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Preface

Christian was our friend, a much loved friend with whomwe shared everything:
our hopes, projects, discussions, experiences, discoveries . . . He loved life, he
loved humanity, and he loved being surrounded by people and communicating
with them. More than ten years after he abruptly passed away, dancing and
singing, we dedicate this book to him as a way to keep him and his spirit alive
within our scientific community.

Christian specifically liked to read three kinds of publication. First was the
French newspaper Libération, which was founded during Christian’s adoles-
cence when he discovered political commitment. Christian never forgot to buy
his copy each morning. Second was the Bandes Dessinées, the French version
of the north American comics. He owned a marvelous collection of these that
amused every visitor to his home. Finally, he loved and published works about
speech science. He contributed as an author or as an editor to a number of such
works. Although proud of each contribution, for him the most important was
certainly the 1992 edition of the proceedings of the First ESCA Workshop on
Speech Synthesis, produced in collaboration with Gérard Bailly and Tom
Sawallis. He was very excited by this task, and worked hard on it for many
months to make sure that it would make an interesting and lasting contribution
to the field, which it has. Having a strong sense of humor, Christian also wanted
the book to be fun. Coupling this with his constant desire to see as much
interaction as possible between apparently disparate people and endeavors, he
commissioned a Bandes Dessinées cartoonist to draw a picture for the cover
page. The cartoon, reproduced here, shows a grandmother robot sitting on an
armchair just beginning to tell two children a story: Il était une fois . . . – “Once
upon a time . . .” This wonderfully captures Christian’s concept of research in
speech communication: a domain where scientists have fun working hard to
increase human understanding and the quality of life.

In close collaboration with Christian Abry and Tahar Lallouache, and with
his students Oscar Angola, Tayeb Mohamadi, Thierry Guiard-Marigny, Ali
Adjoudani, Bertrand LeGoff, and Lionel Revéret, Christian was a pioneer in
the synthesis and recognition of audiovisual speech. His dedication and enthu-
siasm for the endeavor influenced academic and industrial researchers
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throughout Europe, the Americas, Asia, and Australia. He established strong and
fruitful international collaborations, principally with Dominic Massaro and
Michael Cohen from the University of California in Santa Cruz, where he spent
a sabbatical leave in 1993, and with Eric Vatikiotis-Bateson at ATR in Kyoto,
which he visited many times. These are but a few of the collaborations that had
begun to burgeon. At the time of his death in April, 1998, he was already a key
member in a number of French and European projects; indeed, he and his research
team were recognized as a most welcome addition to any research project.

Alongside his dedication to having fun with science, Christian was also quite
serious about using his prodigious social and communicative talents to foster
institutional structures aimed at facilitating the growth and development of
speech science as a multi-faceted discipline that, especially within Europe,
would break down the barriers imposed by competition and prejudice, be they
institutional, national, international, or inter-continental. The vehicle for his
dream of a barrier-free venue for the exchange of research ideas was the
European Speech Communication Association (ESCA) which sponsors full-
scale conferences where academic and industrial researchers convene annually
and numerous topical and training workshops. Christian was Secretary of
ESCA from 1993, but died before realizing his dream of globalizing the society
by getting rid of the reference to Europe in its name. Soon after his death, ESCA
was renamed ISCA (the International . . . ).

Among his very creative initiatives, we will brieflymention two that illustrate
his interest in stimulating scientific research and education. Along with David
Stork and N. Michael Brooke, Christian co-organized a NATOAdvanced Study
Institute (ASI) workshop in 1995 entitled, “Speechreading by Man and
Machine: Models, Systems and Applications.” This workshop brought together
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for the first time engineers, primarily from industry, and psychologists, hearing
specialists, and others from academia and public health to consider issues of
common interest in auditory and visual speech processing (AVSP). Christian’s
involvement with the NATO-ASI and his quick-witted decision to follow
through with subsequent AVSP workshops (Philadelphia 1996; Rhodes 1997;
Terrigal 1998; Santa Cruz 1999; Scheelsminde 2001; St-Jorioz 2003;
Vancouver 2005; Hilvarenbeek 2007; Moreton Island 2008; Norwich 2009)
gave coherence to this new sub-discipline of speech science. Christian then
wisely sought and received recognition and sponsorship for this new area of
inquiry from ESCA, by advocating the importance of special interest groups
(SIG) for addressing new areas of interest without interrupting the main stream
of the professional society. The day he died he had just drafted the details of
what would have been the first of these within ESCA/ISCA, now known as
AVISA (the Auditory-Visual Speech Association). The year 1998 saw also the
creation of SynSIG (the Speech Synthesis Special Interest Group), that together
with AVISA cover Christian’s research themes.

