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Foreword

Intelligent systems have made major contributions to the progress of
science and technology in recent decades. They find applications in all
technical fields and, particularly, in communications, consumer electron-
ics, and control. A distinct characteristic is their high level of complexity,
due to the fact that they capitalize on all sorts of scientific knowledge
and practical know-how. However, their architecture is rather simple and
can be broken down into four basic constituents, namely, sensors, actua-
tors, signal-processing modules, and information-processing modules. The
sensors and actuators constitute the interfaces of the system with its envi-
ronment, while the signal-processing modules link these interfaces with the
information-processing modules. Although it is generally recognized that
the intelligence of the system lies in the information-processing section,
intelligence is also needed in the signal-processing section to learn the
environment, follow its evolutions, and cope with its adverse effects. The
signal-processing modules deliver the raw data and even the most sophisti-
cated information-processing algorithms perform badly if the quality of the
raw data is poor.

From the perspective of signal processing, the most challenging problem
is the connection between the signal sources and the sensors, for two main
reasons. First, the transmission channels degrade the useful signals, and
second, the sources have to be identified and separated from the received
mixtures. Channel equalization and source separation can be dealt with sep-
arately or jointly. In any case, the quality of the corresponding processing
is essential for the performance of the system, because it determines the
reliability of the input data to the information-processing modules. When-
ever appropriate, the problem is simplified by the introduction of learning
phases, during which the algorithms are trained for optimal operation; this is
called supervised processing. However, this procedure is not always possi-
ble or desirable, and continuous optimization has many advantages in terms
of global performance and efficiency. Thus, we arrive at unsupervised signal
processing, which is the topic of this book.

Unsupervised signal-processing techniques are described in different
categories of books dealing with digital filters, adaptive methods, or sta-
tistical signal processing. But, until now, no unified presentation has been
available. Therefore, this book is timely and it is an important contribu-
tion to the signal-processing literature. Moreover, unifying under a common
framework the topics of blind equalization and source separation is particu-
larly appropriate and inspiring from the perspective of both education and
research.

i Xix
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XX Foreword

Through the remarkable synthesis of the field it provides and the new
vision it offers, this book will stimulate progress and contribute to the advent
of more useful, efficient, and friendly intelligent systems.

Maurice Bellanger
Académie des Technologies de France
Paris, France
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Preface

“At Cambridge, Russell had impressed on me not only the importance of
mathematics but the need for a physical sense...”
Norbert Wiener, I Am a Mathematician

Perhaps the most fundamental motivation for writing a book is the desire
to tell a story in which the author can express himself or herself and be under-
stood by others. This sort of motivation is also present in scientific works,
even if the story is usually narrated in formal and austere language.

The main motivation for writing this book is to tell something about the
work we carry out in the Laboratory of Signal Processing for Communica-
tions (DSPCom). This includes the research topics on which we have been
working as well as the way we work, which is closely related to the epigraph
we chose for this preface.

The work we have developed is founded on the theory of adaptive fil-
tering, having communication systems as the main focus of application. The
natural evolution of our studies and researches led us to widen our scope of
interest to themes like blind equalization, source separation, machine learn-
ing, and bio-inspired algorithms, always with the signal processing—oriented
approach that is registered in the DNA of our lab.

Hence, in short, our objective in this book is to provide a unified, sys-
tematic, and synthetic presentation of what may be called the theory of
unsupervised signal processing, with an emphasis on two topics that could be
considered as the pillars [137] of such a theory: blind equalization and source
separation. These two topics constitute the core of the book. They are based
on the foundations of statistical and adaptive signal processing, exposed in
Chapters 2 and 3, and they point to more emergent tools in signal processing,
like machine learning-based solutions and bio-inspired methods, presented
in Chapters 7 and 8.

Clearly, the objective described above represents a stimulating challenge
for, at least, two reasons: first, gathering together all the mentioned themes
was subject to the risk of dispersion or excessive verbosity, with the conse-
quent lack of interest on the part of the readers; second, the themes of interest
on their own have been specifically addressed by renowned specialists in a
number of excellent books.

In this sense, we feel obliged to mention that adaptive filter theory is
a well-established discipline that has been studied in depth in books like
[32,100, 139,194, 249, 262, 303], and others. Blind equalization methods and
algorithms are presented in detail in [99], and were recently surveyed in [70].
Blind source separation and related aspects like independent component
analysis have been treated in very important works such as in [76, 148, 156].

! xxi
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xxii Preface

Numerous authors from different scientific communities have written on
topics related to machine learning and bio-inspired optimization. We must
also mention inspiring works like [12,137,138], which deal with both blind
deconvolution and separation problems.

In a certain sense, by placing the topics of this book under a similar con-
ceptual treatment and mathematical formalism, we have tried to reap some
of the important ideas disseminated and fertilized by the aforementioned
authors and others we necessarily omitted in our non-exhaustive citation.

Since the genesis of the book is strongly linked to the work the authors
carried out at DSPCom laboratory during more than a decade, words of
thankfulness and recognition must be addressed to those who supported and
inspired such work. First of all, we would like to thank all researchers, stu-
dents, and assistants who worked in the lab since its establishment. It seems
unreasonable to name everybody, so we decided to include all these friends
in the main dedication of the book.

The first author of this book was fortunate in having Professor Maurice
Bellanger, from CNAM/Paris, France, as a PhD advisor, a collaborator in
many works, and an inspirational figure for us in the process of writing this
book. We are grateful to many colleagues and friends for their constant sup-
port. Special thanks are due to Professor Paulo S.R. Diniz from the Federal
University of Rio de Janeiro (COPPE/UFR]) and Professor Michel D. Yacoub
from FEEC/UNICAMP, first for their personal and professional example,
and also for attentively motivating and pushing us to finish the work. A spe-
cial mention must also be made to the memory of the late Professor Max
Gerken from the University of Sdo Paulo (POLI/USP). We also express our
gratitude to Professor Jodo C.M. Mota from the Federal University of Ceara
(UFC) for many years of fruitful cooperation.

We are indebted to many colleagues in our institution, the School of
Electrical and Computer Engineering at the University of Campinas (FEEC/
UNICAMP, Brazil). We are particularly thankful to Professor Renato Lopes,
Professor Murilo Loiola, Dr. Rafael Ferrari, Dr. Leonardo Tomazeli Duarte,
and Levy Boccato for directly influencing the contents of this book, and
for carefully reviewing and/or stimulating discussions about many central
themes of the book. We would also like to thank Professors Fernando Von
Zuben, Christiano Lyra, and Amauri Lopes, who collaborated with us by
means of scientific and/or academic partnerships. Our warmest regards are
reserved for Celi Pavanatti, for her constant and kind support.

Many friends and colleagues in other institutions influenced our work
in different ways. For their direct technical contribution to the book or to
our careers, and for their special attention in some key occasions, we would
like to thank Professor Francisco R. P. Cavalcanti from UFC; Professors
Maria Miranda and Cristiano Panazio from POLI/USP; Professor Leandro
de Castro from Universidade Presbiteriana Mackenzie (UPM); Professor
Aline Neves from Universidade Federal do ABC (UFABC); Professors Carlos
A.F.daRocha, Leonardo Resende, and Rui Seara from Universidade Federal
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Preface xxiii

de Santa Catarina (UFSC); Professor Jacques Szczupak from Pontificia Uni-
versidade Catdlica do Rio de Janeiro (PUC); Professor Moisés Ribeiro from
Universidade Federal de Juiz de Fora (UFJF); Professor Luiz C. Coradine
from Universidade Federal de Alagoas (UFAL); Professor Jugurta Mon-
talvao from Universidade Federal de Sergipe (UFS); Dr. Cynthia Junqueira
from Comando Geral de Tecnologia Aeroespacial (IAE/CTA); Dr. Danilo
Zanatta from NTi Audio AG; Mauricio Sol de Castro from Von Braun
Center; Professors Madeleine Bonnet, Hisham Abou-Kandil, Bernadette
Dorizzi, and Odile Macchi, respectively, from the University Paris-Descartes,
ENS/Cachan, IT-SudParis, and CNRS, in France; and Professor Tiilay Adali
from the University of Maryland in Baltimore, Maryland. We are especially
grateful to Professor Simon Haykin from McMaster University in Canada
for having given us the unforgettable opportunity of discussing our entire
project during the ICA Conference at Paraty in 2009.

The acknowledgment list would certainly be incomplete without men-
tioning the staff of CRC Press. Our deepest gratitude must be expressed to
Nora Konopka, Amber Donley, Vedavalli Karunagaran, Richard Tressider,
and Brittany Gilbert for their competence, solicitude, and patience. So many
thanks for believing in this project and pushing it from one end to the other!

Joao M. T. Romano
Romis R. de F. Attux
Charles C. Cavalcante
Ricardo Suyama
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Introduction

The subject of this book could be summarized by a simple scheme as that
depicted in Figure 1.1.

We have an original set of data of our interest that we want, for instance,
to transmit, store, extract any kind of useful information from; such data
are represented by a quantity s. However, we do not have direct access to
s but have access only to a modified version of it, which we represent by
the quantity x. So, we can state that there is a data mapping H(-) so that the
observed data x are obtained by

x = H(s) (1.1)

Then our problem consists in finding a kind of inverse mapping W to
be applied in the available data so that we could, based on a certain perfor-
mance criterion, recover suitable information about the original set of data.
We represent this step by another mapping that provides, from x, what we
could name an estimate of s, represented by

§=W©X) (1.2)

The above description is generalized on purpose so that a number of dif-
ferent concrete problems could fit it, with also a great variety of approaches
to tackle with them. According to the area of knowledge, the aforementioned
problem can be considerably relevant in signal processing, telecommunica-
tions, identification and control, pattern recognition, Bayesian analysis, and
other fields. The scope of this book is clearly signal processing oriented, with a
focus on two major problems: channel equalization and source separation. Even
thus, such character of the work does not restrict the wide field of application
of the theory and tools it presents.

1.1 Channel Equalization

In general terms, an equalization filter or, simply, equalizer, is a device
that compensates the distortion due to an inadequate response of a given
system. In communication systems, it is well known that any physical

1
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FIGURE 1.1
General scheme.

transmission channel is band-limited, i.e., it necessarily imposes distortion
over the transmitted signal if such signal exceeds the allowed passband.
Moreover, the channel presents additional impairments since its frequency-
response in the passband is often not flat, and is also subject to noise. In the
most treatable case, the channel is assumed linear and time-invariant, i.e.,
the output is obtained by a temporal convolution, and the noise is assumed
Gaussian and additive.

In analog communications systems, channel impairments lead to a
continuous-time distortion over the transmitted waveform. In digital com-
munication, information is carried by a sequence of symbols, instead of a
continuous waveform. Such symbols constitute a given transmission signal
in accordance with a given modulation scheme. Hence, the noxious effect
of the channel impairments in digital communications is a wrong symbol
decision at the receiver.

Since information is conveyed by a sequence of symbols, it is suitable to
employ a discrete-time model for the system, so that both the channel and
the equalizer may be viewed as discrete-time filters, and the involved signals
are numerical sequences. So, the problem may be represented by the scheme
in Figure 1.2, where s(n) is the transmitted signal; v(n) is the additive noise;
x(n) is the received signal, i.e., the equalizer input; and 5(n) is the estimate of
the transmitted signal, provided by the equalizer through the mapping

s(m) = W[x(m)] (1.3)

Since the channel is linear, we can characterize it by an impulse response
h(n) so that the mapping provided by the channel may be expressed by

H[s(n)] = s(n) x h(n) (1.4)

3(n)

FIGURE 1.2
Equalization scheme.
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where * stands for the discrete-time convolution, and then
x(n) = s(n) * h(n) +v(n) (1.5)

Clearly, the desired situation will correspond to a correct recovery of the
original sequence s(n), except for a delay and a constant factor, which can
include phase rotation if we deal with the most general case of complex sym-
bols. This very ideal situation is named zero-forcing (ZF) condition. As better
explained further in the book, it comes from the fact that, in such conditions,
all terms associated to the intersymbol interference (ISI) are “forced to zero.”
So, if the global system formed by the channel and the equalizer establishes
a global mapping G(-), the ZF conditions leads to

G [s(m)] = ps(n — np) (1.6)

where
ng is a delay
p is the constant factor

Once p and np are known or estimated, the ideal operation under the ZF
condition leads to the correct retrieval of all transmitted symbol. However,
as we could expect, such a condition is not attainable in practice due to the
nonideal character of W [-] and to the effect of noise.

Hence, a more suitable approach is to search for the equalizer W|[-] that
provides a minimal quantity of errors in the process of symbol recovery.
By considering the stochastic nature of the transmitted information and the
noise, the most natural mathematical procedure consists in dealing with the
notion of probability of error.

In this sense, the first effective solution is credited to Forney [111], which
considered the Viterbi algorithm for symbol recovery in presence of ISI. In its
turn, the Viterbi algorithm was conceived for decoding convolutional codes
in digital communications, in accordance with a maximum-likelihood (ML)
criterion [300].

One year after Forney’s paper, the BCJR algorithm, named after its inven-
tors [24], was proposed for decoding, but in accordance with a maximum a
posteriori (MAP) criterion. In this case, recovery was carried out symbol-
by-symbol basis instead of recovering the best sequence, as in the Viterbi
approach.

Once the transmitted symbols are equiprobable, the ML and MAP cri-
teria lead to the same result. So, the Viterbi algorithm minimizes the
probability of detecting a whole sequence erroneously, while the BCJR algo-
rithm minimizes the probability of error for each individual symbol. The
adaptive (supervised and unsupervised) techniques considered in this book
are typically based on a symbol-by-symbol recovery.
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We will refer to as Bayesian equalizer the mapping W |:] that provides
the minimal probability of error, considering symbol-by-symbol recovery.
It is important to think of the Bayesian equalizer, from now, as our refer-
ence of optimality. However, due to its nonlinear character, its mathematical
derivation will be postponed to Chapter 7.

Optimal equalizers derived from ML and/or MAP criteria are unfortu-
nately not so straightforward to implement in practice [112], especially in
realistic scenarios that involve real-time operation at high bit rates, nonsta-
tionary environments, etc. Taking into account the inherent difficulties of
a practical communication system, the search for suitable solutions of the
equalization problem includes the following steps:

e To implement the mapping W by means of a linear finite impulse
response (FIR) filter followed by a nonlinear symbol-recovering (-
decision) device.

e To choose a more feasible, although suboptimum, criterion instead
of that of probability of error.

e To derive operative (adaptive, if desirable) procedures to obtain the
equalizer in accordance with the chosen criterion.

e To use (as much as possible) prior knowledge about the transmitted
signal and/or the channel in the aforementioned procedures.

Taking into account the above steps, the mapping W [x(1)] will then be
accomplished by
y(n) = x(n) * wn) (1.7)
and
s(m) =T [ym)] (1.8)

where
w(n) is the equalizer impulse response
y(n) is the equalizer output
I'(-) stands for the decision device

In addition, we can now define the notion of combined response
channel4-equalizer as

g(m) = h(n) * w(n) (1.9)

so that the ZF condition can be simply established if we define a vector g, the
elements of which are those of the sequence g(1). The ZF condition holds if
and only if

g=10,...,0,p,0,...,0]" (1.10)

where the position of p in g is associated with the equalization delay.
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As far as the criterion is concerned, the discussion is, in fact, founded on
the field of estimation theory. From there, we take two useful possibilities: the
minimum-squared error (MSE) and the least-squares (LS) criteria, as our main
practical tools. For the operative procedure, we have two distinct possibilities:
taking into account the whole transmitted sequence to obtain an optimized
equalizer for this set of data (data acquisition first and equalizer optimization
then) or proceeding to an adjustment of the equalizer as the data are available
at the receiver (joint acquisition and optimization). In this second case, we talk
about adaptive equalization. Finally, the use of a priori information is closely
related to the possibility of putting into practice a mechanism of supervision or
training over thesystem.Ifsuchamechanism canbe periodically implemented,
we talk about supervised equalization, while the absence of supervision
leads to the unsupervised or blind techniques.

To a certain extent, this book discusses a vast range of possible
approaches to pass through these three steps, with a clear emphasis on
adaptive and unsupervised methods.

We can easily observe that the problem of channel equalization, as
depicted in Figure 1.2, fits the general problem of Figure 1.1, for the particu-
lar case of M = N = 1. Another particularization is related to the hypothesis
over the transmitted signal: as a rule, it is considered to be a sequence of inde-
pendent and identically distributed (i.i.d.) random variables, which belong
to a finite alphabet of symbols. This last aspect clearly imposes the use of a
symbol-recovering device. Regarded in this light, the problem is referred to
as SISO channel equalization, since both the channel and the equalizer are
single-input single-output filters.

