
Traefik API
Gateway for
Microservices

With Java and Python Microservices
Deployed in Kubernetes
—
Rahul Sharma
Akshay Mathur

Traefik API Gateway
for Microservices

With Java and Python
Microservices Deployed

in Kubernetes

Rahul Sharma
Akshay Mathur

Traefik API Gateway for Microservices

ISBN-13 (pbk): 978-1-4842-6375-4 ISBN-13 (electronic): 978-1-4842-6376-1
https://doi.org/10.1007/978-1-4842-6376-1

Copyright © 2021 by Rahul Sharma, Akshay Mathur

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi
Development Editor: Laura Berendson
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6375-4. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Rahul Sharma
Patpargunj, Delhi, India

Akshay Mathur
Gurgaon, Haryana, India

https://doi.org/10.1007/978-1-4842-6376-1

To our families, for all the personal time spent on this book

v

Table of Contents

Chapter 1: Introduction to Traefik ���1

Microservice Architecture ���3

Agility ���6

Innovation ��6

Resilience ��7

Scalability ��7

Maintainability ���8

n-Tier Deployment ��9

Four-Tier Deployment ��12

Gateway Characteristics ���14

Application Layer Protocols ���14

Dynamic Configuration ��16

Observability ��18

TLS termination ���19

Other Features ���20

About the Authors ��ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Introduction ��xv

vi

Traefik ���21

Installation ���23

Traefik Command Line ���24

Traefik API ��26

Traefik Dashboard ���28

Summary���29

Chapter 2: Configure Traefik ���31

Configuration Topics ��31

Introduction to Sample Web Service ���32

Traefik Configuration ���35

Entrypoints ��36

Routers ��43

Services ��50

Middleware ��58

Summary���65

Chapter 3: Load Balancing ��67

HTTP Load Balancer ��68

Round Robin ��69

Weighted Round Robin ��77

Mirroring ��83

TCP Service ���86

Round Robin ��87

Weighted Round Robin ��90

UDP Service ��92

Round Robin ��93

Weighted Round Robin ��96

Summary���97

Table of ConTenTs

vii

Chapter 4: Configure TLS ��99

Quick Overview of TLS ��99

TLS Termination at Traefik ���102

Exposing MongoDB Route on TLS ��103

Let’s Encrypt Automatic Certificate Provisioning ���107

Provisioning TLS Certificates for Public TCP Endpoints �������������������������������108

Secure Traefik Dashboard over TLS ���114

Traefik for TLS Forwarding ��121

Summary���125

Chapter 5: Logs, Request Tracing, and Metrics ��������������������������������127

Prerequisites ���129

Traefik Configuration ���133

Traefik Logs ���135

Access Logs ���137

Log Rotation ��143

Blacklisting ��145

Request Tracing ��147

Install Zipkin ��148

Integrate Zipkin ���150

Traefik Metrics ��154

Configure Prometheus ���155

Summary���158

Chapter 6: Traefik for Microservices ��159

Pet-Clinic Application ��162

Application Configuration ��164

Consul Service Registry ��165

Table of ConTenTs

viii

Deploy Pet-Clinic ���167

Pet-Clinic UI ���171

Configure Gateway ��173

Service Details���177

Circuit Breaker ���179

Retries ���182

Throttling ���185

Canary Deployments ���188

Summary���190

Chapter 7: Traefik as Kubernetes Ingress���191

Traefik as Kubernetes Ingress Controller ��191

Installation of Traefik on Kubernetes ��194

Installing the bookinfo Application ��204

Installing Traefik with Helm ���209

Exploring Traefik Helm Chart ���211

Local Installation ���217

Exposing the bookinfo Reviews Service ��222

Configure Request Tracing with Jaeger ��228

Setup Traefik on DigitalOcean Kubernetes Cloud ��234

TLS Termination on Kubernetes via Let’s Encrypt Certificates ��������������������237

TLS Certificate Limitations with Multiple Traefik Instances �������������������������243

Summary���245

 Index ���247

Table of ConTenTs

ix

About the Authors

Rahul Sharma is a seasoned Java developer

with over 15 years of industry experience.

In his career, he has worked with companies

of various sizes, from enterprises to start-

ups. During this time, he has developed and

managed microservices on the cloud (AWS/

GCE/DigitalOcean) using open source

software. He is an open-source enthusiast and

shares his experience at local meetups.

He has co- authored Java Unit Testing with JUnit 5 (Apress, 2017) and

Getting Started with Istio Service Mesh (Apress, 2019).

Akshay Mathur is a software engineer with

15 years of experience, mostly in Java and web

technologies. Most of his career has been spent

building B2B platforms for enterprises, dealing

with concerns like scalability, configurability,

multitenancy, and cloud engineering. He has

hands-on experience implementing and

operating microservices and Kubernetes in

these ecosystems. Currently, he enjoys public

speaking and blogging on new cloud-native

technologies (especially plain Kubernetes) and

effective engineering culture.

xi

Brijesh is currently working as a lead

consultant. He has more than ten years of

experience in software development and

providing IT solutions to clients for their

on-premise or cloud-based applications,

spanning from monoliths to microservice-

based architecture.

About the Technical Reviewer

xiii

Acknowledgments

This book would not have been possible without the support of many

people. I would like to take this opportunity and express my gratitude to

each of them.

I would like to thank Divya Modi for believing in the project and

making it work. She has been instrumental in starting the project.

Moreover, during the project, her editorial support provided a constant

push throughout the process. It would have been difficult to deliver the

project without your support.

I would like to thank Celestin Suresh John for providing me this

wonderful opportunity. Your guidance made sure that we got the correct

path outlined from the start.

I would like to thank Brijesh Pant and Laura C. Berendson for sharing

valuable feedback. Your advice has helped to deliver the ideas in a better

manner.

I would also like to thank my co-author Akshay Mathur for his

knowledge and support. Your experience and willingness have made this

a successful project. The brainstorming sessions we had helped to express

the ideas.

I wish to thank my parents, my loving and supportive wife, Swati,

and my son, Rudra. They are a constant source of encouragement and

inspiration. Thanks for providing the time and listening to my gibberish

when things were not working according to the plan.

Lastly, I would like to thank my friends, who have been my source

of knowledge. The discussion we had often helped me to deliberate on

various topics. Often our debates have provided the testbed for evaluations.

—Rahul Sharma

xiv

I’d like to express my gratitude to my co-author Rahul Sharma for

bringing me on board this project. While we had discussed the possibility,

the actual opportunity still came suddenly, and I’d like to thank him for

his guidance through the process. It was as fun and nerve-wracking as I’d

envisioned, and he had my back the whole way as I channeled my inner

Douglas Adams and (to borrow from a great man) enjoyed the sound of

deadlines whooshing by.

Divya Modi was a constant source of support and encouragement.

She gently helped us stay on track and was a picture of calm and

confidence, helping us get to completion. And still entertained multiple

last-minute requests as I kept tweaking the title.

To our reviewers, Brijesh Pant and Laura C. Berendson, thank you for

all the constructive feedback in making this book better.

I’d also like to thank my ever-patient family, especially my mother, my

wife, Neha, and my daughter, Inara, who kept wondering when I would

actually be done and free to talk to them, as I kept fiddling till the last

minute and repeating, “Almost there!”.

I’m grateful to the two mentors who pulled me up to the level of

authoring a book—Aditya Kalia and Shekhar Gulati.

Finally, our gratitude to the Traefik team for releasing an excellent

product to the community. We hope this book helps in any small way to

drive further adoption.

—Akshay Mathur

aCknowledgmenTs

xv

Introduction

Microservice architecture has brought dynamism to the application

ecosystem. New services are built and deployed while older ones are

deprecated and removed from the enterprise application estate. But

front-end load balancers haven’t been able to adapt to the components

in the enterprise architecture. Most current load balancers have a static

configuration. They require configuration updates as the application

landscape changes. Thus, there are operational complexities when

working with microservices. These are a few of the challenges of getting

a microservices-based solution to work. The dynamic nature of the

ecosystem requires dynamic tools that can autoconfigure themselves.

Traefik bases its foundations on the dynamic nature of the

Microservice architecture. It has built first-class support for service

discovery, telemetry, and resiliency. It is a modern HTTP reverse proxy

and load balancer that eases microservices deployment. Its integration has

been great, with many existing tools.

The book covers Traefik setup, basic workings, and integration with

microservices. It is intended for developers, project managers, and DevOps

personnel interested in solutions for their operational challenges.

The book is not specific to any programming language, even though all

the examples use Java or Python.

1© Rahul Sharma, Akshay Mathur 2021
R. Sharma and A. Mathur, Traefik API Gateway for Microservices,
https://doi.org/10.1007/978-1-4842-6376-1_1

CHAPTER 1

Introduction to Traefik
Over the last couple of years, microservices have become a mainstream

architecture paradigm for enterprise application development. They have

replaced the monolithic architecture of application development, which

was mainstream for the past couple of decades. Monolithic applications

are developed in a modular architecture. This means that discrete logic

components, called modules, are created to segregate components based

on their responsibility. Even though an application consisted of discrete

components, they were packaged and deployed as a single executable.

Overall, the application has very tight coupling. Changes to each of these

modules can’t be released independently. You are required to release a

complete application each time.

A monolithic architecture is well suited when you are building

an application with unknowns. In such cases, you often need quick

prototyping for every feature. Monolithic architecture helps in this case,

as the application has a unified code base. The architecture offers the

following benefits.

• Simple to develop.

• Simple to test. For example, you can implement end-

to- end testing by launching the application and testing

the UI with Selenium.

• Simple to deploy. You only have to copy the packaged

application to a server.

https://doi.org/10.1007/978-1-4842-6376-1_1#DOI

2

• Simple to scale horizontally by running multiple copies

behind a load balancer.

In summary, you can deliver the complete application quickly in these

early stages. But as the application grows organically, the gains erode. In

the later stages, the application becomes harder to maintain and operate.

Most of the subcomponents get more responsibility and become large

subsystems. Each of these subsystems needs a team of developers for its

maintenance. As a result, the complete application is usually maintained

by multiple development teams. But the application has high coupling,

so development teams are interdependent while making new features

available. Due to a single binary, the organization faces the following set of

issues.

• Quarterly releases: Application features take more

time to release. Most of the time, an application feature

needs to be handled across various subsystems. Each

team can do their development, but deployment

requires the entire set of components. Thus, teams can

seldom work independently. Releases are often a big

coordinated effort across different teams, which can be

done only a couple of times per period.

• Deprecated technology: Often, when you work with

technology, you must upgrade it periodically. The

upgrades make sure all vulnerabilities are covered.

Application libraries often require frequent upgrades

as they add new features as well. But upgrading the

libraries in a monolith is difficult. A team can try to use

the latest version, but often needs to make sure that the

upgrade does not break other subsystems. In certain

situations, an upgrade can even lead to a complete

rewrite of subsystems, which is a very risky undertaking

for the business.

Chapter 1 IntroduCtIon to traefIk

3

• Steep learning curve: Monolithic applications often

have a large code base. But the individual developers

are often working on a very small subset of the

codebase. At first glance, the lines of code create a

psychological bottleneck for developers. Moreover,

since the application is tightly coupled, developers

usually need to know how others invoke the code.

Thus, the overall onboarding time for a new developer

is large. Even the experienced developers find it

hard to make changes to modules that have not been

maintained well. This creates a knowledge gap that

widens over time.

• Application scaling: Typically, a monolithic

application can only be scaled vertically. It is possible

to scale the application horizontally, but you need to

determine how each subsystem maintains its internal

state. In any case, the application requires resources for

all subsystems. Resources can’t be selectively provided

to subsystems under load. Thus, it is an all-or-nothing

scenario with a monolithic application. This is often a

costly affair.

When faced with challenges, organizations look for alternative

architectures to address these issues.

 Microservice Architecture
Microservice architecture is an alternative to the monolithic architecture

(see Figure 1-1). It converts the single application to a distributed system

with the following characteristics.

Chapter 1 IntroduCtIon to traefIk

4

• Services: Microservices are developed as services that

can work independently and provide a set of business

capabilities. A service may depend on other services

to perform the required functionality. Independent

teams can develop each of these services. The teams

are free to select and upgrade the technology they need

for their service. An organization often delegates full

responsibility for the services to their respective teams.

The teams must ensure that their respective service

runs as per the agreed availability and meets the agreed

quality metrics.

• Business context: A service is often created around

a business domain. This makes sure that it is not too

fine-grained or too big. A service needs to answer

first if it is the owner of the said business function or

the consumer of the function. A function owner must

maintain all the corresponding function data. If it

needs some more supporting function, it may consume

the same from another service. Thus determining

business context boundaries helps keep a check on

the service dependencies. Microservices aim to build

a system with loose coupling and high cohesion

attributes. Aggregating all logically related functionality

makes the service an independent product.

• Application governance: In enterprise systems,

governance plays an important role. You rarely want

to make systems that are difficult to run. Due to this,

a governance group keeps check on the technologies

used by developers so that the operations team can

still run the system. But microservice architecture

provides the complete ownership to the respective

Chapter 1 IntroduCtIon to traefIk

5

teams. The ownership is not limited to development.

It also delegates service operations. Due to this, most

organizations must adopt DevOps practices. These

practices enable the development teams to operate and

govern a service efficiently.

• Automation: Automation plays an important role in

microservices. It applies to all forms like infrastructure

automation, test automation, and release automation.

Teams need to operate efficiently. They need to test

more often and release quickly. This is only possible

if they rely more on machines and less on manual

intervention. Post-development manual testing is a

major bottleneck. Thus, teams often automate their

testing in numerous ways like API testing, smoke

testing, nightly tests, and so forth. They often perform

exploratory testing manually to validate the build.

Release and infrastructure preparation is often

automated by using DevOps practices.

Figure 1-1. Monolith vs. microservices

Chapter 1 IntroduCtIon to traefIk

6

In summary, a monolith has a centralized operating model. This

means that all code resides in one place; everyone uses the same

library, releases happen simultaneously, and so forth. But on the other

end, microservices is a completely decentralized approach. Teams

are empowered to make the best decisions with complete ownership.

Adopting such an architecture not only asks for a change in software

design, but it also asks for a change in organizational interaction.

Organizations reap the following benefits of such application design.

 Agility
This is one of the biggest driving factors for an organization adopting the

microservices architecture. Organizations become more adaptive, and

they can respond more quickly to changing business needs. The loose

coupling offered by the architecture allows accelerated development.

Small, loosely coupled services can be built, modified, and tested

individually before deploying them in production. The model dictates

small independent development teams working within their defined

boundaries. These teams are responsible for maintaining high levels of

software quality and service availability.

 Innovation
The microservice architecture promotes independent small development

teams supporting each service. Each team has ownership within their

service boundary. They are not only responsible for development but also

for operating the service. The teams thus adopt a lot of automation and

tools to help them deliver these goals. These high-level goals drive the

engineering culture within the organization.

Chapter 1 IntroduCtIon to traefIk

7

Moreover, development teams are usually well aware of the

shortcomings of their services. Such teams can address these issues using

their autonomous decision-making capability. They can fix the issues and

improve service quality frequently. Here again, teams are fully empowered

to select appropriate tools and frameworks for their purpose. It ultimately

leads to the improved technical quality of the overall product.

 Resilience
Fault isolation is the act of limiting the impact of a failure to a limited

subsystem/component. This principle allows a subsystem to fail as long

as it does not impact the complete application. The distributed nature of

microservice architecture offers fault isolation, a principal requirement

to build resilient systems. Any service which is experiencing failures

can be handled independently. Developers can fix issues and deploy

new versions while the rest of the application continues to function

independently.

Resilience, or fault tolerance, is often defined as the application’s

ability to function properly in the event of a failure of some parts.

Distributed systems like microservices are based on various tenets

like circuit breaking, throttling to handle fault propagation. This is an

important aspect; if done right, it offers the benefits of a resilient system.

But if this is left unhandled, it leads to frequent downtime due to failures

cascading. Resilience also improves business agility as developers can

release new services without worrying about system outages.

 Scalability
Scalability is defined as the capability of a system to handle the growth

of work. In a monolith, it is easy to quantify the system scalability.

In a monolithic system, as the load increases, not all subsystems get

proportionally increased traffic. It is often the case that some parts of the

Chapter 1 IntroduCtIon to traefIk

8

system get more traffic than others. Thus, the overall system performance

is determined by a subset of the services. It is easier to scale a monolithic

system by adding more hardware. But at times, this can also be difficult as

different modules may have conflicting resource requirements. Overall an

overgrown monolith underutilizes the hardware. It often exhibits degraded

system performance.

The decoupling offered by microservices enables the organization

to understand the traffic that each microservice is serving. The

divide and conquer principle helps in improving the overall system

performance. Developers can adopt appropriate task parallelization

or clustering techniques for each service to improve the system

throughput. They can adopt appropriate programming languages and

frameworks, fine-tuned with the best possible configuration. Lastly,

hardware can be allocated by looking into service demand rather than

scaling the entire ecosystem.

 Maintainability
Technical debt is a major issue with monolithic systems. Overgrown

monoliths often have parts that are not well understood by the complete

team. Addressing technical debt in a monolith is difficult as people often

fear of breaking any of the working features. There have been cases where

unwanted dead code was made alive by addressing technical debt on a

particular monolith.

Microservice architecture helps to mitigate the problem by following

the principle of divide and conquer. The benefits can be correlated with

an object-oriented application design where the system is broken into

objects. Each object has a defined contract and thus leads to improved

maintenance of the overall system. Developers can unit test each of

the objects being refactored to validate the correctness. Similarly,

microservices created around a business context have a defined contract.

These loosely coupled services can be refactored and tested individually.

Chapter 1 IntroduCtIon to traefIk

9

Developers can address the technical debt of the service while validating

the service contract. Adopting microservices is often referred to as a

monolith’s technical debt payment.

You have looked at the advantages of Microservice architecture. But

the architecture also brings a lot of challenges. Some challenges are due to

the distributed nature of the systems, while others are caused by diversity

in the application landscape. Services can be implemented in different

technologies and scaled differently. There can be multiple versions of the

same service serving different needs. Teams should strategize to overcome

these challenges during application design and not as an afterthought.

Application deployment is one such important aspect. Monoliths have

been deployed on a three-tier model. But the same model does not work

well with microservices. The next section discusses the changes required

in the deployment model.

 n-Tier Deployment
n-tier deployment is a design implementation where web applications

are segregated into application presentation, application processing, and

data management functions. These functions are served by independent

components known as tiers. The application tiers allow segregation of

duties. All communication is linear across the tiers. Each tier is managed

by its own software subsystem. The n-tier deployment offers the benefit of

improved scalability of the application. Monolithic applications are usually

deployed as three-tiers (see Figure 1-2) applications.

• Presentation tier: This tier is responsible for serving

all static content of the application. It is usually

managed by using web servers like Apache, Nginx, and

IIS. These web servers not only serve applications static

UI components but also handle dynamic content by

routing requests to the application tier. Web servers

Chapter 1 IntroduCtIon to traefIk

10

are optimized to handle many requests for static

data. Thus, under load, they perform well. Some of

these servers also provide different load balancing

mechanisms. These mechanisms can support multiple

nodes of the application tier.

• Application tier: This tier is responsible for providing

all processing functions. It contains the business

processing logic to deliver the core capabilities of an

application. The development team is responsible for

building this in a suitable technology stack like Java,

Python, and .NET. This tier is capable of serving a

user request and generating an appropriate dynamic

response. It receives requests from the presentation

tier. To serve the request, the application tier may need

additional data to interact with the data tier.

• Data tier: This tier provides capabilities of data storage

and data retrieval. These data management functions

are outside the scope of the application. Thus, an

application uses a database to fulfill these needs. The

data tier provides data manipulation functions using an

API. The application tier invokes this API.

Chapter 1 IntroduCtIon to traefIk

11

There are many benefits to using a three-layer architecture, including

scalability, performance, and availability. You can deploy the tiers on

different machines and can use the available resources in an optimized

manner. The application tier delivers most of the processing capability.

Thus, it needs more resources. On the other hand, the web servers serve

static content and do not need many resources. This deployment model

improves application availability by having different replication strategies

for each tier.

Figure 1-2. Three-tier

Chapter 1 IntroduCtIon to traefIk

12

 Four-Tier Deployment
The three-tier deployment works in line with monolith applications.

The monolith is usually the application tier. But with microservices, the

monolith is converted into several services. Thus the three-tier deployment

model is not good enough to handle microservice architecture. It needs

the following four-tier deployment model (see Figure 1-3).

• Content delivery tier: This tier is responsible for

delivering the content to the end user. A client can use

an application in a web browser or on a mobile app. It

often asks for making different user interfaces targeted

across different platforms. The content delivery tier is

responsible for ensuring that the application UI is working

well on these different platforms. This tier also abstracts

the services tier and allows developers to quickly develop

new services for the changing business needs.

• Gateway tier: This tier has two roles.

• Dynamically discover the deployed services and

correlate them with the user request

• Route requests to services and send responses

For each request, the gateway layer receives data from all

the underlying services and sends back a single aggregated

response. It has to handle different scenarios like role-based

access, delayed responses, and error responses. These

behaviors make it easier for the service tier. The service tier

can focus only on the business requirements.

• Services tier: This tier is responsible for providing all

business capabilities. The services tier is designed for

a microservices approach. This tier provides data to its

clients without concern for how it is consumed. The

Chapter 1 IntroduCtIon to traefIk

13

clients can be other services or application UI. Each of

the services can be scaled based on their requests load

pattern. The clients have the responsibility to determine

the new instances. All of this enables a pluggable

approach to the application ecosystem. New services

can be built by consuming existing services. They can

be readily integrated into the enterprise landscape.

• Data tier: This tier provides capabilities of data storage

and data retrieval. Data management capabilities are

still beyond the application scope. But each service has

an exclusive data management infrastructure. It can be

DBMS like MySQL or a document store like Mongo.

Figure 1-3. Four-tier

Chapter 1 IntroduCtIon to traefIk

14

The four-tier architecture (see Figure 1-3) was pioneered by early

microservices adopters like Netflix, Amazon, and Twitter. At the center

of the paradigm, the gateway tier is responsible for binding together

the complete solution. The gateway needs a solution that can link the

remaining tiers together so all of them can communicate, scale, and

deliver. In the three-tier architecture, the presentation tier had webservers

that can be adopted for the gateway tier. But first, you should determine

the characteristics required to be a gateway tier solution.

 Gateway Characteristics
A gateway is the point of entry for all user traffic. It is often responsible for

delegating the requests to different services, collate their responses, and

send it back to the user. Under microservice architecture, the gateway must

work with the dynamic nature of the architecture. The following sections

discuss the different characteristics of the gateway component.

 Application Layer Protocols
The OSI networking model handles traffic at Layer 4 and Layer 7. Layer 4

offers only low-level connection details. Traffic management at this layer

can only be performed using a protocol (TCP/UDP) and port details. On

the other hand, Layer 7 operates at the application layer. It can perform

traffic routing based on the actual content of each message. HTTP is one of

the most widely used application protocols. You can inspect HTTP headers

and body to perform service routing.

Layer 7 load balancing enables the load balancer to make smarter

load-balancing decisions. It can apply various optimizations like

compressions, connection reuse, and so forth. You can also configure

buffering to offload slow connections from the upstream servers to

improve overall throughput. Lastly, you can apply encryption to secure our

communication.

Chapter 1 IntroduCtIon to traefIk

15

In the current ecosystem, there are a wide variety of application

protocols to choose from. Each of these protocols serves a set of needs.

Teams may adapt a particular application protocol, let’s say gRPC because

it is better suited for their microservice. This does not require the other

teams to adapt to the same application protocol. But in the ecosystem, the

gateway needs to delegate traffic to most of these services. Thus, it needs

to have support for the required protocol. The list of application protocols

is extensive. Consequently, the gateway needs to have a rich set of current

protocols. Moreover, it should be easy to extend this list by adding new

protocols.

PROTOCOLS

HTTP/2 is the next version of the http/1.1 protocol. It is a binary protocol

and does not change any of the existing http semantics. But it offers real-

time multiplex communication and improves the application performance by

employing better utilization of underlying tCp connections.

gRPC is a binary rpC protocol. It offers various features, such as multiplexing,

streaming, health metrics, and connection pooling. It is often used with

payload serialization like JSon or protocol buffers.

REST (representational State transfer) is an application protocol based on

http semantics. the protocol represents resources that are accessed using

http methods. It is often used with a JSon payload to describe the state.

Another important aspect is the interprocess communication

paradigm. Traditionally, we create synchronous applications based on

HTTP. But with data-driven microservices, you may want to adopt an

asynchronous model, like ReactiveX and Zeromq. A gateway component

needs to support both these forms of communication. Developers should

be able to pick and choose which model works for their application.

Chapter 1 IntroduCtIon to traefIk

16

 Dynamic Configuration
In a monolith application, you know the location of our backend

application. The location does not change often, and more instances of the

application are not created at runtime. Since most servers are known, it is

easier to provide these details in a static configuration file.

But in a microservices application, that solution does not work. The

first challenge arises from the number of microservices. Usually, there are

limited services at the start. But as the system grows, people realize there

can be multiple fine-grained services for every business function. Often

the number can grow to a couple of hundred services. It is a daunting task

to allocate a static address to each of these services and maintain the same

updates in a static file.

The second challenge arises from scalability offered by microservices.

Services can be replicated during load times. These services are removed

when the load subsides. This runtime behavior of microservices gets

multiplied by the number of services in the ecosystem. It is impossible to

keep track of all these changes in a static configuration file.

To solve discovery issues, a microservice architecture advocates a

service registry. It is a database containing the network locations of service

instances. The service registry needs to be updated in near real time. It

needs to reflect the new locations as soon as they are available. A service

registry needs to have high availability. Consequently, it consists of a

cluster of nodes that replicate data to maintain consistency.

SERVICE REGISTRY PROVIDERS

the following are the most widely used service registry providers.

Eureka is a reSt-based solution for registering and querying service

instances. netflix developed the solution as part of its microservices journey. It

is often used in the aWS cloud.

Chapter 1 IntroduCtIon to traefIk

17

etcd is a highly available, distributed, consistent, key-value store. It is used

for shared configuration and service discovery. kubernetes uses etcd for its

service discovery and configuration storage.

Consul is a solution for discovering and configuring services created by

hashicorp. Besides the service registry, Consul provides extensive functions

like health-checking and locking. Consul provides an apI that allows clients to

register and discover services.

Apache Zookeeper was created for the hadoop ecosystem. It is a high-

performance coordination service for distributed applications. Curator is a Java

library created over Zookeeper to provide service discovery features.

The gateway component needs to interact with the service registry. It

can try to poll the service registry, but that is not efficient. Alternatively,

the service registry needs to push the changes to the gateway. The gateway

needs to pick these changes and reconfigure itself. Thus, in summary, the

gateway needs to integrate well with the registry.

 Hot Reloads

In a microservice architecture, numerous services are deployed. Each of

these existing services may be updated, or new services may be added. All

these changes need to be propagated to the gateway tier. Additionally, the

gateway component may need some upgrades to address issues. These

operations must be performed without making any impact on the end

user. A downtime of even a few seconds is detrimental. If the gateway

requires downtime for service updates, then the downtime gets multiplied

by the frequency of service updates. In summary, this can lead to frequent

service outages.

The gateway component should handle all updates without requiring

any restart. It must not make any kind of distinction between configuration

update or upgrade.

Chapter 1 IntroduCtIon to traefIk

18

 Observability
Observability is a concept borrowed from control theory. It is the process of

knowing the state of the system while being outside the system. It is about

all information you need to diagnose failures. Observability in microservices

is completely different from the one in monolith systems. In monolith

applications, there is a three-tier deployment with the following logs.

• Request log

• Application log

• Error log

You can connect back the logs to determine (with fair accuracy) what

the system had been performing. But in a microservice architecture,

there are tens or hundreds of different services you need to keep track of.

Using only logs to predict the application state is no longer possible. We

need new mechanisms for this purpose. The microservice architecture

recommends the following methods.

 Tracing

Request tracing is a method to profile and monitor distributed architectures

such as microservices. In microservices, a user request is typically handled

by multiple services. Each of these services performs its respective

processing. All of this is recorded in the form of request-spans. All these

spans of a request are combined into a single trace for the entire request.

Thus, request tracing shows the time spent by each service for a particular

request.

Any service failure can easily be seen in a request trace. The trace also

helps in determining performance bottlenecks. Tracing is a great solution

for debugging application behavior, but it comes at the cost of consistency.

All services must propagate proper request spams. If a service does not

provide a span or regenerates the span by neglecting the existing headers,

then the resultant request trace is not able to capture the said service.

Chapter 1 IntroduCtIon to traefIk

19

The gateway component receives all traffic from outside the

microservices ecosystem. It may distribute the request across different

services. Thus, the gateway component needs to generate request spans

for tracing.

 Metrics

Microservice best practices recommend generating application metrics

that can be analyzed. These metrics project the state of our services.

Over time, collecting metrics helps with analyzing and improving service

performance. In failure scenarios, metrics help determine the root cause.

Application-level metrics can include the number of queued inbound

HTTP requests, request latency, database connections, and the cache hit

ratio. Applications must also create custom metrics that are specific to

their context. The gateway component must also export relevant metrics

that can be captured. The metrics can be around Status code across

different application protocols like HTTP(2XX,4XX,3XX,5XX), service error

rates, request queue, and so forth.

In summary, the gateway component needs to offer a wide variety of

observability output. It must export stats, metrics, and logs to integrate

with monitoring solutions in the microservice architecture.

 TLS termination
Data security is often a non-functional requirement of a system.

Applications have been achieving data security using TLS

communication. TLS communication allows data to be encrypted/

decrypted using private-public key pairs. The process of TLS termination

at the gateway or presentation tier enables applications to perform

better as applications do not have to handle the encryption and

decryption themselves. This worked well in traditional architectures

as the interprocess network calls were minimal. But in a microservice

Chapter 1 IntroduCtIon to traefIk

20

architecture, many services are running in the ecosystem. As per security

standards, unencrypted communication between services presents

a grave risk. Thus, as a best practice, you are required to encrypt all

network communication throughout the cluster.

Service authorization is another challenge in a microservice

architecture. In microservices, many more requests are made over the

network. A service needs to make sure which client is making invocations.

This helps place limits if the client service is malfunctioning. Putting

these controls is necessary as a rouge service and wreak havoc in the

system. Identity can be established in many ways. Clients can pass bearer

tokens, but this process is outdated. Bearer tokens can be captured and

passed by a potential attacker. As a best practice, you want to ensure that

clients are only authenticated using non-portable identities. Mutual TLS

(mTLS) authentication is thus a recommended practice. For services to

authenticate with each other, they each need to provide a certificate and

key that the other trusts before establishing a connection. This action of

both the client and server providing and validating certificates is referred

to as mutual TLS. It ensures that strong service identities are enforced

and exchanged as part of interprocess communication. Thus, the gateway

component needs to have dual behaviors.

• TLS termination for traffic from the outside world

• TLS identity for invoking different services using

mutual TLS

 Other Features
The gateway component performs the dual responsibilities of a reverse

proxy and a load balancer. It must provide support for advanced load

balancing techniques. Moreover, the component needs to support the

following features.

Chapter 1 IntroduCtIon to traefIk

21

• Timeouts and retries

• Rate limiting

• Circuit breaking

• Shadowing and buffering

• Content-based routing

The list of features is not limited. Load balancers often implement

various security features like authentication and DoS mitigation using IP

address tagging and identification and tarpitting. The gateway components

must address all these needs as well.

We have discussed the high-level behaviors expected from a gateway

solution. These needs were a wish list from established market products

like Apache, Nginx, and HAProxy. These servers provide support for a few

features, but some of the features have to be handled using workarounds.

In summary, these battle-tested solutions do not have first-class support

for microservice architecture. These products had developed their

architectures a decade back when the list of requirements was different.

