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Foreword

Intelligent systems have made major contributions to the progress of
science and technology in recent decades. They find applications in all
technical fields and, particularly, in communications, consumer electron-
ics, and control. A distinct characteristic is their high level of complexity,
due to the fact that they capitalize on all sorts of scientific knowledge
and practical know-how. However, their architecture is rather simple and
can be broken down into four basic constituents, namely, sensors, actua-
tors, signal-processing modules, and information-processing modules. The
sensors and actuators constitute the interfaces of the system with its envi-
ronment, while the signal-processing modules link these interfaces with the
information-processing modules. Although it is generally recognized that
the intelligence of the system lies in the information-processing section,
intelligence is also needed in the signal-processing section to learn the
environment, follow its evolutions, and cope with its adverse effects. The
signal-processing modules deliver the raw data and even the most sophisti-
cated information-processing algorithms perform badly if the quality of the
raw data is poor.

From the perspective of signal processing, the most challenging problem
is the connection between the signal sources and the sensors, for two main
reasons. First, the transmission channels degrade the useful signals, and
second, the sources have to be identified and separated from the received
mixtures. Channel equalization and source separation can be dealt with sep-
arately or jointly. In any case, the quality of the corresponding processing
is essential for the performance of the system, because it determines the
reliability of the input data to the information-processing modules. When-
ever appropriate, the problem is simplified by the introduction of learning
phases, during which the algorithms are trained for optimal operation; this is
called supervised processing. However, this procedure is not always possi-
ble or desirable, and continuous optimization has many advantages in terms
of global performance and efficiency. Thus, we arrive at unsupervised signal
processing, which is the topic of this book.

Unsupervised signal-processing techniques are described in different
categories of books dealing with digital filters, adaptive methods, or sta-
tistical signal processing. But, until now, no unified presentation has been
available. Therefore, this book is timely and it is an important contribu-
tion to the signal-processing literature. Moreover, unifying under a common
framework the topics of blind equalization and source separation is particu-
larly appropriate and inspiring from the perspective of both education and
research.

xix
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xx Foreword

Through the remarkable synthesis of the field it provides and the new
vision it offers, this book will stimulate progress and contribute to the advent
of more useful, efficient, and friendly intelligent systems.

Maurice Bellanger
Académie des Technologies de France

Paris, France

metrovoice
New Stamp



Preface

“At Cambridge, Russell had impressed on me not only the importance of
mathematics but the need for a physical sense...”

Norbert Wiener, I Am a Mathematician

Perhaps the most fundamental motivation for writing a book is the desire
to tell a story in which the author can express himself or herself and be under-
stood by others. This sort of motivation is also present in scientific works,
even if the story is usually narrated in formal and austere language.

The main motivation for writing this book is to tell something about the
work we carry out in the Laboratory of Signal Processing for Communica-
tions (DSPCom). This includes the research topics on which we have been
working as well as the way we work, which is closely related to the epigraph
we chose for this preface.

The work we have developed is founded on the theory of adaptive fil-
tering, having communication systems as the main focus of application. The
natural evolution of our studies and researches led us to widen our scope of
interest to themes like blind equalization, source separation, machine learn-
ing, and bio-inspired algorithms, always with the signal processing–oriented
approach that is registered in the DNA of our lab.

Hence, in short, our objective in this book is to provide a unified, sys-
tematic, and synthetic presentation of what may be called the theory of
unsupervised signal processing, with an emphasis on two topics that could be
considered as the pillars [137] of such a theory: blind equalization and source
separation. These two topics constitute the core of the book. They are based
on the foundations of statistical and adaptive signal processing, exposed in
Chapters 2 and 3, and they point to more emergent tools in signal processing,
like machine learning–based solutions and bio-inspired methods, presented
in Chapters 7 and 8.

Clearly, the objective described above represents a stimulating challenge
for, at least, two reasons: first, gathering together all the mentioned themes
was subject to the risk of dispersion or excessive verbosity, with the conse-
quent lack of interest on the part of the readers; second, the themes of interest
on their own have been specifically addressed by renowned specialists in a
number of excellent books.

In this sense, we feel obliged to mention that adaptive filter theory is
a well-established discipline that has been studied in depth in books like
[32, 100, 139, 194, 249, 262, 303], and others. Blind equalization methods and
algorithms are presented in detail in [99], and were recently surveyed in [70].
Blind source separation and related aspects like independent component
analysis have been treated in very important works such as in [76, 148, 156].

xxi
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xxii Preface

Numerous authors from different scientific communities have written on
topics related to machine learning and bio-inspired optimization. We must
also mention inspiring works like [12, 137, 138], which deal with both blind
deconvolution and separation problems.

In a certain sense, by placing the topics of this book under a similar con-
ceptual treatment and mathematical formalism, we have tried to reap some
of the important ideas disseminated and fertilized by the aforementioned
authors and others we necessarily omitted in our non-exhaustive citation.

Since the genesis of the book is strongly linked to the work the authors
carried out at DSPCom laboratory during more than a decade, words of
thankfulness and recognition must be addressed to those who supported and
inspired such work. First of all, we would like to thank all researchers, stu-
dents, and assistants who worked in the lab since its establishment. It seems
unreasonable to name everybody, so we decided to include all these friends
in the main dedication of the book.

The first author of this book was fortunate in having Professor Maurice
Bellanger, from CNAM/Paris, France, as a PhD advisor, a collaborator in
many works, and an inspirational figure for us in the process of writing this
book. We are grateful to many colleagues and friends for their constant sup-
port. Special thanks are due to Professor Paulo S.R. Diniz from the Federal
University of Rio de Janeiro (COPPE/UFRJ) and Professor Michel D. Yacoub
from FEEC/UNICAMP, first for their personal and professional example,
and also for attentively motivating and pushing us to finish the work. A spe-
cial mention must also be made to the memory of the late Professor Max
Gerken from the University of São Paulo (POLI/USP). We also express our
gratitude to Professor João C.M. Mota from the Federal University of Ceará
(UFC) for many years of fruitful cooperation.

We are indebted to many colleagues in our institution, the School of
Electrical and Computer Engineering at the University of Campinas (FEEC/
UNICAMP, Brazil). We are particularly thankful to Professor Renato Lopes,
Professor Murilo Loiola, Dr. Rafael Ferrari, Dr. Leonardo Tomazeli Duarte,
and Levy Boccato for directly influencing the contents of this book, and
for carefully reviewing and/or stimulating discussions about many central
themes of the book. We would also like to thank Professors Fernando Von
Zuben, Christiano Lyra, and Amauri Lopes, who collaborated with us by
means of scientific and/or academic partnerships. Our warmest regards are
reserved for Celi Pavanatti, for her constant and kind support.

Many friends and colleagues in other institutions influenced our work
in different ways. For their direct technical contribution to the book or to
our careers, and for their special attention in some key occasions, we would
like to thank Professor Francisco R. P. Cavalcanti from UFC; Professors
Maria Miranda and Cristiano Panazio from POLI/USP; Professor Leandro
de Castro from Universidade Presbiteriana Mackenzie (UPM); Professor
Aline Neves from Universidade Federal do ABC (UFABC); Professors Carlos
A. F. da Rocha, Leonardo Resende, and Rui Seara from Universidade Federal
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de Santa Catarina (UFSC); Professor Jacques Szczupak from Pontifícia Uni-
versidade Católica do Rio de Janeiro (PUC); Professor Moisés Ribeiro from
Universidade Federal de Juiz de Fora (UFJF); Professor Luiz C. Coradine
from Universidade Federal de Alagoas (UFAL); Professor Jugurta Mon-
talvão from Universidade Federal de Sergipe (UFS); Dr. Cynthia Junqueira
from Comando Geral de Tecnologia Aeroespacial (IAE/CTA); Dr. Danilo
Zanatta from NTi Audio AG; Maurício Sol de Castro from Von Braun
Center; Professors Madeleine Bonnet, Hisham Abou-Kandil, Bernadette
Dorizzi, and Odile Macchi, respectively, from the University Paris-Descartes,
ENS/Cachan, IT-SudParis, and CNRS, in France; and Professor Tülay Adali
from the University of Maryland in Baltimore, Maryland. We are especially
grateful to Professor Simon Haykin from McMaster University in Canada
for having given us the unforgettable opportunity of discussing our entire
project during the ICA Conference at Paraty in 2009.

The acknowledgment list would certainly be incomplete without men-
tioning the staff of CRC Press. Our deepest gratitude must be expressed to
Nora Konopka, Amber Donley, Vedavalli Karunagaran, Richard Tressider,
and Brittany Gilbert for their competence, solicitude, and patience. So many
thanks for believing in this project and pushing it from one end to the other!

João M. T. Romano
Romis R. de F. Attux

Charles C. Cavalcante
Ricardo Suyama
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1
Introduction

The subject of this book could be summarized by a simple scheme as that
depicted in Figure 1.1.

We have an original set of data of our interest that we want, for instance,
to transmit, store, extract any kind of useful information from; such data
are represented by a quantity s. However, we do not have direct access to
s but have access only to a modified version of it, which we represent by
the quantity x. So, we can state that there is a data mapping H(·) so that the
observed data x are obtained by

x = H(s) (1.1)

Then our problem consists in finding a kind of inverse mapping W to
be applied in the available data so that we could, based on a certain perfor-
mance criterion, recover suitable information about the original set of data.
We represent this step by another mapping that provides, from x, what we
could name an estimate of s, represented by

ŝ = W(x) (1.2)

The above description is generalized on purpose so that a number of dif-
ferent concrete problems could fit it, with also a great variety of approaches
to tackle with them. According to the area of knowledge, the aforementioned
problem can be considerably relevant in signal processing, telecommunica-
tions, identification and control, pattern recognition, Bayesian analysis, and
other fields. The scope of this book is clearly signal processing oriented, with a
focus on two major problems: channel equalization and source separation. Even
thus, such character of the work does not restrict the wide field of application
of the theory and tools it presents.

1.1 Channel Equalization

In general terms, an equalization filter or, simply, equalizer, is a device
that compensates the distortion due to an inadequate response of a given
system. In communication systems, it is well known that any physical
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FIGURE 1.1
General scheme.

transmission channel is band-limited, i.e., it necessarily imposes distortion
over the transmitted signal if such signal exceeds the allowed passband.
Moreover, the channel presents additional impairments since its frequency-
response in the passband is often not flat, and is also subject to noise. In the
most treatable case, the channel is assumed linear and time-invariant, i.e.,
the output is obtained by a temporal convolution, and the noise is assumed
Gaussian and additive.

In analog communications systems, channel impairments lead to a
continuous-time distortion over the transmitted waveform. In digital com-
munication, information is carried by a sequence of symbols, instead of a
continuous waveform. Such symbols constitute a given transmission signal
in accordance with a given modulation scheme. Hence, the noxious effect
of the channel impairments in digital communications is a wrong symbol
decision at the receiver.

Since information is conveyed by a sequence of symbols, it is suitable to
employ a discrete-time model for the system, so that both the channel and
the equalizer may be viewed as discrete-time filters, and the involved signals
are numerical sequences. So, the problem may be represented by the scheme
in Figure 1.2, where s(n) is the transmitted signal; ν(n) is the additive noise;
x(n) is the received signal, i.e., the equalizer input; and ŝ(n) is the estimate of
the transmitted signal, provided by the equalizer through the mapping

ŝ(n) = W [x(n)] (1.3)

Since the channel is linear, we can characterize it by an impulse response
h(n) so that the mapping provided by the channel may be expressed by

H [s(n)] = s(n) ∗ h(n) (1.4)

s(n)
Σ

ν(n)

x(n) s(n)ˆ

FIGURE 1.2
Equalization scheme.
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where ∗ stands for the discrete-time convolution, and then

x(n) = s(n) ∗ h(n) + ν(n) (1.5)

Clearly, the desired situation will correspond to a correct recovery of the
original sequence s(n), except for a delay and a constant factor, which can
include phase rotation if we deal with the most general case of complex sym-
bols. This very ideal situation is named zero-forcing (ZF) condition. As better
explained further in the book, it comes from the fact that, in such conditions,
all terms associated to the intersymbol interference (ISI) are “forced to zero.”
So, if the global system formed by the channel and the equalizer establishes
a global mapping G(·), the ZF conditions leads to

G [s(n)] = ρs(n − n0) (1.6)

where
n0 is a delay
ρ is the constant factor

Once ρ and n0 are known or estimated, the ideal operation under the ZF
condition leads to the correct retrieval of all transmitted symbol. However,
as we could expect, such a condition is not attainable in practice due to the
nonideal character of W [·] and to the effect of noise.

Hence, a more suitable approach is to search for the equalizer W [·] that
provides a minimal quantity of errors in the process of symbol recovery.
By considering the stochastic nature of the transmitted information and the
noise, the most natural mathematical procedure consists in dealing with the
notion of probability of error.

In this sense, the first effective solution is credited to Forney [111], which
considered the Viterbi algorithm for symbol recovery in presence of ISI. In its
turn, the Viterbi algorithm was conceived for decoding convolutional codes
in digital communications, in accordance with a maximum-likelihood (ML)
criterion [300].

One year after Forney’s paper, the BCJR algorithm, named after its inven-
tors [24], was proposed for decoding, but in accordance with a maximum a
posteriori (MAP) criterion. In this case, recovery was carried out symbol-
by-symbol basis instead of recovering the best sequence, as in the Viterbi
approach.

Once the transmitted symbols are equiprobable, the ML and MAP cri-
teria lead to the same result. So, the Viterbi algorithm minimizes the
probability of detecting a whole sequence erroneously, while the BCJR algo-
rithm minimizes the probability of error for each individual symbol. The
adaptive (supervised and unsupervised) techniques considered in this book
are typically based on a symbol-by-symbol recovery.
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We will refer to as Bayesian equalizer the mapping W [·] that provides
the minimal probability of error, considering symbol-by-symbol recovery.
It is important to think of the Bayesian equalizer, from now, as our refer-
ence of optimality. However, due to its nonlinear character, its mathematical
derivation will be postponed to Chapter 7.

Optimal equalizers derived from ML and/or MAP criteria are unfortu-
nately not so straightforward to implement in practice [112], especially in
realistic scenarios that involve real-time operation at high bit rates, nonsta-
tionary environments, etc. Taking into account the inherent difficulties of
a practical communication system, the search for suitable solutions of the
equalization problem includes the following steps:

• To implement the mapping W by means of a linear finite impulse
response (FIR) filter followed by a nonlinear symbol-recovering (-
decision) device.

• To choose a more feasible, although suboptimum, criterion instead
of that of probability of error.

• To derive operative (adaptive, if desirable) procedures to obtain the
equalizer in accordance with the chosen criterion.

• To use (as much as possible) prior knowledge about the transmitted
signal and/or the channel in the aforementioned procedures.

Taking into account the above steps, the mapping W [x(n)] will then be
accomplished by

y(n) = x(n) ∗ w(n) (1.7)

and

ŝ(n) = �
[
y(n)

]
(1.8)

where
w(n) is the equalizer impulse response
y(n) is the equalizer output
�(·) stands for the decision device

In addition, we can now define the notion of combined response
channel+equalizer as

g(n) = h(n) ∗ w(n) (1.9)

so that the ZF condition can be simply established if we define a vector g, the
elements of which are those of the sequence g(n). The ZF condition holds if
and only if

g = [0, . . . , 0, ρ, 0, . . . , 0]T (1.10)

where the position of ρ in g is associated with the equalization delay.
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As far as the criterion is concerned, the discussion is, in fact, founded on
the field of estimation theory. From there, we take two useful possibilities: the
minimum-squared error (MSE) and the least-squares (LS) criteria, as our main
practical tools. For the operative procedure, we have two distinct possibilities:
taking into account the whole transmitted sequence to obtain an optimized
equalizer for this set of data (data acquisition first and equalizer optimization
then) or proceeding to an adjustment of the equalizer as the data are available
at the receiver (joint acquisition and optimization). In this second case, we talk
about adaptive equalization. Finally, the use of a priori information is closely
related to the possibility of putting into practice a mechanism of supervision or
trainingoverthesystem.Ifsuchamechanismcanbeperiodicallyimplemented,
we talk about supervised equalization, while the absence of supervision
leads to the unsupervised or blind techniques.

To a certain extent, this book discusses a vast range of possible
approaches to pass through these three steps, with a clear emphasis on
adaptive and unsupervised methods.

We can easily observe that the problem of channel equalization, as
depicted in Figure 1.2, fits the general problem of Figure 1.1, for the particu-
lar case of M = N = 1. Another particularization is related to the hypothesis
over the transmitted signal: as a rule, it is considered to be a sequence of inde-
pendent and identically distributed (i.i.d.) random variables, which belong
to a finite alphabet of symbols. This last aspect clearly imposes the use of a
symbol-recovering device. Regarded in this light, the problem is referred to
as SISO channel equalization, since both the channel and the equalizer are
single-input single-output filters.

Nevertheless, we can also consider a communication channel with mul-
tiple inputs and/or multiple outputs. A typical and practical case may be a
wireless link with multiple antennas at the transmitter and/or at the receiver.
In this book, we will specially consider the following cases, to be discussed
in Chapter 4:

• A single-input multiple-output (SIMO) channel with a multiple-
input single-output (MISO) equalizer, which corresponds to N = 1
and M > 1 in Figure 1.1.

• A multiple-input multiple-output (MIMO) channel with a multiple-
input multiple-output (MIMO) equalizer, which corresponds to
N > 1 and M > 1 in Figure 1.1.

1.2 Source Separation

The research work on SISO blind equalization has been particularly intense
during the 1980s. At this time, another challenging problem in signal pro-
cessing was proposed, that of blind source separation (BSS). In general terms,
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such a problem can be simply explained by the classical example known as
cocktail party phenomenon, where a number of speakers communicate at the
same time in the same noisy environment. In order to focus the attention in
a specific speaker s1, a given receiver must retrieve the corresponding signal
from a mixture of all signals {s1, . . . , sN}, where N is the number of speakers.
Despite the human ability in performing this task, a technical solution for
providing blind separation was unknown until the work of Hérault et al., in
1985 [144].

As stated above, the BSS problem also fits in the scheme of Figure 1.1.
The possibility of obtaining proper solutions will depend on the hypothe-
sis we consider for the mapping H(·) and for the set of original signals, or
sources, s. The most tractable case emerges from the following assumptions:

• The mapping H(·) stands for a linear and memoryless system, with
M = N.

• The sources {s1, . . . , sN} are assumed to be mutually independent
signals.

• There is, at most, one Gaussian source.

The main techniques for solving BSS under these assumptions come from
the principle of independent component analysis (ICA) [74]. Such techniques
are based on searching for a separating system W(·), the parameters of which
are obtained in accordance of a given criterion that imposes statistical inde-
pendence between the set of outputs ŝ. As pointed out in [137], ICA may
be viewed as an extension of the well-known principal component analysis
(PCA), which deals only with the second-order statistics of the involved
signals.

Although blind equalization and source separation problems have orig-
inated independently and in somewhat distinct scientific communities, we
can clearly observe a certain “duality” between them:

• In SISO channels, the output is a linear combination (temporal con-
volution) of the elements of the transmitted signal with additive
Gaussian noise. In BSS, the set of outputs comes from the linear
mixture of signals, among which one can be Gaussian.

• In SISO equalization, we try to recover a sequence of indepen-
dent symbols that correspond to the transmitted signal. In BSS, we
search for a set of independent variables that correspond to original
sources.

• In both cases, dealing with second-order statistics is not sufficient:
the output of a SISO channel may be whitened, for instance, by a
prediction-error filter, while the outputs of the mixing system may
be decorrelated by a PCA procedure. However, as we will stress
later in the book, neither of these procedures can guarantee a correct
retrieval.
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The above considerations will become clearer, and will be more rigor-
ously revisited, in the sequence of the chapters. Nevertheless, it is worth
remarking these points in this introduction to illustrate the interest in
bringing unsupervised equalization and source separation to a common
theoretical framework.

On the other hand, BSS can become a more challenging problem as the
aforementioned assumptions are discarded. The case of a mixing system
with memory corresponds to the more general problem of convolutive mix-
tures. Such a problem is rather similar to that of MIMO equalization. As a
rule in this book, we consider convolutive BSS as a more general problem
since, in MIMO channel equalization, we usually suppose that the trans-
mitted signals have the same statistical distributions and belong to a finite
alphabet. This is not at all the case in other typical applications of BSS.

If the hypothesis of linear mixing is discarded, the solution of BSS prob-
lems will require special care, particularly in applying ICA. Such a solution
may involve the use of nonlinear devices in the separating systems, as
done in the so-called post-nonlinear model. It is worth mentioning that
nonlinear channels can also be considered in communication and different
approaches have been proposed for nonlinear equalization, including the
widely known decision feedback equalizer (DFE). Overall, our problem will
certainly become more intricate when nonlinear mappings take place in H(·)
and/or in W(·), as we will discuss in more detail in Chapter 6.

Furthermore, other scenarios in BSS deserve the attention of researchers,
as those of underdetermined mixtures, i.e., in scenarios in which M < N in
Figure 1.1; correlated sources; sparse sources, etc.

1.3 Organization and Contents

We have organized the book as follows:
Chapter 2 reviews the fundamental concepts concerning the characteri-

zation of signals and systems. The purpose of this chapter is to emphasize
some notions and tools that are necessary to the sequence of the book. For
the sake of clarity, we first deal with deterministic concepts and then we
introduce statistical characterization tools. Although many readers could be
familiar with these subjects, we provide a synthetic presentation of the fol-
lowing topics: signals and systems definitions and main properties; basic
concepts of discrete-time signal processing, including the sampling theorem;
fundamentals of probability theory, including topics like cumulants, which
are particularly useful in the context of unsupervised processing; a review
on stochastic processes with a specific topic on discrete-time random signals;
and, finally, a section on estimation theory.

In order to establish the foundations of unsupervised signal processing,
we present in Chapter 3 the theory of optimal and adaptive filtering in the
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classic scenario of linear and supervised processing. As already commented,
many books are devoted to this rich subject and present it in a more exhaus-
tive fashion. We opt for a brief and, to a certain extent, personal presentation
that facilitates the introduction of the central themes of the book. First,
we discuss three emblematic problems in linear filter theory: identifica-
tion, deconvolution, and prediction. From there, the specific case of channel
equalization is introduced. Then, as usually done in the literature, we present
the Wiener filtering theory as the typical solution for supervised processing
and a paradigm for adaptive procedures. The sections on supervised adap-
tive filtering discuss the celebrated LMS and RLS algorithms, and also the
use of structures alternative to the linear FIR filter. Moreover, in Chapter 3
we introduce the notion of optimal and adaptive filtering without a refer-
ence signal, as a first step to consider blind techniques. In this context, we
discuss the problem of constrained filtering and revisit that of prediction,
indicating some relationships between linear prediction and unsupervised
equalization.

After establishing the necessary foundations in Chapters 2 and 3, the sub-
ject of unsupervised equalization itself is studied in Chapter 4, which deals
with single-input single-output (SISO) channels, and in Chapter 5, in which
the multichannel case is considered.

Chapter 4 starts with a general discussion on the problem of unsu-
pervised deconvolution, of which blind equalization may be viewed as a
particular case. After introducing the specific problem of equalization, we
state the two fundamental theorems: Benveniste–Goursat–Ruget and Shalvi–
Weinstein. Then we discuss the main adaptive techniques: the so-called
Bussgang algorithms that comprise different LMS-based blind techniques,
the Shalvi–Weinstein algorithm, and the super-exponential. Among Buss-
gang techniques, special attention is given to the decision-directed (DD)
and Godard/CMA approaches, due to their practical interest in communica-
tions schemes. We discuss important aspects about the equilibrium solutions
and convergence of these methods, having the Wiener MSE surface as a
benchmark for performance evaluation. Finally, based on a more recent
literature, we present some results concerning the relationships between
constant-modulus, Shalvi–Weinstein, and Wiener criteria.

The problem of blind equalization is extended to the context of systems
with multiple inputs and/or outputs in Chapter 5. First, we state some
theoretical properties concerning these systems. Then we discuss single-
input multiple-output (SIMO) channels, which may be engendered, for
instance, by two practical situations: temporal oversampling of the received
signal or the use of multiple antennas at the receiver. In the context of SIMO
equalization, we discuss equalization conditions in the light of Bezout’s
identity and the second-order methods for blind equalization. Afterward,
we turn our attention to the most general scenario, that of multiple-input
multiple-output (MIMO) channels. In such case, special attention is given to
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multiuser systems, the importance of which is notorious in modern wireless
communications.

Chapter 6 deals with blind source separation (BSS), the other central sub-
ject for the objectives of this book. We start this chapter by stating the main
models to be used and the standard case to be considered first, that of a
linear, instantaneous, and noiseless mixture. Then, we introduce a tool of
major interest in BSS: the independent component analysis (ICA). The first
part of Chapter 6 is devoted to the main concepts, criteria, and algorithms
to perform ICA. Afterward, we deal with alternative techniques that exploit
prior information as, in particular, the nonnegative and the sparse compo-
nent decompositions. Then, we leave the aforementioned standard case to
consider two relevant problems in BSS: those of convolutive and nonlinear
mixtures. Both of them can be viewed as open problems with significant
research results in the recent literature. So we focus our brief presentation on
some representative methods with emphasis on the so-called post-nonlinear
model.

Chapters 4 through 6 establish the fundamental core of the book, as we
try to bring together blind equalization and source separation under the
same conceptual and formal framework. The two final chapters consider
more emergent techniques that can be applied in the solution of those two
problems.

The synergy between the disciplines of machine learning and signal pro-
cessing has significantly increased during the last decades, which is attested
by the several regular and specific conferences and journal issues devoted
to the subject. From the standpoint of this book, it is quite relevant that
a nonnegligible part of this literature is related to unsupervised problems.
Chapter 7 presents some instigating connections between nonlinear filter-
ing, machine learning techniques, and unsupervised processing. We start
by considering a classical nonlinear solution for adaptive equalization—
the DFE structure—since this remarkably efficient approach can be equally
used in supervised and blind contexts. Then we turn our attention to more
sophisticated structures that present properties related to the idea of uni-
versal approximation, like Volterra filters and artificial neural networks.
For that, we previously revisit equalization within the framework of a
classification problem and introduce an important benchmark in digital
transmission: the Bayesian equalizer, which performs a classification task
by recovering the transmitted symbols in accordance with the criterion of
minimum probability of error. Finally, we discuss two classical artificial neu-
ral networks: multilayer perceptron (MLP) and radial basis function (RBF)
network. The training process of these networks is illustrated with the aid
of classical results, like the backpropagation algorithm and the k-means
algorithm.

The methods and techniques discussed all through this book are issued,
after all, from a problem of optimization. The solutions are obtained, as
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a rule, by the minimization or maximization of a given criterion or cost-
function. The bio-inspired optimization methods discussed in Chapter 8,
however, are part of a different paradigm, as they are founded on a number
of complex processes found in nature. These methods are generally charac-
terized by a significant global search potential and do not require significant
a priori information about the problem to be solved, which encourages appli-
cation, for instance, in nonlinear and/or unsupervised contexts. Chapter 8
closes the book by considering this family of techniques, which are finding
increasing applications in signal processing. Given the vastness of the sub-
ject, we limit our discussion to three potentially suitable approaches, taking
into account our domain of interest: genetic algorithms, artificial immune
systems, and particle swarm optimization methods.

The book presents enough material for a graduate course, since blind
techniques are increasingly present in graduate programs, and can also be
used as a complementary reference for undergraduate students. According
to the audience, Chapter 2 can be skipped, and even some topics of Chap-
ter 3, if the students have the possibility of attending a specific course on
adaptive filtering theory. Furthermore, the content of Chapters 7 and 8 can
be adapted to the audience and also serves as a complementary material
for courses on machine learning and/or optimization. Overall, it is worth
emphasizing that a course on unsupervised signal processing theory, com-
prising blind equalization and source separation, must not be organized in a
rigid way, but following the interests of different institutions.

Finally, it is worth emphasizing that adaptive filtering, unsupervised
equalization, source separation, and related themes present a number of
recent results and open problems. Necessarily, and to preserve the main
focus of this book, some of them were omitted or not dealt with in depth.



2
Statistical Characterization of Signals
and Systems

The statistical characterization of signals and systems provides an impor-
tant framework of concepts and mathematical tools that are fundamental to
the modern theory of filtering and signal processing. In signal theory, we
denote by statistical signal processing the field of study that treats signals as
stochastic processes. The word stochastic is etymologically associated with
the notion of randomness. Even though such notion gives rise to different
interpretations, in our field of study, randomness is related to the concept of
uncertainty. Uncertainty on its turn is present in the essence of information
signals in their different forms as well as in the several types of disturbances
that can affect a system.

The subject of statistical characterization of signals and systems is really
extensive and has been built along more than two centuries, as a result
of classical works on statistical inference, linear filtering, and information
theory. Nevertheless, the purpose of this chapter is rather objective and,
in a way, unpretentious: to present the basic foundations and to empha-
size some concepts and tools that are necessary to the understanding of the
next chapters. With this aim in mind we have chosen five main topics to
discuss:

• Section 2.1 is devoted to the basic theory of signals and systems. For
the sake of systemizing such theory, we first consider signals that do
not have randomness in their nature.

• Section 2.2 specifically considers discrete-time signal processing, since
most methods to be presented in the book tend to be implemented
using this approach.

• Section 2.3 discusses the foundations of the probability theory in order
to introduce the suitable tools to deal with random signals. The main
definitions and properties are exposed.

• Section 2.4 then deals with the notion of stochastic processes together
with some useful properties. An appendix on the correlation matrix
properties complements the subject.

• Finally, Section 2.5 discusses the main concepts of estimation theory,
a major area of statistical signal processing with strong connections
with that of optimal filtering, which is the subject of the following
chapter.

11
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Historical Notes

The mathematical foundations of the theory of signals and systems have
been established by eminent mathematicians of the seventeenth and eigh-
teenth centuries. This coincides, in a way, with the advent of calculus,
since the representation of physical phenomena in terms of functions of
continuous variables and differential equations gave rise to an appropriate
description of the behavior of continuous signals and systems. Furthermore,
as mentioned by Alan Oppenheim and Ronald Schafer [219], the classical
works on numerical analysis developed by names like Euler, Bernoulli, and
Lagrange sowed the seeds of discrete-time signal processing.

The bridge between continuous- and discrete-time signal processing was
theoretically established by the sampling theorem, introduced in the works
of Harry Nyquist in 1928, D. Gabor in 1946, and definitely proved by
Claude Shannon in 1949. Notwithstanding this central result, signal process-
ing was typically carried out by analog systems and in a continuous-time
framework, basically due to performance limitations of the existing digital
machines. Simultaneously with the development of computers, a landmark
result appeared: the proposition of the fast Fourier transform algorithm by
Cooley and Tukey in 1965. Indeed, this result has been considered to be
one of the most important in the history of discrete-time signal process-
ing, since it opened a perspective of practical implementation of many other
algorithms in digital hardware.

Two other branches of mathematics are fundamental in the modern
theory of signals and systems: functional analysis and probability theory.
Functional analysis is concerned with the study of vector spaces and oper-
ators acting upon them, which are crucial for different methods of signal
analysis and representation. From it is derived the concept of Hilbert space,
the denomination of which is due to John von Neumann in 1929, as a
recognition of the work of the great mathematician David Hilbert. This is
a fundamental concept to describe signals and systems in a transformed
domain, including the Fourier transform, a major tool in signal process-
ing, the principles of which had been introduced one century before by
Jean-Baptiste Joseph Fourier.

Probability theory allows extending the theory of signals and systems
to a scenario where randomness or incertitude is present. The creation
of a mathematical theory of probability is attributed to two great French
mathematicians, Blaise Pascal and Pierre de Fermat, in 1654. Along three
centuries, important works were written by names like Jakob Bernoulli,
Abraham de Moivre, Thomas Bayes, Carl Friedrich Gauss, and many others.
In 1812, Pierre de Laplace introduced a host of new ideas and mathematical
techniques in his book Théorie Analytique des Probabilités [175].

Since Laplace, many authors have contributed to developing a mathe-
matical probability theory precise enough for use in mathematics as well
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as suitable to be applicable to a wide range of practical problems. The
Russian mathematician Andrei Nikolaevich Kolmogorov established a solid
landmark in 1933, by proposing the axiomatic approach that forms the
basis of modern probability theory [169]. A few years later, in his clas-
sical paper [272], Shannon made use of probability in the definition of
entropy, in order to “play a central role in information theory as measures of
information, choice and uncertainty.” This fundamental link between uncer-
tainty and information raised many possibilities of using statistical tools in
the characterization of signals and systems within all fields of knowledge
concerned with information processing.

2.1 Signals and Systems

Information exchange has been a vital process since the dawn of mankind. If
we consider for a moment our routine, we will probably be able to point out
several sources of information that belong to our everyday life. Nevertheless,
“information in itself” cannot be transmitted. A message must find its proper
herald; this is the idea of signal.

We shall define a signal as a function that bears information, while a
system shall be understood as a device that produces one or more output
signals from one or more input signals. As mentioned in the introduction
of this chapter, the proper way to address signals and systems in the mod-
ern theory of filtering and signal processing is by means of their statistical
characterization, due to the intrinsic relationships between information and
randomness. Nevertheless, for the sake of systemizing such theory, we first
consider signals that do not have incertitude in their nature.

2.1.1 Signals

In simple terms, a signal can be defined as an information-bearing function.
The more we probe into the structure of a certain signal, the more informa-
tion we are able to extract. A cardiologist can find out a lot about your health
by simply glancing at an ECG. Conversely, someone without an adequate
training would hardly avoid a commonplace appreciation of the same data
set, which leads us to a conclusion: signals have but a small practical value
without the efficient means to interpret their content. From this it is easy
to understand why so much attention has been paid to the field of signal
analysis.

Mathematically, a function is a mapping that associates elements of two
sets—the domain and the codomain. The domain of a signal is usually,
although not necessarily, related to the idea of time flow. In signal processing,
there are countless examples of temporal signals: the electrical stimulus pro-
duced by a microphone, the voltage in a capacitor, the daily peak temperature
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profile of a given city, etc. In a number of cases, signals can be, for instance,
functions of space: the gray intensity level of a monochrome image, the set of
measures provided by an array of sensors, etc. Also, spatiotemporal signals
may be of great interest, the most typical example being a video signal, which
is a function of a two-dimensional domain: space and time.

In this book, we deal much more frequently with temporal signals, but
some cases of space-time processing, like the use of antenna array in particu-
lar channels, are also relevant to the present work. Anyway, it is interesting
to expose some important properties concerning the nature of a signal as well
as ways of classifying and characterizing them.

2.1.1.1 Continuous- and Discrete-Time Signals

Insofarasthedomainoftemporalsignalsisconcerned, therearetwopossibilities
of particular relevance: to establish a continuum or an integer set of time
values. In the former case, the chosen domain engenders a continuous-time
signal, which is mathematically described by a function of a continuous
variable, denoted by x(t). Conversely, if time-dependence is expressed by
means of a set of integer values, it gives rise to a discrete-time signal, which
is mathematically described by a numerical sequence, denoted by x(n). For
instance, a signal received by a microphone or an antenna can be assumed to
be a continuous-time signal, while a daily stock quote is a discrete-time signal.

2.1.1.2 Analog and Digital Signals

A signal whose amplitude can assume any value in a continuous range is an
analog signal, which means that it can assume an infinite number of values.
On the other hand, if the signal amplitude assumes only a finite number of
values, it is a digital signal.

Figure 2.1 illustrates examples of different types of signals. It should be
clear that a continuous-time signal is not necessarily an analog signal, as well
as a discrete-time signal may not be digital. The terms continuous-time and
discrete-time refer to the nature of the signals along the time, while the terms
analog and digital qualify the nature of the signal amplitude. This is shown
in Figure 2.1.

2.1.1.3 Periodic and Aperiodic/Causal and Noncausal Signals

A signal x(t) is said to be periodic if, for some positive constant T,

x(t) = x(t + T) (2.1)

for all t. The smallest value of T for which (2.1) holds is the period of the
signal. Signals that do not exhibit periodicity are termed aperiodic signals.

From (2.1), we can notice that a periodic signal should not change if shifted
in time by a period T. Also, it must start at t = −∞, otherwise, it would not be
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FIGURE 2.1
Examples of analog/digital and continuous-time/discrete-time signals: (a) analog continuous-
time signal, (b) analog discrete-time signal, (c) digital continuous-time signal, (d) digital
discrete-time signal.

possible to respect the condition expressed in (2.1) for all t. Signals that start
at t = −∞ and extend until t = ∞ are denoted infinite duration signals.

In addition to these definitions, it is interesting to establish the difference
between a causal and a noncausal signal. A signal is causal if

x(t) = 0, t < 0 (2.2)

and said to be noncausal if the signal starts before t = 0.
It is worth mentioning that all definitions also apply for discrete-time

signals.

2.1.1.4 Energy Signals and Power Signals

An energy signal is a signal that has finite energy, i.e.,

∞�
−∞

|x(t)|2 dt < ∞ (2.3)
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A signal with finite nonzero power, i.e.,

lim
α→∞

1
α

α/2�
−α/2

|x(t)|2 dt < ∞ (2.4)

is called a power signal.
All practical signals present finite energy and, thus, are energy signals.

Another interesting fact is that a power signal should necessarily be an infi-
nite duration signal, otherwise, its average energy would tend to zero within
a long enough time interval.

2.1.1.5 Deterministic and Random Signals

A deterministic signal is a signal whose physical description, either in a
mathematical or in a graphical form, is completely known. Conversely, a
signal whose values cannot be precisely predicted but are known only in
terms of a probabilistic description is a random signal.

2.1.2 Transforms

In daily life, our senses are exposed to all kinds of information when we
move, or simply as long as time flows. Since time (and in a way this is also
true for space) constitutes the most natural domain in which we observe
information, it is also a natural standpoint to represent and analyze a sig-
nal, but it is not the only possibility. Sometimes, a great deal of insight
on the characteristics of an information-bearing function can be gained by
translating it into another support input space.

We can understand a transform as a mapping that establishes a one-to-
one relationship between the representations of a given signal in two distinct
domains. As a rule, a transform is employed when the present domain
wherein a signal is represented is not the most favorable to the study of
one or more of its relevant aspects. The domain of representation is strongly
related with the mathematical concept of complete orthogonal basis. For
instance, if we define the unit impulse function δ(t) (also known as the Dirac
delta function) as

δ(t) = 0 t �= 0 (2.5)

∞�
−∞

δ(τ)dτ = 1 (2.6)
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it is interesting to observe that a continuous-time signal can be written as

x(t) =
∞�

−∞
x(τ)δ(t − τ)dτ (2.7)

A similar representation can be obtained for discrete-time signals:

x(n) =
∞∑

−∞
x(k)δ(n − k) (2.8)

where δ(n) denotes the discrete-time unit impulse function (also known as
the Kronecker delta function), and is defined as

δ(n) =
{

1, for n = 0
0, otherwise (2.9)

It comes, and this is even more evident in the discrete case, that the signal
of interest is a linear combination of shifted unit impulse functions. In this
sense, these shifted functions can be regarded as a basis for representing the
signal.

A change of representation domain corresponds to a change in the basis
over which the signal is decomposed. As mentioned before, this can be very
important in order to study some characteristics and properties of the signal
that are not directly observed in the form, for instance, of a temporal function
or sequence. In the classical theory of signal and systems, representation by
the complete orthogonal basis composed by complex exponentials deserves
special attention. For purely imaginary exponents, the complex exponential
functions and sequences are directly associated with the physical concept of
frequency, and such representation gives rise to the Fourier transform. For
general complex exponents, the corresponding decomposition gives rise to
the Laplace transform, in the continuous case, and to the z-transform, in the
discrete case, which are both crucial for the study of linear systems. These
four important cases are depicted in the sequel.

2.1.2.1 The Fourier Transform of Continuous-Time Signals

As mentioned earlier, the Fourier transform corresponds to the projection
of a signal x(t) onto a complete orthogonal basis composed of complex
exponentials exp(j 2πft). It is defined as

X( f ) =
∞�

−∞
x(t) exp (−j 2πft)dt (2.10)
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18 Unsupervised Signal Processing

while the inverse Fourier transform is given by

x(t) =
∞�

−∞
X(f ) exp (j 2πft)df (2.11)

2.1.2.2 The Fourier Transform of Discrete-Time Signals

The discrete-time counterpart of the Fourier transform correspond to the
projection of the sequence x(n) onto an orthogonal basis composed of
complex exponentials exp(j 2πfn), and is defined as

X(exp (j 2πf )) =
∞∑

n=−∞
x(n) exp (−j 2πfn) (2.12)

while the inverse Fourier transform is given by

x(n) =
1/2�

−1/2

X(exp (j 2πfn)) exp (j 2πfn)df (2.13)

2.1.2.3 The Laplace Transform

The basic idea behind the Laplace transform is to build an alternative rep-
resentation X(s) of a continuous-time signal x(t), from a basis of complex
exponentials:

X(s) =
∞�

−∞
x(t) exp(−st)dt (2.14)

where s = σ+ j 2πf . The set of values of s for which the integral shown
in (2.14) converges is called region of convergence (ROC) of the Laplace
transform.

The inverse Laplace transform is then given by

x(t) = 1
2πj

�
C

X(s) exp(st)ds (2.15)

where C is a suitable contour path.

2.1.2.4 The z-Transform

The z-transform can be understood as the equivalent of the Laplace trans-
form in the context of discrete-time signals. The transform X(z) of a sequence
x(n) is defined by
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Statistical Characterization of Signals and Systems 19

X(z) =
∞∑

n=−∞
x(n)z−n (2.16)

where z = exp(σ+ j 2πf ). The ROC of the z-transform is defined as the values
of z for which the summation presented in (2.16) converges.

The inverse z-transform is defined as

x(n) = 1
2πj

�
C

X(z)zn−1dz (2.17)

where the integral must be evaluated in a path C that encircles all of the poles
of X(z).

It is worth mentioning that Equations 2.14 and 2.16 correspond to the
so-called bilateral Laplace and z-transforms, which are the most generic
representations. For causal signals, it is useful to consider the unilateral
transforms, in which the integral and the discrete sum start from zero instead
of −∞.

2.1.3 Systems

Having in mind the definition of signal presented in the beginning of
Section 2.1.1, we may alternatively define a system as an information-
processing device. In Figure 2.2, we present a schematic view of a system.

A system can be fully characterized by its input–output relation, i.e., by
the mathematical expression that relates its outputs to its inputs. Assuming
that the operator S[·] represents the mapping performed by the system, we
may write

y = S[x] (2.18)

where x and y are the input and output vectors, respectively. It is interest-
ing to analyze some important classes of systems and the properties that
characterize them.

System

x1

x2

xN

.. .

y1

y2

yM

...

yx

FIGURE 2.2
Schematic view of a system.
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20 Unsupervised Signal Processing

2.1.3.1 SISO/SIMO/MISO/MIMO Systems

This classification is based on the number of input and output signals of a
system:

• SISO (single-input single-output) systems have a single input signal
and a single output signal. Therefore, x and y become scalars.

• SIMO (single-input multiple-outputs) systems have a single input
signal and more than one output signal.

• MISO (multiple-input single-output) systems have multiple input
signals and a single output signal.

• Finally, MIMO (multiple-input multiple-output) systems have mul-
tiple input and output signals, and form the most general of the four
classes.

Throughout the book, the reader will have the opportunity of considering
the differences between these classes of systems, the importance of which is
patent in modern signal processing techniques.

2.1.3.2 Causal Systems

If the system output depends exclusively on present and past values of the
input, the system is said to be causal. In other words, causality means that
the output of a system at a given instant is not influenced by future values of
the input.

When we consider real-time applications, causality will certainly hold.
However, when we manipulate acquired data, noncausal systems are accept-
able, and may even be desirable in some cases.

2.1.3.3 Invertible Systems

When it is possible to build a mapping that recovers the input signals of a
given system from its output, we say that such a system is invertible. This
means that it is possible to obtain x from y using an inverse system cas-
caded with the original one. This notion will be revisited when we analyze
the problems of equalization and source separation.

2.1.3.4 Stable Systems

Stability is also a major concern in system analysis. We shall assume that
a system is stable if the response to a bounded input is also bounded. In
simple words, if the input signal does not diverge to infinity, the output
will not diverge as well. Stability is a common feature in real-world systems,
which we suppose to be restricted by conservation laws, but the same may
not occur in some mathematical models and algorithms.
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Statistical Characterization of Signals and Systems 21

2.1.3.5 Linear Systems

In system theory, it is often convenient to introduce some classes of possi-
ble operators. A very relevant distinction is established between linear and
nonlinear systems. Linear systems are those whose defining S[·] operator
obeys the following superposition principle:

S[k1x1 + k2x2] = k1S[x1] + k2S[x2] (2.19)

The idea of superposition can be explained in simple terms: the response
to a linear combination of input stimuli is the linear combination of the indi-
vidual responses. Conversely, a nonlinear system is simply one that does not
obey this principle.

2.1.3.6 Time-Invariant Systems

Another important feature is time-invariance. A system is said to be time-
invariant when its input–output mapping does not vary with time. When the
contrary holds, the system is said to be time-variant. Since this characteristic
makes the system easier to be dealt with in mathematical terms, most models
of practical systems are, with different degrees of fidelity, time-invariant.

2.1.3.7 Linear Time-Invariant Systems

A very special class of systems is that formed by those that are both lin-
ear and time-invariant (linear time-invariant, LTI). These systems obey the
superposition principle and have an input–output mapping that does not
vary with time. The combination of these desirable properties gives rise to
the following mathematical result.

Suppose that x(t) and y(t) are, respectively, the input and the output of a
continuous-time LTI SISO system. In such case,

y(t) = h(t) ∗ x(t) =
∞�

−∞
h(τ)x(t − τ)dτ (2.20)

where h(t) is the system impulse response, which is the system output when
x(t) is equal to the Dirac delta function δ(t). The symbol ∗ denotes that the
output y(n) is the result of the convolution of x(t) with h(t).

Analogously, if x(n) and y(n) are, respectively, the input and the output
of a discrete-time LTI SISO system, it holds that

y(n) = h(n) ∗ x(n) =
∞∑

k=−∞
h(k)x(n − k) (2.21)
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22 Unsupervised Signal Processing

where h(n) is the system impulse response, i.e., the system output when x(n)

is equal to the Kronecker delta function δ(n). Once more, the symbol ∗ stands
for convolution.

2.1.4 Transfer Function and Frequency Response

An important consequence of the fact that the input and the output of a
continuous-time LTI SISO system are related by a convolution integral is
that their Laplace transforms will be related in a very simple way:

Y(s) = H(s)X(s) (2.22)

where
Y(s) and X(s) are, respectively, the Laplace transforms of the output and

the input
H(s) is the transform of the system impulse response, the so-called transfer

function

This means that the input–output relation of an LTI system is the result
of a simple product in the Laplace domain.

If the ROCs of X(s), Y(s), and H(s) include the imaginary axis, expression
(2.22) can be promptly particularized to the domain of the Fourier analysis.
In this case, the following holds:

Y(f ) = H(f )X(f ) (2.23)

where
Y(f ) and X(f ) are, respectively, the Fourier transforms of the output and

the input
H(f ) is the transform of the system impulse response, which is called

frequency response

It is possible to understand several key features of a given LTI sys-
tem simply by studying the functions H(s) and H(f ). For instance, to
know the frequency response of a system is the key to understanding
how it responds to stimuli at any frequency of the spectrum, and how an
input signal characterized by certain frequency content will be processed
by it.

The extension to the discrete-time domain is straightforward. If Y(z) and
X(z) are the z-transforms of two discrete-time signals related by an LTI
system, it is possible to write

Y(z) = H(z)X(z) (2.24)
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and, if the ROCs of X(z), Y(z), and H(z) include the unit circle, expression
(2.24) reduces to

Y
[
exp (j 2πf )

] = H
[
exp (j 2πf )

]
X

[
exp (j 2πf )

]
(2.25)

2.2 Digital Signal Processing

Discrete-time signals can be characterized and stored very easily. This relies
on a very relevant feature of discrete-time signals: given a finite time interval,
there is a finite set of values that fully characterize a sequence, whereas the
same does not hold for a continuous-time signal. This essential difference is
a reflex of the profound structural divergences between the domains of these
classes of information-bearing functions.

The world of digital computers excels in storage capacity and potential
of information processing, and is essentially a “discrete-time world.” There-
fore, it is not surprising that digital signal processing is a widespread tool
nowadays. Nevertheless, it is also clear that many of our physical models are
inherently based on continuous-time signals. The bridge between this “real
world” and the existing digital tools is established by the sampling theorem.

2.2.1 The Sampling Theorem

The idea of sampling is very intuitive, as it is closely related to the notion
of measure. When we measure our height or weight, we are, in a certain
sense, sampling the continuous-time signal that expresses the time-evolution
of these variables. In the context of communications, the sampling process
produces, from a continuous-time signal, a representative discrete-time sig-
nal that lends itself to proper digital processing and storage. Conditions for
equivalent representation and perfect reconstruction of the original signal
from its samples were achieved through the sampling theorem, proposed by
Harry Nyquist (1926), D. Gabor (1946), and Claude Shannon (1949), and are
related to two requirements:

1. The continuous-time signal must be band-limited, i.e., its Fourier
spectrum must be null for f > fM.

2. The sampling rate, i.e., the inverse of the time-spacing TS of the
samples must be higher than or equal to 2fM.

Given these conditions, we are ready to enunciate the sampling
theorem [219]
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THEOREM 2.1 (Sampling Theorem)

If x(t) is a signal that obeys requirement 1 above, it may be perfectly
determined by its samples x(nTS), n integer, if TS obeys requirement 2.

If these requirements are not complied with, the reconstruction process
will be adversely affected by a phenomenon referred to as aliasing [219].

2.2.2 The Filtering Problem

There are many practical instances in which it is relevant to process informa-
tion, i.e., to treat signals in a controlled way. A straightforward approach to
fulfill this task is to design a filter, i.e., a system whose input–output relation
is tailored to comply with preestablished requirements. The project of a filter
usually encompasses three major stages:

• Choice of the filtering structure, i.e., of the general mathematical
form of the input–output relation.

• Establishment of a filtering criterion, i.e., of an expression that
encompasses the general objectives of the signal processing task at
hand.

• Optimization of the cost function defined in the previous step with
respect to the free parameters of the structure defined in the first
step.

It is very useful to divide the universe of discrete-time filtering structures
into two classes: linear and nonlinear. There are two basic types of linear dig-
ital filters: finite impulse response filters (FIR) and infinite impulse response
filters (IIR). The main difference is that FIR filters are, by nature, feedforward
devices, whereas IIR filters are essentially related to the idea of feedback.

On the other hand, nonlinearity is essentially a negative concept. There-
fore, there are countless possible classes of nonlinear structures, which
means that the task of treating the filtering problem in general terms is far
from trivial.

Certain classes of nonlinear structures (like those of neural networks and
polynomial filters, which will be discussed in Chapter 7) share a very rele-
vant feature: they are derived within a mathematical framework related to
the idea of universal approximation. Consequently, they have the ability
of producing virtually any kind of nonpathological input–output mapping,
which is a remarkable feature in a universe as wide as that of nonlinear
filters.

A filtering criterion is a mathematical expression of the aims subjacent
to a certain task. The most direct expression of a filtering criterion is its
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associated cost function, the optimization of which leads to the choice and
adaptation of the free parameters of the chosen structure.

When both the structure and an adequate cost function are chosen,
there remains the procedure of optimizing the function with respect to the
free parameters of the filtering device. Although there are many possible
approaches, iterative techniques are quite usual in practical applications for,
at least, two reasons:

• They avoid the need for explicitly finding closed-form solutions,
which, in some cases, can be rather complicated even in static
environments.

• Their dynamic nature suits very well the idea of adaptation, which
is essential in a vast number of real-world applications.

Adaptation will be a crucial idea in the sequel of this text and, as we will
see, the derivation of a number of adaptive algorithms depends on some
statistical concepts to be introduced now.

2.3 Probability Theory and Randomness

Up to this moment, signals have been completely described by mathematical
functions that generate information from a support input space. This is the
essence of deterministic signals. However, this direct mapping between the
input and output space cannot be established if uncertainties exist. In such
case, the element of randomness is introduced and probabilistic laws must
be used to represent information. Thus, it is of great interest to review some
fundamental concepts of probability theory.

2.3.1 Definition of Probability

Probability is essentially a measure to be employed in a random experiment.
When one deals with any kind of random experiment, it is often necessary
to establish some conditions in order that its outcome be representative of
the phenomenon under study. In more specific terms, a random experiment
should have the following three features [135]:

1. The experiment must be repeatable under identical conditions.
2. The outcome wi of the experiment on any trial is unpredictable

before its occurrence.
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3. When a large number of trials is run, statistical regularity must be
observed in the outcome, i.e., an average behavior must be identified
if the experiment is repeated a large number of times.

The key point of analyzing a random experiment lies exactly in the
representation of the statistical regularity. A simple measure thereof is
the so-called relative frequency. In order to reach this concept, let us define
the following:

• The space of outcomes �, or sample space, which is the set of all
possible outcomes of the random experiment.

• An event A, which is an element, a subset or a set of subsets of �.

Relative frequency is the ratio between the number of occurrences of a
specific event and the total number of experiment trials. If an event A occurs
N(A) times over a total number of trials N, this ratio obeys

0 ≤ N(A)

N
≤ 1 (2.26)

We may state that an experiment exhibits statistical regularity if, for any
given sequence of N trials, (2.26) converges to the same limit as N becomes a
large number. Therefore, the information about the occurrence of a random
event can be expressed by the frequency definition of probability, given by

Pr(A) = lim
N→∞

(
N(A)

N

)
(2.27)

On the other hand, as stated by Andrey Nikolaevich Kolmogorov in his
seminal work [170], “The probability theory, as a mathematical discipline,
can and should be developed from axioms in exactly the same way as Geom-
etry and Algebra.” Kolmogorov thus established the axiomatic foundation of
probability theory. According to this elegant and rigorous approach, we can
define a field of probability formed by the triplet {�,F , Pr(A)}, where � is the
space of outcomes, F is a field that contains all possible events of the ran-
dom experiment,∗ and Pr(A) is the probability of event A. This measure is so
chosen as to satisfy the following axioms.

Axiom 1: Pr(A) ≥ 0
Axiom 2: Pr(�) = 1
Axiom 3: If A ∩ B = ∅, then Pr(A ∪ B) = Pr(A)+ Pr(B), where ∩ and ∪ stand
for the set operations intersection and union, respectively.

∗ In the terminology of mathematical analysis, the collection of subsets F is referred to as a
σ-algebra [110].
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For a countable infinite sequence of mutually exclusive events, it is
possible to enunciate Axiom 3 in the following extended form:

Axiom 3’: For mutually exclusive events A1, A2, . . . , An,

Pr

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

Pr(Ai)

From these three axioms, and using set operations, it follows that

Pr(Ā) = 1 − Pr(A) (2.28)

where Ā stands for the complement of the set A. If A ∩ B �= ∅, then

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B) (2.29)

In probability theory, an important and very useful concept is that of
independence. Two events Ai and Aj, for i �= j, are said to be independent if
and only if

Pr(Ai ∩ Aj) = Pr(Ai) Pr(Aj) (2.30)

It is also important to calculate the probability of a particular event given
the occurrence of another. Thus, we define the conditional probability of Ai
given Aj (supposing Pr(Aj) �= 0) as

Pr(Ai|Aj) �
Pr(Ai ∩ Aj)

Pr(Aj)
(2.31)

It should be noted that, if Ai and Aj are independent, then Pr(Ai|Aj) =
Pr(Ai). This means that knowledge about the occurrence of Aj does not
modify the probability of occurrence of Ai. In other words, the condi-
tional probability of independent events is completely described by their
individual probabilities.

Computation of the probability of a given event can be performed with
the help of the theorem of total probability. Consider a finite or countably
infinite set of mutually exclusive (Ai ∩ Aj = ∅ for all i �= j) and exhaustive(⋃

i Ai = A
)

events. The probability of an arbitrary event B is given by

Pr(B) =
∑

i

Pr(Ai ∩ B) =
∑

i

Pr(Ai) Pr(B|Ai) (2.32)

2.3.2 Random Variables

A deterministic signal is defined in accordance with an established math-
ematical formula. In order to deal with random signals, it is important to
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introduce the notions of random variable (r.v.) and probability density func-
tion (pdf). In a certain sense, a random signal is a continuous flux or a
discrete sequence of r.v.’s, the generation of which is ruled by a pdf. In order
to fully understand this idea, let us start by formally defining the concept of
random variable.

DEFINITION 2.1 An r.v. is a function X(·) that assigns a number X(wi), or
simply xi, called value of the r.v., to each possible outcome in the set of
observations (sample space).

For a discrete r.v., which directly associates points with probabilities, we
have [123]

Pr [X(wi) = xi] = Pr [wi ∈ � : X(wi) = xi] (2.33)

which means that the probability of the value of the r.v., xi, is the probability
of the outcome, wi, associated with xi through the function X(·).

For a continuous r.v., since the probability in a particular point tends to
zero, we have to resort to a certain range of values to obtain a nonzero value.
As a consequence, we write

Pr [X(wi) ≤ xi] = Pr [wi ∈ � : X(wi) ≤ xi] (2.34)

The definition in (2.34) can be rewritten to eliminate the explicit depen-
dence on a particular outcome. This leads to an important function that
characterizes r.v.’s.

DEFINITION 2.2 The cumulative distribution function (cdf)—or simply
distribution function—of an r.v. X is given by

PX(x) = Pr [X(w) ≤ x] = Pr[X ≤ x] (2.35)

for −∞ < x < ∞.

The cdf has the following properties:

0 ≤ PX(x) ≤ 1 (2.36a)

PX(x1) ≤ PX(x2) for x1 < x2 (2.36b)

PX(−∞) � lim
x→−∞ PX(x) = 0 (2.36c)

PX(∞) � lim
x→∞ PX(x) = 1 (2.36d)

lim
ε→0
ε>0

PX(x + ε) � PX(x+) = PX(x) (2.36e)
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Notice that (2.36a) and (2.36b) show that the cdf is bounded between zero
and one and is a monotone nondecreasing function of x.

The pdf, or simply density function, is defined as

pX(x) = d
dx

PX(x). (2.37)

The probability of the event x1 < X ≤ x2 is given by

Pr(x1 < X ≤ x2) = Pr(X ≤ x2) − Pr(X ≤ x1)

= PX(x2) − PX(x1)

=
x2�

x1

pX(x) dx (2.38)

According to (2.38), the probability associated with an interval is the area
under the pdf in such interval. If we make x1 = −∞, it is possible to write
the cdf in terms of the pdf as follows:

PX(x) =
x�

−∞
pX(ξ) dξ (2.39)

Using (2.39) and (2.36), we can see that

∞�
−∞

pX(x) dx = 1 (2.40)

As mentioned before, the cdf must always be monotone nondecreasing.
This implies that its derivative must always be nonnegative. Furthermore,
due to (2.40), we may state that the pdf must always be a nonnegative
function whose total area equals one.

Example 2.1 (Uniform Distribution)

A very useful class of random variables is formed by those that possess a uniform
distribution. An r.v. X is said to have a uniform distribution if its pdf, in an interval
(a, b], is given by

pX(x) =

⎧
⎪⎨

⎪⎩

0, x � a
1

b−a , a < x � b

0, x > b

(2.41)
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pX (x)

xa b0(a)

b−a
1

xa b

1

0(b)

PX (x)

FIGURE 2.3
Example of a uniform distribution in the interval (a, b]: (a) probability density function of X and
(b) cumulative distribution function of X.

In this case, the cumulative distribution function is given by

PX(x) =
⎧
⎨

⎩

0, x � a
x−a
b−a , a < x � b
0, x > b

(2.42)

Figure 2.3 shows the pdf and cdf of a uniformly distributed r.v. X.