Nevertheless, we can also consider a communication channel with mul-
tiple inputs and/or multiple outputs. A typical and practical case may be a
wireless link with multiple antennas at the transmitter and /or at the receiver.
In this book, we will specially consider the following cases, to be discussed
in Chapter 4:

e A single-input multiple-output (SIMO) channel with a multiple-
input single-output (MISO) equalizer, which corresponds to N = 1
and M > 1 in Figure 1.1.

¢ A multiple-input multiple-output (MIMO) channel with a multiple-
input multiple-output (MIMO) equalizer, which corresponds to
N>1and M > 1in Figure 1.1.

1.2 Source Separation

The research work on SISO blind equalization has been particularly intense
during the 1980s. At this time, another challenging problem in signal pro-
cessing was proposed, that of blind source separation (BSS). In general terms,
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such a problem can be simply explained by the classical example known as
cocktail party phenomenon, where a number of speakers communicate at the
same time in the same noisy environment. In order to focus the attention in
a specific speaker s1, a given receiver must retrieve the corresponding signal
from a mixture of all signals {sy, ...,sn}, where N is the number of speakers.
Despite the human ability in performing this task, a technical solution for
providing blind separation was unknown until the work of Hérault et al., in
1985 [144].

As stated above, the BSS problem also fits in the scheme of Figure 1.1.
The possibility of obtaining proper solutions will depend on the hypothe-
sis we consider for the mapping H(-) and for the set of original signals, or
sources, s. The most tractable case emerges from the following assumptions:

e The mapping H(-) stands for a linear and memoryless system, with
M =N.

e The sources {s1,...,5n} are assumed to be mutually independent
signals.

e There is, at most, one Gaussian source.

The main techniques for solving BSS under these assumptions come from
the principle of independent component analysis (ICA) [74]. Such techniques
are based on searching for a separating system W(-), the parameters of which
are obtained in accordance of a given criterion that imposes statistical inde-
pendence between the set of outputs 8. As pointed out in [137], ICA may
be viewed as an extension of the well-known principal component analysis
(PCA), which deals only with the second-order statistics of the involved
signals.

Although blind equalization and source separation problems have orig-
inated independently and in somewhat distinct scientific communities, we
can clearly observe a certain “duality” between them:

e In SISO channels, the output is a linear combination (temporal con-
volution) of the elements of the transmitted signal with additive
Gaussian noise. In BSS, the set of outputs comes from the linear
mixture of signals, among which one can be Gaussian.

e In SISO equalization, we try to recover a sequence of indepen-
dent symbols that correspond to the transmitted signal. In BSS, we
search for a set of independent variables that correspond to original
sources.

e In both cases, dealing with second-order statistics is not sufficient:
the output of a SISO channel may be whitened, for instance, by a
prediction-error filter, while the outputs of the mixing system may
be decorrelated by a PCA procedure. However, as we will stress
later in the book, neither of these procedures can guarantee a correct
retrieval.
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The above considerations will become clearer, and will be more rigor-
ously revisited, in the sequence of the chapters. Nevertheless, it is worth
remarking these points in this introduction to illustrate the interest in
bringing unsupervised equalization and source separation to a common
theoretical framework.

On the other hand, BSS can become a more challenging problem as the
aforementioned assumptions are discarded. The case of a mixing system
with memory corresponds to the more general problem of convolutive mix-
tures. Such a problem is rather similar to that of MIMO equalization. As a
rule in this book, we consider convolutive BSS as a more general problem
since, in MIMO channel equalization, we usually suppose that the trans-
mitted signals have the same statistical distributions and belong to a finite
alphabet. This is not at all the case in other typical applications of BSS.

If the hypothesis of linear mixing is discarded, the solution of BSS prob-
lems will require special care, particularly in applying ICA. Such a solution
may involve the use of nonlinear devices in the separating systems, as
done in the so-called post-nonlinear model. It is worth mentioning that
nonlinear channels can also be considered in communication and different
approaches have been proposed for nonlinear equalization, including the
widely known decision feedback equalizer (DFE). Overall, our problem will
certainly become more intricate when nonlinear mappings take place in (-)
and/or in W(-), as we will discuss in more detail in Chapter 6.

Furthermore, other scenarios in BSS deserve the attention of researchers,
as those of underdetermined mixtures, i.e., in scenarios in which M < N in
Figure 1.1; correlated sources; sparse sources, etc.

1.3 Organization and Contents

We have organized the book as follows:

Chapter 2 reviews the fundamental concepts concerning the characteri-
zation of signals and systems. The purpose of this chapter is to emphasize
some notions and tools that are necessary to the sequence of the book. For
the sake of clarity, we first deal with deterministic concepts and then we
introduce statistical characterization tools. Although many readers could be
familiar with these subjects, we provide a synthetic presentation of the fol-
lowing topics: signals and systems definitions and main properties; basic
concepts of discrete-time signal processing, including the sampling theorem;
fundamentals of probability theory, including topics like cumulants, which
are particularly useful in the context of unsupervised processing; a review
on stochastic processes with a specific topic on discrete-time random signals;
and, finally, a section on estimation theory.

In order to establish the foundations of unsupervised signal processing,
we present in Chapter 3 the theory of optimal and adaptive filtering in the
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classic scenario of linear and supervised processing. As already commented,
many books are devoted to this rich subject and present it in a more exhaus-
tive fashion. We opt for a brief and, to a certain extent, personal presentation
that facilitates the introduction of the central themes of the book. First,
we discuss three emblematic problems in linear filter theory: identifica-
tion, deconvolution, and prediction. From there, the specific case of channel
equalization is introduced. Then, as usually done in the literature, we present
the Wiener filtering theory as the typical solution for supervised processing
and a paradigm for adaptive procedures. The sections on supervised adap-
tive filtering discuss the celebrated LMS and RLS algorithms, and also the
use of structures alternative to the linear FIR filter. Moreover, in Chapter 3
we introduce the notion of optimal and adaptive filtering without a refer-
ence signal, as a first step to consider blind techniques. In this context, we
discuss the problem of constrained filtering and revisit that of prediction,
indicating some relationships between linear prediction and unsupervised
equalization.

After establishing the necessary foundations in Chapters 2 and 3, the sub-
ject of unsupervised equalization itself is studied in Chapter 4, which deals
with single-input single-output (SISO) channels, and in Chapter 5, in which
the multichannel case is considered.

Chapter 4 starts with a general discussion on the problem of unsu-
pervised deconvolution, of which blind equalization may be viewed as a
particular case. After introducing the specific problem of equalization, we
state the two fundamental theorems: Benveniste-Goursat-Ruget and Shalvi-
Weinstein. Then we discuss the main adaptive techniques: the so-called
Bussgang algorithms that comprise different LMS-based blind techniques,
the Shalvi-Weinstein algorithm, and the super-exponential. Among Buss-
gang techniques, special attention is given to the decision-directed (DD)
and Godard/CMA approaches, due to their practical interest in communica-
tions schemes. We discuss important aspects about the equilibrium solutions
and convergence of these methods, having the Wiener MSE surface as a
benchmark for performance evaluation. Finally, based on a more recent
literature, we present some results concerning the relationships between
constant-modulus, Shalvi-Weinstein, and Wiener criteria.

The problem of blind equalization is extended to the context of systems
with multiple inputs and/or outputs in Chapter 5. First, we state some
theoretical properties concerning these systems. Then we discuss single-
input multiple-output (SIMO) channels, which may be engendered, for
instance, by two practical situations: temporal oversampling of the received
signal or the use of multiple antennas at the receiver. In the context of SIMO
equalization, we discuss equalization conditions in the light of Bezout’s
identity and the second-order methods for blind equalization. Afterward,
we turn our attention to the most general scenario, that of multiple-input
multiple-output (MIMO) channels. In such case, special attention is given to
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multiuser systems, the importance of which is notorious in modern wireless
communications.

Chapter 6 deals with blind source separation (BSS), the other central sub-
ject for the objectives of this book. We start this chapter by stating the main
models to be used and the standard case to be considered first, that of a
linear, instantaneous, and noiseless mixture. Then, we introduce a tool of
major interest in BSS: the independent component analysis (ICA). The first
part of Chapter 6 is devoted to the main concepts, criteria, and algorithms
to perform ICA. Afterward, we deal with alternative techniques that exploit
prior information as, in particular, the nonnegative and the sparse compo-
nent decompositions. Then, we leave the aforementioned standard case to
consider two relevant problems in BSS: those of convolutive and nonlinear
mixtures. Both of them can be viewed as open problems with significant
research results in the recent literature. So we focus our brief presentation on
some representative methods with emphasis on the so-called post-nonlinear
model.

Chapters 4 through 6 establish the fundamental core of the book, as we
try to bring together blind equalization and source separation under the
same conceptual and formal framework. The two final chapters consider
more emergent techniques that can be applied in the solution of those two
problems.

The synergy between the disciplines of machine learning and signal pro-
cessing has significantly increased during the last decades, which is attested
by the several regular and specific conferences and journal issues devoted
to the subject. From the standpoint of this book, it is quite relevant that
a nonnegligible part of this literature is related to unsupervised problems.
Chapter 7 presents some instigating connections between nonlinear filter-
ing, machine learning techniques, and unsupervised processing. We start
by considering a classical nonlinear solution for adaptive equalization—
the DFE structure—since this remarkably efficient approach can be equally
used in supervised and blind contexts. Then we turn our attention to more
sophisticated structures that present properties related to the idea of uni-
versal approximation, like Volterra filters and artificial neural networks.
For that, we previously revisit equalization within the framework of a
classification problem and introduce an important benchmark in digital
transmission: the Bayesian equalizer, which performs a classification task
by recovering the transmitted symbols in accordance with the criterion of
minimum probability of error. Finally, we discuss two classical artificial neu-
ral networks: multilayer perceptron (MLP) and radial basis function (RBF)
network. The training process of these networks is illustrated with the aid
of classical results, like the backpropagation algorithm and the k-means
algorithm.

The methods and techniques discussed all through this book are issued,
after all, from a problem of optimization. The solutions are obtained, as
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a rule, by the minimization or maximization of a given criterion or cost-
function. The bio-inspired optimization methods discussed in Chapter 8,
however, are part of a different paradigm, as they are founded on a number
of complex processes found in nature. These methods are generally charac-
terized by a significant global search potential and do not require significant
a priori information about the problem to be solved, which encourages appli-
cation, for instance, in nonlinear and/or unsupervised contexts. Chapter 8
closes the book by considering this family of techniques, which are finding
increasing applications in signal processing. Given the vastness of the sub-
ject, we limit our discussion to three potentially suitable approaches, taking
into account our domain of interest: genetic algorithms, artificial immune
systems, and particle swarm optimization methods.

The book presents enough material for a graduate course, since blind
techniques are increasingly present in graduate programs, and can also be
used as a complementary reference for undergraduate students. According
to the audience, Chapter 2 can be skipped, and even some topics of Chap-
ter 3, if the students have the possibility of attending a specific course on
adaptive filtering theory. Furthermore, the content of Chapters 7 and 8 can
be adapted to the audience and also serves as a complementary material
for courses on machine learning and/or optimization. Overall, it is worth
emphasizing that a course on unsupervised signal processing theory, com-
prising blind equalization and source separation, must not be organized in a
rigid way, but following the interests of different institutions.

Finally, it is worth emphasizing that adaptive filtering, unsupervised
equalization, source separation, and related themes present a number of
recent results and open problems. Necessarily, and to preserve the main
focus of this book, some of them were omitted or not dealt with in depth.



2

Statistical Characterization of Signals
and Systems

The statistical characterization of signals and systems provides an impor-
tant framework of concepts and mathematical tools that are fundamental to
the modern theory of filtering and signal processing. In signal theory, we
denote by statistical signal processing the field of study that treats signals as
stochastic processes. The word stochastic is etymologically associated with
the notion of randomness. Even though such notion gives rise to different
interpretations, in our field of study, randomness is related to the concept of
uncertainty. Uncertainty on its turn is present in the essence of information
signals in their different forms as well as in the several types of disturbances
that can affect a system.

The subject of statistical characterization of signals and systems is really
extensive and has been built along more than two centuries, as a result
of classical works on statistical inference, linear filtering, and information
theory. Nevertheless, the purpose of this chapter is rather objective and,
in a way, unpretentious: to present the basic foundations and to empha-
size some concepts and tools that are necessary to the understanding of the
next chapters. With this aim in mind we have chosen five main topics to
discuss:

e Section 2.1 is devoted to the basic theory of signals and systems. For
the sake of systemizing such theory, we first consider signals that do
not have randomness in their nature.

e Section 2.2 specifically considers discrete-time signal processing, since
most methods to be presented in the book tend to be implemented
using this approach.

e Section 2.3 discusses the foundations of the probability theory in order
to introduce the suitable tools to deal with random signals. The main
definitions and properties are exposed.

e Section 2.4 then deals with the notion of stochastic processes together
with some useful properties. An appendix on the correlation matrix
properties complements the subject.

o Finally, Section 2.5 discusses the main concepts of estimation theory,
a major area of statistical signal processing with strong connections
with that of optimal filtering, which is the subject of the following
chapter.

11
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Historical Notes

The mathematical foundations of the theory of signals and systems have
been established by eminent mathematicians of the seventeenth and eigh-
teenth centuries. This coincides, in a way, with the advent of calculus,
since the representation of physical phenomena in terms of functions of
continuous variables and differential equations gave rise to an appropriate
description of the behavior of continuous signals and systems. Furthermore,
as mentioned by Alan Oppenheim and Ronald Schafer [219], the classical
works on numerical analysis developed by names like Euler, Bernoulli, and
Lagrange sowed the seeds of discrete-time signal processing.

The bridge between continuous- and discrete-time signal processing was
theoretically established by the sampling theorem, introduced in the works
of Harry Nyquist in 1928, D. Gabor in 1946, and definitely proved by
Claude Shannon in 1949. Notwithstanding this central result, signal process-
ing was typically carried out by analog systems and in a continuous-time
framework, basically due to performance limitations of the existing digital
machines. Simultaneously with the development of computers, a landmark
result appeared: the proposition of the fast Fourier transform algorithm by
Cooley and Tukey in 1965. Indeed, this result has been considered to be
one of the most important in the history of discrete-time signal process-
ing, since it opened a perspective of practical implementation of many other
algorithms in digital hardware.

Two other branches of mathematics are fundamental in the modern
theory of signals and systems: functional analysis and probability theory.
Functional analysis is concerned with the study of vector spaces and oper-
ators acting upon them, which are crucial for different methods of signal
analysis and representation. From it is derived the concept of Hilbert space,
the denomination of which is due to John von Neumann in 1929, as a
recognition of the work of the great mathematician David Hilbert. This is
a fundamental concept to describe signals and systems in a transformed
domain, including the Fourier transform, a major tool in signal process-
ing, the principles of which had been introduced one century before by
Jean-Baptiste Joseph Fourier.

Probability theory allows extending the theory of signals and systems
to a scenario where randomness or incertitude is present. The creation
of a mathematical theory of probability is attributed to two great French
mathematicians, Blaise Pascal and Pierre de Fermat, in 1654. Along three
centuries, important works were written by names like Jakob Bernoulli,
Abraham de Moivre, Thomas Bayes, Carl Friedrich Gauss, and many others.
In 1812, Pierre de Laplace introduced a host of new ideas and mathematical
techniques in his book Théorie Analytique des Probabilités [175].

Since Laplace, many authors have contributed to developing a mathe-
matical probability theory precise enough for use in mathematics as well

© 2011 by Taylor & Francis Group, LLC
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as suitable to be applicable to a wide range of practical problems. The
Russian mathematician Andrei Nikolaevich Kolmogorov established a solid
landmark in 1933, by proposing the axiomatic approach that forms the
basis of modern probability theory [169]. A few years later, in his clas-
sical paper [272], Shannon made use of probability in the definition of
entropy, in order to “play a central role in information theory as measures of
information, choice and uncertainty.” This fundamental link between uncer-
tainty and information raised many possibilities of using statistical tools in
the characterization of signals and systems within all fields of knowledge
concerned with information processing.

2.1 Signals and Systems

Information exchange has been a vital process since the dawn of mankind. If
we consider for a moment our routine, we will probably be able to point out
several sources of information that belong to our everyday life. Nevertheless,
“information in itself” cannot be transmitted. A message must find its proper
herald; this is the idea of signal.

We shall define a signal as a function that bears information, while a
system shall be understood as a device that produces one or more output
signals from one or more input signals. As mentioned in the introduction
of this chapter, the proper way to address signals and systems in the mod-
ern theory of filtering and signal processing is by means of their statistical
characterization, due to the intrinsic relationships between information and
randomness. Nevertheless, for the sake of systemizing such theory, we first
consider signals that do not have incertitude in their nature.