The next section discusses Traefik, an open source product created to

handle microservices deployment needs.

 Traefik
Traefik is an open source API gateway. It was designed to simplify

complexity regarding microservices operations. Traefik achieves the

same by performing autoconfiguration of services. As per the product

documentation, developers should be responsible for developing services

and deploying them. Traefik can autoconfigure itself with sensible defaults

and send a request to the said service.

Chapter 1 IntroduCtIon to traefIk

22

Today’s microservices have changing needs. Traefik supports all

these needs by following a pluggable architecture. It supports every

major cluster technology such as Kubernetes, Docker, Docker Swarm,

AWS, Mesos, and Marathon (see Figure 1-4). All these engines have

their own integration points, also known as providers. There is no need

to maintain a static configuration file. The provider is responsible for

connecting to the orchestration engine and determining the services

running on it. It then passes this information back to the Traefik server,

which can apply this to its routing. Traefik is capable of integrating with

multiple providers at the same time.

Figure 1-4. Traefik

Traefik was developed in a Unix-centric way. It was built in Golang.

It delivers a fair performance. It has seen some memory issues. But there

is a large community of active developers working on Traefik. The overall

performance offered by Traefik is a little less than the established market

leaders like Nginx, but it makes up for it by providing first-class support for

all microservices features.

Chapter 1 IntroduCtIon to traefIk

23

Note traefik has more than 25k Github stars (at the time of
writing), making it one of the most actively viewed projects.

 Installation
Traefik is released often. Binary artifacts for these releases are available

on the project release page (https://github.com/containous/

traefik/releases). The product is released for every supported OS and

architecture. At the time of writing, the book Traefik 2.2.0 was the latest

release (see Figure 1- 5).

Figure 1-5. Traefik release page

Chapter 1 IntroduCtIon to traefIk

https://github.com/containous/traefik/releases
https://github.com/containous/traefik/releases

24

For the remainder of the chapter, we work with a macOS version, but

you can download a suitable release using any of the following methods.

• Open https://github.com/containous/traefik/

releases and click the release. traefik_v2.2.0_

darwin_amd64.tar.gz

• Execute the curl command for the terminal: curl -o

https://github.com/containous/traefik/releases/

download/v2.2.0/traefik_v2.2.0_darwin_amd64.tar.gz

• Unpack the archive: tar -zxvf traefik_v2.2.0_

darwin_amd64.tar.gz

• The folder should contain the traefik executable,

along with two more files.

$ ls -al

total 150912

-rw-rw-r--@ 1 rahulsharma staff 551002 Mar 25 22:38 CHANGELOG.md

-rw-rw-r--@ 1 rahulsharma staff 1086 Mar 25 22:38 LICENSE.md

-rwxr-xr-x@ 1 rahulsharma staff 76706392 Mar 25 22:55 traefik

The single binary provides a simplified and streamlined experience

while working across different platforms. Let’s now learn how to work with

Traefik.

 Traefik Command Line
Traefik can be started by invoking the traefik command. The single

command can do any of the following.

• Configure Traefik based on the provided configuration

• Determine the Traefik version

• Perform health-checks on Traefik

Chapter 1 IntroduCtIon to traefIk

https://github.com/containous/traefik/releases
https://github.com/containous/traefik/releases
https://github.com/containous/traefik/releases/download/v2.2.0/traefik_v2.2.0_darwin_amd64.tar.gz
https://github.com/containous/traefik/releases/download/v2.2.0/traefik_v2.2.0_darwin_amd64.tar.gz

25

It is important to understand how the traefik command supports

each of these behaviors. There are several parameters offered in the

traefik command. You will work with them once we reach the relevant

topics. As a first step, let’s validate the version of Traefik by executing the

following command.

$./traefik version

Version: 2.2.0

Codename: chevrotin

Go version: go1.14.1

Built: 2020-03-25T17:17:27Z

OS/Arch: darwin/amd64

This output not only shows the Traefik version, but it also shows

information related to the platform and the date on which the Traefik

binary was created. In general, the traefik command has the following

syntax.

traefik [sub-command] [flags] [arguments]

In this command, all arguments are optional. Now you configure

Traefik by invoking the command. It is important to note that Traefik

configuration can be provided in the following ways.

• A configuration file

• User-specified command-line flags

• System environment variables

They are evaluated in the order listed. Traefik applies a default value if

no value is specified. You can execute the command without passing any

of these values.

$./traefik

INFO[0000] Configuration loaded from flags.

Chapter 1 IntroduCtIon to traefIk

26

This output tells you that Traefik has started. It is configured with flag-

based configuration. The command starts listening on port 80. Let’s now

validate this by doing a cURL for http://localhost/.

$ curl -i http://localhost/

HTTP/1.1 404 Not Found

Content-Type: text/plain; charset=utf-8

X-Content-Type-Options: nosniff

Date: Fri, 01 May 2020 16:16:32 GMT

Content-Length: 19

404 page not found

The cURL request gets a 404 response from the server. We revisit the

configuration details in the next chapters when we discuss entry-points,

routers, and services.

 Traefik API
Traefik also provides the REST API, which accesses all the information

available in Traefik. Table 1-1 describes a few major endpoints.

Table 1-1. API Endpoints in Traefik

Endpoint Description

/api/version provides information about the traefik version

/api/overview provides statistics about http and tCp along with the

enabled features and providers

/api/entrypoints Lists all the entry points information.

/api/http/services Lists all the http services information

/api/http/routers Lists all the http router information

/api/http/middlewares Lists all the http middlewares information

Chapter 1 IntroduCtIon to traefIk

27

The full list of APIs is available at traefik.io/v2.2/ operations/

api/#endpoints. The API is disabled by default. It needs to be enabled by

passing appropriate flags. You can activate the API by starting Traefik with

api.insecure flag, which deploys the REST API as a Traefik endpoint.

rahulsharma$./traefik -api.insecure true

INFO[0000] Configuration loaded from flags.

Now let’s do a lookup for http://localhost:8080/api/overview in the

browser. The output shows statistics returned from the API (see Figure 1- 6).

Figure 1-6. API overview output

Chapter 1 IntroduCtIon to traefIk

28

The behavior can also be achieved by using TRAEFIK_API_INSECURE

environment variable. The environment variable is equivalent to api.

insecure flag. Let’s run the command again by setting the environment

variable.

rahulsharma$ export TRAEFIK_API_INSECURE=True

rahulsharma$./traefik

INFO[0000] Configuration loaded from environment variables.

Note enabling the apI on production systems is not recommended.
the apI can expose complete infrastructure and service details,
including sensitive information.

The preceding command deployed the Traefik API in an insecure

mode. This is not recommended. Traefik should be secured by

authentication and authorization. Moreover, the API endpoint should only

be accessible within the internal network and not exposed to the public

network. The book covers these practices in further chapters.

 Traefik Dashboard
Traefik API comes out of the box with a dashboard (see Figure 1-7).

The dashboard is for viewing purposes only. It displays the status of all

components configured in Traefik. The dashboard also displays how

each of these deployed components is performing. The dashboard is a

visual representation that can be used by operation teams for monitoring

purposes. Once you have started Traefik in an insecure manner, look up

http://localhost:8080/dashboard#/.

Chapter 1 IntroduCtIon to traefIk

29

The dashboard shows TCP and UDP services. There are two listening

ports with HTTP-based applications. The dashboard also captures the

error rate from each service.

 Summary
In this chapter, you looked at how the adoption of microservices has

changed the requirements from a gateway. We discussed the various

behaviors expected from a gateway component. Established market

products like Nginx and HAProxy have tried to adapt these features.

Figure 1-7. Traefik dashboard

Chapter 1 IntroduCtIon to traefIk

30

But these products have been unable to provide first-class support of all

needs. Traefik was built to support these needs. There are various ways

to configure Traefik. Configuration can be passed from file, parameters,

or environment variables. It has sensible defaults for all unspecified

configuration. Lastly, you looked at the API and the dashboard available

in Traefik. Since we have deployed Traefik, let’s configure it in the next

chapter to handle a few endpoints.

Chapter 1 IntroduCtIon to traefIk

31© Rahul Sharma, Akshay Mathur 2021
R. Sharma and A. Mathur, Traefik API Gateway for Microservices,
https://doi.org/10.1007/978-1-4842-6376-1_2

CHAPTER 2

Configure Traefik
In the last chapter, you looked at how the adoption of microservices

has changed the requirements of behaviors expected from a gateway

component. Traefik was built to support all these needs. There are

various ways to configure Traefik; configuration can be passed from a

file, parameters, or environment variables. It has sensible defaults for all

unspecified configuration. You also looked at the API and the dashboard

available in Traefik. In this chapter, let’s build upon where you left off by

taking a deep dive into various ways to configure Traefik to expose a few

endpoints.

This chapter covers the basics of routing. It discusses the various

components used in routing. We introduce a small sample application

that you use throughout this chapter. The Traefik routing configuration is

applied to expose this application to the external world. In this chapter,

you try to manually configure Traefik to expose a simple service. In later

chapters, you can build upon this to leverage Traefik’s autoconfiguration

capabilities.

 Configuration Topics
Let’s cover the following Traefik configuration to expose a sample

application on the Traefik gateway.

• Entrypoints

• Providers

https://doi.org/10.1007/978-1-4842-6376-1_2#DOI

32

• Routers

• Rules

• Middleware

• Services

The interaction between these configuration pieces is shown in

Figure 2-1. We describe each in detail as you move forward.

Figure 2-1. Traefik configuration architecture

 Introduction to Sample Web Service
Before proceeding to the Traefik configuration, let’s look at the sample

application to expose in Traefik. We use this simple web API throughout

this chapter to serve traffic through Traefik.

This simple service is written in Go (as shown in Listing 2-1) and

listens on HTTP port 9080. It returns a “Hello World” string on the

default path “/”.

Chapter 2 Configure traefik

33

Listing 2-1. Simple Web API Written in Go

main.go

package main

import (

"fmt"

"log"

"net/http"

)

func main() {

http.HandleFunc("/", handler)

log.Println("Server listening on port 9080...")

log.Fatal(http.ListenAndServe(":9080", nil))

}

func handler(w http.ResponseWriter, r *http.Request) {

fmt.Fprintf(w, "Hello, World")

}

Note You need to have go 1.1.3 installed on your system to
run this example. however, it does not need any other special
requirements apart from that. a discussion of go installation and
execution is beyond the scope of this book; however, the official go
documentation is very comprehensive.

In the last chapter, you saw how to install and set up Traefik in stand-

alone mode on the machine. Here, you use Traefik CLI. All the examples

in this chapter are run on macOS. However, you should be able to easily

follow along if you have Go and Traefik CLI installed.

When you run the Go service, you see the console message in Listing 2-2.

Chapter 2 Configure traefik

34

Listing 2-2. Running the Go web API

➜ hello-world-service> go run main.go

2020/05/02 20:34:26 Server listening on port 9080...

When you open this URL in the browser, you see the following (see

Figure 2-2).

Figure 2-2. Screenshot of browser open to URL http://localhost:9080/

Figure 2-3. Exposing “Hello World” Go service on Traefik

And you see the following with curl on the command line (see Listing 2-3).

Listing 2-3. Testing the API endpoint with curl

➜ hello-world-service> curl localhost:9080

Hello, World

For the rest of this chapter, we run this sample application and

configure Traefik to expose this application’s endpoint. In the course of

this, we explore the various Traefik configuration pieces.

Chapter 2 Configure traefik

35

Note for the rest of this chapter, the terms upstream and downstream
describe directional requirements in relation to the message flow: all
messages flow from upstream to downstream. the terms inbound and
outbound describe directional requirements in relation to the request route:
inbound means toward the origin server and outbound means toward
the user agent. this is per the http specification rfC 7230 Section 2.3
(https://tools.ietf.org/html/rfc7230#section-2.3).

 Traefik Configuration
Traefik has two ways of providing configuration: static and dynamic (see

Figure 2-4).

Figure 2-4. Different configuration types in Traefik

Chapter 2 Configure traefik

https://tools.ietf.org/html/rfc7230#section-2.3

36

Static configuration is provided at startup time through the following

mechanisms. It does not change once Traefik starts up.

• File

• CLI

• Environment variables

For static configuration, you configure Traefik first through CLI, then

environment variables, and finally, static file configuration.

You define entrypoints in a static configuration—a file or

CLI. Entrypoints are the port definition for the ports on which Traefik

listens for incoming TCP/UDP traffic.

Providers are the other part of the puzzle which must be specified in

a static startup configuration. Providers give Traefik its power. Dynamic

configuration, such as routers and services, is changed and refreshed at

runtime and configured through providers. Instead of having to manually

configure each downstream service, Traefik can instead talk to your service

catalog via a set of preconfigured providers. There are providers for Docker,

Kubernetes, and Consul, as well as stores such as files and key-value stores

such as etcd. This allows Traefik to automatically expose downstream

services on the edge. In this chapter, you are specifying the dynamic

configuration by manually using FileProvider. In later chapters, you take

a deeper dive into how Traefik integrates with other providers, such as

Consul and Kubernetes.

 Entrypoints
Traefik configuration defines a set of entrypoints (or port numbers) where

incoming requests are listened for. These entrypoints can serve HTTP,

TLS, gRPC, or TCP traffic. You can define an entrypoint for each backend

service you want to expose through the Traefik edge gateway. Entrypoints

define the low-level details of addresses, protocols, headers, transport

details such as timeouts, and TLS details.

Chapter 2 Configure traefik

37

Before you get started defining the entrypoints, let’s first revisit how

you want to run Traefik and establish how you are observing the defined

configuration at runtime. You start Traefik from the command line without

any other configuration. To observe the results of the configuration in

further steps, you also enable the Traefik web dashboard by passing the

'--api.dashboard=true' flag.

 Starting Traefik with CLI Arguments

Listing 2-4. Start Traefik with command line arguments

➜ ~ ./traefik --api.dashboard=true --api.insecure=true

INFO[0000] Configuration loaded from flags.

Listing 2-4 starts up Traefik on localhost on port 8080 with the Traefik

dashboard exposed with the default configuration. The dashboard is

served up under the /api/dashboard/ route.

By default, Traefik recommends exposing the dashboard in secure

mode; since you just want to see the dashboard right now without

much configuration, you start it in insecure mode with the '--api.

insecure=true' flag. Note that this is not recommended for a production

use case.

As you can see in Figure 2-5, the Traefik dashboard has a set of sections

that allow you to observe all the capabilities configured and enabled in

Traefik. Currently, only the default configuration is exposed yet in the

Traefik instance.

Chapter 2 Configure traefik

38

Figure 2-5. Screenshot of Traefik dashboard open on http://
localhost:8080/

Chapter 2 Configure traefik

39

There are two entrypoints defined by default.

• A default HTTP entrypoint listening on port 80

• An entrypoint named Traefik listening on port 8080

which provides access to the dashboard

The dashboard is not exposed via any special mechanism. Traefik

exposes it using a standard entrypoint configuration. Below the

entrypoints, you see the routers, middleware, and services categorized by

protocol—HTTP, TCP, and UDP. As you move forward, you drill down into

these further sections you see on the dashboard.

As you can see, there a bunch of entrypoints, routers, middleware,

and services defined by Traefik. The next step is to expose a downstream

service using these same mechanisms.

As you have seen, by default Traefik already listens on port 80 (default

HTTP) and 8080 (dashboard HTTP) when you enable the web dashboard.

Let’s define the own entrypoint to expose the “Hello World” Go service

already discussed through Traefik.

First, you need to define an entrypoint. This is done at startup time in a

static configuration using one of the following approaches.

• CLI arguments

• Environment variables

• Configuration file traefik.yml in the current directory

 Starting Traefik with Entrypoint Defined with CLI

Listing 2-5. Traefik entrypoint defined through command line

argument

➜ ~ ./traefik --api.dashboard=true --api.insecure=true

 --entryPoints.web.address=:80

INFO[0000] Configuration loaded from flags.

Chapter 2 Configure traefik

40

Listing 2-5 defines an entrypoint called the web that listens on port 80.

This overrides the default HTTP entrypoint that you saw earlier on port 80

(see Figure 2-6).

Figure 2-6. Entrypoints in Traefik dashboard open on http://
localhost:8080/

When you try accessing this port on the localhost from cURL, you see

the output in Listing 2-6. Traefik is listening to this port, but there is no

service at the backend connected to this port yet.

Listing 2-6. Testing the localhost 80 port with curl

➜ hello-world-service> curl localhost

404 page not found

We successfully exposed the entrypoint using command-line

parameters to define the static configuration. Next, let’s try doing the same

using environment variables.

 Starting Traefik with Entrypoint Defined
in Environment Variables

You execute the following commands in the terminal to start up Traefik

with an entrypoint named web exposed on port 80 (see Listing 2-7).

Chapter 2 Configure traefik

41

Listing 2-7. Starting Traefik with entrypoint configuration in

environment variables

➜ traefik-config> export TRAEFIK_API_DASHBOARD=true

➜ traefik-config> export TRAEFIK_API_INSECURE=true

➜ traefik-config> export TRAEFIK_ENTRYPOINTS_WEB_ADDRESS=":80"

➜ traefik-config> traefik

INFO[0000] Configuration loaded from environment variables.

When you access this endpoint in the browser, you see the same results

as before (see Figure 2-7).

Figure 2-7. No backend service connected to port 80 yet

Command-line arguments and environment variables are fine to play

around with; however, for the rest of this chapter, you are providing all

configuration via files. This is the recommended way to configure Traefik

as file configuration is simple and less prone to typos and errors. It can also

be tracked easily in source control, enabling more of a GitOps model. Next,

let’s see how to achieve that.

 Entrypoint Defined with Config File Traefik.yml
in the Current Directory

The Traefik static configuration file can be supplied in multiple ways.

• Traefik.yml file in the current directory

• Traefik.yml file in $HOME/.config

Chapter 2 Configure traefik

42

• Location of the file passed in as a command-line

argument to the CLI

--configFile=path/to/traefik-static-config.yml

For simplicity, we restrict the Traefik configuration file to the current

directory for the rest of this chapter.

 TOML vs. YAML

There are two competing formats to define file configuration in Traefik:

TOML and YAML.

While the Traefik team prefers TOML, all the configuration examples

in this chapter are in YAML. TOML is a lesser-known and obscure format,

while YAML is widely supported in various platforms and is the default

declarative state configuration format for both the Docker and Kubernetes

ecosystems. Instead of learning a new format for defining simple

configuration, let’s stick to YAML for all needs. YAML has full-feature parity

with TOML in all matters of Traefik configuration.

The traefik.yml file in the current directory specifies the entrypoint,

as shown in Listing 2-8. You also add the configuration to enable the

dashboard here in this file instead of enabling it in the command line.

Listing 2-8. Traefik Static YAML Configuration

Entrypoints have to be defined as static configuration in

traefik.yml

entryPoints:

 web:

 address: ":80"

api:

 insecure: true

 dashboard: true

Chapter 2 Configure traefik

43

For comparison, the same configuration in TOML format is defined in

Listing 2-9. You do not use this; it is just included for reference.

Listing 2-9. Traefik Static TOML Configuration

Entrypoints have to be defined as static configuration in

traefik.yml

[entryPoints]

 [entryPoints.web]

 address = ":80"

[api]

insecure = true

dashboard = true

Let’s now start up Traefik with the static YAML configuration.

Listing 2-10. Startup Traefik with static file configuration

➜ traefik-config> ./traefik

INFO[0000] Configuration loaded from file: /Users/akshay/

traefik-book/traefik-config/traefik.yml

When you start up Traefik (see Listing 2-10), it automatically picks up

the traefik.yml file in the current directory. The result of this is the same as

seen in the previous two subsections.

 Routers
For each entrypoint exposed by Traefik, corresponding routers must be

attached to route traffic flow further. Routers consist of two components.

• A set of rules. Each incoming request on an entrypoint

is matched against this set of rules.

Chapter 2 Configure traefik

44

• A set of middleware. Each request matched by a rule

can be transformed using a corresponding middleware.

Middleware is where all the specialized gateway

capabilities of authentication and rate limiting are

carried out.

Now that the entrypoint is exposed, connect the backend Go API to the

entrypoint using router configuration. Let’s first look at the default routers

defined in the Traefik dashboard.

There are two HTTP routers defined by default. When you click

‘Explore ->’ in the Routers section on the main page, you see the what’s

shown in Figure 2-8.

Figure 2-8. Drill down to default HTTP routers.

• The first route defined under ‘/api’ is the default parent

route named api@internal.

• The second route under ‘/’ is the dashboard route

named ‘dashboard@internal’.

Chapter 2 Configure traefik

45

Figure 2-9. Detail view of api@internal HTTP router

You can drill down further into these routers and check their details

(see Figures 2-9 and 2-10). These routes serve the traffic for the API and

dashboard, respectively.

Chapter 2 Configure traefik

46

You must define the HTTP routers to show similarly on the Traefik

dashboard. From this point onward, you are leveraging the FileProvider to

specify the dynamic configuration. Traefik can talk to the service discovery

mechanism of your platform through supported providers. For the simple

use case, you are specifying all the configuration in a file, which is easily

supported by Traefik. All configuration for routers, middleware, and

services is specified through dynamic configuration. There are two ways to

specify the FileProvider configuration.

Figure 2-10. Detail view of dashboard@internal HTTP router

Chapter 2 Configure traefik

47

• The individual file specified through the filename

• The entire directory of configuration files, which is the

recommended method in production because you can

divide up the various configurations into multiple files

In Listing 2-11, you specify a single filename in the current directory

where you put all the dynamic configurations. Traefik then watches this

file for any changes, and configuration is refreshed automatically within

Traefik.

Listing 2-11. Dynamic configuration file name defined in static

cofiguration

Entrypoints have to be defined as static configuration in

traefik.yml

entryPoints:

 web:

 address: ":80"

providers:

 file:

 filename: "traefik-dynamic-conf.yml"

 watch: true

api:

 insecure: true

 dashboard: true

 Router Rules

In the traefik-dynamic-conf.yml dynamic configuration file, you first define

the HTTP router and its routing rule (see Listing 2-12).

Chapter 2 Configure traefik

48

Listing 2-12. traefik-dynamic-conf.yml dynamic configuration file

http:

 routers:

 router0:

 entryPoints:

 - web

 service: hello-world

 rule: Path(`/hello-world`)

Once all the configuration is set up, you run Traefik CLI in the same

directory (see Listing 2-13).

Listing 2-13. Running Traefik with router rule in dynamic

configuration file

➜ traefik-config> ./traefik

INFO[0000] Configuration loaded from file: /Users/akshay/code/

k8s/traefik-book/traefik-config/traefik.yml

ERRO[2020-05-13T09:22:17+05:30] the service "hello-world@file"

does not exist entryPointName=web routerName=router0@file

ERRO[2020-05-13T09:22:18+05:30] the service "hello-world@file"

does not exist entryPointName=web routerName=router0@file

You defined a rule to match a request path (/hello-world) to a

backend service that is not yet configured, so Traefik throws up a console

error on startup. You see a similar error in the dashboard (see Figure 2-11).

The HTTP router section shows an error. Also of interest is the

Providers section at the bottom of the page, which now has an entry for

FileProvider.

Chapter 2 Configure traefik

49

Figure 2-11. Dashboard view with HTTP router

Chapter 2 Configure traefik

50

The next piece of the router to configure should be middleware;

however, we will skip it for now and come back later. First, you configure

the service backend and get the communication working end-to-end.

 Services
Services define the actual targets where the request must be routed. They

are the actual API endpoints that you want to expose through Traefik.

Note that the service type must match the router type (e.g., HTTP router

can only be attached to HTTP service). After matching and transforming

requests, routers forward them to services you wish to expose.

Before defining the service, let’s look at the default services configured

in the Traefik dashboard. There are three HTTP services defined. When

you click ‘Explore ->’ in the Services section, you see what’s shown in

Figure 2-12.

Figure 2-12. Dashboard default services

You can drill down further into each of these services. The api@

internal service handles Traefik API requests (see Figure 2-13).

Chapter 2 Configure traefik

51

The dashboard@internal service (see Figure 2-14) handles dashboard

requests. Both services are implicitly registered by Traefik when the API

and dashboard are enabled.

Figure 2-13. Dashboard default service api@internal

Chapter 2 Configure traefik

52

Figure 2-14. Dashboard default service dashboard@internal

Figure 2-15. Dashboard default service noop@internal

There is also a noop@internal (as seen in Figure 2-15) which is used

in redirection.

Chapter 2 Configure traefik

53

Listing 2-14 defines a backend service in traefik-dynamic-conf.yml to

fulfill the rule set up in the previous section to route traffic to the Go “Hello

World” service. Please recall that the service runs on localhost port 9080.

Listing 2-14. Service configuration in dynamic configuration file

Dynamic configuration

http:

 routers:

 router0:

 entryPoints:

 - web

 service: hello-world

 rule: Path(`/hello-world`)

 services:

 hello-world:

 loadBalancer:

 servers:

 - url: http://localhost:9080/

You now start up Traefik and try to access the Go service on the Traefik

port 80 on the subpath ‘/hello-world’. When you use a curl, you see the

output in Listing 2-15.

Listing 2-15. Access service endpoint on localhost with curl

➜ traefik-config> curl localhost/hello-world

Hello, World

You have now successfully exposed the backend service on port 80 in

Traefik. Let’s look at what shows up in the Traefik dashboard. You see the

HTTP routers, services, and middleware on the main dashboard page

(see Figure 2-16).

Chapter 2 Configure traefik

54

You can drill down to the HTTP services page where you see a new

entry for the hello-world service (see Figure 2-17).

Figure 2-17. Drill down to configured HTTP services.

Figure 2-16. Router and service configured

You can then drill down to the hello-world service to view its details

(see Figure 2-18). This also shows the backend service URL in the Servers

section.

Chapter 2 Configure traefik

55

You then navigate back to the main Dashboard page (see Figure 2-19).

Figure 2-18. Drill down to configured Hello World file HTTP service

Chapter 2 Configure traefik

56

Figure 2-19. Traefik dashboard before configuring middleware

Chapter 2 Configure traefik

57

From here, you can drill down to the HTTP routers (see Figure 2-20).

Figure 2-20. Drill down to configured HTTP routers

You can then drill down to the HTTP router, which attaches the

hello- world service to the web entrypoint (see Figure 2-21).

Figure 2-21. HTTP router connected to hello-world service

Chapter 2 Configure traefik

58

 Middleware
Now that you have successfully exposed the first service in Traefik, let’s

circle back and add a middleware to the router to add extra API gateway

capabilities.

Two HTTP middleware are defined by default. When you click ‘Explore ->’

in the Middlewares section, you see what’s shown in Figure 2-22.

Figure 2-22. Default middleware

You can easily navigate down to view the details of the implicitly

defined middleware. They are automatically enabled along with the

dashboard and are useful for special handling of the URL pattern (see

Figures 2-23 and 2-24). This way, even internal Traefik services follow the

same configuration mechanism as user-defined services.

Chapter 2 Configure traefik

59

Figure 2-23. Default dashboard redirect middleware

Chapter 2 Configure traefik

60

For the use case, you define the built-in basic auth middleware to

protect the Hello World API.

Let’s start by generating a username-password pair using the htpasswd

command-line tool. This is the recommended method on the basic auth

page in the Traefik documentation. If you do not have this tool on your

system, you can use any other compliant password hashing utility. You use

admin as username and admin@123 as the password. The username can

be specified as plain-text, but the password must be supplied hashed in

MD5, SH1, or BCrypt format (see Listing 2-16).

Figure 2-24. Default stripprefix middleware

Chapter 2 Configure traefik

61

Listing 2-16. Generate username password pair for authentication

➜ traefik-config> htpasswd -nb admin admin@123

admin:$apr1$JsindKAS$zCWAvabJOgQvI.Dd3zjtE.

You copy this value to the Traefik dynamic configuration (see Listing 2-17).

Listing 2-17. Basic auth middleware configuration in dynamic

configuration file

Dynamic configuration

http:

 routers:

 router0:

 entryPoints:

 - web

 middlewares:

 - basic-auth

 service: hello-world

 rule: Path(`/hello-world`)

 services:

 hello-world:

 loadBalancer:

 servers:

 - url: "http://localhost:9080/"

Declaring the basic auth middleware with the user credentials

 middlewares:

 basic-auth:

 basicAuth:

 users:

 - "admin:$apr1$JsindKAS$zCWAvabJOgQvI.Dd3zjtE."

Chapter 2 Configure traefik

62

Now let’s try the /hello-world endpoint in the browser. You get a basic

auth prompt in the browser where you are asked to enter the username

and password (see Figure 2-25). After entering these, you can see the

response of the hello-world service (see Figure 2-26).

Figure 2-25. Browser basic authentication

Figure 2-26. Final authenticated Hello World

Let’s try the same with curl on the command line (see Listing 2-18).

Listing 2-18. Testing basic auth middleware applied on localhost

endpoint

➜ traefik-config> curl localhost/hello-world

401 Unauthorized

➜ traefik-config> curl -u admin localhost/hello-world

Enter host password for user 'admin':

Hello, World

Chapter 2 Configure traefik

63

Now that this is working, let’s take one final look at the configuration

in the Traefik dashboard. You see that the HTTP Middlewares tile on the

main page now shows another middleware in the count (see Figure 2-27).

Figure 2-27. Final configuration

You drill down to the Middlewares page where you can view the

defined basic-auth@file middleware. Traefik automatically assigns the

name. You also see other implicit middleware (see Figure 2-28).

Figure 2-28. Drill down to configured HTTP middleware

Chapter 2 Configure traefik

64

You then drill down further and view the configuration for the

middleware. You can also see the user you defined for authentication (see

Figure 2-29).

Figure 2-29. Configured basic auth middleware

From this page, you can directly navigate to the associated router for

this middleware and view its details (see Figure 2-30).

Chapter 2 Configure traefik

65

 Summary
In this chapter, you looked at basic configuration pieces of Traefik and

how to manually configure Traefik to expose an API on a particular port

and route traffic to the corresponding backend service. You looked at

various ways to configure Traefik and passed configuration from a file, CLI

parameters, and environment variables. You also did a deep dive into the

Traefik dashboard to understand how to work with it to understand the

configuration.

Until now, you have simply been routing traffic to one instance of a

backing service. In the next chapter you deep dive into the load balancer

capabilities of Traefik, for HTTP as well as TCP traffic.

Figure 2-30. Routers, services, and middleware connected

Chapter 2 Configure traefik

67© Rahul Sharma, Akshay Mathur 2021
R. Sharma and A. Mathur, Traefik API Gateway for Microservices,
https://doi.org/10.1007/978-1-4842-6376-1_3

CHAPTER 3

Load Balancing
Scaling is an important tenet of application design. Scaling not only

provides application performance, but, if done right, scaling also provides

application availability and fault tolerance. Developers must pay attention

to effectively scaling the application. It can’t be a post-development

thought. Previously, you learned that an application can be scaled

vertically by allocating more resources to a running instance. Monolithic

applications follow this principle. Chapter 1 explained how this is an

ineffective approach.

Moreover, to provide availability, we often pick a hot-cold deployment

pattern. This drives inefficiency because a cold instance is a standby

instance. It is only activated when the primary application instance is

down.

On the other hand, horizontal scaling allows you to run more than one

instance of the application simultaneously. Each of these instances can

run on the minimum required hardware and serve user requests. It is the

preferred mechanism for deploying an application in cloud environments.

It greatly improves application availability by using hot-hot deployments

(see Figure 3-1).

https://doi.org/10.1007/978-1-4842-6376-1_3#DOI

68

Once there are multiple instances of an application, a load balancer

must be configured to work with them effectively. A load balancer

application like Traefik can run at Layer 4 and Layer 7 of the open systems

interconnection (OSI) model. At Layer 4, it serves as a TCP/UDP proxy.

It works on the base of host and port information. At Layer 7, the load

balancer looks at many attributes (e.g., HTTP load balancing can be done

based on host, port, request path, or request headers). Thus, Traefik can

perform load balancing at both layers.