2.3.2.1 Joint and Conditional Densities

When we work with random models in practical applications, the number
of r.v.’s required to describe the behavior of the events is often greater than
one. In this section, we extend the probabilistic concepts exposed so far to
the case of multiple r.v.’s. Actually, we shall consider in detail exclusively
the particular case of two variables, since the extension to the generic multi-
dimensional case is somewhat direct. If we consider two r.v.’s X and Y, we
can define the following distribution.

DEFINITION 2.3 The joint distribution function PX,Y(x, y) is the probability
that the r.v. X is less than or equal to a specified value x and that the r.v. Y is
less than or equal to a specified value y.

Mathematically, for (−∞ < X ≤ x, −∞ < Y ≤ y), we write

PX,Y(x, y) = Pr
[
X ≤ x, Y ≤ y

]
(2.43)

Notice that (2.43) states that the outcome associated to the joint event is a
point of the xy-plane. It is worth mentioning that X and Y may be considered
as two separate one-dimensional r.v.’s as well as two components of a single
two-dimensional r.v.
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If PX,Y(x, y) is continuous everywhere, and the partial derivative

pX,Y(x, y) = ∂2PX,Y(x, y)

∂x ∂y
(2.44)

exists and is also continuous everywhere, the function pX,Y(x, y) is called joint
pdf of the r.v.’s X and Y.

The properties of the joint distribution function are similar to those
exposed in the case of a one-dimensional r.v. Hence, PX,Y(x, y) is a mono-
tone nondecreasing function of both variables x and y, the joint pdf pX,Y(x, y)

is always nonnegative, and the volume under pX,Y(x, y) must equal one, i.e.,

∞�
−∞

∞�
−∞

pX,Y(ξ, η)dξ dη = 1 (2.45)

When we deal with joint distributions (or densities), we are also inter-
ested in finding the distribution (or density) of a specific variable. Using
Equation 2.43, we get

PX(x) =
∞�

−∞

x�
−∞

pX,Y(ξ, η)dξ dη (2.46)

and differentiating both sides of the previous equation we have

pX(x) =
∞�

−∞
pX,Y(x, η)dη (2.47)

We can obtain PY(y) and pY(y) through a similar procedure. The distribu-
tions PX(x) and PY(y) and densities pX(x) and pY(y) are accordingly called
marginal distributions and marginal densities of the joint distributions and
densities, respectively.

The density of an r.v. when the occurrence of another is given, i.e., the
conditional pdf of X, given that Y = y, is

pX|Y(x|y) = pX,Y(x, y)

pY(y)
(2.48)

provided that pY(y) > 0.
Since pX|Y(x|y) is a function of the r.v. X with Y arbitrarily assuming a

fixed value y, it fulfills the requirements of a pdf, since

pX|Y(x|y) ≥ 0
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and

∞�
−∞

pX|Y(x|y) dx = 1

An important case arises when the variables X and Y are statistically inde-
pendent. Then, knowledge about the occurrence of variable Y does not affect
the distribution of X, or, in other words, the conditional density pX|Y(x|y) has
no information about Y. In mathematical terms, we may write

pX|Y(x|y) = pX(x) (2.49)

which means that the conditional density is equivalent to the marginal den-
sity when the variables are independent. From this result comes a very useful
relation between the pdfs of independent variables:

pX,Y(x, y) = pX(x)pY(y) (2.50)

i.e., the joint density of independent variables is equal to the product of their
marginal densities.

In analogy with (2.48), we can define the conditional pdf of Y, given that
X = x, as

pY|X(y|x) = pY,X(y, x)

pX(x)
(2.51)

and, using (2.48) and (2.51), we obtain the following relation

pX|Y(x|y) = pY|X(y|x)pX(x)

pY(y)
(2.52)

which is known as Bayes’ rule [230].
It is straightforward to modify the approach to derive the equivalent

relations in terms of the joint and conditional probability distributions.

2.3.2.2 Function of a Random Variable

At this point, it is useful to recall a classical result regarding the transforma-
tion of an r.v. Let f (·) be an arbitrary function, so that

Y = f (X)

where X is an r.v. whose density function is known.
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Then, if f (·) is invertible, the following property of r.v. transformation
holds [230]:

pY(y) = pX(x)
∣∣∣ df (x)

dx

∣∣∣

∣
∣∣∣∣∣
x=f −1(y)

(2.53)

where f −1(·) is the inverse function of f (·). For multiple variables, if the
mapping y = f(x) is invertible, then we have

py(y) = px(f−1(y))

| det Jf(x)| (2.54)

where f−1(·) is the inverse function of f(·), and Jf(y) denotes the Jacobian
matrix associated with f(x)= [

f1(x), f2(x), . . . , fN(x)
]
, given by

Jf(x) =

⎡

⎢⎢⎢
⎢⎢
⎣

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xN

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xN

... · · · . . .
...

∂fN
∂x1

∂fN
∂x2

· · · ∂fN
∂xN

⎤

⎥⎥⎥
⎥⎥
⎦

(2.55)

Equation 2.53 can be also generalized when f (X) does not produce a biu-
nivocal mapping from y to x. In this case, it is necessary to separate the
functions into regions that present a unique inverse mapping. Therefore, we
may write [179]

pY(y) =
∑

i

pX(xi)

∣∣∣∣
df (xi)

dxi

∣∣∣∣

−1
∣∣∣∣∣
xi=f −1(y)

(2.56)

where i stands for the number of regions the function is divided into, and xi
are the values of x inside the ith region.

2.3.3 Moments and Cumulants

The pdf plays a key role in statistical processing, since it carries all the avail-
able statistical information about an r.v. However, the determination of the
exact model of the pdf may be a task quite hard to be accomplished in cer-
tain cases. Thus, it is relevant to build alternative expressions of the statistical
behavior of a random variable that are both representative and straightfor-
ward to characterize. The idea of average, as we will show in the following,
fits these requirements.
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A simple and very important case is the expected value or mean of a
random variable X, which is defined as

E {X} �
∞�

−∞
xpX(x)dx (2.57)

where E{·} denotes the statistical expectation operator. Another important
case is the variance or second central moment, defined as

var(X) �
∞�

−∞
(x − κ1(X))2pX(x)dx (2.58)

where κ1(X) = E {X}.
We can generalize the idea of mean and variance by revisiting the notion

of function of an r.v. Let X be an r.v. and f (·) an arbitrary function, so that

Y = f (X) (2.59)

It is clear that Y is also a random variable and it is possible to define the
expected value thereof as

E {Y} �
∞�

−∞
ypY(y)dy (2.60)

or rather

E
{
f (X)

}
�

∞�
−∞

f (x)pX(x)dx (2.61)

Equation 2.61 generalizes the concept of the mean of an r.v. to the expec-
tation of an arbitrary function of the same variable: such procedure will be
of particular relevance throughout the entire book. At this point, it is worth
pointing out a special case: if we make f (X) = Xn in (2.61), we obtain the nth
moment of the pdf pX(x), defined as

κn(X) =
∞�
∞

xnpX(x) dx (2.62)

From (2.59) and (2.62) it is clear that κ1(X) = E{X}.
Even though the moments can be directly computed using (2.62), a

special function can be tailored to produce them directly. The moment-
generating function or first characteristic function of a real r.v. X is defined as
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�X(ω) �
∞�

−∞
pX(x) exp(jωx)dx

� E
{
exp(jωx)

}
(2.63)

If �X(ω) is expanded in a Taylor series about the origin, we get to [230]

�X(ω) �
∞∑

k=0

κk

k! (jω)k (2.64)

where κk is the k-order moment. Thus, one can obtain the k-order moment
using the following expression

κk = (−j)k ∂k�X(ω)

∂ωk

∣∣∣∣∣
ω=0

Another important statistical measure is given by the cumulants. Cumu-
lants are tailored by specific relationships between the moments of a random
variable in order to reveal certain aspects of its pdf as well as to present
some useful properties for statistical processing. The cumulants are gener-
ated by the second characteristic function or cumulant-generating function,
defined by

ϒX(ω) � ln [�X(ω)] (2.65)

The Taylor series of ϒX(ω) around the origin can be written as

ϒX(ω) �
∞∑

k=0

ck

k! (jω)k (2.66)

and

ck = (−j)k ∂kϒX(ω)

∂ωk

∣∣∣∣∣
ω=0

(2.67)

is the k-order cumulant ck [230, 244].
We have described the first and second characteristic functions for the

real case. For complex r.v.’s, a straightforward extension is possible, so that
the characteristic function becomes [13]

�X,X∗(ω, ω∗)

�
∞�

−∞
pX,X∗(x, x∗) exp

[
j
(

ωx∗ + ω∗x
2

)]
dx dx∗

� E
{

exp
[

j
(

ωx∗ + ω∗x
2

)]}
(2.68)
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In this case, the cumulant-generating function is given by

ϒY(ω) � ln
[
�X,X∗(ω, ω∗)

]
(2.69)

2.3.3.1 Properties of Cumulants

Cumulants possess a number of properties that are interesting from a signal
processing standpoint. Some of these properties are described in the sequel.

• Invariance and equivariance
The first-order cumulant is equivariant, while the others are invari-
ant to shifts, i.e.,

c1(X + α) = c1(X) + α

ck(X + α) = ck(X)
(2.70)

for an arbitrary constant α.
• Homogeneity

The k-order cumulant is homogeneous of k degree. Thus, for the real
case

ck(αX) = αk · ck(X) (2.71)

In the complex case, the k-order cumulant is defined by

ck(X, X∗) = ck(X, . . . , X︸ ︷︷ ︸
s terms

, X∗, . . . , X∗
︸ ︷︷ ︸

q terms

) ∀ s + q = k (2.72)

According to (2.72), the homogeneity property for a complex r.v. is
given by [14, 173]

ck(αX, αX∗) = (α)s · (α∗)q · ck(X, X∗) ∀ s + q = k (2.73)

Hence, for even-order cumulants, we may consider s = q, so that the
homogeneity condition becomes

ck(αY) = |α|k · ck(Y) (2.74)

• Additivity
If X and Y are statistically independent r.v.’s, the following relation
holds:

ck(X + Y) = ck(X) + ck(Y) (2.75)
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2.3.3.2 Relationships between Cumulants and Moments

We can relate cumulants and moments via the following recursive rule [214]:

ck = κk −
k−1∑

i=1

(
k − 1
i − 1

)
ci · κk−i (2.76)

Therefore, the kth moment is a kth order polynomial built from the first k
cumulants. For instance, we have for k up to 6:

κ1 = c1

κ2 = c2 + c2
1

κ3 = c3 + 3c2c1 + c3
1

κ4 = c4 + 4c3c1 + 3c2
2 + 6c2c2

1 + c4
1

κ5 = c5 + 5c4c1 + 10c3c2 + 10c3c2
1 + 15c2

2c1 + 10c2c3
1

κ6 = c6 + 6c5c1 + 15c4c2 + 15c4c2
1 + 10c2

3 + 60c3c2c1 + 20c3c3
1 + 15c3

2

+ 45c2
2c2

1 + 15c2c4
1 + c6

1

(2.77)

Clearly, when zero-mean distributions are considered, the terms in c1 are
removed from (2.77). A more detailed description of these relationships can
be found in [214].

2.3.3.3 Joint Cumulants

The joint cumulant of several r.v.’s X1, . . . , Xk is defined similarly to (2.67)
[214]

c
(

xk1
1 , xk2

2 , . . . , x
kp
p

)
� (−j)r ∂rϒ(ω1, . . . , ωp)

∂wk1
1 . . . ∂w

kp
p

∣∣
∣∣
ω1=···=ωp=0

(2.78)

where ϒ(ω1, . . . , ωp) represents the second characteristic function of the
joint pdf X1, . . . , Xk. If the variables are independent, their joint cumulant
is null, and if all k variables are equal, the joint cumulant is ck(X).

In order to link the concepts we have presented with the notion of signal,
we now consider the evolution of r.v.’s in detail.
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38 Unsupervised Signal Processing

2.4 Stochastic Processes

The proper method of including probability theory in the study of infor-
mation signals consists of defining a sample space associated with a set of
functions. This model originates the notion of a stochastic process. Con-
sidering time as the support of the signal, the following definition can be
posed.

DEFINITION 2.4 A stochastic process X(t) is a collection or ensemble of
functions engendered by a rule that assigns a function x(t, ωi) or simply
xi(t), called sample of the stochastic process, to each possible outcome in
the sample space.

Figure 2.4 illustrates in a classical and intuitive way the concept of
stochastic process. From this figure we can observe that

• For a given ωi we have a single time function or sample function
xi(t). This function represents a specific realization of the random
signal, which means that, for stochastic processes, the occurrence of
a given signal is a result of a random experiment.

• For a given time instant tK, the value to be assigned to X(tK) depends
on the choice of the sample function, i.e., depends on ωi. So X(tK) is a
value corresponding to the outcome of a random experiment, i.e., is
an r.v. Hence each sample function xi(t) is a flux of random variables
in time.

As discussed earlier for deterministic signals, time flow can be modeled
in terms of a continuum or an integer set of values, which means that random
signals can also be continuous- or discrete-time. In order to characterize a

0

0

0 t

......

Sample
space Ω 

x1(t)

ω1

ω2

ωn

x2(t)

xn(t)

x1(tK)

x2(tK)

xn(tK)

tK

FIGURE 2.4
Several sample functions of a random process.
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Statistical Characterization of Signals and Systems 39

stochastic process, it is suitable to establish an interval of observation, for
instance, (0, tK], as indicated in Figure 2.4, within which we consider K
samples of the process: X(tk), k = 1, . . . , K. Under these circumstances, a
stochastic process actually becomes a family of random signals, which can
be characterized by the corresponding joint CDF

PX(t1),...,X(tK)(x(t1), . . . , x(tK)) or, for the sake of simplicity,

PX(t1),...,X(tK)(x1, . . . , xK) (2.79)

and joint pdf

pX(t1),...,X(tK)(x(t1), . . . , x(tK)) or, for the sake of simplicity,

pX(t1),...,X(tK)(x1, . . . , xK). (2.80)

In many cases, to deal with these multivariable functions is a rather diffi-
cult task. It is then suitable to deal with a partial characterization of stochastic
processes, as that which comes from a sort of extension of the concept of
moments.

2.4.1 Partial Characterization of Stochastic Processes: Mean, Correlation,
and Covariance

We can define the mean of a stochastic process X(t) as the mean of the ran-
dom variable originated when the time index is fixed at t. Since the mean is
the first-order moment, we can write

κ1(X, t) = E {X(t)}

=
∞�

−∞
xpX(t)(x)dx (2.81)

where pX(t)(x) is called the first-order pdf of the process, since it takes into
account only one time instant of the sample functions.

An equivalent of the second-order moment of an r.v. in the context of
stochastic processes is the autocorrelation function. We can define this func-
tion as the statistical expectation of the product of two r.v.’s obtained from
the observation of the process at two different time instants, t1 and t2. So we
may write

RX(t1, t2) = E
{
X(t1)X∗(t2)

}

=
∞�

−∞

∞�
−∞

x1x∗
2pX(t1),X(t2)(x1, x2) dx1dx2 (2.82)
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where pX(t1),X(t2)(x1, x2) is the second-order pdf of the process. We can also
define the autocovariance function

CX(t1, t2) = E
{
[X(t1) − κ1(X, t1)] [X(t2) − κ1(X, t2)]∗

}

= RX(t1, t2) − κ1(X, t1) · κ∗
1(X, t2) (2.83)

In order to evaluate the second-order moments in different time instants,
let us create a vector x = [X(t1) X(t2) · · · X(tn)]T. Then, if we compute
E
{
xxH}

for a zero-mean process, we obtain the autocorrelation matrix

Rxx = E
{

xxH
}

=
⎡

⎢
⎣

X(t1)X∗(t1) · · · X(t1)X∗(tn)
...

. . .
...

X(tn)X∗(t1) · · · X(tn)X∗(tn)

⎤

⎥
⎦

=
⎡

⎢
⎣

RX(t1, t1) · · · RX(t1, tn)
...

. . .
...

RX(tn, t1) · · · RX(tn, tn)

⎤

⎥
⎦ (2.84)

In the above definition, the superscript (·)H stands for Hermitian transposi-
tion. The autocovariance matrix is obtained if the autocorrelation function is
replaced by the autocovariance function in (2.84).

Another important measure is the cross-correlation function, which
expresses the correlation between different processes. Given two different
stochastic processes X(t) and Y(t), the two cross-correlation functions can be
defined as [135]

RXY(t1, t2) = E
{
X(t1)Y∗(t2)

}
(2.85)

and

RYX(t1, t2) = E
{
Y(t1)X∗(t2)

}
(2.86)

We can also define a cross-correlation matrix, given by

RXY(t1, t2) =
[

RX(t1, t2) RXY(t1, t2)

RYX(t1, t2) RY(t1, t2)

]
(2.87)

So far, there has been a strong dependence of the definitions with respect
to multiple time indices. However, some random signals show regularities
that can be extremely useful, as we shall now see.
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2.4.2 Stationarity

The term stationarity refers to an important property shared by many ran-
dom processes: their statistical characteristics are considered to be time
invariant. We can express this idea in formal terms by using the notion of
joint density function of a stochastic process X(t), so that, if

pX(t1),...,X(tk)(x1, . . . , xk) = pX(t1+τ),...,X(tk+τ)(x1, . . . , xk) (2.88)

is valid for any τ, the process is said to be strict-sense stationary. In other
words, it can be defined as follows [135].

DEFINITION 2.5 A stochastic process X(t), initiated at t = −∞, is strict-
sense stationary if the joint density of any set of r.v.’s obtained by observing
the random process X(t) is invariant with respect to the location of the origin
t = 0.

Two special cases deserve our attention:

1. k = 1

pX(t)(x) = pX(t+τ)(x) = pX(x) for all t and τ. (2.89)

The above equation reveals that the first-order density function of a
strict-sense stationary process is time independent.

2. k = 2 and τ = −t1

pX(t1),X(t2)(x1, x2) = pX(0),X(t2−t1)(x1, x2) for all t1 and t2. (2.90)

In this case, the second-order density function of a strict-sense sta-
tionary process depends only on the time difference between the
observation times, and not on the particular instants of observation.

These properties have a great impact on the statistical characterization of
a stochastic process, as the following results show.

• The mean of a stationary process is constant:

κ1(X, t) = κ1(X) (2.91)

• The autocorrelation and autocovariance functions depend exclu-
sively on the time difference τ = t2 − t1:

RX(t1, t2) = RX(τ) (2.92)
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and

CX(t1, t2) = RX(τ) − κ2
1(X) (2.93)

for all t1 and t2.
• The autocorrelation matrix is hermitian. It means that the element in

the ith row and jth column is equal to the complex conjugate of the
element in the jth row and ith column, for all indices i and j, i.e.,

Rxx =
⎡

⎢
⎣

RX(0) · · · R∗
X(tn − t1)

...
. . .

...
RX(tn − t1) · · · RX(0)

⎤

⎥
⎦ (2.94)

Furthermore, the autocorrelation matrix of a strict-sense stationary
process has the property of being a Toeplitz matrix [139].

• Given two stationary processes X(t) and Y(t), their cross-correlation
matrix, which carries the information of the different cross-
correlation functions, can be written as

RXY(τ) =
[

RX(τ) RXY(τ)

RYX(τ) RY(τ)

]
τ = t2 − t1 (2.95)

The cross-correlation function does not have the same symmetry
inherent to the autocorrelation function. However, the following
relationship is verified [139]:

R∗
XY(τ) = RYX(−τ) (2.96)

A less stringent condition for stationarity is given when a partial charac-
terization of the stochastic process is carried out by means of the mean and
the autocorrelation function. A stochastic process is said to be wide-sense
stationary if the mean and the autocorrelation function of the process do not
depend on the time instant, i.e., if (2.91) through (2.93) hold, but not neces-
sarily (2.88). Hence, strict-sense stationarity implies wide-sense stationarity,
but the converse is not true.

At this point, it is worth mentioning that it is also possible to analyze ran-
dom signals in the frequency domain. In the beginning of this chapter, we
have introduced the Fourier transform to define the spectrum of a determin-
istic signal. Since a stochastic process is composed by a collection of sample
functions, the change of domain will engender a collection of spectra, so that
the inherent uncertainty of the random signal will be transferred to the fre-
quency domain. Therefore, it is necessary to resort to statistical measures to
evaluate the frequency behavior of a random signal, i.e., employ a transform
of moments as a source of information in the frequency domain.
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For now, we consider the second-order moment and define the power
spectral density SX(f ) of a stationary stochastic process with autocorrelation
function RX(τ) through the following pair of equations:

SX(f ) =
∞�

−∞
RX(τ) exp(−j 2πfτ)dτ (2.97)

RX(τ) =
∞�

−∞
SX(f ) exp(j 2πfτ)df (2.98)

Equations 2.97 and 2.98 are well known in classical signal analysis and
usually referred to as Einstein–Wiener–Khintchine relations [135].

2.4.3 Ergodicity

The estimation of statistical moments is a crucial task in the characterization
of a random signal. An inherent problem is that their definitions consider the
whole ensemble of realizations of the process. For instance, the mean κ1(X)

describes the behavior of the r.v. X(t), for a fixed t, taking into account all
possible outcomes thereof.

However, in practice, we have access to a limited number of sample
functions xi(t). Notwithstanding, most applications present an interval of
observation adequately long to provide accurate measures of time averages.
Therefore, we may seriously consider the hypothesis of using these aver-
ages to estimate statistical ensemble averages. The fundamental question is if
these two entities can be considered equivalent. To answer it, let us consider
a wide-sense stationary process X(t) and an interval of observation [−T, T].
The time average of a single realization x(t) is given by

κ1(x, T) = 1
2T

T�
−T

x(t)dt (2.99)

Notice that the time average is an r.v., since it depends on the sam-
ple function to be considered in the computation. Thus, we can take the
expectation of that measure so that, by interchanging the linear operators
and assuming stationarity, we have

E {κ1(x, T)} = 1
2T

T�
−T

E {x(t)} dt

= 1
2T

T�
−T

κ1(X)dt

= κ1(X) (2.100)
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As a consequence, the time average κ1(x; T) is an unbiased estimate of the
mean κ1(x). We may say that the process X(t) is ergodic in the mean if two
conditions are satisfied [135]:

1. The time average κ1(x, T) tends to the mean κ1(x) if the interval of
observation tends to infinity, i.e.,

lim
T→∞

κ1(x, T) = κ1(X)

2. The variance of κ1(x, T) tends to zero if the interval of observation
tends to infinity, i.e.,

lim
T→∞

var[κ1(x, T)] = 0

The same procedure can be applied to second-order moments. The
temporal autocorrelation function of a sample x(t) is given by

Rx(t, T) = 1
2T

T�
−T

x(t + τ)x∗(t)dt (2.101)

This time average is also an r.v., and we say that a process is ergodic in the
autocorrelation function if the following conditions hold:

lim
T→∞

Rx(τ, T) = RX(τ)

lim
T→∞

var [Rx(τ, T)] = 0

It is also possible to define ergodicity of stochastic processes in terms of
higher-order moments. However, in practice, ergodicity in the mean and
autocorrelation is usually enough in classical problems of signal analysis.

2.4.4 Cyclostationarity

Nonstationary processes are characterized by a time-variant statistical
behavior. However, there is a special class of stochastic processes whose
statistics do vary in time, but in a very specific manner: they vary period-
ically. Processes for which the statistical parameters experience cyclic (peri-
odical) changes are called cyclostationary processes. The following definition
holds [7].
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DEFINITION 2.6 A stochastic process X(t) is said to be cyclostationary with
period T if and only if pX(t1),...,X(tk)(x1, . . . , xk) is periodic in t with period T,
i.e.,

pX(t1),...,X(tK)(x1, . . . , xK) = pX(t1+T),...,X(tK+T)(x1, . . . , xK)

It is also possible to establish two possibilities: strict-sense cyclostation-
arity, which corresponds to the above definition, and wide-sense (weak)
cyclostationarity. A stochastic process X(t) is wide-sense cyclostationary
if its mean and autocorrelation function are periodic in t with some
period T, i.e.,

κ1(X, t + T) = κ1(X, t) (2.102)

RX

(
t + τ

2
, t − τ

2

)
= E

{
X

(
t + τ

2

)
X∗ (t − τ

2

)}
= RX

(
t + τ

2
+ T, t − τ

2
+ T

)

(2.103)

for all τ ∈ (−T, T).

2.4.5 Discrete-Time Random Signals

A discrete-time random process is a particular kind of random process in
which the time variable is of a discrete nature. Formally, a discrete-time
random process is defined as follows.

DEFINITION 2.7 A discrete-time stochastic process X(n) is a collection, or
ensemble, of functions engendered by a rule that assigns a sequence x(n, ωi)

or simply xi(n), called sample of the stochastic process, to each possible
outcome of a sample space.

Similarly to its continuous-time counterpart, it is possible to character-
ize a discrete-time random process by means of first- and second-order
moments. Thus, we define the mean of a discrete-time random process as
the mean value of the corresponding random variable produced when the
time index n is fixed, i.e.,

κ1(X, n) = E {X(n)}

=
∞�

−∞
xpX(n)(x)dx (2.104)

where pX(n)(x) is the first-order pdf of the process.
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Following the presentation in Section 2.4.1, we may also define the
autocorrelation function of a discrete-time random process as

RX(n1, n2) = E
{
X(n1)X∗(n2)

}

=
∞�

−∞

∞�
−∞

x1x∗
2pX(n1),X(n2)(x1, x2)dx1dx2 (2.105)

the autocovariance function as

CX(n1, n2) = E
{
[X(n1) − κ1(X, n1)] [X(n2) − κ1(X, n2)]∗

}

= RX(n1, n2) − κ1(X, n1) · κ∗
1(X, n2) (2.106)

and, finally, the autocorrelation matrix, defined for a vector x = [
X(n1)

X(n2) · · · X(nn)
]T, given by

Rxx = E
{

xxH
}

=
⎡

⎢
⎣

X(n1)X∗(n1) · · · X(n1)X∗(nn)
...

. . .
...

X(nn)X∗(n1) · · · X(nn)X∗(nn)

⎤

⎥
⎦

=
⎡

⎢
⎣

RX(n1, n1) · · · RX(n1, nn)
...

. . .
...

RX(nn, n1) · · · RX(nn, nn)

⎤

⎥
⎦ (2.107)

In Appendix A, we show some important properties of the autocorrela-
tion matrix, which will help us in the development of Chapter 3.

2.4.6 Linear Time-Invariant Systems with Random Inputs

Suppose that a random process X(t) (or, equivalently, a discrete-time ran-
dom process X(n)) is applied as input to an LTI filter with impulse response
h(t) (h(n)). According to (2.20) (and (2.21)), the output of such system will be
given by

Y(t) =
∞�

−∞
h(τ)X(t − τ)dτ (2.108)

Y(n) =
∞∑

m=−∞
h(m)X(n − m) (2.109)
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In general, it is difficult to describe the probability distribution of the
output random process Y(t), even when the probability distribution of
the input random process X(t) is completely specified for −∞≤ t ≤ +∞.
However, it is useful to perform an analysis in terms of the mean and
autocorrelation function of the output signal.

If we assume that the input signal X(t) is a stationary process, then we
can evaluate the mean of the output random process Y(t) as follows:

κ1(Y, t) = E

{ ∞�
−∞

h(τ)X(t − τ)dτ

}

=
∞�

−∞
h(τ)E

{
X(t − τ)dτ

}

=
∞�

−∞
h(τ)κ1(X, t − τ)dτ (2.110)

and, since we are dealing with a stationary process, we have κ1(X) = κ1(X, t),
hence

κ1(Y) = κ1(X)

∞�
−∞

h(τ)dτ

= κ1(X, t)H(0) (2.111)

where H(0) is the zero frequency response of the system.
We can also evaluate the autocorrelation function of the output signal

Y(t). Recalling that

RY(t1, t2) = E
{
Y(t1)Y∗(t2)

}
(2.112)

RY(t1, t2) = E

{ ∞�
−∞

h(τ1)X(t1 − τ1)dτ1

∞�
−∞

h∗(τ2)X∗(t2 − τ2)dτ2

}

=
∞�

−∞

∞�
−∞

h(τ1)h∗(τ2)E
{
X(t1 − τ1)X∗(t2 − τ2)

}
dτ1dτ2 (2.113)

Now, since we assume that X(t) is stationary, then, as discussed in
Section 2.4.2, the autocorrelation function of X(t) is only a function of the
difference between the observation times t1 − τ1 and t2 − τ2. Thus, letting
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τ = t1 − t2, we get

RY(τ) =
∞�

−∞

∞�
−∞

h(τ1)h∗(τ2)RX(τ − τ1 + τ2)dτ1dτ2 (2.114)

which can be rearranged to reveal that

RY(τ) =
∞�

−∞
h∗(τ2)

∞�
−∞

h(τ1)RX(τ + τ2 − τ1)dτ1dτ2

=
∞�

−∞
h∗(τ2)

{
h(t) ∗ RX(t + τ2)

}
dτ2

= RX(τ) ∗ h(−τ) ∗ h∗(τ) (2.115)

This result can also be presented in the frequency domain, in terms of
the power spectral density or power spectrum SY(f ), defined as the Fourier
transform of the autocorrelation function of Y(t), i.e.,

SY(f ) =
∞�

−∞
RY(τ) exp(−j 2πfτ)dτ (2.116)

Employing (2.115) and (2.116), we reach the conclusion that

SY(f ) =
∞�

−∞
h(τ1)

∞�
−∞

h∗(τ2)

∞�
−∞

RX(τ − τ1 + τ2) exp(−j 2πfτ)dτdτ1dτ2

(2.117)

Changing variables t = τ + τ1 − τ2 and dt = dτ leads to

SY(f ) =
∞�

−∞
h(τ1) exp(j 2πfτ1)dτ1

∞�
−∞

h∗(τ2) exp(−j 2πfτ2)dτ2

×
∞�

−∞
RX(t) exp(−j 2πft)dt

= H∗(f )H(f )SX(f )

= ∣∣H(f )
∣∣2 SX(f ) (2.118)
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Notice that RY(0) = E
{|Y(t)|2}, and, from (2.118), it comes that

E
{
|Y(t)|2

}
=

∞�
−∞

∣∣H(f )
∣∣2 SX(f )df (2.119)

A similar reasoning lead us to the discrete-time counterpart of this result.
The autocorrelation of the output of an LTI system with a discrete-time
random process as an input is given by

RY(k) = RX(k) ∗ h(−n) ∗ h∗(n) (2.120)

where, in this case, ∗ stands for the discrete-time convolution, and

SY(exp(j 2πf )) = ∣∣H(exp(j 2πf ))
∣∣2 SX(exp(j 2πf )) (2.121)

2.5 Estimation Theory

Estimation theory is the field of statistical signal processing that deals with
the determination of one or more parameters of interest, based on a set of
available measured or empirical data. This problem is rather general, and
a number of scientific domains derive great benefit from the application of
estimation techniques.

From the perspective of this book, it is particularly relevant to the case in
which the parameters of interest are associated with a system to be designed
or analyzed. This corresponds to applying statistical methods to the optimal
filtering problem, subject of Chapter 3. Before that, however, it is useful to
present the foundations of estimation theory in general terms.

Different methods can be built according to the hypotheses we assume
concerning the parameters to be estimated [70]. If they are considered to
be deterministic parameters, we may derive the so-called classical estima-
tion methods, as that of maximum likelihood (ML) estimation. Dealing with
the parameters to be estimated as r.v.’s gives rise to the Bayesian estima-
tion methods, like the minimum mean-squared error (MMSE) and the maximum
a posteriori (MAP) methods. Finally, an estimation method may be derived
regardless of the nature of the unknown parameters, as the least-squares (LS)
estimation method that may be applied to either random or deterministic
parameters.

As a well-established discipline, estimation theory has been treated in
important books, in which existing methods are studied in detail [165,
181, 265, 283]. In this section, we provide a brief exposition of the main
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approaches, having in mind the problems to be discussed in the subsequent
chapters.

2.5.1 The Estimation Problem

For the sake of clarity, the estimation problem can be divided into two
cases, depending on the number of parameters involved: single-parameter
estimation and multiple-parameter estimation.

2.5.1.1 Single-Parameter Estimation

Let us consider that a realization x(n) of a discrete-time stochastic process
depends on an unknown parameter θ. The problem of parameter estimation
is then to estimate the parameter θ from a finite set of available observa-
tions {x(0) x(1) · · · x(N − 1)}. Hence, we need to construct a function
that extracts the parameter from the measurements:

θ̂ = φ
[

x(0) x(1) · · · x(N − 1)
]

(2.122)

where φ[·] is a deterministic transformation to be determined. One important
aspect is that θ can be either deterministic or random, depending on the
problem at hand, while θ̂ is typically random, since it is a function of random
variables. The r.v. θ̂ is called estimator of θ and a realization of such r.v. is
called estimate [165].

Let x = [x(0) x(1) · · · x(N − 1)]T. If θ is assumed to be deterministic,
we use the notation pX(x; θ) to emphasize the dependence of the data on θ.
When θ is random, x and θ are related by means of the joint pdf denoted by
pX,θ(x, θ). In both cases, θ̂ is a deterministic function of x and hence is also
statistically dependent on θ, but it is not a deterministic function on θ. This
fact tells us that ∂θ̂/∂θ = 0.

2.5.1.2 Multiple-Parameter Estimation

Let us now consider that the discrete stochastic process x(n) depends on a
set of L unknown parameters θ(0) θ(1) · · · θ(L − 1). Now the problem
consists in finding a transformation

θ̂ = φ
[
x(0) x(1) · · · x(N − 1)

]
(2.123)

in order to estimate the unknown parameters, being φ(·) a vector of L
functions to be determined. Similarly to the single-parameter case, θ can
be either deterministic or random while θ̂ is typically random. Also, x =
[x(0) x(1) · · · x(N − 1)]T is related to θ via its pdf pX(x; θ) when θ is
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deterministic, while x and θ are related via the joint pdf pX,θ(x, θ) when θ is

random. Also, θ̂ is statistically dependent on θ, and it holds that ∂θ̂
T
/∂θ = 0.

Since the problem is mathematically stated, it is relevant to mention some
important statistical properties of the estimators.

2.5.2 Properties of Estimators

2.5.2.1 Bias

An estimator θ̂ is said to be unbiased if

E
{
θ̂
} = E {θ} (2.124)

otherwise, it is said to be biased with

Bias
(
θ̂
) = E

{
θ − θ̂

} = E {θ} − E
{
θ̂
}

(2.125)

When θ is deterministic, we have E {θ} = θ.
When multiple parameters are considered and the estimator θ̂ is unbi-

ased, we have

E
{
θ̂
}

= E {θ} (2.126)

and the bias is given by

Bias
(

θ̂
)

= E
{
θ − θ̂

}
= E {θ} − E

{
θ̂
}

(2.127)

2.5.2.2 Efficiency

For two unbiased estimators θ̂ and θ̃, we say that θ̂ is more efficient than θ̃ if

var
(
θ̂
) ≤ var

(̃
θ
)

(2.128)

Additionally, we can define the estimation error as

ε = θ − θ̂ (2.129)

so that the notion of efficiency is related to achieving an unbiased estimator
θ̂ with the smallest error variance, which is given by var (ε) = var

(
θ̂
)
.

For the multiple-parameter case, the estimator θ̂ is said to be more
efficient than θ̃, assuming both to be unbiased, if

Cθ̂

(
θ̂
) ≤ Cθ̃

(̃
θ
)

(2.130)
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where

Cx (x) = E
{
(x − E {x}) (x − E {x})H

}
(2.131)

is the covariance matrix of the vector x, which reduces to the autocorrelation
matrix if E {x} = 0. The notation A > B (A ≥ B) denotes that matrix A − B is
positive definite (positive semidefinite) [128].

2.5.2.3 Cramér–Rao Bound

An important result associated with unbiased estimators is the existence
of a lower bound of performance in terms of the variance of the estimated
parameter θ̂. This lower bound is the Cramér–Rao Bound (CRB) [165], which
provides the minimum achievable performance for an estimator in terms of
variance of the estimated parameters. It can be shown that, if an unbiased
estimator θ̂ exists, then its variance obeys [70, 165]

Var
(
θ̂
) ≥ F−1(θ) (2.132)

where

F(θ) = E

{
∂2pX(x; θ)

∂θ ∂θ∗

}

(2.133)

is called the Fisher information. The equality in (2.132) holds if and only if
the estimation error is given by

θ̂ − θ = I(θ)
∂pX(x; θ)

∂θ
(2.134)

where I(θ) is a nonzero function. Roughly speaking, F(θ) measures the
information present in pX(x; θ), and it is intuitive that the more information
the pdf provides, the more accurate is the estimator θ̂ and, consequently, the
smaller is its variance.

For multiple parameters, the CRB is written as [70, 165]

C
(

θ̂
)

≥ F−1(θ) (2.135)

where

F(θ) = E

{[
∂pX(x; θ)

∂θ

]
·
[
∂pX(x; θ)

∂θ

]H
}

(2.136)
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is the Fisher information matrix. For this case, the equality in (2.136) holds if
and only if

θ̂ − θ = I(θ)
∂pX(x; θ)

∂θ
(2.137)

where I(θ) is a matrix composed of nonzero functions.
Some aspects concerning the estimator properties for infinite data length

(asymptotic properties) may also be of interest. For instance, Refs. [70, 165]
present relevant discussions on this topic, which is out of our main focus
of presenting estimation theory methods as a support of the optimal filtering
techniques. Therefore, we now turn our attention to the design of estimators.
We will consider the case of multiple-parameter estimation, which is more
general and more relevant to our objectives.

2.5.3 Maximum Likelihood Estimation

The ML estimation method consists of finding the estimator that maxi-
mizes the likelihood function established between the observed data and the
parameters. In other words, for a given set of available measurements x, we
search for the parameters θ that provide the highest probability pX(x|θ) with
which the observed data would have been generated. Thus, the ML estimator
is given by

θ̂ML = arg max
θ

pX(x|θ) (2.138)

where the pdf pX(x|θ) is the likelihood function. Hence, we need to find the
maximum of this function, which is given by its first derivative.

Due to the widespread use of exponential families of pdfs, it is very usual
to use the log-likelihood. This being the case, the solution of the likelihood
equation is given by

∂

∂θ
ln

[
pX(x|θ)

]
∣∣∣∣
θ=θ̂ML

= 0 (2.139)

When Equation 2.139 presents several solutions, one must keep the θ̂ that
corresponds to the global maximum.

One important feature of the ML estimator is that it is asymptotically
efficient, that is, the ML estimator achieves the CRB when the number of
observed data tends to infinity [165].

2.5.4 Bayesian Approach

As mentioned before, the Bayesian approach assumes that the parame-
ters to be estimated are r.v.’s. In such case, we need to have some sort of

metrovoice
New Stamp



54 Unsupervised Signal Processing

model and/or a priori information about the parameters distribution p�(θ).
In practice, the main question is how to obtain such a priori information.
We, however, will concentrate our efforts on presenting the methodology to
obtain the estimator of random parameters.

In essence, the core of Bayesian estimation is related to the a posteriori
density p�|X(θ|x), as our interest lies in finding the distribution of the param-
eters given the available measurements. We have two main approaches to
Bayesian estimation: MAP and MMSE.

2.5.4.1 Maximum a Posteriori Estimation

In a way there is a certain duality between ML and MAP estimators, since,
in the latter case, for a given set of available measurements x, we search for
the parameters θ with the highest probability p�|X(θ|x) of having generated
the observed data. Therefore, the MAP estimator is obtained by solving

θ̂MAP = arg max
θ

p�|X(θ|x) (2.140)

As previously, we employ the logarithm function in order to facilitate the
process of handling exponential families. Then, by using Bayes’ theorem, we
can maximize the conditional pdf in (2.140) by posing

∂ ln
[
p�|X(θ|x)

]

∂θ
= ∂ ln

[
pX|�(x|θ)

]

∂θ
+ ∂ ln

[
p�(θ)

]

∂θ
= 0 (2.141)

We can notice that the MAP estimator takes into account the proba-
bilistic information about θ. Furthermore, if θ has a uniform distribution,
the ML and MAP estimators lead to the same result. Intuitively, this is
indeed the case if we have no available a priori information about θ. When
p�(θ) is not uniformly distributed, which means that we have some useful
a priori information about the distribution of the parameters, the estimators
are different.

Example 2.2 (ML and MAP Estimators)

In order to illustrate the difference between ML and MAP estimators, let us con-
sider a simple and, hopefully, amusing example related to a very popular adult
beverage: the wine.

The wine consists of a complex myriad of substances, and several factors
contribute to its taste and quality. The grape variety from which the wine was
made from is one of them, and wine connoisseurs claim that, with sufficient
training, a person should be capable of identifying the variety used to produce
the wine simply by tasting it.

Let us now consider a nonprofessional wine taster that tastes a given glass
of wine from a South American producer and tries to discern four different
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TABLE 2.1

Result of a Hypothetical Pool about the Most Noticeable Flavor Found in
the Wine

Blackcurrant (%) Plum (%) Raspberry (%) Other (%)

Cabernet-Sauvignon 41 45 2 12

Tannat 4 0 79 17
Malbec 31 55 0 14

Merlot 40 30 20 10

grapes traditionally found in this region: Cabernet-Sauvignon, Tannat, Malbec and
Merlot. We can state that the taste stands for the observed data while the grape is
the parameter to be estimated.

As a support to his difficult task, the taster relies on the information contained
in Table 2.1, which shows the results of a poll in which renowned wine profes-
sionals were asked what is the most noticeable flavor in the wines made by this
producer.

Let us say that the mentioned taster found a very distinguished touch of plum
in the wine being tested. According to Table 2.1, we have that

P(taste = plum|variety) =

⎧
⎪⎪⎨

⎪⎪⎩

0.45, for variety = Cabernet-Sauvignon
0, for variety = Tannat
0.55, for variety = Malbec
0.30, for variety = Merlot

Therefore, if the decision is made using the ML criterion, according to (2.139),
the “estimated grape” is the variety that

v̂ariety = max
variety

P(taste = plum|variety) (2.142)

That is, based on the poll provided by specialists, the taster concludes that, since
the taste of plum is predominant, the wine is more likely to be a Malbec.

Now, suppose that, in addition to Table 2.1, the taster is also informed that
approximately 40% of the total grape production of this wine maker consists of the
cabernet-sauvignon variety, and each one of the other three grapes correspond to
20% of the total production. Since we have prior information, it is reasonable to
employ the MAP criterion in this case. In other words, we take into account not
only the fact that the flavor of plum is claimed by the specialists to be more likely
found if the wine is Malbec, but, since it can also be found in other varieties, we
take in account the probability of occurrence of each variety. Hence, the estimate
is given by

P(variety|taste = plum) ∝ P(taste = plum|variety)P(variety) (2.143)
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Thus, using Table 2.1 we get

P(variety, taste = plum)P(variety) =

⎧
⎪⎪⎨

⎪⎪⎩

0.18, for variety = Cabernet-Sauvignon
0, for variety = Tannat
0.11, for variety = Malbec
0.06, for variety = Merlot

.

Thus, in this case, even though the Malbec wine provides a highest prob-
ability of finding the flavor of plum, the MAP estimator changes the answer
to Cabernet-Sauvignon. This is because the taster now takes into account the
marginal probabilities P(Cabernet-Sauvignon) = 0.4 and P(Malbec) = 0.2, which
increases the probability that the observed flavor of plum is originated by a
Cabernet-Sauvignon wine.

2.5.4.2 Minimum Mean-Squared Error

As mentioned before, the estimation error is directly related to the efficiency
of the estimator. For multiple parameters, we can define the error vector

ε = θ − θ̂ (2.144)

Whenever the set of parameters θ to be estimated is random, we may
think about any “measuring of closeness” between θ and its estimate. A sta-
tistical average of the estimation error is not per se a suitable candidate, since
it is possible, for example, that a zero-mean error has a significant variance.
In other words, the estimator may be unbiased but not efficient. A suitable
option is to work with the statistical average of the square of the error, i.e.,
with the mean-squared error (MSE). Such option originates the method of
the MMSE estimation, which consists in finding the θ̂ that minimizes

JMSE(θ̂) = E
{
‖ε‖2

}
= E

{∥∥∥θ − θ̂
∥∥∥

2
}

(2.145)

In (2.145) it should be emphasized that since θ is random, the expectation
operator is taken with respect to the joint pdf p(x, θ), which means that

JMSE(θ̂) =
� � ∥∥∥θ − θ̂

∥∥∥
2

p�,X(x, θ)dx dθ

=
� [� ∥∥∥θ − θ̂

∥∥∥
2

p�|X(θ|x)dθ

]
pX(x)dx (2.146)
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Since p(x) ≥ 0 for all x, JMSE(θ̂) will be minimized if the term in brackets is
minimized for each value of x. Thus,

∂

∂θ̂

� ∥∥
∥θ − θ̂

∥∥
∥

2
p�|X(θ|x)dθ = −2

�
θp�|X(θ|x)dθ + 2θ̂

�
p�|X(θ|x)dθ

(2.147)

Finally, setting the derivative equal to zero leads us to the optimum estima-
tor in the MMSE sense, given by [165]

θ̂MSE =
∞�

−∞
θp�|X(θ|x)dθ = E {θ|x} (2.148)

In general, the solution in (2.148) is of a nonlinear nature, which means
that θ̂MSE is not necessarily easy to be obtained. A simplifying hypothesis
consists in considering the estimator as a linear function of the data. This
model is suitable in a number of applications, and an emblematic example
of the linear MMSE estimator is the Wiener filter, which will be studied in
Chapter 3. In the classical Wiener filtering formulation, the parameters to be
estimated are the coefficients of a linear combiner. Solution (2.148) is then
reduced to a system of linear equations, as we shall see in more detail.

Moreover, the Wiener approach can be extended to that of a sequential
MMSE estimator in order to accommodate data vectors that additionally
may be nonstationary. This leads to the Kalman filter, which brings in its
core the ideas of recursivity and adaptivity, to be more deeply discussed
in Chapter 3. Appendix B presents the derivation of the Kalman filter.

2.5.5 Least Squares Estimation

In many practical scenarios, to rely on statistical entities is an idealization.
However, it is possible to consider an alternative and intuitive solution that
is more “data-oriented.” This was the approach employed by Johann Carl
Friedrich Gauss in 1795 when he established the Method of Least Squares
(LS) to study the motion of celestial bodies [119]. LS estimation does not con-
sider any hypothesis about probability distributions, neither for the data nor
for the parameters. Only a model for the generation of the measurements is
assumed and the parameters are estimated according to this assumption.

Typically, LS estimation can be used to build linear estimators, gener-
alized estimators, and nonlinear estimators. For the linear case, we assume
that the measurements are generated from the parameters θ according to the
following model:

x = Hθ + v (2.149)
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where
HN×M is called observation matrix, assumed to be known
v is a vector of unknown r.v.’s, called measurement errors or noise

The observation matrix is full rank with N ≥ M, which means that the
number of observations is at least equal to the number of parameters to be
estimated.

The estimation method consists of applying the LS criterion to the
measurement errors. Taking the linear model in account, it comes that

ELS = 1
2
‖v‖2 = 1

2
(x − Hθ)H (x − Hθ) (2.150)

In order to find the estimator that minimizes ELS, we force to zero its
derivatives in relation to the parameter vector. It leads to the following
expression:

(
HHH

)
θ̂LS = HHx (2.151)

which gives rise to the following expression for θ̂

θ̂LS =
(

HHH
)−1

HHx = H†x (2.152)

where H† is the pseudo-inverse of H, assuming N > M and that H is a full
rank matrix.

An interesting property concerning the LS solution is that the optimal
parameters θ̂ engender a residual vector v that is orthogonal to the column
space of the matrix H. In other words, the optimal parameter vector in the LS
sense originates the “shortest possible v,” i.e., the shortest distance between
the measures and the subspace spanned by the columns of H. This geometri-
cal interpretation establishes the equivalence between the LS method and the
so-called orthogonality principle: to minimize the LS criterion corresponds
to searching for the parameters that provide a residual vector that is nor-
mal to the subspace spanned by the columns of H. Due to this property,
Equation 2.151 is commonly referred to as normal equation.

The above approach may be extended to the nonlinear case if we general-
ize the model in (2.149). For the nonlinear least squares (NLS) estimator, we
define the generating data model as

x = f(θ) + v (2.153)
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where f is a vector of nonlinear functions, continuously differentiable w.r.t
the parameter θ. The NLS criterion may be defined as

ENLS = [x − f(θ)]H [x − f(θ)] (2.154)

and the nonlinear estimator θ minimizes ELS. Such procedure, however, does
not lead to a closed-form solution as in (2.152).

2.6 Concluding Remarks

In this chapter, we discussed the fundamental concepts on signals, systems,
and statistical processing to be used in the book.

Basic definitions and useful properties of the classical theory of signals
and systems were briefly recalled in a systemized way. Description of signals
and systems in the time and the frequency domain was carried out. Specific
aspects concerning discrete-time signal processing have been emphasized.
The sampling theorem was enunciated and the problem of discrete filtering
was discussed.

As far as random signals are concerned, the foundations of probability
theory were presented. Random variables were defined and characterized by
the cumulative distribution and the pdf’s. Partial characterization was pro-
vided by means of the important concepts of moments and cumulants. These
concepts have been extended toward the notion of stochastic process, a suit-
able model to represent information signals, which are implicitly endowed
with uncertainty. Some special cases of statistical behavior were discussed.

We finished the chapter with a brief section on estimation theory. We
focused on the methods that are more relevant for the sequence of the book.
In particular, Chapter 3 deals with the search of optimal parameters of a
linear filter. This problem can be viewed as a special case of estimation and
requires a proper understanding of the concepts and tools discussed in this
chapter.
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3
Linear Optimal and Adaptive Filtering

As discussed in Chapter 2, linear estimation is a crucial problem in a number
of important applications, among which the search for optimal parameters of
a filter is particularly relevant. We have also pointed out in Section 2.2 that
the project of a filter involves three fundamental steps: to select a suitable
structure, to establish a criterion for the filter optimization, and to employ a
technique to find the optimal parameters.

In this chapter, we will proceed with the mentioned steps under the
following considerations: First, we will focus on discrete-time filters and
assume that the filtering structure is a linear combiner, among which the
finite impulse response (FIR) filter is a typical case. Moreover, unless stated
otherwise, we consider that all signals are real-valued. Second, among the
estimation criteria previously discussed, we will focus on the minimum
mean-squared error (MMSE) and the LS estimators, since both of them lead
to a linear problem with closed-form solutions. Finally, in addition to find-
ing closed solutions, we will be interested in deriving adaptive techniques to
attain the optimal parameters.

The scenario to be considered throughout this chapter is one of supervised
filtering, i.e., the optimization process is guided by an available reference sig-
nal. This scenario plays an important role either as a performance reference
or as a practical solution, in cases in which the reference signal is available. It
is also important to establish the foundations of supervised filtering theory
in order to pave the way to the study of non-supervised techniques, which is
the main interest of this book. This is essentially the objective of this chapter,
which is organized as follows:

• In Section 3.1, we discuss the basic idea of supervised filters to clar-
ify their scope of application as well as their limitations. Emphasis
is given to three emblematic filtering problems: identification, decon-
volution, and prediction. In this context, we introduce the problem of
channel equalization, which is a central subject of the book.

• Section 3.2 presents a most relevant concept, that of Wiener filtering,
which is obtained through the application of the MMSE criterion to
a linear FIR structure. The relevance of the Wiener result is briefly
considered in the historical notes.

• Section 3.3 describes the so-called steepest-descent algorithm, an itera-
tive solution to the Wiener filtering problem, based on the gradient

61
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62 Unsupervised Signal Processing

method. In fact, this technique is presented as a kind of first
step toward truly adaptive methods, which constitute our main
interest.

• Section 3.4 deals with the adaptive case and presents a most rel-
evant technique: the least mean square (LMS) algorithm. We present
LMS in a rather canonical way, i.e., as a stochastic approximation of
the steepest-descent method.

• In Section 3.5, we introduce the method of least squares (LS), which is
the application of the LS estimation criterion to a linear FIR filter. In
contrast with Wiener theory, the LS solution does not involve sta-
tistical averages but depends on a set of available data. The optimal
solution can also be obtained in a recursive way, which gives rise to
the so-called recursive least squares (RLS) algorithm.

• Although the main interest of this chapter is in linear FIR filters,
Section 3.6 discusses alternative approaches, for the sake of com-
pleteness. A more in-depth discussion on nonlinear structures will
be presented in Chapter 7.

• In Section 3.7, we turn our attention to the problem of filtering when
a set of constraints on the filter parameters replaces the reference sig-
nal in the optimization process. Our main motivation is presenting
the constrained filtering case as a sort of bridge between the linear
filter theory and the non-supervised problem.

• Finally, in Section 3.8, we revisit the special case of linear prediction,
in order to discuss some particularly important properties. This dis-
cussion results in a connection between prediction and equalization
problems, which will be exploited in subsequent chapters.

Historical Notes

As is usual in textbooks, and for didactic reasons, this chapter starts from a
discussion about Wiener theory, which is founded on the MMSE estimation
criterion. However, this precedence is not historical, since the LS method, the
development of which is attributed to Gauss, dates from 1795 [119], although
Legendre first published it in 1810 [178].

The development of estimation theory in a stochastic context is derived
from the advances in statistic inference and probability theory. The appli-
cation of the MMSE criterion in the linear prediction problem gave rise
to the modern filtering theory, thanks to the works of Kolmogorov [170],
in 1939, and of the American mathematician Norbert Wiener during the
1940s, the latter definitely published in 1949 [305]. Kolmogorov oriented his
work toward discrete-time stationary processes, and his works were comple-
mented by those of Mark Krein, an eminent pupil of his. Wiener formulated
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the continuous-time optimal predictor, which required the solution of an
integral equation, known as Wiener–Hopf equation, previously developed by
the two authors in 1931 [306].

The independence, as well as the relationships, between these two
seminal works is attested by the following words of Norbert Wiener himself
in [305]:

When I first wrote about prediction theory, I was not aware that some of
the main mathematical ideas had already been introduced in the litera-
ture. It was not long before I found out that just before the Second World
War an important little paper on the same subject had been published
by the Russian mathematician Kolmogorov in the Comptes Rendus of
the French Academy of Sciences. In this, Kolmogorov confined himself
to discrete prediction, while I worked in a continuous time

As posed by Kailath in his review paper on linear filter theory [162], a
fundamental reference we use in these brief notes, Wiener stressed “the engi-
neering significance of his ideas” and “was also conscious of the problems of
actually building circuits to implement the theoretical solutions.” Such con-
cerns, together with the theoretical relevance of the mentioned results, seem
to be crucial for the growing application of linear filtering in different fields
of engineering from the second half of the last century on.

Two important results are not exposed in this chapter, but must be men-
tioned as central to the history of filtering. Such results involve recursive
solutions to optimal filtering: the Levinson–Durbin algorithm, which pro-
vides a recursive-in-order procedure and the Kalman filter, which provides
a recursive-in-time solution, by applying the sequential MMSE estimator.

In 1947, Levinson [180] formulated in a matrix form the discrete-time ver-
sion of the Wiener filter. Levinson also proposed a recursive procedure to
solve the matrix form of the Wiener–Hopf equation, based on the so-called
Toeplitz structure of the matrix. Durbin [106] exploited this result in the partic-
ular case of finding the parameters of an autoregressive model of a stationary
discrete-time series. In this case, the optimal parameters are obtained by the
Yule–Walker equations, which can be viewed as a particular case of the
Wiener–Hopf equations. This recursive solution is known as the Levinson–
Durbin algorithm.

In 1960, Rudolf Kalman formulated the optimal filtering problem in terms
of state-space concepts, within the framework of a dynamic system model.
Such formulation allows the recursive computing of the optimal MMSE fil-
ter by considering the time evolution of the state variables. In consequence,
the Kalman filter maintains its optimality in both stationary and nonstation-
ary scenarios, while the Wiener and Kolmogorov solutions were derived
in stationary contexts. For this reason, it is worth indicating the important
role of the Kalman filter in adaptive filtering theory (see [262] for interesting
reflections about it), even if these two approaches originated from different
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philosophical standpoints and had distinct motivations. In Appendix B, we
provide a brief review of Kalman filters.

The work of Widrow and Hoff in 1960 is considered to be the most
important seminal work on adaptive algorithms, since it gave rise to the cel-
ebrated LMS algorithm, also known as stochastic gradient algorithm. The
latter name is due to the concept of stochastic approximation, established by
Robbins and Monro in 1951 [252], which lies in the very essence of the LMS
algorithm.

After Widrow and Hoff’s work, a significant amount of important results
established the vast literature on adaptive systems along the last 50 years.
It worth mentioning here the family of algorithms based on the method of
least squares. It is interesting to note in [262] how the idea of a recursive
least-squares procedure was first discerned by Gauss. In modern times, the
original work is credited to Plackett [240]. In 1994, Sayed and Kailath [263]
exposed the exact relationships between the RLS algorithm and Kalman filter
theory, which led to the interesting perspectives of using Kalman filtering
results within the classical adaptive filtering framework.

3.1 Supervised Linear Filtering

The problem of supervised linear filtering can be easily stated: we have a
certain signal processing task to fulfill, and this requires that a filtering con-
figuration be properly designed. The filtering structure performs a linear
combination of a set of input samples in order to produce an output accord-
ing to the values of its free parameters. The fundamental question is how
these parameters can be chosen in a systematic and efficient way.

For now, we restrict the universe of possible answers by making an
important hypothesis: it is possible to have access to samples of the desired
response of the filter to a number of input patterns. In other words, we are
able to guide the choice process by establishing some sort of comparison
between an “ideal output” and the “actual output.” Whenever a procedure
of this nature is possible, we speak of supervised filtering. Figure 3.1 repre-
sents a basic supervised scheme, in which x(n) is the input signal, d(n) is the
desired or reference signal, y(n) is the estimated signal, and e(n) is the error
signal.

w Σ
x(n) e(n)

d(n)

y(n)

FIGURE 3.1
Supervised filtering scheme.
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The estimation of the parameters of a given filter requires a criterion and
an optimization procedure to be employed. In principle, there are many
paths toward the establishment of a supervised criterion, since there are
many ways to explore the information brought by the input signals and
the desired output. The Wiener filter is inspired in MMSE estimation, which
leads to the minimization of the mean-squared value of the error signal. The
LS approach deals with a specific realization of the error signal and does not
carry out statistical averages. Before presenting such approaches in detail, it
is worth considering some emblematic cases of supervised filtering.

3.1.1 System Identification

The problem of system identification is of great practical importance in sev-
eral branches of engineering [189], since, in general terms, it consists in
building models from available data. Having a model for an unknown sys-
tem is often very important for analysis, simulation, monitoring, and control
of the system. Such a problem may be addressed as a filtering procedure:
first, a filtering structure is chosen to serve as the model of the unknown sys-
tem; second, the parameters of this structure are chosen so that its response
be, in some sense, as close as possible to that of the unknown system.

The method can be represented as in Figure 3.2, in which a given input
signal feeds both the unknown system and the chosen model. The refer-
ence signal d(n) stands for the available measures, which are often subject to
additive noise v(n). The model provides an estimated signal so that, by min-
imizing a cost function related to the error signal, both structures respond as
similarly as possible to the same input, which may mean that the unknown
system and its proposed model perform similar input–output mappings, if
the input signal is adequately chosen.

The input signal must comply with the persistent excitation condition,
i.e., it must allow the system to be excited by an adequate variety of modes.

h

w

s(n)

d(n)x(n)

System

Model

e(n)

y(n)

ν(n)

Σ

Σ

FIGURE 3.2
System identification scheme.
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A white noise is classically used as input signal, since its power spectral
density is uniformly distributed along the frequency spectrum.

