will affect the specific flights
that the algorithm considers. For example, suppose that the algorithm always
flies to the alphabetically earliest unvisited city from the city on the top of the
stack. Under this assumption, Figure 7-13 contains a trace of the algorithm’s
action, given the map in Figure 7-10, with P as the origin city and Z as the
destination city. The algorithm terminates with success.

Now consider the operations that the search algorithm must perform on
the flight map. The algorithm marks cities as it visits them, determines whether
a city has been visited, and determines which cities are adjacent to a given city.
You can treat the flight map as an ADT that has at least these operations, in
addition to the search operation itself. Other desirable operations include
placing data into the flight map, inserting a city adjacent to another city,
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displaying the flight map, displaying a list of all cities, and displaying all cities
that are adjacent to a given city. Thus, the ADT flight map could include the
following operations:

+createFlightMap()
// Creates an empty flight map.

+readFlightMap(in cityFileName:string,
               in flightFileName:string)
// Reads flight information into the flight map.

+displayFlightMap() {query}
// Displays flight information.

+displayAllCities() {query}
// Displays the names of all cities that HPAir serves.

+displayAdjacentCities(in aCity:City) {query}
// Displays all cities that are adjacent to a given city.

+markVisited(in aCity:City)
// Marks a city as visited.

+unvisitAll()
// Clears marks on all cities.

+isVisited(in aCity:City):boolean {query}
// Determines whether a city was visited.

+insertAdjacent(in aCity:City, in adjCity:City)
// Inserts a city adjacent to another city in a 
// flight map.

Action Reason Contents of stack (bottom to top)

Push P
Push R
Push X
Pop X
Pop R
Push W
Push S
Push T
Pop T
Pop S
Push Y
Push Z

Initialize
Next unvisited adjacent city
Next unvisited adjacent city
No unvisited adjacent city
No unvisited adjacent city
Next unvisited adjacent city
Next unvisited adjacent city
Next unvisited adjacent city

P
P R 
P R X
P R
P
P W
P W S
P W S T
P W S
P W
P W Y
P W Y Z

No unvisited adjacent city
No unvisited adjacent city
Next unvisited adjacent city
Next unvisited adjacent city

A trace of the search algorithm, given the flight map in Figure 7-10

FIGURE 7-13

ADT flight map 
operations
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+getNextCity(in fromCity:City)
// Returns the next unvisited city, if any, that
// is adjacent to a given city.  Returns null if no 
// unvisited adjacent city was found.

+isPath(in originCity:City, in destinationCity:City)
// Determines whether a sequence of flights between 
// two cities exists.

The following Java method implements the isPath operation by using the
searchS algorithm. It assumes that the class StackReferenceBased imple-
ments the stack operations and the class Map implements the ADT flight map
operations just described. Notice that you must represent the cities by creat-
ing a class City that implements the java.lang.Comparable interface.

public boolean isPath(City originCity, 
City destinationCity) {

// ---------------------------------------------------
// Determines whether a sequence of flights between two cities
// exists. Nonrecursive stack version.
// Precondition: originCity and destinationCity are the origin
// and destination cities, respectively.
// Postcondition: Returns true if a sequence of flights exists
// from originCity to destinationCity, otherwise returns 
// false. Cities visited during the search are marked as 
// visited in the flight map.
// Implementation notes: Uses a stack for the cities of a 
// potential path. Calls unvisitAll, markVisited, and 
// getNextCity.
// ---------------------------------------------------
  StackReferenceBased stack = new StackReferenceBased();

City topCity, nextCity;
unvisitAll();  // clear marks on all cities

// push origin city onto stack, mark it visited
stack.push(originCity);
markVisited(originCity);

topCity = (City)(stack.peek());
while (!stack.isEmpty() &&

 (topCity.compareTo(destinationCity) != 0)) {
// loop invariant: stack contains a directed path 
// from the origin city at the bottom of the stack
// to the city at the top of the stack

// find an unvisited city adjacent to the city on 
// the top of the stack

Java implementation 
of searchS
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nextCity = getNextCity(topCity);

if (nextCity == null) {
stack.pop();  // no city found; backtrack

}
else {                  // visit city

stack.push(nextCity);
markVisited(nextCity);

}  // end if
topCity = (City)stack.peek();

}  // end while
if (stack.isEmpty()) {

return false;  // no path exists
}
else {

return true;   // path exists
}  // end if

}  // end isPath

Programming Problem 10 at the end of this chapter provides implementation
details that will enable you to complete the solution to the HPAir problem.

A Recursive Solution
Recall the initial attempt at a solution to the HPAir problem of searching for a
sequence of flights from some origin city to some destination city. Consider
how you might perform the search “by hand.” One approach is to start at the
origin city and select an arbitrary flight that departs from the origin city. This
flight will lead you to a new city, C1. If city C1 happens to be the destination
city, you are done; otherwise, you must attempt to get from C1 to the destina-
tion city by selecting a flight out of C1. This flight will lead you to city C2. If
C2 is the destination, you are done; otherwise, you must attempt to get from
C2 to the destination city, and so on. There is a distinct recursive flavor to this
search strategy, which can be restated as follows:

To fly from the origin to the destination:
  Select a city C adjacent to the origin
  Fly from the origin to city C

if (C is the destination city) {
    Terminate -- the destination is reached
  }

else {
    Fly from city C to the destination
  }  // end if

This statement of the search strategy makes its recursive nature very apparent.
The first step in flying from the origin city to the destination city is to fly from

A recursive search 
strategy
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the origin city to city C. Once at city C, you are confronted with another
problem of the same type—you now must fly from city C to the destination.

This recursive formulation is nothing more than a restatement of the initial
(incomplete) strategy developed previously. As such it has the same three possi-
ble outcomes:

1. You eventually reach the destination city and can conclude that it is possi-
ble to fly from the origin to the destination.

2. You reach a city C from which there are no departing flights.

3. You go around in circles.

The first of these outcomes corresponds to a base case of the recursive algo-
rithm. If you ever reach the destination city, no additional problems of the
form “fly from city C to the destination” are generated, and the algorithm ter-
minates. However, as was observed previously, the algorithm might not
produce this outcome; that is, it might not reach this base case. The algorithm
might reach a city C that has no departing flights. (Notice that the algorithm
does not specify what to do in this case—in this sense the algorithm is incom-
plete.) Or the algorithm might repeatedly cycle through the same sequence of
cities and thus never terminate.

You can resolve these problems by mirroring what you did in the previous
solution. Consider the following refinement, in which you mark visited cities
and never fly to a city that has been visited already:

+searchR(in originCity:City, in destinationCity:City):boolean
// Searches for a sequence of flights from 
// originCity to destinationCity.

Mark originCity as visited

if (originCity is destinationCity) {
    Terminate -- the destination is reached
  }

else {
for (each unvisited city C adjacent to originCity) {

      searchR(C, destinationCity)
    }  // end for
  }  // end if

Now consider what happens when the algorithm reaches a city that has no
unvisited city adjacent to it. For example, consider the piece of a flight map in
Figure 7-14. When searchR reaches city X—that is, when the parameter orig-
inCity has the value X—the for loop will not be entered, because no unvis-
ited cities are adjacent to X. Hence, the method searchR returns. This return
has the effect of backtracking to city W, from which the flight to X originated.
In terms of the previous pseudocode, the return is made to the point from
which the call searchR(X, destinationCity) occurred. This point is within

Possible outcomes 
of the recursive 
search strategy

A refinement of the 
recursive search 
algorithm
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the for loop, which iterates through the unvisited cities adjacent to W; that is,
the parameter originCity has the value W.

After backtracking from X to W, the for loop will again execute. This time
the loop chooses city V, resulting in the recursive call searchR(V, destina-
tionCity). From this point, the algorithm either will eventually reach the des-
tination city and terminate, or it will backtrack once again to city W. If it
backtracks to W, the for loop will terminate because there are no more unvis-
ited cities adjacent to W, and a return from searchR will occur. The effect is to
backtrack to the city where the flight to W originated. If the algorithm ever
backtracks to the origin city and no remaining unvisited cities are adjacent to
it, the algorithm will terminate, and you can conclude that no sequence of
flights from the origin to the destination exists. Notice that the algorithm will
always terminate in one way or another, because it will either reach the destina-
tion city or run out of unvisited cities to try.

The following Java method implements the searchR algorithm:

public boolean isPath(City originCity, 
City destinationCity) {

City  nextCity;
boolean done;

// mark the current city as visited
markVisited(originCity);

// base case: the destination is reached
if (originCity.compareTo(destinationCity) == 0) {

return true;
}
else { // try a flight to each unvisited city

done = false;
nextCity = getNextCity(originCity);

while (nextCity != null && !done) {
done = isPath(nextCity, destinationCity);

W

U
(visited)

V

X

Y (visited)

Z (visited)

A piece of a flight map

FIGURE 7-14

Java implementation 
of searchR
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if (!done) {
nextCity = getNextCity(originCity);

}  // end if
}  // end while

return done;
}  // end if

}  // end isPath

You have probably noticed a close parallel between this recursive algorithm
and the earlier stack-based algorithm searchS. In fact, the two algorithms
simply employ different techniques to implement the identical search strategy.
The next section will elaborate on the relationship between the two algorithms.

7.6 The Relationship Between Stacks 
and Recursion

The previous section solved the HPAir problem once by using the ADT stack
and again by using recursion. The goal of this section is to relate the way that
the stack organizes the search for a sequence of flights to the way a recursive
algorithm organizes the search. You will see that the ADT stack has a hidden
presence in the concept of recursion and, in fact, that stacks have an active role
in most computer implementations of recursion.

Consider how the two search algorithms implement three key aspects of
their common strategy.

■ Visiting a new city. The recursive algorithm searchR visits a new city C
by calling searchR(C, destinationCity). The algorithm searchS
visits city C by pushing C onto a stack. Notice that if you were to use the
box trace to trace the execution of searchR, the call searchR(C, desti-
nationCity) would generate a box in which the city C is associated with
the formal parameter originCity of searchR.

For example, Figure 7-15 shows both the state of the box trace for 
searchR and the stack for searchS at corresponding points of their search
for a path from city P to city Z in Figure 7-10.

■ Backtracking. Both search algorithms attempt to visit an unvisited city that
is adjacent to the current city. Notice that this current city is the value asso-
ciated with the formal parameter originCity in the deepest (rightmost)
box of searchR’s box trace. Similarly, the current city is on the top of
searchS’s stack. In Figure 7-15, this current city is X. If no unvisited cities
are adjacent to the current city, the algorithms must backtrack to the previ-
ous city. The algorithm searchR backtracks by returning from the current
recursive call. You represent this action in the box trace by crossing off the
deepest box. The algorithm searchS backtracks by explicitly popping from
its stack. For example, from the state depicted in Figure 7-15, both algo-
rithms backtrack to city R and then to city P, as Figure 7-16 illustrates.

A comparison of key 
aspects of two 
search algorithms
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■ Termination. The search algorithms terminate either when they reach the
destination city or when they exhaust all possibilities. All possibilities are
exhausted when, after backtracking to the origin city, no unvisited adjacent
cities remain. This situation occurs for searchR when all boxes have been
crossed off in the box trace and a return occurs to the point of the origi-
nal call to the method. For searchS, no unvisited cities are adjacent to the
origin when the stack becomes empty.

Thus, the two search algorithms really do perform the identical action. In
fact, provided that they use the same rule to select an unvisited city—for exam-
ple, traverse the current city’s list of adjacent cities alphabetically—they will
always visit the identical cities in the identical order. The similarities between
the algorithms are far more than coincidence. In fact, it is always possible to
capture the actions of a recursive method by using a stack.

An important context in which the close tie between stacks and recursion
is explicitly utilized is a compiler’s implementation of a recursive method. It is
common for a compiler to use a stack to implement a recursive method in a
manner that greatly resembles the box trace. When a recursive call to a method
occurs, the implementation must remember certain information. This informa-
tion consists essentially of the same local environment that you place in the
boxes—values of both parameters and local variables, and a reference to the
point from which the recursive call was made.

originCity = P
destinationCity = Z

originCity = R
destinationCity = Z

originCity = X
destinationCity = Z

(a)  Box trace:

(b)  Stack:
topX

R
P

Visiting city P, then R, then X: (a) box trace versus (b) stack

FIGURE 7-15

originCity = P
destinationCity = Z

originCity = R
destinationCity = Z

originCity = X
destinationCity = Z

(a)  Box trace:

(b)  Stack:
X
R
P

R
P P

top

Backtracking from city X to R to P: (a) box trace versus (b) stack

FIGURE 7-16

Typically, stacks are 
used to implement 
recursive methods
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During execution, the compiled program must manage these boxes of
information, or activation records, just as you must manage them on paper.
As the HPAir example has indicated, the operations needed to manage the
activation records are those that a stack provides. When a recursive call
occurs, a new activation record is created and pushed onto a stack. This
action corresponds to the creation of a new box at the deepest point in the
sequence. When a return is made from a recursive call, the stack is popped,
bringing the activation record that contains the appropriate local environ-
ment to the top of the stack. This action corresponds to crossing off the
deepest box and following the arrow back to the preceding box. Although
we have greatly simplified the process, most implementations of recursion are
based on stacks of activation records.

You can use a similar strategy to implement a nonrecursive version of a
recursive algorithm. You might need to recast a recursive algorithm into a non-
recursive form to make it more efficient, as mentioned in Chapter 3. The pre-
vious discussion should give you a taste of the techniques for removing
recursion from a program. You will encounter recursion removal as a formal
topic in more advanced courses, such as compiler construction.

1. The ADT stack operations have a last-in, first-out (LIFO) behavior.

2. Algorithms that operate on algebraic expressions are an important application of
stacks. The LIFO nature of stacks is exactly what the algorithm that evaluates
postfix expressions needs to organize the operands. Similarly, the algorithm that
transforms infix expressions to postfix form uses a stack to organize the operators
in accordance with precedence rules and left-to-right association.

3. You can use a stack to determine whether a sequence of flights exists between two
cities. The stack keeps track of the sequence of visited cities and enables the search
algorithm to backtrack easily. However, displaying the sequence of cities in their
normal order from origin to destination is awkward, because the origin city is at
the bottom of the stack and the destination is at the top.

4. A strong relationship between recursion and stacks exists. Most implementations of
recursion maintain a stack of activation records in a manner that resembles the box trace.

1. Operations such as peek and pop must take reasonable action when the stack is
empty. One possibility is to ignore the operation and throw an exception Stack-
Exception.

2. Algorithms that evaluate an infix expression or transform one to postfix form must
determine which operands apply to a given operator. Doing so allows for prece-
dence and left-to-right association so that you can omit parentheses.

3. When searching for a sequence of flights between cities, you must take into
account the possibility that the algorithm will make wrong choices. For example,

Each recursive call 
generates an activa-
tion record that is 
pushed onto a stack

You can use stacks 
when implementing 
a nonrecursive 
version of a recur-
sive algorithm

Summary

Cautions
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the algorithm must be able to backtrack when it hits a dead end, and you must
eliminate the possibility that the algorithm will cycle.

1. If you push the letters W, Y, X, Z, and V in order onto a stack of characters and
then pop them, in what order will they be deleted from the stack?

2. What do the initially empty stacks stack1 and stack2 “look like” after the follow-
ing sequence of operations?

stack1.push(23)
stack1.push(17)
stack1.push(50)
stack2.push(42)
top1 = stack1.pop()
top2 = stack2.peek()
stack2.push(top1)
stack1.push(top2)
stack1.push(13)
top2 = stack2.pop()
stack2.push(49)

Compare these results with Self-Test Exercise 2.

3. The algorithms that appear in the section “Simple Applications of the ADT Stack”
involve strings. Under what conditions would you choose an array-based implemen-
tation for the stack in these algorithms? Under what conditions would you choose a
reference-based implementation?

4. Describe the difference between the peek operation and the pop operations in an
ADT stack.

5. For each of the following strings, trace the execution of the balanced-braces algo-
rithm and show the contents of the stack at each step.

a. x{{{y}z}

b. {x{y{z}}}

c. {xy{z}}}

6. Use the stack algorithms in this chapter to evaluate the postfix expression ab– c+.
Assume the following values for the identifiers: a = 7; b = 3; c = –2. Show the status
of the stack after each step.

7. Use the stack algorithms in this chapter to convert the infix expression a / b*c to
postfix form. Be sure to account for left-to-right association. Show the status of the
stack after each step.

8. Explain the significance of the precedence tests in the infix-to-postfix conversion
algorithm. Why is a ≥ test used rather than a > test?

Self-Test Exercises
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9. Execute the HPAir algorithm with the map in Figure 7-17 for the following
requests. Show the state of the stack after each step.

a. Fly from F to I.

b. Fly from F to C.

c. Fly from H to C.

1. What makes a linked list a good choice for implementing a stack?

2. Write a Java program to implement two stacks in a single array. 
(Hint: There should be only one stack, with two different top references.)

3. Suppose that you have a stack aStack and an empty auxiliary stack auxStack.
Show how you can do each of the following tasks by using only the operations of
the ADT stack:

a. Display the contents of aStack in reverse order; that is, display the top last.

b. Count the number of items in aStack, leaving aStack unchanged.

c. Delete every occurrence of a specified item from aStack, leaving the order of
the remaining items unchanged.

4. Recall the search method from the JCF class Stack:

public int search(Object o)
// Returns the 1-based position where an object is on this
// stack. The topmost item on the stack is considered to be at
// distance 1.

a. Add this method to the StackListBased implementation given in this chapter.

b. Add this method to the StackArrayBased implementation given in this chapter.

c. Add this method to the StackReferenceBased implementation given in this
chapter.

A C E

I

F

GH

D
B

Flight map for Self-Test Exercise 9 and Exercise 15

FIGURE 7-17

Exercises
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5. Which of the following stack operations could result in stack underflow? 

a. is_empty ()

b. push ()

c. pop ()

d. Two or more of the above answers 

6. Another operation that could be added to the ADT Stack is one that removes and
discards the user specified number of elements from the top of the stack. Assume
this operation is called popAndDiscard and that it does not return a value and
accepts a parameter called count of data type int.

a. Add this operation to the StackListBased implementation given in this chapter.

b. Add this operation to the StackArrayBased implementation given in this chapter.

c. Add this operation to the StackReferenceBased implementation given in
this chapter.

7. The diagram of a railroad switching system in Figure 7-18 is commonly used to
illustrate the notion of a stack. Identify three stacks in the figure and show how
they relate to one another. Suppose you had four train cars arrive in the order
shown: A followed by B, then C, then D. 

a. How could you use the railroad switch to change the order so that A is still first,
B is still second, but D is third, and C is fourth?

b. How could you use the railroad switch to change the order of the cars so that B
is first, D is second, A is third and C is fourth?

c. Can any possible permutation of railroad cars be achieved with this switch?
Justify your answer.

8. Suppose you have a stack in which the values 1 through 5 must be pushed on the
stack in that order, but that an item on the stack can be popped and printed at any
time. So for example, the operations

s.push(1)
s.push(2)
print s.pop() 

Track 1 Track 3

Track 2

D C B A

Railroad switching system for Exercise 4

FIGURE 7-18
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s.push(3)
s.push(4)
print s.pop()
s.push(5)
print s.pop() 
print s.pop() 
print s.pop() 

produce the sequence 2 4 5 3 1.  Based on the constraints mentioned above,
give the list of operations that would produce each of the following sequences. If it
is not possible, state so.

a. 1 3 5 4 2

b. 2 3 4 5 1

c. 1 4 3 5 2

d. 1 5 4 2 3

e. Are there sequences that cannot occur? Explain why or why not.

9. What is the output of the following code for n = 15? n = 65? What does this
program appear to do?

public static void mystery(int n) {
  StackInterface s = new StackReferenceBased();

while (n > 0) {
    s.push(n % 8);
    n = n / 8;
  }

while (!s.isEmpty())
    System.out.print(stack.pop());
  System.out.println();
} // end mystery

10. Write a Java program that reads a string from the console and pushes any capital
letter in the string into a stack called CAP, then pops those letters from CAP and
counts the number of vowels in the stack.

11. The section “Developing an ADT During the Design of a Solution” described an
algorithm readAndCorrect that reads a string of characters, correcting mistakes
along the way. 

a. For the following input line, trace the execution of readAndCorrect and show
the contents of the stack at each step:

ab←cde←←fgh←i

b. The nature of the stack-based algorithm makes it simple to display the string in
reverse order (as was done in displayBackward), but somewhat harder to display
it in its correct order. Write a pseudocode algorithm called displayForward that
displays the string in its correct forward order.

c. Implement readAndCorrect and displayForward as Java methods.

12. Write a Java program that converts a given decimal number into a hexadecimal
number using a stack. (Remember, numbers 10 to 15 are represented as A to F in
the hexadecimal format.)
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13. Consider the following code:

MyStack s = new MyStack ( );
s.push('A');
s.push('B');
s.push('C');
System.out.println(s.pop( ));

Suppose that the stack is represented by a linked list. The ‘Head’ reference of the
stack will track the top element in the stack.

Now draw the state of the stack after each operation given in the above code.
What will be the output of  “System.out.println(s.pop( )) ” ?

14. Write a pseudocode method that uses a stack to determine whether a string is in
the language L, where

a.   L = {w : w contains equal numbers of A’s and B’s in any order}

b.   L = {w : w is of the form A2nBn for some n > 0}

15. Write a method that uses a stack to determine whether a string is in the language
L, where:

L = {ww' : w is a string of characters
w' = reverse (w) }

Note: The empty string, a string with less than 2 characters, or a string with an odd
number of characters will not be in the language.

16. Evaluate the following postfix expressions by using the algorithm given in this
chapter. Show the status of the stack after each step of the algorithm. Assume
that division is integer division as in Java, and the identifiers have the following
values: a = 7; b = 3; c = 12; d = –5; e = 1.

a. ab* d+ –

b. abcd+–*

c. ab/c+d*e–

17. Consider the following pseudocode: 

declare a stack of characters
while ( there are more characters in the word to read )
{
read a character
push the character on the stack
}
while ( the stack is not empty )
{
write the stack's top character to the screen
pop a character off the stack
}

What is the output in the console for the input: “MORNING”?

a. MMOORRNNIINNGG
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b. GIRM

c. MORNING

d. GNINROM

18. Execute the HPAir algorithm with the map in Figure 7-17 (see Self-Test Exercise 9)
for the following requests. Assume that the algorithm always flies to the alphabeti-
cally earliest unvisited city from the city on the top of the stack. Show the state of the
stack after each step and indicate whether the flight is possible or not possible.

a. Fly from A to I.

b. Fly from G to A.

c. Fly from H to I.

d. Fly from F to I.

e. Fly from I to G.

19. As Chapter 4 pointed out, you can define ADT operations in a mathematically
formal way by using axioms. For example, the following axioms formally define the
ADT stack, where stack is an arbitrary stack and item is an arbitrary stack item.

(aStack.createStack()).isEmpty() = true 
(aStack.push(item)).isEmpty() = false
(aStack.createStack()).pop() = error
(aStack.push(item)).pop() = aStack
(aStack.createStack()).peek() = error
(aStack.push(item)).peek() = item

You can use these axioms, for example, to prove that the stack defined by the
sequence of operations

Create an empty stack
Push a 5
Push a 7
Push a 3
Pop (the 3)
Push a 9
Push a 4
Pop (the 4)

which you can write as

(((((((aStack.createStack()).push(5)).push(7)).push(3)).
pop()).push(9)).push(4)).pop()

is exactly the same as the stack defined by the sequence

Create an empty stack
Push a 5
Push a 7
Push a 9
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which you can write as

(((aStack.createStack()).push(5)).push(7)).push(9)

Similarly, you can use the axioms to show that

(((((((aStack.createStack()).push(1)).push(2)).pop()).
push(3)).pop()).pop()).isEmpty()

is true.

a. The following representation of a stack as a sequence of push operations
without any pop operations is called a canonical form:

(...(aStack.createStack()).push()).push()... ).push() 

Prove that any stack is equal to a stack that is in canonical form.

b. Prove that the canonical form is unique. That is, a stack is equal to exactly one
stack that is in canonical form.

c. Use the axioms to show formally that

((((((((((aStack.createStack()).push(6)).push(9)).
pop()).pop()).push(2)).pop()).push(3)).push(1)).
pop()).peek()

equals 3.

1. Write a Java program using stack ADT, which will read the following values in the given
order: USA, INDIA, CANADA, CHINA, BRAZIL, UK, JAPAN.  Now write a separate func-
tion that can replace any value from the given list depending upon the user.

2. Write a program that uses a stack to read an integer and prints all its prime divisors in
descending order. (For example, for the integer 39, the output should be 13,3).

3. Two different stacks contain the following characters: 

Stack 1: 'A', 'X', 'T', 'U', 'R'.
Stack 2: 'R', 'F', 'H', 'B', 'X'.

Write a program that merges the above two stacks to create the merged stack
'A', 'X', 'T', 'U', 'R', 'R', 'F', 'H', 'B', 'X'.

4. Design and implement a class of postfix calculators. Use the algorithm given in this
chapter to evaluate postfix expressions, as entered into the calculator. Use only the
operators +, –, *, %, and ⁄. Assume that the postfix expressions have single digit
numbers in the expression and are syntactically correct.

5. The postfix calculator in Programming Problem 4 assumed single digit operands.
Modify the calculator so that operators and operands may be separated by any
number of spaces and 

a. the operands may be multi-digit integers.

b. the operands may be multi-digit numbers with a decimal point.

Programming Problems
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6. Consider simple infix expressions that consist of single-digit operands; the opera-
tors +, –, *, %, and ⁄ ; and parentheses. Assume that unary operators are illegal and
that the expression contains no embedded spaces. 

Design and implement a class for an infix calculator. Use the algorithms given in
this chapter to convert the infix expression to postfix form and to evaluate the result-
ing postfix expression. Note that if the methods evaluate and getPostfix are called
before the convertPostfix method, then the exception IllegalStateException
should be thrown by these methods. 

class Calculator {
public Calculator(String exp)   // initializes infix expression
public String toString()          // returns infix expression 
private boolean convertPostfix()  // creates postfix expression

                                    // returns true if successful

  // The following methods should throw IllegalStateException if 
  // they are called before convertPostfix

  // returns the resulting postfix expression
public String getPostfix() throws IllegalStateException

  // evaluates the expression
public int evaluate() throws IllegalStateException

} //end Calculator

7. The infix-to-postfix conversion algorithm described in this chapter assumes single
digit operands and that the given infix expression is syntactically correct. Repeat
Programming Problem 6 with the following enhancements. If the expression has
one of the errors mentioned, print out an appropriate error message, and where
possible, indicate where the error occurred in the expression. If the expression is
syntactically correct, evaluate the expression.

a. Allow for any type of spacing between operands, operators, and parentheses. 

b. Allow for multi-digit integer operands. Even better, allow for multi-digit oper-
ands with a decimal point. 

c. The algorithms in the text assume that the given infix expression is syntactically
correct. Watch for errors in the infix expression. Here are some examples: 

i. a + 4 (Illegal character a)

ii. 4 + 5 3 (Space between 5 and 3, a missing operator) 

iii. 4 + * 5 - 2 (Missing operand) 

iv. ) 2+3 ( (Improperly nested parenthesis) 

v. ( 2 + 3 ) * 5 ) (Mismatched parentheses-right or left) 

If an error is detected during the method convertPostfix, it should return false,
but first print a message that identifies the error and, when possible, indicate where
the error occurred in the expression.  If the expression is not successfully converted, a
call to evaluate or getPostfix should throw IllegalStateException.

8. Repeat Programming Problem 5, but use the following algorithm to evaluate an
infix expression infixExp. The algorithm uses two stacks: One stack, opStack,
contains operators, and the other stack, valStack, contains values of operands and
intermediate results. Note that the algorithm treats parentheses as operators with
the lowest precedence. 
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for (each character ch in infixExp) {
  switch (ch) {
    case ch is an operand, that is, a digit
      valStack.push(ch)

break
    case ch is '('
      opStack.push(ch)

break
case ch is an operator

if (opStack.isEmpty()) {
        opStack.push(ch)

}
   else if (precedence(ch) > 

precedence(top of opStack)) {
    opStack.push(ch)

}
   else {

while (!opStack.isEmpty() and
          precedence(ch) <= precedence(top of opStack)) {
          Execute
        }  // end while
         opStack.push(ch)
      }  // end if

break

case ch is ')'
while (top of opStack is not '(') {

        Execute
      }  // end while
      opStack.pop()

break
  }  // end switch
} // end for

while (!opStack.isEmpty()) {
  Execute
}  // end while
result = valStack.peek()

Note that Execute means

  operand2 = valStack.pop()
  operand1 = valStack.pop()
  op = opStack.pop()
  result = operand1 op operand2
  valStack.push(result)

9. In the chapter, we examined one strategy to evaluate an infix expression—first
convert the infix expression to a postfix expression, then evaluate the resulting
postfix expression. An alternative strategy would be to convert the infix expression
to prefix, and then evaluate the resulting prefix expression. 

The following pseudocode algorithm for converting an infix expression to prefix
is similar to, but not quite the same as, the infix to postfix conversion algorithm:

Initialize the string temp to the null string
Reverse the characters in the infix expression
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for (each character ch in the reversed infix expression) {
switch(ch) {

case ch is an operand: 
      Append ch to the end of temp expression

case ch is ')':
      Push ch on the stack

case ch is '(':
       Pop stack and append item to output expression until the 
         matching ')' is popped off the stack

case ch is an operator:
      Pop operators off stack and append to temp expression as 
        appropriate (similar to postfix conversion)
      Push ch on the stack
  } // end switch
} // end for
// append remaining stack contents to output expression
while (stack is not empty) {
  Pop stack and append to temp expression
} // end while
Reverse temp expression to produce prefix expression

Also note that evaluating a prefix expression is almost the same as evaluating a
postfix expression, with one small change—with prefix expressions, you start at the
end of the expression. For example:

Postfix : 3 5 +

You start at the beginning of the expression, moving forward through the
expression, pushing operands, and popping the operands when the operators
appear, then pushing the result.

Prefix: + 3 5

You start at the end of the expression, moving backward through the expres-
sion, pushing operands, and popping the operands when the operators appear,
then pushing the result.

Design and implement a class (as shown next) for an infix calculator based on
prefix expressions. Use the algorithms given above to convert the infix expression
to prefix form and to evaluate the resulting prefix expression. Note that if the
methods evaluate and getPrefix are called before the convertPrefix method,
then the exception IllegalStateException should be thrown by these methods. 

class Calculator {
public Calculator(String exp)   // initializes infix expression
public String toString()          // returns infix expression 
private boolean convertPrefix()   // creates prefix expression

                                    // returns true if successful

  // The following methods should throw IllegalStateException if 
  // they are called before convertPrefix

  // returns the resulting prefix expression
public String getPrefix() throws IllegalStateException
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  // evaluates the expression
public int evaluate() throws IllegalStateException

} //end Calculator

10. Using stacks, write a nonrecursive version of the method solveTowers, as
defined in Chapter 3.

11. Complete the solution to the HPAir problem. The input to the program consists
of three text files, as follows:

You can make the following assumptions:

■ Each city name contains at most 15 characters. Pairs of city names are separated
by a comma.

■ HPAir serves at most 20 cities.

■ The input data is correct.

For example, the input files could appear as

   cityFile:     Albuquerque
                 Chicago
                 San Diego

   flightFile:   Chicago,       San Diego
                 Chicago,       Albuquerque
                 Albuquerque,   Chicago

   requestFile:  Albuquerque,   San Diego
                 Albuquerque,   Paris
                 San Diego,     Chicago

For this input, the program should produce the following output:

   Request is to fly from Albuquerque to San Diego.
   HPAir flies from Albuquerque to San Diego.

   Request is to fly from Albuquerque to Paris.
   Sorry. HPAir does not serve Paris.

   Request is to fly from San Diego to Chicago.
   Sorry. HPAir does not fly from San Diego to Chicago.

Begin by implementing the ADT flight map as the Java class Map. Use the nonre-
cursive version of isPath. Since getNextCity is the primary operation that the
search algorithm performs on the flight map, you should choose an implementation
that will efficiently determine which cities are adjacent to a given city. If there are N

cityFile Each line contains the name of a city that HPAir serves. The 
names are in alphabetical order.

flightFile Each line contains a pair of city names that represents the origin 
and destination of one of HPAir’s flights.

requestFile Each line contains a pair of city names that represents a request 
to fly from some origin to some destination.
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cities, you can use N linked lists to represent the flight map. You place a node on list
i for city j if and only if there is a directed path from city i to city j. Such a data struc-
ture is called an adjacency list; Figure 7-19 illustrates an adjacency list for the flight
map in Figure 7-10. Chapter 14 discusses adjacency lists further when it presents
ways to represent graphs. At that time, you will learn why an adjacency list is a good
choice for the present program.

Although you can implement the adjacency list from scratch, you should also
consider using N instances of ListReferenceBased, which has a reference-
based implementation.

 You must also create a class City that implements the java.lang.Comparable
interface to store the city name. The class City and the previously described adjacency
list are the underlying data structures for the ADT flight map.

To simplify reading the input text files, define a class that includes the follow-
ing methods:

+getName():String
// Gets a name from the next line in a text file.

+getNamePair():String
// Returns a string containing the two names from the next
// line in a text file.

R W

X

X

T

P

Q

R

S

T

W

X

Y

Z

W

S Y

ZR

Adjacency list for the flight map in Figure 7-10

FIGURE 7-19
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12. In the implementation of the HPAir problem (see Programming Problem 10), the
search for the next unvisited city adjacent to a city i always starts at the beginning
of the i th linked list in the adjacency list. This approach is actually a bit inefficient,
because once the search visits a city, the city can never become unvisited. Modify
the program so that the search for the next city begins where the last search left
off. That is, maintain an array of tryNext references into the adjacency list.

13. Implement an expanded version of the HPAir problem. In addition to the “from”
and “to” cities, each line of input contains a flight number (an integer) and the
cost of the flight (an integer). Modify the HPAir program so that it will produce a
complete itinerary for each request, including the flight number of each flight, the
cost of each flight, and the total cost of the trip.

For example, the input files could appear as

   cityFile:       Albuquerque
                   Chicago
                   San Diego

   flightFile:     Chicago,        San Diego   703   325
                   Chicago,        Albuquerque 111   250
                   Albuquerque,    Chicago     178   250

   requestFile:    Albuquerque,    San Diego
                   Albuquerque,    Paris
                   San Diego,      Chicago

For this input, the program should produce the following output:

   Request is to fly from Albuquerque to San Diego.
   Flight #178 from Albuquerque to Chicago   Cost: $250
   Flight #703 from Chicago to San Diego     Cost: $325
   Total Cost .............  $575
   Request is to fly from Albuquerque to Paris.
   Sorry. HPAir does not serve Paris.
   Request is to fly from San Diego to Chicago.
   Sorry. HPAir does not fly from San Diego to Chicago.

When the nonrecursive isPath method finds a sequence of flights from the
origin city to the destination city, its stack contains the corresponding path of
cities. The stumbling block to reporting this path is that the cities appear in the
stack in reverse order; that is, the destination city is at the top of the stack and
the origin city is at the bottom. For example, if you use the program to find a
path from city P to city Z in Figure 7-10, the final contents of the stack will be
P-W-Y-Z, with Z on top. You want to display the origin city P first, but it is at
the bottom of the stack. If you restrict yourself to the stack operations, the
only way that you can write the path in its correct order is first to reverse the
stack by popping it onto a temporary stack and then to write the cities as you
pop them off the temporary stack. Note that this approach requires that you
process each city on the path twice.

Evidently a stack is not the appropriate ADT for the problem of writing the path
of cities in the correct order; the appropriate ADT is a traversable stack. In addition
to the standard stack operations, isEmpty, push, pop, and peek, a traversable
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stack includes the operation traverse. This operation begins at one end of the
stack and visits each item in the stack until it reaches the other end of the stack. For
this project, you want traverse to begin at the bottom of the stack and move
toward the top.

14. Write a Java program that read strings from a given file, then, using stack ADT,
reverses the string and writes again on to another file.

2
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CHAPTER 8

Queues

hereas a stack’s behavior is characterized as last-
in, first-out, a queue’s behavior is characterized as

first-in, first-out. This chapter defines the queue’s operations
and discusses strategies for implementing them. As you will
see, queues are common in everyday life. Their first-in, first-
out behavior makes them appropriate ADTs for situations
that involve waiting. Queues are also important in simula-
tion, a technique for analyzing the behavior of complex sys-
tems. This chapter uses a queue to model the behavior of
people in a line.

8.1 The Abstract Data Type Queue 

8.2 Simple Applications of the ADT 
Queue

Reading a String of Characters
Recognizing Palindromes

8.3 Implementations of the ADT 
Queue

A Reference-Based Implementation
An Array-Based Implementation
An Implementation That Uses the 

ADT List
The Java Collections Framework 

Interface Queue
Comparing Implementations

8.4 A Summary of Position-Oriented 
ADTs

8.5 Application: Simulation

Summary

Cautions

Self-Test Exercises

Exercises

Programming Problems

W
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8.1 The Abstract Data Type Queue

A queue is like a line of people. The first person to join a line is the first person
served and is thus the first to leave the line. New items enter a queue at its
back, or rear, and items leave a queue from its front. Operations on a queue
occur only at its two ends. This characteristic gives a queue its first-in, first-
out (FIFO) behavior. In contrast, you can think of a stack as having only one
end, because all operations are performed at the top of the stack. This charac-
teristic gives a stack its last-in, first-out behavior.

As an abstract data type, the queue has the following operations:

Queues are appropriate for many real-world situations. You wait in a
queue—that is, a line—to buy a movie ticket, to check out at the book store,
or to use an automatic teller machine. The person at the front of the queue is
served, while new people join the queue at its back. Even when you call an
airline to make a reservation, your call actually enters a queue while you wait
for the next available agent.

Queues also have applications in computer science. When you print an
essay, the computer sends lines faster than the printer can print them. The lines
are held in a queue for the printer, which removes them in FIFO order. If you
share the printer with other computers, your request to print enters a queue to
wait its turn.

Since all of these applications involve waiting, people study them to see
how to reduce the wait. Such studies are called simulations, and they typically
use queues. Later, this chapter examines a simulation of a line of customers at a
bank.

The following pseudocode describes the operations for the ADT queue in
more detail, and Figure 8-1 shows a UML diagram for the class Queue. As we
did for the ADT stack, we specify that the remove operation both retrieves and
then removes the item at the front of the queue.

Figure 8-2 illustrates these operations with a queue of integers. Notice
that enqueue inserts an item at the back of the queue and that peek looks at
the item at the front of the queue, whereas dequeue deletes the item at the
front of the queue.

FIFO: The first item 
inserted into a 
queue is the first 
item out

ADT Queue Operations
1. Create an empty queue.
2. Determine whether a queue is empty.
3. Add a new item to the queue.
4. Remove from the queue the item that was added earliest.
5. Remove all the items from the queue.
6. Retrieve from the queue the item that was added earliest.

KEY CONCEPTS

Queues occur in 
everyday life

Queues have appli-
cations in computer 
science
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Pseudocode for the ADT Queue Operations

//QueueItemType is the type of the items stored in the queue
+createQueue()
// Creates an empty queue.
+isEmpty():boolean {query}
// Determines whether a queue is empty.
+enqueue(in newItem:QueueItemType) throws QueueException
// Adds NewItem at the back of a queue. Throws
// QueueException if the operation is not successful.
+dequeue():QueueItemType throws QueueException
// Retrieves and removes the front of a queue—the
// item that was added earliest. Throws QueueException 
// if the operation is not successful.
+dequeueAll()
// Removes all items from a queue
+peek():QueueItemType {query} throws QueueException
// Retrieves the front of a queue. That is, 
// retrieves the item that was added earliest.
// Throws QueueException if the retrieval is not  
// successful. The queue is unchanged.

KEY CONCEPTS

Queue

front

back

items

createQueue()

dequeueAll()

isEmpty()

enqueue()

dequeue()

peek()

UML diagram for the class Queue

FIGURE 8-1
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8.2 Simple Applications of the ADT Queue

This section presents two simple applications of the ADT queue. The applica-
tions use the operations of the ADT queue independently of their
implementations.

Reading a String of Characters
When you enter characters at a keyboard, the system must retain them in the
order in which you typed them. It could use a queue for this purpose, as the
following pseudocode indicates: 

// read a string of characters from a 
// single line of input into a queue
aQueue.createQueue()
while (not end of line) {
   Read a new character ch
   aQueue.enqueue(ch)
}  // end while

Once the characters are in a queue, the system can process them as neces-
sary. For example, if you had typed an integer—without any mistakes, but pos-
sibly preceded or followed by blanks—the queue would contain digits and
possibly blanks. If the digits are 2, 4, and 7, the system could convert them
into the decimal value 247 by computing 

10 * (10 * 2 + 4) + 7

The following pseudocode performs this conversion in general:

// convert digits in queue aQueue into a decimal integer n

// get first digit, ignoring any leading blanks
do  {
  ch = aQueue.dequeue()
} while (ch is blank)

Operation

queue.createQueue()
queue.enqueue(5)
queue.enqueue(2)
queue.enqueue(7)
queueFront = queue.peek()
queueFront = queue.dequeue()
queueFront = queue.dequeue()

Queue after operation

5
5  2
5  2  7
5  2  7 (queueFront is 5)
5  2  7  (queueFront is 5)
2  7 (queueFront is 2)

Front

Some queue operations

FIGURE 8-2

A queue can retain 
characters in the 
order in which you 
type them
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// Assertion: ch contains first digit
// compute n from digits in queue
n = 0
done = false
do  {
  n = 10 * n + integer that ch represents

if (!aQueue.isEmpty()) {
    ch = aQueue.dequeue()
  }

else {
    done = true
  }  // end if
}  while (!done and ch is a digit)
// Assertion: n is result

Recognizing Palindromes
Recall from Chapter 6 that a palindrome is a string of characters that reads the
same from left to right as it does from right to left. In the previous chapter,
you learned that you can use a stack to reverse the order of occurrences. You
should realize by now that you can use a queue to preserve the order of occur-
rences. Thus, you can use both a queue and a stack to determine whether a
string is a palindrome.

As you traverse the character string from left to right, you can insert each
character into both a queue and a stack. Figure 8-3 illustrates the result of this
action for the string abcbd, which is not a palindrome. You can see that the
first character in the string is at the front of the queue and the last character in
the string is at the top of the stack. Thus, characters removed from the queue

You can use a 
queue in conjunction 
with a stack to rec-
ognize palindromes

a  b  c  b  d

d
b
c
b
a

Queue:

Stack: Top

String: abcbd

Front Back

The results of inserting a string into both a queue and a stack

FIGURE 8-3
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will occur in the order in which they appear in the string; characters removed
from the stack will occur in the opposite order. 

Knowing this, you can compare the characters at the front of the queue
and the top of the stack. If the characters are the same, you can delete them.
You repeat this process until either the ADTs become empty, in which case the
original string is a palindrome, or the two characters are not the same, in
which case the string is not a palindrome.

The following is a pseudocode version of a nonrecursive recognition algo-
rithm for the language of palindromes:

+isPal(in str:String):boolean
// Determines whether str is a palindrome.

   // create an empty queue and an empty stack
   aQueue.createQueue()
   aStack.createStack()

   // insert each character of the string into both 
   // the queue and the stack
   length = the length of str

for (i = 1 through length) {
      nextChar = ith character of str
      aQueue.enqueue(nextChar)
      aStack.push(nextChar)
   }  // end for

   // compare the queue characters with the stack 
   // characters
   charactersAreEqual = true

      queueFront = aQueue.dequeue()
      stackTop = aStack.pop()

if (queueFront not equal to stackTop) {
         charactersAreEqual = false
      }  // end if
   }  // end while

return charactersAreEqual

8.3 Implementations of the ADT Queue

This section develops three Java implementations of the ADT queue. The first
uses a linked list to represent the queue, the second uses an array, and the third
uses the ADT list. The following interface QueueInterface is used to provide
a common specification for the three implementations. Note that enqueue,
dequeue, and peek may throw QueueException.

The QueueException class, which is similar to the StackException class
developed in Chapter 7, appears next.

A nonrecursive rec-
ognition algorithm 
for palindromes

while (aQueue is not empty and charactersAreEqual is true) {
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public interface QueueInterface {

public boolean isEmpty();
// Determines whether a queue is empty.
// Precondition: None.
// Postcondition: Returns true if the queue is empty;
// otherwise returns false.

public void enqueue(Object newItem) throws QueueException;
// Adds an item at the back of a queue.
// Precondition: newItem is the item to be inserted. 
// Postcondition: If the operation was successful, newItem 
// is at the back of the queue. Some implementations may
// throw QueueException if newItem cannot be added to the
// queue.

public Object dequeue() throws QueueException;
// Retrieves and removes the front of a queue.
// Precondition: None.
// Postcondition: If the queue is not empty, the item
// that was added to the queue earliest is returned and
// the item is removed. If the queue is empty, the
// operation is impossible and QueueException is thrown.

public void dequeueAll();
// Removes all items of a queue.
// Precondition: None.
// Postcondition: The queue is empty.

public Object peek() throws QueueException;
// Retrieves the item at the front of a queue.
// Precondition: None.
// Postcondition: If the queue is not empty, the item
// that was added to the queue earliest is returned. 
// If the queue is empty, the operation is impossible
// and QueueException is thrown.

}  // end QueueInterface

The QueueException class, which is similar to the StackException class
developed in Chapter 7, appears next.

public class QueueException extends RuntimeException {

public QueueException(String s) {
super(s);

}  // end constructor
}  // end QueueException
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For queues, the reference-based implementation is a bit more straightfor-
ward than the array-based one, so we start with it.

A Reference-Based Implementation
A reference-based implementation of a queue could use a linear linked list with
two external references, one to the front and one to the back, as Figure 8-4a
illustrates.1 However, as Figure 8-4b shows, you can actually get by with a
single external reference—to the back—if you make the linked list circular.

When a circular linked list represents a queue, the node at the back of the
queue references the node at the front. Thus,

lastNode references the node at the back of the queue, and

lastNode.next references the node at the front

Insertion at the back and deletion from the front are straightforward.
Figure 8-5 illustrates the addition of an item to a nonempty queue. Inserting
the new node, which newNode references, at the back of the queue requires
three reference changes: the next reference in the new node, the next reference
in the back node, and the external reference lastNode. Figure 8-5 depicts

1. Programming Problem 1 asks you consider the details of this implementation.

2 4 1 7(a)

firstNode lastNode

2 4 1 7(b)

lastNode

A reference-based implementation of a queue: (a) a linear linked list with two 
external references; (b) a circular linear linked list with one external reference

FIGURE 8-4

A circular linked list 
can represent a 
queue
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these changes and indicates the order in which they must occur. (The dashed
lines indicate reference values before the changes.) The addition of an item to
an empty queue is a special case, as Figure 8-6 illustrates.

Deletion from the front of the queue is simpler than insertion at the back.
Figure 8-7 illustrates the removal of the front item of a queue that contains
more than one item. Notice that you need to change only one reference within
the queue. Deletion from a queue of one item is a special case that sets the
external reference lastNode to null.

2 4 1 7 3
2

3

1

lastNode newNode (references new node)

1. newNode.next = lastNode.next;
2. lastNode.next = newNode;
3. lastNode = newNode;

Inserting an item into a nonempty queue

FIGURE 8-5

Inserting an item into an empty queue: (a) before insertion; (b) after insertion

FIGURE 8-6

3 3

newNode newNodelastNode

(b)(a)

lastNode

newNode.next = newNode;
lastNode = newNode;

Deleting an item from a queue of more than one item

FIGURE 8-7

2 4 1 7

lastNodefirstNode

1. firstNode = lastNode.next;
2. lastNode.next = firstNode.next

2

1
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The following class is a reference-based implementation of the ADT
queue. The implementation uses the Node class developed in Chapter 5. 

public class QueueReferenceBased implements QueueInterface {
private Node lastNode;

public QueueReferenceBased() {
lastNode = null;

}  // end default constructor

// queue operations:
public boolean isEmpty() {

return lastNode == null;
}  // end isEmpty

public void dequeueAll() {
lastNode = null;

}  // end dequeueAll

public void enqueue(Object newItem) {
Node newNode = new Node(newItem);

// insert the new node
if (isEmpty()) {

// insertion into empty queue
newNode.next = newNode;

}
else {

// insertion into nonempty queue
newNode.next = lastNode.next;
lastNode.next = newNode;

}  // end if

lastNode = newNode;  // new node is at back
}  // end enqueue

public Object dequeue() throws QueueException {
if (!isEmpty()) {

// queue is not empty; remove front
Node firstNode = lastNode.next;
if (firstNode == lastNode) { // special case?

lastNode = null;           // yes, one node in queue
}
else {

lastNode.next = firstNode.next;
}  // end if
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return firstNode.item;
}
else {

throw new QueueException("QueueException on dequeue:" 
+ "queue empty");

}  // end if
}  // end dequeue

public Object peek() throws QueueException {
if (!isEmpty()) {

// queue is not empty; retrieve front
Node firstNode = lastNode.next;
return firstNode.item;

}
else {

throw new QueueException("QueueException on peek:" 
+ "queue empty");

}  // end if
}  // end peek

} // end QueueReferenceBased

A program that uses this implementation could begin as follows:

      public class QueueTest {
public static void main(String[] args) {

          QueueReferenceBased aQueue = 
new QueueReferenceBased();

for (int i = 0; i < 9; i++) {
           aQueue.enqueue(new Integer(i));
         }  // end for
         . . .
       }  // end main
     }  // end QueueTest

An Array-Based Implementation
For applications in which a fixed-sized queue does not present a problem, you
can use an array to represent a queue. As Figure 8-8a illustrates, a naive array-
based implementation of a queue might include the following definitions:

final int MAX_QUEUE = maximum-size-of-queue;

Object[] items;
int      front;
int      back;

A naive array-based 
implementation of a 
queue
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The indexes of the front and back items in the queue are, respectively, front
and back. Initially, front is 0 and back is –1. To insert a new item into the
queue, you increment back and place the item in items[back]. To delete an
item, you simply increment front. The queue is empty whenever back is less
than front. The queue is full when back equals MAX_QUEUE – 1.

The problem with this strategy is rightward drift—that is, after a
sequence of additions and removals, the items in the queue will drift toward
the end of the array, and back could equal MAX_QUEUE – 1 even when the
queue contains only a few items. Figure 8-8b illustrates this situation.

One possible solution to this problem is to shift array elements to the left,
either after each deletion or whenever back equals MAX_QUEUE – 1. This solu-
tion guarantees that the queue can always contain up to MAX_QUEUE items.
Shifting is not really satisfactory, however, as it would dominate the cost of the
implementation.

A much more elegant solution is possible by viewing the array as circular,
as Figure 8-9 illustrates. You advance the queue indexes front (to delete an
item) and back (to insert an item) by moving them clockwise around the array.
Figure 8-10 illustrates the effect of a sequence of three queue operations on

(a) A naive array-based implementation of a queue; (b) rightward drift can cause the queue to appear full

FIGURE 8-8
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front, back, and the array. When either front or back advances past
MAX_QUEUE – 1, it wraps around to 0. This wraparound eliminates the problem
of rightward drift, which occurred in the previous implementation, because
here the circular array has no end.

The only difficulty with this scheme involves detecting the queue-empty
and queue-full conditions. It seems reasonable to select as the queue-empty
condition

front is one slot ahead of back

since this appears to indicate that front “passes” back when the queue
becomes empty, as Figure 8-11a depicts. However, it is also possible that this
condition signals a full queue: Because the queue is circular, back might in fact
“catch up” with front as the queue becomes full; Figure 8-11b illustrates this
situation.

Obviously, you need a way to distinguish between the two situations. One
such way is to keep a count of the number of items in the queue. Before insert-
ing into the queue, you check to see if the count is equal to MAX_QUEUE; if it is,
the queue is full. Before deleting an item from the queue, you check to see if
the count is equal to zero; if it is, the queue is empty.

To initialize the queue, you set front to 0, back to MAX_QUEUE – 1, and
count to 0. You obtain the wraparound effect of a circular queue by using
modulo arithmetic (that is, the Java % operator) when incrementing front and
back. For example, you can insert newItem into the queue by using the state-
ments

back = (back+1) % MAX_QUEUE;
items[back] = newItem;
++count;

Notice that if back equaled MAX_QUEUE – 1 before the insertion of newItem,
the first statement, back = (back+1) % MAX_QUEUE, would have the effect of
wrapping back around to location 0.
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Similarly, you can delete the item at the front of the queue by using the
statements

front = (front+1) % MAX_QUEUE;
--count;

The following Java class is an array-based implementation of the ADT
queue that uses a circular array as just described. Preconditions and postcondi-
tions have been omitted to save space but are the same as those given in the
QueueInterface specification.

public class QueueArrayBased implements QueueInterface {
private final int MAX_QUEUE = 50; // maximum size of queue
private Object[] items;
private int front, back, count;

public QueueArrayBased() {
items = new Object[MAX_QUEUE];
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front = 0;
back = MAX_QUEUE–1; 
count = 0;

}  // end default constructor

// queue operations:
public boolean isEmpty() {

return count == 0;
}  // end isEmpty

public boolean isFull() {
return count == MAX_QUEUE;

}  // end isFull

public void enqueue(Object newItem) throws QueueException {
if (!isFull()) {

back = (back+1) % (MAX_QUEUE);
items[back] = newItem;
++count;

}
else {

throw new QueueException("QueueException on enqueue: "
+ "Queue full");

}  // end if
}  // end enqueue
public Object dequeue() throws QueueException {

if (!isEmpty()) {
// queue is not empty; remove front
Object queueFront = items[front];
front = (front+1) % (MAX_QUEUE);
--count;
return queueFront;

}
else {

throw new QueueException("QueueException on dequeue: "
+ "Queue empty");

}   // end if
}  // end dequeue
public void dequeueAll() {

items = new Object[MAX_QUEUE];
front = 0;
back = MAX_QUEUE–1;
count = 0;

}  // end dequeueAll

public Object peek() throws QueueException {
if (!isEmpty()) {
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// queue is not empty; retrieve front
return items[front];

}
else {

throw new QueueException("Queue exception on peek: " + 
                             + "Queue empty");

}  // end if
}  // end peek

} // end QueueArrayBased

Several commonly used variations of this implementation do not require a
count of the number of items in the queue. One approach uses a flag full to
distinguish between the full and empty conditions. The expense of maintaining
a full flag is about the same as that of maintaining a counter, however. A
faster implementation declares MAX_QUEUE + 1 locations for the array items,
but uses only MAX_QUEUE of them for queue items. You sacrifice one array loca-
tion and make front the index of the location before the front of the queue.
As Figure 8-12 illustrates, the queue is full if 

front equals (back+1) % (MAX_QUEUE+1)

but the queue is empty if 

front equals back

This implementation does not have the overhead of maintaining a counter or
flag, and so is more efficient time-wise. For the standard data types, the imple-
mentation requires the same space as either the counter or the flag implemen-
tation (why?). Programming Problems 3 and 4 discuss these two alternate
implementations further.

A full flag can 
replace the counter

front
back

MAX_QUEUE

3

2

1

0

4

5

front

MAX_QUEUE

3

2

1

0

4

5

6

back

1 7

6

3

8

2

4

7

(a) (b)

6

7

A more efficient circular implementation: (a) a full queue; (b) an empty queue

FIGURE 8-12

Using an extra array 
location  is more 
time-efficient 



Implementations of the ADT Queue 449

An Implementation That Uses the ADT List
You can use the ADT list to represent the items in a queue, as Figure 8-13
illustrates. If the item in position 1 of a list represents the front of the queue,
you can implement the operation dequeue() as the list operation remove(0)
and the operation peek() as get(0). Similarly, if you let the item at the end of
the list represent the back of the queue, you can implement the operation
enqueue(newItem) as the list operation add(size(), newItem).

Recall that Chapters 4 and 5 presented the ADT list as an implementa-
tion of the interface ListInterface. (See, for example, page 255.) The fol-
lowing class for the ADT queue uses an instance of the reference-based
implementation ListReferenceBased to represent the queue. Preconditions
and postconditions are omitted to save space but are the same as those given
earlier in this chapter.

public class QueueListBased implements QueueInterface {
private ListInterface aList;

public QueueListBased() {
aList = new ListReferenceBased();

}  // end default constructor

// queue operations:
public boolean isEmpty() {

return aList.isEmpty();
}  // end isEmpty

public void enqueue(Object newItem) {
aList.add(aList.size(), newItem);

}  // end enqueue

public Object dequeue() throws QueueException {
if (!isEmpty()) {

// queue is not empty; remove front
Object queueFront = aList.get(0);
aList.remove(0);
return queueFront;

}

An implementation that uses the ADT list

FIGURE 8-13
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else {
      throw new QueueException("Queue exception on dequeue: "

+ " queue empty");
}  // end if

}  // end dequeue

public void dequeueAll() {
aList.removeAll();

}  // end dequeueAll

public Object peek() throws QueueException {
if (!isEmpty()) {

// queue is not empty; retrieve front
return aList.get(0);

}
else {

throw new QueueException("Queue exception on peek "
+ "queue empty");

}  // end if
}  // end peek

}  // end QueueListBased

As was true for the analogous implementation of the ADT stack in
Chapter 7, implementing the queue is simple once you have implemented the
ADT list. Exercise 6 at the end of this chapter asks you to consider the effi-
ciency of this implementation.

The JCF Interfaces Queue and Deque
The Java Collections Framework (JCF) contains two interfaces for queues:
Queue and Deque (usually pronounced “deck”). Like the List interface,
Queue is derived from the interface Collection, and thus inherits all of the
methods defined in Collection. The Deque interface is derived from the
Queue interface and is for collections that support element insertion and
removal at both ends. The name Deque is short for “double ended queue.”

The Queue Interface. The Queue interface extends Collection with the
following methods:

public interface Queue<E> extends Collection<E> {

  E element() throws NoSuchElementException;
    // Retrieves, but does not remove, the head of this queue.
    // If this queue is empty, throws NoSuchElementException.

  boolean offer(E o);
    // Inserts the specified element into this queue, if
    // possible.
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  E peek();
    // Retrieves, but does not remove, the head of this queue,
    // returning null if this queue is empty.

  E poll();
    // Retrieves and removes the head of this queue, or null
    // if this queue is empty.

  E remove() throws NoSuchElementException;
    // Retrieves and removes the head of this queue,
    // or throws NoSuchElementException if this queue
    // is empty.
} // end Queue

Note that the Queue has one data-type parameter for the items contained in
the queue.

Queues are often used to hold elements before processing. In this chap-
ter, the ADT queue that we studied ordered elements in the queue in a FIFO
manner. But as you will see later in Chapter 12 when we discuss priority
queues, other orderings are possible. Priority queues use a priority level to
determine the ordering of the elements in the queue, usually so that the ele-
ments with a higher priority will get processed first. Another example is a stack;
sometimes you will see a stack referred to as a LIFO queue.

Regardless of the ordering used, the head of the queue is always removed
first by a call to remove or poll. Both methods retrieve and remove an
element from the queue, but if the queue is empty, poll returns null, whereas
remove will raise NoSuchElementException. Similarly, element and peek can
be used to retrieve an element from the queue, with element raising
NoSuchElementException and peek returning null if the queue is empty. 

Note that Queue implementations may allow the insertion of null ele-
ments. But this makes it difficult to determine if methods such as poll and
remove are returning null as an element or null meaning that a queue is
empty. For this reason, the use of null elements is discouraged in queues
based on the Queue interface. 

When adding an element to the queue there are also two methods avail-
able: the method add (inherited from the interface Collection), and the
method offer. Both methods provide a way to add an element to the queue
(based upon the ordering in effect), but differ when adding an element to the
queue fails; the add method will return an unchecked exception whereas the
offer method will return false.

The Queue interface does not specify the ordering of the elements, it is the
responsibility of the class that implements the Queue interface to specify its order-
ing properties through the implementations of the queue interface methods.

The Deque Interface. The Deque interface extends the Queue interface with
the following methods (not all of the methods are shown here, see the Java
documentation on the Deque class for a complete list):
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public interface Deque<E> extends Queue<E>

  // Three methods for adding an element, if no space is 
  // available, they throw IllegalStateException.

boolean add(E e) throws IllegalStateException;
    // Inserts the specified element into the queue 
    // represented by this deque (in other words, at the 
    // tail of this deque).

void addFirst(E e) throws IllegalStateException;
    // Inserts the specified element at the front of this 
    // deque. 

void addLast(E e) throws IllegalStateException; 
    // Inserts the specified element at the end of this deque. 

  // These three methods also add an element, but rather than 
  // throw an exception, they return true upon success and 
  // false if no space is currently available. 

boolean offer(E e) 
    // Inserts the specified element into the queue 
    // represented by this deque (in other words, at the 
    // tail of this deque), returning true upon success and 
    // false if no space is currently available.

boolean offerFirst(E e) 
    // Inserts the specified element at the front of this 
    // deque, returning true upon success and false if no 
    // space is currently available. 

boolean offerLast(E e) 
    // Inserts the specified element at the end of this deque, 
    // returning true upon success and false if no space is 
    // currently available. 

  // Three methods for retrieving but not removing an element, 
  // if the deque is empty, they throw NoSuchElementException.

  E element() throws NoSuchElementException;
    // Retrieves, but does not remove, the head of the queue 
    // represented by this deque (in other words, the first 
    // element of this deque). 
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  E getFirst() throws NoSuchElementException;
    // Retrieves, but does not remove, the first element of 
    // this deque. 

  E getLast() throws NoSuchElementException;
    // Retrieves, but does not remove, the last element of 
    // this deque. 

  // These three methods also retrieve but do not removing an 
  // element, but if the deque is empty, they return null.

  E peek() 
    // Retrieves, but does not remove, the head of the queue 
    // represented by this deque (in other words, the first 
    // element of this deque).

  E peekFirst() 
    // Retrieves, but does not remove, the first element of 
    // this deque.

  E peekLast() 
    // Retrieves, but does not remove, the last element of 
    // this deque. 

  // Three methods for retrieving and removing an element, 
  // if the deque is empty, they throw NoSuchElementException.

  E remove() throws NoSuchElementException;
    // Retrieves and removes the head of the queue represented 
    // by this deque (in other words, the first element of 
    // this deque). 

  E removeFirst()throws NoSuchElementException; 
    // Retrieves and removes the first element of this deque. 

  E removeLast()throws NoSuchElementException; 
    // Retrieves and removes the last element of this deque. 

    // These three methods also retrieve and remove an 
    // element, but if the deque is empty, they return null.

  E poll() 
    // Retrieves and removes the head of the queue represented 
    // by this deque (in other words, the first element of 
    // this deque). 
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  E pollFirst() 
    // Retrieves and removes the first element of this deque. 

  E pollLast() 
    // Retrieves and removes the last element of this deque.

    // Miscellaneous methods

boolean contains(Object o) 
    // Returns true if this deque contains the specified 
    // element. 

int size() 
    // Returns the number of elements in this deque.
} // end Deque

Note that, as with the Queue interface, many of the methods exist in two
forms: one that throws an exception if the operation fails, the other that
returns a special value (either null or false, depending on the operation). We
would only expect an insert operation to fail if the implementation is based
upon a capacity-restricted data structure, as in our array-based implementation
of a queue presented in this chapter. Figure 8-14 and Figure 8-15 summarize
the behavior of the various methods for insertions to a deque as well as
removal and retrieval from a deque.   

Summary of Operations on First Element of Deque

FIGURE 8-14

Operation Condition Throws 
Exception

No Exception Return Value

Insert Full deque addFirst(e) offerFirst(e) false

Remove Empty deque removeFirst() pollFirst() null

Examine Empty deque getFirst() peekFirst() null

Summary of Operations on Last Element of Deque

FIGURE 8-15

Operation Condition Throws 
Exception
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Insert Full deque addLast(e) offerLast(e) false

Remove Empty deque removeLast() pollLast() null

Examine Empty deque getLast() peekLast() null
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Note that a deque can be used as either a stack or a queue depending on the set of
methods that are used. When a deque is used as a queue, FIFO (First-In-First-Out)
behavior results. A summary of the methods for queues is presented in Figure 8-16.   
Deques can also be used as LIFO (Last-In-First-Out) stacks. When a deque is
used as a stack, elements are pushed and popped from the beginning of the
deque. A summary of the methods for stacks is presented in Figure 8-17.   
Like the JCF Queue interface discussed earlier, use of the value null is discour-
aged in deques based on implementations of the Deque interface.

Queue and Deque Implementations. The JCF provides numerous implemen-
tations of the Queue and Deque interfaces. Given that the Deque interface is based
on the Queue interface, there are classes such as LinkedList and ArrayDeque that
implement both interfaces.  There are also classes that implement only the Queue
interface, such as PriorityQueue. The LinkedList implementation is the one
that most closely resembles the queue presented in this chapter. Here is an example
of how the JCF LinkedList is used as a queue:

import java.util.LinkedList;
public class TestQueue {

static public void main(String[] args) {
    LinkedList<Integer> aQueue = new LinkedList<Integer>();

boolean ok = true;
    Integer item;

Summary of Queue Operations

FIGURE 8-16
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Summary of Operations on Last Element of Deque

FIGURE 8-17
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if (aQueue.isEmpty()) {
      System.out.println("The queue is empty");
    } // end if

for (int i = 0; i < 5; i++) {
      aQueue.add(i); // With autoboxing, this is the same as
                     // aQueue.add(new Integer(i))
    } // end for

while (!aQueue.isEmpty()) {
      System.out.print(aQueue.peek()+ " ");
      item = aQueue.remove();
    } // end while
    System.out.println();

  } // end main

} // end TestQueue

The output of this program is

The queue is empty
0 1 2 3 4 

Comparing Implementations
We have suggested implementations of the ADT queue that use either a linear
linked list, a circular linked list, an array, a circular array, or the ADT list to rep-
resent the items in a queue. You have seen the details of three of these imple-
mentations. All of our implementations of the ADT queue are ultimately either
array based or reference based.

The reasons for making the choice between array-based and reference-
based implementations are the same as those discussed in earlier chapters. The
discussion here is similar to the one in Chapter 7 in the section “Comparing
Implementations.” We repeat the highlights here in the context of queues.

An implementation based on a statically allocated array prevents the
enqueue operation from adding an item to the queue if the array is full. If this
restriction is not acceptable, you must use either a resizeable array or a
reference-based implementation.

Suppose you decide to use a reference-based implementation. Should you
choose the implementation that uses a linked list, or should you choose a refer-
ence-based implementation of the ADT list? Because a linked list actually rep-
resents the items on the ADT list, using the ADT list to represent a queue is
not as efficient as using a linked list directly. However, the ADT list approach is
much simpler to write. 

Fixed size versus 
dynamic size

Reuse of an already 
implemented class 
saves you time
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If you decide to use a linked list instead of the ADT list to represent the
queue, should you use a linear linked list or a circular linked list? We leave this
question for you to answer in Programming Problem 1.

8.4 A Summary of Position-Oriented ADTs

So far, we have seen three abstract data types—the list, the stack, and the
queue—that have a common theme: All of their operations are defined in
terms of the positions of their data items. Stacks and queues greatly restrict the
positions that their operations can affect; only their end positions can be
accessed. The list removes this restriction.

Stacks are really quite similar to queues. This similarity becomes apparent
if you pair off their operations, as follows:

■ createStack and createQueue. These operations create an empty ADT
of the appropriate type.

■ Stack isEmpty and queue isEmpty. These operations determine whether
any items exist in the ADT.

■ push and enqueue. These operations insert a new item into one end (the
top and back, respectively) of the ADT.

■ pop and dequeue. The pop operation deletes the most recent item, which
is at the top of the stack, and dequeue deletes the first item, which is at the
front of the queue.

■ Stack peek and queue peek. Stack peek retrieves the most recent item,
which is at the top of the stack, and queue peek retrieves the first item,
which is at the front of the queue.

The ADT list, introduced in Chapter 4, allows you to insert into, delete
from, and inspect the item at any position of the list. Thus, it has the most
flexible operations of the three position-oriented ADTs. You can view the list
operations as general versions of the stack and queue operations, as follows:

■ length. If you remove the restriction that the stack and queue versions of
isEmpty can tell only when an item is present, you obtain an operation
that can count the number of items that are present.

■ add. If you remove the restriction that push and enqueue can insert new
items into only one position, you obtain an operation that can insert a new
item into any position of the list.

■ remove. If you remove the restriction that pop and dequeue can delete
items from only one position, you obtain an operation that can delete an
item from any position of the list.

Operations for the 
ADTs list, stack, and 
queue reference the 
position of items

A comparison of 
stack and queue 
operations

ADT list operations 
generalize stack and 
queue operations



458  Chapter 8 Queues

■ get. If you remove the restriction that the stack and queue versions of
peek can retrieve items from only one position, you obtain an operation
that can retrieve the item from any position of the list.

Because each of these three ADTs defines its operations in terms of an
item’s position in the ADT, this book has presented implementations for them
that can provide easy access to specified positions. For example, the stack
implementations allow the first position (top) to be accessed quickly, while the
queue implementations allow the first position (front) and the last position
(back) to be accessed quickly.

8.5 Application: Simulation

Simulation—a major application area for computers—is a technique for model-
ing the behavior of both natural and human-made systems. Generally, the goal
of a simulation is to generate statistics that summarize the performance of an
existing system or to predict the performance of a proposed system. In this
section, we will consider a simple example that illustrates one important type
of simulation.

Consider the following problem. Ms. Simpson, president of the First City
Bank of Springfield, has heard her customers complain about how long they
have to wait for service. Because she fears that they may move their accounts to
another bank, she is considering whether to hire a second teller.

Before Ms. Simpson hires another teller, she would like an approximation
of the average time that a customer has to wait for service from First City’s
only teller. How can Ms. Simpson obtain this information? She could stand
with a stopwatch in the bank’s lobby all day, but she does not find this pros-
pect particularly exciting. Besides, she would like to use a method that also
allows her to predict how much improvement she could expect if the bank
hired a given number of additional tellers. She certainly does not want to hire
the tellers on a trial basis and monitor the bank’s performance before making a
final decision.

Ms. Simpson concludes that the best way to obtain the information she
wants is to use a computer model to simulate the behavior of her bank. The
first step in simulating a system such as a bank is to construct a mathematical
model that captures the relevant information about the system. For example,
how many tellers does the bank employ? How often do customers arrive? If the
model accurately describes the real-world system, a simulation can derive accu-
rate predictions about the system’s overall performance. For example, a simula-
tion could predict the average time a customer has to wait before receiving
service. A simulation can also evaluate proposed changes to the real-world
system. For example, it could predict the effect of hiring more tellers in the
bank. A large decrease in the time predicted for the average wait of a customer
might justify the cost of hiring additional tellers.

Central to a simulation is the concept of simulated time. Envision a stop-
watch that measures time elapsed during a simulation. For example, suppose

Simulation models 
the behavior of 
systems

Simulated time
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that the model of the bank specifies only one teller. At time 0, which is the
start of the banking day, the simulated system would be in its initial state with
no customers. As the simulation runs, the stopwatch ticks away units of time—
perhaps minutes—and certain events occur. At time 12, the bank’s first cus-
tomer arrives. Since there is no line, the customer goes directly to the teller
and begins her transaction. At time 20, a second customer arrives. Because the
first customer has not yet completed her transaction, the second customer
must wait in line. At time 38, the first customer completes her transaction and
the second customer can begin his. Figure 8-18 illustrates these four times in
the simulation.

To gather the information you need, you run this simulation for a speci-
fied period of simulated time. During the course of the run, you need to keep
track of certain statistics, such as the average time a customer has to wait for
service. Notice that in the small example of Figure 8-18, the first customer had
to wait 0 minutes to begin a transaction and the second customer had to wait
18 minutes to begin a transaction—an average wait of 9 minutes.

One point not addressed in the previous discussion is how to determine
when certain events occur. For example, why did we say that the first cus-
tomer arrived at time 12 and the second at time 20? By studying real-world
systems like our bank, mathematicians have learned to model events such as
the arrival of people, using techniques from probability theory. This statistical
information is incorporated into the mathematical model of the system and is
used to generate events in a way that reflects the real world. The simulation
uses these events and is thus called an event-driven simulation. Note that the
goal is to reflect the long-term average behavior of the system rather than to
predict occurrences of specific events. This goal is sufficient for the needs of
the simulation.

Although the techniques for generating events to reflect the real world are
interesting and important, they require a good deal of mathematical sophistica-
tion. Therefore, simply assume that you already have a list of events available
for your use. In particular, for the bank problem, assume that a file contains
the time of each customer’s arrival—an arrival event—and the duration of
that customer’s transaction once the customer reaches the teller. For example,
the data

20 5

22 4

23 2

30 3

indicates that the first customer arrives 20 minutes into the simulation and that
the transaction—once begun—requires 5 minutes; the second customer arrives
22 minutes into the simulation and the transaction requires 4 minutes; and so
on. Assume that the input file is ordered by arrival time.

Notice that the file does not contain departure events; the data does not
specify when a customer will complete the transaction and leave. Instead, the
simulation must determine when departures occur. By using the arrival time

Sample arrival and 
transaction times
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and the transaction length, the simulation can easily determine the time at
which a customer departs. To see how to make this determination, you can
conduct a simulation by hand with the previous data as follows:

Time Event

20 Customer 1 enters bank and begins transaction

22 Customer 2 enters bank and stands at end of line

time = 0

time = 12

time = 20

time = 38

Teller

Teller

Teller

Teller

C

C

C

C

1

1

2

2

(a)

(b)

(c)

(d)

A bank line at time (a) 0; (b) 12; (c) 20; (d) 38

FIGURE 8-18

The results of a 
simulation
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23 Customer 3 enters bank and stands at end of line

25 Customer 1 departs; customer 2 begins transaction

29 Customer 2 departs; customer 3 begins transaction

30 Customer 4 enters bank and stands at end of line

31 Customer 3 departs; customer 4 begins transaction

34 Customer 4 departs

A customer’s wait time is the elapsed time between arrival in the bank and
the start of the transaction. The average of this wait time over all the customers
is the statistic that you want to obtain.

To summarize, this simulation is concerned with two types of events:

■ Arrival events. These events indicate the arrival at the bank of a new cus-
tomer. The input file specifies the times at which the arrival events occur. As
such, they are external events. When a customer arrives at the bank, one of
two things happens. If the teller is idle when the customer arrives, the cus-
tomer enters the line and begins the transaction immediately. If the teller is
busy, the new customer must stand at the end of the line and wait for service.

■ Departure events. These events indicate the departure from the bank of a
customer who has completed a transaction. The simulation determines the
times at which the departure events occur. As such, they are internal
events. When a customer completes the transaction, he or she departs and
the next person in line—if there is one—begins a transaction.

The main tasks of an algorithm that performs the simulation are to deter-
mine the times at which the events occur and to process the events when they
do occur. The algorithm is stated at a high level as follows:

// initialize
currentTime = 0
Initialize the line to "no customers"

while (currentTime ≤ time of the final event) {

if (an arrival event occurs at time currentTime) {
Process the arrival event

}  // end if
if (a departure event occurs at time currentTime) {

Process the departure event
}  // end if

  // when an arrival event and departure event
  // occur at the same time, arbitrarily process
  // the arrival event first

A first attempt at a 
simulation algorithm
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  ++currentTime
}  // end while

But do you really want to increment currentTime by 1? You would for a
time-driven simulation, where you would determine arrival and departure
times at random and compare those times to currentTime. In such a case,
you would increment currentTime by 1 to simulate the ticking of a clock.
Recall, however, that this simulation is event driven, so you have a file of arrival
times and transaction times. Because you are interested only in those times at
which arrival and departure events occur and because no action is required
between events, you can advance currentTime from the time of one event
directly to the time of the next.

Thus, you can revise the pseudocode solution as follows:

// initialize the line to "no customers"

while (events remain to be processed) {
  currentTime = time of next event
  if (event is an arrival event) {

Process the arrival event
}
else {

Process the departure event
}  // end if

  // when an arrival event and departure event
  // occur at the same time, arbitrarily process
  // the arrival event first
}  // end while

You must determine the time of the next arrival or departure event so that
you can implement the statement

currentTime = time of next event

To make this determination, you must maintain an event list. An event list
contains all arrival and departure events that will occur but have not occurred
yet. The times of the events in the event list are in ascending order, and thus
the next event to be processed is always at the beginning of the list. The algo-
rithm simply gets the event from the beginning of the list, advances to the time
specified, and processes the event. The difficulty, then, lies in successfully man-
aging the event list.

Since each arrival event generates exactly one departure event, you might
think that you should read the entire input file and create an event list of all
arrival and departure events sorted by time. Self-Test Exercise 5 asks you to
explain why this approach is impractical. As you will see, you can instead

A time-driven simu-
lation simulates the 
ticking of a clock

An event-driven sim-
ulation considers 
only times of certain 
events, in this case, 
arrivals and 
departures

First revision of the 
simulation algorithm

An event list con-
tains all 
future events
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manage the event list for this particular problem so that it always contains at
most one event of each kind. 

Recall that the arrival events are specified in the input file in ascending
time order. You thus never need to worry about an arrival event until you have
processed all the arrival events that precede it in the file. You simply keep the
earliest unprocessed arrival event in the event list. When you eventually process
this event—that is, when it is time for this customer to arrive—you replace it in
the event list with the next unprocessed arrival event, which is the next item in
the input file.

Similarly, you need to place only the next departure event to occur on the
event list. But how can you determine the times for the departure events?
Observe that the next departure event always corresponds to the customer that
the teller is currently serving. As soon as a customer begins service, the time of
his or her departure is simply

time of next departure = time service begins + length of transaction

Recall that the length of the customer’s transaction is in the input file, along
with the arrival time. Thus, as soon as a customer begins service, you place a
departure event corresponding to this customer in the event list. Figure 8-19
illustrates a typical instance of the event list for this simulation.

Now consider how you can process an event when it is time for the event
to occur. You must perform two general types of actions:

■ Update the line: Add or remove customers.

■ Update the event list: Add or remove events.

As customers arrive, they go to the back of the line. The current customer,
who is at the front of the line, is being served, and it is this customer that you
remove from the system next. It is thus natural to use a queue to represent the
line of customers in the bank. For this problem, the only information that you

This event list con-
tains at most one 
arrival event and 
one departure event

Arrival time

Departure time

Arrival event

Departure event

Transaction timeA

D

A typical instance of the event list

FIGURE 8-19

Two tasks are 
required to process 
each event

A queue represents 
the customers in line
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must store in the queue about each customer is the time of arrival and the
length of the transaction. The event list, since it is sorted by time, is not a
queue. We will examine it in more detail shortly.

To summarize, you process an event as follows:

TO PROCESS AN ARRIVAL EVENT

  // Update the event list
  Delete the arrival event for customer C from
      the event list

if (new customer C begins transaction immediately) {
    Insert a departure event for customer C into the 
        event list (time of event = current time +
        transaction length)
  }  // end if

if (not at the end of the input file) {
    Read a new arrival event and add it to the event list
        (time of event = time specified in file)
  }  // end if

Because a customer is served while at the front of the queue, a new customer
always enters the queue, even if the queue is empty. You then delete the arrival
event for the new customer from the event list. If the new customer is served
immediately, you insert a departure event into the event list. Finally, you read a
new arrival event into the event list. This arrival event can occur either before
or after the departure event.

TO PROCESS A DEPARTURE EVENT

   // Update the line
   Delete the customer at the front of the queue

if (the queue is not empty) {
      The current front customer begins transaction

}  // end if

   // Update the event list
   Delete the departure event from the event list

if (the queue is not empty) {
      Insert into the event list the departure event for
        the customer now at the front of the queue
        (time of event = current time + transaction length)

}  // end if

After processing the departure event, you do not read another arrival event
from the file. Assuming that the file has not been read completely, the event

The event list is not 
a queue

The algorithm for 
arrival events

A new customer 
always enters the 
queue and is served 
while at the queue’s 
front

The algorithm for 
departure events
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list will contain an arrival event whose time is earlier than any arrival still in the
input file.

Examining the event list more closely will help explain the workings of the
algorithm. There is no typical form that an event list takes. For this simula-
tion, however, the event list has four possible configurations:

■ Initially, the event list contains an arrival event A after you read the first
arrival event from the input file but before you process it:

Event list: A (initial state)

■ Generally, the event list for this simulation contains exactly two events: one
arrival event A and one departure event D. Either the departure event is
first or the arrival event is first as follows:

Event list: D A (general case—next event is a departure)

or

Event list: A D (general case—next event is an arrival)

■ If the departure event is first and that event leaves the teller’s line empty, a
new departure event does not replace the just-processed event. Thus, in
this case, the event list appears as

Event list: A (a departure leaves the teller’s line empty)

Notice that this instance of the event list is the same as its initial state.

■ If the arrival event is first and if, after it is processed, you are at the end of
the input file, the event list contains only a departure event:

Event list: D (the input has been exhausted)

Other situations result in an event list that has one of the previous four
configurations.

You insert new events either at the beginning of the event list or at the
end, depending on the relative times of the new event and the event currently
in the event list. For example, suppose that the event list contains only an
arrival event A and that another customer is now at the front of the line and
beginning a transaction. You need to generate a departure event D for this
customer. If the customer’s departure time is before the time of the arrival
event A, you must insert the departure event D before the event A in the event
list. However, if the departure time is after the time of the arrival event,
you must insert the departure event D after the arrival event A. In the case of a
tie, you need a rule to determine which event should take precedence. In this
solution, we arbitrarily choose to place the departure event after the arrival
event.

You can now combine and refine the pieces of the solution into an algo-
rithm that performs the simulation by using the ADT queue operations to
manage the bank line:

Four configurations 
of the event list for 
this simulation
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+simulate()
// Performs the simulation.

  Create an empty queue bankQueue to represent the bank line
  Create an empty event list eventList

  Get the first arrival event from the input file
  Place the arrival event in the event list

while (the event list is not empty) {
    newEvent = the first event in the event list

if (newEvent is an arrival event) {
      processArrival(newEvent, arrivalFile, 
                     eventList, bankQueue)
    }

else {
      processDeparture(newEvent, eventList, bankQueue)
    }  // end if
  }  // end while

+processArrival(in arrivalEvent:Event,
                in arrivalFile:File,
                inout anEventList:EventList,
                inout bankQueue:Queue)
// Processes an arrival event.

  atFront = bankQueue.isEmpty()  // present queue status

  // update the bankQueue by inserting the customer, as 
  // described in arrivalEvent, into the queue
  bankQueue.enqueue(arrivalEvent)

  // update the event list
  Delete arrivalEvent from anEventList

if (atFront) {
    // the line was empty, so new customer is at front
    // of line and begins transaction immediately
    Insert into the anEventList a departure event that
        corresponds to the new customer and has
    currentTime = currentTime + transaction length
  }  // end if

if (not at end of input file) {
    Get the next arrival event from arrivalFile
    Add the event -- with time as specified in the input

The final pseudo-
code for the event-
driven simulation
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        file -- to anEventList
  }  // end if

+processDeparture(in departureEvent:Event,
                  in anEventList:EventList,
                  inout bankQueue:Queue)
// Processes a departure event.

  // update the line by deleting the front customer
  bankQueue.dequeue()

  // update the event list
  Delete departureEvent from anEventList

if (!bankQueue.isEmpty())
    // customer at front of line begins transaction
    Insert into anEventList a departure event that 
        corresponds to the customer now at the front of the
        line and has currentTime = currentTime 
        + transaction length

}  // end if

Figure 8-20 begins a trace of this algorithm for the data on page 460 and
shows the changes to the queue and event list. Self-Test Exercise 6 at the end
of this chapter asks you to complete the trace.

The event list is, in fact, an ADT. By examining the previous pseudocode,
you can see that this ADT must include at least the following operations:

+createEventList()
// Creates an empty event list.

+isEmpty():boolean {query}
// Determines whether an event list is empty.

+insert(in anEvent:Event)
// Inserts anEvent into an event list so that events 
// are ordered by time. If an arrival event and a 
// departure event have the same time, the arrival 
// event precedes the departure event.

+delete()
// Deletes the first event from an event list.

+retrieve():Event
// Retrieves the first event in an event list.

ADT event list 
operations
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Programming Problem 8 at the end of this chapter asks you to complete
the implementation of this simulation.

1. The definition of the queue operations gives the ADT queue first-in, first-out
(FIFO) behavior.

2. The insertion and deletion operations for a queue require efficient access to both
ends of the queue. Therefore, a reference-based implementation of a queue uses
either a circular linked list or a linear linked list that has both a head reference and
a tail reference. 

3. An array-based implementation of a queue is prone to rightward drift. This phe-
nomenon can make a queue look full when it really is not. Shifting the items in the
array is one way to compensate for rightward drift. A more efficient solution uses a
circular array.

4. If you use a circular array to implement a queue, you must be able to distinguish
between the queue-full and queue-empty conditions. You can make this distinction

0

20

22

23

25

Read file, place event in anEventList

Update anEventList and bankQueue:
Customer 1 enters bank

Customer 1 begins transaction,
  create departure event

Read file, place event in anEventList

Update anEventList and bankQueue:
Customer 2 enters bank
Read file, place event in anEventList

Update anEventList and bankQueue:
Customer 3 enters bank
Read file, place event in anEventList

Update anEventList and bankQueue:
Customer 1 departs
Customer 2 begins transaction,
  create departure event

20 5

20 5

20 5

20 5      22 4

20 5      22 4

20 5      22 4       23 2

20 5      22 4       23 2

22 4      23 2

22 4      23 2

Self-Test Exercise 6 asks you to complete this trace.

A 20 5

(empty)

D 25

A 22 4      D 25

D 25

A 23 2      D 25

D 25

D 25        A 30 3

A 30 3

D 29        A 30 3

Time bankQueue (front to back) anEventList (beginning to end)Action

(empty)

A partial trace of the bank simulation algorithm for the data
20 5
22 4
23 2
30 3

FIGURE 8-20

Summary
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by either counting the number of items in the queue, using a full flag, or leaving
one array location empty.

5. Models of real-world systems often use queues. The event-driven simulation in this
chapter uses a queue to model a line of customers in a bank.

6. Central to a simulation is the notion of simulated time. In a time-driven simula-
tion, simulated time is advanced by a single time unit, whereas in an event-driven
simulation, simulated time is advanced to the time of the next event. To implement
an event-driven simulation, you maintain an event list that contains events that
have not yet occurred. The event list is ordered by the time of the events so that
the next event to occur is always at the head of the list.

1. If you use a linear linked list with only a head reference to implement a queue, the
insertion operation will be inefficient. Each insertion requires a traversal to the end
of the linked list. As the queue increases in length, the traversal time—and hence
the insertion time—will increase.

2. The management of an event list in an event-driven simulation is typically more
difficult than it was in the example presented in this chapter. For instance, if the
bank had more than one teller line, the structure of the event list would be much
more complex. 

1. If you add the letters W, Y, X, Z, and V in sequence to a queue of characters and
then remove them, in what order will they be deleted from the queue?

2. What do the initially empty queues queue1 and queue2 “look like” after the follow-
ing sequence of operations?

queue1.enqueue(23)
queue1.enqueue(17)
queue1.enqueue(50)
queue2.enqueue(42)
qFront1 = queue1.dequeue()
qFront2 = queue2.peek()
queue2.enqueue(top1)
queue1.enqueue(top2)
queue1.enqueue(13)
qFront2 = queue2.pop()
queue2.enqueue(49)

Compare these results with Self-Test Exercise 2 in Chapter 7.

3. Trace the palindrome-recognition algorithm described in the section “Simple Appli-
cations of the ADT Queue” for each of the following strings:

a. abracadabra c. rotator

b. radar d. xyzzy

Cautions

Self-Test Exercises
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4. For each of the following situations, which of these ADTs (1 through 4) would be
most appropriate: (1) a queue; (2) a stack; (3) a list; (4) none of these?

a. The customers at a deli counter who take numbers to mark their turn

b. An alphabetic list of names

c. Integers that need to be sorted

d. The boxes in a box trace of a recursive method

e. A grocery list ordered by the occurrence of the items in the store

f. The items on a cash register tape

g. A word processor that allows you to correct typing errors by using the back-
space key

h. A program that uses backtracking

i. A list of ideas in chronological order

j. Airplanes that stack above a busy airport, waiting to land

k. People who are put on hold when they call an airline to make reservations

l. An employer who fires the most recently hired person

m. People who go to a store on Black Friday hoping to get the best holiday buys

5. In the bank simulation problem that this chapter discusses, why is it impractical to
read the entire input file and create a list of all the arrival and departure events
before the simulation begins?

6. Complete the hand trace of the bank-line simulation that Figure 8-20 began with
the data given on page 460. Show the state of the queue and the event list at
each step.

1. Write a Java program that replaces the uppercase characters in a string with lower-
case characters. Use the ADT queue to replace the uppercase characters. 

2. Write a Java program to insert an item into a circular queue. Now write another Java
function that prints the elements of the circular queue in reverse order.

3. Suppose you have a queue in which the values 1 through 5 must be enqueued on
the queue in that order, but that an item on the queue can be dequeued and
printed at any time. Based on these constraints, give the list of operations that
would produce each of the following sequences. If it is not possible, state so.

a. 1 3 5 4 2

b. 1 2 3 4 5

c. Are there sequences that cannot occur? Explain why or why not.

Exercises
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4. Implement the pseudocode conversion algorithm that converts a sequence of char-
acter digits in a queue to an integer (it is in the section “Reading a String of Char-
acters”). Assume that you are using a queue to read in a series of characters that
represent a correct postfix expression. The postfix expression has operators and
multi-digit integers separated by single blanks. When the conversion method is
called, the next item in the queue should be a character digit followed by zero or
more character digits. The digits should be read until a non-digit character is
found, and the resulting integer returned.

5. Consider the palindrome-recognition algorithm described in the section “Simple
Applications of the ADT Queue.” Is it necessary for the algorithm to look at the
entire queue and stack? That is, can you reduce the number of times that the loop
must execute?

6. Consider the language

L = {w$w' : w is a possibly empty string of characters other than $, 
w' = reverse(w)}

as defined in Chapter 7. Write a recognition algorithm for this language that uses
both a queue and a stack. Thus, as you traverse the input string, you insert each
character of w into a queue and each character of w' into a stack. Assume that each
input string contains exactly one $.

7. What is output by the following code section?

QueueInterface aQueue = new QueueReferenceBased();
int num1, num2;
for (int i = 1; i <= 5; i++) {
  aQueue.enqueue(i);
} // end for 

for (int i = 1; i <= 5; i++) {
  num1 = (Integer)aQueue.dequeue();
  num2 = (Integer)aQueue.dequeue();
  aQueue.enqueue(num1 + num2);
  aQueue.enqueue(num2 - num1);
} // end for

while(!aQueue.isEmpty()) {
  System.out.print(aQueue.dequeue() + " ");
} // end for

8. Assume you have a queue q that has already been populated with data. What does
the following code fragment do to the queue q?

Stack s = new Stack();
while (!q.isEmpty())
   s.push(q.dequeue());
while (!ss.isEmpty())
   q.enqueue(s.pop());

9. Another operation that could be added to the ADT Queue is one that removes and
discards the user-specified number of elements from the front of the queue.
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Assume this operation is called dequeueAndDiscard and that it does not return a
value and accepts a parameter called count of data type int.

a. Add this operation to the QueueListBased implementation given in this chapter.

b. Add this operation to the QueueArrayBased implementation given in this chapter.

c. Add this operation to the QueueReferenceBased implementation given in this
chapter.

10. The JCF class Deque had a method called contains that would return true if an
Object was in the deque. For a queue, the method could be specified as follows:

public boolean contains(Object o)
// Returns true if this queue contains the specified element.

a. Add this method to the QueueListBased implementation given in this chapter.

b. Add this method to the QueueArrayBased implementation given in this chapter.

c. Add this method to the QueueReferenceBased implementation given in this
chapter.

11. Write a Java program that merges the contents of two different queues into a
single queue.

12. Consider the queue implementation that uses the ADT list to represent the items
in the queue. Discuss the efficiency of the queue’s insertion and deletion opera-
tions when the ADT list’s implementation is 

a. Array based

b. Reference based

13. An operation that displays the contents of a queue can be useful during program
debugging. Add a display operation to the ADT queue such that

a. display uses only ADT queue operations, so it is independent of the queue’s
implementation

b. display assumes and uses the reference-based implementation of the ADT
queue

14. Write a Java program that removes all blank spaces from a given string. To remove
the spaces, store the non-space characters in a queue. When you reach the end of
the string, extract all elements from the queue to get the output.

15. The Java Collections Framework provides a class called ArrayDeque that is an
implementation of the Deque interface presented in this chapter. Use the class
ArrayDeque to solve the read-and-correct problem presented in the “Developing
an ADT During the Design of a Solution” section of Chapter 7. In that problem,
you enter text at a keyboard and correct typing mistakes by using the backspace
key. Each backspace erases the most recently entered character. Your solution
should provide a corrected string of characters in the order in which they were
entered at the keyboard.
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16. With the following data, hand-trace the execution of the bank-line simulation that
this chapter describes. Each line of data contains an arrival time and a transaction
time. Show the state of the queue and the event list at each step.

5 5

7 9

8 4

23 6

30 5

33 4

38 6

Note that at time 23 there is a tie between the execution of an arrival event and a
departure event.

17. A given queue already has values stored in it. Write a Java program that sorts the
values of the queue and also indicates the second highest value in the queue.

18. Consider a queue maintained by a circular array QUEUE, with n = 20 rooms. Find
the number of elements in QUEUE if 

a. Front = 3 and Rear = 10;

b. Front = 19 and Rear = 8;

c. Front = 8 and Rear = 13;

19. As Chapter 4 pointed out, you can define ADT operations in a mathematically
formal way by using axioms. Consider the following axioms for the ADT queue,
where queue is an arbitrary queue and item is an arbitrary queue item.

(queue.createQueue()).isEmpty() = true
(queue.enqueue(item)).isEmpty() = false

(queue.createQueue()).dequeue() = error
((queue.createQueue()).enqueue(item)).dequeue() =
                                   queue.createQueue()
queue.isEmpty() = false ⇒
    (queue.enqueue(item)).dequeue() =
                      (queue.dequeue()).enqueue(item)
(queue.createQueue()).peek() = error
((queue.createQueue()).enqueue(item)).peek() = item
queue.isEmpty() = false ⇒
    (queue.enqueue(item)).peek() = queue.peek()

a. Note the recursive nature of the definition of peek. What is the base case? What
is the recursive step? What is the significance of the isEmpty test? Why is peek
recursive in nature while the operation peek for the ADT stack is not?

b. The representation of a stack as a sequence of push operations without any pop
operations was called a canonical form. (See Exercise 16a in Chapter 7.) Is there
a canonical form for the ADT queue that uses only enqueue operations? That
is, is every queue equal to a queue that can be written with only enqueues?
Prove your answer.
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1. Write a reference-based implementation of a queue that uses a linear linked list to
represent the items in the queue. You will need both a head reference and a tail ref-
erence. When you are done, compare your implementation to the one given in this
chapter that uses a circular linked list with one external reference. Which imple-
mentation is easier to write? Which is easier to understand? Which is more efficient?

2. Write a Java program that creates a queue from a given stack. The rear reference of
the queue should point to the base of the stack and the front reference of the
queue should point to the top of the stack. At the end of the code, the contents of
the stack should be copied in the queue. 

3. Consider the array-based implementation of a queue given in the text. Instead of
counting the number of items in the queue, you could maintain a flag full to dis-
tinguish between the full and empty conditions. Revise the array-based implemen-
tation by using the full flag.

a. Does this implementation have the same space requirements as the count or
full implementations? Why?

b. Implement this array-based approach.

4. This chapter described another array-based implementation of a queue that uses no
special data field—such as count or full (see Programming Problem 3)—to dis-
tinguish between the full and empty conditions. In this implementation, you
declare MAX_QUEUE + 1 locations for the array items, but use only MAX_QUEUE of
them for queue items. You sacrifice one array location by making front the index
of the location before the front of the queue. The queue is full if front equals
(back+1) % (MAX_QUEUE+1), but the queue is empty if front equals back.

a. Does this implementation have the same space requirements as the count or
full implementations? Why?

b. Implement this array-based approach.

5. Write a Java program that reads integer values from the terminal, then stores all
negative values in one queue and all positive values in another queue.

6. Implement the recognition algorithm described in Exercise 5 using the JCF Stack
and LinkedList classes.

7. As discussed in this chapter, the JCF provides an interface for a double ended
queue that supports insertion and deletion of items from both the front and back
of the data structure. Here is a simplified version of a deque interface: 

public interface Deque {

public boolean isEmpty();
    // Return true if the deque is empty, false otherwise.

public boolean addFirst(Object item);
    // Insert the item at the front of the deque. Returns false 
    // if the item cannot be added to the deque, true otherwise.

Programming Problems
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public boolean addLast(Object item);
    // Insert the item at the back of the deque. Returns false if 
    // the item cannot be added to the deque, true otherwise.

public Object removeFirst();
    // Delete and return the first item in the deque if the deque
    // is not empty, otherwise return null (the deque was empty).

public Object removeLast();
    // Delete and return the last item in the deque if the deque
    // is not empty, otherwise return null (the deque was empty).

public Object peekFirst();
    // Return the first item in the deque if the deque is
    // not empty, leaving the deque unchanged. Otherwise return 
    // null (the deque was empty).

public Object peekLast();
    // Return the last item in the deque if the deque is
    // not empty, leaving the deque unchanged. Otherwise return 
    // null (the deque was empty).
} // end Deque

a. Create a reference-based implementation of the Deque interface.

b. Create an array-based implementation of the Deque interface.

8. Implement the event-driven simulation of a bank that this chapter described. A
queue of arrival events will represent the line of customers in the bank. Maintain
the arrival events and departure events in an ADT event list, sorted by the time of
the event. Use a reference-based implementation for the ADT event list. 

The input is a text file of arrival and transaction times. Each line of the file con-
tains the arrival time and required transaction time for a customer. The arrival
times are ordered by increasing time.

Your program must count customers and keep track of their cumulative waiting
time. These statistics are sufficient to compute the average waiting time after the
last event has been processed. 

Display a trace of the events executed and a summary of the computed statistics
(total number of arrivals and average time spent waiting in line). For example, the
input file shown in the left columns of the following table should produce the
output shown in the right column.

Input File Output

1 5 Simulation Begins
2 5 Processing an arrival event at time:    1
4 5 Processing an arrival event at time:    2
20 5 Processing an arrival event at time:    4
22 5 Processing a departure event at time:   6
24 5 Processing a departure event at time:  11
26 5 Processing a departure event at time:  16
28 5 Processing an arrival event at time:   20
30 5 Processing an arrival event at time:   22
88 3 Processing an arrival event at time:   24

Processing a departure event at time:  25
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Processing an arrival event at time:   26
Processing an arrival event at time:   28
Processing an arrival event at time:   30
Processing a departure event at time:  30
Processing a departure event at time:  35
Processing a departure event at time:  40
Processing a departure event at time:  45
Processing a departure event at time:  50
Processing an arrival event at time:   88
Processing a departure event at time:  91
Simulation Ends

Final Statistics:
Total number of people processed: 10
Average amount of time spent waiting: 5.6

9. Modify and expand the event-driven simulation program that you wrote in Pro-
gramming Problem 6. Here are a few suggestions:

a. Add an operation that displays the event list, and use it to check your hand trace
in Exercise 10.

b. Add some statistics to the simulation. For example, compute the maximum wait
in line, the average length of the line, and the maximum length of the line.

c. Modify the simulation so that it accounts for three tellers, each with a distinct
line. You should keep in mind that there should be

■ Three queues, one for each teller

■ A rule that chooses a line when processing an arrival event (for example,
enter the shortest line)

■ Three distinct departure events, one for each line

■ Rules for breaking ties in the event list

Run both this simulation and the original simulation on several sets of input
data. How do the statistics compare?

d. The bank is considering the following change: Instead of having three distinct lines
(one for each teller), there will be a single line for the three tellers. The person at
the front of the line will go to the first available teller. Modify the simulation of
Part c to account for this variation. Run both simulations on several sets of input
data. How do the various statistics compare (averages and maximums)? What can
you conclude about having a single line as opposed to having distinct lines?

10. The people that run the Motor Vehicle Department (MVD) have a problem. They
are concerned that people do not spend enough time waiting in lines to appreciate
the privilege of owning and driving an automobile. The current arrangement is as
follows:

■ When people walk in the door, they must wait in a line to sign in.

■ Once they have signed in, they are told either to stand in line for registration
renewal or to wait until they are called for license renewal.

■ Once they have completed their desired transaction, they must go and wait in
line for the cashier.
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■ When they finally get to the front of the cashier’s line, if they expect to pay by
check, they are told that all checks must get approved. To do this, it is necessary
to go to the check-approver’s table and then reenter the cashier’s line at the
end.

Write an event-driven simulation to help the Motor Vehicle Department gather
statistics.

Each line of input will contain

■ A desired transaction code (L for license renewal, R for registration renewal)

■ A method-of-payment code ($ for cash, C for check)

■ An arrival time (integer)

■ A name

Write out the specifics of each event (when, who, what, and so on). Then display
these final statistics:

■ The total number of license renewals and the average time spent in MVD
(arrival until completion of payment) to renew a license

■ The total number of registration renewals and the average time spent in MVD
(arrival until completion of payment) to renew a registration

Incorporate the following details into your program:

■ Define the following events: arrive, sign in, renew license, renew registration, and
interact with the cashier (make a payment or find out about check approval).

■ In the case of a tie, let the order of events be determined by the list of events
just given—that is, arrivals have the highest priority.

■ Assume that the various transactions take the following amounts of time:

Sign in 10 seconds

Renew license 90 seconds

Register automobile 60 seconds

See cashier (payment) 30 seconds

See cashier (check not approved) 10 seconds

■ As ridiculous as it may seem, the people waiting for license renewal are called in
alphabetical order. Note, however, that people are not pushed back once their
transactions have started.

■ For the sake of this simulation, you can assume that checks are approved
instantly. Therefore, the rule for arriving at the front of the cashier’s line with a
check that has not been approved is to go to the back of the cashier’s line with a
check that has been approved. 
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CHAPTER 9

Advanced Java Topics

ava classes provide a way to enforce the walls of data
abstraction by encapsulating an abstract data type’s

data and operations. An object-oriented approach, how-
ever, goes well beyond encapsulation. Inheritance and
polymorphism allow you to derive new classes from existing
classes. This chapter describes techniques that make col-
lections of reusable software components possible. It also
discusses some of the useful components that exist in the
Java API and how they can be used. Realize that much
more can and should be said about these techniques.
Consider this chapter as an introduction to this material.
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9.1 Inheritance Revisited

When you think of inheritance, you might imagine a bequest of one million
dollars from some long-lost wealthy relative. In the object-oriented world,
however, inheritance describes the ability of a class to derive properties from a
previously defined class. These properties are like the genetic characteristics
you received from your parents: Some traits are the same, some are similar but
different, and some are new.

Inheritance, in fact, is a relationship among classes. One class can derive
the behavior and structure of another class. For example, Figure 9-1 illustrates
some relationships among various timepieces. Digital clocks, for example,
include the clock in the dashboard of your car, the clock on the sign of the
downtown bank, and the clock on your microwave oven. All digital clocks have
the same underlying structure and perform operations such as

Set the time
Advance the time
Display the time

A digital alarm clock is a digital clock that also has alarm methods, such as

Set the alarm
Enable the alarm
Sound the alarm
Silence the alarm

A class can derive 
the behavior and 
structure of another 
class

Analog clock

Analog
alarm clock

Cuckoo clock Grandfather
clock

Sundial Watch

Analog
wristwatch

Pocket
watch

Digital wristwatch Digital clock

Analog timepiece Digital timepiece

Timepiece

Digital alarm clock

Inheritance: Relationships among timepieces
FIGURE 9-1

A digital alarm clock 
is a digital clock
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That is, a digital alarm clock has the structure and operations of a digital clock
and, in addition, has an alarm and operations to manipulate the alarm.

You can think of the group of digital clocks and the group of digital alarm
clocks as classes. The class of digital alarm clocks is a subclass or a derived
class of the class of digital clocks. The class of digital clocks is a superclass or
base class of the class of digital alarm clocks.

A subclass inherits all the members of its superclass, except the construc-
tors. That is, a subclass has the data fields and methods of the superclass in
addition to the data fields and methods it defines. A subclass can also have its
own version of an inherited method. For example, according to Figure 9-1, a
cuckoo clock is a descendant, or subclass, of an analog clock, like the one on a
classroom wall. The cuckoo clock inherits the structure and behavior of the
analog clock, but revises the way it reports the time each hour by adding a
cuckoo.