In Chapter 2, we configured HTTP services in Traefik. In this chapter,

we configure load balancing of HTTP services. Traefik also provides TCP

and UDP capabilities. We work with them, as well.

 HTTP Load Balancer
To effectively use horizontal scaling, we need a load balancer. The load

balancer is configured with all instances of the application. When the

load balancer receives a request, it must delegate the request to one of

Figure 3-1. Deployment types

Chapter 3 Load BaLanCing

69

the configured instances. Several load balancing algorithms can alter the

behavior of request handling. Each algorithm has pros and cons and works

better for some situations than others.

In the previous chapter, we configured Traefik using file type provider.

We created an entrypoint for port 80. We also added routers and services

to handle incoming requests. The services configuration points to the

location of an application. The load balancing algorithm is also governed

at the service level. Several services can use a particular algorithm,

while others can use a different algorithm. When we look at the service

configuration, it consists of the following blocks.

• Service: Defines the logical grouping of servers so that

common attributes can be applied

• Server: Defines the actual location of the application

Either of the two blocks configures load balancing in Traefik. In the

following section, we configure the different attributes to learn complete

behavior.

 Round Robin
A round robin (RR) is one of the simplest algorithms for load distribution.

The algorithm delegates requests to each available instance in equal

proportions (see Figure 3-2). It performs the operation in a circular

manner without any notion of priority or preference. Round-robin load

balancing works best when servers have roughly identical computing

capabilities.

Figure 3-2. Request distribution

Chapter 3 Load BaLanCing

70

In Figure 3-2, there are four servers in the application. The graph

depicts how the algorithm distributes incoming requests among them.

Going further, we need an HTTP application for configuring the round

robin. In the remaining sections, we work with a visitor log-keeping

application. The application has the following behaviors.

• Adds a guest name

• Lists the latest guest name

• Shows all guest names

The application is deployed on multiple boxes. Each application

instance is given a name, which is shown in the UI (see Figure 3-3). The UI

helps determine which instance serves the user request.

Figure 3-3. Visitor log screen

Traefik services configuration consists of a service and a server

block. The round robin is configured by using a server block.

http :

 routers :

 guest-router :

 entryPoints :

 - web

 rule : Host(`localhost`)

 service : guestbook-service

Chapter 3 Load BaLanCing

71

 services :

 guestbook-service :

 loadBalancer :

 servers :

 - url : "http://192.168.1.10:9090/"

 - url : "http://192.168.1.11:9191/"

The following is configured in the preceding code.

• Request routing is configured for the localhost

domain. The rule matches all incoming requests. In

the previous chapter, you saw the PATH rule, which

validates request URL location. Here we are validating

requests based on the hostname instead of the

request path. Traefik uses the guestbook-service

configuration to handle the request.

• The server section lists the URLs of all available

instances. It is configured as a list of values.

Let’s run the Traefik configuration and access http://localhost (see

Figure 3-4) in the browser. Service configuration is also available on the

Traefik dashboard (see Figure 3-5). It shows the complete status of a

service.

Figure 3-4. Multiple instances of visitor

Chapter 3 Load BaLanCing

72

If you refresh the browser a couple of times, you see that it is served

from both instances. We can add a few entries to the application. This data

is saved in the underlying database. The data is subsequently shown in both

instances. In a nutshell, the application is not keeping any state. All states are

persisted in the database. The classic round-robin algorithm is good enough

when the complete application is stateless, like a visitor logbook.

Figure 3-5. Traefik dashboard for round robin

On the other hand, the application can be stateful. This means each

application has some data that is local to it. In web applications, the state

is maintained using HTTP sessions. A session is created for every user. The

session is an in-memory store. It remains associated with the user. There is no

limit to what can be stored inside a session. Application developers can store

user-centric data like id, latest transactions, and UI styling. When requests are

routed from one instance to another, the session information is lost.

Chapter 3 Load BaLanCing

73

 Sticky Session

Session stickiness ensures that all requests from the user during the

session are sent to the same instance. The load balancer implements

this by persisting cookies in the user request. The load balancer creates

a cookie for the first user request. It then refers to that cookie for

every subsequent request. In Traefik, the cookie is configured at the

loadBalancer level.

Removed for Brevity

 services :

 guestbook-service :

 loadBalancer :

 sticky :

 cookie : {}

 servers :

 - url : "http://192.168.1.10:9090/"

 - url : "http://192.168.1.9:9191/"

In the code, we added the sticky attribute for a defined guest-service

loadBalancer. After the change, the requests can no longer toggle between

the two application instances. It is served from only one instance. We can

validate the instance details by looking-up cookie details in the browser

(see Figure 3-6).

Figure 3-6. Browser cookie

Chapter 3 Load BaLanCing

74

The configuration added a cookie with a generated name. The sticky

record provides the following optional attributes which can configure the

behavior of the generated cookie.

• Name: Specifies a cookie name instead of a generated one.

• HttpOnly: The flag mitigates cookie access through

client-side JavaScript.

• Secure: The attribute sends a cookie over an HTTPS

connection.

• SameSite: The attribute restricts cookies within the

same-site context. The context boundary is defined by

the various values of the attribute.

The Traefik dashboard also shows the updated configuration

(see Figure 3-7).

Figure 3-7. Traefik dashboard for sticky session

Chapter 3 Load BaLanCing

75

A cookie points to the server location that handled the original request.

Traefik must be configured to monitor all these application servers. If

the server specified in the cookie becomes unavailable, the request is

forwarded to a new server. Traefik updates the cookie with details of the

new server. This is achieved by configuring health checks for the instances.

Note When using classic round robin routing traefik keeps the
unhealthy server until application health checks are configured.

 Health Check

To work effectively, a load balancer should determine which backend

servers are performing well. This is accomplished by sending requests to

validate the instance status at periodic intervals. These requests are known

as health checks. Traefik routes requests only to healthy instances. It keeps

track of all active instances. Traefik drops an instance from the active

instances pool when it determines the instance is unhealthy. It keeps

monitoring unhealthy instances. Once the instance is restored, Traefik

adds it back to the active instance pool. Only a response to the heath check

request governs their status of the instance. Responses other than 2XX and

3XX are considered errors (see Figure 3-8).

Figure 3-8. Application errors

Chapter 3 Load BaLanCing

76

Traefik allows you to configure the server health using the health check

attribute of the service.

 services :

 guestbook-service :

 servers :

 - url : "http://192.168.1.10:9090/"

 - url : "http://192.168.1.11:9191/"

 healthCheck:

 path: /

 interval: "10s"

 timeout: "1s"

The following can be said about the preceding code.

• The / path is configured for health status lookup.

• The lookup is performed every 10 seconds. If the server

changes its state, it is known after a maximum of 10

seconds.

• Timeout configures the time interval for HTTP request-

timeout

To test the configuration, you can either stop one of the servers or raise

an error response (5XX,4XX) from the application. These health checks

are also visible in the Traefik dashboard under the Services tab. (see

Figure 3-9)

Chapter 3 Load BaLanCing

77

When working with sticky sessions, Traefik resets the cookie if the

server becomes unable. The request is then routed to one of the healthy

servers. Traefik updates the cookie with details of the new instance. All

further requests are routed to the new server.

 Weighted Round Robin
The weighted round robin (WRR) considers the resource capacities of

the application instances (see Figure 3-10). An instance with higher

hardware specifications than others can handle more requests. This is

done by assigning a weight to each instance. There are no specific criteria

to determine the weight. This is left to the system administrator. The node

with the higher specs is apportioned a greater number of requests. The

diagram in Figure 3-10 shows the request distribution for WRR.

Figure 3-9. Traefik dashboard with application health

Figure 3-10. Weighted distribution of requests

Chapter 3 Load BaLanCing

78

So far, you learned that weights are assigned to a different instance

of the application. But in Traefik, this is denoted at the service level

rather than the server level. In a previous section, we configured the

loadbalancer type of service. The service had the location of each of the

servers. But to work with WRR, we need to divide servers logically into

different load capacities. Each of these capacity service instances are

grouped into a weighted service instance with the associated weights

(see Figure 3-11).

Figure 3-11. Weighted service hierarchy

Removed for Brevity

 services :

 guestbook-service :

 weighted:

 services:

 - name: guestv1

 weight: 3

 - name: guestv2

 weight: 1

Chapter 3 Load BaLanCing

79

 guestv1 :

 loadBalancer :

 servers :

 - url : "http://192.168.1.10:9090/" -- host 1

 - url : "http://192.168.1.11:9191/" -- host 2

 guestv2 :

 loadBalancer :

 servers :

 - url : "http://192.168.1.12:9292/" -- Host 3

The following can be said about the preceding code.

• There are three hosts for above application. Host1 and

Host2 are grouped together.

• guestv1 defined configuration of grouped hosts.

guestv2 defined configuration for host three instance.

• guestbook-service configures both logical groups in

ratio 3:1. Traefik sends every fourth request to h3 while

the remaining requests are distributed in a round-robin

manner within host2 and host3.

You can see the weighted distribution in the Traefik dashboard shown

in Figure 3-12.

Chapter 3 Load BaLanCing

80

Figure 3-12. Weighted service

there is no health check for the weighted service. the health of the
weighted service depends on the health configured for the underlying
services.

 Sticky Session

In the previous section, we enabled a sticky session to bind the user to a

server. But when working with weighted services adding a sticky attribute

to the loadbalancer service is not good enough. The weight service cannot

recognize instance details from the cookie. To do so, we have to configure

a cookie at the weighted service level. In summary, session stickiness is

maintained at all levels of the service hierarchy. Thus, we need to add a

cookie at the weighted service level and the load balancer level.

Chapter 3 Load BaLanCing

81

 services :

 guestbook-service :

 weighted:

 services:

 - name: guestv1

 weight: 3

 - name: guestv2

 weight: 1

 sticky:

 cookie:

 httpOnly: true

 guestv1 :

 loadBalancer :

 sticky:

 cookie:

 httpOnly: true

 servers :

 - url : "http://192.168.1.10:9090/"

 - url : "http://192.168.1.9:9191/"

 guestv2 :

 loadBalancer :

 servers :

 - url : "http://192.168.1.11:9292/"

The following can be said about the preceding code.

• It enables session stickiness for guestbook-service by

adding the sticky attribute.

• It enables session stickiness for guestbookv1 by adding

the sticky attribute.

Chapter 3 Load BaLanCing

82

Figure 3-13. Browser cookies for all services

The configuration added a cookie with a generated name. The sticky

record has the optional attributes that can configure the behavior of

the generated cookies. We can validate the attributes in Browser cookie

console (see Figure 3-13). The configured cookie details are also visible on

Traefik dashboard (see Figure 3-14).

Figure 3-14. Sticky session for weighted service

Chapter 3 Load BaLanCing

83

Note traefik also supports dynamic request routing where weights
are evaluated for every request. But the feature is available in 1.X and
not in 2.X.

 Mirroring
Traffic shadowing or Mirroring is a deployment pattern where production

traffic is copied and sent to two places. The original production server gets

the actual request and the same get duplicated to a test environment. This

process helps validate regression issues in the new version of the application.

If the testing version has the same request URLs and parameters, then

mirroring can validate if the new version is as close to bug-free as possible.

Traffic mirroring is often done asynchronously. This makes sure that

the original request processing is not impacted in any manner. Moreover,

all mirrored requests are fire and forget. In summary, the response from

the mirror is ignored. It is not propagated back to the client in any scenario.

As a practice, we do not duplicate all requests to the mirror service.

If done so, it would require a testing infrastructure that is comparable

to production. Thus, only a percentage of the requests are replicated to

the mirror service. Traefik configures a mirror service as a different type

of service. It does not limit you to have one mirror service. We can add

as many mirror services as we required. We are only required to create a

hierarchy of services as it was done in WRR.

services :

 guestbook-service :

 mirroring:

 service: guestv1

 mirrors:

 - name: guestv2

 percent: 10

Chapter 3 Load BaLanCing

84

 guestv1 :

 loadBalancer :

 sticky:

 cookie:

 servers :

 - url : "http://localhost:9090/"

 healthCheck:

 scheme : http

 path: /

 interval: "10s"

 timeout: "1s"

 guestv2 :

 loadBalancer :

 servers :

 - url : "http://localhost:9191/"

 healthCheck:

 scheme : http

 path: /

 interval: "10s"

 timeout: "1s"

In the code, we did the following to create a mirror for guest-service.

• The top-level service (guest-service) is defined as a

composite service consisting of two different services.

• The mirroring attribute tells that the current service is

a mirroring service. We added only one mirror service.

• guestv2 is described as the mirror. It receives only 10

percent of the original request.

• Next, we define two loadBalancer services.

Chapter 3 Load BaLanCing

85

Lastly, we added healthCheck for each application. But the service

derives its health from the underlying original production service(s). The

health of the mirror has no impact on the heath of the original service.

The configured mirror service is also show on the service view of Traefik

dashboard (see Figure 3-15).

Besides sending a subset of requests, we often do not want to send large

requests. Again, here as well, the limit is based on the infrastructure available

with the mirror. This is done by setting up the maxBodySize attribute.

 services :

 guestbook-service :

 mirroring:

 service: guestv1

 maxBodySize : 1024

Figure 3-15. Mirror service

Chapter 3 Load BaLanCing

86

 mirrors:

 - name: guestv2

 percent: 10

 # Removed for brevity

The code defines a limit of 1024 as max body size. This send requests

have a size less than 1024 for a mirror service.

 TCP Service
Traefik can load balance TCP requests. TCP is the protocol for

communication across many popular applications like LDAP, MySQL, and

Mongo. The protocol creates a socket connection. All communication is

done in a request-response manner. In the following section, we load the

balance MongoDB server. MongoDB communicates over TCP protocol.

The installation of the MongoDB server is beyond the scope of the book.

Please refer to MongoDB documentation for the same.

Before we move ahead, we need to create an entrypoint for TCP in the

static configuration. The entrypoint sends all incoming TCP requests to the

mongo servers. The entrypoint is declared in the same manner as done for

the HTTP service in Chapter 2.

entryPoints :

 mongo :

 address : ":80"

providers :

 file :

 directory : /Users/rahulsharma/traefik/ch03/code

 watch : true

 filename : config

Chapter 3 Load BaLanCing

87

api :

 insecure : true

 dashboard : true

 Round Robin
We discussed the round-robin algorithm in the previous section. The

algorithm distributes requests equally among the listed servers. Traefik

allows you to load balance TCP services using the round-robin algorithm.

As a prerequisite, you need to have MongoDB running on two servers.

tcp :

 routers :

 mongo-router :

 entryPoints :

 - mongo

 rule : HostSNI(`*`)

 service : mongo-tcp-service

 services :

 mongo-tcp-service:

 loadBalancer :

 servers :

 - address : "192.168.1.10:27017"

 - address : "192.168.1.11:27017"

The following can be said about the preceding code.

• It describes a mongo-router for routing requests to

mongo-tcp-service.

• The TCP router has a single HostSNI rule. This enables

you to operate a TCP and HTTP service on the same

port. You see it when TLS support is enabled.

Chapter 3 Load BaLanCing

88

• mongo-tcp-service has the same declaration as an

HTTP service. It consists of a loadBalancer block.

• The loadBalancer block contains a list of addresses,

unlike the HTTP service, where the location was a

URL. In TCP, this is a combination of an IP and a port.

The configured TCP services are shown in TCP service view of Traefik

dashboard (see Figure 3-16).

Figure 3-16. Round-robin TCP service

The following command connects to Mongo servers using the Mongo

shell. You can determine which server is connected using the db.hostInfo

command.

Chapter 3 Load BaLanCing

89

$traefik:/# mongo -u root -p example --host localhost --port 80

MongoDB shell version v4.2.6

connecting to: mongodb://

 localhost:80/?compressors=disabled&gssapiServiceName=mongodb

Implicit session: session { "id" : UUID("6cc39569-0bc3-4602-

b582-566afaac0382") }

MongoDB server version: 4.2.6

Server has startup warnings:

2020-05-23T13:41:25.742+0000 I STORAGE [initandlisten]

2020-05-23T13:41:25.742+0000 I STORAGE [initandlisten] **

WARNING: Using the XFS filesystem is strongly recommended with

the WiredTiger storage engine

2020-05-23T13:41:25.742+0000 I STORAGE [initandlisten]

** See http://dochub.mongodb.org/core/prodnotes-filesystem

> db.hostInfo()

 Terminal Delay

A TCP client makes a connection only once. It then sends all requests

over the open connection. This is opposite to an HTTP protocol, where

every request is routed on a new connection. But this presents another

challenge. A connection can be closed from either side. It can be closed

from the server due to various reasons like business validations and

service restart. It can be closed from the client as well. Since TCP works

in duplex mode, every connection closed event must be acknowledged

from both sides. If the other end does not handle the connection closer,

the connection stays half-open. The open connection would lock Traefik

resources.

Connection close handling can be improved by configuring a

termination delay. The delay defines a timeout interval during which

Traefik waits for connection close from both sides. After the delay, Traefik

Chapter 3 Load BaLanCing

90

terminates the connection and recollects the allocated resources. The

delay clock is set when either party sends a close event.

removed for Brevity

services :

 mongo-tcp-service:

 terminationDelay: 50

 loadBalancer :

 servers :

 - address : "192.168.1.10:27017"

 - address : "192.168.1.11:27017"

The delay is configured at the service level. It applies to all servers

under the service. The delay has a positive value specifying the interval in

milliseconds. A negative value indicates that the connection is held until it

is closed by both parties.

Note there are no status codes or equivalent in tCp protocol. thus
there is no health check available for tCp services.

 Weighted Round Robin
In the previous section, we discussed the weighted round-robin algorithm.

The algorithm allows you to distribute incoming TCP requests based

on a prescribed weight ratio. As seen in the HTTP service example,

the weighted service is a higher-order service than the loadBalancer

service. It has the same behavior for TCP services as well. Continuing

with the MongoDB servers from the last section, let’s look at the weighted

configuration.

Chapter 3 Load BaLanCing

91

Removed for Brevity

 services :

 mongo-tcp-service :

 weighted:

 services:

 - name: mongo-1-service

 weight: 3

 - name: mongo-2-service

 weight: 1

 mongo-1-service:

 terminationDelay: 42

 loadBalancer :

 servers :

 - address : "192.168.1.10:27017"

 - address : "192.168.1.11:27017"

 mongo-2-service:

 terminationDelay: 42

 loadBalancer :

 servers :

 - address : "192.168.1.12:27017"

The following can be said about the preceding code.

• There are three hosts for above application.

192.168.1.10 and 192.168.1.11 are grouped together.

• mongo-1-service defined configuration of grouped

hosts. mongo-2-service defined configuration for the

host3 instance.

Chapter 3 Load BaLanCing

92

• Mongo-tcp-service configures both logical groups

in ratio 3:1. Traefik sends every fourth connection

request to 192.168.1.12 while the remaining requests

are distributed in a round-robin manner within

192.168.1.10 and 192.168.1.11.

We can see the weighted distribution in the Traefik dashboard. (see

Figure 3-17)

Figure 3-17. Weighted round-robin TCP service

 UDP Service
Traefik can load balance UDP requests. UDP is the protocol for

communication across many popular applications like IMAP, DNS, TFTP,

and Memcache. UDP uses a connectionless communication model with

a minimum of protocol mechanism. There are no handshakes, and there

Chapter 3 Load BaLanCing

93

is no guaranteed delivery. Thus, the protocol has no overhead costs. Some

applications require these attributes, like time-sensitive applications.

In the following section, we load balance TFTP servers. TFTP

communicates over UDP protocol. The installation of a TFTP server is

beyond the scope of this book. Please refer to TFTP/Unix documentation

for more information.

Before we move ahead, we need to create an entrypoint, for UDP, in

the static configuration. The entrypoint sends all incoming UDP traffic to

the TFTP servers. The entrypoint declares in the same manner as for HTTP

in Chapter 2.

entryPoints :

 tftp :

 address : ":69/udp"

providers :

 file :

 directory : /Users/rahulsharma/Projects/traefik-book/ch03/code

 watch : true

 filename : config

api :

 insecure : true

 dashboard : true

 Round Robin
We discussed the round-robin algorithm in previous sections. The

algorithm distributes requests equally among the listed servers. Traefik

allows you to load balance UDP services using the round-robin algorithm.

As a prerequisite, you need to have TFTP running on two servers.

Chapter 3 Load BaLanCing

94

udp :

 routers :

 tftp-router :

 entryPoints :

 - tftp

 service : tftp-service

 services:

 tftp-service:

 loadBalancer :

 servers :

 - address : "192.168.1.10:69"

 - address : "192.168.1.11:69"

The following can be said about the preceding code.

• We described tftp-router to route requests to tftp-

service.

• A UDP router does not have any rules. It cannot

perform hostname lookup. It can only be performed

using a port.

• tftp-service has the same declaration as an HTTP

service. It consists of a loadBalancer block.

• The loadBalancer block contains a list of addresses,

unlike the HTTP service, where the location was a

URL. In UDP, it is a combination of the IP and a port.

Traefik dashboard also provides a UDP service view to show the

configured UDP services. (see Figure 3-18)

Chapter 3 Load BaLanCing

95

Note there is no health check available for Udp services.

The following command connects to TFTP servers by using the tftp

command. You can transfer the sample files that we made available on the

server.

traefik $ tftp 192.168.1.4

tftp> verbose

Verbose mode on.

tftp> get sample.md

getting from 192.168.1.4:sample.md to sample.md [netascii]

Received 682 bytes in 0.0 seconds [inf bits/sec]

Figure 3-18. UDP service in round robin

Chapter 3 Load BaLanCing

96

 Weighted Round Robin
The previous sections discussed the weighted round-robin algorithm.

The algorithm allows you to distribute incoming UDP messages based

on a prescribed weight ratio. As seen in the HTTP service example, the

weighted service is a higher-order service than the loadBalancer service.

It has the same behavior for UDP services as well. Continuing the TFTP

servers from the last section, let’s look at the weighted configuration.

The following can be said about the preceding code.

• There are three hosts for above application.

192.168.1.10 and 192.168.1.11 are grouped together.

• tftp-1-service defines the configuration of grouped

hosts. tftp-2-service defines the configuration for the

host3 instance.

• tftp-service configures both logical groups in

ratio 3:1. Traefik sends every fourth connection

request to 192.168.1.12 while the remaining requests

are distributed in a round-robin manner within

192.168.1.10 and 192.168.1.11.

We can see the weighted distribution in the Traefik dashboard.

(see Figure 3-19)

Chapter 3 Load BaLanCing

97

 Summary
In this chapter, you saw the different load balancing capabilities available

in Traefik. We configured classic round robin and weighted round robin for

HTTP, TCP, and UDP communication. You also worked with stick sessions

and health checks for HTTP communication. Lastly, you saw mirroring

capabilities that are used for canary deployments. In the next chapter, you

look at TLS capabilities available in Traefik.

Figure 3-19. Weighted UDP service

Chapter 3 Load BaLanCing

99© Rahul Sharma, Akshay Mathur 2021
R. Sharma and A. Mathur, Traefik API Gateway for Microservices,
https://doi.org/10.1007/978-1-4842-6376-1_4

CHAPTER 4

Configure TLS
The previous chapters looked at how to expose services using Traefik

over HTTP, TCP, and UDP connections. They also dove into the special

traffic management features provided by Traefik. Until now, you have only

worked with plain unencrypted traffic—HTTP or TCP. However, for any

serious production usage, you need to expose the endpoints securely over

TLS. In this chapter, you look at the capabilities that Traefik provides for

encrypting and decrypting network traffic.

The following two scenarios are covered.

• TLS termination with Traefik

• TLS forwarding to backend services

For TLS termination at Traefik, we use Let’s Encrypt to provision

the TLS certificate automatically for a service running in a public cloud.

Traefik and Let’s Encrypt together make this complex process fairly trivial.

 Quick Overview of TLS
The common use case of TLS encryption is to protect HTTP traffic. This

means all API and web traffic is secured against man-in-the-middle

attacks and other forms of network snooping. Instead of exposing plain

HTTP traffic, we instead route the packets over HTTPS. This means the

underlying channel over which the packets are transferred is encrypted.

https://doi.org/10.1007/978-1-4842-6376-1_4#DOI

100

A primary need for such security is to protect sensitive data, starting

with username/password you may use to authenticate access to a

protected resource. You should never transmit any secret over a plain

HTTP connection as it can easily be intercepted by network sniffing

software.

TLS traffic is encrypted when it leaves the source and is then decrypted

at the destination end. The decryption part is what we refer to as TLS

termination. This encryption and decryption are typically carried out

much below the application layer (OSI or TCP/IP terms).

Most application layer code never needs to worry about the finer

details of TLS, apart from specifying the appropriate configurations. Since

implementing encryption protocols is not for the faint-hearted and should

not be taken up lightly, most programming languages and platforms come

with standard libraries that have been battle-tested and implemented by

experts in cryptography.

Note Although we are touching on many parts of working with
TLS in Traefik, an in-depth discussion of TLS is beyond this book’s
scope. Its core is based on standard cryptographic primitives,
specifically public-key cryptography, which is a specialized field. The
walkthrough covers the practical aspects of working with TLS, which
involve acquiring valid TLS certificates from a certificate authority
and using them in the client-server configurations. We do not cover
advanced network security practices or DNS, although we do brush
past them. We encourage you to delve further into these areas to
fine-tune configurations according to their use cases.

ChApTer 4 CoNfIgure TLS

101

Broadly speaking, clients who connect to a server with TLS enabled

can validate its authenticity. They do this by validating the server’s TLS

certificate with the certificate authority (or CA), which signed and issued

the server’s certificate. This server certificate contains the server’s public

key, which sets up an encrypted channel between the client and the server.

This helps to guard against man-in-the-middle and other attacks. The CA

is typically a trusted third-party public body, and most browsers already

have these configured automatically. There is often a private CA for large

private enterprise networks to issue certificates for internal Intranet sites,

and this private CA is automatically trusted on the enterprise managed

devices.

There is an extension to this mechanism to verify the client’s identity

to the server; this is achieved via client certificates typically issued by the

same CA, validated on the server end. We are not covering this approach

in this chapter, although Traefik has support for it.

Conventionally, the default port for HTTP traffic is 80, and HTTPS is

443, although various platforms and applications serve TCP and HTTP/

HTTPS traffic on whatever ports they choose to. Ports 8080 and 8443, for

instance, are very popular alternatives to expose HTTP and HTTPS traffic,

respectively. (They are non-restricted ports, however that discussion is

beyond the scope of this book.) Most Internet-facing servers, however,

expose the standard ports 80 and 443. Until now, we have primarily

exposed Traefik entrypoints on 8080, 80, or other custom ports for HTTP

and TCP. The Traefik dashboard was exposed over HTTP 8080 or 80 in an

insecure mode without authentication, which is not recommended for the

production usage.

While TLS widely protects HTTP traffic on the web, we use it to secure

plain TCP connections. We could easily expose HTTPS to one of the

sample HTTP APIs covered in previous chapters. We feel TLS over simple

TCP better exhibits the advanced TLS capabilities of Traefik. As part of

exposing TCP ports over TLS, we also cover some HTTPS traffic.

ChApTer 4 CoNfIgure TLS

102

 TLS Termination at Traefik
The previous chapter covered how to use Traefik to expose and load

balance a MongoDB TCP service. It is fine for local usage to have a plain

connection; however, for any kind of serious production use case, you

need to encrypt the connection to MongoDB using TLS. You can achieve

this in two ways.

• Enable TLS on the MongoDB server, so TLS is

terminated at the MongoDB server level. This requires

Traefik to pass the encrypted traffic through. Or,

• MongoDB still serves plain TCP traffic; however, we

enable TLS on the Traefik entrypoint to expose the

MongoDB connection. TLS is then terminated at the

Traefik entrypoint, which then passes the decrypted

traffic to the backend MongoDB port.

Although the first option seems more favorable and secure, this is

usually not a feasible approach in practice. Since Traefik typically acts as

a load balancer or reverse proxy, it usually load balances your requests

across multiple backend instances. This was covered in the last chapter.

Typically, you have multiple cluster nodes or service instances (for

databases and APIs, respectively) being exposed behind a single route.

In this scenario, any client expects a consistent endpoint to be exposed

to whatever service they are connecting to. For security reasons, TLS

certificates are closely coupled to the server domain host where they

are deployed. If we did TLS termination at the individual instance level,

then we need additional certificates or reuse the same certificate on

each replica instance. To the consumer, it is apparent that the client is

connecting to a different host each time. This is not very desirable.

ChApTer 4 CoNfIgure TLS

103

In actual production, we always use Traefik for TLS termination

and then route the packets from Traefik to the backend (MongoDB in

the current example) over a simple TCP connection. This is not as big a

security risk as it might seem because the internal traffic is in a closed

network—typically your own VPC/VLAN. For scenarios with shared

infrastructure, there is always the advanced practice of initiating a new

internal TLS connection from your edge gateway to the backend service;

we are not covering that.

 Exposing MongoDB Route on TLS
This section runs a MongoDB instance on a cloud VM by a public cloud

provider. You can use a managed database offering. You are free to

use any other database if you adjust for the correct ports and use the

appropriate client for that database. To keep things simple, we run both

the MongoDB instance and Traefik on the same cloud VM so Traefik can

securely connect to MongoDB running on the localhost without any other

complexity.

For this example, we are running a single DigitalOcean droplet (or

VM) running Ubuntu 18. However, the concepts are the same for any other

cloud VM, such as an AWS EC2 instance. Setting up a DigitalOcean or AWS

instance is beyond the scope of this book; however, it is easy to do. Once

the VM is set up, Traefik can be easily installed using the instructions in

Chapter 1.

Ubuntu Traefik CLI is not allowed to listen on ports 80 or 443 by

default. So, Traefik throws an error on startup if those ports are defined as

entrypoints. We need to run the command in Listing 4-1 to allow Traefik to

bind to these ports.

ChApTer 4 CoNfIgure TLS

104

Listing 4-1. Install and Set Permissions for Traefik

ubuntu-blr1-01:~$ wget https://github.com/containous/traefik/

releases/download/v2.2.1/traefik_v2.2.1_linux_amd64.tar.gz

ubuntu-blr1-01:~$ tar -zxvf traefik_v2.2.1_linux_amd64.tar.gz

ubuntu-blr1-01:~$ sudo setcap 'cap_net_bind_service=+ep' traefik

ubuntu-blr1-01:~$./traefik --entryPoints.web.address=:80

You may wonder why we chose a cloud deployment. The reason

is that we need a public DNS name for Traefik to acquire a valid TLS

certificate. We set up a separate subdomain to point to the DigitalOcean

droplet and added an A record in the DNS provider to point to its IP

address (again, this discussion is beyond the scope of this book). You can

try Traefik’s TLS support locally, but you need manually provisioned or

self-signed certificates. You would also miss how easy Traefik makes the

entire process. The TLS configuration for manually acquired certificates

is simple; we are providing it here for reference. This is the same for both

valid public domain certificates and local self-signed test certificates.

Listing 4-2 defines a TCP route with a tls: {} key. This is enough to

enable TLS on this route.

Listing 4-2. Route Configuration for MongoDB TCP over TLS:

Manual Certificates

traefik.yml with only 443 entrypoint

entryPoints:

 websecure:

 address: ":443"

Also enable DEBUG log

log:

 level: DEBUG

providers:

 file:

ChApTer 4 CoNfIgure TLS

105

 filename: "traefik-tls-conf.yml"

 watch: true

traefik-tls-conf.yml

tcp :

 routers :

 mongo-router :

 entryPoints :

 - websecure

 rule : "HostSNI(`localhost`) || HostSNI(`127.0.0.1`)"

 service : mongo-tcp-service

 tls: {} #This block will enable TLS for this route

#We also need to provide the TLS certificates

tls:

 certificates:

 - certFile: localhost+1.pem

 keyFile: localhost+1-key.pem

We also provide the certificate paths in a separate section. This is

a dynamic configuration, which means we can add new certificates at

runtime. These can only be defined via FileProvider. The correct certificate

is used at runtime based on the domain matched. If you don’t provide

your own certificates, or don’t provide one for a matching domain, Traefik

generates and uses its default self-signed certificate. It is possible to

override this default certificate as well. Manual certificate generation is

beyond the scope of this chapter. For local testing, a tool such as the one at

https://mkcert.dev/ can be useful. In the preceding configuration, you

can connect to MongoDB over a secure TCP+TLS connection.