3.1.2 Deconvolution: Channel Equalization

The channel equalization problem can be seen as a dual of the identification
problem, as its aim is to find the inverse of an unknown system. A general
case of inverse identification or deconvolution is shown in Figure 3.3. In this
case, the desired signal is the system input s(n), which is to be recovered.

In the specific case of a digital communication system, we must consider
that the signal to be transmitted is composed of a sequence of symbols that
belong to a finite alphabet. As a consequence, a nonlinear decision device is
inserted at the receiver in order to allow a proper symbol recovery.

The discrete-time representation of a communication channel is usually
an FIR filter that performs a linear combination of a set of transmitted sam-
ples. This is a suitable model to the so-called intersymbol interference (IIS)
phenomenon, which corresponds to a superposition of delayed versions
of the transmitted signal. The IIS and the additive noise are fundamental
limitations of a transmission system.

The parameters of the equalizer must be optimized in order to yield an
output signal that approximates a version of the transmitted information. In
this condition (the so-called open-eye condition), the transmitted symbols can
be recovered by employing a nonlinear quantization device at the output of
the equalizer.

It is worth pointing out that channel equalization is by nature an unsuper-
vised problem, since the desired response of the equalizer is the transmitted
signal, which is unavailable at the receiver. A possible way to overcome
this limitation and allow the application of supervised filtering is the use
of training sequences. A training sequence is a signal that is transmitted
in spite of being known in advance at the receiver, so that it does not
carry any useful information, but is responsible for providing a supervised
operation mode. After the optimization procedure, the training sequence is
interrupted and the system is switched to the mode of information trans-
mission; then an unsupervised technique can be employed to preserve the
open-eye condition.

s(n) h Σr(n)

ν(n)

w Σ
x(n) e(n)

d(n)

y(n) 

FIGURE 3.3
Equalization scheme.
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Since the pioneer work by Lucky in 1965–1966 [190, 191], a vast amount
of research efforts has been devoted to this problem. Important contributions
were made to different aspect like optimization techniques, equalizer struc-
tures, adaptive algorithms, and performance evaluation. An interesting scan
of the literature is given by Ding in [99, 245, 246].

3.1.3 Linear Prediction

The idea of estimating future values of a time series from its present and
past values engenders one of the most relevant problems in signal process-
ing theory from theoretical and practical standpoints. In simple terms, the
problem of one-step prediction consists of finding a mapping F [·] that, when
applied to a set of samples of a time series x(n−1) = [x(n − 1), . . . , x(n − K)]T,
yields a suitable estimate of x(n), i.e.,

F [x(n − 1)] = x̂(n) (3.1)

The generic mapping is typically associated with a certain filtering struc-
ture with a set of free parameters. We shall consider the relevant case of
linear prediction, when the mapping in (3.1) is a linear combination of the
past samples in x(n − 1). Thus, the predictor can be implemented using an
FIR filter, the output of which is given by

x̂(n) =
K−1∑

k=0

aix(n − 1 − k) = aTx(n − 1) (3.2)

where the parameters a0, . . . , aK−1 are called prediction coefficients. As a
consequence, we define the prediction-error signal as

e(n) = x(n) − x̂(n) (3.3)

where the true value x(n) works as the reference signal, so that the linear pre-
diction problem may be described in terms of a supervised filtering scheme,
as shown in Figure 3.4. The mapping from x(n − 1) to x(n) is done by the
prediction filter or simply predictor, while the whole structure corresponds
to the so-called prediction-error filter (PEF).

The relevance of linear prediction in filtering theory is manifest, even
from a historic point of view, since such problem has been dealt with in the
fundamental works of Kolmogorov, Wiener, and Levinson, as previously
mentioned. Thereafter a great number of important works concerning the-
oretical results and applications of linear prediction has been presented in
the literature. Among them, it is worth mentioning the classical tutorial pub-
lished by Makhoul in 1975 [197] and the recent book of Vaidyanathan [297]
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Predictor
F[·] Σ

x(n)
x(n–1)

x(n–N)

x(n–2)

x(n–N–1)

e(n)

Prediction-error filter

FIGURE 3.4
Scheme of a prediction-error filter.

as excellent ways to have access to the state of the art and to some stimulating
insights on the matter.

A central aspect to be discussed in this book is the relationship between
prediction and equalization. For this reason, two properties of the PEF will
be particularly discussed: that concerning its minimum-phase response and
that related to the flat spectral shape of the output prediction error. Such
properties emerge from the application of the MMSE criterion to obtain the
optimal PEF.

The use of the MMSE criterion in an FIR filter optimization gives rise to
the aforementioned Wiener theory, to be formally presented in the sequel. It
is worth pointing out that from now on, throughout the chapter, and as a rule
in this book, all involved signals are real, zero-mean stationary discrete-time
stochastic processes.

3.2 Wiener Filtering

By considering the filtering scheme in Figure 3.1 we may express the output
signal as

y (n) =
K−1∑

k=0

wkxk (n) = wTx (n) (3.4)

where
w = [w0 . . . wK−1]T is the parameter vector
x = [x0 (n) . . . xK−1(n)]T is the vector that contains the input signals, i.e.,

the input vector
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If we have access to samples of the desired response d(n), it is possible to
build an error signal of the form

e(n) = d(n) − y(n) (3.5)

Now, considering (3.4) and (3.5) together, we note that there is a direct
dependence of the error with respect to the free parameters, which is in
accordance with our purpose of parameter optimization. If we work with the
MMSE criterion, it originates a cost function that relates the mean-squared
error (MSE) to the parameter vector w in the following form:

JMSE(w) = E
[
e2(n)

]
= E

[(
d(n) − y(n)

)2
]

= E
[(

d(n) − wTx(n)
)2

]
(3.6)

which can be rewritten as

JMSE(w) = E [e(n)e(n)] = E
[
e(n)eT(n)

]

= E
[(

d(n) − wTx(n)
) (

dT(n) − xT(n)w
)]

(3.7)

Further development and proper grouping yields

JMSE(w) = σ2
d − E

[
d(n)xT(n)

]
w − wTE [x(n)d(n)] + wTE

[
x(n)xT(n)

]
w

(3.8)

Aside from the variance of the desired signal, there are three terms that
fully characterize the cost function: E

[
x(n)xT(n)

]
, which represents the auto-

correlation matrix of x(n) (already discussed in Section 2.4.5); E [x(n)d(n)]
and E

[
d(n)xT(n)

]
, which correspond to cross-correlation measures. Let us

recall their mathematical definitions:

R = E
[
x(n)xT(n)

]
(3.9)

p = E [x(n)d(n)] (3.10)

From (3.9) and (3.10), we may rewrite the cost function (3.8) as

JMSE(w) = σ2
d − pTw − wTp + wTRw (3.11)

so that the Wiener criterion, i.e., the cost function of the MMSE criterion is
established in terms of statistical averages.
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3.2.1 The MSE Surface

A relevant aspect of the cost function obtained in (3.11) is that it is a quadratic
function of the parameters of the filter and describes an elliptic paraboloid
with a single minimum. This means that there is a single parameter vec-
tor that minimizes the MSE, the so-called Wiener solution. This is in fact an
important reason why the MSE is the dominant metric in linear supervised
filtering. In Figure 3.5, we present the MSE cost function and its contours in
a typical two-dimensional filtering problem.

The two plots confirm our initial comments and reveal the elliptical char-
acter of the cost function contours. Two properties of these elliptical contours
deserve attention:

1. Their eccentricity is related to the eigenvalues of the correlation
matrix R (see Appendix A). The larger the eigenvalues spread, the
most significant is the discrepancy between axes. Naturally, if the
eigenvalue spread is equal to 1, the contours become circular.

2. The directions of the eigenvectors of the correlation matrix deter-
mine the orientation of the axes of the contours.

In order to find the minimum of the MSE cost function, we follow a clas-
sical procedure: setting to zero the gradient of JMSE. From (3.11), it comes
that

∇JMSE(w) = 2Rw − 2p (3.12)

By forcing it to be equal to the null vector, we obtain

∇JMSE(w) = 2Rw − 2p = 0 → Rw = p (3.13)
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FIGURE 3.5
(a) The MSE cost function and (b) its contours.
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Equation (3.13) corresponds to a linear system of equations, known as
Wiener–Hopf equations, the solution of which is the Wiener solution:

ww = R−1p (3.14)

In a given problem, the application of (3.14) depends on the knowledge
of R and p and on the invertibility of R. However, if these conditions are met,
the MSE criterion gives rise to a closed-form solution, which is undoubtedly
a very strong point.

Now, it is important to keep in mind that to minimize the MSE does not
mean that a null-error signal will be produced. In effect, the MSE associated
with the Wiener solution is given by

JMSE(ww) = σ2
d − pTww − wT

wp + wT
wRww

= σ2
d − pTww

= σ2
d − pTR−1p (3.15)

As a matter of fact, in most practical cases, the right-hand term in (3.15)
does not vanish, which means that the Wiener filter is not able to perfectly
reproduce the desired signal. This can be due to factors like the presence of
noise, the use of an insufficiently flexible structure, a definitive lack of infor-
mation about the desired signal in the input signals, etc. Before we proceed
to the examples that illustrate it, let us stress a bit more the meaning of the
Wiener solution. First, we recall (3.6):

JMSE(w) = E
[
e2(n)

]
(3.16)

From (3.16), it is possible to write

∇JMSE(w) = E
[

2e(n)
∂e(n)

∂w

]
= −2E [e(n)x(n)] (3.17)

Forcing (3.17) to be equal to the null vector leads us to the condition

E [e(n)x(n)] = 0 (3.18)

This means that the error signal produced by the Wiener solution is orthog-
onal to all input signals. In a certain sense, the residual error is a parcel of
the desired signal that cannot be built due to its being uncorrelated with the
input signal. Since the residual error is orthogonal to all input signals, the
output of the Wiener filter is also orthogonal to the error signal.

It is useful now to revisit some aforementioned applications in order to
discuss concrete examples.

metrovoice
New Stamp



72 Unsupervised Signal Processing

Example 3.1 (Channel Equalization)

Let us consider the problem of channel equalization, described in Figure 3.3, and
suppose the following received signal at the output of the channel:

x(n) = s(n) + 0.4s(n − 1) (3.19)

where the transmitted signal s(n) is composed of binary (+1/−1) independent
and identically distributed (i.i.d.) samples. The equalizer is an FIR linear filter with
K coefficients, and its input vector given by

x(n) = [x(n), x(n − 1), . . . , x(n − K + 1)]T (3.20)

Let us consider that K = 2. Recalling that the transmitted signal is composed
of uncorrelated samples, we may write the correlation matrix as

R =
[

1.16 0.4
0.4 1.16

]
(3.21)

since

r(0) = E [x(n)x(n)] = E [(s(n) + 0.4s(n − 1))(s(n) + 0.4s(n − 1))]

= E
[
s2(n)

]
+ 0.16E

[
s2(n − 1)

]
= 1.16 (3.22)

and

r(1) = E[x(n)x(n − 1)] = E [(s(n) + 0.4s(n − 1)) (s(n − 1) + 0.4s(n − 2))]

= 0.4E
[
s2(n − 1)

]
= 0.4 (3.23)

Now we need the cross-correlation vector to derive the Wiener solution, but
it must be preceded by a clear determination of what is the desired signal. In the
training mode a natural choice can be

d(n) = s(n) (3.24)

The cross-correlation vector is

p =
[

1
0

]
, (3.25)

as

p(0) = E [s(n) (s(n) + 0.4s(n − 1))] = E
[
s2(n)

]
= 1 (3.26)

and

p(1) = E [s(n) (s(n − 1) + 0.4s(n − 2))] = 0 (3.27)

Finally the Wiener solution is reached:

ww = R−1p =
[

0.978
−0.337

]
(3.28)
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FIGURE 3.6
(a) Channel and (b) equalizer outputs in the absence of noise.

As mentioned above, the optimal MSE is not necessarily null. In fact, this
means that some kind of performance analysis of the Wiener solution must always
be carried out. In this example, we may inquire whether the Wiener equalizer
is efficient enough to mitigate IIS and provide correct symbol recovery. In order
to answer this question, let us first calculate the MSE associated with the Wiener
solution:

JMSE (w) = σ2
d − pTww = 1 − [

1 0
] [

0.978
−0.337

]
= 0.0216 (3.29)

In view of the magnitude of the involved signals, this residual MSE indicates
that the equalization task has been carried out efficiently. Such conclusion is
confirmed by Figure 3.6, which shows the channel and equalizer outputs. The
latter is indeed concentrated around the corrected symbols +1 and −1.

Let us now consider what happens if the channel also introduces additive
noise, assumed to be Gaussian and white (which leads to the classical acronym
AWGN—additive white Gaussian noise) and, moreover, independent of the
transmitted signal. Thus, the received signal will be

x(n) = s(n) + 0.4s(n − 1) + ν(n) (3.30)

where ν(n) stands for the AWGN, with variance σ2
ν. From (3.30), the correlation

matrix becomes

R =
[
1.16 + σ2

ν 0.4
0.4 1.16 + σ2

ν

]
(3.31)

while the correlation vector remains as shown in (3.25). The Wiener solution is
now given by

ww = R−1p =
[
1.16 + σ2

ν 0.4
0.4 1.16 + σ2

ν

]−1 [
1
0

]
(3.32)

In order to evaluate the noise effect, we consider three different variance
levels: σ2

1 = 0.1, σ2
2 = 0.01, σ2

3 = 0.001. Table 3.1 presents the Wiener solutions
for the different levels of noise, as well as the residual MSE’s.
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TABLE 3.1

Comparison between Wiener Solutions for
Different Noise Levels

Noise Variance Wiener Solution EQM

No noise [0.978, −0.337]T 0.0216

0.001 [0.977, −0.337]T 0.0227
0.01 [0.968, −0.331]T 0.0322

0.1 [0.883, −0.280]T 0.1174
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FIGURE 3.7
(a) Channel and (b) equalizer outputs in the presence of noise.

It is clear from Table 3.1 that the addition of noise modifies the performance
of the optimal equalizer. In fact, the minimization of the MSE leads the equalizer
to attempt to solve two distinct tasks: to cancel the IIS and to mitigate the noxious
effects of the noise. Since the number of parameters is fixed, this “double task”
becomes more difficult as the additive noise is more significant, which is reflected
by an increase in the residual MSE. This is also illustrated in Figure 3.7, in which
the channel and equalizer outputs are presented for the case in which σ2

ν = 0.1. In
such case, recovery is not perfect, which confirms that two optimal solutions (those
corresponding to Figures 3.6 and 3.7) can present distinct performance behaviors
according to the conditions under which the filtering task is accomplished.

Example 3.2 (System Identification)

According to Figure 3.2, let us suppose that the unknown system to be identified
is characterized by the following response:

x(n) = h0s(n) + h1s(n − 1) + h2s(n − 2) + ν(n) (3.33)

where
ν(n) is the AWGN
s(n) is composed by i.i.d. samples with unit variance
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If we consider an efficient model, in this case an FIR filter with three
coefficients, the corresponding input vector is

s(n) = [
s(n) s(n − 1) s(n − 2)

]T (3.34)

and the correlation matrix is given by

R =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ . (3.35)

To obtain the cross-correlation vector, it is necessary to determine the desired
signal. From the above discussion, the error signal must express a comparison
between the system and the model outputs. This leads to the natural choice,

d(n) = x(n) (3.36)

Since the signal s(n) and the noise are mutually independent, it follows that

p(0) = E [x(n)s(n)]

= E
[(

h0s(n) + h1s(n − 1) + h2s(n − 2) + ν(n)
)

s(n)
]

= h0E
[
s2(n)

]

= h0 (3.37)

p(1) = E [x(n)s(n − 1)]

= E
[(

h0s(n) + h1s(n − 1) + h2s(n − 2) + ν(n)
)

s(n − 1)
]

= h1E
[
s2(n − 1)

]

= h1 (3.38)

and

p(2) = E [x(n)s(n − 2)]

= E
[(

h0s(n) + h1s(n − 1) + h2s(n − 2) + ν(n)
)

s(n − 2)
]

= h2E[s2(n − 2)]
= h2 (3.39)

so that

p =
⎡

⎣
h0
h1
h2

⎤

⎦ (3.40)

and finally

ww = R−1p =
⎡

⎣
h0
h1
h2

⎤

⎦ (3.41)
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We can note that the above solution captures the essential information about
the system and is not influenced by the noise. The corresponding residual MSE can
be calculated by using (3.15). First, the variance of the desired signal is obtained
by

σ2
d = E

[
d2(n)

]

= E
[
(h0s(n) + h1s(n − 1) + h2s(n − 2) + ν(n))2

]

= h2
0 + h2

1 + h2
2 + σ2

ν (3.42)

so that

JMSE(ww) = σ2
d − pTww = h2

0 + h2
1 + h2

2 + σ2
ν

− [
h0 h1 h2

]
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
h0
h1
h2

⎤

⎦ = σ2
ν (3.43)

The interpretation of the obtained results is direct: if the order of the model is
sufficient, its parameters exactly fit the coefficients of the system, and the residual
MSE corresponds to the parcel due to noise, which cannot be modeled. Let us
now analyze what happens if a model of insufficient order (for instance, a two-tap
FIR filter) is chosen. In such case, the correlation matrix is the 2×2 identity matrix,
the cross-correlation vector is given by

p =
[
h0
h1

]
(3.44)

and the corresponding solution is

ww = R−1p =
[
1 0
0 1

] [
h0
h1

]
=

[
h0
h1

]
(3.45)

The lack of one coefficient leads to an increased MSE, if compared with (3.43):

JMSE(ww) = σ2
d − pTww = σ2

ν + h2
2 (3.46)

This simple example illustrates the difficulties that arise from the choice of a
model with insufficient approximation capability.

To summarize the discussion, we can observe that the use of the super-
vised MMSE criterion together with a linear structure makes the Wiener
approach a kind of paradigm for optimal filtering methods. However, it
is important to keep in mind two assumptions on which Wiener filter is
founded: the involved signals are wide-sense stationary; and the statistical
averages, R and p, are known. This means that the process of acquisition of
the involved signals, s(n) and x(n), precedes the process of optimization of
the filter, i.e., the calculation of the optimal parameters via (3.14).
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Now our attention must be turned to two aspects that are really frequent
in many practical cases: the need for real-time operation, and the presence
of nonstationary signals. In fact, these two requests violate the assumptions
presented above. The real-time constraint will require methods that provide
a joint process of acquisition and optimization, while the nonstationary con-
text will inhibit the use of a closed-form solution, as in (3.14), since there
will be no sense in dealing with fixed values of statistical correlations. This
new scenario leads us to the frontier between optimal and adaptive filter-
ing, or rather, between methods that are based on closed-form solutions and
those based on iterative/recursive solutions for the linear filtering problem.
A classical and didactic way to verify this is to consider first a simple iterative
method to attain the Wiener solution.

3.3 The Steepest-Descent Algorithm

We are interested in establishing a kind of learning process that eventually
leads to the optimal solution. The answer to this question is directly related
to the optimization theory: in many practical problems, the only feasible
optimization approach is exactly to resort to iterative processes. To obtain
the Wiener solution was indeed part of an optimization task, albeit a closed-
form solution prevented us from considering iterative approaches. However,
in view of the questions we have just raised, it appears to be natural that we
have to turn our attention toward them.

The iterative approach to be considered now is based on a simple idea,
i.e., to use the gradient vector of the cost function as a guide to the learn-
ing process. This is the core of the steepest-descent approach [139], which
allows that a local minimum be found by taking successive steps in a direc-
tion opposite to that indicated by the gradient vector. Mathematically, the
steepest-descent algorithm is an iterative optimization process of the form

w(n + 1) = w(n) − μ∇J (w) (3.47)

where
J(w) is the cost function to be optimized
μ is the step size

The application of this method within the Wiener filtering problem is
basically a matter of using the calculated gradient vector (3.12) in (3.47). This
leads to

w(n + 1) = w(n) − μ∇JMSE [w(n)] = w(n) − 2μ [Rw(n) − p] (3.48)
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From now on, we will consider that the factor 2 will be incorporated to
the step size, so that the iterative process to attain the Wiener solution is
given by

w(n + 1) = w(n) − μ [Rw(n) − p] (3.49)

In order to evaluate the effectiveness of such iterative procedure, we must
analyze the equilibrium points of the steepest-descent algorithm as well as
its properties of convergence. In view of this objective, we can note that (3.49)
corresponds to a linear dynamical system whose state variables are the filter
coefficients. The equilibrium points of a discrete-time dynamical system are
the points that are invariant to the iterative process. In other words, these
points are the solutions of the following equation:

w(n + 1) = w(n) → μ [Rw(n) − p] = 0. (3.50)

which can be simplified to yield the equilibrium point

we = R−1p. (3.51)

Thus, the system has a single equilibrium point, which is not surprising,
since the system is linear and this point is exactly the Wiener solution. How-
ever, the convergence is not guaranteed since we have not yet verified under
what conditions this equilibrium point is stable. In order to proceed with
this verification using concepts of dynamical system theory, let us first write
(3.49) in the following form:

w(n + 1) = [I − μR] w(n) + μp (3.52)

The stability of such a system depends on the eigenstructure of the following
matrix [139]:

B = I − μR. (3.53)

If all the eigenvalues of B lie inside the unit circle, the Wiener solution will
be a stable equilibrium point. On the other hand, if a single eigenvalue is
outside the unit circle, the entire scheme will be compromised. Clearly, the
stability of the steepest-descent algorithm is strongly dependent on the step
size μ, which serves as a sort of control parameter. The eigenvalues of B are

λB = 1 − μλR (3.54)

where λB and λR stand for a generic pair of eigenvalues. If all eigenvalues of
B are to be inside the unit circle, it is necessary that the following condition
hold:
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|1 − μλR| < 1 (3.55)

for all eigenvalues of R. The most stringent case will be reached when the
largest eigenvalue is considered, i.e.,

∣∣1 − μλRmax

∣∣ < 1 (3.56)

which means that

−1 < 1 − μλRmax < 1 (3.57)

Since both μ and λRmax are nonnegative, the relevant inequality is

−1 < 1 − μλRmax (3.58)

which yields

μ <
2

λRmax

(3.59)

This condition relates the convergence of the algorithm to a statistical
property of the input signal. This is a particular characteristic of gradient-
based iterative techniques. Let us now consider an example to complete this
topic.

Example 3.3 (Channel Equalization Revisited)

Let us return to the noiseless scenario of Example 3.1, but now our aim is to search
for the optimal filter using the steepest-descent approach. First, let us verify the
step-size upper bound. An analysis of the correlation matrix presented in (3.21)
yields

λRmax = 1.56 → μ <
2

1.56
→ μ < 1.282 (3.60)

Then, we arbitrarily choose two step-sizes, μ = 0.1 and μ = 1. We also consider
the initial condition w(0) = [0, 0]T and a number of 1000 iterations per run. In
Figure 3.8, we present the time evolution of the coefficients for both step-sizes.

The figure clearly shows that in the case of the steepest-descent algorithm,
the step-size is basically related to the convergence rate of the algorithm: the
larger the step-size, the faster the convergence (within the stability bounds). In
other words, the step-size regulates the characteristics of the transient response of
the dynamic system, whereas the Wiener solution to be reached determines the
equilibrium point to which the algorithm converges.

Another interesting way to study the evolution of the coefficients is to analyze
it against the frame of the contours of the MSE cost function. In Figure 3.9 we plot
the trajectories associated with both choices of the step-size. These trajectories
reveal a clear limitation of the steepest-descent method, which arises from its
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FIGURE 3.8
Time evolution of the free parameters for μ = 0.1 (solid line) and μ = 0.5 (dashed line).
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FIGURE 3.9
Convergence of the steepest-descent algorithm: (a) μ = 0.1 and (b) μ = 0.5.

exclusive use of the first-order derivatives: the trajectory is not directly oriented
from the initial condition to the Wiener solution, but follows the gradient direction,
i.e., a direction orthogonal to the contours.

The example also gives us a favorable opportunity to discuss a bit more
about the shape of the contours of the MSE cost function. As previously
mentioned, this shape is associated with an eigenanalysis of the correlation
matrix and the axes of the elliptical contours are determined by its eigen-
vectors. In Figure 3.10, we revisit Figure 3.5 and include the directions of
the two eigenvectors of the correlation matrix to illustrate this point. Such illus-
tration indicates that the directions of the eigenvectors are, in a certain sense,
“special directions of convergence.” The direction associated with the minor axis
works as a favorable direction, i.e., the best path to take if we are standing on a
certain contour. In contrast, the direction associated with the major axis is a kind
of unfavorable direction.
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FIGURE 3.10
Contours of the MSE cost function and directions of the eigenvectors of R.

The discussed example illustrates the efficiency of the steepest-descent
algorithm in searching for the optimal Wiener solution. However, it is worth
reconsidering the motivations in using such procedure, i.e., the idea of car-
rying out the processes of data acquisition and filter optimization jointly. In
fact, it is evident from (3.49) that the steepest-descent algorithm does not
accomplish such requirement, since the knowledge of statistical correlation
(matrix R and vector p) is as indispensable to calculate the gradient vector as
to solve the Wiener–Hopf equations. This means that an alternative method-
ology must be introduced in order to cross over the frontier from optimal
(fixed) to adaptive filtering definitively. To proceed with such discussion,
the fundamental idea of stochastic algorithm is now introduced.

3.4 The Least Mean Square Algorithm

The pioneer works on adaptive filtering date from the 1950s. From that
time, this field of research has been significantly developed and originated
a wide range of applications, methods, algorithms, and tools of analysis.
Moreover, adaptive filtering became a well-established discipline in modern
signal processing theory, with a number of relevant and classical textbooks,
like [32, 100, 139, 194, 262, 304] to mention a few.

Among the great number of efficient techniques, the LMS algorithm is
classically considered to be the “most popular” one as well as the basis
of many others, the so-called LMS-based algorithms. The most usual and
accessible way to introduce the LMS algorithm is by means of the concept
of stochastic approximation. Such concept was first posed and theoretically
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justified by Robbins and Monro in the context of providing iterative param-
eter estimation based on random observations [252].

The Robbins–Monro problem is closely related to the idea of finding a
set of optimal filter coefficients while a random signal is acquired. So the
LMS algorithm is in fact an application of the stochastic approximation
principle to the steepest-descent algorithm (which is in fact also known as
deterministic-gradient algorithm), using a stochastic estimation of the gra-
dient vector and a fixed step-size. This simple and extremely efficient idea
is historically attributed to Widrow and Hoff [303]. The stochastic approx-
imation employed in LMS is straightforward: it consists in replacing the
correlation matrix and the cross-correlation vector by instantaneous and
unbiased estimates. In doing so, we get

R̂ = x(n)xT(n) (3.61)

and

p̂ = d(n)x(n) (3.62)

so that the stochastic gradient vector becomes

∇̂J [w(n)] =
(

x(n)xT(n)
)

w(n) − d(n)x(n) (3.63)

If we apply the above expressions in the steepest-descent algorithm, it
follows that

w(n + 1) = w(n) − μ
[
R̂w(n) − p̂

]

= w(n) − μ
[(

x(n)xT(n)
)

w(n) − d(n)x(n)
]

(3.64)

or rather,

w(n + 1) = w(n) − μ[y(n) − d(n)]x(n)

= w(n) + μ[d(n) − y(n)]x(n) (3.65)

which is the expression of the LMS algorithm.
Now, it is useful to revisit the previous example to illustrate the applica-

tion of the LMS and to establish some comparisons with the steepest-descent
algorithm.

Example 3.4 (Channel Equalization with the LMS Algorithm)

Let us return to the equalization problem studied in Example 3.3. Now, we
will use μ = 0.1 and the same initial condition adopted for the LMS algorithm.

metrovoice
New Stamp



Linear Optimal and Adaptive Filtering 83

Figure 3.11 depicts the time evolution of the equalizer coefficients for the two
discussed techniques. The evolution of the LMS against the contours of the MSE
is presented in Figure 3.12.

These curves clearly reveal the stochastic character of the LMS, which is a
direct consequence of the employed approximation. Nevertheless, the LMS
is capable of leading the coefficient vector to the vicinity of the Wiener solu-
tion. The path toward the goal is notwithstanding much more “winding,”
and the convergence is characterized by a persistent degree of stochastic
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FIGURE 3.11
Time evolution of the equalizer coefficients—LMS (solid line) and steepest descent (dashed
line).
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FIGURE 3.12
Convergence of the LMS algorithm against the contours of the MSE surface.
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fluctuation around the optimum. These issues must be taken into account
whenever a performance analysis of the LMS algorithm is carried out.

The random behavior of the LMS algorithm causes its convergence anal-
ysis to be considerably harder than that of the steepest-descent algorithm.
The crucial point is the potential presence of a persistent fluctuation around
the optimal point, which is due to the stochastic nature of the algorithm,
and leads us to consider the concepts of convergence in the mean and
convergence in the mean squared sense.

A classical approach to perform the convergence analysis of the LMS
algorithm is based on the so-called independence theory, which takes into
account some simplifying hypotheses [100,139,304]. In a way, the agreement
between some analytical and experimental results justify the hypotheses of
the independence theory, even if they are not rigorously true in the context
of adaptive FIR filters.

By using independence theory, the maximum value of the step-size
obtained for the LMS is similar to that exposed in (3.59). A more conservative
value can be obtained if the maximum eigenvalue is replaced with the sum
of all eigenvalues, which corresponds to the trace of the correlation matrix,
or rather, to the total input power. This reveals that the stability of the LMS
is also related to the correlation structure of the input signal.

A second point requires the introduction of the notion of misadjustment
of the algorithm defined by

M = JMSE(w(∞)) − JMSE (ww)

JMSE (ww)
(3.66)

which provides a measure of the discrepancy between the steady-state MSE
obtained via the LMS and the ideal steady-state MSE. This misadjustment
grows with the increase of the step-size, which creates a tradeoff between
speed of convergence and precision. This is an important aspect to be taken
into account by the designer whenever the LMS is used [100].

Recently, Haykin introduced an alternative approach for the convergence
analysis of LMS [140]. Such approach is based on a Markovian representation
of the LMS algorithm and provides a quite interesting result: the LMS algo-
rithm performs a Brownian motion around the optimal Wiener solution after
a large enough number of iterations. The assumptions employed in Haykin’s
approach are less restrictive than those required by independence theory,
and they are as follows:

1. The step-size μ is sufficiently small.
2. The error signal produced by the Wiener filter is uncorrelated.
3. The input vector x(n) and the desired signal d(n) are jointly

Gaussian.
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By using these hypotheses together with the so-called Kushner’s direct-
averaging method [172], and applying an orthogonality transformation over
the coefficient vector of the filter, it can be shown that the resulting trans-
formed vector follows a stochastic recursion recognized as the discrete-time
version of the Langevin equation [140]. In thermodynamics, such equation
describes the Brownian motion of a particle in a viscous fluid. So, Haykin’s
result explains the Brownian motion executed by the LMS algorithm around
the optimal Wiener solution, after a large enough number of iterations.

3.5 The Method of Least Squares

In the previous sections, the methods for finding the optimal parameters
of a filter were established within a statistical framework: the input and
desired signals are considered to be stochastic processes; the MSE criterion
is a statistical average, and the same is valid for the correlation measures
R and p; the stochastic approximation replaces these statistical averages by
instantaneous estimates to make possible the development of a fully adap-
tive technique, the LMS. In a few words, and in accordance with classical
authors like Haykin [139], we can say that the LMS and other algorithms
derived from it are based on the Wiener filter theory. But this is not the only
approach to derive adaptive algorithms.

Certainly, in many practical scenarios, it is an idealization to rely on sta-
tistical entities, particularly when the generative model of the data is not
known. Nonetheless, it is possible to consider an alternative approach that
is more “data-oriented”, i.e., based on a given temporal realization of the
involved signals, so that a filtering criterion could be built from the available
data, for instance, by using time averages, which can be promptly calculated.

In other words, the key is no longer the optimal filter with respect to
a measure that takes into account the ensemble underlying the involved
stochastic processes, but the optimal filter for the available data we have
access to. Although both approaches are deeply interrelated, there is an
essential conceptual difference.

In view of the above comments, we may propose a new supervised cost
function based on the sum of the squares of an error signal:

JLS(w) =
Nsamples∑

k=1

λ(k)e2(k) (3.67)

where
e(n) is the error signal
λ(n) is a weight factor that can control the degree of relevance of the error

produced in the instant n
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We assume that λ(n) takes the form of a forgetting factor, i.e., that it tends
to attenuate the relevance of older samples, which is justifiable, for instance,
whenever one deals with a time-varying environment:

λ(n) = λNsamples−n (3.68)

where
0 < λ≤ 1 is a parameter that controls the degree of penalization of older

samples (if λ = 1, they are not penalized at all)
Nsamples is the number of available samples

The cost function given by (3.67) can be rewritten as

JLS(w) =
Nsamples∑

k=1

λ(k)e2(k)

=
Nsamples∑

k=1

λ(k)e(k)eT(n)

=
Nsamples∑

k=1

λ(k)
[
d(k) − wTx(k)

] [
dT(k) − xT(k)w

]
(3.69)

Further manipulation leads to

JLS(w) =
Nsamples∑

k=1

{
λ(k)d2(k) − λ(k)d(k)xT(k)w − λ(k)wTx(k)d(k)

+ λ(k)wTx(k)xT(k)w
}

(3.70)

which finally yields

JLS(w) =
Nsamples∑

k=1

λ(k)d2(k) − π(Nsamples)
Tw − wTπ(Nsamples) + wT�(Nsamples)w

(3.71)

where

�(Nsamples) =
Nsamples∑

k=1

λ(k)x(k)xT(k) (3.72)
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and

π(Nsamples) =
Nsamples∑

k=1

λ(k)x(k)d(k) (3.73)

It can be noted that �(Nsamples) and π(Nsamples) are in fact tempo-
ral estimates of the correlation matrix and of the cross-correlation vector,
respectively. The gradient of (3.71) is

∇JLS(w) = −2π(Nsamples) + 2�(Nsamples)w (3.74)

and, finally, the optimal solution is found by imposing the null-gradient
condition,

wLS = �−1(Nsamples)π(Nsamples) (3.75)

So, the presented approach, which in fact corresponds to the applica-
tion of the classical LS method to the filtering problem, leads to a solution
quite similar to that of the Wiener–Hopf equations. For this very reason, it
is worth emphasizing the conceptual contrast: from the standpoint of the LS
approach, the solution (3.75) is exact and optimal for the available dataset.
On the other hand, the solution could also be interpreted as an attempt of
estimating the Wiener solution, which, in itself, belongs to the “ideal world”
of the ensemble averages.

There remains the task of building an adaptive algorithm for the LS
method. A promising step is to consider the possibility of updating the opti-
mal solution on an iterative basis. In other words, when new data becomes
available, the algorithm must update the optimal solution in order to take
them into account, which produces an adaptive scheme in a rather natural
way, as presented below.

3.5.1 The Recursive Least-Squares Algorithm

We may formulate a preliminary algorithm to calculate the matrix (3.72) and
the vector (3.73) at each time instant using all available data up to the present
sample and providing the optimal parameter vector via (3.75). This solution
is conceptually satisfactory, but it gives us the clear impression of being sig-
nificantly demanding from a computational standpoint, particularly under
the perspective of dealing with huge amounts of data. A more pleasant situ-
ation would be reached if the calculations were made in accordance with an
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iterative “Kalman-like” spirit. Interestingly, this is not particularly difficult
if we rewrite (3.72) as

�(n) =
n∑

k=1

λ(k)x(k)xT(k) = λ(n)x(n)xT(n) +
n−1∑

k=1

λ(k)x(k)xT(k) (3.76)

and (3.73) as

π(n) =
n∑

k=1

λ(k)x(k)d(k) = λ(n)x(n)d(n) +
n−1∑

k=1

λ(k)x(k)d(k) (3.77)

If we replace λ(k) by the forgetting factor, as posed in (3.68), it
follows that

�(n) =
n∑

k=1

λn−kx(k)xT(k) = x(n)xT(n) + λ

n−1∑

k=1

λn−k−1x(k)xT(k)

= x(n)xT(n) + λ�(n − 1) (3.78)

and

π(n) =
n∑

k=1

λn−kx(k)d(k) = x(n)d(n) + λ

n−1∑

k=1

λn−k−1x(k)d(k)

= x(n)d(n) + λπ(n − 1) (3.79)

From now on, as shown in the last equations, the time indices are incorpo-
rated into � and � to emphasize their characteristic of temporal estimations
that depend on the quantity of available data.

From (3.78), the temporal autocorrelation matrix is obtained recursively,
but it must be inverted to provide the optimal solution. In order to avoid
direct matrix inversion, it is suitable to make use of an elegant mathemat-
ical result known as matrix inversion lemma [128]. Using this lemma, it is
possible to update the inverse of � directly by

�−1(n) = λ−1�−1(n − 1) − λ−2�−1(n − 1)x(n)xT(n)�−1(n − 1)

1 + λ−1xT(n)�−1(n − 1)x(n)
(3.80)

Such iterative calculation, together with some definitions of auxiliary
variables, leads to the RLS algorithm, depicted in Algorithm 3.1 [139]:
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Algorithm 3.1: RLS Algorithm
1. Initialize w(0) and �(0). Typically, the initial value of the matrix

P(0), which corresponds to the inverse of �, is taken to be a diagonal
matrix with small values.

2. For each new received sample, update the weights according to the
following equations:

γ(n) = λ−1�−1(n − 1)x(n)

1 + λ−1xT(n)�−1(n − 1)x(n)
(3.81)

ξ(n) = d(n) − wT(n − 1)x(n) (3.82)

w(n) = w(n − 1) + γ(n)ξ(n) (3.83)

P(n) = λ−1�−1(n − 1) − λ−1γ(n)xT(n)�−1(n − 1) (3.84)

Although a thorough convergence analysis of the RLS transcends the
scope of this book, it is worth mentioning at least two characteristics of this
technique in comparison with the LMS. First, the rate of convergence of the
RLS does not depend on the eigenvalue spread of the correlation matrix, so
that it converges faster than LMS techniques with stationary correlated input
signals. Also, if we consider a stationary environment and assume λ = 1, the
idea of misadjustment is not so strongly applicable in the case of the RLS, as
the excess MSE tends to zero when the number of available samples tends to
infinity [139]. This is, to a certain extent, expected, as we are working with
temporal averages that will tend to approximate the expected values in the
exposed limit.

3.6 A Few Remarks Concerning Structural Extensions

So far, our discussion was carried out under a well-defined structural frame-
work: that associated with a linear combiner, whereof an FIR filter is a
particular case. However, the idea of employing an MSE cost function is
not fundamentally related to a particular filtering structure. In principle, this
approach could be used in the context of a generic input–output mapping
with free parameters. Although a complete analysis of this subject is beyond
the scope of this chapter, two possible structural extensions with respect to
the linear combiner deserve to be briefly discussed: the use of an infinite
impulse response (IIR) filter and of a nonlinear structure.
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3.6.1 Infinite Impulse Response Filters

The use of IIR filters in signal processing leads to a very general lin-
ear formulation. In particular, the use of IIR filters can lead to models
more parsimonious in terms of number of free parameters than those
obtained employing FIR filtering. In addition to that, it is possible to con-
sider the idea of adapting the free parameters of a generic IIR filter of
the form

Ka∑

k=0

aky(n − k) =
Kb∑

p=0

bkx(n − p) (3.85)

via the Wiener paradigm, i.e., choosing the values of ai, i = 1, . . . , Ka and bj,
j = 1, . . . , Kb that minimize the MSE cost function.

The first step of this procedure consists in calculating the gradient of the
MSE with respect to the free parameters of the filter. The main difficulty lies
in the need for differentiating the filter output with respect to its param-
eters, because the existence of feedback imposes a clear dependence with
respect to past values of the output. In an adaptive process, such values will
be dependent on past values of the parameters [274].

This fact can be dealt with by resorting to certain approximations.
However, even with these approximations and the concrete perspective of
obtaining an estimate of the gradient vector, there are two additional prob-
lems that must be dealt with and that are generally absent from the FIR
framework: the existence of local minima in the MSE cost function and
the possibility of unstable behavior during the adaptation process [275].
These difficulties open the possibility that more powerful search methods
be considered whenever one deals with IIR adaptive filtering [20].

A complete and rigorous work on adaptive IIR filters can be found in
[249]. Now, it is suitable to extend our discussion beyond the context of linear
structures, since it will be useful in the sequel of the book.

3.6.2 Nonlinear Filters

Typically, an option for a nonlinear structure is justifiable in solving prob-
lems that require more flexible mappings than those engendered by linear
devices. In other words, the choice for a nonlinear structure ideally tends to
allow a more satisfactory level of performance, but a crucial question is the
optimization of its parameters.

Whenever a structure is characterized by a nonlinear dependence of its
output with respect to the free parameters, it is no longer licit to expect that
the MSE cost function present a single minimum. In fact, the existence of
local minima and other equilibrium points like saddle points becomes the
rule. This is the case, for instance, in some neural-network-based approaches,
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in the context of which it might be desirable to employ techniques with a
significant global search potential, e.g., genetic algorithms, instead of those
based on the derivatives of the MSE surface.

This more complicate scenario is, to a certain extent, avoided whenever
one chooses a nonlinear structure that is linear with respect to its free param-
eters. In such case, it is possible to employ the classical supervised tools and
results discussed in this chapter in a quite direct manner. On the other hand,
to build a device that is both linear with respect to the parameters and effi-
cient may require some structural choices that are not always simple to deal
with. A suitable model to be used in this context is, for instance, a Volterra
filter [201].

The problem of nonlinear filtering is discussed in more detail in
Chapter 7, in which the above mentioned topics will be revisited. For now,
such brief comments on the theme are useful to illustrate how the straight-
forward idea of MSE optimization becomes intricate with the introduction of
nonlinear devices.

3.7 Linear Filtering without a Reference Signal

Throughout this chapter, the linear filtering problem has been established in
a supervised context, which is characterized by the presence of a desired or
reference signal d(n) that guides the process of optimization and/or adap-
tation of the system at hand. The existence of a reference signal, together
with an appropriate criterion, leads to a linear solution and to a convex
cost function.

However, the explicit use of reference signal is not necessarily easy, or
even feasible in some practical problems. Such problems can be separated in
two very distinct classes:

• The reference signal is indeed desired but unavailable, so that we
must obtain a certain amount of a priori knowledge about its nature
as well as its statistic properties. This is the essence of unsupervised
or blind processing, which normally leads to nonlinear optimization
problems and multimodal cost functions. This book deals with this
scenario from the next chapter on.

• The reference signal is not desired per se or even unnecessary for a
given task. So, it can be purposely replaced by a set of constraints
on the filter coefficients that make possible the optimization and/or
adaptation process. Such procedure can be understood as a kind of
“missing link” between the “separated worlds” of supervised and
unsupervised filtering.
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3.7.1 Constrained Optimal Filters

A typical problem in which a reference signal is replaced by a set of suitable
constraints is the so-called linearly constrained minimum variance (LCMV)
filter, in which the minimization process is not carried out with respect to
an error signal, but directly over the output signal. In order to present the
problem, let us consider again the output of a linear combiner, given by

y(n) = wHx(n) (3.86)

Notice that, in this case, we are assuming that all signals are complex-valued.

Clearly, the direct minimization of E
[∣
∣y(n)

∣
∣2

]
leads to the trivial solu-

tion w = 0. However, a set of nontrivial coefficients can be obtained by the
following procedure:

Minimize E
[∣∣y(n)

∣∣2
]

= E
[
wHx(n)xH(n)w

]
= wHRw (3.87)

subject to

CHw = g (3.88)

The resulting optimization problem corresponds to the minimization of
a quadratic form given a set of linear constraints, which can be performed
in accordance with the method of Lagrange multipliers. The use of Lagrange
multipliers requires the minimization of the following expression [139]:

1
2

wHRw + λH
(

CHw − g
)

(3.89)

In order to find all the relevant parameters, we must set to zero the gradient
of (3.89), which leads to

Rw + Cλ = 0 (3.90)

Then, from (3.89), the Lagrange multipliers are

λ = −
(

CHR−1C
)−1

g (3.91)

and the optimal coefficients are given by

wopt = R−1C(CHR−1C)−1g (3.92)

Hence, we reach a closed-form solution, which depends on the autocor-
relation matrix, as well as in (3.14), but also on the parameters defining the
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CHw=g

wopt

FIGURE 3.13
Illustration of the solution to the LCMV filtering problem.

constraints. In fact, it can be observed that (3.88) defines a hyperplane that
intercepts the elliptical paraboloid defined by Equation 3.87, so that the inter-
section establishes the optimal point in (3.92), as illustrated by Figure 3.13.
Having the problem been stated and solved, it is useful to discuss a relevant
scenario of application.

Example 3.5 (Minimum Variance Distortionless Response Beamformer)

Let the linear combiner of Equation 3.86 correspond to the model of an antenna
array, i.e., a set of antennas disposed in accordance with some geometric pat-
tern, for instance a uniform linear array (ULA), as illustrated in Figure 3.14. Each
antenna is supposed to be omnidirectional and is endowed with a complex gain
that, assuming a baseband model, is able to modify the phase and the amplitude

...

Output

Combiner

d
Antenna 0 Antenna 1 Antenna M–1...

Σ

W0 W1 WM–2 WM–1

FIGURE 3.14
Structure of a ULA.
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of the captured signal. When a plane wave impinges on the ULA, the structure
performs spatial sampling and filtering of the incident signal.

The objective of a minimum variance distortionless response (MVDR) beam-
former is twofold: to preserve a given target signal and to minimize the interference
of other sources. The desired signal is supposed to propagate according to a known
direction of arrival (DOA), while interference signals possess different incidence
angles. Hence, the MVDR beamformer provides a selective filtering in the DOA
domain, as well as temporal filters provide selectivity in the frequency domain.
The response, or radiation pattern, of the array is given as a function of the electric
angle, defined by

θi = 2πd
λ

φi (3.93)

where
d is the spacing between adjacent elements of the array
λ is the wavelength of the incident signal
φi is the direction of arrival, which lies within the range (−π/2, π/2]

Under these conditions, let us suppose a given signal of interest with electric
angle θo, being all other signals considered to be interferers. The received vector
due to the transmitted signal so(n) is given by a(θo)so(n), where a(θo) is the
so-called steering vector, defined by

a(θo) =
[
1, e−jθo , e−j2θo , . . .

]T
(3.94)

Thus, considering all signals and corresponding directions of arrivals, the
received vector can be expressed as

x(n) = As(n) (3.95)

where A is a matrix of the form

A =

⎡

⎢⎢⎢
⎣

1 1 · · · 1
e−jθ1 e−jθ2 · · · e−jθN

e−j2θ1 e−j2θ2 · · · e−j2θN

...
...

...
...

⎤

⎥⎥⎥
⎦

(3.96)

Since the aim is to eliminate all impinging signals except the desired signal,
the ULA will work as a notch filter in the electric angle domain. With this purpose,
we can formulate the problem of finding the coefficients of the array as

Minimize E
[∣∣y(n)

∣∣2
]

= E
[
wHx(n)xH(n)w

]
= wHRw (3.97)

subject to

wHa(θo) = 1 (3.98)

So that the optimal parameters are

wopt = R−1a(θo)

aH(θo)R−1a(θo)
(3.99)
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The approach can be extended to several desired signals employing a
matrix of constraints, in which each column is associated to a given DOA.
Similar procedures can be employed in different applications, as posing
constraints in the frequency domain for temporal filters, and even in using
constraints to incorporate particular filtering behaviors [250]. Finally, adap-
tive algorithms can also be derived to find the optimal solution in (3.99), as
shown in the sequel.

3.7.2 Constrained Adaptive Filters

As in the problem of Wiener filtering, for several cases it is important to
derive adaptive procedures for finding the LCMV solution. This can be
accomplished in lines very similar to those whereby we reached the LMS
and RLS algorithms. As a matter of fact, the two algorithms we shall briefly
present are counterparts to those classical adaptive techniques.

A pioneer result was presented in 1972, when Frost proposed the LMS-
based algorithm for LCMV filtering [114], summarized in Algorithm 3.2.

Algorithm 3.2: LMS-Frost Algorithm
1. Initialize w(0)

2. Update the weights according to the following equations:

w(n + 1) = P
[
w(n) − μx(n)y∗(n)

] + C
(

CHC
)−1

g (3.100)

where

P = C
(

CHC
)−1

CH (3.101)

It can be noted that the term in brackets in (3.100) is analogous to the
unconstrained LMS algorithm. The role of the matrix P and vector q con-
sists in keeping the updated coefficients in the hyperplane defined by the
constraints.

Griffiths and Jim proposed an alternative and important approach in
1982, the so-called general sidelobe canceller (GSC) [131]. In contrast with the
LCMV approach, the GSC converts the constrained problem into an uncon-
strained one. A closed-form solution can also be obtained and either the LMS
or the RLS algorithms can implement the technique in an adaptive context,
since we return to unconstrained optimization.

Finally, in 1996, Resende et al. proposed an RLS-based algorithm for
LCMV filtering [251]. As in the Frost approach, their technique deals directly
with constrained optimization and provides faster convergence with an
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increase of the computational cost, which depends on the number of con-
straints. Robustness to round-off errors is also discussed in the mentioned
reference, as this is a well-known concern of RLS techniques.

The works by Frost, Griffiths, and Resende provide important results to
the theory of LCMV adaptive filtering, and a number of interesting propos-
als and applications in array processing and communications can be derived
from these approaches [84]. Moreover, constraints may be introduced in
order to provide some specific behavior for the filter response. For instance,
in [250], the method is used to derive a linear phase adaptive filter. Further-
more, the PEF introduced in Section 3.1.3 can be obtained from a constrained
optimization procedure, so that the PEF can be understood in the context of
linear filtering without reference signal, as shown in the next section.

3.8 Linear Prediction Revisited

The parameters of a linear predictor, i.e., the prediction coefficients, can be
derived from the MMSE criterion by minimizing mean-square prediction
error E

[
e(n)2], where e(n) is defined in (3.3). The calculation of the optimal

prediction coefficients is straightforward and, by comparing (3.3) with (3.5),
we observe that the linear prediction appears as a particular case of Wiener
filtering where the desired signal is the input x(n) itself

d(n) = x(n) (3.102)

while the input vector is now composed of the past samples of the input
signal

x(n − 1) = [x(n − 1), x(n − 2), . . . , x(n − K)]T (3.103)

The MMSE procedure leads to the optimal Wiener solution as given in
(3.14). However the cross-correlation vector between the desired and the
input signals is now composed by the input autocorrelation elements:

p = [r(1), r(2), . . . , r(K)]T (3.104)

where r(k) = E [x(n)x(n − k)].
Clearly, since we assume that all signals are stationary, the autocor-

relation matrix remains unchanged with respect to the temporal index of
the input vector. Hence, the vector of the optimal prediction coefficients is
given by

w = R−1p (3.105)
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With this solution at hand, it is suitable to discuss two interesting
properties mentioned in the beginning of this chapter.

3.8.1 The Linear Prediction-Error Filter as a Whitening Filter

As previously discussed, the prediction error e(n) depends on the present
and past values of the input signal x(n). Assuming that we are using an
infinite number of past samples to estimate the current sample, we have

ef (n) = x(n) −
∞∑

k=1

a∗
k x(n − k) (3.106)

where the prediction coefficients are obtained by minimizing the MSE cost
function defined in (3.6). Therefore, the following relationship holds

∂ E
[
ef (n)2

]

∂ak
= 0 (3.107)

which can be expressed as

2 E
[

ef (n)
∂ef (n)

∂ak

]
= 0 (3.108)

Differentiating (3.106) and substituting in (3.108) yields

E
[
ef (n) x(n − k)

] = 0, k ≥ 1 (3.109)

This last expression shows that the PEF produces an output sample that
is orthogonal to all past samples of x(n). On the other hand, according to
(3.106), any past output sample, ef (n−k), also represents a linear combination
of x(n − k) and all its past samples. Thus, ef (n − k) is also orthogonal to
ef (n), i.e.,

E
[
ef (n) ef (n − k)

] = 0, k ≥ 1 (3.110)

Equation 3.110 reveals that a PEF with a sufficiently large number of coeffi-
cients will produce uncorrelated output samples, hence acting as a whitening
filter [32].
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3.8.2 The Linear Prediction-Error Filter Minimum Phase Property

Let the transfer function of a PEF be given by

Af (z) =
K∑

k=0

a∗
K, kz−k (3.111)

Let also zi, i = 1, . . . , K denote the zeros of Af (z). Then, we can rewrite
(3.111) as

Af (z) = B(z)(1 − zb z−1) (3.112)

where zb is a zero of af (z), and

B(z) =
K∏

i=1
i�=b

1 − ziz−1 (3.113)

Thus, the MSE can be rewritten in the following form:

E
[∣
∣ef (n)

∣
∣2

]
= 1

2π

π�
−π

Sf (e
jω)dω

= 1
2π

π�
−π

Sx(ejω)

∣∣∣Af (e
jω)

∣∣∣
2

dω (3.114)

where
Sf (ejω) and Sx(ejω) denote the power spectral densities of the prediction

error and the input signal, respectively
Af (ejω) represents the frequency response of the PEF

Substituting (3.112) in (3.114), and expressing zb in terms of its absolute
value ρb and phase ωb, it comes

E
[∣∣ef (n)

∣∣2
]

= 1
2π

π�
−π

Sx(ejω)

∣∣∣ B(ejω)

∣∣∣
2 ∣∣∣1 − zbe−jω

∣∣∣
2

dω

= 1
2π

π�
−π

Sx(ejω)

∣∣∣ B(ejω)

∣∣∣
2 [

1 − 2ρb cos (ω − ωb) + ρ2
b

]
dω

(3.115)
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Now, assuming that all parameters of b(z) are already optimized accord-
ing to the Wiener criterion, then

∂ E
[∣∣ef [n]∣∣2

]

∂ρb
= 1

2π

π�
−π

Sx(ejω)

∣∣∣ Bs(ejω)

∣∣∣
2

[−2 cos (ω − ωb) + 2ρb] dω = 0

(3.116)

Since both Sx(ejω) and | b(ejω)|2 will always be nonnegative, then ρb −
cos(ω − ωb) must, necessarily, assume positive and negative values in order
that (3.116) be valid. Therefore, since | cos(ω − ωb)| ≤ 1 for any ω, ρb should
be less than 1, which means that all zeros zi (i = 1, . . . , L) should necessarily
be located inside the unit circle in the complex z-plane. In conclusion, the
FEP is a minimum-phase filter.

3.8.3 The Linear Prediction-Error Filter as a Constrained Filter

As previously mentioned, the PEF provides a direct mapping between the
input signal and the error signal. Such mapping can be implemented by an
FIR filter

e(n) = x(n) −
K∑

k=1

wf ,kx(n − k)

= wT
f x(n) (3.117)

where

wf = [1, −w1, −w2, . . . , −wK]T (3.118)

By doing so, the search for the optimal PEF can be carried out in an LCMV
context, in accordance with (3.87) and (3.88). Let us define

C = [
1 0 · · · 0

]T (3.119)

and

g = 1 (3.120)

Then, from (3.92), the following solution is reached

wf = R−1C
CTR−1C

(3.121)
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i.e., the prediction coefficients are given by (3.105). This is an alternative way
to build the PEF and highlights that the PEF design can be seen as a problem
of linear filtering without a reference signal.

The above results open some perspectives that deserve to be further
exploited: in fact, in the problem of channel equalization, it is usual to
assume that the transmitted signal is a sequence of independent and iden-
tically distributed (i.i.d.) random variables. Therefore, the transmitted signal
is uncorrelated, which means that the equalizer works as a whitening filter.
This requirement naturally leads to the idea of considering the use of an FEP
in the equalization process, when a training sequence is not available.

Equalization without training sequence, i.e., unsupervised or blind
equalization is a central subject of this book, which will be studied from
now on.

3.9 Concluding Remarks

In this chapter, we presented the fundamental concepts of optimal and
adaptive filtering, which constitute the theoretical basis of the studies on
unsupervised signal processing.

After a brief presentation on the principles and motivations of supervised
filtering, we exposed the classical Wiener theory in the context of the search
of optimal parameters of an FIR linear filter and derived the Wiener–Hopf
equations. As an illustration, we applied the results in some representative
examples, like system identification and channel equalization.

Instead of using the Wiener–Hopf equations, the optimal parameters may
also be obtained via iterative procedures. We developed the steepest-descent
technique, a well-established way to reach the domain of truly adaptive algo-
rithms. Based on the Robbin–Monro principle of stochastic approximation,
we derived the LMS algorithm, and briefly discussed some convergence
issues of this celebrated technique, including some recent results provided
in [136].

Afterward, we considered another family of optimal and adaptive filter-
ing methods, based on the LS criterion, in which we work with a given set of
available data and not with statistic averages. We derived the normal equa-
tions that provide the optimal LS solution for the filter parameters. By using
an appropriate update of these averages as new data is available, we derived
the recursive LS algorithm.

Although the focus of this chapter is on linear FIR filters, we provided
a brief discussion about alternative structures, including IIR and nonlinear
filters. A more in-depth presentation on nonlinear filtering will be given in
Chapter 7.
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After the discussion about alternative structure, we turned our attention
to the problem of optimal and adaptive filtering without a reference signal,
since it is the very essence of unsupervised signal processing. In the con-
text of this chapter, we considered the case in which the reference signal is
replaced by a set of linear constraints on the filter coefficients. In this case,
the optimization process still leads to a linear solution. This is why we con-
sidered such problem as a link between supervised filtering and the “truly
blind” techniques, where the original information must be recovered from
the observed signal.

Finally, we closed the chapter by revisiting linear prediction theory,
deriving the optimal solution for the prediction coefficients in the MMSE
context. We have shown some important properties of the error predic-
tion filter, not only for the sake of completeness, but also to establish some
relationships between prediction and equalization that will be useful in the
sequel.

It is worth emphasizing that many issues of this chapter are discussed
in a number of important works. However, it is important to put together
some results in order to establish a solid foundation and suitable links before
starting to consider the problem of unsupervised filtering.
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4
Unsupervised Channel Equalization

As pointed out in Chapter 3, supervised signal processing is characterized
by the presence of a desired or reference signal that guides the process of
parameter optimization and/or adaptation. The reference signal can also be
replaced by a set of constraints, as shown in the discussion on LCMV and
prediction-error filters (PEF). Even so, the problem can be solved within a
framework of linear optimal filtering.

A different scenario occurs when the process of parameter optimization
and/or adaptation cannot be guided because a reference signal is by no
means available. This situation establishes the problem of unsupervised fil-
tering, the solution of which is not so directly attained by the linear methods
previously discussed.

Unsupervised signal processing has been an exciting theme of research
for at least three decades. It finds potential applications in practically all
fields where more classical techniques of digital signal processing have
been employed: telecommunications, speech and audio processing, radar
and sonar, biomedical signals and images, geophysics, etc. In such fields,
unsupervised methods can be required for channel identification and equal-
ization, source separation, image deconvolution, data clustering, and
others.

This chapter presents the foundations of unsupervised filtering methods
and focuses on the problem of channel equalization, which is an unsuper-
vised problem by nature, as we have already mentioned. In addition to
that, such a problem is characterized by the requirement of real-time and
low computational burden, due to the practical operation conditions of a
communication system. For this reason, we are particularly oriented to unsu-
pervised adaptive techniques, although batch methods provide interesting
results in a number of off-line applications [70,137,138]. In order to properly
present the fundamental principles of unsupervised signal processing and
expose the main techniques to be used in channel equalization, this chapter
is organized as follows:

• Section 4.1 establishes the general problem of unsupervised deconvo-
lution, whereof equalization is a particular case. This section poses
some important conceptual statements in order to pave the way for
the subsequent theoretical results.

• Section 4.2 presents two main results: the Benveniste–Goursat–Ruget
and the Shalvi–Weinstein (SW) theorems. Such theorems establish
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104 Unsupervised Signal Processing

theoretical conditions for blind equalizations, over which effective
methods and algorithms may be implemented.