Inheritance enables you to reuse software components when you define a
new class. For example, you can reuse your design and implementation of an
analog clock when you design a cuckoo clock. A simpler example will demon-
strate the details of such reuse and show you how Java implements inheritance. 

Chapter 4 spoke of volleyballs and soccer balls as objects. While designing a
class of balls—Ball—you might decide that a ball is simply a sphere with a
name. This realization is significant in that Sphere—the class of spheres—
already exists. Thus, if you let Sphere be a superclass of Ball, you can imple-
ment Ball without reinventing the sphere. Toward that end, here is a definition
of Sphere that is similar to the SimpleSphere class presented in Chapter 1:

public class Sphere {
private double radius;
public static final double DEFAULT_RADIUS = 1.0;

public Sphere() {
    setRadius(DEFAULT_RADIUS);
  } // end default constructor

public Sphere(double initialRadius) {
    setRadius(initialRadius);
  } // end constructor

public boolean equals(Object rhs) {
return ((rhs instanceof Sphere) &&

            (radius == ((Sphere)rhs).radius));
  }  // end equals

public void setRadius(double newRadius) {
if (newRadius >= 0.0) {

      radius = newRadius;
    }  // end if
  } // end setRadius

A subclass inherits 
the members of its 
superclass

Inheritance enables 
the reuse of existing 
classes

Inheritance reduces 
the effort necessary 
to add features to 
an existing object
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public double getRadius() {
return radius;

  } // end getRadius

public double diameter() {
return 2.0 * radius;

  } // end diameter

public double circumference() {
return Math.PI * diameter();

  } // end circumference

public double area() {
return 4.0 * Math.PI * radius * radius;

  } // end area

public double volume() {
return (4.0*Math.PI * Math.pow(radius, 3.0)) / 3.0;

  } // end volume

public void displayStatistics() {  
 System.out.println("\nRadius = " + getRadius() +

                  "\nDiameter = " + diameter() +
                 "\nCircumference = " + circumference() +
                 "\nArea = " + area() +
                 "\nVolume = " + volume());
  }  // end displayStatistics
} // end Sphere

The subclass Ball will inherit all the members of the class Sphere—except
the constructor—and define additional methods and data fields. The Ball class
could add:

■ A data field that names the ball

■ Methods to access this name and set this name

■ A method to alter an existing ball’s radius and name

■ A revised method displayStatistics to display the ball’s name in addi-
tion to its statistics as a sphere

You can add as many new members to a subclass as you like. Although you
cannot revise a superclass’s private data fields and should not reuse their
names, you can override methods in the superclass. A method in a subclass
overrides a method in the superclass if the two methods have the same declara-
tions. Here, the class Ball overrides displayStatistics. Figure 9-2 illus-
trates the relationship between Sphere and Ball.

A subclass can add 
new members to 
those it inherits

A subclass can 
override an inher-
ited method of its 
superclass
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You can declare Ball as follows:

public class Ball extends Sphere {
private String name;  // the ball's name

  // constructors:
public Ball() {

  // Creates a ball with radius 1.0 and name "unknown."
    setName("unknown");
  }  // end default constructor

public Ball(double initialRadius, String initialName) {
  // Creates a ball with radius initialRadius and 
  // name initialName.

super(initialRadius);
    setName(initialName);
  }  // end constructor

  // additional or revised operations:
public boolean equals(Object rhs) {

return ((rhs instanceof Ball) && 
            (getRadius() == ((Ball)rhs).getRadius()) &&
            (name.compareTo(((Ball)rhs).name)==0) );
  }  // end equals

public String getName() {
  // Determines the name of a ball.

Sphere()
~Sphere()
setRadius()
getRadius()
diameter()
circumference()
area()
volume()
displayStatistics()

theName

Ball()
~Ball()
setName()
name()
resetBall()

displayStatistics()

  radius

Sphere Ball

New

The subclass Ball inherits members of the superclass Sphere and overrides and adds methods
FIGURE 9-2

This constructor 
calls Sphere’s 
default constructor 
implicitly

This constructor 
calls another 
Sphere constructor 
explicitly
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return name;
  }  // end getName

public void setName(String newName) {
  // Sets (alters) the name of an existing ball.
    name = newName;
  }  // end setName

public void resetBall(double newRadius, String newName) {
  // Sets (alters) the radius and name of an existing
  // ball to newRadius and newName, respectively.
    setRadius(newRadius);
    setName(newName);
  }  // end resetBall

public void displayStatistics() {
  // Displays the statistics of a ball.
    System.out.print("\nStatistics for a "+ name());

super.displayStatistics();
  }  // end displayStatistics

}  // end Ball

Adding extends Sphere after class Ball indicates that Sphere is a
superclass of Ball or, equivalently, that Ball is a subclass of Sphere.

An instance of Ball has two data fields—radius, which is inherited, and
name, which is new. An instance of a subclass can invoke any public method in
the superclass. Thus, an instance of Ball has all the methods that Sphere
defines; new constructors; new methods getName, setName, and resetBall;
and revised methods equals and displayStatistics.

A subclass cannot access the private members of the superclass directly,
even though they are inherited. Inheritance does not imply access. After all,
you can inherit a locked vault but not be able to open it. In the current exam-
ple, the data field radius of Sphere is private, so you can reference it only
within the definition of Sphere and not within the definition of Ball. How-
ever, Ball can use Sphere’s public methods setRadius and radius to set or
obtain the value of radius indirectly, as is done in the revised equals method
in the Ball class.

Within the implementation of Ball, you can use the methods that
Ball inherits from Sphere. For example, the new method resetBall calls
the inherited method setRadius. Also, Ball’s displayStatistics calls
the inherited version of displayStatistics, which you indicate by
writing super.displayStatistics(). The word super represents the
object reference for the superclass and is necessary to differentiate between
the two versions of the method. Thus, you can access a superclass method,
even though it has been overridden, by using the super reference.

An instance of a 
subclass has all the 
behaviors of its 
superclass

A subclass inherits 
private members 
from the super-
class, but cannot 
access them directly

A subclass’s 
methods can call the 
superclass’s public 
methods
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In the version of displayStatistics in the Ball class, the subclass
overrides the superclass version of the method. The subclass version calls the
superclass version of the method and performs additional tasks as well.

Java annotations provides a mechanism for a programmer to explicitly notify
the compiler that a method from the superclass is being overridden. Annotations
have a number of uses including providing additional information to the compiler
to detect errors, informing the compiler to suppress warnings, and warning of the
use of deprecated elements. Of interest here is the annotation @Override—it is
used to indicate that the annotated method is overriding a method in a super class.
If a method with this annotation does not override its superclass’s method because
you misspell the method name or do not correctly match the parameters, the com-
piler will generate an error. It also makes your code easier to read and understand
because the fact that you are overriding the method is explicitly stated in the code.

To use the @Override annotation, simply place it on the line preceding
the overriding method:

@Override
public void myMethod() {  }

So for example, in the Ball class, displaystatistics would now appear as
follows:

@Override
public void displayStatistics() {
// Displays the statistics of a ball.
  System.out.print("\nStatistics for a "+ name());

super.displayStatistics();
} // end displayStatistics

Clients of a subclass can invoke the public members of the superclass. For
example, if you write

Ball myBall = new Ball(5.0, "Volleyball");

myBall.diameter() returns myBall’s diameter, 10.0 (2 times myBall’s
radius), by using the method diameter that Ball inherits from Sphere. If a
new method has the same name as a superclass method—displayStatistics,
for example—instances of the new class will use the new method, while
instances of the superclass will use the original method. Therefore, if mySphere
is an instance of Sphere, the call mySphere.displayStatistics() will invoke
Sphere’s displayStatistics, whereas myBall.displayStatistics() will
invoke Ball’s displayStatistics, as Figure 9-3 illustrates.

Finally, note that before any constructor in the subclass is executed, the
default constructor (the constructor with no parameters) of the superclass will be
executed unless you’ve specified an alternative constructor from the superclass. To
call an alternative constructor, invoke the method with the arguments for the

The annotation 
@Override indi-
cates that a method 
from the superclass 
is being overridden 

Clients of a sub-
class can invoke the 
superclass’s public 
methods
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superclass constructor you want to use. For example, the class Ball constructor
Ball(double initialRadius, String initialName) calls the single-
parameter constructor Sphere(double initialRadius) by using the state-
ment super(initialRadius). This call must appear as the first statement of
the subclass’s constructor. 

Because the default constructor for the class Ball does not specify an alterna-
tive constructor, the Sphere constructor with no parameters is automatically called.
Hence, if an instance of the class Ball is created using the following statement:

Ball myBall = new Ball();

myBall will have a radius of 1.0 and “unknown” as its name.

Java Access Modifiers
The keywords public and private are called access modifiers. They are used
to control the visibility of the members of a class. When no access modifier is
specified on a member declaration, the member is visible only to classes in the
same package. In addition to the public and private access modifiers, the
protected access modifier allows a class designer to hide the members from a
class’s clients but make them available to a subclass or to another class within
the same package. That is, a subclass can reference the protected members of
its superclass directly, but clients of the superclass or subclass cannot. Also,
classes within the same package can access protected members directly. 

For example, Sphere has a private field radius, which the subclass Ball
cannot reference directly. If, instead, you declared radius as protected, the
class Ball would be able to access radius directly. Any other classes within
the same package would also be able to access radius directly. Clients of
Ball or Sphere, however, would not have direct access to radius. Figure 9-4

displayStatistics()

mySphere.displayStatistics();
myBall.displayStatistics();

displayStatistics()

Sphere object Ball object

An object invokes the correct version of a method
FIGURE 9-3

A class with no 
access modifier is 
available to other 
classes within the 
same package
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illustrates public, private, protected, and package (default) access for members
of a class.

As a general stylistic guideline, you should make all data fields of a public
class private and, if desired, provide indirect access to them by defining
methods that are either public or protected. Although a class’s public members
are available to anyone, its protected members are available exclusively to
either its own methods, members of other classes in the same package, or the
methods of a subclass. The following summary distinguishes among the access
modifiers for members of a class:

Derived classes
have access to both
the public members and
the protected members
of the base class

Public members

Protected members

Private membersClient has no access

Client has no access

Client has access

Base class Derived classes

Package access
members

Classes within the same 
package have access to
both the protected 
members and package
access members of the
base class

Classes within same package

Access to public, protected, package access, and private members of a class by a 
client and a subclass

FIGURE 9-4

In general, a class’s 
data fields should 
be private

Membership Categories of a Class
1. Public members can be used by anyone.
2. Members declared without an access modifier (the default) are 

available to methods of the class and methods of other classes in
the same package.

3. Private members can be used only by methods of the class.
4. Protected members can be used only by methods of the class, 

methods of other classes in the same package, and methods of the
subclasses.

KEY CONCEPTS
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Is-a and Has-a Relationships
As you just saw, inheritance provides for superclass/subclass relationships
among classes. Other relationships are also possible. When designing new
classes from existing ones, it is important to identify their relationship so that
you can determine whether to use inheritance. Two basic kinds of relationships
are possible: is-a and has-a.

Is-a relationships. Earlier in this chapter, we used inheritance to derive the
class Ball from Sphere. You should use inheritance only when an is-a rela-
tionship exists between the superclass and the subclass. In this example, a ball
is a sphere, as Figure 9-5 illustrates. That is, whatever is true of the superclass
Sphere is also true of the subclass Ball. Wherever you can use an object of
type Sphere, you can also use an object of type Ball. This feature is called
object type compatibility. In general, a subclass is type-compatible with all of
its superclasses. Thus, you can use an instance of a subclass instead of an
instance of its superclass, but not the other way around. 

The object type of an actual argument in a call to a method can be a sub-
class of the object type of the corresponding formal parameter. As you’ve seen
in many of the implementations of ADTs presented earlier, you can use the
class Object as the type of the formal parameter, and since all classes
are derived from the Object class, you can use any object type as the actual
argument. 

As another example, suppose your program uses Sphere and Ball and
contains the following static method:

public static void displayDiameter(Sphere aSphere) {
   System.out.println("The diameter is " 

+ aSphere.diameter() + ".");
}  // end displayDiameter

Inheritance should 
imply an is-a 
relationship

A ball “is a” sphere
FIGURE 9-5

You can use an 
instance of a sub-
class anywhere you 
can use an instance 
of the superclass
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If you define mySphere and myBall as

Sphere mySphere = new Sphere(2.0);
Ball myBall = new Ball(5.0, "Volleyball");

the following calls to displayDiameter are legal:

displayDiameter(mySphere);  // mySphere's diameter
displayDiameter(myBall);    // myBall's diameter

The first call is unremarkable because both the actual argument mySphere and
the formal parameter aSphere have the same data type. The second call is
more interesting: The type of the actual argument myBall is a subclass of the
data type of the formal parameter aSphere. Because a ball is a sphere, it can
behave like a sphere. That is, myBall can perform sphere behaviors, so you can
use myBall anywhere you can use mySphere.

Has-a relationships. A ball-point pen has a ball as its point, as Figure 9-6
illustrates. Although you would want to use Ball in your definition of a
class Pen, you should not use inheritance, because a pen is not a ball. In
fact, you do not use inheritance at all to implement a has-a relationship.
Instead, you can define a data field point—whose type is Ball—within the
class Pen, as follows:

public class Pen {
private Ball point;

   ...
}  // end Pen

Since a ball is a 
sphere, you can use 
it anywhere you can 
use a sphere

class Ball

class Pen

A pen “has a” or “contains a” ball
FIGURE 9-6

If the relationship 
between two classes 
is not is-a, you 
should not use 
inheritance
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An instance of Pen has, or contains, an instance of Ball. Thus, another name
for the has-a relationship is containment.

You have already seen two other examples of the has-a relationship
among classes in the preceding two chapters: Chapter 7 presented an
implementation of StackInterface that used the ADT list to represent
the items in a stack, while Chapter 8 used a similar implementation for the
ADT queue. The class StackListBased, for example, contains a private
data field list of type ListReferenceBased. That is, an instance of
StackListBased has, or contains, an instance of ListReferenceBased
that manages the stack’s items. 

The has-a relationship between two classes is possible when inheritance is
inappropriate. Later, this chapter implements the ADT sorted list by using the
two relationships just discussed.

9.2 Dynamic Binding and Abstract Classes

As you saw earlier, if mySphere is an instance of Sphere and myBall is an
instance of Ball, mySphere.displayStatistics() invokes Sphere’s version
of displayStatistics, whereas myBall.displayStatistics() invokes
Ball’s version of displayStatistics. (See Figure 9-3.) Suppose, however,
that the following statements are executed:

Ball myBall = new Ball(1.25, "golfball");
Sphere mySphere = myBall;
mySphere.displayStatistics();

Since mySphere actually references an instance of Ball, the Ball version
of displayStatistics is executed. Thus, the appropriate version of a
method is decided at execution time, instead of at compilation time, based on
the type of object referenced. This situation is called late binding, or dynamic
binding, and a method such as displayStatistics is called polymorphic.
We also say that Ball’s version of displayStatistics overrides Sphere’s
version.

We will now examine a more subtle example of late binding. Suppose
you wanted the class Ball to have a method area that behaved differ-
ently than Sphere’s area. Just as Ball overrides displayStatistics, it
could override area to compute, for example, the ball’s cross-sectional
area, which is used to compute the drag on a ball. Thus, you would add
the method

@Override
public double area() {  // cross-sectional area

double r = getRadius()
return Math.PI * r * r;  // Math.PI is a constant

}  // end area

A polymorphic 
method has multiple 
meanings
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as a public member of the class Ball, overriding Sphere’s area. Consider

public class Sphere {
   · · ·     // everything as before

public double area() {  // surface area
return 4.0 * Math.PI * radius * radius;

  }  // end area

public void displayStatistics() {
    System.out.println("\nRadius = " + getRadius()

+ "\nDiameter = " + diameter()
+ "\nCircumference = " + circumference()
+ "\nArea = " + area()
+ "\nVolume = " + volume());

  }  // end displayStatistics

   · · ·
}  // end Sphere

public class Ball extends Sphere {
   · · ·  // everything as before, except
          // displayStatistics is omitted 
          // and area is revised:
  @Override

public double area() {
double r = getRadius();
return Math.PI * r * r;

  }  // end area
   · · ·
}  // end Ball

Now when an instance of Sphere calls displayStatistics, display-
Statistics will call Sphere’s area (Figure 9-7a), yet when an instance of
Ball calls displayStatistics, displayStatistics will call Ball’s area
(Figure 9-7b). Thus, the meaning of displayStatistics depends on the
type of object that invokes it.

The designer of a superclass does have some control over whether a sub-
class is allowed to override a superclass method. If the field modifier final is
specified in the method definition (typically after other field modifiers such as
public and static), the method cannot be overridden by a subclass. On the
other hand, the field modifier abstract requires the subclass to override the
method. Abstract methods are discussed in more detail in the next section.

When a method is defined as final, the compiler can determine which form
of a method to use at compilation time—as opposed to at execution time. This sit-
uation is called early binding, or static binding. Methods declared static also
use static binding, since only one version of the method is available for all classes.

You can control 
whether a subclass 
can override a 
superclass method

Methods that are 
final or static
use static binding
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public double area() {
// surface area
   . . .
}

public void displayStatistics() {
   . . .
   area()
}

mySphere.displayStatistics();

class Sphere(a)

public double area() {
// surface area
   . . .
}

public void displayStatistics() {
   . . .
   area()
}

@Override
public double area() {
// cross-sectional area
   . . .
}

myBall.displayStatistics();

class Sphere class Ball(b)

area is overridden: (a) mySphere.displayStatistics() calls area in Sphere;
(b) myBall.displayStatistics() calls area in Ball

FIGURE 9-7
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Overloading methods. When you override a method, you create a method
that has the same name and same set of parameters as the original method.
Sometimes it is convenient to define another method with the same name as
the first but with a different set of parameters. Such a method overloads the
first method. Frequently you overload constructors so that each constructor
has a different set of parameters. Often the choice of which constructor to use
depends on the information available when you create an instance. Some of the
constructors require fewer parameters and will set some of the data fields to
default values.

For another example of overloading, consider the class Ball and the
method resetBall, defined as follows:

public void resetBall(double newRadius, String newName) {
// Sets (alters) the radius and name of an existing
// ball to newRadius and newName, respectively.
  setRadius(newRadius);
  setName(newName);
}  // end resetBall

You could define two other methods to reset the data fields:

public void resetBall(double newRadius) {
// Sets (alters) the radius of an existing
// ball to newRadius.
  setRadius(newRadius);
}  // end resetBall

public void resetBall(String newName) {
// Sets (alters) the name of an existing
// ball to newName.
  setName(newName);
}  // end resetBall

All three methods have the same name but different sets of parameters. The
arguments in each call to resetBall determine which version of the method
will be used.

Abstract Classes
Suppose you have a CD player (CDRW) and a DVD player (DVDRW). Both
devices share several characteristics. Each involve an optical disc. You can
insert, remove, play, record, and stop such discs. Some of these operations are
essentially the same for both devices, while others—in particular, the play and
record methods—are different but similar.
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If you were specifying both devices, you might begin by describing the
common operations:

+insert()
// Inserts a disc into the player.

+remove()
// Removes a disc from the player.

+play()
// Plays the disc.

+record()
// Record the disc.

+stop()
// Stops playing the disc.

+skipForward()
// Skip ahead to another section of the disc.

+skipBackward()
// Skip back to an earlier section of the disc.

These operations could constitute a generic disc player (GDRW). 
If GDRW, CDRW, and DVDRW were classes, GDRW could be the base

class of CDRW and DVDRW, as Figure 9-8 illustrates. While GDRW could
implement operations such as insert and remove that would be suitable for
both a CDRW and a DVDRW, it could only indicate that these devices have a
play and record operation. So CDRW, for example, inherits the operations

Disc transport 
operations

GDRW

Inherits structure and operations
of GDRW; overrides play

Specifies basic structure and operations

CDRW DVDRW

CDRW and DVDRW have an abstract base class GDRW
FIGURE 9-8
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provided by GDRW but overrides the play and record operation to suit CDs,
as Figure 9-9 illustrates. If necessary, CDRW could override any of GDRW’s
operations or define additional ones. We can make similar comments about
DVDRW. Thus, 

■ A CDRW is a GDRW that plays sound.

■ A DVDRW is a GDRW that plays sound and video.

Because GDRW cannot implement its play or record operations, we would
not want instances of it. So GDRW is simply a class without instances that
forms the basis of other classes. If a class never has instances, its methods need
not be implemented. Such methods, however, must be abstract so that sub-
classes can supply their own implementations.

An abstract class has no instances and is used only as the basis of other
classes. Thus, the general disc player is an abstract class. In Java, you declare an
abstract class by including the keyword abstract in the class definition.

An abstract class, like other classes, can contain both data fields and meth-
ods. Although an abstract class contains the methods and data fields common
to all of its subclasses, some of its methods might have their implementations
deferred to the subclasses. In these cases, you also declare the methods them-
selves to be abstract by including the field modifier abstract in the method
definition. An abstract method does not have a body; instead, the method
heading ends with a semicolon. For example, the following is a declaration for
an abstract method:

public abstract void record();

Any class that contains at least one abstract method must itself be declared
abstract. Any subclass that fails to implement all of the abstract methods in its
superclass must also be declared as an abstract class.

Another example. The previous classes Sphere and Ball describe points that
are equidistant from the origin of a three-dimensional coordinate system. The

insert
remove
stop
skipForward
skipBack
play
record

play
record

Inherits

GDRW CDRW and DVDRW

Overrides

CDRW and DVDRW are subclasses of GDRW
FIGURE 9-9

A class that con-
tains at least one 
abstract method is 
an abstract class

An abstract class 
has subclasses but 
no instances
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following class, EquidistantShape, which declares operations to set and return
the distance of a point from the origin, could be an abstract class of Sphere:

public abstract class EquidistantShape {
private double radius;
public static final double DEFAULT_RADIUS = 1.0;

public void setRadius(double newRadius) {
if (newRadius >= 0.0) {

      radius = newRadius;
    }  // end if
  }  // end setRadius

public double getRadius() {
return radius;

  }  // end getRadius

  public abstract double area();
public abstract void displayStatistics();

}  // end EquidistantShape

This class declares a private data field radius with the public methods setRadius
and getRadius to access radius. The class also contains two abstract methods,
area and displayStatistics.

Now you could define the class Sphere as a subclass of EquidistantShape:

public class Sphere extends EquidistantShape {
public Sphere() {

    setRadius(1.0);
  } // end default constructor

public Sphere(double initialRadius) {
    setRadius(initialRadius);
  } // end constructor

  // Implementation of abstract methods

  @Override
public double area() {

double r = getRadius();
return 4.0 * Math.PI * r * r;

  } // end area

  @Override 
public void displayStatistics...

An abstract class of 
Sphere
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public void displayStatistics() {
    System.out.println("\nRadius = " + getRadius()

+ "\nDiameter = " + diameter()
+ "\nCircumference = " + circumference()
+ "\nArea = " + area()
+ "\nVolume = " + volume());

  }  // end displayStatistics

  // Remaining methods for class appear here
  . . .

} // end Sphere

By including the abstract method displayStatistics in the abstract class
EquidistantShape, you force some subclass—like Sphere—to implement it.
The class Ball can now be a subclass of Sphere, just as it appeared earlier in
this chapter.

Note that radius is a private data field of EquidistantShape instead of
Sphere. This means that subclasses of Sphere will be unable to access radius
directly by name. Thus, the class EquidistantShape must contain the methods
setRadius and getRadius, and you must provide default implementations for
the subclasses to inherit. Alternatively, you could define radius to be a pro-
tected data field of EquidistantShape, enabling the subclass to both access
radius directly and define setRadius and getRadius. Although data fields
are generally private, a protected data field within an abstract class is reasonable,
since the class is always a superclass of another class. That is, an abstract class has
no other purpose but to form the basis of another class.

An abstract class can provide a constructor, but the constructors cannot be
abstract. The key points about abstract classes are summarized as follows:

Abstract Classes
1. An abstract class is used only as the basis for subclasses and thus

defines a minimum set of methods and data fields for its subclasses.
2. An abstract class has no instances.
3. An abstract class should, in general, omit implementations except 

for the methods that provide access to private data fields or that
express functionality common to all of the subclasses.

4. A class that contains at least one abstract method must be 
declared as an abstract class.

5. A subclass of an abstract class must be declared abstract if it 
does not provide implementations for all abstract methods in the
superclass.

KEY CONCEPTS
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Java Interfaces Revisited
Inheritance is one way to have a common set of methods (or common behav-
ior) available for a group of classes. Inheritance also allows the subclasses to
inherit the structure of the superclass. In some instances, however, it is only
the behavior that is of interest. Java interfaces provide another mechanism for
specifying common behavior for a set of (perhaps unrelated) classes.

You have already seen how to use Java interfaces to specify the methods
for a class. The methods were then implemented by using a variety of tech-
niques, including array-based and reference-based implementations. Clients of
the class could use one of these implementations. To facilitate moving from
one implementation to another, you can declare references to the class by
using the interface definition instead of the class definition. For example, the
class StackArrayBased implements StackInterface. A client of the ADT
stack could contain the following statement:

StackInterface stack = new StackArrayBased();

Since stack has the type StackInterface, you can use only methods that
appear in the interface definition with stack—for example, stack.pop(). The
interface definition should also be used whenever the stack appears as a formal
parameter in a method. If you do this throughout the client, all you will need
to do to move to the reference-based implementation will be to change the
places where instances of the stack are created. For example, the previous defini-
tion of stack would change to

StackInterface stack = new StackReferenceBased();

and method calls that adhere to the interface, such as stack.pop(), would
continue to work in the client.

As was mentioned earlier, another common use of interfaces is to specify
behavior that is common to a group of unrelated classes. For example, you
could define an interface called AnimateInterface, as follows:

public interface AnimateInterface {
public void move(int x, int y);
public void paint();

}  // end AnimateInterface

The intent is to provide a common set of methods needed for screen ani-
mation. Thus, many different classes, such as the class Ball, could implement
this interface so that instances of Ball could be animated on the screen. If the
class Ball does not implement all of the methods in the interface, with the
intent that a subclass will implement the missing methods, the Ball class must
be declared as abstract.

As you saw in the discussion of the Java Collections Framework in Chapter 5,
you can use inheritance to derive new interfaces, often called subinterfaces. In
particular, the basis for the ADT collections in the JCF is the interface

A Java interface 
specifies the 
common behavior of 
a set of classes

A client can refer-
ence a class’s inter-
face instead of the 
class itself

An interface speci-
fies behaviors that 
are common to a 
group of classes

You can use inherit-
ance to define a 
subinterface
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java.util.Iterable, with the subinterface java.util.Collection. This
allowed the Collection interface to inherit a method called Iterator that
returns an Iterator object for the collection. Later in the chapter, we will
examine how to create an iterator for our own collection classes. 

9.3 Java Generics

Generic Classes
The ADTs developed in this text thus far relied upon the use of the Object
class as the data type for the elements. For example, the interface List-
Interface in the previous section used Object as the data type for the list
items. Because of polymorphism, we could use objects of any class as items in
the list. But this approach has some issues: 

■ Though the ADTs were intended to be used as homogeneous data struc-
tures, in reality, items of any type could be added to the same ADT instance.

■ To use objects returned from the ADT instance, we usually had to cast the
object back to the actual type in use. 

The second issue may lead to class-cast exceptions if the items removed from
the ADT instance are not of the type expected.

You can avoid these issues by using Java generics to specify a class in terms
of a data-type parameter. When you (the client) declare instances of the class,
you specify the actual data type that the parameter represents. We have seen
such declarations in our discussions of the Java Collections Framework. 

Here is a simple generic class definition, where T is the formal data-type
parameter:

public class NewClass <T> {

private int year;
private T data = null;

public NewClass() {
    year = 1970;
  }  // end constructor

public NewClass(T initialData) {
    year = 1970;
    data = initialData;
  }  // end constructor

public NewClass(T initialData, int year) {
    this.year = year;
    data = initialData;
  }  // end constructor

A generic class 
describes a class in 
terms of a data-type 
parameter
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public void setData(T newData) {
    data = newData;
  }  // end setData

public T getData() {
return data;

  }  // end getData

public String toString() {
if (data != null) {

return data.toString() + ", " + year;
    } 

else { 
return null + ", " + year;

    }  // end if
  }  // end toString
}  // end NewClass

You follow the class definition with the data-type parameter enclosed in < >.
If there is more than one type to be parameterized, they are separated by
commas. In the implementation of the class, you use the data-type parameter
exactly as you would any other type.

A simple program that uses this generic class could begin as follows:

static public void main(String[] args) {

  NewClass<Integer> second = new NewClass<Integer>(15);

  first.setData("Wood");

  System.out.println("Result of getData on second=> " + 
second.getData());

  ...
} // end main

Notice that the declarations of first and second specify the data type that the
parameter T represents within the generic class. When using a generic class, the
data-type parameters should always be included. Primitive types are not
allowed as generic type-parameters.

The Java compiler will allow generic classes without data type parameters
to be declared, but it is primarily for backward compatibility with code written
prior to generics being included in the language. In the absence of a data type
being specified, the compiler will generate warning messages when actual
instances are used where instances of the data-type parameter are expected. 

The client specifies 
an actual data type 
when declaring an 
instance of the class

  NewClass<String> first = new NewClass<String>("Wally", 2010);

  System.out.println("Contents of first => " + first);

  System.out.println("After modifying first => " + first);

Primitive types are 
not allowed as type-
parameters
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You must be careful about what you do with objects of the data-type
parameter within the implementation of a generic class. For example, note the
toString method in NewClass. It utilizes the toString method of data that
has been declared of type T. This will use the definition for toString that
exists for T, so if the toString method for that type does not override the one
provided by the class Object, you will get the default string representation
provided by the class Object, which includes the class name and hash code for
the object.

Finally, Java does not allow generic types to be used in array declarations.
When you declare an array with a generic type and attempt to instantiate it,
you will get the following error message:

Error: generic array creation
  T[] test = new T[10];

The alternative is to use either the ArrayList or Vector class in the Java
Collections Framework using the data-type parameter as follows:

  Vector<T> test = new Vector<T>();
  ArrayList<T> test2 = new ArrayList<T>();

Generic Wildcards
Note that when generic classes are instantiated, they are not necessarily related.
For example, if we try to assign second to first in the above code, we get the
following error message:

  Error: incompatible types
       found   : NewClass<java.lang.Integer>
       required: NewClass<java.lang.String>
         first = second;

The instances first and second are considered to be of two different types.
But there are situations where it would be convenient to write code that could
handle both of these instances based upon the fact that they utilize the same
generic class. This can be indicated by using the ? wildcard as the data-type
parameter, where the ? stands for an unknown type. For example, the method:

public void process(NewClass<?> temp) {
    System.out.println("getData() => " + temp.getData());
  }  // end process

can be used to process both the first and second instances.

Instances of generic 
classes are not 
related
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Generic Classes and Inheritance
You can still use inheritance with a generic class or interface. You can specify
actual data-types that should be used, or allow the subclass to maintain the
same data-type parameter by utilizing the same name in the declaration. Addi-
tional data-type parameters may also be specified. For example, given the
generic class Book defined as follows:

public class Book<T, S, R>

The following are legal subclasses of Book:

// Uses same generic parameters
public class RuleBook<T, S, R> extends Book<T, S, R>

// Specifies actual types for all of the type parameters
public class MyBook extends Book<Integer, String, String>

// Specifies the types for some of the type parameters and adds an
// additional one Q
public class TextBook<T, Q> extends Book<T, String, String>

Note that the rules of method overriding are in effect, a method (with the
same name) defined in a subclass will override a method in the superclass if:

■ you declare a method with the same parameters in the subclass, and 

■ the return type of the method is a subtype of all the methods it overrides.

The second point was introduced in Java 1.5.
To further our discussion of some of the other features of Java generics, assume

that we have the class hierarchy shown in Figure 9-10. Note that the class Object is
at the root of the hierarchy, Person is a subclass of Object, Student is a subclass of
Person, and UgradStudent and GradStudent are subclasses of Student.

When specifying a generic class, it is sometimes useful to indicate that the
data-type parameter should be constrained to a class or one of its subclasses or an
implementation of a particular interface. To indicate this, you use the keyword
extends to indicate that the type should be a subclass or an implementation of an
interface. The following definition of the interface Registration restricts the
generic parameter to Student or classes that extend Student:

public interface Registration <T extends Student> {

public void register(T student, CourseID cid);
public void drop(T student, CourseID cid);

  ...
}  // end Registration

Generic classes can 
be used with 
inheritance
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So the following declarations would be allowed:

Registration<Student> students = new Registration<Student>(); 

Attempting to use a class that is not a subclass of Student will result in a
compile-time error. For example:

Registration<Person> people = new Registration<Person>();

generates an error similar to this:

Error: type parameter Person is not within its bound

Hence, use of the extends clause is a way of constraining or placing an upper
bound on the data-type parameter.

The extends clause can also be used to bound the ? wildcard discussed
earlier. For example, the following declaration could process any ArrayList:

public void process(ArrayList<?> list)

But you might want the method to be constrained to a list containing objects
of type Student or one of its subclasses as follows:

public void process(ArrayList<? extends Student> stuList)

Object

Person

Student

UgradStudent GradStudent

Sample class hierarchy
FIGURE 9-10

Registration<UpgradStudent> ugrads = new Registration<UgradStudent>();
Registration<GradStudent> grads = new Registration<GradStudent>();

The extends clause 
places an upper
bound on the data-
type parameter
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In this case, a call to the method process might look like this:

ArrayList<UgradStudent> ugList = 
new ArrayList<UgradStudent>();

test1.process(ugList);

But if an attempt (similar to the following) to use a class that is not of type
Student or one of its subclasses is made,

ArrayList<Person>pList = new ArrayList<Person>();
test1.process(pList);

an error message similar to the following will be generated by the compiler:

Error: process(java.util.ArrayList<? extends Student>) in Test 
cannot be applied to (java.util.ArrayList<Person>)

Sometimes, the specification of a type can be too restrictive. One common
scenario where this occurs is when the Comparable interface is involved. Let’s
assume that the Student class extends the Comparable interface as follows:

class Student extends Person implements Comparable<Student> {
protected String id;

  ...

public int compareTo(Student s) {
return id.compareTo(s.id);

  } // end compareTo
  ...
} // end Student

Furthermore, assume that we have a class defined as follows:

import java.util.ArrayList;
class MyList <T extends Comparable<T>> {

  ArrayList<T> list = new ArrayList<T>();

  public void add(T x) {
    ...

if ((list.get(i)).compareTo(list.get(j)) < 0) {
      ... 
    }  // end if
  }  // end add
  ...
}  // end MyList
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Note that the following declaration compiles:

MyList<Student> it320 = new MyList<Student>();

But that the declaration:

MyList<UgradStudent> it321 = new MyList<UgradStudent>();

produces an error message similar to the following:

Error: type parameter UgradStudent is not within its bound

Note that the data-type parameter for MyList expects a class that implements
the Comparable interface for T. The class UgradStudent does not implement
this directly, it is inherited from the superclass Student. To allow the Ugrad-
Student class as the parameter to the generic class MyList, the class must
define the data-type parameter to allow for a superclass of T to implement the
Comparable interface. This is done as follows:

class MyList <T extends Comparable<? super T>> 

The clause <? super T> specifies a lower bound on the data-type parameter. In
essence, it is a way to say that the class or one of its superclasses can be used as
the actual data-type parameter.

Generic Implementation of the Class List
The following files revise the reference-based list class—which appears in
Chapter 5 and was discussed again earlier in this chapter—as a generic class.
Differences between this generic version and the earlier version are shaded.
The data-type parameter T is used instead of Object.

// ****************************************************
// Interface for the ADT list
// ****************************************************

public int size();
public boolean isEmpty();
public void removeAll(); 

public void remove(int index)  

} // end ListInterface

The super clause 
places a lower
bound on the data-
type parameter

public interface ListInterface<T> {

public void add(int index, T item)
throws ListIndexOutOfBoundsException;

throws ListIndexOutOfBoundsException;
public T get(int index)

throws ListIndexOutOfBoundsException;
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// ****************************************************
// Class Node used in the implementation of ADT list
// ****************************************************  

    item = newItem;
    next = null;
  } // end constructor

    item = newItem;
    next = nextNode;
  } // end constructor

} // end class Node

// ****************************************************
// Reference-based implementation of ADT list.
// ****************************************************

  // reference to linked list of items

private int numItems; // number of items in list

public ListReferenceBased() {
    numItems = 0;
    head = null;
  }  // end default constructor

public boolean isEmpty() {
return numItems == 0;

  }  // end isEmpty

public int size() {
return numItems;

  }  // end size

for (int skip = 1; skip < index; skip++) {
      curr = curr.next;
    } // end for

return curr;
  } // end find

class Node <T> {
  T item;
  Node<T> next;

public Node(T newItem) {

public Node(T newItem, Node<T> nextNode) {

public class ListReferenceBased<T> implements ListInterface<T> {

private Node<T> head; 

private Node<T> find(int index) {
    Node<T> curr = head;
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  // The methods get, add, and remove are omitted here – see 
  // Exercise 12.

public void removeAll() {
    // setting head to null causes list to be
    // unreachable and thus marked for garbage 
    // collection
    head = null;
    numItems = 0;
  } // end removeAll
} // end ListReferenceBased

Generic Methods
Just like class and interface declarations, method declarations can also be
generic. Methods, both static and non-static, and constructors can have data-
type parameters. Like classes and interfaces, the declaration of the formal data-
type parameters appears within the < > brackets, immediately before the
method’s return type. For example, here is a method to sort an ArrayList,
where the elements in the ArrayList must belong to a class that implements
the Comparable interface:

class MyMethods {

public static <T extends Comparable<? super T>> 
void sort(ArrayList<T> list) {

    // implementation of sort appears here
  } // end sort
} // end MyMethods

To invoke a generic method, you simply call the method just as you would a
non-generic method. Generic methods are invoked like regular non-generic
methods. The user doesn’t need to explicitly specify the actual data-type
parameters; the compiler automatically determines this by using the actual
arguments provided in the method invocation. For example:

class TestMethod { 
public static void main (String[ ] args) { 

    ArrayList<String> names = new ArrayList<String>(); 
    names.add("Janet");
    names.add("Andrew");
    names.add("Sarah");
    . . .
    MyMethods.sort(names); 
  }  // end main
}  // end TestMethod
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Since the names in the list are of type String, the compiler automatically
determines that the actual data-type argument for T is String.

9.4 The ADTs List and Sorted List 
Revisited

Chapter 4 introduced the ADT list and the ADT sorted list. As you know,
these lists have some characteristics and operations in common. For example,
each ADT can determine its length, determine whether it is empty, and
remove all items from the list. Both ADTs also provide a retrieval operation
that returns an object at a given index position in the list. You can organize
such commonalities into an interface, which can be the basis of these and other
list operations. For example,

public interface BasicADTInterface { 
public int size();
public boolean isEmpty();
public void removeAll();

}  // end BasicADTInterface

The designer of this interface wants all implementing classes to have the opera-
tions size, isEmpty, and removeAll.

Notice that the BasicADTInterface could be used as the interface for the
three ADTs that we have studied thus far: list, stack, and queue. All of the
ADTs had the methods isEmpty and removeAll, and they could easily have
had the method size as well. Using BasicADTInterface would be a way to
guarantee that all subinterfaces minimally will have these three methods. For
example, here is a new interface definition based upon BasicADTInterface
for the ADT list presented in section 9.3:

public interface ListInterface<T> extends BasicADTInterface {
public void add(int index, T item) 

throws ListIndexOutOfBoundsException;
public T get(int index)

throws ListIndexOutOfBoundsException;
public void remove(int index) 

throws ListIndexOutOfBoundsException;
}  // end ListInterface

The implementation of ListReferenceBased<T>, started in section 9.3, is
consistent with this interface, so the implementation is omitted here. 

An interface for lists 
and sorted lists

An interface for a list
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Implementations of the ADT Sorted List 
That Use the ADT List
Now suppose you want to define and implement a class for the ADT sorted
list, whose operations are

+createSortedList()
+isEmpty():boolean {query}
+size():integer {query}
+sortedAdd(in newItem:ListItemType) throw ListException
+sortedRemove(in anItem:ListItemType) throw ListException
+removeAll()
+get(in index:integer) throw ListIndexOutOfBoundsException
+locateIndex(in anItem:ListItemType):integer {query}

The method createSortedList is implemented as a constructor for the class.
The methods isEmpty, size, and removeAll have already been specified in
the interface BasicADTInterface. The interface definition for the ADT sorted
list extends BasicADTInterface to include the other methods. The elements
of the sorted list have one additional requirement: They must implement the
Comparable interface, as discussed in Chapter 5, so that the sorted list can
order the elements. Thus, we have

public interface
       SortedListInterface<T extends Comparable<? super T>> 
       extends BasicADTInterface {

public void sortedAdd(T newItem) throws ListException;
public T get (int index)

throws ListIndexOutOfBoundsException;
public int locateIndex(T anItem);
public void sortedRemove(T anItem) throws ListException;

}  // end SortedListInterface

You could, of course, use an array or a linked list to implement a sorted
list, but such an approach would force you to repeat much of the correspond-
ing implementations of ListArrayBased and ListReferenceBased. Fortu-
nately, you can avoid this repetition by using one of the previously defined
classes, ListReferenceBased<T>, to implement the class SortedList.

Two approaches are possible by using the is-a and has-a relationships
between the new class SortedList and the existing class ListReference-
Based. In most cases, one of the approaches will be best. However, we will use
the sorted list to demonstrate both approaches.

A sorted list is a list. Chapter 4 stated that the ADT list is simply a list of
items that you reference by position number. If you maintained those items in
sorted order, would you have a sorted list? Ignoring name differences, most
operations for the ADT list are the same as the corresponding operations for

ADT sorted list 
operations

You can reuse 
ListArray-Based
to implement 
SortedList
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the ADT sorted list. The insertion and deletion operations differ, however, and
the ADT sorted list has an additional operation, locateIndex.

You can insert an item into a sorted list by first using locateIndex to
determine the position in the sorted list where the new item belongs. You then
use ListReferenceBased’s add method to insert the item into that position in
the list. You use a similar approach to delete an item from a sorted list.

Thus, a sorted list is a list, so you can use inheritance. That is, the
class SortedList can be a subclass of the class ListReferenceBased,
inheriting ListReferenceBased’s members and implementing the addi-
tional methods specified in the interface SortedListInterface. Thus, we
have the following:

public class SortedList<T extends Comparable<? super T>>
extends ListReferenceBased<T>
implements SortedListInterface<T> {

public SortedList() {
    // invokes default constructor of superclass
  }  // end default constructor

public void sortedAdd(T newItem) {
  // Adds an item to the list.
  // Precondition: None.
  // Postcondition: The item is added to the list in 
  // sorted order.

int newPosition = locateIndex(newItem);
super.add(newPosition, newItem);

  }  // end sortedAdd

public void sortedRemove(T anItem) throws ListException {
  // Removes an item from the list.
  // Precondition: None.
  // Postcondition: The item is removed from the list
  // and the sorted order maintained.

int position = locateIndex(anItem);
    if ((anItem.compareTo(get(position))==0)) {

super.remove(position);
 }

    else {
throw new ListException("Sorted remove failed");

}  // end if
  }  // end sortedRemove

public int locateIndex(T anItem) {
  // Finds an item in the list.
  // Precondition: None.
  // Postcondition: If the item is in the list, its 
  // index position in the list is returned.  If the 

An is-a relationship 
implies inheritance
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  // item is not in the list, the index of where it 
  // belongs in the list is returned.

int index = 0;
    // Loop invariant: anItem belongs after all the 
    // elements up to the element referenced by index

while ( (index < size()) && 
            (anItem.compareTo(get(index)) > 0 ) ) {
      ++index;
    }  // end while

return index;
  }  // end locateIndex
}  // end SortedList

Note that by carefully designing the method implementations, especially
locateIndex, we do not need access to any of the private data fields of the
class ListReferenceBased. This means that we could just as easily have used a
generic version of ListArrayBased as the superclass.

The class SortedList now has operations such as isEmpty, size, and
get—which it inherits from ListReferenceBased—and sortedAdd and
sortedRemove. Note also, however, that SortedList has also inherited the
add and remove methods from ListReferenceBased. The availability of all
of the methods from the superclass may or may not be desirable. In this case,
the add method could potentially destroy the sorted list by making inappropri-
ate insertions into the sorted list. In general, there are two techniques that you
can use to solve this problem:

1. You can override the unwanted method with one that provides the correct
semantics.

2. You can override the unwanted method with one that simply raises an
exception indicating that the method is not supported.

In the present situation, the first technique does not provide a satisfactory
solution. The add method in the superclass ListReferenceBased has a
parameter that designates the position of the insertion, whereas the add
method in the subclass SortedList does not. Even if we change the name
sortedAdd to add, the subclass’s add could not override the superclass’s add,
because the two add methods have different sets of parameters.

The second technique, however, does provide a solution. The subclass
overrides the superclass’s add method with a method that throws an
UnsupportedOperationException. For example, the subclass could contain
the following method:

public void add(int index, T item)
       throws UnsupportedOperationException {
   throw new UnsupportedOperationException();
}
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When the add method is overridden in this way, the exception
UnsupportedOperationException is thrown if an instance of SortedList
invokes add.

A sorted list has a list as a member. If you do not have an is-a relationship
between your new class and an existing class, inheritance is inappropriate. You
may, however, be able to use an instance of the existing class to implement the
new class. The following declaration of the class SortedList has a private data
field that is an instance of ListInterface and that contains the items in the
sorted list:

public class SortedList<T extends Comparable<? super T>>
implements SortedListInterface<T> {

private ListInterface<T> aList;

// constructors:
public sortedList() {

    aList = new ListReferenceBased<T>();
  }  // end default constructor

// sorted list operations:
public boolean isEmpty() {

    // To be implemented in Programming Problem 1
  }  // end isEmpty

public int size() {
    // To be implemented in Programming Problem 1
  }  // end size

public void sortedAdd(T newItem) {
int newPosition = locateIndex(newItem);

    aList.add(newPosition, newItem);
  }  // end sortedAdd

public void sortedRemove(T anItem) {
    // To be implemented in Programming Problem 1
  }  // end sortedRemove

public T get(int position) {
    // To be implemented in Programming Problem 1
  }  // end get

public int locateIndex(T anItem) {
    // To be implemented in Programming Problem 1
  }  // end locateIndex

An instance of 
ListInterface
can implement the 
sorted list
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public void removeAll() {
    // to be implemented in Programming Problem 1
  } // end removeAll
}  // end SortedList

The data field aList is an instance of ListInterface and is a member of
SortedList. The constructor and the sortedAdd method are implemented.
The notation aList.add indicates an invocation to the insertion operation of
the ADT list.

Programming Problem 1 at the end of this chapter asks you to complete
this implementation. In doing so, you will realize that locateIndex needs get
to access items in aList; that is, ListInterface’s implementation is hidden
from SortedList. Notice also that a client of SortedList cannot access
aList and has only the sorted list operations available.

9.5 Iterators

Earlier discussions about the Java Collections Framework introduced iterators.
An iterator is an object that can access a collection of objects one object at a
time. That is, an iterator traverses the collection of objects. Recall the JCF
generic interface java.util.ListIterator:

public interface ListIterator<E> extends Iterator<E> {

void add(E o);
  // Inserts the specified element into the list (optional 
  // operation). The element is inserted immediately before 
  // the next element that would be returned by next, if any, 
  // and after the next element that would be returned by 
  // previous, if any. (If the list contains no elements, the 
  // new element becomes the sole element on the list.) The 
  // new element is inserted before the implicit cursor: a 
  // subsequent call to next would be unaffected, and a 
  // subsequent call to previous would return the new element.

boolean hasNext();
  // Returns true if this list iterator has more elements when 
  // traversing the list in the forward direction.

boolean hasPrevious();
  // Returns true if this list iterator has more elements when 
  // traversing the list in the reverse direction.

An iterator accesses 
a collection one item 
at a time



514  Chapter 9 Advanced Java Topics

  E next() throws NoSuchElementException;
  // Returns the next element in the list. Throws
  // NoSuchElementException if the iteration has no next 
  // element.

int nextIndex();
  // Returns the index of the element that would be returned 
  // by a subsequent call to next. (Returns list size if the
  // list iterator is at the end of the list.)

  E previous()throws NoSuchElementException;
  // Returns the previous element in the list. This method may
  // be called repeatedly to iterate through the list 
  // backwards, or intermixed with calls to next to go back 
  // and forth. (Note that alternating calls to next and 
  // previous will return the same element repeatedly.) Throws
  // NoSuchElementException if the iteration has no previous
  // element.

int previousIndex()
  // Returns the index of the element that would be returned 
  // by a subsequent call to previous. (Returns -1 if the list
  // iterator is at the beginning of the list.)

void remove() throws UnsupportedOperationException,
                       IllegalStateException;
  // Removes from the list the last element that was
  // returned by next or previous (optional 
  // operation).

void set(E o) throws UnsupportedOperationException, 
                       IllegalStateException;
  // Replaces the last element returned by next or
  // previous with the specified element (optional
  // operation).
} // end ListIterator

Notice that many of the operations, such as remove, can throw the excep-
tion UnsupportedOperationException. The expectation is that operations
will simply throw this exception if the operation is not available in the class that
implements the interface.

An iterator has an implicit cursor that keeps track of where you are in the ADT.
It is best to think of this cursor as being either before the first item in the list,
between two items in the list, or after the last item in the list. The hasPrevious and
the previous operations refer to the element before the cursor, whereas the
hasNext and next operations refer to the element after the cursor. The previous

Some iterator 
methods may not be 
supported
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operation moves the cursor backward, whereas next moves it forward. Figure 9-11
shows the relationship between the iterator’s cursor and the items in a
ListInterface list. Note that the cursor value ranges from 0 to the size of the list.

So the implementation of an iterator must use some mechanism to keep
track of the cursor. You also need to be able to identify the element that was
extracted by the most recent call to next or previous. This is necessary for
the implementation of the remove and set operations, which must operate on
the last item returned by previous or next. And lastly, note that the opera-
tions set and remove may only be executed after a call to previous or next.

The implementation of an iterator can be approached in two ways. First,
the iterator can be implemented using only the public methods available in the
ADT. This leaves the iterator independent of the underlying implementation,
but may not necessarily be the most efficient. So a second possibility is to
implement the class as part of the ADT package, utilizing the underlying
storage structure of the corresponding ADT to implement the iterator.

The following implementation is based upon the first approach, so it uses
only the methods available in ListInterface to implement the ListIterator
operations.

public class MyListIterator<T>
implements java.util.ListIterator<T> {

private ListInterface<T> list;
private int cursor;        // location of the cursor in list
private int lastItemIndex; // index of last item returned

                             // by previous or next

public MyListIterator(ListInterface<T> list) {
this.list = list;

    cursor = 0;
    lastItemIndex = -1;
  } // end constructor
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public void add(T item) {
    list.add(cursor+1, item);
    cursor++;
    lastItemIndex = -1;
  } // end add

public boolean hasNext() { 
return (cursor < list.size());

  } // end hasNext

public boolean hasPrevious() { 
return (cursor >= 0);

  } // end hasPrevious

public T next() throws java.util.NoSuchElementException {
try {

      T item = list.get(cursor + 1);
      lastItemIndex = cursor;
      cursor++;

return item;
    } // end try

catch (IndexOutOfBoundsException e){
throw new java.util.NoSuchElementException();

    } // end catch
  } // end next

public int nextIndex() { 
return cursor;

  } // end nextIndex

public T previous() 
throws java.util.NoSuchElementException {

try {
      T item = list.get(cursor);
      lastItemIndex = cursor;;
      cursor--;

return item;
    } // end try

catch(IndexOutOfBoundsException e) {
throw new java.util.NoSuchElementException();

    } // catch
  } // end previous

public int previousIndex() { 
return cursor - 1;

  } // end previousIndex
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public void remove() throws  UnsupportedOperationException, 
                               IllegalStateException {
    // See Programming Problem 10.

throw new UnsupportedOperationException();
  } // end remove

public void set(T item) 
throws UnsupportedOperationException {

    // See Programming Problem 10.
throw new UnsupportedOperationException();

  } // end set

} // end MyListIterator

Note that if this iterator implementation is used with a ListReferenceBased
list, this will be quite inefficient (Exercise 16 will ask you to explore this).  As such,
Programming Problem 11 asks you to create an iterator for a generic doubly
linked list.

1. Classes can have ancestor and descendant relationships. A subclass inherits all
members of its previously defined superclass, but can access only the public and
protected members. Private members of a class are accessible only by its methods.
Protected members can be accessed by methods of both the class and any sub-
classes, but not by clients of these classes.

2. With inheritance, the public and protected members of the superclass remain,
respectively, public and protected members of the subclass. Such a subclass is
type-compatible with its superclass. That is, you can use an instance of a subclass
wherever you can use an instance of its superclass. This relationship between super-
classes and subclasses is an is-a relationship.

3. A method in a subclass overrides a method in the superclass if they have the same
parameter declarations. The Java annotation @Override provides a mechanism for
a programmer to explicitly notify the compiler that a method from the superclass is
being overridden. If the superclass has defined the method to be final, the sub-
class cannot override the method.

4. An abstract method in a class is a method that you can override in a subclass. When
a method is abstract, you can either implement it or defer it to a further subclass.

5. A subclass inherits the interface of each method that is in its superclass. A subclass
also inherits the implementation of each nonabstract method that is in its superclass. 

6. An abstract class specifies only the essential members necessary for its subclasses
and, therefore, can serve as the superclass for a family of classes. A class with at least
one abstract method must also be declared abstract and is referred to as an abstract
superclass. 

Summary
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7. Early, or static, binding describes a situation whereby a compiler can determine at
compilation time the correct method to invoke. Late, or dynamic, binding describes
a situation whereby the system makes this determination at execution time.

8. When you invoke a method that is not declared final—for example, mySphere.
displayStatistics()—the type of object is the determining factor under late
binding.

9. Generic classes enable you to parameterize the type of a class’s data.

10. Iterators provide an alternative way to cycle through a collection of items.

1. If a method is abstract, and an implementation is not provided by the subclass, the
subclass must also be declared abstract.

2. If a class fails to implement all of the methods in an interface, it must be declared
abstract.

3. You should use inheritance only if the relationship between two classes is is-a.

Self-Test Exercises 1, 2, and 3 consider the classes Sphere and Ball, which this chapter
describes in the section “Inheritance Revisited.”

1. Write Java statements for the following tasks:

a. Declare an instance mySphere of Sphere with a radius 2.

b. Declare an instance myBall of Ball whose radius is 6 and whose name is
Beach ball.

c. Display the diameters of mySphere and myBall.

2. Define a class Planet that inherits Ball, as defined in this chapter. Your new class
should have private data fields that specify a planet’s mimimum and maximum dis-
tances from the sun and public methods that access or alter these distances.

3. a. Can resetBall, which is a method of Ball, access Sphere’s data field radius
directly, or must resetBall call Sphere’s setRadius? Explain.

b. Repeat Part a, but assume that radius is a protected data field instead of a
private data field of the class Sphere.

4. Consider the interface SortedListInterface, as described in this chapter.

a. When can a reference be declared as type SortedListInterface?

b. When must a class that implements SortedListInterface be used?

c. Show a legal declaration that uses the SortedListInterface with one of the
SortedList implementations.

Cautions

Self-Test Exercises
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5. a. What are the similarities between abstract classes and interfaces?

b. What are the differences between abstract classes and interfaces?

6. Why should a class’s private methods never be abstract?

7. Given the generic class NewClass as described in the section “Generic Classes”
write a statement that defines an instance myClass of NewClass for data declared
as Student:

class Student {
private String name;
private double gpa;

public Student(String name, double gpa) {
this.name = name;
this.gpa = gpa;

  }  // end constructor
  ...
}  // end Student

1. Given the following:

class Test {
  public static Foo f = new Foo();
  public static Foo f2;
  public static Bar b = new Bar();

  public static void main(String [] args) {
    for (int x=0; x<6; x++) {
    f2 = getFoo(x);
    f2.react();
    }
  }

  static Foo getFoo(int y) {
    if ( 0 == y % 2 ) {
      return f;
    } else {
      return b;
    }
  }
}

class Bar extends Foo {
  void react() { System.out.print("Bar "); }
}

class Foo {
  void react() { System.out.print("Foo "); }
}

Exercises
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what is the output?

a. Bar Bar Bar Bar Bar Bar

b.  Foo Bar Foo Bar Foo Bar

c. Foo Foo Foo Foo Foo Foo

d. Compilation fails.

e. An exception is thrown at runtime.

2. Define and implement a class Pen that has an instance of Ball as one of its data
fields. Provide several members for the class Pen, such as the data field color and
methods isEmpty and write.

3. Consider the following classes:

Clock represents a device that keeps track of the time. Its public methods include
setTime and chime.

AlarmClock represents a clock that also has an alarm that can be set. Its public
methods include setSoundLevel and getAlarmTime.

a. Which of the methods mentioned above can the implementation of setTime
invoke?

b. Which of the methods mentioned above can the implementation of getAlarmTime
invoke?

4. Assume the classes described in the previous question and consider a main method
that contains the following statements:

Clock wallClock;
AlarmClock myAlarm;

a. Which of these objects can correctly invoke the method chime?

b. Which of these objects can correctly invoke the method setSoundLevel?

5. The Node<T> class used in the generic implementation of the class
ListReferencebased<T> in this chapter assumed that it would be declared
package-private; hence, the data fields were declared for package access only.  

a. Suppose that the data fields were declared private.  Write accessor and mutator
methods for both the item and next fields.

b. Give at least three different examples of how the code in the
ListReferencebased<T> implementation would have to be changed.

6. Given the following:

class Foo {
String doStuff(int x) { return "hello"; }
}
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which method would not be legal in a subclass of Foo?

a. String doStuff(int x) { return "hello"; }

b. int doStuff(int x) { return 42; }

c. public String doStuff(int x) { return "Hello"; }

d. protected String doStuff(int x) { return "Hello"; }

7. Consider the following classes:

Expression represents algebraic expressions, including prefix, postfix, and infix
expressions. Its public methods include characterAt. Its protected methods
include isOperator and isIdentifier. It also has several private methods.

InfixExpression is derived from Expression and represents infix expressions.
Its public methods include isLegal and evaluate. It also has several protected
and private methods.

a. What methods can the implementation of isIdentifier invoke?

b. What methods can the implementation of isLegal invoke?

8. Assume the classes described in the previous question and consider a main method
that contains

Expression algExp;
InfixExpression infixExp;

a. Which of these objects can correctly invoke the method characterAt?

b. Which of these objects can correctly invoke the method isOperator?

c. Which of these objects can correctly invoke the method isLegal?

9. Consider an ADT back list, which restricts insertions, deletions, and retrievals to
the last item in the list. 

a. Define a generic interface BackListInterface that is a subclass of the inter-
face BasicListInterface. Provide a reference-based implementation of the
interface BackListInterface called BackList.

b. Define and implement a class for the ADT stack that is a subclass of BackList.

10. Define an abstract class Person that describes a typical person. Include methods to
retrieve the person’s name, and to get or change his or her address. Next, define a
subclass Student that describes a typical student. Include methods to retrieve his
or her ID number, number of credits completed, and grade point average. Also
include methods to get or change his or her campus address. Finally, derive from
Student a class UgradStudent for a typical undergraduate student. Include
methods for retrieving his or her degree and major. 

11. Implement a generic version of ListArrayBased based on the generic
ListInterface  presented in this chapter. You will need to use the JFC
ArrayList class instead of an array for the underlying implementation, since you
cannot declare an array using a generic type in Java. Write a small test program as
well to verify that your generic ListArrayBased class is working properly.
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12. Complete the implementation of the class ListReferenceBased presented in the
section “Generic Implementation of the Class List.” In particular, write the imple-
mentations of the methods get, add, and remove.

13. Given the following:

class Over {
int doStuff(int a, float b) {
return 7;
}
}

class Over2 extends Over {
line no 8:  // insert code here
}

which two methods, if inserted independently at line 8, will not compile? (Choose two.)

a. public int doStuff(int x, float y) { return 4; }

b. protected int doStuff(int x, float y) {return 4; }

c. private int doStuff(int x, float y) {return 4; }

d. private int doStuff(int x, double y) { return 4; }

e. long doStuff(int x, float y) { return 4; }

f. int doStuff(float x, int y) { return 4; }

14. Given the following:

class MySuper {
  public MySuper(int i) {
    System.out.println("super " + i);
  }
}

public class MySub extends MySuper {
  public MySub() {
    super(2);
    System.out.println("sub");
  }

  public static void main(String [] args) {
    MySuper sup = new MySub();
  }
}

what is the output?

a. sub
super 2

b. super 2
Sub

c.  Compilation fails at line 2.

d. Compilation fails at line 8.
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15. What is the output of the following code?

public  class A {
  public void print Value(){
  System.out.println("Val e-A ");
  }
}

public  class B  extends   A {
  public void printNameB(){
  System.out. println(" Name-B ");
  }
}

public  class C  extends   A {
  public void printNameC(){
  System.out.println (" Name-C ");
  }
}

public  class Test{
  public static void main (String[] args) {

  B  b = new B();
  C  c = new C();
  newPrint(b);
  newPrint(c);
  }

    public static void new Print(A a) {
    a.printValue();
    }
}

a. Value-A Name-B

b. Value-A Value-A

c. Value-A Name-C

d. Name-B Name-C

16. It was noted that the MyListIterator implementation presented in section 9.5
would be inefficient if it were used with a ListReferenceBased list. Explain why
this is the case and give a specific example demonstrating this inefficiency.

17. Given the following:

public class TestPoly {
  public static void main(String [] args ){
  Parent p = new Child();
  }
}
class Parent {
  public Parent() {
    super();
    System.out.println("instantiate a parent");
  }
}
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class Child extends Parent {
  public Child() {
  System.out.println("instantiate a child");
  super();
  }
}

what is the output?

a. instantiate a child

b. instantiate a parent

c. instantiate a child
instantiate a parent

d. instantiate a parent
instantiate a child

e. Compilation fails.

f. An exception is thrown at run time.

1. Complete the implementation of SortedList that has a reference of type List-
Interface as a data field, as described in the section “Implementations of the
ADT Sorted List that Use the ADT List.”

2. The interface ListInterface, as described in this chapter, does not contain a
method position that returns the number of a particular item, given the item’s
value. Such a method enables you to pass the node’s number to remove, for exam-
ple, to delete the item.

Define a subinterface of ListInterface that has position as a method as well
as methods that insert, delete, and retrieve items by their values instead of their posi-
tions. Write a class that implements this interface. Always make insertions at the
beginning of the list. Although the items in this list are not sorted, the new ADT is
analogous to SortedList, which contains the method locatePosition.

3. Consider an ADT circular list, which is like the ADT list but treats its first item as
being immediately after its last item. For example, if a circular list contains six items,
retrieval or deletion of the eighth item actually involves the list’s second item. Let
insertion into a circular list, however, behave exactly like insertion into a list. Define
and implement the ADT circular list as a subclass of ListReferenceBased, as
described in Chapter 5.

4. Write a Java program for bank transactions by creating the Abstract Class: BankAccount
and derive the classes SavingsAccount and CurrentAccount.

There are five methods to be implemented in BankAccount:

displayBalance () - Displays the balance in the account
depositAccount () - Creates a deposit in the account (adds amount to the balance)
withdrawAccount () - Withdraws money from the account (reduces the

balance by amount withdrawn)

Programming Problems
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calculateInterest () - Shows the interest for the current balance.
Interest Rates - Savings 5.5% Current 2% 
This method is implemented as an abstract function
in BankAccount Class and implemented in the child
classes.

displayCount() - Displays the total number of transactions (deposits/
withdrawals). The count should be the sum total of
both Savings and Current Account transactions.

The first menu should ask the user to choose the type of account (Savings/
Current) and process the further requests accordingly.

5. A company has been asked to set up a system to collect tolls from vehicles that use
a particular bridge. The toll amount will vary depending on the type of vehicle that
uses the bridge. The company needs a system that can determine the toll amount
based on the type of vehicle. Following is the design to be implemented:

Create an abstract class Vehicle with the following attributes:

Number of wheels
Weight
Toll amount

Create the following methods in Vehicle class:
displayVehicle() - should display the first two attributes
Write the following pure virtual function:
calculateToll() - to be implemented in the derived classes

Derive two classes: Truck and Car from Vehicle.

In the class Car, implement the calculateToll() method as follows:

If number of wheels < 6 and weight < 1000 kg, then toll is number of wheels � 10
Else toll is number of wheels � 15

In the class Truck, implement calculateToll() as follows:

If number of wheels < 8 and weight < 5000 kg, then toll is number of wheels � 25
If number of wheels < 8 and weight > 5000 kg, then toll is number of wheels � 30
If number of wheels > 8 and weight < 10000 kg, then toll is number of wheels � 40
If number of wheels > 8 and weight > 10000 kg, then toll is number of wheels � 50

The system should ask the user to enter the number of wheels and the weight of
the vehicle and then the system should print the toll.

Include exception handling to verify the input. For example, if a user enters an
odd number for the number of wheels, it should throw up an exception and say
“Invalid Input - odd number of wheels”.

6. Write a generic version of the class Stack presented in Chapter 7. 

a. Use the reference-based version as the basis of your implementation.

b. Use the array-based version as the basis of your implementation, using an
ArrayList for the array.
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7. Write a generic version of the class Queue presented in Chapter 8. 

a. Use the reference-based version as the basis of your implementation.

b. Use the array-based version as the basis of your implementation, using an
ArrayList for the array.

8. Algebraic expressions are character strings, but since String is a final class, you
cannot derive a class of expressions from String. Instead, define an abstract class
Expression that can be the basis of other classes of algebraic expressions. Provide
methods such as characterAt, isOperator, and isIdentifier. Next design and
implement a class InfixExpression derived from the class Expression.

Programming Problem 9 of Chapter 6 describes a grammar and a recognition
algorithm for infix algebraic expressions. That grammar makes left-to-right associa-
tion illegal when consecutive operators have the same precedence. Thus, a/b*c is
illegal, but both a/(b*c) and (a/b)*c are legal. 

Programming Problem 8 of Chapter 7 describes an algorithm to evaluate an
infix expression that is syntactically correct by using two stacks. 

Include in the class InfixExpression an isLegal method—based on the rec-
ognition algorithm given in Chapter 6—and an evaluate method—based on the
evaluation algorithm given in Chapter 7. Use one of the ADT stack implementa-
tions presented in Chapter 7.

9. Chapter 6 described the class Queens that was used in a solution to the Eight
Queens problem. A two-dimensional array represented the chessboard and was a
data field of the class. Programming Problem 1 of Chapter 6 asked you to write a
program to solve the Eight Queens problem based on these ideas. Revise that
program by replacing the two-dimensional array with a class that represents the
chessboard.

10. Implement the methods remove and set for the class MyListIterator. These
methods should behave as follows:

public void remove()

Removes from the list the last element that was returned by next or previous.
This call can be made only once per call to next or previous. It can be made only
if the add method in MyListIterator has not been called after the last call to next
or previous.

Throws IllegalStateException if neither next or previous has been called,
or if remove or add has been called after the last call to next or previous.

public void set(T item)

Replaces the last element returned by next or previous with the specified ele-
ment. This call can be made only if neither remove nor add have been called after
the last call to next or previous.

Throws IllegalStateException if neither next nor previous has been
called, or if remove or add has been called after the last call to next or previous.

Note that remove and set require you to keep track of the state of the iterator;
in other words, you must know whether or not next and previous are called
immediately before the use of remove or set. You may also need to keep track of
whether previous or next was called last to make sure that the correct element is
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deleted from or replaced in the list when remove and set are called. You may find
it useful to use the variable lastItemIndex to determine if the last call made was to
next or previous.

11. Implement a generic doubly linked list implementation called DoubleRefBasedList
that implements the generic ListInterface presented in this chapter. In addition,
create an iterator called DListIterator for the DoubleRefBasedList class. To
make the implementation of DListIterator more efficient, you need to have access
to the underlying doubly linked list in DoubleRefBasedList. The easiest way to
accomplish this is to move the iterator class inside the list class. This inner class is then a
member of the DoubleRefBasedList class and will have access to all of the members
of that class. So the DoubleRefBasedList class with an inner DListIterator class
will be structured as follows:

public class DoubleRefBasedList<T> implements ListInterface<T> {

private DNode<T> head;
  // Assume Dnode has been defined as a node class with both
  // a next and previous reference.  It is used to implement
  // the doubly linked list.

  // Class members for ListInterface implementation appear here.

  // Inner class DListIterator
private class DListIterator 

implements java.util.ListIterator<T> {

private DNode<T> cursor = head; 

    // Class members for ListIterator implementation appear here.
    // This inner class has access to members of the outer class.

  } // end DListIterator

public java.util.ListIterator<T> listIterator() {
return new DListIterator();

  } // end listIterator
} // end DoubleRefBasedList

The cursor declaration is shown to demonstrate how members of the outer class
can be accessed from the inner class. When a call is made to the
DoubleRefBasedList method listIterator, the cursor will be initialized to
reference the first node in the list. 

Also write a test class that tests that the operations for both the
DoubleRefBasedList class and the DListIterator class are working properly.

12. Create a generic class for a circular doubly linked list as shown in Figure 5-29 of
Chapter 5. Also define and implement a bidirectional iterator for this class.
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CHAPTER 10

Algorithm Efficiency 
and Sorting

his chapter will show you how to analyze the efficiency
of algorithms. The basic mathematical techniques for

analyzing algorithms are central to more advanced topics in
computer science and give you a way to formalize the notion
that one algorithm is significantly more efficient than another.
As examples, you will see analyses of some algorithms that
you have studied before, including those that search data. In
addition, this chapter examines the important topic of sorting
data. You will study some simple algorithms, which you may
have seen before, and some more-sophisticated recursive
algorithms. Sorting algorithms provide varied and relatively
easy examples of the analysis of efficiency.
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Keeping Your Perspective
The Efficiency of Searching 

Algorithms
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10.1 Measuring the Efficiency of Algorithms

The comparison of algorithms is a topic that is central to computer science.
Measuring an algorithm’s efficiency is quite important because your choice of
algorithm for a given application often has a great impact. Responsive word
processors, grocery checkout systems, automatic teller machines, video games,
and life support systems all depend on efficient algorithms.

Suppose two algorithms perform the same task, such as searching. What
does it mean to compare the algorithms and conclude that one is better?
Chapter 2 discussed the several components that contribute to the cost of a
computer program. Some of these components involve the cost of human
time—the time of the people who develop, maintain, and use the program.
The other components involve the cost of program execution—that is, the
program’s efficiency—measured by the amount of computer time and space
that the program requires to execute. 

We have, up to this point, emphasized the human cost of a computer pro-
gram. The early chapters of this book stressed style and readability. They
pointed out that well-designed algorithms reduce the human costs of imple-
menting the algorithm with a program, of maintaining the program, and of
modifying the program. The primary concern has been to develop good
problem-solving skills and programming style. Although we will continue to
concentrate our efforts in that direction, the efficiency of algorithms is also
important. Efficiency is one criterion that you should use when selecting an
algorithm and its implementation. The solutions in this book, in addition to
illustrating good programming style, are frequently based on relatively effi-
cient algorithms.

The analysis of algorithms is the area of computer science that provides
tools for contrasting the efficiency of different methods of solution. Notice the
use of the term methods of solution rather than programs; it is important to
emphasize that the analysis concerns itself primarily with significant differ-
ences in efficiency—differences that you can usually obtain only through supe-
rior methods of solution and rarely through clever tricks in coding. Reductions
in computing costs due to clever coding tricks are often more than offset by
reduced program readability, which increases human costs. An analysis should
focus on gross differences in the efficiency of algorithms that are likely to dom-
inate the overall cost of a solution. To do otherwise could lead you to select an
algorithm that runs a small fraction of a second faster than another algorithm
yet requires many more hours of your time to implement and maintain.

The efficient use of both time and memory is important. Computer scien-
tists use similar techniques to analyze an algorithm’s time and space efficiency.
Since none of the algorithms covered in this text has significant space require-
ments, our focus will be primarily on time efficiency. 

How do you compare the time efficiency of two algorithms that solve the
same problem? One possible approach is to implement the two algorithms in Java
and run the programs. This approach has at least three fundamental difficulties:

Consider efficiency 
when selecting an 
algorithm

A comparison 
of algorithms 
should focus on 
significant
differences in 
efficiency
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1. How are the algorithms coded? If algorithm A1 runs faster than algo-
rithm A2, it could be the result of better programming. Thus, if you
compare the running times of the programs, you are really comparing
implementations of the algorithms rather than the algorithms themselves.
You should not compare implementations, because they are sensitive to
factors such as programming style that tend to cloud the issue of which
algorithm is inherently more efficient.

2. What computer should you use? The particular computer on which the
programs are run also obscures the issue of which algorithm is inherently
more efficient. One computer may simply be much faster than the other,
so clearly you should use the same computer for both programs. Which
computer should you choose? The particular operations that the algo-
rithms require can cause A1 to run faster than A2 on one computer, while
the opposite is true on another computer. You should compare the effi-
ciency of the algorithms independently of a particular computer.

3. What data should the programs use? Perhaps the most important diffi-
culty on this list is the selection of the data for the programs to use. There
is always the danger that you will select instances of the problem for which
one of the algorithms runs uncharacteristically fast. For example, when
comparing a sequential search and a binary search of a sorted array, you
might search for an item that happens to be the smallest item in the array.
In such a case, the sequential search will find the item more quickly than
the binary search because the item is first in the array and so is the first
item that the sequential search will examine. Any analysis of efficiency
must be independent of specific data.

To overcome these difficulties, computer scientists employ mathematical
techniques that analyze algorithms independently of specific implementations,
computers, or data. You begin this analysis by counting the number of signifi-
cant operations in a particular solution, as the next section describes.

The Execution Time of Algorithms
Previous chapters have informally compared different solutions to a given
problem by looking at the number of operations that each solution required.
For example, Chapter 5 compared array-based and reference-based implemen-
tations of the ADT list and found that an array-based list.get(n) could
access the n th item in a list directly in one step, because the item is stored in
items[n-1]. A reference-based list.get(n), however, must traverse the list
from its beginning until the n th node is reached, and so would require n steps. 

An algorithm’s execution time is related to the number of operations it
requires. Counting an algorithm’s operations—if possible—is a way to assess its
efficiency. Consider a few other examples.

Three difficulties 
with comparing 
programs instead 
of algorithms

Algorithm analysis 
should be indepen-
dent of specific 
implementations,
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Counting an algo-
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a way to assess 
its efficiency



532  Chapter 10 Algorithm Efficiency and Sorting

Traversal of a linked list. Recall from Chapter 5 that you can display the
contents of a linked list that head references by using the following statements:1

Node curr = head;                       ← 1 assignment
while (curr != null) { ← n+1 comparisons
  System.out.println(curr.item);        ← n writes
  curr = curr.next;                     ← n assignments
}  // end while

Assuming a linked list of n nodes, these statements require n + 1 assignments,
n + 1 comparisons, and n write operations. If each assignment, comparison,
and write operation requires, respectively, a, c, and w time units, the state-
ments require (n + 1) * (a + c) + n * w time units.2 Thus, the time required to
write n nodes is proportional to n. This conclusion makes sense intuitively: It
takes longer to display, or traverse, a linked list of 100 items than it does a
linked list of 10 items.

The Towers of Hanoi. Chapter 6 proved recursively that the solution to
the Towers of Hanoi problem with n disks requires 2n – 1 moves. If each move
requires the same time m, the solution requires (2n – 1) * m time units. As you
will soon see, this time requirement increases rapidly as the number of disks
increases.

Nested loops. Consider an algorithm that contains nested loops of the fol-
lowing form:

for (i = 1 through n) {
for (j = 1 through i) {

for (k = 1 through 5) {
      Task T
    }  // end for
  }  // end for
}  // end for

If task T requires t time units, the innermost loop on k requires 5 * t time
units. The loop on j requires 5 * t * i time units, and the outermost loop on i
requires

(5 * t * i) = 5 * t * (1 + 2 + · · · + n) = 5 * t * n * (n + 1)/2

time units.

1. Chapter 5 actually used a for statement. We use an equivalent while statement 
here to clarify the analysis.
2. Although omitting multiplication operators is common in algebra, we indicate them 
explicitly here to facilitate counting them.

Displaying the data 
in a linked list of n
nodes requires time 
proportional to n

i 1=

n

∑
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Algorithm Growth Rates
As you can see, the previous examples derive an algorithm’s time requirement
as a function of the problem size. The way to measure a problem’s size
depends on the application—typical examples are the number of nodes in a
linked list, the number of disks in the Tower of Hanoi problem, the size of an
array, or the number of items in a stack. Thus, we reached conclusions such as

Algorithm A requires n2/5 time units to solve a problem of size n

Algorithm B requires 5 * n time units to solve a problem of size n

The time units in these two statements must be the same before you can
compare the efficiency of the two algorithms. Perhaps we should have written

Algorithm A requires n2/5 seconds to solve a problem of size n

Our earlier discussion indicates the difficulties with such a statement: On what
computer does the algorithm require n 2/5 seconds? What implementation of
the algorithm requires n 2/5 seconds? What data caused the algorithm to
require n 2/5 seconds? 

What specifically do you want to know about the time requirement of an
algorithm? The most important thing to learn is how quickly the algorithm’s
time requirement grows as a function of the problem size. Statements such as

Algorithm A requires time proportional to n2

Algorithm B requires time proportional to n

each express an algorithm’s proportional time requirement, or growth rate,
and enable you to compare algorithm A with another algorithm B. Although
you cannot determine the exact time requirement for either algorithm A or
algorithm B from these statements, you can determine that for large prob-
lems, B will require significantly less time than A. That is, B’s time require-
ment—as a function of the problem size n—increases at a slower rate than
A’s time requirement, because n increases at a slower rate than n2. Even if B
actually requires 5 * n seconds and A actually requires n2/5 seconds, B
eventually will require significantly less time than A, as n increases. Figure
10-1 illustrates this fact. Thus, an assertion like “A requires time propor-
tional to n2” is exactly the kind of statement that characterizes the inherent
efficiency of an algorithm independently of such factors as particular comput-
ers and implementations.

Figure 10-1 also shows that A’s time requirement does not exceed B’s
until n exceeds 25. Algorithm efficiency is typically a concern for large prob-
lems only. The time requirements for small problems are generally not large
enough to matter. Thus, our analyses assume large values of n.

Order-of-Magnitude Analysis and Big O Notation
If

Algorithm A requires time proportional to f(n)

Measure an algo-
rithm’s time require-
ment as a function of
the problem size

Compare algorithm 
efficiencies for large 
problems
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Algorithm A is said to be order f(n), which is denoted as O(f(n)). The func-
tion f(n) is called the algorithm’s growth-rate function. Because the notation
uses the capital letter O to denote order, it is called the Big O notation. If a
problem of size n requires time that is directly proportional to n, the problem
is O(n)—that is, order n. If the time requirement is directly proportional to
n2, the problem is O(n2), and so on. 

The following definition formalizes these ideas:

The requirement n ≥ n0 in the definition of O(f(n )) formalizes the notion
of sufficiently large problems. In general, many values of k and n can satisfy the
definition.

The following examples illustrate the definition:

■ Suppose that an algorithm requires n2 – 3 * n + 10 seconds to solve a
problem of size n. If constants k and n0 exist such that

k * n2 > n 2 – 3 * n + 10 for all n ≥ n0

the algorithm is order n2. In fact, if k is 3 and n0 is 2,

3 * n2 > n2 – 3 * n + 10 for all n ≥ 2

Se
co

nd
s

25
n

Algorithm A requires n2/5 seconds

Algorithm B requires 5*n seconds

Time requirements as a function of the problem size n

FIGURE 10-1

Definition of the Order of an Algorithm
Algorithm A is order f(n)—denoted O(f(n))—if constants k and n0 exist
such that A requires no more than k * f(n) time units to solve a problem
of size n ≥ n0.

KEY CONCEPTS
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as Figure 10-2 illustrates. Thus, the algorithm requires no more than
k * n2 time units for n ≥ n0, and so is O(n2).

■ Previously, we found that displaying a linked list’s first n items requires
(n + 1) * (a + c) + n * w time units. Since 2 * n ≥ n + 1 for n ≥ 1,

(2 * a + 2 * c + w) * n ≥ (n + 1) * (a + c) + n * w for n ≥ 1

Thus, this task is O(n). Here, k is 2 * a + 2 * c + w, and n0 is 1.

■ Similarly, the solution to the Towers of Hanoi problem requires (2n – 1) * m
time units. Since

m * 2n > (2n – 1) * m for n ≥ 1

the solution is O(2n).

The requirement n ≥ n0 in the definition of O(f(n )) means that the time
estimate is correct for sufficiently large problems. In other words, the time esti-
mate is too small for at most a finite number of problem sizes. For example,
the function log n takes on the value 0 when n is 1. Thus, the fact that k * log
1 is 0 for all constants k implies an unrealistic time requirement; presumably,
all algorithms require more than 0 time units even to solve a problem of size 1.
Thus, you can discount problems of size n = 1 if f(n ) is log n.

To dramatize further the significance of an algorithm’s proportional
growth rate, consider the table and graph in Figure 10-3. The table (Figure
10-3a) gives, for various values of n, the approximate values of some common
growth-rate functions, which are listed in order of growth:

O(1) < O(log2n) < O(n) < O(n * log2n) < O(n2) < O(n3) < O(2n)

Se
co

nd
s

10 2 3
n

3*n2

n2 – 3*n + 10

When n ≥ 2, 3 * n2 exceeds n2 – 3 * n + 10

FIGURE 10-2

Order of growth 
of some common 
functions
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The table demonstrates the relative speed at which the values of the functions
grow. (Figure 10-3b represents the growth-rate functions graphically.3)

3. The graph of f(n) = 1 is omitted because the scale of the figure makes it difficult to 
draw. It would, however, be a straight line parallel to the x axis through y = 1.
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These growth-rate functions have the following intuitive interpretations:

1 A growth-rate function of 1 implies a problem 
whose time requirement is constant and, there-
fore, independent of the problem’s size n.

log2n The time requirement for a logarithmic algo-
rithm increases slowly as the problem size 
increases. If you square the problem size, you 
only double its time requirement. Later you will 
see that the recursive binary search algorithm 
that you studied in Chapter 3 has this behavior. 
Recall that a binary search halves an array and 
then searches one of the halves. Typical logarith-
mic algorithms solve a problem by solving a 
smaller constant fraction of the problem.

The base of the log does not affect a logarithmic 
growth rate, so you can omit it in a growth-rate 
function. Exercise 6 at the end of this chapter 
asks you to show why this is true.

n The time requirement for a linear algorithm 
increases directly with the size of the problem. If 
you square the problem size, you also square its 
time requirement.

n * log2n The time requirement for an n * log2n algorithm 
increases more rapidly than a linear algorithm. 
Such algorithms usually divide a problem into 
smaller problems that are each solved separately. 
You will see an example of such an algorithm—the 
mergesort—later in this chapter.

n2 The time requirement for a quadratic algorithm 
increases rapidly with the size of the problem. 
Algorithms that use two nested loops are often 
quadratic. Such algorithms are practical only for 
small problems. Later in this chapter, you will 
study several quadratic sorting algorithms.

n3 The time requirement for a cubic algorithm 
increases more rapidly with the size of the 
problem than the time requirement for a qua-
dratic algorithm. Algorithms that use three 
nested loops are often cubic, and are practical 
only for small problems.

2n As the size of a problem increases, the time 
requirement for an exponential algorithm 
usually increases too rapidly to be practical. 

Intuitive interpreta-
tions of growth-rate 
functions
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If algorithm A requires time that is proportional to function f and algo-
rithm B requires time that is proportional to a slower-growing function g, it is
apparent that B will always be significantly more efficient than A for large
enough problems. For large problems, the proportional growth rate dominates
all other factors in determining an algorithm’s efficiency.

Several mathematical properties of Big O notation help to simplify the
analysis of an algorithm. As we discuss these properties, you should keep in
mind that O(f (n )) means “is of order f (n )” or “has order f (n ).” O is not a
function.

1. You can ignore low-order terms in an algorithm’s growth-rate func-
tion. For example, if an algorithm is O(n3 + 4 * n2 + 3 * n), it is also
O(n3). By examining the table in Figure 10-3a, you can see that the n3

term is significantly larger than either 4 * n2 or 3 * n, particularly for large
values of n. For large n, the growth rate of n3 + 4 * n2 + 3 * n is the same
as the growth rate of n3. It is the growth rate of f (n ), not the value of
f (n ), that is important here. Thus, even if an algorithm is O(n3 + 4 * n2

+ 3 * n), we say that it is simply O(n3). In general, you can usually con-
clude that an algorithm is O(f(n )), where f is a function similar to the
ones listed in Figure 10-3.

2. You can ignore a multiplicative constant in the high-order term of an
algorithm’s growth-rate function. For example, if an algorithm is
O(5 * n3), it is also O(n3). This observation follows from the definition of
O(f (n )), if you let k = 5.

3. O(f(n)) + O(g(n)) = O(f(n) + g(n)). You can combine growth-rate func-
tions. For example, if an algorithm is O(n2) + O(n), it is also O(n2 + n),
which you write simply as O(n2) by applying property 1. Analogous rules
hold for multiplication.

These properties imply that you need only an estimate of the time require-
ment to obtain an algorithm’s growth rate; you do not need an exact state-
ment of an algorithm’s time requirement, which is fortunate because deriving
the exact time requirement is often difficult and sometimes impossible.

Worst-case and average-case analyses. A particular algorithm might require
different times to solve different problems of the same size. For example, the
time that an algorithm requires to search n items might depend on the nature
of the items. Usually you consider the maximum amount of time that an
algorithm can require to solve a problem of size n—that is, the worst case.
Worst-case analysis concludes that algorithm A is O(f(n )) if, in the worst
case, A requires no more than k * f (n ) time units to solve a problem of size n
for all but a finite number of values of n. Although a worst-case analysis can
produce a pessimistic time estimate, such an estimate does not mean that your
algorithm will always be slow. Instead, you have shown that the algorithm will
never be slower than your estimate. Realize, however, that an algorithm’s
worst case might happen rarely, if at all, in practice.

Some properties 
of growth-rate 
functions

An algorithm can 
require different 
times to solve differ-
ent problems of the 
same size



Measuring the Efficiency of Algorithms 539

An average-case analysis attempts to determine the average amount of
time that an algorithm requires to solve problems of size n. In an average-case
analysis, A is O(f (n )) if the average amount of time that A requires to solve a
problem of size n is no more than k * f (n ) time units for all but a finite
number of values of n. Average-case analysis is, in general, far more difficult to
perform than worst-case analysis. One difficulty is determining the relative
probabilities of encountering various problems of a given size; another is deter-
mining the distributions of various data values. Worst-case analysis is easier to
calculate and is thus more common.

Keeping Your Perspective
Before continuing with additional order-of-magnitude analyses of specific algo-
rithms, a few words about perspective are appropriate. For example, consider
an ADT list of n items. You saw earlier that an array-based list.get(n) oper-
ation can access the n th item in the list directly. This access is independent of
n; get takes the same time to access the hundredth item as it does to access
the first item in the list. Thus, the array-based implementation of the retrieval
operation is O(1). However, the reference-based implementation of get in the
class ListReferenceBased requires n steps to traverse the list until it reaches
the nth item, and so is O(n).

Throughout the course of an analysis, you should always keep in mind that
you are interested only in significant differences in efficiency. Is the difference
in efficiency for the two implementations of get significant? As the size of the
list grows, the reference-based implementation might require more time to
retrieve the desired node, because the node can be farther away from the
beginning of the list. In contrast, regardless of how large the list is, the array-
based implementation always requires the same constant amount of time to
retrieve any particular item. Thus, no matter what your notion of a significant
difference in time is, you will reach this time difference if the list is large
enough. In this example, observe that the difference in efficiency for the two
implementations is worth considering only when the problem is large enough.
If the list never has more than 25 items, for example, the difference in the
implementations is not significant at all.

Now consider an application—such as a word processor’s spelling
checker—that frequently retrieves items from a list but rarely inserts or deletes
an item. Since an array-based get is faster than a reference-based get, you
should choose an array-based implementation of the list for the application.
On the other hand, if an application requires frequent insertions and deletions
but rarely retrieves an item, you should choose a reference-based implementa-
tion of the list. The most appropriate implementation of an ADT for a given
application strongly depends on how frequently the application will perform
the operations. You will see more examples of this point in the next chapter.

The response time of some ADT operations, however, can be crucial, even if
you seldom use them. For example, an air traffic control system could include an
emergency operation to resolve the impending collision of two airplanes. Clearly,

An array-based get
is O(1)

A reference-based 
get is O(n)

When choosing an 
ADT’s implementa-
tion, consider how 
frequently particular 
ADT operations 
occur in a given 
application

Some seldom-
used but critical 
operations must 
be efficient
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this operation must occur quickly, even if it is rarely used. Thus, before you
choose an implementation for an ADT, you should know what operations a par-
ticular application requires, approximately how often the application will
perform each operation, and the response times that the application requires of
each operation.

Soon we will compare a searching algorithm that is O(n) with one that is
O(log2n). While it is true that an O(log2n) searching algorithm requires sig-
nificantly less time on large arrays than an O(n) algorithm requires, on small
arrays—say, n < 25—the time requirements might not be significantly differ-
ent at all. In fact, it is entirely possible that, because of factors such as the size
of the constant k in the definition of Big O, the O(n) algorithm will run faster
on small problems. It is only on large problems that the slower growth rate of
an algorithm necessarily gives it a significant advantage. Figure 10-1 illustrated
this phenomenon.

Thus, in general, if the maximum size of a given problem is small, the time
requirements of any two solutions for that problem likely will not differ signifi-
cantly. If you know that your problem size will always be small, do not overan-
alyze; simply choose the algorithm that is easiest to understand, verify, and
code.

Frequently, when evaluating an algorithm’s efficiency, you have to weigh
carefully the trade-offs between a solution’s execution time requirements and
its memory requirements. You are rarely able to make a statement as strong as
“This method is the best one for performing the task.” A solution that
requires a relatively small amount of computer time often also requires a rela-
tively large amount of memory. It may not even be possible to say that one
solution requires less time than another. Solution A may perform some com-
ponents of the task faster than solution B, while solution B performs other
components of the task faster than solution A. Often you must analyze the
solutions in light of a particular application.

In summary, it is important to examine an algorithm for both style and
efficiency. The analysis should focus only on gross differences in efficiency and
not reward coding tricks that save milliseconds. Any finer differences in effi-
ciency are likely to interact with coding issues, which you should not allow to
interfere with the development of your programming style. If you find a
method of solution that is significantly more efficient than others, you should
select it, unless you know that the maximum problem size is quite small. If you
will be solving only small problems, it is possible that a less efficient algorithm
would be more appropriate. That is, other factors, such as the simplicity of the
algorithm, could become more significant than minor differences in efficiency.
In fact, performing an order-of-magnitude analysis implicitly assumes that an
algorithm will be used to solve large problems. This assumption allows you to
focus on growth rates because, regardless of other factors, an algorithm with a
slow growth rate will require less time than an algorithm with a fast growth
rate, provided that the problems to be solved are sufficiently large.

If the problem size 
is always small, 
you can probably 
ignore an algo-
rithm’s efficiency

Weigh the trade-
offs between an 
algorithm’s time 
requirements 
and its memory 
requirements

Compare algo-
rithms for both style 
and efficiency

Order-of-magnitude 
analysis focuses on 
large problems
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The Efficiency of Searching Algorithms
As another example of order-of-magnitude analysis, consider the efficiency of
two search algorithms: the sequential search and the binary search of an array. 

Sequential search. In a sequential search of an array of n items, you look at
each item in turn, beginning with the first one, until either you find the
desired item or you reach the end of the data collection. In the best case, the
desired item is the first one that you examine, so only one comparison is neces-
sary. Thus, in the best case, a sequential search is O(1). In the worst case, the
desired item is the last one you examine, so n comparisons are necessary. Thus,
in the worst case, the algorithm is O(n). In the average case, you would find
the desired item in the middle of the collection, making n/2 comparisons.
Thus, the algorithm is O(n) in the average case.

What is the algorithm’s order when you do not find the desired item? Does
the algorithm’s order depend on whether or not the initial data is sorted? These
questions are left for you in Self-Test Exercise 4 at the end of this chapter.

Binary search. Is a binary search of an array more efficient than a sequential
search? The binary search algorithm, which Chapter 3 presents, searches a
sorted array for a particular item by repeatedly dividing the array in half. The
algorithm determines which half the item must be in—if it is indeed present—
and discards the other half. Thus, the binary search algorithm searches succes-
sively smaller arrays: The size of a given array is approximately one-half the size
of the array previously searched.

At each division, the algorithm makes a comparison. How many compari-
sons does the algorithm make when it searches an array of n items? The exact
answer depends, of course, on where the sought-for item resides in the array.
However, you can compute the maximum number of comparisons that a
binary search requires—that is, the worst case. The number of comparisons is
equal to the number of times that the algorithm divides the array in half.
Suppose that n = 2k for some k. The search requires the following steps:

1. Inspect the middle item of an array of size n.

2. Inspect the middle item of an array of size n/2.

3. Inspect the middle item of an array of size n/22, and so on.

To inspect the middle item of an array, you must first divide the array in half. If
you divide an array of n items in half, then divide one of those halves in half,
and continue dividing halves until only one item remains, you will have per-
formed k divisions. This is true because n/2k = 1. (Remember, we assumed
that n = 2k.) In the worst case, the algorithm performs k divisions and, there-
fore, k comparisons. Because n = 2k,

k = log2n

Sequential search.
Worst case: O(n);
average case: O(n);
best case: O(1)
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Thus, the algorithm is O(log2n) in the worst case when n = 2k.
What if n is not a power of 2? You can easily find the smallest k such that

2k–1 < n < 2k

(For example, if n is 30, then k = 5, because 24 = 16 < 30 < 32 = 25.) The
algorithm still requires at most k divisions to obtain a subarray with one item.
Now it follows that

k – 1 < log2n < k

k < 1 + log2n < k + 1

k = 1 + log2n rounded down

Thus, the algorithm is still O(log2n) in the worst case when n ≠ 2k. In general,
the algorithm is O(log2n) in the worst case for any n.

Is a binary search better than a sequential search? Much better! For
example log21,000,000 = 19, so a sequential search of one million sorted
items can require one million comparisons, but a binary search of the same
items will require at most 20 comparisons. For large arrays, the binary search
has an enormous advantage over a sequential search.

Realize, however, that maintaining the array in sorted order requires an
overhead cost, which can be substantial. The next section examines the cost of
sorting an array.

10.2 Sorting Algorithms and Their Efficiency

Sorting is a process that organizes a collection of data into either ascending4

or descending order. The need for sorting arises in many situations. You may
simply want to sort a collection of data before including it in a report. Often,
however, you must perform a sort as an initialization step for certain algo-
rithms. For example, searching for data is one of the most common tasks per-
formed by computers. When the collection of data to be searched is large, an
efficient method for searching—such as the binary search algorithm—is desir-
able. However, the binary search algorithm requires that the data be sorted.
Thus, sorting the data is a step that must precede a binary search on a collec-
tion of data that is not already sorted. Good sorting algorithms, therefore, are
quite valuable.

You can organize sorting algorithms into two categories. An internal sort
requires that the collection of data fit entirely in the computer’s main memory.
The algorithms in this chapter are internal sorting algorithms. You use an

4. To allow for duplicate data items, “ascending” is used here to mean nondecreasing 
and “descending” to mean nonincreasing.

Binary search is 
O(log2n) in 
the worst case

The sorts in this 
chapter are internal 
sorts
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external sort when the collection of data will not fit in the computer’s main
memory all at once but must reside in secondary storage, such as on a disk.

The data items to be sorted might be integers, character strings, or even
objects. It is easy to imagine the results of sorting a collection of integers or
character strings, but consider a collection of objects. If each object contains
only one data field, sorting the objects is really no different than sorting a col-
lection of integers. However, when each object contains several data fields, you
must know which data field determines the order of the entire object within
the collection of data. This data field is called the sort key. For example, if the
objects represent people, you might want to sort on their names, their ages, or
their zip codes. Regardless of your choice of sort key, the sorting algorithm
orders entire objects based on only one data field, the sort key.

For simplicity, this chapter assumes that the data items are instances of a
class that has implemented the Comparable interface. The Comparable inter-
face method compareTo returns either a negative integer, zero, or a positive
integer based upon whether the sort key is less than, equal to, or greater than
the sort key of the specified object. All algorithms in this chapter sort the data
into ascending order. Modifying these algorithms to sort data into descending
order is simple. Finally, each example assumes that the data resides in an array. 

Selection Sort
Imagine some data that you can examine all at once. To sort it, you could
select the largest item and put it in its place, select the next largest and put it
in its place, and so on. For a card player, this process is analogous to looking
at an entire hand of cards and ordering it by selecting cards one at a time in
their proper order. The selection sort formalizes these intuitive notions. To
sort an array into ascending order, you first search it for the largest item.
Because you want the largest item to be in the last position of the array, you
swap the last item with the largest item, even if these items happen to be
identical. Now, ignoring the last—and largest—item of the array, you search
the rest of the array for its largest item and swap it with its last item, which is
the next-to-last item in the original array. You continue until you have
selected and swapped n – 1 of the n items in the array. The remaining item,
which is now in the first position of the array, is in its proper order, so it is
not considered further.

Figure 10-4 provides an example of a selection sort. Beginning with five
integers, you select the largest—37—and swap it with the last integer—13. (As
the items in this figure are ordered, they appear in boldface. This convention
will be used throughout this chapter.) Next you select the largest integer—
29—from among the first four integers in the array and swap it with the next-
to-last integer in the array—13. Notice that the next selection—14—is already
in its proper position, but the algorithm ignores this fact and performs a swap
of 14 with itself. It is more efficient in general to occasionally perform an
unnecessary swap than it is to continually ask whether the swap is necessary.

Select the largest 
item
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Finally, you select the 13 and swap it with the item in the second position of
the array—10. The array is now sorted into ascending order.

A Java method that performs a selection sort on an array called theArray
with n items follows:

public static <T extends Comparable<? super T>> 
void selectionSort(T[] theArray, int n) {

// ---------------------------------------------------
// Sorts the items in an array into ascending order.
// Precondition: theArray is an array of n items.
// Postcondition: theArray is sorted into 
// ascending order.
// Calls: indexOfLargest.
// ---------------------------------------------------
// last = index of the last item in the subarray of 
//        items yet to be sorted
// largest = index of the largest item found

for (int last = n-1; last >= 1; last--) {
// Invariant: theArray[last+1..n-1] is sorted 
// and > theArray[0..last]

// select largest item in theArray[0..last]
int largest = indexOfLargest(theArray, last+1);

// swap largest item theArray[largest] with 
// theArray[last]
T temp = theArray[largest];

Shaded elements are selected;
boldface elements are in order.

Initial array:

After 1st swap:

After 2nd swap:

After 3rd swap:

After 4th swap:

29

29

13

13

10

10

10

10

10

13

14

14

14

14

14

37

13

29

29

29

13

37

37

37

37

A selection sort of an array of five integers

FIGURE 10-4
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theArray[largest] = theArray[last];
theArray[last] = temp;

}  // end for
}  // end selectionSort

The selectionSort method calls the following method:

private static <T extends Comparable<? super T>>
int indexOfLargest(T[] theArray, int size) {

// ---------------------------------------------------
// Finds the largest item in an array.
// Precondition: theArray is an array of size items;
// size >= 1.
// Postcondition: Returns the index of the largest 
// item in the array.
// ---------------------------------------------------

int indexSoFar = 0; // index of largest item found so far

for (int currIndex = 1; currIndex < size; ++currIndex) {

indexSoFar = currIndex;
}  // end if

} // end for

return indexSoFar;  // index of largest item
}  // end indexOfLargest

Analysis. As you can see from the previous algorithm, sorting in general
compares, exchanges, or moves items. Depending on the programming lan-
guage and implementation used for storing the data, the cost associated with
each of these operations varies. For example, in Java, an array stores references
to objects, not the objects themselves. Thus, moving or exchanging data is not
expensive in Java, because only the references are moved or exchanged, rather
than entire objects. Other languages, however, such as C++, could use an
implementation in which the actual objects are stored in an array. In this case,
moving and exchanging data becomes much more expensive since entire
objects are actually moved around memory.

The comparison operation is typically more involved, since actual data
values must be compared. In Java, one way to compare data values is through
the implementation of the java.util.Comparable interface, and in particular,
the compareTo method. In Java, the use of the Comparable interface provides
what is referred to as the natural ordering for a class. Alternatively, you can
create a class that implements the interface java.util.Comparator. It pro-
vides a method compare which imposes a total ordering on some collection of

// Invariant: theArray[indexSoFar]>=theArray[0..currIndex-1]

if (theArray[currIndex].compareTo(theArray[indexSoFar])>0) {
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objects. These two approaches to implementing the element comparison are
discussed later in this chapter. In either case, the comparison itself is usually
based upon a portion of the object, that is, the sort key. 

 As a first step in analyzing sorting algorithms, you should count the move,
exchange, and compare operations. In Java, the comparison operation is usually
the most expensive and is thus often the only operation analyzed. However,
since other programming languages may incur more expense in moving or
exchanging data, we provide some analysis of these operations here. Generally,
move, exchange, and compare operations are more expensive than the ones that
control loops or manipulate array indexes, particularly when the data to be
sorted is more complex than integers or characters. Thus, our approach ignores
these less expensive operations. You should convince yourself that ignoring such
operations does not affect our final result. (See Exercise 7.) 

Clearly, the for loop in the method selectionSort executes n – 1 times.
Thus, selectionSort calls the method indexOfLargest n – 1 times. Each call
to indexOfLargest causes its loop to execute last times (that is, size – 1 times
when size is last + 1). Thus, the n – 1 calls to indexOfLargest, for values of
last that range from n – 1 down to 1, cause the loop in indexOfLargest to
execute a total of

(n – 1) + (n – 2) + · · · + 1 = n * (n – 1)/2

times. Because each execution of indexOfLargest’s loop performs one com-
parison, the calls to indexOfLargest require

n * (n – 1)/2

comparisons.
 At the end of the for loop in selectionSort, an exchange is performed

between elements theArray[largest] and theArray[last]. Each exchange
requires three assignments, or 

3 * (n – 1)

data moves.
Together, a selection sort of n items requires

n * (n – 1)/2 + 3 * (n – 1)

= n2/2 + 5 * n/2 – 3

major operations. By applying the properties of growth-rate functions (see
page 532), you can ignore low-order terms to get O(n2/2) and then ignore
the multiplier 1/2 to get O(n2). Thus, selection sort is O(n2).

Although a selection sort does not depend on the initial arrangement of the
data, which is an advantage of this algorithm, it is appropriate only for small n
because O(n2) grows rapidly. While the algorithm requires O(n2) comparisons,
it requires only O(n) data moves. A selection sort could be a good choice over
other methods when data moves are costly but comparisons are not. As we men-
tioned earlier, there really is no such thing as an expensive data move in a normal
sorting situation in Java, because it would surely be references, not entire
objects, that are copied in the process of performing the move.

Selection sort is 
O(n2)
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Bubble Sort
The next sorting algorithm is one that you may have seen already. That is pre-
cisely why it is analyzed here, because it is not a particularly good algorithm.
The bubble sort compares adjacent items and exchanges them if they are out
of order. This sort usually requires several passes over the data. During the first
pass, you compare the first two items in the array. If they are out of order, you
exchange them. You then compare the items in the next pair—that is, in posi-
tions 2 and 3 of the array. If they are out of order, you exchange them. You
proceed, comparing and exchanging items two at a time until you reach the
end of the array.

Figure 10-5a illustrates the first pass of a bubble sort of an array of five
integers. You compare the items in the first pair—29 and 10—and exchange
them because they are out of order. Next you consider the second pair—29
and 14—and exchange these items because they are out of order. The items in
the third pair—29 and 37—are in order, and so you do not exchange them.
Finally, you exchange the items in the last pair—37 and 13.

Although the array is not sorted after the first pass, the largest item has
“bubbled” to its proper position at the end of the array. During the second pass
of the bubble sort, you return to the beginning of the array and consider pairs of
items in exactly the same manner as the first pass. You do not, however, include
the last—and largest—item of the array. That is, the second pass considers the
first n – 1 items of the array. After the second pass, the second largest item in the
array will be in its proper place in the next-to-last position of the array, as Figure
10-5b illustrates. Now, ignoring the last two items, which are in order, you con-
tinue with subsequent passes until the array is sorted.