Installation of MongoDB is outside the book; however, it is mostly

the default installation with one addition—we set up a DB user and

password for basic security. For simplicity, we use only a single backend

MongoDB instance, rather than load balancing across multiple ones. The

configuration looks like Listing 4-3.

ChApTer 4 CoNfIgure TLS

https://mkcert.dev/

106

Listing 4-3. Route Configuration for MongoDB TCP over TLS

#tls-config.yaml dynamic config

tcp :

 routers :

 mongo-router :

 entryPoints :

 - mongo

 rule : "HostSNI(`tlstraefik.rahulsharma.page`)"

 service : mongo-tcp-service

 tls:

 certResolver: "letsencrypt"

 domains:

 - main: "tlstraefik.rahulsharma.page"

 services :

 mongo-tcp-service :

 loadBalancer :

 servers :

 - address : "localhost:27017"

Most of these pieces are already known to us. We looked at the HostSNI

attribute. In previous examples, we set it to match all possible hostnames

(*). While this approach may be fine for unencrypted traffic, it is not

feasible with TLS. It matches the actual domain name where the services

are running, and the server certificate validates the same. tlstraefik.

rahulsharma.page is the public DNS name pointing to the IP address of

the DigitalOcean droplet. There is also a certresolver attribute set to

letsencrypt, which automates the provisioning of a TLS certificate from

Let’s Encrypt on the first request to this endpoint.

ChApTer 4 CoNfIgure TLS

107

 Let’s Encrypt Automatic Certificate Provisioning
Acquiring TLS certificates is typically a multistep process. There are

good utilities on all platforms which help you generate the necessary

pieces. For how ubiquitous TLS certificates are, certificate generation

is a complex procedure with many attributes to be set, and if some

configuration is wrong, you need to start over. The usual steps are to

generate a certificate signing request (CSR) for the server certificate and

submit it to a CA for signing. The CA signs and returns a valid certificate

that can be used. Different CAs have different pricing models, and

certificate features and websites are free to pick and choose which ones

they want to go with. This has traditionally been a manual process, with

some automated parts.

The big disruption in this space was brought about by a non-profit

called Let’s Encrypt (https://letsencrypt.org). Let’s Encrypt has issued

free TLS certificates (over a billion of them) for over 225 million websites.

It does this by automating the entire process via programmatic APIs, so no

manual intervention is required.

Let’s Encrypt ships several official and third-party clients, making

the certificate provisioning process trivial for end users. It achieves this

automation by leveraging the ACME standard (https://tools.ietf.

org/html/rfc8555), which stands for Automatic Certificate Management

Environment. We do not dive deeper into this, but it entirely automates

the work of acquiring and managing certificates from an ACME-compliant

CA. Mostly, all you must do is start up your HTTPS server, and the rest is

taken care of. If someone is considering setting up a website that requires

TLS certificates, Let’s Encrypt is the way to go.

ChApTer 4 CoNfIgure TLS

https://letsencrypt.org
https://tools.ietf.org/html/rfc8555
https://tools.ietf.org/html/rfc8555

108

Note Let’s encrypt only provisions certificates for public Internet-
facing sites. This means your endpoints need to be reachable by a
public domain name for Let’s encrypt to provision a TLS certificate.
for private or internal ApIs, certificates need to be provisioned from
other CAs. This has an impact on the examples, which have been
running on a local system so far.

 Provisioning TLS Certificates for Public TCP
Endpoints
To automatically provision a TLS certificate from Let’s Encrypt, we need to

expose the MongoDB port on the public Internet.

Obviously, you should never actually expose your database port on

the Internet as a practice. There have been many news reports about

unsecured MongoDB connections exposed on the open Internet and

targeted by hackers, resulting in compromised data. We are using a blank

DB for a short while for the example, so it should be fine. We are also

protecting MongoDB with proper access credentials, and the port is only

accessible through Traefik. One point to note here is that we also set up

cloud firewall rules on a VM to only inbound traffic on ports 80, 443, and

4445. All other inbound traffic from the Internet is blocked.

As seen in Listing 4-2, we expose the Mongo TCP endpoint on

the tlstraefik.rahulsharma.page domain. tlstraefik here is the

subdomain on which the TLS route is matched. The certificate issued

by Let’s Encrypt is issued for the same subdomain. There is support for

additional domain entries, which request additional SNI (Server Name

Indication) hostnames that support multiple domains and TLS certificates

on the same IP and port. We are not going to dive deeply into this.

ChApTer 4 CoNfIgure TLS

109

Traefik first checks the domain entries and then the HostSNI value to

figure out domains for which TLS certificates are automatically requested.

Both are not needed here; we only included them for reference. This is

more useful with wildcard certificates, which are not covered here.

The certresolver attribute is referenced. It is defined in the static

configuration along with the entrypoint. We need to define a TLS

entrypoint and the certificate resolvers, which is currently mostly Let’s

Encrypt.

In Listing 4-4, there are two items of interest. First is the caServer URL

attribute to be specified. Ordinarily and by default, this is the Let’s Encrypt

production API endpoint. However, this endpoint has strict (though

liberal) rate limits.

Listing 4-4. Entrypoint and Certificate Resolver

#traefik.yaml static config

entryPoints:

 mongo:

 address: ':4445'

 https:

 address: ':443'

providers:

 file:

 watch: true

 filename: tls-config.yml

certificatesResolvers:

 letsencrypt:

 # ACME support via Let's Encrypt

 acme:

 # Email address required for certificate registration

 email: "<email address>"

ChApTer 4 CoNfIgure TLS

110

 # File or key required for certificates storage.

 storage: "acme.json"

 # CA server URL

 caServer: "https://acme-staging-v02.api.letsencrypt.org/

directory"

 tlsChallenge: {}

If you’re new to Let’s Encrypt and experimenting with configurations in

a test environment to figure out your TLS settings, it makes more sense to use

the URL of the Let’s Encrypt staging endpoint, which is used in Listing 4-4. This

does not provide a usable TLS certificate. The CA to sign the certificate is fake,

and most browsers reject the resultant certificate. Let’s Encrypt allows you to

download the dummy CA certificate (fakelerootx1.pem) and validates your

generated server certificate against it. This allows you to test out the overall

integration before moving to production with a valid certificate.

Second, the tlsChallenge attribute is of interest. To validate that

the third-party requesting a server certificate has ownership of the host

machine, Let’s Encrypt supports various automated challenges. The

standard ones are the HTTP-01 challenge and the DNS-01 challenge. Both

are suitable for different types of use cases. However, there is a special

challenge for TLS terminating reverse proxies, which is the role Traefik is

playing here, known as the TLS-ALPN-01 challenge. More information is

beyond the scope of this book. This challenge type is trivial to configure in

Traefik, so it is used here.

There is one caveat: this challenge requires Traefik to access port 443;

hence, we exposed an additional entrypoint on port 443. This is not a

big deal because we are using this port in the next section anyway. For a

cloud-based installation, it is necessary to open port 443 in the inbound

traffic firewall rules. When you check this out on the Traefik dashboard,

you see two entrypoints (see Figure 4-1).

ChApTer 4 CoNfIgure TLS

111

If you use this Traefik configuration to expose a MongoDB instance

running on the same server as the Traefik instance, you can access MongoDB

on port 4445 on the hostname tlstraefik.rahulsharma.page, but only with a TLS

connection. You can try this out with a Mongo client CLI (see Listing 4-5).

Listing 4-5. Mongo Client Simple Connection

ch04 % mongo --port 4445 --host tlstraefik.rahulsharma.page

MongoDB shell version v4.2.7

connecting to: mongodb:// tlstraefik.rahulsharma.page:4445/?com

pressors=disabled&gssapiServiceName=mongodb

This does not connect to the Mongo instance, and it does not work. To

make it work, we need to pass a --tls option (see Listing 4-6).

Listing 4-6. Mongo Client TLS Connection

ch04 % mongo --port 4445 --host tlstraefik.rahulsharma.page --tls

MongoDB shell version v4.2.7

connecting to: mongodb:// tlstraefik.rahulsharma.page:4445/?com

pressors=disabled&gssapiServiceName=mongodb

Figure 4-1. TLS entrypoints

ChApTer 4 CoNfIgure TLS

112

2020-07-05T17:44:26.901+0530 E NETWORK [js] SSL peer

certificate validation failed: Certificate trust failure:

CSSMERR_TP_NOT_TRUSTED; connection rejected

2020-07-05T17:44:26.901+0530 E QUERY [js] Error: couldn't

connect to server tlstraefik.rahulsharma.page:4445, connection

attempt failed: SSLHandshakeFailed: SSL peer certificate

validation failed: Certificate trust failure: CSSMERR_TP_NOT_

TRUSTED; connection rejected :

connect@src/mongo/shell/mongo.js:341:17

@(connect):2:6

2020-07-05T17:44:26.904+0530 F - [main] exception: connect failed

2020-07-05T17:44:26.904+0530 E - [main] exiting with code 1

This does not work either; if you used the staging CA URL for

Let’s Encrypt, the resultant server certificate cannot be verified. To connect

to MongoDB with this certificate, you need to either pass a –tlsAllowInvalid

Certificates flag or the --tlsCAFile option (see Listing 4-7).

Listing 4-7. Mongo Client TLS Connection

ch04 % mongo --port 4445 --host tlstraefik.rahulsharma.page –

tls --tlsCAFile fakelerootx1.pem

MongoDB shell version v4.2.7

connecting to: mongodb:// tlstraefik.rahulsharma.page:4445/?com

pressors=disabled&gssapiServiceName=mongodb

Implicit session: session { "id" : UUID("0b2ccc38-f8bd-4346-

a08a-3da0ef9793b0") }

MongoDB server version: 3.6.3

> use admin

switched to db admin

> db.auth("akshay", "password");

ChApTer 4 CoNfIgure TLS

113

1

> db.version()

3.6.3

If you simply omit the caServer URL attribute in Listing 4-4, Traefik

automatically connects to the Let’s Encrypt production URL and fetches a

valid certificate. Then, a command of the form seen in Listing 4-8 works.

Listing 4-8. Mongo Client Valid TLS Certificate

ch04 % mongo --port 4445 --host tlstraefik.rahulsharma.page –tls

MongoDB shell version v4.2.7

connecting to: mongodb:// tlstraefik.rahulsharma.page:4445/?com

pressors=disabled&gssapiServiceName=mongodb

Implicit session: session { "id" : UUID("0b2ccc38-f8bd-4346-

a08a-3da0ef9793b0") }

MongoDB server version: 3.6.3

>

There are two subtle points to note here. First, Traefik saves the

acquired certificate in a file named acme.json by default. You saw this

filename configured in Listing 4-4. We can add a custom file name or

location if required. If you switch from staging to production URL, you also

need to remove this file or use some other location; otherwise, Traefik uses

the already saved certificate by default.

Second, while TLS termination may be tied closely to the entrypoint

port (4445 in this case), TLS configuration is driven by the dynamic router

configuration. What this boils down to is that Traefik does not send a

certificate generation request to Let’s Encrypt until it is configured for

a particular route. Consequently, it is completely feasible for different

certificates to be generated for the same entrypoint to serve different routes.

We can see the following TCP Router in the Traefik dashboard with the

TLS details mentioned (see Figure 4-2 and Figure 4-3).

ChApTer 4 CoNfIgure TLS

114

 Secure Traefik Dashboard over TLS
Until now, we have exposed the Traefik dashboard in insecure mode to

check the configurations on the UI. However, on a public cloud, you want

the dashboard to be protected by authentication and TLS. As part of this,

we expose the Traefik dashboard on entrypoint 443 on the same host and

apply an authentication middleware on an explicit dashboard route. The

route is exposed on the same hostname, although we could have specified

Figure 4-3. TCP router with TLS details

Figure 4-2. TCP router with TLS enabled

ChApTer 4 CoNfIgure TLS

115

a different hostname for the dashboard with its DNS entry and TLS

certificate. The configuration for this is seen in Listing 4-9. We also redirect

all HTTP traffic on port 80 to HTTPS on port 443.

Listing 4-9. Entrypoint and Route Config for Secure Dashboard

#traefik.yaml static config

entryPoints:

 https:

 address: ':443'

 http:

 address: :80

 http:

 redirections:

 entryPoint:

 to: https

 scheme: https

providers:

 file:

 watch: true

 filename: tls-config.yml

api:

 dashboard: true

#tls-config.yaml dynamic config

http:

 routers:

 dashboard:

 entryPoints:

 - https

 rule: "Host(`tlstraefik.rahulsharma.page`) &&

(PathPrefix(`/api`) || PathPrefix(`/dashboard`))"

 service: api@internal

ChApTer 4 CoNfIgure TLS

116

 tls:{}

 middlewares:

 - auth

 middlewares:

 auth:

 basicAuth:

 users:

 - "admin:$apr1$JsindKAS$zCWAvabJOgQvI.Dd3zjtE."

On applying this configuration, you may observe two different results.

If you already carried out the previous sections’ steps to configure TLS for

MongoDB, then Traefik reuses the server the same certificate acquired

for the MongoDB route since they share the same host entry. However, if

you omit the MongoDB TLS configuration, Traefik falls back to generating

a default self-signed TLS certificate. You observe something like what’s

shown in Figure 4-4 in the browser, where it complains about the

certificate and does not let you proceed. The reason for this is we have not

specified any certResolver value for the dashboard route.

ChApTer 4 CoNfIgure TLS

117

If we inspect the certificate, we get to see the details (see Figure 4-5).

Figure 4-4. Self-signed Traefik certificate error

ChApTer 4 CoNfIgure TLS

118

Figure 4-5. Self-signed Traefik certificate details

You can use a certResolver attribute for the dashboard route as well.

You can even have two certResolver attributes within the configuration:

one pointing to Let’s Encrypt staging and one to production. An example of

that is seen in Listing 4-10, where we define a different domain (it still must

be a valid public domain) and a staging certResolver for the dashboard.

Listing 4-10. Multiple Lets Encrypt Resolvers

#traefik.yaml has both staging and prod LE config

only relevant config for brevity

certificatesResolvers:

 letsencrypt:

 acme:

 email: "<email address>"

 storage: "acme.json"

ChApTer 4 CoNfIgure TLS

119

 tlsChallenge: {}

 letsencrypt-staging:

 acme:

 email: "<email address>"

 storage: "acme-staging.json"

 # CA server to use.

 caServer: " https://acme-staging-v02.api.letsencrypt.org/

directory"

 tlsChallenge: {}

#tls-config.yaml dynamic config

http:

 routers:

 dashboard:

 entryPoints:

 - https

 rule: "Host(`dashboard.rahulsharma.page`) &&

(PathPrefix(`/api`) || PathPrefix(`/dashboard`))"

 service: api@internal

 tls:

 certResolver: "letsencrypt-staging"

Rest of config omitted for brevity

With this configuration, you see the following error in the browser (see

Figure 4-6), and it does not allow you to proceed.

ChApTer 4 CoNfIgure TLS

120

Figure 4-6. Let’s Encrypt staging certificate details

Once we fix the configuration and get the proper production certificate

from Let’s Encrypt, we can inspect the certificate details in the browser

(see Figure 4-7). We are also asked for the basic authentication credentials

for the dashboard (see Figure 4-8).

ChApTer 4 CoNfIgure TLS

121

 Traefik for TLS Forwarding
There may be certain rare occasions where your target service or database

need to manage TLS termination on its own, without involving a reverse

proxy in between. This means Traefik is required to forward TLS traffic

without decrypting or terminating it. Happily, Traefik supports this easily

via the passthrough option. We need to run MongoDB with server TLS

Figure 4-7. Let’s Encrypt valid certificate details

Figure 4-8. Basic authentication for dashboard

ChApTer 4 CoNfIgure TLS

122

enabled and a valid TLS certificate to demonstrate this support. The

configuration is outside the scope of this book; however, this should be

easily doable by following the MongoDB documentation. The MongoDB

configuration may end up looking, as shown in Listing 4-11.

Listing 4-11. Sample MongoDB TLS Configuration in /etc/mongod.conf

net:

 port: 27017

 bindIp: 127.0.0.1,tlstraefik.rahulsharma.page

 tls:

 mode: requireTLS

 certificateKeyFile: /etc/ssl/mongodb.pem

As before, you are free to choose any other target such as another cloud

managed database, the procedure to connect is different. You can try this

locally as well; you need self-signed server certificates and your own CA

certificate. A deeper discussion of this is beyond the scope of this section;

however, OpenSSL is a good utility available on all major platforms to

generate TLS certificates.

This section’s Traefik setup is the same Traefik instance as before

running on the same cloud VM host with the necessary Traefik ports

exposed on the firewall. However, this time instead of defining a

certResolver for the mongo-router route, we add a different attribute, as

shown in Listing 4-12.

Listing 4-12. Route Configuration for TLS Forwarding

#tls-config.yaml dynamic config

tcp :

 routers :

 mongo-router :

 entryPoints :

ChApTer 4 CoNfIgure TLS

123

 - mongo

 rule : "HostSNI(`tlstraefik.rahulsharma.page`)"

 service : mongo-tcp-service

 tls:

 passthrough: true

Rest omitted for brevity

When we try to access MongoDB on this host/port, Traefik forwards

the TLS connection without decryption to the MongoDB server running on

the same VM, where the actual TLS termination takes place, as shown in

Listing 4-13.

Listing 4-13. Connect Mongo over TLS

code % mongo --tls --host tlstraefik.rahulsharma.page --port 4445

MongoDB shell version v4.2.8

connecting to: mongodb://tlstraefik.rahulsharma.page:4445/?comp

ressors=disabled&gssapiServiceName=mongodb

Implicit session: session { "id" : UUID("88df0a97-6ff8-4764-

897b-82746b621598") }

MongoDB server version: 4.2.8

> use admin

switched to db admin

> db.auth("akshay", "password");

1

If you inspect this configuration on the Traefik dashboard, you see the

passthrough attribute set to true (see Figure 4-9).

ChApTer 4 CoNfIgure TLS

124

Fi
gu

re
 4

-9
.

Tr
ae

fi
k

ro
u

te
r

w
it

h
T

L
S

pa
ss

th
ro

u
gh

ChApTer 4 CoNfIgure TLS

125

For the client application, there is no real change in behavior. With

that, we wrap up this section and this chapter. For further deep dive,

we encourage you to delve into the different TLS configuration options

available in the Traefik documentation on their own.

 Summary
In this chapter, you took a quick, surface-level dip into the deep domain of

setting up TLS certificates to protect your network traffic. We understand

that some of you may feel overwhelmed by all the subjects we rushed

through. We have barely scratched the surface of the ecosystem of TLS

certificates. However, we feel that we have exhibited how easy Traefik

makes this in conjunction with Let’s Encrypt, especially for a public DNS

domain. Indeed, you may find that it is easier to provision a valid TLS

certificate for Traefik endpoints from Let’s Encrypt than it is to generate

your self-signed or valid TLS certificates. If you are more interested in TLS,

we encourage you to explore it.

We have not mentioned that certificates acquired through Let’s

Encrypt renew every 90 days for security. In the traditional IT landscape,

certificate renewal is a tedious manual process that must be tracked by

people. As a result, it is done less often with long-running TLS certificates

being used. With the Traefik/Let’s Encrypt integration, this is automatically

handled out of the box without any manual intervention needed. Let’s

Encrypt will send out automatic advance reminders on the email address

you registered with.

In the next chapter, you take a deeper look at the vast array of easy

options available in Traefik for operational concerns. Traefik makes it very

easy to gather runtime metrics and integrates out of the box with many

standard monitoring frameworks.

ChApTer 4 CoNfIgure TLS

127© Rahul Sharma, Akshay Mathur 2021
R. Sharma and A. Mathur, Traefik API Gateway for Microservices,
https://doi.org/10.1007/978-1-4842-6376-1_5

CHAPTER 5

Logs, Request
Tracing, and Metrics
Business operations perform application monitoring. This process

aims to discover and fix application outages before they impact regular

business operations. Traditionally, teams performed simple checks like

process up/down or port open/closed. But these checks were not good

enough. Over time, many tools have been built to improve the process of

application monitoring. The process involves capturing usage metrics and

performing analysis. But relying only on application monitoring is a weak

practice. Application monitoring can only provide notifications on ongoing

application issues. The next step is to determine the root cause.

The root cause is mostly contextual: a new feature is malfunctioning,

or some controls were missed in the specification, or a user is executing a

valid request that results in “out of memory,” and so forth. We are unable

to reach a conclusion by only looking at notifications. We need more

information to determine the root cause. This is known as the context-of-

the-failure.

Context is created by first looking at application logs, if available. A

stack trace provides a lead into a possible bug, but the bug is caused by a

particular edge scenario. These edge scenarios are defined by user data

and the application state. User data is determined from request access logs

if they have been captured. All of this is easier said than done.

https://doi.org/10.1007/978-1-4842-6376-1_5#DOI

128

Over the years, the enterprise application landscape has become more

and more complex. Previous practices were insufficient in dealing with

outages. Google came out with the practice of request tracing. Request

tracing captured the flow of user requests across different distributed

systems. This complementary process helped project failing scenarios and

the systems involved.

In summary, logs, metrics, and traces are complementary practices

(see Figure 5-1) for different purposes. None of these practices is

individually sufficient during an outage. Thus, the simple practice of

application monitoring has moved from the individual application

state to a holistic view of the entire ecosystem. This is also known as

observability. Observability encompasses gathering, visualization, and

analysis of metrics, logs, and traces to gain a holistic understanding of a

system’s operation.

Figure 5-1. Observability data

Chapter 5 Logs, request traCing, and MetriCs

129

Companies like Twitter, Google, Uber, and so forth, which pioneered

observability, defined the complete practice built on the following pillars.

• Application and business metrics

• Logs

• Distributed traces

• Alerts and notifications

• Visualizations

Note observability projects why something is wrong, compared to
monitoring, which simply tells when something is wrong.

Traefik, being the API-gateway, is a single point of entry of all externally

originated user requests. It must integrate with enterprise existing

solutions to capture all request flows and metrics. To capture end-to-end

request flows, Traefik needs to generate request spans and send them the

tracing backend system. Traefik also needs to generate access logs and

request-based metrics to build visibility into distributed systems’ behavior.

This chapter discusses these features with a sample HTTP application.

 Prerequisites
In this chapter, we use an example HTTP service. We deploy and configure

the httpbin service (https://github.com/postmanlabs/httpbin) to serve

our purposes. It is an open source application. The service is written in

Python. We require a Python runtime to run the application. The deployed

service is configured using Traefik.

Note this is an optional step. it is an example service for validating
configuration changes. if you have a running service, you can skip
this step.

Chapter 5 Logs, request traCing, and MetriCs

https://github.com/postmanlabs/httpbin

130

First, check for the required python, pip, and virtualenv commands.

~/Projects$ python3 --version

Python 3.8.0

~/Projects$ pip3 --version

pip 19.2.3 from /Library/Frameworks/Python.framework/

Versions/3.8/lib/python3.8/site-packages/pip (python 3.8)

~/Projects$ virtualenv --version

16.7.8

Make sure that you have the 3.x versions of Python and pip. If a command

fails, you need to install the required software. Installation instructions for

Python, pip, and virtualenv are beyond the scope of the book.

For the next step, we download a version of the httpbin service from

release pages https://github.com/postmanlabs/httpbin/releases (see

Figure 5-2). At the time of writing, 0.6.1 is the latest release version.

Figure 5-2. httpbin releases

Chapter 5 Logs, request traCing, and MetriCs

https://github.com/postmanlabs/httpbin/releases

131

Download the released artifacts and extract them to a directory. The

directory contains the source files, application license, build files, and so

forth. The aim is to compile the code and get a binary artifact from it.

~/Projects/httpbin-0.6.1$ ls -1

AUTHORS

Dockerfile

LICENSE

MANIFEST.in

Pipfile

Pipfile.lock

Procfile

README.md

app.json

build

dist

httpbin

httpbin.egg-info

setup.cfg

setup.py

test_httpbin.py

tox.ini

The service is built using setuptools. You can deploy and run the

service, as explained next.

 1. Create a virtual environment and then activate it.

~/Projects/httpbin-0.6.1$ virtualenv venv

Using base prefix '/Library/Frameworks/Python.framework/

Versions/3.8'

New python executable in /Users/rahulsharma/Projects/

httpbin-0.6.1/venv/bin/python3.8

Chapter 5 Logs, request traCing, and MetriCs

132

Also creating executable in /Users/rahulsharma/Projects/

httpbin-0.6.1/venv/bin/python

Installing setuptools, pip, wheel...

done.

~/Projects/httpbin-0.6.1$ source venv/bin/activate

(venv) ~/Projects/httpbin-0.6.1$

 2. Build the service in develop mode.

(venv) ~/Projects/httpbin-0.6.1$ python setup.py develop

running develop

running egg_info

writing httpbin.egg-info/PKG-INFO

####

removed for brevity

####

/Users/rahulsharma/Projects/httpbin-0.6.1/venv/bin

Using /Users/rahulsharma/Projects/httpbin-0.6.1/venv/lib/

python3.8/site-packages

Finished processing dependencies for httpbin==0.6.1

(venv) ~/Projects/httpbin-0.6.1$

 3. Deploy the application in Gunicorn.

(venv) ~/Projects/httpbin-0.6.1$ gunicorn -b 0.0.0.0 httpbin:app

[2020-06-12 14:35:04 +0530] [67528] [INFO] Starting gunicorn 20.0.4

[20 20-06-12 14:35:04 +0530] [67528] [INFO] Listening at:

http://0.0.0.0:8000 (67528)

[2020-06-12 14:35:04 +0530] [67528] [INFO] Using worker: sync

[2020-06-12 14:35:04 +0530] [67530] [INFO] Booting worker with

pid: 67530

Chapter 5 Logs, request traCing, and MetriCs

133

The httpbin service is now running on our system. You can access it

at http://localhost:8000 (see Figure 5-3). You can also test a few of the

available endpoints.

Figure 5-3. httpbin service

 Traefik Configuration
In the previous section, we added an HTTP service. Let’s now configure

Traefik to send user requests to it. We will create the following treafik.

yml with an entrypoint for web applications.

entryPoints :

 web :

 address : ":80"

providers :

 directory : /Users/rahulsharma/Projects/traefik-book/ch05/

services

Chapter 5 Logs, request traCing, and MetriCs

134

 watch : true

 filename : config

 debugLogGeneratedTemplate : true

api :

 insecure : true

 dashboard : true

In the prior configuration, Traefik is listening on port 80. Next, let’s

define the routing and service for the deployed httpbin application.

 http :

 routers :

 guest-router :

 entryPoints :

 - web

 rule : Host(`localhost`)

 service : httpbin-service

 services :

 httpbin-service :

 loadBalancer :

 servers :

 - url : http://192.168.1.4:8000/

This configuration sends requests to httpbin running on the

192.168.1.4 instance. This configuration needs to be copied to the

services folder as config.yml. After this, you can look up http://

localhost. The browser should load the application. The deployed

configuration can be seen on the Traefik dashboard (see Figure 5-4).

Chapter 5 Logs, request traCing, and MetriCs

135

 Traefik Logs
Traefik reports information about encountered issues. By default, Traefik

reports these to standard output. These reported issues are corresponding

to events in the Traefik application. The information is reported at different

severity levels. You can configure Traefik logs by adding log configuration.

The configuration can set up logging to a particular file. It can also specify

the minimal severity level of messages.

entryPoints :

 web :

 address : ":80"

providers :

 # removed for Brevity

Figure 5-4. Dashboard for httpbin entrypoint

Chapter 5 Logs, request traCing, and MetriCs

136

log:

 level: INFO

 filePath: traefik.json.log

 format: json

This code does the following.

• Directs logs to tarefik.json.log file in the current

working directory

• Changes the default log level to INFO, which writes

messages for fatal, error, warn, and information levels

• Logs messages in JSON format

By default, Traefik writes all messages in common log format.

Alternatively, you can change it to JSON format, as shown. Traefik can

report log messages at the debug, info, warn, error, and fatal levels.

Configuring a lower level enables reporting for all severity levels above the

configured level.

The defined code is part of static configuration used to start Traefik.

Traefik does not autoload these changes. Restart the server after making

the changes. You can tail the log file as shown next.

ch05 $ tail -f traefik.json.log

{"level":"info","msg":"Traefik version 2.2.0 built on

2020-03-25T17:17:27Z","time":"2020-06-13T20:27:08+05:30"}

{"level":"info","msg":"\nStats collection is disabled.\nHelp

us improve Traefik by turning this feature on :)\nMore details

on: https://docs.traefik.io/contributing/data-collection/\

n","time":"2020-06-13T20:27:08+05:30"}

{"level":"error","msg":"unsupported access log format:

\"foobar\", defaulting to common format instead.","time":"2020-

06- 13T20:27:08+05:30"}

Chapter 5 Logs, request traCing, and MetriCs

137

{"level":"error","msg":"Failed to create new HTTP code ranges:

strconv.Atoi: parsing \"foobar\": invalid syntax","time":"2020-

06- 13T20:27:08+05:30"}

{"level":"info","msg":"Starting provider aggregator.

ProviderAggregator {}","time":"2020-06-13T20:27:08+05:30"}

{"level":"info","msg":"Starting provider *file.Provider

{\"directory\":\"/Users/rahulsharma/Projects/traefik-book/ch05/

code\",\"watch\":true,\"filename\":\"config\",\"debugLogGenerat

edTemplate\":true}","time":"2020-06-13T20:27:08+05:30"}

{"level":"info","msg":"Starting provider *traefik.Provider

{}","time":"2020-06-13T20:27:08+05:30"}

 Access Logs
Traefik can report information about client requests. The information is

written to access log after the request is processed. But the access log

is not created by default. The access log configuration sets up logging to

a particular file. But default access log is written in common log format. It

can be configured to report in JSON format.

Removed for Brevity

log:

 level: INFO

 filePath: traefik.json.log

 format: json

accessLog:

 filePath: access.json.log

 format: json

Chapter 5 Logs, request traCing, and MetriCs

138

This code does the following.

• Directs access logs to access.json.log file in the

current working directory

• Logs messages in JSON format

After adding the preceding configuration, restart the Traefik server.

The following access logs are generated when we access http://localhost/.

logs $ tail -f access.json.log

{"ClientAddr":"[::1]:63226","ClientHost":"::1","ClientPort":"6

3226","ClientUsername":"-","DownstreamContentSize":12026,"Down

streamStatus":200,"Duration":28245000,"OriginContentSize":12026

,"OriginDuration":28187000,"OriginStatus":200,"Overhead":58000,

"RequestAddr":"localhost","RequestContentSize":0,"RequestCount"

:1,"RequestHost":"localhost","RequestMethod":"GET","RequestPat

h":"/","RequestPort":"-","RequestProtocol":"HTTP/1.1","Request

Scheme":"http","RetryAttempts":0,"RouterName":"httpbin-router@

file","ServiceAddr":"192.168.1.4:8000","ServiceName":"httpbin-

service@file","ServiceURL":{"Scheme":"http","Opaque":"","User":

null,"Host":"192.168.1.4:8000","Path":"/","RawPath":"","ForceQu

ery":false,"RawQuery":"","Fragment":""}

TRUNCATED }

The access logs contain diverse information. It can be helpful to

determine outages and slow responses times by using the following

reported attributes.