• Once the theoretical foundation is established, we turn our attention
to adaptive techniques in Section 4.3. We discuss the so-called Buss-
gang algorithms, which play a central role in this chapter, devoted to
SISO channels. Among the great number of proposals found in the
literature, we focus on a representative group: the decision-directed
(DD), Sato, and Godard algorithms.

• Section 4.4 presents the Shalvi–Weinstein algorithm (SWA), which dif-
fers from the previous ones in its underlying mathematical basis,
since it is derived from the corresponding SW theorem. The section
includes both constrained and unconstrained versions of the SWA.

• Section 4.5 presents the super-exponential algorithm (SEA) which is
also derived from SW framework, with the aim of accelerating the
convergence of the techniques presented previously.

• In Section 4.6, we turn our attention to the study of equilibrium solu-
tions of blind equalization criteria. Due to their practical relevance,
we give specific attention to the DD and the constant modulus (CM)
criteria.

• Finally, in Section 4.7, we discuss the relationships between the CM and
the SW criteria and consider the relationships between these criteria
and supervised approaches.

Historical Notes

The application of adaptive solutions in digital communications and, specif-
ically, in channel equalization, dates back to the 1960s, with the work of
Lucky [190,191], who is referred to as the inventor of the adaptive equalizer.

Lucky was the first to propose the so-called zero-forcing (ZF) method to
be applied in FIR equalization. The ZF criterion is an ingenious approach that
is rather intuitive for communications engineers, since it aims to minimize
(force to zero) the intersymbol interference (ISI) caused by the dispersive
effect of the channel. The ZF algorithm proposed by Lucky is an adap-
tive procedure to adjust the coefficients of the FIR equalizer, so that the IIS
be set to zero. In a noiseless situation, the optimal ZF equalizer tends to be
the inverse of the channel.

In a second proposal, Lucky extended his approach to the tracking mode
of operation and introduced the so-called decision-directed equalizer. As
discussed later in this chapter, the DD method is an unsupervised but not
robust strategy, since its effectiveness depends on the initial condition of the
equalizer coefficients.

The first application of a robust unsupervised strategy is credited to
Sato in 1975 [260]. Sato proposed an adaptive equalizer to work with pulse
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amplitude modulation (PAM) signals. The approach gave rise to a number
of interesting algorithms, particularly throughout the 1980s, many of which
have been derived from an intuitive starting point.

A first theoretical landmark was the work of Benveniste et al. [41] in 1980,
which stated fundamental conditions for blind deconvolution. Moreover, the
authors proposed a class of unsupervised algorithms, which encompasses
the Sato algorithm, and studied their convergence properties. Complexity
was an issue, as the method required the equalization of probability density
functions (pdfs) or, equivalently, of all the infinite higher-order statistics of
the involved signals.

Also in 1980, Dominique Godard proposed a new class of cost functions
to be applied to complex signals, such as quadrature amplitude modula-
tion (QAM) signals [118]. Later, in 1983, Treichler and Agee exploited the
structural properties of the transmitted signal to design a cost function. In
particular, the idea of restoring the CM properties of some modulations
was used in the constant modulus algorithm (CMA) [292], probably the
most investigated unsupervised adaptive algorithm for blind equalization.
Interestingly, the CMA is identical to one of the members of the class of algo-
rithms proposed by Godard. That is why, in general, credit is given to both
works for the formulation of the approach.

The CM, Sato, and other algorithms were shown to belong to the
class of the so-called Bussgang algorithms, introduced by Godfrey and
Rocca [125] and Bellini and Rocca [36]. In [35], Bellini provides an inter-
esting survey of Bussgang methods. The term “blind equalization” seems
to have been first introduced by Benveniste and Goursat in a paper that
appeared in 1984 [40], in which the authors proposed an update proce-
dure composed by a combination between both the DD and Sato algo-
rithms. In 1987, Picchi and Prati proposed the “stop-and-go” algorithm [239],
which, again, combined the Sato and DD strategies to reach a procedure
that continues or stops the adaptation process, depending on a reliability
criterion.

A second theoretical landmark occurred in 1990 when Shalvi and
Weinstein [269] significantly simplified the conditions for blind deconvolu-
tion as previously stated by Benveniste et al. Before their work, the general
belief was that infinite statistics were required to guarantee ZF equalization.
Shalvi and Weinstein showed that ZF equalization can be achieved if only
two statistics of the involved signals are equalized. Actually, they proved
that, if the fourth-order cumulant (kurtosis) is maximized and the second-
order cumulant remains the same, then the recovered signal would be a
scaled and rotated version of the transmitted signal. Later, they also proved
that other higher-order statistics could be used to ensure perfect equaliza-
tion [271]. This result was very important to provide theoretical support
to the proposition of blind equalization criteria and algorithms with low
complexity burden. In 1993, the same authors proposed a cumulant-based
algorithm called super-exponential algorithm [270].
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Many other important works and approaches have been presented in the
vast literature on the subject. A nice and helpful scan of the literature can be
found in [99].

4.1 The Unsupervised Deconvolution Problem

The importance of convolution is notorious, as it models the input–output
mapping of a linear time-invariant system. Deconvolution is the inverse
mathematical operation that allows the recovery of the input signal from
the output signal. If the system response is available, it is relatively straight-
forward to develop both time-domain and frequency-domain algorithms to
perform deconvolution.

An early application of deconvolution has been in seismic signal process-
ing. Robinson developed a pioneer work on the subject in his PhD thesis at
MIT [253]. His research attracted the attention of Wiener and Levinson, both
working at MIT at that time. In fact, Robinson’s work represented the first
successful application of the recently developed Wiener theory on predic-
tion and filtering. His aim was to obtain information about the structure of
the Earth by the estimation of the impulse response of a layered earth model,
i.e., an FIR model.

The problem became intricate though, since an estimate of the input signal,
the so-called seismic wavelet, was not available. Such lack of information
characterizes the problem as unsupervised. To solve it, Robinson derived the
predictive deconvolution procedure by considering two simplifying hypothe-
ses [139]: (1) the seismic wavelet is the impulse response of an all-pole system,
so that it is necessarily minimum phase; (2) the impulse response of the layered
earth model behaves like a white noise, so that it has a flat spectral shape.

Indeed, if we compare the above hypotheses with the properties of the
PEF given in Sections 3.8.1 and 3.8.2, we verify that the desired impulse
response of the model may be recovered as a prediction-error signal when
the output of the model (i.e., the measured signal that is recorded in a
seismograph) is applied to the input of a PEF.

Robinson’s approach can be generalized as follows. If a given signal x(n)

obeys a convolution relationship,

x(n) = s(n) ∗ w(n) (4.1)

where s(n) is an uncorrelated (white) signal and w(n) is a minimum-phase
impulse response, we can recover s(n) and w(n) in an unsupervised way by
obtaining the prediction-error signal

ef (n) = x(n) −
K∑

k=1

akx(n − k) (4.2)
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Except for a constant factor, this signal corresponds to the recovered
version of the input signal if K is large enough to provide an effective whiten-
ing of x(n). The prediction coefficients ak, which can be obtained with the
Wiener procedure described in Section 3.2, lead to the identification of the
minimum-phase system, the frequency response of which is given by

W(exp(j2πf )) = σ2
s∣

∣
∣1 −∑K

k=1 a∗
k exp(−j2πfk)

∣
∣
∣

(4.3)

where σ2
s denotes the constant power spectral density of the transmitted

signal s(n).
The above deconvolution method shows that Wiener theory can be used

in an unsupervised context if the signal to be recovered is white and the
system to be identified/inverted is minimum phase. The procedure is car-
ried out by means of a PEF, hence the terminology predictive deconvolution.
Actually, this is another way of reaching the result exposed in Section 3.7, in
which the PEF is viewed as an unsupervised filter.

It is worth highlighting a theoretical aspect: as stated above, predictive
deconvolution deals only with the second-order statistics of the involved
signals. From Equations 2.121 and 4.1, and if s(n) is white, it comes that

Sx( f ) = σ2
s
∣∣W( f )

∣∣2 (4.4)

where NS stands for the constant power spectral density of s(n). Equation 4.4
makes clear that second-order statistics provide only information exclusively
about the magnitude, and not about the phase components of the signal spec-
tra and of the system response. In other words, it is not possible to carry
out a complete unsupervised deconvolution and/or identification procedure
using only second-order statistics, unless we have additional informations
about the phase behavior. In the mentioned seismic application, predictive
deconvolution works due to the minimum-phase hypothesis, which corre-
sponds to additional information without which the method fails. This is an
important conceptual point to well understand the theoretic foundations of
unsupervised equalization.

4.1.1 The Specific Case of Equalization

Figure 4.1 illustrates the case of unsupervised equalization, where s(n) is the
transmitted signal, h(n) is the channel, ν(n) is an additive noise, generally
supposed to be white and Gaussian, w(n) stands for the equalizer response,
and y(n) for its output signal. The output y(n) is applied to a nonlinear
decision device in order to provide the recovered signal ŝ(n).

If compared to the general case of unsupervised deconvolution, the
problem of equalization is characterized by two typical assumptions:
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h Σ w Dec (·)s(n) x(n) x(n)

ν(n)

y(n)  s(n)˜ ˆ

FIGURE 4.1
Unsupervised equalization scheme.

• The transmitted signal s(n) belongs to a finite symbol alphabet A.
• The transmitted signal is composed of a sequence of independent

and identically distributed (i.i.d.) random variables.

The first assumption comes directly from the nature of the application,
since we necessarily employ some kind of digital modulation scheme. In
practice, y(n) does not belong to A, which explains the need for a nonlinear
device to map y(n) to ŝ ∈A.

In a way, the aim of the equalizer is to provide a signal y(n) whose values
are close to the symbol levels associated with A. The more the equalizer com-
pensates the channel distortions, the more y(n) is concentrated around the
symbol levels. A classical and ingenious technique to evaluate this perfor-
mance in digital communication is the eye pattern [28, 245]. Figure 4.2 shows,
for a binary transmission scheme, the eye pattern before and after an opti-
mized equalizer. The name “eye pattern” comes from the peculiar shape of
the diagram, and the two illustrated conditions are referred to as closed-eye
and open-eye conditions, respectively. In supervised equalization, as men-
tioned in Section 3.1.2, the role of the training period is to allow an open-eye
condition to be reached in order that the system may safely work in the infor-
mation transmission mode. In this mode, the equalizer is optimized using
an unsupervised technique, the aim of which is to preserve the open-eye
condition. In the absence of a training procedure, the unsupervised equalizer
must be optimized from an initial closed-eye condition.
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FIGURE 4.2
Eye pattern before and after an optimized equalizer: (a) closed-eye condition and (b) open-eye
condition.
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Unsupervised Channel Equalization 109

The second of the above assumptions is usual in digital communication,
where scrambling procedures are normally carried out at the transmitters.
As a consequence of this hypothesis, the spectrum of s(n) is considered to
be flat (white), as statistical independence implies decorrelation. However,
the converse is not true, which means that the use of a whitening filter as an
equalizer is not sufficient to guarantee the recovery of the transmitted i.i.d.
sequence. Nevertheless, if the channel is minimum phase, the PEF, which
works as a whitening filter, is capable of providing a scaled version of s(n),
in a procedure similar to that of predictive deconvolution.

In fact, in the absence of a priori knowledge about the phase-response
behavior of the channel, the PEF or any other whitening filtering can
only ensure magnitude equalization. The phase distortion remains to be
compensated, which is classically carried out using an all-pass structure. Pre-
dictive equalization can be developed based on this principle by a nonlinear
configuration that combines the use of a PEF with a blind phase equalizer.
Such an approach, originally proposed by da Rocha et al. [49, 81, 195], is
further discussed in Chapter 7.

The above remarks clearly reveal the limitations of the predictive decon-
volution principle in the blind equalization problem, which is important for
well understanding the sequence of results in this chapter. Before addressing
them, let us summarize the key points of the discussion so far:

• Awhiteningproceduredealsonlywithsecond-orderstatisticsandcan
only provide magnitude equalization; it does decorrelate the received
signal but does not ensure the recovery of the original i.i.d. sequence.

• If the phase response of the channel is known a priori, it is possi-
ble to perform blind equalization by dealing only with second-order
statistics. In the specific case of a minimum-phase channel, the PEF
is the whitening filter that works as the optimum equalizer.

• In the absence of such additional information, the recovery of an
i.i.d. signal requires more than second-order whitening. As dis-
cussed in Chapter 2, the joint cumulant of independent random
variables is null. This means that the concept of whitening must be,
in a way, extended to encompass all higher-order statistics when we
search for the optimum equalizer in an unsupervised mode.

These points can now be further investigated with the aid of two
theorems that constitute the theoretical foundation of blind equalization.

4.2 Fundamental Theorems

As commented in our brief historical, Sato’s algorithm was a first practical
solution for blind channel equalization. Nevertheless, this proposition was
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not supported by a solid theoretical justification, which was only provided
by the works of Benveniste–Goursat–Ruget [41] and Shalvi–Weinstein [269].
In this section, we present and discuss both results.

4.2.1 The Benveniste–Goursat–Ruget Theorem

The work in [41] first stated theoretical conditions for blind equalization. Its
main result was a well-known theorem named after its authors.

THEOREM 4.1 (Benveniste–Goursat–Ruget)

Let the transmitted signal be composed of non-Gaussian i.i.d. samples and
both channel and equalizer be linear time-invariant filters, in a noiseless sce-
nario. Under these conditions, if the pdfs of the transmitted signal and of
the equalizer output are equal, then the channel will have been perfectly
equalized, i.e.,

y(n) = ±αs(n − d) (4.5)

α is a unit magnitude complex constant.

This result is crucial, since it establishes the viability of obtaining an effi-
cient equalizer with the sole aid of statistical properties and without any
knowledge of the channel impulse response. The non-Gaussianity hypoth-
esis is required, since a linearly filtered Gaussian process remains Gaus-
sian [230] and, in such a case, pdf matching would ensure only power
normalization.

4.2.2 The Shalvi–Weinstein Theorem

The BGR theorem provides a solid theoretical basis to blind equalization.
However, a decade later, Shalvi and Weinstein demonstrated that the condi-
tion of equality between the pdf’s of the transmitted and equalized signals
was excessively stringent. Under assumptions equivalent to those exposed in
the last section, they demonstrated that it is possible to perform blind equal-
ization with the aid only of the cumulants of the involved signals, as stated
in the following theorem.

THEOREM 4.2 (Shalvi–Weinstein)

Let the transmitted signal be composed of non-Gaussian i.i.d. samples and
both the channel and the equalizer be linear time-invariant filters, in a
noiseless scenario. Under these conditions, if E

{|s(n)|2} = E
{|y(n)|2} and a
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nonzero cumulant of order higher than 2 of s(n) and y(n) are equal, then the
channel will have been perfectly equalized.

The importance of the SW theorem is notorious as it assures that blind
equalization can be accomplished by simply comparing the cumulants of the
transmitted and equalized signals. In addition, to providing simplified con-
ditions for blind equalization, the theorem gives support to the proposition
of feasible algorithms, as shown further in this chapter.

4.3 Bussgang Algorithms

The Benveniste–Goursat–Ruget and SW theorems clearly state the need
for dealing with the information brought by higher-order statistics of the
involved signals in order to guarantee blind equalization. In this section, we
concentrate our attention on algorithms that make implicit use of higher-
order statistics. These algorithms, commonly referred to as Bussgang algo-
rithms [36, 125], employ some sort of prior information about the pdf of the
transmitted sequence s(n) to obtain an estimate of the transmitted symbol.
Such estimate plays the role of the “pilot signal” in the adaptive algorithm.

The general form of these algorithms is given by

w(n + 1) = w(n) + μ
{
ψ[y(n)] − y(n)

}
x(n) (4.6)

where
w(n) is the parameter vector at instant n
x(n) is the equalizer input vector
μ is the step-size

This is similar to the least mean square (LMS) update rule given in
(3.65), but the pilot signal is replaced by ψ[y(n)], which corresponds to a
memoryless nonlinear estimator for the transmitted signal s(n).

In order to obtain the optimal estimator, let us consider the usual assump-
tion that both channel and equalizer are modeled as linear and time-invariant
systems, so that the equalizer output is given in terms of the combined
channel + equalizer response g(n), i.e.,

y(n) = w(n) ∗ x(n)

= w(n) ∗ h(n) ∗ s(n)

= g(n) ∗ s(n) (4.7)
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where g(n) = w(n) ∗ h(n). Then, the equalizer output can be rewritten as

y(n) = g(n) ∗ s(n) = g(0)s(n) +
∞∑

i=−∞,i�=0

g(n − i)s(i)

= g(0)s(n) + η(n) (4.8)

where η(n) is the so-called convolutional noise [135], which is null only if the
ZF condition is attained.

If the pdf of η(n) is known beforehand, the maximum likelihood (ML)
estimate ŝ(n) (vide Section 2.5) of the transmitted symbol is given by

ŝ(n)ML = ψ
[
y(n)

] = arg max
s(n)

py
(
y(n)|s(n)

)
(4.9)

where py
(
y(n)|s(n)

)
is the conditional distribution of the equalizer output

given the transmitted signal s(n). It should be noted that this conditional dis-
tribution depends on the channel and the equalizer, which are unknown.
Thus, the derivation of an ML estimator depends on additional assump-
tions that provide an adequate characterization of the convolutional noise
distribution [35].

A first simplifying assumption is that the convolutional noise presents a
Gaussian distribution, which can be justified in terms of the central limit
theorem [230], if we consider that the combined response g(n) is long
enough. In this case, the ML estimator becomes the minimum variance
estimator [135, 166], given by

ψ
[
y(n)

] = E
[
s(n)|y(n)

]
(4.10)

We have that

μη = E {η(n)} = 0 (4.11)

and

σ2
η = E

{
η(n)2

}
= E

{
s(n)2

}∑

i�=0

g(i)2 (4.12)

Thus, we can consider that

pη (η(n)) = 1√
2πση

exp

{

−η(n)2

2σ2
η

}

(4.13)

The output signal y(n) is simply the sum of g(0)s(n) and η(n). Hence,
its pdf equals the convolution between pη (η(n)) and the pdf of g(0)s(n).
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If we assume that s(n) is an M-PAM signal uniformly distributed over
{−(M − 1) , . . . , −3 , −1 , 1 , 3 , . . . , (M − 1)}, then

py
(
y(n)

) =
M∑

i=1

pη

[
y(n) + (2i − M − 1)g(0)

]
(4.14)

Using Bayes’ rule, we get

ps
(
s(n)|y(n)

) = py(y(n)|s(n))ps(s(n))

py(y(n))
(4.15)

From (4.8) and (4.13) we obtain that

py(y(n)|s(n)) = pη

[
y(n) − g(0)s(n)

]
(4.16)

and, hence

ps
(
s(n)|y(n)

) = pη

[
y(n) − g(0)s(n)

]
ps(s(n))

∑M
i=1 pη

[
y(n) + (2i − M − 1)g(0)

] (4.17)

By evaluating the expectation given in (4.10), and after some algebraic
manipulations, we get the following expression for the estimator [135]:

ψ
[
y(n)

] =
∑M/2

i=1 (2i − 1) exp
[
− g(0)2(2i−1)2

2σ2
η

]
sinh

[
g(0)(2i−1)

σ2
η

y(n)

]

∑M/2
i=1 exp

[
− g(0)2(2i−1)2

2σ2
η

]
cosh

[
g(0)(2i−1)

σ2
η

y(n)

] (4.18)

In order to gain some insight on the role of the nonlinear estimator, let us
turn our attention to the case in which the transmitted signal belongs to a 4-
PAM modulation [35]. In Figure 4.3, we present some examples of (4.18) for
M = 4 and different variances of the convolutional noise. We can note that
the estimator has a “quasi-linear” region for large values of σ2

η, which means
that, under the adopted hypotheses, the details of the chosen modulation are
not particularly relevant. However, when the convolutional noise variance
is small, the estimator becomes rather similar to the mapping performed by
the decision device [135]. In fact, the difference between the different pro-
posed algorithms resides in the memoryless estimator ψ[y(n)] employed in
the adaptation. In the sequence, we describe three of them: the DD, Sato, and
Godard algorithms.
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FIGURE 4.3
Bussgang estimators for a 4-PAM modulation and different convolutional noise variances.

4.3.1 The Decision-Directed Algorithm

The DD algorithm can be considered as the simplest of Bussgang techniques,
since it employs the decision-device output as an estimate of the desired
response, i.e.,

ψDD[y(n)] = dec
[
y(n)

]
(4.19)

leading to an adaptation rule given by

w(n + 1) = w(n) + μ
{
dec

[
y(n)

]− y(n)
}

x(n) (4.20)

In this case, the corresponding cost function being minimized by the
iterative method in (4.20) is

JDD (w) = E
[(

y(n) − dec
(
y(n)

))2
]

(4.21)

Intuitively, the technique is founded on the assumption that the output
of the decision-device should be a useful estimate of the signal we wish to
recover. This situation is reasonable if we begin the adaptation of the equal-
izer from a good initial condition, i.e., a condition capable of leading to a
satisfactory open-eye condition. A classical possibility to make this possible
is to employ the DD algorithm together with a supervised method. In this
case, the supervised method is responsible for using an available training
sequence to reduce as much as possible the level of intersymbol interfer-
ence (ISI) present in the received signal, which, ideally, would give rise
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to an open-eye condition. After the conclusion of the supervised training
period, the DD algorithm could be employed to refine the obtained equal-
izer parameters, further reducing the ISI level and tracking eventual channel
variations.

4.3.2 The Sato Algorithm

In 1975, Yoichi Sato proposed a blind algorithm for the recovery of M-PAM
multilevel signals [260] that was based on recovering the most signifi-
cant bit of the modulation and to treat the remaining information as a
kind of noise. In accordance with this idea, the following nonlinearity was
proposed:

ψSato
[
y(n)

] = γ sign
[
y(n)

]
(4.22)

where

γ = E
[
s2(n)

]

E [|s(n)|] (4.23)

is a “gain control” scaling factor. The update rule then becomes

w(n + 1) = w(n) + μ
{
γ sign

[
y(n)

]− y(n)
}

x(n) (4.24)

which represents an LMS-like algorithm for the minimization of the follow-
ing cost function:

JSato (w) = E
[
(γ sign

[
y(n)

]− ∣∣y(n)
∣∣)2
]

(4.25)

Sato’s proposal is historically very important as a first robust technique
that allows operation in a completely blind fashion.

4.3.3 The Godard Algorithm

In 1980, Dominique Godard proposed a blind equalization criterion whose
main feature was its immunity to phase recovery errors [124]. The goal was
to develop a method capable of reducing the distortions introduced by the
channel to a level that could be handled by conventional methods like the
DD algorithm.

The idea behind Godard’s proposal was to establish a measure of dis-
persion around a predetermined value without having to resort to phase
information, which can be accomplished considering the following cost
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function:

J(p,q)
G (w) = E

[(∣∣y(n)
∣∣p − Rp

)q]
(4.26)

where Rp is a predetermined constant value, given by

Rp =
E
[
|s(n)|2p

]

E
[|s(n)|p] (4.27)

A particular case of great interest is that originated by the choice
p = q = 2, generally referred to as the CM criterion, whose cost function is

JCM = E
[(∣
∣y(n)

∣
∣2 − R2

)2
]

(4.28)

where

R2 =
E
[
|s(n)|4

]

E
[
|s(n)|2

] (4.29)

is a constant that depends on a priori statistical information about the trans-
mitted signal. Using the standard stochastic approximation for the gradient
vector, we obtain the CMA:

w(n + 1) = w(n) + μυ∗(n)x(n) (4.30)

where

υ(n) = y(n)
[
R2 − |y(n)|2

]
(4.31)

From (4.30) and (4.6), it is possible to notice that the CMA employs the
following estimator:

ψCM
[
y(n)

] = υ(n) + y(n)

= y(n)
[
1 + R2 − |y(n)|2

]
(4.32)

To summarize the explanation, we present in Table 4.1 the estimators and
corresponding cost functions of the algorithms discussed in this section. It is
important to mention that even though these algorithms are related by (4.6),
they may exhibit very different convergence characteristics. Convergence
aspects of these techniques are discussed in Section 4.6.
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TABLE 4.1

Estimators and Corresponding Cost Functions Associated with the
Bussgang Algorithms

Algorithm Estimator ψ(y(n)) Cost Function

DD dec(y(n)) JDD = E
[(

y(n) − dec
(
y(n)

))2]

Sato γ sign
[
y(n)

]
JSato = E

[
(γ sign

[
y(n)

]− ∣
∣y(n)

∣
∣)2
]

CMA y(n)
[
1 + R2 − |y(n)|2

]
JCM = E

[(∣
∣y(n)

∣
∣2 − R2

)2
]

4.4 The Shalvi–Weinstein Algorithm

The work by Shalvi and Weinstein [269] was relevant not only as a theoret-
ical foundation to the problem of blind equalization, but also as the source
of important criteria and adaptive methods. The SWA is an implementation
based on the ideas presented in Section 4.2.2, and can be derived in two dif-
ferent versions: constrained and unconstrained. In the sequence we develop
both approaches.

4.4.1 Constrained Algorithm

The constrained algorithm can be seen as a direct interpretation of the
Shalvi–Weinstein theorem. First, we should notice that if the variance of the
input and output signals are the same, we should have

∑
i |g(i)|2 = 1, and

the following relations hold [269]:

• ∑
i |g(i)|4 ≤ 1

• ∑
i |g(i)|4 = 1 if and only if g corresponds to a perfect equalization

solution, i.e., g(n) = [0, . . . , 0, 1, 0, . . . , 0]

Since equality only occurs if the ZF condition is attained, the theorem
naturally provides the following equalization criterion:

{
maximize JSWc(w)

∣∣c4
(
y(n)

)∣∣
subject to c2

(
y(n)

) = c2 (s(n))
(4.33)

Notice that the constraint is equivalent to
∑

i |g(i)|2 = 1, which is a require-
ment of the SW theorem.

The SWA is then derived employing a stochastic approximation
proposed in [41] to deal with constrained problems. In this kind of
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approximation, the algorithm requires spectral prewhitening of the channel
output. Each iteration is composed of the following two steps [269]:

w̃(n + 1) = w̃(n) + μ∇w̃JSWc(w) (4.34)

and

w̃(n + 1) = w(n + 1)

‖w(n + 1)‖ (4.35)

where
μ is the step size
∇wJ is the gradient of the criterion

The normalization procedure is required to ensure that the power con-
straint is respected.

In order to obtain ∇wJSWc(w), let us first rewrite the criterion as [269]

JSWc = |c4(y)| = sgn
[
c4
(
y(n)

)]
c4
(
y(n)

)

= sgn [c4 (s(n))]
[

E
{
|y(n)|4

}
− 2E2

{
|y(n)|2

}
−
∣∣∣E
{

y(n)2
}∣∣∣

2
]

(4.36)

where we have assumed that sgn
[
c4
(
y(n)

)] = sgn [c4 (s(n))]. Since we
assume that the power constraint is respected, the term involving E

{|y(n)|2}
is constant and can be neglected. Moreover, if we consider that both the input
and the output are real-valued, the term E

{
y(n)2} is also constant and can be

neglected (if the signals are complex-valued, it is required that E
{
s(n)2} = 0,

and, in this case, E
{
y(n)2} = 0). These considerations reduce the criterion

to [269]

JSWc = sgn [c4 (s(n))] E
{
|y(n)|4

}
(4.37)

We may write the output signal as

y(n) =
∑

i

w(i)̃x(n − i) (4.38)

where x̃(n) is the channel output after a prewhitening step. Hence, after
replacing (4.38) in (4.37) and performing the differentiation, we obtain

∂J
∂w(i)

= 4 sgn [c4 (s(n))] E
{
|y(n)|2y(n)̃x(n − i)

}
(4.39)
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Finally, the update rule is obtained by replacing (4.39) in (4.34) and
removing the expectation operator:

w̃(n + 1) = w(n) + μsgn [c4 (s(n))] |y(n)|2y(n)̃x(n) (4.40a)

w(n + 1) =
⎛

⎜
⎝

1
√∑

i w̃(i)2

⎞

⎟
⎠ w̃(n + 1) (normalization) (4.40b)

where x̃(n) is the M×1 vector containing the present and past samples of the
prewhitened sequence.

Despite the simplicity of the constrained version of the SWA presented
in (4.40), the prewhitening requirement can be very stringent or even pro-
hibitive in some cases. Therefore, in the sequel, we describe an unconstrained
version that does not demand a prewhitening step.

4.4.2 Unconstrained Algorithm

Another possibility, developed in [269], is to transform (4.33) into an uncon-
strained optimization problem. The main idea behind this approach is to
include a penalty term related to the constraint into the cost function. The
derivation starts by considering the following potential function:

φ(g) = F(g) + f
(
‖g‖2

)

=
∑

i

|g(i)|4 + f

(
∑

i

|g(i)|2
)

(4.41)

where F(g) = ∑
i |g(i)|4 and f : [0, ∞] → R is a measurable function so that

l(x) = x2 + f (x) (4.42)

is monotonically increasing in 0 ≤ x < 1, monotonically decreasing for x > 1,
and has a unique maximum at x = 1.

In order to verify if φ(g) has a maximum if and only if g represents the
ZF solution, we can notice that [269]

φ(g) =
∑

i

|g(i)|4 + f

(
∑

i

|g(i)|2
)

≤
(
∑

i

|g(i)|2
)2

+ f

(
∑

i

|g(i)|2
)

= l

(
∑

i

|g(i)|2
)

(4.43)
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where the equality holds if and only if g has at most one nonzero element.
Moreover, from (4.42), we have

l

(
∑

i

|g(i)|2
)

≤ l(1) (4.44)

being the equality valid if and only if
∑

i |g(i)|2 = 1. Hence, from (4.43)
and (4.44), we know that only for ideal solutions the equalities are satisfied.

Now, for the definition of a cost function, it is necessary to specify the l(·)
function. Let us consider the choice

l(x) = 2αx − αx2, α > 0 (4.45)

which, as required, monotonically increases in 0 ≤ x < 1 and decreases for
x > 1. By a direct substitution of (4.45) into (4.42), and performing some
algebraic manipulations, we obtain

J = c4(y(n))

c4(s(n))
− (1 + α)

E2 {|y(n)|2}

E2
{|s(n)|2} + 2α

E
{|y(n)|2}

E
{|s(n)|2}

= 1
c4(s(n))

[

E
{
|y(n)|4

}
−
∣∣
∣E
{
|y(n)|2

}∣∣
∣
2 −

(

2 + (1 + α)c4(s(n))

E2
{|s(n)|2}

)

E2
{
|y(n)|2

}

+ 2α
c4(s(n))

E
{|s(n)|2}E

{
|y(n)|2

}
]

(4.46)

Equation 4.46 can still be rewritten as

JSWc = sgn [c4(s(n))]
{

E
{
|y(n)|4

}
−
∣∣∣E
{

y(n)2
}∣∣∣

2

+γ1E2
{
|y(n)|2

}
+ 2γ2E

{
|y(n)|2

}}
(4.47)

where

γ1 = −
[

2 + (1 + α)c4(s(n))

E2
{|s(n)|2}

]

(4.48)

and

γ2 = α
c4(s(n))

E
{|s(n)|2} (4.49)
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Differentiating (4.47) we get to

∂JSWc

∂wi
= 4 sgn(c4(s(n)))

[
E
{
|y(n)|2y(n)x∗(n − i)

}
− E

{
y2(n)

}
E
{
y∗(n)x∗(n − i)

}

+ γ1E
{
|y(n)|2

}
E
{
y(n)x∗(n − i)

}+ γ2E
{
y(n)x∗(n − i)

} ]
(4.50)

The problem is how to estimate the expectations E
{
y2(n)

}
and E

{|y(n)|2}
in (4.50). The original proposal in [269] uses an empirical average for those
expectations and, for the correlations, employs a stochastic approximation.
This leads to the following adaptation procedure:

w(n + 1) = w(n)μ

(

|y(n)|2 − E
{|s(n)|4}

E
{|s(n)|2}

)

y(n)x∗(n)

[(
|y(n)|2 + γ1 |̂y2(n)| + γ2

)
y(n) − ŷ2(n)y∗(n)

]
x∗(n) (4.51a)

ŷ2(n) = (1 − μ1)
̂y2(n − 1) + μ1y2(n) (4.51b)

|̂y2(n)| = (1 − μ2)
̂|y2(n − 1)| + μ2|y(n)|2 (4.51c)

where μ1 and μ2 are the step sizes for the estimation of E
{
y2(n)

}
and

E
{|y(n)|2}, respectively.

It is worth noting that if we consider E{s(n)2} = 0 and c4(s(n)) < 0, which
is the case for digital modulation signals, we have

α = −E|s(n)|4
c4(s(n))

(4.52)

and the update rule in (4.51) becomes

w(n + 1) = w(n) − μ

(

|y(n)|2 − E{s(n)4}
E{s(n)2}

)

y(n)x(n) (4.53)

which is the Godard/CMA algorithm [124,292]. More about the relationships
between blind equalization algorithms will be said in Section 4.7.

4.5 The Super-Exponential Algorithm

Shalvi and Weinstein [270] proposed the SEA as an alternative to accelerate
the convergence of the techniques discussed in Section 4.4. The algorithm
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is derived from a modification of the constrained criterion in (4.33), which
leads to

maximize

∣∣c4
(
y(n)

)∣∣

c2
(
y(n)

)2 (4.54)

which characterizes a normalized criterion. The cost function can be rewrit-
ten in terms of the cumulants of the transmitted signal as

∣
∣c4

(
y(n)

)∣∣

c2
(
y(n)

)2 = c4 (s(n))

c2 (s(n))2

∑
l |g(l)|4

(∑
l |g(l)|2)2

︸ ︷︷ ︸
f4(g)

(4.55)

where we define

f4(g) =
∑

l |g(l)|4
(∑

l |g(l)|2)2 (4.56)

for which we have

0 ≤ f4(g) ≤ 1 (4.57)

so that f4(g)= 1 only if g presents a single non-null element, which corre-
sponds to the ZF solution. Moreover, it is possible to show that

f4(g) = f4(αg) (4.58)

for any non-null constant α.
Since the statistical characteristics of the transmitted signal are known,

the criterion in (4.54) is equivalent to the maximization of f4(g), a crite-
rion whose origin can be traced back to the works of Wiggins [307] and
Donoho [101] about signal deconvolution.

In order to maximize f4(g), the SEA explores a simple iteration employing
the Hadamard exponent of a vector. Let us consider, for the moment, that g is
real-valued. The mth Hadamard exponent of g is defined componentwise by

(g�m)k = g(k)m (4.59)

If g presents a unique dominant term in the kth position, the mth Hadamard
exponent (g/g(k))�m will converge to a ZF condition as m tends to infinity.
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Thus, the following iteration

ν = g�m (4.60)

g = ν

||ν|| (4.61)

converges asymptotically to the ideal ZF response, when initialized by a
unit-norm response (g) having a unique dominant element.

Since the combined response depends on the unavailable channel
impulse response h, the iterative procedure is not practical∗ and must be
adjusted in order to work in the equalizer domain. To do so, let us consider
that both the channel and the equalizer can be represented by finite impulse
responses, whose coefficients form vectors h and w, respectively. In this case,
the combined response in terms of the channel and equalizer coefficients is

g = Hw (4.62)

where

H =

⎡

⎢⎢⎢
⎣

h0 h1 · · · hM−1 0 · · · 0
0 h0 h1 · · · hM−1 0 0
... 0

. . . . . . . . . . . . 0
0 · · · 0 h0 h1 · · · hM−1

⎤

⎥⎥⎥
⎦

(4.63)

is the so-called channel convolution matrix.
The aim of the adaptive method would then be to yield w such that

g =Hw be an ideal solution, i.e., g = [0, . . . , 0, 1, 0, . . . , 0]. However, it is
important to notice that since we are assuming an FIR equalizer, there may
not exist a ZF equalizer for a given channel, which leads us to the concept of
the attainable set of a channel. The attainable set T is given by

T �
{

g : g = Hw, ∀w ∈ 
L
}

(4.64)

where L is the length of the equalizer. Thus, for a given global response,
we may obtain its projection onto the attainable set by applying a projection
operator, given by

PT = H
(
HHH

)−1
HH (4.65)

∗ We refer the interested reader to [70,270], which contain a more detailed discussion regarding
the convergence of this iterative procedure.
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Considering the previous discussion, in [248] it is shown that the iterative
procedure composed of

ν = PT(g�<3>) (4.66)

g = ν

||ν|| (4.67)

where g�<3> is defined componentwise as

(g�<3>)k = |g(k)|2g(k) (4.68)

will converge to the same stationary points of f4(g) for an initial choice of
a unit-norm vector g ∈ T . It is also demonstrated that this kind of iteration
may converge to the ZF solution at a super-exponential rate, and, hence, the
name of the algorithm.

Since we are dealing with finite length equalizers, it is necessary to look
for a solution in the equalizer parameter space w̃ such that Hw̃ be as close as
possible to the solution obtained by the iteration in (4.66), i.e.,

min
w̃

||Hw̃ − g�<3>||2 (4.69)

The solution of this optimization problem is given by

w̃ =
(
HHH

)−1
HHg�<3> (4.70)

and the normalization step in the iteration in (4.66) becomes

w̃ = 1√
w̃HHHHw̃

w̃ (4.71)

The procedure still depends on the unknown channel and g. There-
fore, it is necessary to express these quantities in terms of the cumulants of
the equalizer input and output signals. Employing the cumulant properties
described in Chapter 2, we may obtain the following relationships:

c
(
x(n − j), x∗(n − i)

) = c2 (s(n))
(
HTH

)

ij
(4.72)

where (·)ij is the (i, j)th element of the matrix in the argument, and

c
(
y(n), y(n), y∗(n), x∗(n − i)

)

= c
(
s(n), s(n), s∗(n), x∗(n − i)

) (
HHH

)−1
HHg�<3> (4.73)
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Using these two results in (4.70) and (4.71), we finally get to

w̃(n + 1) = R−1b (4.74a)

w(n + 1) = w̃(n + 1)
√

w̃T(n + 1)Rw̃(n + 1)
(4.74b)

where matrix R is square with a dimension equal to the equalizer length,
having elements given by [270]

rij = c2
(
x(n − i); x(n − j)

)

c2(s(n))
= cov

(
x(n − i); x(n − j)

)

var(s(n))
(4.75)

and b is a column vector with dimension equal to the equalizer length, its
elements being given by

bi = c
(
y(n), y(n), y∗(n), x∗(n − l)

)

c4(s(n))
(4.76)

In the algorithm shown in (4.74a) and (4.74b), we only need to know the
cumulants of the input and to compute the joint cumulant of the input and
output signals. This can be done by means of empirical cumulants, as shown
and discussed in [70, 270, 271]. In this sense, the property of convergence of
the SEA shows some advantages in terms of speed, and there are no sig-
nificant hypotheses about the signal model, an exception being the usual
non-Gaussianity assumption.

4.6 Analysis of the Equilibrium Solutions of Unsupervised
Criteria

In Chapter 3 we presented and discussed the Wiener theory, founded on
an MSE criterion, the importance of which can be justified on at least two
bases: conceptual soundness and mathematical tractability. Therefore, this
approach establishes a benchmark against which any other solution could
be compared. Now, if the delay is considered an additional free parameter
in the search of the optimal equalizer, the Wiener procedure acquires a mul-
timodal character, as typically occurs with the unsupervised criteria. In order
to well explain such idea, we take the following example.

Let us consider a binary (+1/−1) i.i.d. signal transmitted by a noiseless
FIR channel whose transfer function is H(z) = 1+1.5z−1. We are interested in
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TABLE 4.2

Wiener Solutions for Different
Equalization Delays

Delay (d) Wiener Solution MSE

<0 [0, 0]T 1

0 [0.391, −0.180]T 0.609
1 [0.406, 0.120]T 0.271

2 [−0.271, 0.586]T 0.120
>3 [0, 0]T 1

finding a two-tap equalizer using the Wiener approach. Following the proce-
dure shown in Example 3.1, we reach the solutions, and their corresponding
MSEs, shown in Table 4.2.

We can observe that each delay produces a different solution with a
distinct residual MSE. In addition to that, it is important to point out that
the values of the third column reveal a significant discrepancy between the
performances of the three nontrivial solutions. The results show that it is
also necessary to select an optimal equalization delay. This feature is to be
considered in the subsequent analysis.

4.6.1 Analysis of the Decision-Directed Criterion

As discussed in Section 4.3.1, the DD algorithm deals with the following
error signal to drive an LMS-based updating:

e(n) = dec
[
y(n)

]− y(n) (4.77)

From this general idea, some conclusions can be immediately reached:

• Since the estimate presented in (4.77) does not depend on the equal-
ization delay, it is possible for the DD algorithm to reach generic
solutions as far as this parameter is concerned.

• Under the condition

dec
[
y(n)

] = s(n − d) (4.78)

there is an equivalence between DD and Wiener criteria.
• It is harder to say something about the behavior of the DD algorithm

when the above condition does not hold.

As this initial discussion indicates, the analysis of the equilibrium solu-
tions of the DD algorithm will depend on the possibility of establishing
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relationships with solutions provided by the Wiener criterion (in some cases,
ZF solutions will also be relevant).

The work by Mazo [205] is a classical reference in the study of the DD
criterion. In his work, he deals with the analysis of the DD cost function
in the combined channel + equalizer domain g considering the binary case.
The analysis reveals that even in the combined channel + equalizer domain,
there are two classes of minima: one formed by ideal ZF solutions, the good
minima; and one class with solutions that are not capable of eliminating the
ISI, the spurious minima.

Therefore, if the DD algorithm is not adequately initialized, there is a
serious risk of ill convergence. The existence of spurious minima in the DD
algorithm may be intuitively understood, since if an adequate initial condi-
tion is not provided, the resulting decision errors will decisively compromise
the entire process. This is exactly the reason why this blind technique is so
intimately associated with a preliminary supervised training period.

4.6.2 Elements of Contact between the Decision-Directed
and Wiener Criteria

As previously outlined, the key to a perfect equivalence between the DD
and Wiener criteria is the situation in which there are no decision errors.
Therefore, if a certain parameter vector w leads to that condition, we have

JW(w) = JDD(w) (4.79)

In a region around such solution, in which the equalizer still does not
lead to decision errors, we will still have the equivalence JW(w)= JDD(w),
i.e., the DD surface will be identical to the Wiener paraboloid. The same is
valid for regions around other Wiener minima, as long as they do not incur
decision errors. This situation is illustrated in Figure 4.4, which provides a
contour plot of the cost function JDD in the scenario depicted in Example 3.1.

The figure reveals that the best minima of the DD cost function are exactly
the two Wiener solutions with the smallest residual MSE (vide Table 4.2)
and their symmetrics. These two solutions are marked in Figure 4.4 (the best
solution and its symmetric are marked with an “o” sign and the second best
Wiener solution and its symmetric are marked with a “*” sign).

These two Wiener solutions are exactly the only ones that are able to
attain a situation with no decision errors (Figure 4.5). The existence of
symmetric versions of all minima in this case is unavoidable, since JDD is
invariant to changes in the sign of all elements of a given parameter vector.

Other minima of JDD are visible that do not correspond to any of the three
Wiener solutions exposed in Table 4.2: these are exactly the spurious minima
mentioned above. In the regions around these minima there are decision
errors, and they are harder to characterize, since the link with the Wiener
criterion is lost.
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FIGURE 4.4
Contours of the DD cost function.
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FIGURE 4.5
Contours of the DD cost function and Wiener solutions.

Hence, a natural conclusion is that the DD algorithm is a technique that
may be safely adopted given that a fair initial condition is provided.

4.6.3 Analysis of the Constant Modulus Criterion

The difficulty regarding initialization is quite appealing, and, indeed, it
was in the spirit of this question that Godard’s seminal work [124] must be
understood. Even though Godard’s work provided a family of cost functions
given by (4.26), only two cost functions are commonly used: the one from
the choice p = 1 and q = 2, i.e., which gives rise to a kind of modified Sato
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algorithm [139], and the one that emerges from the choice p = q = 2, i.e.,

JCM (w) = E
[
R2 − |y(n)|2

]2
(4.80)

which leads to the CMA [292]. Although the first of these techniques is an
interesting object of study [33, 34], we will concentrate our attention on the
second one.

The name of this technique, first presented in the work by Treichler and
Agee [292], comes from the fact that if the transmitted signal is generated
from a CM modulation, like FM and PSK, then the CM criterion will attempt
to restore this CM property. However, it is important to remark that the
technique is useful even for other modulations.

Besides the CM recovery property, another aspect that deserves atten-
tion is the fact that only the modulus of the equalizer output is taken into
account by the criterion, which means that the problems of equalization and
phase recovery are decoupled when the CM criterion is employed. The prac-
tical implications of this aspect are considered in Godard’s work, but, for
now, it suffices to say that it makes all solutions with the same modulus
undistinguishable.

4.6.4 Analysis in the Combined Channel + Equalizer Domain

In his work, Godard carries out an analysis in the combined channel + equal-
izer domain, which leads to the conclusion that the ZF solutions are global
minima of the CM cost function. However, there was more to be said on
the subject, and it was only in 1985 that Foschini presented a more detailed
analysis of the CM criterion in this domain [113].

The key element in Foschini’s analysis was to look for equilibrium
points of the CMA in the combined domain with a variable number χ of
nonzero elements. By considering the gradient of JCM and its second-order
derivatives, he showed the existence of three classes of solutions with

1. χ = 0, i.e., the null vector, which is a maximum
2. χ = 1, which are the ZF minima
3. χ > 1, which are saddle points

The first two kinds of solutions are not surprising. The maximum is
present in all scenarios in which the CMA is used and this is why the ini-
tialization w(0)= 0 cannot be considered. The class for which χ = 1 was
previously found by Godard. The novelty undoubtedly lies in the third class:
there are equilibrium points that do not correspond to a satisfactory equal-
ization condition. It would be tempting to bring Mazo’s analysis of the DD
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solutions to our mind; nonetheless, in this case, the third class is not com-
posed of spurious minima, but of saddle points that are unable to misguide
the adaptation process.

Naturally, the analysis discussed so far was not carried out in the most
realistic scenario, but it was possible to think that the transition from the
combined domain to the equalizer domain would not significantly compro-
mise the general conclusions. In fact, Foschini’s work contains two ideas of
both practical and historical relevance. The first of these ideas is related to the
so-called center-spike initialization, in which the initial value of w is taken to
be the null vector, except for the central element, which is unitary, e.g.:

w = [0 , 0 , . . . , 0 , 1 , 0 , . . . , 0]T (4.81)

The second idea is even more intuitive: Foschini considered that a generic
(although bounded) increase in the number of equalizer taps would be a
valuable bridge between the equalizer and combined domains. This indi-
cates the possibility that an arbitrarily large equalizer would lead to a
scenario similar to that discovered in the analysis of the combined space.
This is, a priori, an appealing view, since an increase in the number of taps
opens the perspective of reaching solutions in the combined domain that are
closer to ZF solutions.

An important progress regarding the conditions for the equivalence
between the combined and the equalizer domains was given in [97]. In this
work, Ding et al. showed that there are two fundamental possibilities for the
equivalence:

• When the channel is trivial, i.e., is simply a gain. In this case, there
is no ISI and, as a consequence, the combined response will be
completely equivalent to the equalizer response.

• When the equalizer is doubly infinite. In this case, the equalizer is
capable of perfectly inverting an FIR channel, which, once more,
creates a perfect equivalence between domains.

4.6.4.1 Ill-Convergence in the Equalizer Domain

A very relevant work by Ding et al. [98] shows that the CM cost function
presents solutions distinct to those listed by Foschini that would not reduce
ISI, even in a scenario in which an ideal solution is attainable. This work
considers a noiseless channel modeled by an all-pole filter whose transfer
function is

H(z) = 1
1 + αz−N (4.82)
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Given this channel model, the ZF condition is achieved using an FIR
equalizer, and no infinitely long equalizers were required. Thus, since
perfect equalization is attained for w = ± [1, 0, . . . , α]T, it is expected that
they also represent ideal solutions of JCM. This assumption, as proved by
the authors, is entirely correct. In addition, the authors consider possible
solutions given by

weq = ± � [0, . . . , 0, 1]T (4.83)

where

� =

√√
√
√
√R2

E
[
|x (n)|2

]

E
[
|x (n)|4

] (4.84)

This solution is not able to reduce ISI, and it is proven to be a minimum of
JCM with the aid of an analysis of the derivatives of the cost function.

Let us consider an example, in which the channel transfer function is

H(z) = 1
1 + 0.6z−1 (4.85)

From the above reasoning, we are correctly led to expect that the points

w = ± [1, 0.6]T (4.86)

be global minima of JCM. However, there shall also exist solutions like (4.83),
solutions that are complete failures insofar as the equalization task is con-
cerned. As shown in Figure 4.6, the minima at w = ± [1, 0.6]T are indeed the
best and lead to perfect equalization. On the other hand, as the work of Ding
et al. anticipates, there is a pair of “shallow minima” that have exactly the
form described in (4.83).

Finally, it is worth mentioning that the authors also show, with the aid of
simulations, that the bad minima continue to exist in the presence of noise
and that there are local minima even for an FIR channel model. These min-
ima, however, are not ineffective minima like the ones discussed above.
As a matter of fact, not all local minima are necessarily bad minima. It is
important to keep in mind that even the Wiener criterion possesses multi-
ple solutions depending on the perspective brought by distinct equalization
delays.
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FIGURE 4.6
Contours of the CM cost function for the AR case.

4.7 Relationships between Equalization Criteria

Some of the previously discussed criteria used in blind equalization, even
though developed from very different motivations, exhibit a close relation-
ship. Interestingly enough, it is also possible to obtain some relationships
between blind equalization criteria and the minima found using the Wiener
criterion. In this section we expose some ideas related to these relationships.

4.7.1 Relationships between the Constant Modulus
and Shalvi–Weinstein Criteria

After having proposed the constrained criterion described in (4.36), Shalvi
and Weinstein analyze it in the combined channel + equalizer domain. They
conclude that the equilibrium points (aside from the trivial null vector) are
twofold: a family of ZF maxima and a set of saddle points. Later, when
unconstrained criteria are discussed, a new analysis leads once more to these
solutions. If we recall the discussion carried out in Section 4.6.4, we are
compelled to state that the results of Shalvi and Weinstein are essentially
equivalent to Foschini’s analysis of the CM criterion. In other words, both the
CM and SW criteria give rise to equivalent solutions in the combined domain.

In the same paper, more is said about the equivalence between the CM
criterion and the SW methods. Under their fundamental assumptions, Shalvi
and Weinstein show that it is possible to obtain the CM criterion and the
CMA as particular cases of their methods.

These proofs of equivalence are compromised by the limitation of the
scenarios in which they were obtained. Five more years would pass before
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the appearance of Li and Ding’s work [183], which contained a more general
proof of the equivalence between the SW and CM criteria. This equivalence
is concerned with the position of the critical points of the respective cost
functions, i.e., with the equilibrium points of the associated algorithms. The
proof was carried out in the context of a geometrical framework, and was
associated with other relevant theoretical results.

Four years later, in 1999, Regalia would revisit this problem and provide
with another simple and elegant proof.

4.7.1.1 Regalia’s Proof of the Equivalence between the Constant Modulus
and Shalvi–Weinstein Criteria

Regalia’s proof is remarkable in the sense that it possesses two features that
are not trivially brought together: simplicity and generality. His assumptions
were exiguous—in his own words, “little more than stationarity to fourth
order of the equalizer input”—and his goal was ambitious: to relate the CM
and SW criteria by means of a transformation of their cost functions, which
is more than analyzing critical points.

First, we must choose a representation of the parameter vectors in terms
of polar coordinates, a representation that allows us to decouple magnitudes
and directions. In this representation, the equalizer parameter vector w can
be thought of as

w = ρw (4.87)

where
ρ is the norm of w
w is a unit-norm parameter vector

It is also possible to extend this idea to the output signal

y(n) = ρy(n) (4.88)

where
y(n) is the equalizer output
y(n) is a unit-norm version thereof

Under these circumstances, a normalized version of the SW cost func-
tion [269, 293] is written as

JSW (�) = c4
(
y(n)

)

(
E
[
y2(n)

])2 = c4
(
y(n)

)

(
E
[
y2(n)

])2 (4.89)
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The dependence of JSW on � indicates that the cost function depends only
on the angles of the polar representation. Analogously, the CM cost function
becomes

JCM (ρ, �) = E
[(

R2 − |ρ|2 ∣∣y(n)
∣∣2
)2
]

(4.90)

An analysis of Equations 4.89 and 4.90 reveals the usefulness of employing
polar coordinates: it becomes explicit that the SW criterion does not depend
on the norm of the parameter vector, whereas the CM criterion shows this
dependence. On the other hand, this fact poses a difficulty insofar as the way
of comparing these two approaches is concerned.

Regalia’s idea was to perform the optimization of JCM (ρ, �) with respect
to ρ by differentiating it with respect to this parameter and equaling the
result to zero:

∂JCM(ρ, �)

∂ρ
= 4ρ

[
ρ2E

[∣
∣y(n)

∣
∣4
]

− R2E
[∣
∣y(n)

∣
∣2
]]

= 0 (4.91)

The resulting equation has the following solutions:

ρopt = 0 or ρopt = ±

√√√√
√R2

E
[∣∣y(n)

∣∣2
]

E
[∣∣y(n)

∣∣4
] (4.92)

The first of these solutions is the well-known maximum at w = 0, whereas
the two other conditions are of interest (minima and saddle points). Using
these values in (4.90), we get to

JCM (�) = R2
2

⎛

⎜
⎝1 −

[
E
(∣
∣y(n)

∣
∣2
)]2

E
[∣
∣y(n)

∣
∣4
]

⎞

⎟
⎠ (4.93)

which can be rewritten as

JCM (�) = R2
2

⎛

⎜⎜
⎜⎜
⎝

1 − 1

2 + c4(y(n))
[
E
(|y(n)|2

)]2 + E
[
(y(n))

2
]
E
[(

y∗(n)
)2]

[
E
[|y(n)|2

]]2

⎞

⎟⎟
⎟⎟
⎠

(4.94)

At this point, it is necessary to take into account whether we deal with real- or
complex-valued signals. From now on, we will assume that the former case
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is valid (however, the results obtained for complex signals are quite similar).
Under this assumption we get to

JCM (�) = R2
2

[
1 − 1

3 + JSW (�)

]
(4.95)

This expression reveals that the CM cost function can be understood as a
sort of deformation of the SW cost function. The rest of the analysis amounts
essentially to a study of the nature of this deformation. First, let us study the
deformation with respect to monotonicity. This can be done with the aid of
the following expression:

dJCM (�)

dJSW (�)
= R2

2

[3 + JSW (�)]2 (4.96)

Since this expression is always greater than zero, the deformation is mono-
tonic. Furthermore, the expression reveals that all stationary points in � of
the two cost function coincide, i.e., that

dJCM (�)

d�

∣∣∣∣
�1

= 0 ⇔ dJSW (�)

d�

∣∣∣∣
�1

= 0 (4.97)

Finally, it is possible to show that

JCM (�1) − JCM (�2) = R2
2

JSW (�1) − JSW (�2)

[3 + JSW (�1)] [3 + JSW (�2)]
(4.98)

which means that the deformation is order-preserving, i.e., that

JCM (�1) > JCM (�2) ⇔ JSW (�1) > JSW (�2) (4.99)

As (4.97) shows, all stationary points of the two cost functions coincide. In
addition to that, (4.96) and (4.99) reveal that the classification of each point is
identical, which renders the equivalence even stronger. However, we should
notice that this equivalence is restricted to the stationary points: the criteria
in their entirety are not identical, which means that there exist performance
aspects that may be different for both methods and their correspondent
algorithms.

4.7.2 Some Remarks Concerning the Relationship between the Constant
Modulus/Shalvi–Weinstein and the Wiener Criteria

The relationships between the DD and Wiener criteria and between the CM
and SW criteria are established within similar statistical frameworks: in the
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TABLE 4.3

Equalization Delay and Wiener
Solutions

Delay (d) Wiener Solution MSE

<0 [0, 0]T 1

0 [0.391, −0.180]T 0.609
1 [0.406, 0.120]T 0.271

2 [−0.271, 0.586]T 0.120
>3 [0, 0]T 1

first case, a second-order framework that emerges under conditions in which
the ISI is eliminated, and in the second case, a fourth-order framework. How-
ever, a more difficult task arises when it is necessary to interrelate these two
frameworks, which is the case, for instance, when we seek to compare the
CM and Wiener criteria.

Let us consider the same scenario discussed in Section 4.6. The Wiener
solutions and corresponding MSEs for this case are presented again in
Table 4.3 for convenience.

The solutions obtained with the CM criterion in this scenario are close
to some of the Wiener minima. In Figure 4.7, we present the contours of
the CM cost function for this case. We notice that the function has a pair of
global minima, [0.246, −0.522]T and [−0.246, 0.522]T, and a pair of local min-
ima, [0.378, 0.065]T and [−0.378, −0.065]T. Notice that one minimum of each
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FIGURE 4.7
Contour plots of the CM cost function.
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pair is close to one of the best Wiener solutions, which are [−0.271, 0.586]T—
for d = 2—, the best of the three, and [0.406, 0.120]T (for d = 1), and that
the worst Wiener solution (for d = 0) has no counterpart in the CM cost
function.

This situation is also observed in other scenarios, and some works in the
literature indeed studied the relationship between the minima of these crite-
ria and their cost values [264, 312, 313]. An interesting idea that arises from
these works is to focus on CM minima close to Wiener solutions associated
with certain delays.

In fact, the application of the CM criterion to problems in which an FIR fil-
ter is used to equalize an FIR channel often leads to an analytical framework
in which CM minima are more or less closely related to a set of good Wiener
solutions. If we recall that perfect inversion solutions should be present in
both criteria, it is expected that Wiener solutions associated with a small
MSE should have counterparts in the CM cost function. On the other hand,
solutions obtained from equalization delays that lead to a large MSE might
not even be present therein, a fact that is also observed in the previous
example.

The analysis in a general case is rather complex, and certain aspects
thereof can still be considered to be open. However, if we only consider the
special case of binary signals with i.i.d. samples, it is possible to obtain a sim-
ple relationship between the CM and Wiener criteria. Under this assumption,
the CM cost function can be expressed as

JCM(w) = E
{[

y (n) − s
(
n − d

)]2 [y (n) + s
(
n − d

)]2} (4.100)

where, in this case, E
{
s4 (n − d

)} = 1.
It is useful to recall the important Cauchy–Schwarz inequality [78], which

guarantees that

E
{
ab
}2 ≤ E

{
a2
}

E
{

b2
}

(4.101)

This result, together with (4.100), leads to

J2
CM(w) ≤ E

{[
y (n) − s

(
n − d

)]4}E
{[

y (n) + s
(
n − d

)]4
}

≤ JF (w) JF (−w) (4.102)

As JCM ≥ 0, we may write

JCM ≤ √
JF (w) JF (−w) (4.103)
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where

JF (w) = E
{[

y (n) − s
(
n − d

)]4} (4.104)

which corresponds to the cost function associated with the least mean-fourth
algorithm (a discussion about the least mean-fourth supervised approach
can be found in [301]).

Equation 4.103 provides an upper bound for the CM cost function
that is composed of a product of cost functions based on the fourth-order
moment of the error signal. In order to better understand this relationship, in
Figure 4.8 we show the upper bound and the original cost function. It is pos-
sible to observe that the upper bound changes for different values of d. This
may be understood as being indicative of the fact that the CM cost function is
associated with different equalization delays, as mentioned earlier. An over-
all upper bound composed of the surfaces associated with all equalization
delays is also illustrated Figure 4.8d.