2.1.1 Signals

In simple terms, a signal can be defined as an information-bearing function.
The more we probe into the structure of a certain signal, the more informa-
tion we are able to extract. A cardiologist can find out a lot about your health
by simply glancing at an ECG. Conversely, someone without an adequate
training would hardly avoid a commonplace appreciation of the same data
set, which leads us to a conclusion: signals have but a small practical value
without the efficient means to interpret their content. From this it is easy
to understand why so much attention has been paid to the field of signal
analysis.

Mathematically, a function is a mapping that associates elements of two
sets—the domain and the codomain. The domain of a signal is usually,
although not necessarily, related to the idea of time flow. In signal processing,
there are countless examples of temporal signals: the electrical stimulus pro-
duced by a microphone, the voltage in a capacitor, the daily peak temperature
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profile of a given city, etc. In a number of cases, signals can be, for instance,
functions of space: the gray intensity level of a monochrome image, the set of
measures provided by an array of sensors, etc. Also, spatiotemporal signals
may be of great interest, the most typical example being a video signal, which
is a function of a two-dimensional domain: space and time.

In this book, we deal much more frequently with temporal signals, but
some cases of space-time processing, like the use of antenna array in particu-
lar channels, are also relevant to the present work. Anyway;, it is interesting
to expose some important properties concerning the nature of a signal as well
as ways of classifying and characterizing them.

2.1.1.1 Continuous- and Discrete-Time Signals

Insofarasthedomainoftemporalsignalsisconcerned, therearetwopossibilities
of particular relevance: to establish a continuum or an integer set of time
values. In the former case, the chosen domain engenders a continuous-time
signal, which is mathematically described by a function of a continuous
variable, denoted by x(f). Conversely, if time-dependence is expressed by
means of a set of integer values, it gives rise to a discrete-time signal, which
is mathematically described by a numerical sequence, denoted by x(n). For
instance, a signal received by a microphone or an antenna can be assumed to
be a continuous-time signal, while a daily stock quote is a discrete-time signal.

2.1.1.2 Analog and Digital Signals

A signal whose amplitude can assume any value in a continuous range is an
analog signal, which means that it can assume an infinite number of values.
On the other hand, if the signal amplitude assumes only a finite number of
values, it is a digital signal.

Figure 2.1 illustrates examples of different types of signals. It should be
clear that a continuous-time signal is not necessarily an analog signal, as well
as a discrete-time signal may not be digital. The terms continuous-time and
discrete-time refer to the nature of the signals along the time, while the terms
analog and digital qualify the nature of the signal amplitude. This is shown
in Figure 2.1.

2.1.1.3 Periodic and Aperiodic/Causal and Noncausal Signals
A signal x(t) is said to be periodic if, for some positive constant T,

x() =x(t+T) (2.1)
for all t. The smallest value of T for which (2.1) holds is the period of the
signal. Signals that do not exhibit periodicity are termed aperiodic signals.

From (2.1), we can notice that a periodic signal should not change if shifted

in time by a period T. Also, it must start at t = —oo, otherwise, it would not be
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FIGURE 2.1

Examples of analog/digital and continuous-time/discrete-time signals: (a) analog continuous-
time signal, (b) analog discrete-time signal, (c) digital continuous-time signal, (d) digital
discrete-time signal.

possible to respect the condition expressed in (2.1) for all t. Signals that start
at f = —oo and extend until f = oo are denoted infinite duration signals.

In addition to these definitions, it is interesting to establish the difference
between a causal and a noncausal signal. A signal is causal if

x(H) =0, t<O0 (2.2)
and said to be noncausal if the signal starts before t = 0.
It is worth mentioning that all definitions also apply for discrete-time
signals.
2.1.1.4 Energy Signals and Power Signals

An energy signal is a signal that has finite energy, i.e.,

j X2 dt < oo (2.3)
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16 Unsupervised Signal Processing

A signal with finite nonzero power, i.e.,

1 /2
lim — f lx(B)2dt < oo (2.4)
x—>00 (X

—a/2

is called a power signal.

All practical signals present finite energy and, thus, are energy signals.
Another interesting fact is that a power signal should necessarily be an infi-
nite duration signal, otherwise, its average energy would tend to zero within
a long enough time interval.

2.1.1.5 Deterministic and Random Signals

A deterministic signal is a signal whose physical description, either in a
mathematical or in a graphical form, is completely known. Conversely, a
signal whose values cannot be precisely predicted but are known only in
terms of a probabilistic description is a random signal.

2.1.2 Transforms

In daily life, our senses are exposed to all kinds of information when we
move, or simply as long as time flows. Since time (and in a way this is also
true for space) constitutes the most natural domain in which we observe
information, it is also a natural standpoint to represent and analyze a sig-
nal, but it is not the only possibility. Sometimes, a great deal of insight
on the characteristics of an information-bearing function can be gained by
translating it into another support input space.

We can understand a transform as a mapping that establishes a one-to-
one relationship between the representations of a given signal in two distinct
domains. As a rule, a transform is employed when the present domain
wherein a signal is represented is not the most favorable to the study of
one or more of its relevant aspects. The domain of representation is strongly
related with the mathematical concept of complete orthogonal basis. For
instance, if we define the unit impulse function 6(t) (also known as the Dirac
delta function) as

S(H=0 t#£0 2.5)
f §(t)dt = 1 2.6)
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it is interesting to observe that a continuous-time signal can be written as

x(t) = f x(1)8(t — T)dt 2.7)

—0o0
A similar representation can be obtained for discrete-time signals:

oo

x(n) = x(k)d(n — k) (2.8)

—00

where 6(1) denotes the discrete-time unit impulse function (also known as
the Kronecker delta function), and is defined as

1, forn=0
d(n) = {O, otherwise (2.9)

It comes, and this is even more evident in the discrete case, that the signal
of interest is a linear combination of shifted unit impulse functions. In this
sense, these shifted functions can be regarded as a basis for representing the
signal.

A change of representation domain corresponds to a change in the basis
over which the signal is decomposed. As mentioned before, this can be very
important in order to study some characteristics and properties of the signal
that are not directly observed in the form, for instance, of a temporal function
or sequence. In the classical theory of signal and systems, representation by
the complete orthogonal basis composed by complex exponentials deserves
special attention. For purely imaginary exponents, the complex exponential
functions and sequences are directly associated with the physical concept of
frequency, and such representation gives rise to the Fourier transform. For
general complex exponents, the corresponding decomposition gives rise to
the Laplace transform, in the continuous case, and to the z-transform, in the
discrete case, which are both crucial for the study of linear systems. These
four important cases are depicted in the sequel.

2.1.2.1 The Fourier Transform of Continuous-Time Signals

As mentioned earlier, the Fourier transform corresponds to the projection
of a signal x(t) onto a complete orthogonal basis composed of complex
exponentials exp(j 27ift). It is defined as

@]

X(fy= | x(t)exp (~j2nft)dt (2.10)

—0o0
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18 Unsupervised Signal Processing

while the inverse Fourier transform is given by

e¢]

x(t) = j X(f) exp (j 2nft)df (2.11)

—00

2.1.2.2 The Fourier Transform of Discrete-Time Signals

The discrete-time counterpart of the Fourier transform correspond to the
projection of the sequence x(n) onto an orthogonal basis composed of
complex exponentials exp(j 27frn), and is defined as

o]

X(exp (j27f) = Z x(n) exp (—j 2mfn) (2.12)

n=-—oQ
while the inverse Fourier transform is given by

1/2

x(n) = f X(exp (j 2rifn)) exp (j 2nfn)df (2.13)
-1/2

2.1.2.3 The Laplace Transform

The basic idea behind the Laplace transform is to build an alternative rep-
resentation X(s) of a continuous-time signal x(¢), from a basis of complex
exponentials:

X(s) = f x(t) exp(—st)dt (2.14)

—00

where s=0+j27f. The set of values of s for which the integral shown
in (2.14) converges is called region of convergence (ROC) of the Laplace
transform.

The inverse Laplace transform is then given by

1
x(t) = 2_71] Sﬁc X(s) exp(st)ds (2.15)

where C is a suitable contour path.

2.1.2.4 The z-Transform

The z-transform can be understood as the equivalent of the Laplace trans-
form in the context of discrete-time signals. The transform X(z) of a sequence
x(n) is defined by
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o0

X(z) = Z:ﬂ@f" (2.16)

n=-—o0o

where z = exp(0+j27f). The ROC of the z-transform is defined as the values
of z for which the summation presented in (2.16) converges.
The inverse z-transform is defined as

_ 1 n—1
x(n) = 2_7'c] gSC X(2)Z" dz (2.17)

where the integral must be evaluated in a path C that encircles all of the poles
of X(2).

It is worth mentioning that Equations 2.14 and 2.16 correspond to the
so-called bilateral Laplace and z-transforms, which are the most generic
representations. For causal signals, it is useful to consider the unilateral
transforms, in which the integral and the discrete sum start from zero instead
of —oo.

2.1.3 Systems

Having in mind the definition of signal presented in the beginning of
Section 2.1.1, we may alternatively define a system as an information-
processing device. In Figure 2.2, we present a schematic view of a system.

A system can be fully characterized by its input—output relation, i.e., by
the mathematical expression that relates its outputs to its inputs. Assuming
that the operator 5[] represents the mapping performed by the system, we
may write

y = S[x] (2.18)

where x and y are the input and output vectors, respectively. It is interest-
ing to analyze some important classes of systems and the properties that
characterize them.

X3 Y1
E— —»
X2 Y2
X —p System . y
R — —»
XN YM

FIGURE 2.2
Schematic view of a system.
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2.1.3.1 SISO/SIMO/MISO/MIMO Systems

This classification is based on the number of input and output signals of a
system:

e SISO (single-input single-output) systems have a single input signal
and a single output signal. Therefore, x and y become scalars.

e SIMO (single-input multiple-outputs) systems have a single input
signal and more than one output signal.

e MISO (multiple-input single-output) systems have multiple input
signals and a single output signal.

¢ Finally, MIMO (multiple-input multiple-output) systems have mul-
tiple input and output signals, and form the most general of the four
classes.

Throughout the book, the reader will have the opportunity of considering
the differences between these classes of systems, the importance of which is
patent in modern signal processing techniques.

2.1.3.2 Causal Systems

If the system output depends exclusively on present and past values of the
input, the system is said to be causal. In other words, causality means that
the output of a system at a given instant is not influenced by future values of
the input.

When we consider real-time applications, causality will certainly hold.
However, when we manipulate acquired data, noncausal systems are accept-
able, and may even be desirable in some cases.

2.1.3.3 Invertible Systems

When it is possible to build a mapping that recovers the input signals of a
given system from its output, we say that such a system is invertible. This
means that it is possible to obtain x from y using an inverse system cas-
caded with the original one. This notion will be revisited when we analyze
the problems of equalization and source separation.

2.1.3.4 Stable Systems

Stability is also a major concern in system analysis. We shall assume that
a system is stable if the response to a bounded input is also bounded. In
simple words, if the input signal does not diverge to infinity, the output
will not diverge as well. Stability is a common feature in real-world systems,
which we suppose to be restricted by conservation laws, but the same may
not occur in some mathematical models and algorithms.
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2.1.3.5 Linear Systems

In system theory, it is often convenient to introduce some classes of possi-
ble operators. A very relevant distinction is established between linear and
nonlinear systems. Linear systems are those whose defining S[-] operator
obeys the following superposition principle:

S[kix1 + koxo] = k1S[x1] + k2S[x2] (2.19)

The idea of superposition can be explained in simple terms: the response
to a linear combination of input stimuli is the linear combination of the indi-
vidual responses. Conversely, a nonlinear system is simply one that does not
obey this principle.

2.1.3.6 Time-Invariant Systems

Another important feature is time-invariance. A system is said to be time-
invariant when its input-output mapping does not vary with time. When the
contrary holds, the system is said to be time-variant. Since this characteristic
makes the system easier to be dealt with in mathematical terms, most models
of practical systems are, with different degrees of fidelity, time-invariant.

2.1.3.7 Linear Time-Invariant Systems

A very special class of systems is that formed by those that are both lin-
ear and time-invariant (linear time-invariant, LTI). These systems obey the
superposition principle and have an input-output mapping that does not
vary with time. The combination of these desirable properties gives rise to
the following mathematical result.

Suppose that x(t) and y(t) are, respectively, the input and the output of a
continuous-time LTI SISO system. In such case,

y(t) = h(t) * x(H) = j h(D)x(t — 1)dT (2.20)

—00

where h(t) is the system impulse response, which is the system output when
x(t) is equal to the Dirac delta function 5(f). The symbol * denotes that the
output y(n) is the result of the convolution of x(t) with h(t).

Analogously, if x(n) and y(n) are, respectively, the input and the output
of a discrete-time LTI SISO system, it holds that

y(n) = h(n) * x(n) = Z h(k)x(n — k) (2.21)

k=—o00
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where h(n) is the system impulse response, i.e., the system output when x(n)
is equal to the Kronecker delta function 6(11). Once more, the symbol * stands
for convolution.

2.1.4 Transfer Function and Frequency Response

An important consequence of the fact that the input and the output of a
continuous-time LTI SISO system are related by a convolution integral is
that their Laplace transforms will be related in a very simple way:

Y(s) = H(s)X(s) (2.22)

where
Y(s) and X(s) are, respectively, the Laplace transforms of the output and
the input
H(s) is the transform of the system impulse response, the so-called transfer
function

This means that the input—-output relation of an LTI system is the result
of a simple product in the Laplace domain.

If the ROCs of X(s), Y(s), and H(s) include the imaginary axis, expression
(2.22) can be promptly particularized to the domain of the Fourier analysis.
In this case, the following holds:

Y(f) = HH)X(f) (2.23)
where
Y(f) and X(f) are, respectively, the Fourier transforms of the output and
the input

H(f) is the transform of the system impulse response, which is called
frequency response

It is possible to understand several key features of a given LTI sys-
tem simply by studying the functions H(s) and H(f). For instance, to
know the frequency response of a system is the key to understanding
how it responds to stimuli at any frequency of the spectrum, and how an
input signal characterized by certain frequency content will be processed
by it.

The extension to the discrete-time domain is straightforward. If Y(z) and
X(z) are the z-transforms of two discrete-time signals related by an LTI
system, it is possible to write

Y(z) = H2)X(2) (2.24)
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and, if the ROCs of X(z), Y(z), and H(z) include the unit circle, expression
(2.24) reduces to

Y [exp € 27[f)] =H [exp G 27tf)] X [exp € 2Trf)] (2.25)

2.2 Digital Signal Processing

Discrete-time signals can be characterized and stored very easily. This relies
on a very relevant feature of discrete-time signals: given a finite time interval,
there is a finite set of values that fully characterize a sequence, whereas the
same does not hold for a continuous-time signal. This essential difference is
a reflex of the profound structural divergences between the domains of these
classes of information-bearing functions.

The world of digital computers excels in storage capacity and potential
of information processing, and is essentially a “discrete-time world.” There-
fore, it is not surprising that digital signal processing is a widespread tool
nowadays. Nevertheless, it is also clear that many of our physical models are
inherently based on continuous-time signals. The bridge between this “real
world” and the existing digital tools is established by the sampling theorem.

2.2.1 The Sampling Theorem

The idea of sampling is very intuitive, as it is closely related to the notion
of measure. When we measure our height or weight, we are, in a certain
sense, sampling the continuous-time signal that expresses the time-evolution
of these variables. In the context of communications, the sampling process
produces, from a continuous-time signal, a representative discrete-time sig-
nal that lends itself to proper digital processing and storage. Conditions for
equivalent representation and perfect reconstruction of the original signal
from its samples were achieved through the sampling theorem, proposed by
Harry Nyquist (1926), D. Gabor (1946), and Claude Shannon (1949), and are
related to two requirements:

1. The continuous-time signal must be band-limited, i.e., its Fourier
spectrum must be null for f > fu.

2. The sampling rate, i.e., the inverse of the time-spacing Ts of the
samples must be higher than or equal to 2fy.

Given these conditions, we are ready to enunciate the sampling
theorem [219]
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THEOREM 2.1 (Sampling Theorem)

If x(t) is a signal that obeys requirement 1 above, it may be perfectly
determined by its samples x(nTs), n integer, if Ts obeys requirement2.  m

If these requirements are not complied with, the reconstruction process
will be adversely affected by a phenomenon referred to as aliasing [219].