• Duration: The total time spent processing a request

• OriginDuration: The time spent between establishing

a connection and receiving the last byte of the response

body from the upstream server

Chapter 5 Logs, request traCing, and MetriCs

139

• Overhead: The time difference between the response

received from the upstream server and the response

sent back to the client

• OriginStatus: The response code sent by the upstream server

 "Duration":28245000,

 "OriginContentSize":12026,

 "OriginDuration":28187000,

 "OriginStatus":200,

 "Overhead":58000,

Since the access log is written after request processing, it adds

overhead. But logging overheads can be optimized by configuring the

buffer for the log messages. The buffer enables asynchronous write,

instead of post-request write, of the log messages. The buffer specifies the

number of log lines Traefik keeps in memory before writing them to the

selected output. To enable the buffer, configure the buffersize attribute.

Note the access log is a global configuration for only http
services. this is not an entrypoint or route-specific configuration.
once enabled, traefik generates logs for all entrypoints/user requests.

 Log Filters

Traefik access logs describe every request handled by the server. The

information is detailed. The access log can grow very quickly if the server

is handling many user requests. The large volume of information soon

become unmanaged. Alternatively, you can log selective requests based on

preconfigured criteria. This makes sure we are only looking at the relevant

user requests. It excludes trivial log entries from the access log. The

selective logging is enabled by using the filters attribute. The filter attribute

provides the following three options.

Chapter 5 Logs, request traCing, and MetriCs

140

• statusCodes: Logs only the specified list of response

codes.

• retryAttempts: Logs when there are retry attempts

• minDuration: Logs when the request takes more than

the specified time

Removed for Brevity

accessLog:

 filePath: logs/access.json.log

 format: json

 bufferingSize: 50

 filters:

 statusCodes:

 - 200

 - 300-302

 retryAttempts: true

 minDuration: 5s

This code writes to access log when any of the following conditions is true .

• The response code is 200/300/301/302

• The request is retried using circuit breaks

• The request takes more than 5 seconds

Accessing http://localhost/ should generate a log message as the

status code is 200. Now access http://localhost/status/418. There

should not be any log statement.

logs $ tail -f access.json.log

{"ClientAddr":"[::1]:64020","ClientHost":"::1","ClientPort":"64

020","ClientUsername":"-","DownstreamContentSize":12026,"Downst

reamStatus":200,"Duration":27516000,"OriginContentSize":12026,"

Chapter 5 Logs, request traCing, and MetriCs

141

OriginDuration":27467000,"OriginStatus":200,"Overhead":49000,

"RequestAddr":"localhost","RequestContentSize":0,"RequestCount":1,

"RequestHost":"localhost","RequestMethod":"GET","RequestPath":"/",

"RequestPort":"-","RequestProtocol":"HTTP/1.1","RequestScheme":

"http","RetryAttempts":0,"RouterName":"httpbin-router@file",

" ServiceAddr":"192.168.1.4:8000","ServiceName":"httpbin-

service@file"...... TRUNCATED }

 Log Fields

Previously, we discussed how you can log on response criteria. But

Traefik can also be configured to report selective information in the log

statements. You may be required to hide user identities, remove sensitive

information, or optimize the log. Traefik log information consists of the

following two types.

• Request headers: The headers passed by the user in the

request

• Fields: Additional information added by Traefik

Both information types have attributes that can be controlled by the

following options.

• keep reports as-is information in a log.

• drop removes the information from a log.

• redact replaces and masks information in a log.

accessLog:

 filePath: logs/access.json.log

 format: json

 bufferingSize: 50

 fields:

 defaultMode: keep

Chapter 5 Logs, request traCing, and MetriCs

142

 names:

 ClientUsername: drop

 headers:

 defaultMode: keep

 names:

 User-Agent: redact

 Authorization: drop

 Content-Type: keep

In this code, we configured the following.

• The keep value for defaultmode enables the reporting

of fields and headers.

• The keep value for defaultmode enables reporting

headers.

• The drop value for ClientUsername removes it from a log.

• The drop value for Content-Type and Authorization

removes these headers from a log.

• The redact value for User-Agent reports the value as

redacted.

After adding the preceding configuration, restart the Traefik server.

The following access logs are generated when you access http://localhost/.

logs $ tail -f access.json.log

{"ClientAddr":"[::1]:49537","ClientHost":"::1","ClientPort":"49537",

 <!-- REMOVED for Brevity -->

,"origin_X-Processed-Time":"0","request_Accept":"text/

html,application/xhtml+xml,application/xml;q=0.9,image/

webp,image/apng,*/*;q=0.8,application/signed-

exchange;v=b3;q=0.9","request_Accept-Encoding":"gzip, deflate,

Chapter 5 Logs, request traCing, and MetriCs

143

br","request_Accept-Language":"en-US,en;q=0.9","request_

Cache- Control":"max-age=0","request_Connection":"keep-

alive","request_Sec-Fetch-Dest":"document","request_Sec-Fetch-

Mode":"navigate","request_Sec-Fetch-Site":"none","request_

Sec- Fetch- User":"?1","request_Upgrade-Insecure-

Requests":"1","request_User-Agent":"REDACTED","request_X-

Forwarded- Host":"localhost","request_X-

Forwarded- Port":"80","request_X-Forwarded-

Proto":"http","request_X- Forwarded-Server":"XE-GGN-IT-02498.

local","request_X-Real-Ip":"::1","time":"2020-06-

14T16:35:18+05:30"}

Note traefik reports about 25 additional fields. the list of fields is
available in traefik documentation.

 Log Rotation
Production deployed applications prefer the policy of log rotation. This

helps in optimal disk usage as historical logs are purged. But Traefik

logs are not rotated by default. Thus we need to use system programs

to perform log management. Logs management involves archiving and

purging activities. Depending on the operating system, there are various

programs to do this. On FreeBSD systems, you can use newsyslog, while

on Linux, you can use logrotate. All of them rely on sending USR1 signals

to rotate logs. In the following discussion, we work with newsyslog. The

outlined steps remain the same for any other program.

The newsyslog utility included in FreeBSD rotates, and archives log

files, if necessary. The program needs input in for a configuration file. The

file identifies which all log files need to be handled. It provides a diverse set

of attributes that can describe the file permissions, copy behavior, archive

Chapter 5 Logs, request traCing, and MetriCs

144

count, and so forth. The program is configured to run at periodic intervals

by using a scheduling program like crontab. Let's create the following

configuration in a file named syslog.conf.

/Users/rahulsharma/Projects/traefik-book/ch05/logs/access.json.

log rahulsharma:staff 640 5 500 * Z

In this configuration, we configured log rotation for acces.json.log.

• Set the file owner and group to rahulsharma:staff.

This applies to the zipped file and the new log file.

• Set the file permission to 640.

• There are only five rotations for the file.

• The rotation happens when the size grows above

500,000.

• The Z flag configures zipped files.

You can run newsyslog with the described configuration using the

following command.

code $ sudo newsyslog -vf syslog.conf

/Users/rahulsharma/Projects/traefik-book/ch05/logs/access.json.

log <5Z>: size (Kb): 532 [500] --> trimming log....

Signal all daemon process(es)...

Notified daemon pid 91 = /var/run/syslog.pid

Pause 10 seconds to allow daemon(s) to close log file(s)

Compress all rotated log file(s)...

Note the preceding process does not apply to Windows because
there is no log rotate program due to a lack of usr signals.

Chapter 5 Logs, request traCing, and MetriCs

145

 Blacklisting
Traefik provides support for backlisting by using middleware. We

discussed middleware in Chapter 2. They are configured as part of routers.

Middleware is executed after the rule matching but before forwarding

the request to the service. Traefik supports IP backlisting by configuring

ipWhiteList middleware. It can be configured by using the following

options.

• sourceRange: Describes the set of allowed IPs in CIDR

format

• ipstrategy: Describes how to identify client IP from

the X-forward-for header

http :

 routers :

 httpbin-router :

 entryPoints :

 - web

 rule : HostRegexp(`{name:.*}`)

 middlewares :

 - allowed-sources

 service : httpbin-service

 middlewares:

 allowed-sources:

 ipWhiteList:

 sourceRange:

 - "127.0.0.1/32"

 services :

 # Removed for Brevity

Chapter 5 Logs, request traCing, and MetriCs

146

In the preceding code, we did the following.

• We modified to router rule to allow all hostnames

using a regular expression. This is done using the

HostRegexp function instead of the Host operator.

• We added the Middlewares section with the name of

the configured ipWhiteList middleware.

• We configured the Middlewares section with the

configuration for ipWhiteList.

• We added the list of allowed IPs using the sourceRange

option.

Now let’s run the configuration. Access the http://localhost/ page to

access the httpbin service.

$ curl -v http://localhost/

* Trying ::1...

* TCP_NODELAY set

* Connected to localhost (::1) port 80 (#0)

> GET / HTTP/1.1

> Host: localhost

> User-Agent: curl/7.64.1

> Accept: */*

>

< HTTP/1.1 403 Forbidden

< Date: Sat, 20 Jun 2020 17:41:11 GMT

< Content-Length: 9

< Content-Type: text/plain; charset=utf-8

<

* Connection #0 to host localhost left intact

Forbidden* Closing connection 0

Chapter 5 Logs, request traCing, and MetriCs

147

We get back a forbidden response. This is so because our localhost

domain is resolved to the IP6 loopback address (::1). The loopback address

is not in the whitelist. Alternatively, you can access using the IP4 loopback

address (127.0.0.1). This should load the page as expected. The forbidden

access is reported in access logs. Make sure that you remove status code–

based log filters from the static configuration.

{"ClientAddr":"[::1]:64616","ClientHost":"::1","ClientPort

":"64616","ClientUsername":"-","DownstreamContentSize":9,"

DownstreamStatus":403,"Duration":128000,"OriginContentSiz

e":9,"OriginDuration":79000,"OriginStatus":403,"Overhead"

:49000,"RequestAddr":"localhost","RequestContentSize":0,"

RequestCount":63,"RequestHost":"localhost","RequestMethod

":"GET","RequestPath":"/","RequestPort":"-","RequestProto

col":"HTTP/1.1","RequestScheme":"http","RetryAttempts":0,

"RouterName":"httpbin-router@file","StartLocal":"2020-06-

20T23:11:01.21434+05:30","StartUTC":"2020-06-20T17:41:01.21434

Z","entryPointName":"web","level":"info","msg":"","time":"2020-

06- 20T23:11:01+05:30"}

 Request Tracing
You learned that observability is a diverse practice. Request tracing or

distributed tracing is an important pillar to profile application behaviors.

It is commonly applied to distributed systems to project how the request

processing has happened across different systems. It can point out

applications that have caused performance issues or have failed request

processing.

Chapter 5 Logs, request traCing, and MetriCs

148

In a nutshell, distributed tracing maps the flow of a request as it is

processed through a system. The processing flow is created on a building

block known as a request span. A request span represents time spent in

processing by a service. All services which process the request generate

their individual spans. These spans are then combined into a single

distributed trace for the entire request.

As an API gateway, Traefik receives incoming requests for different

applications. It is the single point of entry for all external requests. Traefik

must support the generation of request spans. The generated request

spans are propagated as request headers to the application. In turn, the

application must propagate these headers further. Traefik generates the

following B3 trace headers.

• x-b3-traceid

• x-b3-spanid

• x-b3-parentspanid

• x-b3-sampled

These spans are sent to a tracing backend service. The service is

responsible for storing and processing this information. Traefik supports

several OpenTracing backends like Zipkin, Datadog, and Jagger. In this

section, we work with Zipkin. Similar configurations are required for other

backends.

 Install Zipkin
Zipkin is an open source trace collection engine built in Java. It not only

supports trace collection, but it also provides a dashboard to visualize traces.

There are other features that allow you to analyze request flows. Since Zipkin

is open sourced, it provides access to code that can be compiled for a target

platform. Alternatively, we directly run a released binary. Zipkin's latest

release can be downloaded using the following command.

Chapter 5 Logs, request traCing, and MetriCs

149

code $curl -sSL https://zipkin.io/quickstart.sh | bash -s

Thank you for trying Zipkin!

This installer is provided as a quick-start helper, so you can

try Zipkin out

without a lengthy installation process.

Fetching version number of latest io.zipkin:zipkin-server release...

Latest release of io.zipkin:zipkin-server seems to be 2.21.4

Downloading io.zipkin:zipkin-server:2.21.4:exec to zipkin.jar...

Once zipkin.jar is downloaded, run it using the following command.

code $ java -jar zipkin.jar

2020-06-20 21:57:31.012 INFO 47685 --- [main] z.s

.ZipkinServer : Starting ZipkinServer

on XE-GGN-IT-02498.local with PID 47685 (/Users/rahulsharma/

Projects/trafik/code/zipkin.jar started by rahulsharma in /

Users/rahulsharma/Projects/trafik/code)

2020-06-20 21:57:31.016 INFO 47685 --- [main] z.s.

ZipkinServer : The following profiles

are active: shared

2020-06-20 21:57:32.040 INFO 47685 --- [main] c.

l.a.c.u.SystemInfo : hostname: xe-ggn-

it-02498.local (from 'hostname' command)

2020-06-20 21:57:32.537 INFO 47685 --- [oss-http-*:9411] c.

l.a.s.Server : Serving HTTP at

/0:0:0:0:0:0:0:0:9411 - http://127.0.0.1:9411/

2020-06-20 21:57:32.538 INFO 47685 --- [main] c.l.a.s.

ArmeriaAutoConfiguration : Armeria server started at ports:

{/0:0:0:0:0:0:0:0:9411=ServerPort(/0:0:0:0:0:0:0:0:9411, [http])}

The server is up and running on 9411 port. You can access its

dashboard at http://localhost:9411/.

Chapter 5 Logs, request traCing, and MetriCs

150

 Integrate Zipkin
Traefik integration with Zipkin is simple. We only need to provide

the Zipkin API location. The parameters are part of Traefik’s static

configuration. Traefik also provides the following attributes to customize

the tracing behavior.

• sameSpan: Configures one span for RPC invocations

• id128Bit: Generates 128-bit trace IDs

• samplerate: Percentage of requests traced

Removed for Brevity

tracing:

 zipkin:

 httpEndpoint: http://localhost:9411/api/v2/spans

 id128Bit : true

 sameSpan: true

Figure 5-5. Zipkin dashboard

Chapter 5 Logs, request traCing, and MetriCs

151

In this configuration, we provided the location for the Zipkin API. We

also configured 128-bit traces with the same span for RPC client and

server. Now restart the server.

ch05 $ traefik --configfile traefik.yml

INFO[0000] Configuration loaded from file: /Users/rahulsharma/

Projects/traefik-book/ch05/traefik.yml

You can validate the configuration in the Traefik dashboard (see

Figure 5-6). It should report which tracing backend is configured in the

application.

Note tracing is enabled at a global level. once enabled, it
generates traces for all requests, including the dashboard api.

Figure 5-6. Tracing dashboard status

Chapter 5 Logs, request traCing, and MetriCs

152

Now, let’s make a couple of requests. The httpbin application (see

Figure 5-7) provides several request types. Try loading the IP, status code,

and redirect requests. Traefik generates the request traces and sends it to

the deployed Zipkin.

Figure 5-7. The httpbin application

You can tail the access logs. Traefik log all passed request headers,

including the generated B3 headers.

 {

 # Removed for Brevity

 "request_User-Agent":"REDACTED",

 "request_X-B3-Parentspanid":"12f1ca6cf7671169",

 "request_X-B3-Sampled":"1",

 "request_X-B3-Spanid":"1704e2a62f95fa8b",

 "request_X-B3-Traceid":"12f1ca6cf7671169",

 }

Chapter 5 Logs, request traCing, and MetriCs

153

Traefik integration consists of the following steps.

• Generate TraceId and Span for a request based on the

configured sampling rate

• Forward the trace headers to the service application

• Update the spans based on the response code

• Send the generated trace spans to the tracing backend

Now, you can load the Zipkin dashboard. The dashboard provides a

UI to visualize request traces. You can search for requests during the last

15 mins. The resulting page should look as per the following. The tracer/

Zipkin dashboard(see Figure 5-8) marks all traces with 2XX or 3XX return

in blue. But a return code of 4XX /5XX is shown in red.

Figure 5-8. Request traces

Chapter 5 Logs, request traCing, and MetriCs

154

 Traefik Metrics
Traefik can generate application-level metrics. These metrics must be

captured in a backed service for monitoring and alert notifications.

Traefik supports the most widely used metrics solutions like StatsD,

Datadog, Prometheus, and so forth. In the current section, we work

with Prometheus as a metrics-backed store. Prometheus is an open-

source solution built using Golang. Prometheus can scrape metrics from

endpoints exposed in Traefik. It also provides a dashboard to visualize

metrics. Prometheus details are beyond the scope of the book.

Let’s first enable Traefik metrics by adding a relevant configuration.

The configuration needs to be added to the static-configuration file.

Traefik provides the following options.

• buckets: Defines buckets for response latencies

• addEntryPointLabels: Adds entrypoint names to

request metrics

• addServiceLabels: Adds service names to request metrics

• entryPoint: Names entrypoint configured to publish

metrics

• manualrouting: Enables a custom router for the

prometheus@internal service

entryPoints :

 web :

 address : ":80"

Removed for Brevity

metrics:

 prometheus:

 addEntryPointsLabels: true

 addServicesLabels : true

Chapter 5 Logs, request traCing, and MetriCs

155

Figure 5-9. Enable metrics

This configuration enables metrics on the default endpoint. The

metrics are generated at http://locahost:8080/metrics. Restart the

server and verify the configuration on the Traefik dashboard.

 Configure Prometheus
Now we need to capture the generated metrics in Prometheus. Let’s start

by downloading the latest version using the Release page (https://

prometheus.io/download/). You can unzip the release. But before starting

the Prometheus server, we need to configure the endpoint, which needs to

be scrapped. This can be done by updating the bundled prometheus.yml

my global config

global:

 scrape_interval: 15s # Set the scrape interval to every

15 seconds. Default is every 1 minute.

Chapter 5 Logs, request traCing, and MetriCs

https://prometheus.io/download/
https://prometheus.io/download/

156

 evaluation_interval: 15s # Evaluate rules every 15 seconds.

The default is every 1 minute.

 # scrape_timeout is set to the global default (10s).

REMOVED for BREVITY

 static_configs:

 - targets: ['localhost:8080']

In this configuration, the Traefik endpoint (localhost:8080) to the list of

targets. Prometheus looks up the metrics using http:// localhot:8080/

metrics. Now start Prometheus using the following command.

prometheus-2.19.1.darwin-amd64 $./prometheus

level=info ts=2020-06-21T06:14:37.958Z caller=main.go:302

msg="No time or size retention was set so using the default

time retention" duration=15d

level=info ts=2020-06-21T06:14:37.959Z caller=main.

go:337 msg="Starting Prometheus" version="(version=2.19.1,

branch=HEAD, revision=eba3fdcbf0d378b66600281903e3aab515732b39)"

level=info ts=2020-06-21T06:14:37.959Z caller=main.go:338

build_context="(go=go1.14.4, user=root@62700b3d0ef9,

date=20200618-16:45:01)"

level=info ts=2020-06-21T06:14:37.959Z caller=main.go:339

host_details=(darwin)

level=info ts=2020-06-21T06:14:37.959Z caller=main.go:340

fd_limits="(soft=2560, hard=unlimited)"

level=info ts=2020-06-21T06:14:37.959Z caller=main.go:341

vm_limits="(soft=unlimited, hard=unlimited)"

level=info ts=2020-06-21T06:14:37.960Z caller=main.go:678

msg="Starting TSDB ..."

level=info ts=2020-06-21T06:14:37.960Z caller=web.

go:524 component=web msg="Start listening for connections"

address=0.0.0.0:9090

Chapter 5 Logs, request traCing, and MetriCs

157

We can Load Prometheus dashboard using http://locahost:9090/.

The metric dropdown have different options with traefik_ prefix. We load

the traefik_entrypoint_requests_total metric. It described the total

number of requests handler by Traefik. Additionally, you can also send

several requests to Traefik using the following bash script.

$ for ((i=1;i<=10000;i++)); do curl -v --header "Connection:

keep-alive" "localhost"; done

This script sends about 10,000 requests to Traefik server. Lastly, you

can check the Prometheus dashboard (see Figure 5-10), which captures

the growth in traffic.

Figure 5-10. Request traffic metric

Chapter 5 Logs, request traCing, and MetriCs

158

 Summary
This chapter discussed observability. We talked about its three pillars of

error logs, request traces, and application metrics. First, we configured

error logs. These logs capture information about any errors occurring in

Traefik. As a next step, we configured access logs. The access logs capture

incoming requests handled by Traefik. As the incoming requests increase,

the access logs can bloat quickly.

We discussed ways to manage it by using filters, rotation, and header

masking. We also configured IPwhitelist middleware and captured the

forbidden logs generated by it. After this, we enabled request tracing using

Zipkin. Traefik generates B3 headers for tracing. These headers can be

seen in access logs.

You looked at the process flow and generated traces in the Zipkin

dashboard. Finally, we enabled Traefik metrics and captured them

in Prometheus. Traefik supports many backend stores for Tracing

and metrics. Zipkin and Prometheus have been taken as an example

to demonstrate its integration. These tools are helpful in distributed

architectures like microservices.

In the next chapter, you work with Traefik support for microservices.

Chapter 5 Logs, request traCing, and MetriCs

159© Rahul Sharma, Akshay Mathur 2021
R. Sharma and A. Mathur, Traefik API Gateway for Microservices,
https://doi.org/10.1007/978-1-4842-6376-1_6

CHAPTER 6

Traefik for
Microservices
In Chapter 1, we discussed microservice architecture. Businesses

are increasingly moving away from the monolith architecture to take

advantage of the microservice architecture. But a microservices system

is a distributed system. To use it efficiently, we need to adopt additional

infrastructure components. These additional components prescribe a new

set of guidelines that must be followed with each microservice.

Microservice architecture advocates granule services for evolving

business needs. Depending on changing business needs, development

teams can create or combine services. Moreover, in the production

environment, each of the services is deployed and scaled independently.

Cloud-based autoscaling often replicates instances based on service load.

Thus, the architecture is in constant evolution, and there is no end-state

list of microservices.

A dynamic ecosystem requires a catalog of the latest running

microservices. This is also known as the service registry. In a nutshell, the

registry is a database of services with details of their instances and the

corresponding locations. To work efficiently, services must be registered

on startup and removed on shutdown. There are many ways to achieve

this, but the process of service self-registration is the recommended

mechanism.

https://doi.org/10.1007/978-1-4842-6376-1_6#DOI

160

Once the services are registered with the registry, a client needs a

lookup for the same service. This client-side process is known as service

discovery (see Figure 6-1). The client first queries the service registry

to find the available instances of a service. After getting the list of active

service instances, the client can send a request to the required service.

Figure 6-1. Service registration and service discovery

The service registry is often a key-value store of information. Many

times, you must register additional information about the service. This

information can be related to the client’s type in a multitenant system, or

the view provided, like web or mobile, or any other information. Every

service is responsible for adding this data to the store. In this chapter, we

use the service self-registration mechanism to integrate Traefik with the

microservices.

Microservice architecture recommends service collaboration. This

means that one service can invoke other services to get the required data

for a user request. But the mechanism has its own set of issues. When

one service synchronously invokes another service, there is always the

possibility that the other service is unavailable or is exhibiting such high

latency that it is essentially unusable.

Chapter 6 traefik for MiCroserviCes

161

Precious resources such as threads might be consumed in the caller

while waiting for the other service to respond. This might lead to resource

exhaustion, which would make the calling service unable to handle other

requests.

The failure of one service can potentially cascade to other services

throughout the application. The problem can be fixed by adapting circuit

breakers (see Figure 6-2) in the application design. When the number of

consecutive failures crosses a threshold, the circuit breaker trips, and for

the duration of a timeout period, all attempts to invoke the remote service

fail immediately.

Figure 6-2. Circuit breaker pattern

After the timeout expires, the circuit breaker allows a limited number

of test requests to pass through. If those requests succeed, the circuit

breaker resumes normal operation. Otherwise, if there is a failure, the

timeout period begins again. In this chapter, we integrate circuit breakers

while invoking different microservices from Traefik.

API gateways are an essential part of any microservice-based

architecture. Cross-cutting concerns such as authentication, load

balancing, dependency resolution, data transformations, and dynamic

request dispatching can be handled conveniently and generically.

Microservices can then focus on their specific tasks without code

duplication. This results in easier and faster development of each

microservice.

Chapter 6 traefik for MiCroserviCes

162

Implement an API gateway that is the single entry point for all clients.

The API gateway handles requests in one of two ways. Some requests

are proxied/routed to the appropriate service. It handles other requests

by fanning out to multiple services. In previous chapters, we configured

Traefik for the requirements for single services. In this chapter, we

configure Traefik as a microservices gateway.

 Pet-Clinic Application
In this chapter, we need a microservices-based application. The

application must have at least two or more microservices integrated with

Traefik. We work with a PetClinic application. PetClinic is a Java-based

application which was packaged with the Spring framework for learning

purpose. The Spring community maintains the application. It explains

Spring framework-based technologies in detail. Thus, the application is a

good test-bed for enterprise technologies.

The PetClinic application is designed for the needs of a veterinary

clinic. The application enables its users to view and manage veterinarians,

customers, and their pets. The application supports the following use cases.

• View a list of veterinarians and their specialties

• View information about a pet owner

• Update the information about a pet owner

• Add a new pet owner to the system

• View information about a pet

• Update the information about a pet

• Add a new pet to the system

• View information about a pet’s visitation history

• Add information about a visit to the pet’s visitation

history

Chapter 6 traefik for MiCroserviCes

163

The solution needs to be built using microservice architecture.

Let’s download the PetClinic application from https://github.com/

rahul0208/spring-petclinic-microservices.

Spring PetClinic microservices are built around small independent

services (a few hundred lines of code), running in their own JVM and

communicating over HTTP via a REST API. These microservices are

all written in Java. Each of the three customer, vet, and visit business

microservices is an application in the Spring Boot sense. To work in a

distributed environment, these microservices rely on a set of tools offered

by Spring Cloud: centralized configuration management, automated

discovery of other microservices, and load balancing (see Figure 6-3). The

application UI is developed in Angular and deployed in Nginx. Traefik

will perform request- routing. We build and deploy an application in this

chapter. Some important aspects are covered, but complete application

technical details are beyond the scope of the book.

Figure 6-3. PetClinic services

Chapter 6 traefik for MiCroserviCes

https://github.com/rahul0208/spring-petclinic-microservices
https://github.com/rahul0208/spring-petclinic-microservices

164

 Application Configuration
The PetClinic application configuration is at https://github.com/

rahul0208/spring-petclinic-microservices-config. The configuration

is served using the spring-cloud-config server. The config server makes the

configuration available at the following REST URLs.

• /{application}/{profile}[/{label}]

• /{application}-{profile}.yml

• /{label}/{application}-{profile}.yml

• /{application}-{profile}.properties

• /{label}/{application}-{profile}.properties

The config-server also removes the requirement of repackaging the

application in the event of configuration changes. Since all the latest

configuration is available on the listed REST endpoints, we only need a

service restart. Services can also be configured for hot-reload by using

@RefreshScope annotation or the EnvironmentChangeEvent event listener.

Spring follows the convention of loading application configuration from

application.properties. But as discussed previously, when the spring-

cloud-config server is used, application.properties is no longer part of

the application. Instead, a spring-cloud-context is configured to load the

configuration properties from the external sources. It can also be configured

for decrypting properties in the external configuration files. Spring Cloud

application initiates a bootstrap context that loads its configuration from the

bootstrap.yml file. The bootstrap.yml file is minimalist. It contains the name

of the microservice and the URL of the configuration server. The following is

an example from the vets-service microservice.

spring:

 cloud:

 config:

Chapter 6 traefik for MiCroserviCes

https://github.com/rahul0208/spring-petclinic-microservices-config
https://github.com/rahul0208/spring-petclinic-microservices-config

165

 uri: http://localhost:8888

 application:

 name: vets-service

We specified the spring-config-server location at localhost:8888 in

the configuration. The vets-service microservice requires the server

to be up on the said location. It queries the server to determine

the configuration values and then complete the server startup. It is

important to note that the config server’s location can be injected using

environment variables like SPRING_CLOUD_CONFIG. But it can’t be

discovered using the service registry.

 Consul Service Registry
Previously we discussed the evolving nature of microservice architecture.

When services are deployed in the cloud, you can hardly anticipate the

number of instances of the same microservices (depending on the load) or

where they are deployed (and on which IP and port they are accessible).

Thus, there is a need for a service registry. In the PetClinic application, we

used the Consul service registry. At startup, each microservices registers

itself with the service registry. Post-registration, each service periodically

provides a heartbeat to the registry. The book does not aim to cover details

around the Consul service registry. Please refer to the documentation for

more information.

Now let’s download consul from www.consul.io/. Post-download,

extract the zipped file and start the service.

Chapter 6 traefik for MiCroserviCes

http://www.consul.io/

166

$./consul agent -dev

==> Starting Consul agent...

 Version: 'v1.8.0'

 Node ID: '935fccd6-74ca-e62e-c53f-c838de3c3681'

 Node name: 'XE-GGN-IT-02498.local'

 Datacenter: 'dc1' (Segment: '<all>')

 Server: true (Bootstrap: false)

 Client Addr: [127.0.0.1] (HTTP: 8500, HTTPS: -1, gRPC:

8502, DNS: 8600)

 Cluster Addr: 127.0.0.1 (LAN: 8301, WAN: 8302)

 Encrypt: Gossip: false, TLS-Outgoing: false, TLS-

Incoming: false, Auto-Encrypt-TLS: false

==> Log data will now stream in as it occurs:

We can load the Consul UI at http://localhost:8500/ui/dc1/services.

(see Figure 6-4)

Figure 6-4. Consul services

Chapter 6 traefik for MiCroserviCes

167

 Deploy Pet-Clinic
Now we can run the PetClinic microservices in any order. The application

consists of the following three microservices.

• Vets service

• Visits service

• Customer service

All the services are based on Spring Boot. They are packaged

as executable JAR files. Executing the service-specific jar starts the

service with an embedded servlet engine. Since the service fetches are

configuration from the spring-config server, so let’s make sure that we are

the correct location of the config server in bootstrap.yml.

Next, make sure that the config-server points to the correct git location.

In the example, https://github.com/rahul0208/spring-petclinic-

microservices-config is the application configuration source. We

recommended that you clone this configuration and update it per the

environment.

The preceding URL is configured in bootstrap.yml for config-server.

server.port: 8888

spring:

 cloud:

 config:

 server:

 git:

 uri: https://github.com/spring-petclinic/spring-

petclinic- microservices-config

 native:

 searchLocations: file:///${GIT_REPO}

Chapter 6 traefik for MiCroserviCes

https://github.com/rahul0208/spring-petclinic-microservices-config
https://github.com/rahul0208/spring-petclinic-microservices-config

168

The details of the configuration are beyond the scope of this book. We

recommend that you update the URI with its own clone. Now, we need to

build the services using the packages maven wrapper.

$./mvnw clean install

[INFO] Scanning for projects...

[INFO] --

[INFO] Reactor Build Order:

[INFO]

[INFO] spring-petclinic- microservic

es [pom]

[INFO] spring-petclinic-customers- servi

ce [jar]

[INFO] spring-petclinic-vets- service

 [jar]

[INFO] spring-petclinic-visits- service

 [jar]

[INFO] spring-petclinic-config- server

 [jar]

...

..... Truncated for Brevity

The command creates an executable for each service under the target

folder.

$ find . -type f -name "*jar"

./spring-petclinic-config-server/target/spring-petclinic-

config-server-2.3.1.jar

./spring-petclinic-ui/target/spring-petclinic-ui-2.3.1.jar

./spring-petclinic-vets-service/target/spring-petclinic-vets-

service-2.3.1.jar

./.mvn/wrapper/maven-wrapper.jar

Chapter 6 traefik for MiCroserviCes

169

./spring-petclinic-customers-service/target/spring-petclinic-

customers-service-2.3.1.jar

./spring-petclinic-visits-service/target/spring-petclinic-

visits-service-2.3.1.jar

In the current setup, we deployed all services in the same box. Thus,

localhost address is used in the configuration. You are free to deploy the

service on any host, by making an appropriate update in their git config.