Although a bubble sort requires at most n – 1 passes to sort the array,
fewer passes might be possible to sort a particular array. Thus, you could ter-
minate the process if no exchanges occur during any pass. The following Java
method bubbleSort uses a flag to signal when an exchange occurs during a
particular pass.

Initial array: 29

10

10

10

10

(a) Pass 1

10

29

14

14

14

14

14

29

29

29

37

37

37

37

13

13

13

13

13

37

10

10

10

10

14

14

14

14

29

29

29

13

13

13

13

29

37

37

37

37

(b) Pass 2

The first two passes of a bubble sort of an array of five integers: (a) pass 1; 
(b) pass 2

FIGURE 10-5
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       void bubbleSort(T[] theArray, int n) {
// ---------------------------------------------------
// Sorts the items in an array into ascending order.
// Precondition: theArray is an array of n items.
// Postcondition: theArray is sorted into ascending 
// order.
// ---------------------------------------------------

boolean sorted = false;  // false when swaps occur

for (int pass = 1; (pass < n) && !sorted; ++pass) {
// Invariant: theArray[n+1-pass..n-1] is sorted
//            and > theArray[0..n-pass]
sorted = true;  // assume sorted
for (int index = 0; index < n-pass; ++index) {

// Invariant: theArray[0..index-1] <= theArray[index]
int nextIndex = index + 1;

// exchange items
T temp = theArray[index];
theArray[index] = theArray[nextIndex];
theArray[nextIndex] = temp;
sorted = false;  // signal exchange

}  // end if
}  // end for

// Assertion: theArray[0..n-pass-1] < theArray[n-pass]
}  // end for

}  // end bubbleSort

Analysis. As was noted earlier, the bubble sort requires at most n – 1 passes
through the array. Pass 1 requires n – 1 comparisons and at most n – 1
exchanges; pass 2 requires n – 2 comparisons and at most n – 2 exchanges. In
general, pass i requires n – i comparisons and at most n – i exchanges. There-
fore, in the worst case, a bubble sort will require a total of

(n – 1) + (n – 2) + · · · + 1 = n * (n – 1)/2

comparisons and the same number of exchanges. Recall that each exchange
requires three data moves. Thus, altogether there are

2 * n * (n – 1) = 2 * n2 – 2 * n

major operations in the worst case. Therefore, the bubble sort algorithm is
O(n2) in the worst case.

The best case occurs when the original data is already sorted: bubbleSort
uses one pass, during which n – 1 comparisons and no exchanges occur. Thus,
the bubble sort is O(n) in the best case.

public static <T extends Comparable<? super T>>

if (theArray[index].compareTo(theArray[nextIndex]) > 0) {

Bubble sort. Worst 
case: O(n2); best 
case: O(n)
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Insertion Sort
Imagine once again arranging a hand of cards, but now you pick up one card
at a time and insert it into its proper position; in this case you are performing
an insertion sort. Chapter 5 introduced the insertion sort algorithm in the
context of a linked list: You can create a sorted linked list from a file of
unsorted integers, for example, by repeatedly calling a method that inserts an
integer into its proper sorted order in a linked list. 

You can use the insertion sort strategy to sort items that reside in an array.
This version of the insertion sort partitions the array into two regions: sorted
and unsorted, as Figure 10-6 depicts. Initially, the entire array is the unsorted
region, just as the cards dealt to you sit in an unsorted pile on the table. At
each step, the insertion sort takes the first item of the unsorted region and
places it into its correct position in the sorted region. This step is analogous to
taking a card from the table and inserting it into its proper position in your
hand. The first step, however, is trivial: Moving theArray[0] from the
unsorted region to the sorted region really does not require moving data.
Therefore, you can omit this first step by considering the initial sorted region
to be theArray[0] and the initial unsorted region to be theArray[1..n-1].
The fact that the items in the sorted region are sorted among themselves is an
invariant of the algorithm. Because at each step the size of the sorted region
grows by 1 and the size of the unsorted region shrinks by 1, the entire array
will be sorted when the algorithm terminates.

Figure 10-7 illustrates an insertion sort of an array of five integers. Ini-
tially, the sorted region is theArray[0], which is 29, and the unsorted region
is the rest of the array. You take the first item in the unsorted region—the 10—
and insert it into its proper position in the sorted region. This insertion
requires you to shift array items to make room for the inserted item. You then
take the first item in the new unsorted region—the 14—and insert it into its
proper position in the sorted region, and so on.

Sorted Unsorted

0 n – 1i
After i iterations

An insertion sort partitions the array into two regions

FIGURE 10-6

Take each item from 
the unsorted region 
and insert it into its 
correct order in the 
sorted region
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A Java method that performs an insertion sort on an array of n items follows:

public static <T extends Comparable<? super T>> 
void insertionSort(T[] theArray, int n) {

// ---------------------------------------------------
// Sorts the items in an array into ascending order.
// Precondition: theArray is an array of n items.
// Postcondition: theArray is sorted into ascending
// order.
// ---------------------------------------------------

// unsorted = first index of the unsorted region, 
// loc = index of insertion in the sorted region, 
// nextItem = next item in the unsorted region

// initially, sorted region is theArray[0], 
//          unsorted region is theArray[1..n-1];

for (int unsorted = 1; unsorted < n; ++unsorted) {
// Invariant: theArray[0..unsorted-1] is sorted

// find the right position (loc) in 
// theArray[0..unsorted] for theArray[unsorted],
// which is the first item in the unsorted
// region; shift, if necessary, to make room
T nextItem = theArray[unsorted];

An insertion sort of an array of five integers

FIGURE 10-7

Initial array:

Sorted array:

10

29

29

29

14

14

14

13

14

14

14

29

29

29

14

14

37

37

37
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37

29

29

13

13

13

13

13

13

37

37

29

29

10

10

10

10

10

10

Copy 10

Shift 29

Insert 10; copy 14

Shift 29

Insert 14; copy 37, insert 37 on top of itself

Copy 13

Shift 37, 29, 14

Insert 13

// in general, sorted region is theArray[0..unsorted-1],

//           unsorted region is theArray[unsorted..n-1]
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int loc = unsorted;

while ((loc > 0) && 
(theArray[loc-1].compareTo(nextItem) > 0)) {

// shift theArray[loc-1] to the right
theArray[loc] = theArray[loc-1];
loc--;

}  // end while

// insert nextItem into sorted region
theArray[loc] = nextItem;

}  // end for
}  // end insertionSort

Analysis. The outer for loop in the method insertionSort executes n – 1
times. This loop contains an inner for loop that executes at most unsorted
times for values of unsorted that range from 1 to n – 1. Thus, in the worst
case, the algorithm’s comparison occurs 

1 + 2 + · · · + (n – 1) = n * (n – 1)/2

times. In addition, the inner loop moves data items at most the same number
of times. 

The outer loop moves data items twice per iteration, or 2 * (n – 1) times.
Together, there are

n * (n – 1) + 2 * (n – 1) = n2 + n – 2

major operations in the worst case.
Therefore, the insertion sort algorithm is O(n2) in the worst case. For

small arrays—say, fewer than 25 items—the simplicity of the insertion sort
makes it an appropriate choice. For large arrays, however, an insertion sort can
be prohibitively inefficient.

Mergesort
Two important divide-and-conquer sorting algorithms, mergesort and quick-
sort, have elegant recursive formulations and are highly efficient. The presenta-
tions here are in the context of sorting arrays, but note that mergesort
generalizes to external files. It will be convenient to express the algorithms in
terms of the array theArray[first..last].

Mergesort is a recursive sorting algorithm that always gives the same per-
formance, regardless of the initial order of the array items. Suppose that you
divide the array into halves, sort each half, and then merge the sorted halves
into one sorted array, as Figure 10-8 illustrates. In the figure, the halves
<1, 4, 8> and <2, 3> are merged to form the array <1, 2, 3, 4, 8>. This merge
step compares an item in one half of the array with an item in the other half
and moves the smaller item to a temporary array. This process continues until
there are no more items to consider in one half. At that time, you simply

// Assertion: theArray[loc] is where nextItem belongs

Insertion sort is 
O(n2) in the worst 
case

Divide and conquer

Halve the array, 
recursively sort its 
halves, and then 
merge the halves
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move the remaining items to the temporary array. Finally, you copy the tem-
porary array back into the original array.

Although the merge step of mergesort produces a sorted array, how do
you sort the array halves prior to the merge step? Mergesort sorts the array
halves by using mergesort—that is, by calling itself recursively. Thus, the
pseudocode for mergesort is

+mergesort(inout theArray:ItemArray, 
           in first:integer, in last:integer)
// Sorts theArray[first..last] by
//   1. sorting the first half of the array
//   2. sorting the second half of the array
//   3. merging the two sorted halves

if (first < last) {
    mid = (first + last)/2   // get midpoint
    // sort theArray[first..mid] 
    mergesort(theArray, first, mid) 
    // sort theArray[mid+1..last] 
    mergesort(theArray, mid + 1, last) 
    // merge sorted halves theArray[first..mid]
    // and theArray[mid+1..last]
    merge(theArray, first, mid, last)
  }  // end if
  // if first >= last, there is nothing to do

8 1 4 3 2

1 4 8 2 3

1 2 3 4 8

1 2 3 4 8

dcba

theArray:

Temporary array
tempArray:

theArray:

Divide the array in half

Sort the halves

Merge the halves:
a. 1 < 2, so move 1 from left half to tempArray
b. 4 > 2, so move 2 from right half to tempArray
c. 4 > 3, so move 3 from right half to tempArray
d. Right half is finished, so move rest of left
    half to tempArray

Copy temporary array back into 
original array

A mergesort with an auxiliary temporary array

FIGURE 10-8
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Clearly, most of the effort in the mergesort algorithm is in the merge step,
but does this algorithm actually sort? The recursive calls continue dividing the
array into pieces until each piece contains only one item; obviously an array of
one item is sorted. The algorithm then merges these small pieces into larger
sorted pieces until one sorted array results. Figure 10-9 illustrates both the
recursive calls and the merge steps in a mergesort of an array of six integers.

The following Java methods implement the mergesort algorithm. To sort an
array theArray of n items, you would invoke the method mergesort by writing
mergesort(theArray). Notice that this method creates a reusable temporary
array that can be used later on for the merge. It then calls the recursive function
mergesort(theArray, tempArray, 0, theArray.length-1) with this tem-
porary array to actually complete the sort.

public static<T extends Comparable<? super T>>
void mergesort(T[ ] theArray) {

// Declare temporary array used for merge, must do 
// unchecked cast from Comparable<?>[] to T[] 

  T[] tempArray = (T[])new Comparable<?>[theArray.length];
  mergesort(theArray, tempArray, 0, theArray.length - 1 );
} // end mergesort

private static<T extends Comparable<? super T>>
void merge(T[] theArray, T[] tempArray,

int first, int mid, int last) {

A mergesort of an array of six integers

FIGURE 10-9

38 16 27 39 12 27

38 16 27 39 12 27

38 16 39 12

16 38

16 27 38

12 39

12 27 39

12 16 27 27 38 39

Recursive calls to mergesort

Merge steps

38 16 27 39 12 27
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// ---------------------------------------------------------
// Merges two sorted array segments theArray[first..mid] and 
// theArray[mid+1..last] into one sorted array.
// Precondition: first <= mid <= last. The subarrays 
// theArray[first..mid] and theArray[mid+1..last] are 
// each sorted in increasing order.
// Postcondition: theArray[first..last] is sorted.
// Implementation note: This method merges the two
// subarrays into a temporary array and copies the result
// into the original array theArray.
// ---------------------------------------------------------

// initialize the local indexes to indicate the subarrays
int first1 = first;    // beginning of first subarray
int last1  = mid;      // end of first subarray
int first2 = mid + 1;  // beginning of second subarray
int last2  = last;     // end of second subarray
// while both subarrays are not empty, copy the
// smaller item into the temporary array
int index = first1;    // next available location in 

                         // tempArray

while ((first1 <= last1) && (first2 <= last2)) {
// Invariant: tempArray[first1..index-1] is in order
if (theArray[first1].compareTo(theArray[first2])<0) {

tempArray[index] = theArray[first1];
first1++;

}
else {

tempArray[index] = theArray[first2];
first2++;

}  // end if
index++;

}  // end while

// finish off the nonempty subarray

// finish off the first subarray, if necessary
while (first1 <= last1) {

// Invariant: tempArray[first1..index-1] is in order
tempArray[index] = theArray[first1];
first1++;
index++;

}  // end while
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// finish off the second subarray, if necessary
while (first2 <= last2) {

// Invariant: tempArray[first1..index-1] is in order
tempArray[index] = theArray[first2];
first2++;
index++;

}  // end while

// copy the result back into the original array
for (index = first; index <= last; ++index) {

theArray[index] = tempArray[index];
}  // end for

}  // end merge

public static <T extends Comparable<? super T>>
void mergesort(T[] theArray, T[] tempArray

int first, int last) {
// ---------------------------------------------------------
// Sorts the items in an array into ascending order. 
// Precondition: theArray[first..last] is an array.
// Postcondition: theArray[first..last] is sorted in 
// ascending order.
// Calls: merge.
// ---------------------------------------------------------

if (first < last) {
// sort each half
int mid = (first + last)/2;   // index of midpoint
// sort left half theArray[first..mid]
mergesort(theArray, tempArray, first, mid);
// sort right half theArray[mid+1..last]
mergesort(theArray, tempArray, mid+1, last);

// merge the two halves
merge(theArray, tempArray, first, mid, last);

}  // end if
}  // end mergesort

Analysis. Because the merge step of the algorithm requires the most effort, let’s
begin the analysis there. Each merge step merges theArray[first..mid] and
theArray[mid+1..last]. Figure 10-10 provides an example of a merge step
that requires the maximum number of comparisons. If the total number of items
in the two array segments to be merged is n, then merging the segments requires
at most n – 1 comparisons. (For example, in Figure 10-10 there are six items in the
segments and five comparisons.) In addition, there are n moves from the original
array to the temporary array, and n moves from the temporary array back to the
original array. Thus, each merge step requires 3 * n – 1 major operations.
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Each call to mergesort recursively calls itself twice. As Figure 10-11 illus-
trates, if the original call to mergesort is at level 0, two calls to mergesort
occur at level 1 of the recursion. Each of these calls then calls mergesort
twice, so four calls to mergesort occur at level 2 of the recursion, and so on.
How many levels of recursion are there? We can count them as follows.

Each call to mergesort halves the array. Halving the array the first time pro-
duces two pieces. The next recursive calls to mergesort halve each of these two
pieces to produce four pieces of the original array; the next recursive calls halve
each of these four pieces to produce eight pieces, and so on. The recursive calls
continue until the array pieces each contain one item—that is, until there are
n pieces, where n is the number of items in the original array. If n is a power of
2(n = 2k), then the recursion goes k = log2n levels deep. For example, in Figure
10-11, there are three levels of recursive calls to mergesort because the original
array contains eight items, and 8 = 23. If n is not a power of 2, there are
1 + log2n (rounded down) levels of recursive calls to mergesort.

The original call to mergesort (at level 0) calls merge once. When called,
merge merges all n items and requires 3 * n – 1 operations, as was shown ear-
lier. At level 1 of the recursion, two calls to mergesort, and hence to merge,

1 2 8 4 5theArray: Merge the halves:
a. 1 < 4, so move 1 from theArray[first..mid] to tempArray
b. 2 < 4, so move 2 from theArray[first..mid] to tempArray
c. 8 > 4, so move 4 from theArray[mid+1..last] to tempArray
d. 8 > 5, so move 5 from theArray[mid+1..last] to tempArray
e. 8 > 6, so move 6 from theArray[mid+1..last] to tempArray
f. theArray[mid+1..last] is finished, so move 8 to tempArray

6

1 2 4 5 6 8tempArray:

first mid last

a b c d e f

A worst-case instance of the merge step in mergesort

FIGURE 10-10
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2

1 1 1 1

2 2 2

1 1 1 1

4

Level 0: mergesort 8 items

Level 1: 2 calls to mergesort with 4 
             items each

Level 2: 4 calls to mergesort with 2 
             items each

Level 3: 8 calls to mergesort with 1 
             item each

Levels of recursive calls to mergesort, given an array of eight items

FIGURE 10-11
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occur. Each of these two calls to merge merges n/2 items and requires
3 * (n/2) – 1 operations. Together these two calls to merge require
2 * (3 * (n/2) – 1), or 3 * n – 2 operations. At level m of the recursion, 2m

calls to merge occur; each of these calls merges n/2m items and so requires
3 * (n/2m) – 1 operations. Together the 2m calls to merge require 3 * n – 2m

operations. Thus, each level of the recursion requires O(n) operations.
Because there are either log2n or 1 + log2n levels, mergesort is O(n * log2n)
in both the worst and average cases. You should look at Figure 10-3 again to
convince yourself that O(n * log2n) is significantly faster than O(n2).

Although mergesort is an extremely efficient algorithm with respect to
time, it does have one drawback: To perform the step

Merge sorted halves theArray[first..mid]
    and theArray[mid+1..last]

the algorithm requires an auxiliary array whose size equals the size of the origi-
nal array. In Java, this auxiliary array is simply an array of references and hence
has little impact. Other programming languages, however, such as C++, actu-
ally store the data items in the array. With such languages, this requirement
might not be acceptable in situations where storage is limited.

Quicksort
Consider the first two steps of the solution to the problem of finding the k th

smallest item of the array theArray[first..last] that was discussed in
Chapter 3:

Choose a pivot item p from theArray[first..last]
Partition the items of theArray[first..last] about p

Recall that this partition, which is pictured again in Figure 10-12, has the prop-
erty that all items in S1 = theArray[first..pivotIndex-1] are less than the
pivot p, and all items in S2 = theArray[pivotIndex+1..last] are greater
than or equal to p. Although this property does not imply that the array is
sorted, it does imply an extremely useful fact: The items in positions first
through pivotIndex – 1 remain in positions first through pivotIndex – 1

Mergesort is 
O(n * log2n)

Mergesort requires 
a second array as 
large as the original 
array

Another divide-and-
conquer algorithm

A partition about a pivot

FIGURE 10-12

S2S1

< p ≥ pp

pivotIndex lastfirst

Quicksort partitions 
an array into items 
that are less than 
the pivot and those 
that are greater than 
or equal to the pivot
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when the array is properly sorted, although their positions relative to one
another may change. Similarly, the items in positions pivotIndex + 1 through
last will remain in positions pivotIndex + 1 through last when the array is
sorted, although their relative positions may change. Finally, the pivot item
remains in its position in the final, sorted array.

The partition induces relationships among the array items that are the ingredi-
ents of a recursive solution. Arranging the array items around the pivot p gener-
ates two smaller sorting problems—sort the left section of the array (S1), and sort
the right section of the array (S2). The relationships between the pivot and the
array items imply that once you solve the left and right sorting problems, you will
have solved the original sorting problem. That is, partitioning the array before
making the recursive calls places the pivot in its correct position and ensures that
when the smaller array segments are sorted, their items will be in the proper rela-
tion to the rest of the array. Also, the quicksort algorithm will eventually terminate:
The left and right sorting problems are indeed smaller problems and are each
closer than the original sorting problem to the base case—which is an array con-
taining one item—because the pivot is not part of either S1 or S2.

The pseudocode for the quicksort algorithm follows:

+quicksort(inout theArray:ItemArray, 
          in first:integer, in last:integer)
// Sorts theArray[first..last].

if (first < last) {
    Choose a pivot item p from theArray[first..last]
    Partition the items of theArray[first..last] about p
    // the partition is theArray[first..pivotIndex..last]

    // sort S1
    quicksort(theArray, first, pivotIndex-1)
    // sort S2
    quicksort(theArray, pivotIndex+1, last)  
 }  // end if
 // if first >= last, there is nothing to do

It is worth contrasting quicksort with the pseudocode method given for
the kth smallest integer problem in Chapter 3:

+kSmall(in k:integer, in theArray:ItemArray, 
        in first:integer, in last:integer):ItemType
// Returns the kth smallest value in theArray[first..last].

  Choose a pivot item p from theArray[first..last]

if (k < pivotIndex - first + 1) {
return kSmall(k, theArray, first, pivotIndex-1)

  }

Partitioning places 
the pivot in its 
correct position 
within the array

  Partition the items of theArray[first..last] about p



Sorting Algorithms and Their Efficiency 559

else if (k == pivotIndex - first + 1) {
return p

  }
else {

return kSmall(k-(pivotIndex-first+1), 
                  theArray, pivotIndex+1, last)
  }  // end if

Note that kSmall is called recursively only on the section of the array that
contains the desired item, and it is not called at all if the desired item is the
pivot. On the other hand, quicksort is called recursively on both unsorted
sections of the array. Figure 10-13 illustrates this difference.

Using an invariant to develop a partition algorithm. Now consider the
partition method that both kSmall and quicksort must call. Partitioning an
array section about a pivot item is actually the most difficult part of these two
problems.

The partition method will receive an array segment theArray
[first..last] as an argument. The method must arrange the items of the
array segment into two regions: S1, the set of items less than the pivot, and S2,
the set of items greater than or equal to the pivot. The method arranges the
array so that S1 is theArray[first..pivotIndex-1] and S2 is theArray
[pivotIndex+1..last], as you saw in Figure 10-12.

What pivot should you use? If the items in the array are arranged randomly, you
can choose a pivot at random. For example, you can choose theArray[first] as
the pivot. (The choice of pivot will be discussed in more detail later.) While you are

Difference between 
kSmall and 
quicksort

kSmall versus quicksort

FIGURE 10-13

quicksort(theArray,first,last)

OR

AND

kSmall(k,theArray,first,last)

kSmall(k,theArray,first,pivotIndex–1) kSmall(k–(pivotIndex–first+1),theArray,pivotIndex+1,last)

quicksort(theArray,first,pivotIndex–1) quicksort(theArray,pivotIndex+1,last)
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developing the partition, it is convenient to place the pivot in the theArray[first]
position, regardless of which pivot you choose.

The items that await placement into either S1 or S2 are in another region of
the array, called the unknown region. Thus, you should view the array as shown
in Figure 10-14. The array indexes first, lastS1, firstUnknown, and last
divide the array as just described. The relationships between the pivot and the
items in the unknown region—which is theArray[firstUnknown..last]—
are, simply, unknown!

Throughout the entire partitioning process, the following is true:

The items in the region S1 are all less than the pivot, and those in S2 are all
greater than or equal to the pivot.

This statement is the invariant for the partition algorithm. For the invariant to
be true at the start of the partition algorithm, the array’s indexes must be ini-
tialized as follows so that the unknown region spans all of the array segment to
be partitioned except the pivot:

lastS1 = first
firstUnknown = first + 1

Figure 10-15 shows the initial status of the array.

Place your choice of 
pivot in theArray–
[first] before 
partitioning

< p ≥ pp

Pivot

?

lastS1 firstUnknown

UnknownS2S1

lastfirst

Invariant for the partition algorithm

FIGURE 10-14

Invariant for the par-
tition algorithm

Initially, all items 
except the pivot 
theArray[first]
constitute the 
unknown region

first

lastS1

Unknown

p

firstUnknown

?

last

Initial state of the array

FIGURE 10-15
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At each step of the partition algorithm, you examine one item of the
unknown region, determine in which of the two regions, S1 or S2, it belongs,
and place it there. Thus, the size of the unknown region decreases by 1 at each
step. The algorithm terminates when the size of the unknown region reaches
0—that is, when firstUnknown > last.

The following pseudocode describes the partitioning algorithm:

+partition(inout theArray:ItemArray, 
           in first:integer, in last:integer)
// Returns the index of the pivot element after
// partitioning theArray[first..last].

  // initialize
  Choose the pivot and swap it with theArray[first]
  p = theArray[first]       // p is the pivot
  lastS1 = first            // set S1 and S2 to empty
  firstUnknown = first + 1  // set unknown region 
                            // to theArray[first+1..last]
  // determine the regions S1 and S2

while (firstUnknown <= last) {
    // consider the placement of the "leftmost"
    // item in the unknown region

if (theArray[firstUnknown] < p) {
      Move theArray[firstUnknown] into S1
    }

else {
      Move theArray[firstUnknown] into S2
    }  // end if
  }  // end while
  // place pivot in proper position between 
  // S1 and S2, and mark its new location
  Swap theArray[first] with theArray[lastS1]

return lastS1 // the index of the pivot element

The algorithm is straightforward enough, but its move operations need clarify-
ing. Consider the two possible actions that you need to take at each iteration
of the while loop:

Move theArray[firstUnknown] into S1. S1 and the unknown region are,
in general, not adjacent: S2 is between the two regions. However, you can
perform the required move efficiently. You swap theArray[firstUnknown]
with the first item of S2—which is theArray[lastS1 + 1], as Figure 10-16
illustrates. Then you increment lastS1 by 1. The item that was in theArray
[firstUnknown] will then be at the rightmost position of S1. What about the
item of S2 that was moved to theArray[firstUnknown]? If you increment
firstUnknown by 1, that item becomes the rightmost member of S2. Thus,
you should perform the following steps to move theArray[firstUnknown]
into S1:

The partition 
algorithm
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Swap theArray[firstUnknown] with theArray[lastS1+1]
Increment lastS1
Increment firstUnknown

This strategy works even when S2 is empty. In that case, lastS1 + 1 equals
firstUnknown, and thus the swap simply exchanges an item with itself.
This move preserves the invariant.

Move theArray[firstUnknown] into S2. This move is simple to accom-
plish. Recall that the rightmost boundary of the region S2 is at position 
firstUnknown – 1; that is, regions S2 and the unknown region are adja-
cent, as Figure 10-17 illustrates. Thus, to move theArray[firstUnknown]
into S2, simply increment firstUnknown by 1: S2 expands to the right. This
move preserves the invariant.

After you have moved all items from the unknown region into S1 and S2,
one final task remains. You must place the pivot between the segments S1 and
S2. Observe that theArray[lastS1] is the rightmost item in S1. By inter-
changing this item with the pivot, which is theArray[first], you will place
the pivot in its correct location. Then the statement

< p ≥ pp ?

Unknown

firstUnknownlastS1+1lastS1

< p

Swap

S2S1

≥ p

first last

Moving theArray[firstUnknown] into S1 by swapping it with theArray[lastS1+1]
and by incrementing both lastS1 and firstUnknown

FIGURE 10-16

Moving theArray[firstUnknown] into S2 by incrementing firstUnknown

FIGURE 10-17

< p ≥ pp

Pivot

?

lastS1 firstUnknown

UnknownS1 S2

lastfirst
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return lastS1

returns the location of the pivot. You can use this index to determine the
boundaries of S1 and S2. Figure 10-18 traces the partition algorithm for an
array of six integers when the pivot is the first item.

Before continuing the implementation of quicksort, we will establish the
correctness of the partition algorithm by using invariants. Again, the loop
invariant for the algorithm is

All items in S1 (theArray[first+1..lastS1]) are less than the pivot, and
all items in S2 (theArray[lastS1+1..firstUnknown-1]) are greater
than or equal to the pivot.

Recall that when you use invariants to establish the correctness of an itera-
tive algorithm, a four-step process is required:

27     38    12     39     27    16

27     12     38    39     27    16

27     12     38    39     27    16

27     12     16    39     27    38

16     12     27    39     27    38

27     38     12    39     27    16

27     12     38    39     27    16

Pivot Unknown

Pivot S2

S1 S2

Unknown

Pivot Unknown

Pivot Unknown

Pivot Unknown

Pivot

S1 S2Pivot

firstUnknown  = 1 (points to 38)
38 belongs in S2

S1 is empty;
12 belongs in S1, so swap 38 and 12

39 belongs in S2

27 belongs in S2

16 belongs in S1, so swap 38 and 16

S1 and S2 are determined

Place pivot between S1 and S2First partition:

27     38    12     39     27    16

Pivot

Original array:

S1 S2

S1 S2

S1 S2

Developing the first partition of an array when the pivot is the first item

FIGURE 10-18
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1. The invariant must be true initially, before the loop begins execution. In
the partition algorithm, before the loop that swaps array items is entered,
the pivot is theArray[first], the unknown region is theArray
[first+1..last], and S1 and S2 are empty. The invariant is clearly true
initially.

2. An execution of the loop must preserve the invariant. That is, if the
invariant is true before any given iteration of the loop, you must show
that it is true after the iteration. In the partition algorithm, at each itera-
tion of the loop a single item moves from the unknown region into
either S1 or S2, depending on whether or not the item is less than the
pivot. Thus, if the invariant was true before the move, it will remain true
after the move.

3. The invariant must capture the correctness of the algorithm. That is, you
must show that if the invariant is true when the loop terminates, the algo-
rithm is correct. In the partition algorithm, the termination condition is
that the unknown region is empty. But if the unknown region is empty,
each item of theArray[first+1..last] must be in either S1 or S2—in
which case the invariant implies that the partition algorithm has done what
it was supposed to do.

4. The loop must terminate. That is, you must show that the loop will termi-
nate after a finite number of iterations. In the partition algorithm, the size
of the unknown region decreases by 1 at each iteration. Therefore, the
unknown region becomes empty after a finite number of iterations, and
thus the termination condition for the loop will be met.

The following Java methods implement the quicksort algorithm. The
method choosePivot enables you to try various pivots easily. To sort an
array theArray of n items, you invoke the method quicksort by writing
quicksort(theArray, 0, n-1).

private static <T extends Comparable<? super T>>
void choosePivot(T[] theArray, int first, int last) {

// ---------------------------------------------------------
// Chooses a pivot for quicksort's partition algorithm and 
// swaps it with the first item in an array.
// Precondition: theArray[first..last] where first <= last.
// Postcondition: theArray[first] is the pivot.
// ---------------------------------------------------------
// Implementation left as an exercise.
}  // end choosePivot

The proof that the 
partition algorithm 
is correct uses an 
invariant and 
requires four steps



Sorting Algorithms and Their Efficiency 565

private static <T extends Comparable<? super T>>
int partition(T[] theArray, int first, int last) {

// ---------------------------------------------------------
// Partitions an array for quicksort.
// Precondition: theArray[first..last] where first <= last.
// Postcondition: Returns the index of the pivot element of
// theArray[first..last]. Upon completion of the method, 
// this will be the index value lastS1 such that
//    S1 = theArray[first..lastS1-1] <  pivot
//         theArray[lastS1]          == pivot
//    S2 = theArray[lastS1+1..last]  >= pivot
// Calls: choosePivot.
// ---------------------------------------------------------

// tempItem is used to swap elements in the array
T tempItem; 
// place pivot in theArray[first]
choosePivot(theArray, first, last);
T pivot = theArray[first];   // reference pivot

// initially, everything but pivot is in unknown
int lastS1 = first;          // index of last item in S1

// move one item at a time until unknown region is empty

for (int firstUnknown = first + 1; firstUnknown <= last; 
++firstUnknown) {

// Invariant: theArray[first+1..lastS1] < pivot

// move item from unknown to proper region
if (theArray[firstUnknown].compareTo(pivot) < 0) {

// item from unknown belongs in S1
++lastS1;
tempItem = theArray[firstUnknown];
theArray[firstUnknown] = theArray[lastS1];
theArray[lastS1] = tempItem;

}  // end if
// else item from unknown belongs in S2
}  // end for

// place pivot in proper position and mark its location
tempItem = theArray[first];
theArray[first] = theArray[lastS1];
theArray[lastS1] = tempItem;
return lastS1;

}  // end partition

  // firstUnknown is the index of first item in unknown region

//            theArray[lastS1+1..firstUnknown-1] >= pivot



566  Chapter 10 Algorithm Efficiency and Sorting

public static <T extends Comparable<? super T>> 
void quickSort(T[] theArray, int first, int last) {

// ---------------------------------------------------------
// Sorts the items in an array into ascending order.
// Precondition: theArray[first..last] is an array.
// Postcondition: theArray[first..last] is sorted.
// Calls: partition.
// ---------------------------------------------------------

int pivotIndex;

if (first < last) {
// create the partition: S1, Pivot, S2
pivotIndex = partition(theArray, first, last);

// sort regions S1 and S2
quickSort(theArray, first, pivotIndex-1);
quickSort(theArray, pivotIndex+1, last);

}  // end if
}  // end quickSort

In the analysis to follow, you will learn that it is desirable to avoid a pivot
that makes either S1 or S2 empty. A good choice of pivot is one that is near the
median of the array items. Exercise 20 at the end of this chapter considers this
choice of pivot.

As you can see, quicksort and mergesort are similar in spirit, but
whereas quicksort does its work before its recursive calls, mergesort does its
work after its recursive calls. That is, while quicksort has the form

+quicksort(inout theArray:ItemArray, 
          in first:integer, in last:integer)

if (first < last) {
    Prepare theArray for recursive calls
    quicksort(S1 region of theArray)
    quicksort(S2 region of theArray)

  }  // end if

mergesort has the general form

+mergesort(inout theArray:ItemArray, 
          in first:integer, in last:integer)
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if (first < last) {
    mergesort(Left half of theArray)
    mergesort(Right half of theArray)
    Tidy up array after the recursive calls
  }  // end if

The preparation in quicksort is to partition the array into regions S1
and S2. The algorithm then sorts S1 and S2 independently, because every
item in S1 belongs to the left of every item in S2. In mergesort, on the
other hand, no work is done before the recursive calls: The algorithm
sorts each half of the array with respect to itself. However, the algorithm
must still deal with the interaction between the items in the two halves.
That is, the algorithm must merge the two halves of the array after the
recursive calls.

Analysis. The major effort in the quicksort method occurs during the parti-
tioning step. As you consider each item in the unknown region, you compare
theArray[firstUnknown] with the pivot and move theArray[firstUnknown]
into either S1 or S2. It is possible for one of S1 or S2 to remain empty. For example,
if the pivot is the smallest item in the array segment, S1 will remain empty. This
occurrence is the worst case because S2 decreases in size by only 1 at each recursive
call to quicksort. Thus, the maximum number of recursive calls to quicksort
will occur.

Notice what happens when the array is already sorted into ascending order
and you choose the first array item as the pivot. Figure 10-19 shows the results of
the first call to partition for this situation. The pivot is the smallest item in the

5       6      7       8       9Original array:

5       6      7       8       9

5       6      7       8       9

5       6      7       8       9

5       6      7       8       9

5       6      7       8       9First partition:

S1 is empty

S1 is empty

S1 is empty

S1 is empty

4 comparisons, 0 exchanges

Pivot Unknown

Pivot S2 Unknown

S2

S2

Pivot Unknown

Pivot Unknown

Pivot S2

A worst-case partitioning with quicksort

FIGURE 10-19
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array, and S1 remains empty. In this case, partition requires n – 1 comparisons
to partition the n items in this array. On the next recursive call to quicksort,
partition is passed n – 1 items, so it will require n – 2 comparisons to partition
them. Again, S1, will remain empty. Because the array segment that quicksort
considers at each level of recursion decreases in size by only 1, n – 1 levels of recur-
sion are required. Therefore, quicksort requires

1 + 2 + · · · + (n – 1) = n * (n – 1)/2

comparisons. However, recall that a move into S2 does not require an
exchange of array items; it requires only a change in the index firstUnknown.

Similarly, if S2 remains empty at each recursive call, n * (n – 1)/2 compari-
sons are required. In addition, however, an exchange is necessary to move each
unknown item to S1. Thus, n * (n – 1)/2 exchanges are necessary. (Again,
each exchange requires three data moves.) Thus, you can conclude that
quicksort is O(n2) in the worst case.

In contrast, Figure 10-20 shows an example in which S1 and S2 contain the
same number of items. In the average case, when S1 and S2 contain the same—or
nearly the same—number of items arranged at random, fewer recursive calls to
quicksort occur. As in the previous analysis of mergesort, you can conclude
that there are either log2n or 1 + log2n levels of recursive calls to quicksort.
Each call to quicksort involves m comparisons and at most m exchanges, where
m is the number of items in the subarray to be sorted. Clearly m ≤ n – 1.

A formal analysis of quicksort’s average-case behavior would show that it
is O(n * log2n). Thus, on large arrays you can expect quicksort to run sig-
nificantly faster than insertionSort, although in its worst case, quicksort
will require roughly the same amount of time as insertionSort.

quicksort is slow 
when the array is 
already sorted and 
you choose the 
smallest item as 
the pivot

5       3      4       7       6

5       3      6       7       4

5       3      6       7       4

5       3      6       7       4

First partition:

S1 and S2 are determined

Place pivot between S1 and S2

5       3      6       7       4

4       3      5       7       6

5       3      6       7       4Original array:

Pivot Unknown

Pivot S1 Unknown

S1 S2

S1 S2

S1 S2

Pivot S2

Pivot

Pivot Unknown

Pivot

S1

Unknown

An average-case partitioning with quicksort

FIGURE 10-20

Quicksort. Worst 
case: O(n2);
average case: 
O(n * log2 n)
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It might seem surprising, then, that quicksort is often used to sort large
arrays. The reason for quicksort’s popularity is that it is usually extremely fast
in practice, despite its unimpressive theoretical worst-case behavior. Although a
worst-case situation is not typical, even if the worst case occurs, quicksort’s
performance is acceptable for moderately large arrays.

The fact that quicksort’s average-case behavior is far better than its worst-
case behavior distinguishes it from the other sorting algorithms considered in
this chapter. If the original arrangement of data in the array is “random,”
quicksort performs at least as well as any known sorting algorithm that
involves comparisons. Unless the array is already ordered, quicksort is best.

The efficiency of mergesort is somewhere between the possibilities for
quicksort: Sometimes quicksort is faster, and sometimes mergesort is
faster. While the worst-case behavior of mergesort is of the same order of
magnitude as quicksort’s average-case behavior, in most situations
quicksort will run somewhat faster than mergesort. However, in its worst
case, quicksort will be significantly slower than mergesort.

Radix Sort
The final sorting algorithm in this chapter is included here because it is quite
different from the others. 

Imagine one last time that you are sorting a hand of cards. This time you
pick up the cards one at a time and arrange them by rank into 13 possible
groups in this order: 2, 3, . . . , 10, J, Q, K, A. Combine these groups and
place the cards face down on the table so that the 2s are on top and the aces
are on the bottom. Now pick up the cards one at a time and arrange them by
suit into four possible groups in this order: clubs, diamonds, hearts, and
spades. When taken together, the groups result in a sorted hand of cards.

A radix sort uses this idea of forming groups and then combining them to
sort a collection of data. The sort treats each data item as a character string. As a
first simple example of a radix sort, consider this collection of three-letter strings:

ABC, XYZ, BWZ, AAC, RLT, JBX, RDT, KLT, AEO, TLJ

The sort begins by organizing the data according to their rightmost (least sig-
nificant) letters. Although none of the strings ends in A or B, two strings end
in C. Place those two strings into a group. Continuing through the alphabet,
you form the following groups:

(ABC, AAC) (TLJ) (AEO) (RLT, RDT, KLT) ( JBX) (XYZ, BWZ)

The strings in each group end with the same letter, and the groups are ordered
by that letter. The strings within each group retain their relative order from the
original list of strings.

Now combine the groups into one as follows. Take the items in the first
group in their present order, follow them with the items in the second group
in their present order, and so on. The following group results:

ABC, AAC, TLJ, AEO, RLT, RDT, KLT, JBX, XYZ, BWZ

Group strings by 
rightmost letter

Combine groups
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Next, form new groups as you did before, but this time use the middle letter
of each string instead of the last letter:

(AAC) (ABC, JBX) (RDT) (AEO) (TLJ, RLT, KLT) (BWZ) (XYZ)

Now the strings in each group have the same middle letter, and the groups are
ordered by that letter. As before, the strings within each group retain their rel-
ative order from the previous group of all strings.

Combine these groups into one group, again preserving the relative order
of the items within each group:

AAC, ABC, JBX, RDT, AEO, TLJ, RLT, KLT, BWZ, XYZ

Now form new groups according to the first letter of each string:

(AAC, ABC, AEO) (BWZ) ( JBX) (KLT) (RDT, RLT) (TLJ) (XYZ)

Finally, combine the groups, again maintaining the relative order within each group:

AAC, ABC, AEO, BWZ, JBX, KLT, RDT, RLT, TLJ, XYZ

The strings are now in sorted order.
In the previous example, all character strings had the same length. If the

character strings have varying lengths, you can treat them as if they were the
same length by padding them on the right with blanks as necessary.

To sort numeric data, the radix sort treats a number as a character string.
You can treat numbers as if they were padded on the left with zeros, making
them all appear to be the same length. You then form groups according to the
rightmost digits, combine the groups, form groups according to the next-to-
last digits, combine them, and so on, just as you did in the previous example.
Figure 10-21 shows a radix sort of eight integers.

Group strings by 
middle letter

Combine groups

Group strings by 
first letter

Sorted strings

0123, 2154, 0222, 0004, 0283, 1560, 1061, 2150

(1560, 2150)    (1061)    (0222)    (0123, 0283)    (2154, 0004)

1560, 2150, 1061, 0222, 0123, 0283, 2154, 0004

(0004)    (0222, 0123)    (2150, 2154)    (1560, 1061)    (0283)

0004, 0222, 0123, 2150, 2154, 1560, 1061, 0283

(0004, 1061)    (0123, 2150, 2154)    (0222, 0283)    (1560)

0004, 1061, 0123, 2150, 2154, 0222, 0283, 1560

(0004, 0123, 0222, 0283)    (1061, 1560)    (2150, 2154)

0004, 0123, 0222, 0283, 1061, 1560, 2150, 2154

Original integers

Grouped by fourth digit

Combined

Grouped by third digit

Combined

Grouped by second digit

Combined

Grouped by first digit

Combined (sorted)

A radix sort of eight integers

FIGURE 10-21
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The following pseudocode describes the algorithm for a radix sort of n
decimal integers of d digits each:

+radixSort(inout theArray:ItemArray, 
           in n:integer, in d:integer)
// Sorts n d-digit integers in the array theArray.

for (j = d down to 1) {
    Initialize 10 groups to empty
    Initialize a counter for each group to 0

for (i = 0 through n-1) {
      k = jth digit of theArray[i]
      Place theArray[i] at the end of group k
      Increase kth counter by 1
    }  // end for i

    Replace the items in theArray with all the 
        items in group 0, followed by all the items 
        in group 1, and so on.
  }  // end for j

Analysis. From the pseudocode for the radix sort, you can see that this algo-
rithm requires n moves each time it forms groups and n moves to combine them
again into one group. The algorithm performs these 2 * n moves d times. There-
fore, the radix sort requires 2 * n * d moves to sort n strings of d characters each.
However, notice that no comparisons are necessary. Thus, radix sort is O(n).

A Comparison of Sorting Algorithms
Figure 10-22 summarizes the worst-case and average-case orders of mag-
nitude for the sorting algorithms that appear in this chapter. For refer-
ence purposes, two other algorithms—treesort and heapsort—are

Selection sort
Bubble sort
Insertion sort
Mergesort
Quicksort
Radix sort
Treesort
Heapsort

n2

n2

n2

n * log n
n2

n
n2

n * log n

n2

n2

n2

n * log n
n * log n
n
n * log n
n * log n

Worst case Average case

Approximate growth rates of time required for eight sorting algorithms

FIGURE 10-22
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included here, even though you will not study them until Chapters 11
and 12, respectively.

The Java Collections Framework Sort Algorithm
The Java Collections Framework provides numerous polymorphic algorithms.
These algorithms appear in the class java.util.Collections. Note that this
is a different class than the Collection class used as the root interface in the
collection hierarchy. The Collections class provides only static methods that
operate on or return collections.

Typically, these static methods take an argument that is the collection on
which the method is to be performed. Many of the methods have a parameter
that is of type Collection or List.

The sort algorithm used in the JCF is a slightly optimized version of the
mergesort algorithm. As we have seen in our analysis of mergesort, it is guaran-
teed to run in n*log(n) time. Also note that mergesort is stable; the elements
with the same value are guaranteed to remain in the same relative order. This
can be important if you are sorting the same list repeatedly on different
attributes. For example, if a threaded discussion is sorted by date and then
sorted by sender, the user expects the now-contiguous list of messages from a
given sender will still be sorted by date. This will only happen if the algorithm
used for the second sort is stable.

There are actually two sort methods provided in the Collections class:

  // Sorts the specified list into ascending order, according 
  // to the natural ordering of its elements. 

static <T> void sort(List<T> list, Comparator<? super T> c) 
  // Sorts the specified list according to the order induced
  // by the specified comparator.

The first form takes a List<T>, where T or one of its super classes should
implement the Comparable interface. It sorts the items into ascending order
based upon the natural ordering of the elements. Here is a simple program
that demonstrates how to use this sort to alphabetically order a list of names:

public static void main(String args[]) {
  String[] names = {"Janet", "Michael", "Andrew", "Kate", 
                    "Sarah", "Regina", "Rachael", "Allie"}; 
  List<String> l = Arrays.asList(names);
  Collections.sort(l);
  System.out.println(l);
} // end main

static <T extends Comparable<? super T>> void sort(List<T> list) 
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The method Arrays.asList takes an array argument and returns it as a
serializable List that is subsequently sent to the Collections.sort method.
This program produces the following output: 

[Allie, Andrew, Janet, Kate, Michael, Rachael, Regina, Sarah]

The second form of sort takes two parameters, the first is a List<T>, this time
with no restrictions on T, and a second parameter that is a Comparator object.
Note the Comparator interface is defined as follows:

public interface Comparator<T> {

int compare(T o1, T o2);
    // Compares its two arguments for order. 

boolean equals(Object obj);
    // Indicates whether some other object is "equal to" this 
    // Comparator.
} // end Comparator

As mentioned earlier in the chapter, use of the Comparator object
imposes a  total ordering on some collection of objects. This may be the
same as the natural ordering that is usually implemented using the
Comparable interface. To utilize the sort method with a Comparator object
requires an implementation of the Comparator interface for the data type of the
objects in the collection. 

For example, suppose we have a simple collection of Person objects,
where each object contains the name and age for a person as follows:

class Person implements Serializable {
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

  } // end constructor
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public String getName() {
return name;

  } // end getName

public int getAge() {
return age;

  } // end getAge

public String toString() {
return name + " - " + age;

  } // end toString
} //end Person 

The Person class implements the Serializable interface since we plan to use
the Arrays.asList method again to create a list. We will demonstrate two
different comparators for the Person class, one to compare by name, the other
by age. The Comparator class is a generic class, so when we implement it, the
data type Person will be provided as the generic parameter. Each comparator
requires the definition of a compare method and an equals method. The
compare method is implemented to impose and ordering on two Person
objects based upon some criteria, name or age. The equals method is
intended to allow you to determine if you have two comparators that are the
same. The implementation shown here simply checks to see if the comparator
objects are the same object, not the same type of object. Other interpretations
are possible.

Here is the definition of the NameComparator class; the compare method
is based solely on the name field of the Person object:

import java.util.Comparator;
import java.io.Serializable;

public int compare(Person o1, Person o2) {
    // Compares its two arguments for order by name. 

return o1.getName().compareTo(o2.getName());
  } // end compare

public boolean equals(Object obj) {
    // Simply checks to see if we have the same object

return this==obj;
  } // end equals

} // end NameComparator

class NameComparator implements Comparator<Person>, Serializable {
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The definition of the AgeComparator class is quite similar, but the compare
method is based solely on the age field of the Person object:

import java.util.Comparator;
import java.io.Serializable;

public int compare(Person o1, Person o2) {
    // Returns the difference:
    // if positive, age of o1 person is greater than o2 person
    // if zero, the ages are equal
    // if negative, age of o1 person is less than o2 person

return o1.getAge() - o2.getAge();
  } // end compare

public boolean equals(Object obj) {
    // Simply checks to see if we have the same object

return this==obj;
  } // end equals
} // end AgeComparator

Note that the comparators implement the Serializable interface. It is
considered good programming practice to do this as it is quite possible that
these comparator objects may be part of other serializable data structures.

Now that these comparator classes exist, comparator objects are instanti-
ated for use in the sort method. For example:

public static void main(String args[]) {
  NameComparator nameComp = new NameComparator();
  AgeComparator ageComp = new AgeComparator();

  Person[] p = new Person[5];
  p[0] = new Person("Michael", 45);
  p[1] = new Person("Janet", 39);
  p[2] = new Person("Sarah", 17);
  p[3] = new Person("Kate", 20);
  p[4] = new Person("Andrew", 20);
  List<Person> list = Arrays.asList(p);

  System.out.println("Sorting by age:");
  Collections.sort(list, ageComp);
  System.out.println(list);

  System.out.println("Sorting by name:");
  Collections.sort(list, nameComp);
  System.out.println(list);

class AgeComparator implements Comparator<Person>, Serializable {
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  Collections.sort(list, ageComp);
  System.out.println(list);
} // end main

This program produces the following output:

Sorting by age:
[Sarah - 17, Kate - 20, Andrew - 20, Janet - 39, Michael - 45]
Sorting by name:
[Andrew - 20, Janet - 39, Kate - 20, Michael - 45, Sarah - 17]
Now sorting by age, after sorting by name:
[Sarah - 17, Andrew - 20, Kate - 20, Janet - 39, Michael - 45]

Note that the sort is stable—it maintains the order of equal elements. This
is evident by observing that the first sort by age kept the names with the same
age in their original order. After sorting by name first, then by age, the names
are now displayed by age with the names in alphabetical order.

1. Order-of-magnitude analysis and Big O notation measure an algorithm’s time
requirement as a function of the problem size by using a growth-rate function. This
approach enables you to analyze the efficiency of an algorithm without regard for
such factors as computer speed and programming skill that are beyond your control. 

2. When you compare the inherent efficiency of algorithms, you examine their
growth-rate functions when the problems are large. Only significant differences in
growth-rate functions are meaningful.

3. Worst-case analysis considers the maximum amount of work an algorithm will
require on a problem of a given size, while average-case analysis considers the
expected amount of work that it will require.

4. You can use order-of-magnitude analysis to help you choose an implementation for
an abstract data type. If your application frequently uses particular ADT opera-
tions, your implementation should be efficient for at least those operations.

5. Selection sort, bubble sort, and insertion sort are all O(n2) algorithms. Although, in a
particular case, one might be faster than another, for large problems they all are slow.

6. Quicksort and mergesort are two very efficient recursive sorting algorithms. In the
“average” case, quicksort is among the fastest known sorting algorithms. However,
quicksort’s worst-case behavior is significantly slower than mergesort’s. Fortunately,
quicksort’s worst case rarely occurs in practice. Actual execution time for mergesort is
not quite as fast as quicksort in the average case, even though they have the same order.
However, mergesort’s performance is consistently good in all cases. Mergesort has the
disadvantage of requiring extra storage equal to the size of the array to be sorted.

  System.out.println("Now sorting by age, after sorting by name:");

Summary
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1. In general, you should avoid analyzing an algorithm solely by studying the running
times of a specific implementation. Running times are influenced by such factors as pro-
gramming style, the particular computer, and the data on which the program is run.

2. When comparing the efficiency of various solutions, look only at significant differences.
This rule is consistent with the multidimensional view of the cost of a computer program.

3. While manipulating the Big O notation, remember that O(f(n)) represents an ine-
quality. It is not a function but simply a notation that means “is of order f(n)” or
“has order f(n)”.

4. If a problem is small, do not overanalyze it. In such a situation, the primary
concern should be simplicity. For example, if you are sorting an array that contains
only a small number of items—say, fewer than 25—a simple O(n2) algorithm such
as an insertion sort is appropriate.

5. If you are sorting a very large array, an O(n2) algorithm is probably too inefficient
to use.

6. Quicksort is appropriate when you are confident that the data in the array to be
sorted is arranged randomly. Although quicksort’s worst-case behavior is O(n2),
the worst case rarely occurs in practice. 

1. How many comparisons of array items do the following loops contain?

int temp;
for (j = 1; j <= n-1; ++j) {
  i = j + 1;

do {
if (theArray[i] < theArray[j]) {

      temp = theArray[i];
      theArray[i] = theArray[j];
      theArray[j] = temp;
    }  // end if
    ++i;
  } while (i <= n);
}  // end for

2. Repeat Self-Test Exercise 1, replacing the statement i = j + 1 with i = j.

3. What order is an algorithm that has as a growth-rate function

4. Consider a sequential search of n data items.

a. If the data items are sorted into descending order, how can you determine
that your desired item is not in the data collection without always making n
comparisons?

a. 8 * n3 – 9 * n2 b. 7 * log2n + 20 c. 7 * log2n * n

Cautions

Self-Test Exercises
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b. What is the order of the sequential search algorithm when the desired item is
not in the data collection? Do this for both sorted and unsorted data, and con-
sider the best, average, and worst cases.

c. Show that if the sequential search algorithm finds the desired item in the data
collection, the algorithm’s order does not depend upon whether or not the data
items are sorted.

5. Trace the selection sort as it sorts the following array into ascending order:
80  40  25  20  30  60.

6. Repeat Self-Test Exercise 5, but instead sort the array into descending order.

7. Trace the bubble sort as it sorts the following array into ascending order:
80  40  25  20  30  60.

8. Trace the insertion sort as it sorts the array in Self-Test Exercise 7 into
ascending order.

9. Show that the mergesort algorithm satisfies the four criteria of recursion that
Chapter 3 describes.

10. Trace quicksort’s partitioning algorithm for an ascending sort as it partitions the
following array. Use the first item as the pivot.

39  12  16  38  40  27

11. Suppose that you sort a large array of integers by using mergesort. Next you use a
binary search to determine whether a given integer occurs in the array. Finally, you
display all the integers in the sorted array.

a. Which algorithm is faster, in general: the mergesort or the binary search?
Explain in terms of Big O notation.

b. Which algorithm is faster, in general: the binary search or displaying the inte-
gers? Explain in terms of Big O notation.

1. What is the order of each of the following tasks in the worst case? 

a. Computing the sum of the first half of an array of n items

b. Initializing each element of an array items to 1

c. Displaying every other integer in a linked list of n nodes

d. Displaying all n names in a circular linked list

e. Displaying the third element in a linked list

f. Displaying the last integer in a linked list of n nodes

g. Searching an array of n integers for a particular value by using a binary search

h. Sorting an array of n integers into ascending order by using a mergesort

2. Why do we include the variable sorted in the implementation of the bubble sort?

Exercises
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3. For queues and stacks presented earlier in this text, three implementations were
provided—a reference based implementation, an array based implementation, and a
list based implementation. For each of these implementations, what is the order of
each of the following tasks in the worst case?

a. Adding an item to a stack of n items

b. Adding an item to a queue of n items

4. Find an array that makes the bubble sort exhibit its worst behavior.

5. Suppose that your implementation of a particular algorithm appears in Java as

for (int pass = 1; pass <= n; ++pass) {
for (int index = 0; index < n; ++index) {

for (int count = 1; count < 10; ++count) {
      . . .
    } // end for
  } // end for
} // end for

The previous code shows only the repetition in the algorithm, not the computa-
tions that occur within the loops. These computations, however, are independent
of n. What is the order of the algorithm? Justify your answer.

6. Consider the following Java method f. Do not be concerned with f’s purpose.

public static void f(int[] theArray, int n) {
int temp;
for (int j = 0; j < n; ++j) {

int i = 0;
while (i <= j) {

if (theArray[i] < (theArray[j])) {
        temp = theArray[i];
        theArray[i] = theArray[j];
        theArray[j] = temp;
      }  // end if
      ++i;
    }  // end while
  }  // end for
}  // end f

How many comparisons does f perform?

7. For large arrays and in the worst case, is selection sort faster than insertion sort?
Explain.

8. In how many ways can 2 sorted arrays of combined size N be merged?

9. Show that for all constants a, b > 1, f(n) is O(logan) if and only if f(n) is
O(logbn). Thus, you can omit the base when you write O(log n). Hint: Use the
identity logan = logbn/logba for all constants a, b > 1.

10. This chapter’s analysis of selection sort ignored operations that control loops or
manipulate array indexes. Revise this analysis by counting all operations, and show
that the algorithm is still O(n2).
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11. Prove that sorting N elements with integer keys in the range 1 < Key < M takes
O(M +N) time using radix sort. 

12. Trace the selection sort as it sorts the following array into ascending order:
8  11  23  1  20  33

13. Trace the bubble sort as it sorts the following array into descending order:
10  12  23  34  5

14. Here is an array which has just been partitioned by the first step of quick sort:

2, 14, 40, 22, 44, 25, 58

Which of these elements could be the pivot? (There may be more than one possibility)

15. When is insertion sort a good choice for sorting an array?

a. Each component of the array requires a large amount of memory.

b. Each component of the array requires a small amount of memory.

c. The array has only a few items out of place.

d. The processor speed is fast. 

16. Write recursive versions of selectionSort, bubbleSort, and insertionSort.

17. One way computer speeds are measured is by the number of instructions they
can perform per second.  Assume that a comparison or a data move are each a
single instruction. If the bubble sort is being used to sort 1,000,000 items in a
worst case scenario, what is the approximate amount of time it takes to execute
this sort on each of the following computers? Express your answer in days, hours,
minutes, and seconds.

a. An early computer that could only execute one thousand instructions per second

b. A more recent computer that can execute one billion instructions per second

18. Here is an array of ten integers:

35,  23,  18,  93,  51,  12, 64, 2, 45, 1

Draw this array after the first iteration of the large loop in a selection sort (sorting from
smallest to largest).

19. In case of a selection sort algorithm of n elements, how many times is the function
swap called during the execution of the algorithm?

a. 1

b. n - 1

c. n log n

d. n2

20. Trace the quicksort algorithm as it sorts the following array into ascending order.
List the calls to quicksort and to partition in the order in which they occur.

80  40  25  20  30  60  15
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21. Suppose that you remove the call to merge from the mergesort algorithm to
obtain

+mystery(inout theArray:ItemArray, 
         in first:integer, in last:integer)
// mystery algorithm for theArray[first..last].

if (first < last) {
    mid = (first + last) / 2
    mystery(theArray, first, mid)
    mystery(theArray, mid+1, last)
  }  // end if

What does this new algorithm do?

22. You can choose any array item as the pivot for quicksort. You then interchange
items so that your pivot is in theArray[first].

a. One way to choose a pivot is to take the middle value of the three values
theArray[first], theArray[last], and theArray [(first + last)/2].
How many comparisons are necessary to sort an array of size n if you always
choose the pivot in this way?

b. If the actual median value could be chosen as the pivot at each step, how many
comparisons are necessary to sort an array of size n?

23. Selection sort and quick sort both fall into the same category of sorting algorithms.
What is this category?

a. O(n log n) sorts

b. Divide-and-conquer sorts

c. Interchange sorts

d. Average time is quadratic. 

24. Use invariants to show that the method selectionSort is correct.

25. Describe an iterative version of mergesort. Define an appropriate invariant and
show the correctness of your algorithm.

26. One criterion used to evaluate sorting algorithms is stability. A sorting algorithm is
stable if it does not exchange items that have the same sort key. Thus, items with
the same sort key (possibly differing in other ways) will maintain their positions rel-
ative to one another. For example, you might want to take an array of students
sorted by name and sort it by year of graduation. Using a stable sorting algorithm
to sort the array by year will ensure that within each year the students will remain
sorted by name. Some applications mandate a stable sorting algorithm. Others do
not. Which of the sorting algorithms described in this chapter are stable?

27. When we discussed the radix sort, we sorted a hand of cards by first ordering the
cards by rank and then by suit. To implement a radix sort for this example, you
could use two characters to represent a card, if you used T to represent a 10. For
example, S2 is the 2 of spades and HT is the 10 of hearts.
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a. Show a trace of the radix sort for the following cards:

S2, HT, D6, S4, C9, CJ, DQ, ST, HQ, DK

b. Suppose that you did not use T to represent a 10—that is, suppose that H10 is
the 10 of hearts—and that you padded the two-character strings on the right
with a blank to form three-character strings. How would a radix sort order the
entire deck of cards in this case?

1. Write a Java program that reads n number of elements and sorts them by any of the
following algorithms, depending upon the user's choice:

a. Selection sort

b. Bubble sort

c. Insertion sort 

d. Merge sort

2. A program that has this selection sort static method available:

void SELECTSORT(int[ ] data, int n);

This program also has an integer array called A, with 10 elements.

Write two method activations:

a. The first call uses the SELECTSORT method to sort all elements of A;

b. The second call uses the SELECTSORT method to sort elements from A[4] to
A[8] of the array

3. a. Modify the partition algorithm for quicksort so that S1 and S2 will never be empty.

b. Another partitioning strategy for quicksort is possible. Let an index low
traverse the array segment theArray [first..last] from first to last
and stop when it encounters the first item that is greater than the pivot item.
Similarly, let a second index high traverse the array segment from last to
first and stop when it encounters the first item that is smaller than the pivot
item. Then swap these two items, increment low, decrement high, and con-
tinue until high and low meet somewhere in the middle. Implement this
version of quicksort in Java. How can you ensure that the regions S1 and S2
are not empty?

c. There are several variations of this partitioning strategy. What other strategies
can you think of? How do they compare to the two that have been given?

4. Implement the radix sort of an array by using an ADT queue for each group.

5. Implement a radix sort of a linked list of integers.

6. A doubly circular linked list contains five elements. Write a program that sorts
those elements in an ascending order.

Programming Problems
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7. A class STN contains the I.D. number, name, and scores of students at a university.
Write a program that creates an array of 60 students of class STN. Write a method that
sorts the students according to their scores (you can use any sorting algorithm).

8. Shellsort (named for its inventor, Donald Shell) is an improved insertion sort.
Rather than always exchanging adjacent items—as in insertion sort—Shellsort can
exchange items that are far apart in the array. Shellsort arranges the array so that
every hth item forms a sorted subarray. For every h in a decreasing sequence of
values, Shellsort arranges the array. For example, if h is 5, every fifth item forms a
sorted subarray. Ultimately, if h is 1, the entire array will be sorted.

One possible sequence of h’s begins at n/2 and halves n until it becomes 1. By
using this sequence, and by replacing 1 with h and 0 with h–1 in insertionSort,
we get the following method for Shellsort:

public static <T extends Comparable<? super T>>
       void shellsort(T[] theArray, int n) {

int loc;
  T nextItem;

for (int h = n/2; h > 0; h = h/2) {
for (int unsorted = h; unsorted < n; ++unsorted) {

nextItem = theArray[unsorted];
loc = unsorted;
while ((loc >= h) && 

(theArray[loc-h].compareTo(nextItem) > 0)) {
theArray[loc] = theArray[loc-h];
loc = loc - h;

}  // end while
  theArray[loc] = nextItem;
}  // end for unsorted

}  // end for h
}  // end shellsort

Add a counter to the methods insertionSort and shellsort that counts
the number of comparisons that are made. Run the two methods with arrays of
various sizes. On what size does the difference in the number of comparisons
become significant?
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CHAPTER 11

Trees

he data organizations presented in previous chapters
are linear in that items are one after another. The ADTs

in this chapter organize data in a nonlinear, hierarchical
form, whereby an item can have more than one immediate
successor. In particular, this chapter discusses the specifi-
cations, implementations, and relative efficiency of the ADT
binary tree and the ADT binary search tree. These ADTs are
basic to the next three chapters.
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The JCF Binary Search Algorithm
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The previous chapters discussed ADTs whose operations fit into at least one of
these general categories:

■ Operations that insert data into a data collection

■ Operations that delete data from a data collection

■ Operations that ask questions about the data in a data collection

The ADTs list, stack, and queue are all position oriented, and their operations
have the form

■ Insert a data item into the i th position of a data collection.

■ Delete a data item from the i th position of a data collection.

■ Ask a question about the data item in the i th position of a data collection.

As you have seen, the ADT list places no restriction on the value of i, while the
ADTs stack and queue do impose some restrictions. For example, the opera-
tions of the ADT stack are restricted to inserting into, deleting from, and
asking a question about one end—the top—of the stack. Thus, although they
differ with respect to the flexibility of their operations, lists, stacks, and queues
manage an association between data items and positions.

The ADT sorted list is value oriented. Its operations are of the form

■ Insert a data item containing the value x.

■ Delete a data item containing the value x.

■ Ask a question about a data item containing the value x.

Although these operations, like position-oriented operations, fit into the three
general categories of operations listed earlier—they insert data, delete data,
and ask questions about data—they are based upon values of data items
instead of positions.

This chapter discusses two major ADTs: the binary tree and the binary
search tree. As you will see, the binary tree is a position-oriented ADT, but it is
not linear as are lists, stacks, and queues. Thus, you will not reference items in
a binary tree by using a position number. Our discussion of the ADT binary
tree provides an important background for the more useful binary search tree,
which is a value-oriented ADT. Although a binary search tree is also not linear,
it has operations similar to those of a sorted list, which is linear.

In the next chapter, you will see two more value-oriented ADTs: the ADT
table and the ADT priority queue. The implementations of both of these
ADTs can use the ideas presented in this chapter.

11.1 Terminology

You use trees to represent relationships. Previous chapters informally used tree
diagrams to represent the relationships between the calls of a recursive algo-
rithm. For example, the diagram of the rabbit algorithm’s recursive calls in

General categories 
of data-management 
operations

The form of opera-
tions on position-
oriented ADTs

The form of opera-
tions on value-
oriented ADTs
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Figure 3-11 of Chapter 3 is actually a tree. Each call to rabbit is represented by
a box, or node, or vertex, in the tree. The lines between the nodes (boxes) are
called edges. For this tree, the edges indicate recursive calls. For example, the
edges from rabbit(7) to rabbit(6) and rabbit(5) indicate that subproblem
rabbit(7) makes calls to rabbit(6) and rabbit(5).

All trees are hierarchical in nature. Intuitively, hierarchical means that a
“parent-child” relationship exists between the nodes in the tree. If an edge is
between node n and node m, and node n is above node m in the tree, then n is
the parent of m, and m is a child of n. In the tree in Figure 11-1, nodes B and
C are children of node A. Children of the same parent—for example, B and
C—are called siblings. Each node in a tree has at most one parent, and exactly
one node—called the root of the tree—has no parent. Node A is the root of
the tree in Figure 11-1. A node that has no children is called a leaf of the tree.
The leaves of the tree in Figure 11-1 are C, D, E, and F.

The parent-child relationship between the nodes is generalized to the rela-
tionships ancestor and descendant. In Figure 11-1, A is an ancestor of D, and
thus D is a descendant of A. Not all nodes are related by the ancestor or
descendant relationship: B and C, for instance, are not so related. However,
the root of any tree is an ancestor of every node in that tree. A subtree in a
tree is any node in the tree together with all of its descendants. A subtree of
a node n is a subtree rooted at a child of n. For example, Figure 11-2 shows a
subtree of the tree in Figure 11-1. This subtree has B as its root and is
a subtree of the node A.

Trees are 
hierarchical

A general tree
FIGURE 11-1

A

D E F

B C

A subtree is any 
node and its 
descendants

A subtree of the tree in Figure 11-1
FIGURE 11-2

D E F

B
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Because trees are hierarchical in nature, you can use them to represent
information that itself is hierarchical in nature—for example, organization
charts and family trees, as Figure 11-3 depicts. It may be disconcerting to dis-
cover, however, that the nodes in the family tree in Figure 11-3b that repre-
sent Caroline’s parents (John and Jacqueline) are the children of the node that
represents Caroline! That is, the nodes that represent Caroline’s ancestors are
the descendants of Caroline’s node. It’s no wonder that computer scientists
often seem to be confused by reality.

Formally, a general tree T is a set of one or more nodes such that T is par-
titioned into disjoint subsets:

■ A single node r, the root

■ Sets that are general trees, called subtrees of r

Thus, the trees in Figures 11-1 and 11-3a are general trees. 
The primary focus of this chapter will be on binary trees. Formally, a

binary tree is a set T of nodes such that either

■ T is empty, or

■ T is partitioned into three disjoint subsets:

■ A single node r, the root

■ Two possibly empty sets that are binary trees, called left and right sub-
trees of r

The trees in Figures 3-11a and 11-3b are binary trees. Notice that each node
in a binary tree has no more than two children. A binary tree is not a special
kind of general tree, because a binary tree can be empty, whereas a general tree
cannot.

(a) An organization chart; (b) a family tree
FIGURE 11-3

(a) President

VP
Manufacturing

VP
Personnel

VP
Marketing

Director
Sales

Director
Media Relations

JacquelineJohn

Caroline

Joseph Rose 

(b)

Formal definition of 
a binary tree
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The following intuitive restatement of the definition of a binary tree is
useful:

T is a binary tree if either

■ T has no nodes, or

■ T is of the form

where r is a node and TL and TR are both binary trees

Notice that the formal definition agrees with this intuitive one: If r is the root
of T, then the binary tree TL is the left subtree of node r and TR is the right
subtree of node r. If TL is not empty, its root is the left child of r, and if TR is
not empty, its root is the right child of r. Notice that if both subtrees of a
node are empty, that node is a leaf.

As an example of how you can use a binary tree to represent data in a hier-
archical form, consider Figure 11-4. The binary trees in this figure represent
algebraic expressions that involve the binary operators +, –, *, and /. To repre-
sent an expression such as a – b, you place the operator in the root node and
the operands a and b into the left and right children, respectively, of the root.
(See Figure 11-4a.) Figure 11-4b represents the expression a – b/c; a subtree
represents the subexpression b/c. A similar situation exists in Figure 11-4c,
which represents (a – b) * c. The leaves of these trees contain the expressions’
operands, while other tree nodes contain the operators. Parentheses do not
appear in these trees. The binary tree provides a hierarchy for the operations—
that is, the tree specifies an unambiguous order for evaluating an expression.

Intuitive definition of 
a binary tree

r
TL TR

–

ba

a – b

(a)

a –  b / c

b

–

/a

c

(b)

*

c–

a

( a – b )    c    *

b

(c)

Binary trees that represent algebraic expressions
FIGURE 11-4
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The nodes of a tree typically contain values. A binary search tree is a
binary tree that is in a sense sorted according to the values in its nodes. For
each node n, a binary search tree satisfies the following three properties:

■ n’s value is greater than all values in its left subtree TL.

■ n’s value is less than all values in its right subtree TR.

■ Both TL and TR are binary search trees.

Figure 11-5 is an example of a binary search tree. As its name suggests, a
binary search tree organizes data in a way that facilitates searching it for a par-
ticular data item. Later, this chapter discusses binary search trees in detail.

The height of trees. Trees come in many shapes. For example, although the
binary trees in Figure 11-6 all contain the same nodes, their structures are

Properties of a 
binary search tree

A binary search tree of names
FIGURE 11-5
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Binary trees with the same nodes but different heights
FIGURE 11-6
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quite different. Although each of these trees has seven nodes, some are “taller”
than others. The height of a tree is the number of nodes on the longest path
from the root to a leaf. For example, the trees in Figure 11-6 have respective
heights of 3, 5, and 7. Many people’s intuitive notion of height would lead
them to say that these trees have heights of 2, 4, and 6. Indeed, many authors
define height to agree with this intuition. However, the definition of height
used in this book leads to a cleaner statement of many algorithms and proper-
ties of trees. 

There are other equivalent ways to define the height of a tree T. One way
uses the following definition of the level of a node n:

■ If n is the root of T, it is at level 1.

■ If n is not the root of T, its level is 1 greater than the level of its parent.

For example, in Figure 11-6a, node A is at level 1, node B is at level 2, and
node D is at level 3.

The height of a tree T in terms of the levels of its nodes is defined as
follows:

■ If T is empty, its height is 0.

■ If T is not empty, its height is equal to the maximum level of its nodes.

Apply this definition to the trees in Figure 11-6 and show that their heights
are, respectively, 3, 5, and 7, as was stated earlier.

For binary trees, it is often convenient to use an equivalent recursive defi-
nition of height:

■ If T is empty, its height is 0.

■ If T is a nonempty binary tree, then because T is of the form

the height of T is 1 greater than the height of its root’s taller subtree;
that is, 

height (T) = 1 + max{height (TL), height (TR)}

Later, when we discuss the efficiency of searching a binary search tree, it
will be necessary to determine the maximum and minimum heights of a binary
tree of n nodes.

Full, complete, and balanced binary trees. In a full binary tree of height h,
all nodes that are at a level less than h have two children each. Figure 11-7
depicts a full binary tree of height 3. Each node in a full binary tree has left
and right subtrees of the same height. Among binary trees of height h, a full
binary tree has as many leaves as possible, and they all are at level h. Intu-
itively, a full binary tree has no missing nodes.

Level of a node

Height of a tree in 
terms of levels

Recursive definition 
of height

r
TL TR
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When proving properties about full binary trees—such as how many nodes
they have—the following recursive definition of a full binary tree is convenient:

■ If T is empty, T is a full binary tree of height 0.

■ If T is not empty and has height h > 0, T is a full binary tree if its root’s
subtrees are both full binary trees of height h – 1.

This definition closely reflects the recursive nature of a binary tree.
A complete binary tree of height h is a binary tree that is full down to

level h – 1, with level h filled in from left to right, as Figure 11-8 illustrates.
More formally, a binary tree T of height h is complete if

1. All nodes at level h – 2 and above have two children each, and

2. When a node at level h – 1 has children, all nodes to its left at the same
level have two children each, and 

3. When a node at level h – 1 has one child, it is a left child

Parts 2 and 3 of this definition formalize the requirement that level h be filled
in from left to right. Note that a full binary tree is complete.

A full binary tree of height 3
FIGURE 11-7

A full binary tree

A complete binary tree
FIGURE 11-8

A complete binary 
tree

Full binary trees are 
complete
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Finally, a binary tree is height balanced, or simply balanced, if the height
of any node’s right subtree differs from the height of the node’s left subtree by
no more than 1. The binary trees in Figures 11-8 and 11-6a are balanced, but
the trees in Figures 11-6b and 11–6c are not balanced. A complete binary tree
is balanced.

The following is a summary of the major tree terminology presented so far.

Complete binary 
trees are balanced

Summary of Tree Terminology

General tree A set of one or more nodes, partitioned into a
root node and subsets that are general sub-
trees of the root.

Parent of node n The node directly above node n in the tree.

Child of node n A node directly below node n in the tree.

Root The only node in the tree with no parent.

Leaf A node with no children.

Siblings Nodes with a common parent.

Ancestor of node n A node on the path from the root to n.

Descendant of node n A node on a path from n to a leaf.

Subtree of node n A tree that consists of a child (if any) of n and
the child’s descendants.

Height The number of nodes on the longest path from
the root to a leaf.

Binary tree A set of nodes that is either empty or parti-
tioned into a root node and one or two subsets
that are binary subtrees of the root. Each node
has at most two children, the left child and the
right child.

Left (right) child 
of node n

A node directly below and to the left (right) of
node n in a binary tree.

Left (right) subtree 
of node n

In a binary tree, the left (right) child (if any) of
node n plus its descendants.

Binary search tree A binary tree where the value in any node n is
greater than the value in every node in n’s left
subtree, but less than the value of every node
in n’s right subtree.

Empty binary tree A binary tree with no nodes.

Full binary tree A binary tree of height h with no missing nodes.
All leaves are at level h and all other nodes
each have two children. (continues)

KEY CONCEPTS
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11.2 The ADT Binary Tree

As an abstract data type, the binary tree has operations that add and remove
nodes and subtrees. By using these basic operations, you can build any binary
tree. Other operations set or retrieve the data in the root of the tree and deter-
mine whether the tree is empty. 

Traversal operations that visit every node in a binary tree are also typical.
“Visiting” a node means “doing something with or to” the node. Chapter 5
introduced the concept of traversal for a linked list: Beginning with the list’s
first node, you visit each node sequentially until you reach the end of the
linked list. Chapter 9 showed how to implement a Java iterator to facilitate tra-
versal of the list. Traversal of a binary tree, however, visits the tree’s nodes in
one of several different orders. The three standard orders are called preorder,
inorder, and postorder, and they are described in the next section along with
an iterator for binary trees.

The operations available for a particular ADT binary tree depend on the
type of binary tree being implemented. Thus, we will first develop an abstract
class representing a binary tree, containing only the most basic binary tree
operations. Later, we will extend this abstract class to provide additional binary
tree operations.

Basic Operations of the ADT Binary Tree
The first task is to define the operations that are common to all binary tree
implementations. Here is a summary:

Summary of Tree Terminology (continued)

Complete binary tree A binary tree of height h that is full to level h – 1
and has level h filled in from left to right.

Balanced binary tree A binary tree in which the left and right subtrees
of any node have heights that differ by at most 1.

KEY CONCEPTS

Basic Operations of the ADT Binary Tree
1. Create an empty binary tree.
2. Create a one-node binary tree, given an item.
3. Remove all nodes from a binary tree, leaving it empty.
4. Determine whether a binary tree is empty.
5. Determine what data is the binary tree’s root.
6. Set the data in the binary tree’s root (may not be implemented by 

all binary trees).

KEY CONCEPTS
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Notice that we included in this basic set of operations an operation that
changes the item in the root. For some binary trees, such an operation would
not be desirable, and may not be implemented. The operation should throw an
exception to indicate this.

The following pseudocode specifies these basic operations in more detail. 

As you can see, we must still specify other operations for building the tree.
One possible set of operations is presented next.

General Operations of the ADT Binary Tree
As was mentioned earlier, the particular operations provided for an ADT
binary tree depend on the kind of binary tree we are designing. This section
specifies some general operations for a binary tree, with the assumption that
we are adding these operations to the basic operations of the ADT binary tree
specified before. A UML diagram for a binary tree is shown in Figure 11-9.

Pseudocode for the Basic Operations 
of the ADT Binary Tree

+createBinaryTree()
// Creates an empty binary tree.

+createBinaryTree(in rootItem:TreeItemType)
// Creates a one-node binary tree whose root contains 
// rootItem.

+makeEmpty()
// Removes all of the nodes from a binary tree, leaving an
// empty tree.

+isEmpty():boolean {query}
// Determines whether a binary tree is empty.

+getRootItem():TreeItemType throws TreeException {query}
// Retrieves the data item in the root of a nonempty 
// binary tree. Throws TreeException if the tree is
// empty.

+setRootItem(in rootItem:TreeItemType) 
throws UnsupportedOperationException

// Sets the data item in the root of a binary tree. Throws
// UnsupportedOperationException if the method is not 
// implemented. 

KEY CONCEPTS
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BinaryTree

root

left subtree

right subtree

createBinaryTree()

makeEmpty()

isEmpty()

getRootItem()

setRootItem()

attachLeft()

attachRight()

attachLeftSubtree()

attachRightSubtree()

detachLeftSubtree()

detachRightSubtree()

getLeftSubtree()

getRightSubtree()

UML diagram for the class BinaryTree
FIGURE 11-9

Pseudocode for the General Operations 
of the ADT Binary Tree
+createBinaryTree(in rootItem:TreeItemType,
                  in leftTree:BinaryTree,
                  in rightTree:BinaryTree)
// Creates a binary tree whose root contains rootItem and
// has leftTree and rightTree, respectively, as its left 
// and right subtrees.

+setRootItem(in newItem:TreeItemType)
// Replaces the data item in the root of a binary tree 
// with newItem, if the tree is not empty. If the 
// tree is empty, creates a root node whose data item
// is newItem and inserts the new node into the tree.

(continues)

KEY CONCEPTS
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Pseudocode for the General Operations 
of the ADT Binary Tree (continued)
+attachLeft(in newItem:TreeItemType) throws TreeException
// Attaches a left child containing newItem to the root of
// a binary tree. Throws TreeException if the binary
// tree is empty (no root node to attach to) or a left
// subtree already exists (should explicitly detach it
// first).

+attachRight(in newItem:TreeItemType) throws TreeException
// Attaches a right child containing newItem to the root of
// a binary tree. Throws TreeException if the binary
// tree is empty (no root node to attach to) or a left
// subtree already exists (should explicitly detach it
// first).

+attachLeftSubtree(in leftTree:BinaryTree) throws TreeException
// Attaches leftTree as the left subtree of the 
// root of a binary tree and makes leftTree empty 
// so that it cannot be used as a reference into this tree.
// Throws TreeException if the binary tree is empty
// (no root node to attach to) or a left subtree already
// exists (should explicitly detach it first).

+attachRightSubtree(in rightTree:BinaryTree) throws TreeException
// Attaches rightTree as the right subtree of the 
// root of a binary tree and makes rightTree empty
// so that it cannot be used as a reference into this tree. 
// Throws TreeException if the binary tree is empty
// (no root node to attach to) or a right subtree already
// exists (should explicitly detach it first).

+detachLeftSubtree():BinaryTree throws TreeException
// Detaches and returns the left subtree of a binary tree’s
// root. Throws TreeException if the binary tree is empty
// (no root node to detach from).

+detachRightSubtree():BinaryTree throws TreeException
// Detaches and returns the right subtree of a binary tree’s
// root. Throws TreeException if the binary tree is empty
// (no root node to detach from).

KEY CONCEPTS
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You can use these operations, for example, to build the binary tree in
Figure 11-6b, in which the node labels represent character data. The follow-
ing pseudocode constructs the tree from the subtree tree1 rooted at ”F”, the
subtree tree2 rooted at ”D”, the subtree tree3 rooted at ”B”, and the subtree
tree4 rooted at ”C”. Initially, these subtrees exist but are empty.

tree1.setRootItem(”F”)
tree1.attachLeft(”G”)

tree2.setRootItem(”D”)
tree2.attachLeftSubtree(tree1)

tree3.setRootItem(”B”)
tree3.attachLeftSubtree(tree2)
tree3.attachRight(”E”)

tree4.setRootItem(”C”)
// tree in Fig 11-6b
binTree.createBinaryTree(”A”, tree3, tree4) 

The traversal operations are considered in detail next.

Traversals of a Binary Tree
A traversal algorithm for a binary tree visits each node in the tree. While visiting a
node, you do something with or to the node. For the purpose of this discussion,
assume that visiting a node simply means displaying the data portion of the node.

With the recursive definition of a binary tree in mind, you can construct a
recursive traversal algorithm as follows. According to the definition, the binary
tree T is either empty or is of the form

If T is empty, the traversal algorithm takes no action—an empty tree is the
base case. If T is not empty, the traversal algorithm must perform three tasks:
It must display the data in the root r, and it must traverse the two subtrees TL
and TR, each of which is a binary tree smaller than T.

Thus, the general form of the recursive traversal algorithm is

+traverse(in binTree:BinaryTree)
// Traverses the binary tree binTree.

if (binTree is not empty) {
    traverse(Left subtree of binTree’s root)
    traverse(Right subtree of binTree’s root)
  }  // end if

Using ADT binary 
tree operations to 
build a binary tree

r
TL TR

The general form of 
a recursive traversal 
algorithm
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This algorithm is not quite complete, however. It is missing the instruction to
display the data in the root. When traversing any binary tree, the algorithm has
three choices of when to visit the root r. It can visit r before it traverses both of
r’s subtrees, it can visit r after it has traversed r’s left subtree TL but before it
traverses r’s right subtree TR, or it can visit r after it has traversed both of r’s
subtrees. These traversals are called preorder, inorder, and postorder, respec-
tively. Figure 11-10 shows the results of these traversals for a given binary tree.

The preorder traversal algorithm is as follows:

+preorder(in binTree:BinaryTree)
// Traverses the binary tree binTree in preorder.
// Assumes that "visit a node" means to display
// the node’s data item.

if (binTree is not empty) {
    Display the data in the root of binTree
    preorder(Left subtree of binTree’s root)
    preorder(Right subtree of binTree’s root)
  }  // end if

The preorder traversal of the tree in Figure 11-10a visits the nodes in this
order: 60, 20, 10, 40, 30, 50, 70. If you apply preorder traversal to a binary
tree that represents an algebraic expression, such as any tree in Figure 11-4,

Traversals of a binary tree: (a) preorder; (b) inorder; (c) postorder
FIGURE 11-10
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and display the nodes as you visit them, you will obtain the prefix form of the
expression.1

The inorder traversal algorithm is as follows:

+inorder(in binTree:BinaryTree)
// Traverses the binary tree binTree in inorder.
// Assumes that "visit a node" means to display
// the node’s data item.

if (binTree is not empty) {
    inorder(Left subtree of binTree’s root)
    Display the data in the root of binTree
    inorder(Right subtree of binTree’s root)
  }  // end if

The result of the inorder traversal of the tree in Figure 11-10b is 10, 20, 30,
40, 50, 60, 70. If you apply inorder traversal to a binary search tree, you will
visit the nodes in order according to their data values. Such is the case for the
tree in Figure 11-10b.

Finally, the postorder traversal algorithm is as follows:

+postorder(in binTree:BinaryTree)
// Traverses the binary tree binTree in postorder.
// Assumes that "visit a node" means to display
// the node’s data item.

if (binTree is not empty) {
    postorder(Left subtree of binTree’s root)
    postorder(Right subtree of binTree’s root)
    Display the data in the root of binTree
  }  // end if

The result of the postorder traversal of the tree in Figure 11-10c is 10, 30, 50,
40, 20, 70, 60. If you apply postorder traversal to a binary tree that represents
an algebraic expression, such as any tree in Figure 11-4, and display the nodes
as you visit them, you will obtain the postfix form of the expression.2

Each of these traversals visits every node in a binary tree exactly once.
Thus, n visits occur for a tree of n nodes. Each visit performs the same opera-
tions on each node, independently of n, so it must be O(1). Thus, each tra-
versal is O(n).

As we discussed in Chapter 9, an iterator class can be developed in con-
junction with a collection of objects. In this case, the objects are stored in the
nodes of a binary tree, and the order in which this collection is iterated could

1. The prefix expressions are (a) –ab; (b) –a/bc; (c) *–abc.
2. The postfix expressions are (a) ab–; (b) abc/–; (c) ab – c*.

Inorder traversal

Postorder traversal

Traversal is O(n)
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be based on preorder, inorder, or postorder traversal of the tree. This allows
users of the binary tree class to visit each node of the tree and specify the
action to be performed on each item in the tree. The implementation details of
such an iterator will be discussed shortly.

Possible Representations of a Binary Tree
You can implement a binary tree by using the constructs of Java in one of three
general ways. Two of these approaches use arrays, but the typical implementa-
tion uses references. In each case, the described data structures would be
private data fields of a class of binary trees. 

To illustrate the three approaches, we will implement a binary tree of
names. Each node in this tree contains a name, and, because the tree is a
binary tree, each node has at most two descendant nodes.

An array-based representation. If you use a Java class to define a node in
the tree, you can represent the entire binary tree by using an array of tree
nodes. Each tree node contains a data portion—a name in this case—and two
indexes, one for each of the node’s children, as the following Java statements
indicate:

public class TreeNode<T> {
private T item;             // data item in the tree
private int leftChild;      // index to left child
private int rightChild;     // index to right child

  ...
  // constructors and methods appear here
}  // end TreeNode

public class BinaryTreeArrayBased<T> {
protected final int MAX_NODES = 100; 
protected ArrayList<TreeNode<T>> tree;
protected int root; // index of tree’s root
protected int free; // index of next unused array

                      // location
  ...
  // constructors and methods
}  // end BinaryTreeArrayBased

The constants and data fields are declared protected in BinaryTreeArrayBased
so that they will be directly accessible by the subclasses.

The variable root is an index to the tree’s root within the array tree. If
the tree is empty, root is –1. Both leftChild and rightChild within a node
are indexes to the children of that node. If a node has no left child, leftChild
is –1; if a node has no right child, rightChild is –1. 

As the tree changes due to insertions and deletions, its nodes may not be
in contiguous elements of the array. Therefore, this implementation requires
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you to establish a list of available nodes, which is called a free list. To insert a
new node into the tree, you first obtain an available node from the free list. If
you delete a node from the tree, you place it into the free list so that you can
reuse the node at a later time. The variable free is the index to the first node
in the free list and, arbitrarily, the rightChild field of each node in the free list
is the index of the next node in the free list.3 Figure 11-11 contains a binary
tree and the data fields for its array-based implementation. 

An array-based representation of a complete tree. The previous implemen-
tation works for any binary tree, even though the tree in Figure 11-11 is com-
plete. If you know that your binary tree is complete, you can use a simpler
array-based implementation that saves memory. As you saw earlier in this chap-
ter, a complete tree of height h is full to level h – 1 and has level h filled from
left to right.

3. This free list is actually an array-based linked list, as Programming Problem 10 of 
Chapter 5 describes.

A free list keeps 
track of available 
nodes

(a) A binary tree of names; (b) its array-based implementation 

FIGURE 11-11
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Figure 11-12 shows the complete binary tree of Figure 11-11a with its
nodes numbered according to a standard level-by-level scheme. The root is
numbered 0, and the children of the root (the next level of the tree) are num-
bered, left to right, 1 and 2. The nodes at the next level are numbered, left to
right, 3, 4, and 5. You place these nodes into the array tree in numeric order.
That is, tree[i] contains the node numbered i, as Figure 11-13 illustrates.
Now, given any node tree[i], you can easily locate both of its children and its
parent: Its left child (if it exists) is tree[2 i+1], its right child (if it exists) is
tree[2 i+2], and its parent (if tree[i] is not the root) is tree[(i-1)/2].

This array-based representation requires a complete binary tree. If nodes
were missing from the middle of the tree, the numbering scheme would be
thrown off, and the parent-child relationship among nodes would be ambigu-
ous. This requirement implies that any changes to the tree must maintain its
completeness.

As you will see in the next chapter, an array-based representation of a
binary tree is useful in the implementation of the ADT priority queue.

Level-by-level numbering of a complete binary tree
FIGURE 11-12
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A reference-based representation. You can use Java references to link the
nodes in the tree. Thus, you can represent a tree by using the following Java
classes:

class TreeNode<T> {
  T item;
  TreeNode<T> leftChild;
  TreeNode<T> rightChild;
  ...
  // constructors
}  // end TreeNode

public abstract class BinaryTreeBasis<T> {
protected TreeNode root; 

  ...
  // constructors and methods appear here
}  // end BinaryTreeBasis

The class TreeNode is analogous to the class Node that we used in Chapter 5 for a
linked list. The data fields of TreeNode are declared package access only. Within
the class BinaryTreeBasis, the external reference root references the tree’s root.
If the tree is empty, root is null. Figure 11-14 illustrates this implementation. 

The root of a nonempty binary tree has a left subtree and a right subtree, each
of which is a binary tree. In a reference-based implementation, root references the
root r of a binary tree, root.leftChild references the root of the left subtree
of r, and root.rightChild references the root of the right subtree of r.

A reference-based implementation of a binary tree
FIGURE 11-14
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The section that follows provides the details for a reference-based imple-
mentation of the ADT binary tree.

A Reference-Based Implementation 
of the ADT Binary Tree
The following classes provide a generic reference-based implementation for the ADT
binary tree described earlier. A discussion of several implementation details follows
these classes. The specification of pre- and postconditions is left as an exercise.

class TreeNode<T> {
T item;
TreeNode<T> leftChild;
TreeNode<T> rightChild;

public TreeNode(T newItem) {
// Initializes tree node with item and no children.

item = newItem;
leftChild  = null;
rightChild = null;

}  // end constructor

public TreeNode(T newItem, 
TreeNode<T> left, TreeNode<T> right) {

// Initializes tree node with item and
// the left and right children references.

item = newItem;
leftChild  = left;
rightChild = right;

}  // end constructor

}  // end TreeNode

public class TreeException extends RuntimeException {
public TreeException(String s) {

super(s);
}  // end constructor

} // end TreeException

public abstract class BinaryTreeBasis<T> {
protected TreeNode<T> root;

public BinaryTreeBasis() {
root = null;

}  // end default constructor

public BinaryTreeBasis(T rootItem) {
root = new TreeNode<T>(rootItem, null, null);

}  // end constructor

A node in a binary 
tree

An exception class

An abstract class of 
basic tree operators
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public boolean isEmpty() {
  // Returns true if the tree is empty, else returns false.

return root == null;
}  // end isEmpty

public void makeEmpty() {
  // Removes all nodes from the tree.

root = null;
}  // end makeEmpty

public T getRootItem() throws TreeException {
  // Returns the item in the tree’s root.

if (root == null) {
throw new TreeException("TreeException: Empty tree");

}
else {

return root.item;
}  // end if

}  // end getRootItem

public abstract void setRootItem(T newItem); 
    // Throws UnsupportedOperationException if operation
    // is not supported. 

}  // end BinaryTreeBasis

BinaryTreeBasis will be used as the base class for the implementation
of particular binary trees. It is declared as an abstract class because it is used
for inheritance purposes only; there can be no direct instances of this class.
BinaryTreeBasis declares the root of the tree as a protected item so that
the subclasses will have direct access to the root of the tree. It also provides
methods to check for an empty tree, to make the tree empty, and to retrieve
the contents of the root node. Setting the contents of the root node is left to
a subclass, since different kinds of binary trees may have varying require-
ments regarding the value in the root node of the tree. Some implementa-
tions may not support the operation setRootItem, they should be
implemented to throw UnsupportedOperationException.

The following class implements the general operations of a binary tree and
is derived from BinaryTreeBasis.

public class BinaryTree<T> extends BinaryTreeBasis<T> {

public BinaryTree() {
}  // end default constructor

A class that extends 
BinaryTreeBasis
<T>
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public BinaryTree(T rootItem) {
super(rootItem);

}  // end constructor

public BinaryTree(T rootItem, 
BinaryTree<T> leftTree, 
BinaryTree<T> rightTree) {

root = new TreeNode<T>(rootItem, null, null);
attachLeftSubtree(leftTree);
attachRightSubtree(rightTree);

}  // end constructor

public void setRootItem(T newItem) {
if (root != null) {

      root.item = newItem;
}
else {

root = new TreeNode<T>(newItem, null, null);
}  // end if

}  // end setRootItem

public void attachLeft(T newItem) {
if (!isEmpty() && root.leftChild == null) {

// assertion: nonempty tree; no left child
root.leftChild = new TreeNode<T>(newItem, null, null);

}  // end if
}  // end attachLeft

public void attachRight(T newItem) {
if (!isEmpty() && root.rightChild == null) {

// assertion: nonempty tree; no right child
root.rightChild = new TreeNode<T>(newItem, null, null);

}  // end if
}  // end attachRight

public void attachLeftSubtree(BinaryTree<T> leftTree) 
throws TreeException {

if (isEmpty()) {
throw new TreeException("TreeException:  Empty tree");

}
else if (root.leftChild != null) {

// a left subtree already exists; it should have been 
// deleted first
throw new TreeException("TreeException: " + 

"Cannot overwrite left subtree");
}
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else {
// assertion: nonempty tree; no left child
root.leftChild = leftTree.root;
// don't want to leave multiple entry points into 
// our tree
leftTree.makeEmpty();

}  // end if
}  // end attachLeftSubtree

public void attachRightSubtree(BinaryTree<T> rightTree)
throws TreeException {

if (isEmpty()) {
throw new TreeException("TreeException:  Empty tree");

}
else if (root.rightChild != null) {

// a right subtree already exists; it should have been 
// deleted first
throw new TreeException("TreeException: " + 

"Cannot overwrite right subtree");
}
else {

// assertion: nonempty tree; no right child
root.rightChild = rightTree.root;
// don't want to leave multiple entry points into 
// our tree
rightTree.makeEmpty();

}  // end if
}  // end attachRightSubtree

protected BinaryTree(TreeNode<T> rootNode) {
root = rootNode;

}  // end protected constructor

public BinaryTree<T> detachLeftSubtree()
throws TreeException {

if (isEmpty()) {
throw new TreeException("TreeException:  Empty tree");

}
else {

// create a new binary tree that has root's left 
// node as its root
BinaryTree<T> leftTree;
leftTree = new BinaryTree<T>(root.leftChild);
root.leftChild = null;
return leftTree;

}  // end if
}  // end detachLeftSubtree
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public BinaryTree<T> detachRightSubtree() 
throws TreeException {

if (isEmpty()) {
throw new TreeException("TreeException:  Empty tree");

}
else {

BinaryTree <T> rightTree;
rightTree = new BinaryTree<T>(root.rightChild);
root.rightChild = null;
return rightTree;

}  // end if
}  // end detachRightSubtree

} // end BinaryTree

The class BinaryTree has more constructors than previous classes you have
seen. They allow you to define binary trees in a variety of circumstances. Two of
these public constructors refer back to the abstract class BinaryTreeBasis, with
a third public constructor implemented within BinaryTree. With these con-
structors you can construct a binary tree 

■ That is empty

■ From data for its root, which is its only node

■ From data for its root and the root’s two subtrees

For example, the following statements invoke these three constructors:

BinaryTree<Integer> tree1 = new BinaryTree<Integer>();
BinaryTree<Integer> tree2 = new BinaryTree<Integer>(root2);
BinaryTree<Integer> tree3 = new BinaryTree<Integer>(root3); 
BinaryTree<Integer> tree4 = new BinaryTree<Integer>(root4, 

tree2, tree3);

In these statements, tree1 is an empty binary tree; tree2 and tree3 have
only root nodes, whose data is root2 and root3, respectively; and tree4 is a
binary tree whose root contains root4 and has subtrees tree2 and tree3.

The class also contains a protected constructor, which creates a tree from a
reference to a root node. For example, 

leftTree = new BinaryTree<T>(root.leftChild)

constructs a tree leftTree whose root is the node that root.leftChild refer-
ences. Although the methods detachLeftSubtree and detachRightSubtree
use this constructor, it should not be available to clients of the class, because they
do not have access to node references. Thus, this constructor is not public. 

Note that attachLeftSubtree and attachRightSubtree call makeEmpty
with the subtree as an argument after the subtree has been attached to the invoking

Sample uses of 
public constructors

Some methods 
should not be public
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tree. This causes the root of the subtree as it existed in the client to be set to null.
Thus, the client will not be able to access and manipulate the subtree directly, a viola-
tion of abstraction of the tree. 

Tree Traversals Using an Iterator
We will use the tree traversals to determine the order in which an iterator will
visit the nodes of a tree. The tree iterator will implement the Java Iterator
interface and will provide methods to set the iterator to the type of traversal
desired. Since the abstract class BinaryTreeBasis has sufficient information to
perform a traversal, we will define the iterator using this class. This will allow
the iterator class to be used by any subclass of the BinaryTreeBasis.

As we mentioned in Chapter 9, a class that implements the Iterator
interface must provide three methods: next(), hasNext(), and remove().
We will not implement the remove() method in this version of the iterator for
two reasons: First, the semantics of removing a node from a tree may depend
on the type of tree you are working with (for example, a binary search tree).
Second, the class BinaryTree itself does not provide a method for removing
nodes from the tree.

The iterator class for the binary tree should be placed in the same package
as BinaryTreeBasis. Doing so will give the iterator access to the root of the
tree and, in turn, to all of the nodes of the tree. This access is necessary for the
implementation of the iterator. 

You must implement the recursive traversal operations carefully so that you
do not violate the wall of the ADT. For example, the method inorder, whose
declaration is

void inorder(TreeNode treeNode);

has as a parameter the reference treeNode, which eventually references every
node in the tree. Because this parameter clearly depends on the tree’s
reference-based implementation, inorder is not suitable as a public method.
The method inorder, in fact, is a private method, which the public method
setInorder calls.

The implementation presented here for the iterator of a binary tree
assumes that the iteration order will be set by calling setPreorder, setInor-
der, or setPostorder. Until one of these methods is called, the iterator will
not provide any items from the tree (hasNext returns false). Recall from
Chapter 9 that the behavior of an iterator is unspecified if the underlying col-
lection is modified in any way other than by calling the method remove()
while the iteration is in progress. Thus, if the binary tree is altered after the
iteration order has been set, the changes to the tree will not be reflected in the
iteration.

Implement traversals 
so that the action to 
be performed 
remains on the 
client’s side of the 
wall



The ADT Binary Tree 611

Here is the definition of the tree iterator class TreeIterator:

import java.util.LinkedList;

private BinaryTreeBasis<T> binTree;
private TreeNode<T> currentNode;
private LinkedList <TreeNode<T>> queue; // from JCF

public TreeIterator(BinaryTreeBasis<T> bTree) {
binTree = bTree;
currentNode = null;
// empty queue indicates no traversal type currently 
// selected or end of current traversal has been reached
queue = new LinkedList <TreeNode<T>>();

}  // end constructor

public boolean hasNext() {
return !queue.isEmpty();

}  // end hasNext

public T next() 
throws java.util.NoSuchElementException {

currentNode = queue.remove();
return currentNode.item;

}  // end next

public void remove() 
throws UnsupportedOperationException {

throw new UnsupportedOperationException();
}  // end remove

public void setPreorder() {
queue.clear();
preorder(binTree.root);

}  // setPreOrder

public void setInorder() {
queue.clear();
inorder(binTree.root);

}  // end setInorder

public void setPostorder() {
queue.clear();
postorder(binTree.root);

}  // end setPostorder

public class TreeIterator<T> implements java.util.Iterator<T> {
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private void preorder(TreeNode<T> treeNode) {
if (treeNode != null) {

queue.add(treeNode);
preorder(treeNode.leftChild);
preorder(treeNode.rightChild);

} // end if
}  // end preorder

private void inorder(TreeNode<T> treeNode) {
if (treeNode != null) {

inorder(treeNode.leftChild);
queue.add(treeNode);
inorder(treeNode.rightChild);

} // end if
}  // end inorder

private void postorder(TreeNode<T> treeNode) {
if (treeNode != null) {

postorder(treeNode.leftChild);
postorder(treeNode.rightChild);
queue.add(treeNode);

} // end if
}  // end postorder

}  // end TreeIterator

The class TreeIterator uses a queue (using the LinkedList class from
the JCF) to maintain the current traversal of the nodes in the tree. This tra-
versal order is placed in a queue when the client selects the desired traversal
method. If a new traversal is set in the middle of an iteration, the queue is
cleared first, and then the new traversal is generated. 

 The following statements create an iterator that will perform a preorder
traversal of a tree tree4:

TreeIterator<T> treeIterator = new TreeIterator<T>(tree4);
treeIterator.setPreorder();

Here is an example that uses the iterator to print out the nodes of the tree
using the preorder traversal:

System.out.println("Preorder traversal:");
while (treeIterator.hasNext()) {
  System.out.println(treeIterator.next());
}  // end while
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To demonstrate how to use BinaryTree and TreeIterator, we build and
then traverse the binary tree in Figure 11-10:

public static void main(String[] args) {
BinaryTree<Integer> tree3 = new BinaryTree<Integer>(70);

// build the tree in Figure 11-10
BinaryTree<Integer> tree1 = new BinaryTree<Integer>();
tree1.setRootItem(40);
tree1.attachLeft(30);
tree1.attachRight(50);

BinaryTree<Integer> tree2 = new BinaryTree<Integer>();
tree2.setRootItem(20);
tree2.attachLeft(10);
tree2.attachRightSubtree(tree1);

BinaryTree<Integer> binTree =   // tree in Figure 11-10
new BinaryTree<Integer>(60, tree2, tree3);

TreeIterator<Integer> btIterator =
         new TreeIterator<Integer>(binTree);

btIterator.setInorder();

while (btIterator.hasNext()) {
System.out.println(btIterator.next());

}  // end while

BinaryTree<Integer> leftTree = binTree.detachLeftSubtree();
TreeIterator<Integer> leftIterator = 

new TreeIterator<Integer>(leftTree);

// iterate through the left subtree
leftIterator.setInorder();
while (leftIterator.hasNext()) {

System.out.println(leftIterator.next());
}  // end while

// iterate through binTree minus left subtree
btIterator.setInorder();
while (btIterator.hasNext()) {

System.out.println(btIterator.next());
}  // end while

} // end main

Here, binTree is the tree in Figure 11-10. Its inorder traversal is 10, 20, 30,
40, 50, 60, 70. The inorder traversal of the left subtree of binTree’s root (the

A sample program
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subtree rooted at 20) is 10, 20, 30, 40, 50. The inorder traversal of leftTree
produces the same result. Since leftTree is actually detached from binTree, the
final traversal of binTree is 60, 70.

One disadvantage of this implementation of the traversal is that it per-
forms a lot of computations that may never be used. Not only is a queue of
node references created, but also the recursion stores activation records on an
implicit stack. Besides the time requirement, O(n) additional space is used by
the recursion for a tree with n nodes. In contrast, the space requirement for a
nonrecursive traversal of the tree would be only O(height of the tree). Program-
ming Problem 6 asks you to explore this issue further.

Nonrecursive traversal (optional). Before leaving the topic of traversals,
let’s develop a nonrecursive traversal algorithm to illustrate further the rela-
tionship between stacks and recursion that was discussed in Chapter 7. In par-
ticular, we will develop a nonrecursive inorder traversal for the reference-based
implementation of a binary tree. 