Concluding, in simple terms, we believe it is valid to state that the analy-
sis of the CM criterion from the standpoint of supervised approaches should

2
1
0

–1
–0.5

(a)

0
w1 0.5

1 1
0.5

0
w0

–0.5
–1

2
1
0

–1
–0.5

(b)

0
w1 0.5

1 1
0.5

0
w0

–0.5
–1

2
1
0

–1
–0.5

(c)

0
w1 0.5

1 1
0.5

0
w0

–0.5
–1

2
1.5

1
0.5

0
–1

–0.5

(d)

0
0.5

1 1
0.5

0
w0

w1

–0.5
–1

FIGURE 4.8
Derived upper bound for the channel H(z) = 1 + 1.5z−1 and different equalization delays:
(a) d = 0, (b) d = 1, (c) d = 2, and (d) overall upper bound.
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be based on searching for good equalization solutions as well as for a paral-
lel between them and CM minima. Over all, perhaps the main conclusion to
be drawn from the comparison between supervised and blind criteria is that
of not thinking of a local minimum of a blind criterion necessarily as a bad
minimum, especially for the CM criterion, which does not possess spurious
minima like those found in approaches like DD [99].

4.8 Concluding Remarks

In this chapter, we stated the problem of unsupervised signal processing,
in particular that of channel equalization, in the context of SISO systems.
This scenario of interest was introduced after an initial and more general
presentation on unsupervised deconvolution, where we discussed the role of
second-order statistics in order to pave the way to the subsequent theoretical
results.

The central theoretical results are essentially established by the theo-
rems of Benveniste–Goussat–Ruget and Shalvi–Weinstein, enounced in this
chapter. Such theorems clearly establish the need of higher-order statistics to
provide equalization in an unsupervised mode.

The chapter particularly focuses on the methods that make an implicit
use of the higher-order statistics, since our major interest is dealing with
adaptive techniques. The Bussgang algorithms constitute a large family of
techniques, among which we emphasize DD, Sato, and Godard/CMA algo-
rithms. Also, we took the SW theorem as a starting point to derive SW
constrained and unconstrained algorithms, as well as the super-exponential.

If the first part of the chapter was devoted to presentation and derivation
of the main algorithms, the second part was concerned with the analysis of
the corresponding criteria.

First, we exposed the most classical results of the literature about the
equilibrium points of DD and CM criteria. Later, we discussed equivalence
relationships between criteria. In addition to the elegance of some results
presented in the last sections, it is worth pointing out that such analyses
are important to provide an adequate understanding about the operation of
the algorithms and, as a consequence, to envisage a suitable practical use
of them.
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Unsupervised Multichannel Equalization

The blind equalization criteria studied in Chapter 4 for the SISO scenario
consider either implicit or explicit use of higher-order statistics. In such
a framework, the resulting cost function generally presents local minima,
so that the performance of the optimization methods often depends on
appropriate initializations. Another limiting aspect in SISO equalization was
concerned to equalizability, in the sense that zero-forcing (ZF) conditions can-
not be perfectly attained in the usual assumptions of FIR channel and FIR
equalizer.

The works on unsupervised processing in multichannel scenarios have
been intensified from the beginning of the 1990s for both practical and
theoretical reasons. From a theoretical standpoint, the use of models with
multiple inputs and/or multiple outputs revealed the possibility of over-
coming the drawbacks of SISO case mentioned above. In fact, two instigating
results have been brought out:

• Dealing with multichannel configurations, it is possible, under
certain conditions, to attain perfect (ZF) equalization even if both
channel and equalizer are FIR structures.

• Also, optimal equalizer can be obtained in unsupervised mode from
optimization criteria based only on second-order statistics of the
involved signals.

This last and important result becomes conceptually clearer if we con-
sider, for instance, that in SISO case second-order based methods could be
effective if we disposed of any suitable prior information, e.g., the phase-
response of the channel. In the multichannel case, this additional information
is related to some kind of diversity in the system.

The multichannel structure itself is endowed with an inherent spatial
diversity, which can be in practice associated to the use of multiple trans-
mitter and/or receiver disposed in the space. As presented further in this
chapter, proceeding with the optimization of the parameters of the mul-
tichannel structure, we get to optimal solutions that only depend on the
autocorrelations and cross-correlations of the involved signals.

On the other hand, a multichannel model can be used to represent tem-
poral diversity, which may be provided by the process of oversampling.
Thus, the multichannel model will in fact describe a SISO communication
system, operating with sampling rate higher than symbol rate. As presented

141
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further in this chapter, the oversampled signals are cyclostationary, and the
second-order statistics of cyclostationary signals do provide phase-spectrum
information.

In addition to the theoretical aspects commented above, multichannel
configurations receive an increasing practical interest in modern commu-
nications systems, due to the effectiveness of the aforementioned diversity
techniques. Spatial diversity is increasingly applied in wireless communica-
tions, by using multiple antennas in the transmitter and/or the receiver, as
well as in array of sensors in general. Dealing with temporal diversity by the
employment of oversampling and fractionally spaced (FS) equalizers also
brings systemic advantages as a lower sensitivity to sampling timing errors
and noise amplification.

The above considerations serve as a motivation for this chapter, which is,
in a way, built in two distinct parts. First, we systemize the aforementioned
theoretical points of multichannel equalization, giving emphasis to the SIMO
channel (and MISO equalizer) case, since the extension to the MIMO scenario
is not a crucial theoretical issue. Then, as far as MIMO channel is concerned,
we give special attention to the problem of multiuser processing, which is
particularly important in modern wireless communications systems. It is also
worth pointing out that the problem of MIMO equalization itself will be, in
a way, revisited in the next chapter when we deal with convolutive source
separation. With this in mind, we organize the chapter as follows:

• Section 5.1 states the problem in a general scenario, considering
both multiple input and multiple output channels. We establish the
requirements for ZF MIMO equalization based on two theorems: the
first one introduces the notion of Smith form, and the second one uses
this definition to provide equalizability conditions.

• As commented above, our theoretical derivations emphasize the
case of SIMO channel equalization, which is presented in Section 5.2
as a particularization of the previous section. The main results are
• We present SIMO channel model and its relationships with the

two most typical cases: multiple antennas and temporal oversam-
pling.

• We discuss the cyclostationary behavior of the oversampled
signal, showing that its second-order statistics convey phase
information. From there, we formulate the solution based on FS
equalizers.

• We particularize the Smith form to the SIMO case and enounce
the Bezout’s identity, showing how the ZF condition can be
attained when we deal with an FIR SIMO channel and an FIR
MISO equalizer.

• Once the problem is described, we discuss in Section 5.3 the solu-
tions for blind equalization of SIMO channels. First, we comment
on the use of methods based on higher-order statistics. Then, we
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present in more detail two well-established second-order methods:
subspace decomposition and linear prediction.

• In Section 5.4, we change the main focus from equalization itself to
the problem of multiuser processing, which is closely related to MIMO
configurations. The problem consists in recovering a given transmit-
ted signal that is subject to the channel impairments and also to the
effect of interfering signals arriving at the same receiver. We present
two types of methods: the first one involves the equalization crite-
rion together with an auxiliary term that penalizes the correlation
between the received signals; the other methodology relies on the
use of an orthogonalization approach based on the Gram–Schmidt
procedure.

Historical Notes

The evolution of the blind equalization algorithms from SISO to SIMO sys-
tems can be traced back to the work from Tong et al. in 1991 [287]. In
this work, they proposed a method for blind equalization and identifica-
tion of SIMO channels using only the second-order statistics of the involved
signals. After the so-called TXK algorithm, a number of algorithms and
methods using second-order statistics were proposed in the 1990s, making
use of prediction error structures, subspace methods, and fractionally spaced
equalizers. Among which we can mention the references in [207,211,229,289].
Moreover, it is important to mention the works of Gardner [116, 117], also
in the 1990s, which exploit second-order statistics, but in the context of the
cyclic spectrum of cyclostationary signals.

The methods based on higher-order statistics for SIMO systems have
been concentrated on the generalization of the SISO algorithms. The con-
sideration of FS equalizers led to the proposal of the fractionally-spaced
constant modulus algorithm (FS-CMA) by Li and Ding [184], as one of the
most known algorithms on such class. A variant of the super-exponential
algorithm for multichannel are also reported in [129].

As far as MIMO channels are concerned, results are also reported by the
literature since the early 1990s, with methods based on both second-order
and higher-order statistics. Among important contributions to the theme, we
can we can point out the works by Hua and Tugnait [146, 296], and other
techniques that consider subspace methods, matrix pencil decomposition,
channel decorrelation, etc. [15, 130, 193, 207, 309].

The problem of multiuser processing in a MIMO environment is in fact
closely related to those of source separation and independent component
analysis, to be considered in the next chapter, although these topics and
their corresponding scientific communities made their own independent
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way. The approach of considering independent transmitted signals in a
MIMO channel scenario has founded interesting works as [96, 186, 294]. It
is worth mentioning the multiuser techniques based on the penalization of
correlations between receiver signals, as proposed in [65, 228].

Again, this brief historic is necessarily non-exhaustive since, in spite of
the relatively short period of time, many important authors contributed with
this nice theme. From the aforementioned references it will be not difficult
to access others and, once more, we must mention the scan of the literature
provided by [99] as a necessary complement.

5.1 Systems with Multiple Inputs and/or Multiple Outputs

In Chapter 2, we briefly recalled some basic aspects of system theory. Among
these aspects, we commented about the systems classification in accordance
with the number of input and output signals: SISO, SIMO, MISO, and MIMO
systems.

In the equalization scenarios discussed in both Chapters 3 and 4, we con-
sidered a single information source and a single receiver. In this case, the
channel model is given by a SISO system that is fully characterized by its
transfer function. In this context, the definitions of its zeros and poles is
straightforward, as well as the conditions for perfect inversion of the channel
impulse response.

The concept, however, becomes more involved in a scenario in which we
have more than a single pair of transmitted and received signals, as depicted
in Figure 5.1.

In this model, signal propagation from each source of information to
each receiving device is modeled as a SISO channel, which means that the
received signals can be expressed as

xi (n) =
∑

j

∑

τ

hij(τ)sj (n − τ)

=
∑

j

hij(n) ∗ sj (n), (5.1)

for i = 1, . . . , N, where hij (n) denotes the impulse response of the subchannel
linking the ith source and the jth sensor. Thus, we may express the vector
x(n) = [x1(n), x2(n), . . . , xM(n)] of received signals as

x (n) =
∑

l

H(l)s
(
n − l

)
, (5.2)
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x1(n)

x2(n)

MIMO channel

FIGURE 5.1
MIMO scenario with two transmitters and two receivers.

where the matrices H(n) are composed of the coefficients hij(n) of all
subchannels.

In fact, Equation 5.2 is very similar to that which describes the output of
a SISO system, given in (2.21). The output of a MIMO system can thus be
interpreted as the convolution between a sequence of matrices H(n) repre-
senting the channel and the vector s(n) composed of the sources. Hence, we
may write

x(n) = H(n) ∗ s(n) + ν(n) (5.3)

We can also define the z-transform of the channel impulse response as

H (z) �
∑

k

H(k)z−k (5.4)

which represents a polynomial matrix, since each of its elements is a
polynomial in z. A representation of (5.3) is provided in Figure 5.2.

An important classification of the MIMO systems is concerned with the
nature of combination of the input (source) signals, which leads to the
following cases:

• Instantaneous: In this case, the resulting signals at the receiver, apart
from the noise, are a combination of the input signals at a given time
instant, i.e., the received signal at a time instant n only depends on a
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FIGURE 5.2
Received signal model for a MIMO system.

combination of the input signals at the same time instant. Hence, we
would have the noise-free signals given by

x̃(n) = H(n) ∗ s(n)

= Hs(n) (5.5)

It is usual in the literature to relate this case with narrowband sig-
nals, since they practically do not suffer from temporal dispersion.

• Convolutive: The received signals at time instant n are a combination
of the input signals at instant n and at certain past time instants.
In such situations, the noise-free signals are computed according to
the general expression (5.3). This model is often associated in the
literature with a broadband signal that is susceptible to the effect of
linear filtering.

The equalizer may follow the same formulation so that we have

y(n) = W(n) ∗ x(n) (5.6)

= W(n) ∗ H(n) ∗ s(n) (5.7)

= G(n) ∗ s(n) (5.8)

where W(n) and G(n) denote the equalizer and the combined channel +
equalizer impulse responses, respectively.

5.1.1 Conditions for Zero-Forcing Equalization of MIMO Systems

As discussed in Chapter 4, we should obtain an equalizer capable of yield-
ing a signal that is a delayed and possibly scaled version of the transmitted
signal: this is the essence of the ZF condition for the SISO case.
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However, differently from that case, in a MIMO scenario, it is neces-
sary to take into account that there is more than one signal involved in the
equalization problem. We may consider that a perfect equalization condi-
tion is achieved if each one of the recovered signals represents a delayed
and possibly scaled version of the transmitted signals, even if the order of
the signals in the received vector y(n) is different from the original order in
s(n) [153].

Taking into account these possible ambiguities, we may state that a
MIMO channel H(z) is perfectly equalized, i.e., that the ZF condition is
achieved, if there exists an equalizer W(z) such that

WH(z) H(z) = PD�(z), (5.9)

where
P and D represent, respectively, a permutation matrix and a non-singular

diagonal matrix
�(z) denotes a diagonal matrix composed of monic monomials z−li , li ≥ 0

The existence of a ZF equalizer in the SISO case is readily verified by
observing the location of zeros and poles of the channel transfer function.
Moreover, if a given SISO channel is modeled as an FIR filter, it is well-
known that the ZF condition is not attained, in general, by an FIR equalizer.
On the other hand, in a clear contrast with the SISO case, it is possible to
obtain the ZF condition with a MIMO-FIR equalizer even if the channel is
also a MIMO-FIR structure.

In order to present the main result regarding the attainability of ZF solu-
tions in the MIMO case, let us consider from now on that the channel can be
modeled as a MIMO-FIR structure. In analogy with SISO channels, we may
also define the zeros of a MIMO-FIR structure. The definition employs the
Smith form of H(z), given by [115].

THEOREM 5.1 (Smith Form)

Let H(z) denote an M × N polynomial matrix, in which each element rep-
resents a polynomial in z. Then, there exists a finite number of elementary
operations over the rows and columns of H(z) that reduce it to a diagonal
polynomial matrix. It hence can be expressed as

H(z) = Q(z) �(z) P(z), (5.10)

where Q(z)M×M and P(z)N×N are unimodular polynomial matrices in z, i.e.,
their determinant does not depend on the value of z, and �(z) is defined as
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�(z) =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ0 (z) 0 0 · · · 0 · · · 0
0 γ1 (z) 0 · · · 0 · · · 0

0 0
. . . 0

...
...

...
...

... 0 γρ−1 (z) 0 · · · 0

0 0
... 0 0 · · · 0

...
...

...
...

...
. . .

...
0 0 · · · 0 0 · · · 0

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.11)

where each element is a monic polynomial γi(z). In addition to that, it is
verified that γi(z) divides γi+1(z), 0 ≤ i ≤ ρ − 2, ρ being the normal rank of
H(z). For a given matrix H(z), �(z) is unique, and represents the Smith form
of H(z).

Given the Smith form of H(z), the zeros of the channel are defined as the
roots of γi(z) [25]. Then, the following theorem provides the conditions for
the ZF equalization of MIMO-FIR channels [25].

THEOREM 5.2 (Equalizability of MIMO-FIR Channels)

Let HM×N(z) denote a MIMO-FIR channel, with M ≥ N. Considering its asso-
ciated Smith form given by (5.10), the channel is perfectly equalizable, i.e.,
the ZF condition is attainable by means of MIMO-FIR equalizers if, and only
if, γi(z) = z−di for some di ≥ 0.

Theorem 5.2 states that it is possible to obtain a ZF equalizer even if both
channel and equalizer are FIR structures, a situation very distant from that
found in the SISO case. Considering the definition of system zeros of a MIMO
system, the condition under which it is possible to perfectly equalize it is
equivalent to the nonexistence of finite zeros associated with the system [153].

It is important to mention that this condition evokes the idea of a trivial
SISO channel, i.e., one that only imposes a delay to the input signal. How-
ever, it is interesting to imagine that for a MIMO-FIR structure, even if the
sub-channels linking each transmitter-receiver are not trivial channels, the
global system can be perfectly inverted by an FIR equalizer.

5.2 SIMO Channel Equalization

Let us now consider a particular case of the general MIMO model, which is
illustrated in Figure 5.3. In this scenario, we have a SIMO channel model, in
which a single signal is transmitted by multiple subchannels.
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s (n)

hP–1
xP–1(n)

x1(n)

x0(n)
h0

h1

FIGURE 5.3
General SIMO model.

It should be noticed that since the same information is transmitted
through different subchannels, all received sequences will be distinctly
distorted versions of the same message, which accounts for a certain sig-
nal diversity. Therefore, it is reasonable to assume that more information
about the transmitted signal will be available at the receiver end. It is like
looking at the same landscape through different blurry windows: each
sight reveals you a different detail that perhaps is not so clear in the
others.

Interestingly enough, two practical scenarios can be formulated using the
SIMO channel framework. The first one is illustrated in Figure 5.4a, in which
we have a system with a single transmit antenna and several antennas at
the receiver end. In such a case, each possible channel linking the transmit
antenna to one of the receive antennas can be regarded as a subchannel, as
indicated in Figure 5.4. The spatial diversity introduced by means of a set
of antennas at the receiver also gives the system a certain degree of robust-
ness: if one of these channels happens to severely degrade the signal, other
received versions may still provide the necessary information to correctly
estimate the original message.

s (n)
Transmit
antenna

(a)

x0 (n)

x1 (n)

xP–1 (n)

s (n)

(b)

h0
x0 (n)

x1(n)

xP–1(n)

h1

hP–1

FIGURE 5.4
(a) A system with multiple receiving antennas and (b) its SIMO model.
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The other context in which the SIMO channel model arises is related to
the idea of oversampling, described in more detail in Section 5.2.1.

5.2.1 Oversampling and the SIMO Model

In the previous chapters, whenever we have expressed the received signal
as the convolution of a symbol sequence and the channel impulse response
h(n), we have assumed that the received signal was sampled at the symbol
rate, which is the case in several communication systems. However, if the
sampling rate is made higher than the symbol rate, the received signal can
also be represented in terms of the outputs of a SIMO channel model.

To explain this connection, let us first consider the received baseband
signal, expressed by

x (t) =
∞∑

i=−∞
s(i)h (t − iT) + ν (t), (5.12)

where
h(t) stands for the channel impulse response
ν(t) is the additive noise

In the usual case, when the signal is sampled at the symbol rate 1
T , the

received sequence will be given by

x (nT) =
∞∑

i=−∞
s (i) h ((n − i)T) + ν (nT). (5.13)

If we sample the received signal at a rate P times higher than the symbol
rate, i.e.,

1
Ts

= P
1
T

(5.14)

then the oversampled sequence x(nTs) will be given by

x (nTs) = x
(

n
T
P

)
=

∞∑

i=−∞
s (i) h

(
n

T
P

− iT
)

+ ν

(
n

T
P

)
. (5.15)

The relationship between the oversampled sequence and the SIMO
channel model is revealed when we consider sequences composed of sam-
ples of x(t) spaced by one symbol period. For example, the samples
x (0) , x (T) , x (2T) , . . . represent the sequence {x (nT)}, while x (Ts), x (Ts + T),
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T

T/P

0 1 2 P–1 0 1 2

s (n)

x (n)

x0 (n)

x1 (n)

xP–1 (n)

T

FIGURE 5.5
Relationship between the oversampled sequence and P sequences sampled at the baud rate.

x (Ts + 2T),. . . correspond to the sequence {x (nT + Ts)}, and so forth, as
illustrated in Figure 5.5.

Therefore, the samples of the pth sequence
{
xp (n)

}
, p = 0, . . . , P − 1, can

be expressed as

xp (nT) = x
(

nT + pT
P

)
= x

((
nP + p

)
Ts
)

. (5.16)

and, from (5.13) and (5.16), we get to

xp (nT) =
∑

i

s (i) h
(

nT − iT + pT
P

)
. (5.17)

Thus, the pth sequence is the result of the convolution between the trans-
mitted symbols and the impulse response of the corresponding subchannel,
whose impulse response is given by

hp (nT) = h (t)
∣∣∣
∣t=nT+ p

P T
, p = 0, . . . , P − 1, (5.18)

and the pth received sequence {xp(nT)} can be rewritten as

xp
(
kT
) =

∑

i

s (i) hp (nT − iT). (5.19)
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As in the scenario with multiple antennas, we have a SIMO channel
model representing the observed signals. In the oversampling approach,
however, we explore the temporal diversity of the signals.

5.2.2 Cyclostationary Statistics of Oversampled Signals

In a certain sense, when we consider the SIMO channel model, we are implic-
itly exploring a particular characteristic of digitally modulated signals: they
are wide-sense cyclostationary, i.e., as discussed in Section 2.4.4, their mean
and autocorrelation functions are periodic [230]. Gardner [116, 117] first
explored this characteristic, showing that it is possible to recover the chan-
nel phase information from the cyclic autocorrelation function, and, later, by
Tong et al. [287–289], who proposed methods for blind channel identification
and equalization.

Since the digitally modulated signal is cyclostationary, it is possible to
show that

Rx

(
t + τ

2
, t − τ

2

)
= Rx

(
t + τ

2
+ T, t − τ

2
+ T

)
(5.20)

which means that its autocorrelation function is periodic, with period T, for
any value of τ. Hence, it can be expressed in terms of a Fourier series [7,118],
whose coefficients are given by

nth coefficient = 1
T

T/2�
−T/2

Rx

(
t + τ

2
, t − τ

2

)
exp

(
−j2π

n
T

t
)

dt (5.21)

The nth coefficient can be defined as a cyclic correlation function Rα
x (τ),

defined as

Rα
x (τ) = 1

T

T/2�
−T/2

Rx

(
t + τ

2
, t − τ

2

)
exp(−j2παt)dt (5.22)

where α = n
T is known as the cyclic frequency.

It is interesting to notice that, for stationary signals that do not present a
periodic autocorrelation, Rα

x (τ) ≡ 0, ∀α �= 0. On the other hand, for second-
order cyclostationary signals—or simply cyclostationary signals—the cyclic
correlation will be different from zero for some values of α.

In analogy with stationary signals, we can define a correlation spectral
density Sα

x
(

f
)
, as the Fourier transform of (5.22)

Sα
x
(

f
) =

τ=∞�
τ=−∞

Rα
x
(
2πfτ

)
dτ (5.23)
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From (5.23), it is possible to show that [99]

Sα
x
(

f
) = H

(
f + α

2

)
H∗ (f − α

2

)
σ2

s + σ2
νδ (αT) (5.24)

where σ2
s and σ2

ν are, respectively, the transmitted signal and additive noise
powers. Notice that for α = 0, (5.24) is reduced to the power spectral density
of x(t):

Sx
(

f
) = σ2

s
∣∣H
(

f
)∣∣2 + σ2

ν (5.25)

It directly seems from (5.25) that the power spectral density does not
provide any information about the phase of the channel transfer function.
However, rewriting (5.24) for α = ±1/T, ±2/T, . . ., we get to

Sα
x
(

f
) = H

(
f + α

2

)
H∗ (f − α

2

)
σ2

s (5.26)

where it becomes clear that the correlation spectral density provides infor-
mation about the phase of the channel transfer function. Therefore, it is
possible to identify both the magnitude and phase responses of a channel
based solely on second-order statistics of the oversampled received signal.

5.2.3 Representations of the SIMO Model

In order to discuss methods for blind equalization and identification in this
chapter, it is convenient to represent the outputs of the SIMO system in a
matrix form. Depending on how the output samples are organized in a vec-
tor, it is possible to obtain at least two different representations, discussed in
the following.

5.2.3.1 Standard Representation

Let us assume that each subchannel is modeled by an L-tap filter, and let us
define the vectors

hp = [ hp (0) hp (1) · · · hp (L − 1)
]T (5.27)

x̃p (n) = [ xp (n) xp (n − 1) · · · xp (n − K + 1)
]T (5.28)

ν̃p (n) = [νp (n) νp (n − 1) · · · νp (n − K + 1)
]T (5.29)

representing the pth subchannel impulse response, a vector containing K
samples of the corresponding output vector and a vector containing K sam-
ples of the additive noise, respectively. Using this notation and (5.19), and
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assuming the presence of noise, we can express the output vector related to
the pth subchannel as

x̃p (n) = H̃p s (n) + ν̃p (n) , (5.30)

with the convolution matrix associated with the pth subchannel, given by

H̃p =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

hp (0) hp (1) · · · hp (L − 1) 0 · · · 0

0 hp (0) · · · hp (L − 2) hp (L − 1) · · · 0

. . . . . .

0 0 · · · hp (0) hp (1) · · · hp (L − 1)

⎤

⎥
⎥⎥⎥⎥⎥
⎦

.

(5.31)

Finally, stacking the P vectors corresponding to the subchannels, one can
obtain the following:

⎡

⎢
⎢⎢⎢⎢⎢
⎣

x̃0 (n)

x̃1 (n)

...

x̃P−1 (n)

⎤

⎥
⎥⎥⎥⎥⎥
⎦

=

⎡

⎢
⎢⎢⎢⎢⎢
⎣

H̃0

H̃1

...

H̃P−1

⎤

⎥
⎥⎥⎥⎥⎥
⎦

s (n) +

⎡

⎢
⎢⎢⎢⎢⎢
⎣

ν̃0 (n)

ν̃1 (n)

...

ν̃P−1 (n)

⎤

⎥
⎥⎥⎥⎥⎥
⎦

, (5.32)

or, simply,

x̃ (n) = H̃ s (n) + ν̃ (n) . (5.33)

5.2.3.2 Representation via the Sylvester Matrix

Another possible way to represent the SIMO model is obtained by arranging
the samples in a different manner. Let us define the vector

h (n) = [ h0 (n) h1 (n) · · · hP−1 (n)
]T (5.34)

containing the samples of the impulse response of all subchannels at a given
time instant n. In a similar fashion, let us define the vectors associated with
the outputs and the noise as follows:

x (n) = [ x0 (n) x1 (n) · · · xP−1 (n)
]T (5.35)

ν (n) = [ν0 (n) ν1 (n) · · · νP−1 (n)
]T (5.36)
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Then, we can express the subchannel outputs as

⎡

⎢⎢⎢
⎣

x0 (n)

...

xP−1 (n)

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

h0 (0) . . . h0 (L − 1)

...
...

hP−1 (0) . . . hP−1 (L − 1)

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

s (n)

...

s (n − L + 1)

⎤

⎥⎥⎥
⎦

+

⎡

⎢⎢⎢
⎣

ν0 (n)

...

νP−1 (n)

⎤

⎥⎥⎥
⎦

(5.37)

or, in compact form,

x (n) = Hs (n) + ν (n) (5.38)

Notice that the matrix H can also be written as

H =

⎡

⎢
⎢⎢
⎣

h0 (0) . . . h0 (N − 1)

...
...

hP−1 (0) . . . hP−1 (N − 1)

⎤

⎥
⎥⎥
⎦

= [h (0) · · · h (N − 1)
] =

⎡

⎢⎢
⎢
⎣

hT
0

...

hT
P−1

⎤

⎥⎥
⎥
⎦

(5.39)

Stacking K vectors containing the received signals and noise samples in
vectors x(n) and v(n), in the form

x (n) = [ x (n)T · · · x (n − K + 1)T ]T (5.40)

v (n) = [ν (n)T · · · ν (n − K + 1)T ]T (5.41)

s (n) = [ s (n)T · · · s (n − L − K + 2)T ]T (5.42)

we get to the following matrix equation:

x (n) = Hs (n) + v (n) (5.43)
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where H is defined as

H =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

h (0) h (1) · · · h (N − 1) 0 · · · 0

0 h (0) · · · h (N − 2) h (N − 1) 0

...
. . . . . .

...

0 0 · · · h (0) h (1) · · · h (N − 1)

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

. (5.44)

5.2.4 Fractionally Spaced Equalizers and the MISO Equalizer Model

Let us assume the equalizer to be an FIR filter, composed of KP
coefficients, i.e.,

w = [w(0) w(Ts) w(2Ts) . . . w(T) . . . w((KP − 1)Ts)
]T . (5.45)

The difference in this case is that two adjacent elements are related to sam-
ples delayed by a fraction of the symbol interval, the reason why this is called
an FS equalizer. Its output is given by

y (nTs) =
KP−1∑

l=0

w
(
lTs
)

x
(
nTs − lTs

)
. (5.46)

It should be noted that the output is also oversampled, i.e., its samples are
spaced by a fraction of the symbol period. Therefore, to obtain a sequence of
T-spaced recovered symbols one should decimate the sequence by the same
oversampling factor P. This decimation factor originates P different baud-
spaced sequences

yi (nT) = y
(

nT + iT
P

)
, i = 0, . . . , P − 1 (5.47)

and each one, in accordance with (5.46), can be expressed as

yi (nT) =
LP−1∑

l=0

w
(

lT
P

)
x
(

nT + iT
P

− lT
P

)
. (5.48)

Notice that the coefficients w
(
lTs
)

can also be arranged into P baud-
spaced sequences, each one related to a subequalizer, i.e.,

wk
(
lT
) = w

(
lT + k

P
T
)

= w
((

lP + k
)

Ts
) l = 0, . . . , K − 1

k = 0, . . . , P − 1 (5.49)
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Replacing (5.49) in (5.46), we get

yi (nT) =
L−1∑

l=0

P−1∑

k=0

wk
(
lT
)

u
(

nT + i
T
P

−
(

lT + k
T
P

))

=
L−1∑

l=0

P−1∑

k=0

wk
(
lT
)

u
((

n − l
)

T + (i − k
)

Ts
)

. (5.50)

Assuming that we are interested in the sequence
{
yP−1(nT)

}
, we have

y (nT) = yP−1 (nT) =
P−1∑

k=0

K−1∑

l=0

wk
(
lT
)

x
((

n − l + 1
)

T − (k + 1
)

Ts
)

(5.51)

which can be understood as the sum of the outputs of all P subequalizers.
A diagram illustrating the channel and equalizer structure is provided in

Figure 5.6.
Using the definition in (5.51), the output is given in matrix form by

y (n) = wHx (n) (5.52)

where

w = [wH (0) wH (1) · · · wH (L − 1)
]H (5.53)

Σs (n)

h0

h1

hP–1 w0

wP–2

wP–1

ν0 (n)

ν1 (n)

νP–1 (n)

y (n)

FIGURE 5.6
Multichannel model and subequalizers.
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and

w (n) =

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

wP−1 (n)

wP−2 (n)

...

w0 (n)

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

, n = 0, . . . , K − 1 (5.54)

Using this formulation, obtaining the Wiener solution is a process similar
to that developed in Section 3.2. We can express the Wiener–Hopf equations
(3.13) for the multichannel model as

Rxwopt = p ⇒ wopt = (Rx)−1 p (5.55)

where the autocorrelation matrix is given by

Rx = E
[
x (n)xH (n)

]

and the cross-correlation vector between the desired and the received
signals is

p = E
[
x (n) s∗ (n − d

)]

5.2.5 Bezout’s Identity and the Zero-Forcing Criterion

The condition stated in Theorem 5.2 is also valid for this particular case of
a SIMO channel, thus providing a suitable condition for ZF equalization.
Let the polynomial vector associated with the channel be defined as

h (z) =
L−1∑

i=0

h (i) z−i =

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

H0 (z)

H1 (z)

...

HP−1 (z)

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

(5.56)

where h (i) is given in (5.34), and the polynomial vector related to the
equalizer is
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w (z) =
K−1∑

i=0

w (i) z−i =

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

WP−1 (z)

WP−2 (z)

...

W0 (z)

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

(5.57)

where w (n) is defined in (5.54).
Then, in the spirit of (5.10), the polynomial vector can be rewritten in

terms of its Smith form as

h(z) = Q(z)

⎡

⎢
⎢
⎢
⎢⎢⎢
⎢
⎣

γ (z)

0

...

0

⎤

⎥
⎥
⎥
⎥⎥⎥
⎥
⎦

. (5.58)

Hence, the condition for ZF equalization is reduced to γ(z) = z−d.
It is interesting to note that γ(z) represents the greatest common divisor

of all subchannels hi(z), which means that the roots of γ(z) are the common
zeros of all subchannels of the SIMO system. In other words, an FIR SIMO
channel is perfectly equalized by another FIR structure if and only if the sub-
channels have no zeros in common. This result, even though explained here
in terms of the Smith form of the channel, is also a consequence of Bezout’s
identity [163].

THEOREM 5.3 (Bezout’s Identity)

Let the h (z) and w (z), defined in (5.56) and (5.57), denote the polynomial
vectors associated with the channel and equalizer, respectively. If the poly-
nomials H0(z), . . . , HP−1(z) do not share common zeros, then there exists a
set of polynomials W0(z), . . . , WP−1(z) such that

wH(z)h(z) = z−d (5.59)

where d is an arbitrary delay.

In the time domain, Bezout’s identity implies

wHH = [0 · · · 0 1 0 · · · 0
]

(5.60)
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where HL is defined in (5.44). We can note that (5.60) is equivalent to a ZF
condition. Also, from (5.60), it is possible to notice that we have L + K − 1
equations and LP unknowns. In this system, L + K − 1 is the number of posi-
tions in the combined channel+equalizer response and KP is the length of
the equalizer. Since the number of unknowns should be at least equal to the
number of equations, we find a first constraint on the length of the equalizer,
given by [229]

KP ≥ L + K − 1 ⇒ K ≥
⌈

L − 1
P − 1

⌉
(5.61)

where 
·� denotes the ceiling function.

5.3 Methods for Blind SIMO Equalization

Previous discussions confirm the possibility of carrying out blind equaliza-
tion in multichannel scenarios by dealing only with second-order statistics.
Nevertheless, it does not discard the possible interest in using higher-order
techniques due, for instance, to their characteristics of robustness. This option
is discussed next, and in the sequence we present the two main second-order
methods, those of subspace decomposition and linear prediction.

5.3.1 Blind Equalization Based on Higher-Order Statistics

The idea of FS equalization was originally conceived as an alternative
to reduce the sensitivity to sampling timing errors and noise amplifica-
tion [184], for both supervised and blind equalizers. In the latter case, a
special attention was paid to the CMA, which is commonly termed FS-CMA.
However, the relationship between oversampling and the multichannel
model opened a new perspective to the study of FS-CMA.

The main characteristic associated with the FS-CMA is the possibil-
ity of effective global convergence. In fact, in the absence of noise, if all
subchannels share no common zeros and the condition about the length of
the equalizer is respected, then all minima of the CM cost function corre-
spond to ZF solutions [184]. In other words, in contrast with the baud-rate
equalization case, the ZF condition is blindly attainable with finite length
equalizers.

Different works contributed to the study of the behavior of the FS-CMA.
In [184], the authors prove the global convergence behavior of FS-CMA
under the aforementioned conditions. Moreover, a brief discussion is pre-
sented about the influence of noise, which violates the ideal conditions, in
the minima location. The discussion about convergence is extended in [95],
which analyzes the equilibrium points of cost functions of other Bussgang
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algorithms. Important results regarding the convergence analysis of the
FS-CMA can be found in [155]. The relationship between equalizers obtained
with the CM and Wiener criteria is investigated in [132, 312].

5.3.2 Blind Equalization Based on Subspace Decomposition

Schemes based solely on second-order moments of the received signal have
an advantage over cumulant-based methods with respect to computational
complexity. The existing methods to solve the problem of SIMO blind
equalization/identification based exclusively on second-order statistics can
be grouped in two main classes: those based on subspace decomposition and
those based on linear prediction. In the following, we will present the main
characteristics associated with both approaches.

In simple terms, subspace methods rely on the decomposition of the auto-
correlation matrix of the received signal [287, 289]. For instance, in [211],
the main idea is to explore the orthogonality between signal and noise sub-
spaces. The problem consists of estimating a vector LP × 1 composed of all
coefficients from all P subchannels, organized in the following manner:

hS = [h0 h1 · · · hP−1
]T (5.62)

Estimation is based on a set of K observations of the received signals, and is
founded on the following theorem [139, 288].

THEOREM 5.4

The convolution matrix H̃ associated with the channel has full column rank
if and only if the following conditions hold:

• The polynomials composed by the coefficients of each subchannel
have no common zeros.

• At least one of the polynomials has maximum degree L − 1.
• The length K of the vector containing samples from each subchannel

should be K > L − 1.

We assume that the input symbol vector s(n) and the noise vector ν̃(n)

present in (5.33) are obtained from mutually independent wide-sense sta-
tionary processes. The transmitted signal is zero mean, and its correlation
matrix is defined as

Rs = E
[
s (n) sH(n)

]
(5.63)
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which has a full column rank. The vector of noise samples is zero mean, and
has a correlation matrix

RV = E
[
ν̃(n)ν̃(n)H

]
= σ2

νI (5.64)

with σ2
ν being the noise variance, supposed to be known.

The identification process is based on the correlation matrix, defined by

Rx̃ = E
[
x̃(n)x̃H(n)

]

= E
[
(H̃s(n) + ν̃(n))(H̃s(n) + ν̃(n))H

]

= E
[
H̃s(n)s(n)HH̃H]+ E

[
ν̃(n)ν̃(n)H

]

= H̃RsH̃
H + RV

(5.65)

The matrix Rx̃ can be rewritten in terms of its eigenvectors

Rx̃ =
KP−1∑

i=0

λiqiqH
i (5.66)

where λi are the eigenvalues, in a decreasing order: λ0 ≥ λ1 ≥ . . . ≥ λKP−1.
Similarly, the space spanned by the eigenvectors of Rx̃ can be separated

into two subspaces:

• The signal subspace S, spanned by the eigenvectors associated with
λ0, λ1, . . . , λL+K−2, which are given by qsignali = qi, i = 0, . . . , L + K − 2.

• The noise subspace L, spanned by the eigenvectors associ-
ated with λL+K−1, . . . , λKP−1, which are given by qnoisei = qL+K+i−1,
i = 0, . . . , KP − L − K.

The noise subspace is the orthogonal complement of the signal subspace.
The signal subspace is also spanned by the columns of the convolution
matrix H̃. Hence, the columns of H̃ are orthogonal to every vector in the
noise subspace, which implies

H̃H
qnoisei = 0, i = 0, . . . , KP − L − K (5.67)

The previous result can also be verified in a different way. By definition

Rx̃qnoisei = σ 2
νqnoisei , i = 0, . . . , KP − L − K (5.68)
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Substituting (5.65) into (5.68) and making Rν̃ = σ2
νI yields

H̃RsH̃
H

qnoisei = 0, i = 0, . . . , KP − L − K (5.69)

Since both Rs and H̃ have full column rank, (5.69) implies (5.67). Equa-
tion 5.67 forms the basis of the subspace decomposition method proposed by
Moulines et al. [211], based upon the following premises:

• Knowledge about the eigenvectors associated with the KP−L−K+1
lowest eigenvalues of the correlation matrix Rx̃

• Orthogonality between the columns of the channel convolution
matrix H̃ (unknown) and the noise subspace

In order to obtain the criterion itself, the orthogonality principle
expressed in (5.67) is first rewritten in its scalar form:

∥∥∥H̃H
qnoisei

∥∥∥
2 = qH

noisei
H̃H̃H

qnoisei = 0, i = 0, . . . , KP − L − K (5.70)

Then, making an analogy with the “modular” structure of H̃M, the
eigenvector KP × 1 qnoisei

can be partitioned as follows:

qnoisei =
[

qT
noisei,0

qT
noisei,1

· · · qT
noisei,P−1

]T
(5.71)

where qnoisei,p, p = 0, . . . , P − 1 is a vector K × 1. Based on the same structure
of the convolution matrix of each subchannel H̃p, we define the following
matrix L × L + K − 1 associated with qnoisei,p:

Qnoisei,p =

⎡

⎢⎢⎢⎢
⎣

qnoisei,p (0) · · · qnoisei,p (K − 1) 0

. . . . . .

0 qnoisei,p (0) · · · qnoisei,p (K − 1)

⎤

⎥⎥⎥⎥
⎦

(5.72)

and we can also define a matrix LP × L + K − 1 Qnoisei :

Qnoisei =

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

Qnoisei,0

Qnoisei,1

...

Qnoisei,P−1

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

, i = 0, . . . , KP − L − K (5.73)
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Finally, it can be shown [211] that

qH
noisei

H̃H̃H
qnoisei = hH

S QnoiseiQH
noisei

hS (5.74)

Therefore, the orthogonality relation (5.70) can also be expressed as

hH
S QnoiseiQH

noisei
hS = 0, i = 0, . . . , KP − L − K (5.75)

In practice, only estimates q̂noisei of the eigenvectors associated with the
noise subspace are required. Then, the estimate of the channel coefficient
vector hS is obtained minimizing the following quadratic form:

Jquad (hS) =
KP−L−K∑

i=0

∥∥∥H̃H
q̂noisei

∥∥∥
2 = hH

S QnoisehS (5.76)

where Qnoise is a LP × LP matrix given by

Qnoise =
KP−L−K∑

i=0

Q̂noiseiQ̂
H
noisei

(5.77)

and matrix Q̂noisei is defined by (5.71) through (5.73), replacing the eigenvec-
tors associated with the noise subspace with their estimates.

The minimization must be subject to appropriate constraints, in order
to avoid the trivial solution hS = 0. In [211], the following criteria are
suggested.

• Quadratic constraint: minimize Jquad(hS) subject to ‖hS‖ = 1. The
optimal solution is given by the unit-norm eigenvector associated
with the smallest eigenvalue of Qnoise.

• Linear constraint: minimize Jquad(hS) subject to lHH̃ = 1, where l is a
LP × 1 vector.

The first criterion can be considered to be the natural choice, although
it has a higher computational complexity due to the eigenvector estimation.
The second criterion, in spite of demanding a lower computational burden,
depends on the appropriate choice of an arbitrary vector l—the solution is
proportional to Q−1l.

The quadratic form (5.76) can also be expressed in terms of the eigenvec-
tors associated with the signal subspace:
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Jquad (hS) = K ‖hS‖2 −
K+L−2∑

i=0

∥∥∥H̃H
K q̂signali

∥∥∥
2

= K ‖hS‖2 − hH
S

(K+L−2∑

i=0

Q̂signaliQ̂
H
signali

)

hS

= K ‖hS‖2 − hH
S QsignalhS (5.78)

where

Qsignali,p =

⎡

⎢⎢⎢
⎣

qsignali,p (0) · · · qsignali,p (K − 1) 0

. . . . . .

0 qsignali,p (0) · · · qsignali,p (K − 1)

⎤

⎥⎥⎥
⎦

(5.79)

is the convolution matrix associated with the signal subspace. The minimiza-
tion of (5.78) subject to ‖hS‖ = 1 is equivalent to the maximization of

J̃quad (hS) = hH
S QsignalhS subject to ‖hS‖ = 1 (5.80)

For the quadratic norm constraint, both forms (5.76) and (5.80) provide
the same solution. However, the evaluation of (5.80) involves K + L − 1 terms,
while the calculation of (5.76) involves KP−L−K+1 terms, which is favorable
to the method based on the signal subspace. The main drawback pointed
out in [211] relates to the case in which the subchannels present zeros very
close to each other, a condition that compromises all premises on which this
method is founded.

5.3.3 Blind Equalization Based on Linear Prediction

We revisit here the problem discussed in Chapter 3, in order to introduce
the notation used in the presentation of an equalization method for the
SIMO case. The idea is to obtain an estimate for the received vector x(n)

as a linear combination of the vectors x(n − 1) . . . x(n − K + 1), i.e., the
components of x(n − 1). The estimate can be expressed as

x̂(n) = AH(1)x(n − 1) + · · · + AH(K − 1)x(k − K + 1)

= AHx (n − 1) (5.81)
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where A is a P(K − 1) × P matrix composed by the (K − 1) P × P matrices of
prediction coefficients:

A = [AH(1) · · · AH(K − 1)
]H (5.82)

The forward prediction error is then given by

ef (n)

∣
∣∣x(n−1)

= x (n) − x̂ (n)

∣
∣∣x(n−1)

= [ I −AH
]
x (n) (5.83)

The operation of a forward linear multichannel predictor is illustrated in
Figure 5.7.

A P × P matrix with the forward prediction-error variance is defined by

σ2
ef

= E
[
ef (n) eH

f (n)
]

= [ I −AH
]

R(K)
x (n)

[
I −AH

]H (5.84)

where

R(K)
x (n) = E

[
x (n)x (n)H

]
(5.85)

and K indicates the number of time instances taken into account. The min-
imization of the variance of the prediction error leads to the following
optimization problem:

min
A

[
IP −AH

]
R(K)
x (n)

[
IP −AH

]H = σ2
ef

(5.86)

and results, according to the Yule–Walker equations, in

[
IP −AH

]
R(K)
x (n) =

[
σ2

ef
0P · · · 0P

]
(5.87)

x (n)

A

Σ
+

–
z–1

ef  (n)

FIGURE 5.7
Structure of a forward linear predictor.
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Since the correlation matrix presents a Toeplitz structure, it can be
partitioned into

[
I −AH

] ·
[

r0 r

rH R(K−1)
x (n)

]

=
[
σ2

ef
0P · · · 0P

]
(5.88)

Finally, we get to the equations that allow us to obtain the prediction coef-
ficients and the prediction-error variance based on second-order statistics of
the received signal:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ2
ef

= r0 − r
(

R(K−1)
x (n)

)−1
rH

AL−1 =
(

R(K−1)
x (n)

)−1
rH

(5.89)

From this, it is possible to obtain an expression for the ZF equalizer with
zero equalization delay. The development here assumes an ideal noiseless
case. Let us rewrite Equation 5.43 for the sake of convenience:

x (n) = Hs (n) (5.90)

The estimation of the prediction error in terms of x(n − 1) is now done in
terms of s(n − 1):

ef (n)
∣∣
x(n−1) = ef (n)

∣∣s(n−1)

= x(n) − x̂(n)
∣∣s(n−1)

=
L−1∑

i=0

h(i)s(n − i) −
L−1∑

i=0

h(i)ŝ(n − i)
∣∣
∣∣
s(n−1)

= h(0)s̃(n)
∣∣s(n−1)

(5.91)

with s̃(n) representing the prediction error that arises when s(n) is estimated
with samples of the vector s(n − 1).

From Equation 5.91, if the transmitted signal is assumed to be composed
of i.i.d. samples (or, at least, uncorrelated), s̃(n) will correspond to s(n), i.e.,
the prediction-error filter represents a ZF equalizer for a null delay.

Such a result consolidates the possibility of using second-order statis-
tics in SIMO channels blind equalization, as linear prediction is essentially
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a second-order method. Also, it allows the use of adaptive techniques,
which is perfectly compatible with predictive configurations. In fact, as far
as the SIMO case is concerned, both second-order and higher-order adap-
tive methods are presented in the literature. The first ones have all the
already mentioned advantages of dealing with a friendlier framework, while
the second ones are disposed to robustness, for instance in regard to the
indeterminacy of the equalization delays.

As far as the theoretical principles of multichannel equalization are con-
cerned, the extension from SIMO to MIMO case does not present significant
novelties, although notation and mathematical formalism may become more
intricate. So, in the following discussion, we emphasize a scenario that is
particularly typical in MIMO communications and especially important in
modern wireless systems, that one of multiuser processing.

5.4 MIMO Channels and Multiuser Processing

In a wireless communications, sets of transmitting and receiving antennas
take place together in a same environment, which characterize a MIMO
scenario. In a given station, the received signals may be subject to spatial
interference due to other signals as well as to temporal distortion caused
by the system convolutive character of the channel. Such temporal disper-
sion leads to the well-known effect of intersymbol interference (ISI), while
the spatial dispersion is usually called multiple access interference (MAI).
The methods for removing these interferences in an unsupervised fashion
typically make use of some assumptions [295]:

1. The transmitted signals si(n), i = 1, . . . , N are mutually independent
and i.i.d.

2. The channel is modeled as a linear MIMO system and there are at
least as many antennas as receiving signals.

3. The noise is a zero-mean, ergodic, and stationary Gaussian sequence
independent of si(n).

Figure 5.8 illustrates a general MIMO equalization scheme.
In this case, we process and recover all transmitted signals at the same

time, and the receiver output can be expressed as

y(n) = W(n) ∗ x(n) = W(n) ∗ H(n) ∗ s(n) + ν′(n)

= G(n) ∗ s(n) + ν′(n), (5.92)
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s1(n)
s2(n)...

...
...

...
sk(n)

s (n)

H(n)

v1(n)
v2(n)

vM(n)

x(n)

W(n)

G(n)

x1(n)
x2(n)

xM(n)

y1(n)
y2(n)

yk(n)

y(n)

FIGURE 5.8
General MIMO equalization scheme.

where W(n) and H(n) denote, respectively, the MIMO equalizer and channel
impulse responses, and

G(n) = W(n) ∗ H(n) (5.93)

is the combined channel + equalizer matrix and ν′(n) = W(n) ∗ ν(n) is the
filtered noise.

It is also possible to process the signals in separate, by means of MISO
filters. Each filter, in this case, aims to recover a single signal, so that the
MIMO system is in fact reduced to a collection of MISO ones. Despite the
interest of such an approach, which is usually refereed to as deflation [70,89]
in the related literature, this chapter focuses in the MIMO filter solution.

When we use unsupervised MIMO equalization to recover the signals
transmitted by several users, an additional difficulty may arise from the fact
that all of them belong to the same finite alphabet and present the same
statistical distribution. Due to the characteristics of wireless propagation, it
follows that in the receiver that is closer users experience a higher signal
power when compared to the more distant ones. This phenomenon is known
as near–far effect [65,187,236]. This may lead to recovering errors, as a blind
algorithm may “view” the higher power signal as the desired one, while the
rest tends to be considered as interference. This would lead to the recovery of
multiple copies of this only signal [228]. In order to deal with this limitation,
it is necessary to employ additional strategies over the criterion for unsuper-
vised MIMO equalization. In the sequel, we discuss two main families that
have been adopted in most of the works of the literature.

5.4.1 Multiuser Detection Methods Based on Decorrelation Criteria

The objective of multiuser detection (MUD) methods based on decorrelation
criteria is to force the estimates of different users to be mutually decorrelated
as possible at the output of the MIMO equalizer. This aims to ensure that the
equalizer will provide a correct estimate of all source signals. The key point

metrovoice
New Stamp



170 Unsupervised Signal Processing

here is how to force the decorrelation in a general adaptive procedure. We
will discuss this subject in the sequel.

5.4.1.1 The Multiuser Constant Modulus Algorithm

The multiuser constant modulus algorithm (MU-CMA) was proposed
in [228] as a generalization of the classical CMA to the multiuser case. In
order to cope with the problem posed by the near–far effect, the authors
combine the CMA with an auxiliary criterion based on the decorrelation of
the estimates. Such technique allows removing MAI and ISI, avoiding the
replication of source signals. So, the optimization process operates jointly on
the decorrelation of the several equalizer outputs and on the minimization
of the CM cost function.

A possible MU-CMA cost function for the kth user in the purely spatial
case, is given by

JMU-CMA (wk) = JCMA (wk) + γ

N∑

i=1

N∑

j=1
j�=i

∣
∣rij
∣
∣2, (5.94)

where

rij = E
{

yi(n)y∗
j (n)

}
(5.95)

is the cross-correlation between the ith and jth equalizer outputs, γ is a
decorrelation factor, and JCMA (wk) is the CMA cost function defined in
Section 4.3.

Calculating the gradient of (5.94), we obtain

∇JMU-CMA (wk) = E
{

yk(n)
[∣∣yk(n)

∣∣2 − 1
]

x∗(n)
}

+ γ

N∑

i=1
i�=k

rikE
{
yi(n)x∗(n)

}
,

(5.96)

where we assume a normalized (unit) power for the signals.
We must note that rij and E

{
yi(n)x∗(n)

}
need to be estimated, and this

can be performed with the aid of temporal averages [139]. So the technique
is complemented by the following procedure [67]:

R̂y(n + 1) = ςR̂y(n) + (1 − ς)y(n)yH(n) (5.97a)

P̂(n + 1) = ςP̂(n) + (1 − ς)x∗(n)yT(n), (5.97b)

where y(n) = [ y1(n) · · · yN(n)
]T and ς< 1 is a smoothing factor.
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Accordingly, the adaptation for spatial processing is given by the follow-
ing expression:

wk(n + 1) = wk(n) + μ
(

1 − ∣∣yk(n)
∣∣2
)

yk(n)x∗(n) − γ

N∑

i=1
i�=k

r̂ik(n)̂pi(n), (5.98)

where
r̂ik(n) is the (i, k)th element of the matrix R̂y(n)

p̂i(n) is the ith column of matrix P̂(n), given in (5.97)

To take the effect of ISI into account, we have to modify the equations in
order that the decorrelation term comprises the different time instants and
mitigate the replication of a sequence of the same source signal with different
delays. We can then write the following:

JMU-CMA (Wk) = JCMA (Wk) + γ

K∑

i=1

K∑

j=1
j�=i

�
2∑

�=− �
2

∣∣rij (�)
∣∣2, (5.99)

where

rij(�) = E
{
yi(n)yj(n − �)

}
(5.100)

is the cross-correlation between the signals from the ith and jth outputs of
the space-time MIMO equalizer with lag �, and �

2 is the maximum esti-
mated delay for which the signals associated with multiple users must be
uncorrelated.

Making use of the points of contact between spatial and space-time
processing, we can write

Wk(n + 1) = Wk(n) + μ
(

1 − ∣∣yk(n)
∣∣2
)

yk(n)X (n) − γ

K∑

i=1
i�=k

�
2∑

�=− �
2

r̂ik,�(n)̂pi,�(n),

(5.101)

and

Ry,�(n + 1) = ςRy,�(n) + (1 − ς)y(n)yT(n − �) (5.102a)

P�(n + 1) = ςP�(n) + (1 − ς)X (n)yT(n − �) (5.102b)
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y(n − �) = [ y1(n − �) · · · yK(n − �)
]T (5.102c)

� = −�

2
, . . . ,

�

2
, (5.102d)

where r̂ik,�(n) is the cross-correlation between the ith and jth outputs with
delay equal to �, which corresponds to the (i, j)th element of the matrix
Ry,�(n), and p̂i,�(n) is the ith column of the matrix P�(n).

In terms of performance, the MU-CMA suffers from some aspects that are
related to the structure of the CMA, as discussed in [139, 223]. For instance
we may mention

• Relatively low convergence speed.
• The regularization factor must be chosen in order to take into

account the trade-off between steady-state error and number of erro-
neous recoveries (which is related to the number of non-recovered
sources) [65].

5.4.1.2 The Fast Multiuser Constant Modulus Algorithm

The algorithm proposed in [65] aims to improve the performance of the
MU-CMA at the cost of an increase in the associated computational complex-
ity. Its development is based on a recursive version of the MU-CMA, and the
technique is called fast multiuser constant modulus algorithm (FMU-CMA)
or least-squares with adaptive decorrelation constant modulus algorithm
(LSAD-CMA) [176].

The FMU-CMA also uses the decorrelation approach to force the recovery
of different source signals, and employs a recursive expression to optimize
a time-averaged version of Equation 5.94. The adaptive algorithm can be
described with the aid of the following equations:

wk(n) = R−1
xy,k(n)dxy,k(n) (5.103a)

Rxy,k(n + 1) = ζRxy,k(n) + (1 − ζ)
∣∣yk(n)

∣∣2 x∗(n)xT(n) (5.103b)

dxy,k(k + 1) = ζdxy,k(n) + (1 − ζ)ρ2yk(n)x∗(n) − γ

N∑

i=1
i�=k

r̂ik(n)̂pi(n), (5.103c)

where ζ is a smoothing term and r̂ik(n) and p̂i(n) are obtained from (5.97).
The recursive procedure in (5.103) improves the convergence speed of

the constant modulus approach at the cost of increasing the implementation
complexity of the algorithm, thus partially solving one of the points raised
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about the performance of the MU-CMA. The other point, namely the trade-
off between steady-state error and number of erroneous recovery, requires a
modification of the cost function.

The solution proposed in [66] is the inclusion of an adaptive regulariza-
tion factor that promotes a self-adjust of the MAI. This procedure improves
the performance of the steady-state error, since, intuitively, we can real-
ize that the decorrelation factor may be larger in the initial steps: when the
users have been reasonably separated, the equalizer outputs should already
be significantly uncorrelated, and the decorrelation factor may be reduced
in order to improve the steady-state performance. The proposal includes,
then, a criterion in which γ varies in time and is dependent on the level of
cross-correlation between the estimated user signals.

The average level of correlation per user is measured by

rk(n) = 1
K − 1

K∑

i=1
i�=k

|̂rik(n)|2. (5.104)

The adaptive decorrelation factor is then obtained by employing a non-
linear mapping that allows a saturation of the values of rk(n). Such mapping
is given by [66]

γk(n) = tanh [rk(n)] , (5.105)

where tanh(·) stands for the hyperbolic tangent function. Another possibility
is to consider a normalization of the matrix Ry(n) shown in Equation 5.97a
and obtain rk(n) from the normalized values of Ry(n), thus rendering the
nonlinear mapping unnecessary. In this case, we may use

γk(n) = rk(n). (5.106)

Finally, it is also possible to develop a space-time version of the FMU-
CMA by generalizing the equations to include the temporal dispersion as
well, as described in the MU-CMA case.

5.4.1.3 The Multiuser pdf Fitting Algorithm (MU-FPA)

The multiuser fitting pdf criterion, proposed in [63, 64], is based on the esti-
mation of the equalizer output pdfs, using as a reference a parametric model
for the pdf of the ideally recovered signals. Hence, the procedure consists
of minimizing the divergence between two density functions (the output
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signal pdf and the corresponding parametric model) using the Kullback–
Leibler divergence (KLD). The KLD is given by the following expression [78]:

DpY(y‖�(y) ) =
∞�

−∞
pY(y) · ln

(
pY(y)

�(y)

)
dy, (5.107)

where the function �(y) is the parametric model that fits the statistical
behavior of an ideally recovered signal [64].

Since we deal with discrete symbols in the presence of Gaussian noise, it
is suitable to pose

�(y) = 1
√

2πσ2
r

S∑

i=1

exp

(

−
∣∣y − si

∣∣2

2σ2
r

)

· P(ai), (5.108)

where
S is the cardinality of the transmitted alphabet
P(si) is the probability of occurrence of a symbol si
σ2

r is the variance of the Gaussian kernels we assume in the model

In this sense, the algorithm can be understood as an attempt to “equalize”
the pdfs of the transmitted signal and the filter output.

The proposed cost function, to be minimized, is

JFPC(w(n)) = −
∞�

−∞
pY(y) ln

(
�(y)

)
dy

= −E
{
ln
(
�(y)

)}
(5.109)

where FPC stand for fitting pdf criterion.
A stochastic version for filter adaptation is given by

∇JFPC (w(n)) =
∑S

i=1 exp
(
−∣∣y(n) − si

∣∣2/2σ2
r

)
P(ai)

(
y(n) − ai

)
x(n)

σ2
r
∑S

i=1 exp
(
−∣∣y(n) − si

∣∣2/2σ2
r

)
P(ai)

(5.110)

w(n + 1) = w(n) − μ∇JFPC (w(n)) ,

where μ is the algorithm step-size. This adaptive algorithm is referred to as
fitting pdf algorithm (FPA).