As a first step, you need to start the config server with the following

command.

target $ java -jar spring-petclinic-config-server-2.3.1.jar

2020-07-26 21:56:26.401 INFO 7442 --- [main]

o.s.s.p.config.ConfigServerApplication : No active profile

set, falling back to default profiles: default

2020-07-26 21:56:27.221 INFO 7442 --- [main]

o.s.cloud.context.scope.GenericScope : BeanFactory

id=15cd0375-3bcf-3529-9d02-67397a0dc277

2020-07-26 21:56:27.609 INFO 7442 --- [main]

o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat initialized

with port(s): 8888 (http)

2020-07-26 21:56:27.621 INFO 7442 --- [main]

o.apache.catalina.core.StandardService : Starting service

[Tomcat]

2020-07-26 21:56:27.621 INFO 7442 --- [main] org.

apache.catalina.core.StandardEngine : Starting Servlet engine:

[Apache Tomcat/9.0.36]

2020-07-26 21:56:27.690 INFO 7442 --- [main]

The next step is to run each microservice. But first let’s make sure

that we have the correct address of the Consul service registry in

 application.yml.

Chapter 6 traefik for MiCroserviCes

170

spring:

 cloud:

 consul:

 host: localhost

 port: 8500

Let’s now start the vets-service with the following command.

target $ java -jar spring-petclinic-vets-service-2.3.1.jar

2020-07-21 15:34:11.693 INFO [vets-service,,,] 26509 ---

[main] c.c.c.ConfigServicePropertySourceLocator :

Fetching config from server at : http://localhost:8888

2020-07-21 15:34:15.525 INFO [vets-service,,,] 26509 --- [

main] c.c.c.ConfigServicePropertySourceLocator : Located

environment: name=vets-service, profiles=[default], label=null,

version=062fb94b71dc6b99e6518fe7088a0bff3a9431d1, state=null

2020-07-21 15:34:15.527 INFO [vets-service,,,] 26509 ---

[main] b.c.PropertySourceBootstrapConfigurat

ion : Located property source: [BootstrapPropertySource

{name='bootstrapProperties-configClient'},

BootstrapPropertySource {name='bootstrapProperties-

https://github.com/spring-petclinic/spring-petclinic-

microservices-config/vets-service.yml (document #1)'},

BootstrapPropertySource {name='bootstrapProperties-

https://github.com/spring-petclinic/spring-petclinic-

microservices-config/vets-service.yml (document #0)'},

BootstrapPropertySource {name='bootstrapProperties-https://

github.com/spring-petclinic/spring-petclinic-microservices-

config/application.yml (document #0)'}]

- Start completed.

Chapter 6 traefik for MiCroserviCes

171

Similarly, we need to start the customer-service and visits services.

Each service registers itself in the Consul service registry. You can validate

the service details in the Consul dashboard (see Figure 6-5). Additionally,

each of these services may report a failure for the Zipkin-based request

tracing. Request tracing offers various benefits. In Chapter 5, we covered

the integration of these tools with Traefik. We do not cover these

integrations in this chapter.

Figure 6-5. Dashboard UI

 Pet-Clinic UI
The application UI is built using 1.7 version on AngularJS. These HTML

pages are deployed as static resources of a Spring web Application.

Alternatively, we can pack and deploy them in a server like Apache Tomcat

or HTTPD. The UI is also packaged as an executable JAR. Let’s now start

the UI with the following command.

Chapter 6 traefik for MiCroserviCes

172

target $ java -jar spring-petclinic-ui-2.3.1.jar

2020-07-27 22:15:21.996 INFO [petclinic-ui,,,] 17732 ---

[restartedMain] c.c.c.ConfigServicePropertySourceLocator :

Fetching config from server at : http://localhost:8888

2020-07-27 22:15:22.870 INFO [petclinic-ui,,,] 17732 ---

[restartedMain] c.c.c.ConfigServicePropertySourceLocator :

Located environment: name=petclinic-ui, profiles=[default],

label=null, version=8adeb754f96df6e7308344e7bb2ceddcca09b93f,

state=null

2020-07-27 22:15:22.871 INFO [petclinic-ui,,,] 17732 ---

[restartedMain] b.c.PropertySourceBootstrapConfigurat

ion : Located property source: [BootstrapPropertySource

{name='bootstrapProperties-configClient'},

BootstrapPropertySource {name='bootstrapProperties-https://

github.com/rahul0208/spring-petclinic-microservices-config/

petclinic-ui.yml (document #0)'}, BootstrapPropertySource

{name='bootstrapProperties-https://github.com/rahul0208/spring-

petclinic- microservices-config/application.yml (document #0)'}]

...... TRUNCATED FOR BREVITY

The UI is deployed on 9000 port. We can access it as http://

localhost:9000/#!/welcome. (see Figure 6-6)

Chapter 6 traefik for MiCroserviCes

173

The UI is also updating the Consul service registry. This way, the

registry is a comprehensive catalog of the running services.

 Configure Gateway
In the preceding setup, we deployed all microservices of the application.

Now we need to configure Traefik to render the UI and route calls to

each service. We can write this configuration in a file as done in previous

chapters. It configures Traefik, but the approach does not work with the

dynamic nature of the microservice architecture. We would need to keep

updating the configuration as a new service gets added to the ecosystem.

Also, it is difficult to keep updating the IP address of all instances of a

service.

Figure 6-6. PetClinic UI

Chapter 6 traefik for MiCroserviCes

174

Alternatively, Traefik can be used with Consul key-value store as a

configuration provider. All Traefik configuration is added hierarchically

as key and values under a configured root node. The default root node is

named “traefik”. Table 6-1 highlights some of the Traefik keys.

Table 6-1. Keys for Traefik

Key Value

traefik/http/routers/<route-name>/entrypoints/0 specifies respective entrypoint

name

traefik/http/routers/<route-name>/middlewares/0 specifies the middleware name

traefik/http/routers/<route-name>/rule specifies the matching rule

traefik/http/routers/<route-name>/service specifies the respective service

name

traefik/http/service/<service-name>/

loadbalancers/0/url

specifies the instance UrL

location

raefik/http/middlewares/<middleware-name>/

stripprefix/prefixes/0

specifies the middleware

configuration

Traefik documentation provides the updated list of keys to configure

it. As a first step, let’s add the configuration to Consul. You can create it

using Consul GUI. Alternatively, you can import keys from a JSON file. The

values for each key are encoded in Base64 format.

$ consul kv import "$(cat config.json)"

Imported: traefik/http/middlewares/petclinic-customers-

stripprefix/stripPrefix/prefixes/0

Imported: traefik/http/middlewares/petclinic-visits-

stripprefix/stripPrefix/prefixes/0

Imported: traefik/http/routers/petclinic-customers-route/

entryPoints/0

Chapter 6 traefik for MiCroserviCes

175

Imported: traefik/http/routers/petclinic-customers-route/

middlewares/0

Imported: traefik/http/routers/petclinic-customers-route/rule

Imported: traefik/http/routers/petclinic-customers-route/service

Imported: traefik/http/routers/petclinic-route/entryPoints/0

Imported: traefik/http/routers/petclinic-route/rule

Imported: traefik/http/routers/petclinic-route/service

Imported: traefik/http/routers/petclinic-vets-route/entryPoints/0

Imported: traefik/http/routers/petclinic-vets-route/rule

Imported: traefik/http/routers/petclinic-vets-route/service

Imported: traefik/http/routers/petclinic-visits-route/entryPoints/0

Imported: traefik/http/routers/petclinic-visits-route/middlewares/0

Imported: traefik/http/routers/petclinic-visits-route/rule

Imported: traefik/http/routers/petclinic-visits-route/service

Once the configuration is imported, we should see all key-values in the

Consul store. Now we need to update the Traefik static configuration to use

Consul provider.

entryPoints :

 web :

 address : ":80"

providers:

 consul:

 endpoints:

 - "127.0.0.1:8500"

 rootKey : "traefik"

api :

 insecure : true

 dashboard : true

Chapter 6 traefik for MiCroserviCes

176

We specified the Consul provider instead of FileProvider in the

configuration. We also specified the location and the root key. There are

additional options to configure authentication and TLS information. Let’s

start the Traefik server and look up the dashboard.

Figure 6-7. Traefik configuration from Consul

Chapter 6 traefik for MiCroserviCes

177

The dashboard shows the configuration from Consul key-value store.

Traefik has created four new routes, one for each deployed service. If the

services are not running, then routes added by the configuration are in

error, as shown in Figure 6-7. If you click a route, you see an error message

about the corresponding service’s missing details.

 Service Details
Traefik would need the server details for each service. In a microservice

architecture, service registration is the process of adding all details to

the registry. In our opinion, self-registration is the simplest possible

mechanism that supports every possible scenario. We extend the self-

registration to add Traefik specific details for the required Consul keys. The

ServiceRegistry class accomplishes this responsibility.

@Configuration

public class ServiceRegistry implements ApplicationListener<Ser

vletWebServerInitializedEvent> {

 final String serviceKey = "/traefik/http/services/{0}/

loadBalancer/servers/";

 final String serverKey = "/traefik/http/services/{0}/

loadBalancer/servers/{1}/";

 final String urlKey = "/traefik/http/services/{0}/

loadBalancer/servers/{1}/url";

 @PreDestroy

 void removerServerMapping() {

 if(index > -1) {

 consulClient.deleteKVValues(format(serverKey,

applicationName, index));

 }

 }

Chapter 6 traefik for MiCroserviCes

178

 void addServerMapping(int port) {

 Response<List<String>> keys = consulClient.getKVKeysOnly

(format(serviceKey, applicationName));

 index = keys.getValue()!=null ? keys.getValue().size() : 0;

 consulClient.setKVValue(format(urlKey, applicationName,

index), format("http://{0}:{1,number,#}/","127.0.0.1",port));

 }

 // REMOVED for Brevity

}

The preceding code does the following.

• Determines the port on which the application is started

• Adds the host and port information to the Consul KV

store by using ConsulClient

• Adds the values to the Traefik keys /traefik/http/

services/{0}/loadBalancer/servers/{1}/url

• Removes the keys at service shutdown

The ServiceRegistry class is part of every service. If you start all

services and reload the dashboard, you see that all the errors are fixed.

(see Figure 6-8)

Figure 6-8. PetClinic configuration

Chapter 6 traefik for MiCroserviCes

179

Note traefik continues to watch values in the kvs store. it
automatically reloads the configuration as it is updated in Consul.

Now let’s load the PetClinic application on http://localhost/. The

application performs as expected. We can load and save data across the

three different microservices. (see Figure 6-9)

Figure 6-9. PetClinic

 Circuit Breaker
We said that microservices often collaborate to deliver a complete user

function. A service invokes other services to get relevant data. But in a

distributed system like microservices, the remote service call can hang for a

while before failing. An unresponsive service call blocks the resources from

the calling service. If there are many of these calls, the system may run out of

critical resources leading to cascading failures across multiple systems.

Chapter 6 traefik for MiCroserviCes

180

A circuit breaker is often applied to address this problem with fail-fast

behavior. The circuit breaker tracks remote calls. In an unhealthy response,

the circuit breaker returns immediately without sending the call to the

destination service. This book does not cover the pattern in detail.

Traefik provides middleware that can configure a circuit breaker.

Since the circuit breaker is configured as part of the middleware chain, the

circuit breaker only alters the behavior after its execution. It is important

to note that even though the circuit breaker is declared once in the

configuration, but it configures as individual instances for each route.

Traefik can detect service error rates in the following metrics.

• Latency: Traefik can measure service quantile latency

time. The circuit breaker can be triggered if the

measured time is more than a configured value (e.g.,

LatencyAtQuantileMS(50.0) > 100). The argument

specifies the quantile.

• Network errors: Measures the network error rate (e.g.,

NetworkErrorRatio() > 0.30).

• Response code: Traefik can measure service response

status codes (e.g., ResponseCodeRatio(500, 600, 0,

600) > 0.25). The four arguments here are HTTP

status codes.

• Error status code From

• Error status code To

• Application Status code From

• Application Status code To

Each of these metric values can be checked by using the following

operators.

Chapter 6 traefik for MiCroserviCes

181

• Greater than (>)

• Greater or equal than (>=)

• Lesser than (<)

• Lesser or equal than (<=)

• Equal (==) and

• Not Equal (!=) operators

You can also combine two or more metrics using AND (&&) and OR

(||) operators. When Traefik determines that a circuit breaker has been

triggered, it does not forward the call to the destination service; instead, it

returns a 503 response. (see Figure 6-10)

Figure 6-10. Traefik circuit breaker

Let’s now add the following response status circuit breaker to over

services.

$ consul kv import "$(cat circuitbreaker.json)"

Imported: traefik/http/middlewares/response-check/

circuitbreaker/expression

Imported: traefik/http/routers/petclinic-customers-route/

middlewares/1

Chapter 6 traefik for MiCroserviCes

182

We added circuit-breaker middleware for the customer-service route to

the configuration. The circuit breaker is triggered when customer service

returns 500 error code. Traefik also shows the circuit breaker middleware

configuration on the dashboard. (see Figure 6-11)

 Retries
In a dynamic ecosystem, service instances can be in a starting state. There

can be intermittent network connectivity errors. These transient errors

are generally self-correcting. If you retry the service call, chances are it will

succeed. Retry is another mechanism that makes an application fault tolerant.

Figure 6-11. Route with circuit breaker

Chapter 6 traefik for MiCroserviCes

183

The retry pattern states that you can retry a failed request. It is

important to identify which failures may work with this approach. If

the application reports an invalid data error, then the chances are high

that it does not work on retry. Additionally, a failed request propagated

throughout the system creates unnecessary bottlenecks. On the other

hand, if a request has failed due to the connection or a response timeout,

chances are high that it will succeed if retried.

Traefik supports the retry pattern by using retry middleware, which

reissues request a specified number of times to a service if there are

timeout errors. The middleware stops reissue as soon as there is a response

from the service. The middleware done validates if the response received

is erroneous. We can add retry middleware configuration and enable it for

routes in the following manner.

$ consul kv import "$(cat retry.json)"

Imported: traefik/http/middlewares/retry-check/retry/attempts

Imported: traefik/http/routers/petclinic-vets-route/middlewares/1

We configured the retry middleware for four retries. The middleware

is applied to the vets-service route in the configuration. It is difficult to test

such a configuration. The configuration is applicable when the service

is slow to respond. The error is only replicated in-case of connection

 timeouts. These are actual network errors. The retry mechanism does not

kick in for request timeouts. In these cases, the request is processing by the

service, but the processing can be very slow. Such requests, if retried, can

cause unintended issues, like dual debit in account debit requests.

Retries can only work properly if there are configured timeouts

in Traefik. This is a global level configuration. Traefik provides

serversTransport.forwardingTimeouts static configuration attributes that

can control the timeouts to the servers.

• idleConnTimeout: Specifies the maximum amount of

time an idle connection remain idle before closing

Chapter 6 traefik for MiCroserviCes

184

• responseHeaderTimeout: Specifies the amount of time

to wait for a server’s response headers

• dialTimeout: Specifies the time spent establishing a

connection

serversTransport:

 forwardingTimeouts:

 responseHeaderTimeout: 1s

 dialTimeout: 1s

 idleConnTimeout: 1s

We configured one-second timeouts for service response and idle

connection in the configuration. Let’s restart Traefik and validate the retry

middleware configuration on the dashboard.

Figure 6-12. Route with retry

Chapter 6 traefik for MiCroserviCes

185

The configuration shows that three retries are performed for a failed

request.

 Throttling
In a microservice architecture, different services collaborate to deliver

user value. This involves applying enterprise integration techniques to

applications to address various issues. One of the common issues in

application integration is about controlling the consumption of resources.

Some of the resources are expensive to create, so their access must be

moderated with service level agreements. Throttling is the method that

controls misbehaving or rouge services by sending more requests than

the service level agreement. It is essential to apply this to a critical-section

service as the complete ecosystem stall if the critical-section service fails.

This can help improve application capacity planning.

Throttling is often implemented by rejecting overflowing requests.

Traefik supports throttling by using rate-limit middleware. It can measure

average calls within a defined period from a particular source. The

middleware sends HTTP status 429 (too many calls) to the source service

if it invokes calls more than the configured limit. The middleware provides

the following three attributes to configure the API rate.

• Average: Counts the number of requests in the

configured period

• Period: Specifies the time (the rate is defined as the

average calls/period)

• Burst: Specifies how to handle the maximum request

within a short time

Chapter 6 traefik for MiCroserviCes

186

There are options to control the source identification. We can enable

the rate-limit middleware for the vets service.

$ consul kv import "$(cat ratelimit.json)"

Imported: traefik/http/middlewares/ratelimit-check/ratelimit/

average

Imported: traefik/http/middlewares/ratelimit-check/ratelimit/

period

Imported: traefik/http/routers/petclinic-vets-route/

middlewares/2

Traefik updates the configuration and shows it in the dashboard, as

shown in Figure 6-13.

Figure 6-13. Throttle dashboard

Chapter 6 traefik for MiCroserviCes

187

We defined the rate as 1 request/30 seconds. If we try to make a couple

of requests for /api/vets/vets, you see the following response.

Request URL: http://localhost/api/vet/vets

Request Method: GET

Status Code: 429 Too Many Requests

Remote Address: [::1]:80

Referrer Policy: no-referrer-when-downgrade

 Middleware Chain

Traefik provides a chain middleware that can be used to simplify

configurations applied across different services. The chain middleware can

be used to group middleware in order. The complete group can be applied

to a route, removing the need to apply each middleware separately. The

complete chain is specified by providing a comma-separated list to the

chain middleware attribute. In this scenario, we can configure the chain to

consist of the circuit breaker and rate limit middleware.

$ consul kv import "$(cat chain-list.json)"

Imported: traefik/http/middlewares/chain-list/chain/middlewares

Imported: traefik/http/routers/petclinic-customers-route/

middlewares/0

Traefik updates the configuration and shows it in the dashboard, as

shown in Figure 6-14.

Chapter 6 traefik for MiCroserviCes

188

 Canary Deployments
Traefik supports Canary deployments using weighted round-robin.

In the previous section, we added the ServiceRegistry class to add

instance details. These instances are used in a round-robin manner. In

Chapter 3, we discussed the weighted round-robin, where weights were

added to server instances. Traefik divides received requests in the ratio

of the provide weights. As we start new instances, you see new services in

the Consul service registry (see Figure 6-15). Weight can be added from

the UI for each instance.

Figure 6-14. Chained middleware

Chapter 6 traefik for MiCroserviCes

189

Redirecting a subset of requests to a new service is one of the

fundamental foundations for canary deployments. The mechanism can

be automated by using a Consul client. But the complete end-to-end flow

needs additional components which can provision and deploy the newly

released version.

Note this chapter integrated traefik with the Consul kv store.
traefik also provides integration with Zookeeper and etcd.
Configuration with others is similar to Consul-based integration, but
some features do not work as expected.

Figure 6-15. Multiple instances

Chapter 6 traefik for MiCroserviCes

190

 Summary
In this chapter, we deployed a microservices-based solution and

configured Traefik as a gateway to it. We used the Consul service registry

for the microservices. Traefik is enabled to read the configuration from the

Consul KV store. Traefik can detect updates in the KV store and perform

hot reloads. This keeps the configuration updated in a dynamic ecosystem

like microservices.

Services can register/deregister them as they start/shutdown. These

updates are picked by Traefik, which provides middleware that can be

configured in the microservice architecture. This chapter looked at the

circuit breaker, retry, rate limit, and chain middleware. It also looked at

the weighted round-robin-based deployment, which can split the requests

for canary deployments. In the next chapter, we deploy the microservices

solution on an orchestration engine and configure Traefik.

Chapter 6 traefik for MiCroserviCes

191© Rahul Sharma, Akshay Mathur 2021
R. Sharma and A. Mathur, Traefik API Gateway for Microservices,
https://doi.org/10.1007/978-1-4842-6376-1_7

CHAPTER 7

Traefik as Kubernetes
Ingress
In this final chapter, you try out Traefik’s native integration with the

Kubernetes container orchestration platform. Kubernetes is undoubtedly

the most popular container microservices platform. Traefik integrates

tightly with Kubernetes and can act as a first-class citizen in the Kubernetes

ecosystem. You already tried out Traefik’s many gateway capabilities.

This chapter explores how easily these capabilities map to Kubernetes

ingress concepts. You also see Traefik’s simple integration with Jaeger, a

Kubernetes-specific distributed tracing solution.

Note As in previous chapters, the focus remains on how Traefik
integrates with the Kubernetes ecosystem, rather than its advanced
features. We assume that you have a basic familiarity with
Kubernetes primitives, and so we restrict our explanations on how
Traefik maps to them.

 Traefik as Kubernetes Ingress Controller
Kubernetes is primarily an orchestrator/scheduler and an API server

that supports the desired state configuration. Typically, clients submit

declarative YAML resource requests to the Kubernetes API server, and

https://doi.org/10.1007/978-1-4842-6376-1_7#DOI

192

Kubernetes accordingly provisions the requested resources. For each such

resource type supported by the Kubernetes API server, such as deployment

or service, a default Kubernetes controller acts on and provisions the

submitted resource request. The one exception is the ingress resource type.

The Ingress object defines the traffic routing rules (e.g., load balancing,

SSL termination, path-based routing) in a single resource to expose

multiple services outside the cluster. According to the official Kubernetes

documentation:

Ingress is a collection of rules that allow inbound connec-
tions to reach the endpoints defined by a backend. An Ingress
can be configured to give services externally-reachable URLs,
load balance traffic, terminate SSL, offer name-based vir-
tual hosting, etc.

This is not very different from how Traefik acts as an API gateway.

An ingress controller is a component responsible for provisioning the

submitted ingress requests. Kubernetes does not ship with a default

ingress controller. Third-party vendors provide implementations. There

is a reference (and widely used) nginx-ingress-controller based on Nginx

(there are three different versions of it), but end users are free to deploy

any other ingress controller they like. In this chapter, we make a case for

Traefik as an ingress controller of choice.

Traefik has supported the Ingress API in earlier versions. But in

Traefik v2 they have made some changes to the method of configuration.

This is due to limitations in the Ingress API, which have plagued the

specifications.

Ingress API specification spent a long time in beta. It has been in

v1beta1 status since Kubernetes version 1.2. The specification was officially

finalized only in 2019 and attained GA status in Kubernetes version 1.19.

The basic specification is fairly simple, but there were challenges in

making a consistent standard across a wide variety of implementations.

There is no good way to pass in vendor-specific configurations to fine-

ChApTer 7 TrAefiK As KuberneTes ingress

193

tune for specific implementations. Implementors started to define

vendor-specific configuration in lots of custom annotations in the YAML

definitions, leading to fragmentation in the space. Older versions of Traefik

followed the same approach. There have also been ambiguities such as

a trailing ‘/’ handled inconsistently (and problematically). Ultimately,

the specification is imprecise and neither portable nor feature-rich, so

the original intent of having a standard API was never achieved. Many

third-party vendors didn’t adopt the ingress specification and used

LoadBalancer service type with their own custom configuration—again

through annotations. Ambassador API Gateway built ingress support in

2019, once the specification was finalized.

Most of the Kubernetes community has now moved away from custom

annotations (for other use cases as well), and the ingress specification,

and toward custom resource definitions (CRDs). A CRD defines a new

object Kind in the cluster and lets the Kubernetes API server handle its

lifecycle. Kubernetes is a system open for an extension, allowing external

implementors to define their custom resource API definitions and run

custom controllers to act on those custom API resources.

The third-party ingress implementations retooled to act as Kubernetes

controllers for the CRDs they defined. Contour was one of the first ingress API

gateways to introduce its CRD for configuration. Even Ambassador Gateway

now recommends using its own CRDs rather than the new ingress support.

Traefik followed suit, and Traefik v2 introduced the IngressRoute (and other)

CRDs to provide a nicer way to configure Traefik routes in Kubernetes.

Traefik has two separate providers for Kubernetes now. One is the

traditional Kubernetes ingress provider, where Traefik acts exactly like any

other Kubernetes ingress controller and uses many custom annotations.

The other is the Kubernetes CRD provider, which is our focus for this

chapter. All the ingress configuration for Traefik is submitted to Kubernetes

using Traefik’s IngressRoute and other CRDs. This provides a much nicer

experience in configuring Traefik on Kubernetes and is the recommended

approach at present.

ChApTer 7 TrAefiK As KuberneTes ingress

194

Note Throughout this chapter, the word service is overloaded. The
common meaning of service is an application that exposes an Api,
which is how we used the term in general. There is also service in
the context of the Traefik configuration, which points to an actual
backend service. in this chapter, there is also a Kubernetes service,
which is how Kubernetes routes traffic to pods. To avoid confusion,
we explicitly spell out the meaning of all occurrences.

 Installation of Traefik on Kubernetes
For this chapter, we are running a local Kubernetes cluster on a laptop for

Traefik installation and configuration. The installation of local Kubernetes

is beyond the scope of this book, but it should not be too complicated

to set up from official websites. We variously use microk8s (https://

microk8s.io/) (running over multipass on macOS) or minikube (https://

minikube.sigs.k8s.io/docs/) for different scenarios.

Microk8s makes the setup of some advanced Kubernetes applications

very trivial, while minikube is the de-facto standard for running a local

version of Kubernetes. You may prefer to use any other Kubernetes flavor

you like, such as Docker Desktop with Kubernetes enabled. You can use a

cloud-based managed offering as well. And, we shift to a managed cloud

offering for a couple of the later scenarios.

We expect no changes needed in Traefik configuration and installation

between local and cloud Kubernetes. The reason for using a cloud offering

is for working with public TLS certificates again (similar to Chapter 4).

For TLS termination using Let’s Encrypt, we provision a cloud Kubernetes

cluster on DigitalOcean (DOKS). You may prefer to use others such as

GKE, AKS, or EKS if you desire. Most of the steps we outline should just

work as-is on any Kubernetes distribution.

ChApTer 7 TrAefiK As KuberneTes ingress

https://microk8s.io/
https://microk8s.io/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/

195

We already have our local Kubernetes cluster running. All requests

to the Kubernetes API server happen through the kubectl CLI, which is

typically installed along with local Kubernetes distros. Kubectl needs a

kube context configuration to point to our target Kubernetes cluster. We

first install Traefik manually on our cluster. Then we explore an easier

installation mechanism in later sections. In order to get Traefik up and

running on Kubernetes, we need three pieces of configuration.

• Kubernetes RBAC configuration to give Traefik

sufficient permissions to talk to the API server.

• Traefik CRDs

• The actual Traefik deployment

Note These are standard Traefik deployment files. We encourage
you to get the updated versions of all of these from the Traefik
documentation at https://docs.traefik.io/providers/
kubernetes-crd and https://docs.traefik.io/routing/
providers/kubernetes-crd.

Listing 7-1. Installing Traefik RBAC via kubectl

First install the RBAC security configuration

% kubectl apply -f traefik-rbac.yml

clusterrole.rbac.authorization.k8s.io/traefik-ingress-

controller created

clusterrolebinding.rbac.authorization.k8s.io/traefik-ingress-

controller created

RBAC configuration details, full configuration omitted for brevity

rules:

 - apiGroups:

ChApTer 7 TrAefiK As KuberneTes ingress

https://docs.traefik.io/providers/kubernetes-crd
https://docs.traefik.io/providers/kubernetes-crd
https://docs.traefik.io/routing/providers/kubernetes-crd
https://docs.traefik.io/routing/providers/kubernetes-crd

196

 - ""

 resources:

 - services

 - endpoints

 - secrets

 verbs:

 - get

 - list

 - watch

 - apiGroups:

 - extensions

 resources:

 - ingresses

 verbs:

 - get

 - list

 - watch

 - apiGroups:

 - extensions

 resources:

 - ingresses/status

 verbs:

 - update

 - apiGroups:

 - traefik.containo.us

 resources:

 - middlewares

 - ingressroutes

 - traefikservices

 - ingressroutetcps

 - ingressrouteudps

ChApTer 7 TrAefiK As KuberneTes ingress

197

 - tlsoptions

 - tlsstores

 verbs:

 - get

 - list

 - watch

Again, Kubernetes provides a declarative API server, so the RBAC

configuration in Listing 7-1 grants Traefik read permissions to Kubernetes

Services and on its custom resources under the traefik.containo.us API

group (even though we did not install the CRDs yet). Traefik can watch

objects of these types for changes and reconfigure itself accordingly. Next,

we install the Traefik CRDs in Listing 7-2.

Listing 7-2. Installing Traefik CRDs via kubectl

% kubectl apply -f traefik-crd.yml

customresourcedefinition.apiextensions.k8s.io/ingressroutes.

traefik.containo.us created

customresourcedefinition.apiextensions.k8s.io/middlewares.

traefik.containo.us created

customresourcedefinition.apiextensions.k8s.io/ingressroutetcps.

traefik.containo.us created

customresourcedefinition.apiextensions.k8s.io/ingressrouteudps.

traefik.containo.us created

customresourcedefinition.apiextensions.k8s.io/tlsoptions.

traefik.containo.us created

customresourcedefinition.apiextensions.k8s.io/tlsstores.

traefik.containo.us created

customresourcedefinition.apiextensions.k8s.io/traefikservices.

traefik.containo.us created

ChApTer 7 TrAefiK As KuberneTes ingress

198

IngressRoute CRD

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: ingressroutes.traefik.containo.us

spec:

 group: traefik.containo.us

 version: v1alpha1

 names:

 kind: IngressRoute

 plural: ingressroutes

 singular: ingressroute

 scope: Namespaced

Rest omitted for brevity

We install 7 CRDs as listed in Listing 7-2. These are all the CRDs Traefik

ships with for different types of custom configuration. This number may

increase in the future. Instead of picking and choosing, we just installed

all of them. We listed the IngressRoute CRD, which is used heavily in

upcoming sections. The specific details are not very interesting. The CRDs

need to be installed so Traefik can keep a watch for any Custom Resource

requests of these types to the API server and act on it. Traefik is acting

as the Kubernetes controller, which operates on these custom resource

types. As per the listing, there is a different CRD for each different type of

Traefik specific configuration. This is a big advantage that the new CRD

approach gives us. Earlier, a lot of this would have been defined as custom

annotations on standard ingress resources.

Next, we install Traefik (see Listing 7-3). We are installing Traefik

as a Kubernetes deployment with one pod. Kubernetes keeps at least

one instance of Traefik running at all times. Since Traefik is a stateless

service and all configuration is coming from Kubernetes, even if the pod is

restarted, Traefik retains the configuration.

ChApTer 7 TrAefiK As KuberneTes ingress

199

Listing 7-3. Traefik Installation via kubectl

% kubectl apply -f traefik.yml

serviceaccount/traefik-ingress-controller created

deployment.apps/traefik created

service/traefik created

Just with that, Traefik is now installed and running on our cluster. In

the context of Kubernetes, there is no difference between installing an

application and running it. It automatically starts up within a container.

Let’s take a look at some of the deployment configuration in Listing 7-4.

Listing 7-4. Traefik Deployment Configuration

Many fields omitted for brevity

kind: Deployment

metadata:

 name: traefik

spec:

 replicas: 1

 template:

 spec:

 containers:

 - name: traefik

 image: traefik:v2.2 #the Traefik Docker image used

 args:

 - --log.level=DEBUG

 - --api.insecure

 - --api.dashboard

 - --entrypoints.web.address=:80

 - --entrypoints.traefik.address=:8080

 - --providers.kubernetescrd

 ports:

ChApTer 7 TrAefiK As KuberneTes ingress

200

 - name: web

 containerPort: 80

 - name: traefik

 containerPort: 8080

kind: Service

metadata:

 name: traefik

spec:

 type: NodePort

 ports:

 - protocol: TCP

 port: 80

 name: web

 targetPort: 80

 - protocol: TCP

 port: 8080

 name: traefik

 targetPort: 8080

We listed some partial configuration in Listing 7-4 for the Traefik

deployment and service. You can see the image version to be deployed

and the number of replicas. Traefik runs as a stateless service with state

managed by Kubernetes, so there is no problem running multiple replicas

as desired for scale-out (since it does not have to form a stateful cluster).