2.2.2 The Filtering Problem

There are many practical instances in which it is relevant to process informa-
tion, i.e., to treat signals in a controlled way. A straightforward approach to
fulfill this task is to design a filter, i.e., a system whose input-output relation
is tailored to comply with preestablished requirements. The project of a filter
usually encompasses three major stages:

e Choice of the filtering structure, i.e., of the general mathematical
form of the input-output relation.

e Establishment of a filtering criterion, i.e.,, of an expression that
encompasses the general objectives of the signal processing task at
hand.

e Optimization of the cost function defined in the previous step with
respect to the free parameters of the structure defined in the first
step.

It is very useful to divide the universe of discrete-time filtering structures
into two classes: linear and nonlinear. There are two basic types of linear dig-
ital filters: finite impulse response filters (FIR) and infinite impulse response
filters (IIR). The main difference is that FIR filters are, by nature, feedforward
devices, whereas IIR filters are essentially related to the idea of feedback.

On the other hand, nonlinearity is essentially a negative concept. There-
fore, there are countless possible classes of nonlinear structures, which
means that the task of treating the filtering problem in general terms is far
from trivial.

Certain classes of nonlinear structures (like those of neural networks and
polynomial filters, which will be discussed in Chapter 7) share a very rele-
vant feature: they are derived within a mathematical framework related to
the idea of universal approximation. Consequently, they have the ability
of producing virtually any kind of nonpathological input-output mapping,
which is a remarkable feature in a universe as wide as that of nonlinear
filters.

A filtering criterion is a mathematical expression of the aims subjacent
to a certain task. The most direct expression of a filtering criterion is its
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associated cost function, the optimization of which leads to the choice and
adaptation of the free parameters of the chosen structure.

When both the structure and an adequate cost function are chosen,
there remains the procedure of optimizing the function with respect to the
free parameters of the filtering device. Although there are many possible
approaches, iterative techniques are quite usual in practical applications for,
at least, two reasons:

e They avoid the need for explicitly finding closed-form solutions,
which, in some cases, can be rather complicated even in static
environments.

e Their dynamic nature suits very well the idea of adaptation, which
is essential in a vast number of real-world applications.

Adaptation will be a crucial idea in the sequel of this text and, as we will
see, the derivation of a number of adaptive algorithms depends on some
statistical concepts to be introduced now.

2.3 Probability Theory and Randomness

Up to this moment, signals have been completely described by mathematical
functions that generate information from a support input space. This is the
essence of deterministic signals. However, this direct mapping between the
input and output space cannot be established if uncertainties exist. In such
case, the element of randomness is introduced and probabilistic laws must
be used to represent information. Thus, it is of great interest to review some
fundamental concepts of probability theory.

2.3.1 Definition of Probability

Probability is essentially a measure to be employed in a random experiment.
When one deals with any kind of random experiment, it is often necessary
to establish some conditions in order that its outcome be representative of
the phenomenon under study. In more specific terms, a random experiment
should have the following three features [135]:

1. The experiment must be repeatable under identical conditions.

2. The outcome w; of the experiment on any trial is unpredictable
before its occurrence.
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3. When a large number of trials is run, statistical regularity must be
observed in the outcome, i.e., an average behavior must be identified
if the experiment is repeated a large number of times.

The key point of analyzing a random experiment lies exactly in the
representation of the statistical regularity. A simple measure thereof is
the so-called relative frequency. In order to reach this concept, let us define
the following:

e The space of outcomes €2, or sample space, which is the set of all
possible outcomes of the random experiment.
e An event A, which is an element, a subset or a set of subsets of Q.

Relative frequency is the ratio between the number of occurrences of a
specific event and the total number of experiment trials. If an event A occurs
N(A) times over a total number of trials N, this ratio obeys

= —N(A) =

0 1 (2.26)

We may state that an experiment exhibits statistical regularity if, for any
given sequence of N trials, (2.26) converges to the same limit as N becomes a
large number. Therefore, the information about the occurrence of a random
event can be expressed by the frequency definition of probability, given by

N (A)> (2.27)

Pr(4) = lim (T

On the other hand, as stated by Andrey Nikolaevich Kolmogorov in his
seminal work [170], “The probability theory, as a mathematical discipline,
can and should be developed from axioms in exactly the same way as Geom-
etry and Algebra.” Kolmogorov thus established the axiomatic foundation of
probability theory. According to this elegant and rigorous approach, we can
define a field of probability formed by the triplet {Q, 7, Pr(A)}, where Q is the
space of outcomes, F is a field that contains all possible events of the ran-
dom experiment,* and Pr(A) is the probability of event A. This measure is so
chosen as to satisfy the following axioms.

Axiom 1: Pr(A) >0

Axiom 2: Pr(Q) =1

Axiom 3: If ANB = &, then Pr(AU B) = Pr(A) + Pr(B), where N and U stand
for the set operations intersection and union, respectively.

*In the terminology of mathematical analysis, the collection of subsets F is referred to as a
o-algebra [110].
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For a countable infinite sequence of mutually exclusive events, it is
possible to enunciate Axiom 3 in the following extended form:

Axiom 3": For mutually exclusive events A1, Ay, ..., Ay,
o0 o
Pr (U Ai> = ZPI‘(A{)
i=1 i=1

From these three axioms, and using set operations, it follows that
Pr(A) =1 — Pr(A) (2.28)
where A stands for the complement of the set A. If AN B # @, then
Pr(AUB) = Pr(A) + Pr(B) — Pr(ANB) (2.29)

In probability theory, an important and very useful concept is that of
independence. Two events A; and Aj, for i # j, are said to be independent if
and only if

Pr(A;N Aj) = Pr(Aj)) PI‘(A]') (2.30)

It is also important to calculate the probability of a particular event given
the occurrence of another. Thus, we define the conditional probability of A;
given A; (supposing Pr(A;) # 0) as

Pr(A;N A]')

BrA) (2.31)

Pr(A;lA) £

It should be noted that, if A; and A; are independent, then Pr(A;|A)) =
Pr(A;). This means that knowledge about the occurrence of A; does not
modify the probability of occurrence of A;. In other words, the condi-
tional probability of independent events is completely described by their
individual probabilities.

Computation of the probability of a given event can be performed with
the help of the theorem of total probability. Consider a finite or countably
infinite set of mutually exclusive (A; N Aj=@ for all i # j) and exhaustive
(U; Ai=A) events. The probability of an arbitrary event B is given by

Pr(B) = ) Pr(A;NB) =Y Pr(A;) Pr(B|A)) (2.32)

2.3.2 Random Variables

A deterministic signal is defined in accordance with an established math-
ematical formula. In order to deal with random signals, it is important to
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introduce the notions of random variable (r.v.) and probability density func-
tion (pdf). In a certain sense, a random signal is a continuous flux or a
discrete sequence of r.v.’s, the generation of which is ruled by a pdf. In order
to fully understand this idea, let us start by formally defining the concept of
random variable.

DEFINITION 2.1 An r.v. is a function X(-) that assigns a number X(w;), or
simply x;, called value of the r.v., to each possible outcome in the set of
observations (sample space).

For a discrete r.v., which directly associates points with probabilities, we
have [123]

Pr[X(w;) = xj] = Pr[w; € Q : X(w;) = xi] (2.33)

which means that the probability of the value of the r.v., x;, is the probability
of the outcome, w;, associated with x; through the function X(-).

For a continuous r.v., since the probability in a particular point tends to
zero, we have to resort to a certain range of values to obtain a nonzero value.
As a consequence, we write

Pr[X(w;) < xj] =Prw; € 2 : X(w;) < xi] (2.34)

The definition in (2.34) can be rewritten to eliminate the explicit depen-
dence on a particular outcome. This leads to an important function that
characterizes r.v.’s.

DEFINITION 2.2 The cumulative distribution function (cdf)—or simply
distribution function—of an r.v. X is given by

Px(x) = Pr[X(w) < x] = Pr[X < x] (2.35)

for —o00o < x < 0.

The cdf has the following properties:

0<Px(x) <1 (2.36a)
Px(x1) < Px(xy) forxi; <xp (2.36b)
Px(—o0) £ lim Px(x) =0 (2.36¢)
X——00
Px(00) £ lim Px(x) =1 (2.36d)
X—> 00
lin(} Px(x +¢) £ Px(x™) = Px(x) (2.36e)

e>0
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Notice that (2.36a) and (2.36b) show that the cdf is bounded between zero
and one and is a monotone nondecreasing function of x.
The pdf, or simply density function, is defined as

d
px(x) = EPX(X)’ (2.37)

The probability of the event x1 < X < x» is given by

Pr(x1 < X <x)=Pr(X <xp) —Pr(X <x7)
= Px(x2) — Px(x1)

X
= f px(x) dx (2.38)
x1

According to (2.38), the probability associated with an interval is the area
under the pdf in such interval. If we make x; = —oo, it is possible to write
the cdf in terms of the pdf as follows:

X

Px = [ px(&)de (2.39)

—00

Using (2.39) and (2.36), we can see that
o
| px@dx=1 (2.40)
—0o0

As mentioned before, the cdf must always be monotone nondecreasing.
This implies that its derivative must always be nonnegative. Furthermore,
due to (2.40), we may state that the pdf must always be a nonnegative
function whose total area equals one.

Example 2.1 (Uniform Distribution)

A very useful class of random variables is formed by those that possess a uniform
distribution. An r.v. X is said to have a uniform distribution if its pdf, in an interval
(a, b], is given by

0, x<a
px() =1 g=, a<x<b (2.41)
0, x>b
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FIGURE 2.3
Example of a uniform distribution in the interval (a, b]: (a) probability density function of X and
(b) cumulative distribution function of X.

In this case, the cumulative distribution function is given by

0, x<a
Pyx(x) = [’;:3/ a<x<b (2.42)
0, x>b

Figure 2.3 shows the pdf and cdf of a uniformly distributed r.v. X.

2.3.2.1 Joint and Conditional Densities

When we work with random models in practical applications, the number
of r.v.’s required to describe the behavior of the events is often greater than
one. In this section, we extend the probabilistic concepts exposed so far to
the case of multiple r.v.’s. Actually, we shall consider in detail exclusively
the particular case of two variables, since the extension to the generic multi-
dimensional case is somewhat direct. If we consider two r.v.’s X and Y, we
can define the following distribution.

DEFINITION 2.3 The joint distribution function Px y(x, y) is the probability
that the r.v. X is less than or equal to a specified value x and that the r.v. Y is
less than or equal to a specified value y.

Mathematically, for (—oo < X < x, —o0 < Y < y), we write
Pxy(x,y) =Pr[X <x, Y <y] (2.43)

Notice that (2.43) states that the outcome associated to the joint event is a
point of the xy-plane. It is worth mentioning that X and Y may be considered
as two separate one-dimensional r.v.’s as well as two components of a single
two-dimensional r.v.
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If Px y(x,y) is continuous everywhere, and the partial derivative

32Px y(x,y)

3y (2.44)

pxy(x,y) =

exists and is also continuous everywhere, the function px y (x, y) is called joint
pdf of ther.v.’s X and Y.

The properties of the joint distribution function are similar to those
exposed in the case of a one-dimensional r.v. Hence, Px y(x,y) is a mono-
tone nondecreasing function of both variables x and y, the joint pdf px y(x, y)
is always nonnegative, and the volume under px y(x, ) must equal one, i.e.,

T T px,y(& mdEdn =1 (2.45)

—00 —00

When we deal with joint distributions (or densities), we are also inter-
ested in finding the distribution (or density) of a specific variable. Using
Equation 2.43, we get

o0

Px = [ [ pxy(& mdtdn (2.46)

—00 —00

and differentiating both sides of the previous equation we have

px(@) = [ pxy(x, myn (247)

We can obtain Py(y) and py(y) through a similar procedure. The distribu-
tions Px(x) and Py(y) and densities px(x) and py(y) are accordingly called
marginal distributions and marginal densities of the joint distributions and
densities, respectively.

The density of an r.v. when the occurrence of another is given, i.e., the
conditional pdf of X, given that Y =y, is

px,y(x,y)

2.48
py ) (248)

pxy(xly) =

provided that py(y) > 0.
Since pxy(x|]y) is a function of the r.v. X with Y arbitrarily assuming a
fixed value y, it fulfills the requirements of a pdf, since

pxy(xly) =0
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and
o0
| pxpvtety dx =1
—00

Animportant case arises when the variables X and Y are statistically inde-
pendent. Then, knowledge about the occurrence of variable Y does not affect
the distribution of X, or, in other words, the conditional density px|y(x|y) has
no information about Y. In mathematical terms, we may write

pxy (xly) = px(x) (2.49)

which means that the conditional density is equivalent to the marginal den-
sity when the variables are independent. From this result comes a very useful
relation between the pdfs of independent variables:

pxy(x,y) = px()pyy) (2.50)

i.e., the joint density of independent variables is equal to the product of their
marginal densities.

In analogy with (2.48), we can define the conditional pdf of Y, given that
X =ux,as

py.x(y,x)
=T 2.51
pyix(ylx) () (2.51)
and, using (2.48) and (2.51), we obtain the following relation
pyixWI0)px(x)
xly) = ————— 2.52
pxy (x[y) @) (2.52)

which is known as Bayes’ rule [230].
It is straightforward to modify the approach to derive the equivalent
relations in terms of the joint and conditional probability distributions.

2.3.2.2 Function of a Random Variable

At this point, it is useful to recall a classical result regarding the transforma-
tion of an r.v. Let f(-) be an arbitrary function, so that

Y =f(X)
where X is an r.v. whose density function is known.
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Then, if f(-) is invertible, the following property of r.v. transformation
holds [230]:

()
py(y) = r;(;

dx

(2.53)

x=f~1(y)

where f —1(.) is the inverse function of f(). For multiple variables, if the
mapping y = f(x) is invertible, then we have

px(f1(y)

2.54
| detJ¢()] 259

py(y) =

where £71(.) is the inverse function of f(-), and Ji(y) denotes the Jacobian
matrix associated with f(x) = [fl x),2(),..., fN(x)], given by

o oh 0 A
39{1 3)(2 BXN

Jio = | M dN (2.55)
ax1 axp OXN

Equation 2.53 can be also generalized when f(X) does not produce a biu-
nivocal mapping from y to x. In this case, it is necessary to separate the
functions into regions that present a unique inverse mapping. Therefore, we
may write [179]

-1

df (x;)
dx;

(2.56)

py(y) =D px(x)
i xi=f~1(y)

where i stands for the number of regions the function is divided into, and x;
are the values of x inside the ith region.

2.3.3 Moments and Cumulants

The pdf plays a key role in statistical processing, since it carries all the avail-
able statistical information about an r.v. However, the determination of the
exact model of the pdf may be a task quite hard to be accomplished in cer-
tain cases. Thus, it is relevant to build alternative expressions of the statistical
behavior of a random variable that are both representative and straightfor-
ward to characterize. The idea of average, as we will show in the following,
fits these requirements.
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A simple and very important case is the expected value or mean of a
random variable X, which is defined as

E(X} 2 f xpx (x)dx (2.57)

—00

where E{-} denotes the statistical expectation operator. Another important
case is the variance or second central moment, defined as

var(X) 2 f (x — k1 (X)) 2px (¥)dx (2.58)

—00

where k1 (X) = E {X}.
We can generalize the idea of mean and variance by revisiting the notion
of function of an r.v. Let X be an r.v. and f(-) an arbitrary function, so that

Y = £(X) (2.59)

It is clear that Y is also a random variable and it is possible to define the
expected value thereof as

E()2 [ ypy(dy (2.60)
or rather
E{f0} 2 [ fpx@dx (2.61)

Equation 2.61 generalizes the concept of the mean of an r.v. to the expec-
tation of an arbitrary function of the same variable: such procedure will be
of particular relevance throughout the entire book. At this point, it is worth
pointing out a special case: if we make f(X) = X" in (2.61), we obtain the nth
moment of the pdf px(x), defined as

e @]

kn(X) = jx”px(x) dx (2.62)

o]

From (2.59) and (2.62) it is clear that k1 (X) = E{X]}.

Even though the moments can be directly computed using (2.62), a
special function can be tailored to produce them directly. The moment-
generating function or first characteristic function of a real r.v. X is defined as
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Qx(w) 2 f px(x) exp(jwx)dx

£ E{exp(jwx)} (2.63)

If Qx(w) is expanded in a Taylor series about the origin, we get to [230]
o

2x(w) 2 Y () (2.64
k=0 "

where ki is the k-order moment. Thus, one can obtain the k-order moment
using the following expression

L FQx(w)

Kk = (=) Y

w=0
Another important statistical measure is given by the cumulants. Cumu-
lants are tailored by specific relationships between the moments of a random
variable in order to reveal certain aspects of its pdf as well as to present
some useful properties for statistical processing. The cumulants are gener-

ated by the second characteristic function or cumulant-generating function,
defined by

Tx(w) 2 In[Qx(w)] (2.65)

The Taylor series of Tx(w) around the origin can be written as

Tx() £ Y ot (2.66)
k=0
and
k
c = (— )k8 TX(kw) (2.67)
Jw w0

is the k-order cumulant ¢ [230,244].