The Christian Benoît association was created on April 26, 1999. Founded by
personal donations, the ICP and ISCA, its scientific committee biannually
awards the “Christian Benoît” prize to a young researcher in order to help him
or her develop a multimedia project. The first laureates are Tony Ezzat (from
Medialab, MIT, USA, see his contribution in this volume) and Johanna Barry
(from Bionic Ear Institute, University of Melbourne, Australia), Olov Engwal
(from Department of Speech, Music and Hearing , KTH, Stockholm, Sweden),
Susanne Fuchs (from Center of General Linguistics in Berlin, Germany) and
Sascha Fagel (fromDepartment for Language and Communication of the Berlin
Institute of Technology, Germany).

At the ICP, thanks to Christian’s pioneering efforts, a large number of projects
have been developed in auditory and visual speech processing, the branch of
spoken communication research that he was so instrumental in establishing.
Some of these projects extend and improve upon Christian’s work. Gérard
Bailly, Pierre Badin, Frédéric Elisei, and Matthias Odisio extended his pioneer
work on lips towards a data-driven talking head that drives not only the visible
movements of the entire face but also pilots the underlying speech articulator:
the jaw, the tongue and more recently the velum. Virginie Attina, Gérard Bailly,
Denis Beautemps, Marie Cathiard, and Guillaume Gibert are developing a
system for synthesizing cued-speech, the use of synchronized hand motions
to facilitate communication for hearing-impaired people. Christian was passion-
ately involved with cued-speech research during the last weeks of his life.

Christian would probably have liked to be one of the editors of this book. He
knew all the contributors personally and he would have enjoyed reading their
papers, arguing and joking with them, and simply being part of a communica-
tive process he understood so well.

This book is “absolutely” dedicated to him!
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Introduction

The books Hearing By Eye (Dodd and Campbell 1987) and Speech Perception
by Ear and Eye (Massaro 1987) were the first volumes that considered speech-
reading as a psychological process of interest beyond its direct applications in
hearing loss and deafness (see for example, Jeffers and Barley 1971). Eight
years later, David G. Stork, Christian Benoît, and N. Michael Brooke organized
the landmark NATO workshop “Speechreading by Man and Machine: Models,
Systems and Applications.” The workshop was “the first forum on the inter-
disciplinary study of speechreading (lipreading) – production, perception and
learning by both humans and machines.” This workshop was followed by
several volumes (Stork and Hennecke 1996; Campbell et al. 1998; Massaro
1998b) and was undoubtedly a major step towards the design of an audiovisual
(AV) speech processing community: you will find in this volume numerous
references to the series of subsequent AVSP workshops (Rhodes 1997; Terrigal
1998; Santa Cruz 1999; Scheelsminde 2001; St-Jorioz 2003; Vancouver 2005;
Hilvarenbeek 2007; Tangalooma 2008; Norwich 2009; Hakone 2010) sponsored
first by the European Speech Communication Association then by the AVSP
Special Interest Group of the International Speech Communication Association,
both bodies in which Christian Benoît was constantly promoting AV speech
processing. These workshops together with dedicatedworkshops (see for example
the AV speech recognition workshop organized in 2000 by Chalapathy et al.)
and special sessions in international conferences have fostered the development
of innumerable lines of AV speech research.

The book is divided into four main parts although most chapters address most
of the questions.