The interesting part is the static configuration. The dynamic Traefik

configuration is all provided at runtime by the Kubernetes provider,

including Traefik routes and Traefik services. However, the static

configuration—such as entrypoints and providers—still has to be provided

at startup time. Traefik leverages the usual CLI parameters approach for

this. This is the usual way to pass Traefik static configuration for Docker

and Kubernetes. We start with two entrypoints here: one for HTTP traffic

ChApTer 7 TrAefiK As KuberneTes ingress

201

and the other for the dashboard. We also expose the dashboard in insecure

mode since we are running locally and set the log to the desired level. This

is all typical stuff.

The new flag is the --providers.kubernetescrd value. This ensures

that Traefik can configure itself based on the Kubernetes CRDs. The subtle

catch is that it only picks up the new Traefik-based CRDs. If you also want

Traefik to act as the standard Kubernetes ingress controller, you must

pass the --providers.kubernetesingress flag. You can enable either

one or both providers. You also expose the Traefik ports themselves, so

Kubernetes can register them. Don’t forget Traefik is exposed outside the

cluster as a Kubernetes Service of type NodePort. The service is shown in

Listing 7-5.

Listing 7-5. Traefik Kubernetes Service

% kubectl get svc traefik

NAME TYPE CLUSTER-IP PORT(S)

traefik NodePort 10.110.30.69 80:31624/TCP,8080:32529/TCP

Irrespective of which Kubernetes worker node(s) Traefik is running on

(locally, we just have one), Kubernetes forwards any incoming traffic on

the exposed NodePorts on any of the worker nodes to the running Traefik

instance(s). If there are multiple Traefik pods, Kubernetes automatically

load balance requests among them. This is the usual Kubernetes behavior

for the NodePort service type. In the cloud scenario, we would instead

have used the LoadBalancer type for the Traefik service, which spins

up a cloud load balancer to expose the Traefik service, and all requests

to Traefik go through the load balancer IP. The cloud platform operates

the load balancer. Locally, we usually use NodePort though some local

Kubernetes distributions also support LoadBalancer now through special

mechanisms.

ChApTer 7 TrAefiK As KuberneTes ingress

202

Let’s now look at the default Traefik backend on the port 31624 exposed

by Kubernetes (see Figure 7-1). This port is randomly allocated by Kubernetes

and may be different. This forwards the request to Traefik’s web entrypoint on

HTTP port 80. Since there is no default route configured for this entrypoint,

we get a 404 as usual. Please note the IP address is the local IP of the

minikube VM, which can be accessed using the minikube ip command.

Figure 7-1. Default backend on NodePort entrypoint

Figure 7-2. Traefik deployment with dashboard entrypoint

We also exposed the Traefik dashboard on the other port to check out

the configuration (see Figure 7-2). There are two entrypoints configured:

traefik and web. The traefik entrypoint serves the dashboard route, while

web is meant for all other HTTP traffic. Please note Traefik documentation

recommends not to expose the dashboard in insecure mode in actual

production use. Chapter 4 covered how to expose the dashboard securely

over TLS. For local use, it is fine for now to access it this way.

ChApTer 7 TrAefiK As KuberneTes ingress

203

If you scroll down to the Providers section, you see that the Kubernetes

CRD provider is enabled (see Figure 7-3). In earlier chapters, we used the

FileProvider and the Consul provider. The old Kubernetes ingress provider

is not enabled, so Traefik does not act on standard ingress resources.

Figure 7-3. Traefik deployment with Kubernetes CRD provider

Next, we deploy a Kubernetes service on our cluster and try accessing

it through the traefik entrypoint.

ChApTer 7 TrAefiK As KuberneTes ingress

204

 Installing the bookinfo Application
Now that Traefik is up and running, let’s deploy a microservices style

application to our cluster, which can be exposed over Traefik. For this,

we use the BookInfo sample application from the Istio documentation

(https://istio.io/latest/docs/examples/bookinfo/). This application

is composed of a few different containerized microservices, and while it is

primarily a showcase for the Istio service mesh, we can use it for Traefik.

Please note we could have also used the Spring PetClinic application

from the previous chapter. However, at the time of writing, that application

is not fully Kubernetes native yet. We have to make adjustments to run it

on top of Kubernetes. BookInfo is built to run on top of Kubernetes so we

can focus directly on the post-deployment parts. We are not interested

in its actual code. After deployment, the only service to be exposed over

Traefik is the main web app, called productpage.

The web app calls the rest of the services internally. There are many

different deployment configurations for BookInfo. We are only interested

in basic deployment. This file is at https://github.com/istio/istio/

blob/master/samples/bookinfo/platform/kube/bookinfo.yaml. You

can download it or apply it directly with the raw URL (see Listing 7-6).

Listing 7-6. Install bookinfo Services

% kubectl apply -f bookinfo.yml

service/details created

serviceaccount/bookinfo-details created

deployment.apps/details-v1 created

service/ratings created

serviceaccount/bookinfo-ratings created

deployment.apps/ratings-v1 created

service/reviews created

serviceaccount/bookinfo-reviews created

ChApTer 7 TrAefiK As KuberneTes ingress

https://istio.io/latest/docs/examples/bookinfo/
https://github.com/istio/istio/blob/master/samples/bookinfo/platform/kube/bookinfo.yaml
https://github.com/istio/istio/blob/master/samples/bookinfo/platform/kube/bookinfo.yaml

205

deployment.apps/reviews-v1 created

deployment.apps/reviews-v2 created

deployment.apps/reviews-v3 created

service/productpage created

serviceaccount/bookinfo-productpage created

deployment.apps/productpage-v1 created

Once the deployments and services are up, we can proceed to apply

the IngressRoute. This is pretty standard. It just exposes all the paths which

the web app needs to call from the browser. We must create our own to

work with Traefik. We can then access the BookInfo application on the

HTTP web NodePort. First, let’s look at which of BookInfo’s Kubernetes

services are available (see Listing 7-7).

Listing 7-7. BookInfo Services

% kubectl get svc

NAME TYPE CLUSTER-IP PORT(S)

details ClusterIP 10.111.105.145 9080/TCP

productpage ClusterIP 10.101.6.99 9080/TCP

ratings ClusterIP 10.102.103.167 9080/TCP

reviews ClusterIP 10.103.10.20 9080/TCP

% kubectl get deploy

NAME READY UP-TO-DATE AVAILABLE

3 separate reviews deployments, rest omitted for brevity

reviews-v1 1/1 1 1

reviews-v2 1/1 1 1

reviews-v3 1/1 1 1

Listing 7-7 is a bunch of services created of type ClusterIP. This means

they can talk to each other but are not reachable outside of the cluster. The

only one we must expose using IngressRoute is the productpage service.

This is the main web app of BookInfo and serves requests on port 9080.

ChApTer 7 TrAefiK As KuberneTes ingress

206

We can apply an IngressRoute custom resource for this service to

expose it over Traefik. Let’s first take a look at some of the configuration of

this resource in Listing 7-8. You can see that it broadly matches our usual

dynamic configuration defined via FileProvider. There is an entrypoint

defined and route with the usual match rules. The interesting part is the

section where the backend service configuration typically goes. Here you

see that we refer directly to a Kubernetes service and Traefik route to it. So,

the IngressRoute more or less defines a Traefik route from an entrypoint

to a backend Kubernetes service. If needed, we can also reference Traefik

middleware here.

Listing 7-8. BookInfo IngressRoute

spec:

 entryPoints:

 - web

 routes:

 - match: PathPrefix(`/productpage`) || PathPrefix(`/static`)

|| Path(`/login`) || Path(`/logout`) || PathPrefix(`/api/v1/

products`)

 kind: Rule

 services:

 - name: productpage

 port: 9080

% kubectl apply -f bookinfo-product-ingress.yml

ingressroute.traefik.containo.us/bookinfo-productpage-ingress

created

% kubectl get IngressRoute

NAME AGE

bookinfo-productpage-ingress 29s

ChApTer 7 TrAefiK As KuberneTes ingress

207

Once the service is exposed on the Ingress, we can easily view the

webpage (see Figure 7-4). This internally calls the other BookInfo services

to populate data on each part of the page. This webpage may look slightly

different on each request as the reviews service is backed by three different

reviews deployments (as shown in Listing 7-7).

Figure 7-4. BookInfo product page UI

We can now check the configuration in the Traefik dashboard. You

see the routers and services configuration showing up. The IngressRoute

has automatically created a router and a service (the Traefik abstraction,

not the Kubernetes one, though they are the same in this case). The

Kubernetes service is automatically discovered by Traefik and treated

as service abstraction in Traefik. You can see the router and service

information in the dashboard shown in Figures 7-5 and 7-6.

ChApTer 7 TrAefiK As KuberneTes ingress

208

Figure 7-5. Product page router

Figure 7-6. Product page ingress service

ChApTer 7 TrAefiK As KuberneTes ingress

209

If you explore the servers in the service configuration (where we

typically define the load balancer IPs of the backend service), you see

the pod IPs of the corresponding Kubernetes service (see Figure 7-6).

Traefik can automatically introspect those details from Kubernetes and

deal with the internal Kubernetes network (it would need to). When there

is any change in the pods (e.g., scale up or down, pod restarts, etc.) that

the Kubernetes service is pointing to, Traefik automatically picks it up.

This raises an interesting point of contrast with the last chapter. There, we

had to integrate Traefik with the Consul service registry using the Consul

provider to keep track of the services. However, Kubernetes provides

service discovery out of the box, and Traefik can directly talk to Kubernetes

to fetch the service details.

Note Loadbalancer in this context refers to the Traefik configuration
for specifying multiple backend service ips and not the Kubernetes
Loadbalancer.

In case it has not been made clear yet, this example illustrates how

IngressRoute is the CRD style implementation of a Traefik HTTP router.

This is the advantage of using the CRD approach over the plain Ingress, it

allows you to stick more closely to Traefik-style configuration.

 Installing Traefik with Helm
In the previous section we successfully deployed Traefik on Kubernetes

and used it to expose a service. There were a few different manual steps

involved with just basic configuration. With more advanced Traefik

configuration, the manual steps required can quickly become unwieldy,

especially if we want to adjust the static configuration over time or do

regular upgrades of Traefik. For production installation, we instead use a

ChApTer 7 TrAefiK As KuberneTes ingress

210

package and release manager called Helm (https://helm.sh/) to install

Traefik on Kubernetes. In Helm, a deployable artifact is bundled up into a

chart that encapsulates all the resources necessary to install and upgrade

that software over time, including configuration and dependencies. There

is a Traefik Helm chart that we use from now to install/upgrade Traefik.

Helm reuses the current kubeconfig set by kubectl. We already have the

latest version of Helm v3 installed and our kubeconfig setup to point to our

local Kubernetes cluster.

The version of Traefik available in the central Helm repositories

(similar to Maven central, PyPi, or the Debian apt repositories) is the older

Traefik v1.7 version. Accordingly, we need to run a couple of advance

steps before installing Traefik v2 via Helm (see Listing 7-9). These register

the Traefik v2 Helm repository so we can install Traefik v2 using Helm.

Make sure that you do not accidentally install the older version; it does not

support the IngressRoute CRDs and works somewhat differently.

Listing 7-9. Adding Traefik’s Helm repository

% helm repo add traefik https://containous.github.io/traefik-

helm- chart

"traefik" has been added to your repositories

% helm repo update

Hang tight while we grab the latest from your chart

repositories...

...Successfully got an update from the "traefik" chart

repository

Update Complete. ☼ Happy Helming!☼

Once this is done, we can go ahead and install Traefik v2 using its

official Helm chart. Since we already installed Traefik manually, we need

to either reset the entire cluster (easily done on minikube) or remove

everything installed until now. Let’s do a fresh install now.

ChApTer 7 TrAefiK As KuberneTes ingress

https://helm.sh/

211

 Exploring Traefik Helm Chart
The Traefik Helm chart installs all the pre-requisites needed to run Traefik

as an ingress controller, including the Kubernetes RBAC configuration and

the CRDs to configure routing rules. The installation works the same way on

either local or cloud Kubernetes with one exception. In a managed cloud

service, Traefik ingress is exposed to the external world using a Kubernetes

service of type LoadBalancer. This automatically spins up a managed cloud

load balancer in front of all the Kubernetes nodes and routes all incoming

traffic to the Traefik ingress controller. For the external world, the single

point of entry is the IP or DNS name of the cloud load balancer.

A load balancer is not available on bare metal or on-premise VMs.

Minikube and microk8s can handle this through a special mechanism,

though it is usually simpler to use a NodePort. You need to ensure

that your Kubernetes distribution of choice supports services of type

LoadBalancer. If not, you must fall back to exposing the Traefik ingress as

a Kubernetes service of type NodePort. This has to be taken care of during

the Helm installation, by customizing the Helm chart values. This can be

done by passing them on the command line to Helm, or a better way is to

define a file for custom values which can override the default values during

installation.

Let’s look at some default values on the Helm chart (https://github.

com/containous/traefik-helm-chart/blob/master/traefik/values.

yaml) and then some that we want to customize (see Listing 7-10).

Listing 7-10. Some of the Default Values in Traefik Helm Chart

values.yaml

Configure the deployment with number of pods

deployment:

 replicas: 1

ChApTer 7 TrAefiK As KuberneTes ingress

https://github.com/containous/traefik-helm-chart/blob/master/traefik/values.yaml
https://github.com/containous/traefik-helm-chart/blob/master/traefik/values.yaml
https://github.com/containous/traefik-helm-chart/blob/master/traefik/values.yaml

212

IngressRoute for the dashboard will be installed

ingressRoute:

 dashboard:

 enabled: true

Configure both types of dynamic Traefik providers

providers:

 kubernetesCRD:

 enabled: true

 kubernetesIngress:

 enabled: true

Configure ports

ports:

 traefik:

 port: 9000

 # As recommended, the dashboard is not exposed by

default in production

 expose: false

The HTTP and HTTPS ports are opened by default

 web:

 port: 8000

 expose: true

 websecure:

 port: 8443

 expose: true

service:

 enabled: true

 type: LoadBalancer

rbac:

 # False value indicates Traefik can be used cluster-wide

across all namespaces.

 namespaced: false

ChApTer 7 TrAefiK As KuberneTes ingress

213

This is not a standard Kubernetes manifest of any kind. These are just

configuration values in YAML format applied to the Kubernetes YAMLs in

the Helm chart. By default, it has the following configurations.

• One instance of Traefik runs in a Kubernetes pod

• Traefik service is exposed via a LoadBalancer. This may

not work on a non-cloud cluster.

• Both the old and the new dynamic configuration

Kubernetes providers are enabled. So Traefik keeps a

watch for both standard ingress and Traefik’s custom

IngressRoute resource.

• Three entrypoints are opened: one named traefik on

9000, and two others for HTTP and HTTPS traffic. We

explore the additional entrypoint a little bit more later.

• An IngressRoute custom resource for the dashboard

is automatically created. However, the dashboard

entrypoint is not exposed to the Traefik Kubernetes

service. This is a little inconsistent and confusing

because Traefik recommends creating your own secure

ingress for the dashboard in production. However, we

can leverage this IngressRoute locally in a little bit. This

behavior is not documented anywhere we can find, so

it may change in the future.

There are many such entries in the default values.yaml in the Helm

chart. We encourage you to explore further configuration on their own.

Most of it is related to running Traefik reliably on Kubernetes. For instance,

autoscaling of Traefik pods under load is not enabled; it can be turned on

if required. Please note these observations are for the current state of the

Helm chart when writing this book. The chart continues to evolve.

ChApTer 7 TrAefiK As KuberneTes ingress

214

Before we customize the values, we can use the helm template

command to view the default generated deployment manifests. These are

very similar to what we used to manually install Traefik in previous sections.

Let’s run the command to see what the final configuration looks like. Since

there is a lot of output, we only focus on a few pieces. You are encouraged to

run the command yourself to view the full output (see Listing 7-11).

Listing 7-11. Generated Helm Template with Default Values

% helm template traefik traefik/traefik

Partial values in the output

Deployment configuration

 #Kubernetes liveness probe

 readinessProbe:

 httpGet:

 path: /ping

 port: 9000

 #Kubernetes liveness probe

 livenessProbe:

 httpGet:

 path: /ping

 port: 9000

 # Traefik CLI arguments

 args:

 - "--entryPoints.traefik.address=:9000/tcp"

 - "--entryPoints.web.address=:8000/tcp"

 - "--entryPoints.websecure.address=:8443/tcp"

 - "--api.dashboard=true"

 - "--ping=true"

 - "--providers.kubernetescrd"

 - "--providers.kubernetesingress"

ChApTer 7 TrAefiK As KuberneTes ingress

215

Service configuration

 type: LoadBalancer

 ports:

 - port: 80

 name: web

 targetPort: "web"

 protocol: "TCP"

 - port: 443

 name: websecure

 targetPort: "websecure"

 protocol: "TCP"

IngressRoute

kind: IngressRoute

metadata:

 name: traefik-dashboard

spec:

 entryPoints:

 - traefik

 routes:

 - match: PathPrefix(`/dashboard`) || PathPrefix(`/api`)

 kind: Rule

 services:

 - name: api@internal

 kind: TraefikService

Let’s break down what we captured in Listing 7-11. The static

configuration is provided via CLI arguments as usual. We already noted the

three entrypoints and the two providers. You can also see the dashboard

enabled flag. You also see that the ping Traefik service is enabled. We

look at it in the dashboard later; it is exposed to the traefik port under

the /ping path. It provides a standard way for Kubernetes to regularly

ChApTer 7 TrAefiK As KuberneTes ingress

216

check the health of the Traefik pods. If the health probes fail, Kubernetes

automatically restarts the Traefik pods. This provides a resilient way to run

Traefik on top of Kubernetes.

You see an IngressRoute traefik-dashboard created to expose

the dashboard outside the cluster. This does not work in the default

installation. The reason is the traefik entrypoint port 9000 is not included

in Traefik’s service configuration. While it is accessible inside the cluster

for health checks, it is not available over the NodePort, and there is no way

to reach that entrypoint to access the dashboard.

To customize some of the default values at install/upgrade time, we

can override them in our file and provide that to the Helm CLI. Let’s look

at the values we want to customize in Listing 7-12. While the dashboard

is not exposed publicly in production, here we override the configuration

of the traefik entrypoint to make the dashboard available locally. We

change the Traefik service to NodePort type, and we also set the log level to

INFO. As you saw, the Traefik static configuration is still provided with CLI

arguments. The Helm chart exposes a additionalArguments special key to

pass in additional arguments.

Listing 7-12. custom-values.yml for Traefik Helm Chart

additionalArguments:

 - "--log.level=INFO"

ports:

 traefik:

 expose: true

service:

 type: NodePort

Let’s run the Helm template command once again to view the

generated deployment manifests with the custom values. We only list the

new/modified values in Listing 7-13. This uses the same custom-values.

yml file we detailed in Listing 7-12.

ChApTer 7 TrAefiK As KuberneTes ingress

217

Listing 7-13. Generated Helm Template with Custom Values

% helm template --values=custom-values.yml traefik traefik/

traefik

Partial changed values in the output

Deployment configuration

 # Traefik CLI arguments

 args:

 - "--log.level=INFO"

Service configuration

 type: NodePort

 ports:

 - port: 9000

 name: traefik

 targetPort: "traefik"

We are now able to access the Traefik dashboard outside the cluster

with this configuration. Let’s proceed to install Traefik.

 Local Installation
Before installing Traefik, there is the additional question of which

Kubernetes namespace we wish to install Traefik in. In production, the

kube-system namespace is a good candidate if Traefik is responsible

for cluster-wide ingress concerns. It resides along with the other cluster

management/operational services. Another approach may be to restrict

Traefik to only a particular namespace and use a different ingress

controller (or a different Traefik deployment) for the rest of the cluster.

The Helm chart supports it out of the box with the rbac.namespaced

configuration. We stick with the default namespace for our examples.

ChApTer 7 TrAefiK As KuberneTes ingress

218

Let’s now install Traefik with the Helm command (see Listing 7-14).

We reuse the same custom-values.yml file we detailed in Listing 7-12. We

then run a few commands to observe it was properly deployed. Since the

dashboard port 9000 is now exposed over NodePort, you can also open the

dashboard (see Figure 7-7).

Listing 7-14. Install Traefik Using Helm

% helm install --values=custom-values.yml traefik traefik/

traefik

NAME: traefik

LAST DEPLOYED: Wed Apr 22 00:26:27 2020

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

% helm ls

NAME NAMESPACE REVISION STATUS CHART APP

VERSION

traefik default 1 deployed traefik-8.9.1 2.2.5

% kubectl get pods

NAME READY STATUS RESTARTS AGE

traefik-5bcf58d556-vfhlv 1/1 Running 0 63s

% kubectl get svc traefik

NAME TYPE CLUSTER-IP PORT(S)

traefik NodePort 10.99.103.150 9000:31342/TCP,80:30085/

TCP,443:30615/TCP

% kubectl get svc traefik -o yaml

spec:

 clusterIP: 10.99.103.150

ChApTer 7 TrAefiK As KuberneTes ingress

219

 externalTrafficPolicy: Cluster

 ports:

 - name: traefik

 nodePort: 31342

 port: 9000

 protocol: TCP

 targetPort: traefik

 - name: web

 nodePort: 30085

 port: 80

 protocol: TCP

 targetPort: web

 - name: websecure

 nodePort: 30615

 port: 443

 protocol: TCP

 targetPort: websecure

 selector:

 app.kubernetes.io/instance: traefik

 app.kubernetes.io/name: traefik

 sessionAffinity: None

 type: NodePort

% kubectl get IngressRoute traefik-dashboard -o yaml

apiVersion: traefik.containo.us/v1alpha1

kind: IngressRoute

spec:

 entryPoints:

 - traefik

 routes:

 - kind: Rule

ChApTer 7 TrAefiK As KuberneTes ingress

220

 match: PathPrefix(`/dashboard`) || PathPrefix(`/api`)

 services:

 - kind: TraefikService

 name: api@internal

Figure 7-7. Entrypoints with Helm install

You can see our three entrypoints in the dashboard in Figure 7-7. You

can also drill down to Routers and see the route mappings to Traefik’s

internal dashboard and ping services. The name of the routers may be

of interest. For the ping@internal service, it is as usual. However, the

dashboard IngressRoute pointing to api@internal has a generated name

(see Figures 7-8 and 7-9). This is because there is a separately defined

IngressRoute for it. A similar naming convention is used for all the

IngressRoute objects defined.

ChApTer 7 TrAefiK As KuberneTes ingress

221

The Helm chart also installs all the requisite Traefik CRDs. Traefik

piggybacks on the standard Kubernetes declarative configuration

mechanism to configure itself through these CRDs. There is a different

CRD for each piece of dynamic router configuration. Let’s look at what’s

installed in Listing 7-15.

Figure 7-8. Routes with Helm install

Figure 7-9. dashboard route

ChApTer 7 TrAefiK As KuberneTes ingress

222

Listing 7-15. Traefik CRDs

% kubectl get crd

NAME

ingressroutes.traefik.containo.us

ingressroutetcps.traefik.containo.us

ingressrouteudps.traefik.containo.us

middlewares.traefik.containo.us

tlsoptions.traefik.containo.us

tlsstores.traefik.containo.us

traefikservices.traefik.containo.us

 Exposing the bookinfo Reviews Service
In previous sections, we observed how Traefik directly talks to Kubernetes

services to load balance between different pods or service instances. While

easy, this does not allow you to leverage some of the special traffic routing

capabilities we observed in Chapter 3, such as a weighted round-robin

or mirroring. This is achieved on Kubernetes by the use of another CRD

named TraefikService. Now that Traefik is up and running with Helm, let’s

try a slightly more complex use case using BookInfo over Traefik. Go ahead

and deploy BookInfo again to the cluster using the same steps as detailed

in the previous section (see Listing 7-6). Once we do that, we should have

the BookInfo resources again in our cluster.

The service we now expose on Traefik ingress is the reviews service.

The productpage backend internally calls it. This is a single Kubernetes

service that’s backed by three separate deployments. The reviews service

routes traffic to three pods, which all behave slightly differently.

• reviews-v1 returns a sample review.

• reviews-v2 calls the ratings service and returns a black

color sample rating.

ChApTer 7 TrAefiK As KuberneTes ingress

223

• reviews-v3 calls the ratings service and returns a red

color sample rating.

We expose this service using an IngressRoute while utilizing a

Traefikservice. This allows you to try out the weighted round-robin strategy

with the Kubernetes provider. Once the services are up, we can proceed to

apply the IngressRoute. First, we create three additional Kubernetes service

for the three separate deployments (see Listing 7-16). A Traefikservice has

to point to existing Kubernetes services.

Listing 7-16. Three Separate Reviews Services

apiVersion: v1

kind: Service

metadata:

 name: reviews-noratings

 labels:

 app: reviews

 version: v1

 service: reviews

spec:

 ports:

 - port: 9080

 name: http

 selector:

 app: reviews

 version: v1

apiVersion: v1

kind: Service

metadata:

 name: reviews-black

 labels:

ChApTer 7 TrAefiK As KuberneTes ingress

224

 app: reviews

 version: v2

 service: reviews

spec:

 ports:

 - port: 9080

 name: http

 selector:

 app: reviews

 version: v2

apiVersion: v1

kind: Service

metadata:

 name: reviews-red

 labels:

 app: reviews

 version: v3

 service: reviews

spec:

 ports:

 - port: 9080

 name: http

 selector:

 app: reviews

 version: v3

% kubectl apply -f bookinfo-reviews-extsvcs.yml

service/reviews-noratings created

service/reviews-black created

service/reviews-red created

ChApTer 7 TrAefiK As KuberneTes ingress

225

We now have 4 reviews services, one from the original deployment

% kubectl get svc

NAME TYPE CLUSTER-IP PORT(S)

reviews ClusterIP 10.110.252.89 9080/TCP

reviews-black ClusterIP 10.97.126.88 9080/TCP

reviews-noratings ClusterIP 10.111.136.174 9080/TCP

reviews-red ClusterIP 10.105.94.3 9080/TCP

Once these services are in place, let’s define a Traefikservice to apply a

weighted round-robin strategy on two of them (see Listing 7-17). We club

the reviews-black and reviews-noratings services together with 3:1

weightage.

Listing 7-17. 3 TraefikService Resources

apiVersion: traefik.containo.us/v1alpha1

kind: TraefikService

metadata:

 name: reviews-v1v2

spec:

 weighted:

 services:

 - name: reviews-black

 port: 9080

 weight: 3

 - name: reviews-noratings

 port: 9080

 weight: 1

% kubectl apply -f bookinfo-reviews-traefikservice.yml

traefikservice.traefik.containo.us/reviews-v1v2 created

We now apply an IngressRoute to expose these services externally (see

Listing 7-18).

ChApTer 7 TrAefiK As KuberneTes ingress

226

Listing 7-18. Reviews IngressRoute

apiVersion: traefik.containo.us/v1alpha1

kind: IngressRoute

metadata:

 name: bookinfo-reviews-ingress

spec:

 entryPoints:

 - web

 routes:

 - match: PathPrefix(`/reviews`)

 kind: Rule

 services:

We can define multiple services here for simple Round robin

load balancing

 - name: reviews-v1v2

 kind: TraefikService

 - name: reviews-red

 port: 9080

% kubectl apply -f bookinfo-review-ingress.yml

ingressroute.traefik.containo.us/bookinfo-reviw-ingress created

% kubectl get IngressRoute

NAME AGE

bookinfo-review-ingress 29s

Call reviews ingress on loop

% for ((i=1;i<=20;i++)); do curl http://192.168.64.5:30680/

reviews/1 | jq ; done

If you call the service ingress on a loop (see Listing 7-18), you see

the load is distributed among the three separate instances based on the

weightage provided. We get more review responses with red and black

ChApTer 7 TrAefiK As KuberneTes ingress

227

ratings than ones with no ratings. You can view these services and routers

in the dashboard in Figures 7-10, 7-11, 7-12, and 7-13.

Figure 7-10. Generated ingress service

Figure 7-11. All reviews services in Traefik

Figure 7-12. Weighted Traefikservice

ChApTer 7 TrAefiK As KuberneTes ingress

228

 Configure Request Tracing with Jaeger
Chapter 5 showed how to integrate Traefik into a distributed tracing setup

with Zipkin. While Zipkin has been the default choice for distributed

tracing with the Spring Cloud ecosystem for several years, in the

Kubernetes world, people prefer to use Jaeger (www.jaegertracing.io).

Figure 7-13. Router for ingress service

ChApTer 7 TrAefiK As KuberneTes ingress

http://www.jaegertracing.io

229

Jaeger is a CNCF distributed tracing system released by Uber that

distributes tracing for your services running on Kubernetes. Jaeger is

meant for large scale deployments and supports OpenTracing and other

standards. The basic concept behind it is pretty much the same as Zipkin.

It propagates trace headers to downstream services and aggregates spans

based on all the data sent to a collector. Jaeger is the default tracing

backend for Traefik. If we enable request tracing and don’t specify

anything else, Traefik automatically assumes Jaeger tracing.

Before proceeding with Jaeger configuration in Traefik, we need a

running Jaeger instance. Jaeger’s full setup is extensive and outside the

book’s scope. (A minimal setup on DigitalOcean cloud requires at least

four Kubernetes worker nodes.) For demo purposes, Jaeger ships an

AllInOne image, which packages all the components in a single executable

and uses in-memory storage to be deployed in a single pod. The setup of

this requires deploying a Jaeger operator and associated CRD. Similar to

Traefik’s CRD, when we submit a resource of type Jaeger to Kubernetes,

it spins up the AllInOne Jaeger pod. You are encouraged to pursue this

approach if you wish to dive deeper into Jaeger setup on minikube.

We are taking an even simpler approach to setup Jaeger for our

example, which avoids all the complexities mentioned. We switch from

minikube to microk8s, another local Kubernetes distribution. We install

Traefik on it using our existing Helm chart and then enable Jaeger on

microk8s (see Listing 7-19). This automatically deploys jaeger-operator

and spin up a simple jaeger all-in-one deployment, without any manual

effort on our end. We can then figure out which service endpoint to

configure in the startup configuration. We are only interested in a couple of

ports on a particular service: one TCP and one UDP (see Listing 7-19).

ChApTer 7 TrAefiK As KuberneTes ingress

230

Listing 7-19. Enable Jaeger on microk8s

% microk8s enable jaeger

% microk8s kubectl get pod

NAME READY STATUS

jaeger-operator-7b58b969cf-vh8pp 1/1 Running

simplest-658764ffff-xktbp 1/1 Running

% microk8s kubectl get svc simplest-agent

NAME TYPE PORT(S)

simplest-agent ClusterIP 5775/UDP,5778/TCP,6831/UDP,6832/UDP

Jaeger specific configuration has to be specified along with request

tracing configuration at startup time. Since we already have Traefik

running on our cluster we can adjust the configuration and run a helm

upgrade command. This spins up a new Traefik pod with tracing enabled

and remove the existing one. We make following additions in our custom-

values.yml file (see Listing 7-20).

Listing 7-20. Additions in custom-values.yml and Helm Upgrade

additionalArguments:

New values in Helm configuration

 - "--tracing=true"

 - "--tracing.serviceName=traefik" # default value, can be omitted

 - "--tracing.jaeger=true" # default value, can be omitted

 - " --tracing.jaeger.samplingServerURL=http://simplest-

agent:5778/sampling"

 - "--tracing.jaeger.localAgentHostPort=simplest-agent:6831"

% helm upgrade --values=custom-values.yml traefik traefik/traefik

You can check our dashboard and see that Jaeger tracing is enabled in

Figure 7-14.