We have described the first and second characteristic functions for the
real case. For complex r.v.’s, a straightforward extension is possible, so that
the characteristic function becomes [13]

Qx,x+(w, w*)

e wx* + w*x
f px,x+(x, x*) exp [j <T>} dx dx*
—00

o i (2 22Y]) -
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In this case, the cumulant-generating function is given by

Ty (w) £ In[Qx x+ (w, w*)] (2.69)

2.3.3.1 Properties of Cumulants

Cumulants possess a number of properties that are interesting from a signal
processing standpoint. Some of these properties are described in the sequel.

o [nvariance and equivariance
The first-order cumulant is equivariant, while the others are invari-
ant to shifts, i.e.,

cX+o)=c(X)+«

(2.70)
(X + o) = ¢ (X)

for an arbitrary constant o.

e Homogeneity
The k-order cumulant is homogeneous of k degree. Thus, for the real
case

cr(aX) = o - o (X) (2.71)

In the complex case, the k-order cumulant is defined by

X, X" =c(X,..., X, X*,...,X*) Vs+qg=k (2.72)
R
s terms q terms

According to (2.72), the homogeneity property for a complex r.v. is
given by [14,173]

ok (aX, aX*) = (0)° - (o) cp(X, X*) Vs+q=k (2.73)

Hence, for even-order cumulants, we may consider s = g, so that the
homogeneity condition becomes

cr(aY) = ol - (V) (2.74)
o Additivity
If X and Y are statistically independent r.v.’s, the following relation
holds:
k(X +Y) = (X) + e (Y) (2.75)
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2.3.3.2 Relationships between Cumulants and Moments

We can relate cumulants and moments via the following recursive rule [214]:

k-1

k—1
ck=|<k—2(i_1>ci..<k_i (2.76)

i=1

Therefore, the kth moment is a kth order polynomial built from the first k
cumulants. For instance, we have for k up to 6:

K1 =1
qu+ﬁ

K3 = ¢3 + 3ca01 + c‘i’

Ks = 4 + 4czer + 365 + 60265 + ¢ (2.77)

K5 = ¢5 + 5cgc1 + 10c3¢0 + 10036% + 150%c1 + 10C26%

Kg = Cg + 6¢501 + 15¢4C + 1504c% + 10c§ + 60c3cpct + 20C3C§ + 15C%

+ 450%c% + 15czc‘1L + c?

Clearly, when zero-mean distributions are considered, the terms in c; are
removed from (2.77). A more detailed description of these relationships can
be found in [214].

2.3.3.3 Joint Cumulants

The joint cumulant of several r.v.s Xj, ..., Xy is defined similarly to (2.67)
[214]

'Y (wy, ..., wp)

c (xlfl,xgz, . .,x;”> £ (=) (2.78)

k
8w]{1 0w, lwr=e=wy=0

where Y(w1,...,wp) represents the second characteristic function of the
joint pdf Xj,..., Xj. If the variables are independent, their joint cumulant
is null, and if all k variables are equal, the joint cumulant is cx(X).

In order to link the concepts we have presented with the notion of signal,
we now consider the evolution of r.v.’s in detail.
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2.4 Stochastic Processes

The proper method of including probability theory in the study of infor-
mation signals consists of defining a sample space associated with a set of
functions. This model originates the notion of a stochastic process. Con-
sidering time as the support of the signal, the following definition can be
posed.

DEFINITION 2.4 A stochastic process X(f) is a collection or ensemble of
functions engendered by a rule that assigns a function x(t, w;) or simply
xi(t), called sample of the stochastic process, to each possible outcome in
the sample space.

Figure 2.4 illustrates in a classical and intuitive way the concept of
stochastic process. From this figure we can observe that

e For a given w; we have a single time function or sample function
x;(t). This function represents a specific realization of the random
signal, which means that, for stochastic processes, the occurrence of
a given signal is a result of a random experiment.

e For a given time instant tk, the value to be assigned to X(tx) depends
on the choice of the sample function, i.e., depends on w;. So X(tx) is a
value corresponding to the outcome of a random experiment, i.e., is
anr.v. Hence each sample function x;(t) is a flux of random variables
in time.

As discussed earlier for deterministic signals, time flow can be modeled
in terms of a continuum or an integer set of values, which means that random
signals can also be continuous- or discrete-time. In order to characterize a

Sample %1(tx)
space Q x1 0 \:
AA&‘VAVM%WA%A’W%'
|
|
x,(2) 0 %(tx) \:
> MV ANAMAAAANAIMA A A
|
: |
; 1
%,(6) it N
%AA%M%W#
0 ! t
U
FIGURE 2.4

Several sample functions of a random process.
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stochastic process, it is suitable to establish an interval of observation, for
instance, (0,tk], as indicated in Figure 2.4, within which we consider K
samples of the process: X(t), k = 1,...,K. Under these circumstances, a
stochastic process actually becomes a family of random signals, which can
be characterized by the corresponding joint CDF

Px)),...xt0 (x(t1), . .., x(tk)) or, for the sake of simplicity,

Pxp),.. xt) (X1, - - -, XK) (2.79)
and joint pdf

Pxt),... Xt (x(t), . .., x(tg)) or, for the sake of simplicity,

PX(tl),...,X(tK) (xll ce ,XK). (280)

In many cases, to deal with these multivariable functions is a rather diffi-
cult task. It is then suitable to deal with a partial characterization of stochastic
processes, as that which comes from a sort of extension of the concept of
moments.

2.4.1 Partial Characterization of Stochastic Processes: Mean, Correlation,
and Covariance

We can define the mean of a stochastic process X(t) as the mean of the ran-
dom variable originated when the time index is fixed at t. Since the mean is
the first-order moment, we can write

K1(X, t) = E{X(B)}

= j xpx ) (X)dx (2.81)

where px ) (x) is called the first-order pdf of the process, since it takes into
account only one time instant of the sample functions.

An equivalent of the second-order moment of an r.v. in the context of
stochastic processes is the autocorrelation function. We can define this func-
tion as the statistical expectation of the product of two r.v.’s obtained from
the observation of the process at two different time instants, t; and t,. So we
may write

Rx(t1, 1) = E{X(t)X*(t2)}

o0
= j jxlxsz(tl),X(tz)(xl/xﬂ dx1dxp (2.82)
o0
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where px ), x(t,) (1, %2) is the second-order pdf of the process. We can also
define the autocovariance function

Cx(t1, ) = E{[X(t1) — x1(X, )] [X(t2) — k1 (X, t2)]"}
= Rx(t1,t2) — k1(X, 1) - K] (X, £2) (2.83)
In order to evaluate the second-order moments in different time instants,

let us create a vector x = [X(t1) X(tp) --- X(tn)]T. Then, if we compute
E {xxH } for a zero-mean process, we obtain the autocorrelation matrix

Ry =E {xxH}
[ X)X () - X)X ()
L X(tn)X*(tl) T X(tn)X*(tn)
[ Rx(ti,t1) -+ Rx(ti, tn)
- : : (2.84)
| Rx(tn,t1) -+ Rx(tn, tn)

In the above definition, the superscript ( )H stands for Hermitian transposi-
tion. The autocovariance matrix is obtained if the autocorrelation function is
replaced by the autocovariance function in (2.84).

Another important measure is the cross-correlation function, which
expresses the correlation between different processes. Given two different
stochastic processes X(f) and Y(t), the two cross-correlation functions can be
defined as [135]

Rxy(t1, ) = E{X(t)Y*(t2)} (2.85)
and
Ryx(t,t2) = E{Y(t)X*(t2)} (2.86)

We can also define a cross-correlation matrix, given by

(2.87)

| Rx(t1,t2)  Rxy(ty,t2)
Rxy(t1, f2) = [Ryx(h,fz) Ry(tl,tz)}

So far, there has been a strong dependence of the definitions with respect
to multiple time indices. However, some random signals show regularities
that can be extremely useful, as we shall now see.
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2.4.2 Stationarity

The term stationarity refers to an important property shared by many ran-
dom processes: their statistical characteristics are considered to be time
invariant. We can express this idea in formal terms by using the notion of
joint density function of a stochastic process X(t), so that, if

PX (), X (1) X1 -+ XK = PX(t40), X (tp4+1) (X1, - -+ X) (2.88)

is valid for any T, the process is said to be strict-sense stationary. In other
words, it can be defined as follows [135].

DEFINITION 2.5 A stochastic process X(f), initiated at t = —oo, is strict-
sense stationary if the joint density of any set of r.v.’s obtained by observing
the random process X(t) is invariant with respect to the location of the origin
t=0.

Two special cases deserve our attention:

1. k=1

px) (X)) = px@+r)(x) = px(x) forallt and 7. (2.89)

The above equation reveals that the first-order density function of a
strict-sense stationary process is time independent.

2. k=2and 1= —-H

PX(t),X(t2) (X1, X2) = PX(0),X(t—t;) (X1, X2) forallty and to.  (2.90)
In this case, the second-order density function of a strict-sense sta-
tionary process depends only on the time difference between the

observation times, and not on the particular instants of observation.

These properties have a great impact on the statistical characterization of
a stochastic process, as the following results show.

e The mean of a stationary process is constant:
K1(X, 1) = k1(X) (2.91)

e The autocorrelation and autocovariance functions depend exclu-
sively on the time difference T = f, — t;:

Rx(t1,t2) = Rx(1) (2.92)
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and
Cx(t1, t2) = Rx(1) — k7(X) (2.93)

for all t; and t,.

e The autocorrelation matrix is hermitian. It means that the element in
the ith row and jth column is equal to the complex conjugate of the
element in the jth row and ith column, for all indices i and j, i.e.,

Rx(0) o R (tn — 1)
Rux = (2.94)
Rx(ty —t1) -+~ Rx(0)

Furthermore, the autocorrelation matrix of a strict-sense stationary
process has the property of being a Toeplitz matrix [139].

e Given two stationary processes X(t) and Y (t), their cross-correlation
matrix, which carries the information of the different cross-
correlation functions, can be written as

_ | Rx(m) Rxy(7) _
Rxy (1) = [ Ryx(t) Ry(1) } T=h-—HhH (2.95)

The cross-correlation function does not have the same symmetry
inherent to the autocorrelation function. However, the following
relationship is verified [139]:

Ry (1) = Ryx(—=71) (2.96)

A less stringent condition for stationarity is given when a partial charac-
terization of the stochastic process is carried out by means of the mean and
the autocorrelation function. A stochastic process is said to be wide-sense
stationary if the mean and the autocorrelation function of the process do not
depend on the time instant, i.e., if (2.91) through (2.93) hold, but not neces-
sarily (2.88). Hence, strict-sense stationarity implies wide-sense stationarity,
but the converse is not true.

At this point, it is worth mentioning that it is also possible to analyze ran-
dom signals in the frequency domain. In the beginning of this chapter, we
have introduced the Fourier transform to define the spectrum of a determin-
istic signal. Since a stochastic process is composed by a collection of sample
functions, the change of domain will engender a collection of spectra, so that
the inherent uncertainty of the random signal will be transferred to the fre-
quency domain. Therefore, it is necessary to resort to statistical measures to
evaluate the frequency behavior of a random signal, i.e., employ a transform
of moments as a source of information in the frequency domain.
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For now, we consider the second-order moment and define the power
spectral density Sx(f) of a stationary stochastic process with autocorrelation
function Rx () through the following pair of equations:

Sx(h) = | Rx(v) exp(—j2nfrid (2.97)

Rx(0) = [ Sx(f)exp(j2nfr)df (2.98)

Equations 2.97 and 2.98 are well known in classical signal analysis and
usually referred to as Einstein-Wiener—Khintchine relations [135].

2.4.3 Ergodicity

The estimation of statistical moments is a crucial task in the characterization
of a random signal. An inherent problem is that their definitions consider the
whole ensemble of realizations of the process. For instance, the mean k1 (X)
describes the behavior of the r.v. X(t), for a fixed t, taking into account all
possible outcomes thereof.

However, in practice, we have access to a limited number of sample
functions x;(t). Notwithstanding, most applications present an interval of
observation adequately long to provide accurate measures of time averages.
Therefore, we may seriously consider the hypothesis of using these aver-
ages to estimate statistical ensemble averages. The fundamental question is if
these two entities can be considered equivalent. To answer it, let us consider
a wide-sense stationary process X(t) and an interval of observation [T, T].
The time average of a single realization x(t) is given by

T
K1(x, T) = % j x(H)dt (2.99)
-T

Notice that the time average is an r.v., since it depends on the sam-
ple function to be considered in the computation. Thus, we can take the
expectation of that measure so that, by interchanging the linear operators
and assuming stationarity, we have

T
1
E(ki( D) = 5 [ Elx0)dt
-T

1 T
=57 f k1 (X)dt
T
= k1 (X) (2.100)
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As a consequence, the time average k1 (x; T) is an unbiased estimate of the
mean k1(x). We may say that the process X(t) is ergodic in the mean if two
conditions are satisfied [135]:

1. The time average k1 (x, T) tends to the mean «j(x) if the interval of
observation tends to infinity, i.e.,

Iim k1(x, T) = k1(X)
T—o0

2. The variance of k1 (x, T) tends to zero if the interval of observation
tends to infinity, i.e.,

lim var[ki(x,T)] =0
T—o0

The same procedure can be applied to second-order moments. The
temporal autocorrelation function of a sample x(t) is given by

T
Ry(t,T) = % f x(t 4 1)x* (bdt (2.101)
=T

This time average is also an r.v., and we say that a process is ergodic in the
autocorrelation function if the following conditions hold:

lim Ry(t,T) = Rx(7)
T—o0

lim var[Ry(t,T)]=0
T—o0

It is also possible to define ergodicity of stochastic processes in terms of
higher-order moments. However, in practice, ergodicity in the mean and
autocorrelation is usually enough in classical problems of signal analysis.

2.4.4 Cyclostationarity

Nonstationary processes are characterized by a time-variant statistical
behavior. However, there is a special class of stochastic processes whose
statistics do vary in time, but in a very specific manner: they vary period-
ically. Processes for which the statistical parameters experience cyclic (peri-
odical) changes are called cyclostationary processes. The following definition
holds [7].
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DEFINITION 2.6 A stochastic process X(#) is said to be cyclostationary with
period T if and only if px),..x) (X1, .., Xx) is periodic in t with period T,
ie.,

DXt X (k) X1, - - s XK) = PX(t+T),.. X(tx+T) X1, - -, XK)

It is also possible to establish two possibilities: strict-sense cyclostation-
arity, which corresponds to the above definition, and wide-sense (weak)
cyclostationarity. A stochastic process X(t) is wide-sense cyclostationary
if its mean and autocorrelation function are periodic in t with some
period T, i.e,,

Kki(X,t+T) =k (X, D) (2.102)
Rx(t+§,t—§> =E{X(t+§>X*<t—%>} =Rx<t+%+T,t—§+T)
(2.103)

forallte (-T,T).

2.4.5 Discrete-Time Random Signals

A discrete-time random process is a particular kind of random process in
which the time variable is of a discrete nature. Formally, a discrete-time
random process is defined as follows.

DEFINITION 2.7 A discrete-time stochastic process X(n) is a collection, or
ensemble, of functions engendered by a rule that assigns a sequence x(n, w;)
or simply x;(n), called sample of the stochastic process, to each possible
outcome of a sample space.

Similarly to its continuous-time counterpart, it is possible to character-
ize a discrete-time random process by means of first- and second-order
moments. Thus, we define the mean of a discrete-time random process as
the mean value of the corresponding random variable produced when the
time index n is fixed, i.e.,

k1(X,n) = E{X(n)}

= f Xpx () (X)dx (2.104)

—0o0

where px () (%) is the first-order pdf of the process.
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Following the presentation in Section 2.4.1, we may also define the
autocorrelation function of a discrete-time random process as

Rx(n1,np) = E{X(n)X*(n2)}

o0
= f jx1x§px<n1>,xmz)(x1,xz)dx1dxz (2.105)
o0

the autocovariance function as
Cx(m,n2) = E{[X(m1) — k1(X, n)][X(12) — k1(X, n2)]"}
= Rx(m,n2) — x1(X, 1) - K] (X, 1) (2.106)

and, finally, the autocorrelation matrix, defined for a vector x=[X(n1)
X(ny) - X(nn)]T, given by

Ry =E {xxH}
[ X(n)X*(my) -+ X(n)X* (1)
| X(np)X*(n1) - X)) X*(ny)
[ Rx(ni,m) --- Rx(ni,ny)
- : : (2.107)
| Rx(ny,n1) --- Rx(np,ny)

In Appendix A, we show some important properties of the autocorrela-
tion matrix, which will help us in the development of Chapter 3.