The first part of the book is largely devoted to AV speech perception and to
two main questions concerning human AV performance: how and where (in the
brain) auditory (A) and visual (V) signals combine to access the mental lexicon.
Although speech can be perceived by vision alone (i.e., via lipreading/speech-
reading) and visual speech perception (Bernstein) can provide sufficient
phonetic information to access the mental lexicon, talking faces constitute a
major part of an infant’s perceptual experience: through the process of watching
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and listening while people talk to them and point out objects of the world, infants
have the opportunity to attribute semantics to the sounds they hear. Developmental
studies (Burnham and Sekiyama) can thus contribute to explaining how auditory
and visual information combine. Idiosyncrasies of human brain circuitry also
hold clues to the evolution and development of human language, and its
accessibility by eye and ear (Campbell and MacSweeney). One commonly
accepted term of this intersensory integration is that the two signals carry both
complementary and redundant information on the phonetic properties of the
original message. The striking observation is however that the integration is
something more than taking the best of both worlds and that AV perception is
able to perceive properties that are carried by neither modality alone (Remez).
Some answers to this puzzle could be found in a more intimate intersensory
integration at the signal level, notably that which comprises the dynamic aspects
of both signals (Lander and Bruce) which are in fact audible and visible traces of
the same articulatory gestures.

The second part of the book is dedicated to the production and perception of
visible speech i.e. speechmovements.We have access to dynamicAVinformation
(Lander and Bruce) as consequences of the acoustic and aerodynamic conse-
quences of the motion of speech articulators. A production-aware “grounded”
perception can benefit from the availability of sensorimotor maps (which may
or may not include dynamic representations) whose existence has been proved
to be useful for the control of most biological movements. This intersensory
integration is not only necessary for perception (and therefore comprehension)
but also for movement learning and control (Cathiard et al.) Accurate descrip-
tions and models of coordinate structures linking activations of the different
speech segments are thereby necessary: for instance Beautemps, Cathiard et al.
describe coordination between hand and vocal tract motions in manual cued
speech.

The third part of the book presents some of the latest developments in AV
speech processing by machines, particularly in AV speech recognition and
synthesis (Brooke and Scott). In parallel with the development of AV research,
computer-generated facial animation (Parke and Waters 1996) has attracted
considerable attention and progress. Areas of application have set aside the
traditional field of the animation and games industry to address more challenging
applications where the metaphor of face-to-face conversation is applied to
human–computer interfaces (Cassell et al. 2000). Of course, we are still a
long way from building a computer which can carry on a face-to-face conver-
sation with a human and which can pass a face-to-face Turing test, i.e. one
whose computed behavior cannot be detected from natural human interaction.
However, noticeable progress has been made in giving computers the “gift” of
AV speech (Brooke and Scott). AV speech recognition outperforms acoustic-
only speech recognition especially for degraded speech (Potamianos, Chapalatti
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et al.) while the realism of facial animation has been drastically improved by
image-based speech synthesis (Ezzat et al; Slaney and Bregler). The chapter by
Massaro et al. on the Baldi talking head and its further developments for virtual
speech tutoring concludes this part by reporting experimental work on augmented
communication.

The fourth part focuses on the nature of the information related to oro-facial
gestures (head, vocal tract, and face movements), which is necessary to enable
an efficient contribution of the visual component in the audiovisual processing
of speech. Bateson and Munhall’s approach is based on experimental studies of
the perception of multimodal natural and synthetic stimuli in which various
characteristics are either degraded or carefully preserved. Bailly, Badin et al. use
a modeling approach based on a careful analysis of real speakers’ data to study
the main degrees of freedom of the speech production system and their impact
on the audiovisual perception of speech.

This work has been accomplished because a body of researchers is now
working on the various aspects of audiovisual speech processing. Most of this
synergy is due to the research field itself where the majority of the paradigms of
unimodal speech research have been renewed and questioned. Part of this
synergy is also due to the communicative enthusiasm of researchers such as
Christian Benoît.

Scientific outcomes ofmultimodal speech communication studies are numerous
and they cover a broad scope. We acknowledge that little is said in this book
about them. Indeed, it was our decision to focus mainly on basics. However, we
would like to mention one of the most exciting current outcomes: Face-to-Face
speech communication. Interaction loops between production and perception of
speech and gestures are at the core of this aspect of human communication,
transmitting via multimodal signals parallel information about what the inter-
locutors say, think about what they say and how they feel when they say it.
Convergence or imitation phenomena, which are at the core of L1 and L2
learning process in babies and adults, result from this interaction. Face-to-face
communication studies require the integration of all the mechanisms of embod-
ied speech production and audiovisual speech communication, and combining
them with social and physical interactions between humans and between
humans and their environment (see notably extended papers of presentations
dicussed at two workshops organized in Grenoble: Abry et al. 2009; Dohen
et al. 2010). The quest for neurophysiological and behavioral correlates of these
sensorimotor loops constitute an exciting research program that would certainly
have attracted Christian Benoît’s attention and titillated his insatiable curiosity.
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1 Three puzzles of multimodal speech perception