The conceptually difficult part of a nonrecursive traversal is determining
where to go next after a particular node has been visited. To gain some insight
into this problem, consider how the recursive inorder method works:

+inorder(in treeNode:TreeNode)
// Recursively traverses a binary tree in inorder.

if (treeNode != null) {
    inorder(treeNode.leftChild)  // point 1
    queue.enqueue(treeNode)
    inorder(treeNode.rightChild) // point 2
   } // end if

The method has its recursive calls marked as points 1 and 2. 
During the course of the method’s execution, the value of the reference

treeNode actually marks the current position in the tree. Each time inorder
makes a recursive call, the traversal moves to another node. In terms of the
stack that is implicit to recursive methods, a call to inorder pushes the new
value of treeNode—that is, a reference to the new current node—onto the
stack. At any given time, the stack contains references to the nodes along
the path from the tree’s root to the current node n, with the reference to n at
the top of the stack and the reference to the root at the bottom. Note that n is
possibly “empty”—that is, it may be indicated by a null value for treeNode at
the top of the stack.

Figure 11-15 partially traces the execution of inorder and shows the con-
tents of the implicit stack. The first four steps of the trace show the stack as
treeNode references first 60, then 20, then 10, and then becomes null. The
recursive calls for these four steps are from point 1 in inorder.

Now consider what happens when inorder returns from a recursive call.
The traversal retraces its steps by backing up the tree from a node n to its

Recursive calls from 
points 1 and 2

Study recursive 
inorder’s implicit 
stack to gain insight 
into a nonrecursive 
traversal algorithm
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parent p, from which the recursive call to n was made. Thus, the reference to n
is popped from the stack and the reference to p comes to the top of the stack,
as occurs in Step 5 of the trace in Figure 11-15. (n happens to be empty in this
case, so null is popped from the stack.) 

What happens next depends on which subtree of p has just been traversed.
If you have just finished traversing p’s left subtree (that is, if n is the left child
of p and thus the return is made to point 1 in inorder), control is returned to
the statement that displays the data in node p. Such is the case for Steps 6 and
10 of the trace in Figure 11-15. Figure 11-16a illustrates Steps 9 and 10 in
more detail. 

After the data in p has been displayed, a recursive call is made from point 2
and the right subtree of p is traversed. However, if, as Figure 11-16b illus-
trates, you have just traversed p’s right subtree (that is, if n is the right child of
p and thus the return is made to point 2), control is returned to the end of the
method. As a consequence, another return is made, the reference to p is
popped off the stack, and you go back up the tree to p’s parent, from which
the recursive call to p was made. In this latter case, the data in p is not
displayed—it was displayed before the recursive call to n was made from
point 2.

Contents of the implicit stack as treeNode progresses through a given tree during a recursive inorder 
traversal

FIGURE 11-15
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Thus, two facts emerge from the recursive version of inorder when a
return is made from a recursive call:

■ The implicit recursive stack of references is used to find the node p to
which the traversal must go back.

■ Once the traversal backs up to node p, it either visits p (for example, dis-
plays its data) or backs farther up the tree. It visits p if p’s left subtree has
just been traversed; it backs up if its right subtree has just been traversed.
The appropriate action is taken simply as a consequence of the point—1
or 2—to which control is returned.

You could directly mimic this action by using an iterative method and an
explicit stack, as long as some bookkeeping device kept track of which subtree
of a node had just been traversed. However, you can use the following obser-
vation both to eliminate the need for the bookkeeping device and to speed up
the traversal somewhat. Consider the tree in Figure 11-17. After you have fin-
ished traversing the subtree rooted at node R, there is no need to return to
nodes C and B, because the right subtrees of these nodes have already been
traversed. You can instead return directly to node A, which is the nearest
ancestor of R whose right subtree has not yet been traversed.

This strategy of not returning to a node after its right subtree has been tra-
versed is simple to implement: You place a reference to a node in the stack only
before the node’s left subtree is traversed, but not before its right subtree is

Traversing (a) the left and (b) the right subtrees of 20
FIGURE 11-16
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traversed. Thus, in Figure 11-17, when you are at node R, the stack contains
A and R, with R on top. Nodes B and C are not in the stack, because you have
visited them already and are currently traversing their right subtrees. On the
other hand, A is in the stack because you are currently traversing its left sub-
tree. When you return from node R, nodes B and C are thus bypassed because
you have finished with their right subtrees and do not need to return to these
nodes. Thus, you pop R’s reference from the stack and go directly to node A,
whose left subtree has just been traversed. You then visit A, pop its reference
from the stack, and traverse A’s right subtree.

This nonrecursive traversal strategy is captured by then following
pseudocode, assuming a reference-based implementation. Exercise 17 at
the end of this chapter asks you to trace this algorithm for the tree in
Figure 11-15.

+inorderTraverse(in treeNode:TreeNode)
// Nonrecursively traverses a binary tree in inorder.

  // initialize
  Create an empty stack visitStack
  curr = treeNode          // start at root treeNode
  done = false

Avoiding returns to nodes B and C
FIGURE 11-17
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while (!done) {
if (curr != null) {

      // place reference to node on stack before
      // traversing node's left subtree
      visitStack.push(curr)

      // traverse the left subtree
      curr = curr.leftChild

}

else {// backtrack from the empty subtree and visit
          // the node at the top of the stack; however,
          // if the stack is empty, you are done

if (!visitStack.isEmpty()) {
        curr = visitStack.pop()
        queue.enqueue(curr)

        // traverse the right subtree
        // of the node just visited
        curr = curr.rightChild

}

else {
        done = true

}  // end if
}  // end if

  }  // end while

Eliminating recursion can be more complicated than the example given
here. However, the general case is beyond the scope of this book.

11.3 The ADT Binary Search Tree

Searching for a particular item is one operation for which the ADT binary tree
is ill suited. The binary search tree is a binary tree that corrects this deficiency
by organizing its data by value. Recall that each node n in a binary search tree
satisfies the following three properties:

■ n’s value is greater than all values in its left subtree TL.

■ n’s value is less than all values in its right subtree TR.

■ Both TL and TR are binary search trees.

This organization of data enables you to search a binary search tree for a par-
ticular data item, given its value instead of its position. As you will see, certain
conditions make this search efficient.
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A binary search tree is often used in situations where the instances stored
in the tree contain many different fields of information. For example, each
item in a binary search tree might contain a person’s name, ID number,
address, telephone number, and so on. In general, such an item is called a
record and will be an instance of a Java class. To determine whether a particu-
lar person is in the tree, you could provide the data for all components, or
fields, of the record, but typically you would provide only one field—the ID
number, for example. Thus, the request

Find the record for the person whose ID number is 123456789

is feasible if the ID number uniquely describes the person. By making this
request, not only can you determine whether a person is in a binary search
tree, but, once you find the person’s record, you can also access the other data
about the person.

A field such as an ID number is called a search key, or simply a key, because it
identifies the record that you seek. This portion of the record may involve more
than one field, and it will need to be compared to the key of other records. It is
important that the value of the search key remain the same as long as the item is
stored in the tree. Changing the search key of an existing element in the tree could
make that element or other tree elements impossible to find. Thus, the search-key
value should not be modifiable. Also, this search-key data type (or one of its super-
classes) should implement the Comparable interface. This suggests the use of a
KeyedItem class for items of the tree. The class KeyedItem will contain the search
key as a data field and a method for accessing the search key. The class is declared
abstract since it is only used to derive other classes and appears as follows:

public abstract class KeyedItem<KT extends
Comparable<? super KT>> {

private KT searchKey;

   public KeyedItem(KT key) {
      searchKey = key;
   }  // end constructor

public KT getKey() {
return searchKey;

   } // end getKey
} // end KeyedItem

Classes for the items that are in a binary search tree must extend KeyedItem.
Such classes will have only the constructor available for initializing the search key.
Thus, the search-key value cannot be modified once an item is created.

As an example of a class that extends KeyedItem, suppose we want to
create a class Person as just described, in which the person’s ID number is
used as the search key.

A data item in a 
binary search tree 
has a specially des-
ignated search key
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public class Person extends KeyedItem<String> {
// inherits method getKey that returns the search key
private FullName name;
private String phoneNumber;
private Address address;

public Person(String id, FullName name, String phone,
Address addr) {

super(id);   // sets the key value to String id
this.name = name;
phoneNumber = phone;
address = addr;

}  // end constructor

public String toString() {
return getKey() + " # " + name;

  } // end toString

  // other methods would appear here
}  // end Person

Notice that the class Person inherits the getKey method to return the
field that has been designated as the key. This will be the value that is used to
search for a record in the tree. The Person class could easily be designed to
use a key that involves more than one value. For example, if the key is the per-
son’s first name and last name, you can use the class FullName as presented on
page 223–224 of Chapter 4, since it implements the Comparable interface.
The class Person would then provide the person’s full name as the key by
replacing the generic parameter with Fullname to yield the following:

public class Person extends KeyedItem <Fullname> {
  private String idNumber;
  private String phoneNumber;
  private Address address;

  public Person(String id, Fullname name, 
                String phone, Address addr) { 
    super(name);
    idNumber = id;
    phoneNumber = phone;
    address = addr;
  } // end constructor
  ...
  // other methods appear here

The data fields of Person have been revised by omitting name and adding
idNumber.
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For simplicity, we will assume that the search key uniquely identifies the
records in your binary search tree. In this case, you can restate the recursive
definition of a binary search tree as follows:

For each node n, a binary search tree satisfies the following three
properties:

■ n’s search key is greater than all search keys in n’s left subtree TL.

■ n’s search key is less than all search keys in n’s right subtree TR.

■ Both TL and TR are binary search trees.

As an ADT, the binary search tree has operations that are like the opera-
tions for the ADTs you studied in previous chapters in that they involve
inserting, deleting, and retrieving data. In the implementations of the position-
oriented ADTs list, stack, and queue, insertion and deletion into the ADT was
independent of the value of the data. In the binary search tree, however, the
insertion, deletion, and retrieval operations are by search-key value, not by
position. The search key facilitates the search process, since we need to know
only the key information to find a particular record or to determine the proper
position for a data item in the tree. The traversal operations that you just saw
for a binary tree apply to a binary search tree without change, because a binary
search tree is a binary tree.

The operations that extend the basic ADT binary tree to the ADT binary
search tree are as follows:

The UML diagram in Figure 11-18 shows the basic tree operations in
the class BinaryTreeBasis, which is then used to derive the classes
BinaryTree and BinarySearchTree. The TreeIterator is based upon the
class BinaryTreeBasis, and can be used by instances of both BinaryTree
and BinarySearchTree.

A recursive defini-
tion of a binary 
search tree

Operations of the ADT Binary Search Tree
1. Insert a new item into a binary search tree.
2. Delete the item with a given search key from a binary search 

tree.
3. Retrieve the item with a given search key from a binary search 

tree.
4. Traverse the items in a binary search tree in preorder, inorder, or 

postorder.

KEY CONCEPTS
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The following pseudocode specifies the first three operations in more
detail. As you soon will see, you can use the class TreeIterator developed
earlier to perform traversals of a binary search tree. 

BinaryTree

left subtree

right subtree

attachLeft()

attachRight()

attachLeftSubtree()

attachRightSubtree()

detachLeftSubtree()

detachRightSubtree()

getLeftSubtree()

getRightSubtree()

BinarySearchTree

left subtree

right subtree

insert()

delete()

retrieve()

BinaryTreeBasis

root

createBinaryTree()

makeEmpty()

isEmpty()

getRootItem()

setRootItem()

TreeIterator

binary tree

hasNext()

next()

setPreorder()

setInorder()

setPostorder()

UML diagram for the binary tree implementations
FIGURE 11-18
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Figure 11-19 is a binary search tree nameTree of names. Each node in the
tree is actually a record that represents the named person. That is, if the search
key for each record is the person’s name, you see only the search keys in the
picture of the tree. 

For example,

firstRecord = nameTree.retrieve("Karen")

retrieves Karen’s record into firstRecord. If you insert a record secondRecord
into nameTree that describes Sarah by invoking

nameTree.insert(secondRecord)

Pseudocode for the Operations of the ADT Binary 
Search Tree 

+insert(in newItem:TreeItemType)
// Inserts newItem into a binary search tree whose items 
// have distinct search keys that differ from newItem’s 
// search key.

+delete(in searchKey:KeyType) throws TreeException
// Deletes from a binary search tree the item whose search 
// key equals searchKey. If no such item exists, the 
// operation fails and throws TreeException.

+retrieve(in searchKey:KeyType):TreeItemType
// Returns the item in a binary search 
// tree whose search key equals searchKey. Returns 
// null if no such item exists.

KEY CONCEPTS

Janet

TomBob

EllenAlan Karen Wendy

A binary search tree
FIGURE 11-19
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you will be able to retrieve that record later and still be able to retrieve Karen’s
record. If you delete Janet’s record by using

nameTree.delete("Janet")

you will still be able to retrieve the records for Karen and Sarah. Finally, if an iterator
nameIterator is declared for nameTree, you display the name records as follows:

TreeIterator<Person> nameIterator = 
new TreeIterator<Person>(nameTree);

nameIterator.setInorder();
System.out.println("Inorder traversal:");
while (nameIterator.hasNext()) {

System.out.println(nameIterator.next());
}  // end while

This will display in alphabetical order the names of the people that nameTree
represents.

Algorithms for the Operations 
of the ADT Binary Search Tree
Consider again the binary search tree in Figure 11-19. Each node in the tree
contains data for a particular person. The person’s first name is the search key,
and that is the only data item you see in the figure.

Because a binary search tree is recursive by nature, it is natural to formu-
late recursive algorithms for operations on the tree. Suppose that you want to
locate Ellen’s record in the binary search tree of Figure 11-19. Janet is in the
root node of the tree, so if Ellen’s record is present in the tree it must be in
Janet’s left subtree, because the search key Ellen is before the search key Janet
alphabetically. From the recursive definition, you know that Janet’s left subtree
is also a binary search tree, so you use exactly the same strategy to search this
subtree for Ellen. Bob is in the root of this binary search tree, and, because the
search key Ellen is greater than the search key Bob, Ellen’s record must be in
Bob’s right subtree. Bob’s right subtree is also a binary search tree, and it
happens that Ellen is in the root node of this tree. Thus, the search has located
Ellen’s record.

The following pseudocode summarizes this search strategy:

+search(in bst:BinarySearchTree, in searchKey:KeyType)
// Searches the binary search tree bst for the item 
// whose search key is searchKey.

if (bst is empty) {
    The desired record is not found
  }

A search algorithm 
for a binary search 
tree
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else if (searchKey == search key of root’s item) {
      The desired record is found
  }

else if (searchKey < search key of root’s item) {
      search(Left subtree of bst, searchKey)
  }

else {
    search(Right subtree of bst, searchKey)
  }  // end if

As you will see, this search algorithm is the basis of the insertion, deletion,
and retrieval operations on a binary search tree.

Many different binary search trees can contain the names Alan, Bob, Ellen,
Janet, Karen, Tom, and Wendy. For example, in addition to the tree in Figure 11-19,
each tree in Figure 11-20 is a valid binary search tree for these names. Although

Several different 
binary search trees 
are possible for the 
same data

Binary search trees with the same data as in Figure 11-19
FIGURE 11-20
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these trees have different shapes, the shape of the tree in no way affects the
validity of the search algorithm. The algorithm requires only that a tree be a
binary search tree.

The method search works more efficiently on some trees than on others,
however. For example, with the tree in Figure 11-20c, the search algorithm
inspects every node before locating Wendy. In fact, this binary tree really has the
same structure as a sorted linear linked list and offers no advantage in efficiency.
In contrast, with the full tree in Figure 11-19, the search algorithm inspects
only the nodes that contain the names Janet, Tom, and Wendy. These names are
exactly the names that a binary search of the sorted array in Figure 11-21 would
inspect. Later in this chapter, you will learn more about how the shape of a
binary search tree affects search’s efficiency and how the insertion and deletion
operations affect this shape.

The algorithms that follow for insertion, deletion, retrieval, and traversal
assume the reference-based implementation of a binary tree that was discussed
earlier in this chapter. With minor changes, the basic algorithms also apply to
other implementations of the binary tree. Also keep in mind the assumption
that the items in the tree have unique search keys.

Insertion. Suppose that you want to insert a record for Frank into the binary
search tree of Figure 11-19. As a first step, imagine that you instead want to
search for the item with a search key of Frank. The search algorithm first
searches the tree rooted at Janet, then the tree rooted at Bob, and then the
tree rooted at Ellen. It then searches the tree rooted at the right child of Ellen.
Because this tree is empty, as Figure 11-22 illustrates, the search algorithm
has reached a base case and will terminate with the report that Frank is not
present. What does it mean that search looked for Frank in the right subtree
of Ellen? For one thing, it means that if Frank were the right child of Ellen,
search would have found Frank there.

This observation indicates that a good place to insert Frank is as the right
child of Ellen. Because Ellen has no right child, the insertion is simple, requir-
ing only that Ellen’s rightChild field reference a node containing Frank.
More important, Frank belongs in this location—search will look for Frank
here. Specifically, inserting Frank as the right child of Ellen will preserve the
tree’s binary search tree property. Because search, when searching for Frank,
would follow a path that leads to the right child of Ellen, you are assured that
Frank is in the proper relation to the names above it in the tree.

Using search to determine where in the tree to insert a new name always
leads to an easy insertion. No matter what new item you insert into the tree,
search will always terminate at an empty subtree. Thus, search always tells

Alan

0

Bob

1

Ellen

2

Janet

3

Karen

4

Tom

5

Wendy

6

An array of names in sorted order
FIGURE 11-21

Use search to 
determine the inser-
tion point



The ADT Binary Search Tree 627

you to insert the item as a new leaf. Because adding a leaf requires only a
change of the appropriate reference in the parent, the work required for an
insertion is virtually the same as that for the corresponding search.

The following high-level pseudocode describes this insertion process:

insertItem(in treeNode:TreeNode, in newItem:TreeItemType)
// Inserts newItem into the binary search tree of
// which treeNode is the root. 
  Let parentNode be the parent of the empty subtree 
      at which search terminates when it seeks
      newItem’s search key

if (Search terminated at parentNode’s left subtree) {
    Set leftChild of parentNode to reference newItem

}
else {

    Set rightChild of parentNode to reference newItem
}  // end if

The appropriate reference—leftChild or rightChild—of node
parentNode must be set to reference the new node. The recursive nature of
the search algorithm provides an elegant means of setting the reference,
provided that you return treeNode as the result of the method, as you will
see. Thus, insertItem is refined as follows:

+insertItem(in treeNode:TreeNode, in newItem:TreeItemType)
// Inserts newItem into the binary search tree of 
// which treeNode is the root.

Janet

TomBob

EllenAlan Karen Wendy

Empty
tree

Empty subtree where search terminates
FIGURE 11-22

First draft of the 
insertion algorithm 

Refinement of the 
insertion algorithm
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if (treeNode is null) {
    Create a new node and let treeNode reference it
    Create a new node with newItem as the data portion
    Set the references in the new node to null

}

else if (newItem.getKey() < treeNode.item.getKey()) {

}
else {

}  // end if

return treeNode

How does this recursive algorithm set leftChild and rightChild to ref-
erence the new node? The situation is quite similar to the recursive insertion
method for the sorted linked list that you saw in Chapter 5. If the tree was
empty before the insertion, the external reference to the root of the tree would
be null and the method would not make a recursive call. When this situation
occurs, a new tree node must be created and initialized. The method then
returns the reference to this node, which should be made the new root of the
tree. Figure 11-23a illustrates insertion into an empty tree.

The general case of insertItem is similar to the special case for an empty
tree. When the formal parameter treeNode becomes null, the corresponding
actual argument is the leftChild or rightChild reference in the parent of
the empty subtree; that is, this reference has the value null. This reference was
passed to the insertItem method by one of the recursive calls

insertItem(treeNode.leftChild, newItem)

or

insertItem(treeNode.rightChild, newItem)

As in the case of the empty tree, the method will return the reference to a new
node, which then must be set as either the parent’s left child or the parent’s
right child. Thus, you complete the insertion by using either leftChild to
make the node the new left child of the parent, or rightChild to make the
node the new right child of the parent. Parts b and c of Figure 11-23 illustrate
the general case of insertion.

You can use insertItem to create a binary search tree. For example, begin-
ning with an empty tree, if you insert the names Janet, Bob, Alan, Ellen, Tom,
Karen, and Wendy in order, you will get the binary search tree in Figure 11-19.
It is interesting to note that the names Janet, Bob, Alan, Ellen, Tom, Karen,
and Wendy constitute the preorder traversal of the tree in Figure 11-19.

    treeNode.leftChild = insertItem(treeNode.leftChild, newItem)

    treeNode.rightChild = insertItem(treeNode.rightChild, newItem)
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Thus, if you take the output of a preorder traversal of a binary search tree
and use it with insertItem to create a binary search tree, you will obtain a
duplicate tree. 

By inserting the previous names in a different order, you will get a differ-
ent binary search tree. For example, by inserting the previous names in alpha-
betic order, you will get the binary search tree in Figure 11-20c.

Deletion. The deletion operation is a bit more involved than insertion. First,
you use the search algorithm to locate the item with the specified search key

(a) Insertion into an empty tree; (b) search terminates at a leaf; (c) insertion at a leaf
FIGURE 11-23
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and then, if it is found, you must remove the item from the tree. A first draft of
the algorithm follows:

+deleteItem(in rootNode:TreeNode, in searchKey:KeyType)
// Deletes from the binary search tree (with root
// rootNode) the item whose search key equals 
// searchKey. If no such item exists, the operation 
// fails and throws TreeException. 
  Locate (by using the search algorithm) the item i 
      whose search key equals searchKey 

if (item i is found) {
    Remove item i from the tree

}
else {

throw a tree exception
} // end if

The essential task here is

Remove item i from the tree

Assuming that deleteItem locates item i in a particular node N, there are
three cases to consider:

1. N is a leaf.

2. N has only one child.

3. N has two children.

The first case is the easiest. To remove the leaf containing item i, you need
only set the reference in its parent to null. The second case is a bit more diffi-
cult. If N has only one child, you have two possibilities:

■ N has only a left child.

■ N has only a right child.

The two possibilities are symmetrical, so it is sufficient to illustrate the solu-
tion for a left child. In Figure 11-24a, L is the left child of N, and P is the
parent of N. N can be either the left child or the right child of P. If you deleted
N from the tree, L would be without a parent, and P would be without one of
its children. Suppose you let L take the place of N as one of P’s children, as in
Figure 11-24b. Does this adoption preserve the binary search tree property?

If N is the left child of P, for example, all of the search keys in the subtree
rooted at N are less than the search key in P. Thus, all of the search keys in the
subtree rooted at L are less than the search key in P. Therefore, after N is
removed and L is adopted by P, all of the search keys in P’s left subtree are still
less than the search key in P. This deletion strategy thus preserves the binary

First draft of the 
deletion algorithm

Three cases for the 
node N containing 
the item to be 
deleted

Case 1: Set the ref-
erence in a leaf’s 
parent to null

Case 2: Two possi-
bilities for a node 
with one child

Let N’s parent adopt 
N’s child
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search tree property. A parallel argument holds if N is a right child of P, and
therefore the binary search tree property is preserved in either case.

The most difficult of the three cases occurs when the item to be deleted is
in a node N that has two children, as in Figure 11-25. As you just saw, when N
has only one child, the child replaces N. However, when N has two children,
these children cannot both replace N: N’s parent has room for only one of N’s
children as a replacement for N. A different strategy is necessary.

In fact, you will not delete N at all. You can find another node that is
easier to delete and delete it instead of N. This strategy may sound like cheat-
ing. After all, the programmer who requests

nameTree.delete(searchKey)

(a) N with only a left child—N can be either the left or right child of P; (b) after 
deleting node N

FIGURE 11-24
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expects that the item whose search key equals searchKey will be deleted from
the ADT binary search tree. However, the programmer expects only that the
item will be deleted and has no right, because of the wall between the program
and the ADT implementation, to expect a particular node in the tree to be
deleted.

Consider, then, an alternate strategy. To delete from a binary search tree
an item that resides in a node N that has two children, take the following
steps:

1. Locate another node M that is easier to remove from the tree than the
node N.

2. Copy the item that is in M to N, thus effectively deleting from the tree the
item originally in N.

3. Remove the node M from the tree.

What kind of node M is easier to remove than the node N? Because you
know how to delete a node that has no children or one child, M could be such
a node. You have to be careful, though. Can you choose any node and copy its
data into N? No, because you must preserve the tree’s status as a binary search
tree. For example, if in the tree of Figure 11-26, you copied the data from M
to N, the result would no longer be a binary search tree.

What data item, when copied into the node N, will preserve the tree’s
status as a binary search tree? All of the search keys in the left subtree of N are
less than the search key in N, and all of the search keys in the right subtree of
N are greater than the search key in N. You must retain this property when
you replace the search key x in node N with the search key y. There are two
suitable possibilities for the value y: It can come immediately after or immedi-
ately before x in the sorted order of search keys. If y comes immediately after x,
then clearly all search keys in the left subtree of N are smaller than y, because
they are all smaller than x, as Figure 11-27 illustrates. Further, all search keys

Deleting an item 
whose node has two 
children

Janet

Tom

EllenAlan Karen Wendy

Bob

Not any node will do
FIGURE 11-26
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in the right subtree of N are greater than or equal to y, because they are
greater than x and, by assumption, there are no search keys in the tree between
x and y. A similar argument illustrates that if y comes immediately before x in
the sorted order, it is greater than or equal to all search keys in the left subtree
of N and smaller than all search keys in the right subtree of N.

You can thus copy into N either the item whose search key is immediately after
N’s search key4 or the item whose search key is immediately before it. Suppose that,
arbitrarily, you decide to use the node whose search key y comes immediately after
N’s search key x. This search key is called x’s inorder successor.5 How can you
locate this node? Because N has two children, the inorder successor of its search key
is in the leftmost node of N’s right subtree. That is, to find the node that contains y,
you follow N’s rightChild reference to its right child R, which must be present
because N has two children. You then descend the tree rooted at R by taking left
branches at each node until you encounter a node M with no left child. You copy the
item in this node M into node N and then, because M has no left child, you can
remove M from the tree as one of the two easy cases. (See Figure 11-28.)

A more detailed high-level description of the deletion algorithm follows:

+deleteItem(in rootNode:TreeNode, in searchKey:KeyType)
// Deletes from the binary search tree (with root rootNode) 
// the item whose search key equals searchKey. If no such 
// item exists, the operation fails and throws TreeException.

  Locate (by using the search algorithm) the 
     item whose search key equals searchKey; it 

occurs in node i

4. N’s search key is the search key of the data item in N.
5. We also will use the term N’s inorder successor to mean the inorder successor of N’s search 
key.

x (< y)

N

N's
left subtree

N's
right subtree

Search keys are < y Search keys are ≥ y

Search key x can be replaced by y
FIGURE 11-27

The inorder succes-
sor of N’s search key 
is in the leftmost 
node in N’s right 
subtree

Second draft of the 
deletion algorithm
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if (item is found in node i) {
    deleteNode(i)  // defined next

}
else {

    throw a tree exception
} // end if

+deleteNode(in treeNode:TreeNode):TreeNode
// Deletes the item in treeNode. Returns
// the root node of the resulting tree.

if (treeNode is a leaf) {
    Remove treeNode from the tree

}
else if (treeNode has only one child c) {

if (c was a left child of its parent p){
      Make c the left child of p

}
else {

      Make c the right child of p
}  // end if

}
else { // treeNode has two children

    Find the item contained in treeNode's 
        inorder successor
    Copy the item into treeNode
    Remove treeNode's inorder successor by using the
        previous technique for a leaf or a node 
        with one child

}  // end if
  return reference to root node of resulting tree

Tom

EllenAlan Karen Wendy

Bob

Karen
Janet

M

Copying the item whose search key is the inorder successor of N ’s search key
FIGURE 11-28
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In the following refinement, search’s algorithm is adapted and
inserted directly into deleteItem. Also, the method deleteNode uses
the method findLeftmost to find the item in the node M, that is, the
inorder successor of node N. The item in M is saved for later replace-
ment of the item in node N. Next, deleteLeftmost deletes M from the
tree. The saved item then replaces the item in node N, thus deleting it
from the binary search tree.

// Deletes from the binary search tree (with root 
// rootNode) the item whose search key equals searchKey.
// Returns the root node of the resulting tree.
// If no such item exists, the operation
// fails and throws TreeException.

if (rootNode is null) {
throw TreeException // item not found

}
else if (searchKey equals the key in rootNode item) {

   // delete the rootNode; a new root of the tree is
   // returned
    newRoot = deleteNode(rootNode, searchKey)

return newRoot 
}
else if (searchKey is less than the key in rootNode item) {

    newLeft = deleteItem(rootNode.leftChild, searchKey)
    rootNode.leftChild = newLeft

return rootNode // returns rootNode with new left
                    // subtree

}
else { // search the right subtree

    newRight = deleteItem(rootNode.rightChild, searchKey)
    rootNode.rightChild = newRight

return rootNode // returns rootNode with new right
                    // subtree
} // end if

+deleteNode(in treeNode:TreeNode):TreeNode
// Deletes the item in the node referenced by treeNode.
// Returns the root node of the resulting tree.

  if (treeNode is a leaf) {
    // remove leaf from the tree

return null
}

+deleteItem(in rootNode:TreeNode, in searchKey:KeyType):TreeNode

Final draft of the 
deletion algorithm
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else if (treeNode has only one child c) {
    // c replaces treeNode as the child of 
    // treeNode’s parent

if (c is the left child of treeNode) {
return treeNode.leftChild

}
else {

return treeNode.rightChild
}  // end if

}
else { // treeNode has two children

    // find the inorder successor of the search key in 
    // treeNode: it is in the leftmost node of the
    // subtree rooted at treeNode’s right child
    replacementItem = findLeftMost(treeNode.rightChild)
    replacementRChild = deleteLeftmost(treeNode.rightChild)
    Set treeNode’s item to replacementItem
    Set treeNode’s right child to replacementRChild

return treeNode
}  // end if

+findLeftmost(in treeNode:TreeNode):TreeNode
// Returns the item that is the leftmost
// descendant of the tree rooted at treeNode. 

if (treeNode.leftChild == null) {
    // this is the node you want, so return its item

return treeNode.item
}
else {

return findLeftmost(treeNode.leftChild)
}  // end if

+deleteLeftmost(in treeNode:TreeNode):TreeNode
// Deletes the node that is the leftmost
// descendant of the tree rooted at treeNode. 
// Returns subtree of deleted node.

if (treeNode.leftChild == null) {
    // this is the node you want; it has no left
    // child, but it might have a right subtree

    // the return value of this method is a 
    // child reference of treeNode’s parent; thus, the 
    // following "moves up" treeNode’s right subtree

return treeNode.rightChild
}
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else {
    replacementLChild = deleteLeftmost(treeNode.leftChild)
    treeNode.leftChild = replacementLChild

return treeNode
}  // end if

Observe that, as in the case of the insertItem method, the actual argu-
ment that corresponds to rootNode either is one of the references of the
parent of N, as Figure 11-29 depicts, or is the external reference to the root, in
the case where N is the root of the original tree. In either case rootNode refer-
ences N. Thus, any change you make to rootNode by calling the method
deleteNode with actual argument rootNode changes the reference in the
parent of N. The recursive method deleteLeftmost, which is called by
deleteNode if N has two children, also uses this strategy to remove the
inorder successor of the node containing the item to be deleted.

Exercise 30 at the end of this chapter describes an easier deletion algorithm.
However, that algorithm tends to increase the height of the tree, and, as you will
see later, an increase in height can decrease the efficiency of searching the tree.

Retrieval. By refining the search algorithm, you can implement the retrieval
operation. Recall that the search algorithm is

+search(in bst:BinarySearchTree, in searchKey:KeyType)
// Searches the binary search tree bst for the item 
// whose search key is searchKey.

if (bst is empty) {
    The desired record is not found

}

treeNode

Any change to treeNode while deleting node N (Bob) changes leftChild of Janet

Node N

EllenAlan

Janet

Bob

Recursive deletion of node N
FIGURE 11-29
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else if (searchKey == search key of bst’s root item) {
    The desired record is found

}
else if (searchKey < search key of bst’s root item) {

    search(Left subtree of bst, searchKey)
}
else {

    search(Right subtree of bst, searchKey)
}  // end if

The retrieval operation must return the item with the desired search key if
it exists; otherwise it must return a null reference. The retrieval algorithm,
therefore, appears as follows:

+retrieveItem(in treeNode:TreeNode, 
              in searchKey:KeyType):TreeItemType
// Returns the item (treeItem) whose search 
// key equals searchKey from the binary search tree
// that has treeNode as its root. The operation
// returns a null reference if no such item 
// exists.

if (treeNode == null) {
    treeItem = null  // tree is empty

}
else if (searchKey == treeNode.item.getKey()) {

    // item is in the root of some subtree
    treeItem = treeNode.item

}
else if (searchKey < treeNode.item.getKey()) {

    // search the left subtree
    treeItem =
    retrieveItem(treeNode.leftChild, searchKey)

}
else { // search the right subtree

    treeItem =
    retrieveItem(treeNode.rightChild, searchKey)

}  // end if

  return treeItem

Traversal. The traversals for a binary search tree are the same as the travers-
als for a binary tree. You should be aware, however, that an inorder traversal of

retrieveItem is a 
refinement of 
search
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a binary search tree will visit the tree’s nodes in sorted search-key order. Before
seeing the proof of this statement, recall the inorder traversal algorithm:

+inorder(in bst:BinarySearchTree)
// Traverses the binary tree bst in inorder.

if (bst is not empty) {
    inorder(Left subtree of bst’s root)
    Process the root of bst
    inorder(Right subtree of bst’s root)
  } // end if

THEOREM 11-1. The inorder traversal of a binary search tree T will visit its
nodes in sorted search-key order.

PROOF. The proof is by induction on h, the height of T.

Basis: h = 0. When T is empty, the algorithm does not visit any nodes. This is
the proper sorted order for the zero names that are in the tree!

Inductive hypothesis: Assume that the theorem is true for all k, 0 < k < h. That
is, assume for all k (0 < k < h) that the inorder traversal visits the nodes in
sorted search-key order.
Inductive conclusion: You must show that the theorem is true for k = h > 0. T
has the form

Because T is a binary search tree, all the search keys in the left subtree TL are
less than the search key in the root r, and all the search keys in the right
subtree TR are greater than the search key in r. The inorder algorithm will
visit all the nodes in TL, then visit r, and then visit all the nodes in TR. Thus,
the only concern is that inorder visit the nodes within each of the subtrees TL
and TR in the correct sorted order. But because T is a binary search tree of
height h, each subtree is a binary search tree of height less than h. Therefore,
by the inductive hypothesis, inorder visits the nodes in each subtree TL and
TR in the correct sorted search-key order. (End of proof.)

It follows from this theorem that inorder visits a node’s inorder succes-
sor immediately after it visits the node.

A Reference-Based Implementation 
of the ADT Binary Search Tree
A Java reference-based implementation of the ADT binary search tree follows.
Notice the protected methods that implement the recursive algorithms. These
methods are not public, because clients do not have access to node references.

r
TL TR

Use inorder tra-
versal to visit nodes 
of a binary search 
tree in search-key 
order
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The methods could be private, but making them protected enables a derived
class to use them directly.

import SearchKeys.KeyedItem;

// ADT binary search tree.
//  Assumption: A tree contains at most one item with a 
//              given search key at any time.

public class BinarySearchTree<T extends KeyedItem<KT>,
KT extends Comparable<? super KT>>

extends BinaryTreeBasis<T> {
  // inherits isEmpty(), makeEmpty(), getRootItem(), and
  // the use of the constructors from BinaryTreeBasis

public BinarySearchTree() {
  }  // end default constructor

public BinarySearchTree(T rootItem) {
super(rootItem);

  }  // end constructor

public void setRootItem(T newItem) 
throws UnsupportedOperationException {

throw new UnsupportedOperationException();
  }  // end setRootItem

public void insert(T newItem) {
    root = insertItem(root, newItem);
  }  // end insert

public T retrieve(KT searchKey) {
return retrieveItem(root, searchKey);

  }  // end retrieve

public void delete(KT searchKey) throws TreeException {
    root = deleteItem(root, searchKey);
  }  // end delete

public void delete(T item) throws TreeException {
    root = deleteItem(root, item.getKey());
  }  // end delete

protected TreeNode<T> insertItem(TreeNode<T> tNode, 
                                   T newItem) {
    TreeNode<T> newSubtree;

if (tNode == null) {
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      // position of insertion found; insert after leaf
      // create a new node
      tNode = new TreeNode<T>(newItem, null, null);

return tNode;
    }  // end if
    T nodeItem = tNode.item;

    // search for the insertion position

if (newItem.getKey().compareTo(nodeItem.getKey()) < 0) {
      // search the left subtree
      newSubtree = insertItem(tNode.leftChild, newItem);
      tNode.leftChild = newSubtree;

return tNode;
    }

else { // search the right subtree
      newSubtree = insertItem(tNode.rightChild, newItem);
      tNode.rightChild = newSubtree;

return tNode;
    }  // end if
  }  // end insertItem

protected T retrieveItem(TreeNode<T> tNode, 
                           KT searchKey) {
    T treeItem;

if (tNode == null) {
      treeItem = null;
    }

else {
      T nodeItem = tNode.item;

if (searchKey.compareTo(nodeItem.getKey()) == 0) {
        // item is in the root of some subtree
        treeItem = tNode.item;
      }

else if (searchKey.compareTo(nodeItem.getKey()) < 0) {
        // search the left subtree
        treeItem = retrieveItem(tNode.leftChild, searchKey);
      }

else { // search the right subtree
        treeItem = retrieveItem(tNode.rightChild, searchKey);
      }  // end if
    }  // end if

return treeItem;
  }  // end retrieveItem

protected TreeNode<T> deleteItem(TreeNode<T> tNode, 
                                   KT searchKey) {
    // Calls: deleteNode.
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    TreeNode<T> newSubtree;
if (tNode == null) {

    }
else {

      T nodeItem = tNode.item;
if (searchKey.compareTo(nodeItem.getKey()) == 0) {

        // item is in the root of some subtree
        tNode = deleteNode(tNode);  // delete the item
      }
      // else search for the item

else if (searchKey.compareTo(nodeItem.getKey()) < 0) {
        // search the left subtree
        newSubtree = deleteItem(tNode.leftChild, searchKey);
        tNode.leftChild = newSubtree;
      }

else { // search the right subtree
        newSubtree = deleteItem(tNode.rightChild, searchKey);
        tNode.rightChild = newSubtree;
      }  // end if
    }  // end if

return tNode;
  }  // end deleteItem

protected TreeNode<T> deleteNode(TreeNode<T> tNode) {
    // Algorithm note: There are four cases to consider:
    //   1. The tNode is a leaf.
    //   2. The tNode has no left child.
    //   3. The tNode has no right child.
    //   4. The tNode has two children.
    // Calls: findLeftmost and deleteLeftmost
    T replacementItem;

    // test for a leaf
if ( (tNode.leftChild == null) &&

         (tNode.rightChild == null) ) {
return null;

    }  // end if leaf

    // test for no left child
else if (tNode.leftChild == null) {

return tNode.rightChild;
    }  // end if no left child

    // test for no right child
else if (tNode.rightChild == null) {

throw new TreeException("TreeException: Item not found");
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return tNode.leftChild;
    }  // end if no right child

    // there are two children:
    // retrieve and delete the inorder successor

else {
      replacementItem = findLeftmost(tNode.rightChild);
      tNode.item = replacementItem;
      tNode.rightChild = deleteLeftmost(tNode.rightChild);

return tNode;
    }  // end if
  }  // end deleteNode

protected T findLeftmost(TreeNode<T> tNode)  {
if (tNode.leftChild == null) {

return tNode.item;
    }

else {
return findLeftmost(tNode.leftChild);

    }  // end if
  }  // end findLeftmost

protected TreeNode<T> deleteLeftmost(TreeNode<T> tNode) {
if (tNode.leftChild == null) {

return tNode.rightChild;
    }

else {
      tNode.leftChild = deleteLeftmost(tNode.leftChild);

return tNode;
    }  // end if
  }  // end deleteLeftmost

}  // end BinarySearchTree

The class TreeIterator developed earlier in the chapter can be used with
BinarySearchTree. It would also make sense to implement the remove
method, since BinarySearchTree provides a method for deleting a node from
the tree. Exercise 32 at the end of this chapter asks you to explore this possibility.

The Efficiency of Binary Search Tree Operations
You have seen binary search trees in many shapes. For example, even though
the binary search trees in Figures 11-19 and 11-20c have seven nodes each,
they have radically different shapes and heights. You saw that to locate Wendy
in Figure 11-20c, you would have to inspect all seven nodes, but you can
locate Wendy in Figure 11-19 by inspecting only three nodes (Janet, Tom, and
Wendy). Consider now the relationship between the height of a binary search
tree and the efficiency of the retrieval, insertion, and deletion operations.
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Each of these operations compares the specified value searchKey to the
search keys in the nodes along a path through the tree. This path always starts
at the root of the tree and, at each node N, follows the left or right branch,
depending on the comparison of searchKey to the search key in N. The path
terminates at the node that contains searchKey or, if searchKey is not
present, at an empty subtree. Thus, each retrieval, insertion, or deletion opera-
tion requires a number of comparisons equal to the number of nodes along
this path. This means that the maximum number of comparisons that each
operation can require is the number of nodes on the longest path through the
tree. In other words, the maximum number of comparisons that these operations
can require is equal to the height of the binary search tree. What, then, are the
maximum and minimum heights of a binary search tree of n nodes?

The maximum and minimum heights of a binary search tree.   You can max-
imize the height of a binary tree with n nodes simply by giving each internal
node (nonleaf) exactly one child, as shown in Figure 11-30. This process will
result in a tree of height n. An n-node tree with height n strikingly resembles a
linear linked list.

A minimum-height binary tree with n nodes is a bit more difficult to
obtain. As a first step, consider the number of nodes that a binary tree with a
given height h can have. For example, if h = 3, the possible binary trees include
those in Figure 11-31. Thus, binary trees of height 3 can have between 3 and
7 nodes. In addition, Figure 11-31 shows that 3 is the minimum height for a
binary tree with 4, 5, 6, or 7 nodes. Similarly, binary trees with more than 7
nodes require a height greater than 3.

Intuitively, to minimize the height of a binary tree given n nodes, you must fill
each level of the tree as completely as possible. A complete tree meets this require-
ment (although it does not matter whether the nodes on the last level are filled left

The maximum 
number of compari-
sons for a retrieval, 
insertion, or dele-
tion is the height of 
the tree

n is the maximum 
height of a binary 
tree with n nodes
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A maximum-height binary tree with seven nodes
FIGURE 11-30
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level, each level of a 
minimum-height
binary tree must 
contain as many 
nodes as possible



The ADT Binary Search Tree 645

to right). In fact, trees b, c, d, and e of Figure 11-31 are complete trees. If a complete
binary tree of a given height h is to have the maximum possible number of nodes, it
should be full (as in Figure 11-31e). Figure 11-32 counts these nodes by level and
shows the following:

THEOREM 11-2. A full binary tree of height h ≥ 0 has 2h – 1 nodes.

A formal proof by induction of this theorem is left as an exercise.
It follows then that

THEOREM 11-3. The maximum number of nodes that a binary tree of
height h can have is 2h – 1.

You cannot add nodes to a full binary tree of height h without increasing
its height. The formal proof of this theorem, which closely parallels that of
Theorem 11-2, is left as an exercise.

(e)(d)(c)(b)(a)

Binary trees of height 3
FIGURE 11-31
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The following theorem uses Theorems 11-2 and 11-3 to determine the
minimum height of a binary tree that contains some given number of nodes.

THEOREM 11-4. The minimum height of a binary tree with n nodes is
⎡log2(n + 1)⎤.6

PROOF. Let h be the smallest integer such that n ≤ 2h – 1. To find the
minimum height of a binary tree with n nodes, first establish the following facts:

1. A binary tree whose height is ≤ h – 1 has < n nodes.

By Theorem 11-3, a binary tree of height h – 1 has at most 2h–1 – 1 nodes.
If it is possible that n ≤ 2h–1 – 1 < 2h – 1, then h is not the smallest integer
such that n ≤ 2h – 1. Therefore, n must be greater than 2h–1 – 1 or, equiv-
alently, 2h–1 – 1 < n. Because a binary tree of height h – 1 has at most 2h–1

– 1 nodes, it must have fewer than n nodes.

2. There exists a complete binary tree of height h that has exactly n nodes.

Consider the full binary tree of height h – 1. By Theorem 11-2, it has
2h–1 – 1 nodes. As you just saw, n > 2h–1  – 1 because h was selected so
that n ≤ 2h – 1. You can thus add nodes to the full tree from left to right
until you have n nodes, as Figure 11-33 illustrates. Because n ≤ 2h – 1 and
a binary tree of height h cannot have more than 2h – 1 nodes, you will
reach n nodes by the time level h is filled up.

3. The minimum height of a binary tree with n nodes is the smallest integer h
such that n ≤ 2h – 1.

If h is the smallest integer such that n ≤ 2h – 1, and if a binary tree has
height ≤ h – 1, then by fact 1, it has fewer than n nodes. Because by fact 2
there is a binary tree of height h that has exactly n nodes, h must be as
small as possible.

6. The ceiling of X, which ⎡X⎤ denotes, is X rounded up. For example, ⎡6⎤ = 6, ⎡6.1⎤ = 7, and 
⎡6.8⎤ = 7.

Filling in the last level of a tree
FIGURE 11-33
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The previous discussion implies that

2h–1  – 1 < n ≤ 2h – 1
2h–1  < n + 1 ≤ 2h

h – 1 < log2(n + 1) ≤ h

If log2(n + 1) = h, the theorem is proven. Otherwise, h – 1 < log2(n + 1) < h
implies that log2(n + 1) cannot be an integer. Therefore, round log2(n + 1) up
to get h.

Thus, h = ⎡log2(n + 1)⎤ is the minimum height of a binary tree with n
nodes. (End of proof.)

Complete trees and full trees with n nodes thus have heights of
⎡log2(n + 1)⎤, which, as you just saw, is the theoretical minimum. This
minimum height is the same as the maximum number of comparisons a binary
search must make to search an array with n elements. Thus, if a binary search
tree is complete and therefore balanced, the time it takes to search it for a
value is about the same as that required for a binary search of an array. On the
other hand, as you go from balanced trees toward trees with a linear structure,
the height approaches the number of nodes n. This number is the same as the
maximum number of comparisons that you must make when searching a
linked list of n nodes.

However, the outstanding efficiency of the operations on a binary search
tree hinges on the assumption that the height of the binary search tree is
⎡log2(n + 1)⎤. What will the height of a binary search tree actually be? The
factor that determines the height of a binary search tree is the order in which
you perform the insertion and deletion operations on the tree. Recall that,
starting with an empty tree, if you insert names in the order Alan, Bob, Ellen,
Janet, Karen, Tom, Wendy, you would obtain a binary search tree of maximum
height, as shown in Figure 11-20c. On the other hand, if you insert names in
the order Janet, Bob, Tom, Alan, Ellen, Karen, Wendy, you would obtain a
binary search tree of minimum height, as shown in Figure 11-19.

Which of these situations should you expect to encounter in the course of
a real application? It can be proven mathematically that if the insertion and
deletion operations occur in a random order, the height of the binary search
tree will be quite close to log2n. Thus, in this sense, the previous analysis is not
unduly optimistic. However, in a real-world application, is it realistic to expect
the insertion and deletion operations to occur in random order? In many appli-
cations, the answer is yes. There are, however, applications in which this
assumption would be dubious. For example, the person preparing the previ-
ous sequence of names for the insertion operations might well decide to “help
you out” by arranging the names to be inserted into sorted order. This
arrangement, as has been mentioned, would lead to a tree of maximum height.
Thus, while in many applications you can expect the behavior of a binary
search tree to be excellent, you should be wary of the possibility of poor per-
formance due to some characteristic of a given application.

Is there anything you can do if you suspect that the operations might not
occur in a random order? Similarly, is there anything you can do if you have an

Complete trees and 
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from ⎡log2( n + 1)⎤
to n

Insertion in search-
key order produces 
a maximum-height 
binary search tree

Insertion in random 
order produces a 
near-minimum-
height binary search 
tree
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enormous number of items and need to ensure that the height of the tree is
close to log2n? Chapter 13 presents variations of the basic binary search tree
that are guaranteed always to remain balanced.

Figure 11-34 summarizes the order of the retrieval, insertion, deletion,
and traversal operations for the ADT binary search tree.

Treesort
You can use the ADT binary search tree to sort an array of records efficiently
into search-key order. To simplify the discussion, however, we will sort an array
of integers into ascending order, as we did with the sorting algorithms in
Chapter 10.

The basic idea of the algorithm is simple:

+treesort(inout anArray:ArrayType, in n:integer)
// Sorts the n integers in array anArray into 
// ascending order.

   Insert anArray’s elements into a binary search tree
     bTree

   Traverse bTree inorder. As you visit bTree’s nodes, copy 
     their data items into successive locations of anArray

An inorder traversal of the binary search tree bTree visits the integers in
bTree’s nodes in ascending order.

A treesort can be quite efficient. As Figure 11-34 indicates, each insertion
into a binary search tree requires O(log n) operations in the average case and
O(n) operations in the worst case. Thus, treesort’s n insertions require
O(n * log n) operations in the average case and O(n2) operations in the worst
case. The traversal of the tree involves one copy operation for each of the n
elements and so is O(n). Since O(n) is less than O(n * log n) and O(n2),
treesort is O(n * log n) in the average case and O(n2) in the worst case.

Operation

Retrieval

Insertion

Deletion

Traversal

Average case

O(log n)

O(log n)

O(log n)

O(n)

Worst case

O(n)

O(n)

O(n)

O(n)

The order of the retrieval, insertion, deletion, and traversal operations for the 
reference-based implementation of the ADT binary search tree

FIGURE 11-34

Treesort uses a 
binary search tree

Treesort. Average 
case: O(n * log n);
worst case: O(n2)
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Saving a Binary Search Tree in a File
Imagine a program that maintains the names, addresses, and telephone
numbers of your friends and relatives. While the program is running, you can
enter a name and get the person’s address and phone number. If you terminate
program execution, the program must save its database of people in a form
that it can recover at a later time. 

If the program uses a binary search tree to represent the database, it must save
the tree’s data in a file so that it can later restore the tree. You could save the tree by
simply adding the java.io.Serializable interface to the various classes in the
implementation of the binary search tree. Exercise 36 at the end of this chapter asks
you to decide which classes would need to have this interface specified. Suppose,
however, that you want to define the interface java.io.Serializable only on the
items you are storing in the tree. We will consider two different algorithms for saving
and restoring a binary search tree. The first algorithm restores a binary search tree to
its original shape. The second restores a binary search tree to a shape that is balanced.

Saving a binary search tree and then restoring it to its original shape.
The first algorithm restores a binary search tree to exactly the same shape it
had before it was saved. For example, consider the tree in Figure 11-35a. If
you save the tree in preorder, you get the sequence 60, 20, 10, 40, 30, 50, 70.
If you then use the binary search tree insert to insert these values into a tree
that is initially empty, you will get the original tree. Figure 11-35b shows this
sequence of insertion operations in pseudocode.

Saving a binary search tree and then restoring it to a balanced shape.
Can you do better than the previous algorithm? That is, do you necessarily want
the restored tree to have its original shape? Recall that you can organize a given
set of data items into binary search trees with many different shapes. Although
the shape of a binary search tree has no effect whatsoever on the correctness of
the ADT operations, it will affect the efficiency of those operations. Efficient
operations are assured if the binary search tree is balanced. 

Use a preorder tra-
versal and insert
to save and then 
restore a binary 
search tree in its 
original shape

60

20 70

10 40

30 5050

(a) (b) bst.insert(60)
bst.insert(20)
bst.insert(10)
bst.insert(40)
bst.insert(30)
bst.insert(50)
bst.insert(70)

(a) A binary search tree bst; (b) the sequence of insertions that result in this tree
FIGURE 11-35

A balanced binary 
search tree 
increases the effi-
ciency of the ADT 
operations
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The algorithm that restores a binary search tree to a balanced shape is sur-
prisingly simple. In fact, you can even guarantee a restored tree of minimum
height—a condition stronger than balanced. To gain some insight into the
solution, consider a full tree, because it is balanced. If you save a full tree in a
file by using an inorder traversal, the file will be in sorted order, as Figure 11-36
illustrates. A full tree with exactly n = 2h – 1 nodes for some height h has the
exact middle of the data items in its root. The left and right subtrees of the root
are full trees of 2h –1 – 1 nodes each (that is, half of n – 1, since n is odd or,
equivalently, n/2). Thus, you can use the following recursive algorithm to
create a full binary search tree with n nodes, provided you either know or can
determine n beforehand. 

+readFull(in inputFile:FileType, in n:integer):TreeNode
// Builds a full binary search tree from n sorted values
// in a file and returns the tree’s root.

if (n > 0) {
    treeNode = a new node with null child references
    // construct the left subtree
    Set treeNode’s left child to readFull(inputFile, n/2)

    // get the root
    Read item from file into treeNode’s item

    // construct the right subtree
    Set treeNode’s right child to readFull(inputFile, n/2)

}  // end if

return treeNode

Surprisingly, you can construct the tree directly by reading the sorted data
sequentially from the file.

This algorithm for building a full binary search tree is simple, but what can
you do if the tree to be restored is not full (that is, if it does not have n = 2h –
1 nodes for some h)? The first thing that comes to mind is that the restored

30

20

40 60

50

10 25

30252010 40 50 60

File

A full tree saved in a file by using inorder traversal
FIGURE 11-36

Building a full binary 
search tree
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tree should be complete—full up to the last level, with the last level filled in
from left to right. Actually, because you care only about minimizing the height
of the restored tree, it does not matter where the nodes on the last level go, as
Figure 11-37 shows.

The readFull algorithm is essentially correct even if the tree is not full. How-
ever, you do have to be a bit careful when computing the sizes of the left and right
subtrees of the tree’s root. If n is odd, both subtrees are of size n/2, as before.
(The root is automatically accounted for.) If n is even, however, you have to
account for the root and the fact that one of the root’s subtrees will have one more
node than the other. In this case, you can arbitrarily choose to put the extra node
in the left subtree. The following algorithm makes these compensations:

+readTree(in inputFile:FileType, in n:integer):TreeNode
// Builds a minimum-height binary search tree from n sorted
// values in a file. Will return the tree’s root.

if (n > 0) {
    treeNode = reference to new node with null
               child references
    // construct the left subtree
    Set treeNode’s left child to readTree(inputFile, n/2)

    // get the root
    Read item from file into treeNode’s item

    // construct the right subtree
    Set treeNode’s right child to 
        readTree(inputFile, (n-1)/2)

}  // end if

  return treeNode

A tree of minimum height that is not complete
FIGURE 11-37

Building a minimum-
height binary search 
tree
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You should trace this algorithm and convince yourself that it is correct for both
even and odd values of n.

To summarize, you can easily restore a tree as a balanced binary search tree
if the data is sorted—that is, if it has been produced from the inorder
traversal—and you know the number n of nodes in the tree. You need n so
that you can determine the middle item and, in turn, the number of nodes in
the left and right subtrees of the tree’s root. Knowing these numbers is a
simple matter of counting nodes as you traverse the tree and then saving the
number in a file that the restore operation can read.

Note that readTree would be an appropriate protected method of
BinarySearchTree, if you also had a public method to call it.

The JCF Binary Search Algorithm
The Java Collections Framework provides two binary search methods to find a
specified element in a sorted java.util.List. The first is based upon the
natural ordering of the elements:

static <T> int

The second is based upon a specified Comparator:

static <T> int
  binarySearch(List<? extends T> list, T key, 
               Comparator<? super T> c)

The JCF sort methods shown in Chapter 10 can be used to sort the list
before calling binarySearch. Both methods assume the list is in ascending order
and if the element is found, its index in the list is returned (a value >= 0). If the
element is not found, a negative value is returned. This value, -(insertIndex)-1
can be used to determine the insertion point for the element in the sorted list,
even if the element should be inserted at the end of the list. For example, if the
binarySearch method returns –2, insertIndex would be 1.

The binarySearch methods run in logarithmic time if the elements in the List
can be access directly in constant time (also known as random access). If the List
does not implement the RandomAccess interface and is large, the binarySearch
algorithm will do an iterator-based binary search that runs in linear time.

The following program demonstrates the use of the binarySearch algo-
rithm on a sorted list: 

import java.util.List;
import java.util.LinkedList;
import java.util.Collections;
import java.util.Arrays;

public class JCFSearchEx {
public static void main(String args[]) {

  binarySearch(List<? extends Comparable<? super T>> list, T key) 
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    String[] names = {"Janet", "Michael", "Pat", "Craig", 
                      "Andrew", "Sarah", "Evan", "Anita"}; 

    LinkedList<String> namelist = new LinkedList<String>();
    namelist.addAll(Arrays.asList(names));
    Collections.sort(namelist);
    String name = "Maite";

int loc = Collections.binarySearch(namelist, name);
if (loc < 0) {

                                  + (-(loc+1)) + "\n");
      namelist.add(-(loc+1), name);
      System.out.println(namelist); 
    } else {
      System.out.println(name + " was found in location " 
                              + loc + "\n");
    }  // end if
  }  // end main
}  // end JCFSearchEx

11.4 General Trees

This chapter ends with a brief discussion of general trees and their relationship
to binary trees. Consider the general tree in Figure 11-38. The three children
B, C, and D of node A, for example, are siblings. The leftmost child B is called
the oldest child, or first child, of A. One way to implement this tree uses the
same node structure that we used for a reference-based binary tree. That is,
each node has two references: The left one references the node’s oldest child
and the right one references the node’s next sibling. Thus, you can use the
data structure in Figure 11-39 to implement the tree in Figure 11-38. Notice
that the structure in Figure 11-39 also represents the binary trees:general
trees;general treestree pictured in Figure 11-40.

      System.out.println(name + " should be inserted to position "

A

B D

C

FE G H I

A general tree
FIGURE 11-38
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An n-ary tree is a generalization of a binary tree whose nodes each can
have no more than n children. The tree in Figure 11-38 is an n-ary tree with
n = 3. You can, of course, use the implementation just described for an n-ary
tree. However, because you know the maximum number of children for each
node, you can let each node reference its children directly. Figure 11-41 illus-
trates such a representation for the tree in Figure 11-38. This tree is shorter
than the tree in Figure 11-40.

Exercise 35 at the end of this chapter discusses general trees further.

A

B C D

E F G H I

A reference-based implementation of the general tree in Figure 11-38
FIGURE 11-39

A

B

CE

F D

G H

I

The binary tree that Figure 11-39 represents
FIGURE 11-40
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1. Binary trees provide a hierarchical organization of data, which is important in many
applications.

2. The implementation of a binary tree is usually reference based. If the binary tree is
complete, an efficient array-based implementation is possible.

3. Traversing a tree is a useful operation. Intuitively, traversing a tree means to visit
every node in the tree. Because the meaning of “visit” is application dependent,
the traversal operations are implemented using an iterator.

4. The binary search tree allows you to use a binary search–like algorithm to search
for an item with a specified value.

5. Binary search trees come in many shapes. The height of a binary search tree with n
nodes can range from a minimum of ⎡log2(n + 1)⎤ to a maximum of n. The shape
of a binary search tree determines the efficiency of its operations. The closer a
binary search tree is to a balanced tree (and the farther it is from a linear structure),
the closer the behavior of the search algorithm will be to a binary search (and the
farther it will be from the behavior of a linear search).

6. An inorder traversal of a binary search tree visits the tree’s nodes in sorted search-
key order.

7. The treesort algorithm efficiently sorts an array by using the binary search tree’s
insertion and traversal operations.

8. If you save a binary search tree’s data in a file while performing an inorder tra-
versal of its nodes, you can restore the tree as a binary search tree of minimum
height. If you save a binary search tree’s data in a file while performing a preorder
traversal of its nodes, you can restore the tree to its original form.

A

B C D

E F G H I

An implementation of the n-ary tree in Figure 11-38
FIGURE 11-41

Summary
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1. If you use an array-based implementation of a complete binary tree, you must be
sure that the tree remains complete as a result of insertions or deletions.

2. Operations on a binary search tree can be quite efficient. In the worst case,
however—when the tree approaches a linear shape—the performance of its opera-
tions degrades and is comparable to that of a linear linked list. If you must avoid
such a situation for a given application, you should use the balancing methods pre-
sented in Chapter 13.

1. Consider the tree in Figure 11-42. What node or nodes are

a. The tree’s root

b. Parents

c. Children of the parents in Part b

d. Siblings

e. Ancestors of 60

f. Descendants of 70

g. Leaves

2. What are the levels of all nodes in the tree in

a. Figure 11-6b

b. Figure 11-6c

3. What is the height of the tree in Figure 11-42?

Cautions

Self-Test Exercises

7020

50

30

60

9010

40

A tree for Self-Test Exercises 1, 3, 7, and 11 and for Exercises 7 and 14
FIGURE 11-42
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4. Consider the binary trees in Figure 11-31. Which are complete? Which are full?
Which are balanced?

5. What are the preorder, inorder, and postorder traversals of the binary tree in
Figure 11-6a?

6. Beginning with an empty binary search tree, what binary search tree is formed
when you insert the following values in the order given: J, N, B, A, W, E, T?

7. Starting with an empty binary search tree, in what order should you insert items to
get the binary search tree in Figure 11-42?

8. Represent the full binary tree in Figure 11-36 with an array.

9. What complete binary tree does the array in Figure 11-43 represent? 

10. Is the tree in Figure 11-44 a binary search tree?

11. Using the tree in Figure 11-42, trace the algorithm that searches a binary search
tree, given a search key of

a. 50

b. 80

In each case, list the nodes in the order in which the search visits them.

5 1 2 8 6 10

0 1 2 3 4 5

3

6

9

7

4

8

7

9

An array for Self-Test Exercise 9
FIGURE 11-43
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A tree for Self-Test Exercise 10 and for Exercise 2a
FIGURE 11-44
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12. Trace the treesort algorithm as it sorts the following array into ascending order:
20  80  40  25  60  30.

13. a. What binary search tree results when you execute readTree with a file of the six
integers 2, 4, 6, 8, 10, 12?

b. Is the resulting tree’s height a minimum? Is the tree complete? Is it full?

1. Write a Java program that can find the total number of nodes in a binary search tree.

2. What are the preorder, inorder, and postorder traversals of the binary trees in

a. Figure 11-44 b. Figure 11-6b c. Figure 11-6c

3. Consider the binary search tree in Figure 11-45. The numbers simply label the nodes
so that you can reference them; they do not indicate the contents of the nodes.

a. Which node must contain the inorder successor of the value in the root?
Explain.

b. In what order will an inorder traversal visit the nodes of this tree? Indicate this
order by listing the labels of the nodes in the order that they are visited.

4. Beginning with an empty binary search tree, what binary search tree is formed
when you insert the following values in the order given?

a. T, N, W, J, E, A, B

b. J, A, N, E, T, B, W

c. J, T, E, N, B, A, W

5. Draw the complete binary tree that is formed when the following values are
inserted in the order given:  3, 12, 5, 16, 6, 9.

Exercises

2

1

3

754

8 9

6

A binary search tree for Exercise 3
FIGURE 11-45
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6. Write a Java program which can find the smallest element in a binary search tree in
a non-recursive way.

7. Consider the binary search tree in Figure 11-42.

a. What tree results after you insert the nodes 80, 65, 75, 45, 35, and 25, in that
order?

b. After inserting the nodes mentioned in Part a, what tree results when you
delete the nodes 50 and 20?

8. a. What is the maximum number of nodes in a binary tree with 8 levels?

b. What is the maximum and minimum number of levels of a tree with 2,011
nodes?

c. What is the maximum and minimum number of leaves in a tree with 10 levels?

9. Given the following data: 10, 15, 5, 18, 14, 6, 20, 9

a. What binary search tree is created by inserting the data in the order given?

b. Given a search key of 12, trace the algorithm that searches the binary search
tree that you created in Part a. List the nodes in the order in which the search
visits them.

10. The NULL reference is used to indicate the absence of child in a tree node. Write a
JAVA program which will determine the number of NULL references in a binary tree.

11. Given the ADT binary tree operations as defined in this chapter, what tree or trees
does the following sequence of statements produce?

public void Ex11() {
  BinaryTree<Integer> t1 = new BinaryTree<Integer>(2);
  t1.attachLeft(5);

  BinaryTree<Integer> t2 = new BinaryTree<Integer>(8);
  t2.attachLeft(6);
  t2.attachRight(7);

  t1.attachRightSubtree(t2);

  BinaryTree<Integer> t3 = new BinaryTree<Integer>(7);
  t2.attachLeft(3);
  t2.attachRight(1);

  BinaryTree<Integer> t4 = new BinaryTree<Integer>(1, t1, t3);
} // end Ex11 

12. Consider a method isLeaf() that returns true if an instance of BinaryTree is a
one-node tree—that is, if it consists of only a leaf—and returns false otherwise.

a. Add the method of isLeaf to BinaryTree so that the method is available to
clients of the class.

b. If isLeaf were not a member of BinaryTree, would a client of the class be able
to implement isLeaf? Explain.
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13. The operation 

replace(in replacementItem:TreeItemType):boolean 

locates, if possible, the item in a binary search tree with the same search key as
replacementItem. If the tree contains such an item, replace replaces it with
replacementItem. Thus, the fields of the original item are updated.

a. Add the operation replace to the reference-based implementation of the ADT
binary search tree given in this chapter. The operation should replace an item
without altering the tree structure. 

b. Instead of adding replace as an operation of the ADT binary search tree,
implement it as a client of BinarySearchTree. Will the shape of the binary tree
remain the same?

14. Suppose that you traverse the binary search tree in Figure 11-42 and write the data
item in each node visited to a file. You plan to read this file later and create a new
binary search tree by using the ADT binary search tree operation insert. In creat-
ing the file, in what order should you traverse the tree so that the new tree will
have exactly the same shape and nodes as the original tree? What does the file look
like after the original tree is traversed?

15. Consider an array-based implementation of a binary search tree bst. Figure 11-11
presents such a representation for a particular binary search tree.

a. Depict the array in an array-based implementation for the binary search tree in
Figure 11-20a.

b. Show the effect of each of the following sequential operations on the array in
Part a of this exercise. For simplicity, assume that tree items are names.

bst.insert(new Name("Doug"));
bst.delete(new Name("Karen"));
bst.delete(new Name("Andrew"));
bst.insert(new Name("Sarah"));

c. Repeat Parts a and b of this exercise for the tree in Figure 11-21b.

d. Write an inorder traversal algorithm for this array-based implementation.

16. Duplicates in an ADT could mean either identical items or, more subtly, items that
have identical search keys but with differences in other fields. If duplicates are
allowed in a binary search tree, it is important to have a convention that deter-
mines the relationship between the duplicates. Items that duplicate the root of a
tree should either all be in the left subtree or all be in the right subtree, and, of
course, this property must hold for every subtree. 

a. Why is this convention critical to the effective use of the binary search tree?

b. This chapter stated that you can delete an item from a binary search tree
by replacing it with the item whose search key either immediately follows
or immediately precedes the search key of the item to be deleted. If dupli-
cates are allowed, however, the choice between inorder successor and
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inorder predecessor is no longer arbitrary. How does the convention of
putting duplicates in either the left or right subtree affect this choice?

17. Complete the trace of the nonrecursive inorder traversal algorithm that Figure
11-15 began. Show the contents of the implicit stack as the traversal progresses.

18. Write a program which will convert a given binary search tree into a linked list data
structure. All the data in the linked list should be in sorted order.

19. Given the recursive nature of a binary tree, a good strategy for writing a Java
method that operates on a binary tree is often first to write a recursive definition of
the task. Given such a recursive definition, a Java implementation is often straight-
forward.

Write recursive definitions that perform the following tasks on arbitrary binary
trees. Implement the definitions in Java. Must your methods be members of Bina-
ryTree? For simplicity, assume that each data item in the tree is an integer object
and that there are no duplicates.

a. Count the number of nodes in the tree. (Hint: If the tree is empty, the count is
0. If the tree is not empty, the count is 1 plus the number of nodes in the root’s
left subtree plus the number of nodes in the root’s right subtree.)

b. Compute the height of a tree.

c. Find the maximum element.

d. Find the sum of the elements.

e. Find the average of the elements.

f. Find a specific item.

g. Determine whether one item is an ancestor of another (that is, whether one
item is in the subtree rooted at the other item).

h. Determine the highest level that is full or, equivalently, has the maximum
number of nodes for that level. (See Exercise 25.)

20. Consider a nonempty binary tree with two types of nodes: min nodes and max
nodes. Each node has an integer value initially associated with it. You can define
the value of such a minimax tree as follows:

■ If the root is a min node, the value of the tree is equal to the minimum of

■ The integer stored in the root

■ The value of the left subtree, but only if it is nonempty

■ The value of the right subtree, but only if it is nonempty

■ If the root is a max node, the value of the tree is equal to the maximum of the
above three values.

Figure 11-46a shows a completed minimax tree.

a. Compute the value of the minimax tree in Figure 11-46. Each node is labeled
with its initial value.

b. Write a general solution in Java for representing and evaluating these trees.
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21. A binary search tree with a given set of data items can have several different struc-
tures that conform to the definition of a binary search tree. If you are given a list of
data items, does at least one binary search tree whose preorder traversal matches
the order of the items on your list always exist? Is there ever more than one binary
search tree that has the given preorder traversal?

22. Determine the height of a binary search tree (BST) in the worst case condition, if
the number of keys is 1000.

23. Write pseudocode for a method that performs a range query for a binary search
tree. That is, the method should visit all items that have a search key in a given
range of values (such as all values between 100 and 1,000).

24. Write a JAVA program which will traverse a given binary search tree in non-
recursive order.

25. What is the maximum number of nodes that a binary tree can have at level n?
Prove your answer by using induction. Use this fact to do the following:

a. Rewrite the formal definition of a complete tree of height h.

b. Derive a closed form for the formula

What is the significance of this sum?

26. Write a program to find the largest path from the root node to the leaf node of a
given binary search tree.

27. A binary tree is strictly binary if every nonleaf node has exactly two children.
Prove by induction on the number of leaves that a strictly binary tree with n leaves
has exactly 2n – 1 nodes.

67 17 9 71 21 10

(b)(a)

11 452 13

13 25
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25 12

A minimax tree for Exercise 20
FIGURE 11-46
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28. Consider two algorithms for traversing a binary tree. Both are nonrecursive algo-
rithms that use an extra ADT for bookkeeping. Both algorithms have the follow-
ing basic form:

Put the root of the tree in the ADT
while (the ADT is not empty) {
  Remove a node from the ADT and call it n
  Visit n

if (n has a left child) {
    Put the child in the ADT
  }  // end if

if (n has a right child) {
    Put the child in the ADT
  }  // end if
}  // end while

The difference between the two algorithms is the method for choosing a node n to
remove from the ADT.

Algorithm 1: Remove the newest (most recently added) node from the ADT.

Algorithm 2: Remove the oldest (earliest added) node from the ADT.

a. In what order would each algorithm visit the nodes of the tree in Figure 11-19?

b. For each algorithm, describe an appropriate ADT for doing the bookkeeping.
What should the ADT data be? Do not use extra memory unnecessarily for the
bookkeeping ADT. Also, note that the traversal of a tree should not alter the
tree in any way.

29. Describe how to save a binary tree in a file so that you can later restore the tree to
its original shape. Compare the efficiencies of saving and restoring a binary tree
and a binary search tree.

30. Design another algorithm to delete nodes from a binary search tree. This algo-
rithm differs from the one described in this chapter when the node N has two chil-
dren. First let N’s right child take the place of the deleted node N in the same
manner in which you delete a node with one child. Next reconnect N’s left child
(along with its subtree, if any) to the left side of the node containing the inorder
successor of the search key in N.

31. Write iterative methods to perform insertion and deletion operations on a binary
search tree.

32. Use inheritance to derive the class BSTTreeIterator from the class TreeIterator
and implement the method remove. Is the traversal affected when a node of the tree
is removed? Does this depend on the implementation of the iterator?

33. If you know in advance that you often access a given item in a binary search tree
several times in a row before accessing a different item, you will search for the same
item repeatedly. One way to address this problem is to add an extra bookkeeping
component to your implementation. That is, you can maintain a last-accessed refer-
ence that will always reference the last item that any binary search tree operation
accessed. Whenever you perform such an operation, you can check the search key
of the item most recently accessed before performing the operation.

Revise the implementation of the ADT binary search tree to add this new
feature by adding the data field lastAccessed to the class.
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34. The motivation for using a doubly linked list is the need to locate and delete a
node in a list without traversing the list. The analogy for a binary search tree is to
maintain parent references. That is, every node except the root will have a refer-
ence to its parent in the tree. Write insertion and deletion operations for this tree.

35. A node in a general tree, such as the one in Figure 11-38, can have an arbitrary
number of children.

a. Describe a Java implementation of a general tree in which every node contains an
array of child references. Write a recursive preorder traversal method for this imple-
mentation. What are the advantages and disadvantages of this implementation?

b. Consider the implementation of a general tree that this chapter described. Each
node has two references: The left one references the node’s oldest child and the
right one references the node’s next sibling. Write a recursive preorder traversal
method for this implementation.

c. Every node in a binary tree T has at most two children. Compare the oldest-
child/next-sibling representation of T described in Part b to the left-child/
right-child representation of a binary tree described in this chapter. Does one
representation simplify the implementation of the ADT operations? Are the two
representations ever the same?

36. The section “Saving a Binary Search Tree in a File” mentions that you can save a binary
search tree in a file by adding the interface java.io.Serializable to the various
classes involved in the implementation of the tree. Name all of these classes when the
binary search tree contains instances of the class Person presented in this chapter.

1. Write an array-based implementation of the ADT binary search tree that uses
dynamic memory allocation. Use a data structure like the one in Figure 11-11.

2. Repeat Programming Problem 1 for complete binary trees.

3. Write a Java program that learns about a universe of your choice by asking the user
yes/no questions. For example, your program might learn about animals by having
the following dialogue with its user. (User responses are in uppercase.)

Think of an animal and I will guess it.
Does it have legs? YES
Is it a cat? YES
I win! Continue? YES

Think of an animal and I will guess it.
Does it have legs? NO
Is it a snake? YES
I win! Continue? YES

Think of an animal and I will guess it.
Does it have legs? NO
Is it a snake? NO
I give up. What is it? EARTHWORM

Programming Problems
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Please type a question whose answer is yes for an
earthworm and no for a snake:
DOES IT LIVE UNDERGROUND?
Continue? YES

Think of an animal and I will guess it.
Does it have legs? NO
Does it live underground? NO
Is it a snake? NO
I give up. What is it? FISH
Please type a question whose answer is yes for a
fish and no for a snake:
DOES IT LIVE IN WATER?
Continue? NO

Good-bye.

The program begins with minimal knowledge about animals: It knows that cats
have legs and snakes do not. When the program incorrectly guesses “snake” the
next time, it asks for the answer and also asks for a way to distinguish between
snakes and earthworms.

The program builds a binary tree of questions and animals. A YES response to a
question is stored in the question’s left child; a NO response is stored in the ques-
tion’s right child. 

4. Write a program that maintains the names, addresses, and telephone numbers of
your friends and relatives and thus serves as an address book. You should be able to
enter, delete, modify, or search this data. The person’s name should be the search
key, and initially you can assume that the names are unique. The program should
be able to save the address book in a file for use later.

Design a class to represent the people in the address book and another class to
represent the address book itself. This class should contain a binary search tree of
people as a data field.

You can enhance this problem by adding birth dates to the database and by
adding an operation that lists everyone who satisfies a given criterion. For exam-
ple, it might list people born in a given month or people who live in a given state.
You should also be able to list everyone in the database.

5. Write a program that provides a way for you to store and retrieve telephone num-
bers. Design a user interface that provides the following operations:

Add: Adds a person’s name and phone number to the phone book.

Delete: Deletes a given person’s name and phone number from the phone
book, given only the name.

Find: Locates a person’s phone number, given only the person’s name.

Change: Changes a person’s phone number, given the person’s name and new
phone number.

Quit: Quits the application, after first saving the phone book in a text file.

You can proceed as follows:

■ Design and implement the class Person, which represents the name and phone
number of a person. You will store instances of this class in the phone book.
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■ Design and implement the class PhoneBook, which represents the phone book.
The class should contain a binary search tree as a data field. This tree contains
the people in the book.

■ Add methods that use a text file to save and restore the tree.

■ Design and implement the class Menu, which provides the program’s user inter-
face.

The program should read data from a text file when it begins and save data into
a text file when the user quits the program.

6. In this chapter, a single iterator class was created to perform any one of the three
binary tree traversals. The user could specify which of the traversals to use by
calling setPreorder, setInorder, or setPostorder. An alternative implementa-
tion is based on creating a separate iterator class for each of the traversals. Also, as
was mentioned in this chapter, the space and time requirements of the traversal can
be minimized if the traversals are based on nonrecursive algorithms.

For example, the following pseudocode demonstrates how the method
inorderTraverse presented in this chapter can be modified slightly and called
from the method next in the iterator. The original version of inorderTraverse
used a queue to store the entire traversal. This version of the method will produce
the next node in the traversal only as needed. It is therefore slightly different in
that the statement that queued a node is replaced with a return of the node.

+inorderTraverse(in treeNode:TreeNode):TreeItemType
// Nonrecursively traverses a binary tree 
// inorder.
  curr = treeNode   // start at treeNode
  done = false

while (!done) {
if (curr != null) {

      visitStack.push(curr)
      // traverse the left subtree
      curr = curr.leftChild
    }

else {
if (!visitStack.isEmpty()) {

        curr = visitStack.pop()
return curr.item

      }
else {

        done = true
      }  // end if
    }  // end if
  }  // end while

Implement an iterator class for each of the three traversals using nonrecursive  methods
such that the storage requirements are never greater than O(height of the tree).
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CHAPTER 12

Tables and Priority Queues

his chapter considers the ADT table, which is appro-
priate for problems that must manage data by value.

Several table implementations—which use arrays, linked
lists, and binary search trees—will be presented, along with
their advantages and disadvantages. 

To make an intelligent choice among the various possi-
ble table implementations, you must analyze the efficiency
with which each of the implementations supports the table
operations. For example, this chapter analyzes the effi-
ciency of array-based and reference-based table imple-
mentations and concludes that, in many applications, the
implementations do not support the table operations as effi-
ciently as possible. This conclusion motivates the use of a
more sophisticated table implementation based on the
binary search tree.

This chapter also introduces an important variation of
the table, the ADT priority queue. This ADT provides opera-
tions for easily retrieving and deleting the item with the larg-
est value. Although you can implement a priority queue by
using a binary search tree, a simpler tree structure, known
as a heap, is often more appropriate for this purpose. 

12.1 The ADT Table
Selecting an Implementation
A Sorted Array-Based Implementation 

of the ADT Table
A Binary Search Tree Implementation 

of the ADT Table

12.2 The ADT Priority Queue: 
A Variation of the ADT Table

Heaps
A Heap Implementation of the ADT 

Priority Queue
Heapsort

12.3 Tables and Priority Queues in 
the JCF

The JCF Map Interface
The JCF Set Interface
The JCF PriorityQueue Class

Summary

Cautions

Self-Test Exercises

Exercises

Programming Problems

T
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12.1 The ADT Table

The previous chapter introduced value-oriented ADTs whose operations are of
the form

■ Insert a data item containing the value x.

■ Delete a data item containing the value x.

■ Ask a question about a data item containing the value x.

Applications that require such value-oriented operations are extremely preva-
lent, as you might imagine. For example, the tasks

■ Find the phone number of John Smith

■ Delete all the information about the employee
with ID number 12908

involve values instead of positions. This section presents another example of a
value-oriented ADT.

The name of an ADT often suggests images of familiar objects that possess
properties resembling those of the ADT. For example, the name “stack” might
remind you of a stack of dishes. What does the name “table” bring to mind? If
you had heard the question before you began reading this book, you might
have answered, “My favorite mahogany coffee table.” However, your answer
now should be something more like, “A table of the major cities of the world,”
such as the one in Figure 12-1. 

This table of cities contains several pieces of information about each city. Its
design allows you to look up this information. For example, if you wanted to
know the population of London, you could scan the column of city names, start-
ing at the top, until you came to London. Because the cities are listed in alphabet-
ical order, you could also mimic a binary search. You could begin the search near

City

Athens

Barcelona

Cairo

London

New York

Paris

Rome

Toronto

Venice

Country

Greece

Spain

Egypt

England

U.S.A.

France

Italy

Canada

Italy

Population

2,500,000

1,800,000

9,500,000

9,400,000

7,300,000

2,200,000

2,800,000

3,200,000

300,000

An ordinary table of cities

FIGURE 12-1
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the middle of the table, determine in which half London lies, and recursively
apply the binary search to the appropriate half. As you know, a binary search is far
more efficient than scanning the entire table from the beginning.

If, however, you wanted to find which of the major cities are in Italy, you
would have no choice but to scan the entire table. The alphabetical order of
the city names does not help you for this problem at all. The table’s arrange-
ment facilitates the search for a given city, but other types of questions require
a complete scan of the table.

The ADT table, or dictionary, also allows you to look up information
easily and has a special operation for this purpose. Typically, the items in the
ADT table are records that contain several pieces of data. You can facilitate the
retrieval of an item by basing the search on a specified search key. In the table
of cities, for example, you could designate city as the search key if you often
needed to retrieve the information about a city. You can devise implementa-
tions of a table that allow the rapid retrieval of the item(s) whose search key
matches some specified value. However, if you need to retrieve item(s) based
on a value of a non-search-key portion of each record, you will have to inspect
the entire table. Therefore, the choice of a search key sends the ADT imple-
menter the following message:

Arrange the data to facilitate the search for an item, given the value of
its search key.

The basic operations that define the ADT table are as follows:

For simplicity, we will assume that all items in the table have distinct search
keys. Under this assumption, the insertion operation must reject an attempt to
insert an item whose search key is the same as an item already in the table. The
following pseudocode specifies in more detail the operations for an ADT table
of items with distinct search keys. Figure 12-2 shows a UML diagram for the
class Table.

The ADT table uses 
a search key to 
identify its items

Operations of the ADT Table
1. Create an empty table.
2. Determine whether a table is empty.
3. Determine the number of items in a table.
4. Insert a new item into a table.
5. Delete the item with a given search key from a table.
6. Retrieve the item with a given search key from a table.
7. Traverse the items in a table in sorted search-key order.

KEY CONCEPTS
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You should realize that these operations are only one possible set of table
operations. The client may require either a subset of these operations or other
operations not listed here to fit the application at hand. It may also be conve-
nient to modify the definitions of some of the operations. For example, these
operations assume that no two table items have the same values in their search
keys. However, in many applications it is quite reasonable to expect duplicate
search-key values. If this is the case, you must redefine several of the operations
to eliminate the ambiguity that would arise from duplicate search-key values.
For example, which item should tableRetrieve return if several items have

Pseudocode for the Operations of the ADT Table

// TableItem type is the type of the items stored in the
// table, KeyType is the type of the search-key value.

+createTable()
// Creates an empty table.

+tableIsEmpty():boolean {query}
// Determines whether a table is empty.

+tableLength():integer {query}
// Determines the number of items in a table.

+tableInsert(in newItem:TableItemType) throws
TableException

// Inserts newItem into a table whose items have distinct 
// search keys that differ from newItem’s search key. 
// Throws TableException if the insertion is not 
// successful.

+tableDelete(in searchKey:KeyType)
// Deletes from a table the item whose search key equals
// searchKey. Returns false if no such item exists.
// Returns true if the deletion was successful.

+tableRetrieve(in searchKey:KeyType):TableItemType
// Returns the item in a table whose search 
// key equals searchKey. Returns null
// if no such item exists.

+tableTraverse():TableItemType
// Traverses a table in sorted search-key order.

KEY CONCEPTS

Various sets of
table operations 
are possible

Our table assumes 
distinct search keys

Other tables could 
allow duplicate 
search keys
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the specified value in their search keys? You should tailor your definition of the
ADT table to the problem at hand. 

Although the operations tableInsert, tableDelete, and tableRetrieve
in the previous set of operations are sufficient for some applications, you cannot do
several significant things without additional operations. For instance, you cannot
perform an important task such as

Display all the table items

because you cannot retrieve a data item unless you know the value of its search
key. Thus, you cannot display the entire table unless you can traverse the table.

In defining the traversal operation, you must specify the order in which
tableTraverse should visit the items. One common specification is to visit the
items sorted by the search key, but perhaps you do not care in what order the
traversal visits the items. As you will see, the way you define tableTraverse—if
you define it at all—may affect the way that you implement the table.

The concept of a search key for the table items is essential to the imple-
mentation of the table. It is important that the value of the search key remain
the same as long as the item is stored in the table. Changing the search key of
an existing element in the table could make that element or other table ele-
ments impossible to find. Thus, the search-key value should not be modifi-
able. This suggests the use of a class for items of the table; the class will contain
the search key and a method for accessing the search-key data field. This is the
same class that appeared in Chapter 11: 

package SearchKeys;

public abstract class KeyedItem<KT extends
Comparable <? super KT>> {

private KT searchKey;

Table

items

createTable()

tableIsEmpty()

tableLength()

tableInsert()

tableDelete()

tableRetrieve()

tableTraverse()

UML diagram for the class Table

FIGURE 12-2
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public KeyedItem(KT key) {
    searchKey = key;
  }  // end constructor

public KT getKey() {
return searchKey;

  }  // end getKey
}  // end KeyedItem

Recall that classes that extend KeyedItem will have only the constructor available
for initializing the search key. Thus, the search-key value cannot be modified
once an item is created, which meets our requirement.

Suppose that the items in the table are instances of the following class:

import SearchKeys.KeyedItem;

public class City extends KeyedItem<String> {
private String city;     // city's name
private String country;  // city's country
private int    pop;      // city's population

  . . .
  // implementation of methods for accessing private 
  // data fields
}  // end City

and you want to perform tasks on this table such as

■ Display, in alphabetical order, the name of each
city and its population

■ Increase the population of each city by 10 percent

■ Delete all cities with a population of less than
1,000,000

Each task suggests that you designate city as the search key. The class City con-
tains all the information for a city, including the city name (returned by the inher-
ited method getKey), country, and population. Here is a Java definition of City:

import SearchKeys.KeyedItem;

public class City extends KeyedItem<String> {
  // city's name will be designated as search key

private String country;  // city's country
private int    pop;      // city's population

public City(String theCity, String theCountry, 
int newPop) {

Tasks that use city
as the search key
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super(theCity); // makes city name the search key
    country = theCountry;
    pop = newPop;
  }  // end constructor

public String toString() {
return getKey() + ", " + country + "  " + pop;

  }  // end toString

  // The methods getCountry, setCountry, getPopulation, 
  // and setPopulation appear here.

  ...

}  // end City

The first task requires you to write the city names in alphabetical order.
Thus, tableTraverse must visit items alphabetically by search key. One
way to implement tableTraverse is to define an iterator for the ADT
table. You can use an instance of this iterator class to access each table item
and then pass it to a method such as displayItem, which appears in
pseudocode as follows:

+displayItem(in anItem:TableItemType)

  Display anItem.getCity()
  Display anItem.getPopulation()

The iterator’s visitation order is immaterial for the other two tasks. To
perform the second task, you pass each item that the iterator visits to a method
updatePopulation:

+updatePopulation(in anItem:TableItemType)

  anItem.setPopulation(1.1 * anItem.getPopulation())

To perform the third task, you pass each item that the iterator visits to a
method deleteSmall:

+deleteSmall(inout table:Table, in anItem:TableItemType)

if (anItem.getPopulation() < 1,000,000)
    table.tableDelete(anItem)

However, this task is not as simple as it may seem. By deleting an item, you
alter the table during the traversal with the iterator. Which item will the itera-
tor visit next? Clearly, it should visit the one after the deleted item, but will it

First task

Second task

Third task
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do so, or will it skip that item? Usually, you use the iterator’s remove method
to perform a deletion when an iterator is in use. Doing so clarifies the seman-
tics of the deletion with respect to the iterator. The definition of the iterators
for the two table implementations presented later in this chapter, and in partic-
ular the remove operation, are left as programming problems.

The following interface TableInterface summarizes the table operations.
Note that the first data-type parameter reflects the type of item in the table, the
second is the data type for the search key.

package Tables;
import SearchKeys.KeyedItem;

public interface
       TableInterface<T extends KeyedItem<KT>,

KT extends Comparable <? super KT>> {

// Table operations:
// Precondition for all operations:
// No two items of the table have the same search key.
// The table's items are sorted by search key.

public boolean tableIsEmpty();
// Determines whether a table is empty.
// Postcondition: Returns true if the table is 
// empty; otherwise returns false.

public int tableLength();
// Determines the length of a table.
// Postcondition: Returns the number of items in the
// table.

public void tableInsert(T newItem) throws TableException;
  // Inserts an item into a table in its proper sorted

// order according to the item's search key.
// Precondition: The item to be inserted into the 
// table is newItem, whose search key differs from 
// all search keys presently in the table.
// Postcondition: If the insertion was successful, 
// newItem is in its proper order in the table.
// Otherwise, the table is unchanged, and 
// TableException is thrown.

public boolean tableDelete(KT searchKey);
// Deletes an item with a given search key from a 
// table.
// Precondition: searchKey is the search key of the 
// item to be deleted.
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// Postcondition: If the item whose search key equals
// searchKey existed in the table, the item was 
// deleted and method returns true. Otherwise, the 
// table is unchanged and the method returns false.

public T tableRetrieve(KT searchKey);
// Retrieves an item with a given search key from a 
// table.
// Precondition: searchKey is the search key of the 
// item to be retrieved.
// Postcondition: If the retrieval was successful,
// the table item with the matching search key is
// returned. If no such item exists, the method
// returns a null reference.

}  // end TableInterface

Selecting an Implementation
In the previous chapters, ADT implementations were either array based or ref-
erence based. That is, you used either an array or a linked list to store the
ADT’s items. Such implementations are called linear because they represent
items one after another in a data structure and thus mirror the flat, listlike
appearance of the table of cities in Figure 12-1. 

Linear implementations of a table are certainly possible and fall into four
categories:

■ Unsorted, array based

■ Unsorted, reference based

■ Sorted (by search key), array based

■ Sorted (by search key), reference based

The unsorted implementations store the items in no particular order; they can
insert a new item into any convenient location. The sorted implementations,
however, must insert a new item into its proper position as determined by the
value of its search key. Whether sorted or unsorted, the array-based and
reference-based linear implementations have the basic structures shown in
Figure 12-3. Both implementations maintain a count of the current number of
items in the table. As you will see, the unsorted and sorted implementations
have their relative advantages and disadvantages.

At this point in your study of ADTs, you have other choices for a table
implementation. For instance, you can implement the ADT table by using an
ADT list, sorted list, or binary search tree. The binary search tree implementa-
tion, as illustrated in Figure 12-4, is an example of a nonlinear implementation
and offers several advantages over linear implementations. Among these advan-
tages is the opportunity to reuse the implementation of the ADT binary search

Four categories 
of linear 
implementations

A binary search 
tree implementation 
is nonlinear
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tree given in Chapter 11. Implementations based on the ADTs list and sorted list
also share this advantage, and they are left for you to consider as programming
problems.

A major goal of this chapter is to indicate how the requirements of a par-
ticular application influence the selection of an implementation. The discus-
sion here elaborates on the comments made in Chapter 10 in the section

head

Athens Barcelona Venice9

0 1 size – 1 MAX_TABLE – 1

itemssize

(a)

Athens9

size

(b) Barcelona Venice

The data fields for two sorted linear implementations of the ADT table for the data in Figure 12-1: 
(a) array-based; (b) reference-based

FIGURE 12-3

New York

Athens

Venice

Cairo

Barcelona London Paris

Rome

Toronto

size

9

The data fields for a binary search tree implementation of the ADT table for the data 
in Figure 12-1

FIGURE 12-4
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“Keeping Your Perspective.” Some applications require all of the operations of
the ADT table given earlier; others require either a subset of them or addi-
tional operations. Before choosing an implementation of the ADT table, you
as problem solver should carefully analyze which operations you really need for
the application at hand. It is tempting to want all possible operations, but this
strategy is a poor one, because often one implementation supports some of the
operations more efficiently than another implementation does. Therefore, if
you include an operation that you never use, you might end up with an imple-
mentation of the ADT that does not best suit your purpose.

In addition to knowing what operations are needed for a given application,
the ADT implementer should know approximately how often the application
will perform each operation. Although some applications may require many
occurrences of every operation, other applications may not. For example, if you
maintained a table of major cities such as the one in Figure 12-1, you would
expect to perform many more retrieval operations than insertions or deletions.
Thus, if you seldom insert items, you can tolerate a table implementation that
results in an inefficient insertion operation, as long as frequently used opera-
tions are efficient. Of course, as Chapter 10 mentioned, if an ADT operation is
to be used in a life-or-death situation, that operation must be efficient, even if
you rarely need it. The necessary operations, their expected frequency of
occurrence, and their required response times are therefore some factors that
influence which implementation of an ADT you should select for a particular
application. You should, however, remain conscious of factors other than effi-
ciency, as discussed in Chapter 10.

Consider now several different application scenarios, each of which
requires a particular mix of the table operations. The analysis of various imple-
mentations of the ADT table will illustrate some of the basic concerns of the
analysis of algorithms. You will see, given an application, how to select an
implementation that supports in a reasonably efficient manner the required
mix of table operations. 

Scenario A: Insertion and traversal in no particular order. Mary’s soror-
ity plans to raise money for a local charity. Tired of previous fund-raisers, Mary
suggests a brainstorming session to discover a new money-making strategy. As
sorority members voice their ideas, Mary records them by inserting each new
thought into a table. Later, she will print a report of all the ideas currently in
the table. Assume that the organization of the report is irrelevant—the items
can be sorted or unsorted. Also assume that operations such as retrieval, dele-
tion, or traversal in sorted order either do not occur or occur so infrequently
that they do not influence your choice of an implementation.

For this application, maintaining the items in a sorted order has no advan-
tage. In fact, by not maintaining a sorted order, the tableInsert operation
can be quite efficient. For either unsorted linear implementation, you can
insert a new item into any convenient location. For an unsorted array-based
implementation, you can easily insert a new item after the last item in the
array—that is, at location items[size]. Figure 12-5a shows the result of this

What operations are 
needed?

How often is each 
operation required?

An unsorted order is 
efficient
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insertion after size has been updated. For a reference-based implementation,
you can simply insert a new item at the beginning of the linked list. As Figure
12-5b illustrates, head references the new item, and the new item references
the item previously first on the list. Thus, not only can you insert a new item
quickly into either unsorted implementation of a table, but also the tableIn-
sert operation is O(1): It requires a constant time for either implementation
regardless of the table size. 

Should you choose the array-based or the reference-based implementa-
tion? As you have seen with other ADTs, an implementation that uses dynami-
cally allocated memory is appropriate if you do not have a good estimate of the
maximum possible size of the table. Mary’s brainstorming session likely falls
into this category. On the other hand, if you know that the table’s maximum
size is not drastically larger than its expected size,1 the choice is mostly a
matter of style.

Should you consider a binary search tree implementation for this applica-
tion? Because such an implementation orders the table items, it does more
work than the application requires. In fact, as you saw in Chapter 11, inser-
tion into a binary search tree is O(log n) in the average case.

Scenario B: Retrieval. When you use a word processor’s thesaurus to look
up synonyms for a word, you use a retrieval operation. If an ADT table repre-
sents the thesaurus, each table item is a record that contains both the word—
which is the search key—and the word’s synonyms. Frequent retrieval opera-
tions require a table implementation that allows you to search efficiently for an

1. Chapter 5, in the section “Comparing Array-Based and Reference-Based Implemen-
tations,” discussed how the expected and maximum number of items in an ADT affect 
an array-based implementation.

Insertion for unsorted linear implementations: (a) array-based; (b) reference-based

FIGURE 12-5
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item, given its search-key value. Typically, you cannot alter the thesaurus, so
no insertion or deletion operations are necessary. 

For an array-based implementation, you can use a binary search to retrieve
a particular word’s record, if the array is sorted. On the other hand, for a
reference-based implementation, you must traverse the linked list from its
beginning until you encounter the word in the list. The binary search performs
this retrieval in significantly less time than is required to traverse a linked list.
Two questions come to mind at this point:

1. Is a binary search of a linked list possible?

2. How much more efficient is a binary search of an array than a sequential
search of a linked list?

Can you perform a binary search under a reference-based implementa-
tion? Yes, but too inefficiently to be practical. Consider the very first step of
the binary search algorithm:

Look at the "middle" item in the table

If n items are in a linked list, how can you possibly get to the middle item
of the list? You can traverse the list from the beginning until you have
visited n/2 items. But, as you will see in the answer to the second question,
just this first step will often take longer than the entire binary search of an
array. Further, you would have the same problem of finding the “middle”
element at each recursive step. It is thus not practical to perform a binary
search for the linear reference-based implementation. This observation is
extremely significant.

On the other hand, if n items are in an array items, the middle item is at loca-
tion n/2 and can be accessed directly. Thus, a binary search of an array requires
considerably less time than an algorithm that must inspect every item in the table.
What does “considerably less time” mean? As you know, without the ability to
perform a binary search, you may have to inspect every item in the table, either to
locate an item with a particular value in its search key or to determine that such an
item is not present. In other words, if a table has size n, you will have to inspect as
many as n items; thus, such a search is O(n). How much better can you do with a
binary search? Recall from Chapter 10 that a binary search is O(log2n) in its worst
case and that an O(log2n) algorithm is substantially more efficient than an O(n)
algorithm. For example, log21024 = 10 and log21,048,576 = 20. For a large table,
the binary search has an enormous advantage.

Since a thesaurus is probably large, you must choose an implementation
for which a binary search is practical. As you have just seen, this observation
eliminates the linear reference-based implementations. The sorted array-based
implementation is fine here, since you know the size of the thesaurus. 

The binary search tree implementation is also a good choice for retrieval-
dominated applications. As you saw in Chapter 11, searching a binary search tree
is O(log n) if the tree is balanced. Since the thesaurus does not change, you can
create a balanced tree that remains balanced and be assured of an efficient search.

A sorted array-based 
implementation can 
use a binary search

Questions

A binary search is 
impractical with a 
reference-based 
implementation

If you know the 
table’s maximum 
size, a sorted array-
based implementa-
tion is appropriate for 
frequent retrievals

If you do not 
know the table’s 
maximum size, use 
a binary search tree 
implementation
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Scenario C: Insertion, deletion, retrieval, and traversal in sorted order.
If your local library has computerized its catalog of books, you perform a
retrieval operation when you access this catalog. The library staff uses inser-
tion and deletion operations to update the catalog and a traversal to save the
entire catalog in a file. Presumably, retrieval is the most frequent operation, but
the other operations are not infrequent enough to ignore. (Otherwise, this
scenario would be the same as Scenario B!) 

To insert into a table an item that has the value X in its search key, you
must first determine where the item belongs in the table’s sorted order. Simi-
larly, to delete from the table an item that has the value X in its search key, you
must first locate the item. Thus, both the tableInsert and tableDelete
operations perform the following steps:

1. Find the appropriate position in the table.

2. Insert into (or delete from) this position.

Step 1 is far more efficient if the table implementation is array based instead of
reference based. For an array-based implementation, you can use a binary
search to determine—in the case of insertion—where the new item X belongs
and—in the case of deletion—where the item is located. On the other hand,
for a reference-based implementation, you know from the discussion in Sce-
nario B that a binary search is impractical, and so you must traverse the list
from its beginning until you encounter the appropriate location in the list. You
also saw in Scenario B that it takes significantly less time to perform a binary
search of an array than it does to traverse a linked list.

Thus, because it facilitates a binary search, the array-based implementa-
tion is superior with respect to Step 1 of tableInsert and tableDelete.
However, as you may have guessed, the reference-based implementation is
better for Step 2, the actual insertion or deletion of the item. Under the array-
based implementation, tableInsert must shift array items to make room for
the new item (see Figure 12-6a), while tableDelete must shift array items to
fill in the gap created when the item is removed. The worst case would require
that every array item be shifted. On the other hand, under the reference-based
implementation, you can accomplish this second step simply by changing at
most two references, as Figure 12-6b illustrates.

When you take Steps 1 and 2 together, you will find that the sorted array-
based and sorted reference-based implementations of tableInsert or table-
Delete both require roughly the same amount of time—they are both O(n).
Neither implementation supports these operations particularly well. The binary
search tree implementation, however, combines the best features of the two
linear implementations. Because it is reference based, you avoid shifting data,
and the table can grow dynamically as needed. You can also retrieve items from
a binary search tree efficiently.

Summary. An unsorted array-based implementation of the ADT table can
efficiently insert an item at the end of an array. A deletion, however, will

Both insertion and 
deletion perform 
these two steps

Use an array-based 
implementation for 
Step 1

Use a 
reference-based 
implementation
for Step 2

A sorted array-
based implemen-
tation shifts data 
during insertions 
and deletions

The sorted linear 
implementations
are comparable 
here, but none 
are suitable 
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usually require shifting data so that no hole remains in the array. Because the
items are unsorted, retrieval will require a sequential search.

A sorted array-based implementation usually requires shifting data during
both insertions and deletions. Retrieval, however, can use an efficient binary
search because the items are sorted.

An unsorted reference-based implementation can efficiently insert an item
at the beginning of a linked list. A deletion will require a sequential search but
no data shifts. Retrieval will also require a sequential search.

A sorted reference-based implementation requires a sequential search but
no data shifts during both insertions and deletions. Retrieval will also require a
sequential search.

Although these linear implementations are less sophisticated and generally
require more time than the binary search tree implementation, they are neverthe-
less useful for many applications. Because linear implementations are easy to
understand conceptually, they are appropriate for tables that will contain only a
small number of items. In such cases, efficiency is not as great a concern as sim-
plicity and clarity. Even when a table is large, a linear implementation may still be
appropriate for applications that can use an unsorted table and have few deletions. 

The nonlinear, binary search tree implementation of the ADT table can be a
better choice, in general, than the linear implementations. If an n-node binary search
tree has minimum height—that is, has height ⎡log2(n + 1)⎤—the binary search tree
implementation of the ADT table certainly succeeds where the linear implementa-
tions failed: You can, with efficiency comparable to that of a binary search, locate an
item in both the retrieval operation and the first steps of the insertion and deletion
operations. In addition, the reference-based implementation of the binary search tree
permits dynamic allocation of its nodes, and so it can handle a table whose maximum
size is unknown. This implementation also efficiently performs the second step of

DataData
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Old value

0 1 i k + 1 MAX_TABLE – 1

items

(a)

Data Data

head

(b)

k
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item

Data Data Data Data Data ? ?

i + 1i  – 1

Insertion for sorted linear implementations: (a) array-based; (b) reference-based

FIGURE 12-6

Despite certain diffi-
culties, linear imple-
mentations of a table 
can be appropriate

A binary search 
tree implementation 
is a better choice, 
in general
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the insertion and deletion operations: The actual insertion and removal of a node
requires only a few reference changes (plus a short traversal to the inorder successor
if the node to be removed has two children) rather than the possible shifting of all
the table items, as the array-based implementations require. The binary search tree
implementation therefore combines the best aspects of the two linear implementa-
tions, yet avoids their disadvantages. 

As the previous chapter showed, however, the height of a binary search
tree depends on the order in which you perform the insertion and deletion
operations on the tree and can be as large as n. If the insertion and deletion
operations occur in a random order, the height of the binary search tree will be
quite close to its minimum value. You do need to watch for a possible increase
in the tree’s height, however, and the resulting decrease in performance. If
instead you use a variation of the binary search tree that remains balanced—as
Chapter 13 describes—you can keep the height of the tree near log2n.

Figure 12-7 summarizes the order of the insertion, deletion, retrieval, and
traversal operations for the table implementations discussed in this chapter.

A Sorted Array-Based Implementation of the 
ADT Table
If the binary search tree implementation of the ADT table is so good, you might
wonder why you needed to study the linear implementations at all. There are
three reasons. The first and foremost of these is perspective. Chapter 9 spoke of
the dangers of overanalyzing a problem. If the size of the problem is small, the
difference in efficiency among the possible solutions is likely insignificant. In par-
ticular, if the size of the table is small, a linear implementation is adequate and
simple to understand.