2.4.6 Linear Time-Invariant Systems with Random Inputs

Suppose that a random process X(t) (or, equivalently, a discrete-time ran-
dom process X(n)) is applied as input to an LTI filter with impulse response
h(t) (h(n)). According to (2.20) (and (2.21)), the output of such system will be
given by

Y(t) = j hOX(t — 1dt (2.108)
Y(n) = Z h(m)X(n — m) (2.109)
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In general, it is difficult to describe the probability distribution of the
output random process Y(t), even when the probability distribution of
the input random process X(t) is completely specified for —oo <t < + 0.
However, it is useful to perform an analysis in terms of the mean and
autocorrelation function of the output signal.

If we assume that the input signal X(#) is a stationary process, then we
can evaluate the mean of the output random process Y(t) as follows:

k1(Y, 1) = E { f hO)X(t — T)dT}
f h(OE {X(t — Ddr}

—00

f h(t)k1 (X, t — T)dT (2.110)

—00

and, since we are dealing with a stationary process, we have k1 (X) = k1 (X, t),
hence

k1Y) = k1(X) j h(t)dt
— k1(X, HH(0) 2.111)

where H(0) is the zero frequency response of the system.
We can also evaluate the autocorrelation function of the output signal
Y(t). Recalling that

Ry(t1,t2) = E{Y(t)Y* (1)} (2.112)

Ry(ty,t) = E h(t)X(t — T)dTy j B (1) X*(t2 — Tz)de}

h(t)h*(t)E {X(tl — )X (tp — Tz)} dtidty (2.113)

Il
é 8 r— e,
I
g—2 22

Now, since we assume that X() is stationary, then, as discussed in
Section 2.4.2, the autocorrelation function of X(t) is only a function of the
difference between the observation times t; — T; and t, — T2. Thus, letting
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T=1 — fp, we get

Ry(7) = j f h(t)h*(t2)Rx (T — T1 + T2)dT1dT2 (2.114)

—00 —00

which can be rearranged to reveal that

Ry (1) = J h*(12) f h(t)Rx(t+ 12 — T1)dT1dT2

- f I* (1) {h(t) % Rx(t + )} da
= Rx(T) * h(—7) * h*(7) (2.115)

This result can also be presented in the frequency domain, in terms of
the power spectral density or power spectrum Sy (f), defined as the Fourier
transform of the autocorrelation function of Y(¢), i.e.,

Sv(h = | Ry(v) exp(j2nfrdr (2.116)

Employing (2.115) and (2.116), we reach the conclusion that

Sy(f) = j h(ty) j h* (o) f Rx(t — 11 + 12) exp(—j 2nf T)ddT1dT)2
) ) ) (2.117)
Changing variables t = T 4+ 71 — 17 and dt = dt leads to
Sy(f) = f h(ty) exp(j2mfTy)dTy j h* (1) exp(—j 2nft2)dTo
X f Rx(t) exp(—j 2mft)dt
= H*(HH)Sx(f)
= [HP[* Sx() (2.118)
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Notice that Ry (0) = E {|Y(#) |2}, and, from (2.118), it comes that
T 2
E{v®P) = [ [HOP sxrdf (2.119)
—0o0
A similar reasoning lead us to the discrete-time counterpart of this result.

The autocorrelation of the output of an LTI system with a discrete-time
random process as an input is given by

Ry (k) = Rx (k) * h(—n) = h*(n) (2.120)

where, in this case, x stands for the discrete-time convolution, and

Sy(exp(j27f)) = |H(exp(i 2rf)|* Sx (exp(j 27f) (2.121)

2.5 Estimation Theory

Estimation theory is the field of statistical signal processing that deals with
the determination of one or more parameters of interest, based on a set of
available measured or empirical data. This problem is rather general, and
a number of scientific domains derive great benefit from the application of
estimation techniques.

From the perspective of this book, it is particularly relevant to the case in
which the parameters of interest are associated with a system to be designed
or analyzed. This corresponds to applying statistical methods to the optimal
filtering problem, subject of Chapter 3. Before that, however, it is useful to
present the foundations of estimation theory in general terms.

Different methods can be built according to the hypotheses we assume
concerning the parameters to be estimated [70]. If they are considered to
be deterministic parameters, we may derive the so-called classical estima-
tion methods, as that of maximum likelihood (ML) estimation. Dealing with
the parameters to be estimated as r.v.’s gives rise to the Bayesian estima-
tion methods, like the minimum mean-squared error (MMSE) and the maximum
a posteriori (MAP) methods. Finally, an estimation method may be derived
regardless of the nature of the unknown parameters, as the least-squares (LS)
estimation method that may be applied to either random or deterministic
parameters.

As a well-established discipline, estimation theory has been treated in
important books, in which existing methods are studied in detail [165,
181, 265, 283]. In this section, we provide a brief exposition of the main
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approaches, having in mind the problems to be discussed in the subsequent
chapters.

2.5.1 The Estimation Problem

For the sake of clarity, the estimation problem can be divided into two
cases, depending on the number of parameters involved: single-parameter
estimation and multiple-parameter estimation.

2.5.1.1 Single-Parameter Estimation

Let us consider that a realization x(n) of a discrete-time stochastic process
depends on an unknown parameter 6. The problem of parameter estimation
is then to estimate the parameter 0 from a finite set of available observa-
tions {x(0) x(1) --- x(N —1)}. Hence, we need to construct a function
that extracts the parameter from the measurements:

-~

0=¢[x©0) x1) - xN-D] (2.122)

where ¢[-]is a deterministic transformation to be determined. One important
aspect is that 6 can be either deterministic or random, depending on the
problem at hand, while Bis typically random, since it is a function of random
variables. The r.v. 8 is called estimator of 8 and a realization of such r.v. is
called estimate [165].

Letx=[x(0) x(1) --- x(N-— 1)]T. If 0 is assumed to be deterministic,
we use the notation px(x; ) to emphasize the dependence of the data on 6.
When 0 is random, x and 0 are related by means of the joint pdf denoted by
px,0(x,0). In both cases, 0 is a deterministic function of x and hence is also
statistically dependent on 6, but it is not a deterministic function on 6. This
fact tells us that 96/06 = 0.

2.5.1.2 Multiple-Parameter Estimation

Let us now consider that the discrete stochastic process x(n) depends on a
set of L unknown parameters 6(0) (1) --- 6(L —1). Now the problem
consists in finding a transformation

-~

0=¢[x©0) x1) -+ x(N-1)] (2.123)

in order to estimate the unknown parameters, being $(-) a vector of L
functions to be determined. Similarly to the single-parameter case, © can

be either deterministic or random while 6 is typically random. Also, x =
[x(O) x(1) --- x(N-— 1)]T is related to © via its pdf px(x;0) when 6 is
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deterministic, while x and 6 are related via the joint pdf px ¢ (x, ) when 0 is

. _— . AT
random. Also, 0 is statistically dependent on 8, and it holds that 96'/00 = 0.
Since the problem is mathematically stated, it is relevant to mention some
important statistical properties of the estimators.

2.5.2 Properties of Estimators
2.5.2.1 Bias

An estimator 0 is said to be unbiased if
E{8} =E{6) (2.124)
otherwise, it is said to be biased with
Bias (8) =E{0 -0} =E{60} - E{0} (2.125)
When 0 is deterministic, we have E {0} = 0.

When multiple parameters are considered and the estimator 0 is unbi-
ased, we have

E {6} — E(0) (2.126)
and the bias is given by

Bias(ﬁ) =E{e —’é} =E{9}-E{’é] (2.127)

2.5.2.2 Kfficiency

For two unbiased estimators 8 and 8, we say that 0 is more efficient than © if
var (@) < var (5) (2.128)

Additionally, we can define the estimation error as
e=0-0 (2.129)

so that the notion of efficiency is related to achieving an unbiased estimator
0 with the smallest error variance, which is given by var (¢) = var (0 )

For the multiple-parameter case, the estimator 0 is said to be more
efficient than g, assuming both to be unbiased, if

~,

C;(8) < Cj5 (8) (2.130)
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where
Cy(x)=E { (x—E{x}) (x — E x)H ] (2.131)

is the covariance matrix of the vector x, which reduces to the autocorrelation
matrix if E {x} = 0. The notation A > B (A > B) denotes that matrix A — B is
positive definite (positive semidefinite) [128].

2.5.2.3 Cramér-Rao Bound

An important result associated with unbiased estimators is the existence
of a lower bound of performance in terms of the variance of the estimated
parameter 0. This lower bound is the Cramér—Rao Bound (CRB) [165], which
provides the minimum achievable performance for an estimator in terms of
variance of the estimated parameters. It can be shown that, if an unbiased
estimator 0 exists, then its variance obeys [70,165]

Var (8) > F(0) (2.132)
where
] %px(x;6)
FO)=E {W} (2.133)

is called the Fisher information. The equality in (2.132) holds if and only if
the estimation error is given by

apx(x;0)

0-0=1I0) 7

(2.134)

where I(0) is a nonzero function. Roughly speaking, F(0) measures the
information present in px(x; 0), and it is intuitive that the more information
the pdf provides, the more accurate is the estimator 8and, consequently, the
smaller is its variance.

For multiple parameters, the CRB is written as [70, 165]

C (6) > F1(9) (2.135)
where
. . H
F(0) = E { [3an(>9</ 9)] . [apxa(g' 0 } } (2.136)
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is the Fisher information matrix. For this case, the equality in (2.136) holds if
and only if

Ipx(x; 0)

0-0=1I®
(©) 20

(2.137)

where [(0) is a matrix composed of nonzero functions.

Some aspects concerning the estimator properties for infinite data length
(asymptotic properties) may also be of interest. For instance, Refs. [70,165]
present relevant discussions on this topic, which is out of our main focus
of presenting estimation theory methods as a support of the optimal filtering
techniques. Therefore, we now turn our attention to the design of estimators.
We will consider the case of multiple-parameter estimation, which is more
general and more relevant to our objectives.

2.5.3 Maximum Likelihood Estimation

The ML estimation method consists of finding the estimator that maxi-
mizes the likelihood function established between the observed data and the
parameters. In other words, for a given set of available measurements x, we
search for the parameters 0 that provide the highest probability px (x|0) with
which the observed data would have been generated. Thus, the ML estimator
is given by

§ML = arg max px(x|0) (2.138)
)

where the pdf px(x|0) is the likelihood function. Hence, we need to find the
maximum of this function, which is given by its first derivative.

Due to the widespread use of exponential families of pdfs, it is very usual
to use the log-likelihood. This being the case, the solution of the likelihood
equation is given by

]
%ln[px(xle)] =0 (2.139)

0=0ML

When Equation 2.139 presents several solutions, one must keep the 0 that
corresponds to the global maximum.

One important feature of the ML estimator is that it is asymptotically
efficient, that is, the ML estimator achieves the CRB when the number of
observed data tends to infinity [165].

2.5.4 Bayesian Approach

As mentioned before, the Bayesian approach assumes that the parame-
ters to be estimated are r.v.’s. In such case, we need to have some sort of
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model and/or a priori information about the parameters distribution pg (0).
In practice, the main question is how to obtain such a priori information.
We, however, will concentrate our efforts on presenting the methodology to
obtain the estimator of random parameters.

In essence, the core of Bayesian estimation is related to the a posteriori
density pe|x(0(x), as our interest lies in finding the distribution of the param-
eters given the available measurements. We have two main approaches to
Bayesian estimation: MAP and MMSE.

2.5.4.1 Maximum a Posteriori Estimation

In a way there is a certain duality between ML and MAP estimators, since,
in the latter case, for a given set of available measurements x, we search for
the parameters © with the highest probability pe x(0]x) of having generated
the observed data. Therefore, the MAP estimator is obtained by solving

aMAp = arg max pe)x(0]x) (2.140)
0

As previously, we employ the logarithm function in order to facilitate the
process of handling exponential families. Then, by using Bayes’ theorem, we
can maximize the conditional pdf in (2.140) by posing

3 1In [peix(81%)] _dln [pxie(x16)] N d1In [pe(0)]
30 B 0 30

=0 (2.141)

We can notice that the MAP estimator takes into account the proba-
bilistic information about 0. Furthermore, if © has a uniform distribution,
the ML and MAP estimators lead to the same result. Intuitively, this is
indeed the case if we have no available a priori information about 6. When
pe(0) is not uniformly distributed, which means that we have some useful
a priori information about the distribution of the parameters, the estimators
are different.

Example 2.2 (ML and MAP Estimators)

In order to illustrate the difference between ML and MAP estimators, let us con-
sider a simple and, hopefully, amusing example related to a very popular adult
beverage: the wine.

The wine consists of a complex myriad of substances, and several factors
contribute to its taste and quality. The grape variety from which the wine was
made from is one of them, and wine connoisseurs claim that, with sufficient
training, a person should be capable of identifying the variety used to produce
the wine simply by tasting it.

Let us now consider a nonprofessional wine taster that tastes a given glass
of wine from a South American producer and tries to discern four different
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TABLE 2.1
Result of a Hypothetical Pool about the Most Noticeable Flavor Found in
the Wine

Blackcurrant (%) Plum (%) Raspberry (%) Other (%)
Cabernet-Sauvignon 41 45 2 12
Tannat 4 0 79 17
Malbec 31 55 0 14
Merlot 40 30 20 10

grapes traditionally found in this region: Cabernet-Sauvignon, Tannat, Malbec and
Merlot. We can state that the taste stands for the observed data while the grape is

the parameter to be estimated.

As a support to his difficult task, the taster relies on the information contained
in Table 2.1, which shows the results of a poll in which renowned wine profes-
sionals were asked what is the most noticeable flavor in the wines made by this

producer.

Let us say that the mentioned taster found a very distinguished touch of plum

in the wine being tested. According to Table 2.1, we have that

0.45, for variety = Cabernet-Sauvignon
0, for variety = Tannat
0.55, for variety = Malbec
0.30, for variety = Merlot

P(taste = plum|variety) =

Therefore, if the decision is made using the ML criterion, according to (2.139),

the “estimated grape” is the variety that

va/riEy = max P(taste = plum|variety) (2.142)

variety

That is, based on the poll provided by specialists, the taster concludes that, since

the taste of plum is predominant, the wine is more likely to be a Malbec.

Now, suppose that, in addition to Table 2.1, the taster is also informed that
approximately 40% of the total grape production of this wine maker consists of the
cabernet-sauvignon variety, and each one of the other three grapes correspond to
20% of the total production. Since we have prior information, it is reasonable to
employ the MAP criterion in this case. In other words, we take into account not
only the fact that the flavor of plum is claimed by the specialists to be more likely
found if the wine is Malbec, but, since it can also be found in other varieties, we
take in account the probability of occurrence of each variety. Hence, the estimate

is given by

P(variety|taste = plum) o P(taste = plum|variety)P(variety) (2.143)

© 2011 by Taylor & Francis Group, LLC

55


metrovoice
New Stamp


56 Unsupervised Signal Processing

Thus, using Table 2.1 we get

0.18, for variety = Cabernet-Sauvignon
0, for variety = Tannat
0.11, for variety = Malbec
0.06, for variety = Merlot

P(variety, taste = plum)P(variety) =

Thus, in this case, even though the Malbec wine provides a highest prob-
ability of finding the flavor of plum, the MAP estimator changes the answer
to Cabernet-Sauvignon. This is because the taster now takes into account the
marginal probabilities P(Cabernet-Sauvignon) = 0.4 and P(Malbec) = 0.2, which
increases the probability that the observed flavor of plum is originated by a
Cabernet-Sauvignon wine.