Based on the approach proposed in [228], we can use the criterion of
explicit decorrelation of beamformer outputs to establish the cost function
for the multiuser fitting pdf criterion (MU-FPC). Thus, we obtain the
following criterion for the MIMO scenario:
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JMU-FPC (wk(n)) = JFPC (wk(n)) + γ

N∑

i=1

N∑

j=1
j�=i

∣∣rij
∣∣2, (5.111)

where
γ is the decorrelation factor
rij = E

{
yi(n)y∗

j (n)
}

is the cross-correlation between the ith and jth outputs

Furthermore, we can adapt the decorrelation weight γ, as discussed in
the Section 5.4.1.2, in order to increase the convergence rate and decrease
steady-state error. The adaptation procedure of the algorithm for the kth user
becomes

wk(n + 1) = wk(n) − μ∇JFPC

(
wk(n)

)
− γ(n)

N∑

i=1
i�=k

r̂ik(n)pi(n), (5.112)

where
r̂ik(n) is the (i, k) element of matrix Ryy(n)

pi(n) is the ith column of matrix P(n)

Such matrices may be computed as

Ryy(n + 1) = ςRyy(n) + (1 − ς)y(n)yH(n)

P(n + 1) = ςP(n) + (1 − ς)x(n)yH(n),
(5.113)

where
y(n) = [y1(n) · · · yN(n)

]T is the output vector
ς is a forgetting factor

The decorrelation weight is updated by [65]

rk(n) = 1
N − 1

N∑

i=1
i�=k

|̂rik|2

γ(n) = tanh [rk(n)]

(5.114)

For space-time multiuser processing, it is also necessary to guarantee
decorrelation of the signals in a time interval in order to remove the ISI. With
that in mind, the criterion becomes [63]
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JMU-FPC

(
Wk(n)

)
= JFPC

(
Wk(n)

)
+ γ(n)

N∑

i=1

N∑

j=1
j�=i

�
2∑

�=− �
2

∣∣rij,�
∣∣2, (5.115)

where

rij,� = E
{

yi(n)y∗
j (n − �)

}
(5.116)

is the cross-correlation between the ith and jth outputs of the space-time
receivers for a lag �, and �

2 is the maximum lag for which the output signals
of the different filters must be decorrelated.

The MU-FPA, for space-time processing, is then given by [62]

Wk(n + 1) = Wk(n) − μ∇JFPC

(
Wk(n)

)

− γ(n)

N∑

i=1
i�=k

�
2∑

�=− �
2

r̂ik,�(n)̂pi,�(n) (5.117)

Ry,�(n + 1) = ςRy,�(n) + (1 − ς)y(n)yH(n − �) (5.118)

P�(n + 1) = ςP�(n) + (1 − ς)X (n)yH(n − �) (5.119)

y(n − �) = [ y1(n − �) · · · yK(n − �)
]T (5.120)

� = −�

2
, . . . ,

�

2
, (5.121)

where
r̂ik,�(n) is the cross-correlation between the ith and jth user estimates with

lag � at time index n, given by the (i, j)th element of matrix Ry,�(n)

p̂i,�(n) is the ith column of matrix P�(n)

α is a smoothing factor related to the process of learning the involved
statistics

5.4.2 Multiuser Detection Methods Based on Orthogonalization Criteria

Another family of algorithms tries to replace the direct decorrelation of the
equalizer outputs with an alternative condition that guarantees the correct
recovery of the source signals even in the presence of the near–far effect.
The approach is based on a constrained optimization procedure in which the
global response is subject to preserving the structure of a perfect recovery
condition [75]. Let us present two strategies that use this approach in the
sequel.
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5.4.2.1 The Multiuser Kurtosis Algorithm

The multiuser kurtosis maximization (MUK) criterion, proposed in [224,225],
is based on the SW theorem, previously discussed in Chapter 4, and uses a set
of necessary conditions for the blind equalization of several source signals.
Such conditions are the following:

1. sl(n) is i.i.d. and zero mean (l = 1, . . . , N).
2. sl(n) and sq(n) are statistically independent for l �= q, with the same

pdf.
3.
∣∣c4
[
yl(n)

]∣∣ = |c4 [s(n)]| (l = 1, . . . , N).

4. E
{∣∣yl(n)

∣∣2
}

= σ2
s (l = 1, . . . , N).

5. E
{
yl(n)yq(n)

} = 0, l �= q.

where
c4 [s(n)] and σ2

s are, respectively, the kurtosis and the variance (power) of
the source signals

c4 [·] is the kurtosis operator, as defined in Chapter 4

We can note that Condition 5 aims to ensure the same desired condition
in the decorrelation approach defined by (5.94).

Furthermore, the MUK technique does not employ the decorrelation
approach such as the MU-CMA. In order to attain correct identification
of the different signals, the MUK takes an additional criterion based
on the orthogonalization of the combined channel+equalizer matrix G in
such a way that GHG = I. In this context, the criterion can be written
as [224, 225]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
G

JMUK (G) =
N∑

k=1

∣∣c4
[
yk
]∣∣

subject to: GHG = I

. (5.122)

We can then divide this algorithm into two stages:

Equalization step: kurtosis maximization, in the spirit of the SW theorem.
This stage is associated with a matrix We.

Separation step: is responsible for promoting the uncorrelation of the esti-
mates of the several users. This stage is associated with a matrix W.

In order to force the global response matrix to be orthogonal, a Gram–
Schmidt orthogonalization procedure is used in the matrix We [225]. This
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procedure, carried out iteratively, forces the equalizer outputs to be
uncorrelated.

Consequently, the stochastic gradient of the MUK criterion is given by
[224, 225]

∇JMUK (G) = 4 sign (c4 [s(n)])
N∑

k=1

{∣∣yk(n)
∣∣2 yk(n)x∗(n)

}
. (5.123)

We can observe the similarity of the above equation with Equation 4.37.
Hence, at the first step (equalization), an adaptation of W(n) is performed

in the direction of the instantaneous gradient, in a very similar way to the SW
algorithm, leading to

We(n + 1) = W(n) + μ sign (c4(s(n))) x(n)Y(n), (5.124)

where Y(n) =
[ ∣
∣y1(n)

∣
∣2 y1(n) · · · ∣

∣yK(n)
∣
∣2 yK(n)

]
and μ is a step-size.

Once the equalization stage is carried out, the constraint related to the
orthogonalization of G must be respected. In addition, the receiver data must
be whitened, in the space or in both space and time domains, which means
that the matrix H must be unitary. The goal of such hypothesis is also to
ensure a constant variance (power) of the transmitted data, hence respecting
the conditions for signal recovery.

The orthogonalization step, for the kth user, is given by

wk(n + 1) = we
k(n + 1) −∑k−1

l=1

[
wT

l (n + 1)we
k(n + 1)

]
wl(n + 1)

∥∥∥we
k(n + 1) −∑k−1

l=1

[
wT

l (n + 1)we
k(n + 1)

]
wl(n + 1)

∥∥∥
, (5.125)

where ‖ · ‖ stands for the l2-norm of the vector.
To carry out this step, it is usual to employ the Schur algorithm [90–92,

134] to the covariance matrix of the noise-free signal Rx̃, which, due to its
symmetry, provides the following decomposition:

Rx̃ = LDLH, (5.126)

where
x̃ represents the noise-free signals
L is a unitary matrix
D is a diagonal matrix with real entries

A noise-free estimation of

Rx = E
{

xxH
}

(5.127)
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may be performed by estimating the noise variance, σ2
v, by means of the

average of the lowest eigenvalues of R̂x, and then making

R̂x̃ = R̂x − σ2
vIM (5.128)

Notice that this possibility is related to the concept of subspace decomposi-
tion presented in Section 5.3.2.

Ideally, we must have Rx̃ = HHH, assuming normalized and statistically
independent sources; hence, we would have that LD

1
2 is equal to H, up to a

unitary ambiguity matrix U, which means that

L̃ = HU, (5.129)

where L̃ is built as the matrix that contain the N larger norm columns of
LD

1
2 [90, 134, 227]. Finally, the prewhitening is performed by L̃†, where †

denotes the pseudo-inverse, given by [139]

L̃† =
(

L̃HL̃
)−1

L̃H (5.130)

For space-time processing, a space-time prewhitening is demanded in
order to allow the use of the MUK in MIMO equalization processing. After
the prewhitening algorithm, the signal model is analogous to the case of
spatial processing: the only difference is related to the dimensions of the
involved vectors.

The development of the whitening transformation in this case is per-
formed as in (5.126), respecting the order of the vectors. As shown in [226]
and also in [227], we may use a temporal prediction method in order to
replace the temporal equalization step in the prewhitening processing.

5.5 Concluding Remarks

In this chapter, we extended the problem of unsupervised signal process-
ing to the scenario of multichannel systems. This scenario is first introduced
under the light of a system-theoretic analysis, where we present the notion
of Smith form to establish equalizability conditions.

In contrast to the SISO case, the central theoretical results that arise when
we consider the multichannel configuration are essentially as follows: the
possibility of perfect (ZF) equalization even if both channel and equalizer
are FIR structures; and the possibility of relying on methods based only on
the second-order statistics of the signals. We emphasized these results in the
more treatable case of SIMO channels equalization.
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The possibility of perfect (ZF) equalization, even with an FIR SIMO
channel and an FIR MISO equalizer, was demonstrated by using the Bezout’s
identity. The result about the use of second-order statistics is closely related
to dealing with the cyclic spectra of the cyclostationary signals engendered
by oversampling operation. Indeed, we have shown that a SIMO configu-
ration might be used to model the case of SISO channel with oversampled
signal.

As far as the methods for blind equalization are concerned, we gave
special attention to the two well-established second-order methods, those of
subspace decomposition and linear prediction, and commented about robust
methods that opt for employing higher-order statistics.

Finally, we discussed the problem of multiuser processing, where a given
transmitted signal suffers from channel impairments together with interfer-
ence effects, and presented some proposed solutions. This problem, and that
of MIMO equalization in general, is in fact closely related to those of source
separation, to be considered next.
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6
Blind Source Separation

MIMO channels were studied in Chapter 5 as a general case of the blind
equalization problem. However, since we were dealing with digital commu-
nication channel, two hypotheses were implicitly presented: the transmitted
signals were modeled as a sequence of symbols from a finite alphabet and
these sequences were assumed to be i.i.d.

A more general scenario occurs when we discard the two aforemen-
tioned hypotheses and replace the idea of a MIMO transmission channel by a
generic MIMO system that engenders both mixture and distortion of a set of
input signals. The recovery of these original signals after the mixing process
constitutes the problem of source or signal separation and, similarly to the
equalization problem, we talk about blind source separation (BSS) when the
recovery is carried out by unsupervised methods.

Interest in source separation techniques has intensively grown from their
genesis in the beginning of the 1980s until nowadays. From a theoretical
standpoint, the general BSS problem remarkably captures the notion of infor-
mation extraction that, in a way, embodies the ensemble of methods and
tools considered in this book. As a consequence, and from a more practi-
cal standpoint, source separation techniques are relevant in a great number
of applications. To mention a few, BSS is concerned with understand-
ing and extracting information from data as diverse as neuronal activities
and brain images, communications, audio, video, and sensor signals in
general.

A major tool to perform BSS is the so-called independent component analy-
sis (ICA), the relevance of which can be confirmed by the fact that ICA was
also the name of the most prestigious conference on source separation and
its applications, from its first version, in 1999, to its latest version in 2009.
Nevertheless signal or source separation involves not only ICA or blind tech-
niques, since semi-blind and factorization methods that make use of prior
information about the problem at hand must be considered in a number of
applications. This is reflected in the new name latent variable analysis (LVA),
used in the aforementioned conference in its ninth edition in 2010, which
emphasizes the general character of the problems in signal processing and
information extraction related to the theme.

The structure of this chapter is influenced by a general view on the
subject and by the idea of joining together key theoretical elements and
models of practical significance. Our aim is to present the theoretical
foundations of BSS together with some celebrated methods and algorithms
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in an accessible and synthetic way. We have no intention, however, of
dealing with all aspects of an area that has received attention and contribu-
tion from such different standpoints and research communities, like signal
processing, machine learning, and statistics. Hence, the chapter is organized
as follows:

• In Section 6.1, we present the BSS problem in a general form and
discuss some modeling elements that are important to define specific
models. Particular attention is given to the standard case of a linear,
instantaneous, and noiseless mixture, since such a model serves as a
starting point to the following discussions.

• Section 6.2 introduces the very relevant conceptual link between BSS
and ICA. We state fundamental theorems and definitions, describe
the preprocessing procedure of data whitening, and then present a
number of important criteria to perform ICA, with the aid of which
practical algorithms can be implemented.

• Section 6.3 complements the previous one by bringing a study on
some of the most well-known algorithms for performing ICA. The
section starts with the algorithm proposed by Jeanny Hérault and
Christian Jutten, a true landmark, as commented in the historic
notes. Among other relevant techniques, we present the important
principle of principal component analysis (PCA) in order to introduce
the nonlinear PCA algorithm.

• As previously pointed out, there exist different approaches that go
beyond ICA and strictly blind techniques. Section 6.4 is devoted to
some of these techniques that are suitable to the source separation
problem, particularly by exploiting prior information about the task
at hand. We present two key factorization methods: the nonnegative
and the sparse component decompositions.

• Section 6.5 extends the discussion on BSS to the case of convolu-
tive mixtures. Convolutive mixtures are an extension of the standard
linear and instantaneous model that accounts for the existence of
mixture components originated by delayed versions of the sources.
The temporal ingredient added to the model widens the applicabil-
ity of BSS and also gives rise to connections with the equalization
problem.

• Section 6.6 deals with nonlinear mixtures. This scenario constitutes
a more intricate extension of the standard case, since the need for
inverting nonlinear models via ICA may lead to certain ambigui-
ties that require special care. In order to overcome such limitations,
we introduce the post-nonlinear (PNL) model together with some
separation approaches related to it, like that of Gaussianization.

• Finally, we close the chapter with the concluding remarks exposed
in Section 6.7.
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Historical Notes

The origin of BSS is generally traced to the early 1980s,∗ particularly to the
efforts of Hérault, Jutten, and Ans in the study of the problem of motion
coding [144].† Throughout this decade, the BSS problem gradually attracted
the interest of the signal processing community, mainly in France and after-
ward in Europe. From the 1990s, interest in BSS and its application was
widespread among the international community and the theme become a
“hot topic” in a number of important conferences and journals.

An important landmark was established with Comon’s work on ICA [74].
Relationships between BSS and ICA opened perspectives of building new
criteria and algorithms to perform BSS.

Important early work concerning the use of higher-order statistics is asso-
ciated with the names of Lacoume [174] and Cardoso [56], the latter being
responsible for the proposal of the JADE algorithm. The approach of non-
linear PCA, which has conceptual affinities with neural network theory,
took shape with works like [164, 217]. Another classical approach that has
strong connections with the field of neural networks [188] is the informa-
tion maximization (Infomax) method, the origin of which is due to Bell and
Sejnowski [31]. Our list is completed by mentioning Cichocki and Unben-
hauen’s important algorithm [72], to the pioneer efforts using the idea of
natural gradient [9] and to the extremely popular FastICA method [149].

Other approaches to source separation were developed considering dif-
ferent assumptions about the signals. For instance, in [38, 237], the idea of
exploring the correlation structure of the sources is addressed. In [242], the
authors consider the problem of separating signals that are always nonneg-
ative, giving rise to the so-called nonnegative ICA. In [45] the notion of
sparsity was used to perform blind identification of a mixture, an approach
that is now referred to as sparse component analysis (SCA).

The problem of convolutive source separation is conceptually similar to
that of blind deconvolution in a MIMO domain. A formulation in terms of
deconvolution or equalization is very common in communications, where
transmitted signals are modeled by an i.i.d. sequence of symbols that belong
to a finite alphabet. Nevertheless, there are many other problems that make
use of BSS models and methods. From a historical point of view, it is
important to mention applications like audio signals [199], astronomical
data [59, 158, 215], and brain images [17, 53, 133]. Reference [235] provides
an interesting survey on the subject.

∗ More details about historical aspects of BSS can be found in [148] and [160].
† In [160], the work of Bar-Ness et al. [27] is mentioned as a possible independent effort in the

field of communications.
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The problem of nonlinear BSS has received a great deal of attention from
the 1990s on. Important efforts were established within a neural computation
framework, like Burel’s work [50] and proposals based on self-organizing
maps [221]. A key reference in the context of post-nonlinear mixtures is Taleb
and Jutten’s work [280], and the study of this class of mixtures is still a
prolific research subject [3, 281].

6.1 The Problem of Blind Source Separation

Figure 6.1 depicts the general problem of BSS, in which a set of informa-
tion signals is submitted to the mixing and eventually distorting effect of a
MIMO system. The resulting signals are captured by a set of sensors. The
purpose of source separation techniques is to recover the original signals
from the sensor outputs, by means of an appropriate separating system. Sim-
ilarly to the equalization case, we talk about BSS when the mixing system is
unknown and the desired signals are not available for any kind of training
procedure.

The problem may be formulated as follows: let us consider a set of N
signals, denoted sources, whose samples form a source vector s(n), and a set
of M signals, the observations, organized in a vector x(n). The observations
represent, in general, a mixture of the different source signals and can be
expressed as

x (n) = F (s (n), . . . , s (n − L) , n (n), n) (6.1)

where F(·) is the mixing mapping.
Clearly, if F(·) is known a priori, the sources can be estimated by obtain-

ing the optimal inverse mapping (assuming that it exists and the noise is
negligible). Moreover, if it is possible to rely on a training sequence, it should

Estimate 1
y1(n)

Mixing
system

Sensor 1
x1(n) 

Separating
system

Source 1
s1(n)

Source 2
s2(n)

Source N
sN(n)

Sensor 2
x2(n) 

Sensor M
xM(n)

Estimate 2
y2(n)

Estimate M
yM(n)

FIGURE 6.1
The general source separation problem.
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be possible to identify the mixing mapping in a supervised manner and then
obtain the inverse mapping. The challenge, however, is to obtain such an
estimate based only on the observed samples, with a minimal amount of
information about the signals and the mixing system.

Even though the solution to the general problem stated above would fit
several different applications, there is no general solution. Nevertheless, it is
possible to treat particular models that can be classified according to some
specific characteristics.

• Linear or nonlinear: A mixing system is said to be linear if the map-
ping F(·) obeys the superposition principle (presented in (2.19), and
repeated here for the sake of clarity)

F(α1s1(n) + α2s2(n)) = α1F(s1(n)) + α2F(s2(n)) (6.2)

for all constants α1 and α2 and source vectors s1(n) and s2(n).
Otherwise, the system is said to be nonlinear. The case of nonlinear
mixtures will be discussed in more detail in Section 6.6.

• Memoryless or convolutive: Similarly to the nomenclature introduced
in Chapter 5, if the observations represent a mixture of source sam-
ples at different time instants, i.e., L > 0, a linear mixing system gives
rise to a convolutive mixture. For L = 0, the simplest case, we are
dealing with a memoryless or instantaneous mixture.

• Number of sources and number of sensors: In the situation in which the
number of sensors is greater than the number of sources (M < N)
we have an overdetermined mixture. Similarly, if there are less
sensors than sources (M > N), we deal with an underdetermined
mixture.

Let us consider the simplest case, in which the mixing process is modeled
by a noiseless linear memoryless system, i.e., that of a linear instantaneous
mixture. In this case, the model is completely characterized by a mixing
matrix AM×N, and the observation vector is given by

x(n) = As(n) (6.3)

which means that the observations are linear combinations of the sources.
In order to present the basic principles related to the problem of BSS,

let us assume this noiseless scenario and that there are as many sensors as
sources (AN×N). Moreover, unless stated otherwise, the source signals are
considered to be real-valued zero-mean stationary stochastic processes [230].
Therefore, whenever it is possible, the time index will be omitted.

Under the aforementioned conditions, and assuming that the mixing
matrix is invertible, signal separation is achieved obtaining a separating
matrix W such that
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y = Wx

= WAs

= s (6.4)

i.e., W = A−1. The goal of BSS techniques consists in obtaining W without any
explicit knowledge about the sources and/or the mixing matrix A. For that,
a key hypothesis is that the sources are considered to be random signals sta-
tistically independent between each other. This hypothesis was determinant
to the development of several methods based on ICA, which is discussed in
the sequel.

6.2 Independent Component Analysis

Mathematically, the elements of a random vector s are statistically indepen-
dent if

ps(s) = ps1(s1)ps2(s2) . . . psN (sN) (6.5)

where
ps(s) is the joint probability density function (pdf) of its elements

s1, s2, . . . , sN
psi(si) is the marginal pdf of the ith source

In his seminal work [74], Comon showed that if the sources are mutually
independent, it is possible to obtain the separating matrix in an unsu-
pervised manner. The main idea is to look for a matrix W such that the
estimated signals y = Wx are also mutually independent. The proof of this
property is based on a theorem due to Darmois–Skitovich [161], which can
be enunciated as follows.

THEOREM 6.1 (Darmois–Skitovich)

Let s1, s2, . . . , sN be a set of zero-mean and statistically independent random
variables. Also, let y1 and y2 be defined as

y1 = a1s1 + a2s2 + · · · + aNsN

y2 = b1s1 + b2s2 + · · · + bNsN
(6.6)

If y1 and y2 are mutually independent, then all variables si for which aibi �= 0
will be Gaussian random variables.
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Thus, according to this theorem, it would not be possible to obtain
independent random variables from a linear mixture of non-Gaussian
sources. Consequently, if we consider that the coefficients ai and bi are the
parameters of the overall input–output mapping WA, it is clear that the esti-
mate will only be independent, assuming that none of them has a Gaussian
distribution, if the sources are no longer mixed.

Therefore, source separation can be achieved via ICA, which can be
formally defined as follows.

DEFINITION 6.1 (ICA) The ICA of a random vector x = [x1x2 . . . xM]T con-
sists of determining a matrix W such that the elements of y = Wx be as
statistically independent as possible, in the sense of optimizing a cost func-
tion that expresses, direct or indirectly, the notion of independence between
signals.∗

Therefore, source recovery relies on two important concepts: those of sta-
tistical independence and of non-Gaussianity. Nonetheless, it is important to
note that the solution found using ICA will recover the sources up to scale
and permutation ambiguities. That is because if a vector s is composed of
independent random variables, so will be a vector that is just a permutation
of s, or even a scaled version thereof. In other words,

y = �Ps (6.7)

will also present independent components,

where
� is a diagonal matrix
P is a permutation matrix, will also present independent components

Hence, the conditions under which the sources can be recovered using
ICA may be summarized in the following theorem [74].

THEOREM 6.2 (Separability)

The system presented in (6.3) is separable by ICA, i.e., it is possible to obtain
W such that y = Wx correspond to the sources up to scale and permutation
ambiguities, if and only if the mixing matrix A is full rank and there is, at
most, one Gaussian source.

The first condition regarding the rank of A is self-evident, since we are
looking for a separating matrix that should, in some sense, invert the mixing

∗ In the context of source separation, the cost function is also termed a contrast function [74].
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matrix. However, the sources can only be blindly recovered as long as there
is, at most, one Gaussian source. The reason why Gaussian sources are not
allowed should become clearer in Section 6.2.1, in which we discuss the
limitations of second-order statistics in the source separation problem.

6.2.1 Preprocessing: Whitening

As discussed in Chapter 2, decorrelation is a less restrictive concept than
statistical independence, so that, if two random variables are statistically
independent, they will also be uncorrelated. Without loss of generality, we
may consider the case in which the sources are zero mean, with unit variance,
so that

E
{

ssT
}

= I (6.8)

Under these conditions, the autocorrelation matrix of the observations is
given by

Rx = E
{

xxT
}

= ARsAT

= AAT (6.9)

In its turn, the mixing matrix A can be expressed as follows, by employ-
ing the singular value decomposition (SVD) [128]:

A = U�
1
2 VT (6.10)

Since V is a unitary matrix, it comes from (6.9) and (6.10) that

Rx = U�UT (6.11)

Now, let us consider the data transform

x̄ = Tx (6.12)

where

T = �− 1
2 UT (6.13)
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Then, the transformed data x̄(n) presents an autocorrelation matrix given by

Rx̄ = E
{

x̄x̄T
}

= �− 1
2 UTRxU�− 1

2

= �− 1
2 UTU�UTU�− 1

2

= I (6.14)

i.e., the transformed data is uncorrelated.∗ In this case, it is said that the data
was whitened or spherized.

It is important to mention that the whitening transformation is not
unique, since T = Q�− 1

2 VT, for any orthogonal matrix Q, will also produce
uncorrelated data. So it is clear that the whitening transformation T does not
provide the original sources, which are not only uncorrelated, but also inde-
pendent. Two consequences of this result deserve to be commented in the
sequel.

First, we can easily conclude that it is not possible to recover the original
independent sources by dealing only with second-order statistics. This is in
fact a similar result to that obtained when we discussed and compared the
features of equalization and prediction in the precedent chapters. In the BSS
problem, the whitening procedure cannot guarantee a correct retrieval of
independent sources in the same way that, in SISO blind equalization, it
could not guarantee a correct retrieval of the i.i.d. transmitted signal. It is
worth mentioning, incidentally, that the standpoint of directly looking for
independence still seems not to be properly exploited in SISO equalization
methods.

Second, the aforementioned result indicates why it is not possible to
separate Gaussian sources. In fact, in the case in which we have, for
instance, a mixture of two zero-mean Gaussian sources, to obtain uncorre-
lated estimates also implies obtaining independent signals. However, since
the whitening transform is not unique, the obtained independent signals do
not correspond necessarily to the original sources. In other words, if two or
more Gaussian sources are present, we cannot guarantee that obtaining inde-
pendent signal lead us to recover the sources, so that ICA is not, in this case,
a suitable method for BSS.

Even though obtaining uncorrelated data does not lead to source
separation, this procedure can be seen as a preprocessing step in BSS

∗ Signals are uncorrelated if the covariance matrix is diagonal. In this case, since we are dealing
with zero-mean signals, the autocorrelation matrix and the covariance matrix are the same,
and hence, signals are uncorrelated.
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algorithms [148]. Let us consider again the whitening transform in (6.12),
which leads us to

x̄ = Tx

= �
1
2 UTAs

= �− 1
2 UTU�

1
2 VTs

= Vs (6.15)

where V is an orthogonal matrix. We can observe that the whitening process
reduces the problem to one in which the mixing matrix is orthogonal, and
hence, limits the search for the separating matrix to the group of orthogonal
matrices. In order to illustrate the effect of preprocessing, we present the
following example.

Example 6.1 (Two-Source Mixture)

Let us consider two independent sources uniformly distributed in the interval[
−√

3,
√

3
]
. The joint pdf of the sources is then given by

p
(
x, y

) =
⎧
⎨

⎩

1
12 , −√

3 ≤ x, y ≤ √
3

0, otherwise

and is illustrated in Figure 6.2a.
Let the mixing matrix be

A =
⎡

⎣
1 0.5

0.3 0.9

⎤

⎦

Then, the distribution of the observed data becomes as illustrated in
Figure 6.2b. Notice that the mixing matrix distorts and rotates the original source
distribution. Interestingly, after a prewhitening procedure, the distribution of
the transformed data, as shown in Figure 6.2c, resembles the original distribu-
tion, except for a rotation factor. So, the remaining step consists in determining
the orthogonal matrix corresponding to the rotation that will restore the source
distribution.

6.2.2 Criteria for Independent Component Analysis

As previously discussed, the very essence of ICA, as discussed in Section
6.2, consists of determining a separating structure that provides estimates
as independent as possible. Different criteria were proposed in order to
implement the idea of ICA, and in the following we discuss some of them.
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FIGURE 6.2
Joint distributions of the uniformly distributed original sources, of mixtures of them, and of the
prewhitened mixtures: (a) joint source distribution, (b) joint distribution of the observations,
and (c) joint distribution of the prewhitened data.

6.2.2.1 Mutual Information

The information-theoretic concept of mutual information [78] can be used
to quantify independence between random variables. In order to clarify this
idea and properly define mutual information, it is important to begin with
the definition of another information-theoretic concept.

DEFINITION 6.2 (Differential Entropy) Let α denote a random variable
characterized by its pdf pα (α). The differential entropy, or simply entropy,
H (α) is defined by [272]

H (α) = −E
[
log pα (α)

] = −
∞�

−∞
pα (τ) log pα (τ) dτ (6.16)
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The entropy conveys the idea of uncertainty of a random variable and it is
possible to show that the Gaussian distribution presents the largest entropy
among all distributions with the same mean and variance. On the other hand,
if we restrict this comparison only to distributions with finite support, the
largest entropy will be obtained for a uniform distribution [78].

It is worth mentioning that H (α) can also be defined for discrete random
variables. In this case,

H (α) = −
∑

i

pi log pi (6.17)

and presents similar properties to the differential entropy.
In a similar fashion, one can define the conditional entropy as follows.

DEFINITION 6.3 (Conditional Entropy) Let pα|β (α|β) denotes the
conditional pdf of α given β. The conditional entropy is given by

H (α|β) = −E
[
log pα|β (α|β)

] = −
∞�

−∞

∞�
−∞

pα,β (τ, υ) log pα|β (τ|υ) dτdυ

(6.18)

which is related to the uncertainty of a random variable given the observa-
tion of another random variable.

From Definitions 6.2 and 6.3, we can finally define the mutual informa-
tion I (α, β) as follows.

DEFINITION 6.4 (Mutual Information) The mutual information between
two random variables α and β is defined by

I (α, β) = H (α) − H (α|β) = H (β) − H (β|α) (6.19)

From (6.16) and (6.18), one can show that the mutual information can also
be expressed as

I (α, β) =
�

pα,β (α, β) log
pα,β (α, β)

pα (α) pβ (β)
dαdβ (6.20)

It is particularly useful to interpret the mutual information in terms of the
so-called Kulback–Leibler divergence [78], defined in (5.107) and rewritten
here for the sake of convenience,
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D
(

px (x) ‖ qy
(
y
)) =

�
px (x) log

px (α)

qy (α)
dα (6.21)

which is always nonnegative and being zero only if the pdfs px(x) and qy(y)

are identical. From (6.20) and (6.21) it is possible to show that

I (α, β) = D
(

pα,β (α, β) ‖ pα (α) pβ (β)
)

(6.22)

Equation 6.22 reveals that the mutual information can be interpreted as a
measure of proximity between the joint distribution of α and β and the prod-
uct of their marginal distributions. Furthermore, since the Kullback–Leibler
divergence is zero if and only if the distributions are identical, one concludes
that the mutual information equals zero if and only if α and β are inde-
pendent. Therefore, mutual information quantifies the degree of statistical
dependence between random variables, exactly what is needed to implement
an ICA method.

The concept of mutual information can be extended to a vector of N
random variables α1, . . . , αN. The mutual information among all elements
is defined as

I (α1, . . . , αN) = D
(
pα1,...,αN (α1, . . . , αN) ‖ pα1 (α1) . . . pαN (αN)

)
(6.23)

and can also be expressed as

I (α1, α2, . . . , αn) =
N∑

i=1

H (αi) − H (α1, α2, . . . , αn) (6.24)

indicating that the minimization of the mutual information is equivalent
to making H (α1, α2, . . . , αn) as close as possible to the sum of marginal
entropies [148].

Hence, evaluating the mutual information between the outputs of the
separating system depicted in Figure 6.1 it is possible to obtain, for linear
mixtures:

I
(
y
) =

N∑

i=1

H
(
yi
)− H

(
y
)

=
N∑

i=1

H
(
yi
)− H(x) − log

∣∣det W
∣∣ (6.25)

It is important to note that H(x) does not depend on the elements of W, which
means that minimization of the mutual information leads to the following
criterion for source separation:
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min
W

N∑

i=1

H
(
yi
)− log

∣∣det W
∣∣ (6.26)

6.2.2.2 A Criterion Based on Higher-Order Statistics

Another possible criterion to implement ICA explores the joint cumulants
of the involved signals [54, 74]. The main idea is to explore the fact that the
joint cumulant c(X1, . . . , Xk) of a set of independent variables X1, . . . , Xk is
always null, for any order (see Section 2.3.3). For instance, considering only
two random variables X and Y, in order to ensure that they are independent,
the following should hold:

c(X, ..., X︸ ︷︷ ︸
s terms

, Y, ..., Y︸ ︷︷ ︸
q terms

) = c(Xs, Yq) = 0 (6.27)

for any s, q = 1, . . . , ∞.
Even though independence between signals, in general, is related to all

joint cumulants, signal separation can be achieved using only fourth-order
cumulants [74]. The restriction, however, is that there be no more than one
source with null kurtosis. Notice that this restriction includes the Gaussian
distribution as a special, and perhaps the most representative, case. There-
fore, for a wide range of applications, BSS can be performed solely based on
the information brought by the fourth-order joint cumulants.

Let c(yi, yj, yk, yl) denote the fourth-order joint cumulant between signals
yi, yj, yk, and yl. Then, according to the previous discussion, the separat-
ing structure should be chosen such that c(yi, yj, yk, yl) be minimal for any
combination of indices i, j, k, and l, except for i = j = k = l, the case in which
c(yi, yj, yk, yl)= c4(yi). Therefore, a possible optimization criterion to reach
this condition is given by

min
W

∑

�

∣∣c(yi, yj, yk, yl)
∣∣2 (6.28)

where � denotes all possible combinations of i, j, k, and l, except for
i = j = k = l.

If we consider that the data has been prewhitened, so that we should look
for an orthogonal separating matrix, it is possible to show that the criterion
in (6.28) is equivalent to

max
W

∑

i=1,...,N

∣∣c(yi, yi, yi, yi)
∣∣2 (6.29)

where N is the number of signals to be recovered.
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6.2.2.3 Nonlinear Decorrelation

Independence between signals can also be verified by means of the nonlinear
correlation, which can be seen as an extension of the concept of correlation
presented in Section 2.4.1. The nonlinear correlation between two random
variables is defined as

η(X, Y) = E
{
f1(X)f2(Y)

}
(6.30)

with f1(·) and f2(·) representing two arbitrary nonlinear functions.
If X and Y are independent, we have

E
{
f1(X)f2(Y)

} = E
{
f1(X)

}
E
{
f2(Y)

}
(6.31)

The converse statement is only true if (6.31) holds for all continuous functions
f1(·) and f2(·) that are zero outside a finite interval [230]. Nevertheless, it is
possible to employ the notion of nonlinear correlation to obtain very simple
BSS methods.

Let us consider that both f1(·) and f2(·) are smooth functions with deriva-
tives of all orders around the origin. In these conditions, (6.30) can be
expressed in terms of the Taylor expansion of these nonlinear functions
as [148]

E
{
f1(X)f2(Y)

} =
∞∑

k=1

∞∑

l=1

f (k)
1 f (l)

2 E{XkYl} (6.32)

where f (i)
1 and f (i)

2 denote the coefficients of the Taylor series. Hence, if X
and Y are independent and either E{Xk} = 0 or E{Yk} = 0, for all k, then the
nonlinear correlation is zero, and the variables are said to be nonlinearly
decorrelated.

Therefore, if we are trying to separate two signals yi and yj, the following
criterion could be employed:

min E
{
f1
(
yi
)

f2
(
yj
)}

(6.33)

It is important to note that the condition that either E{Xk} = 0 or E{Yk} = 0
implicitly requires that f1(·) or f2(·) be an odd function, which means that
the corresponding Taylor series has only odd powers, otherwise the afore-
mentioned condition would imply that even moments like the variance are
zero.

It is worth pointing out that the nonlinear decorrelation may not be effec-
tive in all cases, since we cannot guarantee that an arbitrary pair of nonlinear
functions will lead to independent signals.
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6.2.2.4 Non-Gaussianity Maximization

According to the central limit theorem [230], the pdf of a sum of independent
random variables tends, under certain conditions, to a Gaussian distribu-
tion [77]. From this fact, we can expect that the pdf of a sum of two random
variables will be “closer” to a Gaussian distribution than any of the two
original variables [148]. This idea is illustrated in Figure 6.3, which shows
a mixture of two independent sources, one with uniform distribution and
the other with a Laplacian distribution. We can observe that both resulting
signals present a distribution that resembles a Gaussian distribution.

Considering the model presented in (6.3), if we are interested in recov-
ering only one of the sources, we can employ a separating vector w1 such
that

y1 = wT
1 x

= wT
1 As

= qT
1 s =

N∑

i=1

qisi (6.34)

where q = wT
1 A represents the joint effect of the mixing system and the sepa-

rating structure. Notice that, in a perfect source recovery condition, q should
be a vector with a single nonzero element.

Since y1 = qT
1 s is a linear combination of the sources, one can assume that

its pdf will be closer to a Gaussian pdf than that of any one of the sources si.

Instantaneous
mixture
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FIGURE 6.3
Mixtures between uniform- and Laplacian-distributed signals.
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Thus, one may say that y1 will be “less” Gaussian if its distribution is equal
to that of one of the sources, i.e., when q presents only one nonzero element.
Therefore, to obtain a vector w1 that maximizes the non-Gaussianity of wT

1 x
should also lead to source recovery.

The classical way of quantifying the gaussianity of a distribution is to use
the kurtosis, defined in Section 2.3.3. Most distributions present a nonzero
kurtosis value, the Gaussian being one of the few exceptions. In fact, it is
usual to classify pdfs according to their kurtosis value: if K(x)> 0, it is said
that x has a super-Gaussian distribution; if K(x)< 0, x has a sub-Gaussian
distribution. Hence, one criterion that expresses the maximization of the non-
Gaussian character of a signal is given by

max
w

∣
∣K
(
yi
)∣∣ (6.35)

Another possibility of quantifying the non-Gaussianity is by means of the
concept of negentropy [148], defined as follows:

DEFINITION 6.5 (Negentropy) The negentropy of a random variable Y is
defined as

JNegentropy (Y) = H (YGauss) − H (Y) (6.36)

where YGauss represents a Gaussian variable with the same mean and
variance of Y.

The notion of negentropy is based on the fact that a Gaussian random
variable will present the largest entropy over all other distributions with
the same mean and variance [230]. Therefore, the negentropy will always
assume nonnegative values, being zero only if y is Gaussian. In this sense,
the negentropy quantifies the degree of proximity between the pdf of y and
that of a Gaussian variable.

One interesting point regarding the non-Gaussianity maximization is that
it can be used to estimate the sources individually. Due to this feature, tech-
niques based on this approach are usually associated within the framework
of blind source extraction (BSE) [79, 185]. In BSE, we are not interested in all
sources, but only in a subset of the signals contained in the mixture. If the
number of signals to be extracted is the same as the total number of sources,
we reach again with the BSS problem.

The procedure for the extraction of more than one source can be carried
out with two distinct strategies, both exploring the fact that the extract-
ing vectors wi, obtained considering whitened data, will necessarily be
orthogonal.
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1. Serial estimation: In this approach, the components are sequen-
tially estimated. This means that all extracting vectors wi must
be, necessarily, orthogonal to the previously obtained vectors. For
this purpose, one can employ the Gram–Schmidt orthogonalization
method [128]. This serial approach is also known in the literature as
the deflation approach [89].

2. Parallel estimation: In this case, a certain number of sources will
be estimated at once, adapting in parallel the vectors wi. However,
since it is required that all vectors be orthogonal, an additional
step of orthonormalization is required, and the Gram–Schmidt
procedure can be employed again [148].

6.2.2.5 The Infomax Principle and the Maximum Likelihood Approach

Another interesting approach to perform ICA is the so-called Infomax prin-
ciple, introduced in the context of BSS by Bell and Sejnowski [31], even
though key results had already been established in a different context [212].
The approach is based on the concepts issued from the field of neural net-
works. Neural networks will be discussed in more detail in Chapter 7, but
for the moment, it suffices to consider that one possible structure of a neural
network is composed of a linear portion and a set of nonlinearities.

Let us consider the structure depicted in Figure 6.4, where A represents
the mixing system. The separating system is an artificial neural network com-
posed by a linear part (the matrix W) and a set of nonlinearities fi (·), each one
applied to a particular output yi, so that we define the vector.

f
(
y
) =

[
f1
(
y1
)

f2
(
y2
) · · · fN

(
yN
) ]T

(6.37)

The nonlinear functions fi (·) are monotonically increasing, with
fi (−∞) = 0 and fi (∞) = 1.

According to the Infomax principle, the coefficients of the neural net-
work should be adjusted in order to maximize the amount of information
that flows from the inputs to the outputs, which means that W should be
chosen to maximize the mutual information between x and z, thus leading to

A W

s1 (n) x1 (n)

sN (n) xN (n)

y1 (n)

yN (n)

f1 (.)

fN (.) zN (n)

z1 (n)

FIGURE 6.4
Structure of an artificial neural network.
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the following criterion:

max
W

I(x, z) (6.38)

When the noise is negligible, it can be shown that the maximization of the
mutual information corresponds to the maximization of the joint entropy of
the outputs,

max
W

H(z) (6.39)

a strategy known in the literature as MaxEnt [31]. In fact, if we rewrite the
joint entropy of z as

H (z) =
N∑

i=1

H (zi) − I (z) (6.40)

we may notice that the maximization of the joint entropy is related to
the maximization of the marginal entropies and to the minimization of the
mutual information between the elements of z. Thus, maximization of the
joint entropy will tend, in general, to reduce the statistical dependence
between the network outputs, and, consequently, the dependence between
the elements of y.

The nonlinear functions have two important roles: First, they limit the
value of variables zi, and hence the value of their entropies. Second, it is
possible to verify that obtaining independent outputs is closely related to an
adequate choice of these nonlinear functions.

From Figure 6.4 we may show that

H(z) = H(x) + E

{ N∑

i=1

log(f ′
i (wix))

}

+ log(| det(W)|) (6.41)

where
f ′
i (·) denotes the derivative of fi(·)

wi denotes the ith row of W

Since the joint entropy of x does not depend on the separating matrix,
the Infomax principle applied to the BSS problem leads to the following
optimization problem:

max
W

JInfomax(W) � E

{ N∑

i=1

log(f
′
i (wix))

}

+ log(| det(W)|) (6.42)
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Even though this is not apparent, the Infomax approach to source sepa-
ration is closely related to the maximum likelihood method [55, 56]. In [56],
Cardoso shows that, in the context of BSS, the log likelihood function is
expressed by

JML(W) ∝ E

{ N∑

i=1

log
(
psi

(
wix

(
j
)))
}

+ log
(∣∣det(W)

∣
∣) (6.43)

Comparing (6.42) and (6.43), it is clear that both approaches have very
similar cost functions, the only difference being the nonlinearities. In fact,
the cost functions are exactly the same when fi(·) equals the cumulative dis-
tribution function (CDF) of the ith source. If that is the case, the pdf of fi

(
yi
)

will be uniform in the interval [0, 1] when yi is equal to si or to some other
source with the same pdf [56].

If the likelihood function is rewritten in terms of the Kullback–Leibler
divergence, i.e.,

JML(W) = −D
(
py
(
y
) ‖ps (s)

)
(6.44)

it becomes clear that the maximum likelihood approach is, in a certain sense,
a pdf matching criterion: matrix W should be chosen in order that the distri-
bution of the estimates be “as close as possible” to the distribution of the
sources. In the Infomax approach, however, the true pdfs of the sources
are replaced by the derivatives of nonlinear functions fi(·). Nonetheless, it
is important to remark that even if there is no perfect match between these
functions and the pdf of the sources, it can still be possible to separate the
signals [56].

6.3 Algorithms for Independent Component Analysis

The ICA criteria exposed in Section 6.2 indicate theoretical solutions to
the BSS problem. However, the effectiveness of such solutions depends
on finding feasible algorithms to implement them in practical scenarios.
This section discusses some classical algorithms, starting from Hérault and
Jutten’s seminal approach.

6.3.1 Hérault and Jutten’s Approach

The proposal of Hérault and Jutten [143, 144] is considered to be the first
algorithm capable of extracting signals from linear mixtures. The method is
inspired in elements of neural networks and based on the structure presented

metrovoice
New Stamp



Blind Source Separation 201

y1(n)

x2(n)

x1(n) +

+ y2(n)
m21

m12

FIGURE 6.5
Fully interconnected linear
neural network used as sep-
arating structure.

in Figure 6.5, which is a fully interconnected neural
network composed of linear neurons.

From Figure 6.5, the output signal can be
expressed as

y1 = x1 − m21y2 (6.45)

y2 = x2 − m12y1 (6.46)

or, equivalently, using matrix notation

y = x − My (6.47)

where M is the weight matrix composed of elements mij, with mij = 0 for i = j.
The update law for M is given by

mij ← mij − μE{f (yi)g(yj)} (6.48)

Such update law employs the idea of nonlinear decorrelation discussed
in Section 6.2: the algorithm stops updating the weights when the nonlinear
correlation between the outputs is null.

As discussed earlier, nonlinear decorrelation does not guarantee, in all
cases, that the signals are mutually independent. In practice, the effective use
of the algorithm is restricted to scenarios with a limited number of sources,
and there may be convergence problems even for the case with two sources,
as studied in [72, 93, 278]. Nevertheless, Herault and Jutten’s algorithm is
one of the simplest BSS algorithms, and had a major importance in the
development of the BSS research field.

6.3.2 The Infomax Algorithm

The Infomax algorithm, also known as the Bell–Sejnowski (BS) algorithm,
is derived from the Infomax principle, discussed in Section 6.2.2.5, and
employs a steepest-descent approach to update the free parameters. Thus,
the first step to build the adaptation rule is to obtain the gradient of the cost
function:

∂JInfomax(W)

∂W
= E{g(Wx)xT} + (WT)−1 (6.49)

where g(·) = [g1(·) . . . gN(·)] is a vector of functions such that

gi(x) =
d log

(
f

′
i (x)

)

dx
(6.50)
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Then, the update rule for the separating matrix W will be given by

W ← W + μ{E{g(Wx)xT} + (WT)−1} (6.51)

where μ is the learning step. The stochastic version of this algorithm is
obtained by simply ignoring the expectation operator in (6.51), leading to
the following update rule:

W ← W + μ{g(Wx)xT + (WT)−1} (6.52)

This algorithm is known both as the Infomax algorithm and as the BS
algorithm.

6.3.3 Nonlinear PCA

The nonlinear PCA algorithm is a direct extension of the classical PCA,
a well-known tool in the field of data analysis, and is widely used in
applications like the data compression.

In a data compression problem, the main goal could be to represent a
random vector x = [x1, . . . , xM]T in a lower-dimensional subspace. In this
context, PCA can be understood as a tool to provide orthonormal basis
vectors wi of a subspace of this kind, by minimizing

JPCA(W) = E

⎧
⎨

⎩
‖x −

NDimensions∑

i=1

(
wT

i x
)

wi‖2

⎫
⎬

⎭
(6.53)

The projections of the original data onto these basis vectors are known as
principal components and the above cost function represents the compression
error, which decreases as the number of principal components increases.

Assuming that x is zero mean, the solution to this optimization problem
is given by the eigenvectors of Rx = E{xxT} [94] (vide Appendix A), and the
principal components are thus mutually uncorrelated.

According to our previous discussion in Section 6.2.1 regarding the use
of second-order statistics in the BSS problem, it is clear that PCA could
only be used as a tool for the prewhitening step. Nevertheless, by including
nonlinearities in (6.53), following the same idea described in the nonlinear
decorrelation approach, it is possible to implicitly make use of higher-order
statistic and, thus, obtain signals that are not only uncorrelated but also inde-
pendent. The resulting method is known as nonlinear PCA, or NPCA [148],
and its cost function is given by

JNPCA(W) = E

⎧
⎨

⎩
‖x −

NDimensions∑

i=1

(
gi

(
wT

i x
))

wi‖2

⎫
⎬

⎭
(6.54)
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where gi(·) is a nonlinear function. In this case, the nonlinearity is included in
the projection onto the basis vectors wi, but there are other possibilities [148].
In matrix notation, (6.54) can be expressed as

JNPCA(W) = E{‖x − WTg(Wx)‖2} (6.55)

where g(·) = [g1(·) . . . gN(·)].
If x has been prewhitened, the separating matrix W will be orthogonal

and (6.55) reduces to

JNPCA(W) =
N∑

i=1

E{[yi − gi(yi)]2} (6.56)

It is interesting to notice that (6.56) is very similar to the Bussgang algo-
rithms [213] discussed in Section 4.3.

The cost function defined in (6.55) can be minimized by any optimization
method. However, the original proposal employs a recursive least squares
(RLS, vide Section 3.5.1) approach [222]. The NPCA algorithm employing
this approach is given in Algorithm 6.1.

Algorithm 6.1: Nonlinear PCA
1. Randomly initialize W(0) and P(0);
2. While a stopping criterion is not met, do:

z(n) = g(W(n − 1)x̄(n)) (6.57)

h(n) = P(n − 1)z(n) (6.58)

m(n) = h(n)/(λ + zT(n)h(n)) (6.59)

P(n) = λ−1ϒ[P(n − 1) − m(n)h(n)T] (6.60)

e(n) = z(n) − W(n − 1)Tz(n) (6.61)

W(n) = W(n − 1) + m(n)e(n)T (6.62)

where ϒ[J] denotes an operator that generates a new symmetric
matrix with the same upper-triangular portion of J, x̄(n) denotes the
whitened data and λ is the forgetting factor of RLS algorithm.
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6.3.4 The JADE Algorithm

The essence of the JADE (Joint Approximate Diagonalization of Eigenmatri-
ces) [54] algorithm lies in the information provided by the joint cumulant of
the signals in a very interesting optimization procedure based on the Jacobi
method for matrix diagonalization [128].

Suppose that the observed data has been prewhitened, i.e., x̄ = Us, U
being an orthogonal matrix. First, it is necessary to introduce the con-
cept of a cumulant matrix related to matrix M, Qx̄(M), whose elements are
defined as

Qx̄
ij(M) =

∑

k

∑

l

c(xi, xj, xk, xl)Mkl (6.63)

Considering the properties of cumulants (seen in Chapter 2), one can deduce
the following [57]:

Qx̄(M) = U�(M)UT (6.64)

where �(M) is given by

�(M) = diag
{

c4(s1)aT
1 Ma1, . . . , c4(sN)aT

NMaN

}
(6.65)

ai being the ith column of the mixing matrix A.
Equation 6.64 can be regarded as the eigendecomposition of Qx(M).

Hence, if all eigenvalues are distinct, the decomposition is unique [128] and
matrix U can be easily determined by a decomposition algorithm. In prac-
tice, however, it is not possible to determine whether a matrix M will render
distinct eigenvalues of Qx(M) or not, since this depends on the unknown
mixing matrix A.

In order to overcome this difficulty, JADE algorithm employs a joint
diagonalization approach. The main idea is to jointly diagonalize a set of
cumulant matrices, corresponding to different matrices Mi. Mathematically,
the associated cost function is defined as

D(U) =
∑

i

�(UTQx̄(Mi)U) (6.66)

where �(·) represents the quadratic sum of all elements that are not in the
main diagonal. Matrices Mi should ideally be chosen such that Qx̄(Mi) =
λMi. If that is the case, all relevant information regarding the joint cumulants
is taken into account. Then, the optimization of (6.66) is performed via a
Jacobi method for matrix diagonalization, which can be seen in detail in [60].
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6.3.5 Equivariant Adaptive Source Separation/Natural Gradient

As pointed in Chapters 3 and 4, a number of optimization algorithms in
signal processing is based on the gradient method, the main idea of which
is to explore the gradient of a given cost function to find its minimum (or
maximum). Following this procedure, the adaptation of a matrix W has the
general form

W ← W ± μ
∂J(W)

∂W

∣
∣∣∣
W

(6.67)

where the sign of the update term depends on whether we are dealing with
a maximization or minimization problem, and J(W) denotes a generic cost
function.

In [58], another approach is presented. Cardoso and Laheld employ
a serial adaptation, which consists of updating the separating matrix
according to

W ← (
I − λ�(y)

)
W (6.68)

where
�(·) maps a vector onto a matrix,
λ represents the learning step

Hence, the increment is made by left-multiplying a matrix, instead of
adding a term to the previous separating matrix.

Therefore, the adaptation rule in (6.68) suggests that we can redefine
the concept of gradient. In the standard case, the gradient at W can be
understood as being the first-order term of a Taylor series of J(W + D):

J(W + D) ≈ J(W) + tr

(
∂J(W)

∂W

T
D

)

(6.69)

where D corresponds to an increment. On the other hand, the relative
gradient can be defined in a similar fashion from the expansion of J(W+DW)

J(W + DW) ≈ J(W) + tr

(

W
∂J(W)

∂W

T
D

)

≈ J(W) + tr

(
∂RJ(W)

∂W

T
D

)

(6.70)
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i.e., the relative gradient is given by

∂RJ(W)

∂W
= ∂J(W)

∂W
WT (6.71)

For a given cost function J(W)= E{f(y)}, it is possible to build the
following update rule from the relative gradient:

W ← W − λE{f′(y)yT}W, (6.72)

where f′(y)= [f ′(y1) . . . f ′(yN)]. In addition to that, by including an orthogo-
nality constraint on W, the update rule becomes

W ← W − λE{yyT − I + f′(y)yT − yf′(y)T}W (6.73)

which corresponds to the so-called Equivariant Adaptive Source Separation
(EASI) algorithm.

It is interesting to notice that the notion of natural gradient, developed
by Amari [8], is very similar to that of the relative gradient, leading to
expressions similar to those obtained by Cardoso and Laheld. In [8], Amari
defines the gradient taking into account the structure subjacent to the param-
eter space, i.e., the nonsingular matrices space. In this space, the gradient
direction is given by

∂NaturalJ(W)

∂W
= ∂J(W)

∂W
WTW (6.74)

which is very similar to the relative gradient.

6.3.6 The FastICA Algorithm

Another contribution whose innovation is mainly related to the optimiza-
tion method is the FastICA algorithm [147, 149], a very popular tool for
ICA. The formal derivation of the algorithm considers that signals have been
prewhitened, and also considers an approximation for the negentropy of a
zero-mean unit variance signal

J(y) = (
E
{
f (y)

}− E
{
f (ν)

})2 (6.75)

where
f (·) represents a nonquadratic function
ν represents a zero-mean unit variance Gaussian variable
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Thus, if we are estimating only one signal, we should look for a unit-norm
vector w that maximizes the negentropy, i.e.

max
(
E
{
f (y)

}− E
{
f (ν)

})2 s.t. ‖w‖2 = wTw = 1 (6.76)

Since E
{
f (ν)

}
does not depend on w, one may notice that the optima of

E
{
f (y)

}
will also correspond to some optima of

(
E
{
f (y)

}− E
{
f (ν)

})2. In
other words, taking into account the constraint, the solution is given by the
point where the gradient of the following Lagrangian is null:

∂

∂w
L(w) = E

{
x̄f ′(wTx̄)

}
− λw = 0 (6.77)

where
λ denotes the Lagrange multiplier
x̄ represents the vector of prewhitened observed data
f ′(·) is the derivative of f (·)

In order to solve this problem using Newton’s method [148], we must
evaluate the second-order derivatives of the cost function, which are
given by

∂2

∂w∂wT L(w) = E
{

x̄x̄Tf ′′(wTx̄)
}

+ βI (6.78)

where f ′′(·) is the second-order derivative of f (·). The FastICA algorithm is
then obtained considering an approximation for (6.78), given by

E
{

x̄x̄Tf ′′(wTx̄)
}

≈ E
{

x̄x̄T
}

E
{

f ′′(wTx̄)
}

= E
{

f ′′(wTx̄)
}

(6.79)

Then, following a Newton-like iteration to solve this optimization we obtain,
using (6.77) and (6.78), the following update rule for w:

w ← w −
[
E
{

x̄f ′′(wTx̄)
}

− λw
] [

E
{

f ′′(wTx̄)
}

− λ
]−1

(6.80)

Finally, multiplying (6.80) by λ−E
{
wTx̄f ′(wTx̄)

}
on both sides and perform-

ing some algebraic simplifications, we obtain the final update rule used in
the FastICA:

w ← E
{

x̄f ′′(wTx̄)
}

− E
{

f ′′(wTx̄)
}

w (6.81)
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The FastICA algorithm for the estimation of a single source considering
negentropy maximization is given in Algorithm 6.2.

The re-normalization step of w(n) after each iteration is employed to
increase the convergence rate and cope with stability issues of the algorithm.
If more than one source is being estimated at the same time, i.e., if parallel
estimation is performed, instead of a normalization step we should guaran-
tee that all separating vectors wi(n) are orthonormal between each other. The
algorithm for this other case is given in Algorithm 6.3.

Algorithm 6.2: FastICA Algorithm for the Estimation of a Single Source
1. Preprocessing: center and whiten data. The preprocessed data form

vector x̄;
2. Randomly initialize w(n), keeping a unit-norm constraint;
3. While a stoping criterion is not met, do:

w′(n) = E
{

x̄f ′ (w(n − 1)Tx̄
)}

− w(n − 1)E
{

f ′′ (wTx̄
)}

(6.82)

w(n) = w′(n)

‖w′(n)‖ (6.83)

Algorithm 6.3: FastICA Algorithm for the Estimation of Several Sources
1. Preprocessing: center and whiten data. The preprocessed data form

vector x̄;
2. Randomly initialize wi(0), keeping a unit-norm constraint;
3. While a stoping criterion is not met, do:

wi(n) = E
{

x̄f ′ (wi(n − 1)Tx̄
)}

− wi(n − 1)E
{

f ′′ (wi(n − 1)Tx̄
)}

(6.84)

4. Organize wi(n) into a matrix W′(n) = (w1(n), w2(n), . . . , wN(n))T,
and perform an orthogonalization procedure:

W(n) ←
(

W′(n)W′(n)T
)− 1

2 W′(n) (6.85)
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6.4 Other Approaches for Blind Source Separation

Independently of the algorithm we use to perform BSS, all methods based
on ICA rely on two hypotheses: that the sources are mutually independent,
and that at most one of them is Gaussian. However, in some applications,
one may have access to more a priori information about the mixing system
and the sources.

In this section, we will discuss other approaches that are based on distinct
assumptions about the sources and/or the mixing process. Under these addi-
tional hypotheses, it is possible to devise specific methods that may present
advantages over ICA.

6.4.1 Exploring the Correlation Structure of the Sources

A class of simple but effective algorithms for source separation can be
derived if the power spectral densities of the sources are mutually distinct,
i.e., if their correlation structure obeys

E
{
si
(
k
)

si
(
k − l

)} �= E
{
sj
(
k
)

sj
(
k − l

)}
(6.86)

for i �= j and some l �= 0.
Differently from the ICA approach, these algorithms explore the time

information of the observed signals in order to recover the sources. An inter-
esting point of this new approach is that, in this case, source separation
can be carried out using only second-order statistics. In order to under-
stand this fact, let us consider that data has been prewhitened. Then, the
autocorrelation matrix of the observations for a given delay l is given by

Rx̄
(
l
) = E

{
x̄(n)x̄T(n − l)

}
= URs(l)UT (6.87)

where

Rs
(
l
) = E

{
s̄(n)s̄T(n − l)

}
(6.88)

denotes the autocorrelation matrix of the sources for a delay l.
If the sources are mutually independent (or, at least, uncorrelated), Rs

(
l
)

is diagonal, which means that (6.87) represents the eigendecomposition of
Rx̄
(
l
)
. Thus, the decomposition of Rx̄

(
l
)

reveals the rotation matrix that
leads to source separation. This idea is the very essence of the AMUSE
algorithm [286] and depends on the correct choice of the delay l for which
Rs
(
l
)

presents distinct eigenvalues. An extension of this method would be to
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consider the information contained in the autocorrelation matrix for different
values of l, leading to algorithms like SOBI [37] and TDSEP [316].

It is important to notice that even though the aforementioned methods
are simple and efficient in recovering the sources, they rely on the hypothesis
that all sources have distinct power spectra. However, in the situation that
they present different but similar power spectra, the methods may not obtain
good results in practice [71, 148]. On the other hand, it is not necessary that
signals be independent, only uncorrelated. In addition to that, there is no
restriction about Gaussian sources.

Another scenario that can employ second-order based methods occurs
when the source signals are nonstationary processes, like speech signals.
In this situation, it can be shown that decorrelation between the estimated
signals is a sufficient condition to guarantee source separation [204, 238].

6.4.2 Nonnegative Independent Component Analysis

Another class of BSS algorithms can be derived if the sources do not
assume negative (or, equivalently, positive) values, a natural condition in
applications like, for example, image analysis [71].