The second reason is efficiency: A linear implementation can be quite effi-
cient for certain situations. For example, a linear implementation was best for
Scenario A, where the predominant operations are insertion and traversal in no
particular order. For Scenario B, where the predominant operation is retrieval,
the sorted array-based implementation is adequate, if the maximum number of
items is known. For these situations, a concern for simplicity suggests that you
use a linear implementation and not a binary search tree, even for large tables.

A balanced binary 
search tree 
increases the effi-
ciency of the ADT 
table operations

Insertion

O(1)

O(1)

O(n)

O(n)

O(log n)

Deletion

O(n)

O(n)

O(n)

O(n)

O(log n)

Retrieval

O(n)

O(n)

O(log n)

O(n)

O(log n)

Traversal

O(n)

O(n)

O(n)

O(n)

O(n)

Unsorted array-based

Unsorted pointer-based

Sorted array-based

Sorted pointer-based

Binary search tree

The average-case order of the operations of the ADT table for various 
implementations

FIGURE 12-7

Perspective, effi-
ciency, and motiva-
tion are reasons for 
studying the linear 
implementations
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The third reason is motivation. By seeing scenarios for which the linear
implementations are not adequate, you are forced to look beyond arrays and
consider other implementations, such as the binary search tree. Actually
looking at both a linear implementation and a binary search tree implementa-
tion allows you to see these inadequacies more clearly.

The following sorted array-based implementation assumes unique search
keys. Exercise 7 at the end of this chapter asks you to remove this assumption.
The pre- and postconditions are omitted to save space, but they are the same
as those given earlier in this chapter in TableInterface.

package Tables;
import SearchKeys.KeyedItem;
import java.util.ArrayList;

// *********************************************************
// ADT table. 
// Sorted array-based implementation.
// Assumption: A table contains at most one item with a 
//             given search key at any time.
// *********************************************************

public class
       TableArrayBased<T extends KeyedItem<KT>, 
                       KT extends Comparable<? super KT>> 
       implements TableInterface<T, KT> {

final int MAX_TABLE = 100;        // maximum size of table
protected ArrayList<T> items;     // table items

public TableArrayBased() {
    items = new ArrayList<T>(MAX_TABLE);
  }  // default constructor

public boolean tableIsEmpty() {
return tableLength()==0;

  } // end tableIsEmpty

public int tableLength() {
return items.size();

  }  // end tableLength

public void tableInsert(T newItem) throws TableException {
  // Calls: position.

if (tableLength() < MAX_TABLE) {
      // there is room to insert;
      // locate the position where newItem belongs

int spot = position(newItem.getKey());
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if ((spot < tableLength()) &&
          (items.get(spot).getKey()).compareTo(

newItem.getKey())==0) {
        // we have found a duplicate key

throw new TableException("Table Exception: " + 
                    "Insertion failed, duplicate key item");
      }

else {
        // ArrayList automatically shifts items to make room 
        // for the new item
        items.add(spot, newItem);
      }  // end if
    }

else {
throw new TableException("TableException: Table full");

    } // end if
  }  // end tableInsert

public boolean tableDelete(KT searchKey) {
  // Calls: position.
    // locate the position where searchKey exists/belongs

int spot = position(searchKey);
    // is searchKey present in the table?

boolean success = (spot <= tableLength()) && 
         (items.get(spot).getKey().compareTo(searchKey)==0);
if (success) {

      // searchKey in table
      // ArrayList automatically shifts items
      items.remove(spot);
    }  // end if

return success;
  }  // end tableDelete

public T tableRetrieve(KT searchKey) {
  // Calls: position.

    // locate the position where searchKey exists/belongs
int spot = position(searchKey);

    // is searchKey present in table?
boolean success = (spot < tableLength()) &&

(items.get(spot).getKey().compareTo(searchKey)==0);
if (success) {

return items.get(spot);  // item present; retrieve it
    }

else {
return null;
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    }  // end if
  }  // end tableRetrieve

protected int position(KT searchKey) {
  // Finds the position of a table item or its insertion 
  // point.
  // Precondition: searchKey is the value of the search key
  // sought in the table.
  // Postcondition: Returns the index (between 0 and size - 1)
  // of the item in the table whose search key equals 
  // searchKey. If no such item exists, returns the position
  // (between 0 and size) that the item would occupy if
  // inserted into the table. The table is unchanged.

int pos = 0;
while ((pos < tableLength()) && 
      (searchKey.compareTo(items.get(pos).getKey()) > 0)) {

      pos++;
    }  // end while

return pos;
  }  // end position

}  // end TableArrayBased

A Binary Search Tree Implementation of the ADT Table
Although linear implementations are suited to specific applications, they are
not good as general-purpose implementations of the ADT table.

The following nonlinear reference-based implementation uses a binary search
tree to represent the items in the ADT table. That is, class TableBSTBased has a
binary search tree as one of its data fields. In this way, TableBSTBased
reuses the class BinarySearchTree from the previous chapter. The pre-
and postconditions are omitted to save space, but they are the same as those
given earlier in this chapter.

package Tables;
import BinaryTrees.BinarySearchTree;
import BinaryTrees.TreeException;
import SearchKeys.KeyedItem;

// Assumes that the binary search tree created in Chapter 11
// is contained in a package called BinaryTrees.

// ********************************************************
// Implementation of a table using a binary search tree.
// Assumption: A table contains at most one item with a 
//             given search key at any time.
// ********************************************************
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public class
TableBSTBased<T extends KeyedItem<KT>,

                     KT extends Comparable<? super KT>>
       implements TableInterface<T, KT> {
// binary search tree that contains the table’s items

protected BinarySearchTree<T,KT> bst; 
protected int size;       // number of items in the table

public TableBSTBased() {
    bst = new BinarySearchTree<T,KT>();
    size = 0;
  }  // end default constructor

// table operations:
public boolean tableIsEmpty() {

return size == 0;
  }  // end tableIsEmpty

public int tableLength() {
return size;

  }  // end tableLength

public void tableInsert(T newItem) throws TableException {
if (bst.retrieve(newItem.getKey()) == null) { 

      bst.insert(newItem);
      ++size;
    }

else {
throw new TableException("Table Exception: Insertion" 

+ " failed, duplicate key item");
    } // end if
  }  // end tableInsert

public T tableRetrieve(KT searchKey) {
return bst.retrieve(searchKey);

  }  // end tableRetrieve

public boolean tableDelete(KT searchKey) {
try {

      bst.delete(searchKey);
    }  // end try

catch (TreeException e) {
return false;

    }  //end catch
    --size;

return true;
  }  // end tableDelete
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protected void setSize(int newSize) {
    size = newSize;
  }  // end setSize

}  // end TableBSTBased

The following statements demonstrate how to use this class in a program
that requires the ADT table:

import Tables.*;

class TestTable {
public static void displayCity(City c) {

    System.out.println(c.getCity());
  }  // end displayCity

  // Main entry point
public static void main(String[] args) {

    TableInterface<City, String> chart = 
new TableBSTBased<City, String>();

    City c;

    c = new City("Narragansett, RI", "USA", 16361);
    chart.tableInsert(c);
    c = new City("Ocracoke, NC", "USA", 769);
    chart.tableInsert(c);

    System.out.println(chart.tableLength());

    // If a table iterator class called TableIteratorBST
    // is available for the class TableBSTBased (as created
    // in Programming Problem 2, you can also do the 
    // following:

while (iter.hasNext()) {
      displayCity(iter.next());
    } // end while

  } // end main
} // end TestTable

12.2 The ADT Priority Queue: A Variation 
of the ADT Table

The ADT table organizes its data by search key, facilitating the retrieval of a
particular item, given its search key. Thus, the ADT table is appropriate when

A sample program

    System.out.println(chart.tableRetrieve("Narragansett, RI"));

    TreeIteratorBST<City> iter = new TableIteratorBST<City>(chart);
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you have a database to maintain and search by value, such as the table of cities
described earlier in this chapter. Consider now applications for which another
ADT, related to the ADT table, would be more appropriate.

Imagine a person who visits a hospital’s emergency room (ER). When any
patient enters the hospital, a staff member enters a record about that person
into a database for later retrieval by nurses, doctors, and the billing depart-
ment. In addition, the staff must keep track of the emergency room patients
and decide when each person will receive care.

The ADT table would be an appropriate choice for the hospital’s general data-
base. What ADT should the ER staff use for their patients? The ADT table would
facilitate the treatment of ER patients in alphabetic order by name or in numeric
order by ID number. A queue would enable the treatment of patients in the order of
arrival. In either case, Ms. Zither, who was just rushed to the ER with acute appendi-
citis, would have to wait for Mr. Able to have a splinter removed. Clearly, the ER
staff should assign some measure of urgency, or priority, to the patients waiting for
treatment. The next available doctor should treat the patient with the highest prior-
ity. The ADT that the ER staff needs should produce this patient upon request.

Another example of the use of priorities is your list of daily or weekly tasks.
Suppose that your “to do” list for this week contains the following items:

Send a birthday card to Aunt Mabel.

Start the research paper for world history.

Finish reading Chapter 12 of Walls and Mirrors.

Make plans for Saturday night.

When you consult your list, you most likely will attend to the task that, for
you, has the highest priority. 

A priority value indicates, for example, a patient’s priority for treatment or a
task’s priority for completion. What quantity should you use for this priority value?
Many reasonable possibilities exist, including a simple ranking from 1 to 10. Let’s
arbitrarily decide that the largest priority value indicates the highest priority. The
priority value becomes a part of the record that represents an item. You insert each
item into an ADT and then ask the ADT for the item that has the highest priority.

Such an ADT is known as a priority queue. More formally, a priority
queue is an ADT that provides the following operations:

You can organize 
data by priorities

You usually priori-
tize your list of tasks

A priority queue 
orders by priority 
values

Operations of the ADT Priority Queue 
1. Create an empty priority queue.
2. Determine whether a priority queue is empty.
3. Insert a new item into a priority queue.
4. Retrieve and then delete the item in a priority queue with the 

highest priority value.

KEY CONCEPTS
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Figure 12-8 shows a UML diagram for a class of priority queues.
The following pseudocode specifies in more detail the operations for an

ADT priority queue:

These operations resemble a subset of the operations of the ADT table.
The significant difference is the pqDelete operation. Whereas the sequence of
table operations tableRetrieve–tableDelete allows you to retrieve and
delete an item that has a specified value in its search key, pqDelete allows you
to retrieve and delete the item with the highest priority value. Notice that

PriorityQueue

items

createPQueue()

pqIsEmpty()

pqInsert()

pqDelete()

UML diagram for a class of priority queues

FIGURE 12-8

Pseudocode for the Operations of the ADT 
Priority Queue 

// PQItemType is the type of the items
// stored in the priority queue.

+createPQueue()
// Creates an empty priority queue.

+pqIsEmpty():boolean {query}
// Determines whether a priority queue is empty.

+pqInsert(in newItem:PQItemType) throws PQueueException
// Inserts newItem into a priority queue. Throws
// PQueueException if priority queue is full.

+pqDelete():PQItemType
// Retrieves and then deletes the item in a priority queue 
// with the highest priority value.

KEY CONCEPTS

Priority queue 
pqDelete is 
the difference 
between a priority 
queue and a table
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pqDelete, unlike tableRetrieve and tableDelete, is not told the value in
question. Because in general you will not know what the highest priority value
is, tableRetrieve and tableDelete could not easily perform this task. On
the other hand, you could not use pqDelete to retrieve and delete an item
with some specified value.

The ADT priority queue and the ADT table are thus both similar and dissimi-
lar, a fact that their implementations reflect. To begin, consider some of the table
implementations as implementations for a priority queue. The sorted linear imple-
mentations are appropriate if the number of items in the priority queue is small.
The array-based implementation maintains the items sorted in ascending order of
priority value, so that the item with the highest priority value is at the end of the
array, as Figure 12-9a illustrates. Thus, pqDelete simply returns the item in
items[size-1] and decrements size. However, the pqInsert operation, after

Possible
implementations

Some implementations of the ADT priority queue: (a) array based; (b) reference based; (c) binary 
search tree

FIGURE 12-9
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using a binary search to find the correct position for the insertion, must shift the
array elements to make room for the new item.

The linear reference-based implementation, shown in Figure 12-9b, maintains
the items sorted in descending order of priority value, so that the item with the
highest priority value is at the beginning of the linked list. Thus, pqDelete simply
returns the item that pqHead references and then changes pqHead to reference the
next item. The pqInsert operation, however, must traverse the list to find the
correct position for the insertion. Thus, the linear implementations of priority
queues suffer from the same trade-offs as the linear implementations of tables.

Instead, consider a binary search tree as an implementation of a priority
queue, as Figure 12-9c illustrates. Although the pqInsert operation is the same
as tableInsert, the pqDelete operation has no direct analogue among the
table operations. It must locate the item with the highest priority value, without
knowing what that value is. The task is not difficult, however, because this item
is always in the rightmost node of the tree. (Why?) You thus need only follow
rightChild references until you encounter a node with a null rightChild
reference. (Methods analogous to the binary search tree’s findLeftmost and
deleteLeftmost can accomplish this task.) Removing this node from the tree is
particularly easy because it has at most one child.

A binary search tree implementation is thus good for both a table and a
priority queue. Tables and priority queues have different uses, however. Some
table applications primarily involve retrieval and traversal operations and thus
do not affect the balance of the binary search tree. Priority queues, on the
other hand, do not have retrieval and traversal operations, so all their applica-
tions involve insertions and deletions, which can affect the shape of the binary
search tree. You could use a balanced variation of the binary search tree from
Chapter 13; however, if you know the maximum size of the priority queue, a
better choice might be an array-based implementation of a heap, which is
described next. The heap implementation is often the most appropriate one for
a priority queue, but it is not at all appropriate as an implementation of a table. 

Heaps
A heap is an ADT that is similar to a binary search tree, although it differs
from a binary search tree in two significant ways. First, while you can view a
binary search tree as sorted, a heap is ordered in a much weaker sense. This
order, however, is sufficient for the efficient performance of the priority-queue
operations. Second, while binary search trees come in many different shapes,
heaps are always complete binary trees. 

A heap is a complete binary tree

1. That is empty

or

2. Whose root contains a search key greater than or equal to the search key in
each of its children, and

3. Whose root has heaps as its subtrees

A heap differs from a 
binary search tree in 
two ways

A heap is a special 
complete binary tree
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In our definition of a heap, the root contains the item with the largest search
key. Such a heap is also known as a maxheap. A minheap, on the other hand,
places the item with the smallest search key in its root. Exercise 16 considers
the minheap further.

Figure 12-10 contains a UML diagram for the class Heap. The pseudocode
for the heap follows.

Because a heap is a complete binary tree, you can use an array-based
implementation of a binary tree, as you saw in Chapter 11, if you know the
maximum size of the heap. For example, Figure 12-11 shows a heap along
with its array representation. The search key in a heap node is greater than or

Heap

items

createHeap()

heapIsEmpty()

heapInsert()

heapDelete()

UML diagram for the class Heap

FIGURE 12-10

Pseudocode for the Operations of the ADT Heap 

// HeapItemType is the type of the items stored
// in the heap 

+createHeap()
// Creates an empty heap.

+heapIsEmpty():boolean {query}
// Determines whether a heap is empty.

+heapInsert(in newItem:HeapItemType) throws HeapException
// Inserts newItem into a heap. Throws HeapException
// if heap is full.

+heapDelete():HeapItemType
// Retrieves and then deletes a heap's root item. 
// This item has the largest search key.

KEY CONCEPTS
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equal to the search keys in each of the node’s children. Further, in a heap, the
search keys of the children have no relationship; that is, you do not know
which child contains the larger search key.

An array-based implementation of a heap. Let the following data fields rep-
resent the heap:

■ items: an array of heap items

■ size: an integer equal to the number of items in the heap 

The array items corresponds to the array-based representation of a tree. (To
simplify the following discussion, assume that the heap items are integers.)

heapDelete. First consider the heapDelete operation. Where is the largest
search key in the heap? Because the search key in every node is greater than or
equal to the search key in either of its children, the largest search key must be in
the root of the tree. Thus, the first step of the heapDelete operation is

// return the item in the root
rootItem = items[0]

That was easy, but you must also remove the root. When you do so, you
are left with two disjoint heaps, as Figure 12-12a indicates. Therefore, you
need to transform the remaining nodes back into a heap. To begin this trans-
formation, you take the item in the last node of the tree and place it in the
root, as follows:

// copy the item from the last node into the root
items[0] = items[size-1]

// remove the last node
--size
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As Figure 12-12b suggests, the result of this step is not necessarily a heap. It is,
however, a complete binary tree whose left and right subtrees are both heaps.
The only problem is that the item in the root may be (and usually is) out of
place. Such a structure is called a semiheap. You thus need a way to transform
a semiheap into a heap. One strategy allows the item in the root to trickle
down the tree until it reaches a node in which it will not be out of place; that
is, the item will come to rest in the first node where its search key would be
greater than (or equal to) the search key of each of its children. To accomplish
this, you first compare the search key in the root of the semiheap to the search
keys in its children. If the root has a smaller search key than the larger of the
search keys in its children, you swap the item in the root with that of the larger
child. (The larger child is the child whose search key is greater than the search
key of the other child.)

Figure 12-13 illustrates the heapDelete operation. Although the value 5
trickles down to its correct position after only one swap, in general more swaps
may be necessary. In fact, once the items in the root and the larger child C
have been swapped, C becomes the root of a semiheap. (Notice that node C
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does not move; only its value changes.) This strategy suggests the following
recursive algorithm:

+heapRebuild(inout items:ArrayType, in root:integer,
            in size:integer)
// Converts a semiheap rooted at index root into a heap.

  // Recursively trickle the item at index root down to
  // its proper position by swapping it with its larger
  // child, if the child is larger than the item.
  // If the item is at a leaf, nothing needs to be done.

if (the root is not a leaf) {
    // root must have a left child
    child = 2 * root + 1             // left child index

if (the root has a right child) {
      rightChild = child + 1        // right child index 

        child = rightChild          // larger child index
      }  // end if
    }  // end if

    // if the item in the root has a smaller search key 
    // than the search key of the item in the larger 
    // child, swap items

if (items[root].getKey() < items[child].getKey()) {
      Swap items[root] and items[child]

      // transform semiheap rooted at child into a heap
      heapRebuild(items, child, size)
    }  // end if
  }  // end if

  // else root is a leaf, so you are done

Delete 10
Place last node 
in root Trickle down

Heap Disjoint heaps Semiheap Heap
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Deletion from a heap

FIGURE 12-13

heapDelete’s 
final step trans-
forms the semiheap 
into a heap

if (items[rightChild].getKey() > items[child].getKey()) {
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Figure 12-14 illustrates heapRebuild’s recursive calls.
Now the heapDelete operation uses heapRebuild as follows:

// return the item in the root
rootItem = items[0]

// copy the item from the last node into the root
items[0] = items[size-1]

// remove the last node
--size

// transform the semiheap back into a heap
heapRebuild(items, 0, size)
return rootItem

Consider briefly the efficiency of heapDelete. Because the tree is stored
in an array, the removal of a node requires you to swap array elements. These
swaps may concern you, but they do not necessarily indicate that the algorithm
is inefficient. Since array contents are references, swapping will be very fast.
The data in the objects need not be copied. At most, how many array elements
will you have to swap? After heapDelete copies the item in the last node of
the tree into the root, heapRebuild trickles this item down the tree until its
appropriate place is found. This item travels down a single path from the root
to, at worst, a leaf. Therefore, the number of array items that heapRebuild
must swap is no greater than the height of the tree. The height of a complete
binary tree with n nodes is always ⎡log2(n + 1)⎤, as you know from Chapter 11.

First semiheap passed to heapRebuild Second semiheap passed to heapRebuild
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69

23

9

65

23

Recursive calls to heapRebuild

FIGURE 12-14

heapDelete’s 
efficiency
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Each swap requires three reference changes, so heapDelete requires

3 * ⎡log2(n + 1)⎤ + 1 

reference changes. Thus, heapDelete is O(log n), which is, in fact, quite efficient.

heapInsert. The strategy for the heapInsert algorithm is the opposite of
that for heapDelete. A new item is inserted at the bottom of the tree, and it
trickles up to its proper place, as Figure 12-15 illustrates. It is easy to trickle up
a node, because the parent of the node in items[i]—other than a root—is
always stored in items[(i-1)/2]. The pseudocode for heapInsert is

// insert newItem into the bottom of the tree
items[size] = newItem

// trickle new item up to appropriate spot in the tree
place = size
parent = (place-1)/2
while ( (parent >= 0) and 
        (items[place] > items[parent]) ) {
  Swap items[place] and items[parent]
  place = parent
  parent = (place-1)/2
}  // end while

Increment size

The efficiency of heapInsert is like that of heapDelete. That is,
heapInsert, at worst, has to swap array elements on a path from a leaf to the
root. The number of swaps, therefore, cannot exceed the height of the tree.
Because the height of the tree, which is complete, is always ⎡log2(n + 1)⎤,
heapInsert is also O(log n).

Given that the Heap implementation does not require a method to search
elements in the Heap by search-key, the generic implementation of Heap uses

heapDelete is 
O(log n)
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only one formal data-type parameter. To arrange the elements properly though,
some method of comparing the objects must be provided. This implementation
uses a technique similar to that found in many of the implementations in the
Java Collections Framework by allowing either a natural ordering of the ele-
ments through the Comparable interface, or by providing a Comparator object
to the constructor. The assumption is that if a Comparator object is not pro-
vided, the element type used as the actual data-type parameter implements the
Comparable interface. Note that the formal data-type parameter does not
extend the Comparable interface, if it did so, you would be needlessly requiring
the element to implement the Comparable interface when a Comparator object
is provided.

package Heaps;
import java.util.ArrayList;
import java.util.Comparator;

public class Heap<T> {
private ArrayList<T> items;    // array of heap items
private Comparator<? super T> comparator;

public Heap() { 
    items = new ArrayList<T>();
  }  // end default constructor

public Heap(Comparator<? super T> comparator) {
    items = new ArrayList<T>();

this.comparator = comparator;
  }  // end default constructor

// heap operations:
public boolean heapIsEmpty() {

  // Determines whether a heap is empty.
  // Precondition: None.
  // Postcondition: Returns true if the heap is empty;
  // otherwise returns false.

return items.size()==0;
  } // end heapIsEmpty

public void heapInsert(T newItem) 
throws HeapException, ClassCastException {

  // Inserts an item into a heap.
  // Precondition: newItem is the item to be inserted.
  // Postcondition: If the heap was not full, newItem is
  // in its proper position; otherwise HeapException is
  // thrown.

if (!items.add(newItem)) {
      // problem adding element to ArrayList item for heap
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    } else {
      // trickle new item up to its proper position

int place = items.size()-1;
int parent = (place - 1)/2;
while ((parent >= 0) && 

        // swap items[place] and items[parent]
        T temp = items.get(parent);
        items.set(parent, items.get(place));
        items.set(place, temp);

        place = parent;
        parent = (place - 1)/2;
      }  // end while
    } // end else
  } // end heapInsert

public T heapDelete() {
  // Retrieves and deletes the item in the root of a heap.
  // This item has the largest search key in the heap.
  // Precondition: None.
  // Postcondition: If the heap is not empty, returns the

  // if the heap is empty, removal is impossible and the
  // method returns null.
    T rootItem = null;
    int loc;

if (!heapIsEmpty()) {
      rootItem = items.get(0);
      loc = items.size()-1;

      // empty, then set() won't work
      items.set(0, items.get(loc));
      items.remove(loc);
      heapRebuild(0);
    }  // end if

return rootItem;
  } // end heapDelete

protected void heapRebuild(int root) {
  // if the root is not a leaf and the root's search key 
  // is less than the larger of the search keys in the
  // root's children

int child = 2 * root + 1;  // index of root's left 
                               // child, if any

if ( child < items.size() ) {

throw new HeapException("HeapException: heapInsert failed");

             (compareItems(items.get(place), items.get(parent))) < 0) {

  // item in the root of the heap and then deletes it. However,

      // if we remove the item first, it may make the ArrayList items 
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      // root is not a leaf, so it has a left child at child
int rightChild = child + 1;  // index of right child, 

                                   // if any

      // if root has a right child, find larger child
if ((rightChild < items.size()) &&

 < 0) {
        child = rightChild;    // index of larger child
      } // end if

      // if the root's value is smaller than the
      // value in the larger child, swap values

        T temp = items.get(root);
        items.set(root, items.get(child));
        items.set(child, temp);
        // transform the new subtree into a heap
        heapRebuild(child);
      }  // end if
    }  // end if
    // if root is a leaf, do nothing
  } // end heapRebuild

private int compareItems(T item1, T item2) {
if (comparator == null) {
return ((Comparable <T>)item1).compareTo(item2);

    } else {
return comparator.compare(item1, item2);

    } // end if
  } // end compare
} // end Heap

A Heap Implementation of the ADT Priority Queue
Once you have implemented the ADT heap, the implementation of the ADT
priority queue is straightforward, because priority-queue operations are exactly
analogous to heap operations. The priority value in a priority-queue item cor-
responds to a heap item’s search key. Thus, the implementation of the priority
queue can reuse the class Heap. That is, the class PriorityQueue has an
instance of Heap as its data field:

package PriorityQueues;
import Heaps.Heap;
import Heaps.HeapException;
import java.util.Comparator;

          (compareItems(items.get(rightChild),items.get(child)))

if (compareItems(items.get(root), items.get(child)) > 0) {

Priority-queue
operations and 
heap operations 
are analogous
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// *********************************************************
// Assumes that Heap implementation is in package Heaps.
// PriorityQueue class implementation.
// *********************************************************

public class PriorityQueue<T>{
private Heap<T> h;

public PriorityQueue() {
    h = new Heap<T>();
  }  // end default constructor

public PriorityQueue(Comparator<? super T> comparator) {
    h = new Heap<T>(comparator);
  }  // end default constructor

  // priority-queue operations:
public boolean pqIsEmpty() {

return h.heapIsEmpty();
  }  // end pqIsEmpty

try {
      h.heapInsert(newItem);
    }  // end try

catch (HeapException e) { 
throw new PriorityQueueException(

    }  // end catch
  }  // end pqInsert

public T pqDelete() {
return h.heapDelete();

  }  // end pqDelete

}  // end PriorityQueue

How does a heap compare to a binary search tree as an implementation of
a priority queue? If you know the maximum number of items in the priority
queue, the heap is the better implementation.

Because a heap is complete, it is always balanced, which is its major advan-
tage. If the binary search tree is balanced, both implementations will have the
same average performance for n items: They both will be O(log n). The height
of a binary search tree, however, can increase during insertions and deletions,
greatly exceeding log2 n and degrading the implementation’s efficiency to O(n)
in the worst case. The heap implementation avoids this decrease in performance.

public void pqInsert(T newItem) throws PriorityQueueException {

            "PQueueException: Problem inserting to Priority Queue");

The heap implemen-
tation requires 
knowledge of the 
priority queue’s 
maximum size

A heap is always 
balanced
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In the next chapter, you will see how to keep a binary search tree balanced,
but the operations that do this are far more complex than the heap operations.
Do not think, however, that a heap can replace a binary search tree as a table
implementation; as was stated earlier, a heap is not appropriate in this role. If this
fact is not apparent to you, try to perform the table operation tableRetrieve
on a heap, or try to traverse a heap in search-key order.

Finite, distinct priority values. If you have a finite number of distinct prior-
ity values, such as the integers 1 through 20, many items will likely have the
same priority value. You could place items whose priority values are the same in
the order in which you encounter them.

A heap of queues accommodates this situation, with one queue for each distinct
priority value. To insert an item into the priority queue, you add a queue for the
item’s priority value to the heap, if it is not already there. Then you insert the item
into the corresponding queue. To delete an item from a priority queue, you delete
the item at the front of the queue that corresponds to the highest priority value in
the heap. If this deletion leaves the queue empty, you remove it from the heap.

Programming Problem 7 at the end of this chapter treats distinct priority
values further.

Heapsort
As its name implies, the heapsort algorithm uses a heap to sort an array
anArray of items that are in no particular order. The first step of the algorithm
transforms the array into a heap. One way to accomplish this transformation is
to use the heapInsert method to insert the items into the heap one by one.

A more efficient method of building a heap out of the items of anArray is
possible, however. For example, assume that the initial contents of anArray are
as shown in Figure 12-16a. First you imagine the array as a binary tree by assign-
ing the items of anArray to the tree’s nodes, beginning with the root and pro-
ceeding left to right down the tree. Figure 12-16b shows the resulting tree.
Next, you transform this tree into a heap by calling heapRebuild repeatedly.
heapRebuild transforms a semiheap—a tree whose subtrees are both heaps but
whose root may be out of place—into a heap. But are there any semiheaps in the

A heap of queues
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anArray

(a) The initial contents of anArray; (b) anArray’s corresponding binary tree

FIGURE 12-16
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tree for heapRebuild to work on? Although the tree in Figure 12-16b is not a
semiheap, if you look at its leaves you will find semiheaps—that is, each leaf is a
semiheap. (In fact, each leaf is a heap, but for the sake of simplicity, ignore this
fact.) You first call heapRebuild on the leaves from right to left. You then move
up the tree, knowing that by the time you reach a node s, its subtrees are heaps,
and thus heapRebuild will transform the semiheap rooted at s into a heap.

The following algorithm transforms the array anArray of n items into a
heap and is the first step of the heapsort algorithm:

for (index = n - 1 down to 0)
   // Assertion: the tree rooted at index is a semiheap
   heapRebuild(anArray, index, n)
   // Assertion: the tree rooted at index is a heap

Actually, you can replace n - 1 with n/2 in the previous for statement. Exercise 21
at the end of this chapter asks you to explain why this improvement is possible.
Figure 12-17 traces this algorithm for the array in Figure 12-16a.

After transforming the array into a heap, heapsort partitions the array into
two regions—the Heap region and the Sorted region—as Figure 12-18 illus-
trates. The Heap region is in anArray[0..last], and the Sorted region is in
anArray[last+1..n-1]. Initially, the Heap region is all of anArray and the
Sorted region is empty—that is, last is equal to n – 1.

Building a heap from 
an array of items

6 3 5 9 2 10Original anArray

Array anArray Tree representation of anArray
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9 2 10
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6 3 10 9 2 5After heapRebuild(anArray, 2, 6)

6 9 10 3 2 5After heapRebuild(anArray, 1, 6)

10 9 6 3 2 5After heapRebuild(anArray, 0, 6)

Transforming an array anArray into a heap

FIGURE 12-17
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Each step of the algorithm moves an item I from the Heap region to the
Sorted region. The invariant of the heapsort algorithm is

■ After Step k, the Sorted region contains the k largest values in anArray,
and they are in sorted order—that is, anArray[n-1] is the largest,
anArray[n–2] is the second largest, and so on.

■ The items in the Heap region form a heap.

So that the invariant holds, I must be the item that has the largest value in the
Heap region, and therefore I must be in the root of the heap. To accomplish
the move, you exchange the item in the root of the heap with the last item in
the heap—that is, you exchange anArray[0] with anArray[last]—and
then decrement the value of last. As a result, the item just swapped from the
root into anArray[last] becomes the smallest item in the Sorted region (and
is in the first position of the Sorted region). After the move, you must trans-
form the Heap region back into a heap because the new root may be out of
place. You can accomplish this transformation by using heapRebuild to trickle
down the item now in the root so that the Heap region is once again a heap.

The following algorithm summarizes the steps:

+heapSort(in anArray:ArrayType, in n:integer)
// Sorts anArray[0..n-1].

  // build initial heap
for (index = n - 1 down to 0) {

    // Invariant: the tree rooted at index is a semiheap
    heapRebuild(anArray, index, n)
    // Assertion: the tree rooted at index is a heap
  }  // end for
  // Assertion: anArray[0] is the largest item in heap
  // anArray[0..n-1]

  // initialize the regions
  last = n - 1

  // Invariant: anArray[0..last] is a heap, 
  // anArray[last+1..n-1] is 
  // sorted and contains the largest items of A

Invariant for 
heapsort

0 1 n – 1last last+1

Heap Sorted (largest elements in array)

Heapsort partitions an array into two regions

FIGURE 12-18
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for (step = 1 through n) {
    // move the largest item in the heap region -- that
    // is, the root anArray[0] -- to the beginning of the 
    // Sorted region by swapping items
    Swap anArray[0] and anArray[last]

    // expand the Sorted region, shrink the Heap region
    Decrement last

    // make the Heap region a heap again
    heapRebuild(anArray, 0, last)
  }  // end for

Figure 12-19 completes the trace of the pseudocode heapsort that Figure
12-17 began. The Java implementation of heapsort is left as an exercise.

The analysis of the efficiency of heapsort is similar to that of mergesort, as
given in Chapter 10. Both algorithms are O(n * log n) in both the worst and
average cases. Heapsort has an advantage over mergesort in that it does not
require a second array. Quicksort is also O(n * log n) in the average case but is
O(n2) in the worst case. Even though quicksort has poor worst-case effi-
ciency, it is generally the preferred sorting method.

12.3 Tables and Priority Queues in the JCF

The Java Collections Framework provides collections that act as tables.  These
classes are called maps because their elements consist of (key, value) pairs,
where a key is used to retrieve a corresponding value, in other words, a key
maps to a value. The JCF distinguishes maps from collections. Collections are
used to hold single values, such as List and Queue. Within the JCF, single
value collections are contained in one hierarchy with three branches, one for
sets, a second for lists, and a third for queues. Maps are used to hold two
values, a key that maps to a particular value. The JCF places maps in a second
hierarchy that includes HashMap and TreeMap.

Also note that these (key, value) pairs differ slightly from the search-key
implementation presented in this chapter and the last. Our search-key value
was embedded within the element. With (key, value) pairs, the search-key is a
separate, standalone component. 

The JCF does include a class for priority queues call PriorityQueue, but
has no direct support for heaps or heap algorithms. The PriorityQueue class
will be discussed at the end of this section.

The JCF Map Interface
The JCF provides an interface Map that is the root in the hierarchy of the map
components. This Map interface provides the basis for numerous other interfaces,
abstract classes, and implementations of different kinds of maps in the JCF.

Heapsort is 
O(n log n)*
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The Map interface provides the framework necessary for creating classes for
objects that map keys to values. It is assumed that these key-values are unique,
and that each key can map to only one value. Here is a partial listing of the Map
interface:

public interface Map<K,V> {
void clear();

boolean containsKey(Object key); 

    // key. 

boolean containsValue(Object value); 
    // Returns true if this map maps one or more keys to the 
    // specified value. 

  Set<Map.Entry<K,V>> entrySet(); 

  V get(Object key); 

boolean isEmpty(); 

  Set<K> keySet(); 
    // Returns a set view of the keys contained in this map. 

  V put(K key, V value); 

    // map (optional operation). 

  V remove(Object key); 

    // present (optional operation). 

last

2 3 5 6 9 10After swapping anArray[0] with 
anArray[last] and decrementing last

Array is sorted

Heap Sorted

FIGURE 12-19

    // Removes all mappings from this map (optional operation). 

    // Returns true if this map contains a mapping for the specified 

    // Returns a set view of the mappings contained in this map. 

    // Returns the value to which this map maps the specified key. 

    // Returns true if this map contains no key-value mappings. 

    // Associates the specified value with the specified key in this 

    // Removes the mapping for this key from this map if it is 
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int size(); 
    // Returns the number of key-value mappings in this map. 

  Collection<V> values(); 

    // map.
}  // end Map

Note that the Map interface provides a method put for adding (key, value)
pairs, and the methods get and remove to respectively retrieve and remove
values by their key. The interface also provides the method keySet for retriev-
ing all of the map keys as a set, the method values for retrieving all of the
values as a collection, and the method entrySet to retrieve all of the map
entries as a set. The results of these methods are often referred to as collection
views of the map, since they are returning collections from the map. Note that
the methods keySet and entrySet return a Set, a subinterface of Collec-
tion. The Set interface is discussed in the next section. 

If you want the collection views to be returned in ascending order by key
value, then you would use the map interface SortedMap. It is expected that
any implementation of SortedMap allows for the natural ordering of the keys,
or provides for a Comparator object to be provided upon construction of a
sorted map instance.

The entrySet method returns the map entries as a set of
Map.Entry<K,V>, shown below. 

public static interface Map.Entry<K,V> {

boolean equals(Object o); 

  K getKey(); 
    // Returns the key corresponding to this entry. 

  V getValue(); 
    // Returns the value corresponding to this entry. 

int hashCode(); 
    // Returns the hash code value for this map entry. 

  V setValue(V value); 

    // specified value (optional operation).
}  // end Map.Entry

The method entrySet is the only method that returns the map entries using
this data type, so if you wish to work with the entries in the Map in this fashion,
you must retrieve this set, and use a set iterator to traverse the result.

    // Returns a collection view of the values contained in this 

    // Compares the specified object with this entry for equality. 

    // Replaces the value corresponding to this entry with the 
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It is assumed that once you create an entry in a map, that the key-value
should not be modified, it should be implemented as a nonmutable object. If
this value is allowed to change, the behavior of the map is not specified. If an
entry is added for a key that is already in the Map, the original mapping is
removed, and the new entry is inserted into the map, maintaining unique key-
values in the map.

Two popular JCF map implementations are HashMap and TreeMap. The
class HashMap provides a hash table implementation of the Map interface. Hash
tables are discussed in the next chapter. The class TreeMap provides a red-black
tree implementation of the SortedMap interface. Red-black trees are also dis-
cussed in the next chapter. An example using the class HashMap is shown at the
end of the next section.

The JCF Set Interface
The Set interface, like Map, is an ordered collection, but it only stores single
value entries. The difference between a Set and a Collection is that a Set
does not allow for duplicate elements as determined by the result of applying
the equals method. Here is a partial listing of the Set interface:

interface Set<T> extends Collection<T> {

boolean add(T o); 

    // present (optional operation). 

boolean addAll(Collection<? extends T> c);

    // if they're not already present (optional operation). 

void clear(); 

boolean contains(Object o); 

boolean isEmpty(); 
    // Returns true if this set contains no elements. 

  Iterator<T> iterator(); 
    // Returns an iterator over the elements in this set. 

boolean remove(Object o); 
    // Removes the specified element from this set if it is 
    // present (optional operation). 

boolean removeAll(Collection<?> c); 

    // Adds the specified element to this set if it is not already 

    // Adds all of the elements in the specified collection to this set 

    // Removes all of the elements from this set (optional operation). 

    // Returns true if this set contains the specified element. 
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    // in the specified collection (optional operation).

boolean retainAll(Collection<?> c); 

    // specified collection (optional operation).

int size(); 

} // end Set

As with the keys in the Map interface, it is recommended that the elements of
the set be nonmutable; the behavior of the set is not guaranteed if the value of
an object is modified after it is inserted into the set. In particular, the imple-
mentation may not be able to determine if the value is changed to an equal
value already in the set. If you want the set elements to be available in sorted
order, there is a subinterface called SortedSet.

Two popular JCF set implementations are HashSet and TreeSet. The class
HashSet provides a hash table implementation of the Set interface using HashMap.
The class TreeSet uses a TreeMap implementation of the SortedSet interface.

You will notice that the mathematical operations of set union, difference,
and intersection appear to be absent. But note that these operations can be
achieved through the use of the methods addAll, retainAll, and removeAll
as follows:

  HashSet<Integer> setA = new HashSet<Integer>();

  setA.add(2);
  setA.add(3);
  setA.add(5);
  setA.add(8);
  System.out.println("setA => " + setA);

  HashSet<Integer> setB = new HashSet<Integer>();

  setB.add(1);
  setB.add(3);
  setB.add(7);
  setB.add(9);
  System.out.println("setB => " + setB);

  // Set union
  HashSet<Integer> unionSet = new HashSet<Integer>(setA);
  unionSet.addAll(setB);
  System.out.println("setA union setB => " + unionSet); 

// Removes from this set all of its elements that are contained

    // Retains only the elements in this set that are contained in the 

    // Returns the number of elements in this set (its cardinality).
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  // Set intersection 
  HashSet<Integer> intSet = new HashSet<Integer>(setA); 
  intSet.retainAll(setB);
  System.out.println("setA intersect setB => " + intSet);

  // Set difference (setA - setB)
  HashSet<Integer> diffSet = new HashSet<Integer>(setA);
  diffSet.removeAll(setB); 
  System.out.println("setA - setB => " + diffSet);

The output of this code is as follows:

setA => [2, 8, 3, 5]
setB => [9, 1, 3, 7]
setA union setB => [2, 9, 8, 1, 3, 7, 5]
setA intersect setB => [3]
setA - setB => [2, 8, 5]

The following program creates two versions of a telephone book, one
unsorted (using HashMap), and the other sorted (using SortedMap). You will
also see the use of HashSet and Set in processing of the telephone book.

import java.util.*;

public class MapSetExample {

static public void main(String[] args) {
    // create some data for the keys, use names
    String[] name = {"Smith, Jackson",
                     "Prichard, Marlene",
                     "Hayden, Sarah",
                     "Records, Hal",
                     "Prichard, Marlene"};

    // create corresponding values for the keys
    String[] phone = {"212-555-4444",
                      "806-555-6565",
                      "401-555-5220",
                      "445-555-3241",
                      "715-555-9087"};

    // Declare a map to contain the names and phone numbers 

    // Insert the names and phone number pairs into the map.

    // replace original entry.

    HashMap<String, String> phoneBook = new HashMap<String, String>();

    // When the duplicate key "Prichard, Marlene" is inserted, should
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for (int i=0; i<name.length; i++) {
      phoneBook.put(name[i], phone[i]);
    } // end phone

    // print the contents of the map  

    Map.Entry<String, String> entry; 

while (iter.hasNext()) {
      entry = iter.next();

    } // end while
    System.out.println("\n");

    // Retrieve a map value
    System.out.println("Search for " + name[2]);
    System.out.println("  - phone number is " + 
                       phoneBook.get(name[2]));

    TreeMap<String, String> phoneBookSorted = 
new TreeMap<String, String>();

    // insert the names and phone number pairs into the map

    // replace original entry
for (int i=0; i<name.length; i++) {

      phoneBookSorted.put(name[i], phone[i]);
    } // end phone
    System.out.println("\n");

    // print the contents of the map
    Set<Map.Entry<String,String>> sortedSet = 
        phoneBookSorted.entrySet();
    iter = sortedSet.iterator();

while (iter.hasNext()) {
      entry = iter.next();

    } // end while
  } // end main
} // // end MapSetExample

    Set<Map.Entry<String,String>> resultSet = phoneBook.entrySet();
    Iterator<Map.Entry<String,String>> iter = resultSet.iterator();

    System.out.println("Contents of phone book, using HashMap");

      System.out.println(entry.getKey() + "\t\t" + entry.getValue());

    // Declare a sorted map to contain the names and phone numbers 

    // when the duplicate key "Prichard, Marlene" is inserted, should

    System.out.println("Contents of sorted phone book, using TreeMap");

      System.out.println(entry.getKey() + "\t\t" + entry.getValue());
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This program produces the following output:

Contents of phone book, using HashMap
Records, Hal          445-555-3241
Smith, Jackson        212-555-4444
Hayden, Sarah         401-555-5220
Prichard, Marlene     715-555-9087

Search for Hayden, Sarah
  - phone number is 401-555-5220

Contents of sorted phone book, using TreeMap
Hayden, Sarah         401-555-5220
Prichard, Marlene     715-555-9087
Records, Hal          445-555-3241
Smith, Jackson        212-555-4444

The JCF PriorityQueue Class
The PriorityQueue class is an implementation of the abstract class
AbstractQueue. The PriorityQueue class has a single data-type parameter
with ordered elements. As we have seen with SortedMap and SortedTree,
PriorityQueue relies on the natural ordering of the elements as provided by
the Comparable interface or through the use of a Comparator object sup-
plied when the priority queue is created. The elements in the queue are
ordered in ascending order.

The priority queue processes the least element (the head of the queue) when any
of the retrieval or removal operations are used. Additions to the queue are inserted
so that the ascending order of the elements in the priority queue is maintained.

Here is a partial listing of the PriorityQueue class:

public class PriorityQueue<T> extends AbstractQueue<T> 
implements Serializable

  PriorityQueue(int initialCapacity)
    // Creates a PriorityQueue with the specified initial
    // capacity that orders its elements according to their 
    // natural ordering (using Comparable). 

  // Other constructors available...

boolean add(T o) 
    // Adds the specified element to this queue. 

  PriorityQueue(int initialCapacity, Comparator<? super T> comparator) 
    // Creates a PriorityQueue with the specified initial capacity that 
    // orders its elements according to the specified comparator.
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void clear() 
    // Removes all elements from the priority queue. 

boolean contains(Object o) 

    // element.

  Comparator<? super T> comparator()   

    // ordering (using Comparable). 

  T element() 

  Iterator<T> iterator() 
    // Returns an iterator over the elements in this queue. 

boolean offer(T o) 

  T peek() 

    // returning null if this queue is empty. 

  T poll() 

    // queue is empty. 

boolean remove(Object o) 

    // queue, if it is present. 

int size() 
    // Returns the number of elements in this collection.
} // end PriorityQueue

A priority queue can be provided with an initial capacity that will grow as
needed. The implementation provides O(log(n)) time for the methods that
modify the priority queue contents (offer, poll, remove, and add). The
methods remove and contains provide O(n) time, and the retrieval methods
(peek, element, and size) are of O(1) time.

Like we have seen with other classes in the JCF, two different methods are
offered for insertion, retrieval, and removal. Be sure to check the specifications
carefully in determining which version will be best for your application. For exam-
ple, peek and element are both methods for retrieving but not removing an
element from the priority queue. They differ in that peek will return null if the

    // Returns true if this priority queue contains the specified 

    // Returns the comparator used to order this collection, or null 
    // if this collection is sorted according to its elements natural 

    // Retrieves, but does not remove, the head of this priority queue.

    // Inserts the specified element into this priority queue. 

    // Retrieves, but does not remove, the head of this queue, 

    // Retrieves and removes the head of this queue, or null if this 

    // Removes a single instance of the specified element from this 
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priority queue is empty, and element will throw NoSuchElementException if
this queue is empty.

The following program demonstrates the use of a priority queue of integer
values:

static public void main(String[] args) {

  pq.offer(87);
  pq.offer(2);
  pq.offer(10);
  pq.offer(5);

  System.out.print(pq.remove());
while (!pq.isEmpty()) {

    System.out.print(", " + pq.remove());
  }
  System.out.println();
} // end main

Here is the output of the program:

The elements will be processed in this order:

   2, 5, 10, 87

1. The ADT table supports value-oriented operations, such as 

Retrieve all the information about John Smith

2. The linear implementations (array based and reference based) of a table are ade-
quate only in limited situations, such as when the table is small, or for certain oper-
ations. In those situations, the simplicity of a linear implementation may be an
advantage. A linear implementation of a table, however, is not suitable as a general-
purpose, reusable class.

3. A nonlinear reference-based (binary search tree) implementation of the ADT table
provides the best aspects of the two linear implementations. The reference-based
implementation allows the table to grow dynamically and allows insertions and
deletions of data to occur through just a few reference changes. In addition, the
binary search tree allows you to use a binary search-like algorithm when searching
for an item with a specified value. These characteristics make a nonlinear table
implementation far superior to the linear implementations in many applications.

  PriorityQueue<Integer> pq = new PriorityQueue<Integer>(10);

  System.out.println("The elements will be processed in this order:");

Summary
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4. A priority queue is a variation of the ADT table. Its operations allow you to
retrieve and remove the item with the highest priority value.

5. A heap that uses an array-based representation of a complete binary tree is a good
implementation of a priority queue when you know the maximum number of items
that will be stored at any one time.

6. Heapsort, like mergesort, has good worst-case and average-case behaviors, but
neither algorithm is as good in the average case as quicksort. Heapsort has an
advantage over mergesort in that it does not require a second array.

1. When defining an ADT to solve a particular problem, do not request unnecessary
operations. The proper choice of an implementation depends on the mix of
requested operations, and if you request an operation that you do not need, you
might get an implementation that does not best support what you are really doing.

2. A linear array-based implementation of the ADT table must shift the references to
the data during a deletion and during an insertion in sorted order. These shifts can
be time consuming, particularly for large tables.

3. Although a linear reference-based implementation of the ADT table eliminates the
need to shift the references to the data, it does not support the insertion and dele-
tion operations any more efficiently than does an array-based implementation,
because you cannot perform a binary search in a reasonable fashion.

4. Usually a binary search tree can support the operations of the ADT table quite effi-
ciently. However, in the worst case, when the tree approaches a linear shape, the
performance of the table operations is comparable to that of a linear reference-
based implementation. If a given application cannot tolerate poor performance,
you should use the table implementations presented in Chapter 13.

5. Although a heap is a good implementation of a priority queue, it is not appropri-
ate for a table. Specifically, a heap does not support the sorted tableRetrieve and
traversal operations efficiently.

1. Using the operations of the ADT table, write pseudocode for a tableReplace
operation that replaces the table item whose search key is x with another item
whose search key is also x.

2. Does the array in Figure 12-20 represent a heap?

Cautions

Self-Test Exercises
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Array for Self-Test Exercises 2 and 7 and Exercise 22

FIGURE 12-20
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3. Is the full binary tree in Figure 11-36 a semiheap? Is it a heap?

4. Consider the heap in Figure 12-11. Draw the heap after you insert 12 and then
remove 12.

5. What does the initially empty heap h contain after the following sequence of
pseudocode operations?

h.heapInsert(2)
h.heapInsert(3)
h.heapInsert(4)
h.heapInsert(1)
h.heapInsert(9)
item = h.heapDelete()
h.heapInsert(7)
h.heapInsert(6)
item = h.heapDelete()
h.heapInsert(5)

6. What does the heap that represents the initially empty priority queue pq contain
after the following sequence of pseudocode operations?

pq.pqInsert(5)
pq.pqInsert(9)
pq.pqInsert(6)
pq.pqInsert(7)
pq.pqInsert(3)
pq.pqInsert(4)
item = pq.pqDelete()
pq.pqInsert(9)
pq.pqInsert(2)
item = pq.pqDelete()

7. Execute the pseudocode statements

for (index = n - 1 down to 0)
  heapRebuild(anArray, index, n)

on the array in Figure 12-20.

1. Complete the sorted array-based implementation of the ADT table.

2. The operation tableReplace(replacementItem) locates, if possible, the item in a
table with the same search key as replacementItem. If the table contains such an
item, tableReplace replaces it with replacementItem. Thus, the fields of the
original item are updated.

a. Write implementations of tableReplace for the five implementations (four
linear ones and the binary search tree) of the ADT table described in this chapter.

b. For the binary search tree implementation of the ADT table, under what cir-
cumstances can tableReplace replace an item without altering the structure of
the binary search tree? (See Exercise 13 in Chapter 11.)

Exercises
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3. Let us assume that the following elements are in a heap.

What is the root element of the heap after 3 consecutive deletions?

4. When you use a word processor’s spell checker, it compares the words in your doc-
ument with words in a dictionary. You can add new words to the dictionary as nec-
essary. Thus, this dictionary needs frequent retrievals and occasional insertions.
Which implementation of the ADT table would be most efficient as a
spellchecker’s dictionary?

5. A Java compiler uses a symbol table to keep track of the identifiers that a program uses.
When the compiler encounters an identifier, it searches the symbol table to see whether
that identifier has already been encountered. If the identifier is new, it is inserted into the
table. Thus, the symbol table needs only insertion and retrieval operations. Which imple-
mentation of the ADT table would be most efficient as a symbol table?

6. Write a Java program that makes a heap out of the following data that are read
from command line arguments.

7. The implementations of the ADT table given in this chapter make the following
assumption: At any time, a table contains at most one item with a given search key.
Although the definition of an ADT required for a specific application may not
allow duplicates, it is probably wise to test for them rather than simply to assume
that they will not occur. Why? 

Modify the table implementations so that they test for—and disallow—any dupli-
cates. What table operations are affected? What are the implications for the unsorted
linear implementations?

8. Although disallowing duplicates in the ADT table (see Exercise 7) is reasonable for
some applications, it is just as reasonable to have an application that will allow duplicates. 

a. What are the implications of inserting duplicate items that are identical? What
are the implications of duplicate items for the deletion and retrieval operations? 

b. What are the implications of inserting items that are not identical but have the
same search key? Specifically, what would the implementations of tableInsert,
tableDelete, and tableRetrieve do?

9. Write a program for a priority queue where the data is stored in a circular queue in
a sorted order depending upon the priority value of each element. At the time of
deletion the values are always deleted from the front.

10. Write a Java program which reads ten elements from the user and then sorts them
using a HEAP SORT algorithm.

11. Given the following minheap h in Figure 12-21, show what the heap h would look
like after each of the following pseudocode operations:

90 60 16 30 15 8 7

82 64 3 27 5 16 97 87 20
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a. h.heapInsert(9)

b. h.heapInsert(6)

c. h.heapDelete()

12. Given the following maxheap h in Figure 12-22, show what the heap h would look
like after each of the following pseudocode operations:

a. h.heapInsert(19)

b. h.heapInsert(16)

c. h.heapDelete()

13. Draw the maxheap that is created by using the array: 12, 17, 3, 9, 2, 13, 7, 19.

14. Prove that the root of a heap contains the largest search key in the tree.

15. Write a Java program that deletes the elements from a heap. After the deletion, it
should repair the heap.

16. Revise the implementation of heapInsert and heapRebuild so that the actual swaps of
items are unnecessary.

17. Suppose that you have two items with the same priority value. How does the order
in which you insert these items into a priority queue affect the order in which they
will be deleted? What can you do if you need elements with equal priority value to
be served on a first-come, first-served basis?

3

7

1914 17

10

16

Minheap for Exercise 11

FIGURE 12-21
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105 9

11

Minheap for Exercise 12

FIGURE 12-22



720  Chapter 12 Tables and Priority Queues

18. Create a priority queue using the following data:

3:26, 7:36, 18:6, 90:26, 99:1, 22:13

The first number represents the data and the second number represents its priority.
Assume that the queue gives higher priority to a higher value.

19. Suppose that you wanted to maintain the index of the item with the smallest prior-
ity value in a maxheap. That is, in addition to a removeMax operation, you might
want to support a retrieveMin operation. How difficult would it be to maintain
this index within the pqInsert and removeMax operations?

20. Suppose that after you have placed several items into a priority queue, you need to
adjust one of their priority values. For example, a particular task in a priority queue
of tasks could become either more or less urgent. How can you adjust a heap if a
single priority value changes?

21. Show that within the pseudocode for the method heapsort you can replace the
statement

for (index = n-1 down to 0)

with

for (index = n/2 down to 0)

22. Trace the action of heapSort on the array in Figure 12-20.

23. Implement the priority queue in question no. 5 using the heap tree algorithm.

24. Revise heapSort so that it sorts an array into descending order.

1. Write the sorted reference-based, unsorted array-based, and unsorted reference-
based implementations of the ADT table described in this chapter.

2. Write iterator classes for the two table classes presented in this chapter, TableAr-
rayBased and TableBSTBased. Be sure to include an implementation of the
remove operation.

3. Write unsorted and sorted implementations of the ADT table that use, respectively,
the ADTs list and sorted list, which Chapter 4 described.

4. Repeat Programming Problem 4 of Chapter 11, using the ADT table as the
address book.

5. Implement the symbol table described in Exercise 5 by reusing the class
TableArrayBased.

6. As Figure 12-9 illustrates, you can use data structures other than a heap to imple-
ment the ADT priority queue.

a. Write the Java class for the reference-based implementation that Figure 12-9b
represents.

Programming Problems
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b. Write the Java class for the binary search tree implementation that Figure 12-9c
represents.

c. Implement the classes that you wrote in Parts a and b.

7. Suppose that you wanted to implement a priority queue whose priority values are
the integers 1 through 20.

a. Implement the priority queue as a heap of queues, as described in this chapter.

b. Another solution uses an array of 20 queues, one for each priority value. Use
this approach to implement the priority queue.

8. Write an interactive program that will monitor the flow of patients in a large hospi-
tal. The program should account for patients checking in and out of the hospital
and should allow access to information about a given patient. In addition, the
program should manage the scheduling of three operating rooms. Doctors make a
request that includes a patient’s name and a priority value between 1 and 10 that
reflects the urgency of the operation. Patients are chosen for the operating room
by priority value, and patients with the same priority are served on a first-come,
first-served basis. 

The user should use either one-letter or one-word commands to control the pro-
gram. As you design your solution, try to identify the essential operations (excuse the
pun) that you must perform on the data, and only then choose an appropriate data
structure for implementation. This approach will allow you to maintain the wall
between the main part of the program and the implementations. An interesting exer-
cise would be to recast this problem as an event-driven simulation.
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CHAPTER 13

Advanced Implementations 
of Tables

lthough Chapter 12 described the advantages of using
the binary search tree to implement the ADT table,

the efficiency of this implementation suffers when the tree
loses its balance. This chapter introduces several
advanced implementations of the table. First examined are
various other search trees, which remain balanced in all sit-
uations and thus enable table operations whose efficiency
is comparable to a binary search.

This chapter then considers a completely different
implementation of the ADT table that, for many applications,
is even more efficient than a search-tree implementation. In
principle the algorithm, which is called hashing, locates a
data item by performing a calculation on its search-key
value, rather than by searching for it. 

Finally, the chapter considers data organizations that
support diverse kinds of operations simultaneously. For
example, you might want to organize data in first-in, first-out
order, but you also might require the data to be in sorted
order. The challenge is to design cooperative data struc-
tures to manage the data.

13.1 Balanced Search Trees
2-3 Trees
2-3-4 Trees
Red-Black Trees
AVL Trees

13.2 Hashing
Hash Functions
Resolving Collisions
The Efficiency of Hashing
What Constitutes a Good Hash 

Function?
Table Traversal: An Inefficient 

Operation under Hashing
The JCF Hashtable and TreeMap

Classes
The Hashtable Class
The TreeMap Class

13.3 Data with Multiple 
Organizations

Summary

Cautions

Self-Test Exercises

Exercises

Programming Problems

A
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13.1 Balanced Search Trees

As you saw in the previous chapter, the efficiency of the binary search tree
implementation of the ADT table is related to the tree’s height. The opera-
tions tableRetrieve, tableInsert, and tableDelete follow a path from the
root of the tree to the node that contains the desired item (or, in the case of
the insertion operation, to the node that is to become the parent of the new
item). At each node along the path, you compare a given value to the search
key in the node and determine which subtree to search next. Because the
maximum number of nodes on such a path is equal to the height of the tree,
the maximum number of comparisons that the table operations can require is
also equal to this height.

As you know, the height of a binary search tree of n items ranges from a
maximum of n to a minimum of ⎡log2(n + 1)⎤. As a consequence, locating a
particular item in a binary search tree requires between n and ⎡log2(n + 1)⎤
comparisons. Thus, a search of a binary search tree can be as inefficient as a
sequential search of a linked list or as efficient as a binary search of an array.
Efficiency was the primary reason for developing the binary search tree imple-
mentation of the table: We wanted to perform a search of a linked structure as
efficiently as we could perform a binary search of an array. Thus, we certainly
want the most optimistic behavior of the binary search tree.

What affects the height of a binary search tree? As you learned in
Chapter 11, the height of the tree is quite sensitive to the order in which you
insert or delete items. For example, consider a binary search tree that contains
the items1 10, 20, 30, 40, 50, 60, and 70. If you inserted the items into the
tree in ascending order, you would obtain a binary search tree of maximum
height, as shown in Figure 13-1a. If, on the other hand, you inserted the items
in the order 40, 20, 60, 10, 30, 50, 70, you would obtain a balanced binary
search tree of minimum height, as shown in Figure 13-1b.

As you can see, if you use the algorithms in Chapter 11 to maintain a
binary search tree, insertions and deletions can cause the tree to lose its
balance and approach a linear shape. Such a tree is no better than a linked list.
For this reason, it is desirable in many applications to use one of several varia-
tions of the binary search tree. Such trees can absorb insertions and deletions
without a deterioration of their balance and are easier to maintain than a
minimum-height binary search tree. In addition, you can search these trees
almost as efficiently as you can search a minimum-height binary search tree.
This chapter discusses the better-known search trees to give you a sense of the
possibilities. We continue to assume that the search keys in a tree are unique,
that is, that there are no duplicates.

1. As in Chapter 11, tree items are records that each contain a search key. The tree dia-
grams in this chapter will show only these search keys, and the discussions will often 
treat an item as if it consisted solely of its search key.

The height of a 
binary search tree is 
sensitive to the order 
of insertions and 
deletions

Various search trees 
can retain their 
balance despite 
insertions and 
deletions
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2-3 Trees
A 2-3 tree is a tree in which each internal node (nonleaf) has either two or
three children, and all leaves are at the same level. For example, Figure 13-2
shows a 2-3 tree of height 3. A node with two children is called a 2-node—the
nodes in a binary tree are all 2-nodes—and a node with three children is called
a 3-node.

A 2-3 tree is not a binary tree, because a node can have three children;
nevertheless, a 2-3 tree does resemble a full binary tree. If a particular 2-3 tree

A binary search tree of (a) maximum height; (b) minimum height

FIGURE 13-1
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does not contain 3-nodes—a possibility, according to the definition—it is like a
full binary tree, because all of its internal nodes have two children and all of its
leaves are at the same level. If, on the other hand, some of the internal nodes
of a 2-3 tree do have three children, the tree will contain more nodes than a full
binary tree of the same height. Therefore, a 2-3 tree of height h always has at
least as many nodes as a full binary tree of height h; that is, it always has at least
2h – 1 nodes. To put this another way, a 2-3 tree with n nodes never has height
greater than ⎡log2(n + 1)⎤, the minimum height of a binary tree with n nodes.

Given these observations, a 2-3 tree might be useful as an implementation
of the ADT table. Indeed, this is the case if the 2-3 tree orders its nodes to
make it useful as a search tree. The following recursive definition2 of a 2-3 tree
specifies this order:

T is a 2-3 tree of height h if

1. T is empty (a 2-3 tree of height 0).

or

2. T is of the form

where r is a node that contains one data item and TL and TR are both 2-3
trees, each of height h – 1. In this case, the search key in r must be greater
than each search key in the left subtree TL and smaller than each search key
in the right subtree TR.

or

3. T is of the form

where r is a node that contains two data items and TL, TM, and TR are 2-3
trees, each of height h – 1. In this case, the smaller search key in r must be
greater than each search key in the left subtree TL and smaller than each
search key in the middle subtree TM. The larger search key in r must be
greater than each search key in the middle subtree TM and smaller than
each search key in the right subtree TR.

This definition implies the following rules for how you may place data
items in the nodes of a 2-3 tree. 

2. Just as we distinguish between a binary tree and a binary search tree, we could dis-
tinguish between a 2-3 tree and a “2-3 search tree.” The previous description would 
define a 2-3 tree, and the definition given here would define a 2-3 search tree. Most 
people, however, do not make such a distinction and use the term “2-3 tree” to mean 
“2-3 search tree”; we will also.

A 2-3 tree is never 
taller than a 
minimum-height
binary tree

A 2-3 tree

r
TL TR

r

TL TM TR
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Thus, the items in a 2-3 tree are ordered by their search keys. For example, the
tree in Figure 13-4 is a 2-3 tree.

You can represent any node in a 2-3 tree with the following class:

import SearchKeys.KeyedItem;

class TreeNode<T> {
  T smallItem;
  T largeItem;
  TreeNode<T> leftChild;
  TreeNode<T> midChild;
  TreeNode<T> rightChild;

// constructors appear here
  .  .  .
}  // end TreeNode

Rules for Placing Data Items in the Nodes 
of a 2-3 Tree
1. A 2-node, which has two children, must contain a single data item

whose search key is greater than the left child’s search key(s) and
less than the right child’s search key(s), as Figure 13-3a illustrates.

2. A 3-node, which has three children, must contain two data items 
whose search keys S and L satisfy the following relationships, as
Figure 13-3b illustrates: S is greater than the left child’s search
key(s) and less than the middle child’s search key(s); L is greater
than the middle child’s search key(s) and less than the right child’s
search key(s).

3. A leaf may contain either one or two data items.

KEY CONCEPTS

S L

Search keys > LSearch keys < S

Search keys > S
and < L

S

Search keys > SSearch keys < S

(a) (b)

Nodes in a 2-3 tree: (a) a 2-node; (b) a 3-node

FIGURE 13-3

Items in a 2-3 tree 
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A node in a 2-3 tree
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When a node contains only one data item, you can place it in smallItem and
use leftChild and midChild to reference the node’s children. To be safe, you
can place null in rightChild.

Now consider the traversal, retrieval, insertion, and deletion operations for
a 2-3 tree. The algorithms for these operations are recursive. You can avoid
distracting implementation details by defining the base case for these recursive
algorithms to be a leaf rather than an empty subtree. As a result, the algo-
rithms must assume that they are not passed an empty tree as an argument.

Traversing a 2-3 tree. You can traverse a 2-3 tree in sorted search-key order
by performing the analogue of an inorder traversal:

+inorder(in ttTree:TwoThreeTree)
// Traverses the nonempty 2-3 tree, ttTree, in sorted 
// search-key order.

if (ttTree's root node r is a leaf) {
    Visit the data item(s)
  }

else if (r has two data items) {
    inorder(left subtree of ttTree's root)
    Visit the first data item
    inorder(middle subtree of ttTree's root)
    Visit the second data item
    inorder(right subtree of ttTree's root)
  }

else  { // r has one data item
    inorder(left subtree of ttTree's root)
    Visit the data item
    inorder(right subtree of ttTree's root)
  }  // end if

A 2-3 tree

FIGURE 13-4
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Searching a 2-3 tree. The ordering of items in a 2-3 tree is analogous to the
ordering for a binary search tree and allows you to search a 2-3 tree efficiently
for a particular item. In fact, the retrieval operation for a 2-3 tree is quite
similar to the retrieval operation for a binary search tree, as you can see from
the following pseudocode:

+retrieveItem(in ttTree:TwoThreeTree, 
              in searchKey:KeyType):TreeItemType
// Returns from the nonempty 2-3 tree ttTree the 
// item whose search key equals searchKey. The operation 
// fails and returns null if no such item exists,

if (searchKey is in ttTree's root node r) {
    // the item has been found
    treeItem = the data portion of r
  }

else if (r is a leaf) {
    treeItem = null  // failure
  }

  // else search the appropriate subtree
  else if (r has two data items) {
    if (searchKey < smaller search key of r) {
      treeItem = retrieveItem(r's left subtree, searchKey)
    }
    else if (searchKey < larger search key of r) {
     treeItem = retrieveItem(r's middle subtree, searchKey)
    }
    else  {
     treeItem = retrieveItem(r's right subtree, searchKey)
    }  // end if
  }

  else  { // r has one data item
if (searchKey < r's search key) {

      treeItem = retrieveItem(r's left subtree, searchKey)
    }
    else {
      treeItem = retrieveItem(r's right subtree, searchKey)
    }  // end if
  }  // end if

Have you gained anything by using a 2-3 tree rather than a binary search
tree to implement the ADT table? You can search the 2-3 tree and the short-
est binary search tree with about the same efficiency, because

■ A binary search tree with n nodes cannot be shorter than ⎡log2(n + 1)⎤

■ A 2-3 tree with n nodes cannot be taller than ⎡log2(n + 1)⎤

Searching a 2-3 tree 
is efficient
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■ A node in a 2-3 tree has at most two items

Searching a 2-3 tree is not more efficient than searching a binary search
tree, however. This observation may surprise you because, after all, the nodes
of a 2-3 tree can have three children, and hence a 2-3 tree might indeed be
shorter than the shortest possible binary search tree. Although true, this
advantage in height is offset by the extra time required to compare a given
value with two search-key values instead of only one. In other words, although
you might visit fewer nodes when searching a 2-3 tree, you might have to
make more comparisons at each node. As a consequence, the number of com-
parisons required to search a 2-3 tree for a given item is approximately equal to
the number of comparisons required to search a binary search tree that is as
balanced as possible. This number is approximately log2n.

If you can search a 2-3 tree and a balanced binary search tree with approx-
imately the same efficiency, why then should you use a 2-3 tree? Although
maintaining the balance of a binary search tree is difficult in the face of inser-
tion and deletion operations, maintaining the shape of a 2-3 tree is relatively
simple. For example, consider the two trees in Figure 13-5. The first tree is a
binary search tree and the second is a 2-3 tree. Both trees contain the same
data items. The binary search tree is as balanced as possible, and thus you can
search both it and the 2-3 tree for an item with approximately the same effi-
ciency. If, however, you perform a sequence of insertions on the binary search
tree—by using the insertion algorithm of Chapter 11—the tree can quickly
lose its balance, as Figure 13-6a indicates. As you soon will see, you can
perform the same sequence of insertions on the 2-3 tree without a degradation
in the tree’s shape—it will retain its structure, as Figure 13-6b shows.

The new values (32 through 39) that were inserted into the binary search
tree of Figure 13-5a appear along a single path in Figure 13-6a. The insertions
increased the height of the binary search tree from 4 to 12—an increase of 8.
On the other hand, the new values have been spread throughout the 2-3 tree
in Figure 13-6b. As a consequence, the height of the resulting tree is only 1
greater than the height of the original 2-3 tree in Figure 13-5b. We demon-
strate these insertions into the original 2-3 tree next.

Searching a 2-3 tree 
is O(log2n)

Maintaining the 
shape of a 2-3 tree 
is relatively easy
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(a) A balanced binary search tree; (b) a 2-3 tree with the same elements

FIGURE 13-5
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Inserting into a 2-3 tree. Because the nodes of a 2-3 tree can have either
two or three children and can contain one or two values, you can insert items
into the tree while maintaining its shape. The following paragraphs infor-
mally describe the sequence of insertions that produced the 2-3 tree shown
in Figure 13-6b. Figure 13-5b shows the original tree.

Insert 39. As is true with a binary search tree, the first step in inserting a
node into a 2-3 tree is to locate the node at which the search for 39 would ter-
minate. To do this, you can use the search strategy of the retrieveItem algo-
rithm given previously; an unsuccessful search will always terminate at a leaf.
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(a) The binary search tree of Figure 13-5a after a sequence of insertions; (b) the 2-3 tree of Figure 13-5b 
after the same insertions

FIGURE 13-6

Insertion into a 
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With the tree in Figure 13-5b, the search for 39 terminates at the leaf <40>.3

Since this node contains only one item, you can simply insert the new item
into this node. The result is the 2-3 tree in Figure 13-7.

Insert 38. In a similar manner, you would search the tree in Figure 13-7 for
38 and find that the search terminates at the node <39 40>. As a conceptual
first step, you should place 38 in this node, as Figure 13-8a illustrates.

This placement is problematic because a node cannot contain three values.
You divide these three values, however, into the smallest (38), middle (39),
and largest (40) values. You can move the middle value (39) up to the node’s
parent p and separate the remaining values, 38 and 40, into two nodes that
you attach to p as children, as Figure 13-8b indicates. Since you chose to move
up the middle value of <38 39 40>, the parent correctly separates the values
of its children; that is, 38 is less than 39, which is less than 40. The result of
the insertion is the 2-3 tree in Figure 13-8c.

Insert 37. The insertion of 37 into the tree in Figure 13-8c is easy because
37 belongs in a leaf that currently contains only one value, 38. The result of
this insertion is the 2-3 tree in Figure 13-9.

3. Here, the angle brackets denote a node and its contents.
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Insert 36. The search strategy determines that 36 belongs in the node
<37 38> of the tree in Figure 13-9. Again, as a conceptual first step, place it
there, as Figure 13-10a indicates.

Because the node <36 37 38> now contains three values, you divide it—as
you did previously—into the smallest (36), middle (37), and largest (38)
values. You then move the middle value (37) up to the node’s parent p, and
attach to p—as children—nodes that contain the smallest (36) and largest (38)
values, as Figure 13-10b illustrates.

This time, however, you are not finished: You have a node <30 37 39>
that contains three values and has four children. This situation is familiar, with
the slight difference that the overcrowded node is not a leaf but rather has four
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10 20 37 38 40

After inserting 37

FIGURE 13-9
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children. As you did before, you divide the node into the smallest (30), middle
(37), and largest (39) values and then move the middle value up to the node’s
parent. Because you are splitting an internal node, you now must account for
its four children; that is, what happens to nodes <10 20>, <36>, <38>, and
<40>, which were the children of node <30 37 39>? The solution is to attach
the left pair of children (nodes <10 20> and <36>) to the smallest value (30)
and attach the right pair of children (nodes <38> and <40>) to the largest
value (39), as shown in Figure 13-10c. The final result of this insertion is the
2-3 tree in Figure 13-10d.

Insert 35, 34, and 33. Each of these insertions is similar to the previous
ones. Figure 13-11 shows the tree after the three insertions.

Before performing the final insertion of the value 32, consider the 2-3
tree’s insertion strategy.

The insertion algorithm. To insert an item I into a 2-3 tree, you first locate
the leaf at which the search for I would terminate. You insert the new item I
into the leaf, and if the leaf now contains only two items, you are done. How-
ever, if the leaf contains three items, you must split it into two nodes, n1 and
n2. As Figure 13-12 illustrates, you place the smallest 4 item S into n1, place
the largest item L into n2, and move the middle item M up to the original
leaf’s parent. Nodes n1 and n2 then become children of the parent. If the
parent now has only three children (and contains two items)—as is true here—
you are finished. On the other hand, if the parent now has four children (and
contains three items), you must split it, as follows. 

You split an internal node n that contains three items by using the process
just described for a leaf, except that you must also take care of n’s four chil-
dren. As Figure 13-13 illustrates, you split n into n1 and n2, place n’s smallest
item S into n1, attach n’s two leftmost children to n1, place n’s largest item L

4. “Smallest item” means the item with the smallest search key. Analogously, the terms 
“middle item” and “largest item” will also be used.
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The tree after the insertion of 35, 34, and 33
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into n2, attach n’s two rightmost children to n2, and move n’s middle item M
up to n’s parent.

After this, the process of splitting a node and moving an item up to the
parent continues recursively until a node is reached that had only one item
before the insertion and thus has only two items after it takes on a new item.
Notice in the previous sequence of insertions that the tree’s height never
increased from its original value of 3. In general, an insertion will not increase
the height of the tree as long as there is at least one node containing only one
item on the path from the root to the leaf into which the new item is inserted.
The insertion strategy of a 2-3 tree has thus postponed the growth of the
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tree’s height much more effectively than the strategy of a basic binary search
tree did.

When the height of a 2-3 tree does grow, it does so from the top. An
increase in the height of a 2-3 tree will occur if every node on the path from
the root of the tree to the leaf into which the new item is inserted contains two
items. In this case, the recursive process of splitting a node and moving an item
up to the node’s parent will eventually reach the root r. When this occurs you
must split r into r1 and r2 exactly as you would any other internal node. How-
ever, you must create a new node that contains the middle item of r and
becomes the parent of r1 and r2. Thus, the new node is the new root of the
tree, as Figure 13-14 illustrates.

The following algorithm summarizes the entire insertion strategy:

+insertItem(in ttTree:TwoThreeTree, in newItem:TreeItemType)
// Inserts newItem into a 2-3 tree ttTree whose items have 
// distinct search keys that differ from newItem's search 
// key. 

  Let sKey be the search key of newItem
  Locate the leaf leafNode in which sKey belongs
  Add newItem to leafNode

if (leafNode now has three items) {
    split(leafNode)
  }  // end if

split(inout n:TreeNode)
// Splits node n, which contains 3 items. Note: if n is 
// not a leaf, it has 4 children.

if (n is the root) {
    Create a new node p
  }

else {
    Let p be the parent of n
  }  // end if

When the root con-
tains three items, 
split it into two 
nodes and create a 
new root node

M

S Lr1 r2

a c db

New root

S LM

a b c d

Root r

Splitting the root of a 2-3 tree

FIGURE 13-14
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algorithm
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  Replace node n with two nodes, n1 and n2, so that p is 
      their parent

  Give n1 the item in n with the smallest search-key value
  Give n2 the item in n with the largest search-key value

if (n is not a leaf) {
    n1 becomes the parent of n's two leftmost children
    n2 becomes the parent of n's two rightmost children
  }  // end if

  Move the item in n that has the middle
      search-key value up to p 

if (p now has three items) {
    split(p)
  }  // end if

Insert 32. To be sure that you fully understand the insertion algorithm, go
through the steps of inserting 32 into the 2-3 tree in Figure 13-11. The result
should be the tree shown in Figure 13-6b.

Once again, compare this tree with the binary search tree in Figure 13-6a
and notice the dramatic advantage of the 2-3 tree’s insertion strategy.

Deleting from a 2-3 tree. The deletion strategy for a 2-3 tree is the inverse
of its insertion strategy. Just as a 2-3 tree spreads insertions throughout the
tree by splitting nodes when they become too full, it spreads deletions
throughout the tree by merging nodes when they become empty. As an illus-
tration of the 2-3 tree’s deletion strategy, consider the deletion of 70, 100, and
80 from the tree in Figure 13-5b.

Delete 70. By searching the tree, you will discover that 70 is in the node
<70 90>. Because you always want to begin the deletion process at a leaf, the
first step is to swap 70 with its inorder successor—the value that follows it in
the sorted order. Because 70 is the smaller of the two values in the node, its
inorder successor (80) is  the smallest value in the node’s middle subtree.
(The inorder successor of an item in an internal node will always be in a leaf.)
After the swap, the tree appears as shown in Figure 13-15a. The value 80 is in
a legal position of the search tree because it is larger than all the values in its
node’s left subtree and smaller than all the values in its node’s right subtree.
The value 70 is not in a legal position, but this is of no concern, because the
next step is to delete this value from the leaf.

In general, after you delete a value from a leaf, another value may remain
in the leaf (because the leaf contained two values before the deletion). If this is
the case, you are done, because a leaf of a 2-3 tree can contain a single value.
In this example, however, once you delete 70 from the leaf, the node is left
without a value, as Figure 13-15b indicates. 

Swap the value to 
be deleted with its 
inorder successor
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You then delete the node, as Figure 13-15c illustrates. At this point you
see that the parent of the deleted node contains two values (80 and 90) but
has two children (60 and 100). This situation is not allowed in a 2-3 tree. (See
Rule 1.) You can remedy the problem by moving the smaller value (80) down
from the parent into the left child, as Figure 13-15d illustrates. Deleting the
leaf node and moving a value down to a sibling of the leaf is called merging
the leaf with its sibling.

The 2-3 tree that results from this deletion is shown in Figure 13-15e.

Delete 100. The search strategy discovers that 100 is in the leaf <100> of
the tree in Figure 13-15e. When you delete the value from this leaf, the node
becomes empty, as Figure 13-16a indicates. In this case, however, no merging
of nodes is required, because the sibling <60 80> can spare a value. That is, the
sibling has two values, whereas a 2-3 tree requires only that it have at least one
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value. If you simply move the value 80 into the empty node—as Figure 13-16b
illustrates—you find that the search-tree order is destroyed: The value in 90’s
right child is 80, whereas it should be greater than 90. The solution to this
problem is to redistribute the values among the empty node, its sibling, and its
parent. Here you can move the larger value (80) from the sibling into the
parent and move the value 90 down from the parent into the node that had
been empty, as Figure 13-16c shows. This distribution preserves the search-
tree order, and you have thus completed the deletion. The resulting 2-3 tree is
shown in Figure 13-16d.

Delete 80.  The search strategy finds that 80 is in an internal node of the
tree in Figure 13-16d. You thus must swap 80 with its inorder successor, 90, as
Figure 13-17a illustrates. When you delete 80 from the leaf, the node becomes
empty. (See Figure 13-17b.) Because the sibling of the empty node has only
one value, you cannot redistribute as you did in the deletion of 100. Instead
you must merge the nodes, bringing the value 90 down from the parent and
removing the empty leaf, as Figure 13-17c indicates.

You are not yet finished, however, because the parent now contains no values
and has only one child. You must recursively apply the deletion strategy to this
internal node without a value. First, you should check to see if the node’s sibling
can spare a value. Because the sibling <30> contains only the single value 30, you
cannot redistribute—you must merge the nodes. The merging of two internal
nodes is identical to the merging of leaves, except that the child <60 90> of the
empty node must be adopted. Because the sibling of the empty node contains only
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one value (and hence can have only two children, as stated in Rule 1), it can
become the parent of <60 90> only if you bring the value 50 down from the sib-
ling’s parent. The tree now appears as shown in Figure 13-17d. Note that this
operation preserves the search property of the tree.

Now the parent of the merged nodes is left with no values and only a
single child. Usually, you would apply the recursive deletion strategy to this
node, but this case is special because the node is the root. Because the root is
empty and has only one child, you can simply remove it, allowing <30 50> to
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become the root of the tree, as Figure 13-17e illustrates. This deletion has
thus caused the height of the tree to shrink by 1.

To summarize, we have deleted 70, 100, and 80 from the 2-3 tree in
Figure 13-5b and obtained the 2-3 tree in Figure 13-18b. In contrast, after
deleting 70, 100, and 80 from the balanced binary search tree in Figure 13-5a,
you are left with the tree in Figure 13-18a. Notice that the deletions affected
only one part of the binary search tree, causing it to lose its balance. The left
subtree has not been affected at all, and thus the overall height of the tree has
not been diminished.

The deletion algorithm. In summary, to delete an item I from a 2-3 tree,
you first locate the node n that contains it. If n is not a leaf, you find I’s
inorder successor and swap it with I. As a result of the swap, the deletion
always begins at a leaf. If the leaf contains an item in addition to I, you simply
delete I and you are done. On the other hand, if the leaf contains only I, delet-
ing I would leave the leaf without a data item. In this case you must perform
some additional work to complete the deletion.

You first check the siblings of the now-empty leaf. If a sibling has two
items, you redistribute the items among the sibling, the empty leaf, and the
leaf’s parent, as Figure 13-19a illustrates. If no sibling of the leaf has two items,
you merge the leaf with an adjacent sibling by moving an item down from the
leaf’s parent into the sibling—it had only one item before, so it has room for
another—and removing the empty leaf. This case is shown in Figure 13-19b.

By moving an item down from a node n, as just described, you might
cause n to be left without a data item and with only one child. If so, you recur-
sively apply the deletion algorithm to n. Thus, if n has a sibling with two items
(and three children), you redistribute the items among n, the sibling, and n’s
parent. You also give n one of its sibling’s children, as Figure 13-19c indicates.

If n has no sibling with two items, you merge n with a sibling, as Figure
13-19d illustrates. That is, you move an item down from the parent and let the

Results of deleting 70, 100, and 80 from (a) the binary search tree of Figure 13-5a 
and (b) the 2-3 tree of Figure 13-5b

FIGURE 13-18
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sibling adopt n’s one child. (At this point you know that the sibling previously
had only one item and two children.) You then remove the empty leaf. If the
merge causes n’s parent to be without an item, you recursively apply the dele-
tion process to it.

If the merging continues so that the root of the tree is without an item
(and has only one child), you simply remove the root. When this step occurs,
the height of the tree is reduced by 1, as Figure 13-19e illustrates.

A high-level statement of the algorithm for deleting from a 2-3 tree is
shown below:

+deleteItem(in ttTree:TwoThreeTree, in searchKey:KeyType)
// Deletes from the 2-3 tree the item whose 
// search key equals searchKey. If the deletion is
// successful, the method returns true. 
// If no such item exists, the operation fails and
// returns false. 

  Attempt to locate item theItem whose search key
      equals searchKey

if (theItem is present) {
    if (theItem is not in a leaf) {
      Swap item theItem with its inorder successor, which
          will be in a leaf theLeaf
    }  // end if

    // the deletion always begins at a leaf
    Delete item theItem from leaf theLeaf

if (theLeaf now has no items) {
      fix(theLeaf)
    }  // end if
    return true
  }

else {
return false

  }  // end if

+fix(in n:TreeNode)
// Completes the deletion when node n is empty by either
// removing the root, redistributing values, or merging 
// nodes. Note: if n is internal, it has one child.

if (n is the root) {
    Remove the root
  }

2-3 tree deletion 
algorithm
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else {
    Let p be the parent of n

if (some sibling of n has two items) {
      Distribute items appropriately among n, the 
          sibling, and p

if (n is internal) {
        Move the appropriate child from sibling to n
      }  // end if
    }

else  { // merge the node
      Choose an adjacent sibling s of n
      Bring the appropriate item down from p into s

if (n is internal) {
        Move n's child to s
      }  // end if

      Remove node n

if (p is now empty) {
        fix(p)
      }  // end if
    }   // end if

  }  // end if

The details of the Java implementation of the preceding insertion and
deletion algorithms for 2-3 trees are rather involved. The implementation is
left as a challenging exercise (Programming Problem 2).

You might be concerned about the overhead that the insertion and dele-
tion algorithms incur in the course of maintaining the 2-3 structure of the
tree. That is, after the search strategy locates either the item or the position
for the new item, the insertion and deletion algorithms sometimes have to
perform extra work, such as splitting and merging nodes. However, this extra
work is not a real concern. A rigorous mathematical analysis would show that
the extra work required to maintain the structure of a 2-3 tree after an inser-
tion or a deletion is not significant. In other words, when analyzing the effi-
ciency of the insertItem and deleteItem algorithms, it is sufficient to
consider only the time required to locate the item (or the position for the
insertion). Given that a 2-3 tree is always balanced, you can search a 2-3 tree
in all situations with the logarithmic efficiency of a binary search. Thus, the
2-3 tree implementation of the ADT table is guaranteed to provide efficient
table operations. Although a binary search tree that is as balanced as possible
minimizes the amount of work required to implement the operations of the ADT
table, its balance is difficult to maintain. A 2-3 tree is a compromise—although

A 2-3 tree is always 
balanced

A 2-3 implementa-
tion of a table is 
O(log2n) for all table 
operations
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searching it may not be quite as efficient as searching a binary search tree of
minimum height, it is relatively simple to maintain.

2-3-4 Trees
If a 2-3 tree is so good, are trees whose nodes can have more than three chil-
dren even better? To an extent, the answer is yes. A 2-3-4 tree is like a 2-3
tree, but it also allows 4-nodes, which are nodes that have four children and
three data items. For example, Figure 13-20 shows a 2-3-4 tree of height 3
that has the same items as the 2-3 tree in Figure 13-6b. As you will see, you
can perform insertions and deletions on a 2-3-4 tree with fewer steps than a
2-3 tree requires.

T is a 2-3-4 tree of height h if

1. T is empty (a 2-3-4 tree of height 0).
or

2. T is of the form

where r is a node that contains one data item and TL and TR are both 2-3-
4 trees, each of height h – 1. In this case, the search key in r must be
greater than each search key in the left subtree TL and smaller than each
search key in the right subtree TR.

or

3. T is of the form

where r is a node that contains two data items and TL, TM, and TR are
2-3-4 trees, each of height h – 1. In this case, the smaller search key in r
must be greater than each search key in the left subtree TL and smaller
than each search key in the middle subtree TM. The larger search key in r
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32 3433

30 35

A 2-3-4 tree with the same items as the 2-3 tree in Figure 13-6b

FIGURE 13-20

A 2-3-4 tree

r
TL TR

r

TL TM TR



746  Chapter 13 Advanced Implementations of Tables

must be greater than each search key in TM and smaller than each search
key in the right subtree TR.

or

4. T is of the form

where r is a node that contains three data items and TL, TML, TMR, and
TR are 2-3-4 trees, each of height h – 1. In this case, the smallest search
key in r must be greater than each search key in the left subtree TL and
smaller than each search key in the middle-left subtree TML. The middle
search key in r must be greater than each search key in TML and smaller
than each search key in the middle-right subtree TMR. The largest search
key in r must be greater than each search key in TMR and smaller than each
search key in the right subtree TR.
This definition implies the following rules for how you may place data

items in the nodes of a 2-3-4 tree:

Although a 2-3-4 tree has more efficient insertion and deletion operations
than a 2-3 tree, it also has greater storage requirements due to the additional
data fields in its 4-nodes, as the following Java class indicates:

class TreeNode<T> {
  T smallItem;
  T middleItem;

r

TL TML TMR TR

Rules for Placing Data Items in the Nodes 
of a 2-3-4 Tree
1. A 2-node, which has two children, must contain a single data item

whose search keys satisfy the relationships pictured earlier in
Figure 13-3a.

2. A 3-node, which has three children, must contain two data items 
whose search keys satisfy the relationships pictured earlier in
Figure 13-3b.

3. A 4-node, which has four children, must contain three data items 
whose search keys S, M, and L satisfy the following relationships,
as Figure 13-21 illustrates: S is greater than the left child’s search
key(s) and less than the middle-left child’s search key(s); M is
greater than the middle-left child’s search key(s) and less than the
middle-right child’s search key(s); L is greater than the middle-right
child’s search key(s) and less than the right child’s search key(s).

4. A leaf may contain either one, two, or three data items.

KEY CONCEPTS

A 2-3-4 tree requires 
more storage than a 
2-3 tree

A node in a 2-3-4 
tree 
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  T largeItem;
  TreeNode<T> leftChild;
  TreeNode<T> lMidChild;
  TreeNode<T> rMidChild;
  TreeNode<T> rightChild;

// constructors appear here
  .  .  .
}  // end TreeNode

As you will see later, however, you can transform a 2-3-4 tree into a special
binary tree that reduces the storage requirements.

Searching and traversing a 2-3-4 tree. The search algorithm and the tra-
versal algorithm for a 2-3-4 tree are simple extensions of the corresponding
algorithms for a 2-3 tree. For example, to search the tree in Figure 13-20
given the search key 31, you would search the left subtree of the root, because
31 is less than 37; search the middle subtree of the node <30 35>, because 31
is between 30 and 35; and terminate the search at the left child reference of
<32 33 34>, because 31 is less than 32, deducing that no item in the tree has a
search key of 31. Exercise 8 at the end of the chapter asks you to complete the
details of searching and traversing a 2-3-4 tree.

Inserting into a 2-3-4 tree. The insertion algorithm for a 2-3-4 tree, like
the insertion algorithm for a 2-3 tree, splits a node by moving one of its items
up to its parent node. For a 2-3 tree, the search algorithm traces a path from
the root to a leaf and then backs up from the leaf as it splits nodes. To avoid
this return path after reaching a leaf, the insertion algorithm for a 2-3-4 tree
splits 4-nodes as soon as it encounters them on the way down the tree from
the root to a leaf. As a result, when a 4-node is split and an item is moved up
to the node’s parent, the parent cannot possibly be a 4-node and so can
accommodate another item.

As an example of the algorithm, consider the tree in Figure 13-22a. This
one-node tree is the result of inserting 60, 30, and 10 into an initially empty
2-3-4 tree.

S LM

Search keys < S
Search keys > S and < M Search keys > M and < L

Search keys > L

A 4-node in a 2-3- 4 tree

FIGURE 13-21

Split 4-nodes 
as they are 
encountered
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Insert 20. While determining the insertion point, you begin at the root and
encounter the 4-node <10 30 60>, which you split by moving the middle
value 30 up. Since the node is the root, you create a new root, move 30 into it,
and attach two children, as Figure 13-22b illustrates. You continue the search
for 20 by examining the left subtree of the root, since 20 is less than 30. The
insertion results in the tree in Figure 13-22c.

Insert 50 and 40. The insertions of 50 and 40 do not require split nodes
and result in the tree in Figure 13-23.

Insert 70. As you search Figure 13-23 for 70’s insertion point, you encoun-
ter the 4-node <40 50 60>, since 70 is greater than 30. You split this 4-node
by moving 50 up to the node’s parent <30>, to get the tree in Figure 13-24a.
You then insert 70 into the leaf <60>, as Figure 13-24b illustrates.

Insert 80 and 15. These insertions do not require split nodes and result in
the tree in Figure 13-25.

30

6010

30

6010 2010 6030

(a) (b) (c)

Inserting 20 into a one-node 2-3-4 tree

FIGURE 13-22

10 20 40 6050

30

After inserting 50 and 40

FIGURE 13-23

30 50

60

(a)

10 20 40

30 50
(b)

10 20 40 60 70

The steps for inserting 70

FIGURE 13-24
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Insert 90. As you search Figure 13-25 for 90’s insertion point, you traverse
the root’s right subtree, since 90 is greater than 50, and encounter the 4-node
<60 70 80>. You split this 4-node into two nodes and move 70 up to the root,
as Figure 13-26a indicates. Finally, since 90 is greater than 70, you insert 90
into the leaf <80> to get the tree in Figure 13-26b.

Insert 100. As you begin to search Figure 13-26b, you immediately encoun-
ter a 4-node at the tree’s root. You split this node into two nodes and move 50
up to a new root, as Figure 13-27a indicates. After continuing the search, you
insert 100 into <80 90> to get the tree in Figure 13-27b.

Splitting 4-nodes during insertion. As you have just seen, you split each
4-node as soon as you encounter it during your search from the root to a leaf
that will accommodate the new item to be inserted. The 4-node will either

30 50

10 20 40 60 8015 70

After inserting 80 and 15

FIGURE 13-25
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(a)
30 70

60 80

50

15 10 20 40

(b)
30 70

80 9060

50

15

The steps for inserting 90

FIGURE 13-26
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80 90604010 2015
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50
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80 10090604010 2015
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The steps for inserting 100

FIGURE 13-27
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■ Be the root, or

■ have a 2-node parent, or

■ have a 3-node parent.

Figure 13-28 illustrates how to split a 4-node that is the tree’s root. You
have seen two previous examples of this: We split <10 30 60> in Figure 13-22a,
resulting in the tree in Figure 13-22b. We also split <30 50 70> during the inser-
tion of 100 into the tree in Figure 13-26b, giving us the tree in Figure 13-27a.

Figure 13-29 illustrates the two possible situations that you can encounter
when you split a 4-node whose parent is a 2-node. For example, when you
split <40 50 60> during the insertion of 70 into the tree in Figure 13-23, you
get the tree in Figure 13-24a.

Figure 13-30 illustrates the three possible situations that you can encoun-
ter when you split a 4-node whose parent is a 3-node. For example, when you

S LM

a b c d

S L

M

a b c d

Splitting a 4-node root during insertion

FIGURE 13-28
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Splitting a 4-node whose parent is a 2-node during insertion

FIGURE 13-29
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split <60 70 80> during the insertion of 90 into the tree in Figure 13-25, you
get the tree in Figure 13-26a. 

Deleting from a 2-3-4 tree. The deletion algorithm for a 2-3-4 tree has the
same beginning as the deletion algorithm for a 2-3 tree. You first locate the
node n that contains the item theItem that you want to delete. You then find
theItem’s inorder successor and swap it with theItem so that the deletion will
always be at a leaf. If that leaf is either a 3-node or a 4-node, you simply
remove theItem. If you can ensure that theItem does not occur in a 2-node,
you can perform the deletion in one pass through the tree from root to leaf,
unlike deletion from a 2-3 tree. That is, you will not have to back away from
the leaf and restructure the tree.

To accomplish this goal, you transform each 2-node that you encounter
during the search for theItem into either a 3-node or a 4-node. Several cases are
possible, depending on the configuration of the 2-node’s parent and nearest sib-
ling. (Arbitrarily, a node’s nearest sibling is its left sibling, unless the node is a left
child, in which case its nearest sibling is to its right.) That is, either the parent or
the sibling could be a 2-node, a 3-node, or a 4-node. For example, if the next
node that you will encounter is a 2-node and both its parent and nearest sibling

S LM

a b c d
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a b c d

ff

(a)
P Q

e

M QP

e

S LM
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ff
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Splitting a 4-node whose parent is a 3-node during insertion

FIGURE 13-30
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are 2-nodes, apply the transformation that Figure 13-28 illustrates, but in
reverse; if the parent is a 3-node, apply the transformation that Figure 13-29
illustrates, but in reverse; and if the parent is a 4-node, apply the transformation
that Figure 13-30 illustrates, but in reverse.

The details of deletion are left to you as a challenging exercise (Exercise 8).

Concluding remarks. The advantage of both 2-3 and 2-3-4 trees is their
easy-to-maintain balance, not their shorter height. Even if a 2-3 tree is shorter
than a balanced binary search tree, the reduction in height is offset by the
increased number of comparisons that the search algorithm may require at
each node. The situation is similar for a 2-3-4 tree, but its insertion and dele-
tion algorithms require only one pass through the tree and so are simpler than
those for a 2-3 tree. This decrease in effort makes the 2-3-4 tree more attrac-
tive than the 2-3 tree. 

Should we consider trees whose nodes have even more than four children?
Although a tree whose nodes can each have 100 children would be shorter
than a 2-3-4 tree, its search algorithm would require more comparisons at each
node to determine which subtree to search. Thus, allowing the nodes of a tree
to have many children is counterproductive. Such a search tree is appropriate,
however, when it is implemented in external storage, because moving from
node to node is far more expensive than comparing the data values in a node.
In such cases, a search tree with the minimum possible height is desirable, even
at the expense of additional comparisons at each node. Chapter 15 will discuss
external search trees further.

Red-Black Trees
A 2-3-4 tree is attractive because it is balanced and its insertion and deletion
operations use only one pass from root to leaf. On the other hand, a 2-3-4 tree
requires more storage than a binary search tree that contains the same data
because a 2-3-4 tree has nodes that must accommodate up to three data items.
A typical binary search tree is inappropriate, however, because it might not be
balanced.

You can use a special binary search tree—a red-black tree—to represent a
2-3-4 tree and retain the advantages of a 2-3-4 tree without the storage over-
head. The idea is to represent each 3-node and 4-node in a 2-3-4 tree as an
equivalent binary tree. To distinguish between 2-nodes that appeared in the
original 2-3-4 tree and 2-nodes that were generated from 3-nodes and 4-
nodes, you use red and black child references. Let all the child references in the
original 2-3-4 tree be black; use red child references to link the 2-nodes that
result when you split 3-nodes and 4-nodes.

Figures 13-31 and 13-32 indicate how to represent, respectively, a 4-node
and a 3-node as binary trees. Because there are two possible ways to represent
a 3-node as a binary tree, a red-black representation of a 2-3-4 tree is not
unique. Figure 13-33 gives a red-black representation for the 2-3-4 tree in
Figure 13-20. In all of these figures, a dashed line represents a red reference
and a solid line represents a black reference.

2-3 and 2-3-4 trees 
are attractive 
because their 
balance is easy to 
maintain

Insertion and dele-
tion algorithms for a 
2-3-4 tree require 
fewer steps than 
those for a 2-3 tree

Allowing nodes 
with more than 
four children is 
counterproductive

A 2-3-4 tree requires 
more storage than a 
binary search tree

A red-black tree has 
the advantages of a 
2-3-4 tree but 
requires less 
storage
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A node in a red-black tree is similar to a node in a binary search tree, but it
must also store the reference colors, as the following Java class indicates:

public enum Color {RED, BLACK}

class TreeNode<T> {
  T item;
  TreeNode<T> leftChild;
  TreeNode<T> rightChild;
  Color leftColor;
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Red-black representation of a 4-node

FIGURE 13-31
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A red-black tree that represents the 2-3-4 tree in Figure 13-20
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  Color rightColor;

// constructors appear here
  .  .  .
} // end TreeNode

Even with the reference colors, a node in a red-black tree requires less storage
than a node in a 2-3-4 tree. (Why? See Self-Test Exercise 6.) Keep in mind that
the transformations in Figures 13-31 and 13-32 imply a change in node
structure.

Searching and traversing a red-black tree. Since a red-black tree is a binary
search tree, you can search and traverse it by using the algorithms for a binary
search tree. You simply ignore the color of the references.

Inserting into and deleting from a red-black tree. Because a red-black
tree actually represents a 2-3-4 tree, you simply need to adjust the 2-3-4 inser-
tion algorithms to accommodate the red-black representation. Recall that
while searching a 2-3-4 tree, you split each 4-node that you encounter, so it is
sufficient to reformulate that process in terms of the red-black representation.
For example, Figure 13-31 shows the red-black representation of a 4-node.
Thus, to identify a 4-node in its red-black form, you look for a node that has
two red references.

Suppose that the 4-node is the root of the 2-3-4 tree. Figure 13-28
shows how to split the root into 2-nodes. By comparing this figure with
Figure 13-31, you see that to perform an equivalent operation on a red-
black tree, you simply change the color of its root’s references to black, as
Figure 13-34 illustrates.

Figure 13-29 shows how to split a 4-node whose parent is a 2-node. If
you reformulate this figure by using the red-black notation given in Figures
13-31 and 13-32, you get Figure 13-35. Notice that this case also requires
only color changes within the red-black tree.

Finally, Figure 13-30 shows how to split a 4-node whose parent is a
3-node. Note that each configuration before a split in Figure 13-30 has two
red-black representations, as Figure 13-36 illustrates. (Apply the transforma-
tions that Figures 13-31 and 13-32 describe to Figure 13-30.) As you can see

Splitting the equiva-
lent of a 4-node 
requires only simple 
color changes
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a b c d

M

S L

a b c d

M

Color changes

Splitting a red-black representation of a 4-node that is the root

FIGURE 13-34
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from Figure 13-36, each pair of representations transforms into the same red-
black configuration. Of the six possibilities given in Figure 13-36, only two
require simple color changes. The others also require changes to the refer-
ences themselves. These reference changes, which are called rotations, result
in a shorter tree.

The deletion algorithm follows in an analogous fashion from the 2-3-4
deletion algorithm. Since insertion and deletion operations on a red-black tree
frequently require only color changes, they are more efficient than the corre-
sponding operations on a 2-3-4 tree.

Exercise 11 asks you to complete the details of the insertion and deletion
algorithms.

AVL Trees
An AVL tree—named for its inventors, Adel’son-Vel’skii and Landis—is a bal-
anced binary search tree. Since the heights of the left and right subtrees of any
node in a balanced binary tree differ by no more than 1, you can search an
AVL tree almost as efficiently as a minimum-height binary search tree. This
section will simply introduce you to the notion of an AVL tree—the oldest
form of balanced binary tree—and leave the details for another course.

It is, in fact, possible to rearrange any binary search tree of n nodes to
obtain a binary search tree with the minimum possible height ⎡log2(n + 1)⎤.
Recall, for example, the algorithms developed in Chapter 11 that use a file to
save and restore a binary search tree. You can start with an arbitrary binary
search tree, save its values in a file, and then construct from these same values a
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new binary search tree of minimum height. Although this approach may be
appropriate in the context of a table that occasionally is saved and restored, it
requires too much work to be performed every time an insertion or deletion
leaves the tree unbalanced. The cost of repeatedly rebuilding the tree could
very well outweigh the benefit of searching a tree of minimum height.

The AVL method is a compromise. It maintains a binary search tree with a
height close to the minimum, but it is able to do so with far less work than
would be necessary to keep the height of the tree exactly equal to the mini-
mum. The basic strategy of the AVL method is to monitor the shape of the
binary search tree. You insert or delete nodes just as you would for any binary
search tree, but after each insertion or deletion, you check that the tree is still
an AVL tree. That is, you determine whether any node in the tree has left and
right subtrees whose heights differ by more than 1. For example, suppose that
the binary search tree in Figure 13-37a is the result of a sequence of insertions
and deletions. The heights of the left and right subtrees of the root 30 differ
by 2. You can restore this tree’s AVL property—that is, its balance—by rear-
ranging its nodes. For instance, you can rotate the tree so that the node 20
becomes the root, with left child 10 and right child 30, as in Figure 13-37b.
Notice that you cannot arbitrarily rearrange the tree’s nodes, because you must
take care not to destroy the search tree’s ordering property in the course of the
rebalancing.
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Rotations are not necessary after every insertion or deletion. For example,
you can insert 40 into the AVL tree in Figure 13-37b and still have an AVL
tree. (See Figure 13-37c.) However, when a rotation is necessary to restore a
tree’s AVL property, the rotation will be one of two possible types. Let’s look
at an example of each type.

Suppose that you have the tree in Figure 13-38a after the insertion or
deletion of a node. (Perhaps you obtained this tree by inserting 60 into an
AVL tree.) An imbalance occurs at the node 20; that is, 20’s left and right sub-
trees differ in height by more than 1. A single rotation to the left is necessary to
obtain the balanced tree in Figure 13-38b: 40 becomes the parent of 20,
which adopts 30 as its right child. Figure 13-39 shows this rotation in a more
general form. It shows, for example, that before the rotation, the left and right
subtrees of the node 40 have heights h and h + 1, respectively. After the rota-
tion, the tree is balanced and, in this particular case, has decreased in height
from h + 3 to h + 2. Figures 13-40 and 13-41 show examples of a single left
rotation that restores a tree’s balance but does not affect its height. An analo-
gous single right rotation would produce a mirror image of these examples.