2.5.4.2 Minimum Mean-Squared Error

As mentioned before, the estimation error is directly related to the efficiency
of the estimator. For multiple parameters, we can define the error vector

c=0-0 (2.144)

Whenever the set of parameters © to be estimated is random, we may
think about any “measuring of closeness” between 0 and its estimate. A sta-
tistical average of the estimation error is not per se a suitable candidate, since
it is possible, for example, that a zero-mean error has a significant variance.
In other words, the estimator may be unbiased but not efficient. A suitable
option is to work with the statistical average of the square of the error, i.e.,
with the mean-squared error (MSE). Such option originates the method of
the MMSE estimation, which consists in finding the 9 that minimizes

Jwise @) = E { €]} =E{He —’éﬂz} (2.145)

In (2.145) it should be emphasized that since 0 is random, the expectation
operator is taken with respect to the joint pdf p(x, ), which means that

hase® = [ [ o~ 8] poxox 0ixde
- U le- 'éHz p@)|x(9|x)d9:| px (x)dx (2.146)
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Since p(x) > 0 for all x, J\msg (6) will be minimized if the term in brackets is
minimized for each value of x. Thus,

a_%f o~ ﬁHZP@»X@WG = —2 | Bpoix(01)de + 28 [ poix(Blx)de
(2.147)

Finally, setting the derivative equal to zero leads us to the optimum estima-
tor in the MMSE sense, given by [165]

oo
OmsE = f Opex(0x)d0 = E {0|x} (2.148)

—00

In general, the solution in (2.148) is of a nonlinear nature, which means
that Byisg is not necessarily easy to be obtained. A simplifying hypothesis
consists in considering the estimator as a linear function of the data. This
model is suitable in a number of applications, and an emblematic example
of the linear MMSE estimator is the Wiener filter, which will be studied in
Chapter 3. In the classical Wiener filtering formulation, the parameters to be
estimated are the coefficients of a linear combiner. Solution (2.148) is then
reduced to a system of linear equations, as we shall see in more detail.

Moreover, the Wiener approach can be extended to that of a sequential
MMSE estimator in order to accommodate data vectors that additionally
may be nonstationary. This leads to the Kalman filter, which brings in its
core the ideas of recursivity and adaptivity, to be more deeply discussed
in Chapter 3. Appendix B presents the derivation of the Kalman filter.

2.5.5 Least Squares Estimation

In many practical scenarios, to rely on statistical entities is an idealization.
However, it is possible to consider an alternative and intuitive solution that
is more “data-oriented.” This was the approach employed by Johann Carl
Friedrich Gauss in 1795 when he established the Method of Least Squares
(LS) to study the motion of celestial bodies [119]. LS estimation does not con-
sider any hypothesis about probability distributions, neither for the data nor
for the parameters. Only a model for the generation of the measurements is
assumed and the parameters are estimated according to this assumption.

Typically, LS estimation can be used to build linear estimators, gener-
alized estimators, and nonlinear estimators. For the linear case, we assume
that the measurements are generated from the parameters 0 according to the
following model:

x=HO0+v (2.149)
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where
Hy v is called observation matrix, assumed to be known
v is a vector of unknown r.v.’s, called measurement errors or noise

The observation matrix is full rank with N > M, which means that the
number of observations is at least equal to the number of parameters to be
estimated.

The estimation method consists of applying the LS criterion to the
measurement errors. Taking the linear model in account, it comes that

1 1
Eis = E||v||2 =5 (x— HO) (x — HO) (2.150)

In order to find the estimator that minimizes &g, we force to zero its
derivatives in relation to the parameter vector. It leads to the following
expression:

(HHH) 015 = Hx (2.151)
which gives rise to the following expression for 0
~ -1
1 = (HHH) Hx = Hx (2.152)

where H' is the pseudo-inverse of H, assuming N > M and that H is a full
rank matrix.

An interesting property concerning the LS solution is that the optimal
parameters 0 engender a residual vector v that is orthogonal to the column
space of the matrix H. In other words, the optimal parameter vector in the LS
sense originates the “shortest possible v,” i.e., the shortest distance between
the measures and the subspace spanned by the columns of H. This geometri-
cal interpretation establishes the equivalence between the LS method and the
so-called orthogonality principle: to minimize the LS criterion corresponds
to searching for the parameters that provide a residual vector that is nor-
mal to the subspace spanned by the columns of H. Due to this property,
Equation 2.151 is commonly referred to as normal equation.

The above approach may be extended to the nonlinear case if we general-
ize the model in (2.149). For the nonlinear least squares (NLS) estimator, we
define the generating data model as

x = £(0) +v (2.153)
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where f is a vector of nonlinear functions, continuously differentiable w.r.t
the parameter 0. The NLS criterion may be defined as

Ents = [x — £(®)]7 [x — £(0)] (2.154)

and the nonlinear estimator 6 minimizes £ s. Such procedure, however, does
not lead to a closed-form solution as in (2.152).

2.6 Concluding Remarks

In this chapter, we discussed the fundamental concepts on signals, systems,
and statistical processing to be used in the book.

Basic definitions and useful properties of the classical theory of signals
and systems were briefly recalled in a systemized way. Description of signals
and systems in the time and the frequency domain was carried out. Specific
aspects concerning discrete-time signal processing have been emphasized.
The sampling theorem was enunciated and the problem of discrete filtering
was discussed.

As far as random signals are concerned, the foundations of probability
theory were presented. Random variables were defined and characterized by
the cumulative distribution and the pdf’s. Partial characterization was pro-
vided by means of the important concepts of moments and cumulants. These
concepts have been extended toward the notion of stochastic process, a suit-
able model to represent information signals, which are implicitly endowed
with uncertainty. Some special cases of statistical behavior were discussed.

We finished the chapter with a brief section on estimation theory. We
focused on the methods that are more relevant for the sequence of the book.
In particular, Chapter 3 deals with the search of optimal parameters of a
linear filter. This problem can be viewed as a special case of estimation and
requires a proper understanding of the concepts and tools discussed in this
chapter.
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Linear Optimal and Adaptive Filtering

As discussed in Chapter 2, linear estimation is a crucial problem in a number
of important applications, among which the search for optimal parameters of
a filter is particularly relevant. We have also pointed out in Section 2.2 that
the project of a filter involves three fundamental steps: to select a suitable
structure, to establish a criterion for the filter optimization, and to employ a
technique to find the optimal parameters.

In this chapter, we will proceed with the mentioned steps under the
following considerations: First, we will focus on discrete-time filters and
assume that the filtering structure is a linear combiner, among which the
finite impulse response (FIR) filter is a typical case. Moreover, unless stated
otherwise, we consider that all signals are real-valued. Second, among the
estimation criteria previously discussed, we will focus on the minimum
mean-squared error (MMSE) and the LS estimators, since both of them lead
to a linear problem with closed-form solutions. Finally, in addition to find-
ing closed solutions, we will be interested in deriving adaptive techniques to
attain the optimal parameters.

The scenario to be considered throughout this chapter is one of supervised
filtering, i.e., the optimization process is guided by an available reference sig-
nal. This scenario plays an important role either as a performance reference
or as a practical solution, in cases in which the reference signal is available. It
is also important to establish the foundations of supervised filtering theory
in order to pave the way to the study of non-supervised techniques, which is
the main interest of this book. This is essentially the objective of this chapter,
which is organized as follows:

e In Section 3.1, we discuss the basic idea of supervised filters to clar-
ify their scope of application as well as their limitations. Emphasis
is given to three emblematic filtering problems: identification, decon-
volution, and prediction. In this context, we introduce the problem of
channel equalization, which is a central subject of the book.

e Section 3.2 presents a most relevant concept, that of Wiener filtering,
which is obtained through the application of the MMSE criterion to
a linear FIR structure. The relevance of the Wiener result is briefly
considered in the historical notes.

e Section 3.3 describes the so-called steepest-descent algorithm, an itera-
tive solution to the Wiener filtering problem, based on the gradient

61
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method. In fact, this technique is presented as a kind of first
step toward truly adaptive methods, which constitute our main
interest.

e Section 3.4 deals with the adaptive case and presents a most rel-
evant technique: the least mean square (LMS) algorithm. We present
LMS in a rather canonical way, i.e., as a stochastic approximation of
the steepest-descent method.

e In Section 3.5, we introduce the method of least squares (LS), which is
the application of the LS estimation criterion to a linear FIR filter. In
contrast with Wiener theory, the LS solution does not involve sta-
tistical averages but depends on a set of available data. The optimal
solution can also be obtained in a recursive way, which gives rise to
the so-called recursive least squares (RLS) algorithm.

e Although the main interest of this chapter is in linear FIR filters,
Section 3.6 discusses alternative approaches, for the sake of com-
pleteness. A more in-depth discussion on nonlinear structures will
be presented in Chapter 7.

e In Section 3.7, we turn our attention to the problem of filtering when
a set of constraints on the filter parameters replaces the reference sig-
nal in the optimization process. Our main motivation is presenting
the constrained filtering case as a sort of bridge between the linear
filter theory and the non-supervised problem.

e Finally, in Section 3.8, we revisit the special case of linear prediction,
in order to discuss some particularly important properties. This dis-
cussion results in a connection between prediction and equalization
problems, which will be exploited in subsequent chapters.

Historical Notes

As is usual in textbooks, and for didactic reasons, this chapter starts from a
discussion about Wiener theory, which is founded on the MMSE estimation
criterion. However, this precedence is not historical, since the LS method, the
development of which is attributed to Gauss, dates from 1795 [119], although
Legendre first published it in 1810 [178].

The development of estimation theory in a stochastic context is derived
from the advances in statistic inference and probability theory. The appli-
cation of the MMSE criterion in the linear prediction problem gave rise
to the modern filtering theory, thanks to the works of Kolmogorov [170],
in 1939, and of the American mathematician Norbert Wiener during the
1940s, the latter definitely published in 1949 [305]. Kolmogorov oriented his
work toward discrete-time stationary processes, and his works were comple-
mented by those of Mark Krein, an eminent pupil of his. Wiener formulated
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the continuous-time optimal predictor, which required the solution of an
integral equation, known as Wiener-Hopf equation, previously developed by
the two authors in 1931 [306].

The independence, as well as the relationships, between these two
seminal works is attested by the following words of Norbert Wiener himself
in [305]:

When I first wrote about prediction theory, I was not aware that some of
the main mathematical ideas had already been introduced in the litera-
ture. It was not long before I found out that just before the Second World
War an important little paper on the same subject had been published
by the Russian mathematician Kolmogorov in the Comptes Rendus of
the French Academy of Sciences. In this, Kolmogorov confined himself
to discrete prediction, while I worked in a continuous time

As posed by Kailath in his review paper on linear filter theory [162], a
fundamental reference we use in these brief notes, Wiener stressed “the engi-
neering significance of his ideas” and “was also conscious of the problems of
actually building circuits to implement the theoretical solutions.” Such con-
cerns, together with the theoretical relevance of the mentioned results, seem
to be crucial for the growing application of linear filtering in different fields
of engineering from the second half of the last century on.

Two important results are not exposed in this chapter, but must be men-
tioned as central to the history of filtering. Such results involve recursive
solutions to optimal filtering: the Levinson—-Durbin algorithm, which pro-
vides a recursive-in-order procedure and the Kalman filter, which provides
a recursive-in-time solution, by applying the sequential MMSE estimator.

In 1947, Levinson [180] formulated in a matrix form the discrete-time ver-
sion of the Wiener filter. Levinson also proposed a recursive procedure to
solve the matrix form of the Wiener-Hopf equation, based on the so-called
Toeplitz structure of the matrix. Durbin [106] exploited this result in the partic-
ular case of finding the parameters of an autoregressive model of a stationary
discrete-time series. In this case, the optimal parameters are obtained by the
Yule-Walker equations, which can be viewed as a particular case of the
Wiener-Hopf equations. This recursive solution is known as the Levinson-
Durbin algorithm.

In 1960, Rudolf Kalman formulated the optimal filtering problem in terms
of state-space concepts, within the framework of a dynamic system model.
Such formulation allows the recursive computing of the optimal MMSE fil-
ter by considering the time evolution of the state variables. In consequence,
the Kalman filter maintains its optimality in both stationary and nonstation-
ary scenarios, while the Wiener and Kolmogorov solutions were derived
in stationary contexts. For this reason, it is worth indicating the important
role of the Kalman filter in adaptive filtering theory (see [262] for interesting
reflections about it), even if these two approaches originated from different
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philosophical standpoints and had distinct motivations. In Appendix B, we
provide a brief review of Kalman filters.

The work of Widrow and Hoff in 1960 is considered to be the most
important seminal work on adaptive algorithms, since it gave rise to the cel-
ebrated LMS algorithm, also known as stochastic gradient algorithm. The
latter name is due to the concept of stochastic approximation, established by
Robbins and Monro in 1951 [252], which lies in the very essence of the LMS
algorithm.

After Widrow and Hoff’s work, a significant amount of important results
established the vast literature on adaptive systems along the last 50 years.
It worth mentioning here the family of algorithms based on the method of
least squares. It is interesting to note in [262] how the idea of a recursive
least-squares procedure was first discerned by Gauss. In modern times, the
original work is credited to Plackett [240]. In 1994, Sayed and Kailath [263]
exposed the exact relationships between the RLS algorithm and Kalman filter
theory, which led to the interesting perspectives of using Kalman filtering
results within the classical adaptive filtering framework.

3.1 Supervised Linear Filtering

The problem of supervised linear filtering can be easily stated: we have a
certain signal processing task to fulfill, and this requires that a filtering con-
figuration be properly designed. The filtering structure performs a linear
combination of a set of input samples in order to produce an output accord-
ing to the values of its free parameters. The fundamental question is how
these parameters can be chosen in a systematic and efficient way.

For now, we restrict the universe of possible answers by making an
important hypothesis: it is possible to have access to samples of the desired
response of the filter to a number of input patterns. In other words, we are
able to guide the choice process by establishing some sort of comparison
between an “ideal output” and the “actual output.” Whenever a procedure
of this nature is possible, we speak of supervised filtering. Figure 3.1 repre-
sents a basic supervised scheme, in which x(n) is the input signal, d(n) is the
desired or reference signal, y(n) is the estimated signal, and e(n) is the error
signal.

FIGURE 3.1
Supervised filtering scheme.
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The estimation of the parameters of a given filter requires a criterion and
an optimization procedure to be employed. In principle, there are many
paths toward the establishment of a supervised criterion, since there are
many ways to explore the information brought by the input signals and
the desired output. The Wiener filter is inspired in MMSE estimation, which
leads to the minimization of the mean-squared value of the error signal. The
LS approach deals with a specific realization of the error signal and does not
carry out statistical averages. Before presenting such approaches in detail, it
is worth considering some emblematic cases of supervised filtering.

3.1.1 System Identification

The problem of system identification is of great practical importance in sev-
eral branches of engineering [189], since, in general terms, it consists in
building models from available data. Having a model for an unknown sys-
tem is often very important for analysis, simulation, monitoring, and control
of the system. Such a problem may be addressed as a filtering procedure:
first, a filtering structure is chosen to serve as the model of the unknown sys-
tem; second, the parameters of this structure are chosen so that its response
be, in some sense, as close as possible to that of the unknown system.

The method can be represented as in Figure 3.2, in which a given input
signal feeds both the unknown system and the chosen model. The refer-
ence signal d(n) stands for the available measures, which are often subject to
additive noise v(n). The model provides an estimated signal so that, by min-
imizing a cost function related to the error signal, both structures respond as
similarly as possible to the same input, which may mean that the unknown
system and its proposed model perform similar input-output mappings, if
the input signal is adequately chosen.

The input signal must comply with the persistent excitation condition,
i.e., it must allow the system to be excited by an adequate variety of modes.

FIGURE 3.2
System identification scheme.
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A white noise is classically used as input signal, since its power spectral
density is uniformly distributed along the frequency spectrum.

3.1.2 Deconvolution: Channel Equalization

The channel equalization problem can be seen as a dual of the identification
problem, as its aim is to find the inverse of an unknown system. A general
case of inverse identification or deconvolution is shown in Figure 3.3. In this
case, the desired signal is the system input s(1), which is to be recovered.

In the specific case of a digital communication system, we must consider
that the signal to be transmitted is composed of a sequence of symbols that
belong to a finite alphabet. As a consequence, a nonlinear decision device is
inserted at the receiver in order to allow a proper symbol recovery.

The discrete-time representation of a communication channel is usually
an FIR filter that performs a linear combination of a set of transmitted sam-
ples. This is a suitable model to the so-called intersymbol interference (IIS)
phenomenon, which corresponds to a superposition of delayed versions
of the transmitted signal. The IIS and the additive noise are fundamental
limitations of a transmission system.

The parameters of the equalizer must be optimized in order to yield an
output signal that approximates a version of the transmitted information. In
this condition (the so-called open-eye condition), the transmitted symbols can
be recovered by employing a nonlinear quantization device at the output of
the equalizer.

It is worth pointing out that channel equalization is by nature an unsuper-
vised problem, since the desired response of the equalizer is the transmitted
signal, which is unavailable at the receiver. A possible way to overcome
this limitation and allow the application of supervised filtering is the use
of training sequences. A training sequence is a signal that is transmitted
in spite of being known in advance at the receiver, so that it does not
carry any useful information, but is responsible for providing a supervised
operation mode. After the optimization procedure, the training sequence is
interrupted and the system is switched to the mode of information trans-
mission; then an unsupervised technique can be employed to preserve the
open-eye condition.