ChApTer 7 TrAefiK As KuberneTes ingress

231

The following Jaeger configuration parameters are set by default.

• tracing.jaeger.samplingType=const

• tracing.jaeger.samplingParam=1.0

By default, this sends all traces to Jaeger. This can be tuned to control

the volume of traces being sampled.

• tracing.jaeger.propagation=jaeger

This can be changed to send Zipkin-style traces, which Jaeger can

interpret.

There are a few other configuration parameters in the documentation.

The two required parameters that we need to set are already in the Helm

configuration in Listing 7-20.

Since tracing is enabled globally, Traefik now starts sending traces for

all incoming requests to the Jaeger collector. We can make a few requests

and then check the Jaeger UI (see Figure 7-15).

Figure 7-14. Jaeger tracing enabled

ChApTer 7 TrAefiK As KuberneTes ingress

232

We can filter traces by the serviceName configuration we passed in to

isolate the Traefik specific traces, and further by the Traefik entrypoints.

We can drill down to a particular trace. The one in Figure 7-16 is for a

request to the Traefik dashboard.

Figure 7-15. Jaeger traces on UI

Figure 7-16. Jaeger trace drill down

There is one additional point of interest here. Since the Jaeger instance

is running inside our cluster, how are we accessing the Jaeger UI? It needs

to be exposed on a NodePort or via a Traefik ingress (or another ingress

controller). Jaeger service setup by microk8s is exposing its UI as the

default ingress rule in a cluster. One ingress (not IngressRoute) resource

is present in the cluster, which was created automatically by the Jaeger

operator (see Listing 7-21).

ChApTer 7 TrAefiK As KuberneTes ingress

233

Listing 7-21. Jaeger UI Ingress on microk8s

% microk8s kubectl get ingress simplest-query -o yaml

kind: Ingress

spec:

 backend:

 serviceName: simplest-query

 servicePort: 16686

You have not encountered this format elsewhere in this chapter

because you have not dealt with pure Kubernetes ingress resources. This

defines a default backend for the default ingress controller, so if we hit

the web/websecure entrypoints of our Traefik on root path (/), it opens

up the Jaeger UI. You can view this in the Traefik dashboard, where it has

configured a default-router for a default-backend (see Figure 7-17).

There are two reasons for this behavior.

• The Traefik Helm chart sets up the Kubernetes CRD

provider and the plain Kubernetes provider (as seen in

Figure 7-14). If we disabled the old provider, this is not

registered by Traefik.

• We do not have another ingress controller in this

cluster. The default one is nginx-ingress-controller, but

we have not enabled it. So Traefik is processing this

ingress.

While this is not desirable behavior (it is just due to unforeseen

variables and does not appear to be customizable or even documented),

it is just for our example. It allows you to illustrate Traefik’s support for

Kubernetes ingress, which we skipped. This is not how it is set up in any

real-world use case. The correct way is to expose the Jaeger UI via an

IngressRoute object.

ChApTer 7 TrAefiK As KuberneTes ingress

234

 Setup Traefik on DigitalOcean Kubernetes
Cloud
Let’s now set up Traefik on DigitalOcean Kubernetes (DOKS). Anyone

following along who wishes to use a different cloud provider can do so (AKS,

EKA, GKE, etc). This is a cloud Kubernetes cluster managed by DigitalOcean.

The actual provisioning of the cluster is beyond the scope of this book.

DigitalOcean makes it very easy via point-and-click actions. Once it is

up, you get instructions on downloading the kubeconfig so that you can

connect to your cluster using the local Kubernetes CLI (kubectl). For the

cloud, exposing Traefik service as default type LoadBalancer on DOKS

Figure 7-17. Jaeger default ingress backend

ChApTer 7 TrAefiK As KuberneTes ingress

235

automatically provisions a cloud LoadBalancer for us. We only customize

the log level for now during the Helm install in Listing 7-22.

From here on, kubeconfig has to be changed to point to our cloud

cluster to execute all commands.

Listing 7-22. Install Traefik Using Helm on Cloud LB

kubeconfig has to be changed to point to cloud cluster for

following commands

% helm install --set="additionalArguments={--log.level=INFO}"

traefik traefik/traefik

% kubectl get svc traefik

NAME TYPE EXTERNAL-IP PORT(S)

traefik LoadBalancer 139.59.53.243 80:30415/TCP,443:32494/TCP

DigitalOcean provisions a cloud load balancer. This process takes

a little time, after which we get the public external IP to access our

entrypoint (see Listing 7-22). Unlike NodePort, here we can route requests

on the default ports. Recall that Traefik automatically generates a self-

signed certificate for the HTTPS entrypoint, so you see what’s shown in

Figure 7-18 for port 443.

ChApTer 7 TrAefiK As KuberneTes ingress

236

When we proceed, we get the default backend for Traefik (see

Figure 7- 19).

Figure 7-18. HTTPS entrypoint with self-signed certificate on cloud
load balancer

Figure 7-19. Default backend on cloud load balancer

ChApTer 7 TrAefiK As KuberneTes ingress

237

We do not expose the traefik endpoint for this deployment, so we

cannot access the dashboard publicly. This is recommended in Traefik

documentation. There are now two ways of viewing the dashboard. You

can do either.

• Execute a kubectl port-forward command directly to

the dashboard port. This restricts the dashboard access to

only those having the kubeconfig (and perhaps services

inside the cluster if they connect directly to the pod).

• Expose the dashboard with a secure IngressRoute as

recommended by Traefik (similar to how we did it in

Chapter 4).

 TLS Termination on Kubernetes via Let’s Encrypt
Certificates
You’ve now seen the pieces needed to run Traefik on Kubernetes. The only

thing not discussed yet is TLS support, which is necessary for any serious

production use. Chapter 4 looked at how a publicly exposed Traefik

instance can easily serve TLS traffic in conjunction with Let’s Encrypt

automated certificate distribution.

In Chapter 4, we exposed a secure route on Traefik running on a single

cloud VM (or droplet) with basic auth enabled over a TLS connection

(i.e., the websecure entrypoint. In this chapter, we try doing the same with

Traefik on cloud Kubernetes. We deploy the BookInfo service and define

an IngressRoute for it on the websecure entrypoint and request a valid

TLS certificate from Let’s Encrypt for that domain. Do recall that Let’s

Encrypt only issues a valid certificate for a publicly reachable domain. The

domains of the issued certificate have to match the URL of the domain you

are accessing for a valid TLS connection. To reconfigure Traefik with Let’s

Encrypt support, we provide a new values configuration file and upgrade our

Helm release. We also change the log level to DEBUG (see Listing 7- 23).

ChApTer 7 TrAefiK As KuberneTes ingress

238

Listing 7-23. New cloud-values.yml file

additionalArguments:

 - "--certificatesresolvers.letsencrypt.acme.email=<valid email>"

 - "-- certificatesresolvers.letsencrypt.acme.httpchallenge.

entrypoint=web"

 - "-- certificatesresolvers.letsencrypt.acme.storage=/data/

acme.json"

 - "-- certificatesresolvers.letsencrypt.acme.caserver=https://

acme-staging-v02.api.letsencrypt.org/directory"

 - "--log.level=DEBUG"

persistence:

 enabled: true

 size: 1Gi #min. volume size allowed on DigitalOcean

 storageClass: "do-block-storage"

We are using similar Let’s Encrypt configuration here (see Listing 7-23)

that we last used in Chapter 4, except now we are using CLI arguments

instead of static YAML configuration. To mix it up, we use the HTTP-01

challenge instead of the TLS-ALPN-01 challenge. This is a more standard

and widely used challenge type. It requires web entrypoint (port 80) to be

publicly reachable (by Let’s Encrypt).

We are using the Let’s Encrypt staging URL as we don’t care to get a

valid production certificate. There is some extra configuration required

for the storage location of the acquired certificate. Traefik’s Helm chart

provides this. Pods are generally transient and can’t persist data to the pod

filesystem without being backed by Kubernetes persistent volume.

A detailed discussion of Kubernetes storage abstraction is beyond our

scope. The Traefik Helm chart provisions a storage location for writing data

to the filesystem, which persist across pod restarts. The storage is mounted

in the running Traefik pod at the /data location, and our acquired certificate

is persisted in that folder. Without this, the certificate is lost on pod restart.

ChApTer 7 TrAefiK As KuberneTes ingress

239

For reference, the storage configuration generated by the Helm chart looks

like in Listing 7-24. This can be generated as usual by the Helm template

command. It can be customized further in the Helm chart. The storage class

do-block-storage attribute is vendor-specific. It is needed to provision

storage in DigitalOcean, and it is not useful anywhere else.

Listing 7-24. Generated Storage Value Snippets

kind: PersistentVolumeClaim

metadata:

 name: traefik

spec:

 accessModes:

 - "ReadWriteOnce"

 resources:

 requests:

 storage: "1Gi"

 storageClassName: "do-block-storage"

Additional Deployment configuration

spec:

 template:

 spec:

 volumeMounts:

 - name: data

 mountPath: /data

 volumes:

 - name: data

 persistentVolumeClaim:

 claimName: traefik

We can now do a helm upgrade to apply this configuration using the

file from Listing 7-25.

ChApTer 7 TrAefiK As KuberneTes ingress

240

Listing 7-25. Helm Upgrade with certresolver

% helm upgrade --values=cloud-values.yml traefik traefik/traefik

Release "traefik" has been upgraded. Happy Helming!

NAME: traefik

LAST DEPLOYED: Sun Aug 16 20:34:16 2020

NAMESPACE: default

STATUS: deployed

REVISION: 2

TEST SUITE: None

At this point, we can deploy the BookInfo service using the exact same

configuration as in Listing 7-6. We then define a new IngressRoute to reach

this service. First, we open another terminal and tail the Traefik pod logs

in Listing 7-26. Recall that we changed the Traefik log level to DEBUG. We

can check the certificate acquisition process.

Listing 7-26. Secure Dashboard IngressRoute

In a separate terminal

% kubectl get pod

NAME READY STATUS

traefik-6cb8d56bf8-sghpj 1/1 Running

% kubectl logs -f traefik-6cb8d56bf8-sghpj

time="2020-08-16T15:07:37Z" level=info msg="Configuration

loaded from flags."

time="2020-08-16T15:07:37Z" level=info msg="Traefik version

2.2.8 built on 2020-07-28T15:46:03Z"

time="2020-08-16T15:07:37Z" level=debug msg="Static

configuration loaded...

...

Let’s leave this running and move back to our main terminal to apply

the IngressRoute (see Listing 7-27).

ChApTer 7 TrAefiK As KuberneTes ingress

241

Listing 7-27. TLS IngressRoute for bookinfo productpage

whoami-doks-ingress.yml

apiVersion: traefik.containo.us/v1alpha1

kind: IngressRoute

metadata:

 name: productpage-ingresstls

spec:

 entryPoints:

 - websecure

 routes:

 - match: Host(`k8straefik.rahulsharma.page`) && (PathPrefix

(`/productpage`) || PathPrefix(`/static`) || Path(`/login`)

|| Path(`/logout`) || PathPrefix(`/api/v1/products`))

 kind: Rule

 services:

 - name: productpage

 port: 9080

 tls:

 certResolver: letsencrypt

#Apply the IngressRoute

% kubectl apply -f bookinfo-doks-ingress.yml

In the log tail terminal in Listing 7-16, you see messages in the log on

applying the YAML and opening up the browser (see Listing 7-28). We are

omitting a lot of information for brevity. We already added a subdomain

entry in our public domain provider to point to our load balancer's IP

address. You see that Traefik tries to first use the TLS-ALPN-01 challenge

type and then falls back to the HTTP-01 challenge. The challenge is a

multistep process that provides an automated response to Let’s Encrypt on

default HTTP port on our publicly reachable domain, which is why port 80

needs to be open for this challenge.

ChApTer 7 TrAefiK As KuberneTes ingress

242

Listing 7-28. Lets Encrypt HTTP-01 Certificate Negotiation Log Snippets

level=debug msg="Try to challenge certificate for domain

[k8straefik.rahulsharma.page] found in HostSNI rule"

level=debug msg="Domains [\"k8straefik.rahulsharma.page\"]

need ACME certificates generation for domains \"k8straefik.

rahulsharma.page\"." providerName=letsencrypt.acme

level=debug msg="legolog: [INFO] [k8straefik.rahulsharma.page]

acme: Could not find solver for: tls-alpn-01"

level=debug msg="legolog: [INFO] [k8straefik.rahulsharma.page]

acme: use http-01 solver"

level=debug msg="legolog: [INFO] [k8straefik.rahulsharma.page]

The server validated our request"

level=debug msg="legolog: [INFO] [k8straefik.rahulsharma.page]

acme: Validations succeeded; requesting certificates"

level=debug msg="Certificates obtained for domains [k8straefik.

rahulsharma.page]"

When you access the BookInfo productpage URL in the browser you get

the usual response and can inspect the staging certificate (see Figure 7- 20).

Figure 7-20. BookInfo product page UI on cloud load balancer with
LE certificate

ChApTer 7 TrAefiK As KuberneTes ingress

243

 TLS Certificate Limitations with Multiple Traefik
Instances
You may feel we are now ready to roll out Traefik to run on Kubernetes in

production; however, there is one hitch. The point we didn’t cover yet was

high availability (HA). One of the good things about Kubernetes is that

it provides HA support automatically by load balancing traffic between

multiple pods of the same service. If autoscaling is enabled, Kubernetes

horizontally scales-out further pods to handle an increase in requests.

This can apply to Traefik as well since it runs as a Kubernetes service

backed by a deployment. This HA creates a problem for Traefik ACME

protocol integration with Let’s Encrypt. As you saw earlier, the automated

Let’s Encrypt TLS challenges require a multistep interaction. There is

no way to guarantee that the same instance of Traefik receives all the

challenge requests. Also recall that Traefik stores the dynamically acquired

certificates in an acme.json file in a shared persistent volume.

The Traefik documentation warns you that this file should not be

used for concurrent access by multiple instances. So, the Let’s Encrypt

integration breaks down when you scale Traefik horizontally. Traefik does

not allow such a deployment configuration to proceed; it throws an error

during Helm installation.

The commercial version of Traefik, TraefikEE, supports this distributed

Let’s Encrypt configuration. However, if we want to stick with the free

community edition, this approach does not work. We can fall back to

configuring manually acquired certificates as Kubernetes Secrets, then

referencing it in our IngressRoute configuration, as shown in Listing 7-29.

ChApTer 7 TrAefiK As KuberneTes ingress

244

Listing 7-29. TLS IngressRoute for Whoami

whoami-doks-ingress.yml

apiVersion: traefik.containo.us/v1alpha1

kind: IngressRoute

metadata:

 name: productpage-ingresstls

spec:

 entryPoints:

 - websecure

 routes:

 - match: Host(`k8straefik.rahulsharma.page`) && PathPrefix

(`/productpage`) || #etc..

 kind: Rule

 services:

 - name: productpage

 port: 9080

 tls:

 secretName: k8straefik-tls # TLS certificate already added

as Kubernetes Secret

If we still want to use Let’s Encrypt to automatically acquire and renew

certificates, Traefik recommends using Jetstack cert-manager (https://

cert-manager.io). Cert-manager is the de-facto solution for managing

certificates on Kubernetes. It uses ACME protocol the same as Traefik to

provision certificates for different use cases, though it doesn’t support

the TLS-ALPN-01 challenge like Traefik. Cert-manager boasts native

integration with Kubernetes Ingress. If we create a plain Kubernetes

ingress resource and add the right custom annotation, cert-manager

automatically provision a TLS certificate for the domain.

The catch is that at the time of writing, it doesn’t work yet with Traefik’s

IngressRoute CRD. The Traefik team is working on this integration. As a

ChApTer 7 TrAefiK As KuberneTes ingress

https://cert-manager.io
https://cert-manager.io

245

workaround, for now, we can create a certificate custom resource for cert-

manager, which acquire and save a certificate as a Kubernetes secret, and

then manage the certificate thereon. This can be used in a IngressRoute

resource exactly as in Listing 7-29. Since this is a workaround for a

limitation that likely be resolved soon, we do not elaborate on it.

 Summary
This chapter deployed and configured Traefik on top of Kubernetes using

its Helm chart. Traefik has tight integration with Kubernetes, and its API

gateway capabilities map easily to the Kubernetes Ingress. This makes it a

very attractive proposition for use as an Ingress controller.

You tried out Traefik’s native integration with Kubernetes in the

form of CRDs. You saw how Traefik can detect dynamic updates in the

Kubernetes API server and keep its configuration updated without any

manual intervention. Services are registered and deregistered in Traefik as

they are updated in the Kubernetes cluster.

While this chapter covered a lot of complex ground in a compressed

time, this complexity is inherent to the Kubernetes ecosystem. In our view,

Traefik simplifies the job of deploying and managing an API gateway on

Kubernetes.

With that, we come to the end of this chapter and also this book.

Traefik is rapidly evolving day by day, and we encourage you to head on

over to the Traefik official documentation to continue your exploratory

journey of Traefik.

ChApTer 7 TrAefiK As KuberneTes ingress

247© Rahul Sharma, Akshay Mathur 2021
R. Sharma and A. Mathur, Traefik API Gateway for Microservices,
https://doi.org/10.1007/978-1-4842-6376-1

Index
A
Access logs

attributes, 138
configuration sets up, 137, 138
diverse information, 138
log fields, 141–143
log filters, 139–141

API gateways, 161, 162
api@internal service, 50
Application deployment, 9
Application errors, 75
Application governance, 4
Application health, 77
Application layer protocols, 14, 15
Application scaling, 3
Application tier, 10

B
Backlisting, 145–147
basic-auth@file middleware, 63
BookInfo application installation

ClusterIP, 205
IngressRoute, 206
IngressRoute custom

resource, 206
Kubernetes services, 204, 205

product page ingress
service, 208

product page router, 208
product page UI, 207

bookinfo reviews service
deployments, 222–224
generated ingress service, 227
IngressRoute, 223, 225
Kubernetes service, 223
router, ingress service, 228
weighted round-robin

strategy, 225
weighted Traefikservice, 227

bootstrap.yml file, 164
Browser cookies, 73, 82
B3 trace headers, 148
Business context, 4

C
Canary deployments, 188, 189
caServer URL attribute, 109
Certificate authority (CA), 101
Certificate signing

request (CSR), 107
certresolver attribute, 106, 109, 116,

118, 122
Chain middleware, 187, 188

https://doi.org/10.1007/978-1-4842-6376-1#DOI

248

Circuit breaker, 161, 180–183
Cloud load balancer

BookInfo product page UI, 242
default backend, 236
HTTPS entrypoint, 236

cloud-values.yml file, 238
Configuration, Traefik

architecture, 32
dynamic configuration, 36
entrypoints

CLI arguments, 37
config file Traefik.yml, 41
default, 39
defined with CLI, 40
environment variables, 40
TOML and YAML, 42, 43

routers (see Routers)
static configuration, 36
types, 35

Consul key-value store, 174, 177
Consul provider, 176
Consul service registry, 165, 166,

188, 209
Content delivery tier, 12
Context-of-the-failure, 127
Custom resource definitions

(CRDs), 193
Custom resource requests, 198

D
dashboard@internal service, 51
Data tier, 10, 13

Deployment types, 68
DigitalOcean droplet, 103, 106
DigitalOcean Kubernetes (DOKS)

cloud
cloud load balancer, 235
helm upgrade, certresolver, 239
TLS certificate

limitations, 243–245
TLS termination, 237–242

Distributed tracing, 147
Divide and conquer principle, 8
do-block-storage attribute, 239
Docker, 36
Docker Desktop, 194
Dynamic configurations, 36, 47, 61,

105, 206
Dynamic ecosystem, 159

E
Encrypt automatic certificate

provisioning, 107
Entrypoint and certificate

resolver, 109
EnvironmentChangeEvent

event listener, 164

F
Fault tolerance, 7
FileProvider configuration, 46, 176
Four-tier deployment

model, 12–14

INDEX

249

G
Gateway characteristics

application layer
protocols, 14, 15

dynamic configuration, 16, 17
features, 20, 21
observability

metrics, 19
tracing, 18

TLS termination, 19, 20
Gateway configuration

canary deployments, 188, 189
circuit breaker, 180–183
Consul provider, 175
FileProvider, 176
PetClinic, 178
retries, 182–185
server details, 177–179
throttling, 185–188
Traefik configuration, 176
Traefik documentation, 174

Gateway tier, 12
Go service, 33, 53
guest-service loadBalancer, 73

H
Health checks, 75, 76
Helm repository, 210
helm template command, 214
Helm, Traefik installation

adding repository, 210
bookinfo reviews

service, 222–228

dashboard route, 221
entrypoints, 220
Helm command, 218–220
routes, 221
Traefik CRDs, 222
Traefik Helm chart, 211–217

High availability (HA), 243
Horizontal scaling, 67, 68
HostSNI attribute, 106
Hot-hot deployments, 67
Hot reloads, 17
httpbin service

access, 146
built, setuptools, 131, 133
code, 131
dashboard, entrypoint, 135
Python, pip, and

virtualenv, 130
releases version, 130
Traefik configuration, 133, 134

HTTP middleware, 58
HTTP routers, 46, 47, 53, 57

I
Ingress API, 192
Ingress controller, 192
Ingress object, 192
IngressRoute, 205, 207, 209
IngressRoute CRD, 198
IP4 loopback address, 147
IP6 loopback address, 147
ipstrategy, 145
ipWhiteList middleware, 145, 158

INDEX

250

J
Jaeger

configuration parameters, 231
custom-values.yml and Helm

upgrade, 230
default ingress backend, 234
default-router,

default-backend, 233
enable, microk8s, 230
trace drill down, 232
traces on UI, 232
tracing enabled, 231
UI Ingress on microk8s, 233

K
Keys, Traefik, 174
kubectl CLI, 195
Kubernetes, 36

CRD provider, 193
documentation, 192
Traefik installation

bookinfo application,
204–209

CRDs via kubectl, 197, 198
default backend, NodePort

entrypoint, 202
deployment and service, 200
deployment configuration,

199, 200
deployment with dashboard

entrypoint, 202
deployment with Kubernetes

CRD provider, 203

DigitalOcean (DOKS), 194
via kubectl, 199
Microk8s, 194
minikube VM, 202
NodePorts, 201
RBAC via kubectl, 195, 197
static configuration, 200

Kubernetes Ingress
Controller, 191, 193

L
Latency, 180
letsencrypt, 106
Let’s Encrypt automatic certificate

provisioning, 107
Let’s Encrypt configuration, 243
Load balancing of HTTP services

algorithm, 69
request handling, 69
round robin (RR)

health check, 75–77
sticky session, 73–75

service configuration, 69
WRR (see Weighted round robin

(WRR))
Load balancing techniques, 20
Log fields, 141–143
Log filters, 139–141
Log rotation, 143, 144
Logs

access (see Access logs)
blacklisting, 145–147
configuration set up, 135–137

INDEX

251

management, 143
rotation, 143, 144

M
Metrics

backed service, 154
configuration, 154
enable, 155
Prometheus configuration,

155–157
Microk8s, 194
Microservice architecture

agility, 6
API gateways, 161
characteristics, 3–5
granule services, 159
innovation, 6
maintainability, 8
vs. monolith, 5
resilience, 7
scalability, 7
service collaboration, 160

Middleware
basic auth, 60, 62, 64
browser basic authentication, 62
configuration, 63, 64
default, 58
default dashboard redirect, 59
default stripprefix, 60
drill down to configured HTTP

middleware, 63
final authenticated Hello

World, 62

routers and services, 65
Traefik dynamic

configuration, 61
Mirroring, 83–86
Modules, 1
Mongo client simple

connection, 111
Mongo Client TLS

connection, 111, 112
Mongo Client Valid TLS

Certificate, 113
MongoDB, 102

configuration, 122
installation, 105

MongoDB server, 86
MongoDB TCP, route

configuration, 104, 106
mongo-router route, 122
Monolithic architecture, 1, 2
Mutual TLS (mTLS), 20

N
Network errors, 180
newsyslog, 143
Nginx, 192
NodePort, 235
NodePort service type, 201
n-tier deployment, 9

O
Observability, 18, 128, 129
OpenSSL, 122

INDEX

252

Open systems interconnection
(OSI) model, 68

OpenTracing backends, 148

P, Q
Permissions, 104
Pet-Clinic application

configuration, 164, 165
consul service registry, 165, 166
microservices, 167–171
services, 163
UI, 171, 173
use cases, 162

Presentation tier, 9
Prometheus, 154–157
Providers, 22, 36

R
Request span, 148
Request tracing, 128

configuration, Jaeger, 228–234
integrate Zipkin, 150–153
Zipkin installation, 148–150

Resilience, 7
Response code, 180
Retry middleware, 183
Retry pattern, 183
Root cause, 127
Round robin (RR)

algorithms for load
distribution, 69

configuration, 71

multiple instances of visitor, 71
request distribution, 69
sticky session, 73–75
TCP service, 87–90
Traefik dashboard, 72
UDP service, 93–95
visitor log screen, 70

Route, retry, 184
Routers

api@internal HTTP router, 45
dashboard@internal HTTP

router, 46
dashboard view, HTTP router, 49
default HTTP routers, 44
FileProvider configuration, 46
HTTP, 44
rules, 47–50
set of middleware, 44
set of rules, 43

S
Sample Web Service, 32–34
Scalability, 7
Scaling, 67
Secure Dashboard IngressRoute, 240
Secure Traefik dashboard

basic authentication, 121
entrypoint and route config, 115
Lets encrypt resolvers, 118
Let’s Encrypt staging certificate

details, 120
self-signed Traefik certificate

error, 117

INDEX

253

Self-signed Traefik certificate
details, 118

Self-signed Traefik certificate
error, 117

Server Name Indication (SNI), 108
Service discovery, 160
Service error rates, 180
Service registration, 160
Service registry, 160
ServiceRegistry class, 177, 178, 188
Service registry, 159
Service registry providers, 16
Services

configuration, 54
dashboard default, 50

api@internal, 51
dashboard@internal, 52
noop@internal, 52

drill down to configured
HTTP routers, 57

drill down to configured
HTTP services, 54

Hello World file HTTP service,
configuration, 55

HTTP router connected to
hello-world service, 57

middleware (see Middleware)
Traefik dashboard, 56
traefik-dynamic-conf.yml, 53
web entrypoint, 57

Service self-registration, 159, 160
Services tier, 12
setuptools, 131
sourceRange, 145

Static configuration, 36, 41
Steep learning curve, 3
Sticky session

RR
browser cookie, 73
load balancer, 73
Traefik dashboard, 74

WRR, 80–82

T
TCP, router, 113
TCP service

load balance
entrypoint, 86
round-robin algorithm, 87–90
weighted round-robin

algorithm, 90–92
Terminal delay, 89
Throttling, 185–188
Tiers, 9, 11
TLS

certificate, 101
encryption and

decryption, 99, 100
entrypoints, 111
HTTP traffic, 101
IngressRoute for bookinfo

productpage, 241
IngressRoute for

Whoami, 244
traffic, 100

TLS certificates, 102, 104, 110
tlsChallenge attribute, 110

INDEX

254

TLS configuration, 104
TLS forwarding

connect Mongo, 123
MongoDB TLS configuration, 122
route configuration, 122
Traefik router, 124

TLS termination, 19, 20
encrypt automatic certificate

provisioning, 107
entrypoint port, 113
Kubernetes, 237–242
Let’s Encrypt automatic

certificate provisioning, 107
MongoDB, 102
MongoDB route, 103–106
provisioning TLS certificates,

public endpoints, 108–114
secure Traefik dashboard,

114–121
TOML vs. YAML, 42, 43
Tracing, 18, 151
Traefik

API, 26, 28
cluster technology, 22
command line, 24–26
dashboard, 28, 29
“Hello World” Go service, 34
installation, 23, 24
Kubernetes Service, 201
open source API

gateway, 21
provider, 22
static TOML configuration, 43
static YAML configuration, 42

Traefik Helm chart
custom-values.yml, 216
default values, 211, 212
generated Helm template

custom values, 217
default values, 214, 215

Kubernetes YAMLs, 213
TraefikService resources, 225
Traefik v2 Helm repository, 210
Traffic management, 14
Traffic mirroring, 83
Traffic shadowing, 83
treafik.yml, 133

U, V
UDP service

load balance
round-robin algorithm, 93–95
weighted round-robin

algorithm, 96, 97
User-defined services, 58

W, X, Y
Web API Written in Go, 33
Weighted round robin (WRR)

hierarchy, 78
request distribution, 77
sticky session, 80–82
TCP services, 90–92
Traefik dashboard, 79
UDP service, 96, 97
weighted service, 80

INDEX

255

Z
Zipkin

installation, 148–150
Traefik integration

configuration, 151

httpbin application, 152
request traces, 153
tracing behavior, 150
tracing dashboard

status, 151

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Traefik
	Microservice Architecture
	Agility
	Innovation
	Resilience
	Scalability
	Maintainability

	n-Tier Deployment
	Four-Tier Deployment

	Gateway Characteristics
	Application Layer Protocols
	Dynamic Configuration
	Hot Reloads

	Observability
	Tracing
	Metrics

	TLS termination
	Other Features

	Traefik
	Installation
	Traefik Command Line
	Traefik API
	Traefik Dashboard

	Summary

	Chapter 2: Configure Traefik
	Configuration Topics
	Introduction to Sample Web Service
	Traefik Configuration
	Entrypoints
	Starting Traefik with CLI Arguments
	Starting Traefik with Entrypoint Defined with CLI
	Starting Traefik with Entrypoint Defined in Environment Variables
	Entrypoint Defined with Config File Traefik.yml in the Current Directory
	TOML vs. YAML

	Routers
	Router Rules

	Services
	Middleware

	Summary

	Chapter 3: Load Balancing
	HTTP Load Balancer
	Round Robin
	Sticky Session
	Health Check

	Weighted Round Robin
	Sticky Session

	Mirroring

	TCP Service
	Round Robin
	Terminal Delay

	Weighted Round Robin

	UDP Service
	Round Robin
	Weighted Round Robin

	Summary

	Chapter 4: Configure TLS
	Quick Overview of TLS
	TLS Termination at Traefik
	Exposing MongoDB Route on TLS
	Let’s Encrypt Automatic Certificate Provisioning
	Provisioning TLS Certificates for Public TCP Endpoints
	Secure Traefik Dashboard over TLS

	Traefik for TLS Forwarding
	Summary

	Chapter 5: Logs, Request Tracing, and Metrics
	Prerequisites
	Traefik Configuration

	Traefik Logs
	Access Logs
	Log Filters
	Log Fields

	Log Rotation
	Blacklisting

	Request Tracing
	Install Zipkin
	Integrate Zipkin

	Traefik Metrics
	Configure Prometheus

	Summary

	Chapter 6: Traefik for Microservices
	Pet-Clinic Application
	Application Configuration
	Consul Service Registry
	Deploy Pet-Clinic
	Pet-Clinic UI

	Configure Gateway
	Service Details
	Circuit Breaker
	Retries
	Throttling
	Middleware Chain

	Canary Deployments

	Summary

	Chapter 7: Traefik as Kubernetes Ingress
	Traefik as Kubernetes Ingress Controller
	Installation of Traefik on Kubernetes
	Installing the bookinfo Application

	Installing Traefik with Helm
	Exploring Traefik Helm Chart
	Local Installation
	Exposing the bookinfo Reviews Service

	Configure Request Tracing with Jaeger
	Setup Traefik on DigitalOcean Kubernetes Cloud
	TLS Termination on Kubernetes via Let’s Encrypt Certificates
	TLS Certificate Limitations with Multiple Traefik Instances

	Summary

	Index