A more complex rotation may be necessary. For example, consider the tree
in Figure 13-42a, which is the result of nodes being added to or deleted from
an AVL tree. The left and right subtrees of 20 differ in height by more than 1.
A double rotation is necessary to restore this tree’s balance. Figure 13-42b
shows the result of a left rotation about 20, and Figure 13-42c shows the

30

20

10

20

10 30

20

10 30

40

(a) (b) (c)
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FIGURE 13-37

40

20 50

20

10 40

5030

60

603010

(a) (b)

(a) An unbalanced binary search tree; (b) a balanced tree after a single left rotation

FIGURE 13-38



Balanced Search Trees 759

20

40

Before rotation

40

After rotation

20T1

T3 T1 T2

T3

h h+1hh

h

h+1

T2

Before and after a single left rotation that decreases the tree’s height

FIGURE 13-39

(a) An unbalanced binary search tree; (b) a balanced tree after a single left rotation

FIGURE 13-40

40

20 50

603010

(b)

25

20

10 40

5030

60

(a)

25

20

40

Before rotation After rotation

T1

T2 T3 T1 T2

T3

h h+1

h

20

40

h+1h+1h+1

Before and after a single left rotation that does not affect the tree’s height

FIGURE 13-41



760  Chapter 13 Advanced Implementations of Tables

result of a right rotation about 40. Figure 13-43 illustrates this double rotation
in a more general form. Mirror images of these figures provide examples of
other possible double rotations.

It can be proven that the height of an AVL tree with n nodes will always
be very close to the theoretical minimum of ⎡log2(n + 1)⎤. The AVL tree
implementation of a table is, therefore, one implementation that guarantees a
binary searchlike efficiency. Usually, however, implementations that use either
a 2-3-4 tree or a red-black tree will be simpler.
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13.2 Hashing

The binary search tree and its balanced variants, such as 2-3, 2-3-4, red-black,
and AVL trees, provide excellent implementations of the ADT table. They allow
you to perform all of the table operations quite efficiently. If, for example, a table
contains 10,000 items, the operations tableRetrieve, tableInsert, and
tableDelete each require approximately log210,000 = 13 steps. As impressive
as this efficiency may be, situations do occur for which the search-tree imple-
mentations are not adequate.

As you know, time can be vital. For example, when a person calls the 911
emergency system, the system detects the caller’s telephone number and
searches a database for the caller’s address. Similarly, an air traffic control
system searches a database of flight information, given a flight number. Clearly
these searches must be rapid.

A radically different strategy is necessary to locate (and insert or delete) an
item virtually instantaneously. Imagine an array table of n items—with each
array slot capable of holding a single table item—and a seemingly magical box
called an “address calculator.” Whenever you have a new item that you want to
insert into the table, the address calculator will tell you where you should place
it in the array. Figure 13-44 illustrates this scenario.

You can thus easily perform an insertion into the table as follows:

+tableInsert (in newItem:TableItemType)

  i = the array index that the address calculator
          gives you for newItem's search key
  table[i] = newItem

An insertion is O(1); that is, it requires constant time.
You also use the address calculator for the tableRetrieve and tableDelete

operations. If you want to retrieve an item that has a particular search key, you

Table operations 
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simply ask the address calculator to tell you where it would insert such an item.
Because you would have inserted the item earlier by using the tableInsert algo-
rithm just given, if the desired item is present in the table, it will be in the array
location that the address calculator specifies. 

Thus, the retrieval operation appears in pseudocode as follows:

+tableRetrieve(in searchKey:KeyType):TableItemType
// Returns table item that has a matching searchKey.
// If not found, returns null.

  i = the array index that the address calculator
          gives you for an item whose search key 
          equals searchKey

if (table[i].getKey() equals searchKey) {
return table[i]

  }
else {

return null
  }  // end if

Similarly, the pseudocode for the deletion operation is

+tableDelete(in searchKey:KeyType)
// Deletes item that has a matching searchKey. If
// successful, returns true; otherwise, returns false.
  i = the array index that the address calculator
          gives you for an item whose search key 
          equals searchKey

  success = (table[i].getKey() equals searchKey)
if (success) {

    Delete the item from table[i]
  }  // end if

return success

It thus appears that you can perform the operations tableRetrieve,
tableInsert, and tableDelete virtually instantaneously. You never have to
search for an item; instead, you simply let the address calculator determine
where the item should be. The amount of time required to carry out the oper-
ations is O(1) and depends only on how quickly the address calculator can
perform this computation.

If you are to implement such a scheme, you must, of course, be able to
construct an address calculator that can, with very little work, tell you where a
given item should be. Address calculators are actually not as mysterious as they
seem; in fact, many exist that can approximate the idealized behavior just
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described. Such an address calculator is usually referred to as a hash function.
The scheme just described is an idealized description of a method known as
hashing, and the array table is called the hash table.

To understand how a hash function works, consider the 911 emergency
system mentioned earlier. If, for each person, the system had a record whose
search key was the person’s telephone number, it could store these records in a
search tree. Although searching a tree would be fast, faster access to a particu-
lar record would be possible by storing the records in an array table, as fol-
lows. You store the record for a person whose telephone number is num into
table[num]. Retrieval of the record, then, is almost instantaneous given its
search key num. For example, you can store the record for the telephone
number 123-4567 in table[1234567]. If you can spare ten million memory
locations for table, this approach is fine. You need not use memory so extrava-
gantly, however, since 911 systems are regional. If you consider only one tele-
phone exchange, for example, you can store the record for the number
123-4567 in table[4567] and get by with an array table of 10,000 locations.

The transformation of 1234567 into an array index 4567 is a simple
example of a hash function. A hash function h must take an arbitrary integer x
and map it into an integer that you can use as an array index. In our example,
such indexes would be in the range 0 through 9999. That is, h is a function
such that for any integer x,

h(x) = i, where i is an integer in the range 0 through 9999

Since the database contains records for every telephone number in a par-
ticular exchange, the array table is completely full. In this sense, our example
is not typical of hashing applications and serves only to illustrate the idea of a
hash function. What if many fewer records were in the array? Consider, for
example, an air traffic control system that stores a record for each current flight
according to its four-digit flight number. You could store a record for Flight
4567 in table[4567], but you still would need an array of 10,000 locations,
even if only 50 flights were current. 

A different hash function would save memory. If you allow space for a
maximum of 101 flights, for example, so that the array table has indexes 0
through 100, the necessary hash function h should map any four-digit flight
number into an integer in the range 0 through 100.

If you have such a hash function h—and you will see several suggestions
for hash functions later—the table operations are easy to write. For example, in
the tableRetrieve algorithm, the step

i = the array index that the address calculator 
      gives you for an item whose search key 
      equals searchKey

is implemented simply as

i = h(searchKey)

A hash function tells 
you where to place 
an item in an array 
called a hash table 

A hash function 
maps an integer into 
an array index
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In the previous example, searchKey would be the flight number.
The table operations appear to be virtually instantaneous. But is hashing

really as good as it sounds? If it really were this good, there would have been
little reason for developing all those other table implementations. Hashing
would beat them hands down!

Why is hashing not quite as simple as it seems? You might first notice that
since the hashing scheme stores the items in an array, it would appear to suffer
from the familiar problems associated with a fixed-size implementation. Obvi-
ously, the hash table must be large enough to contain all of the items that you
want to store. This requirement is not the crux of the implementation’s diffi-
culty, however, for—as you will see later—there are ways to allow the hash
table to grow dynamically. The implementation has a major pitfall, even given
the assumption that the number of items to be stored will never exceed the
size of the hash table.

Ideally, you want the hash function to map each x into a unique integer i.
The hash function in the ideal situation is called a perfect hash function. In
fact, it is possible to construct perfect hash functions if you know all of the
possible search keys that actually occur in the table. You have this knowledge
for the 911 example, since everyone is in the database, but not for the air
traffic control example. Usually, you will not know the values of the search
keys in advance.

In practice, a hash function can map two or more search keys x and y into
the same integer. That is, the hash function tells you to store two or more items
in the same array location table[i]. This occurrence is called a collision. Thus,
even if fewer than 101 items were present in the hash table table[0..100], h
could very well tell you to place more than one item into the same array loca-
tion. For example, if two items have search keys 4567 and 7597, and if

h(4567) = h(7597) = 22

h will tell you to place the two items into the same array location, table[22].
That is, the search keys 4567 and 7597 have collided.

Even if the number of items that can be in the array at any one time is
small, the only way to avoid collisions completely is for the hash table to be
large enough that each possible search-key value can have its own location. If,
for example, social security numbers were the search keys, you would need an
array location for each integer in the range 000000000 through 999999999.
This situation would certainly require a good deal of storage! Because reserv-
ing vast amounts of storage is usually not practical, collision-resolution
schemes are necessary to make hashing feasible. Such resolution schemes
usually require that the hash function place items evenly throughout the hash
table.

To summarize, a typical hash function must

■ Be easy and fast to compute

■ Place items evenly throughout the hash table

A perfect hash func-
tion maps each 
search key into a 
unique location of 
the hash table

A perfect hash func-
tion is possible if you 
know all the search 
keys

Collisions occur 
when the hash func-
tion maps more than 
one item into the 
same array location

Requirements for a 
hash function
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Note that the size of the hash table affects the ability of the hash function to
distribute the items evenly throughout the table. The requirements of a hash
function will be discussed in more detail later in this chapter.

Consider now several hash functions and collision-resolution schemes.

Hash Functions
It is sufficient to consider hash functions that have an arbitrary integer as an
argument. Why? If a search key is not an integer, you can simply map the
search key into an integer, which you then hash. At the end of this section, you
will see one way to convert a string into an integer.

There are many ways to convert an arbitrary integer into an integer within
a certain range, such as 0 through 100. Thus, there are many ways to con-
struct a hash function. Many of these functions, however, will not be suitable.
Here are several simple hash functions that operate on positive integers. 

Selecting digits. If your search key is the nine-digit employee ID number
001364825, you could select the fourth digit and the last digit, to obtain 35 as
the index to the hash table. That is,

h(001364825) = 35    (select the fourth and last digits)

Therefore, you would store the item whose search key is 001364825 in
table[35].

You do need to be careful about which digits you choose in a particular
situation. For example, the first three digits of a Social Security number are
based on the geographic region in which the number was assigned. If you
select only these digits, you will map all people from the same state into the
same location of the hash table.

Digit-selection hash functions are simple and fast, but generally they do
not evenly distribute the items in the hash table. A hash function really should
utilize the entire search key.

Folding. One way to improve upon the previous method of selecting digits
is to add the digits. For example, you can add all of the digits in 001364825 to
obtain

0 + 0 + 1 + 3 + 6 + 4 + 8 + 2 + 5 = 29   (add the digits)

Therefore, you would store the item whose search key is 001364825 in
table[29]. Notice that if you add all of the digits from a nine-digit search key,

0 ≤ h(search key) ≤ 81

That is, you would use only table[0] through table[81] of the hash table.
To change this situation or to increase the size of the hash table, you can
group the digits in the search key and add the groups. For example, you could

It is sufficient for 
hash functions to 
operate on integers

Digit selection does 
not distribute items 
evenly in the hash 
table
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form three groups of three digits from the search key 001364825 and add
them as follows:

001 + 364 + 825 = 1,190

For this hash function,

0 ≤ h(search key) ≤ 3 * 999 = 2,997

Clearly, if 2,997 is larger than the size of the hash table that you want, you can
alter the groups that you choose. Perhaps not as obvious is that you can apply
more than one hash function to a search key. For example, you could select
some of the digits from the search key before adding them, or you could either
select digits from the previous result 2,997 or apply folding to it once again by
adding 29 and 97.

Modulo arithmetic. Modulo arithmetic provides a simple and effective hash
function that we will use in the rest of this chapter. For example, consider the
function5

h(x) = x mod tableSize

where the hash table table has tableSize elements. In particular, if tableSize is
101, h(x) = x mod 101 maps any integer x into the range 0 through 100. For
example, h maps 001364825 into 12.

For h(x) = x mod tableSize, many x’s map into table[0], many x’s map
into table[1], and so on. That is, collisions occur. However, you can distrib-
ute the table items evenly over all of table—thus reducing collisions—by
choosing a prime number as tableSize. The reasoning behind choosing a prime
number is discussed later in this chapter in the section “What Constitutes a
Good Hash Function?” For instance, 101 in the previous example is prime.
The choice of table size will also be discussed in more detail later in this chap-
ter. For now, realize that 101 is used here as a simple example of a prime table
size. For the typical table, 101 is much too small.

Converting a character string to an integer. If your search key is a charac-
ter string—such as a name—you could convert it into an integer before apply-
ing the hash function h(x). To do so, you could first assign each character in
the string an integer value. For example, for the word “NOTE” you could
assign the ASCII values 78, 79, 84, and 69, to the letters N, O, T, and E,
respectively. Or, if you assign the values 1 through 26 to the letters A through
Z, you could assign 14 to N, 15 to O, 20 to T, and 5 to E.

If you now simply add these numbers, you will get an integer, but it will
not be unique to the character string. For example, the string “TONE” will
give you the same result. Instead, write the numeric value for each character in

5. Remember that this book uses “mod” as an abbreviation for the mathematical oper-
ation modulo. In Java, the modulo operator is %.

You can apply more 
than one hash func-
tion to a single 
search key

The table size 
should be prime
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binary and concatenate the results. If you assign the values 1 through 26 to the
letters A through Z, you obtain the following for the string “NOTE”:

N is 14, or 01110 in binary

O is 15, or 01111 in binary

T is 20, or 10100 in binary

E is 5, or 00101 in binary

Concatenating the binary values gives you the binary integer

01110011111010000101

which is 474,757 in decimal. You can apply the hash function x mod tableSize
for x = 474,757.

Now consider a more efficient way to compute 474,757. Rather than con-
verting the previous binary number to decimal, you can evaluate the expression

14 * 323 + 15 * 322 + 20 * 321 + 5 * 320

This computation is possible because we have represented each character as a
5-bit binary number, and 25 is 32.

By factoring this expression, you can minimize the number of arithmetic
operations. This technique is called Horner’s rule and results in

((14 * 32 + 15) * 32 + 20) * 32 + 5

Although both of these expressions have the same value, the result in either
case could very well be larger than a typical computer can represent; that is, an
overflow can occur. 

Since we plan to use the hash function

h(x) = x mod tableSize

you can prevent an overflow by applying the modulo operator after comput-
ing each parenthesized expression in Horner’s rule. The implementation of
this algorithm is left as an exercise.

Resolving Collisions
Consider the problems caused by a collision. Suppose that you want to insert
an item whose search key is 4567 into the hash table table, as was described
previously. The hash function h(x) = x mod 101 tells you to place the new item
in table[22], because 4567 mod 101 is 22. Suppose, however, that
table[22] already contains an item, as Figure 13-45 illustrates. If earlier you
had placed 7597 into table[22] because 7597 mod 101 equals 22, where do
you place the new item? You certainly do not want to disallow the insertion on
the grounds that the table is full: You could have a collision even when insert-
ing into a table that contains only one item!

Two general approaches to collision resolution are common. One
approach allocates another location within the hash table to the new item. A

Horner’s rule mini-
mizes the number of 
computations

Two approaches to 
collision resolution
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second approach changes the structure of the hash table so that each location
table[i] can accommodate more than one item. The collision-resolution
schemes described next exemplify these two approaches.

Approach 1: Open addressing. During an attempt to insert a new item into
a table, if the hash function indicates a location in the hash table that is already
occupied, you probe for some other empty, or open, location in which to place
the item. The sequence of locations that you examine is called the probe
sequence.

Such schemes are said to use open addressing. The concern, of course, is
that you must be able to find a table item efficiently after you have inserted it.
That is, the tableDelete and tableRetrieve operations must be able to
reproduce the probe sequence that tableInsert used and must do so effi-
ciently.

The difference among the various open-addressing schemes is the method
used to probe for an empty location. We briefly describe three such methods.

Linear probing. In this simple scheme to resolve a collision, you search the
hash table sequentially, starting from the original hash location. More specifically,
if table[h(searchKey)] is occupied, you check table [h(searchKey)+1],
table[h(searchKey)+2], and so on until you find an available location.
Figure 13-46 illustrates the placement of four items that all hash into the same
location table[22] of the hash table, assuming a hash function h(x) = x mod 101.
Typically, you wrap around from the last table location to the first table location if
necessary. 

table

0

1

2

22

99

100

7597h(4567) table[22] is occupied

A collision

FIGURE 13-45
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In the absence of deletions, the implementation of tableRetrieve under
this scheme is straightforward. You need only follow the same probe sequence
that tableInsert used until you either find the item you are searching for,
reach an empty location, which indicates that the item is not present, or visit
every table location.

Deletions, however, add a slight complication. The tableDelete operation
itself is no problem. You merely find the desired item, as in tableRetrieve, and
delete it, making the location empty. But what happens to tableRetrieve after
deletions? The new empty locations that tableDelete created along a probe
sequence could cause tableRetrieve to stop prematurely, incorrectly indicating a
failure. You can resolve this problem by allowing a table location to be in one of
three states: occupied (currently in use), empty (has not been used), or deleted (was
once occupied but is now available). You then modify the tableRetrieve opera-
tion to continue probing when it encounters a location in the deleted state. Similarly,
you modify tableInsert to insert into either empty or deleted locations.

One of the problems with the linear-probing scheme is that table items tend
to cluster together in the hash table. That is, the table contains groups of con-
secutively occupied locations. This phenomenon is called primary clustering.
Clusters can get close to one another and, in fact, merge into a larger cluster.
Large clusters tend to get even larger. (“The rich get richer.”) Thus, one part of
the table might be quite dense, even though another part has relatively few
items. Primary clustering causes long probe searches and therefore decreases the
overall efficiency of hashing.

22 7597

23 4567

24 0628

25 3658

i = 7597 mod 101 = 22

i+1

i+2

i+3

table

Linear probing with h(x) = x mod 101

FIGURE 13-46
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Quadratic probing. You can virtually eliminate primary clusters simply by
adjusting the linear probing scheme just described. Instead of probing consec-
utive locations from the original hash location table[h(searchKey)], you
check locations table[h(searchKey)+12], table[h(searchKey)+22],
table[h(searchKey)+32], and so on until you find an available location.
Figure 13-47 illustrates this open-addressing scheme—which is called
quadratic probing—for the same items that appear in Figure 13-46.

Unfortunately, when two items hash into the same location, quadratic
probing uses the same probe sequence for each item. This phenomenon—called
secondary clustering—delays the resolution of the collision. Although the
analysis of quadratic probing remains incomplete, it appears that secondary
clustering is not a problem.

Double hashing. Double hashing, which is yet another open-addressing
scheme, drastically reduces clustering. The probe sequences that both linear
probing and quadratic probing use are key independent. For example, linear
probing inspects the table locations sequentially no matter what the hash key
is. In contrast, double hashing defines key-dependent probe sequences. In this
scheme, the probe sequence still searches the table in a linear order, starting at
the location h1(key), but a second hash function h2 determines the size of the
steps taken.

Although you choose h1 as usual, you must follow these guidelines for h2:

h2(key) ≠ 0
h2 ≠ h1

31 3658 i+32
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Clearly, you need a nonzero step size h2(key) to define the probe sequence. In
addition, h2 must differ from h1 to avoid clustering.

For example, let h1 and h2 be the primary and secondary hash functions
defined as

h1(key) = key mod 11
h2(key) = 7 – (key mod 7)

where a hash table of only 11 items is assumed, so that you can readily see the
effect of these functions on the hash table. If key = 58, h1 hashes key to table
location 3 (58 mod 11), and h2 indicates that the probe sequence should take
steps of size 5 (7 – 58 mod 7). In other words, the probe sequence will be 3,
8, 2 (wraps around), 7, 1 (wraps around), 6, 0, 5, 10, 4, 9. On the other hand,
if key = 14, h1 hashes key to table location 3 (14 mod 11), and h2 indicates that
the probe sequence should take steps of size 7 (7 – 14 mod 7), and so the
probe sequence would be 3, 10, 6, 2, 9, 5, 1, 8, 4, 0.

Each of these probe sequences visits all the table locations. This phe-
nomenon always occurs if the size of the table and the size of the probe step
are relatively prime, that is, if their greatest common divisor is 1. Because the
size of a hash table is commonly a prime number, it will be relatively prime
to all step sizes.

Figure 13-48 illustrates the insertion of 58, 14, and 91 into an initially
empty hash table. Since h1(58) is 3, you place 58 into table[3]. You then
find that h1(14) is also 3, so to avoid a collision, you step by h2(14) = 7 and
place 14 into table[3 + 7], or table[10]. Finally, h1(91) is 3 and h2(91)

Primary and 
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table
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14
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h1(14)
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Collision

Double hashing during the insertion of 58, 14, and 91
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is 7. Since table[3] is occupied, you probe table[10] and find that it, too,
is occupied. You finally store 91 in table[(10 + 7) % 11], or table[6].

Using more than one hash function is called rehashing. While more than
two hash functions can be desirable, such schemes are difficult to implement.

Increasing the size of the hash table.    With any of the open-addressing
schemes, as the hash table fills, the probability of a collision increases. At some
point, a larger hash table becomes desirable. If you use a resizeable array for
the hash table, you can increase its size whenever the table becomes too full. 

You cannot simply double the size of the array, as we did in earlier chap-
ters, because the size of the hash table must remain prime. In addition, you do
not copy the items from the original hash table to the new hash table. If your
hash function is x mod tableSize, it changes as tableSize changes. Thus, you
need to apply your new hash function to every item in the old hash table
before placing it into the new hash table.

Approach 2: Restructuring the hash table. Another way to resolve colli-
sions is to change the structure of the array table—the hash table—so that it
can accommodate more than one item in the same location. We describe two
such ways to alter the hash table.

Buckets. If you define the hash table table so that each location table[i]
is itself an array called a bucket, you then can store the items that hash into
table[i] in this array. The problem with this approach, of course, is choosing
the size B of each bucket. If B is too small, you will only have postponed the
problem of collisions until B + 1 items map into some array location. If you
attempt to make B large enough so that each array location can accommodate
the largest number of items that might map into it, you are likely to waste a
good deal of storage.

Separate chaining. A better approach is to design the hash table as an array of
linked lists. In this collision-resolution method, known as separate chaining,
each entry table[i] is a reference to a linked list—the chain—of items that the
hash function has mapped into location i, as Figure 13-49 illustrates. The follow-
ing classes for the ADT table assume an implementation that uses a hash table
and separate chaining:

class ChainNode<K, V> {
private K key;
private V value;

  ChainNode<K, V> next;

public ChainNode(K newKey, V newValue, 
                   ChainNode<K, V> nextNode) {
    key = newKey;
    value = newValue;
    next = nextNode;

Each hash-table 
location can accom-
modate more than 
one item 

A bucket is an 
element of a hash 
table that is itself an 
array

Each hash-table 
location is a linked 
list
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  }  // end constructor

public V getValue() {
return value;

  }  // end getValue

public K getKey() {
return key;

  }  // end getKey

} // end ChainNode

// ********************************************************
// Hash table implementation.
// Assumption: A table contains at most one item with a 
//             given search key at any time.
// Note: This code will compile with a warning about the use
// of unchecked or unsafe operations. This is due to the 
// cast in method tableRetrieve.  Exercise X asks you to 
// rewrite this implementation using ArrayList to avoid this
// warning.
// *********************************************************

public class HashTable<K, V> {
public final int HASH_TABLE_SIZE = 101; 
private ChainNode[] table;     // hash table
private int size = 0;          // size of ADT table

Separate chaining

FIGURE 13-49
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public HashTable() {
    table = new ChainNode[HASH_TABLE_SIZE];
  }  // end default constructor

// table operations
public boolean tableIsEmpty() {

return size==0;
  }  // end tableIsEmpty

public int tableLength() {
return size;

  }  // end tableLength

// Programming Problem 4 asks you to implement the following
// methods.

public void tableInsert(K key, V value) 
throws HashException {

    // ...
  }  // end tableInsert

public boolean tableDelete(K searchKey) {

    // ...
return true;  // added for compilation

  }  // end tableDelete

public V tableRetrieve(K searchKey) {
    // ...

return null;  // added for compilation
  } // end tableRetrieve

public int hashIndex(K key) {
    // ...
  }  // end hashIndex

}  // end HashTable

Items are stored in the table using ChainNode, which expects <key, value>
pairs as first presented in Chapter 12. This node class is similar to the one that
we used with linked lists in Chapter 5, except that it is generic and holds two
data values, one for the key, the other for the corresponding value. The
ChainNode class provides the method getKey to retrieve the key, and the
method getValue to retrieve the value. 

In the HashTable class, the hashIndex method needs to generate a hash
index value. Since the hashIndex method does not usually have access to the
internal structure of the search key, it must rely on methods available in the
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class Object and the interface Comparable. The Object class has two
methods that are likely to be used in the implementation of hashIndex:
toString and hashCode. The hashIndex method could use toString with
the techniques involving strings discussed earlier in the chapter. The
hashIndex method could also simply call hashCode, a method that returns a
unique value for each unique object. The hashIndex method of the class
HashTable should take care of ensuring that the value generated is in an
appropriate range and should resolve collisions if needed.

When you insert a new item into the table, you simply place it at the
beginning of the linked list that the hash function indicates. The following
pseudocode describes the insertion algorithm:

+tableInsert(in searchKey:KeyType, in value:ValueType)

if (table not full) {
    searchKey = the search key of newItem
    i = hashIndex(searchKey)

    node.next = table[i]
    table[i] = node
  }

else { // table full
throw new HashException()

  }  // end if

When you want to retrieve an item, you search the linked list that the hash
function indicates. The following pseudocode describes the retrieval algorithm:

+tableRetrieve(in searchKey:KeyType):ValueType

  i = hashIndex(searchKey)
  node = table[i]

while ((node ≠ null) && (node.getKey() ≠ searchKey)){
    node = node.next
  }  // end while

  if (node != null) {
return node.getValue()

  }

else {
return null

  }  // end if

    node = reference to a new node containing searchKey and value
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The deletion algorithm is very similar to the retrieval algorithm and is left as an
exercise. (See Exercise 14.)

Separate chaining is thus a successful method of resolving collisions. With
separate chaining, the size of the ADT table is dynamic and can exceed the size
of the hash table, since each linked list can be as long as necessary. As you will
see in the next section, the length of these linked lists affects the efficiency of
retrievals and deletions.

The Efficiency of Hashing
An analysis of the average-case efficiency of hashing involves the load factor α,
which is the ratio of the current number of items in the table to the maximum
size of the array table. That is,

α is a measure of how full the hash table table is. As table fills, α increases
and the chance of collision increases, so search times increase. Thus, hashing
efficiency decreases as α increases.

Unlike the efficiency of earlier table implementations, the efficiency of hashing
does not depend solely on the number n of items in the table. While it is true that
for a fixed tableSize, efficiency decreases as n increases, for a given n you can
choose tableSize to increase efficiency. Thus, when determining tableSize, you
should estimate the largest possible n and select tableSize so that α is small. As you
will see shortly, α should not exceed 2/3.

Hashing efficiency for a particular search also depends on whether the
search is successful. An unsuccessful search requires more time in general than
a successful search. The following analyses6 enable a comparison of collision-
resolution techniques.

Linear probing. For linear probing, the approximate average number of
comparisons that a search requires is  

As collisions increase, the probe sequences increase in length, causing
increased search times. For example, for a table that is two-thirds full
(α = 2/3), an average unsuccessful search might require at most five compar-
isons, or probes, while an average successful search might require at most two

6. D. E. Knuth, Searching and Sorting, vol. 3 of The Art of Computer Programming
(Menlo Park, CA: Addison-Wesley, 1973).
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comparisons. To maintain efficiency, it is important to prevent the hash table
from filling up.

Quadratic probing and double hashing. The efficiency of both quadratic
probing and double hashing is given by

for a successful search, and

for an unsuccessful search

On average, both methods require fewer comparisons than linear probing. For
example, for a table that is two-thirds full, an average unsuccessful search
might require at most three comparisons, or probes, while an average success-
ful search might require at most two comparisons. As a result, you can use a
smaller hash table for both quadratic probing and double hashing than you can
for linear probing. However, because they are open-addressing schemes, all
three methods suffer when you are unable to predict the number of insertions
and deletions that will occur. If your hash table is too small, it will fill up, and
search efficiency will decrease.

Separate chaining. Since the tableInsert operation places the new item at the
beginning of a linked list within the hash table, it is O(1). The tableRetrieve and
tableDelete operations, however, are not as fast. They each require a search of the
linked list of items, so ideally you would like for these linked lists to be short. 

For separate chaining, tableSize is the number of linked lists, not the
maximum number of table items. Thus, it is entirely possible, and even
likely, that the current number of table items n exceeds tableSize. That is,
the load factor α, or n/tableSize, can exceed 1. Since tableSize is the
number of linked lists, n/tableSize—that is, α—is the average length of
each linked list.

Some searches of the hash table are unsuccessful because the relevant
linked list is empty. Such searches are virtually instantaneous. For an unsuc-
cessful search of a nonempty linked list, however, tableRetrieve and
tableDelete must examine the entire list, that is, α items in the average
case. On the other hand, a successful search must examine a nonempty linked
list. In the average case, the search will locate the item in the middle of the
list. That is, after determining that the linked list is not empty, the search will
examine α/2 items.

Thus, the efficiency of the retrieval and deletion operations under the sep-
arate-chaining approach is

for a successful search, and

α for an unsuccessful search
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Even if the linked lists typically are short, you should still estimate the
worst case. If you seriously underestimate tableSize or if most of the table items
happen to hash into the same location, the number of items in a linked list
could be quite large. In fact, in the worst case, all n items in the table could be
in the same linked list!

As you can see, the time that a retrieval or deletion operation requires
can range from almost nothing—if the linked list to be searched either is
empty or has only a couple of items in it—to the time required to search a
linked list that contains all the items in the table, if all the items hashed into
the same location.

Comparing methods. Figure 13-50 plots the relative efficiency of the
collision-resolution schemes just discussed. When the hash table table is
about half full—that is, when α is 0.5—the methods are nearly equal in effi-
ciency. As the table fills and α approaches 1, separate chaining is the most effi-
cient. Does this mean that we should discard all other search methods in favor
of hashing with separate chaining?

No. The analyses here are average-case analyses. Although an implementa-
tion of the ADT table that uses hashing might often be faster than one that
uses a search tree, in the worst case it can be much slower. If you can afford

The relative efficiency of four collision-resolution methods

FIGURE 13-50
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both an occasional slow search and a large tableSize—that is, a small α—then
hashing can be an attractive table implementation. However, if you are per-
forming a life-and-death search for your city’s poison control center, a search-
tree implementation would at least provide you with a guaranteed bound on
its worst-case behavior.

What Constitutes a Good Hash Function?
Before concluding this introduction to hashing, consider in more detail the
issue of choosing a hash function to perform the address calculations for a
given application. A great deal has been written on this subject, most of which
is beyond the mathematical level of this book. However, this section will
present a brief summary of the major concerns.

■ A hash function should be easy and fast to compute. If a hashing
scheme is to perform table operations almost instantaneously and in con-
stant time, you certainly must be able to calculate the hash function rap-
idly. Most of the common hash functions require only a single division
(like the modulo function), a single multiplication, or some kind of “bit-
level” operation on the internal representation of the search key. In all
these cases, the requirement that the hash function be easy and fast to
compute is satisfied.

■ A hash function should scatter the data evenly throughout the hash
table. Unless you use a perfect hash function—which is usually impractical
to construct—you typically cannot avoid collisions entirely. For example, to
achieve the best performance from a separate-chaining scheme, each entry
table[i] should contain approximately the same number of items in its
chain; that is, each chain should contain approximately n/tableSize items
(and thus no chain should contain significantly more than n/tableSize
items). To accomplish this goal, your hash function should scatter the search
keys evenly throughout the hash table.

There are two issues to consider with regard to how evenly a hash function
scatters the search keys.

■ How well does the hash function scatter random data? If every search-
key value is equally likely, will the hash function scatter the search keys
evenly? For example, consider the following scheme for hashing nine-digit
ID numbers:

table[0..39] is the hash table, and
the hash function is h(x) = (first two digits of x) mod 40

The question is, given the assumption that all employee ID numbers are
equally likely, does a given ID number x have equal probability of hashing
into any one of the 40 array locations? For this hash function, the answer is
no. Only ID numbers that start with 19, 59, and 99 map into table[19],
while only ID numbers that start with 20 and 60 map into table[20]. In

You cannot avoid 
collisions entirely
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general, three different ID prefixes—that is, the first two digits of an ID
number—map into each array location 0 through 19, while only two dif-
ferent prefixes map into each array location 20 through 39. Since all ID
numbers are equally likely—and thus all prefixes 00 through 99 are equally
likely—a given ID number is 50 percent more likely to hash into one of
the locations 0 through 19 than it is to hash into one of the locations 20
through 39. As a result, each array location 0 through 19 would contain,
on average, 50 percent more items than each location 20 through 39.

Thus, the hash function

h(x) = (first two digits of x) mod 40

does not scatter random data evenly throughout the array table[0..39].
On the other hand, it can be shown that the hash function

h(x) = x mod 101

does, in fact, scatter random data evenly throughout the array
table[0..100].

■ How well does the hash function scatter nonrandom data? Even if a
hash function scatters random data evenly, it may have trouble with non-
random data. In general, no matter what hash function you select, it is
always possible that the data will have some unlucky pattern that will result
in uneven scattering. Although there is no way to guarantee that a hash
function will scatter all data evenly, you can greatly increase the likelihood
of this behavior.

As an example, consider the following scheme:

table[0..99] is the hash table, and
the hash function is h(x) = first two digits of x

If every ID number is equally likely, h will scatter the search keys evenly
throughout the array. But what if every ID number is not equally likely?
For instance, a company might assign employee IDs according to depart-
ment, as follows:

10xxxxx Sales
20xxxxx Customer Relations
. . .
90xxxxx Data Processing

Under this assignment, only 9 out of the 100 array locations would
contain any items at all. Further, those locations corresponding to the
largest departments (Sales, for example, which corresponds to
table[10]) would contain more items than those locations correspond-
ing to the smallest departments. This scheme certainly does not scatter
the data evenly.

A function that does 
not scatter random 
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A function that does 
scatter random data 
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Much research has been done into the types of hash functions that you
should use to guard against various types of patterns in the data. The
results of this research are really in the province of more advanced courses,
but two general principles can be noted here:

1. The calculation of the hash function should involve the entire search key.
Thus, for example, computing a modulo of the entire ID number is 
much safer than using only its first two digits.

2. If a hash function uses modulo arithmetic, the base should be prime; that
is, if h is of the form

h(x) = x mod tableSize

then tableSize should be a prime number. This selection of tableSize is a
safeguard against many subtle kinds of patterns in the data (for exam-
ple, search keys whose digits are likely to be multiples of one another).
Although each application can have its own particular kind of patterns
and thus should be analyzed on an individual basis, choosing tableSize
to be prime is an easy way to safeguard against some common types of
patterns in the data.

Table Traversal: An Inefficient Operation 
under Hashing
For many applications, hashing provides the most efficient implementation of
the ADT table. One important table operation—traversal in sorted order—
performs poorly when hashing implements the table. As mentioned earlier, a
good hash function scatters items as randomly as possible throughout the
array, so that no ordering relationship exists between the search keys that hash
into table[i] and those that hash into table[i + 1]. As a consequence, if
you must traverse the table in sorted order, you first would have to sort the
items. If sorting were required frequently, hashing would be a far less attractive
implementation than a search tree.

Traversing a table in sorted order is really just one example of a whole class
of operations that hashing does not support well. Many similar operations that
you often wish to perform on a table require that the items be ordered. For
example, consider an operation that must find the table item with the smallest
or largest value in its search key. If you use a search-tree implementation, these
items are in the leftmost and rightmost nodes of the tree, respectively. If you
use a hashing implementation, however, you do not know where these items
are—you would have to search the entire table. A similar type of operation is a
range query, which requires that you retrieve all items whose search keys fall
into a given range of values. For example, you might want to retrieve all items
whose search keys are in the range 129 to 755. This task is relatively easy to
perform by using a search tree (see Exercise 3), but if you use hashing, there is
no efficient way to answer the range query.

General require-
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In general, if an application requires any of these ordered operations, you
should probably use a search tree. Although the tableRetrieve, tableInsert,
and tableDelete operations are somewhat more efficient when you use hashing
to implement the table instead of a balanced search tree, the balanced search tree
supports these operations so efficiently itself that, in most contexts, the difference
in speed for these operations is negligible (whereas the advantage of the search tree
over hashing for the ordered operations is significant).

In the context of external storage, however, the story is different. For data
that is stored externally, the difference in speed between hashing’s implemen-
tation of tableRetrieve and a search tree’s implementation may well be sig-
nificant. In an external setting, it is not uncommon to see a hashing
implementation of the tableRetrieve operation and a search-tree implemen-
tation of the ordered operations used simultaneously.

The JCF Hashtable and TreeMap Classes
Two of the ADTs discussed in this chapter have a direct implementation in the
JCF. The first, Hashtable, is a hash table implementation, and the second,
TreeMap, is a red-black tree implementation. Both of these implementations are
contained in the Map hierarchy portion of the JCF as discussed in the last chapter.

The Hashtable Class
As discussed in the hash table section earlier in this chapter, the JCF Hashtable
class maps keys to values. The objects used as keys and values must be not be
null. As suggested in the implementation of the hash table presented in this
chapter, the method hashCode, as inherited from the class object is used to gen-
erate a hash index. If you wish to use a different hashing algorithm, you must
override the hashCode method in the class used for the keys. The equals
method for the keys should also be redefined accordingly.

Here is a partial listing of the Hashtable class:

public class Hashtable<K,V>
extends Dictionary<K,V>
implements Map<K,V>, Cloneable, Serializable {

  Hashtable() 
    // Constructs a new, empty hashtable with a default
    // capacity (11) and load factor, which is 0.75. 

  Hashtable(int initialCapacity) 
    // Constructs a new, empty hashtable with the specified
    // capacity and load factor, which is 0.75. 

  Hashtable(int initialCapacity, float loadFactor) 
    // Constructs a new, empty hashtable with the specified
    // initial capacity and the specified load factor. 

Hashing versus bal-
anced search trees
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void clear() 
    // Clears this hashtable so that it contains no keys. 

boolean contains(Object value) 
    // Tests if some key maps into the specified value in this 
    // hashtable. 

boolean containsKey(Object key) 
    // Tests if the specified object is a key in this 
    //  hashtable.

boolean containsValue(Object value) 
    // Returns true if this Hashtable maps one or more keys to
    // this value. 

  Set<Map.Entry<K,V>> entrySet() 
    // Returns a Set view of the entries contained in this
    // Hashtable. 

  V get(Object key) 
    // Returns the value to which the specified key is mapped
    // in this Hashtable. 

boolean isEmpty() 
    // Tests if this hashtable maps no keys to values. 

  Set<K> keySet() 
    // Returns a Set view of the keys contained in this
    // Hashtable. 

  V put(K key, V value) 
    // Maps the specified key to the specified value in this
    // Hashtable. 

void putAll(Map<? extends K,? extends V> t)
    // Copies all of the mappings from the specified Map to 
    // this Hashtable. These mappings will replace any 
    // mappings that this Hashtable had for any of the keys 
    // currently in the specified Map. 

protected void rehash()
    // Increases the capacity of and internally reorganizes 
    // this Hashtable, in order to accommodate and access its 
    // entries more efficiently. 
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  V remove(Object key) 
    // Removes the key (and its corresponding value) from this 
    // Hashtable. 

int size() 
    // Returns the number of keys in this Hashtable. 

  String toString() 
    // Returns a string representation of this Hashtable 
    // object in the form of a set of entries, enclosed in
    // braces and separated by the ASCII characters ", "
    // (comma and space). 

  Collection<V> values() 
    // Returns a collection view of the values contained in 
    // this map.

} // end HashTable

Note that the constructors for the HashTable can be used to specify an
initial capacity and a load factor. The initial capacity is the number of
buckets in the hash table when it is first created, with the default value of
11. Like the implementation shown in this chapter for a hash table, the col-
lision-resolution method used is separate chaining, leading to a sequential
search within each bucket when a collision occurs. The load factor is a
measure used to indicate how full the table is allowed to get before the capacity is
increased automatically (which is implementation dependent). The default load
factor is 0.75, which is considered to be a value that offers a good tradeoff
between time and space costs. The implementation guarantees no automatic
rehashing of the table will occur as long as the capacity exceeds the number of
entries divided by the load factor.  

A rehashing of the table can also be done by calling the rehash method.
But understand that rehashing the table is considered to be an expensive oper-
ation—done automatically or by request. Hence, it is important to choose an
initial capacity that is realistic with respect to the number of entries expected in
the hash table.

Here is a simple example that creates a hash table that maps names to ages.
It uses the names as the keys, and the ages as the values: 

  // Placing items into the hash table
  ht.put("Sarah", 17);
  ht.put("Mike", 57);
  ht.put("Janet", 51);
  ht.put("Andrew", 20);

  Hashtable<String, Integer> ht = new Hashtable<String, Integer>();
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  // Retrieving items from the hash table
  System.out.println("Janet  => " + ht.get("Janet"));
  System.out.println("Mike   => " + ht.get("Mike"));
  System.out.println("Nobody => " + ht.get("Nobody")); 

The output of the above code is as follows:

Janet  => 51
Mike   => 57
Nobody => null

The TreeMap Class
The JCF TreeMap class is a red-black tree implementation of the SortedMap
interface. The SortedMap interface specifies that when sets of keys, <key, value>
pairs, or values are returned (using the methods keySet, entrySet, and
values respectively), an iteration over the returned set will be based upon an
ascending order of the key values. As we have seen in previous JCF classes, the
ordering of the keys will be based upon either a natural ordering using the
Comparable interface, or a user supplied Comparator object. It is important
that, whether the Comparable interface or a Comparator object is used, their
implementations must be consistent with the equals method. 

The TreeMap implementation guarantees O(log n) time cost for methods
used to insert, retrieve, and remove values in the tree map. It also guarantees
O(log n) time cost for searching the map for a key.

Here is a partial listing of the TreeMap class:

public class TreeMap<K,V>
extends AbstractMap<K,V> 
implements SortedMap<K,V>, Cloneable, Serializable {

  TreeMap() 
    // Constructs a new, empty map, sorted according to the 
    // keys' natural order. 

  TreeMap(Comparator<? super K> c) 
    // Constructs a new, empty map, sorted according to the
    // given comparator. 

void clear() 
    // Removes all mappings from this TreeMap. 

  Comparator<? super K> comparator() 
    // Returns the comparator used to order this map, or null
    // if this map uses its keys' natural order. 
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boolean containsKey(Object key) 
    // Returns true if this map contains a mapping for the 
    // specified key.

boolean containsValue(Object value) 
    // Returns true if this map maps one or more keys to the 
    // specified value. 

  Set<Map.Entry<K,V>> entrySet() 
    // Returns a set view of the mappings contained in this 
    // map. 

  K firstKey() 
    // Returns the first (lowest) key currently in this sorted 
    // map. 

  V get(Object key) 
    // Returns the value to which this map maps the specified 
    // key. 

  SortedMap<K,V> headMap(K toKey) 
    // Returns a view of the portion of this map whose keys 
    // are strictly less than toKey.

  K lastKey() 
    // Returns the last (highest) key currently in this sorted 
    // map. 

  V put(K key, V value) 
    // Associates the specified value with the specified key 
    // in this map. 

void putAll(Map<? extends K,? extends V> map) 
    // Copies all of the mappings from the specified map to 
    // this map. 

  V remove(Object key) 
    // Removes the mapping for this key from this TreeMap if 
    // present. 

int size() 
    // Returns the number of key-value mappings in this 
    // map. 

  SortedMap<K,V> subMap(K fromKey, K toKey) 
    // Returns a view of the portion of this map whose 
    // keys range from fromKey, inclusive, to toKey, 
    // exclusive. 
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  SortedMap<K,V> tailMap(K fromKey) 
    // Returns a view of the portion of this map whose keys 
    // are greater than or equal to fromKey. 

  Collection<V> values() 
    // Returns a collection view of the values contained in 
    // this map. 
}  // end TreeMap

The TreeMap class provides methods to create submaps of a TreeMap. A
submap is like a subset; it is a map that contains a subset of the <key, value>
pairs from the original map. There are three different methods that return sub-
maps, each with a return type of SortedMap. The first, called headMap, returns
a submap whose keys are strictly less than the toKey parameter. The second,
called subMap, creates a submap that contains a range of map elements that are
greater than or equal to the key fromKey, but less than the value toKey. Lastly,
the method tailMap creates a submap whose keys are greater than or equal to
the parameter fromKey.

Below is a simple example that uses a TreeMap to store phone book entries
and print all of the entries that begin with the letter “H.”

  TreeMap<String, String> phoneBook = 
new TreeMap<String, String>();

  phoneBook.put("Smith, Jackson", "212-555-4444");
  phoneBook.put("Prichard, Marlene F.", "806-555-6565");
  phoneBook.put("Hayden, Sarah", "401-555-5220");
  phoneBook.put("Records, H.", "445-555-3241");
  phoneBook.put("Harrington, J. R.", "617-555-1962");
  phoneBook.put("Sousa, Keith", "252-555-0607");

  // Return all of the entries such that "H" <= key value < 
  // "I", in other words, all of the names that start with H
  SortedMap results = phoneBook.subMap("H","I");

if (results.isEmpty()) {

  } else {
    // Set up an iterator so we can print the entries in 
    // result
    Iterator<Map.Entry<String, String>> iter = 

    Map.Entry<String, String> entry;
while (iter.hasNext()) {

      entry = iter.next();

    }  // end while
  }  // end if

     System.out.println("Sorry, no names beginning with H found.");

                                        results.entrySet().iterator();

      System.out.println(entry.getKey() + "\t: " + entry.getValue());



788  Chapter 13 Advanced Implementations of Tables

The output of the above program is:

Harrington, J. R.  : 617-555-1962
Hayden, Sarah      : 401-555-5220

13.3 Data with Multiple Organizations

Many applications require a data organization that simultaneously supports
several different data-management tasks. One simple example involves a
waiting list of customers, that is, a queue of customer records. In addition to
requiring the standard queue operations isEmpty, enqueue, dequeue, and
peek, suppose that the application frequently requires a listing of the customer
records in the queue. This listing is more useful if the records appear sorted by
customer name. You thus need a traversal operation that visits the customer
records in sorted order.

This scenario presents an interesting problem. If you simply store the cus-
tomer records in a queue, they will not, in general, be sorted by name. If, on
the other hand, you just store the records in sorted order, you will be unable
to process the customers on a first-come, first-served basis. Apparently, this
problem requires you to organize the data in two different ways.

One solution is to maintain two independent data structures, one orga-
nized to support the sorted traversal and the other organized to support the
queue operations. Figure 13-51 depicts reference-based implementations of a
sorted linked list of customer records and a queue of the same records. The
reference-based data structures are a good choice because they do not require
an estimate of the maximum number of customer records that must be stored.
Note that although figures throughout the text have shown the data within
the nodes of the data structure, in reality it is the references to the objects that
are actually stored in the data structure. As Figure 13-51 shows, the two data
structures share one set of data items.

How well does this scheme support the required operations? The opera-
tions that only retrieve data are easy to perform and require no coordination
between the two data structures. You can obtain a sorted list of customer
records by traversing the sorted linked list, and you can perform the queue
peek operation by inspecting the record at the front of the queue.

The insertion and deletion operations are, however, more difficult to
perform because they must modify both data structures. That is, the insertion
and deletion operations are done separately on the two data structures.

The insertion operation has two steps:

1. Insert the new customer record at the back of the queue. This step
requires only a few reference changes.

2. Insert the new customer record into its proper position in the sorted
linked list. This step requires a traversal of the sorted linked list.
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Similarly, the deletion operation has two steps:

1. Delete the customer at the front of the queue, but retain a copy of the
name for the next step. This step requires only a few reference changes.
Note that this deletion removes a node from the queue but does not deal-
locate the customer records as it is still referenced by the sorted list.

2. Search the sorted linked list for the name just removed from the queue,
and delete from the list the customer record containing this name. This
step requires a traversal of the sorted linked list.

Thus, although the scheme efficiently supports a traversal of the sorted list
and the queue peek operation, insertion and deletion require a search of the
sorted linked list (whereas in a queue alone enqueue and dequeue require
only a small, constant number of steps). Can you improve on this scheme? One
possibility is to store the customer records in a binary search tree rather than a

Able Baker Jones Smith Wilson

queueRef

listHead

Two data structures that share the same data: (a) a sorted linked list; (b) a reference-based queue
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sorted linked list. This approach would allow you to perform the second steps
of the insertion and deletion operations much more efficiently. While the
binary search tree strategy is certainly an improvement over the original
scheme, the insertion and deletion operations would still require significantly
more work than they would for a normal queue.

A different kind of scheme, one that supports the deletion operation
almost as efficiently as if you were maintaining only a queue, is possible by
allowing the data structures to communicate with each other. This concept is
demonstrated here first with a sorted linked list and a queue, and then with
more-complex structures, such as a binary search tree.

In the data structure shown in Figure 13-52, the sorted linked list con-
tains references to customer records, and the queue contains references to
the nodes containing the customer records. That is, each entry of the queue
references the node in the sorted linked list for the customer at the given
queue position. As you will soon see, this scheme significantly improves the
efficiency of the dequeue operation.

Interdependent data 
structures provide a 
better way to 
support a multiple 
organization of data

listHead

queueRef
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A queue referencing a sorted linked list

FIGURE 13-52
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The efficiency of a traversal of the sorted list and the queue’s peek and
enqueue operations does not differ significantly from that of the original
scheme that Figure 13-51 depicts. You still traverse the sorted linked list as
before. However, you perform peek and enqueue as follows:

+peek():ItemType

  Let nodeRef be the reference stored at the front of
      the queue (nodeRef references the node, which is 
      in the sorted linked list, that contains the 
      record for the customer at the front of the 
      queue)

return item in the node that nodeRef references

+enqueue(in newItem:ItemType)

  Find the proper position for newItem in the sorted 
      linked list
  Insert a node that contains newItem into this 
      position
  Insert a reference to the new node at the back of 
      the queue

The real benefit of the new scheme is in the implementation of the
dequeue operation:

+dequeue()

  Delete the item at the front of the queue and
      retain its reference nodeRef (nodeRef 
      references the node that contains the customer 
      record to be deleted)

  Delete from the sorted linked list the node
      that nodeRef references

Because the front of the queue contains a reference to the node N that you
want to delete from the sorted linked list, there is no need to search the linked
list. You have a reference to the appropriate node, and all you need to do is
delete it.

There is one big problem, however. Because you are able to go directly to
node N without traversing the linked list from its beginning, you have no trail-
ing reference to the node that precedes N on the list! Recall that you must
have a trailing reference to delete N. As the scheme now stands, the only way
to obtain the trailing reference is to traverse the linked list from its beginning,
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but this requirement negates the advantage gained by having the queue refer-
ence the linked list. However, as you saw in Chapter 5, you can solve this
problem by replacing the singly linked list in Figure 13-52 with a doubly
linked list, as shown in Figure 13-53. (See Programming Problem 8.)

To summarize, you have seen a fairly good scheme for implementing the
queue operations plus a sorted traversal. The only operation whose efficiency
you might improve significantly is enqueue, since you still must traverse the
linked list to find the proper place to insert a new customer record.

The choice to store the customer records in a linear linked list was made to
simplify the discussion. A more efficient scheme has the queue reference a
binary search tree rather than a linked list. This data structure allows you to
perform the enqueue operation in logarithmic time, assuming that the tree
remains balanced. To support the dequeue operation efficiently, however, you
need a doubly linked tree. That is, each node in the tree must reference its
parent so that you can easily delete the node that the front of the queue refer-
ences. Figure 13-54 illustrates this data structure; its implementation, which is
somewhat difficult, is the subject of Programming Problem 9.

A doubly linked list 
is required

listHead

queueRef

Able Baker Jones Smith Wilson

A queue referencing into a doubly linked list

FIGURE 13-53
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1. A 2-3 tree and a 2-3-4 tree are variants of a binary search tree. The internal nodes
of a 2-3 tree can have either two or three children. The internal nodes of a 2-3-4
tree can have either two, three, or four children. Allowing the number of children
to vary permits the insertion and deletion algorithms to maintain easily the balance
of the tree.

2. The insertion and deletion algorithms for a 2-3-4 tree require only a single pass
from root to leaf and, therefore, are more efficient than the corresponding algo-
rithms for a 2-3 tree.

queueRef

treeRoot

Able

Baker

Jones

Smith

Wilson

A queue referencing a doubly linked binary search tree

FIGURE 13-54

Summary
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3. A red-black tree is a binary tree representation of a 2-3-4 tree that requires less
storage than a 2-3-4 tree. Insertions and deletions for a red-black tree are more
efficient than the corresponding operations on a 2-3-4 tree.

4. An AVL tree is a binary search tree that is guaranteed to remain balanced. The
insertion and deletion algorithms perform rotations in the event that the tree starts
to stray from a balanced shape.

5. Hashing as a table implementation calculates where the data item should be rather
than searching for it. Hashing allows for very efficient retrievals, insertions, and
deletions.

6. The hash function should be extremely easy to compute—it should require only a
few operations—and it should scatter the search keys evenly throughout the hash
table.

7. A collision occurs when two different search keys hash into the same array location.
Two ways to resolve collisions are through probing and chaining.

8. Hashing does not efficiently support operations that require the table items to be
ordered—for example, traversing the table in sorted order.

9. When table operations such as traversal are not important to a particular applica-
tion, if you know the maximum number of table items and if you have ample stor-
age, hashing is a table implementation that is simpler and faster than balanced
search tree implementations. Tree implementations, however, are dynamic and do
not require you to estimate the maximum number of table items.

10. You can impose several independent organizations on a given set of data. For
example, you can store records in a sorted doubly linked list and impose a FIFO
order by using a queue of references to the list.

1. Even though search trees that allow their nodes to have more than two children
are shorter than binary search trees, they are not necessarily easier to search: More
comparisons are necessary at each node to determine which subtree should be
searched next.

2. A hashing scheme, in general, must provide a means of resolving collisions. Choose
a hash function that keeps the number of collisions to a minimum. You should be
careful to avoid a hash function that will map more items into one part of the hash
table than into another.

3. To improve the performance of hashing, either change the hash function or
increase the size of the hash table. Do not use complex collision-resolution
schemes.

4. Hashing is not a good table implementation if you frequently require operations
that depend on some order of the table’s items. For example, if you frequently
need to either traverse the table in sorted order or find the item with the largest
search-key value, you probably should not use hashing.

Cautions
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1. What is the result of inserting 5, 40, 10, 20, 15, and 30—in the order given—into
an initially empty 2-3 tree? Note that insertion of one item into an empty 2-3 tree
will create a single node that contains the inserted item.

2. a. What is the result of deleting the 10 from the 2-3 tree that you created in Self-
Test Exercise 1?

b. What is the result of inserting 3 and 4 into the 2-3 tree that you created in Self-
Test Exercise 1?

3. a. Repeat Self-Test Exercise 1 for a 2-3-4 tree.

b. Insert 3 and 4 into the tree that you created in Part a.

4. What red-black tree represents the 2-3-4 tree in Figure 13-27a?

5. If your application of the ADT table involves only retrieval—such as the application
in Scenario B of Chapter 12 that searched a thesaurus—what tree would provide
for the most efficient table implementation: a balanced binary search tree, a 2-3
tree, a 2-3-4 tree, or a red-black tree?

6. Why does a node in a red-black tree require less memory than a node in a 2-3-4 tree?

7. Write the pseudocode for the tableDelete operation when linear probing is used
to implement the hash table.

8. What is the probe sequence that double hashing uses when 

h1(key) = key mod 11, h2(key) = 7 – (key mod 7), and key = 19

9. If h(x) = x mod 7 and separate chaining resolves collisions, what does the hash
table look like after the following insertions occur: 8, 10, 24, 15, 32, 17? Assume
that each table item contains only a search key.

1. Execute the following sequence of operations on an initially empty ADT table t
that is implemented as 

a. A binary search tree

b. A 2-3 tree

c. A 2-3-4 tree

d. A red-black tree

e. An AVL tree

and show the underlying tree after each operation:

t.tableInsert(17)
t.tableInsert(78)
t.tableInsert(20)
t.tableInsert(57)
t.tableInsert(51)

Self-Test Exercises

Exercises



796  Chapter 13 Advanced Implementations of Tables

t.tableDelete(17)
t.tableInsert(60)
t.tableInsert(70)
t.tableInsert(40)
t.tableDelete(57)
t.tableInsert(90)
t.tableInsert(19)
t.tableDelete(20)
t.tableDelete(70)

2. What are the advantages of implementing the ADT table with a 2-3 tree instead of
a binary search tree? Why do you not, in general, maintain a completely balanced
binary search tree?

3. Write a pseudocode method that performs a range query for a 2-3 tree. That is, the
method should visit all items that have a search key in a given range of values (such
as all values between 100 and 1,000).

4. Given the following 2-3 tree in Figure 13-55, draw the tree that results after insert-
ing m, a, d, x, and z into the tree.

5. Given the following 2-3 tree in Figure 13-56 draw the tree that results after
removing r, e, h, and b from the tree.

s

g j v

f h q r t u w

A 2-3 Tree for Exercise 4

FIGURE 13-55

q

n

f k p r

b e h m o w

A 2-3 Tree for Exercise 5

FIGURE 13-56
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6. Construct an red and black tree with following elements:

13, 8, 7, 11, 6, 17, 15, 25, 22, 27.

7. Assume that the tree in Figure 13-5b is a 2-3-4 tree, and insert 39, 38, 37, 36, 35,
34, 33, and 32 into it. What 2-3-4 tree results?

8. Write pseudocode for the insertion, deletion, retrieval, and traversal operations for
a 2-3-4 tree.

9. Write a program which stores the elements in a hashed list, after reading them from
a user. If any collision occurs, it resolves it by quadratic probing.

10. What 2-3-4 tree does the red-black tree in Figure 13-57 represent?

11. Write pseudocode for the insertion, deletion, retrieval, and traversal operations for
a red-black tree.

12. Construct an AVL tree with the following elements: 9, 20, 10, 40, 36, 47, 16, and 12.

13. Write pseudocode for the table operations tableInsert, tableDelete, and
tableRetrieve when the implementation uses hashing and linear probing to
resolve collisions.

14. Write pseudocode for the tableDelete operation when the implementation uses
hashing and separate chaining to resolve collisions.

15. The success of a hash-table implementation of the ADT table is related to the
choice of a good hash function. A good hash function is one that is easy to compute
and that will evenly distribute the possible data. Comment on the appropriateness of
the following hash functions. What patterns would hash to the same location?

a. The hash table has size 2,048. The search keys are English words. The hash
function is

h(key) = (sum of positions in alphabet of key’s letters) mod 2048

50

37

39 70

85

90

10089

87

8065

60

40

45

3835

33 36

3432

10

20

30

A red-black tree for Exercise 10

FIGURE 13-57
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b. The hash table has size 2,048. The keys are strings that begin with a letter. The
hash function is

h(key) = (position in alphabet of first letter of key) mod 2048

Thus, “BUT” maps to 2. How appropriate is this hash function if the strings are 
random? What if the strings are English words?

c. The hash table is 10,000 entries long. The search keys are integers in the range
0 through 9999. The hash function is

h(key) = (key * random) truncated to an integer 

where random represents a sophisticated random-number generator that 
returns a real value between 0 and 1.

d. The hash table is 10,000 entries long (HASH_TABLE_SIZE is 10000). The search
keys are integers in the range 0 through 9999. The hash function is given by the
following Java method:

public int hashIndex(int x) {
for (int i = 1; i <= 1000000; ++i) {

    x = (x * x) % HASH_TABLE_SIZE;
  }  // end for

return x;
}  // end hashIndex

1. Implement the ADT table by using a 2-3-4 tree.

2. Implement the ADT table by using a 2-3 tree. (This implementation is more diffi-
cult than the 2-3-4 implementation.)

3. Implement the ADT table by using a red-black tree.

4. Exercise 5 in Chapter 12 describes a compiler’s symbol table, which keeps track of
the program’s identifiers. Write an implementation of a symbol table that uses
hashing. Use the hash function h(x) = x mod tableSize and the algorithm that
involves Horner’s rule, as described in the section “Hash Functions,” to convert a
variable into an integer x. Resolve collisions by using separate chaining. (See the
code given on pages 772 to 774 of this chapter.)

Since you add an item to the table only if it is not already present, does the 
time required for an insertion increase?

5. Write a program that uses a hashing algorithm to create an inventory. After creating
the hashed inventory list, write a driven code that allows the user to:

a. Search for any element in the list

b. Insert a new element into the list (with a collision resolving mechanism)

c. Display the contents of the inventory

Programming Problems
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6. Repeat Programming Problem 4, but allocate the hash table dynamically. If the
hash table becomes more than half full, increase its size to the first prime number
greater than 2 * tableSize.

7. Repeat Programming Problem 4, but experiment with variations of chaining. For
example, you could use a binary search tree or a 2-3-4 tree instead of a linked list.

8. Implement the operations of the ADT queue as well as a sorted traversal operation
for a queue that references a doubly linked list, as shown in Figure 13-53.

9. Implement the operations of the ADT queue as well as a sorted traversal operation
for a queue that references a doubly linked binary search tree, as shown in Figure
13-54. You will need the insertion and deletion operations for a binary search tree
that contains parent references, as discussed in Exercise 34 of Chapter 11.

10. Repeat Programming Problem 4 of Chapter 11, using the ADT table as the
address book. Use a balanced search tree to implement the table.

11. Implement the symbol table described in Exercise 5 of Chapter 12 using hashing.

12. Modify the HashMap implementation found in this chapter so that the user can
specify a load factor and a capacity as seen in the JCF Hashtable class. Be sure to
include a rehash method as described in the Hashtable documentation.
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CHAPTER 14

Graphs

raphs are an important mathematical concept that
have significant applications not only in computer

science, but also in many other fields. You can view a graph
as a mathematical construct, a data structure, or an
abstract data type. This chapter provides an introduction to
graphs that allows you to view a graph in any of these three
ways. It also presents the major operations and applications
of graphs that are relevant to the computer scientist.

14.1 Terminology

14.2 Graphs as ADTs
Implementing Graphs
Implementing a Graph Class Using 

the JCF

14.3 Graph Traversals
Depth-First Search
Breadth-First Search
Implementing a BFS Iterator Using 

the JCF

14.4 Applications of Graphs
Topological Sorting
Spanning Trees
Minimum Spanning Trees
Shortest Paths
Circuits
Some Difficult Problems

Summary

Cautions

Self-Test Exercises

Exercises

Programming Problems

G
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14.1 Terminology

You are undoubtedly familiar with graphs: Line graphs, bar graphs, and pie
charts are in common use. The simple line graph in Figure 14-1 is an example
of the type of graph that this chapter considers: a set of points that are joined
by lines. Clearly, graphs provide a way to illustrate data. However, graphs also
represent the relationships among data items, and it is this feature of graphs
that is important here.

A graph G consists of two sets: a set V of vertices, or nodes, and a set E
of edges that connect the vertices. For example, the campus map in Figure
14-2a is a graph whose vertices represent buildings and whose edges represent
the sidewalks between the buildings. This definition of a graph is more general
than the definition of a line graph. In fact, a line graph, with its points and
lines, is a special case of the general definition of a graph.

A subgraph consists of a subset of a graph’s vertices and a subset of its
edges. Figure 14-2b shows a subgraph of the graph in Figure 14-2a. Two verti-
ces of a graph are adjacent if they are joined by an edge. In Figure 14-2b, the
Library and the Student Union are adjacent. A path between two vertices is a
sequence of edges that begins at one vertex and ends at another vertex. For
example, there is a path in Figure 14-2a that begins at the Dormitory, leads first
to the Library, then to the Student Union, and finally back to the Library.
Although a path may pass through the same vertex more than once, as the path
just described does, a simple path may not. The path Dormitory–Library–
Student Union is a simple path. A cycle is a path that begins and ends at the
same vertex; a simple cycle is a cycle that does not pass through other vertices
more than once. The path Library–Student Union–Gymnasium–Dormitory–
Library is a simple cycle in the graph in Figure 14-2a. A graph is connected if
each pair of distinct vertices has a path between them. That is, in a connected
graph you can get from any vertex to any other vertex by following a path.
Figure 14-3a shows a connected graph. Notice that a connected graph does not
necessarily have an edge between every pair of vertices. Figure 14-3b shows a
disconnected graph.

An ordinary line graph

FIGURE 14-1

G = {V, E}; that is, a 
graph is a set of ver-
tices and edges

Adjacent vertices 
are joined by an 
edge

A path between two 
vertices is a 
sequence of edges

A simple path
passes through a 
vertex only once

A cycle is a path 
that begins and 
ends at the same 
vertex

A connected graph 
has a path between 
each pair of distinct 
vertices
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In a complete graph, each pair of distinct vertices has an edge between
them. The graph in Figure 14-3c is complete. Clearly, a complete graph is also
connected, but the converse is not true; notice that the graph in Figure 14-3a
is connected but is not complete.

Since a graph has a set of edges, a graph cannot have duplicate edges
between vertices. However, a multigraph, as illustrated in Figure 14-4a, does
allow multiple edges. A graph’s edges cannot begin and end at the same
vertex. Figure 14-4b shows such an edge, which is called a self edge, or loop.

You can label the edges of a graph. When these labels represent numeric
values, the graph is called a weighted graph. The graph in Figure 14-5a is a
weighted graph whose edges are labeled with the distances between cities.

All of the previous graphs are examples of undirected graphs because the
edges do not indicate a direction. That is, you can travel in either direction
along the edges between the vertices of an undirected graph. In contrast, each

Dormitory

Gymnasium

Student Union

Library

Dormitory

Student Union

Library

(a) (b)

(a) A campus map as a graph; (b) a subgraph

FIGURE 14-2

(a) (b) (c)

Graphs that are (a) connected; (b) disconnected; and (c) complete

FIGURE 14-3

A complete graph 
has an edge 
between each pair 
of distinct vertices
A complete graph is 
connected

A multigraph has 
multiple edges and 
so is not a graph

The edges of a 
weighted graph 
have numeric labels

Each edge in a 
directed graph has 
a direction
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edge in a directed graph, or digraph, has a direction and is called a directed
edge. Although each distinct pair of vertices in an undirected graph has only one
edge between them, a directed graph can have two edges between a pair of verti-
ces, one in each direction. For example, the airline flight map in Figure 14-5b is
a directed graph. There are flights in both directions between Providence and
New York, but, although there is a flight from San Francisco to Albuquerque,
there is no flight from Albuquerque to San Francisco. You can convert an undi-
rected graph to a directed graph by replacing each edge with two edges that
point in opposite directions.

(a) (b)

(a) A multigraph is not a graph; (b) a self edge is not allowed in a graph

FIGURE 14-4

San Francisco

Albuquerque

New York

Providence

2600

900
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(a)

San Francisco

Albuquerque

New York

Providence(b)

(a) A weighted graph; (b) a directed graph

FIGURE 14-5
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The definitions just given for undirected graphs apply also to directed
graphs, with changes that account for direction. For example, a directed path
is a sequence of directed edges between two vertices, such as the directed path
in Figure 14-5b that begins in Providence, goes to New York, and ends in San
Francisco. However, the definition of adjacent vertices is not quite as obvious
for a digraph. If there is a directed edge from vertex x to vertex y, then y is
adjacent to x. (Alternatively, y is a successor of x, and x is a predecessor of y.)
It does not necessarily follow, however, that x is adjacent to y. Thus, in Figure
14-5b, Albuquerque is adjacent to San Francisco, but San Francisco is not
adjacent to Albuquerque.

14.2 Graphs as ADTs

You can treat graphs as abstract data types. Insertion and deletion operations
are somewhat different for graphs than for other ADTs that you have studied
in that they apply to either vertices or edges. You can define the ADT graph so
that its vertices either do or do not contain values. A graph whose vertices do
not contain values represents only the relationships among vertices. Such
graphs are not unusual, because many problems have no need for vertex
values. However, the following operations of the ADT graph do assume that
the graph’s vertices contain values.

Several variations of this ADT are possible. For example, if the graph is
directed, you can replace occurrences of “edges” in the previous operations
with “directed edges.” You can also add traversal operations to the ADT.
Graph-traversal algorithms are discussed in the section “Graph Traversals.”

In a directed graph, 
vertex y is adjacent 
to vertex x if there is 
a directed edge 
from x to y

Operations of the ADT Graph
1. Create an empty graph.
2. Determine whether a graph is empty.
3. Determine the number of vertices in a graph.
4. Determine the number of edges in a graph.
5. Determine whether an edge exists between two given vertices.

For weighted graphs, return weight value.
6. Insert a vertex in a graph whose vertices have distinct search

keys that differ from the new vertex’s search key.
7. Insert an edge between two given vertices in a graph.
8. Delete a particular vertex from a graph and any edges between

the vertex and other vertices.
9. Delete the edge between two given vertices in a graph.

10. Retrieve from a graph the vertex that contains a given search key.

KEY CONCEPTS
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Implementing Graphs
The two most common implementations of a graph are the adjacency matrix
and the adjacency list. An adjacency matrix for a graph with n vertices num-
bered 0, 1, . . . , n – 1 is an n by n array matrix such that matrix[i][j] is 1
(or true) if there is an edge from vertex i to vertex j, and 0 (or false) other-
wise. Figure 14-6 shows a directed graph and its adjacency matrix. Notice that
the diagonal entries matrix[i][i] are 0, although sometimes it can be useful
to set these entries to 1. You should choose the value that is most convenient
for your application. 

When the graph is weighted, you can let matrix[i][j] be the weight that
labels the edge from vertex i to vertex j, instead of simply 1, and let
matrix[i][j] equal ∞ instead of 0 when there is no edge from vertex i to
vertex j. For example, Figure 14-7 shows a weighted undirected graph and its
adjacency matrix. Notice that the adjacency matrix for an undirected graph is
symmetrical; that is, matrix[i][j] equals matrix[j][i].

Our definition of an adjacency matrix does not mention the value, if any,
in a vertex. If you need to associate values with vertices, you can use a second
array, values, to represent the n vertex values. The values array is one-
dimensional, and values[i] is the value in vertex i.

Adjacency matrix
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(a) A directed graph and (b) its adjacency matrix

FIGURE 14-6

Vertices can have 
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An adjacency list for a graph with n vertices numbered 0, 1, . . . , n – 1
consists of n linked lists. The i th linked list has a node for vertex j if and only if
the graph contains an edge from vertex i to vertex j. This node can contain the
vertex j’s value, if any. If the vertex has no value, the node needs to contain
some indication of the vertex’s identity. Figure 14-8 shows a directed graph
and its adjacency list. You can see, for example, that vertex 0 (P) has edges to
vertex 2 (R) and vertex 5 (W). Thus, the first linked list in the adjacency list
contains nodes for R and W.

∞

∞

∞

∞

∞

(a) (b) 0 1 2 3
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(a) A weighted undirected graph and (b) its adjacency matrix

FIGURE 14-7
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(a) A directed graph and (b) its adjacency list
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Figure 14-9 shows an undirected graph and its adjacency list. The adjacency
list for an undirected graph treats each edge as if it were two directed edges in
opposite directions. Thus, the edge between A and B in Figure 14-9a appears as
edges from A to B and from B to A in Figure 14-9b. The graph in part a
happens to be weighted; you can include the edge weights in the nodes of the
adjacency list, given in part b.

Which of these two implementations of a graph—the adjacency matrix or
the adjacency list—is better? The answer depends on how your particular
application uses the graph. For example, the two most commonly performed
graph operations are

1. Determine whether there is an edge from vertex i to vertex j

2. Find all vertices adjacent to a given vertex i

The adjacency matrix supports the first operation somewhat more effi-
ciently than does the adjacency list. To determine whether there is an edge
from i to j by using an adjacency matrix, you need only examine the value of
matrix[i][j]. If you use an adjacency list, however, you must traverse the i th

linked list to determine whether a vertex corresponding to vertex j is present.
The second operation, on the other hand, is supported more efficiently by

the adjacency list. To determine all vertices adjacent to a given vertex i, given
the adjacency matrix, you must traverse the i th row of the array; however,
given the adjacency list, you need only traverse the i th linked list. For a graph
with n vertices, the i th row of the adjacency matrix always has n entries,
whereas the i th linked list has only as many nodes as there are vertices adjacent
to vertex i, a number typically far less than n.

Consider now the space requirements of the two implementations. On the
surface it might appear that the matrix implementation requires less memory
than the linked list implementation, because each entry in the matrix is simply
an integer, whereas each linked list node contains both a value to identify the

(a) A weighted undirected graph and (b) its adjacency list

FIGURE 14-9
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vertex and a reference to the next node. The adjacency matrix, however, always
has n2 entries, whereas the number of nodes in an adjacency list equals the
number of edges in a directed graph or twice that number for an undirected
graph. Even though the adjacency list also has n head references, it often
requires less storage than an adjacency matrix.

Thus, when choosing a graph implementation for a particular application,
you must consider such factors as what operations you will perform most fre-
quently on the graph and the number of edges that the graph is likely to con-
tain. For example, Chapter 7 presented the HPAir problem, which was to
determine whether an airline provided a sequence of flights from an origin city
to a destination city. The flight map for that problem, is in fact, a directed
graph and appeared earlier in this chapter in Figure 14-8a. Figures 14-6b and
14-8b show, respectively, the adjacency matrix and adjacency list for this
graph. Because the most frequent operation was to find all cities (vertices)
adjacent to a given city (vertex), the adjacency list would be the more efficient
implementation of the flight map. The adjacency list also requires less storage
than the adjacency matrix, which you can demonstrate as an exercise. 

Implementing a Graph Class Using the JCF
The ADT graph is not included as part of the Java Collections Framework. In
this section, a Graph class will be implemented using classes from the JCF.
Graph classes and their accompanying algorithms can be implemented in many
different ways. The Graph class in this section is an undirected, weighted graph.
It is implemented with an adjacency list, which consists of a vector of maps. The
vector elements represent the vertices of the graph. The map for each vertex
contains element pairs, which consist of an adjacent vertex and an edge weight.
There are numerous choices within the JCF for the actual adjacency list. This
implementation uses the TreeSet class, an implementation of SortedMap. This
allows the list of adjacent vertices (the keys) to be stored in sorted order.

The number of vertices in the graph is determined by an integer argu-
ment passed to the Graph constructor. An Edge class hold the two vertices of
an edge and the edge weight. Many of the methods in the Graph class utilize
the Edge class. For example, the client application can add an edge to the
graph by passing an Edge object to the addEdge method. Here is the code for
the Edge class and the Graph class:

class Edge {

private Integer v, w;    // The vertices of the edge.
private int weight;      // The weight of the edge.

public Edge(Integer first, Integer second, int edgeWeight) {
    // Constructor. Creates an edge from v to w with weight 
    // edgeWeight.
    // Precondition: None.
    // Postcondition: The edge is created.

An adjacency list 
often requires less 
space than an 
adjacency matrix
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    v = first;
    w = second;
    weight = edgeWeight;
  } // end constructor

public int getWeight() {
    // Returns the edge weight

return weight;
  } // end getWeight

public Integer getV() {
    // Returns the first vertex of the edge

return v;
  } // end getV

public Integer getW() {
    // Returns the second vertex of the edge

return w;
  } // end getW
} // end Edge

class Graph {
private int numVertices; // number of vertices in the graph
private int numEdges;    // number of edges in the graph

  // For each vertex, we need to keep track of the edges,
  // so for each edge, we need to store the second vertex and 
  // the edge weight. This can be done as a <key, value> pair, 
  // with the second vertex as the key, and the weight as the 
  // value. The TreeMap data structure is used to store a list 
  // these (key, value) pairs for each vertex, accessible as 
  // adjList.get(v).

private Vector<TreeMap<Integer, Integer>> adjList;

public Graph(int n) {
    // Constructor for weighted graph.
    // Precondition: The number of vertices n should be
    // greater than zero.
    // Postcondition: Initializes the graph with n vertices.
    numVertices = n;
    numEdges = 0;
    adjList = new Vector<TreeMap<Integer, Integer>>();

for (int i=0; i<numVertices; i++) {
      adjList.add(new TreeMap<Integer, Integer>());
    } // end for
  } // end constructor
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public int getNumVertices() {
    // Determines the number of vertices in the graph.
    // Precondition: None.
    // Postcondition: Returns the number of vertices in
    // the graph.

return numVertices;
  } // end getNumVertices

public int getNumEdges() {
    // Determines the number of edges in the graph.
    // Precondition: None.
    // Postcondition: Returns the number of edges in
    // the graph.

return numEdges;
  } // end getNumEdges

public int getEdgeWeight(Integer v, Integer w) {
    // Determines the weight of the edge between vertices
    // v and w.
    // Precondition: The edge must exist in the graph.
    // Postcondition: Returns the weight of the edge.

return adjList.get(v).get(w);
  } // end getWeight

public void addEdge(Integer v, Integer w, int wgt) {
    // Adds an edge from v to w with weight wgt to the graph.
    // Precondition: The vertices contained within
    // edge e exist in the graph.
    // Postcondition: An edge from v to w is part of the 
    // graph.

    // Add the edge to both v's and w's adjacency list
    adjList.get(v).put(w, wgt);
    adjList.get(w).put(v, wgt);
    numEdges++;
  } // end addEdge

public void addEdge(Edge e) {
    // Adds an edge to the graph.
    // Precondition: The vertices contained within
    // edge e exist in the graph.
    // Postcondition: Edge e is part of the graph.

    // Extract the vertices and weight from the edge e
    Integer v = e.getV(); 
    Integer w = e.getW();

int weight = e.getWeight();
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    addEdge(v, w, weight);
  } // end addEdge

public void removeEdge(Edge e) {
    // Removes an edge from the graph.
    // Precondition: The vertices contained in the edge e
    // exist in the graph.
    // Postcondition: Edge e is no longer part of the graph.

    // Extract the vertices from the edge e
    Integer v = e.getV(); 
    Integer w = e.getW();

    // Remove the edge from v's and w's adjacency list 
    adjList.get(v).remove(w);
    adjList.get(w).remove(v);
    numEdges--;
  } // end remove

public Edge findEdge(Integer v, Integer w) {
    // Finds the edge connecting v and w.
    // Precondition: The edge exists.
    // Postcondition: Returns the edge with the weight.

int wgt = adjList.get(v).get(w);
return new Edge(v, w, wgt);

  } // end findEdge

  // package access
  TreeMap<Integer,Integer> getAdjList(Integer v) {
    // Returns the adjacency list for given vertex
    // Precondition: The vertex exists in the graph
    // Postcondition: Returns the associated adjacency
    // list.

return adjList.get(v);
  } // end getAdjList

} // end Graph

The programming problems at the end of the chapter ask you to add other
methods and exception handling to the Graph class, modify the class to repre-
sent a directed graph, and to rewrite the Graph class as a template.

14.3 Graph Traversals

The solution to the HPAir problem in Chapter 7 involved an exhaustive search
of the graph in Figure 14-8a to determine a directed path from the origin
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vertex (city) to the destination vertex (city). The algorithm searchS started at
a given vertex and traversed edges to other vertices until it either found the
desired vertex or determined that no (directed) path existed between the two
vertices.

What distinguishes searchS from a standard graph traversal is that
searchS stops when it first encounters the designated destination vertex. A
graph-traversal algorithm, on the other hand, will not stop until it has visited
all of the vertices that it can reach. That is, a graph traversal that starts at vertex
v will visit all vertices w for which there is a path between v and w. Unlike a
tree traversal, which always visits all of the nodes in a tree, a graph traversal
does not necessarily visit all of the vertices in the graph unless the graph is con-
nected. In fact, a graph traversal visits every vertex in the graph if and only if
the graph is connected, regardless of where the traversal starts. (See Exercise
18.) Thus, you can use a graph traversal to determine whether a graph is
connected.

If a graph is not connected, a graph traversal that begins at vertex v will
visit only a subset of the graph’s vertices. This subset is called the connected
component containing v. You can determine all of the connected components
of a graph by repeatedly starting a traversal at an unvisited vertex.

If a graph contains a cycle, a graph-traversal algorithm can loop indefi-
nitely. To prevent such a misfortune, the algorithm must mark each vertex
during a visit and must never visit a vertex more than once. 

Two basic graph-traversal algorithms, which apply to either directed or
undirected graphs, are presented next. These algorithms visit the vertices in
different orders, but if they both start at the same vertex, they will visit the
same set of vertices. Figure 14-10 shows the traversal order for the two algo-
rithms when they begin at vertex v.

A graph traversal 
visits all of the verti-
ces that it can reach

A graph traversal 
visits all vertices 
only if the graph is 
connected

A connected 
component is the 
subset of vertices 
visited during a tra-
versal that begins at 
a given vertex

v

u xw

q

r s

t

(a) (1)

(2) (7) (8)

(3) (6)

(4) (5)

v

u xw

q

r s

(b) (1)

(2) (3) (4)

(5) (6)

(7) (8)

t

Visitation order for (a) a depth-first search; (b) a breadth-first search

FIGURE 14-10
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Depth-First Search
From a given vertex v, the depth-first search (DFS) strategy of graph traversal
proceeds along a path from v as deeply into the graph as possible before
backing up. That is, after visiting a vertex, a DFS visits, if possible, an unvis-
ited adjacent vertex.

The DFS strategy has a simple recursive form:

+dfs(in v:Vertex)
// Traverses a graph beginning at vertex v by using a
// depth-first search: Recursive version.

   Mark v as visited
for (each unvisited vertex u adjacent to v)

      dfs(u)

The depth-first search algorithm does not completely specify the order in
which it should visit the vertices adjacent to v. One possibility is to visit the
vertices adjacent to v in sorted (that is, alphabetic or numerically increasing)
order. This possibility is natural either when an adjacency matrix represents the
graph or when the nodes in each linked list of an adjacency list are linked in
sorted order.

As Figure 14-10a illustrates, the DFS traversal algorithm marks and then
visits each of the vertices v, u, q, and r. When the traversal reaches a vertex—
such as r—that has no unvisited adjacent vertices, it backs up and visits, if pos-
sible, an unvisited adjacent vertex. Thus, the traversal backs up to q and then
visits s. Continuing in this manner, the traversal visits vertices in the order
given in the figure.

An iterative version of the DFS algorithm is also possible by using a stack:

+dfs(in v:Vertex)
// Traverses a graph beginning at vertex v by using a
// depth-first search: Iterative version.

  s.createStack()

  // push v onto the stack and mark it
  s.push(v)
  Mark v as visited

  // loop invariant: there is a path from vertex v at the
  // bottom of the stack s to the vertex at the top of s

while (!s.isEmpty()) {
if (no unvisited vertices are adjacent to

         the vertex on the top of the stack)
      s.pop()  // backtrack

}

DFS traversal goes 
as far as possible 
from a vertex before 
backing up

Recursive DFS tra-
versal algorithm

Choose an order in 
which to visit adja-
cent vertices

An iterative DFS tra-
versal algorithm 
uses a stack
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else {
      Select an unvisited vertex u adjacent to 
          the vertex on the top of the stack
      s.push(u)
      Mark u as visited

}  // end if
}  // end while

The dfs algorithm is similar to the searchS algorithm of Chapter 7, but the while
statement in searchS terminates when the top of the stack is destination.

For another example of a DFS traversal, consider the graph in Figure 14-11.
Figure 14-12 shows the contents of the stack as the previous method dfs visits
vertices in this graph, beginning at vertex a. Because the graph is connected, a
DFS traversal will visit every vertex. In fact, the traversal visits the vertices in
this order: a, b, c, d, g, e, f, h, i.

The vertex from which a depth-first traversal embarks is the vertex that it
visited most recently. This last visited, first explored strategy is reflected both in
the explicit stack of vertices that the iterative dfs uses and in the implicit stack
of vertices that the recursive dfs generates with its recursive calls.

Breadth-First Search
After visiting a given vertex v, the breadth-first search (BFS) strategy of
graph traversal visits every vertex adjacent to v that it can before visiting any
other vertex. As Figure 14-10b illustrates, after marking and visiting v, the BFS
traversal algorithm marks and then visits each of the vertices u, w, and x. Since
no other vertices are adjacent to v, the BFS algorithm visits, if possible, all
unvisited vertices adjacent to u. Thus, the traversal visits q and t. Continuing in
this manner, the traversal visits vertices in the order given in the figure.

A BFS traversal will not embark from any of the vertices adjacent to v until
it has visited all possible vertices adjacent to v. Whereas a DFS is a last visited,

i

a

g

e

b

c

d

h

f

A connected graph with cycles

FIGURE 14-11

BFS traversal visits 
all vertices adjacent 
to a vertex before 
going forward
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first explored strategy, a BFS is a first visited, first explored strategy. It is not sur-
prising, then, that a breadth-first search uses a queue. An iterative version of
this algorithm follows.

+bfs(in v:Vertex)
// Traverses a graph beginning at vertex v by using a 
// breadth-first search: Iterative version.

  q.createQueue()

  // add v to queue and mark it
  q.enqueue(v)
  Mark v as visited

while (!q.isEmpty()) {
      w = q.dequeue()

      // loop invariant: there is a path from vertex w to 
      // every vertex in the queue q

Node visited___________
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a
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The results of a depth-first traversal, beginning at vertex a, of the graph in Figure 
14-11

FIGURE 14-12

An iterative BFS tra-
versal algorithm 
uses a queue
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for (each unvisited vertex u adjacent to w) {
         Mark u as visited
         q.enqueue(u)

}  // end for
}  // end while

Figure 14-13 shows the contents of the queue as bfs visits vertices in the
graph in Figure 14-11, beginning at vertex a. In general, a breadth-first search
will visit the same vertices as a depth-first search, but in a different order. In
this example, the BFS traversal visits all of the vertices in this order: a, b, f, i, c,
e, g, d, h.

A recursive version of BFS traversal is not as simple as the recursive version
of DFS traversal. Exercise 19 at the end of this chapter asks you to think about
why this is so.

Implementing a BFS Iterator Class Using the JCF
A breadth-first search iterator for the LinkedList class in the previous section
can be implemented using the JCF LinkedList collection. The BFSIterator

Node visited___________
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The results of a breadth-first traversal, beginning at vertex a, of the graph in Figure 
14-11

FIGURE 14-13
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class uses the LinkedList class as a queue to keep track of the order the verti-
ces should be processed to create a breadth-first iteration of the graph. The
BFSIterator has a constructor that given a graph, initiates the methods used
to determine the BFS order of the vertices for the graph. The graph is searched
by processing the vertices from each vertex’s adjacency list in the order that
they were pushed onto the queue. The code for the BFSIterator class follows.

class BFSIterator implements Iterator<Integer> {

private Graph g;          // The graph to be iterated.

private int count;        // Used to mark the order the 
                            // vertices are visited.

private int[] mark;       // Keeps track of the order that
                            // the vertices are visited.

private int iter;         // Used for the iteration.

public BFSIterator(Graph g) {
    // Creates an iterator for the graph g.
    // Precondition: The graph g is a non-empty graph.
    // Postcondition: Completes the Breadth-first search
    // of graph g, ready for iteration.

this.g = g;
    numVertices = g.getNumVertices();
    mark = new int[numVertices];
    Arrays.fill(mark,0,numVertices,-1);

    count = 0;
    iter = -1;
    startSearch();
  } // end constructor

public boolean hasNext() {
    // Determines if there is another vertex in the BFS 
    // iteration of the graph.
    // Precondition: None.
    // Postcondition: Returns true if there are more vertices
    // in the BFS iteration, otherwise returns false.

return (iter >=0) && (iter < numVertices);
  } // end hasNext

public Integer next() throws NoSuchElementException {
    // Returns the next vertex in the BFS iteration
    // of the graph.
    // Precondition: The BFS iteration has more vertices.
    // Postcondition: Returns next element in the BFS 
    // iteration, if none exists, throws an exception.

private int numVertices;  // The number of vertices in the graph.



Graph Traversals 819

if (hasNext()) {
return mark[iter++];

    } else {
throw new NoSuchElementException();

    }   // end if
  } // end next

public void remove() {
    // Not implemented, vertices cannot be removed 
    // from the graph using the iterator.

throw new UnsupportedOperationException();
  } // end remove

protected void startSearch() {
    // Searches each unvisited vertex.
    // Precondition: The vertex exists in the graph.
    // Postcondition: Completes a breadth-first search
    // with each unvisited vertex.

for (int v=0; v < numVertices; v++) {
if (mark[v] == -1) {

        search(v);
      } // end if
    } // end for

    // Breadth-first search completed, initialize
    // iterator.
    iter = 0;
  } // end startSearch

protected void search(Integer vertex) {
    // Traverse the graph beginning at vertex v by using
    // a breadth-first search. 
    // Precondition: The vertex v is in the graph.
    // Postcondition: Completes a breadth-first search 
    // starting from vertex.

    LinkedList<Integer> q = new LinkedList<Integer>();
    TreeMap<Integer, Integer> m;
    Set<Integer> connectedVertices;
    Integer v;

    // This gets it started at vertex v
    q.add(vertex);

while (!q.isEmpty()) {
      v = q.remove();
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if (mark[v] == -1) {
        mark[v] = count++;

        m = g.getAdjList(v);
        connectedVertices = m.keySet();

for (Integer w : connectedVertices) {
if (mark[w] == -1) {

            q.add(w);
          } // end if
        } // end for 
      } // end if

    } // end while
  } // end search

} // end BFS

14.4 Applications of Graphs

There are many useful applications of graphs. This section surveys some of
these common applications.

Topological Sorting
A directed graph without cycles, such as the one in Figure 14-14, has a
natural order. For example, vertex a precedes b, which precedes c. Such a
graph has significance in ordinary life. If the vertices represent academic
courses, the graph represents the prerequisite structure for the courses. For
example, course a is a prerequisite to course b, which is a prerequisite to
both courses c and e. In what order should you take all seven courses so that

ba

d e

g

f

c

A directed graph without cycles

FIGURE 14-14
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you will satisfy all prerequisites? There is a linear order, called a topological
order, of the vertices in a directed graph without cycles that answers this
question. In a list of vertices in topological order, vertex x precedes vertex y
if there is a directed edge from x to y in the graph. 

The vertices in a given graph may have several topological orders. For
example, two topological orders for the vertices in Figure 14-14 are

a, g, d, b, e, c, f

and

a, b, g, d, e, f, c

If you arrange the vertices of a directed graph linearly and in a topological
order, the edges will all point in one direction. Figure 14-15 shows two ver-
sions of the graph in Figure 14-14 that correspond to the two topological
orders just given. 

Arranging the vertices into a topological order is called topological sorting.
There are several simple algorithms for finding a topological order. First, you could
find a vertex that has no successor. You remove from the graph the vertex and all
edges that lead to it, and add it to the beginning of a list of vertices. You add each
subsequent vertex that has no successor to the beginning of the list. When the
graph is empty, the list of vertices will be in topological order. The following
pseudocode describes this algorithm:

+topSort1(in theGraph:Graph)
// Arranges the vertices in graph theGraph into a 
// topological order and places them in list aList
// Returns aList.

   n = number of vertices in theGraph
   for (step = 1 through n) {

  Select a vertex v that has no successors
      aList.add(1, v)

a dg b e c f

cga b d e f

(a)

(b)

The graph in Figure 14-14 arranged according to the topological orders (a) a, g, d,
b, e, c, f and (b) a, b, g, d, e, f, c

FIGURE 14-15

A simple topologi-
cal sorting algorithm
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      Delete from theGraph vertex v and its edges
}  // end for
return aList

When the traversal ends, the list aList of vertices will be in topological
order. Figure 14-16 traces this algorithm for the graph in Figure 14-14. The
resulting topological order is the one that Figure 14-15a represents.

Another algorithm is a simple modification of the iterative depth-first
search algorithm. First you push all vertices that have no predecessor onto a
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add it to aList
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d b e c f
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a

Remove a from theGraph;
add it to aList

a g d b e c f

Graph theGraph List aList

A trace of topSort1 for the graph in Figure 14-14
FIGURE 14-16
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stack. Each time you pop a vertex from the stack, you add it to the beginning
of a list of vertices. The pseudocode for this algorithm is

+topSort2(in theGraph:Graph):List
// Arranges the vertices in graph theGraph into a 
// topological order and places them in list aList.
// Returns aList.

   s.createStack()
for (all vertices v in the graph theGraph) {

if (v has no predecessors) {
  s.push(v)

         Mark v as visited
}  // end if

}  // end for

while (!s.isEmpty()) {
if (all vertices adjacent to the vertex on

            the top of the stack have been visited) {
  v = s.pop()

         aList.add(1, v)
}
else {
  Select an unvisited vertex u adjacent to 

           the vertex on the top of the stack
         s.push(u)
         Mark u as visited

}  // end if
}  // end while
return aList

When the traversal ends, the list aList of vertices will be in topological
order. Figure 14-17 traces this algorithm for the graph in Figure 14-14. The
resulting topological order is the one that Figure 14-15b represents.

Spanning Trees
A tree is a special kind of undirected graph, one that is connected but has
no cycles. Each vertex in the graph in Figure 14-3a could be the root of a
different tree. Although all trees are graphs, not all graphs are trees. The
nodes (vertices) of a tree have a hierarchical arrangement that is not
required of all graphs.

A spanning tree of a connected undirected graph G is a subgraph of G
that contains all of G’s vertices and enough of its edges to form a tree. For
example, Figure 14-18 shows a spanning tree for the graph in Figure 14-11.
The dashed lines in Figure 14-18 indicate edges that were omitted from the
graph to form the tree. There may be several spanning trees for a given graph.

The DFS topological 
sorting algorithm

A tree is an undi-
rected connected 
graph without cycles
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If you have a connected undirected graph with cycles and you remove
edges until there are no cycles, you will obtain a spanning tree for the graph. It
is relatively simple to determine whether a graph contains a cycle. One way to
make this determination is based on the following observations about undi-
rected graphs:

A trace of topSort2 for the graph in Figure 14-14

FIGURE 14-17
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1. A connected undirected graph that has n vertices must have at least
n – 1 edges. To establish this fact, recall that a connected graph has a path
between every pair of vertices. Suppose that, beginning with n vertices,
you choose one vertex and draw an edge between it and any other vertex.
Next, draw an edge between this second vertex and any other unattached
vertex. If you continue this process until you run out of unattached verti-
ces, you will get a connected graph like the ones in Figure 14-19. If the
graph has n vertices, it has n – 1 edges. In addition, if you remove an
edge, the graph will not be connected.

2. A connected undirected graph that has n vertices and exactly n – 1
edges cannot contain a cycle. To see this, begin with the previous obser-
vation: To be connected, a graph with n vertices must have at least n – 1
edges. If a connected graph did have a cycle, you could remove any edge
along that cycle and still have a connected graph. Thus, if a connected
graph with n vertices and n – 1 edges did contain a cycle, removing an
edge along the cycle would leave you with a connected graph with only
n – 2 edges, which is impossible according to observation 1.

3. A connected undirected graph that has n vertices and more than n – 1
edges must contain at least one cycle. For example, if you add an edge
to any of the graphs in Figure 14-19, you will create a cycle within the
graph. This fact is harder to establish and is left as an exercise. (See Exer-
cise 17 at the end of this chapter.)

Thus, you can determine whether a connected graph contains a cycle simply by
counting its vertices and edges.

It follows, then, that a tree, which is a connected undirected graph
without cycles, must connect its n nodes with n – 1 edges. Thus, to obtain the
spanning tree of a connected graph of n vertices, you must remove edges along
cycles until n – 1 edges are left.

Two algorithms for determining a spanning tree of a graph are based on
the previous traversal algorithms and are presented next. In general, these
algorithms will produce different spanning trees for any particular graph.

The DFS spanning tree. One way to determine a spanning tree for a con-
nected undirected graph is to traverse the graph’s vertices by using a depth-first
search. As you traverse the graph, mark the edges that you follow. After the traversal

Observations about 
undirected graphs 
that enable you to 
detect a cycle

Connected graphs that each have four vertices and three edges

FIGURE 14-19

Simply count a 
graph’s vertices and 
edges to determine 
whether it contains a 
cycle
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is complete, the graph’s vertices and marked edges form a spanning tree, which is
called the depth-first search (DFS) spanning tree. (Alternatively, you can remove
the unmarked edges from the graph to form the spanning tree.) Simple modifica-
tions to the previous iterative and recursive versions of dfs result in algorithms to
create a DFS spanning tree. For example, the recursive algorithm follows:

+dfsTree(in v:Vertex)
// Forms a spanning tree for a connected undirected graph
// beginning at vertex v by using depth-first search:
// Recursive version.

   Mark v as visited

for (each unvisited vertex u adjacent to v) {
      Mark the edge from u to v
      dfsTree(u)
   }  // end for

When you apply this algorithm to the graph in Figure 14-11, you get the DFS
spanning tree rooted at vertex a shown in Figure 14-20. The figure indicates
the order in which the algorithm visits vertices and marks edges. You should
reproduce these results by tracing the algorithm.

The BFS spanning tree. Another way to determine a spanning tree for a
connected undirected graph is to traverse the graph’s vertices by using a
breadth-first search. As you traverse the graph, mark the edges that you follow.
After the traversal is complete, the graph’s vertices and marked edges form a
spanning tree, which is called the breadth-first search (BFS) spanning tree.
(Alternatively, you can remove the unmarked edges from the graph to form
the spanning tree.) You can modify the previous iterative version of bfs by

DFS spanning tree 
algorithm
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The DFS spanning tree algorithm visits vertices in this 
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order in which the algorithm marks edges.

The DFS spanning tree rooted at vertex a for the graph in Figure 14-11

FIGURE 14-20
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marking the edge between w and u before you add u to the queue. The result
is the following iterative algorithm to create a BFS spanning tree.

+bfsTree(in v:Vertex)
// Forms a spanning tree for a connected undirected graph
// beginning at vertex v by using breadth-first search:
// Iterative version.

   q.createQueue()

   // add v to queue and mark it
   q.enqueue(v)
   Mark v as visited

while (!q.isEmpty() {
      w = q.dequeue()

      // loop invariant: there is a path from vertex w to 
      // every vertex in the queue q

for (each unvisited vertex u adjacent to w) {
         Mark u as visited
         Mark edge between w and u
         q.enqueue(u)

}  // end for
}  // end while

When you apply this algorithm to the graph in Figure 14-11, you get the
BFS spanning tree rooted at vertex a shown in Figure 14-21. The figure indi-
cates the order in which the algorithm visits vertices and marks edges. You
should reproduce these results by tracing the algorithm.

i

a

g

e

b

c

d

h

f

Root
(1)

(4)

(7)
(8)

(6)

(3)

The BFS spanning tree algorithm visits vertices in this 
order: a, b, f, i, c, e, g, d, h. Numbers indicate the 
order in which the algorithm marks edges.

(5)

(2)

The BFS spanning tree rooted at vertex a for the graph in Figure 14-11
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Minimum Spanning Trees
Imagine that a developing country hires you to design its telephone system so
that all the cities in the country can call one another. Obviously, one solution is
to place telephone lines between every pair of cities. However, your engineer-
ing team has determined that due to the country’s mountainous terrain, it is
impossible to put lines between certain pairs of cities. The team’s report con-
tains the weighted undirected graph in Figure 14-22. The vertices in the graph
represent n cities. An edge between two vertices indicates that it is feasible to
place a telephone line between the cities that the vertices represent, and each
edge’s weight represents the installation cost of the telephone line. Note that if
this graph is not connected, you will be unable to link all of the cities with a
network of telephone lines. The graph in Figure 14-22 is connected, however,
making the problem feasible.

If you install a telephone line between each pair of cities that is connected
by an edge in the graph, you will certainly solve the problem. However, this
solution may be too costly. From observation 1 in the previous section, you
know that n – 1 is the minimum number of edges necessary for a graph of n
vertices to be connected. Thus, n – 1 is the minimum number of lines that can
connect n cities.

If the cost of installing each line is the same, the problem is reduced to
one of finding any spanning tree of the graph. The total installation cost—that
is, the cost of the spanning tree—is the sum of the costs of the edges in the
spanning tree. However, as the graph in Figure 14-22 shows, the cost of
installing each line varies. Because there may be more than one spanning tree,
and because the cost of different trees may vary, you need to solve the problem
by selecting a spanning tree with the least cost; that is, you must select a span-
ning tree for which the sum of the edge weights (costs) is minimal. Such a tree
is called the minimum spanning tree, and it need not be unique. Although
there may be several minimum spanning trees for a particular graph, their costs
are equal.
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A weighted, connected, undirected graph
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One simple algorithm, called Prim’s algorithm, finds a minimum spanning
tree that begins at any vertex. Initially, the tree contains only the starting
vertex. At each stage, the algorithm selects a least-cost edge from among those
that begin with a vertex in the tree and end with a vertex not in the tree. The
latter vertex and least-cost edge are then added to the tree. The following
pseudocode describes this algorithm:

+PrimsAlgorithm(in v:Vertex)
// Determines a minimum spanning tree for a weighted,
// connected, undirected graph whose weights are 
// nonnegative, beginning with any vertex v.
   Mark vertex v as visited and include it in the minimum 
     spanning tree

   while (there are unvisited vertices) {
      Find the least-cost edge (v, u) from a visited
        vertex v to some unvisited vertex u
      Mark u as visited
      Add the vertex u and the edge (v, u) to the minimum
        spanning tree

}  // end while

Figure 14-23 traces PrimsAlgorithm for the graph in Figure 14-22, beginning
at vertex a. Edges added to the tree appear as solid lines, while edges under
consideration appear as dashed lines.

It is not obvious that the spanning tree that PrimsAlgorithm determines
will be minimal. However, the proof that PrimsAlgorithm is correct is beyond
the scope of this book.

Minimum spanning 
tree algorithm
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(continues)
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Shortest Paths
Consider once again a map of airline routes. A weighted directed graph can
represent this map: The vertices are cities, and the edges indicate existing
flights between cities. The edge weights represent the mileage between cities
(vertices); as such, the weights are not negative. For example, you could
combine the two graphs in Figure 14-5 to get such a weighted directed graph.

Often for weighted directed graphs you need to know the shortest path
between two particular vertices. The shortest path between two given verti-
ces in a weighted graph is the path that has the smallest sum of its edge
weights. Although we use the term “shortest,” realize that the weights could
be a measure other than distance, such as the cost of each flight in dollars or
the duration of each flight in hours. The sum of the weights of the edges of a
path is called the path’s length, weight, or cost.

For example, the shortest path from vertex 0 to vertex 1 in the graph in
Figure 14-24a is not the edge between 0 and 1—its cost is 8—but rather the
path from 0 to 4 to 2 to 1, with a cost of 7. For convenience, the starting
vertex, or origin, is numbered 0 and the other vertices are numbered from 1 to
n – 1. Notice the graph’s adjacency matrix in Figure 14-24b.

The following algorithm, which is attributed to E. Dijkstra, actually deter-
mines the shortest paths between a given origin and all other vertices. The
algorithm uses a set vertexSet of selected vertices and an array weight, where
weight[v] is the weight of the shortest (cheapest) path from vertex 0 to vertex v
that passes through vertices in vertexSet.

If v is in vertexSet, the shortest path involves only vertices in vertexSet. How-
ever, if v is not in vertexSet, then v is the only vertex along the path that is not in
vertexSet. That is, the path ends with an edge from a vertex in vertexSet to v.

Initially, vertexSet contains only vertex 0, and weight contains the weights
of the single-edge paths from vertex 0 to all other vertices. That is, weight[v]
equals matrix[0][v] for all v, where matrix is the adjacency matrix. Thus, ini-
tially weight is the first row of matrix.

After this initialization step, you find a vertex v that is not in vertexSet and
that minimizes weight[v]. You add v to vertexSet. For all (unselected) vertices u
not in vertexSet, you check the values weight[u] to ensure that they are indeed

The shortest path 
between two vertices
in a weighted graph 
has the smallest 
edge-weight sum

(a) A weighted directed graph and (b) its adjacency matrix

FIGURE 14-24
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minimums. That is, can you reduce weight[u]—the weight of a path from
vertex 0 to vertex u—by passing through the newly selected vertex v?

To make this determination, break the path from 0 to u into two pieces
and find their weights as follows:

weight[v] = weight of the shortest path from 0 to v
matrix[v][u] = weight of the edge from v to u

Then compare weight[u] with weight[v] + matrix[v][u] and let

weight[u] = the smaller of the values weight[u] and
weight[v] + matrix[v][u]

The pseudocode for Dijkstra’s shortest-path algorithm is as follows:

+shortestPath(in theGraph:Graph, in weight:WeightArray)
// Finds the minimum-cost paths between an origin vertex 
// (vertex 0) and all other vertices in a weighted directed 
// graph theGraph. The array weight contains theGraph's 
// weights which are nonnegative.