FIGURE 3.3
Equalization scheme.
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Since the pioneer work by Lucky in 1965-1966 [190,191], a vast amount
of research efforts has been devoted to this problem. Important contributions
were made to different aspect like optimization techniques, equalizer struc-
tures, adaptive algorithms, and performance evaluation. An interesting scan
of the literature is given by Ding in [99, 245, 246].

3.1.3 Linear Prediction

The idea of estimating future values of a time series from its present and
past values engenders one of the most relevant problems in signal process-
ing theory from theoretical and practical standpoints. In simple terms, the
problem of one-step prediction consists of finding a mapping F[-] that, when
applied to a set of samples of a time series x(n—1) = [x(n — 1),...,x(n — K)]T,
yields a suitable estimate of x(n), i.e.,

Flx(n — D] = x(n) (3.1)

The generic mapping is typically associated with a certain filtering struc-
ture with a set of free parameters. We shall consider the relevant case of
linear prediction, when the mapping in (3.1) is a linear combination of the
past samples in x(n — 1). Thus, the predictor can be implemented using an
FIR filter, the output of which is given by

K-1
x(n) = Z ax(n—1—k =alxm—1) (3.2)
k=0

where the parameters ag,...,ax—1 are called prediction coefficients. As a
consequence, we define the prediction-error signal as

e(n) = x(n) — x(n) (3.3)

where the true value x(11) works as the reference signal, so that the linear pre-
diction problem may be described in terms of a supervised filtering scheme,
as shown in Figure 3.4. The mapping from x(n — 1) to x(n) is done by the
prediction filter or simply predictor, while the whole structure corresponds
to the so-called prediction-error filter (PEF).

The relevance of linear prediction in filtering theory is manifest, even
from a historic point of view, since such problem has been dealt with in the
fundamental works of Kolmogorov, Wiener, and Levinson, as previously
mentioned. Thereafter a great number of important works concerning the-
oretical results and applications of linear prediction has been presented in
the literature. Among them, it is worth mentioning the classical tutorial pub-
lished by Makhoul in 1975 [197] and the recent book of Vaidyanathan [297]
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Prediction-error filter

FIGURE 3.4
Scheme of a prediction-error filter.

as excellent ways to have access to the state of the art and to some stimulating
insights on the matter.

A central aspect to be discussed in this book is the relationship between
prediction and equalization. For this reason, two properties of the PEF will
be particularly discussed: that concerning its minimum-phase response and
that related to the flat spectral shape of the output prediction error. Such
properties emerge from the application of the MMSE criterion to obtain the
optimal PEF.

The use of the MMSE criterion in an FIR filter optimization gives rise to
the aforementioned Wiener theory, to be formally presented in the sequel. It
is worth pointing out that from now on, throughout the chapter, and as a rule
in this book, all involved signals are real, zero-mean stationary discrete-time
stochastic processes.

3.2 Wiener Filtering

By considering the filtering scheme in Figure 3.1 we may express the output
signal as

K-1

ym) =) wx (n) = w'x(n) (34)
k=0

where
w=1J[uwp... wK,l]T is the parameter vector
X = [xg(n).. .xK_l(n)]T is the vector that contains the input signals, i.e.,
the input vector

© 2011 by Taylor & Francis Group, LLC


metrovoice
New Stamp


Linear Optimal and Adaptive Filtering 69

If we have access to samples of the desired response d(n), it is possible to
build an error signal of the form

e(n) =dn) —yn) (3.5)

Now, considering (3.4) and (3.5) together, we note that there is a direct
dependence of the error with respect to the free parameters, which is in
accordance with our purpose of parameter optimization. If we work with the

MMSE criterion, it originates a cost function that relates the mean-squared
error (MSE) to the parameter vector w in the following form:

2
Juse(w) = E[200) | = E [ (@0 - ym)*| = E [(d(n) —w'xm) } (3.6)
which can be rewritten as

Juise(w) = E [e(me(m)] = E [etmeT ()]
=E [(d(n) — wa(n)) <dT(n) — xT(n)w)] (3.7)

Further development and proper grouping yields

Juise(w) = oF — E [donx" (] w — wE [x(nydn)] + w'E [x(0x" (m) | w
(3.8)

Aside from the variance of the desired signal, there are three terms that
fully characterize the cost function: E [x(n)xT(n)], which represents the auto-
correlation matrix of x(n) (already discussed in Section 2.4.5); E [x(n)d(n)]
and E [d(n)xT(n)], which correspond to cross-correlation measures. Let us
recall their mathematical definitions:

R = E [x(mx"(n)| (39)
p = Elx(md(n)] (3.10)

From (3.9) and (3.10), we may rewrite the cost function (3.8) as
JmsE(W) = 05 — p'w —w'p + w!Rw (3.11)

so that the Wiener criterion, i.e., the cost function of the MMSE criterion is
established in terms of statistical averages.
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3.2.1 The MSE Surface

A relevant aspect of the cost function obtained in (3.11) is that it is a quadratic
function of the parameters of the filter and describes an elliptic paraboloid
with a single minimum. This means that there is a single parameter vec-
tor that minimizes the MSE, the so-called Wiener solution. This is in fact an
important reason why the MSE is the dominant metric in linear supervised
filtering. In Figure 3.5, we present the MSE cost function and its contours in
a typical two-dimensional filtering problem.

The two plots confirm our initial comments and reveal the elliptical char-
acter of the cost function contours. Two properties of these elliptical contours
deserve attention:

1. Their eccentricity is related to the eigenvalues of the correlation
matrix R (see Appendix A). The larger the eigenvalues spread, the
most significant is the discrepancy between axes. Naturally, if the
eigenvalue spread is equal to 1, the contours become circular.

2. The directions of the eigenvectors of the correlation matrix deter-
mine the orientation of the axes of the contours.

In order to find the minimum of the MSE cost function, we follow a clas-
sical procedure: setting to zero the gradient of Jyjsg. From (3.11), it comes
that

VImse(w) = 2Rw — 2p (3.12)
By forcing it to be equal to the null vector, we obtain

VIiMsew) =2Rw —-2p=0— Rw=p (3.13)

() -5 -5 Wy

FIGURE 3.5
(a) The MSE cost function and (b) its contours.
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Equation (3.13) corresponds to a linear system of equations, known as
Wiener-Hopf equations, the solution of which is the Wiener solution:

wy =R7lp (3.14)

In a given problem, the application of (3.14) depends on the knowledge
of R and p and on the invertibility of R. However, if these conditions are met,
the MSE criterion gives rise to a closed-form solution, which is undoubtedly
a very strong point.

Now, it is important to keep in mind that to minimize the MSE does not
mean that a null-error signal will be produced. In effect, the MSE associated
with the Wiener solution is given by

JMSE(We) = 02 — pTwey — whp + Wl Rwy,
= (75 - PTWw
— o2 —p'Rlp (3.15)

As a matter of fact, in most practical cases, the right-hand term in (3.15)
does not vanish, which means that the Wiener filter is not able to perfectly
reproduce the desired signal. This can be due to factors like the presence of
noise, the use of an insufficiently flexible structure, a definitive lack of infor-
mation about the desired signal in the input signals, etc. Before we proceed
to the examples that illustrate it, let us stress a bit more the meaning of the
Wiener solution. First, we recall (3.6):

Juse(w) = E ()] (3.16)

From (3.16), it is possible to write

ae(”)] — 2 [e(m)x(n)] (3.17)

VImse(w) = E [ZE(W)B—W

Forcing (3.17) to be equal to the null vector leads us to the condition
E[e(m)x(n)] =0 (3.18)

This means that the error signal produced by the Wiener solution is orthog-
onal to all input signals. In a certain sense, the residual error is a parcel of
the desired signal that cannot be built due to its being uncorrelated with the
input signal. Since the residual error is orthogonal to all input signals, the
output of the Wiener filter is also orthogonal to the error signal.

It is useful now to revisit some aforementioned applications in order to
discuss concrete examples.
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Example 3.1 (Channel Equalization)

Let us consider the problem of channel equalization, described in Figure 3.3, and
suppose the following received signal at the output of the channel:

x(n) =s(n)+0.4s(n—1) (3.19)

where the transmitted signal s(n) is composed of binary (+1/—1) independent
and identically distributed (i.i.d.) samples. The equalizer is an FIR linear filter with
K coefficients, and its input vector given by

x(n) = [x(n), x(n = 1),...,x(n — K+ D" (3.20)

Let us consider that K = 2. Recalling that the transmitted signal is composed
of uncorrelated samples, we may write the correlation matrix as

R= [ 1(5.146 10..146 ] (3-21)
since
r(0) = E [x(mx(n)] = E[(s(n) + 0.4s(n — 1))(s(n) + 0.4s(n — 1))]
=E[52(n)]+0.16E[52(n—1)] =1.16 (3.22)
and

r(1) = E[x(n)x(n — 1)] = E[(s(n) + 0.4s(n — 1)) (s(n — 1) + 0.4s(n — 2))]
— 0.4F [52 (n— 1)] —0.4 (3.23)

Now we need the cross-correlation vector to derive the Wiener solution, but
it must be preceded by a clear determination of what is the desired signal. In the
training mode a natural choice can be

d(n) = s(n) (3.24)

The cross-correlation vector is

p= [ (]) } (3.25)
as
P(O) = ELs(0) (s(n) + 0451 — 1)] = E[s2(m)] =1 (3.26)
and
p(1) = E[s(n) (s(n — 1) +0.45(n —2))] =0 3.27)

Finally the Wiener solution is reached:

(3.28)

o[ o978
Ww =R p‘[ ~0.337

© 2011 by Taylor & Francis Group, LLC


metrovoice
New Stamp


Linear Optimal and Adaptive Filtering 73
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FIGURE 3.6
(a) Channel and (b) equalizer outputs in the absence of noise.

As mentioned above, the optimal MSE is not necessarily null. In fact, this
means that some kind of performance analysis of the Wiener solution must always
be carried out. In this example, we may inquire whether the Wiener equalizer
is efficient enough to mitigate 1IS and provide correct symbol recovery. In order
to answer this question, let us first calculate the MSE associated with the Wiener
solution:

0.978

Juse (W) = 05 —p'wy =1-[1 0] [_0_337

] =0.0216 (3.29)

In view of the magnitude of the involved signals, this residual MSE indicates
that the equalization task has been carried out efficiently. Such conclusion is
confirmed by Figure 3.6, which shows the channel and equalizer outputs. The
latter is indeed concentrated around the corrected symbols +1 and —1.

Let us now consider what happens if the channel also introduces additive
noise, assumed to be Gaussian and white (which leads to the classical acronym
AWGN—additive white Gaussian noise) and, moreover, independent of the
transmitted signal. Thus, the received signal will be

x(n) =s(n) +0.4s(n — 1) +v(n) (3.30)

where v(n) stands for the AWGN, with variance 0%,. From (3.30), the correlation
matrix becomes

_[116+ 2 0.4
R‘[ 0.4 1.16+03,i| 3.31)

while the correlation vector remains as shown in (3.25). The Wiener solution is
now given by

—1
o1 [116+02 04 1
ww =R p_[0.4 1.16+02| |0 (3.32)

In order to evaluate the noise effect, we consider three different variance
levels: 07 = 0.1, 03 = 0.01, 03 = 0.001. Table 3.1 presents the Wiener solutions
for the different levels of noise, as well as the residual MSE’s.
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TABLE 3.1

Comparison between Wiener Solutions for
Different Noise Levels

Noise Variance Wiener Solution EQM
No noise [0.978,—0.337]7 0.0216
0.001 [0.977,-0.33717 0.0227
0.01 [0.968, —0.33117 0.0322
0.1 [0.883, —0.280]7 0.1174
3 3
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FIGURE 3.7
(a) Channel and (b) equalizer outputs in the presence of noise.

It is clear from Table 3.1 that the addition of noise modifies the performance
of the optimal equalizer. In fact, the minimization of the MSE leads the equalizer
to attempt to solve two distinct tasks: to cancel the 1IS and to mitigate the noxious
effects of the noise. Since the number of parameters is fixed, this “double task”
becomes more difficult as the additive noise is more significant, which is reflected
by an increase in the residual MSE. This is also illustrated in Figure 3.7, in which
the channel and equalizer outputs are presented for the case in which 62 = 0.1. In
such case, recovery is not perfect, which confirms that two optimal solutions (those
corresponding to Figures 3.6 and 3.7) can present distinct performance behaviors
according to the conditions under which the filtering task is accomplished.

Example 3.2 (System Identification)

According to Figure 3.2, let us suppose that the unknown system to be identified
is characterized by the following response:

x(n) = hgs(n) +his(n — 1) + has(n — 2) +v(n) (3.33)

where
v(n) is the AWGN
s(n) is composed by i.i.d. samples with unit variance
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If we consider an efficient model, in this case an FIR filter with three
coefficients, the corresponding input vector is

sin)=[s(n) sth—1) stn—2)]" (3.34)
and the correlation matrix is given by

10
R=| 0 1 . (3.35)
0 0

To obtain the cross-correlation vector, it is necessary to determine the desired
signal. From the above discussion, the error signal must express a comparison
between the system and the model outputs. This leads to the natural choice,

- o O

d(n) = x(n) (3.36)
Since the signal s(n) and the noise are mutually independent, it follows that

p(0) = E [x(ms(n)]
= E[(hos(n) + his(n — 1) + has(n — 2) +v(n)) s(m)]

— hoE [sz(n)]
= ho (3.37)
p(1) = Ex(ms(n — 1)]
= E[(hos(n) + his(n — 1) 4+ has(n — 2) +v(n)) s(n — 1)]
- h1E[52(n - 1)]

= hy (3.38)
and
p(2) = Elx(nms(n — 2)]
= E[(hos(n) + his(n — 1) 4+ has(n — 2) +v(n)) s(n — 2)]
= hyF[s*(n — 2)]
=hy (3.39)
so that
H
p=| M (3.40)
hy
and finally

ho
wy =R p=| h (3.41)
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We can note that the above solution captures the essential information about
the system and is not influenced by the noise. The corresponding residual MSE can
be calculated by using (3.15). First, the variance of the desired signal is obtained
by

o = E[* (]
—F [(hos(n) T+ his(n— 1)+ hys(n — 2) + v(n))z}
=h3+h?+h3+ 0% (3.42)
so that

ImseWw) = 0% — pTwy = h3 + h? +h3 + o2

1.0 0][ho
—[ho h1 ha]|O 1 Of|m|=0d3 (3.43)
0 0 1 hy

The interpretation of the obtained results is direct: if the order of the model is
sufficient, its parameters exactly fit the coefficients of the system, and the residual
MSE corresponds to the parcel due to noise, which cannot be modeled. Let us
now analyze what happens if a model of insufficient order (for instance, a two-tap
FIR filter) is chosen. In such case, the correlation matrix is the 2 x 2 identity matrix,
the cross-correlation vector is given by

_ [ho]
p= [’H_ (3.44)

and the corresponding solution is

e 1 0] ho _ ho
w,, = R p_[o 1] |:h1]_[h1} (3.45)

The lack of one coefficient leads to an increased MSE, if compared with (3.43):

ImseWw) = 05 — p'wy, = 03 + h3 (3.46)

This simple example illustrates the difficulties that arise from the choice of a
model with insufficient approximation capability.

To summarize the discussion, we can observe that the use of the super-
vised MMSE criterion together with a linear structure makes the Wiener
approach a kind of paradigm for optimal filtering methods. However, it
is important to keep in mind two assumptions on which Wiener filter is
founded: the involved signals are wide-sense stationary; and the statistical
averages, R and p, are known. This means that the process of acquisition of
the involved signals, s(1) and x(n), precedes the process of optimization of
the filter, i.e., the calculation of the optimal parameters via (3.14).
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Now our attention must be turned to two aspects that are really frequent
in many practical cases: the need for real-time operation, and the presence
of nonstationary signals. In fact, these two requests violate the assumptions
presented above. The real-time constraint will require methods that provide
a joint process of acquisition and optimization, while the nonstationary con-
text will inhibit the use of a closed-form solution, as in (3.14), since there
will be no sense in dealing with fixed values of statistical correlations. This
new scenario leads us to the frontier between optimal and adaptive filter-
ing, or rather, between methods that are based on closed-form solutions and
those based on iterative/recursive solutions for the linear filtering problem.
A classical and didactic way to verify this is to consider first a simple iterative
method to attain the Wiener solution.

3.3 The Steepest-Descent Algorithm

We are interested in establishing a kind of learning process that eventually
leads to the optimal solution. The answer to this question is directly related
to the optimization theory: in many pr