The hypothesis of nonnegativity or positivity of the signals is present in
data analysis methods like the nonnegative matrix factorization (NMF) [177],
and positive matrix factorization (PMF) [220]. Nonetheless, it is not always
possible to guarantee that the factorization is unique; thus, the direct appli-
cation of such methods in BSS requires additional constraints on the original
signals.

In this sense, nonnegative independent component analysis considers
that the sources are both independent and nonnegative, leading to very sim-
ple criteria for source separation. The central result related to this approach
is summarized in the following theorem [241].

THEOREM 6.3 (Separability of Mixtures of Nonnegative Sources)

Let s be a random vector of independent elements, each one with unity vari-
ance. Each element assumes only nonnegative values and P(si < δ) > 0 for
all δ > 0. Let also y = Us, where U is an orthogonal matrix, i.e., (UUT = I).
Then, U will be a permutation matrix if and only if all elements of y are non-
negative. Therefore, if this condition holds, y will be exactly the vector of
source signals up to a permutation ambiguity.

From Theorem 6.3, it is possible to recover the sources based on cost func-
tions that express the nonnegativity of the elements of y. Figure 6.6 shows an
example with two uniform sources distributed in the interval [0, 1]. After
the prewhitening step, the sources will be recovered by determining the
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FIGURE 6.6
Distributions in the context of nonnegative source separation. (a) Sources distribution, (b)
observations distribution, and (c) distribution after whitening step.

rotation matrix that restores the nonnegativity condition of the signals. Some
algorithms exploring this idea can be found in [218, 242].

6.4.3 Sparse Component Analysis

SCA is based on the hypothesis that the sources present, in some domain,
a significant degree of sparseness. The concept of sparseness is not a con-
sensus but, for our purposes, it suffices to consider that sparse sources are
signals that assume values close to zero most of the time [45], as depicted in
Figure 6.7. The great interest in this approach lies in the fact that it makes
possible to identify the mixing matrix, or even to separate the sources, in an
underdetermined context [120, 182] as discussed in the sequel.

Let us consider the example presented in Figure 6.8, in which is shown
the joint distribution of the observations in a scenario with 3 sources and only
2 sensors. Figure 6.8a brings the sample distribution for uniform sources,
while in Figure 6.8b, the sources are sparse.
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FIGURE 6.7
Some examples of sparse sources.

Due to sparseness, it is likely that only one of the sources presents a value
considerably larger than zero at each time instant. Hence, the observations
tend to be

x = As = [
a1 a2 · · · aN

]

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

s1

ε

...

ε

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

≈ a1s1 (6.89)

where
ai represents the ith column of A
ε represents a small value

Thus, the observed data will tend to concentrate along the directions
defined by the columns of the mixing matrix, as indicated in Figure 6.8b.

In this situation, in order to identify the mixing matrix, one should look
for methods that estimate these directions, like clustering methods [141].
Another interesting point is that it should also be possible to identify, with-
out a priori information, the number of sources in a mixture by blindly
estimating the number of clusters [18, 19].
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FIGURE 6.8
Underdetermined mixtures (three sources and two sensors): (a) nonsparse and (b) sparse
sources.

Even though the discussion so far considered only sparse sources in the
time domain, SCA can be applied more generally on data that are sparse in
some domain. For instance, in audio applications, the signals are often sparse
in the time–frequency domain. Thus, one should be employ a linear trans-
form like the short-time Fourier or a wavelet transform prior to processing
the data [120, 216, 258].

6.4.4 Bayesian Approaches

The Bayesian approach for source separation [168, 298, 299] also takes
advantage of prior information about the sources to perform the required
estimation. In this case, the notion of using a priori information is in
fact inherent to the methodology, since the Bayesian approach consists in
mixing the a posteriori probability given by p(A, s|x). Thus, using Bayes’ rule
we have

p(A, s|x) ∝ p(x|A, s)p(A)p(s) (6.90)

where
p(s) and p(A) denote, respectively, the pdf of the sources and the mixing

matrix coefficients
p(x|A, s) is the data likehood function [165, 168]

From (6.90), we can notice that this approach is extremely flexible, since
any additional information about the problem at hand can be included in the
optimization criterion through density priors. Such additional information
may be related to the pdf of the elements in the mixing matrix or to the pdf of
the sources. In this sense, the Bayesian approach may also be used with more
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elaborated mixing models, like the case with noise and the underdetermined
mixing model [104, 299, 314].

On the other hand, the maximization of (6.90) is a great challenge, since
the function being optimized is, in general, non-convex, and the number of
parameters is usually large.

6.5 Convolutive Mixtures

The linear and instantaneous mixing model has been employed in several
practical and theoretical instances [148]. However, there are situations in
which the mixing process is better formulated in terms of a linear system
with memory, which gives rise to the linear convolutive mixture model. Typ-
ical examples are found in audio signal processing, in which the signals are
recorded using a set of microphones in a reverberating environment [210],
and also in wireless communication systems.

Signal propagation from each source to each sensor is modeled by a trans-
fer function, as illustrated in Figure 6.9. In this case, the received signal can
be expressed by

xi
(
k
) =

∑

j

∑

τ

aij(τ)sj
(
k − τ

)

=
∑

j

aij(n) ∗ sj (n) (6.91)
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Σ
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x2 (n)

Mixing system Separating system

FIGURE 6.9
Convolutive mixture model with two sources and two sensors.
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for i = 1, . . . , N, where aij (n) denotes the impulse response of the channel
linking the ith source to the jth sensor. Signal separation is then achieved by
means of a set of filters wij(n), as indicated in Figure 6.9.

Since the mixing model as well as the separating system are MIMO sys-
tems, the notation presented in Chapter 5 can also be used. Thus, the system
transfer function is given by

A [z] = A(0) + A(1)z−1 + · · · + A(L − 1)z−L+1 (6.92)

and the observations and estimated signals can be expressed respectively by

x
(
k
) =

∑

l

A(l)s
(
k − l

)
(6.93)

and

y
(
k
) =

∑

l

W(l)x
(
k − l

)
(6.94)

where we assumed both mixing and separating systems as linear feedfor-
ward structures. It is worth mentioning that other structures, like those with
a feedback loop, can also be considered [159].

Let us now consider two important classes of methods that can be applied
to solve the problem of separation of linear convolutive mixtures.

6.5.1 Source Separation in the Time Domain

The methods based on the principle of ICA can be extended to the convo-
lutive case [311]. Therefore, assuming that all sources are mutually indepen-
dent, the separating system must be designed to yield signals as independent
as possible from each other.

It is important to mention that in the case of instantaneous mixtures, inde-
pendence between two estimated signals y1(n) and y2(n) is ensured by the
independence between the random variables associated with time instant
n. When dealing with convolutive mixtures, the problem becomes more
involved: due to the presence of memory in the mixing process, we must
ensure statistical independence between two stochastic processes, i.e., y1(n)

and y2(n − l) must be independent for all n and l.
If the mutual information is employed as a measure of independence, the

cost function to be optimized in the convolutive case is

JConvolutive(w(n)) =
∑

m

I
(
y1
(
k
)
, y2

(
k − m

))
(6.95)
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An important aspect is related to the ambiguities of the solution. As
in the instantaneous case, separation of convolutive mixtures also exhibits
a permutation indeterminacy, which is only solved if additional informa-
tion about the sources is provided. Nonetheless, the amplitude ambiguity is
now replaced by a filtering indeterminacy. This occurs because if y1(n) and
y2(n) are mutually independent processes, so will be ŷ1(n)= h1(n) ∗ y1(n)

and ŷ2(n)= h2(n) ∗ y2(n), for any invertible filters h1(n) and h2(n). There-
fore, unless additional information about the original sources is available,
the method is susceptible to providing distorted versions of the sources.

A number of different methods based on a time-domain approach can
be found in the literature. An extension of Hérault and Jutten’s algorithm
is proposed in [159], in which the coefficients of the separating structure,
as shown in Figure 6.5, are replaced by linear filters. Other methods have
been modified to cope with the convolutive mixture model, like the natural
gradient algorithm [10, 11], Infomax [290, 291], as well as the FastICA [285].

6.5.2 Signal Separation in the Frequency Domain

Another class of methods for the case of convolutive mixtures deals with
separation in the frequency domain [198, 276].

The observed signals xi(n), sampled at a frequency fs, can be represented
in the frequency domain x̄i(f , τ) by means of a short-time Fourier transform
(STFT) with a finite number of points, i.e.,

x̄i
(

f , τ
) =

L
2 +1∑

l=− L
2

xi
(
τ + l

)
wwindow

(
l
)

e−j2πfl (6.96)

where
f ∈

{
0, 1

L fs, . . . , L−1
L fs

}
denotes the set of frequency bins

wwindow(n) is a windowing function
τ represents a time index

Therefore, the observed signal can be approximately represented as the
result of a linear instantaneous mixture in a frequency bin, i.e.,

x̄i
(

f , τ
) =

∑

j

āij
(

f
)

s̄j
(

f , τ
)

(6.97)

where
āij(n) is the frequency response between the jth source and the ith sensor
s̄j(f , τ) denotes the STFT of the jth source

Finally, organizing (6.97) into matrix notation we get to

x̄
(

f , τ
) = Ā

(
f
)

s̄
(

f , τ
)

(6.98)
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FIGURE 6.10
Strategies for source separation in the frequency domain: (a) separation in the frequency domain
and (b) filter design in the frequency domain.

Hence, the convolutive problem is converted into an equivalent prob-
lem composed of a set of linear instantaneous mixtures, for which several
methods have been presented in this chapter. Figure 6.10 brings two pos-
sible strategies that explore this principle. In Figure 6.10a, separation is
performed in the frequency domain and then the signals are transformed
back to the time domain, while, in Figure 6.10b, only the separating filters
are obtained in the frequency domain, but separation itself is performed in
the time domain.

Since separation is carried out independently in each frequency bin, each
solution is subject to arbitrary scaling and permutation ambiguity, i.e.,

y(f , τ) = P(f )�(f )s(f , τ) (6.99)

where
P(f ) accounts for the permutation
�(f ) for the scaling ambiguities

The amplitude indeterminacy is the origin of the filter ambiguity men-
tioned earlier. In general, this ambiguity can only be solved if additional
information is available. An example of this condition occurs in digital com-
munications, where the distribution of the sources is, in most of the cases,
known a priori, and the samples can be considered to be i.i.d. Even if the
sources cannot be perfectly recovered, it is usual, specially in audio appli-
cations, to employ the minimum distortion principle [202, 203] in order to
determine the separation filters and reduce the distortion due to the inherent
filtering indeterminacy.

The second indeterminacy, related to the permutation of the recovered
signals, may also cause a severe distortion. Since the solution of ICA in each
frequency bin is subject to a permutation ambiguity, if the permutations are
not consistent over all frequency bins, the reconstruction of the signals in
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the time domain will yield estimates that are composed of different sources
in each frequency bin. Therefore, an additional procedure to perform the
spectral alignment is required prior to the signal recovery in time domain.

The solutions proposed in the literature explore particular characteristics
of the signals and of the separating matrices to perform this adjustment. An
example would be to assume that the transition for separating matrices in
frequency domain is smooth, i.e., there is a small variation between coef-
ficients of matrices Ā(fk−1) and Ā(fk). Therefore, the permutation problem
could be solved by determining, for each frequency bin fk, the permutation
which leads to a minimum distance between the estimated mixing matrix
Ā(fk) and the estimated mixing matrix Ā(fk−1) from the previous frequency
bin [29].

Another method is effective when the source signals arrive at the sensor
array from different directions. Using additional information about the sen-
sor array geometry, it is possible to estimate the direction of arrival (DOA)
of the signals, which is then employed to perform the spectral alignment by
clustering the components according to the DOA [152, 171].

Other additional information can also be employed, like the spectra of
the sources [151, 268]. For natural sounds, for instance, spectral compo-
nents close to each other can be strongly correlated, and this fact can be
explored to indicate how the components must be permutated in order to
correctly reconstruct the signals. This approach, allied with spatial informa-
tion brought by the sensor array geometry, can lead to methods with better
results [261].

6.6 Nonlinear Mixtures

In this section, we will discuss the BSS problem for nonlinear mixture mod-
els, in particular the PNL model, for which the ICA background can still be
applied.

The general form of a memoryless nonlinear mixture is given by a
mapping F : �N → �M such that

x(n) = F (s(n)) (6.100)

Therefore, our goal is to obtain another mapping

y(n) = G (x(n)) (6.101)

such that y(n) be a precise estimate of the sources, G(·) being a specially
tailored nonlinear mapping.
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6.6.1 Nonlinear ICA

A tempting solution consists in extending ICA methods that are efficient in
the linear case. Under the same hypothesis of independence between the
sources, the separating structure must be adjusted to recover independent
signals. This approach was given the name of nonlinear ICA.

Consider a mapping H(s) = G(F(s)), which represents the composition
between mixing and separating mappings, such that

H(s) = [
h1(sρ(i)), . . . , hn(sρ(i))

]
(6.102)

where
hi denotes an arbitrary nonlinear function
ρ denotes a permutation operator over {1, 2, . . . , n}

This particular mapping is known as a trivial mapping, and transforms a
vector of independent components into another vector with the same prop-
erty, since H(s) represents a set of functions of single components of s that
are mutually independent. Therefore, a mapping G(·) that leads to an over-
all trivial mapping H(s) is also a nonlinear ICA solution. Notice that, in
this case, there are ambiguities related to permutation, and also a residual
nonlinear distortion due to hi.

Nonlinear ICA solutions are not restricted to trivial mappings, and hence,
do not ensure the separation. A very simple example of this condition is
shown in Example 6.2 [157].

Example 6.2

Let us consider two independent sources s1 and s2, with pdf ps1(s1)= s1
exp

(−s2
1/2

)
, i.e., a Rayleigh distribution, and ps2 (s2) = 2/π, a uniform pdf over

s2 ∈ [0, π/2).
The joint pdf of s1 and s2 is expressed by

ps1s2 (s1, s2) =

⎧
⎪⎨

⎪⎩

2
π

s1 exp
(

−s2
1

2

)
, s2 ∈ [0, π/2)

0, s2 ∈ (−∞, 0) or s2 ∈ [π/2, +∞)

(6.103)

Consider now the following mapping H:

[
y1

y2

]

= H(s) =
[

s1 cos(s2)

s1 sin(s2)

]

(6.104)

Since the Jacobian of the transformation is not diagonal, y will represent a
mixture of the elements of s. Now, let us express the joint pdf of y [230]:

py1y2(y1, y2) = ps1s2 (s1, s2)

| det JH(y)| (6.105)
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where JH(y) corresponds to the Jacobian of H(·), which is given by

| det JH(y)| =
∣∣∣∣∣
det

([
cos(s2) sin(s2)

s1 sin(s2) −s1 cos(s2)

])∣∣∣∣∣

= | − s1(cos2(s2) + sin2(s2))| = |s1| (6.106)

Substituting (6.103) and (6.106) in (6.105), and noticing that s2
1 = y2

1 + y2
2,

we obtain

py1y2(y1, y2) = 2
π

exp

(
− (y2

1 + y2
2
)

2

)

=
(√

2
π

exp

(
−y2

1
2

))(√
2
π

exp

(
−y2

2
2

))

(6.107)

Thus, we notice that y is composed of independent components—since its pdf
is the product of functions of the pdf of y1 and y2—even though y represents a
mixture of s1 and s2.

The above example shows that it is possible to obtain nonlinear mixing
mappings that preserve independence. This result was first observed by Dar-
mois back in 1951, in a nonlinear factor analysis context [281]. In the context
of BSS, though, this problem was studied in [150].

In a certain sense, we could argue that the main difficulty is due to the
great flexibility of nonlinear mappings. Since there is no reference signal to
guide the adaptation of the separating system, we saw that it is possible to
recover independent signals without separating the sources. Thus, in order
to avoid these undesirable solutions, the existing algorithms for the non-
linear case try to restrict the degree of flexibility of these mappings. In this
context, a possible approach to solve the nonlinear mixing problem is to con-
sider nonlinear mappings to which all theoretical backgrounds developed
for the linear case are still valid. In such case, even though the developed
solutions are restricted to a smaller number of practical scenarios, several
existing tools remain applicable.

A first attempt in this direction was made in [6, 310], in which only
mild nonlinearities—provided by a multilayer perceptron—were consid-
ered. Nonetheless, even under this assumption, it is possible to obtain
undesirable solutions [200], indicating that other constraints must be taken
into account.

6.6.2 Post-Nonlinear Mixtures

Taleb and Jutten introduced the PNL model in [280], which is depicted in
Figure 6.11.

The PNL model is particularly useful when the sensors present some sort
of nonlinear distortion. Mathematically, the observed signals x are given by
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PNL mixture

xN (n)

x1 (n)

A

f1 (.)

fN (.)
eN (n)

e1 (n)

sN (n)

s1 (n)
g1 (.)

gN (.)
W

yN (n)

y1 (n)

Separating system

FIGURE 6.11
Post-nonlinear model.

x = f (As) (6.108)

where f(e) = [
f1(e1), f2(e2), . . . , fN(eN)

]
.

The natural choice for the separating system would be a similar struc-
ture, composed of a set of nonlinearities gi(·) and a separating matrix W, as
illustrated in Figure 6.11. The output of this structure is expressed by

y = Wg (x) (6.109)

where g(x) = [
g1(x1), g2(x2), . . . , gN(xN)

]
.

The conditions under which the PNL model is separable using ICA can
be stated in terms of the following theorem [3, 281].

THEOREM 6.4 (Separability of the PNL Model)

Consider the PNL model depicted in Figure 6.11, and the following
hypotheses:

• Matrix A is invertible and effectively mixes the sources, i.e., there are
at least two nonzero elements in each row and column.

• f(·) and g(·) are monotonic functions; consequently, h = g ◦ f will
also be monotonic.

• There is, at most, one Gaussian source.
• The joint pdf of the sources is differentiable and its derivative is

continuous over all its support.

Under these conditions, if the elements of y are statistically independent,
then h(·) will be composed of linear functions and WA = �P.

Thus, in addition to the usual conditions for separability for a linear
mixing model, it is required that the nonlinearities be monotonic functions,
which implies that they are invertible.
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6.6.3 Mutual Information Minimization

Since ICA can still be applied to this case, mutual information will be a valid
criterion for source separation within the PNL model. Based on (6.24), the
mutual information of y can be defined as

I(y) =
N∑

i=1

H(yi) − H(y) (6.110)

where H(yi) is the marginal entropy of the ith element of y.
From Figure 6.11, the joint entropy H(y) can be expressed in terms of the

joint entropy of x:

H(y) = H(x) + E
{
log |J|} (6.111)

where J represents the Jacobian of the nonlinear transformation. Applying
this result to (6.110), one can obtain [281]

I(y) =
N∑

i=1

H(yi) − H(x) − log
∣∣det W

∣∣− E

{

log
∏

i

∣∣g′
i(xi)

∣∣
}

(6.112)

where g′
i(·) denotes the derivative of gi(·). It is important to point out that

this relation is only valid for invertible nonlinearities gi(·).
In order to minimize (6.112) a gradient-based algorithm was proposed

in [281]. It follows that

∂I(y)

∂W
= −E{�(y)eT} − (WT)−1 (6.113)

where

�(y) = [ψy1(y1), . . . , ψyN (yN)] (6.114)

for

ψyi(yi) =
(

pyi(yi)
′

pyi(yi)

)
(6.115)

which is called the score function.
In order to obtain the update rule for the nonlinear section of the sepa-

rating system, it is necessary to consider parametrized nonlinear functions
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gi(θi, xi), i = 1, . . . , N, with θi denoting the parameters. The gradient with
respect to θi will be given by

∂I(y)

∂θi
= −E

{
∂ log

∣
∣g′

i(θi, xi)
∣∣

∂θi

}
− E

{( N∑

k=1

ψyk(yk)wki

)∂gi(θi, xi)

∂θi

}
(6.116)

where wki corresponds to the element (k, i) of W.
The complete derivation of the algorithm depends on the structure of

the parametric nonlinear functions gi(θi, xi). The approach taken in [281]
was to employ artificial neural networks, a flexible nonlinear structure to
be discussed in Chapter 7.

Another point worth mentioning is that the derivatives of I(y) with
respect to W and to the parameters θ heavily depend on the score functions
ψyi(yi). Unfortunately, since we are dealing with a blind separation prob-
lem, these functions are unknown, and must be estimated from the output
vector y. The complete description of the algorithm can be found in [281].

6.6.4 Gaussianization

The PNL model clearly presents two distinct sections, one linear and the
other nonlinear. This characteristic suggests that the parameters of the sepa-
rating structure could be separately adapted: the Gaussianization approach
explores this idea.

The Gaussianization method [277, 315] relies on the hypothesis that
linearly mixed signals tend to a Gaussian distribution. This hypothesis is
derived from the central limit theorem, as the mixed signals are linear combi-
nations of independent sources. Once these linearly mixed signals are subject
to a nonlinearity, the resulting observations will certainly not present a
Gaussian distribution. Figure 6.12 illustrates this idea, showing the distri-
bution of a linear mixture of 10 signals with uniform pdf and the result after
a nonlinearity f (x) = tanh(x).
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y = tanh (x)

FIGURE 6.12
Illustration of the idea underlying Gaussianization approaches.
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It is clear that the nonlinearly distorted signal does not present a Gauss-
sian distribution anymore. Thus, considering the PNL model, in order
to obtain the separating system, first the nonlinearities gi(·) should be
adjusted so that the signals after each nonlinearity gi(·) present a Gaussian
distribution, which can be accomplished by

gi(·) = F−1
Gauss(Fxi(·)) (6.117)

where
Fxi(xi) denotes the cumulative distribution function of xi

F−1
Gauss(·) the inverse of a cumulative distribution function of a normalized

Gaussian, i.e., the quantile function

Once the observations have been “Gaussianized,” they should represent
a linear mixture of the sources, and hence, the sources could be recovered by
using any ICA method developed for linear mixtures.

The results of this approach heavily depend on the validity of the Gaus-
sianity assumption, which is sounder when a large number of sources is
present in the mixture. However, in situations in which this assumption is
not representative, there will be a considerable distortion in the transformed
data, and ICA methods will not be efficient.

6.7 Concluding Remarks

In this chapter, we studied the instigating problem of BSS. As a natural
progression on the theme of blind equalization, BSS widens the scope of
our study in terms of theoretical tools as well as of potential of practical
applications.

We first presented the problem in its general form before reaching the
linear and instantaneous mixture model, which was a reference in the ensu-
ing discussion. The starting point of this discussion was ICA, a widespread
BSS tool with major theoretical and historical importance and a significant
degree of applicability.

In order to discuss some fundamental criteria to perform ICA, we intro-
duced important concepts and definitions. BSS makes use of important
notions, issues from information theory like mutual information and negen-
tropy, the definitions of which have been stated. From there, we enounced
the Infomax principle. We discussed on about the role of high-order statis-
tics in BSS and described the procedure of whitening preprocessing and the
notion of nonlinear decorrelation.

metrovoice
New Stamp



Blind Source Separation 225

Based on the discussed criteria, we presented some well-established algo-
rithms to perform ICA: Hérault–Jutten, Infomax algorithm, the nonlinear
PCA, JADE, EASI, and the FastICA algorithm.

It was also important to present some alternative paths toward solving
the BSS problem, as the incorporation of a priori knowledge of multiple
natures. In this sense, we presented BSS methods exploring the fact that
the power spectral densities of the sources are mutually distinct. Two other
important methods we showed were those based on nonnegativity (nonneg-
ative ICA) and sparsity (SCA) properties of the source signals. The Bayesian
approach was also discussed.

Finally, we considered two extensions of the linear and instantaneous
model: convolutive mixtures and nonlinear mixtures. To deal with the first
one, can employ methods derived from the linear and instantaneous case,
as long as we take into account the so-called filtering indeterminacy, which
generally requires additional information about the original sources. Meth-
ods for convolutive source separation in both time and frequency domains
were discussed. Concerning nonlinear mixtures, we discussed limitations of
nonlinear ICA and introduced the so-called PNL model, which allows the
efficient use of certain separation approaches, like those based on mutual
information minimization and on Gaussianization.

It is worth emphasizing that source separation is a theme that places itself
at the intersection of many science and engineering disciplines and applica-
tions. For this reason, different and rather rich standpoints about theoretical
and practical aspects are available in the existing literature. In particular,
important works like [12, 76, 137, 148, 156] must be considered in order to
attain a more complete view on the subject. Our purpose in this chapter
is signal processing oriented, and aims to show BSS as an essential area
in unsupervised signal processing theory, as well as to put together, in a
synthetic way, a number of definitions, criteria, and algorithms that can be
useful in the study and/or research of different kinds of readers.
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7
Nonlinear Filtering and Machine Learning

In the previous chapters, we generally considered linear structures to per-
form both supervised and unsupervised tasks. In spite of their interesting
trade-off between mathematical tractability and performance, linear struc-
tures may be unsatisfactory in some problems, as in the previously discussed
case of nonlinear mixtures separation. In fact, a gradual emergence of more
complex signal processing scenarios leads to an increasing interest in the
use of nonlinear filtering structures, which are able to provide more flexible
input–output mappings.

As far as the equalization problem is concerned, the essential goal is the
correct recovery of the transmitted symbols. As already commented, the fact
that these symbols belong to a finite alphabet leads to the need of a nonlinear
decision device at the receiver. Moreover, as a matter of fact, the effectiveness
of the transmission link must be evaluated in terms of symbol error rate (SER).
As indicated in Chapter 1, the equalizer we obtain in accordance with a cri-
terion of minimum SER is the Bayesian equalizer [2, 68], which is essentially a
nonlinear device.

Along the previous chapters, we studied suboptimal, and more treatable,
criteria to provide equalization, since the complexity in implementing the
Bayesian solution tends to be prohibitive. Such criteria may also be applied
in association with a nonlinear structure to improve the capability of correct
retrieval. This is the case, for instance, of a nonlinear solution intensively
applied in the area of adaptive equalization: the decision-feedback equalizer
(DFE). As discussed in this chapter, this ingenious approach is a nonlin-
ear structure specially tailored in view of the practical problem of channel
equalization.

Nevertheless, equalization can be studied in a more general theoretical
framework of nonlinear filtering. In this sense, the suitable methodology
consists in fitting equalization in the context of classification task. At this
point, our problem of interest touches the rather large field of machine
learning, since from this standpoint, solutions based on neural networks and
related approaches will emerge.

The above considerations justify our motivation in bringing together,
in a specific chapter, some approaches we associate to the notions of
nonlinear filtering and machine learning. Both themes are really vast, and
to present a detailed analysis of all nonlinear filtering and/or machine
learning approaches, with several up-to-date references in all possible con-
texts, is clearly out of the focus of the book. So, the objective of this chapter

227
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is to provide an overview of some representative structures and algorithms,
with a clearly specific regard on our problems of interest. Hence, the chapter
is organized as follows:

• In Section 7.1, we discuss the DFE. The DFE is a very efficient device
for performing deconvolution whenever one deals with digital sig-
nals. In a certain sense, we may consider DFE as a historical link
between linear and nonlinear approaches in equalization, which
justifies our choice for it as the starting point of the chapter. An
alternative solution proposed for blind equalization, the so-called
predictive DFE, is also presented.

• In Section 7.2, we turn our attention to a class of nonlinear devices
based on polynomial expansions: the Volterra filters. These filters
are based on polynomial expansions and have, as generic approx-
imators, a wider scope of application than that associated with the
DFE. On the other hand, they also preserve points of contact with
the linear filtering theory as far as the parameter optimization is
concerned.

• In Section 7.3, we analyze the problem of digital equalization as a
classification task. As mentioned above, this point of view leads
us to search for synergy with machine learning-based solutions.
In addition, this formulation also allows the formal derivation
of the Bayesian equalizer, which is our fundamental reference of
optimality.

• In Section 7.4, we present the two main neural approaches to be con-
sidered in our applications: the multilayer perceptron (MLP) and the
radial-basis function (RBF) network. In addition to that, we state the
similarities between the MLP and the Bayesian filter.

Historical Notes

The proposal of the DFE is attributed to Austin in [21]. From this time, a
really significant number of articles, patents, and book chapters have dealt
with the subject. As an example for reference, we can mention the inter-
esting surveys in [30, 246]. Later, a number of works has been devoted to
the use of blind criteria for DFE updating, among which we can mention,
e.g., [61].

The use of polynomial filters was also an important initial step toward a
more widespread adoption of nonlinear models in signal processing applica-
tions. Some pioneer efforts in the context of equalization and echo cancella-
tion, for instance, can be traced to the 1970s and 1980s [5,39,43,107,284]. The
proposal of iterative learning algorithms in the context of polynomial filters
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has also been a prolific field of research in the last decades (see [201] for a
more detailed account of the subject).

A complete historical analysis of the development of the neural
approaches is beyond the scope of the book, but it is worth presenting
a brief overview on the subject; a more detailed view can be found, for
instance, in [136]. The seminal paper by McCulloch and Pitts [206] estab-
lished the most relevant relationship between logical calculus and neural
network computation and gave rise to a mathematical model of the neuron.
In 1949, another decisive step was taken when Donald Hebb’s book [142], The
Organization of Behavior, related the learning process to synaptic modifica-
tions controlled by the firing patterns of interrelated neurons.

In 1958, Frank Rosenblatt proposed a neural network for pattern recog-
nition that was called perceptron. The perceptron was, in simple terms,
an adaptive linear classifier whose learning algorithm was founded on a
beautiful mathematical result, the perceptron convergence theorem, which
ensured proper operation for linearly separable patterns. Interestingly, in
1960, Widrow and Hoff used the LMS algorithm to adapt the parameters of a
perceptron-like structure, originating the Adaline (adaptive linear element).

After a period in which the interest for research in neural networks suf-
fered a decrease—in spite of important contributions related, for instance,
to self-organization [136]—the field experienced a sort of revival with
proposals like the Hopfield network and the backpropagation algorithm
(BPA) [256, 257, 302], a fundamental result to the effective application of
MLPs. Later, in 1988, Broomhead and Lowe [48] were responsible for
introducing a new multilayer structure, the RBF network, which is also
considered a fundamental neural approach for function approximation.

The revival of the field of neural networks in the 1980s led to a significant
interest for the use of these structures in the context of signal processing.
A consequence of this tendency was the popularization of the view of the
equalization problem as a classification task [68]. As a matter of fact, a huge
number of works have applied neural networks in the context of equaliza-
tion. Among them, it is relevant to mention the seminal papers written by
Gibson and Cowan (1990) [122], Theodoridis et al. (1992) [282], and Chen
et al. [68, 69].

7.1 Decision-Feedback Equalizers

In digital transmission, a classical nonlinear solution to the equalization
problem is the DFE, first proposed by Austin in 1967 [21]. The structure is
composed of two filters, a feedforward filter (FFF) and a feedback filter (FBF),
which are combined in a manner that also includes the action of a decision
device. Figure 7.1 brings a scheme of the structure.
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wf dec (.)Σ
x (n) y (n) y (n)˜

wb

z–1FFF

FBF

FIGURE 7.1
Structure of a DFE.

The operation of the DFE can be understood in terms of the interac-
tion between the effect of the FFF, the assumption of correct decisions, and
the use of the previously recovered symbols to cancel intersymbol interfer-
ence via the FBF. Mathematically, the input–output relationship of a DFE is
given by

y(n) = wT
f x(n) + wT

b ŷ(n − 1) (7.1)

where ŷ(n − 1) = [
dec

(
y(n − 1)

)
, dec

(
y(n − 2)

)
, . . .

]
.

Conceptually, the DFE behaves as a suboptimal alternative to an
equalizer based on the idea of maximum-likelihood sequence estimation
(MLSE) [111], being particularly attractive, in terms of computational effort,
for channels with long impulse responses.

An important remark is that the structure of the DFE is extremely well-
suited to deal with the problem of intersymbol interference removal. This can
be clearly understood if we consider, for instance, a case in which a binary
signal (+1 or −1) is sent through a noiseless FIR channel with parameter
vector h = [1 0.9 0.8]T. Even if we consider the FFF to be simply a unit gain,
assuming that the FBF has coefficients wb = [−0.9 − 0.8]T and that the past
decisions led to correct estimates of s(n − 1) and s(n − 2), we have that the
filter output will originate a correct estimate of s(n). This behavior is clearly
similar to that of a linear IIR filter, but the existence of the decision device
inside the loop of the DFE makes a crucial difference: it creates a saturation
effect that prevents the unavoidable instability we have if a linear structure
is used to invert a nonminimum-phase channel.

Even for minimum-phase channels, the decision device in the feedback
loop avoids the well-known problem of noise enhancement. This problem
emerges in noisy channels with spectral nulls, as the use of a linear struc-
ture poses a dilemma: in terms of ISI reduction, it should be useful to
have a frequency response with significant gains to compensate the spec-
tral nulls; however, this tends to produce a more substantial noise power at
the equalizer output. In its turn, due to its nonlinear character, the DFE is
not subjected to amplification or attenuation framework that characterizes
the convolution-based behavior of linear equalizers. Another relevant fact
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is that whenever the decision device performs a correct estimate, no noise
parcel is fed back, which decisively contributes to mitigate any enhancement
effect.

Several learning strategies can be applied to adapt the parameters of
a DFE. It is possible to implement both supervised algorithms, as those
presented in Chapter 3 [30], and unsupervised techniques, like Bussgang
algorithms [234].

In the supervised context, it is possible to perform parameter adaptation
by employing a standard LMS algorithm for both filters:

wf (n + 1) = wf (n) + μe(n)x(n) (7.2)

wb(n + 1) = wb(n) + μe(n)ŷ(n − 1) (7.3)

e(n)= d(n)− y(n) being a standard error signal. Notice that the algorithm
treats the past decisions as conventional input signals, without highlighting
any dependence with respect to the equalizer weights, which evokes ideas
underlying equation-error methodologies in IIR filtering [249, 274].

An analogous approach can be followed to apply an unsupervised algo-
rithm. The expressions, for instance, for the constant modulus algorithm
(CMA) are similar to those presented in Section 4.3 [121]:

wf (n + 1) = wf (n) + μy(n)[R2 − |y(n)|2]x(n) (7.4)

wb(n + 1) = wb(n) + μy(n)[R2 − |y(n)|2]ŷ(n − 1) (7.5)

Finally, it is important to remark that the performance of these algo-
rithms, as well as of the structure itself, is strongly related to the error prop-
agation phenomenon. As the name indicates, error propagation takes place
when wrong symbol estimates are generated by the decision device, which
means that the process of interference intersymbol removal via feedback
loop that characterizes the DFE is compromised [121].

7.1.1 Predictive DFE Approach

As discussed in Chapter 3, the prediction-error filter (PEF) is able to provide
equalization if the channel is minimum-phase. For general phase responses,
the PEF only equalize the magnitude response of the channel, and an
additional processing is required to compensate the phase distortions.

In order to extend the use of the predictive approach to nonminimum-
phase channels, Rocha et al. proposed in the structure presented in
Figure 7.2.

In this figure, a forward PEF, which is always minimum-phase as already
discussed in Section 3.7, is used as a magnitude equalizer. The proposal
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FIGURE 7.2
A predictive equalization approach employing a decision-feedback loop.

includes a recursive (IIR) predictor in order to reduce the number of updated
parameters and to attempt for perfect magnitude inversion, when dealing
with typical FIR channels. The output of the PEF must be normalized by
means of an automatic gain control (AGC) in order to restore the correct
signal power.

After this first stage, the signal at the output of the AGC behaves as a
prediction-error signal, the power of which is equal to that of the transmitted
signal. Such signal presents two characteristics: it tends to be uncorrelated,
i.e., its spectrum tends to be flat, due to the magnitude equalization; and
it remains subject to phase distortion, which is normally compensated by
all-pass filters. Then the proposal includes an all-pass configuration with a
decision device in the feedback loop, following the same spirit of the DFE
structure [195]. The inclusion of the decision device in the feedback loop
provides the nonlinear character of the configuration, which is crucial to the
efficiency of the approach.

If we employ an optimization criterion based on the Shalvi–Wenstein
criterion, the parameters of both sections of the equalizer are updated
by [195]

wf (n + 1) = wf (n) + μe(n)x(n) (7.6)

d(n + 1) = d(n) − γ
{[

y(n)∗|y(n)|2 − v(n)∗y(n)
]

z(n) (7.7)

−
[
y(n)∗|y(n)|2 − v(n)y(n)∗

]
ŝ(n)∗

}
(7.8)

v(n) = v(n − 1) + μ2

(
y2(n) − v(n − 1)

)
(7.9)

where

z(n) = [z(n − K + 1), z(n − K + 2), . . . , z(n)]T (7.10)

metrovoice
New Stamp



Nonlinear Filtering and Machine Learning 233

and

ŝ(n) = [
ŝ(n − 1), ŝ(n − 2), . . . , ŝ(n − K)

]T (7.11)

It is worth emphasizing that by compensating the phase distortion, the
nonlinear all-pass maps an uncorrelated signal into an i.i.d sequence of
symbols. In fact, the final goal of equalization is the retrieval of the i.i.d.
transmitted symbols and, in this sense, the potential of nonlinear approaches
can be exploited in different structures, as shown in the sequel.

7.2 Volterra Filters

The general problem of nonlinear filtering can be conceived as one of finding
suitable representations for certain mappings, responses, or behaviors that
are particularly useful in information extraction tasks. Representing general
functions in terms of other functions belonging to a pre-defined class is a
well-known procedure in mathematics and engineering, as the concept of
Taylor series [47] attests.

The Volterra series, named after the Italian mathematician Vito
Volterra [201], can be thought of, in simple terms, as an extension of the idea
of Taylor series to allow the modeling of responses endowed with memory.
In other words, the Volterra series is a mathematical tool that can be used to
model a broad class of nonlinear systems, in analogy with the Taylor series,
which can be used to describe a broad class of nonlinear functions. Having
this in mind, we discuss in this section the employ of this general model to
design filters with effective processing capability.

In order to model a nonlinear discrete-time SISO system, the general form
of the Volterra series is expressed by [201]

y(n) = h0 +
∑

k1

h1(k1)x(n − k1) +
∑

k1

∑

k2

h2(k1, k2)x(n − k1)x(n − k2)

+
∑

k1

∑

k2

∑

k3

h3(k1, k2, k3)x(n − k1)x(n − k2)x(n − k3) + · · · (7.12)

where
y(n) denotes the output of the system
hi(k1, . . . , kj) are the so-called Volterra kernels
x(n) is the input signal

An example of a second-order truncated version of this series is shown in
Figure 7.3.
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FIGURE 7.3
Structure of a second-order Volterra model with two inputs.

Expression (7.12) reveals that the series is based on the idea of represent-
ing the system response in terms of polynomial components, which contain
products of different delayed versions of the input signal. At this point, it is
important to highlight two aspects:

1. The structure of the Volterra series is responsible for generating
a menace of “explosion of dimensionality” associated with the
gradual increase of the approximation order and the number of
inputs.

2. The nonlinear input–output relationship established by a truncated
version of the Volterra series is linear with respect to the free
parameters hi(·).

The second item is a key factor when it comes to the problem of choos-
ing the values hi(·) that are optimal for a given application. Indeed, since the
Volterra filter is linear with respect to its free parameters, we can employ the
Wiener framework as well as the LMS and RLS algorithms, as discussed
in Chapter 3. From the standpoint of parameter adaptation, the Volterra
approach is not so significantly different from that based on FIR filters, which
is certainly a positive feature. It is not necessary, for instance, to be concerned
with the possibility of local minima when the MSE cost function is employed.

As an illustration, if the Volterra kernels of the generic structure pre-
sented in (7.12) are adapted by an LMS procedure, the update expression
of the algorithm will be, for a generic parameter [201],

hi(k1, k2, . . . , kj, n + 1) = hi(k1, . . . , kj, n) + μe(n)x(n − k1) · · · x(n − kj) (7.13)

with e(n)= d(n)− y(n) being the conventional error signal. In simple terms,
this LMS corresponds to a version capable of dealing with linear combiners
characterized by an input vector containing polynomial combinations.
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Another fact that contributed for the adoption of Volterra filtering solu-
tions is related to the convergence properties of the Volterra series. In [201],
we find a clarifying discussion on the subject, a discussion that brings impor-
tant conclusions about the discrete-time case, which is the focus of our
interest here. Using a result by Stone and Weierstrass [279], Mathews and
Sicuranza [201] remark that a discrete-time, time-invariant, causal and finite-
memory system endowed with the property that small changes in the input
produce small changes in the output can be uniformly approximated within
a uniformly bounded set of input signals using a truncated version of the
Volterra series. This means that a Volterra filter is capable of establishing
an input–output relationship that will be arbitrarily close to that established
by the referred generic system. From a filtering standpoint, this means that
the filters have the necessary flexibility to build the mappings that will be
necessary to solve many practical problems, in a spirit similar to that of the
universal approximation property that will be discussed in the context of
neural networks, presented in Section 7.4.

Before introducing the neural network configurations, it is suitable to state
the notion of classification and relate it with the problem of equalization.

7.3 Equalization as a Classification Task

As discussed in Chapter 4, the optimal equalization solution in terms of
minimization of the bit-error probability is provided by the MAP criterion.

It is interesting to point out that since the parameters being estimated
by the MAP criterion, i.e., the transmitted symbols, may only assume a
finite number of possibilities, the Bayesian equalizer essentially performs a
classification task, associating each received vector to a possible transmitted
symbol.

In order to clarify this statement, let us assume that the signal is of a
discrete nature and the channel is modeled as an FIR filter. In the absence
of noise, such a scenario generates a finite number of possible values for
the received samples. For instance, let us suppose that the transmitted signal
s(n) ∈ {+1/−1}, the channel has L coefficients, and the equalizer has N inputs.
In such a case, the signal x(n) will depend on {s(n), s(n − 1), . . . , s(n − L + 1)}.
Since the equalizer will employ {x(n), . . . , x(n − K + 1)}, it means that the
equalizer output depends on {s(n), . . . , s(n − K − L + 2)}. Therefore, in the
noiseless case, the equalizer has 2K+L−1 possible input vectors.

For example, if we consider a channel with h(z) = 0.5 + 1.0z−1, so that
the input vector is composed by K = 2 samples, it is possible to observe eight
different equalizer input vectors, which are summarized in Table 7.1. Each
equalizer input vector, which we call channel state vector and denote as ci, is
generated from a triple s(n), s(n − 1), and s(n − 2) of the transmitted signal.
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TABLE 7.1

Table of States and Labels

x(n)

cj s(n) s(n−1) s(n−2) x(n) x(n−1) f1(x(n))

c1 +1 +1 +1 1.5 1.5 +1
c2 +1 +1 −1 1.5 −0.5 +1

c3 +1 −1 +1 −0.5 0.5 +1
c4 +1 −1 −1 −0.5 −1.5 +1

c5 −1 +1 +1 0.5 1.5 −1
c6 −1 +1 −1 0.5 −0.5 −1
c7 −1 −1 +1 −1.5 0.5 −1

c8 −1 −1 −1 −1.5 −1.5 −1

Thus, from a classification standpoint, each of the 2K+L−1 vectors must
be properly associated with one of the possibilities of the alphabet of the
transmitted signal. Therefore, we may think of each ci as a point in the input
space, and the problem of building an equalizer becomes a matter of defin-
ing an adequate mapping f1(x(n)) that provides a SER as small as possible.
It is important to remark that the labeling of these points is not necessar-
ily unique, since there are many different delayed versions of s(n) that we
may be interested in recovering: each labeling poses a distinct classifica-
tion problem and some problems may be easier than others. This fact can
be understood as another instance to assess the relevance of a good choice of
the equalization delay, as discussed in Section 4.6.

However, the received signal generally contains additive noise, usually
modeled as a zero-mean white stochastic process. In this case, the input
space will contain a number of data clouds around the centers ci. Figure 7.4a

2
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FIGURE 7.4
Example illustrating the received vectors and the corresponding nonlinear mapping provided
by an equalizer: (a) possible input vectors and (b) centers and mapping.

metrovoice
New Stamp



Nonlinear Filtering and Machine Learning 237

depicts the distribution of the input vectors in the noisy case. The circu-
lar symmetry exhibited by the clouds is a consequence of the white and
Gaussian nature of the noise, while the degree of dispersion is related to
the adopted SNR.

Figure 7.4b depicts a possible nonlinear mapping f1(·), which, in this
case, labels each channel state vector with the corresponding value of s(n),
as shown in Table 7.1.

7.3.1 Derivation of the Bayesian Equalizer

In order to determine the Bayesian equalizer, let us consider a scenario in
which the transmitted signal is composed of i.i.d. samples from a 2-PAM con-
stellation. The equalizer input vector is real, i.e., x(n) ∈ RK. The conditional
pdf of x(n) given a certain channel state cj is given by

p
(
x (n) |cj

) =
(

2πσ2
η

)−K/2
exp

(− ∥∥x (n) − cj
∥∥2

2σ2
η

)

(7.14)

The minimum-error probability is obtained if the estimate of the
transmitted symbol is given by the MAP criterion, i.e., maximizing
P

(
s(n − d) = s|x(n)

)
, s(n)∈ {+1, −1} [233]. Thus, the decision is made com-

paring the a posteriori pdf

y (n) = fBayes (x (n)) = P
(
s
(
n − d

) = +1|x (n)
) − P

(
s
(
n − d

) = −1|x (n)
)

.
(7.15)

It can be noticed that (7.15) is positive for

P
(
s(n − d) = +1|x(n)

) ≥ P
(
s(n − d) = −1|x(n)

)
(7.16)

and negative for

P
(
s(n − d) = +1|x(n)

)
< P

(
s(n − d) = −1|x(n)

)
(7.17)

which suggests a decision device of the type

ŝ
(
n − d

) = sgn
(
y (n)

) =
⎧
⎨

⎩

+1 se y (n) ≥ 0

−1 se y (n) < 0 (7.18)

Using Bayes’ rule, the a posteriori probability of the transmitted signal is
given by
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P
(
s
(
n − d

) = s|x (n)
) = p

(
x (n) |s (

n − d
) = s

)
P

(
s
(
n − d

) = s
)

p (x (n))
(7.19)

where
P(s(n − d) = s) is the a priori probability of the transmitted signal
p(x(n)|s(n−d)= s) is the conditional pdf of the channel output vector given

a transmitted symbol

The conditional and a priori probability can be calculated in terms of
the channel and the noise statistics. Since we assume an i.i.d. transmitted
sequence, P(s(n − d) = +1) = P(s(n − d) = −1) = 1/2. The conditional pdf
p(x(n)|s(n − d) = +1) is the sum of the pdfs for each one of the states cj ∈ C+

d ,

p
(
x (n) |s (

n − d
) = +1

) = 1
Ns

∑

cj ∈ C+
d

p
(
x (n) |cj

)

= 1
Ns

∑

cj ∈ C+
d

(
2πσ2

η

)−K/2
exp

(− ∥
∥x (n) − cj

∥
∥2

2σ2
η

)

(7.20)

where C+
d is the set of states for which s(n−d)= +1 and Pr(cj)= 1

Ns
. Similarly,

p(x(n)|s(n − d) = −1) is expressed as

p
(
x (n) |s (

n − d
) = −1

) = 1
Ns

∑

cj∈C−
d

p
(
x (n)|cj

)

= 1
Ns

∑

cj∈C−
d

(
2πσ2

η

)−K/2
exp

(− ∥
∥x (n) − cj

∥
∥2

2σ2
η

)

(7.21)

where C−
d is the set of states for which s(n − d) = −1.

Substituting (7.19) into (7.15), we get

fBayes (x (n)) = p
(
x (n) |s (

n − d
) = +1

)
P

(
s
(
n − d

) = +1
)

p (x (n))

− p
(
x (n) |s (

n − d
) = −1

)
P

(
s
(
n − d

) = −1
)

p (x (n))

= 1
2p (x (n))

[
p

(
x (n) |s (

n − d
) = +1

) − p
(
x (n) |s (

n − d
) = −1

)]

(7.22)
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Moreover, since 1
2p(x(n))

is a positive scaling factor and does not influence the
sign of f (x(n)), (7.22) can be rewritten as

f1 (x (n)) = p
(
x (n) |s (

n − d
) = +1

) − p
(
x (n) |s (

n − d
) = −1

)
(7.23)

Using (7.20) and (7.21) in (7.23), we have

f (x (n)) = 1
Ns

∑

cj∈C+
d

p
(
x (n) |cj

) − 1
Ns

∑

ci∈C−
d

p (x (n) |ci)

= 1
Ns

∑

cj∈C+
d

(
2πσ2

η

)−K/2
exp

(− ∥∥x (n) − cj
∥∥2

2σ2
η

)

− 1
Ns

∑

ci∈C−
d

(
2πσ2

η

)−K/2
exp

(
−‖x (n) − ci‖2

2σ2
η

)

=

⎧
⎪⎨

⎪⎩

∑

cj∈C+
d

exp

(− ∥∥x (n) − cj
∥∥2

2σ2
η

)

−
∑

ci∈C−
d

exp

(
−‖x (n) − ci‖2

2σ2
η

)
⎫
⎪⎬

⎪⎭

× 1
Ns

(
2πσ2

η

)−K/2
(7.24)

The term 1
Ns

(
2πσ2

η

)−K/2 in (7.24) is always positive and, hence, can be
suppressed without altering the decision function sign, which can be written
as [233]

f (x (n)) =
∑

cj∈C+
d

exp

(− ∥∥x (n) − cj
∥∥2

2σ2
η

)

−
∑

ci∈C−
d

exp

(
−‖x (n) − ci‖2

2σ2
η

)

=
Ns∑

j=1

wj exp

(− ∥∥x (n) − cj
∥∥2

2σ2
η

)

(7.25)

where wi = +1 if cj ∈ C+
d and wi = −1 if cj ∈ C−

d . Equation 7.25 is the Bayesian
equalizer decision function. As can be noted, this decision function is non-
linear and completely defined in terms of the channel states and noise
statistics.
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FIGURE 7.5
Decision boundaries for different (a) SNRs and (b) equalization delays. The (+) sign indicates a
center associated with the transmission of a −1 symbol.

In a situation of this sort, the problem of building the optimal equalizer
can be directly understood in terms of finding the separating surface that
leads to the smallest possible SER. In fact, the nonlinear mapping previously
provided in Figure 7.4b corresponds to the Bayesian equalizer that recovers
the transmitted signal without delay and for SNR = 15 dB.

In Figure 7.5a, we present the centers shown in Table 7.1, numbered and
labeled according to the choice d = 0, and the decision boundaries between
the two classes generated by the Bayesian equalizer. The boundary reveals
that for the adopted delay, an efficient equalizer must have a strongly non-
linear character. It is also interesting to notice that under the conditions in
question, the boundary, in some regions, lies approximately in the middle of
a pair of centers that are the nearest neighbors to each other. Another inter-
esting point is that the decision boundary does not seem to be very sensitive
to noise if SNR > 8 dB. There is a slight difference between the boundaries
corresponding to SNR = 8 dB and SNR = 25 dB, and they asymptotically tend
to a composition of line segments.

The decision boundaries for different equalization delays are shown in
Figure 7.5b. In this case, the decision boundaries are very different from each
other. For d = 0, the channel states can be correctly classified only if the deci-
sion boundary is nonlinear, while for d = 1 and d = 2, it should be possible
to classify the channel states by means of a linear boundary. This example
illustrates that even for a linear channel, equalization may be a nonlinear
classification problem.

The nonlinear nature of the Bayesian equalizer, even for linear channels,
highlights the fact that nonlinear filtering structures could be considered to
approximate the mapping provided by the optimal equalizer. One possibility
of this sort is to employ artificial neural networks, to be discussed in the
following.
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7.4 Artificial Neural Networks

Artificial neural networks are nonlinear adaptive devices inspired by models
of the behavior of the brain. In a nutshell, these networks can be understood
as being originated by the interconnection of relatively simple nonlinear pro-
cessing units, the neurons. In view of the scope of the book, we restrict
our attention to a pair of classical neural networks: the MLP and the RBF
network.

7.4.1 A Neuron Model

We start by considering a neuron model that bears a significant degree of
resemblance to the seminal McCulloch–Pitts proposal [206]. This neuron is
the basic unit underlying the important solution known as perceptron [254],
which played a most relevant historical role in the context of learning effi-
cient classifiers. The neuron model is simple: a number of input stimuli are
linearly combined according to a set of weights and afterward suffer the
action of a nonlinear memoryless function. Intuitively, the model evokes the
effects of the synapses, stimuli integration, and the existence of a threshold
related to activation. Figure 7.6 illustrates this model.

Mathematically, the input–output response of the neuron is given by

y(n) = φ
(

wTx(n)
)

(7.26)

where
w is a synaptic weight vector
x(n) is the neuron input vector
φ(·) is the nonlinear function known as activation function

The activation function contains a threshold parameter that can be elim-
inated by considering the existence of an input always fixed at +1 and an

w0

w1

wK

Σ u (n)
x1 (n)

xK (n)

y (n)(.)

x0 (n)

FIGURE 7.6
Neuron model.
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FIGURE 7.7
Typical activation functions: (a) logistic function and (b) hyperbolic tangent function.

additional weight, the bias term. Typical activation functions are the logistic
function, given by

φ(u) = 1
1 + exp(−βu)

(7.27)

and the hyperbolic tangent function

φ(u) = tanh(−βu) (7.28)

both of which are shown in Figure 7.7. They can be thought of as being
smooth versions of the step function that characterizes the classical percep-
tron model.

Structurally, the presented neuron model may be viewed as a linear com-
biner followed by a nonlinear device. The mapping performed by the neuron
is controlled by the values of the synaptic weights, and we can immediately
devise the use of the adaptive filtering framework to adapt it. However,
our interest is not to deal with a single neuron, but with an entire net-
work; this must be considered in the algorithm derivation as discussed in
the sequel. First, it is relevant to say a few words about the architecture of
neural networks.

7.4.2 The Multilayer Perceptron

The network we are attempting to build is based on the idea of organizing the
neurons in multiple layers, so that the outputs of a given layer are the inputs
of the next, except for the first (input) and the last (output) layers. The input
layer contains the sources of all signals to be processed by the network, while
the output layer contains the result of the processing carried out by the net-
work. Between them, signals can be carefully nonlinearly transformed into
different spaces up to the point in which the output layer is ready to properly
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FIGURE 7.8
Example of an MLP.

generate the desired response. Such an organization leads to a most useful
neural network architecture, the so-called MLP [136]. Figure 7.8 illustrates an
MLP structure with a single hidden (intermediate) layer containing Nneuron
neurons, K inputs, and a linear output layer with a single output.

We notice a pattern of full connection between neurons of different
layers, which leaves to the task of choosing the synaptic weights the pos-
sibility of working with all options. As demonstrated by Cybenko [80],
a network of this kind is a universal approximator, i.e., is capable of
approximating with an arbitrary degree of precision any mapping in a
bounded region. This result is presented in more detail in the following
theorem.

THEOREM 7.1 (Universal Approximation Theorem for MLPs)

Let φ(·) be a nonconstant, bounded, and monotome-increasing continuous
function. Let Im0 denote the m0-dimensional unit hypercube [0, 1]m0 . The
space of continuous functions on Im0 is denoted by C(Im0). Then, given any
function f ∈ C(Im0) and ε> 0, there exists an integer m1 and sets of real con-
stants αi, bi, and wij, where i = 1, . . . , m1 and j = 1, . . . , m0, such that we may
define

F(x1, . . . , xm0) =
m1∑

i=1

αiφ

⎛

⎝
m0∑

j=1

wi,jxj + bi

⎞

⎠ (7.29)
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as an approximate realization of the function f ; that is,

|F(x1, . . . , xm0) − f (x1, . . . , xm0)| < ε (7.30)

for all x1, x2, . . . , xm0 that lie in the input space.

Since a given network architecture with universal approximation prop-
erty is established, a fundamental question concerns the method to obtaining
its parameters, i.e., the synaptic weights of the network. The MLP can be
thought of as a nonlinear filter and, consequently, we may consider the
methodology we have used earlier: to choose a criterion and derive a suit-
able algorithm. In this sense, our classical procedure consists in obtaining
the gradient of the cost function with respect to the synaptic weights, in the
spirit of the steepest-descent algorithm, as seen in Section 3.4. This is valid,
but a difficulty emerges, as it is not straightforward to verify the influence
of the error signal built in the output layer on weights belonging to previous
layers. From there arises a specific method for adapting the parameters of an
MLP, which is presented next.

7.4.2.1 The Backpropagation Algorithm

The context in which the BPA is defined is that of supervised filtering. In
such scenario, we can count on having at hand a set of Nsamples available
samples of input stimuli together with the corresponding desired values. For
this data set, it is possible to build a cost function given by

JBPaveraged = 1
Nsamples

Nsamples∑

n=1

(
d(n) − y(n)

)2 (7.31)

where d(n) is the desired output. It is worth noting that we are deal-
ing directly with a time-average, similarly to the least-squares procedure
described in Section 3.5.1, without resorting to statistical expectations that
characterize the Wiener approach. The objective is to minimize the cost
function in (7.31) with respect to all weights, which is carried out by clev-
erly employing the chain rule in the process of differentiation. In order to
simplify such process, let us consider for a while the case of Nsamples = 1,
so that the cost function becomes the instantaneous quadratic error,
expressed by

JBP(n) = e2(n) = (
d(n) − y(n)

)2 (7.32)

In fact, Equation 7.32 is a stochastic approximation of the MSE, as
that used in the derivation of the LMS algorithm. In order to differentiate
JBP(n) with respect to the weights of the hidden layer, we make use of the
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chain rule. From Figure 7.8, if we mentally build a signal-flow graph from
each focused weight up to the output, we can obtain

∂JBP(n)

∂wij
= ∂J(n)

∂e(n)
· ∂e(n)

∂y(n)
· ∂y(n)

∂uo(n)
· ∂uo(n)

∂yi(n)
· ∂yi(n)

∂ui(n)
· ∂ui(n)

∂wij

= 2 · e(n) · (−1) · (1) · wo
i · φ′ [ui(n)] · xj(n)

= −2e(n)wo
i φ

′ [ui(n)] xj(n) (7.33)

Notice that we may express the output in a compact form as

y(n) =
[
wo

0 woT
] [

1 φ
(

yint(n)
)]T

(7.34)

where yint(n)= [
1, y1(n), . . . , yNneuron(n)

]
and woT =

[
wo

1, wo
2, . . . , wo

Nneuron

]
.

Thus, the gradient of JBP(n) related to the weights in the output layer wo

and the bias wo
0 are given by

∂JBP(n)

∂wo = −2e(n)yint(n) (7.35)

∂JBP(n)

∂wo
0

= −2e(n) (7.36)

Now, if we define

x(n) = [x1(n) x2(n) · · · xK(n)]T (7.37)

we can express the gradient of JBP(n) with respect to the ith set of weights
present in the hidden layer by

∂JBP(n)

∂wi
= −2e(n)wo

i φ
′ [ui(n)] x(n), i = 1, . . . , Nneuron (7.38)

being wi = [wi1, wi2, . . . , wiK]T.
Having found the gradient vector with respect to the weights of the hid-

den layer and of the output layer, we are in a position to update all weights
of our network in the spirit of the steepest-descent method. However, we
must not forget that we purposely calculated the derivatives with respect to
an instantaneous squared error, which means that the resulting BPA will
be conceptually similar to the LMS procedure. This approach constitutes
the online BPA, which is particularly suitable to real-time applications. It
is expressed by Algorithm 7.1.
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Algorithm 7.1: Online Backpropagation Algorithm
1. Initialize the synaptic weights
2. While the stopping criterion is not met, do

(a) Given the input vector x(n) and the present weights, obtain the
network output y(n). Calculate the error e(n) = d(n) − y(n).