  // Step 1: initialization
  Create a set vertexSet that contains only vertex 0 
  n = number of vertices in theGraph

for (v = 0 through n - 1) {
weight[v] = matrix[0][v]

}  // end for
  // Steps 2 through n
  // Invariant: For v not in vertexSet, weight[v] is the
  // smallest weight of all paths from 0 to v that pass
  // through only vertices in vertexSet before reaching v.
  // For v in vertexSet, weight[v] is the smallest weight
  // of all paths from 0 to v (including paths outside
  // vertexSet), and the shortest path from 0 to v lies
  // entirely in vertexSet.

for (step = 2 through n) {
    Find the smallest weight[v] such that v is not in
        vertexSet
    Add v to vertexSet

    // Check weight[u] for all u not in vertexSet
for (all vertices u not in vertexSet) {

if (weight[u] > weight[v] + matrix[v][u]) {
        weight[u] = weight[v] + matrix[v][u]

}  // end if
}  // end for

}  // end for

The shortest-path 
algorithm

Loop invariant
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The loop invariant states that once a vertex v is placed in vertexSet, weight[v] is
the weight of the absolutely shortest path from 0 to v and will not change.

Figure 14-25 traces the algorithm for the graph in Figure 14-24a. The
algorithm takes the following steps:

Step 1. vertexSet initially contains vertex 0, and weight is initially the first row
of the graph’s adjacency matrix, shown in Figure 14-24b.

Step 2. weight[4] = 4 is the smallest value in weight, ignoring weight[0]
because 0 is in vertexSet. Thus, v = 4, so add 4 to vertexSet. For verti-
ces not in vertexSet—that is, for u = 1, 2, and 3—check whether it is
shorter to go from 0 to 4 and then along an edge to u instead of
directly from 0 to u along an edge. For vertices 1 and 3, it is not
shorter to include vertex 4 in the path. However, for vertex 2 notice
that weight[2] = ∞ > weight[4] + matrix[4][2] = 4 + 1 = 5. There-
fore, replace weight[2] with 5. You can also verify this conclusion by
examining the graph directly, as Figure 14-26a shows.

Step 3. weight[2] = 5 is the smallest value in weight, ignoring weight[0] and
weight[4] because 0 and 4 are in vertexSet. Thus, v = 2, so add 2 to
vertexSet. For vertices not in vertexSet—that is, for u = 1 and 3—
check whether it is shorter to go from 0 to 2 and then along an edge
to u instead of directly from 0 to u along an edge. (See parts b and c
of Figure 14-26.)
Notice that
weight[1] = 8 > weight[2] + matrix[2][1] = 5 + 2 = 7. Therefore,
replace weight[1] with 7.
weight[3] = 9 > weight[2] + matrix[2][3] = 5 + 3 = 8. Therefore,
replace weight[3] with 8.

Step 4. weight[1] = 7 is the smallest value in weight, ignoring weight[0],
weight[2], and weight[4] because 0, 2, and 4 are in vertexSet. Thus, v
= 1, so add 1 to vertexSet. For vertex 3, which is the only vertex not
in vertexSet, notice that weight[3] = 8 < weight[1] + matrix[1][3] =
7 + ∞, as Figure 14-26d shows. Therefore, leave weight[3] as it is.

Step 5. The only remaining vertex not in vertexSet is 3, so add it to vertexSet
and stop.
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A trace of the shortest-path algorithm applied to the graph in Figure 14-24a
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The final values in weight are the weights of the shortest paths. These
values appear in the last line of Figure 14-25. For example, the shortest path
from vertex 0 to vertex 1 has a cost of weight[1], which is 7. This result agrees
with our earlier observation about Figure 14-24. We saw then that the shortest
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FIGURE 14-26
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path is from 0 to 4 to 2 to 1. Also, the shortest path from vertex 0 to vertex 2
has a cost of weight[2], which is 5. This path is from 0 to 4 to 2. 

The weights in weight are the smallest possible, as long as the algorithm’s
loop invariant is true. The proof that the loop invariant is true is by induction
on step, and is left as a difficult exercise. (See Exercise 20.)

Circuits
A circuit is simply another name for a type of cycle that is common in the
statement of certain problems. Recall that a cycle in a graph is a path that
begins and ends at the same vertex. Typical circuits either visit every vertex
once or visit every edge once.

Probably the first application of graphs occurred in the early 1700s when Euler
(pronounced “oiler”) proposed a bridge problem. Two islands in a river are joined
to each other and to the river banks by several bridges, as Figure 14-27a illustrates.
The bridges correspond to the edges in the multigraph in Figure 14-27b, and the
land masses correspond to the vertices. The problem asked whether you can
begin at a vertex v, pass through every edge exactly once, and terminate at v.
Euler demonstrated that no solution exists for this particular configuration of
edges and vertices. 

For simplicity, we will consider an undirected graph rather than a multigraph.
A path in an undirected graph that begins at a vertex v, passes through every edge
in the graph exactly once, and terminates at v is called a Euler circuit. Euler
showed that a Euler circuit exists if and only if each vertex touches an even number
of edges. Intuitively, if you arrive at a vertex along one edge, you must be able to
leave the vertex along another edge. If you cannot, you will not be able to reach all
of the vertices.

Finding a Euler circuit is like drawing each of the diagrams in Figure
14-28 without lifting your pencil or redrawing a line, but ending at your start-
ing point. No solution is possible for Figure 14-28a, but you should be able to
find one easily for Figure 14-28b. Figure 14-29 contains undirected graphs
based on Figure 14-28. In Figure 14-29a, vertices h and i each touch an odd

(b)(a)

(a) Euler’s bridge problem and (b) its multigraph representation

FIGURE 14-27
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number of edges (three), so no Euler circuit is possible. On the other hand,
each vertex in Figure 14-29b touches an even number of edges, making a
Euler circuit feasible. Notice also that the graphs are connected. If a graph is
not connected, a path through all of the vertices would not be possible.

Let’s find a Euler circuit for the graph in Figure 14-29b, starting arbi-
trarily at vertex a. The strategy uses a depth-first search that marks edges
instead of vertices as they are traversed. Recall that a depth-first search traverses
a path from a as deeply into the graph as possible. By marking edges instead of
vertices, you will return to the starting vertex; that is, you will find a cycle. In
this example, the cycle is a, b, e, d, a, if we visit the vertices in alphabetical
order, as Figure 14-30a shows. Clearly this is not the desired circuit, because
we have not visited every edge. We are not finished, however.

To continue, find the first vertex along the cycle a, b, e, d, a that touches
an unvisited edge. In our example, the desired vertex is e. Apply our modi-
fied depth-first search, beginning with this vertex. The resulting cycle is e, f,
j, i, e. Next you join this cycle with the one you found previously. That is,
when you reach e in the first cycle, you travel along the second cycle before

(a) (b)

Pencil and paper drawings

FIGURE 14-28
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continuing in the first cycle. The resulting path is a, b, e, f, j, i, e, d, a, as
Figure 14-30b shows.

The first vertex along our combined cycle that touches an unvisited edge is
i. Beginning at i, our algorithm determines the cycle i, l, k, h, i. Joining this to
our combined cycle results in the path a, b, e, f, j, i, l, k, h, i, e, d, a. (See
Figure 14-30c.) The first vertex along this combined cycle that touches an
unvisited edge is h. From h, we find the cycle h, g, c, d, h. Joining this to our
combined cycle results in the Euler circuit a, b, e, f, j, i, l, k, h, g, c, d, h, i, e, d,
a. (See Figure 14-30d.)
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Some Difficult Problems
The next three applications of graphs have solutions that are beyond the scope
of this book.

The traveling salesperson problem. A Hamilton circuit is a path that
begins at a vertex v, passes through every vertex in the graph exactly once, and
terminates at v. Determining whether or not an arbitrary graph contains a
Hamilton circuit can be difficult. A well-known variation of this problem—the
traveling salesperson problem—involves a weighted graph that represents a
road map. Each edge has an associated cost, such as the mileage between cities
or the time required to drive from one city to the next. The salesperson must
begin at an origin city, visit every other city exactly once, and return to the
origin city. However, the circuit traveled must be the least expensive. 

Unfortunately for this traveler, solving the problem is no easy task.
Although a solution does exist, it is quite slow, and no better solution is
known.

The three utilities problem. Imagine three houses A, B, and C and three
utilities X, Y, and Z (such as telephone, water, and electricity), as Figure 14-31
illustrates. If the houses and the utilities are vertices in a graph, is it possible to
connect each house to each utility with edges that do not cross one another?
The answer to this question is no.

A graph is planar if you can draw it in a plane in at least one way so that no
two edges cross. The generalization of the three utilities problem determines
whether a given graph is planar. Making this determination has many important
applications. For example, a graph can represent an electronic circuit where the
vertices represent components and the edges represent the connections between

A Hamilton circuit 
begins at a vertex v,
passes through 
every vertex exactly 
once, and termi-
nates at v

A B C

X Y Z

The three utilities problem

FIGURE 14-31
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components. Is it possible to design the circuit so that the connections do not
cross? The solutions to these problems are also beyond the scope of this book.

The four-color problem. Given a planar graph, can you color the vertices so
that no adjacent vertices have the same color, if you use at most four colors?
For example, the graph in Figure 14-11 is planar because none of its edges
cross. You can solve the coloring problem for this graph by using only three
colors. Color vertices a, c, g, and h red; color vertices b, d, f, and i blue; and
color vertex e green.

The answer to our question is yes, but it is difficult to prove. In fact, this
problem was posed more than a century before it was solved in the 1970s with
the use of a computer.

1. The two most common implementations of a graph are the adjacency matrix and
the adjacency list. Each has its relative advantages and disadvantages. The choice
should depend on the needs of the given application.

2. Graph searching is an important application of stacks and queues. Depth-first
search is a graph-traversal algorithm that uses a stack to keep track of the sequence
of visited vertices. It goes as deep into the graph as it can before backtracking.
Breadth-first search uses a queue to keep track of the sequence of visited vertices. It
visits all possible adjacent vertices before traversing further into the graph.

3. Topological sorting produces a linear order of the vertices in a directed graph
without cycles. Vertex x precedes vertex y if there is a directed edge from x to y in
the graph.

4. Trees are connected undirected graphs without cycles. A spanning tree of a con-
nected undirected graph is a subgraph that contains all of the graph’s vertices and
enough of its edges to form a tree. DFS and BFS traversals produce DFS and BFS
spanning trees.

5. A minimum spanning tree for a weighted undirected graph is a spanning tree
whose edge-weight sum is minimal. Although a particular graph can have several
minimum spanning trees, their edge-weight sums will be the same.

6. The shortest path between two vertices in a weighted directed graph is the path
that has the smallest sum of its edge weights.

7. A Euler circuit in an undirected graph is a cycle that begins at vertex v, passes
through every edge in the graph exactly once, and terminates at v.

8. A Hamilton circuit in an undirected graph is a cycle that begins at vertex v, passes
through every vertex in the graph exactly once, and terminates at v.

Summary
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1. When searching a graph, realize that the algorithm might take wrong turns. For
example, you must eliminate the possibility of cycling within the algorithm; the
algorithm must be able to backtrack when it hits a dead end.

1. Describe the graphs in Figure 14-32. For example, are they directed? Connected?
Complete? Weighted?

2. Use the depth-first strategy and the breadth-first strategy to traverse the graph in
Figure 14-32a, beginning with vertex 0. List the vertices in the order in which
each traversal visits them.

3. Write the adjacency matrix for the graph in Figure 14-32a.

4. Add an edge to the directed graph in Figure 14-14 that runs from vertex d to
vertex b. Write all possible topological orders for the vertices in this new graph.

5. Is it possible for a connected undirected graph with 5 vertices and 4 edges to
contain a simple cycle? Explain.

6. Draw the DFS spanning tree whose root is vertex 0 for the graph in Figure 14-33.

7. Draw the minimum spanning tree whose root is vertex 0 for the graph in
Figure 14-33.

8. What are the shortest paths from vertex 0 to each vertex of the graph in
Figure 14-24a? (Note the weights of these paths in Figure 14-25.)

Cautions
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When given a choice of vertices to visit, the traversals in the following exercises should visit
vertices in sorted order.

1. Give the adjacency matrix and adjacency list for 

a. The weighted graph in Figure 14-33

b. The directed graph in Figure 14-34

2. Show that the adjacency list in Figure 14-8b requires less memory than the adja-
cency matrix in Figure 14-6b.

3. Consider Figure 14-35 and answer the following:

a. Will the adjacency matrix be symmetrical?

b. Provide the adjacency matrix.

c. What does the sum of each row of the adjacency matrix represent?

d. Provide the adjacency list.

4. Describe an adjacency matrix for a complete graph.

Exercises
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5. a Do any complete graphs have Euler circuits? If so, describe the characteristics of
such graphs.

b. Do any complete graphs have Hamiltonian circuits? If so, describe the charac-
teristics of such graphs.

6. Use both the depth-first strategy and the breadth-first strategy to traverse the graph
in Figure 14-33, beginning with vertex 0, and the graph in Figure 14-36, beginning
with vertex b. List the vertices in the order in which each traversal visits them.

7. By modifying the DFS traversal algorithm, write pseudocode for an algorithm that
determines whether a graph contains a cycle.

8. Using the topological sorting algorithm topSort1, write the topological order of
the vertices for each graph in Figure 14-37.
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9. Trace the DFS topological sorting algorithm topSort2, and indicate the resulting
topological order of the vertices for each graph in Figure 14-37.

10. Revise the topological sorting algorithm topSort1 by removing predecessors
instead of successors. Trace the new algorithm for each graph in Figure 14-37.

11. Trace the DFS and BFS spanning tree algorithms, beginning with vertex a of the
graph in Figure 14-11, and show that the spanning trees are the trees in Figures
14-20 and 14-21, respectively.

12. Draw the DFS and BFS spanning trees rooted at a for the graph in Figure 14-35.
Then draw the minimum spanning tree rooted at a for this graph.

13. For the graph in Figure 14-38:

a. Draw all the possible spanning trees.

b. Draw the minimum spanning tree.

14. Write pseudocode for an iterative algorithm that determines a DFS spanning tree
for an undirected graph. Base your algorithm on the traversal algorithm dfs.

15. Draw the minimum spanning tree for the graph in Figure 14-22 when you start
with

a. Vertex e

b. Vertex d

16. Trace the shortest-path algorithm for the graph in Figure 14-39, letting vertex 0
be the origin.

17. Implement the shortest-path algorithm in Java. How can you modify this algo-
rithm so that any vertex can be the origin?

18. Determine a Euler circuit for the graph in Figure 14-40. Why is one possible?

19. Prove that a connected undirected graph with n vertices and more than n – 1
edges must contain at least one simple cycle. (See observation 3 in the section
“Spanning Trees.”)

20. Prove that a graph-traversal algorithm visits every vertex in the graph if and only if
the graph is connected, regardless of where the traversal starts.
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21. Although the DFS traversal algorithm has a simple recursive form, a recursive BFS
traversal algorithm is not straightforward.

a. Explain why this fact is true.

b. Write the pseudocode for a recursive version of the BFS traversal algorithm.

22. Prove that the loop invariant of Dijkstra’s shortest-path algorithm is true by using a
proof by induction on step.

1. Modify the Graph class presented in the section “Graphs as ADTs” to include the
following methods:

public Graph()
    // default constructor, creates an empty graph

public Integer addVertex() 

6

4

2

5

3

0

1

1

15

7
2 6

2 3

41

3

3

51

2

A graph for Exercise 16

FIGURE 14-39

f d

cb

e g

a

A graph for Exercise 18

FIGURE 14-40

*

*

Programming Problems



Programming Problems 845

    // Adds a vertex to the graph, returns the Vertex index

public boolean isEdge(Integer v, Integer w) {
    // Determines if an edge exists between vertices v and w

Add exception handling to the class as well.

2. Modify the Graph class presented in the section “Graphs as ADTs” to represent a
directed or undirected graph. Once the graph has been created as a directed or
undirected graph, that aspect of the graph cannot be changed. Add exception han-
dling to the class as well.

3. Implement a template version of the Graph class presented in the section “Graphs
as ADTs.” The template parameter will represent the value associated with each
vertex. An additional vector of vertices will hold the data, and additional
methods should be provided to allow the client application to add or remove
vertex information.

4. Implement the ADT graph as a Java class, using an adjacency matrix to represent
the graph. Allow the graph to be either weighted or unweighted and either
directed or undirected. Include DFS and BFS traversals.

5. Extend Programming Problem 4 by adding ADT operations such as isConnected
and hasCycle. Also, include operations that perform a topological sort for a
directed graph without cycles, determine the DFS and BFS spanning trees for a
connected graph, and determine a minimum spanning tree for a connected undi-
rected graph.

6. The HPAir problem was the subject of Programming Problems 11, 12, and 13 of
Chapter 7. Revise these problems by implementing the ADT flight map as a
derived class of the graph class that you wrote for Programming Problem 4.
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CHAPTER 15

External Methods

ll of the previous table implementations assume that
the data items reside in the computer’s internal mem-

ory. Many real-world applications, however, require a table
so large that it greatly exceeds the amount of available
internal memory. In such situations, you must store the table
on an external storage device such as a disk and perform
table operations there.

This chapter considers the problem of data manage-
ment in an external environment by using a random access
file as a model of external storage. In particular, this chapter
discusses how to sort the data in an external file by modify-
ing the mergesort algorithm and how to search an external
file by using generalizations of the hashing and search-tree
schemes developed previously.

15.1 A Look at External Storage

15.2 Sorting Data in an External File

15.3 External Tables
Indexing an External File
External Hashing
B-Trees
Traversals
Multiple Indexing

Summary

Cautions

Self-Test Exercises

Exercises

Programming Problems

A
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15.1 A Look at External Storage

You use external storage when your program reads data from and writes data
to a file. Also, when you use a word processing program, for example, and
choose Save, the program saves your current document in a file. This action
enables you to exit the program and then use it later to retrieve your docu-
ment for revision. This is one of the advantages of external storage: It exists
beyond the execution period of a program. In this sense, it is “permanent”
instead of volatile like internal memory.

Another advantage of external storage is that, in general, there is far more
of it than internal memory. If you have a table of one million data items, each
of which is a record of moderate size, you will probably not be able to store
the entire table in internal memory at one time. On the other hand, this much
data can easily reside on an external disk. As a consequence, when dealing with
tables of this magnitude, you cannot simply read the entire table into memory
when you want to operate on it and then write it back onto the disk when you
are finished. Instead, you must devise ways to operate on data—for example,
sort it and search it—while it resides externally.

In general, you can create files for either sequential access or random
access. To access the data stored at a given position in a sequential access file,
you must advance the file window beyond all the intervening data. In this
sense, a sequential access file resembles a linked list. To access a particular node
in the list, you must traverse the list from its beginning until you reach the
desired node. In contrast, a random access file allows you to access the data at
a given position directly. A random access file resembles an array in that you
can access the element at data[i] without first accessing the elements before
data[i].

Without random access files, it would be impossible to support the table
operations efficiently in an external environment. Many programming lan-
guages, including Java, support both sequential access and random access of
files. However, to permit a language-independent discussion, we will con-
struct a model of random access files that illustrates how a programming lan-
guage that does not support such files might implement them. This model will
be a simplification of reality but will include the features necessary for this
discussion.

Imagine that a computer’s memory is divided into two parts: internal
memory and external memory, as Figure 15-1 illustrates. Assume that an exe-
cuting program, along with its nonfile data, resides in the computer’s internal

External storage 
exists after program 
execution

Generally, there 
is more external 
storage than inter-
nal memory

Random access files 
are essential for 
external tables

Internal
memory

Disk

External
memory

Internal and external memory
FIGURE 15-1
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memory; the permanent files of a computer system reside in the external
memory. Further assume that the external storage devices have the characteris-
tics of a disk (although some systems use other devices).

A file consists of data records. A data record can be anything from a
simple value, such as an integer, to an aggregate structure, such as an employee
record. For simplicity, assume that the data records in any one file are all of the
same type.

The records of a file are organized into one or more blocks, as Figure
15-2 shows. The size of a block—that is, the number of bits of data it can
contain—is determined by both the hardware configuration and the system
software of the computer. In general, an individual program has no control
over this size. Therefore, the number of records in a block is a function of the
size of the records in the file. For example, a file of integer records will have
more records per block than a file of employee records.

Much as you number the elements of an array, you can number the blocks
of a file in a linear sequence. With a random access file, a program can read a
given block from the file by specifying its block number, and similarly, it can
write data out to a particular block. In this regard a random access file resem-
bles an array of arrays, with each block of the file analogous to a single array
entry, which is itself an array that contains several records.

In this random access model, all input and output is at the block level rather
than at the record level. That is, you can read and write a block of records, but
you cannot read or write an individual record. Reading or writing a block is
called a block access.

The algorithms in this chapter assume commands for reading and writing
blocks. The statement

buf.readBlock(dataFile, i)

will read the ith block of the file dataFile and place it in an object buf.  This
object must accommodate the many records that each block of the file dataFile
contains. For example, if each block contains 100 employee records, buf must

A file contains 
records that are 
organized into 
blocks

B1 B2 B3 B4 Bi

Last block
of file

jth record
of ith block

←

k records
per block

A file partitioned into blocks of records
FIGURE 15-2
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store at least 100 employee records. The object buf is called a buffer, which is a
location that temporarily stores data as it makes its way from one process or loca-
tion to another.

Once the system has read a block into buf, the program can process—for
example, inspect or modify—the records in the block. Also, because the records
in the object buf are only copies of the records in the file dataFile, if a program
does modify the records in buf, it must write buf back out to dataFile, so that
the file also reflects the modifications. We assume that the statement

buf.writeBlock(dataFile, i)

will write the contents of buf to the i th block of the file dataFile. If dataFile
contains n blocks, the statement

buf.writeBlock(dataFile, n + 1)

will append a new block to dataFile, and thus the file can grow dynamically,
just as a Java file can.

Again, realize that these input and output commands allow you to read
and write only entire blocks. As a consequence, even if you need to operate on
only a single record of the file, you must access an entire block. For example,
suppose that you want to give employee Smith a $1,000 raise. If Smith’s
record is in block i (how to determine the correct block is discussed later in
the chapter), you would perform the following steps:

// read block i from file dataFile into buffer buf
buf.readBlock(dataFile, i)

Find the entry buf.getRecord(j) that contains the 
    record whose search key is "Smith"

// increase the salary portion of Smith's record
((buf.getRecord(j)).setSalary((buf.getRecord(j)).salary()
               + 1000)

// write changed block back to file dataFile
buf.writeBlock(dataFile, i)

The time required to read or write a block of data is typically much longer
than the time required to operate on the block’s data once it is in the com-
puter’s internal memory.1 For example, you typically can inspect every record

1. Data enters or leaves a buffer at a rate that differs from the record-processing rate. 
(Hence, a buffer between two processes compensates for the difference in the rates at 
which they operate on data.)

A buffer stores data 
temporarily

Updating a portion 
of a record within a 
block
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in the buffer buf in less time than that required to read a block into the buffer.
As a consequence, you should reduce the number of required block accesses.
In the previous pseudocode, for instance, you should process as many records
in buf as possible before writing it to the file. You should pay little attention to
the time required to operate on a block of data once it has been read into
internal memory.

Interestingly, several programming languages, including Java, have com-
mands to make it appear that you can access records one at a time. In general,
however, the system actually performs input and output at the block level and
perhaps hides this fact from the program. For example, if a programming lan-
guage includes the statement

rec.readRecord(dataFile, i)
// Reads the ith record of file dataFile into rec.

the system probably accesses the entire block that contains the ith record. Our
model of input and output therefore approximates reality reasonably well.

In most external data-management applications, the time required for
block accesses typically dominates all other factors. The rest of the chapter dis-
cusses how to sort and search externally stored data. The goal will be to reduce
the number of required block accesses. 

15.2 Sorting Data in an External File

This section considers the following problem of sorting data that resides in an
external file:

An external file contains 1,600 employee records. You want to sort these
records by Social Security number. Each block contains 100 records, and
thus the file contains 16 blocks B1, B2, and so on to B16. Assume that the
program can access only enough internal memory to manipulate about
300 records (three blocks’ worth) at one time.

Sorting the file might not sound like a difficult task, because you have
already seen several sorting algorithms earlier in this book. There is, however, a
fundamental difference here in that the file is far too large to fit into internal
memory all at once. This restriction presents something of a problem because
the sorting algorithms presented earlier assume that all the data to be sorted is
available at one time in internal memory (for example, that it is all in an array).
Fortunately, however, we can remove this assumption for a modified version of
mergesort.

The basis of the mergesort algorithm is that you can easily merge two
sorted segments—such as arrays—of data records into a third sorted segment
that is the combination of the two. For example, if S1 and S2 are sorted seg-
ments of records, the first step of the merge is to compare the first record of
each segment and select the record with the smaller search key. If the record
from S1 is selected, the next step is to compare the second record of S1 to the

Reduce the number 
of block accesses

Block access time is 
the dominant factor 
when considering an 
algorithm’s efficiency

A sorting problem
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first record of S2. This process is continued until all of the records have been
considered. The key observation is that at any step, the merge never needs to
look beyond the leading edge of either segment.

This observation makes a mergesort appropriate for the problem of
sorting external files, if you modify the algorithm appropriately. Suppose that
the 1,600 records to be sorted are in the file F and that you are not permitted
to alter this file. You have two work files, F1 and F2. One of the work files will
contain the sorted records when the algorithm terminates. The algorithm has
two phases: Phase 1 sorts each block of records, and Phase 2 performs a series
of merges.

Phase 1. Read a block from F into internal memory, sort its records by using
an internal sort, and write the sorted block out to F1 before you read the
next block from F. After you process all 16 blocks of F, F1 contains 16
sorted runs R1, R2, and so on to R16; that is, F1 contains 16 blocks of
records, with the records within each block sorted among themselves, as
Figure 15-3a illustrates.

Phase 2. Phase 2 is a sequence of merge steps. Each merge step merges pairs
of sorted runs to form larger sorted runs. Each merge step doubles the
number of blocks in each sorted run and thus halves the total number of
sorted runs. For example, as Figure 15-3b shows, the first merge step
merges eight pairs of sorted runs from F1 (R1 with R2, R3 with R4, . . . ,
R15 with R16) to form eight sorted runs, each two blocks long, which are
written to F2. The next merge step merges four pairs of sorted runs from
F2 (R1 with R2, R3 with R4, . . . , R7 with R8) to form four sorted runs,
each four blocks long, which are written back to F1, as Figure 15-3c illus-
trates. The next step merges the two pairs of sorted runs from F1 to form
two sorted runs, which are written to F2. (See Figure 15-3d.) The final
step merges the two sorted runs into one, which is written to F1. At this
point, F1 will contain all of the records of the original file in sorted order.

Given this overall strategy, how can you merge the sorted runs at each step
of Phase 2? The statement of the problem provides only sufficient internal
memory to manipulate at most 300 records at once. However, in the later
steps of Phase 2, runs contain more than 300 records each, so you must merge
the runs a piece at a time. To accomplish this merge, you must divide the pro-
gram’s internal memory into three buffers, in1, in2, and out, each capable of
holding 100 records (the block size). You read block-sized pieces of the runs
into the two in buffers and merge them into the out buffer. Whenever an in
buffer is exhausted—that is, when all of its elements have been copied to
out—you read the next piece of the run into the in buffer; whenever the out
buffer becomes full, you write this completed piece of the new sorted run to
one of the files.

Consider how you can perform the first merge step. You start this step
with the pair of runs R1 and R2, which are in the first and second blocks,
respectively, of the file F1. (See Figure 15-3a.) Because at this first merge step
each run contains only one block, an entire run can fit into one of the in

External mergesort

Merging sorted runs 
in Phase 2
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buffers. You can thus read R1 and R2 into the buffers in1 and in2, and then
merge in1 and in2 into out. However, although the result of merging in1
and in2 is a sorted run two blocks long (200 records), out can hold only one
block (100 records). Thus, when out becomes full in the course of the merge,
you write its contents to the first block of F2, as Figure 15-4a illustrates. The
merging of in1 and in2 into out then resumes. The buffer out will become
full for a second time only after all of the records in in1 and in2 are
exhausted. At that time, write the contents of out to the second block of F2.
You merge the remaining seven pairs from F in the same manner and append
the resulting runs to F2.

This first merge step is conceptually a bit easier than the others because the
initial runs are only one block in size, and thus each can fit entirely into one of
the in buffers. What do you do in the later steps when the runs to be merged
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are larger than a single block? Consider, for example, the merge step in which
you must merge runs of four blocks each to form runs of eight blocks each.
(See Figure 15-3c.) The first pair of these runs to be merged is in blocks
1 through 4 and 5 through 8 of F1.

The algorithm will read the first block of R1—which is the first block B1
of the file—into in1, and it will read the first block of R2—which is B5—into
in2, as Figure 15-4b illustrates. Then, as it did earlier, the algorithm merges
in1 and in2 into out. The complication here is that as soon as you finish
moving all of the records from either in1 or in2, you must read the next block
from the corresponding run. For example, if you finish in2 first, you must read
the next block of R2—which is B6—into in2 before the merge can continue.
The algorithm thus must detect when the in buffers become exhausted as well
as when the out buffer becomes full.

A high-level description of the algorithm for merging arbitrary-sized
sorted runs Ri and Rj from F1 into F2 is as follows:

Read the first block of Ri into in1
Read the first block of Rj into in2

in1

in2

out

in1

in2

out

B1 B3

B2 B4

R1

R2

F2

Write when out becomes full
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Next pair
to merge

Read when either in1 or in2 becomes empty

(a)

(b)

F2

(a) Merging single blocks; (b) merging long runs
FIGURE 15-4
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while (either in1 or in2 is not exhausted) {
  Select the smaller "leading" record of in1 and in2
      and place it into the next position of out (if
      one of the buffers is exhausted, select the
      leading record from the other)

if (out is full) {
    Write its contents to the next block of F2
  }  // end if

if (in1 is exhausted and blocks remain in Ri) {
    Read the next block into in1
  }  // end if

if (in2 is exhausted and blocks remain in Rj) {
    Read the next block into in2
  }  // end if
}  // end while

A pseudocode version of the external sorting algorithm follows. Notice
that it uses readBlock and writeBlock, as introduced in the previous section,
and assumes a method copyFile that copies a file. To avoid further complica-
tions, the solution assumes that the number of blocks in the file is a power of
2. This assumption allows the algorithm always to pair off the sorted runs at
each step of the merge phase, avoiding special end-of-file testing that would
obscure the algorithm. Also note that the algorithm uses two temporary files
and copies the final sorted temporary file to the designated output.

+externalMergesort(in unsortedFileName:String, 
                   in sortedFileName:String)
// Sorts a file by using an external mergesort.
// Precondition: unsortedFileName is the name of an external
// file to be sorted. sortedFileName is the name that the
// method will give to the resulting sorted file.
// Postcondition: The new file named sortedFileName is sorted.
// The original file is unchanged. Both files are closed.
// Calls: blockSort, mergeFile, and copyFile.
// Simplifying assumption: The number of blocks in the 
// unsorted file is an exact power of 2.

  Associate unsortedFileName with the file variable inFile
      and sortedFileName with the file variable outFile

  // Phase 1: sort file block by block and count the blocks
  blockSort(inFile, tempFile1, numberOfBlocks)

  // Phase 2: merge runs of size 1, 2, 4, 8,..., 
  // numberOfBlocks/2 (uses two temporary files and a toggle
  // that keeps track of the files for each merge step)

A pseudocode 
mergesort method
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  toggle = 1

for (size = 1 through numberOfBlocks/2 with 
increments of size) {

if (toggle == 1) {
      mergeFile(tempFile1, tempFile2, size, numberOfBlocks)
    }

else {
      mergeFile(tempFile2, tempFile1, size, numberOfBlocks)
    }  // end if
    toggle = -toggle
  }  // end for

  // copy the current temporary file to outFile
if (toggle == 1) {

    copyFile(tempFile1, outFile)
  }

else {
    copyFile(tempFile2, outFile)
  }  // end if

The method externalMergesort calls blockSort and mergeFile, which calls
mergeRuns. The pseudocode for these methods follows.

blockSort(in inFile:File, in outFile:File, 
          in numberOfBlocks:integer)
// Sorts each block of records in a file.
// Precondition: The file variable inFile is associated 
// with the file to be sorted.
// Postcondition: The file associated with the file variable
// outFile contains the blocks of inFile. Each block is
// sorted; numberOfBlocks is the number of blocks processed.
// Both files are closed.
// Calls: readBlock and writeBlock to perform random access
// input and output, and sortBuffer to sort a buffer.

  Prepare inFile for input
  Prepare outFile for output

  numberOfBlocks = 0
while (more blocks in inFile remain to be read) {

    ++numberOfBlocks
    buffer.readBlock(inFile, numberOfBlocks)
    sortBuffer(buffer)  // sort with some internal sort
    buffer.writeBlock(outFile, numberOfBlocks)
  }  // end while

  Close inFile and outFile
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// end blockSort

+mergeFile(in inFile:File, in outFile:File, 
           in runSize:integer,
           in numberOfBlocks:integer)
// Merges blocks from one file to another.
// Precondition: inFile is an external file that contains
// numberOfBlocks sorted blocks organized into runs of 
// runSize blocks each.
// Postcondition: outFile contains the merged runs of 
// inFile. Both files are closed.
// Calls: mergeRuns.

  Prepare inFile for input
  Prepare outFile for output

for (next = 1 through numberOfBlocks with increments
of 2 * runSize) {

    // Invariant: runs in outFile are ordered
    mergeRuns(inFile, outFile, next, runSize)
  }  // end for
  Close inFile and outFile
// end mergeFile

+mergeRuns(in fromFile:File, in toFile:File, 
           in start:integer, in size:integer)
// Merges two consecutive sorted runs in a file.
// Precondition: fromFile is an external file of sorted runs
// open for input. toFile is an external file of sorted runs
// open for output. start is the block number of the first
// run on fromFile to be merged; this run contains size 
// blocks.
//    Run 1: block start to block start + size - 1
//    Run 2: block start + size to start + (2 * size) - 1
// Postcondition: The merged runs from fromFile are appended
// to toFile. The files remain open.

  // initialize the input buffers for runs 1 and 2
  in1.readBlock(fromFile, first block of Run 1)
  in2.readBlock(fromFile, first block of Run 2)

  // Merge until one of the runs is finished. Whenever an
  // input buffer is exhausted, the next block is read.
  // Whenever the output buffer is full, it is written.

while (neither run is finished) {
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    // Invariant: out and each block in toFile are ordered
    Select the smaller "leading edge" of in1 and in2, and
        place it in the next position of out

if (out is full) {
      out.writeBlock(toFile, next block of toFile)
    }  // end if

if (in1 is exhausted and blocks remain in Run 1) {
      in1.readBlock(fromFile, next block of Run 1)
    }  // end if

if (in2 is exhausted and blocks remain in Run 2) {
      in2.readBlock(fromFile, next block of Run 2)
    }  // end if
  }  // end while

  // Assertion: exactly one of the runs is complete

  // append the remainder of the unfinished input 
  // buffer to the output buffer and write it

while (in1 is not exhausted) {
    // Invariant: out is ordered
    Place next item of in1 into the next position of out
  }  // end while

while (in2 is not exhausted) {
   // Invariant: out is ordered
   Place next item of in2 into the next position of out
  }  // end while

  out.writeBlock(toFile, next block of toFile)

  // finish off the remaining complete blocks

while (blocks remain in Run 1) {
    // Invariant: each block in toFile is ordered
    in1.readBlock(fromFile, next block of Run 1)
    in1.writeBlock(toFile, next block of toFile)
  }  // end while

while (blocks remain in Run 2) {
    // Invariant: Each block in toFile is ordered
    in2.readBlock(fromFile, next block of Run 2)
    in2.writeBlock(toFile, next block of toFile)
  }  // end while
// end mergeRuns
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15.3 External Tables

This section discusses techniques for organizing records in external storage so
that you can efficiently perform ADT table operations such as retrieval, inser-
tion, deletion, and traversal. Although this discussion will only scratch the
surface of this topic, you do have a head start: Two of the most important
external table implementations are variations of the 2-3 tree and hashing,
which you studied in Chapter 13.

Suppose you have a random access file of records that are to be table
items. The file is partitioned into blocks, as described earlier in this chapter.
One of the simplest table implementations stores the records in order by their
search key, perhaps sorting the file by using the external mergesort algorithm
developed in the previous section. Once it is sorted, you can easily traverse the
file in sorted order by using the following algorithm:

+traverseTable(in dataFile:File, in numberOfBlocks:integer, 
               in recordsPerBlock:integer)
// Traverses the sorted file dataFile in sorted order,
// visiting each node.

  // read each block of file dataFile into an 
  // internal buffer buf

for (blockNumber = 1 through numberOfBlocks) {
    buf.readBlock(dataFile, blockNumber)
    // visit each record in the block

for (recordNumber = 1 through recordsPerBlock) {
      Visit record buf.getRecord(recordNumber-1)
    }  // end for
  }  // end for

To perform the tableRetrieve operation on the sorted file, you can use a
binary search algorithm as follows:

+tableRetrieve(in dataFile:File, in recordsPerBlock:integer, 
               in first:integer, in last:integer,
               in searchKey:KeyType):TableItemType
// Searches blocks first through last of file dataFile and 
// returns the record whose search key equals 
// searchKey. The operation fails and returns null
// if no such item exists.

if (first > last or nothing is left to read from dataFile) {
return null

  }
else {

    // read the middle block of file dataFile into buffer buf
    mid = (first + last)/2
    buf.readBlock(dataFile, mid)

A simple external 
table implementa-
tion: records stored 
in search-key order

Sorted-order 
traversal

Retrieval by using a 
binary search
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if ( (searchKey >= (buf.getRecord(0)).getKey()) && 

      // desired block is found
      Search buffer buf for record buf.getRecord(j) 
          whose search key equals searchKey

if (record is found) {
        tableItem = buf.getRecord(j)

return tableItem
      }

else {
return null

      }  // end if
    }
    // else search appropriate half of the file

 else if (searchKey < (buf.getRecord(0)).getKey()) {
return tableRetrieve(dataFile, recordsPerBlock,

                          first, mid-1, searchKey)
    }

else {
return tableRetrieve(dataFile, recordsPerBlock,

                          mid+1, last, searchKey)
    }  // end if 
  }  // end if 

The tableRetrieve algorithm recursively splits the file in half and reads
the middle block into the object buf. Splitting a file segment requires that you
know the numbers of the first and last blocks of the segment. You would pass
these values as arguments, along with the file variable, to tableRetrieve.

Once you have read the middle block of the file segment into buf, you
determine whether a record whose search key equals searchKey could be in
this block. You can make this determination by comparing searchKey to the
smallest search key in buf—which is in buf.getRecord(0)—and to the
largest search key in buf, which is in buf.getRecord(recordsPerBlock-1).
If searchKey does not lie between the values of the smallest and largest search
keys in buf, you must recursively search one of the halves of the file (which half
to search depends on whether searchKey is less than or greater than the search
keys in the block you just examined). If, on the other hand, searchKey does
lie between the values of the smallest and largest search keys of the block in
buf, you must search buf for the record. Because the records within the block
buf are sorted, you could use a binary search on the records within this block.
However, the number of records in the block buf is typically small, and thus
the time required to scan the block sequentially is insignificant compared to
the time required to read the block from the file. It is therefore common
simply to scan the block sequentially.

This external implementation of the ADT table is not very different from
the internal sorted array-based implementation. As such, it has many of the
same advantages and disadvantages. Its main advantage is that because the

         (searchKey <= (buf.getRecord(recordsPerBlock-1)).getKey()) ) {
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records are sorted sequentially, you can use a binary search to locate the block
that contains a given search key. The main disadvantage of the implementation
is that, as is the case with an array-based implementation, the tableInsert
and tableDelete operations must shift table items. Shifting records in an
external file is, in general, far more costly than shifting array items. A file may
contain an enormous number of large records, which are organized as several
thousand blocks. As a consequence, the shifting could require a prohibitively
large number of block accesses.

Consider, for example, Figure 15-5. If you insert a new record into block
k, you must shift the records not only in block k, but also in every block after
it. As a result, you must shift some records across block boundaries. Thus, for
each of these blocks, you must read the block into internal memory, shift its
records by using an assignment such as

buf.setRecord(i+1, buf.getRecord(i))

and write the block to the file so that the file reflects the change. This large
number of block accesses makes the external sorted buffer-based implementa-
tion practical only for tables in which insertions and deletions are rare. (See
Exercise 1 at the end of this chapter.)

Indexing an External File
Two of the best external table implementations are variations of the internal
hashing and search-tree schemes. The biggest difference between the internal
and external versions of these implementations is that in the external versions,
it is often advantageous to organize an index to the data file rather than to
organize the data file itself. An index to a data file is conceptually similar to
other indexes with which you are familiar. For example, consider a library cata-
log. Rather than looking all over the library for a particular title, you can
simply search the catalog. The catalog is typically organized alphabetically by
title (or by author), so it is a simple matter to locate the appropriate entry. The
entry for each book contains an indication (for example, a Library of Congress
number) of where on the shelves you can find the book.

tableInsert and
tableDelete for 
an external imple-
mentation of the 
ADT table can 
require many costly 
block accesses due 
to shifting records

Block k

Need slot
here

Shift across
block boundaries

Shifting across block boundaries
FIGURE 15-5
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Using a catalog to index the books in a library has at least three benefits:

■ Because each catalog entry is much smaller than the book it represents, the
entire catalog for a large library can fit into a small space. A patron can
thus locate a particular book quickly.

■ The library can organize the books on the shelves in any way, without
regard to how easy it will be for a patron to scan the shelves for a particu-
lar book. To locate a particular book, the patron searches the catalog for
the appropriate entry.

■ The library can have different types of catalogs to facilitate different types
of searches. For example, it can have one catalog organized by title and
another organized by author.

Now consider how you can use an index to a data file to much the same
advantage as the library catalog. As Figure 15-6 illustrates, you can leave the
data file in a disorganized state and maintain an organized index to it. When
you need to locate a particular record in the data file, you search the index for
the corresponding entry, which will tell you where to find the desired record in
the data file.

An index to the data file is simply a file, called the index file, that contains
an index record for each record in the data file, just as a library catalog con-
tains an entry for each book in the library. An index record has two parts: a
key, which contains the same value as the search key of its corresponding
record in the data file, and a pointer, which shows the number of the block in
the data file that contains this data record. You thus can determine which block
of the data file contains the record whose search key equals searchKey by
searching the index file for the index record whose key equals searchKey.

Maintaining an index to a data file has benefits analogous to those pro-
vided by the library’s catalog:

■ In general, an index record will be much smaller than a data record. While
the data record may contain many components, an index record contains

Advantages of a 
library catalog

Index file: small, organized index records

Data file: blocks of large, unorganized data records

A data file with an index
FIGURE 15-6
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only two: a key, which is also part of the data record, and a single integer
pointer, which is the block number. Thus, just as a library catalog occu-
pies only a small fraction of the space occupied by the books it indexes, an
index file is only a fraction of the size of the data file. As you will see, the
small size of the index file often allows you to manipulate it with fewer
block accesses than you would need to manipulate the data file.

■ Because you do not need to maintain the data file in any particular order,
you can insert new records in any convenient location, such as at the end
of the file. As you will see, this flexibility eliminates the need to shift the
data records during insertions and deletions.

■ You can maintain several indexes simultaneously. Just as a library can have
one catalog organized by title and another organized by author, you can
have one index file that indexes the data file by one search key (for exam-
ple, an index file that consists of <name, pointer> records), and a second
index file that indexes the data file by another search key (for example, an
index file that consists of <socSec, pointer> records). Such multiple
indexing is discussed briefly at the end of this chapter.

Although you do not organize the data file, you must organize the index
file so that you can search and update it rapidly. Before considering how to
organize an index file by using either hashing or search-tree schemes, first con-
sider a less complex organization that illustrates the concepts of indexing. In
particular, let the index file simply store the index records sequentially, sorted
by their keys, as shown in Figure 15-7. 

To perform the tableRetrieve operation, for example, you can use a
binary search on the index file as follows:

tableRetrieve(in tIndex:File, in tData:File,
              in searchKey:KeyType):TableItemType
// Returns the record whose search key

Organize the index 
file but not the data 
file

Ann Bill Charles DonnaSorted index file

Data file—each
block contains 
several data records

Block that contains data recorded for Ann

Data record
for Ann

Data record
for Charles

A data file with a sorted index file
FIGURE 15-7
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// equals searchKey, where tIndex is the index file and
// tData is the data file. The operation fails and returns
// null if no such record exists.

if (no blocks are left in tIndex to read) {
return null

  }
else {

    // read the middle block of index file into buf
    mid = number of middle block of index file tIndex
    buf.readBlock(tIndex, mid)
    num = indexRecordsPerBlock

if ((searchKey >= (buf.getRecord(0)).getKey()) &&

      // desired block of index file found
      Search buf for index file record buf.getRecord(j) 
          whose key value equals searchKey

if (index record buf.getRecord(j) is found) {
        blockNum = number of the data-file block to 
                   which buf.getRecord(j) points
        data.readBlock(tData, blockNum)
        Find data record data.getRecord(k) whose search 
            key equals searchKey
        tableItem = data.getRecord(k)

return tableItem
      }

else {
return null

      }  // end if
    }

else if (tIndex is one block in size) {
return null  // no more blocks in file

    }

    // else search appropriate half of index file
else if (searchKey < (buf.getRecord(0)).getKey()) {

return tableRetrieve(first half of tIndex, tData,
                           searchKey)
    }

else {
return tableRetrieve(second half of tIndex, tData,

                          searchKey)
    }  // end if
  }  // end if

Retrieval by search-
ing an index file

        (searchKey <= buf.getRecord(indexRecPerBlock-1).getKey())) {
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Because the index records are far smaller than the data records, the index
file contains far fewer blocks than the data file. For example, if the index
records are one-tenth the size of the data records and the data file contains
1,000 blocks, the index file will require only about 100 blocks. As a result, the
use of an index cuts the number of block accesses in tableRetrieve down
from about log21000 ≈ 10 to about 1 + log2100 ≈ 8. (The one additional
block access is into the data file once you have located the appropriate index
record.) 

The reduction in block accesses is far more dramatic for the tableInsert
and tableDelete operations. In the implementation of an external table dis-
cussed earlier in this section, if you insert a record into or delete a record from
the first block of data, for example, you have to shift records in every block,
requiring that you access all 1,000 blocks of the data file. (See Figure 15-5.)

However, when you perform an insertion or a deletion by using the index
scheme, you have to shift only index records. When you use an index file, you
do not keep the data file in any particular order, so you can insert a new data
record into any convenient location in the data file. This flexibility means that
you can simply insert a new data record at the end of the file or at a position
left vacant by a previous deletion (as you will see). As a result, you never need
to shift records in the data file. However, you do need to shift records in the
index file to create an opening for a corresponding index entry in its proper
sorted position. Because the index file contains many fewer blocks than the
data file (100 versus 1,000 in the previous example), the maximum number of
block accesses required is greatly reduced. A secondary benefit of shifting
index records rather than data records is a reduction in the time requirement
for a single shift. Because the index records themselves are smaller, the time
required for the statement buf.setRecord(i+1, buf.getRecord(i)) is
decreased.

Deletions under the index scheme reap similar benefits. Once you have
searched the index file and located the data record to be deleted, you can
simply leave its location vacant in the data file, and thus you need not shift any
data records. You can keep track of the vacant locations in the data file (see
Exercise 2), so that you can insert new data records into the vacancies, as was
mentioned earlier. The only shifting required is in the index file to fill the gap
created when you remove the index record that corresponds to the deleted
data record.

Even though this scheme is an improvement over maintaining a sorted
data file, in many applications it is far from satisfactory. The 100 block accesses
that could be required to insert or delete an index record often would be pro-
hibitive. Far better implementations are possible when you use either hashing
or search trees to organize the index file.

External Hashing
The external hashing scheme is quite similar to the internal scheme described
in Chapter 13. In the internal hashing scheme, each entry of the array table
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An unsorted data file 
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is more efficient than 
a sorted data file, 
but other schemes 
are even better
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contains a reference to the beginning of the list of items that hash into that
location. In the external hashing scheme, each entry of table contains a block
pointer to the beginning of a list, but here each list consists of blocks of index
records. In other words, you hash an index file rather than the data file, as
Figure 15-8 illustrates. (In many applications the array table is itself so large
that you must keep it in external storage—for example, in the first K blocks of
the index file. To avoid this extra detail, you can assume here that the array
table is an internal array.)

Associated with each entry table[i] is a linked list of blocks of the index
file, as you can see in Figure 15-8. Each block of table[i]’s linked list con-
tains index records whose keys (and thus whose corresponding data records’
search keys) hash into location i. To form the linked lists, you must reserve
space in each block for a block pointer—the integer block number of the next
block in the chain—as Figure 15-9 illustrates. That is, in this linked list, the
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block pointers are integers, not Java references. A pointer value of –1 is used as
a null pointer.

Retrieval under external hashing of an index file. The tableRetrieve oper-
ation appears in pseudocode as follows:

+tableRetrieve(in tIndex:File, in tData:File, 
               in searchKey:KeyType):TableItemType
// Returns the item whose search key equals searchKey,
// where tIndex is the index file, which is hashed, and 
// tData is the data file. The operation fails and returns 
// null if no such record exists.

  // apply the hash function to the search key
  i = h(searchKey)

  // find the first block in the chain of index blocks –
  // these blocks contain index records that hash into
  // location i
  p = table[i]

  // if p == -1, no values have hashed into location i
if (p != -1) {

    buf.readBlock(tIndex, p)
  }  // end if

  // search for the block with the desired index record
while (p != -1 and buf does not contain an index record

whose key value equals searchKey) {
    p = number of next block in chain
    // if p == -1, you are at the last block in the chain

if (p != -1) {
     buf.readBlock(tIndex, p)
    }  // end if
  }  // end while

  // retrieve the data item if present
if (p != -1) {

    // buf.getRecord(j) is the index record whose 
    // key value equals searchKey
    blockNum = number of the data-file block to 
               which buf.getRecord(j) points
    data.readBlock(tData, blockNum)
    Find data record data.getRecord(k) whose search key
        equals searchKey
    tableItem = data.getRecord(k)
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return tableItem
  }

else {
return null

  }  // end if

Insertion under external hashing of an index file. The external hashing
versions of tableInsert and tableDelete are also similar to the internal
hashing versions. The major difference is that, in the external environment,
you must insert or delete both a data record and the corresponding index
record. 

To insert a new data record whose search key is searchKey, you take the
following steps:

1. Insert the data record into the data file. Because the data file is not
ordered, the new record can go anywhere you want. If a previous deletion
has left a free slot in the middle of the data file, you can insert it there.
(See Exercise 2.)

If no slots are free, you insert the new data record at the end of the
last block, or, if necessary, you append a new block to the end of the data
file and store the record there. In either case, let p denote the number of
the block that contains this new data record.

2. Insert a corresponding index record into the index file. You need to
insert into the index file an index record that has key value searchKey and
reference value p. (Recall that p is the number of the block in the data file
into which you inserted the new data record.) Because the index file is
hashed, you first apply the hash function to searchKey, letting

i = h(searchKey)

You then insert the index record <searchKey, p> into the chain of
blocks that the entry table[i] points to. You can insert this record into
any block in the chain that contains a free slot, or, if necessary, you can
allocate a new block and link it to the beginning of the chain.

Deletion under external hashing of an index file. To delete the data record
whose search key is searchKey, you take the following steps:

1. Search the index file for the corresponding index record. You apply the
hash function to searchKey, letting

i = h(searchKey)

You then search the chain of index blocks pointed to by the entry
table[i] for an index record whose key value equals searchKey. If you
do not find such a record, you can conclude that the data file does not
contain a record whose search key equals searchKey. However, if you find
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an index record <searchKey, p>, you delete it from the index file after
noting the block number p, which indicates where in the data file you can
find the data record to be deleted.

2. Delete the data record from the data file. You know that the data record
is in block p of the data file. You simply access this block, search the block
for the record, delete the record, and write the block back to the file.

Observe that for each of the operations tableRetrieve, tableInsert,
and tableDelete, the number of block accesses is very low. You never have to
access more than one block of the data file, and at worst you have to access all
of the blocks along a single hash chain of the index file. You can take measures
to keep the length of each of the chains quite short (for example, one or two
blocks long), just as you can with internal hashing. You should make the size
of the array table large enough so that the average length of a chain is near
one block, and the hash function should scatter the keys evenly. If necessary,
you can even structure each chain as an external search tree—a B-tree—by
using the techniques described in the next section.

The hashing implementation is the one to choose when you need to
perform the operations tableRetrieve, tableInsert, and tableDelete on
a large external table. As is the case with internal hashing, however, this imple-
mentation is not practical for certain other operations, such as sorted traversal,
retrieval of the smallest or largest item, and range queries that require ordered
data. When these types of operations are added to the basic table operations
tableRetrieve, tableInsert, and tableDelete, you should use a search-
tree implementation instead of hashing.

B-Trees
Another way to search an external table is to organize it as a balanced search
tree. Just as you can apply external hashing to the index file, you can organize
the index file, not the data file, as an external search tree. The implementation
developed here is a generalization of the 2-3 tree of Chapter 13.

You can organize the blocks of an external file into a tree structure by
using block numbers for child pointers. In Figure 15-10a, for example, the
blocks are organized into a 2-3 tree. Each block of the file is a node in the tree
and contains three child pointers, each of which is the integer block number of
the child. A child pointer value of –1 plays the role of a null pointer, and thus,
for example, a leaf will contain three child pointers with the value –1.

If you organized the index file into a 2-3 tree, each node (block of the
index file) would contain either one or two index records, each of the form
<key, pointer>, and three child pointers. The pointer portion of an index
record has nothing to do with the tree structure of the index file; pointer
indicates the block (in the data file) that contains the data record whose search
key equals key. (See Figure 15-10b.) To help avoid confusion, the pointers in
the tree structure of the index file will be referred to as child pointers.

You must organize the index records in the tree so that their keys obey the
same search-tree ordering property as an internal 2-3 tree. This organization
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allows you to retrieve the data record with a given value in its search key as
follows:

               in searchKey:KeyType):TableItemType

// is the block number (of the index file) that contains the
// root of the tree. tData is the data file. The operation

if (no blocks are left in tIndex to read) {
return null

  }
else {

    // read from index file into buf the
    // block that contains the root of the 2-3 tree
    buf.readBlock(tIndex, rootNum)

    // search for the index record whose key value
    // equals searchKey

Block number
of child

Index
record

Index
record

Index
record –1

Index
record –1Index

record–1–1 –1–1–1

Block with
2 children

Leaf

(a)

(b)

key pointer to data key pointer to data

Index record Index recordBlock number
of middle child

Block number
of left child

Block number
of right child

Index
record

(a) Blocks organized into a 2-3 tree; (b) a single node of the 2-3 tree
FIGURE 15-10

+tableRetrieve(in tIndex:File, in tData:File, in rootNum:integer,Retrieval when the 
index file is a 2-3 
tree // Returns the record whose search key equals searchKey. tIndex

// is the index file, which is organized as a 2-3 tree. rootNum

// fails and returns a null reference if no such record exists.
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if (searchKey is in the root) {
      blockNum = number of the data-file block that
                 index record specifies
      data.readBlock(tData, blockNum)
      Find data record data.getRecord(k) whose search key
          equals searchKey
      tableItem = data.getRecord(k)

return tableItem
    }
    // else search the appropriate subtree

else if (the root is a leaf) {
return null

    } // end else if
else {

      child = block number of root of
                appropriate subtree

return tableRetrieve(tIndex, tData, child,
                           searchKey)
    }  // end if
  }  // end if

You also can perform insertions and deletions in a manner similar to the
internal version, with the addition that you must insert records into and delete
records from both the index file and the data file (as was the case in the exter-
nal hashing scheme described earlier). In the course of insertions into and
deletions from the index file, you must split and merge nodes of the tree just as
you do for the internal version. You perform insertions into and deletions from
the data file—which, recall, is not ordered in any way—exactly as described for
the external hashing implementation. You thus can support the table opera-
tions fairly well by using an external version of the 2-3 tree.

However, you can generalize the 2-3 tree to a structure that is even more
suitable for an external environment. Recall the discussion in Chapter 13 about
search trees whose nodes can have many children. Adding more children per
node reduces the height of the search tree but increases the number of com-
parisons at each node during the search for a value. 

In an external environment, however, the advantage of keeping a search
tree short far outweighs the disadvantage of performing extra work at each
node. As you traverse the search tree in an external environment, you must
perform a block access for each node visited. Because the time required to
access a block of an external file is, in general, far greater than the time
required to process the data in that block once it has been read in, the overrid-
ing concern is to reduce the number of block accesses required. This fact
implies that you should attempt to reduce the height of the tree, even at the
expense of requiring more comparisons at each node. In an external search
tree, you should thus allow each node to have as many children as possible,
with only the block size as a limiting factor.

An external 2-3 tree 
is adequate, but an 
improvement is 
possible

Keep an external 
search tree short
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How many children can a block of some fixed size accommodate? If a
node is to have m children, clearly you must be able to fit m child pointers in
the node. In addition to child pointers, however, the node must also contain
index records.

Before you can answer the question of how many children a block can
accommodate, you must first consider this related question: If a node N in a
search tree has m children, how many key values—and thus how many index
records—must it contain?

In a binary search tree, if the node N has two children, it must contain
one key value, as Figure 15-11a indicates. You can think of the key value in
node N as separating the key values in N’s two subtrees—all of the key values
in N’s left subtree are less than N’s key value, and all of the key values in N’s
right subtree are greater than N’s key value. When you are searching the tree
for a given key value, the key value in N tells you which branch to take.

Similarly, if a node N in a 2-3 tree has three children, it must contain two
key values. (See Figure 15-11b.) These two values separate the key values in
N’s three subtrees—all of the key values in the left subtree are less than N’s
smaller key value, all of the key values in N’s middle subtree lie between N’s
two key values, and all of the key values in N’s right subtree are greater than
N’s larger key value. As is the case with a binary search tree, this requirement
allows a search algorithm to know which branch to take at any given node.

In general, if a node N in a search tree is to have m children, it must
contain m – 1 key values to separate the values in its subtrees correctly. (See
Figure 15-11c.) Suppose that you denote the subtrees of N as S0, S1, and so
on to Sm–1 and denote the key values in N as K1, K2, and so on to Km–1 (with

Binary search tree: 
the number of 
records and chil-
dren per node

key

key key

S0

K1

S1

K2 Km–1

Sm–1Sm–2

Left subtree Right subtree

Left subtree Right subtreeMiddle subtree

(a)

(b)

(c)

(a) A node with two children; (b) a node with three children; (c) a node with m
children

FIGURE 15-11
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K1 < K2 < · · · < Km–1). The key values in N must separate the values in its
subtrees as follows:

■ All the values in subtree S0 must be less than the key value K1.

■ For all i, 1 < i < m – 2, all the values in subtree Si must lie between the key
values Ki and Ki+1.

■ All the values in subtree Sm–1 must be greater than the key value Km–1.

If every node in the tree obeys this property, you can search the tree by using a
generalized version of a search tree’s retrieval algorithm. Thus, you can
perform the tableRetrieve operation as follows:

               in searchKey:KeyType):TableItemType
// Returns the record whose search key
// equals searchKey. tIndex is the index file, which is
// organized as a search tree. rootNum is the block number
// (of the index file) that contains the root of the tree.
// tData is the data file. The operation fails and returns
// null if no such record exists.

if (no blocks are left in tIndex to read) {
 return null

  }
else {

    // read from index file into internal buffer buf the
    // block that contains the root of the tree
    buf.readBlock(tIndex, rootNum)

    // search for the index record whose key value
    // equals searchKey

if (searchKey is one of the Ki in the root) {
      blockNum = number of the data-file block that
                   index record specifies
      data.readBlock(tData, blockNum)
      Find data record data.getRecord(k) whose search key
          equals searchKey
      tableItem = data.getRecord(k)

return tableItem
    }
    // else search the appropriate subtree

else if (the root is a leaf) {
 return null

    }
else {

      Determine which subtree Si to search
      child = block number of the root of Si

+tableRetrieve(in tIndex:File, in tData:File, in rootNum:integer, 

Retrieval with a 
general external 
search tree
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return tableRetrieve(tIndex, tData, child, searchKey)
    }  // end if
  }  // end if

Now return to the question of how many children the nodes of the search
tree can have—that is, how big can m be? If you wish to organize the index
file into a search tree, the items that you store in each node will be records of
the form <key, pointer>. Thus, if each node in the tree (which, recall, is a
block of the index file) is to have m children, it must be large enough to
accommodate m child pointers and m – 1 records of the form <key,
pointer>. You should choose m to be the largest integer such that m child
pointers (which, recall, are integers) and m – 1 <key, pointer> records can fit
into a single block of the file. Actually, the algorithms are somewhat simplified
if you always choose an odd number for m. That is, you should choose m to be
the largest odd integer such that m child pointers and m – 1 index records can
fit into a single block.

Ideally, then, you should structure the external search tree so that every
internal node has m children, where m is chosen as just described, and all
leaves are at the same level, as is the case with full trees and 2-3 trees. For
example, Figure 15-12 shows a full tree whose internal nodes each have five
children. Although this search tree has the minimum possible height, its
balance is too difficult to maintain in the face of insertions and deletions. As a
consequence, you must make a compromise. You can still insist that all the

Number of children 
per node

(a)

(b)

S0

K1

S1

K2

S2

K3

S3

K4

S4

(a) A full tree whose internal nodes have five children; (b) the format of a single node
FIGURE 15-12
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leaves of the search tree be at the same level—that is, that the tree be
balanced—but you must allow each internal node to have between m and
[m/2] + 1 children. (The [ ] notation means greatest integer in. Thus, [5/2] is
2, for example.)

This type of search tree is known as a B-tree of degree m and has the fol-
lowing characteristics:

■ All leaves are at the same level.

■ Each node contains between m – 1 and [m/2] records, and each internal
node has one more child than it has records. An exception to this rule is
that the root of the tree can contain as few as one record and can have as
few as two children. This exception is necessitated by the insertion and
deletion algorithms described next.

A 2-3 tree is a B-tree of degree 3. Furthermore, the manner in which the
B-tree insertion and deletion algorithms maintain the structure of the tree is a
direct generalization of the 2-3 tree’s strategy of splitting and merging nodes.

The B-tree insertion and deletion algorithms are illustrated next by means
of an example. Assume that the index file is organized into a B-tree of degree
5—that is, 5 is the maximum and 3 is the minimum number of children that
an internal node (other than the root) in the tree can have. (Typically, a B-tree
will be of a higher degree, but the diagrams would get out of hand!)

Insertion into a B-tree. To insert a data record with search key 55 into the
tree shown in Figure 15-13, you take the following steps:

1. Insert the data record into the data file. First you find block p in the
data file into which you can insert the new record. As was true with the
external hashing implementation, block p is either any block with a vacant
slot or a new block.

B-tree of degree m

A 2-3 tree is a B-tree 
of degree 3

20 30

35 48 60 68

50 56 57 58

w x y z

ba

A B-tree of degree 5
FIGURE 15-13
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2. Insert a corresponding index record into the index file. You now must
insert the index record <55, p> into the index file, which is a B-tree of
degree 5. The first step is to locate the leaf of the tree in which this index
record belongs by determining where the search for 55 would terminate.

Suppose that this is the leaf L shown in Figure 15-14a. Conceptually,
you insert the new index record into L, causing it to contain five records
(Figure 15-14b). Since a node can contain only four records, you must
split L into L1 and L2. With an action analogous to the splitting of a node
in a 2-3 tree, L1 gets the two records with the smallest key values, L2 gets
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the two records with the largest key values, and the record with the middle
key value (56) is moved up to the parent P. (See Figure 15-14c.)

In this example, P now has six children and five records, so it must be
split into P1 and P2. The record with the middle key value (56) is moved up
to P’s parent, Q. Then P’s children must be distributed appropriately, as
happens with a 2-3 tree when an internal node is split. (See Figure 15-14d.)

At this point the insertion is complete, since P’s parent Q now con-
tains only three records and has only four children. In general, though, an
insertion might cause splitting to propagate all the way up to the root
(Figure 15-14e). If the root must be split, the new root will contain only
one record and have only two children—the definition of a B-tree allows
for this eventuality.

Deletion from a B-tree. To delete a data record with a given search key
from a B-tree, you take the following steps:

1. Locate the index record in the index file. You use the search algorithm
to locate the index record with the desired key value. If this record is not
already in a leaf, you swap it with its inorder successor. (See Exercise 8.)
Suppose that the leaf L shown in Figure 15-15a contains the index record
with the desired key value, 73. After noting the value p of the pointer in
this index record (you will need p in Step 2 to delete the data record), you
remove the index record from L (Figure 15-15b). Because L now con-
tains only one value (recall that a node must contain at least two values)
and since L’s siblings cannot spare a value, you merge L with one of the
siblings and bring down a record from the parent P (Figure 15-15c).
Notice that this step is analogous to the merge step for a 2-3 tree. However,
P now has only one value and two children, and since its siblings cannot
spare a record and child, you must merge P with its sibling P1 and bring a
record down from P’s parent, Q. Since P is an internal node, its children
must be adopted by P1. (See Figure 15-15d.)

After this merge, P’s parent Q is left with only two children and one
record. In this case, however, Q’s sibling Q1 can spare a record and a
child, so you redistribute children and records among Q1, Q , and the
parent S to complete the deletion. (See Figure 15-15e.) If a deletion ever
propagates all the way up to the root, leaving it with only one record and
only two children, you are finished because the definition of a B-tree
allows this situation. If a future deletion causes the root to have a single
child and no records, you remove the root so that the tree’s height
decreases by 1, as Figure 15-15f illustrates. The deletion of the index
record is complete, and you now must delete the data record.

2. Delete the data record from the data file. Prior to deleting the index
record, you noted the value p of its pointer. Block p of the data file con-
tains the data record to be deleted. Thus, you simply access block p, delete
the data record, and write the block back to the file. The high-level
pseudocode for the insertion and deletion algorithms parallels that of the
2-3 tree and is left as an exercise.
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Traversals
Now consider the operation traverseTable in sorted order, which is one of
the operations that hashing does not support at all efficiently. Often an applica-
tion requires only that the traversal display the search keys of the records. If
such is the case, the B-tree implementation can efficiently support the opera-
tion, because you do not have to access the data file. You can visit the search
keys in sorted order by using an inorder traversal of the B-tree, as follows:

+traverseTable(in blockNum:integer, in m:integer)
// Traverses in sorted order an index file that is organized
// as a B-tree of degree m. blockNum is the block number of
// the root of the B-tree in the index file.

if (blockNum != -1) {
      // read the root into internal buffer buf
      buf.readBlock(indexFile, blockNum)

      // traverse the children

      // traverse S0
      Let p be the block number of the 0th child of buf
      traverseTable(p, m)

for (i = 1 through m - 1) {
         Display key Ki of buf

(e) 11 150 S
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e
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         // traverse Si
         Let p be the block number of the ith child of buf
         traverseTable(p, m)
      }  // end for
   }  // end if

This traversal accomplishes the task with the minimum possible number of
block accesses because each block of the index file is read only once. This
algorithm, however, assumes that enough internal memory is available for a
recursive stack of h blocks, where h is the height of the tree. In many situa-
tions this assumption is reasonable—for example, a 255-degree B-tree that
indexes a file of 16 million data records has a height of no more than 3. When
internal memory cannot accommodate h blocks, you must use a different algo-
rithm. (See Exercise 12.)

If the traversal must display the entire data record (and not just the search
key), the B-tree implementation is less attractive. In this case, as you traverse
the B-tree, you must access the appropriate block of the data file. The traversal
becomes

+traverseTable(in blockNum:integer, in m:integer)
// Traverses in sorted order a data file that is indexed 
// with a B-tree of degree m. blockNum is the block number 
// of the root of the B-tree.

if (blockNum != -1) {
    // read the root into internal buffer buf
    buf.readBlock(indexFile, blockNum)

    // traverse S0
    Let p be the block number of the 0th child of buf
    traverseTable(p, m)

for (i = 1 through m - 1) {
      Let p_i be the pointer in the ith index record of buf
      data.readBlock(dataFile, p_i)
      Extract from data the record whose search key equals Ki
      Display the data record

      // traverse Si
      Let p be the block number of the ith child of buf
      traverseTable(p, m)
    }  // end for
  }  // end if

This traversal requires you to read a block of the data file before you display
each data record; that is, the number of data-file block accesses is equal to the
number of data records. In general, such a large number of block accesses
would not be acceptable. If you must perform this type of traversal frequently,

Accessing the entire 
data record

Sorted-order tra-
versal of a data 
file indexed with 
a B-tree

Generally, the previ-
ous traversal is 
unacceptable
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you probably would modify the B-tree scheme so that the data file itself was
kept nearly sorted.

Multiple Indexing
Before concluding the discussion of external implementations, let’s consider
the multiple indexing of a data file. Chapter 13 presented a problem in which
you had to support multiple organizations for data stored in internal memory.
Such a problem is also common for data stored externally. For example,
suppose that a data file contains a collection of employee records on which you
need to perform two types of retrievals:

retrieveN(in aName:NameType):ItemType
// Retrieves the item whose search key contains the 
// name aName.

retrieveS(in ssn:SSNType):ItemType
// Retrieves the item whose search key contains the 
// Social Security number ssn.

One solution to this problem is to maintain two independent index files to
the data file. For example, you could have one index file that contains index
records of the form <name, pointer> and a second index file that contains index
records of the form <socSec, pointer>. These index files could both be hashed,
could both be B-trees, or could be one of each, as Figure 15-16 indicates. The

Multiple index files 
allow multiple data 
organizations

Data file

Index records
point to SAME
data file

Index file organized
with a B-tree
for socSec

Index records
point to 
data file

Hashed
index file
for name

Multiple index files
FIGURE 15-16
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choice would depend on the operations you wanted to perform with each
search key. (Similarly, if an application required extremely fast retrievals on
socSec and also required operations such as traverse in sorted socSec order
and range queries on socSec, it might be reasonable to have two socSec
index files—one hashed, the other a B-tree.)

While you can perform each retrieval operation by using only one of the
indexes (that is, use the name index for retrieveN and the socSec index for
retrieveS), insertion and deletion operations must update both indexes. For
example, the delete-by-name operation deleteN(Jones) requires the follow-
ing steps:

1. Search the name index file for Jones and delete the index record.

2. Delete the appropriate data record from the data file, noting the socSec
value ssn of this record.

3. Search the socSec index file for ssn and delete this index record.

In general, the price paid for multiple indexing is more storage space and an
additional overhead for updating each index whenever you modify the data
file.

This chapter has presented, at a very high level, the basic principles of
managing data in external storage. The details of implementing the algorithms
depend heavily on your specific computing system. Particular situations often
mandate either variations of the methods described here or completely differ-
ent approaches. In future courses and work experience, you will undoubtedly
learn much more about these techniques.

1. An external file is partitioned into blocks. Each block typically contains many data
records, and a block is generally the smallest unit of transfer between internal and
external memory. That is, to access a record, you must access the block that con-
tains it.

2. You can access the i th block of a random access file without accessing the blocks
that precede it. In this sense, random access files resemble arrays.

3. You can modify the mergesort algorithm, presented in Chapter 10, so that it can sort
an external file of records without requiring all of the records to be in internal
memory at one time.

4. An index to a data file is a file that contains an index record for each record in the
data file. An index record contains both the search key of the corresponding data
record and the number of the block in the data file that contains the data record.

5. You can organize the index file by using either hashing or a B-tree. These schemes
allow you to perform the basic table operations by using only a few block accesses.

6. You can have several index files for the same data file. Such multiple indexing
allows you to perform different types of operations efficiently, such as retrieve by
name and retrieve by Social Security number.

A deletion by name 
must update both
indexes

Summary
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1. Before you can process (for example, inspect or update) a record, you must read it
from an external file into internal memory. Once you modify a record, you must
write it back to the file.

2. Block accesses are typically quite slow when compared to other computer opera-
tions. Therefore, you must carefully organize a file so that you can perform tasks by
using only a few block accesses. Otherwise, response time can be very poor.

3. If a record is inserted into or deleted from a data file, you must make the corre-
sponding change to the index file. If a data file has more than one index file, you
must update each index file. Thus, multiple indexing has an overhead.

4. Although external hashing generally permits retrievals, insertions, and deletions to
be performed more quickly than does a B-tree, it does not support such opera-
tions as sorted traversals or range queries. This deficiency is one motivation for
multiple indexing.

1. Consider two files of 1,600 employee records each. The records in each file are
organized into sixteen 100-record blocks. One file is sequential access and the
other is random access. Describe how you would append one record to the end of
each file.

2. Trace externalMergesort with an external file of 16 blocks. Assume that the
buffers in1, in2, and out are each one block long. List the calls to the various
methods in the order in which they occur.

3. Trace the retrieval algorithm for an indexed external file when the search key is
less than all keys in the index. Assume that the index file stores the index records
sequentially, sorted by their search keys, and contains 20 blocks of 50 records
each. Also, assume that the data file contains 100 blocks, and each block con-
tains 10 employee records. List the calls to the various methods in the order in
which they occur.

4. Repeat Self-Test Exercise 3, but this time assume that the search key equals the key
in record 26 of block 12 of the index. Also assume that record 26 of the index
points to block 98 of the data file.

1. Assuming the existence of readBlock and writeBlock methods, write a
pseudocode program for shifting data to make a gap at some specified location of a
sorted file. Pay particular attention to the details of shifting the last item out of one
block and into the first position of the next block. You can assume that the last
record of the file is in record lastRec of block lastBlock and that lastBlock is
not full. (Note that this assumption permits shifting without allocating a new block
to the file.)

2. The problem of managing the blocks of an external data file indexed by either a B-tree
or an external hashing scheme is similar to that of managing memory for internal
structures. When an external structure such as a data file needs more memory (for

Cautions

Self-Test Exercises

Exercises
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example, to insert a new record), it gets a new block from a free list that the
system manages. That is, if the file contains N blocks, the system can allocate to it
an (N + 1)th block. When the file no longer needs a block, you can deallocate it
and return it to the system.

The complication in the management of external storage is that a block allo-
cated to a file may have available space interspersed with data. For example, after
you have deleted a record from the middle of a data file, the block that contained
that record will have space available for at least one record. Therefore, you must be
able to keep track of blocks that have space available for one or more records as
well as recognize when blocks are completely empty (so that you can return them
to the system).

Assuming the existence of allocateBlock and returnBlock methods that get
empty blocks from and return empty blocks to the system, write pseudocode
implementations of the following external memory-management methods: 

getSlot(in dataFile:File):BlockInfoType
// Determines the block number (blockNum) and record
// number (recNum) of an available slot in file 
// dataFile. Places this info in a BlockInfoType object 
// for return. A new block is allocated to the file from 
// the system if necessary.

freeSlot(in dataFile:File, in blockInfo:BlockInfoType)
// Gets recNum and blockNum from blockInfo.
// Makes record recNum in block blockNum of file
// dataFile available. The block is returned to the 
// system if it becomes empty.

What data structure is appropriate to support these operations? You may assume
that you can distinguish slots of a block that do not contain a record from those
that do. You can make this distinction either by having a convention for null
values within a record or by adding an empty/full flag.

3. Describe pseudocode algorithms for insertion into and deletion from a table imple-
mented externally with a hashed index file.

4. Execute the following sequence of operations on an initially empty ADT table t that
is implemented as a B-tree of degree 5. Note that insertion into an empty B-tree will
create a single node that contains the inserted item.

t.tableInsert(10)
t.tableInsert(100)
t.tableInsert(30)
t.tableInsert(80)
t.tableInsert(50)
t.tableDelete(10)
t.tableInsert(60)
t.tableInsert(70)
t.tableInsert(40)
t.tableDelete(80)
t.tableInsert(90)
t.tableInsert(20)
t.tableDelete(30)
t.tableDelete(70)
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5. Given a B-tree of degree 5 and a height of 3:

a. What is the maximum number of nodes (including the root)?

b. What is the maximum number of records that can be stored?

6. Given the following B-tree of degree 7 in Figure 15-17, draw the B-tree that
results after the insertion of m, o, y, r, c, i, k, w, and h.

7. Given the following B-tree of degree 7 in Figure 15-18, draw the B-tree that
results after the removal of  s, t, p, m, k, and e.

8. Describe a pseudocode algorithm for finding an item’s inorder successor in an
external B-tree.

9. Describe pseudocode algorithms for insertion into and deletion from an ADT table
implemented with an index file organized as a B-tree.

10. Write a rangeQuery method for a B-tree in pseudocode. (See Exercise 3 of Chapter 13.)
Assume that only the key values are needed (as opposed to the entire data record).

11. Implement the hashing scheme for a given set of keys using the chaining method.
Maintain the chains in the descending order of the keys.
Write a menu driven code to implement insert, delete and search functions for this
hashing scheme.

12. The B-tree traversal algorithm presented in this chapter assumes that internal
memory is large enough to accommodate the recursive stack that contains up to h
blocks, where h is the height of the B-tree. If you are in an environment where this
assumption is not true, modify the traversal algorithm so that the recursive stack
contains block numbers rather than the actual blocks. How many block accesses
does your algorithm have to perform?

13. a. Write pseudocode B-tree implementations of traversals and range queries that
need to access entire data records, not simply the search keys. How many block
accesses do your methods require?

a b d e j n p s v x
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A B-tree for Exercise 6
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b. To reduce the number of block accesses required by these operations, various
modifications of the basic B-tree structure are frequently used. The central idea
behind such structures is to keep the data file itself sorted. First, assume that
you can keep the data file in sequential sorted order—that is, the records are
sorted within each block and the records in Bi–1 are less than the records in Bi
for i = 2, 3, and so on to the number of blocks in the file. Rewrite your imple-
mentations of the traversal and range-query operations to take advantage of this
fact. How many block accesses do these operations now require?

c. Because it is too inefficient to maintain a sequentially sorted data file in the face
of frequent insertions and deletions, a compromise scheme is often employed.
One such possible compromise is as follows. If a data record belongs in block B
and B is full, a new block is allocated and linked to B, allowing the new record
to be inserted into its proper sorted location. The difficulty is that you must
now view each index record in the B-tree as indicating the first of possibly
several blocks in a chain of blocks that might contain the corresponding data
record. Rewrite the table-Insert, tableDelete, tableRetrieve,
traverseTable, and rangeQuery operations in terms of this implementation.
What is the effect on their efficiency?

14. Write an iterative (nonrecursive) version of internal mergesort, as given in Chapter 10,
that is based on the external version that this chapter describes. That is, merge sorted
runs that double in size at each pass of the array.

1. a. Implement the externalMergesort algorithm in Java by using the class
RandomAccessFile. Assume that the file to be sorted is a file of type int
and that each block contains one integer. Further assume that the file con-
tains 2n integers for some integer n.

b. Now assume that each block contains many integers. Write Java methods that
simulate readBlock and writeBlock. Implement externalMergesort by
using these methods.

c. Extend your implementation of externalMergesort by removing the restric-
tion that the file contains 2n blocks.

2. Implement the ADT table by using a sorted index file, as described in the section
“Indexing an External File.”

3. Implement an ADT table that uses a sorted index file using the JCF Map interface.

4. Implement a simple dictionary application, such as the one described in Exercise 4
of Chapter 12, using the external table of Programming Problem 3.

5. Implement the ADT table by using a hashed index file, as described in the section
“External Hashing.”

6. Implement the ADT table by using a B-tree, as described in the section “B-Trees.”

7. Repeat Programming Problem 5 of Chapter 11, using an external table to imple-
ment PhoneBook.

Programming Problems
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APPENDIX A

A Comparison of Java 
to C++
The following examples will help you compare a construct in C++ with the equivalent
construct in Java. 

// Java comment on a single line
/* Java comment 
   that crosses multiple lines */
/** Javadoc-style comments */

// C++ comment on a single line
/* C++ comment 
   that crosses multiple lines */

// Java uses packages to group
// related classes together

// C++ uses libraries to group
// related functions and classes
// together

// Java class
// Each member has an access
// modifier (public, private, 
// protected, or none for 
// package access)
class Person {
private String name;
protected int age;
double gpa;
public Person() {

  } // end default constructor
  ...
}  // end Person

// C++ class - by default, all
// members are private unless
// labeled otherwise, no package access

class Person { 
  string name;
protected:
int age;
double gpa;

public:
  Person();
};  // end Person

// No equivalent in Java, a class 
// containing only public data
// could be used

// C++ structure - by default, all
// members are public unless
// labeled otherwise
struct person { 
  string name;
int    age;
double gpa;

};  // end person

// Java supports single inheritance
// of classes. Interfaces can be
// used to specify additional
// behavior

// C++ supports multiple
// inheritance
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// Java provides generics to handle 
// parameterized types
public class Stack <T> {
private T temp;

public void push(T newItem) {
    ...
  } // end push
} // end Stack

// C++ provides generics to handle 
// parameterized types
template <class T> 
class Stack {
private:

    T temp;

public:
void push(const T&);

    ...
} // end Stack

template <class T>
void Stack<T>::push(const T& newItem) {
    ...
}

// Java does not rely on a
// preprocessor;
// functionality is provided by the 
// Java language itself

// C++ uses a preprocessor for
// compiler directives such as file
// inclusion

// Java methods must appear as part 
// of a class

// C++ can have stand-alone functions

// Java constant
// Must be declared within a class
// or a method
final int SIZE = 50;

// C++ constant
// Can be declared globally or
// within a class or a function
const int SIZE = 50;

// Java valued method
public boolean isLeapYear(int year) {
// Returns true if year is a leap
// year; otherwise returns false.

boolean leap = false;
boolean yearEndsIn00 = (year % 100 == 0);
if (yearEndsIn00 && (year % 400 == 0))

      leap = true;
else if (!yearEndsIn00 && (year % 4 == 0))

      leap = true;
return leap;

} // end isLeapYear

// C++ valued function
bool isLeapYear(int year) {
// Returns true if year is a leap
// year; otherwise returns false.

bool leap = false;
bool yearEndsIn00 = (year % 100 == 0);
if ( yearEndsIn00 && (year % 400 == 0))

      Leap = true;
else if (!yearEndsIn00 &&

                         (year % 4 == 0))
      leap = true;

return leap;
} // end isLeapYear
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// Java variable declarations
// Variables must be declared
// within a class or a method
int       day, month, year;
double    power, x;
char      response;
boolean   done;
// Simple reference declaration; no 
// object is instantiated until the
// new operator is used. Java
// supports only dynamic allocation
// of objects
Sphere ball;
// Creating an object using a
// default constructor
Sphere ball = new Sphere();
// Using constructor with
// parameters
Sphere ball = new Sphere(1.0); 

// C++ variable declarations 
// Variables can be declared
// globally as well as within
// classes and methods
int    day, month, year;
double power, x;
char   response;
bool   done;
// Objects can be declared
// statically using the default
// constructor
Sphere ball;
// Also by using a constructor with 
// parameters
Sphere ball(1.0); 
// Dynamic allocation is supported
// using pointers and the new
// operator
Sphere *ball = new Sphere();

// Equality in Java
// == and != check for shallow
// equality
// For object equality, must
// override the equals method from
// class Object

// Equality in C++
// == and != check for shallow
// equality
// For object equality, must
// provide the functions operator
// == and operator !=, for example

// Java array, primitive types
double[] r = new double[SIZE];
double[] s = new double[SIZE];

for (int i = 0; i < SIZE; i++) {
  r[i] = 0.0;
} // end for

// Java array using objects and references
Sphere[] marbles = new Sphere[SIZE];
for (int i=0; i < SIZE; i++) {
  marbles[i] = new Sphere(0.3);
} // end for

// C++ array 
typedef double arrayType[SIZE];
arrayType r;
double    s[SIZE];

for (int i = 0; i < SIZE; ++i) {
   r[i] = 0.0;
} // end for

// Java Standard Output
System.out.println("Enter month and " +
      "day for year " + year +
      "as integers: ");

// C++ Standard Output
cout << "Enter month and day "
     << "for year" << year 
     << " as integers: ";

// Java Scanner class can be used 
// with standard input
import java.util.Scanner;
Scanner kbInput = new Scanner(System.in);
x = kbInput.nextInt();
y = kbInput.nextDouble();

// C++ Standard input
cin >> x >> y;
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APPENDIX B

Unicode Character Codes
(ASCII Subset)

Dec Char Dec Char Dec Char Dec Char
0 NUL 32   (blank) 64 @ 96 ` (reverse quote)
1 STX 33 ! 65 A 97 a
2 SOT 34 ” 66 B 98 b
3 ETX 35 # 67 C 99 c
4 EOT 36 $ 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 ’ (apostrophe) 71 G 103 g
8 BS 40 ( 72 H 104 h
9 HT 41 ) 73 I 105 i
10 LF 42 * 74 J 106 j
11 VT 43 + 75 K 107 k
12 FF 44 , (comma) 76 L 108 l
13 CR 45 – 77 M 109 m
14 SO 46 . 78 N 110 n
15 SI 47 / 79 O 111 o
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 V 118 v
23 ETB 55 7 87 W 119 w
24 CAN 56 8 88 X 120 x
25 EM 57 9 89 Y 121 y
26 SUB 58 : 90 Z 122 z
27 ESC 59 ; 91 [ 123 {
28 FS 60 < 92 \ 124 |
29 GS 61 = 93 ] 125 }
30 RS 62 > 94 ^ 126 ~
31 US 63 ? 95 _ (underscore) 127 DEL

Note: The codes 0 through 31 and 127 are for control characters that do not print.
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APPENDIX C

Java Resources

Java Web Sites 
Sun Microsystems, a subsidiary of Oracle Corporation, released the Java platform in
1995. Oracle now maintains some of the best Web sites of information on Java at

http://java.com and http://www.oracle.com/technetwork/java/
index.html

Of particular interest is the Java Standard Edition version 6 (also know as
version 1.6). This is the version of the Java Development Kit (JDK) used to
compile all of the code contained in this text. You can download it in english
from the following page:

http://www.java.com/en/download/

The last section of this appendix lists some of the more popular Integrated
Development Environments (IDEs) that are available for free and work in con-
junction with Java SE 6.

You can also browse the Java SE 6 API documentation and find other
useful resources on Java including tutorials on the following Web page:

http://download.oracle.com/javase/

Using Java SE 6
This section summarizes the commands used to compile and execute Java
applications within an MS-DOS window on a PC running Windows. These
commands also work in a command window of most Unix machines.

Follow the instructions specified on the download page
http://www.java.com/en/download/ to unpack and install Java SE 6 on
your system. After you install Java from this Web site, it will ask to close your
browser, and when it re-opens, you can verify that the installation was successful.

The following discussion assumes that you have created a simple Java
program in the file Hello.java as follows:

public class Hello {
public static void main(String[] args) {

    System.out.println("Hello World");
  } // end main
} // end Hello



Appendix C 893

Compiling a Java program. To compile the Java program Hello.java, use
the command javac followed by the name of the Java program as follows:

javac Hello.java

Java expects that your file name will be consistent with the name of the
class it contains, and that it will end with .java.

If your program contains errors, they will be listed on the screen. If the
program compiles successfully, you will see no messages, and a new file called
Hello.class will appear in your folder or directory. This file contains the
bytecode for your program.

Running a Java program. Java programs are executed using the Java Virtual
Machine (JVM). To run your program using the JVM, use the command java
followed by the name of the .class file created by the Java compiler:

java Hello

Note that you should not include the .class extension. At this point, the
program is executed and produces the following output:

Hello World

The Web site for this textbook contains all of the code contained in this
text, plus further instructions for compiling and using the code.

Integrated Development Environments (IDEs)
An IDE is a set of tools that make it easier to develop code. They provide a
window-based environment for writing and editing source code, and typically
provide highlighting of keywords. They often are bundled with debugging
tools, a viewer for browsing class structures, and in some cases, drag-and-drop
utilities for building graphical user interfaces. 

There are many free IDEs available that work with Java SE 6. Unfortunately,
it is beyond the scope of this appendix to demonstrate these IDEs. Here is a list
of just a few more popular ones:

Eclipse http://www.eclipse.org

Netbeans http://www.netbeans.org

BlueJ http://www.bluej.org

JGrasp http://www.jgrasp.org
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APPENDIX D

Mathematical Induction

Many proofs of theorems or invariants in computer science use a technique called
mathematical induction, or simply induction. Induction is a principle of math-
ematics that is like a row of dominoes standing on end. If you push the first
domino, all the dominoes will fall one after another. What is it about the domi-
noes that allows us to draw this conclusion? If you know that when one domino
falls the next domino will fall, then pushing the first domino will cause them all to
fall in succession. More formally, you can show that all the dominoes will fall if
you can show that the following two facts are true:

■ The first domino falls.

■ For any k ≥ 1, if the kth domino falls, the (k + 1)th domino will fall.

The principle of mathematical induction is an axiom that is stated as follows:

AXIOM D-1. The principle of mathematical induction. A property P(n)
that involves an integer n is true for all n ≥ 0 if the following are true:

1. P(0) is true.

2. If P(k) is true for any k ≥ 0, then P(k + 1) is true.

A proof by induction on n is one that uses the principle of mathematical
induction. Such a proof consists of the two steps given in Axiom D-1. The first
step is called the basis, or base case. The second step is the inductive step.
We usually break the inductive step into two parts: the inductive hypothesis
(“if P(k) is true for any k ≥ 0”) and the inductive conclusion (“then P(k + 1)
is true”).

Example 1
The following recursive method, which is given here in pseudocode, com-
putes xn:

power2(x, n)

if (n == 0)
return 1

else
return  x * power2(x, n–1)
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You can prove that power2 returns xn for all n ≥ 0 by using the following
proof by induction on n:

Basis. Show that the property is true when n = 0. That is, you must show
that power2(x, 0) returns x0, which is 1. However, as you can see from the
definition of power2, power2(x, 0) is 1.

Now you must establish the inductive step. By assuming that the property
is true when n = k (the inductive hypothesis), you must show that the prop-
erty is true when n = k + 1 (the inductive conclusion).

Inductive hypothesis. Assume that the property is true when n = k. That
is, assume that 

power2(x, k) = xk

Inductive conclusion. Show that the property is true when n = k + 1.
That is, you must show that power2(x, k + 1) returns the value xk + 1. By
definition of the method power2,

power2(x, k + 1) = x * power2(x, k)

By the inductive hypothesis, power2(x, k) returns the value xk, so

power2(x, k + 1) = x * xk

= xk + 1

which is what you needed to show to establish the inductive step.
The inductive proof is thus complete. We demonstrated that the two steps

in Axiom D-1 are true, so the principle of mathematical induction guarantees
that power2 returns xn for all n ≥ 0. (End of proof.)

Example 2
Prove that

It will be helpful to let Sn represent the sum 1 + 2 + · · · + n.

Basis. Sometimes the property to be proven is trivial when n = 0, as is the
case here. You can use n = 1 as the basis instead. (Actually, you can use any
value of n ≥ 0 as the basis, but a value of 0 or 1 is typical.)

You need to show that the sum S1, which is simply 1, is equal to 1(1 + 1)/2.
This fact is obvious.

n(n+1)
1 + 2 + · · · + n = when n ≥1

2
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Inductive hypothesis. Assume that the formula is true when n = k; that is,
assume that Sk = k(k + 1)/2.

Inductive conclusion. Show that the formula is true when n = k + 1. To do
so, you can proceed as follows:

Sk + 1 = (1 + 2 + · · · + k) + (k + 1) (definition of Sk+1)

= Sk + (k + 1) (definition of Sk)

= k(k + 1)/2 + (k + 1) (inductive hypothesis)

= (k(k + 1) + 2(k + 1))/2 (common denominator)

= (k + 1)( k + 2)/2 (factorization)

The last expression is n(n + 1)/2 when n is k + 1. Thus, if the formula for Sk is
true, the formula for Sk + 1 is true. Therefore, by the principle of mathematical
induction, the formula is true when n ≥ 1. (End of proof.)

Example 3
Prove that 2n > n2 when n ≥ 5.

Basis. Here is an example where the base case is not n = 0 or 1, but instead is
n = 5. It is obvious that the relationship is true when n = 5 because

25 = 32 > 52 = 25

Inductive hypothesis. Assume that the relationship is true when n = k ≥ 5;
that is, assume that 2k > k2 when k ≥ 5.

Inductive conclusion. Show that the relationship is true when n = k + 1; that
is, show that 2k + 1 > (k + 1)2 when k ≥ 5. To do so, you can proceed as follows:

(k + 1)2 = k2 + (2k + 1) (square k + 1)

< k2 + k2 when k ≥ 5 (2k + 1 < k2; see Exercise 3)

< 2k + 2k when k ≥ 5 (inductive hypothesis)

= 2k + 1

Therefore, by the principle of mathematical induction, 2n > n2 when n ≥ 5.
(End of proof.)

Sometimes, the inductive hypothesis in Axiom D-1 is not sufficient. That
is, you may need to assume more than P(k). The following axiom is a stronger
form of the principle of mathematical induction:

AXIOM D-2. The principle of mathematical induction (strong form). A
property P(n) that involves an integer n is true for all n ≥ 0 if the following are
true:
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1. P(0) is true.

2. If P(0), P(1), · · · , P(k) are true for any k ≥ 0, then P(k + 1) is true.

Notice that the inductive hypothesis of Axiom D-2 (“If P(0), P(1), · · · , P(k)
are true for any k ≥ 0”) includes the inductive hypothesis of Axiom D-1 (“If
P(k) is true for any k ≥ 0”).

Example 4
Prove that every integer greater than 1 can be written as a product of prime
integers.

Recall that a prime number is one that is divisible only by 1 and itself. The
inductive proof is as follows:

Basis. The statement that you must prove involves integers greater than 1.
Thus, the base case is n = 2. However, 2 is a prime number and, therefore, it
trivially is a product of prime numbers.

Inductive hypothesis. Assume that the property is true for each of the inte-
gers 2, 3, · · · , k, where k ≥ 2.

Inductive conclusion. Show that the property is true when n = k + 1; that
is, show that k + 1 can be written as a product of prime numbers.

If k + 1 is a prime number, there is nothing more to show. However, if k + 1
is not a prime number, it must be divisible by an integer x such that 1 < x < k + 1.
Thus,

k + 1 = x * y

where 1 < y < k + 1. Notice that x and y are each less than or equal to k, so the
inductive hypothesis applies. That is, x and y can each be written as a product
of prime numbers. Clearly x * y, which is equal to k + 1, must be a product of
prime numbers. Because the formula holds for n = k + 1, it holds for all n ≥ 2
by the principle of mathematical induction. (End of proof.)

Example 5
Chapter 3 discusses the following recursive definition:

rabbit(1) = 1

rabbit(2) = 1

rabbit(n) = rabbit(n – 1) + rabbit(n – 2) when n > 2

Prove that 

rabbit(n) = (an – bn)/ 5
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where a = (1 + )/2 and b = (1 – )/2 = 1 – a.

Basis. Because rabbit(0) is undefined, begin at n = 1. Some algebra shows
that rabbit(1) = (a1 – b1)/  = 1. However, notice that rabbit(2) is also a
special case. That is, you cannot compute rabbit(2) from rabbit(1) by using
the recurrence relationship given here. Therefore, the basis in this inductive
proof must include n = 2.

When n = 2, some more algebra will show that rabbit(2) = (a2 – b2)/ = 1.
Thus, the formula is true when n is either 1 or 2.

Inductive hypothesis. Assume that the formula is true for all n such that 1 ≤
n ≤ k, where k is at least 2.

Inductive conclusion. Show that the formula is true for n = k + 1. To do so,
you can proceed as follows:

rabbit(k + 1)= rabbit(k) + rabbit(k – 1) (recurrence relation)

= [(ak – bk) + (ak – 1 – bk – 1)]/  (inductive hypothesis)

= [ak – 1 (a + 1) – bk – 1 (b + 1)]/ (factorization) 

= [ak – 1 (a2) – bk – 1 (b2)]/ (a + 1 = a2; b + 1 = b2)

= (ak + 1 – bk + 1)/

Because the formula holds for n = k + 1, it holds for all n > 2 by the principle
of mathematical induction. (End of proof.)

   Note that the previous proof requires that you show that a + 1 = a2 and
b + 1 = b2. Although simple algebra will demonstrate the validity of these
equalities, exactly how did we discover them after the factorization step? Some
experience with inductive proofs will give you the confidence to determine and
verify the auxiliary relationships—such as a + 1 = a2—that are necessary in a
proof. Here, after we introduced the factors (a + 1) and (b + 1), we observed
that if these factors were equal to a2 and b2, respectively, we could finish the
proof. Thus, we tried to show that a + 1 = a2 and b + 1 = b2; indeed, we were
successful. Inductive proofs often require adventurous algebraic manipulations!

The answers to all Self-Test Exercises are at the back of this book.

1. Prove that 1 + 21 + 22 + · · · + 2m = 2m + 1 – 1 for all m ≥ 0.

2. Prove that the sum of the first n odd positive integers is n2.

3. Prove that rabbit(n) ≥ an – 2 when n ≥ 2 and a = (1 + )/2 .

1. Prove that the sum of the first n even positive integers is n(n + 1).

5 5

5

5

5

5

5

5

Self-Test Exercises

5

Exercises
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2. Prove that 12 + 22 + · · · + n2 = n(n + 1)(2n + 1)/6 for all n ≥ 1.

3. Prove that 2n + 1 < n2 for all n ≥ 3.

4. Prove that n3 – n is divisible by 6 for all n ≥ 0.

5. Prove that 2n > n3 when n ≥ 10.

6. Prove that n! > n3 when n is large enough.

7. Recall the following recursive definition from Chapter 2:

c(n, 0) = 1
c(n, n) = 1
c(n, k) = c(n – 1, k – 1) + c(n – 1, k) when 0 < k < n
c(n, k) = 0 when k > n

a. Prove that c(n, 0) + c(n, 1) + · · · + c(n, n) = 2n.
Hint: Use c(n + 1, 0) = c(n, 0) and c(n + 1, n) = c(n, n).

b. Prove that (x + y)n = c(n, k) xk yn – k

8. Prove that rabbit(n) ≤ an – 1 when n ≥ 1 and a = (1 + )/2.

9. Suppose that the rabbit population doubles every year. If you start with two rab-
bits, find and prove a formula that predicts the rabbit population after n years.

k 0=

n

∑

5
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Glossary

abstract base class A class without instances that forms the basis of other
classes that descend from it. An abstract base class contains zero or more
abstract methods.
abstract method A method that must be overridden in the derived class. If
the derived class does not override the abstract method from the abstract base
class, the derived class must also be declared abstract.
abstract data type (ADT) A collection of data values together with a set of
well-specified operations on that data.
abstraction See data abstraction and procedural abstraction.
access time The time required to access a particular item in a data structure
such as an array, a linked list, or a file.
activation record A record that contains a method’s local environment at
the time of and as a result of the call to the method.
address A number that labels a location in a computer’s memory.
adjacency list The n linked lists that implement a graph of n vertices num-
bered 0, 1, . . . , n – 1 such that there is a node in the ith linked list for vertex j
if and only if there is an edge from vertex i to vertex j.
adjacency matrix An n-by-n array graph that implements a graph of n verti-
ces numbered 0, 1, . . . , n – 1 such that graph[i][j] is 1 if there is an edge
from vertex i to vertex j, and 0 otherwise.
adjacent vertices Two vertices of a graph that are joined by an edge. In a
directed graph, vertex y is adjacent to vertex x if there is a directed edge from
vertex x to vertex y.
ADT See abstract data type.
aggregate data type A data type composed of multiple elements. Some
examples of aggregate data types are arrays and files.
algorithm A step-by-step specification of a method to solve a problem
within a finite amount of time. 
allocation See dynamic allocation and static allocation.
analysis of algorithms A branch of computer science that measures the effi-
ciency of algorithms.
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annotation In Java, annotations are a form of metadata that can be added to
a program. Uses include providing additional information to the compiler to
detect errors, informing the compiler to suppress warnings, and warning of the
use of deprecated elements. 
ancestor class See superclass.
ancestor of a node N A node on the path from the root of a tree to N.
argument A variable or expression that is passed to a method. An actual
argument appears in a call to a method and corresponds to a formal parameter
in the method’s declaration. See also parameter.
array A data structure that contains a fixed maximum number of elements of the
same data type that are referenced directly by means of an index or subscript.
array-based implementation An implementation of an ADT that uses an
array to store the data values.
assertion A statement that describes the state of an algorithm or program at
a certain point in its execution. Java supports an assertion statement that allows
you to test a condition at a certain point in a program.
autoboxing The automatic process of converting a primitive type value to its
equivalent wrapper class counterpart so that it can be used as an object. For
example, the conversion of the value 5 to an Integer object containing 5.
average-case analysis A determination of the average amount of time that a
given algorithm requires to solve problems of size n. See also best-case analysis
and worst-case analysis.
AVL tree A balanced binary search tree in which rotations restore the tree’s
balance after each insertion or deletion of a node. (The AVL tree is named for
its inventors Adel’son-Vel’skii and Landis.)
axiom A mathematical rule or relationship. Axioms can be used to specify
the behavior of an ADT operation.
back of a queue The end of a queue at which items are inserted.
backtracking A problem-solving strategy that, when it reaches an impasse,
retraces its steps in reverse order before trying a new sequence of steps.
balanced binary tree A binary tree in which the left and right subtrees of any
node have heights that differ by at most 1. Also called a height-balanced tree.
base case The known case in either a recursive definition or an inductive
proof. Also called the basis or degenerate case.
base class See superclass.
basis See base case.
best-case analysis A determination of the minimum amount of time that a
given algorithm requires to solve problems of size n. See also average-case
analysis and worst-case analysis.
BFS See breadth-first search.
BFS spanning tree A spanning tree formed by using a breadth-first search to
traverse a graph’s vertices.
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Big O notation A notation that uses the capital letter O to specify an algorithm’s
order. For example, “O(f(n))” means “order f(n).” See also order of an algorithm.
binary file A file whose elements are in the computer’s internal representa-
tion. A binary file is not organized into lines. Also called a general file or
nontext file.

binary operator An operator that requires two operands, for example, the +
in 2 + 3. See also unary operator.

binary search An algorithm that searches a sorted collection for a particular
item by repeatedly halving the collection and determining which half could
contain the item.

binary search tree A binary tree in which the search key in any node N is
greater than the search key in any node in N’s left subtree, but less than the
search key in any node in N’s right subtree.

binary tree A set of zero or more nodes, partitioned into a root node and
two possibly empty sets that are binary trees. Thus, each node in a binary tree
has at most two children, the left child and the right child.

binding The association of a variable with both a memory address and the
type of data the variable holds. See also dynamic binding and static binding.

block A group of data records in a file.

block access time The time required to read or write a block of data associ-
ated with a file.

box trace A systematic way to trace the actions of a recursive method.

breadth-first search (BFS) A graph-traversal strategy that visits every vertex
adjacent to a vertex v that it can before it visits any other vertex. Thus, the tra-
versal will not embark from any of the vertices adjacent to v until it has visited
all possible vertices adjacent to v. See also depth-first search.

B-tree of degree m A balanced search tree whose leaves are at the same level
and whose nodes each contain between m – 1 and [m/2] records. Each
nonleaf has one more child than it has records. The root of the tree can
contain as few as one record and can have as few as two children. Typically, a
B-tree is stored in an external file.

bubble sort A sorting algorithm that compares adjacent elements and
exchanges them if they are out of order. Comparing the first two elements, the
second and third elements, and so on, will move the largest (or smallest)
element to the end of the array. Repeating this process will eventually sort the
array into ascending (or descending) order.

bucket A structure associated with a hash address that can accommodate
more than one item. An array of buckets can be used as a hash table to resolve
collisions.

buffer A location that temporarily stores data as it makes its way from one
process or location to another. A buffer enables data to leave one process or
location at a different rate than the rate at which it enters another process or
location, thus compensating for the difference in these rates.
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bytecode The result from a Java compiler when it translates a Java program.
Bytecode must then be executed by a Java Virtual Machine. See also compiler
and Java Virtual Machine.
ceiling of x Denoted by ⎡x⎤, the value of x rounded up. For example, ⎡6.1⎤ = 7.
chain A linked list used within separate chaining, which is a collision-resolu-
tion scheme associated with hashing.
chaining See separate chaining.
child of a node N A node directly below node N in a tree.
circuit A special cycle that passes through every vertex (or edge) in a graph
exactly once. 
circular doubly linked list A doubly linked list whose first node references
the list’s last node and whose last node references the list’s first node.
circular linked list A linked list whose last node references the first node in
the list.
class A Java construct that enables you to define a new data type.
client The program, module, or ADT that uses a class.
closed-form formula A nonrecursive algebraic expression.
clustering The tendency of items to map into groups of locations in a hash
table, rather than randomly scattered locations. This difficulty, typical of the
linear-probing, collision-resolution scheme in hashing, can cause lengthy
search times.
code Statements in a programming language.
coding Implementing an algorithm in a programming language.
cohesion The degree to which the portions of a module are related. See also
highly cohesive module.
collision A condition that occurs when a hash function maps two or more
distinct search keys into the same location.
collision-resolution scheme The part of hashing that assigns locations in the
hash table to items with different search keys when the items are involved in a col-
lision. See also bucket, chain, clustering, double hashing, folding, linear probing,
open addressing, probe sequence, quadratic probing, and separate chaining.
compiler A program that translates a program written in a high-level lan-
guage, such as Java, into a language that a computer can execute. To achieve
platform independence, a Java compiler produces bytecode, which must be
executed by a Java Virtual Machine on a given computer. See also bytecode and
Java Virtual Machine.
compile time The time during which a compiler translates a program from
source form into a form that can be executed. See also run time.
complete binary tree A binary tree of height h that is full to level h − 1 and
has level h filled from left to right.
complete graph A graph that has an edge between every pair of distinct
vertices.
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completely balanced binary tree A binary tree in which the left and right
subtrees of any node have the same height.

connected component For a graph that is not connected, a subset of the
graph’s vertices that a traversal visits beginning at a given vertex.

connected graph A graph that has a path between every pair of distinct
vertices.

constructor A method that initializes new instances of a class. See also
default constructor.

containment See has-a.

cost of a path The sum of the weights of the edges of a path in a weighted
graph. Also called the weight or length of a path.

cost of a program Factors such as the computer resources (computing time
and memory) that a program consumes, the difficulties encountered by those
who use the program, and the consequences of a program that does not
behave correctly.

cost of a spanning tree The sum of the weights of the edges in a weighted
graph’s spanning tree. 

coupling The degree to which the methods in a program are interdepen-
dent. See also loosely coupled modules.

cycle A path in a graph that begins and ends at the same vertex. See also
circuit and simple cycle.

data abstraction A design principle that separates the operations that can be
performed on a collection of data from the implementation of the operations.
See also procedural abstraction.

data field A component of a Java class that stores data of a particular type.
See also member and method.

data flow The flow of data between modules. 

data record An element in a file. A data record can be anything from a
simple value, such as an integer, to an object, such as an employee record. See
also block and record.

data structure A construct that is defined within a programming language to
store a collection of data. 

deep copy of an object A copy that includes the data structures that the
object’s data field(s) reference. See also shallow copy of an object.

default constructor A constructor that has no parameters.

degenerate case See base case.

depth-first search (DFS) A graph-traversal strategy that proceeds along a
path from a given vertex as deeply into the graph as possible before backtrack-
ing. That is, after visiting a vertex, a DFS visits, if possible, an unvisited adja-
cent vertex. If the traversal reaches a vertex that has no unvisited adjacent
vertices, it backs up and then visits, if possible, an unvisited adjacent vertex.
See also breadth-first search.
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derived class See subclass.

descendant class See subclass.

descendant of a node N A node on a path from N to a leaf of a tree. 

DFS See depth-first search.

DFS spanning tree A spanning tree formed by using a depth-first search to
traverse a graph’s vertices.

dictionary See table.

digraph See directed graph.

direct access A process that provides access to any element in a data struc-
ture by position, without the need to first access other elements in the struc-
ture. Also called random access. See also sequential access.

directed edge An edge in a directed graph; that is, an edge that has a direction.

directed graph A graph whose edges indicate a direction. Also called a
digraph. See also undirected graph.

directed path A sequence of directed edges that begins at one vertex and
ends at another vertex in a directed graph. See also simple path.

disconnected graph A graph that is not connected; that is, a graph that has
at least one pair of vertices without a path between them.

divide and conquer A problem-solving strategy that divides a problem into
smaller problems, each of which is solved separately.

double hashing A collision-resolution scheme that uses two hash functions.
The hash table is searched for an unoccupied location, starting from the loca-
tion that one hash function determines and considering every nth location,
where n is determined from a second hash function.

doubly linked list A linked list whose nodes each contain two references,
one to the next node and one to the previous node.

dummy head node In a linked list, a first node that is not used for data but
is always present. The item at the first position of the list is thus actually in the
second node. See also head record.

dynamic allocation The assignment of memory to a variable during
program execution, as opposed to during compilation. In Java, all objects are
created using dynamic allocation. See also static allocation.

dynamic binding Binding that occurs during program execution. Also called
late binding. See also static binding and static member.

dynamic object A dynamically allocated object. An object whose memory is
allocated at execution time and remains allocated only as long as you want.

early binding See static binding.

edge The connection between two nodes of a graph.

empty string A string of length zero.

empty tree A tree with no nodes.
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encapsulation An information-hiding technique that combines data and
operations to form an object.
event An occurrence, such as an arrival or a departure, in an event-driven
simulation. See also external event and internal event.
event-driven simulation A simulation that uses events generated by a math-
ematical model that is based on statistics and probability. The times of events
are either read as input or computed from other event times. Because only
those times at which the events occur are of interest and because no action is
required at times between events, the simulation can advance from the time of
one event directly to the time of the next. See also time-driven simulation.
event list An ADT within an event-driven simulation that keeps track of
arrival and departure events that will occur but have not occurred yet. 
exhaustive search A search strategy that must examine every item in a col-
lection of items before it can determine that the item sought does not exist. 
exception An unusual or exceptional event that occurs during execution of a
program.
exception handler Java code whose execution deals with an exception when
one occurs.
extensible class A class that enables you to add capabilities to its derived
classes without having access to the base class’s implementation. Extensible
classes can be declared abstract.
external event An event that is determined from the input data to an event-
driven simulation. See also internal event.
external methods Algorithms that require external files because the data will
not fit entirely into the computer’s main memory.
external sort A sorting algorithm that is used when the collection of data
will not fit in the computer’s main memory all at once but must reside on sec-
ondary storage such as a disk. See also internal sort.
fail-safe programming A technique whereby a programmer includes checks
within a program for anticipated errors.
Fibonacci sequence The sequence of integers 1, 1, 2, 3, 5, . . . defined by
the recurrence relationship 

a1 = 1, a2 = 1, an = an–1 + an–2 for n > 2
field A data element within a record.
FIFO See first in, first out.
file A data structure that contains a sequence of components of the same
data type. See also binary file, index file, and text file.
file component An indivisible piece of data in a file.
file pointer An indicator, such as an integer, that points to an element within
a file. For example, an index record, which points to a data record in an exter-
nal data file, contains such an indicator, namely, the number of the block that
contains the data record.
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file window A marker of the current position in the file. 
final class A class that cannot be a superclass. That is, you cannot derive
another class from a final class.
final data field A data field whose value cannot change during program exe-
cution.
final method A method that cannot be overridden by another class.
first in, first out (FIFO) A property of a queue whereby the removal and
retrieval operations access the item that was inserted first (earliest). See also last
in, first out.
folding A hashing technique that breaks a search key into parts and com-
bines some or all of those parts, by using an operation such as addition, to
form a hash address.
4-node A tree node that contains three data items and has four children. See
also 3-node and 2-node.
free list A list of available nodes used in an array-based implementation of an
ADT.
front of a queue The end of a queue at which items are removed and
retrieved.
full binary tree A binary tree of height h with no missing nodes. All leaves
are at level h, and all other nodes each have two children.
garbage collection The return to the operating system of memory that was
allocated to a program but is no longer being used.
general file See binary file.
general tree A set of one or more nodes, partitioned into a root node and
subsets that are general subtrees of the root.
generic class A specification of a class in terms of a data type parameter.
grammar The rules that define a language.
graph A set V of vertices, or nodes, and a set E of edges that connect the
vertices.
graph traversal A process that starts at vertex v and visits all vertices w for
which there is a path between v and w. A graph traversal visits every vertex in a
graph if and only if the graph is connected, regardless of where the traversal
starts. 
growth-rate function A mathematical function used to specify an algo-
rithm’s order in terms of the size of the problem.
has-a A relationship between classes whereby one class contains an instance
of another class. Also called containment. See also is-a.
hash function A mathematical function that maps the search key of a table
item into a location that will contain the item.
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hashing A method that enables access to table items in time that is relatively
constant and independent of the items by using a hash function and a scheme
for resolving collisions.
hash table An array that contains the table items, as assigned by a hash
function.
head See head reference.
header See head record.
head reference A reference to the first node in a linked list. Also called a
head.
head record A record that contains the external reference to the first node in
a linked list, along with global information about the list, such as its length.
Also called a header. See also dummy head node.
heap A complete binary tree whose nodes each contain a priority value that is
greater than or equal to the priority values in the node’s children. Also called a
maxheap. See also minheap.
heapsort A sorting algorithm that first transforms an array into a heap, then
removes the heap’s root (the largest element) by exchanging it with the heap’s
last element, and finally transforms the resulting semiheap back into a heap.
height-balanced tree See balanced binary tree.
height of a tree The number of nodes on the longest path from the root of
the tree to a leaf.
hierarchical relationship The “parent-child” relationship between the nodes
in a tree.
highly cohesive module A module that performs one well-defined task. See
also cohesion.
implement (1) To create a program for an algorithm. (2) To use a data
structure to realize an ADT.
import To locate a program module in a library and include it in the current
program.
index (1) An integral value that references an element in an array. Also called
a subscript. (2) Another name for an index file.
index file A data structure whose entries—called index records—are used to
locate items in an external file. Also called the index.
index record An entry in an index file that points to a record in the corre-
sponding external data file. This entry contains a search key and a file pointer.
induction See mathematical induction.
inductive conclusion See inductive step.
inductive hypothesis See inductive step.
inductive proof A proof that uses the principle of mathematical induction.
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inductive step The step in an inductive proof that begins with an inductive
hypothesis (“if P(k) is true for any k ≥ 0”) and demonstrates the inductive con-
clusion (“then P(k + 1) is true”).
infix expression An algebraic expression in which every binary operator
appears between its two operands. See also postfix expression and prefix expression.
information hiding A process that hides certain implementation details
within a module and makes them inaccessible from outside the module. 
inheritance A relationship among classes whereby a class derives properties
from a previously defined class. See also superclass and subclass.
inorder successor of a node N The inorder successor of N’s search key. The
inorder successor is in the leftmost node of N’s right subtree.
inorder successor of x The search key in a search tree that an inorder tra-
versal visits immediately after x.
inorder traversal A traversal of a binary tree that processes (visits) a node
after it traverses the node’s left subtree, but before it traverses the node’s right
subtree. See also postorder traversal and preorder traversal.
insertion sort A sorting algorithm that considers items one at a time and
inserts each item into its proper sorted position.
instance An object that is the result of calling new. The operator new returns
a reference to the instance.
interface (1) In Java, a program component that declares methods required
of a class. (2) The communication mechanisms between modules or systems.
internal event An event that is determined by a computation within an
event-driven simulation. See also external event.
internal node of a tree A node that is not a leaf.
internal sort A sorting algorithm that requires the collection of data to fit
entirely in the computer’s main memory. See also external sort.
invariant An assertion that is always true at a particular point in an algorithm
or program. 
is-a A relationship between classes whereby one class is a special case of
another class. You implement an is-a relationship by using inheritance. See also
has-a.
iteration (1) A process that is repetitive. (2) A single pass through a loop. 
iterative solution A solution that involves loops.
iterator A class that interacts with another class representing a collection of
objects to provide access to either the next or previous item within the collec-
tion. An iterator provides a way to cycle through the objects in the collection.
Java Collections Framework (JCF) A unified architecture for representing
and manipulating collections in Java. It contains many commonly used collec-
tion ADTs including lists, stacks, and queues as generic classes. It also contains
algorithms for common tasks such as sorting and searching.
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Java Virtual Machine A program written for a particular computer that exe-
cutes bytecode, which is the result of compiling a Java program. See also byte-
code and compiler.
key (1) The portion of an index record that corresponds to the search key in
a record in an external data file. (2) Another name for search key.
language A set of strings of symbols that adhere to the rules of a grammar. 
last in, first out (LIFO) A property of a stack whereby the deletion and
retrieval operations access the most recently inserted item. See also first in,
first out.
late binding See dynamic binding.
leaf A tree node with no children.
left child of a node N A node directly below and to the left of node N in
a tree.
left subtree of a node N The left child of node N plus its descendants in
a tree.
length of a path See cost of a path.
level of a node The root of a tree is at level 1. If a node is not the root, its
level is 1 greater than the level of its parent.
life cycle of software The phases of software development: specification,
design, risk analysis, verification, coding, testing, refining, production, and
maintenance.
LIFO See last in, first out.
linear implementation An implementation that uses either an array or a
reference-based linked list.
linear linked list A linked list that is not circular.
linear probing A collision-resolution scheme that searches the hash table
sequentially, starting from the original location specified by the hash function,
for an unoccupied location. 
linked list A list of elements, or nodes, that are linked to one another such
that each element references the next element.
list An ADT whose elements are referenced by their position. See also sorted list.
load factor A measure of the relative fullness of a hash table, defined as the
ratio of a table’s current number of items to its maximum size.
local environment of a method A method’s local variables, a copy of the
actual value arguments, a return address in the calling routine, and the value of
the method itself.
local identifier An identifier whose scope is the block that contains its
declaration.
local variable A variable declared within a method and available only within
that method. 
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loop invariant An assertion that is true before and after each execution of a
loop within an algorithm or program.
loosely coupled modules Two or more modules that are not dependent on
one another. See also coupling.
machine language A language composed of the fundamental instructions
that a computer can execute directly.
mathematical induction A method for proving properties that involve non-
negative integers. Starting from a base case, you show that if a property is true for
an arbitrary nonnegative integer k, then the property is true for the integer k + 1. 
maxheap Another name for a heap. See also minheap.
member A component of a class that is either data or a method. See also
data field and method.
mergesort A sorting algorithm that divides an array into halves, sorts each
half, and then merges the sorted halves into one sorted array. Mergesort can
also be adapted for sorting an external file.
message A request, in the form of a method call, that an object perform an
operation.
method A component of a class that implements a behavior of the class. See
also data field and member.
minheap A complete binary tree whose nodes each contain a priority value
that is less than or equal to the priority values in the node’s children. See also
maxheap.
minimum spanning tree A graph’s spanning tree for which the sum of its
edge weights is minimal among all spanning trees for the graph.
modular program A program that is divided into isolated components, or
modules, that have clearly defined purposes and interactions.
module An individual component of a program, such as a method, a group
of methods, or other block of code.
multigraph A graphlike structure that allows duplicate edges between its
vertices.
multiple indexing A process that uses more than one index file to an exter-
nal data file.
node An element in a linked list, graph, or tree that usually contains both
data and a reference to the next element in the data structure.
nontext file See binary file.
object An instance of a class.
object-oriented programming (OOP) A software engineering technique
that views a program as a collection of components called objects that inter-
act. OOP embodies three fundamental principles: encapsulation, inheritance,
and polymorphism.
object serialization The process of transforming an object into a sequence
of bytes that represent the object.
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object type compatible A characteristic of objects that enables you to use an
instance of a subclass where an instance of the superclass is expected, but not
the converse. The object type of an argument in a call to a method can be an
instance of the subclass of the corresponding parameter’s object type.
O(f(n)) Order f(n). See Big O notation and order of an algorithm.
OOP See object-oriented programming.
open A process that prepares a stream to a file for either input or output. A
state of readiness for I/O.
open addressing A category of collision-resolution schemes in hashing that
probe for an empty, or open, location in the hash table in which to place the
item. See also double hashing, linear probing, and quadratic probing.
order of an algorithm An algorithm’s time requirement as a function of the
problem size. An algorithm A is order f(n) if constants k and n0 exist such that
A requires no more than k ∗ f(n) time units to solve a problem of size n ≥ n0.
See also Big O notation.
order-of-magnitude analysis An analysis of an algorithm’s time require-
ment as a function of the problem size. See also order of an algorithm.
override To redefine a method of a class within a subclass. 
package A collection of related classes.
package access member A member of a class that is accessible only by the
methods of the class and by other classes in the same package.
parameter An identifier that appears in the declaration of a method and represents
the value that the calling program will pass to the method. See also argument.
palindrome A character string that reads the same from left to right as it
does from right to left, for example, “deed.” 
parent of a node N The node directly above node N in a tree.
partition To divide a data structure such as an array into segments.
path A sequence of edges in a graph that begins at one vertex and ends at
another vertex. Because a tree is a special graph, you can have a path through a
tree. See also directed path and simple path.
perfect hash function An ideal hash function that maps each search key into
a unique location in the hash table. Perfect hash functions exist when all possi-
ble search keys are known.
pivot element An element that an algorithm uses to organize data by value.
For example, the quicksort algorithm partitions an array about a particular
element called the pivot.
planar graph A graph that can be drawn in a plane in at least one way so that
no two edges cross. 
polymorphism The ability of a variable name to represent, during program
execution, instances of different but related classes that descend from a
common superclass.
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pop To remove an item from a stack.
position-oriented ADT An ADT whose operations involve the positions of
its items. See also value-oriented ADT.
postcondition A statement of the conditions that exist at the end of a module.
postfix expression An algebraic expression in which every binary operator
follows its two operands. See also infix expression and prefix expression.
postorder traversal A traversal of a binary tree that processes (visits) a
node after it traverses both of the node’s subtrees. See also inorder traversal
and preorder traversal.
precondition A statement of the conditions that must exist at the beginning
of a module in order for the module to work correctly.
predecessor (1) In a linked list, the predecessor of node N is the node that
references N. (2) In a directed graph, vertex x is a predecessor of vertex y if there
is a directed edge from x to y, that is, if y is adjacent to x. See also successor.
prefix expression An algebraic expression in which every binary operator
precedes its two operands. See also infix expression and postfix expression.
preorder traversal A traversal of a binary tree that processes (visits) a node
before it traverses both of the node’s subtrees. See also inorder traversal and
postorder traversal.
primitive data type One of the Java data types boolean, byte, char,
double, float, int, long, or short.
priority queue An ADT that orders its items by a priority value. The first
item removed is the one having the highest priority value.
priority value A value assigned to the items in a priority queue to indicate
the item’s priority.
private member A member of a class that is accessible only by methods of
the class.
probe sequence The sequence of locations in the hash table that a collision-
resolution scheme examines.
problem solving The entire process of taking the statement of a problem
and developing a computer program that solves that problem. 
procedural abstraction A design principle that separates the purpose and
use of a module from its implementation. See also data abstraction.
protected member A member of a class that is accessible by methods of the
class, by derived classes, and by other classes in the same package.
public class A class that is accessible by any other class.
public member A member of a class that is accessible by any client of
the class. 
push To add an item to a stack.
quadratic probing A collision-resolution scheme that searches the hash table
for an occupied location beginning with the original location that the hash
function specifies and continuing at increments of 12, 22, 32, and so on.
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queue An ADT whose first (earliest) inserted item is the first item removed
or retrieved. This property is called first in, first out, or simply FIFO. Items
enter a queue at its back and leave at its front.
quicksort A sorting algorithm that partitions an array’s elements around a
pivot p to generate two smaller sorting problems: Sort the array’s left section,
whose elements are less than p, and sort the array’s right section, whose ele-
ments are greater than or equal to p.
radix sort A sorting algorithm that treats each data element as a character
string and repeatedly organizes the data into groups according to the ith char-
acter in each element.
random access See direct access.
random access file A file whose elements are accessible by position without
first accessing preceding elements within the file. 
range query An operation that retrieves all table items whose search keys fall
into a given range of values. 
rear of a queue Another term for the back of a queue.
recognition algorithm An algorithm, based on a language’s grammar, that
determines whether a given string is in the language.
record A group of related items, called fields, that are not necessarily of the
same data type. See also data record.
recurrence relation A mathematical formula that generates the terms in a
sequence from previous terms. 
recursion A process that solves a problem by solving smaller problems of
exactly the same type as the original problem. 
recursive call A call within a method to the method itself.
red-black tree A representation of a 2-3-4 tree as a binary tree whose nodes
have red and black child references. 
reference (1) A reference variable in Java. (2) Generically, an element that
references an object. 
reference-based implementation An implementation of an ADT or a data
structure that uses references to organize its elements.
reference variable A Java variable that references an object. 
right child of a node N A node directly below and to the right of node N in
a tree.
right subtree of a node N The right child of node N plus its descendants in
a tree.
rightward drift (1) In an array-based implementation of a queue, the
problem of the front of the queue moving toward the end of the array.   (2) In
a Java program, the problem of nested blocks bumping against the right-hand
margin of the page.
root The only node in a tree with no parent.
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rotation An operation used to maintain the balance of a red-black or
AVL tree.
run time The execution phase of a program. The time during which a pro-
gram’s instructions execute. See also compile time.
scope of an identifier The part of a program in which an identifier has meaning.
search A process that locates a certain item in a collection of items.
search key The part of a record that identifies it within a collection of
records. A search algorithm uses a search key to locate a record within a collec-
tion of records. Also called a key.
search tree A tree whose organization facilitates the retrieval of its items. See
also AVL tree, binary search tree, B-tree of degree m, red-black tree, 2-3 tree, and
2-3-4 tree.
selection sort A sorting algorithm that selects the largest item and puts it in
its correct place, then selects the next largest item and puts it in its correct
place, and so on.
semiheap A complete binary tree in which the root’s left and right subtrees
are both heaps. 
separate chaining A collision-resolution scheme that uses an array of linked
lists as a hash table. The ith linked list, or chain, contains all items that map
into location i.
sequential access A process that stores or retrieves elements in a data struc-
ture one after another, starting at the beginning. See also direct access.
sequential access file A file whose elements must be processed sequentially.
That is, to process the data stored at a given position, you must advance the
file window beyond all the data that precedes it. 
sequential search An algorithm that locates an item in a collection by exam-
ining items in order, one at a time, beginning with the first item.
shallow copy of an object A copy that does not include any data structures
that the object’s data fields might reference. See also deep copy of an object.
shortest path Between two given vertices in a weighted graph, the path that
has the smallest sum of its edge weights.
siblings Tree nodes that have a common parent.
simple cycle A cycle in a graph that does not pass through a vertex more
than once. 
simple path A path in a graph that does not pass through a vertex more than
once. See also directed path.
simulation A technique for modeling the behavior of both natural and artifi-
cial systems. Generally, its goal is to generate statistics that summarize the per-
formance of an existing system or to predict the performance of a proposed
system. A simulation reflects long-term average behavior of a system rather
than predicting occurrences of specific events. 
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software engineering A branch of computer science that provides tech-
niques to facilitate the development of computer programs. 
solution Algorithms and ways to store data that solve a problem.
sorted list An ADT that maintains its elements in sorted order and retrieves
them by their position number within the list. See also list.
sorted order The order of a collection of data that is in either ascending or
descending order.
sorted run Sorted data that is part of an external sort.
sorting A process that organizes a collection of data into either ascending or
descending order. See also external sort and internal sort.
sort key The part of a record that determines the sorted order of the entire
record within a collection of records. A sorting algorithm uses a sort key to
order records within a collection of records. 
source program A program written in a programming language that needs
to be compiled. For example, a Java program. Also called source code.
spanning tree A subgraph of a connected, undirected graph G that contains
all of G’s vertices and enough of its edges to form a tree. See also BFS span-
ning tree and DFS spanning tree.
stack An ADT whose most recently inserted item is the first item removed or
retrieved. This property is called last in, first out, or simply LIFO. Items enter
and leave a stack at its top.
static allocation The assignment of memory to a variable during compila-
tion, as opposed to during program execution. In Java, only primitive types
and references use static allocation. See also dynamic allocation.
static binding Binding that occurs at compilation time. Also called early
binding. See also dynamic binding and static member.
static member A class member in which there is only one copy available for
all instances of the class. Static members can be bound at compilation time. See
also static binding.
stream An object that moves data into a program (an input stream) or out of
a program (an output stream).
string A sequence of characters. A Java string is an object of type String.
structure chart An illustration of the hierarchy of modules that solve a problem. 
stub A partially completed method that you use during the development and
testing of other modules of a program. 
subclass A class that inherits the members of another class called the super-
class. Also called derived class. See also inheritance.
subgraph A subset of a graph’s vertices and edges.
subscript See index.
subtree Any node in a tree, together with all of the node’s descendants.
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subtree of a node N A tree that consists of a child of N and the child’s
descendants.
successor (1) In a linked list, the successor of node N is the node that N ref-
erences. (2) In a directed graph, vertex y is a successor of vertex x if there is a
directed edge from x to y, that is, if y is adjacent to x. See also predecessor.
superclass A class from which another class—called a subclass—is derived. A
subclass inherits ther superclass’s members. Also called a base class. See also
inheritance and subclass.
symmetric matrix An n-by-n matrix A whose elements satisfy the relation-
ship Aij = Aji.
table An ADT whose data items are stored and retrieved according to their
search-key values. Also called a dictionary.
tail reference A reference to the last node in a linked list. Also called a tail.
tail recursion A type of recursion in which the recursive call is the last action
taken.
text file A file of characters that are organized into lines. 
3-node A tree node that contains two data items and has three children. See
also 4-node and 2-node.
time-driven simulation A simulation in which the time of an event, such as
an arrival or departure, is determined randomly and compared with a simu-
lated clock. See also event-driven simulation.
top-down design A process that addresses a task at successively lower levels
of detail, producing independent modules.
top-down implementation An implementation method in which you imple-
ment and test a module before implementing its submodules.
top of a stack The end of a stack at which items are inserted, retrieved, and
deleted.
topological order A list of vertices in a directed graph without cycles such
that vertex x precedes vertex y if there is a directed edge from x to y in the
graph. A topological order is not unique, in general.
topological sorting In a directed graph without cycles, the process of
arranging the vertices into a topological order.
traversal An operation that processes (visits) each element in an ADT or data
structure. See also inorder traversal, postorder traversal, and preorder traversal.
tree A connected, undirected graph without cycles. See also binary tree and
general tree.
2-node A tree node that contains one data item and has two children. See
also 4-node and 3-node.
2-3 tree A tree such that each internal node (nonleaf) has either two or three
children, and all leaves are at the same level. A node can have a left subtree, a
middle subtree, and a right subtree. 



Glossary 919

If a node has two children and contains one data item, the value of the
search key in the node must be greater than the value of the search key in
the left child and smaller than the value of the search key in the right child.
If a node has three children and contains two data items, the value of the
smaller search key in the node must be greater than the value of the search
key in the left child and smaller than the value of the search key in the
middle child; the value of the larger search key in the node must be greater
than the value of the search key in the middle child and smaller than the
value of the search key in the right child.
2-3-4 tree A tree such that each internal node (nonleaf) has either two,
three, or four children, and all leaves are at the same level. A node can have a
left subtree, a middle-left subtree, a middle-right subtree, and a right subtree. 

If a node has two or three children, it adheres to the specifications of a 2-3
tree. If a node has four children and three data items, the value of the smaller
search key in the node must be greater than the value of the search key in the
left child and smaller than the value of the search key in the middle-left child;
the value of the middle search key in the node must be greater than the value
of the search key in the middle-left child and smaller than the value of the
search key in the middle-right child; the value of the larger search key in the
node must be greater than the value of the search key in the middle-right
child and smaller than the value of the search key in the right child.
type compatible See object type compatible.
unary operator An operator that requires only one operand, for example,
the – in –5. See also binary operator.
undirected graph A graph that has at most one edge between any two verti-
ces and whose edges do not indicate a direction. See also directed graph.
user The person who uses a program.
user interface The portion of a program that provides for user input or
control.
valued method A method that returns a value. See also void method.
value-oriented ADT An ADT whose operations involve the values of its
data items. See also position-oriented ADT.
vertex A node in a graph.
visit The act of processing an item during a traversal of an ADT or a data
structure.
void method A method that does not return a value. See also valued
method.
weighted graph A graph whose edges are labeled with numeric values.
weight of an edge The numeric label on an edge in a weighted graph.
weight of a path See cost of a path.
worst-case analysis A determination of the maximum amount of time that a
given algorithm requires to solve problems of size n. See also average-case
analysis and best-case analysis.
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Answers to 
Self-Test Exercises

Chapter 1
1. a. No import statement is needed, Math is contained in java.lang

b. importjava.io.PrintWriter;
c. importjava.util.Vector;
d. importjava.sql.SQLException;

2. The // comment is for a single line. The /* … */ comment is for multiple
lines.  The /** … */ is for Javadoc-style comments.

3. Possible access-modifier values are public, protected, private, or
there is no modifier, which indicates package access. Possible use-modifier
values are static, final, abstract, native, and synchronized.

4. a. Compiler error: The field SimpleSphere.radius is not visible.
b. Compiler error: Type mismatch, cannot convert from double to int
c. Compiler error: The method getDiameter is undefined for the class

SimpleSphere.
d. Compiler error: The static field SimpleSphere.DEFAULT_RADIUS

should be accessed in a static way.

5. A “short circuit operator” in a boolean expression allows for the second
argument in the expression to only be executed or evaluated if the first
argument does not suffice to determine the value of the expression.

examples: true || x < 5
false&& x < 5

6. Checked exceptions must be handled locally or explicitly thrown from the
method where they might occur. Unchecked exceptions occur when the
error is not considered as serious and can often be prevented by fail-safe
programming. Unchecked exceptions are instances of classes that are sub-
classes of java.lang.RuntimeException, which relaxes the requirement,
forcing the exception to be either handled locally or explicitly thrown by
the method. 
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Chapter 2
1. There are many correct ways to specify the answer to this question, the

following is one example.
a. Specification for cell phone contact list:

� A contact in the contact list consists of a name, a home phone number, 
a work phone number, a cell phone number, and an email address.

� Users should be able to look up contact information by name or 
phone number.

� Users should be able to add a contact.

� Users should be able to delete a contact.

� Users should be able to modify information of a contact.

b. Each entry in the contact list (contactEntry) should have the following
data fields, all of type String:

ContactEntry
 -name
 -homePhone
 -workPhone
 -cellPhone
 -emailAddress

Each of these data fields should have methods that allow the data field
to be read (getFieldname) or written (setFieldname). Preconditions
for these methods may require properly formatted data, for example
name in the form of Lastname, Firstname, and the telephone numbers
requiring an area code. No postconditions are needed.

The contact list will be a list of contact entries (perhaps stored as an array).

ContactList
-contacts - an array of contactEntry objects

with the following methods:

+createContactList()
// Create a new contact list

+add(newContact:ContactEntry):boolean
// AddnewContact to the contact list.
// Precondition: None
// Postcondition: Returns true if contact successfully 
// added
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+lookupByName(name:String):ContactEntry
// Searches for contact with given name
// Precondition: None

// to name. If the contact name is not in the list,

// same name, returns the first one found.

+lookupByNumber(phoneNumber:String):ContactEntry
// Searches for contact that has phone for homePhone,
// workPhone, or cellPhone.
// Precondition: None

// contacts on the the list, returns null. If there are 

// first one found.

+delete(delContact:ContactEntry):boolean
// Deletes the contact delContact from the list

// using lookupByName or lookupByNumber
// Postcondition: Returns true if contact successfully 
// deleted, false otherwise

+modify(modContact:ContactEntry,
newContactInfo:ContactEntry):boolean
// Modifies the contact modContact with the information 
// contained in newContactInfo
// Precondition: Contact to be modified was previously
// found using lookupByName or lookupByNumber
// Postcondition: Returns true if contact successfully 
// modified, false otherwise

// Postcondition: Returns the contact entry corresponding

// returns null. If there are multiple contacts with the 

// Postcondition: Returns the contact entry corresponding
// to phoneNumber. If the phoneNumber is not in any of the 

// multiple contacts with the same phoneNumber, returns the 

// Precondition: Contact to be deleted was previously found 
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c. UML diagram

2. 0 ≤ index ≤ n and sum = item[0] +... + item[index].

3. The equivalent while loop is as follows:

int index = 0;
while (index < n) {
  sum += item[index];
  index++;
} // end while

0 <= index <= n and sum = item[0] + … + item[index-1]

ContactEntry

-name:string
-homePhone:string
-workPhone:string
-cellPhone:string
-emailAddress:string

+createContact(name:string)
+getName():string
+setName(newName:string)
+getHomePhone():string
+setHomePhone(newNum:string)
+getWorkPhone():string
+setWorkPhone(newNum:string)
+getCellPhone():string
+setCellPhone(newNum:string)
+getEmail():string
+setEmail(newEmail:string)

ContactList

-contacts:ContactEntry[*]

+createContactList()
+add(newContact:ContactEntry):boolean
+lookupByName(name:String):ContactEntry
+lookupByNumber(phoneNumber:String):ContactEntry
+delete(delContact:ContactEntry):boolean
+modify(modContact:ContactEntry,
newContactInfo:ContactEntry):boolean

1

*
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4. We can make several improvements to user interaction and programming style:

� Prompt the user for the input and indicate the expected form of the 
input. The user should also be given an option to exit the program.

� Give more descriptive output.

� Check input for obvious errors; e.g., a four-digit age entry is surely a 
typo and the user should be allowed to correct the error.

� Document the program.

� Use more descriptive variable names.

5. final int DZERO = 0;
final int AOTRG = 1;

void severeErrorMessage(int error) {
// -------------------------------------------------------

// Preconditions: none.
// Postconditions: An error message corresponding to the 
// input errorCode is output to the standard error stream
// and the program is terminated.
// -------------------------------------------------------

switch(error) { 

break;
case AORTG: System.out.println(

"Array index out of range.");
break;

  } // end switch

  System.exit(0); // terminate execution immediately
} // end severeErrorMessage

Chapter 3
1. The sum of n numbers is defined in terms of the sum of n − 1 numbers, which

is a smaller problem of the same type. When n is 1, the sum is anArray[0]; this
occurrence is the base case. Because n ≥ 1 initially and n decreases by 1 at each
recursive call, the base case will be reached.

// Displays an error code and terminates program execution.

case DZERO: System.out.println("Divide by zero error.");

default:    System.out.println("Unknown fatal error.");
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2. public static void count(int n, int start) {
// Precondition: start <= n.
// Postcondition: Writes start, start +1, ..., n.

if (start <= n) {
      System.out.println(start);
      count(n, start + 1);
   } // end if
}  // end count

To output 1, 2, 3, ..., n call the method as count(n, 1).

3.

// where first <= last.
// Postcondition: Returns the product of the numbers in 
// anArray[first..last].

double result;
if (first == last) {

      result = anArray[first];
   } 

else {

   } 
return result;

}  // end product

4. writeBackward, binarySearch, kSmall, and the method count in Self-Test
Exercise 2.

5.  c(5, 1) = 5

6. The order of recursive calls that results from solveTowers(3, C, A, B)
follows:

public static double product(double anArray[], int first, int last) 
// Precondition: anArray[first..last] is an array of real numbers,

      result = anArray[last] * product(anArray, first, last-1);

solveTowers (2, C, B, A)
2

solveTowers (1, C, A, B)
3

solveTowers (1, B, C, A)
8

solveTowers (1, C, B, A)
4

solveTowers (1, B, A, C)
9

solveTowers (1, A, B, C)
5

solveTowers (1, C, A, B)
10

solveTowers (1, C, A, B)
6

solveTowers (3, C, A, B)
1

solveTowers (2, B, A, C)
7
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Chapter 4
1. A wall is a visualization of abstraction and modularity. Modules should be

as independent as possible: Walls prevent other parts of the program from
seeing the details of modules. A contract is a specification of what the
module, which is behind the wall, is to do. The contract governs the slit in
the wall; it specifies what is to be passed to the module and what will be
passed out. The contract does not specify how to implement the module.

These concepts help during the problem-solving process by encourag-
ing you to divide the problem into small parts and to focus first on what
you want done rather than on how to do it.

2. By assuming that the list has items at positions i and j, we know that the
list operations get and remove will be successful.

+swap(inout aList:List, in i:integer, in j:integer)
// Swaps the ith and jth items in the list aList.

   // copy ith and jth items
   ithItem = aList.get(i)
   jthItem = aList.get(j)

   // replace ith item with jth

   aList.remove(i)
   aList.add(i, jthItem)

   // replace jth item with ith

   aList.remove(j)
   aList.add(j, ithItem)

Notice that the order of operations is important because when you delete 
an item, remove renumbers the remaining items. 

3. coffee, bread, cereal, milk, butter, eggs

4. Specify createList, isEmpty, size, and removeAll as you would for the
ADT list.

+add(in item:ListItemType)
// Adds item to the beginning of the list.

+remove()
// Removes the item at the beginning of a list.

+get():ListItemType
// Returns the item at the beginning of a list. 
// The list is left unchanged by this operation.
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5.

6. +convertToSortedList(in aList:List):sortedList
// Creates a sorted list from the items in the list 
// aList.

   sortedList.createSortedList()
for (index = 1 to aList.size()) {

      item = aList.get(index)
      sortedList.sortedAdd(item)
   } // end for

return sortedList

7. Duplicate values in an ADT list are permissible and do not affect its
specifications, because its operations are by position. For a sorted list,
however, you need to revise the specifications to accommodate dupli-
cates. You could either prevent the insertion of duplicate items or
allow duplicates. If you do allow the insertion of duplicates, you need
to decide where to insert them, whether to delete all occurrences of
an item or only the first instance, and which of several duplicate items
to retrieve.

8.

Set

-items:itemtype array

+union(s:Set)
+intersection(s:Set)
+isSubset(s:Set):boolean
+addElement(e:ItemType)
+containsElement(e:itemType):boolean
+isEmpty():boolean
+size():integer

String

-str:char array

+charAt(i:int):char
+concat(s:String):String
+indexOf(c:char):integer
+substring(start:integer, end:integer):String
// plus many other methods as found in the
// Java String class
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Chapter 5
1.  a. Missing parameter for constructor, must at least supply an integer

b.

c.

d. The assignment q = new IntegerNode(p) must have an int parameter
as well as a Node.

e.

f.

2.  a. Yes, deletion of the first node in a linked list is a special case since the
head reference must be changed to the second node in the list.

b. No, deletion of the last node in the linked list is not a special case, the
next to the last node takes the value of the next field in the last node,
which is null.

c. Yes, the deletion of the only node of a one-node linked list is a special
case since the head reference must be changed to null.

d. No, deleting the first node takes less effort than deleting the last node.
Deleting the last node required traversing the list, deletion of the first
node does not.

5 7

head

9

6

p

1 5

p

7 9

3

q

head

6 8

head

10

5 7 9

6

p

head
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3. Assume a class CharNode that is analogous to IntegerNode (see pages 273
and 274).
a. head = new CharNode('M', null);

CharNode newNode = new CharNode('S', head);
head = newNode;
newNode = new CharNode('K', head);
head = newNode;

b. head = new CharNode('B');
CharNode secondNode = new CharNode('E');
head.next = secondNode;
CharNode thirdNode = new CharNode('J', null);
secondNode.next = thirdNode;

4. a. prev.next = curr.next;
curr.next = null;
prev = null;
curr = null;

b. head = curr.next;
curr.next = null;
curr = null;

c. CharNode newNode= new CharNode('A');
newNode.next = head;
head = newNode;

d. The variable head references a node that contains 'A'; this node refer-
ences a node that contains 'J'. The next portion of the last node is null.

5. a. Common features of all of the nodes used in this chapter are a field to
store the data, and at least one link to another node.

6. i, ignoring the assignments to count in the for statement.

7. writeListBackward2(reference to 'K')  // original call
  writeListBackward2(reference to 'S')
    writeListBackward2(reference to 'M')
      writeListBackward2(null)
    write M
  write S
write K

Chapter 6
1. The positions of the queens are given as (row, column) pairs.

Solution 1: (2, 1), (4, 2), (1, 3), (3, 4)

Solution 2: (3, 1), (1, 2), (4, 3), (2, 4)
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2. <octalNum> = 0<num>
<num> = <digit> | <num><digit>
<digit> = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

3. <number> = <coef>E<sign><num>
<coef> = <num>.<num>
<num> = <digit> | <num><digit>
<digit> = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

4. <T> = $ | cc<T>d

5. Prefix expression: -  *  /  -  *  a  b  c  d  e  - f g
Postfix expression: a  b  *  c  -  d  /  e  *  f  g  -  -

6. Infix: (a − b / (c + d * e)) − f; postfix: a b c d e * + / – f –

7. No.

8. The proof that f (n) = 2n + f (n – 1) has the closed-form solution f (n) =
n(n + 1) where f (0) = 0, is by induction on n.

Basis. Show that the property is true for n = 1. Here, 1(1 + 1) = 2, which is
consistent with the recurrence relation’s specification that f(1) = 2(1) + 0.

You now must establish that

property is true for an arbitrary k ⇒ property is true for k + 1

Inductive hypothesis. Assume that the property is true for n = k. That is,
assume that

f(k) = k(k + 1)

Inductive conclusion. Show that the property is true for n = k + 1. That
is, you must show that f(k + 1) = (k+1)( k+ 2). Now

f(k + 1) = 2(k + 1) + f(k) from the recurrence relation

= 2k + 2 + k(k + 1) by the inductive hypothesis

= k2 + 3k +2

= (k+1)( k+ 2)

which is what you needed to show to establish that

property is true for an arbitrary k ⇒ property is true for k + 1

The inductive proof is thus complete.
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Chapter 7
1. V, Z, X, Y, W.

2. stack1: 23  17  42  13; stack2: 42  49   (elements listed bottom to top).

3. Use an array-based implementation if you know the maximum string
length in advance and you know that the average string length is not much
shorter than the maximum length. Clearly, you would use a reference-
based implementation if you could not predict the maximum string
length. In addition, if the maximum string length is 300, for example, but
the average string length is 30, a reference-based implementation would
use less storage on average than an array-based implementation.

4. A peek operation simply returns the item from the top of the stack, leaving
it on top of the stack. The pop operation removes and returns the item
from the top of the stack.

5. a. When the loop ends, the stack contains one open brace and
balancedSoFar is true.

b. When the loop ends, the stack is empty and balancedSoFar is true.
c. The stack is empty when the last close brace is encountered. When the

loop ends, balanced-SoFar is false.

6. 2

7. a b / c *

8. The precedence tests control association. The ≥ test enables left-to-right
association when operators have the same precedence.

9. a. Stack contains F, then F I.
b. Stack contains F, then F G, then F G C.
c. Stack contains H, then H G, then H G C, then H G C B, then H G C

B D, then H G C B D F.

Chapter 8
1. W, Y, X, Z, V.

2. queue1: 23  42  13; queue2: 50  42  49   (elements listed front to back).
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3. a. When the for loop ends, the stack and queue are as follows:
Stack:    a  b  r  a  c  a  d  a  b  r  a ← top
Queue:  a  b  r  c  a  d  a  b  r  a ← back
The a at the top of the stack matches the a at the front of the queue. After 
deleting the a from both ADTs, the r at the top of the stack does not
match the b at the front of the queue, so the string is not a palindrome.

b. The letters that you delete from the stack and the queue are the same,
so the string is a palindrome.

c. The letters that you delete from the stack and the queue are the same,
so the string is a palindrome.

d. When the for loop ends, the stack and queue are as follows:
Stack: x y z z y ← top
Queue: x y z z y ← back
The y at the top of the stack does not match the x at the front of the
queue, so the string is not a palindrome.

4. a. 1; b. 3; c. 3; d. 2; e. 3; f. 1;
g. 2; h. 2; i. 1; j. 1; k. 1; l. 2 m. 1

5. You cannot generate a departure event for a given arrival event indepen-
dently of other events. So to read the file of arrival events and generate
departure events, you would need to perform the same computations that
the simulation performs.

6.

Chapter 9
1. a. Sphere mySphere = new Sphere(2.0);

b. Ball myBall = new Ball(6.0, "Beach ball");
c. System.out.println(mySphere.diameter() + " " + 

myBall.diameter());

29

30

31

34

Update eventList and bankQueue: Customer 2 enters bank

Customer 3 begins transaction, create departure event

Update eventList and bankQueue: Customer 4 enters bank

Update eventList and bankQueue: Customer 3 departs

Customer 4 begins transaction, create departure event

Update eventList and bankQueue: Customer 4 departs

23 2

23 2      30 3

30 3

30 3

empty

A 30 3

A 30 3      D 31

D 31

empty

D 34

empty

Time
bankQueue

(front to rear)
eventList

(front to rear)Action

23 2
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2. class Planet extends Ball {
private double minDistance;
private double maxDistance;

   public double minDistanceFromSun() {
return minDistance;

   } // end minDistanceFromSun

   public double maxDistanceFromSun() {
return maxDistance;

   } // end maxDistanceFromSun

   public void setMinDistanceFromSun(double newDistance)
     minDistance = newDistance;
   } // end setMinDistanceFromSun

   public void setMaxDistanceFromSun(double newDistance)
     maxDistance = newDistance;
   } // end setMaxDistanceFromSun
} // end Planet

3. a. The method resetBall cannot access radius directly. The data field
radius is private within the Sphere class, so a derived class cannot
access it.

b. The method resetBall can access radius directly. Instead of writing
setRadius(r) in the implementation of resetBall, you can write
radius = r. This change is unnecessary, however.

4. a. A reference can be declared as type SortedListInterface anywhere that
a reference variable can be declared. Thus, it can be used in declaring a data
field for a class, as a method parameter, or as a local variable to a method.

b. A class that implements SortedListInterface must be used when
an actual instance of a sorted list needs to be created.

c. SortedListInterface studentList = new
SortedListReferenceBased();

5. a. Abstract classes and interfaces are similar in that neither can have
objects directly instantiated from them.

b. They differ in that abstract classes can contain data fields and methods
with implementations, but interfaces can contain only constants and
method specifications. 

6. A derived class cannot access and therefore cannot override a private
method in its base class.
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7. Student s1 = new Student("Sarah", 4.0);
NewClass<Student> myClass = new NewClass<Student>(s1);
System.out.println("Contents of myClass => " + myClass);

Output:
Contents of myClass => Student@1f6a7b9, 1970

Note that the output displays myClass using the default toString method 
inherited from class Object. If the class Student provides a toString method,
that would be used instead.

Chapter 10
1. (n − 1) + (n − 2) +... + 1 = n * (n − 1)/2

2. n + (n − 1) +... + 2 = n * (n + 1)/2 − 1

3. a. O(n3); b. O(log n ); c. O(n  log n)

4. a. You can stop searching as soon as searchValue is greater than a data
item, because you will have passed the point where searchValue
would have occurred if it was in the data collection.

b. Sorted data, using the scheme just described in the answer to Part a:
best case: O(1); average case: O(n ); worst case: O(n ).
Unsorted data: O(n ) in all cases.

c. Regardless of whether the data is sorted, the best case is O(1) (you find
the item after one comparison) and both the average and worst cases are
O(n ) (you find the item after n/2 or n comparisons, respectively).

5. At each pass, the selected element is underlined.

6. Find the smallest instead of the largest element at each pass.

80 40 25 20 30 60
60 40 25 20 30 80
30 40 25 20 60 80
30 20 25 40 60 80
25 20 30 40 60 80
20 25 30 40 60 80

80 40 25 20 30 60
80 40 25 60 30 20
80 40 30 60 25 20
80 40 60 30 25 20
80 60 40 30 25 20
80 60 40 30 25 20
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7.   

There are no exchanges during Pass 4, so the algorithm will terminate.

8.

9. ■ mergesort sorts an array by using a mergesort to sort each half of
the array.

■ Sorting half of an array is a smaller problem than sorting the entire array.

■ An array of one element is the base case.

■ By halving an array and repeatedly halving the halves, you must reach
array segments of one element each—that is, the base case.

10. Vertical bars separate the array into regions as the partition develops. The
pivot is 38.

11. a. A binary search is O(log2 n ), and so is faster than a mergesort, which
is O(n log2 n ).

b. A binary search is O(log2 n ), and so is faster than displaying the array,
which is O(n ).

Pass 1 Pass 2
80 40         25         20        30        60             40 25         20         30         60 80
25         80 25         20        30        60             20         40 20         30         60 80
25         20         80 20        30        60             20         25         40 30         60 80
25         20         30         80 30        60             20         25         30         40 60 80
25         20         30         40        80 60             20         25         30         40 60 80
25         20         30         40        60 80

Pass 3
25 20         30         40 60 80
20         25 30         40 60 80
20         25         30 40 60 80
20         25         30         40 60 80

25 30 20 80 40 60
25 30 20 80 40 60
20 25 30 80 40 60
20 25 30 80 40 60
20 25 30 40 80 60
20 25 30 40 60 80

39  | 12 16 38 40 27 pivot  |  unknown Swap 12 with itself to move it to S1.
39  | 12  | 16 38 40 27 pivot  |  S1  |  unknown Swap 16 with itself to move it to S1.
39  | 12  | 16  | 38 40 27 pivot  |  S1  |  unknown Swap 38 with itself to move it to S1.
39  | 12  | 16 38  | 40 27 pivot  |  S1  |  unknown 
39  | 12 16  | 38 40  | 27 pivot  | S1  | S2 |  unknown Swap 27 and 40. 
39 12 16  | 38  | 27 40 S1  | pivot | S2
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Chapter 11
1. a. 30; b. 30, 20, 70, 50 c. 20, 70; 10; 50, 90; 40, 60;

d. 20 and 70, 50 and 90, 40 and 60;
e. 50, 70, 30; f. 50, 40, 60, 90; g. 10, 40, 60, 90;

2. a. 1: A; 2: B, C; 3: D, E; 4: F; 5: G
b. 1: A; 2: B; 3: C; 4: D; 5: E; 6: F; 7: G

3. 4

4. Complete: b, c, d, e; Full: e; Balanced: b, c, d, e.

5. Preorder: A, B, D, E, C, F, G; Inorder: D, B, E, A, F, C, G; 
Postorder: D, E, B, F, G, C, A.

6.

7. 30, 20, 10, 70, 50, 40, 60, 90 is one of several possible orders. (This order
results from a preorder traversal of the tree.)

8. The array is 30  20  50  10  25  40  60.

9.

10. No. J should be in G’s right subtree. U and V should be in T’s right subtree.

11. The algorithm compares each given search key with the keys in the
following nodes:
a. 30, 70, 50; b. 30, 70, 90

J

A

B

E

N

W

T

5

1 2

8 6 10 3

4 79
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12. Inserting the array elements into a binary search tree produces

An inorder traversal of this tree results in the sorted array.

13. a.

b. The tree has minimum height and is complete but not full.

Chapter 12
1. tableReplace(x, replacementItem) 

// Precondition: replacementItem’s search key is x.
if (tableDelete(x))
   tableInsert(replacementItem)

2. No.

3. It is neither a semiheap nor a heap.

20

80

60

40

30

25

8

4 12

2 6 10
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4. After inserting 12: After removing 12:

5. The array that represents the heap is 6  4  5  1  2  3.

6. The array that represents the heap is 7  5  6  4  3  2.

7. The array is 10  9  5  8  7  2  3  1  4  6.

Chapter 13
1.  

2.  a.  

b.

3. a. See the answer to Self-Test Exercise 1.
b.

12

9 10

3 2 5 6

10

9 6

3 2 5

15

10 20

30 405

20

15 30

5 40

10

4 20

3 5 15 30 40

15

10 20

30 403 54
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4.  

5. A balanced binary search tree.

6. Each node in a red-black tree requires memory for two references and two
reference colors. These references and reference colors require no more
memory than the four references in a node in a 2-3-4 tree. In addition, a
node in a red-black tree requires a reference for only one data item,
whereas a node in a 2-3-4 tree requires references for three data items.

7.  +tableDelete(in searchKey:KeyType) throw TableException

  i = h(searchKey)

          or (table[i] is deleted) ) {
     ++i
  } // end if

if (table[i] is not empty) {
     // table[i].getKey() == searchKey
     Mark table[i] deleted

return true
  }

else {
return false

  } // end if

8. 8, 10, 1, 3, 5, 7, 9, 0, 2, 4, 6.

9. table[1] → 15 → 8
table[2] is null
table[3] → 17→ 24 → 10
table[4] → 32

Chapter 14
1. a. Directed, connected; b. Undirected, connected

2. DFS: 0, 1, 2, 4, 3; BFS: 0, 1, 2, 3, 4.

50

30 70

15 40 60 90

20 8010

while ( (table[i] is occupied and table[i].getKey() != searchKey) 
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3.

4. a  g  d  b  e  c  f

g  a  d  b  e  c  f

a  g  d  b  e  f  c

g  a  d  b  e  f  c

5. No. See Observation 2 on page 783.

6.

7.

8. Path 0, 4, 2, 1 has weight 7.

Path 0, 4, 2 has weight 5.

Path 0, 4, 2, 3 has weight 8.

Path 0, 4 has weight 4.

Chapter 15
1. Sequential access: Copy the original file file1 into the file file2. Write a

new block containing the desired record and 99 blank records. Copy
file2 to the original file file1.
Direct access: Create a new block containing the desired record and 99 
blank records. Write the new block to the file as the 17th block.

2. +externalMergesort(in unsortedFileName:string, 
                   in sortedFileName:string)
  Associate unsortedFileName with the file variable inFile
    and sortedFileName with the file variable outFile

0 1 2 3 4
0 0 1 0 0 0
1 0 0 1 1 0
2 0 0 0 0 1
3 0 1 0 0 0
4 1 0 0 0 0

2

5 3

10

4

10
1

6
7

6

3 4

1
62

5 34

10

6

3 452
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  blocksort(inFile, tempFile1, numBlocks)
  // records in each block are now sorted; numBlocks == 16
  mergeFile(tempFile1, tempFile2, 1, 16)
     mergeRuns(tempFile1, tempFile2, 1, 1)
     mergeRuns(tempFile1, tempFile2, 3, 1)
     mergeRuns(tempFile1, tempFile2, 5, 1)
     mergeRuns(tempFile1, tempFile2, 7, 1)
     mergeRuns(tempFile1, tempFile2, 9, 1)
     mergeRuns(tempFile1, tempFile2, 11, 1)
     mergeRuns(tempFile1, tempFile2, 13, 1)
     mergeRuns(tempFile1, tempFile2, 15, 1)
  mergeFile(tempFile2, tempFile1, 2, 16)
     mergeRuns(tempFile2, tempFile1, 1, 2)
     mergeRuns(tempFile2, tempFile1, 5, 2)
     mergeRuns(tempFile2, tempFile1, 9, 2)
     mergeRuns(tempFile2, tempFile1, 13, 2)
  mergeFile(tempFile1, tempFile2, 4, 16)
     mergeRuns(tempFile1, tempFile2, 1, 4)
     mergeRuns(tempFile1, tempFile2, 9, 4)
  mergeFile(tempFile2, tempFile1, 8, 16)
     mergeRuns(tempFile2, tempFile1, 1, 8)
  copyFile(tempFile1, outFile)

3. tableRetrieve(tIndex[1..20], tData, searchKey)
  buf.readBlock(tIndex[1..20], 10)
  tableRetrieve(tIndex[1..9], tData, searchKey)
     buf.readBlock(tIndex[1..9], 5)
     tableRetrieve(tIndex[1..4], tData, searchKey)
        buf.readBlock(tIndex[1..4], 2)
        tableRetrieve(tIndex[1..1], tData, searchKey)
           buf.readBlock(tIndex[1..1], 1)

return null

4. tableRetrieve(tIndex[1..20], dataFile, searchKey)
  buf.readBlock(tIndex[1..20], 10)
  tableRetrieve(tIndex[11..20], dataFile, searchKey)
     buf.readBlock(tIndex[11..20], 15)
     tableRetrieve(tIndex[11..14], dataFile, searchKey)
        buf.readBlock(tIndex[11..14], 12)
        j = 26
        blockNum = 98
        dataBuf.readBlock(tData, 98)

        tableItem = dataBuf[k]
return tableItem

        Find record dataBuf[k] whose search key equals searchKey
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Appendix D
1. Proof by induction on m. When m = 0, 20 = 21 − 1. Now assume that the

statement is true for m = k; that is, assume that 1 + 21 + 22 + · · · + 2k =
2k+1 − 1. Show that the statement is true for m = k + 1, as follows:

(1 + 21 + 22 + · · · + 2k) + 2k+1 = (2k+1 − 1) + 2k+1

= 2k+2 − 1

2. Proof by induction on n. When n = 1, the first odd integer is 1 and the
sum is trivially 1, which is equal to 12. Now assume that the statement is
true for n = k; that is, assume that 1 + 3 + · · · + (2k − 1) = k2. Show that
the statement is true for n = k + 1, as follows:

[1 + 3 + · · · + (2k − 1)] + (2k + 1) = k2 + (2k + 1)

= (k + 1)2

3. Proof by induction on n. When n = 2, rabbit(2) = 1 = a0. Now assume
that the statement is true for all n ≤ k; that is, assume that rabbit(n) ≥ an–2

for all n ≤ k. Show that the statement is true for n = k + 1, as follows:

rabbit(k + 1)= rabbit(k) + rabbit(k − 1)

≥ ak–2 + ak–3

= ak–3 (a + 1)

= ak–3 (a2)

= ak–1
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Index

Symbols
-- operator, 34–35
% (remainder after division), 32
&& (logical and), 33
*/ (asterisk slash), 28
* (multiply), 32
/* (slash asterisk), 28
// (slash slash), 28
[] (bracket notation), 35
|| (logical or), 33
+ (binary add or unary plus), 32
+ operator, 61–62, 124
++ operator, 34–35
< (less than), 33
<= (less than or equal to), 33
= (assignment operator), 32
!= (not equal to) operator, 33, 270
== (equal to) operator, 33, 60, 270
> (greater than), 33
>= (greater than or equal to), 33
\ (backslash notation), 31
- (binary subtract or unary 

minus), 32
/ (divide), 32
() parentheses, 39
? wildcard, 501

Numbers
2-3 trees, 725–745, 870, 872

B-tree of degree 27, 875
B-trees, 869–871
deletion algorithm, 741–744
deletion from, 737–745
efficiency of, 744–745

external, 869, 871
height of, 726
insertion algorithm, 734–737
insertion into, 730–737
maintaining shape of, 730
nodes in, 727–728
recursive definition, 726
rules for placing data items in 

nodes of, 727
searching, 729–730
traversals, 728

2-3-4 trees, 745–752
deletion from, 751–752
insertion into, 747–751
middle-left subtree, 746
middle-right subtree, 746
rules for placing data items in 

nodes of, 746
searching, 747
splitting 4-nodes, 749–751
traversals, 747

2-nodes, 725
3-nodes, 725–726, 753
4-nodes, 745, 749–751, 753

A
abstract classes, 493–497, 605
abstract data types (ADTs), 

121–122, 222–226
axioms for, 239–241
binary search trees, 618–653

algorithms for operations of, 
624–639

deletion from, 629–637
efficiency of, 643–648

insertion into, 626–629
operations, 621–624
recursive definition, 621
reference-based 

implementation, 639–643
retrieval from, 637–638
saving in a file, 649–652
traversals, 638–639
treesort, 648
UML diagram, 622

binary trees, 594–608
operations, 594–598
reference-based 

implementation,
604–610

representations of, 601–605
traversals, 598–601
traversals using iterator, 

610–618
UML diagram, 597

data structures and, 224–225, 
242–243

defined, 224
designing, 235–239
developing, during solution 

design, 376–382
generic classes and, 499
graphs, 805–812

implementing, 806–812
implementing graph class 

using JCF, 809–812
operations, 805, 808

heaps, 691–700
implementing, 242–257
Java Collections Framework 

(JCF) and, 314–322
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abstract data types (continued)
lists, 228–233, 266, 311, 

508–513
array-based implementation 

of, 250–257, 292–294
generic implementation of, 

505–507
implementation using, 

393–395, 449–450
implementations using, 

509–513
interface for, 508
operations, 228, 229–233, 

250, 457–458
reference-based 

implementation, 288–292
reference-based 

implementation of, 
292–294

UML diagram, 229
using linked list to 

implement, 281
position-oriented, 457–458, 586
priority queues, 687–705

heap implementation of, 
700–702

operations, 688–691
UML diagram, 689

queues, 434–468
applications of, 435–438
deleting from, 440–441, 446
implementations, 438–457
inserting into, 440–441, 445
JCF interfaces, 450–456
operations, 434, 435–436, 457
UML diagram, 435

sorted lists, 233–234, 281, 
508–513

specifications for, 224
specifying, 227–241
stacks, 375–431, 457

algebraic expressions and, 
397–402

applications, 382–387, 
397–415

array-based implementations, 
389–391

axioms, 382
definition of, 379–380
developing, during solution 

design, 376–382

implementations of, 387–397
LIFO property of, 378–379
operations, 378, 379–380, 457
recursion and, 415–417
reference-based 

implementation,
391–393

UML diagram, 381
using, in a solution, 380–382

tables, 668–687
binary search tree 

implementation,
685–687

external, 859–882
operations, 669–675
search key, 671–675
searching, 668–669
selecting implementation of, 

675–682
sorted array-based 

implementation, 682–685
UML diagram, 671

that suggest other ADTs, 
238–239

trees, 585–666
balanced search trees, 724–760
binary search trees, 586, 590, 

593, 618–653
binary trees, 586, 588–593, 

594–608
terminology, 586–594

value-oriented, 586, 668
abstract field modifier, 491
abstract keyword, 51
abstraction, 120–122

data, 121–122
procedural, 120–121, 222

access modifiers, 48–61, 485–487
accessors, 143
activation records, 168, 417
add operation, 457, 510–512
adding, to text files, 87
addOne method, 66, 68
address, object, 266
address calculators, 761–763
addValue method, 66, 68
adjacency lists, 807–809
adjacency matrix, 806–807, 831
ADTs. See abstract data 

types (ADTs)
AgeComparator class, 575

algebraic expressions, 346, 
350–359

ADT stacks and, 397–402
binary trees representing, 589
fully parenthesized 

expressions, 359
infix expressions, 351–353
postfix expressions, 351–353, 

358–359, 397–399
prefix expressions, 351–358

algorithms, 106, 314
abstract data types and, 121–122
analysis of, 530
average-case analysis, 539
comparison of, 530–531
for converting prefix to postfix 

expressions, 358–359
cubic algorithms, 537
efficiency of

measuring, 530–542
searching algorithms, 

541–542
execution time of, 531–532
exponential algorithm, 537
growth rates, 533–538
infix expressions, 399–402
linear algorithms, 537
logarithmic algorithm, 537
for operations of binary search 

trees, 624–639
order-of-magnitude analysis, 

533–539, 540
partition, 559–564
for prefix expressions, 357–358
proving correctness of, 112–116
quadratic algorithms, 537
recognition, 346, 347, 350, 

356–357
recursive, 346
recursive factorial, 360–361
search algorithms

for binary search trees, 
624–639

efficiency of, 541–542
JCF binary search algorithm, 

652–653
sorting algorithms, 542–576

bubble sort, 547–549
comparison of, 571–572
external, 543
heapsort, 702–705, 706
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insertion sort, 549–551
internal, 542–543
Java Collections Framework, 

572–576
mergesort, 550–557, 566, 

851–858
quicksort, 557–569
radix sort, 569–571
selection sort, 543–546
treesort, 648

worst-case analysis, 538
analysis of algorithms, 530
ancestor classes, 130–131
ancestor node, 587, 593
annotations, 485
append method, 62
appointment book (ADT), 

236–238
arguments, passed to methods, 

52–53
arithmetic expressions, 32–33
arithmetic operators, 32–33
arithmetic types, 29
Array class, 58–59
array-based get, 539
array-based implementations

ADT lists, 250–257
ADT queues, 443–448
ADT stacks, 389–391
binary trees, 601–602
comparing with reference-based 

implementations,
292–294

complete trees, 602–604
heaps, 693–700
sorted, for ADT table, 

682–685
ArrayDeque class, 456
ArrayIndexOutOfBoundsEx-

ception, 66, 67, 68
ArrayList class, 321–322, 501
arrays, 35–38

array-based implementation of 
ADT list, 250–257

building heap from, 702–705
circular, 444–445
direct access to items in, 294
vs. files, 80–81
fixed size, 266, 293, 395
initializer list, 35–36
length of, 35

for loop and, 44–45
methods for manipulating, 58–59
multidimensional, 36–38
of object references, 36
of objects, 269–270
one-dimensional, 35–36
partitioning, 198–199
passing to methods, 52
physical size of, 250
pivot items, 198–200
resizable, 272–273, 293
searching, 190–200

binary searches, 192–196
finding largest item in array, 

191–192
finding smallest item in array, 

196–200
two-dimensional, 36–38

arrival events, 459, 461, 464
assert statements, 112
AssertionError, 112
assertions, 112, 113
assignment expressions, 34
assignment operators, 32, 34–35
assignment statement, 32
autoboxing, 30, 77
auto-unboxing, 30
average-case analysis, 539
AVL trees, 755–760

height of, 757
rotations, 757–760

axioms, 239–241, 382

B
backslash notation, 31
backspace character, 376
backtracking, 340–345, 

405–408, 415
balanced binary tree, 594, 613
balanced braces, checking for, 

382–385
balanced search trees, 724–760

2-3 trees, 725–745
2-3-4 trees, 745–752
AVL trees, 755–760
B-trees, 869–879
red-black trees, 752–755, 785

base case, 163, 194
base classes, 55–56, 481
basis, 163

BFS spanning tree, 826–827
BFSIterator class, 817–820
Big O notation, 533–534
binary files, 81
binary operators, 32
binary search algorithm, 652–653
binary search tree 

implementation, of ADT 
table, 685–687

binary search trees, 586, 590, 
593, 618–653

algorithms for operations of, 
624–639

AVL trees, 755–760
balanced, 649–650
classes, 619–620
deletion from, 629–637
doubly linked, 792–793
heaps and, 691
height of, 724
insertion into, 626–629
maximum and minimum heights 

of, 644–647, 724–725
operations, 621–624

efficiency of, 643–648
recursive definition, 621
red-black trees, 752–755
reference-based implementation, 

639–643
retrieval from, 637–638
saving in a file, 649–652
search keys, 619
storing data in, 789–790
traversals, 638–639
treesort, 648
UML diagram, 622

binary searches, 162–163, 
192–196, 541–542

binary trees, 586, 588–590, 593
ADT, 594–608

operations, 594–598
reference-based 

implementation, 604–610
representations of, 601–605
traversals, 598–601
traversals using iterator, 

610–618
UML diagram, 597

balanced, 594, 613
complete, 592–593, 594
empty, 593
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binary trees (continued)
full, 591–592, 593
general trees and, 653–655
nodes, 605

binarySearch method, 59
BinaryTree class, 606–609
BinaryTreeBasis class, 

605–609
block access, 849
block statements, 39
blocks, 849, 850–851
boolean data type, 29
box traces, 168–171, 174–176, 

178, 180, 182, 196
braces, checking for balances, 

382–385
bracket notation [], 35
breadth-first search (BFS) 

spanning tree, 826–827
breadth-first search (BFS) strategy, 

815–817
break statements, 40–42
breakpoints, 147
B-tree of degree m, 875
B-trees, 869–879

deletion from, 877–879
insertion into, 875–877

bubble sort, 547–549
buckets, 772
BufferedReader class, 73, 84
buffers, 850

C
calling, methods, 51–52
cardinality, 129
case, base, 163
case sensitivity, 28
case statements, 40–41
cast, 34
catch blocks, 64–66
catching, 69, 72

exceptions, 64–70
character constants, 31
character streams, 73–75
character strings, converting to 

integers, 766–767
characters, 29
charAt method, 60
checked exceptions, 70
child nodes, 587, 593

child pointers, 869, 874
circuits, 835–837

Euler circuits, 835–837
Hamilton circuits, 838

circular arrays, 444–445
circular doubly linked list, 305, 306
circular linked lists, 302–304, 440
class body, 48
class diagrams, 126, 127, 

128–129
class hierarchy, 503
class inheritance, 54–56
class keyword, 48
classes, 47–48

See also specific classes
abstract, 493–497, 605
access modifiers, 485–487
accessing, in other packages, 47
ancestor, 130
base, 55–56
clients of, 54
components of, 48
constructors, 245
containment, 130
creating, 54–56
creating objects and instances 

of, 47
data fields, 48–49, 244–245
derived, 55–56
descendant, 130–131
exception, 71–72
generic, 315–316, 499–507
inheritance, 124, 130, 

480–490
interfaces and, 498–499
is-a relationships, 488–489
membership categories of, 486
in object-oriented design, 123
in packages, 248–249
reusing, 130–131, 481
string, 59–64
subclasses, 47, 55, 481, 

482–483, 484–486
superclasses, 55–56, 481, 

484–486
useful, 56–64
wrapper, 29–30

clients, 54, 231
close method, 86
closed-form formulas, 362
closing, files, 86

clustering, 769, 770
code, redundant, 133
code reusability, 119, 481
coding phase, of software life 

cycle, 116
cohesive methods, 109
Collection interface, 245–246, 

319, 320
collections, 705
Collections class, 572
collections framework, 314–322
collision-resolution schemes, 764, 

767–776
double hashing, 770–772, 777
increasing size of hash table, 772
linear probing, 768–769, 

776–777
open addressing, 768
quadratic probing, 770, 777
restructuring hash table, 

772–776
separate chaining, 777–778

collisions, 764, 768
comments, 28, 146
Comparable interface, 247–248, 

287–288, 509, 543, 
545, 573, 619, 698

Comparator interface, 545–546, 
573, 574

Comparator objects, 698
compareTo method, 61, 288
comparing, objects, 246–248
comparison operators, 33
compiler generated default 

constructor, 53
complete binary trees, 592–593, 594
complete graphs, 803
compound statements, 39
computer programs

comparing, 531
documentation, 145–146
ease of use of, 135–136
fail-safe, 136–142, 143
modifiability of, 133–135
modular, 222
readability of, 131, 143–145

computer resources, 118
concatenation, strings, 61–62
connected components, 813
connected graphs, 802, 803
Console class, 73, 78–80
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constants
character, 31
decimal integer, 31
floating, 31
literal, 30–31
named, 31–32, 134–135

constructors, 29, 53–54, 245, 
274, 483, 485–486

default, 53–54, 290
public, 609

containment, 130, 489
continue statements, 41–42
contracts, 109, 223
copying, text files, 87–88
copyOf method, 59
copyOfRange method, 59
cost, path, 831
costs, solution, 117–119
createQueue, 457
createStack, 457
creating

classes, 54–56
instances, 47
objects, 28, 47
subclasses, 47

cubic algorithms, 537
curly braces {}, checking for 

balanced, 382–385
curr reference variable, 

278–288, 307
cycles, 802

D
data

displaying, of linked lists, 532
operations on, 223
organizing, 200–204
sorting in external file, 851–858

data abstraction, 121–122, 221–264
about, 223–224
abstract data types, 222–226

data fields, 48–49, 244
private, 142–143

data flow, 109
data organization, multiple, 788–793
data persistence, 90
data records, 849

accessing, 849–851
deleting, from B-trees, 

877–879

inserting into B-tree, 875
updating, 850

data structures, 121, 224–225, 
242–243

multiple independent, 788–793
data types

abstract. See abstract data types 
(ADTs)

declaring variable’s, 28
implicit type conversions, 33–34
primitive, 29–30

data-management operations, 586
data-type parameters, 315, 

500–501, 505
deallocation, of memory, 268
debugging, 146–149

if statements, 148
loops, 148
methods, 148
modularity and, 132
recursive methods, 182–183
using dump methods, 149
using System.out.println

statements, 147, 
148–149, 182–183

decimal integer constants, 31
declaring

named constants, 31–32
variables, 28

deep equality, 56–57
default constructors, 53–54, 290, 

485–486
degenerate case, 163
delete operation, 63

in data with multiple 
organizations, 789

deleting
from 2-3 tree, 737–745
from 2-3-4 trees, 751–752
from binary search tree, 

629–637
from B-trees, 877–879
from heaps, 693–697
from linked lists, 279–282, 292, 

294, 306–307
from lists, 250–251
from queues, 440–441, 446
from red-black trees, 754–755
from tables, 762

deletion algorithm, 741–745
delimiters, 63

departure events, 459–460, 
461, 464

depth-first search (DFS) spanning 
tree, 825–826

depth-first search (DFS) strategy, 
814–815

Deque interface, 451–456
dequeue operation, 457, 790
derived classes, 55–56, 481
descendant classes, 130–131, 481
descendant nodes, 587, 593
deserialization, 90, 91
design phase, of software life cycle, 

108–111
DFS spanning tree, 825–826
dictionary, 669
digraphs, 804
Dijkstra’s shortest-path algorithm, 

832–833
direct access, 35, 294
directed edge, 804
directed graphs, 403, 803–804, 807
directed path, 403, 805
disconnected graphs, 802, 803
disjoint heaps, 693–694
divide-and-conquer strategy, 

163–164, 550, 557
do statements, 45
documentation, 111, 118, 145–146
dot notation, 47
double hashing, 770–772, 777
double quotes, 31
double rotations, 758, 760
doubly linked binary search tree, 

792–793
doubly linked lists, 304–308, 792
dummy head notes, 304, 305
dump methods, 149
dynamic binding, 489–493

E
early binding, 491
edges, graph, 802

direct edge, 804
self edge, 803, 804

efficiency, 119
of algorithms, measuring, 

530–542
of binary search tree operations, 

643–648
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efficiency (continued)
of hashing, 776–779
of heapDelete, 696
perspecetive on, 539–540
recursion and, 204–211

Eight Queens problem, 340–345
elements, 35
empty binary tree, 593
empty strings, 349
encapsulation, 122–123, 243–244
end-of-file symbol, 82, 83
end-of-line symbol, 82
endPre method, 354–356
enhanced for loop, 44–45
enqueue operation, 457
entrSet method, 708
equality, 56
equality operators, 33, 270
equals method, 56–58
error correction, 117
error handling, 143
errors

debugging, 146–149
input, 136–140
logic, 136, 140–142, 147

Euler circuits, 835–837
evaluation, of postfix expressions, 

397–399
event lists, 462–465
event-driven simulations, 

459–468
events

arrival, 459, 461, 464
departure, 459–460, 461, 464
external, 461
internal, 461

exception class, 605
exception handlers, 69–70
exceptions, 64–72

catching, 64–70
checked, 70
defined, 64
defining exception classes, 

71–72
handling, 69–70, 75
runtime, 70
throwing, 71–72

execution time, of algorithms, 
531–532

exhaustive search, 404
explicit type conversions, 34

exponential algorithm, 537
expressions, 32

arithmetic, 32–33
assignment, 34
logical, 33
relational, 33

extends clause, 47, 48, 55, 245, 
502, 503

external events, 461
external files

indexing, 861–865
sorting data in, 851–858

external hashing, 865–869
external mergesort, 851–858
external sort, 543
external storage, 848–851
external tables, 859–882

B-trees, 869–879
deletion from, 871
external hashing, 865–869
indexing external files, 861–865
insertion into, 871
multiple indexing, 881–882
retrieval from, 859–860, 

863–865, 870–871, 
873–874

traversals, 879–881

F
factorial method, recursive, 

360–361
factorial of n, recursive solution 

for, 165–172
fail-safe programming, 136–142, 

143
Fibonacci sequences, 184–185
field modifiers, 491
FIFO, 379, 434
file partitions, 849
FileInputStream class, 83
FileNotFoundException,

71, 84
FileOutputStream class, 83
FileReader class, 83, 84
files

vs. arrays, 80–81
binary, 81
closing, 86
copying, 87–88
data records in, 849

defined, 80
external, indexing, 861–865
index, 862–869, 877
input and output, 80–92
opening a stream to, 83–86
output, 86
random access file, 848
saving binary search tree in, 

649–652
sequential access file, 848
text, 81–89

FileWriter class, 86
final field modifier, 491
final keyword, 31, 49, 51
finalize method, 58
finally block, 70
find method, 288–289, 

290–291, 294
first in, first out (FIFO), 379, 434
fixed-size arrays, 266, 293, 395
floating constants, 31
floating point data type, 29
for statements, 42–45
formal parameters, 50, 52
format specifiers, 77–78
four-color problem, 839
full binary tree, 591–592, 593
full flag, 448
fully parenthesized expressions, 

recursive solutions, 359
functional decomposition, 

124–125
functions

growth-rate, 534–538
hash functions, 763–767

G
garbage collection, 245, 268
general files, 81
general search trees, 872–874
general trees, 588, 593, 653–655
generic classes, 315–316, 

499–501
implementation of, 505–507
inheritance and, 502–505

generics
generic classes, 315–316, 

499–502
generic methods, 507–508
generic wildcards, 501



Index 951

implementation of List class, 
505–507

inheritance and, 502–505
get operation, 458
grammar, 346–347

for fully parenthesized 
expressions, 359

Graph class, 809–812
graphs, 801–845

adjacency lists, 807–809
adjacent, 802
ADT, 805–812

implementing, 806–812
implementing graph class 

using JCF, 809–812
operations, 805, 808

applications of
circuits, 835–837
four-color problem, 839
minimum spanning trees, 

828–830
shortest paths, 831–835
spanning trees, 823–827
three utilities problem, 

838–839
topological sorting, 

820–823
traveling salesperson 

problem, 838
complete, 803
connected, 802, 803
directed, 803–804, 807
disconnected, 802, 803
edges, 802
line graphs, 802
multigraphs, 803, 804
planar graphs, 838–839
subgraphs, 802
terminology, 802–805
traversals, 812–820

breadth-first search (BFS) 
strategy, 815–817

depth-first search (DFS) 
strategy, 814–815

undirected, 803, 823–825
vertices, 802
weighted, 803, 804

graph-traversal algorithm, 813
growth rates, algorithm, 533–538
growth-rate functions, 534–538

H
Hamilton circuits, 838
has-a relationships, 488–489, 509
hash functions, 763–767

collision-resolution schemes, 764
collisions, 764
converting character string to 

integer, 766–767
digit selection, 765
folding, 765–766
Modulo arithmetic, 766
perfect hash function, 764
primary, 771
qualities of good, 778–781
secondary, 771

hash tables, 763–765
Hashtable class, 782–785
increasing size of, 772
insertion into, 775–776
restructuring, 772–776

hashCode method, 58
hashing, 761–788

collision-resolution schemes, 
767–776

double hashing, 770–772, 777
increasing size of hash 

table, 772
linear probing, 768–769, 

776–777
open addressing, 768
quadratic probing, 770, 777
restructuring hash table, 

772–776
separate chaining, 777–778

efficiency of, 776–779
external, 865–869
hash functions, 763–767
JCF classes, 782–785
table traversals and, 781–782

HashMap class, 709
HashSet class, 710
Hashtable class, 782–785
hasMoreTokens method, 64
hasNext method, 83, 316, 514
hasNextInt method, 75
hasPrevious operation, 514
head references, 281, 288, 295, 

301–302, 532
head variable, 276–277
heapDelete operation, 

693–697

heapInsert operation, 697–698
heaps, 691–700

array-based implementation, 
693–700

building from array, 702–705
disjoint, 693–694
heap implementation of priority 

queues, 700–702
maxheap, 692
minheap, 692
operations, 692
semiheap, 694
UML diagram, 692

heapsort, 702–705, 706
height of a tree, 590–591, 593, 724
Horner’s rule, 767

I
identifiers, 28, 143
if statements, 39–40

debugging, 148
nested, 40

IllegalStateException, 75
implementations, 314

ADT binary search trees, 
639–643

ADT binary trees, 601–605
ADT lists, 288–294, 505–506
ADT queues, 438–457
ADT sorted lists, 509–513
ADT stacks, 387–397
ADT tables, 682–685
ADTs, 242–257
array-based

ADT lists, 250–257, 
292–294

ADT queues, 443–448
of ADT stack, 389–391
binary tree, 602–604
heaps, 693–700
sorted, for ADT table, 

682–685
binary search tree, of ADT 

table, 685–687
choosing, 539–540
comparing, 395, 456–457
generic, List class, 505–507
graphs, 806–812
heaps, 700–702
iterators, 514–517
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implementations (continued)
linear, 675, 676, 682
nonlinear, 675–676
reference-based, 288–294

ADT binary tree, 604–610
ADT queues, 440–443
ADT stacks, 391–393
binary search trees, 639–643

selecting, for ADT table, 675–682
using ADT list, 393–395, 

449–450, 509–513
implements clause, 48, 246
implicit type conversions, 33–34
import statements, 47, 249
indentation style, 143–145
index files, 862–869

external hashing, 865–869
locating index record in, 877

index records, 862
inserting into B-tree, 876–877
locating, in index file, 877

indexes, 35, 37
indexing

external files, 861–865
multiple, 863, 881–882

indexOf method, 62
IndexOutOfBoundsException,

63
inductive step, 115
infix expressions, 351–353

converting to postfix 
expressions, 399–402

information hiding, 122, 222
inheritance, 47, 54–56, 124, 130, 

480–490, 498
generic classes and, 502–505
has-a relationships, 488–489
is-a relationships, 488–489, 510
subinterfaces and, 498–499

initialization, arrays, 36
initializer list, 35–36
inorder successor, 633
inorder traversal, 600, 614–618
input

errors, 136–140
file, 80–92
text, 73–75

InputMismatchException, 75
InputStream class, 73
InputStreamReader class, 73
insert method, 62

insertion algorithm, 734–737
insertion operation, in data with 

multiple organizations, 
788–789

insertion sort, 549–551
insertions

26-3 trees, 730–737
26-3-4 trees, 747–751
binary search trees, 626–629
B-trees, 875–877
linked lists, 282–288, 291, 294, 

298–301, 307–308
queues, 440–441, 445
red-black trees, 754–755
tables, 761–762

instanceof operator, 58
instances, 123

creating, 47
integers, 29

converting character strings to, 
766–767

list of, 254
integral promotions, 33
integral types, 29
Integrated Development 

Environments (IDEs), 
80, 112

interfaces, 226, 314
ADT lists, 508
defined, 245
defining own, 246
Java, 245–248, 498–499

internal events, 461
internal memory, 848
internal sort, 542–543
invalid input, 138–140, 143
invariants, 112–116, 141

to develop partition algorithm, 
559–564

heapsort algorithm, 704
loop, 112–116, 832–833
for recursive methods, 172

inventory maintenance 
application, 308–314

invoking, methods, 51–52
IOException, 85–86
is-a relationships, 488–489, 

509, 510
isEmpty, 457
items, 35
iteration, 162

iteration statements, 41–45
do statements, 45
for statements, 42–45
while statements, 41–42, 43

iterative solutions, 162, 209–210
iterators, 316–319, 513–517

tree traversals using, 610–618

J
Java

exceptions, 64–72
garbage collection, 245
language basics, 28–38
program structure, 45–56

Java Application Programming 
Interface (API), 45, 47, 
56, 111

Java applications
example of simple application, 46
flow of control in, 67
program structure, 45–56

Java classes, 47–48
See also classes; specific classes
ADTs and, 243–245
class members, 244
data fields, 244–245
methods, 244
useful, 56–64

Java Collections Framework 
(JCF), 314–322

binary search algorithm, 652–653
Deque interface, 451–456
generics, 315–316
Hashtable class, 782–785
implementing graph class using, 

809–812
iterators, 316–319, 513–517
List interface, 319–322
Map interface, 705–709
PriorityQueue class, 

713–715
Queue interface, 450–451, 

456–457
Set interface, 709–713
sort algorithm, 572–576
Stack class, 395–397
tables in, 705–715
TreeMap class, 785–788

Java interfaces, 245–248, 
498–499
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Java packages, 248–249
javadoc, 28
java.io.Serializable interface, 90
java.lang, 29
java.lang.Comparable interface, 

247–248, 287–288
java.util.Comparable interface, 545
java.util.Comparator interface, 

545–546
java.util.Iterable interface, 317
java.util.Iterator interface, 316
java.util.List interface, 319–322
java.util.ListIterator interface, 

316, 318–319, 513
JCF. See Java Collections 

Framework (JCF)

K
KeyedItem class, 619–620
keys, 619, 862
keywords, 28
kSmall, 559

L
languages

algebraic expressions, 346, 
350–359

defining, 345–359
examples of, 347–350

palindromes, 348–349
exceptions

strings of form AnBn, 350
grammar, 346–347
recognizing strings in, 386–387

last-in, first-out (LIFO), 378–379
late binding, 489–493
left child, 589
left child node, 593
left subtrees, 588, 593
left-associative operators, 32–33
left-to-right association, 400
length, path, 831
length operation, 60, 457
level of mode, 591
library catalogs, 862
life cycle, of software, 107–117
LIFO, 378–379
line graphs, 802
linear algorithms, 537

linear implementations, 675, 
676, 682

linear linked lists, 302
linear probing, 768–769, 

776–777
linked lists, 265–335

circular, 302–304, 440
deletion from, 279–282, 292, 

294, 306–307
displaying content of, 

277–279, 532
doubly, 304–308, 792
dummy head notes, 304, 305
hash tables as array of, 772–776
head reference variable, 276–277
insertion into, 282–288, 291, 

294, 298–301, 307–308
inventory maintenance 

application, 308–314
linear, 302
object references, 266–272
passing, to a method, 295
processing recursively, 295–301
programming with, 277–301
reference-based, 273–277
resizable arrays, 272–273
sorted, 790
traversal of, 532
variations on, 301–308

LinkedList class, 318, 456–457
List interface, 314, 319–322
list traversal, 279, 294, 296–298, 

307, 532
ListIndexOutOfBounds

Exception, 251
ListInterface class, 512–513
ListIterator interface, 

318–319, 513–517
ListReferenceBased class, 

509, 510–511
lists, 227

ADT, 228–233, 266, 311, 
508–513

array-based implementation 
of, 250–257, 292–294

axioms for, 239–241
generic implementation of, 

505–507
implementations using, 

393–395, 449–450, 
509–513

interface for, 508
operations, 228, 229–233, 

250, 457–458
reference-based 

implementation of, 
288–294

sorted lists, 233–234, 281, 
311–312

UML diagram, 229
deleting elements from, 

250–251
event, 462–464
of integers, 254
linked, 265–335

circular, 302–304, 440
deleting node from, 

279–282, 306–307
displaying content of, 

277–279
doubly, 304–308
dummy head notes, 304, 305
inserting node into, 

282–288, 307–308
inventory maintenance 

application, 308–314
linear, 302
object references, 266–272
passing, to a method, 295
processing recursively, 

295–301
programming with, 277–301
reference-based, 273–277
resizable arrays, 272–273
traversal of, 532
variations on, 301–308

logical size of, 250
physical size of, 250
sorted, 508–513

literal character strings, 31
literal constants, 30–31
local environment, 169
locateIndex operation, 510, 513
logarithmic algorithm, 537
logic errors, 136, 140–142, 147
logical expressions, 33
logical operators, 33
logical size, of list, 250
loop invariants, 112–116, 832–833
loops

debugging, 148
do loops, 45
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loops (continued)
graphs, 803
for loops, 42–45
nested, 532
while loops, 41–42, 43

loosley coupled objects, 109

M
main method, 66, 67
maintenance phase, of software 

life cycle, 117, 130
Map interface, 705–709
maps, 705
mathematical induction, 115, 166

recursion and, 360–363
matrix, 36–37

adjacency, 806–807, 831
maxArray, 191–192
maxheap, 692
memory

external, 848–851
internal, 848

memory allocation, 
deallocation, 268

mergesort, 550–557, 566
external, 851–858

messages, 54
method calls, 208
methods, 50–54, 244

arguments passed to, 52–53
calling, 51–52
cohesive, 109
constructor, 53–54
contracts, 223
debugging, 148
generic, 507–508
hierarchy of, 124–125
invariants, 141
local environment, 169
modifiability and, 133–134
modifiers, 50–51
overloading, 493
overriding, 485, 491, 492
passing arrays to, 52
passing linked list to, 295
polymorphic, 489–493
postconditions, 109–110
preconditions, 109–110, 141
private, 288–290
recursive, 164, 168–171, 295–301

specification, 109
static, 76, 167, 491
use of, 142
valued method, 50

middle subtrees, 726
minheap, 692
minimum spanning trees, 

828–830
modifiability, 133–135
modularity, 131–133, 222
modules, 108–109
Modulo arithmetic, 766
multidimensional arrays, 36–38
multigraphs, 803, 804
multiple assignment, 34
multiple indexing, 863, 881–882
mutable strings, 62–63
mutators, 143

N
NameComparator class, 574
named constants, 31–32, 134–135
n-ary tree, 654, 655
native keyword, 51
nested if statements, 40
nested loops, 532
new operator, 28, 30, 47, 266, 

269, 283, 293
new statement, 35
new-line character (\n), 31
next method, 74–75, 514
nextBoolean method, 74
nextDouble method, 74
nextFloat method, 74
nextInt method, 74
nextLine method, 73–74, 75
nextLong method, 75
nextShort method, 75
nextToken method, 64
nodes, 273, 274

2-nodes, 725
3-nodes, 725–726, 753
4-nodes, 745, 753
accessing, 294
binary tree, 605
deleting, from linked list, 

279–282, 306–307
displaying data portion of, 

278–279
graphs, 802

inserting, into linked lists, 
282–288, 298–301, 
307–308

level of, 591
for linked lists, 275
parent-child relationships, 

587, 593
subtrees, 587
tree, 587

nonlinear implementations, 
675–676

nonrecursive traversal, 614–618
nontext files, 81
NoSuchElementException, 75
null value, 30, 275

in circular linked lists, 303
NullPointerException, 285
numeric data types, implicit type 

conversions, 33–34
numItems variable, 288

O
Object class, 56–58, 254, 499
object references, 266–272
object serialization, 90–92, 313
object state, 110–111
object type compatibility, 488
object-based programming, 123
ObjectInputStream class, 91
object-oriented design

abstraction, 120–122
achieving, 119–131
advantages of, 130–131
encapsulation, 122–123
functional decomposition, 

124–125
general design guidelines, 

125–126
information hiding, 122
modeling, using UML, 

126–130
modularity, 131–133

object-oriented programming 
(OOP), 124, 130–131, 
243–244

ObjectOutputStream class, 91
objects, 244

access members of, 54
arrays of, 269–270
cohesive, 109
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comparing, 246–248
converting value of primitive 

data type to, 29
creating, 28, 47
data flow among, 109
loosley coupled, 109
in object-oriented design, 

122–124
O(f(n)), 534
one-dimensional arrays, 35–36
open addressing, 768, 777
opening, streams, 83–86
operator precedence, 400
order f(n), 534
order-of-magnitude analysis, 

533–539, 540
output

file, 80–92
text, 75–78

@Override annotation, 485

P
package statements, 47
packages, 46–47, 248–249
palindromes, 348–349, 436–437
parameters

data-type, 315, 500–501, 505
passing, 270–271

parent node, 587, 593
parent-child relationships, 587
parentheses (), 39, 400
partition algorithm, 559–564
partitioning, items in array, 

198–199
passed by value, 52
passing

linked list to a method, 295
parameters, 270–271

passwords, input of user, 79
paths, 802

shortest paths, 831–835
simple, 802

peek operation, 457
perfect hash function, 764
persistence, 90
pivot items, in arrays, 198–200
planar graphs, 838–839
pointers, 862, 874
polymorphic algorithms, 314
polymorphic methods, 489–493

polymorphism, 124
pop operation, 457
position-oriented ADTs, 

457–458, 586
postconditions, 109–110
postfix expressions, 351–353, 

358–359
converting infix expressions to, 

399–402
evaluating, 397–399

postorder traversals, 600
pqDelete operation, 689–690
pqInsert operation, 690–691
precedence, operator, 400
preconditions, 109–110, 113, 141
predecessors, 227, 805
predefined packages, 47
preexisting software, 111
prefix expressions, 351–358
preorder traversal, 599
prev reference variable, 279–288
previous operation, 514–515
primary clustering, 769
primitive data types, 29–30, 500

explicit type conversions, 34
implicit type conversions, 33–34

Prim’s algorithm, 829
print method, 75–76, 77
printf method, 77, 78
println method, 75–76, 77
PrintStream class, 73
PrintWriter class, 83, 86
priorities, 688
priority queues, 687–705

heap implementation of, 
700–702

Java Collections Framework 
and, 713–715

operations, 688–691
UML diagram, 689

priority value, 688
PriorityQueue class, 713–715
private class members, 244
private data fields, 142–143
private keyword, 49, 51, 

485–487
private methods, 288–289, 290
private view, 122
probe sequence, 768
problem solving

about, 106–107

software engineering and, 
106–119

using backtracking, 340–345
using recursion, 162–165, 166, 

339–363
problem statements, 108
procedural abstraction, 120–121, 

222
production phase, of software life 

cycle, 117
program maintenance, 130
program structure, 45–56

class inheritance, 54–56
classes, 47–48
data fields, 48–49
methods, 50–54
packages, 46–47

programming
key issues in, 131–149

debugging, 146–149
ease of use of, 135–136
fail-safe programming, 

136–142
modifiability, 133–135
modularity, 131–133, 222
style, 142–146

with linked lists, 277–301
object-oriented, 124, 130–131, 

243–244
protected keyword, 49, 51
protected members, 486
prototype programs, 108
public class members, 244
public constructors, 609
public keyword, 49, 51, 248–249, 

485–487
public view, 122
push operation, 457

Q
quadratic algorithms, 537
quadratic probing, 770, 777
queue, 379
Queue interface, 450–451, 

456–457
queue-empty condition, 445
QueueException class, 439
queue-full condition, 445
QueueInterface class, 

438–439



956  Index

queues, 433–477
applications of, 434, 435–438

reading string of characters, 
435–436

recognizing palindromes, 
436–437

deleting from, 440–441, 446
event lists and, 463–464
FIFO behavior of, 434
implementations, 438–457

array-based, 443–448
comparing, 456–457
reference-based, 440–443
using ADT list, 449–450

inserting into, 440–441, 445
JCF interfaces
Deque interface, 451–456
Queue interface, 450–451, 

456–457
operations, 434, 435–436, 457
UML diagram, 435

quicksort, 557–569

R
radix sort, 569–571
random access, 35, 849
random access file, 848
range query, 781
readability, 132, 143–145
reading, strings of characters, 

435–436
readLine method, 73, 84, 85
readObject method, 91
readPassword method, 79
ready method, 85
recognition algorithms, 346, 

347, 350
for prefix expressions, 

356–357
recurrence relations, 165
recursion

backtracking and, 340–345
efficiency and, 204–211
infinite, 172
mathematical induction and, 

166, 360–363
problem solving using, 

162–165, 166
stacks and, 415–417
tail, 210

recursive algorithms, 346
for converting prefix to postfix 

expressions, 359
for prefix expressions, 353

recursive factorial method, 
360–361

recursive insertion, 298–301
recursive methods, 164

box trace, 168–171
debugging, 182–183
insertion, 298–301
invariants for, 172
on linked lists, 295–301
methods calls, 208
traversal, 296–298
void method, 172–183

recursive solutions, 162–183
box trace, 168–171
constructing, 164
for counting things, 183–190
criteria for, 164, 168
for factorial of n, 165–172
inefficiency of, 207–209
vs. iterative solutions, 162, 

209–210
organizing data, 200–204
as problem-solving technique, 

339–363
to search problem, using stacks, 

412–415
searching arrays, 190–200
writing a string backward, 

172–183
recursive traversal, 296–298

of binary tree, 598–601
red-black trees, 752–757, 785

deletion from, 754–755
insertion into, 754–755
nodes in, 752–754
searching, 754
traversals, 754

redundant code, 133
reference variables, 30, 266–272, 

276–277
reference-based get, 539
reference-based implementation, 

271
ADT binary search tree, 

639–643
ADT binary tree, 604–610
ADT lists, 288–292

ADT queues, 440–443
ADT stacks, 391–393
comparing with array-based 

implementations,
292–294

reference-based linked lists, 
273–277

references
to nodes, 274
tail, 301–302

refinement phase, of software life 
cycle, 108, 116–117

relational expressions, 33
relational operators, 33
relationships

has-a relationships, 488–489, 
509

is-a relationships, 488–489, 
509, 510

remove operation, 292, 294, 316, 
457, 515

removeAll operation, 292
replace method, 62, 63
resizable arrays, 272–273, 293
retrieval operation, 637–638
retrievals

binary search trees, 626–629, 
637–638

external tables, 859–860, 
863–865, 870–871, 
873–874

return statements, 50
right child, 589
right subtrees, 588
right-associative operators, 33
rightward drift, 144, 444
risk analysis, in software life cycle, 

111
root, 587, 593
rotations, 755, 757–760
runtime exceptions, 70

S
Scanner class, 74–75, 82–83
search algorithms

for binary search trees, 624–639
efficiency of, 541–542
JCF binary search algorithm, 

652–653
search keys, 619, 671–675, 693, 705
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search method, 626–627
search problem

using stacks, 402–415
nonrecursive solution, 

404–412
recursive solution, 412–415

searches
binary, 162–163, 541–542
exhaustive, 404
sequential, 88–89, 162, 541

searching
26-3 trees, 729–730
26-3-4 trees, 747
arrays, 190–200

binary searches, 192–196
finding largest item in array, 

191–192
finding smallest item in array, 

196–200
graphs, 814–817
red-black trees, 754
tables, 668–669, 761
text files, 88–89

secondary clustering, 770
selection sort, 543–546
selection statements, 38–41

if statements, 39–40
switch statements, 40–41

self edge, 803, 804
semiheap, 694
separate chaining, 772–776, 

777–778
sequential access file, 848
sequential searches, 88–89, 162, 541
Serializable interface, 574, 575
serialization, object, 313
servers, 302
Set interface, 709–713
set operation, 515
setCharAt method, 63
shallow equality, 56
short-circuit evaluation, 33
shortest paths, 831–835
siblings, 587, 593
simple cycles, 802
simple paths, 802
simulated time, 458–459
simulations, 434, 458–468

event-driven, 459–468
time-driven, 462

single quotes, 31

single rotation, 758, 759
software components, reusing, 111
Software Development Kit (SDK), 28
software engineering, problem 

solving and, 106–119
software life cycle, 107–117
solutions, 106–107

costs of, 117–119
iterative, 162
qualities of good, 117–119
recursive, 162–183

sort method, 59
sorted linked lists, 790
sorted lists, 311–312

ADT, 233–234, 281, 
508–513

implementations, 509–513
sorted runs, 852–855
SortedList class, 509–513
sorting

data in external file, 851–858
topological, 820–823

sorting algorithms, 542–576
bubble sort, 547–549
comparison of, 571–572
external, 543
heapsort, 702–705, 706
insertion sort, 549–551
internal, 542–543
Java Collections Framework, 

572–576
mergesort, 550–557, 566, 

851–858
quicksort, 557–569
radix sort, 569–571
selection sort, 543–546
treesort, 648

spanning trees, 823–827
BFS spanning tree, 826–827
DFS spanning tree, 825–826
minimum spanning trees, 

828–830
specification phase, of software life 

cycle, 108
specifying ADTs, 227–241
Stack class

JCF implementation, 395–397
UML diagram, 381

stack trace, 66
StackException, 385, 

388–389, 391

StackInterface interface, 
387–388

stacks, 375–431, 457
applications of, 382–387

algebraic expressions, 
397–402

checking for balanced braces, 
382–385

recognizing strings in a 
language, 386–387

search problem, 402–415
axioms, 382
definition of, 379–380
developing, during solution 

design, 376–382
implementations, 387–397

array-based, 389–391
comparing, 395
reference-based, 391–393
using ADT list, 393–395

LIFO property of, 378–379
operations, 378, 379–380, 457
recursion and, 415–417
UML diagram, 381
using, in a solution, 380–382

standard error stream, 73
standard input stream, 73
static binding, 491
static keyword, 49, 51
static method, 76, 167
streams, 73

accessing files with, 83
character, 73–75
opening, to a file, 83–86
output, 86

String class, 59–62
string classes, 59–64
String objects, 28
StringBuffer class, 60, 62–63
StringIndexOutOfBounds

Exception, 63
strings

accessing parts of, 62
comparing, 60–61
concatenating, 61–62
empty, 350
of form AnBn, 350
literal character strings, 31
mutable, 62–63
reading, with ADT queue, 

435–436
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strings (continued)
recognizing, in a language, 

386–387
writing backward, 172–183

StringTokenizer class, 60, 
63–64, 74, 84–85

structure chart, 124–125
style, programming, 142–146
subclasses, 47, 55–56, 481, 

482–483, 484–486
overriding superclass methods 

by, 491
type-compatibility of, 488

subclassing modifier, 48
subgraphs, 802
subinterfaces, 317, 498–499
subscript, 35
substring method, 62
subtasks, 125
subtrees, 587, 593, 726
successors, 227, 805
super clause, 505
super keyword, 55
superclasses, 55–56, 245, 481, 

484–486, 488
switch statements, 40–41
symbols, grammar, 346–347
synchronized keyword, 51
System.out.println

statements, 147, 
148–149, 182–183

T
tab (\t), 31
tableDelete operation, 

761–762, 861, 869
tableInsert operation, 761, 

861, 869
tableRetrieve operation, 

761–762, 859–860, 
863–865, 869, 
870–871, 873–874

tables
ADT, 668–687

binary search tree 
implementation,
685–687

operations, 669–675
priority queues and, 689–690
search key for, 671–675

searching, 668–669
selecting implementation of, 

675–682
sorted array-based 

implementation,
682–685

UML diagram, 671
external tables, 859–882

indexing external files, 861–865
retrieval from, 859–860
traversals, 879–881

hash tables, 763–765, 772–776, 
782–785

insertion into, 761–762
JCF interfaces and, 705–715
operations, 761–762
searching, 761

tail recursion, 210
tail references, 301–302
testing phase, of software life 

cycle, 116
text

input, 73–75
output, 75–78

text files, 81–89
adding to, 87
closing, 86
copying, 87–88
detecting end of, 85
end-of-file symbol, 82, 83
end-of-line symbol, 82
opening a stream to, 83–86
output, 86
searching sequentially, 88–89

three utilities problem, 838–839
throw statements, 71, 72
throwing exceptions, 71–72
throws clause, 71
time, simulated, 458–459
time-driven simulations, 462
tokens, 63–64
topological order, 821
topological sorting, 820–823
toString method, 58, 59, 62, 76
Towers of Hanoi problem, 

200–204, 361–363, 532
transient keyword, 49
traveling salesperson problem, 838
traversals, 279, 294, 307

2-3 trees, 728
2-3-4 trees, 747

binary search trees, 638–639
binary trees, 598–601
external tables, 879–881
graph, 812–820
hashing and, 781–782
inorder, 600, 614–618
nonrecursive, 614–618
postorder, 600
preorder, 599
recursive, 296–298
red-black trees, 754
using iterator, 610–618

traverseTable operation, 
879–881

TreeIterator class, 612
TreeMap class, 709, 785–788
trees, 585–666

ADT binary tree, 594–608
operations, 594–598
reference-based 

implementation,
604–610

representations of, 601–605
traversals, 598–601
traversals using iterator, 

610–618
UML diagram, 597

balanced search trees, 
724–760

26-3 trees, 725–745
26-3-4 trees, 745–752
AVL trees, 755–760
red-black trees, 752–755, 785

binary, 586, 588–589, 590, 593
complete, 592–593
full, 591–592

binary search trees, 586, 590, 
593, 618–653

algorithms for operations of, 
624–639

deletion from, 629–637
efficiency of, 643–648
insertion into, 626–629
operations, 621–624
recursive definition, 621
reference-based 

implementation,
639–643

retrieval from, 637–638
saving in a file, 649–652
storing data in, 789–790
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traversals, 638–639
treesort, 648
UML diagram, 622

B-trees, 869–879
general trees, 588, 593, 

653–655
height of, 590–591, 593, 724
hierarchical nature of, 587
nodes, 587–588
root, 587, 593
spanning trees, 823–827
subtrees, 587, 593
terminology, 586–594

TreeSet class, 710
treesort, 648
trim method, 62
try-catch blocks, 64–66, 69, 72
two-dimensional arrays, 36–38
type conversions

explicit, 34
implicit, 33–34

type-parameters, 500–501, 505

U
unary operators, 32
undirected graphs, 803, 823–825
Unicode table, 61
Unified Modeling Language 

(UML), 126–130
UnsupportedOperationEx-

ception, 316, 514, 606
use modifiers, 49, 50, 51
user interface, ease of use of, 

135–136
user-detected errors, 117
users, 54

V
valued method, 50
valueOf method, 76
value-oriented ADTs, 586, 668
values, 35
variables, 28

initializing, 31
reference, 30, 266–272

Vector class, 501
verification phase, of software life 

cycle, 111–116, 130
vertex, 587
vertices, 802, 806
void method, 172–183
volatile keyword, 49

W
watches, 147
weight, path, 831
weighted graphs, 803, 804
while statements, 41–42, 43
wildcards, 501
worst-case analysis, 538
wrapper classes, 29–30

Z
zero, 31
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