(b) Adapt the weights of the output layer using (7.35) and (7.36):

wo(n + 1) = wo(n) + 2μe(n)yi(n) (7.39)

wo
0(n + 1) = wo

0(n) + 2μe(n) (7.40)

(c) Adapt the weights of the hidden layer using (7.38):

wi(n + 1) = wi(n) + 2μe(n)wo
i φ

′ [ui(n)] x(n) i = 1, . . . , Nneuron
(7.41)

3. End (while)

On the other hand, we may also compute an average gradient from the
multiple instantaneous gradients originated from a given data set. This pro-
cedure engenders the batch BPA, which excels in terms of precision in the
determination of the gradient search direction for the entire data set, but is
more complex and therefore less suited to online applications.

Both online and batch BPA are in fact steepest-descent-based methods,
the derivation of which makes use of the first-order derivatives of the cost
function. In addition to them, it is worth mentioning that the use of second-
order algorithms as well as of methods for optimizing the step-size are
widespread in the field of neural networks. Some approaches to be consid-
ered by those interested in using neural networks in signal processing tasks
are presented in [44].

In the process of adaptation of the parameters of an MLP, we must keep
in mind that the structure is nonlinear with respect to its free parameters,
which leads to an MSE surface that can be multimodal. Consequently, it is
possible that iterative algorithms based on the derivatives of the cost func-
tion, like the BPA and second-order methods, suffer from the drawback of
local convergence. The impact of this possibility will depend on the quality of
such minima, since a local minimum is not necessarily a bad one. The charac-
ter of the cost function draws our attention to the importance of the weight
initialization process when dealing with the MLP. Local convergence is an
issue, but other factors like eventual saturating effects associated with the
activation functions can also be relevant in terms of speed of convergence.
This explains the use of strategies that advocate an initialization employing
small random values, as described in [140].
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Algorithm 7.2: Batch Backpropagation Algorithm
1. Initialize the synaptic weights
2. While the stopping criterion is not met, do

(a) For n = 1 to Nsamples

(i) Given the input vector x(n) and the present weights, obtain
the network output y(n). Calculate the error e(n)= d(n) −
y(n).

(ii) Calculate the derivatives presented in (7.35). Store the
results.

(iii) Calculate the derivatives presented in (7.38). Store the
results.

(b) End (for)
(c) Obtain the average, with respect to all Nsamples patterns, of the

gradient terms calculated according to (7.35) and stored in step
2.1.2. This average will be referred to as �o[JBP].

(d) Obtain the average, with respect to all Nsamples patterns, of the
gradient terms calculated according to (7.38) and stored in step
2.1.3. This average will be referred to as �i[JBP].

(e) Adapt the weights of the output layer:

wo(n + 1) = wo(n) − μ�o[JBP] (7.42)

wo
0(n + 1) = wo

0(n) − μ
∂JBP

∂wo
0

(7.43)

(f) Adapt the weights of the hidden layer:

wi(n + 1) = wi(n) − μ�i[JBP] i = 1, . . . , Nneuron (7.44)

(g) Randomly rearrange the elements of the training set of Nsamples
input–output patterns.

(h) End (while)

7.4.3 The Radial-Basis Function Network

The RBF neural network is the other classical structure to be studied in this
chapter. In order to well understand its behavior, it is interesting to estab-
lish contrasts between the types of approximation built by the RBF and MLP
networks.

The RBF network possesses a structure with three layers: the standard
input layer, a hidden layer in which the nonlinear processing is carried out,
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FIGURE 7.9
Structure of an RBF neural network.

and a linear output layer. Roughly, the main difference between the MLP
and the RBF lies in the hidden layer, which is formed by neurons with a
model distinct from that shown in (7.26). Figure 7.9 depicts the RBF neural
network.

In contrast with the MLP, the RBF builds a generic nonlinear mapping
by placing nonlinear functions with a characteristic radial decreasing (or
increasing) pattern around certain positions (typically referred to as centers)
and linearly combining them. Mathematically, this is expressed by

y(n) = wT� [x(n)] (7.45)

where x(n) is the input vector, w is the weight vector of the linear output
layer, and

� [·] = [�1(·) �2(·) . . .]T (7.46)

is the vector containing the so-called RBFs. Two examples of RBFs are given
in Figure 7.10: the Gaussian function, given by

φ(u) = exp

(

− (u − μ)2

σ2

)

(7.47)

and the multiquadratic function, given by

φ(u) =
√

(u − μ)2 + σ2

σ
(7.48)

where μ and σ the center and dispersion.
In Figure 7.11, examples of the nonlinear mapping provided by an

RBF network are presented. It is important to remark that the approxi-
mation scheme that characterizes RBF networks also leads to a universal
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FIGURE 7.10
Examples of one-dimensional RBFs with σ = 1 and μ= 0: (a) Gaussian function and (b)
multiquadratic function.
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FIGURE 7.11
Examples of a mapping built using an RBF network: (a) output of a single RBF neuron and
(b) output of an RBF network with 2 neurons.

approximation theorem similar to that discussed in the context of MLPs
[231].

Among the several possible choices, the classical option is for Gaussian
functions, so that, in the multidimensional case, we may have, for instance:

�(x(n)) = exp

(

−‖x(n) − μ‖2

σ2

)

(7.49)

where
μ denotes a mean vector that corresponds to a center
the variance σ2 expresses a degree of dispersion around the center

The problem of finding the optimal parameters of RBF networks is some-
what different from that associated with the MLP network. In the case of
the MLP, all weights are “conceptually equivalent” in that they all belong
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to structurally similar neurons. This is not the case with RBF networks, for
which the nature of the centers and variances are distinct from that of the
output weights. This certainly does not mean that the entire set of parame-
ters cannot be jointly adapted [140]. However, this procedure will be related
to a complex MSE surface with a removable potential for multimodality.
So, it is interesting to consider the option of separating both adaptation
processes.

By carrying out a separated optimization, if we suppose the hidden layer
to have been properly designed, the remaining problem of finding the out-
put weights will be linear with respect to the free parameters. Thus, we will
be back within the framework of linear supervised filtering, and it will be
possible to obtain a closed-form solution or to make use of algorithms like
LMS and RLS (vide Chapter 3). Since a given choice of the centers and vari-
ances potentially establishes the optimal solution of the output weights, we
are led to the conclusion that the crux of this approach is the project of the
hidden layer.

There are many possibilities for carrying out center placement, for
instance, possibilities that range from a uniform distribution to the use of
some clustering process [44]. If the idea is to use a clustering method, a clas-
sical option is to employ the k-means algorithm [105], the summary of which
is given in Algorithm 7.3.

Algorithm 7.3: k-Means Algorithm
1. Initialize the centers
2. While the stopping criterion is not met

(a) For n = 1 to Nsamples

(i) Determine the distance between each center and the input
vector x(n).

(ii) Assume that the center closest to the input pattern is labeled
as the kth center. Update it according to the following rule:

ck ← ck + μ[x(n) − ck] (7.50)

(iii) End for
3. Randomly rearrange the data set.
4. End while

The k-means algorithm [105] is founded on a process that can be
described as competitive learning [140], in which the centers compete for the
right of representing the data. The winner is updated in a manner that tends
to reinforce the suitableness of its representation, the outcome of the method
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being, ideally, a center distribution that expresses key features of the data
distribution. In particular, if the data are structured in clusters, a satisfactory
center placement should define them properly.

The variance of the RBFs can be determined from the cluster variances or
be chosen in accordance with heuristic rules like, for instance [136]

σ = dmax√
2Nneuron

(7.51)

where
dmax is the maximum distance between two centers
Nneuron is the number of centers, and, consequently, of neurons

The adaptation approach based on this separation is more tractable in
many concrete cases, and this is one reason behind its popularity in the
literature.

In the signal processing context of equalization, there is another impor-
tant feature in using RBF networks: they are structurally analogous to the
Bayesian equalizer, which, as discussed in Section 7.3, is optimal in terms
of minimum SER. An interesting point is that the separate adaptation pro-
cess discussed above originates a practical recipe for designing a Bayesian
filter [68]:

• Use a clustering algorithm to determine the center of the data clouds,
which, ideally, correspond to the combinations generated by the
channel, i.e., the channel states.

• Use a priori knowledge about the system model, or a heuristic rule,
or information brought by the clustering process to determine the
noise variance.

• Employ a supervised process to associate each cluster center with
the appropriate label (+1/−1 in our standard binary case).

It is also important to remark that an RBF network is not the only nonlinear
structure structurally similar to the Bayesian filter: fuzzy filters, for instance,
are also a viable choice [108, 232, 233].

7.5 Concluding Remarks

Throughout this chapter we carried out a study of representative approaches
in the field of nonlinear signal processing. The aim was to provide a general
view of the features of these techniques, with emphasis in their applicability
in equalization. So, we first considered the DFE, which is extremely related
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to this application, and then we widened the scope to the analysis of more
general nonlinear structures, as Volterra filter and artificial neural networks.

As far as artificial neural networks are concerned, we focused on two
main structures, MLP and RBF, and their corresponding algorithms: back-
propagation and k-means.

An important issue of this chapter was the analysis of the equalization
problem as a classification task. This allowed us to employ neural networks
as a method of solution. And, it was also possible to accomplish the deriva-
tion of the Bayesian equalizer. As discussed in Chapter 1, this equalizer
is the fundamental reference of optimal performance, but it cannot easily
be derived in the framework of linear filtering theory, as the suboptimal
solutions based on MSE and similar criteria. On the other hand, nonlin-
ear approaches as, for instance, the RBF can provide practical methods for
implementing the Bayesian filter.
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8
Bio-Inspired Optimization Methods

The ensemble of methods and techniques discussed all through this book are,
after all, closely related to solving an optimization problem. The proposed
solutions have been currently obtained by the minimization or maximization
of a given criterion or cost function. In this chapter, we discuss a different
paradigm, the foundations of which come from the study of auto-regulation
processes observed in nature. The so-called bio-inspired optimization meth-
ods are generally characterized by their global search potential, and do
not require significant a priori information about the problem to be solved.
Such characteristics encourage their application in the nonlinear and/or
unsupervised problems we are dealing with.

The field of bio-inspired techniques for optimization is certainly a broad
one. In this chapter, and taking into account the applications in mind, we
have decided to concentrate our attention on three classes of tools: genetic
algorithms (GAs), artificial immune systems (AISs), and particle swarm meth-
ods. The first class is certainly a most emblematic bio-inspired optimization
approach. On the other hand, the two are currently the object of attention
of many researchers due to some desirable features that, in our opinion, are
valid to expose.

In order to better expose our purposes, Section 8.1 provides a general dis-
cussion about some points that could motivate the use of bio-inspired tools
in some signal processing problems. Then the rest of the chapter is organized
as follows:

• In Section 8.2, we discuss the class of the GAs. These algorithms are
based on elements of the modern synthesis of evolution theory. They
are also an interesting starting point for our discussion, given their
historical importance and their widespread use in many practical
domains.

• In Section 8.3, we analyze another class of bio-inspired methods that
can also be considered as an evolutionary technique: that of AISs. The
analysis is focused in the so-called opt-aiNet, an interesting opti-
mization tool that presents some points of contact with the GAs [86].

• In Section 8.4, we present another branch of techniques, the inspira-
tion of which comes from the collective behavior observed in the
nature. To illustrate this branch, we choose the approach known
as particle swarm optimization (PSO), which is particularly suited
to the continuous-valued problems that characterize most filtering
applications.

253
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Historical Notes

The history of evolutionary computation began with a number of different,
albeit conceptually interrelated, attempts to incorporate the idea of evolution
into a number of problem-solving techniques. The origins of the field can
be considered to be in the 1950s and 1960s [22]. Three branches that grad-
ually affirmed themselves can be highlighted: evolutionary programming
(EP) [109], evolution strategies (ESs) [247, 266, 267], and GAs [145].

The proposal of GAs is indelibly associated with the name of John Hol-
land, whose 1975 book, Adaptation in Natural and Artificial Systems [145], is a
classic of the field. In the next decades, the study of GAs attracted exponen-
tially growing attention, which led to the establishment of a vast community
of researchers in the field.

AISs [83, 87] are a more recent field of research, although it can be safely
considered to be a well-established one (an example of this assertion is
that the important International Conference on Artificial Immune Systems has
reached, in 2009, its eighth edition). AISs compose a vast repertoire of com-
putational tools that are being broadly applied in many domains, such as
pattern recognition, autonomous navigation and control, data analysis (clus-
tering and data mining), and optimization [87]. Since our interest lies in
immune-inspired optimization tools, we would like to highlight the work
of de Castro and von Zuben [88], and also the work of de Castro and Timmis
[86], who developed an artificial immune network for optimization, known
as opt-aiNet.

Kennedy and Eberhart’s work can be considered to be the origin of the
approach known as PSO [167], although not of the field of swarm intel-
ligence, which other branches like ant-colony approach [102, 103]. Swarm
intelligence can be related to important notions like the emergence of collec-
tive behavior, which accounts for what can be considered a new computation
paradigm. PSO is, nowadays, a well-established optimization tool, with a
number of variants and versions [73, 273].

8.1 Why Bio-Inspired Computing?

The origins of adaptive filter theory are intimately related to certain hypothe-
ses such as the use of linear feedforward structures and of a mean-squared
error criterion, which give shape to the Wiener theory. In the context of the
Wiener framework, we are faced with an optimization scenario that suits
very well the classical tools based on the derivatives of the MSE cost function,
which form the basis of the LMS and RLS algorithms, as well of many other
techniques that were not discussed in this work.
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In the course of our previous exposition, we had contact with a num-
ber of very relevant instances in which the standard form of the Wiener
paradigm no longer holds (vide, for example, Chapter 7). In such cases,
a relevant question emerges: how well-suited will standard optimization
techniques be?

We are not in a position to provide a definitive answer to this ques-
tion. However, it is important to reflect on a pair of situations in which
the limitations of classical nonlinear optimization methods become more
evident:

• As outlined in several points of the book, there are at least three
potential sources of emergence of multimodal cost functions in
adaptive filtering: the use of nonlinear structures, the use of
recurrent structures, and the use of criteria based on higher-order
statistics. In multimodal contexts, it is possible that a classical opti-
mization method based on the derivatives of the cost function lead
to suboptimal solutions, which may be undesirable.

• There are some cases in which it is difficult to obtain the deriva-
tives of the cost function. In such cases, in which it is possible to
have access only to values of the cost function at certain points, it is
not feasible, in general, to resort to standard adaptive solutions. This
may occur, for instance, when one employs complex recurrent struc-
tures, piecewise linear filters, and filtering criteria based on certain
information-theoretical entities.

The existence of limitations of this sort has opened a very interesting
perspective: to use bio-inspired optimization methods in signal processing.∗
These methods possess a significant global search potential and, in general,
require no a priori information about the problem to be solved, except for a
comparative measure of quality of the solutions [85]. Such features certainly
open many perspectives of building innovative proposals in the field, and
we believe that researchers working with subjects related to adaptive filter-
ing must be aware of the potential (and, naturally, of the drawbacks) of these
methods.

The nature of these initial remarks should not give the reader the impres-
sion that we consider the methods that will be described in the sequel better
than the classical optimization approaches that form the basis of the classical
adaptive filtering theory. As a matter of fact, the existence of no free lunch
theorems [308] indicates that there is no optimization technique that is the
most adequate to solve all problems. The view we consider the most use-
ful for any researcher in the field of signal processing is this: know as many
methods as you can and try to choose the most useful in the context of the
problem you wish to solve.

∗ Some efforts in this direction can be found, for instance, in [1, 52].
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8.2 Genetic Algorithms

GAs are optimization tools based on the synergy between the idea of nat-
ural selection and the framework established by modern genetics [22]. In
very simple terms, GAs can be considered as a populational optimization
tool founded on three conceptual pillars: existence of a selection mechanism,
possibility of information interchange between solutions, and existence of
spurious changes in their parameters.∗ The first pillar is the main point of
contact between the GA and the problem to be solved, since it is the cost
function to be optimized that determines the fitness of each solution. The sec-
ond pillar is related to the idea of crossover. Finally, the third pillar is the
essence of the idea of mutation. These concepts are discussed in more detail
in the sequel.

8.2.1 Fundamental Concepts and Terminology

An optimization problem is characterized by the existence of a cost function
and certain number of free parameters with respect to which this function
is to be optimized, in order to provide the best parameter configuration or,
at least, a satisfactory one. The operation of an optimization algorithm can
be understood, in this context, as a continuous process of sampling the cost
function, i.e., generating/evaluating solutions in a search space, which can
be defined as the space generated by all possible instances of the free param-
eters. The modus operandi of an algorithm is thus related to the manner
whereby it performs this sampling [308].

In the case of GAs, the tonic is to conceive the optimization task as being
the results of the operation of evolutionary mechanisms. To allow this, a first
step is to relate the cost function to a fitness function, the role of which is
to create a numerical index to quantify the adequacy of a certain individual,
within the simulated evolution framework, to the environment. As, from
the standpoint of the optimization task, the fittest means simply the best
possible solution, the fitness function can be simply the cost function itself.
However, it can also be, if convenient, a mapping of the cost function. This
can be done, for instance, if we deal with a minimization problem and need
to translate this problem into the evolutionary framework, which typically
assumes higher fitness values to be associated with better solutions.

Each solution to the given problem is assumed to correspond to an indi-
vidual, and the parameters of a given solution must be somehow coded to
correspond to its genotype. Having this in view, we freely interchange the

∗ This description encompasses, in a certain sense, a classical GA, for, modernly, it is acceptable
to describe, in some cases, an evolutionary algorithm without a recombination operator as a
GA. Notice also that it would have been possible to define the threefold foundation of a GA in
terms of selection, reproduction, and variability.
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words solution and individual. Just like in natural evolution, we have not a
single individual, but a population. This means that GAs are populational,
that is, perform optimization by manipulating a set of solutions, not a single
one, as is the case with many classical nonlinear optimization methods [192].

8.2.2 A Basic Genetic Algorithm

The basic terminology introduced above will also be useful later in the dis-
cussion of AISs and particle swarm. At present, let us describe the main steps
of a simple implementation of a GA, the pseudo-code of which is shown in
Algorithm 8.1. In the subsequent sections, the fundamental operation will be
analyzed in more detail.

Algorithm 8.1: Basic GA
1. Initialize the population;
2. Evaluate the initial population;
3. While the stopping criterion is not met, do:

(a) Evaluate the fitness of all individuals;
(b) Select individuals for crossover;
(c) Apply the crossover operator;
(d) Apply the mutation operator;
(e) Select individuals that will form the new population.

After the fitness function has been defined in accordance with the pecu-
liarities of the optimization problem, the next step is to build an initial
population. This is usually done in a random fashion, although any sort of a
priori information about the problem may be incorporated if this is relevant.
Afterward, the main loop of the algorithm starts.

The first step of this loop, described in item (a), is the calculation of the
fitness of each individual. This step is crucial, as it is the fitness measure
that defines how adequate a given solution (individual) is to the problem to
be solved. The role of the fitness measure is particularly pronounced in all
selection steps, as it is exactly the quality of a given solution that must guide
the optimization process.

The step presented in item (b) is related to the nature of the crossover
operator. As indicated earlier, crossover means that more than one individ-
ual will be combined to generate an offspring of new solutions that will bring
information about new points of the search space. Typically, it is necessary
to select pairs of solutions that are subject to this combination, and this is the
role of the item in question. A usual way to perform the selection in GAs is by
privileging the fittest individuals. By doing so, we assume that a combination
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of better solutions is an interesting way to generate new solutions and carry
on the optimization task.

In item (c), we have the crossover step properly. The idea here is to devise
and apply a suitable mechanism of combination between solutions. The orig-
inal mechanism proposed in [145] has significant points of contact with the
biological crossover. However, we may choose other ways for building the
operator having in view, for example, specific features of the problem at
hand.

The mutation operator is applied in item (d). In biological terms, muta-
tion corresponds to a sort of spurious modification of the genetic material,
and this operator is imbued with this notion. The implementation of a
mutation scheme is generally done in practice with the aid of stochastic fac-
tors, which means, from a computational standpoint, that random number
generators should be used. The process has a twofold random character:
a randomly selected individual is subject to a random modification of its
parameters, i.e., of the values attributed to the variables to be optimized. The
point is that a spurious or random parameter modification originates new
individuals that will bring novel information to the optimization process. It
is important to point out that the occurence of both crossover and mutation
is, in certain implementations, regulated by a predefined probability.

In item (e), we introduce a final selection step, which is required if
the processes of crossover and mutation led to some sort of increase in
the number of focused individuals, i.e., to an intermediate population of
solutions with a cardinality larger than that of the original one. In this
step, it is demanded that a new generation be formed by elements cho-
sen, in accordance with some criterion, from the original individuals and
the products of the crossover and mutation steps. The point is to prevent
an unbounded population increase and, at the same time, to make use of the
additional information about the cost function brought by the new solutions.
It is possible to devise deterministic selection mechanisms, e.g., choosing
the best individuals; or stochastic selection mechanisms, e.g., choosing the
individuals according to a statistic distribution that favors the fittest.

Finally, we can also employ additional steps like the reintroduction of the
best solution found so far if it has been lost, which gives rise to the concept
of elitism, or even the periodic introduction of fresh individuals.

8.2.3 Coding

As already commented, each individual corresponds to a solution of the
focused problem, so that evolutionary approaches are, in general, popu-
lational. A solution must be coded in a genotypic level, i.e., in terms of a
chromosome to which certain phenotypic features may be associated. In other
words, the phenotype constitutes a higher-level description of a given solu-
tion, while the genotype is a possible codification of such a solution. An
adequate coding can drastically simplify the optimization problem [209].
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There are countless possibilities for coding solutions, and we consider here
two well-known possibilities: binary and real coding.

In binary coding, all solutions correspond to a string of bits. This cod-
ing is associated with certain pioneering efforts in the field of evolutionary
computation [145], and also bears a certain conceptual resemblance with the
structure of the biological chromosome. Nevertheless, when a problem is not
inherently binary, it is necessary to devise a mechanism to code the solution
in terms of bits. In this sense, ideas like Gray codes [22] can be suitable.

It is also possible to work with real coding, as in the so-called evolution
strategies, for which each individual is represented by a vector of real num-
bers [42]. With such a coding, a closer relationship between low-level and
high-level representation is achieved, and this may lead to a search modus
operandi that can be quite different from that observed in the binary case.

8.2.4 Selection Operators

Selection mechanisms play a key role in the core of the GA. A classical option
is to select an individual via the roulette wheel method [26,126], in which the
probability of selection of a given member of the population is proportional
to its fitness. The name comes from the analogy between this method and a
roulette in which each outcome is associated with a different area, as shown
in Figure 8.1.

The method implementation is straightforward: using the fitness values
of all individuals, it is necessary to create a random number generator that
assigns to each individual a probability of selection proportional to its fitness.
This can be done, for instance, by using a uniformly distributed random
generator together with a properly chosen set of intervals, which correspond
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FIGURE 8.1
Illustration of the roulette wheel selection method.

metrovoice
New Stamp



260 Unsupervised Signal Processing

to the areas of the different regions of the wheel in the figure. Algorithm 8.2
describes the procedure.

Algorithm 8.2: Roulette Wheel Selection Method
• Feed the roulette wheel random number generator with the fitness

values of the individuals that will take part in the selection process.
• Run the generator and select the individual associated with the

obtained index.

An implementation to select multiple individuals may include additional
mechanisms, like a lookup table that prevents multiple selections of the same
individual.

The roulette wheel method can be considered efficient from the standpoint
of speed of convergence, as it has the potential of strongly biasing the selection
processtowardindividualswithfitnessvaluesexpressivelyabovetheaverage.
However, it suffers from the threat of loss of population diversity. Under a
selection mechanism that decisively favors a relatively high fitness measure,
it is possible that, after a certain while, the entire population be significantly
similar to the best individual so far. This can hamper the development of other
solutions that could lead to better performance levels. The idea of diversity
is essential to allow that multiple optima of a given cost function be properly
explored, and this has a decisive impact in the capability of avoiding local
minima, which is essential in many signal processing tasks [23].

Other classical selection mechanisms are responsible for mitigating this
effect, which is related to the idea known in the literature as selective
pressure [22]. Among these methods we may highlight two: the rank and
tournament selection methods [127].

The method of selection based on rank generates the probabilities not
directly from the fitness measure, but from the position occupied by the
individuals in a ranking based on this measure. Therefore, for instance, an
enormous difference in the fitness of the best and the second best individu-
als will not necessarily lead to an enormous difference in the probability of
selection of these two solutions. The conclusion is that such a strategy has the
potential of reducing selective pressure. In fact, if a high selective pressure
is not desirable, the same is valid for a significantly low selective pressure,
so that the objective is to attain a solution that will lead to a satisfactory per-
formance. Naturally, this task is extremely complex, since the ideal choice
varies from case to case, but the user of a GA must keep in mind the need of
being aware of the role of the selection mechanism. In the case of the rank-
based mechanism, the choice of different functions to map the position of
an individual onto its probability of selection is a tool to control the perfor-
mance of the operator [127]. The steps described in Algorithm 8.3 give an
idea of an implementation of the method to select a single individual.
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Algorithm 8.3: Rank Selection Method
• Choose a mapping of the fitness values into the probabilities of selec-

tion that is appropriate from the standpoint of some objective (e.g.,
to maintain population diversity).

• Apply the mapping to the fitness values of the individuals that will
take part in the selection process.

• Run a random generator using the mapped probability values and
select the individual associated with the obtained index.

The last selection procedure to be considered here is tournament selec-
tion [82]. As the name indicates, this method creates a series of competitions,
based on fitness, between groups of individuals of the population, and uses
the outcome of these tournaments to define those that are selected. A key
aspect is that the procedure allows control over the selective pressure. This
can be understood if we consider, for instance, a competition with q individ-
uals of a population with, for instance, 10 solutions. If q = 10, the selection
mechanism will be deterministic, since the individual with the highest fit-
ness value will always be chosen. On the other hand, if q = 1, the fitness
will have no impact on the choice of an individual, since the choice of the
participants is based on a uniform distribution. Finally, 1 < q < 10, we will
reach a controllable intermediate level of selective pressure. This elegant con-
trol mechanism is responsible for the wide applicability of this method. The
pseudo-code in Algorithm 8.4 gives an idea of the method, when applied to
the selection of a single individual.

Algorithm 8.4: Tournament Selection Method
• Define the number of tournaments and the number of individuals

taking part in a tournament.
• Start the tournaments. Use a uniform random generator to define

which individuals will be chosen to take part and keep a table of the
winners, directly defined by the fitness measure.

• Choose the individual with the largest number of wins.

Different criteria can be used to deal with draws and with the selection of
multiple individuals, but this is not part of the structure of the tournament
itself. It is also important to point out that alternative tournament schemes
can be defined [23].

8.2.5 Crossover and Mutation Operators

There are many ways to perform crossover, but their essence is fundamen-
tally the same: a pair of chromosomes is combined in accordance with a
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given rule and originates descendants. Naturally, an infinity of approaches
fit this scheme, and the aim of this section is to describe some classical
solutions.

In the case of binary coding, the most traditional crossover methodol-
ogy is the single-point crossover. Basically, two individuals are selected in
accordance with a given mechanism. A position is randomly chosen and the
material after this position is swapped between the two parents, which gives
rise to a pair of new individuals. Figure 8.2 illustrates the process.

In the case of real coding, it is natural to use arithmetic operations in the
recombination process [208, 209], which, from a given a pair of parents p1
and p2, generates the following descendants:

p′
1 = αp1 + (1 − α)p2

p′
2 = αp2 + (1 − α)p1

(8.1)

Figure 8.3 illustrates the effect of this kind of crossover operator. The value
can be randomly chosen using a uniform distribution in the interval [0, 1].
In some cases, the value may also be allowed to be outside this inter-
val, which may propitiate an exploration of a wider region of the search
space.

Mutation operators are characterized by originating spurious modifica-
tions, in analogy with the role mutation plays in the biological scenario. In
the binary coding case, the classical mutation operator is based on the idea of
causing, with a given probability, a bit 0 to become a bit 1 or a bit 1 to become
a bit 0. As in nature, an apparently simple modification of this kind may
engender significant phenotypic alterations, and this may lead to remarkable

0 0 1 0 1 1 1 1

1 1 1 1 0 0 0 0

0 0 1 0 1 0 0 0

1 1 1 1 0 1 1 1

Parents

Offspring

Randomly chosen point

FIGURE 8.2
Example of single-point crossover.
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p1

αp1

(1–α) p2  p2

ṕ 1

FIGURE 8.3
Example of an arithmetic crossover.

0 0 1 0 1 1 1 1

1 1 1 1 0 0 0 0

1 0 1 0 0 0 1 0

Original
population

0 0 1 0 1 1 1 1

0 1 1 1 0 0 0 0

1 0 1 0 0 0 1 1

Mutated 
population

FIGURE 8.4
Binary mutation.

improvements in the quality of the obtained solutions. Figure 8.4 illustrates
the process.

In the real coding case, mutation is typically implemented with the aid of
continuous random variables. We may consider, for instance, that the rela-
tionship between the mutated and the original solutions obeys the following
form:

x′ = x + m (8.2)
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where m is a random function or simply a random variable. It is fairly usual
to generate m as a Gaussian vector with uncorrelated components. However,
the use of a carefully chosen correlation matrix is part of the history of evolu-
tionary techniques (vide, for instance, [255]), and it is also possible to resort
to other probability density functions if any feature of the problem suggests
their use. Figure 8.5 illustrates an example in a two-dimensional search space
where x corresponds to the point (0.5, 0.5) and the cloud around it are the
solutions generated by three different mutation operators.

A selection process may immediately follow the application of the
crossover and mutation operators, and we may consider two interesting
possibilities. A first one is related to the idea of elitism and consists in rein-
troducing the best individual found so far. A second alternative is to allow,
in the process of restoring the population size, the introduction of a combi-
nation of good, reasonable, and bad solutions, which typically increases the
population diversity and, consequently, the global search potential [209].

Much more could be said about GAs, but a more systematic explana-
tion certainly transcends our objectives. On the other hand, it is important
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FIGURE 8.5
Samples generated by real mutation operators built from distinct joint pdfs: (a) white Gaussian
mutation, (b) correlated Gaussian mutation, and (c) uniform mutation.
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to illustrate the application of AG in an example related to the scope of
this book. In this example, we employ a GA to perform the search for the
equalizer that minimizes the CM cost function, discussed in Chapter 4.

Example 8.1 Blind Equalization Using Genetic Algorithms

Let us consider two nonminimum phase channels

h1(z) = 1 + 0.4z−1 + 0.9z−2 + 1.4z−3 (8.3)

and

h2(z) = 1 + 1.2z−1 − 0.3z−2 + 0.8z−3 (8.4)

Each individual represents a possible equalizer, and real coding is employed.
The simulations were run using the following set of parameters:

• Population size: 30 individuals
• Number of crossovers per generation: 10
• Probability of occurence of mutation: 0.1
• Stopping criterion: 2000 generations

In a first test, a 5-tap filter is employed to the equalizer channel h1(z). Thus,
each individual in the population corresponds to a possible filter, and is repre-
sented by a vector with five elements. The solutions obtained in this scenario were
used to initialize a DD algorithm, which ideally converges to the closest Wiener
solution.

Notice that this test is carried out in a relatively small search space, and the
filter order cannot considerably reduce the MSE. Table 8.1 has been built from
the outcomes of 50 simulations. The frequency of each solution is also indicated,
i.e., the number of trials in which the algorithm converged to a given solution.
The results reveal that the method has always provided a solution rather close to
the global Wiener minimum, which clearly indicates a very good performance.

Let us now turn our attention to a larger and more complex search space with
an 8-tap filter, for which Table 8.2 brings the corresponding results. We notice
that convergence to good minima was predominant, with an expressive global
convergence rate.

The last scenario is formed by h2(z) and a 7-tap equalizer, an order high
enough to provide a condition close to the ZF one. Table 8.3 shows the corre-
sponding results. Again, we have a good global convergence rate, thus revealing
once more the method efficiency.

GAs are probably the most widespread evolutionary approaches, but
there are many different paradigms of this class that can be efficiently used.

TABLE 8.1

Solution for a 5-Tap Equalizer for Channel h1(z)

Solution Residual MSE Frequency

[0.2183, −0.1873, −0.0596, −0.2804, 0.5892] 0.1751 100
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TABLE 8.2

Solution for an 8-Tap Equalizer for Channel h1(z)

Solution MSE Frequency (%)

[0.198, −0.142, −0.118, −0.227, 0.520, 0.115, −0.113, 0.085] 0.129 48
[−0.119, 0.053, −0.023, 0.283, −0.237, −0.047, −0.305, 0.615] 0.140 22

[−0.024, 0.226, −0.148, −0.106, −0.276, 0.554, 0.119, −0.067] 0.145 12
[−0.024, −0.025, 0.233, −0.141, −0.086, −0.301, 0.547, 0.091] 0.153 10
[−0.135, −0.143, 0.371, 0.199, −0.146, 0.171, −0.134, 0.057] 0.189 4

[−0.025, −0.112, −0.146, 0.383, 0.161, −0.123, 0.173, −0.101] 0.195 4

TABLE 8.3

Solution for a 7-Tap Equalizer for Channel h2(z)

Solution MSE Frequency (%)

[−0.084, 0.154, −0.230, 0.406, 0.289, −0.052, −0.153] 0.0312 48

[0.142, −0.248, 0.383, 0.307, −0.039, −0.145, −0.042] 0.0458 40
[−0.228, 0.412, 0.346, −0.067, −0.166, −0.054, 0.062] 0.0917 8
[0.040, −0.085, 0.158, −0.225, 0.374, 0.265, −0.071] 0.0918 2

[−0.037, 0.047, −0.0745, 0.173, −0.245, 0.359, 0.255] 0.1022 2

In Section 8.3, we turn our attention to a class of optimization tools derived
from theories concerning the immune system and that belong to the broad
field of AISs. Interest in these techniques is particularly justified by an
attractive balance between local and global search mechanisms.

8.3 Artificial Immune Systems

The AIS we discuss here is an artificial immune network proposed to solve
multimodal optimization tasks, the opt-aiNet. The opt-aiNet is conceptually
related to the adaptive immune response of organisms, i.e., to the ability
that the defense system has of increasing their potential of responding to
intruders previously met. The algorithm, first proposed in [86], is based on
two main concepts: clonal selection and affinity maturation [4, 51], and the
idea of immune network [154]. The synergy between these elements gives
rise to a tool with mechanisms for local refinement, diversity maintenance,
and population-size control, which establish an interesting option to deal
with multimodal signal processing problems.

The combination between the clonal selection principle [51] and the
notion of affinity maturation [4] is computationally responsible for a process
of refinement of all solutions via replication followed by hypermutation. The

metrovoice
New Stamp



Bio-Inspired Optimization Methods 267

immune network theory [154] brings the possibility that there be eigenbe-
haviors of the immune system that may be relevant, even in the absence
of invaders, and introduces a mechanism of insertion/pruning that will
be decisive in terms of multimodal search potential and computational
parsimony.

Each solution, which is considered to be real-coded, is thought of as
being related to the structure of a given antibody. The affinity between an
antibody and the antigen to be identified is measured by the cost function,
also referred to as fitness function. Finally, the affinity between antibodies
is quantified via a Euclidean distance measure. The search process com-
bines the cloning/mutation process and the outcomes of the interactions
between the antibodies themselves. The above description can be clarified
by an analysis of the pseudocode presented in Algorithm 8.5.

In steps 2(a) to 2(e), we have essentially a process of mutation propor-
tional to the fitness value that has a decisive role in terms of local search,
although it may as well have some impact in terms of global search. Notice
that mutation is applied (Nc times) to each individual, and that a determin-
istic selection procedure is responsible for locally keeping the population
size intact. The fact that the mutation is proportional to the fitness value is
responsible for imposing more pronounced modifications to “less adapted”
individuals, which establishes a certain control over the convergence rate of
the technique.

In step 2(f), we have a key feature of the method, an interesting mech-
anism to verify if the search process has been accomplished or if it is still
leading to improvements and to modify the population structure in accor-
dance with this verification. If there is not a significant amount of variation
in the average fitness, a process of pruning is activated, in order to remove
individuals that are very close to each other (step 2(g)) or, in other words,
that are located in the same region of the search space. This mechanism is
very similar to the idea underlying certain niching methods [196, 259], in
which, for instance, a given radius defines a niche, and only the fittest indi-
vidual of each niche is allowed to survive. This reduces the population to
a minimum in terms of maintenance of relevant information about the cost
function.

A removal of redundant solutions is followed by the introduction of
new randomly generated antibodies (step 2(h)) that have the potential of
occupying previously unexplored regions of the search space.

The algorithm combines two apparently contradictory aims: global
search potential and efficiency in the use of computational resources. Nat-
urally, the proper operation of the algorithm depends on the difficult task of
properly tuning fundamental parameters, like the affinity threshold.

Both GA and AIS provide a view of the potential of evolutionary algo-
rithms as optimization tools. Next, we consider a bio-inspired approach that
is based on a different analogy and that has received a great deal of attention
in the last years.
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Algorithm 8.5: The opt-aiNet algorithm
1. (Initialization): randomly initialize a population with a small number

of individuals;
2. While the stopping criterion is not met do:

(a) (Fitness evaluation) Determine the fitness of each individual of
the population and normalize the fitness vector;

(b) (Replication) Generate a number of copies (offspring) of each
individual;

(c) (Mutation) Mutate each of these copies in a manner that be
inversely proportional to the fitness of its parent cell, and also
keep the parent cell. The mutation is given by

c′ = c + αN(0, 1)

α = 1
β

exp(−fit∗)
(8.5)

where
c′ is a mutated version of c, N(0, 1) is a zero-mean Gaussian

random vector with uncorrelated unit variance elements
β is a parameter that controls the decay of an inverse expo-

nential function
fit∗ is the fitness of an individual normalized to lie in the

interval [0, 1]
A mutation is only accepted if the mutated individual c′ is
within the proper domain;

(d) (Fitness evaluation) Determine the fitness of all new (mutated)
individuals of the population;

(e) (Selection) For each clone group formed by the parent individual
and its mutated offspring, select the individual with highest fit-
ness and calculate the average fitness of the selected population;

(f) (Local convergence) If the average fitness of the population is not
significantly different from that at the previous iteration, then
continue; otherwise return to step 2(a);

(g) (Network interactions) Determine the affinity (degree of similarity
measured via the Euclidean distance) of all individuals of the
population. Suppress all those individuals whose affinities are
less than a suppression threshold σs, except the best of them,
and determine the number of network individuals, termed
memory cells, after suppression;

(h) (Diversity introduction) Introduce a percentage of randomly
generated individuals and return to step 2
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8.4 Particle Swarm Optimization

The study of the behavior of social animals is receiving a significant atten-
tion in the field of optimization with the increasing interest in applications
of the notion of swarm intelligence to the solution of a number of relevant
tasks [46]. In this section, we concentrate our attention on a search methodol-
ogy that has been used with success in contexts similar to those that typically
arise in signal processing applications: PSO [167].

As in the previous methods, a given cost function provides the funda-
mental source of information about the problem to be solved. The classical
implementation of the PSO method is based on an update rule that combines
individual knowledge about the problem with knowledge of a collective
nature.

Each of these kinds of knowledge originates a search direction, and these
directions are linearly combined in the update expression of each individ-
ual, which is usually coded as a real-valued vector. We incorporate collective
knowledge by establishing an a priori neighborhood that will be the essen-
tial pattern of relationship between individuals. For instance, in Figure 8.6a
we assume that all individuals are neighbors, while in Figure 8.6b each
individual is supposed to have two neighbors.

Each solution is considered as a particle whose position is given by its
parameter vector. The optimization process can be conceived in terms of
the movement of the set of particles that forms a population. This move-
ment must be determined by the cost function, so that “good regions” of the
cost function become more attractive than “bad regions,” and this must have
some impact on the behavior of the population as a whole. For each solu-
tion, we have access to the corresponding value of the cost function, which
will be used by the algorithm. Furthermore, in analogy to the accumulation

(a) (b)

FIGURE 8.6
Examples of possible neighborhood topologies: (a) “ring-like neighborhood” and (b) complete
neighborhood.
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of knowledge in an individual life, we assume that each particle “remem-
bers” the best position it has so far occupied. Hence, we may establish a
search direction that indicates a path from the place presently occupied by
the particle to the best place it has ever occupied:

direction1 = pi − xi(n) (8.6)

where
pi is the best (in terms of the cost function to be optimized) position visited

by the ith particle so far
xi(n) is its position at the instant n

However, collective life is not guided exclusively by individual expe-
rience, but also by the experience accumulated by the group [85, 167]. In
our algorithm, this is modeled via the inclusion of another search direction,
which indicates to each individual the path toward the best solution reached
by its neighbors:

direction2 = gi − xi(n) (8.7)

where gi is the best position visited by any neighbor of the ith particle.
The two calculated directions are included in the determination of the

vector vi(n + 1), i.e., the vector that will be responsible for updating the posi-
tion of the particle whose current position is xi(n). This vector is commonly
referred to as the velocity vector of the particle, and its update classically
follows the rule

vi(n + 1) = vi(n) + ϕ1 � direction1 + ϕ2 � direction2 (8.8)

where
ϕ1 and ϕ2 are vectors of uniformly distributed positive numbers
� represents the Hadamard product

Then, the updated position of the ith particle is

xi(n + 1) = xi(n) + vi(n + 1) (8.9)

We usually impose fixed upper and lower limits to each value of the
velocity vector in order to avoid unlimited expansion of its elements. It is also
important to mention that (8.8) corresponds to the classical update expres-
sion for the velocity vector. Other alternatives are found in the literature,
like those based on an inertia term or a global constriction coefficient [85].
Algorithm 8.6 summarizes a PSO technique.
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Algorithm 8.6: Particle Swarm Optimization Algorithm
1. Initialize the population and the velocity vectors of all individuals;
2. While stopping criterion is not met, do:

(a) For each particle i
i. If f (xi(n)) > f

(
pi(n)

)
then pi(n + 1) = xi(n)

ii. For all neighbors j
A. If f

(
pj(n)

)
> f

(
gi(n)

)
then gi(n + 1) = pj(n)

(b) vi(n + 1)= vi(n)+ ϕ1 � (
pi(n + 1) − xi(n)

) + ϕ2 � (
gi(n + 1)−

xi(n)
)
, and all elements of vi(n + 1) must belong to the interval

defined by the minimum and the maximum velocities;
(c) xi(n + 1) = xi(n) + v(n + 1)

The PSO algorithm is becoming an increasingly popular bio-inspired
tool to solve optimization problems, and many variants of the classical
algorithm we have studied are being proposed in the literature [73, 273].
Our objective in this section is to give an idea of the basic mechanisms
underlying the technique. Such mechanisms combine local and global search
potential, which indicates a great potential for application in modern signal
processing.

As an illustrative example, we employ in the sequel both AISs and par-
ticle swarm in a blind source separation problem, in which a PNL model is
employed for the mixing process, as discussed in Section 6.6.

Example 8.2 Blind Source Separation Using AIS and PSO

The mixing system is defined by

A =
⎡

⎣
1 0.6

0.5 1

⎤

⎦ and
f1(e1) = tanh(2e1)

f2(e2) = 2 5√e2
(8.10)

The separating system to be optimized consists of a square matrix W and a
polynomial of fifth order, only with odd powers, given by

y = ax5 + bx3 + cx (8.11)

Thus, each individual in the population is represented by a set of 10
parameters—4 values that define W and 3 values for each nonlinearity (coef-
ficients a, b, and c).

Since the separability property [281] of the PNL model requires that g(f(·)) be
a monotonic function, the coefficients of each polynomial were restricted to be
positive. The parameters of the opt-aiNet were set to the following values:
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• Initial population: 10 Individuals
• Number of clones (Nc): 7 Clones
• β: 60
• Suppression threshold: 2

On the other hand, for the particle swarm algorithm, the parameters used in
the experiment are

• Number of particles: 60
• AC1 = AC2 = 2.05
• Vmax = 0.1
• Vmin = −0.1

In Figure 8.7a, the joint distribution of the mixture signals is shown. For
this situation, we considered 2000 samples of the mixtures in the training stage.
Figure 8.7b depicts the joint distribution of the recovered signals using the artificial
immune network.

We can observe that a residual nonlinear distortion remains, as it is impossible
to invert the hyperbolic tangent using the chosen polynomial. Nevertheless, the
obtained distribution is approximately uniform, indicating that the separation task
was accomplished. Similar results are obtained with the particle swarm.

In Table 8.4, we depict the residual MSE between the estimated signal and
the corresponding source. It can be noted that both algorithms were able to build
the separating system quite well, yielding small residual errors.

−2
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−1 0 1 2
−1

−0.5

0

0.5

1

−2 −1 0 1 2
−4

(b)

−3
−2
−1

0
1
2
3
4

FIGURE 8.7
Distributions of the (a) mixtures and of the (b) recovered sources.

TABLE 8.4

Residual MSE of the Estimated Sources Using an Artificial
Immune Network and a Particle Swarm Algorithm

Algorithm MSE—Source 1 MSE—Source 2

Artificial immune network 0.11 × 10−2 0.65 × 10−2

Particle swarm 0.73 × 10−2 0.53 × 10−2
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8.5 Concluding Remarks

The natural tendency to explore alternative techniques and the requirements
of some concrete applications have led signal processing theory toward a
more widespread use of nonlinear structures and unsupervised adaptation
criteria. Extensions of this nature are likely to originate optimization tasks
of a nature considerably different from that associated with the more clas-
sical frameworks. Then, the search of alternative optimization methods to
improve the global search potential may become attractive.

In this chapter, we discussed some approaches belonging to the field of
bio-inspired computing. Our intention, it is important to remark, was not
to provide a complete view of the field, but to make use of three important
classes of methods: GAs, AISs, and PSO. The main goal is to analyze essen-
tial features of these tools and evaluate their potential of application in our
problems of interest.

We observed that a GA has the following features: there is local search,
there are elements of global search, and there is the influence of selection
in the survival of certain solutions in consonance with the characteristics of
the function to be optimized. It is worth noting that the method requires
information about the cost function itself, but usual requirements such as
continuity, differentiability, etc., do not play a key role here. Hence, it is par-
ticularly attractive when we deal with cost functions that are very difficult, or
even impossible, to manipulate. Certainly, in GA and other techniques, com-
plexity is a factor to be considered in many online applications. Nevertheless,
it does not discard the theoretical interest of the methods neither their appli-
cations in contexts where the real-time operation at high information rate is
not an issue.

Overall, we hope this chapter could serve to instigate a larger group of
the signal processing community to consider bio-inspired methods as viable
components of their toolkit.
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Appendix A: Some Properties of the
Correlation Matrix

Let us first consider the context of the linear combiner as described in
Figure A.1 and the general case of complex-valued signals.

Let x(n) denote the input vector of the linear combiner. The correlation
matrix associated therewith is defined as

R = E
[
x(n)xH(n)

]
(A.1)

where E [·] is the statistical expectation operator. A first remark is that the
correlation matrix is a K × K square matrix, K being the number of input
signals that compose x(n).

A.1 Hermitian Property

In accordance with (A.1), it is straightforward to verify that the matrix R
must be Hermitian, as the correlation between, for instance, inputs x1(n) and
x2(n), is equal to the complex conjugate of the correlation between x2(n) and
x1(n). In other words,

E
[
x1(n)x∗

2(n)
] = {

E
[
x2(n)x∗

1(n)
]}∗ (A.2)

A.2 Eigenstructure

First, let us present the classical definition of eigenvalues and eigenvectors
of a matrix R:

Rqi = λiqi for i = 1, . . . , K (A.3)

where λi and qi represent, respectively, the eigenvalues and eigenvectors
of R.

The K eigenvectors q1, . . . , qK are orthogonal to each other, thus form-
ing a suitable basis for signal representation, which establishes the so-called

275
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w0

w1

wK

x0 (n)

x1 (n)

xK (n)

...

Σ
y (n)

FIGURE A.1
Representation of a linear combiner.

Karhunen–Loève decomposition [230]. We can also define

Q = [q1 q2 . . . qK] (A.4)

as the matrix whose columns are the eigenvectors. It is readily seen that Q is
orthogonal, i.e.,

QH = Q−1 (A.5)

An implication of this property is the use of Q as a whitening matrix, as
discussed in Section 6.2.1.

Considering (A.4), it is possible to represent matrix R as

R = Q�QH (A.6)

where � is a diagonal matrix whose diagonal is composed of the eigenvalues
of the correlation matrix.

Another property of interest is the relationship between the eigenval-
ues and their respective eigenvectors, which is expressed in the form of a
Rayleigh quotient, defined by

λi = qH
i Rqi

qH
i qi

(A.7)

The quotient is employed in the definition of eigenfilters, which are used
in noise reduction tasks as well as in high-definition methods of spectral
analysis [139].

Now, if we consider y(n) as the output of a linear combiner, the
coefficients of which are the elements of a vector w, we can write

E
[
|y(n)|2

]
= E

[
(wHx(n))(wHx(n))H

]
= E

[
wHxxHw

]
= wHRw (A.8)
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Since the mean-square value of y(n) is necessarily nonnegative, we have

wHRw ≥ 0 (A.9)

From (A.9), we conclude that the matrix R is positive semidefinite [139],
and, as a consequence, all of its eigenvalues are nonnegative.

A.3 The Correlation Matrix in the Context of Temporal Filtering

Some additional features may be commented about the structure of R when
the input vector is formed by delayed versions of a same signal, i.e., in the
case of temporal filtering.

As already presented, we have in such case

x(n) = [x(n), x(n − 1), . . . , x(n − K + 1)]T (A.10)

so that the elements of the correlation matrix are given by

r(k) = E
[
x(n)x∗(n − k)

]
(A.11)

Since x(n) is assumed to be stationary, the elements r(k) are a function
exclusively of the lag between samples, and do not depend on the time
instant. Consequently, the columns and rows of matrix R are formed from
a same vector r = [r(0), r(1), . . . , r(K − 1)]T, the elements of which are r(k),
for k = 1, . . . , N, by performing subsequent circular shifts and appropriate
complex conjugation:

R =

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

r (0) r (1)∗ · · · r (K)∗

r (1) r (0) · · · r (K − 1)∗

...
...

. . .
...

r (K) r (K − 1) · · · r (0)

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

(A.12)

This fact implies the so-called Toeplitz structure of R in this case. This
property is particularly interesting in recursive methods for matrix inversion
and for solving linear equation systems. For instance, the Levinson–Durbin
algorithm, which recursively yields the coefficients of an optimal linear
predictor, is based on the Toeplitz structure of the correlation matrix.
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Appendix B: Kalman Filter

In simple terms, the Kalman filter is an efficient recursive filter that estimates
the state of a linear dynamic system from a series of noisy measurements.
There is a vast literature covering several aspects of the Kalman filter [16,
139, 165]. In this appendix, we will focus on a more intuitive view of this
versatile tool.

B.1 State-Space Model

The set of variables that provide a complete representation about the internal
configuration of the system at a given time instant is known as the system
state [16, 165]. More rigorously, one can define the system state at a time
instant n0 as the minimum amount of information that, along with the input
for n ≥ n0, uniquely determines the system outputs for n ≥ n0 [165].

In order to perform state estimation, one should build a mathematical
representation of the system at hand. It is usual to represent the dynamical
system in terms of a pair of equations: the process equation, which defines
the dynamics of the state variables; and the measurement equation, which
describes the observation vector. In mathematical terms we express these
two equations as

x(n) = F(n)x(n − 1) + G(n)u(n) (process equation) (B.1)

ỹ(n) = X (n)x(n) + ñ(n) (measurement equation) (B.2)

where
x(n) represents the state vector
F(n) represents the state transition matrix
u(n) is a process noise vector
G(n) represents the input matrix
X (n) is the observation matrix
ñ(n) is an additive measurement noise
ỹ(n) is the observed vector at time instant n

Figure B.1 illustrates the signal flow in a linear dynamical system.
Noise vectors u(n) and ñ(n) can be considered to be white, uncorrelated,

zero-mean processes, with covariance matrices given by
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x(n–1)

G(n)

F(n) z–1 I

χ(n)
x(n)

n(n)

y(n)u(n)

Process equation Measurement equation

˜

˜

FIGURE B.1
Representation of a linear, discrete-time dynamical system.

E
[
u(n)u(k)H

]
=

⎧
⎨

⎩

Q(n), n = k

0, n �= k and E
[
ñ(n)ñ(n)H

]
=

⎧
⎨

⎩

R(n), n = k

0, n �= k

(B.3)

Hence, given the state-space model of a system, the objective of the
Kalman filter can be formally stated as follows.

DEFINITION B.1 (Discrete-Time Kalman Filtering Problem) Consider the
linear, finite-dimensional, discrete-time system represented by (B.1) and
(B.2), defined for n ≥ 0. Let the noise sequences {u(n)} and {ñ(n)} be inde-
pendent, zero-mean, Gaussian white processes with covariance matrices
given by (B.3). Using the entire observed data ỹ(1), ỹ(2), . . . , ỹ(n), find the
minimum mean-square estimate of the state x(i).

The above definition encompasses three slightly different problems that
can be solved by the Kalman filter. If i = n, i.e., we want to estimate the
current state based on observations up to time index n, we have a filtering
problem. On the other hand, if i > n it means we are facing a prediction prob-
lem. Finally, if 1 ≤ i < n we have a so-called smoothing problem, in which we
observe a longer sequence of observations to estimate the state.

B.2 Deriving the Kalman Filter

A well known result from the estimation theory is that the minimum mean-
squared error (MMSE) estimator is given by the conditional mean

x̂MMSE = E
[
x| {ỹ

}]
(B.4)
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where
{
ỹ
}

denotes the observation sequence. The Kalman filter can be inter-
preted as a tool that implements a sequential MMSE estimator, exploring the
dynamical system model to fulfill this aim recursively.

In general terms, the recursive procedure employed by the Kalman fil-
ter can be divided into two steps: one prediction step, in which the process
equation is used to provide an estimate of the state vector x(n) based on
the estimate obtained at time instant n − 1; and a filtering step, which takes
the predicted value and update the estimate based on the measurement
equations and the observed signals at time instant n.

From (B.4), the best estimate at time instant n, given the observations ỹ
up to this instant, is given by

x̂(n|n) = E [x(n)|ỹ(1), ỹ(2), . . . , ỹ(n)] (B.5)

On the other hand, if we have access to all measurements except for the
sample at time instant n, we can compute an a priori estimate given by the
conditional mean

x̂(n|n − 1) = E [x(n)|ỹ(1), ỹ(2), . . . , ỹ(n − 1)] (B.6)

Both x̂(n|n) and x̂(n|n−1) are estimates of x(n). The difference is that x̂(n|n−1)

is computed prior to the observation of ỹ(n), while x̂(n|n) is obtained taking
into account the information in ỹ(n).

Using the state equations, we can express (B.6) as

x̂(n|n − 1) = E [F(n)x(n − 1) + G(n)u(n)|ỹ(1), ỹ(2), . . . , ỹ(n − 1)]

= F(n)E [x(n − 1)|ỹ(1), ỹ(2), . . . , ỹ(n − 1)]

+ G(n)E [u(n)|ỹ(1), ỹ(2), . . . , ỹ(n − 1)]

= F(n)x̂(n − 1|n − 1) + G(n)E [u(n)]

= F(n)x̂(n − 1|n − 1) (B.7)

since u(n) is zero-mean and is independent from the observations.
One possible way of evaluating the estimates x̂(k|k − 1) for each instant n

is to compute the estimation error covariance matrix P(n|n − 1), given by

P(n|n − 1) = E
[(

x(n) − x̂(n|n − 1)
) (

x(n) − x̂(n|n − 1)
)H

]
(B.8)
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Using (B.1), (B.3), and (B.7), one obtains

P(n|n − 1) = E
[ (

F(n)x(n − 1) + G(n)u(n) − F(n)x̂(n − 1|n − 1)
)

(
F(n)x(n − 1) + G(n)u(n) − F(n)x̂(n − 1|n − 1)

)H
]

= E
[ (

F(n)
(
x(n − 1) − x̂(n − 1|n − 1)

) + G(n)u(n)
)

(
F(n)

(
x(n − 1) − x̂(n − 1|n − 1)

) + G(n)uH(n)
) ]

= F(n)P(n − 1|n − 1)FH(n) + G(n)Q(n)GH(n) (B.9)

where the a posteriori covariance matrix, P(n − 1|n − 1), is given by

P(n − 1|n − 1) = E
[(

x(n − 1) − x̂(n − 1|n − 1)
) (

x(n − 1) − x̂(n − 1|n − 1)
)H

]

(B.10)

Observing (B.7) and (B.9), we notice that the estimation error covari-
ance matrix and the state are updated based solely on the system dynamical
model and the previous estimate. Hence, these two equations correspond to
the prediction step in the Kalman filter.

The next step in the estimation process is to refine the state and error
covariance matrix estimates, taking into account the observed sample at time
instant n. To this end, let us consider a recursive linear estimator

x̂(n|n) = C(1, n)x̂(n|n − 1) + C(2, n)ỹ(n) (B.11)

where
x̂(n|n − 1) denotes the estimate obtained by the prediction step
ỹ(n) denotes the observed vector at time instant n
C(1, n) and C(2, n) represent the time-varying coefficients of the linear

combination

Using (B.2), it is possible to show that the coefficients C(1, n) and C(2, n)

that minimize the MSE at each step are given by [16, 139, 165]

C(1, n) = I − K(n)X (n)

C(2, n) = K(n),
(B.12)
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K(n)

χ(n) F(n) z–1I
x(n|n–1)ˆ

x(n|n)ˆα(n)y(n)

Filtering

Prediction

Dynamical model 
˜

FIGURE B.2
Block diagram of the Kalman filter.

where K(n) is the Kalman gain, computed as

K(n) = P(n|n − 1)X (n)H
(
X (n)P(n|n − 1)X (n)H + R(n)

)−1
(B.13)

Thus, the optimum recursive linear estimator is expressed by

x̂(n|n) = (I − K(n)X (n)) x̂(n|n − 1) + K(n)ỹ(n) (B.14)

Reordering the terms in (B.14), we get to

x̂(n|n) = x̂(n|n − 1) + K(n)
(
ỹ(n) − X (n)x̂(n|n − 1)

)

= x̂(n|n − 1) + K(n)α(n)

(B.15)

Therefore, from (B.15), it is possible to interpret the estimation provided
by the Kalman filter as being a linear combination of x(n) based on past sam-
ples, x(n|n − 1), and a correction term α(n) = ỹ(n) − X (n)x̂(n|n − 1), which
represents the error committed when we try to estimate ỹ(n) from x̂(n|n−1).

Figure B.2 illustrates the operation of the Kalman filter, indicating the
relationship between the prediction and filtering steps, and the central role
played by the system model in the estimation. If we compare Figures B.1 and
B.2 it becomes clear that the correction term K(n)α(n) can be viewed as an
estimate of the process noise G(n)u(n), which is fed into the system model
to provide the filtered estimate x(n|n).

To conclude our exposition of the Kalman filter, we just need to show
how the estimation error covariance matrix is updated in the filtering step.
As shown in [16, 139, 165], matrix P(n|n) is given by

P(n|n) = [I − K(n)X (n)] P(n|n − 1) (B.16)

Combining (B.7), (B.9), (B.13), (B.15), and (B.16), we obtain the Kalman
filter, whose algorithm is summarized in Algorithm B.1.
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Algorithm B.1: Kalman Filter
Prediction

x̂(n|n − 1) = F(n)x̂(n − 1|n − 1) (B.17a)

P(n|n − 1) = F(n)P(n − 1|n − 1)FH(n) + G(n)Q(n)GH(n) (B.17b)

Filtering

K(n) = P(n|n − 1)X (n)H
(
X (n)P(n|n − 1)X H(n) + Rn

)−1
(B.18a)

α(n) = ỹ(n) − X (n)x̂(n|n − 1) (B.18b)

x̂(n|n) = x̂(n|n − 1) + K(n)α(n) (B.18c)

P(n|n) = [I − K(n)X (n)] P(n|n − 1) (B.18d)
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