R. E. Remez

1.1 Introduction

Why look at the talker when you listen? This question is the straightforward
practical topic of a research report at the origin of studies of multimodal speech
perception (Sumby and Pollack 1954). A crucial part of the answer is furnished
in this early report: Looking boosts intelligibility throughout a range of listening
conditions. But despite the longstanding acknowledgment of the potential of
vision in speech perception, multimodal speech perception remains a test of our
theories today. The benefit of watching the talker while listening is neither well
described nor well understood; this predicament is a natural consequence of a
unimodal research strategy that has largely followed articulated sound into the
ear. This practice has spawned a range of theoretical descriptions of the percep-
tion of speech, although it is fair to say that every account feels the weight of the
multimodal problem. No hypothesis about speech perception is immune to the
test, and it is a severe challenge.

Technical attention tomultimodal speech perception has added to the inventory
of types of multimodal integration, and the accumulated new cases are no easier
to accommodate than Sumby and Pollack’s original benchmarks. This essay
reviews three multimodal challenges to our understanding of speech perception,
with the goal of sketching the boundaries of a unified account. The approach
taken here is perceptual and general in emphasis, rather than specifically
phonetic or psycholinguistic. This conceptual gambit affords an opportunity
to compare speech perception to other perceptual functions, in an effort to
situate speech perception as a particular functional allocation of resources
drawn from a common perceptual stock. As intellectual strategy, it admits the
influence of Stein and Meredith (1993), whose physiological studies of living
species nonetheless describe the ancient phylogeny of multisensory unity. Of
course, speech is young, certainly compared to structures of the vertebrate
brainstem that compose a crucial neural constituent of multisensory conver-
gence. It will be instructive to see how the perceptual functions accommodating
speech fit within this scheme, and in order to take up the challenge, three puzzles
to consider are: (1) Organization, (2) Event Perception, and (3) Experience.
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1.2 Organization

To apprehend an utterance, a perceiver finds the effects of speech amid ongoing
sensory flux and, informed by experience with language, resolves the linguistic
message. The self-evident sufficiency of listening as a means to perceiving and
understanding encourages an auditory bias in explaining perception, and from that
perspective the original finding of Sumby and Pollack (1954) was unprecedented.

1.2.1 Assessing audiovisual speech transmission

Sumby and Pollack had aimed to calibrate the usefulness of viewing a talker
while listening, motivated by the practical aim of devising improvements in
spoken exchanges within a noisy workplace. In their test, talker and perceiver sat
five feet apart, on each trial the talker producing an English spondee (for example,
“cupcake,” “baseball”) chosen from a fixed list of words. The perceiver wore a
headphone set through which the acoustic test items were delivered. The subject
also held a copy of the word list and was asked to indicate the spoken item on
each trial. Three factors were manipulated to assess the contribution of vision to
speech perception. First, to estimate the baseline performance for listening, a
group of participants was tested who did not look at the talker. Their perform-
ance was compared to an audiovisual condition, in which the perceivers faced
the live talker, looking while listening. Second, to measure visual influence as a
function of auditory resolution, the level of speech relative to noise was varied
in 6 dB steps from –30 dB to 0 dB, with an additional condition in which speech
was presented in the clear. Third, to estimate the effect of uncertainty, the size of
the set of words from which each item was drawn was also varied, from a set
of eight at the smallest to 256 at the greatest. The family of curves of the results
of these tests is a thing of beauty.

Some aspects of the outcome were expectable, namely, that identification
performance varied inversely with the acoustic signal-to-noise ratio (S/N) both
when listening alone and when listening and looking, and, that performance was
poorer the larger the set of words from which the item on each trial was chosen,
true no less of the listener as of the audiovisual perceiver. The greatest con-
tribution of vision to word identification occurred with the smallest lexical set at
the lowest acoustic S/N, or, as Sumby and Pollack state it, the visual contribu-
tion to speech intelligibility increases as the speech-to-noise ratio decreases. To
a first approximation, the finding is coincident with common sense, namely, that
listening is ordinarily sufficient, and its insufficiency for whatever cause pro-
motes a shift in attention to include the visual supplement, even presuming that
an optic-to-phonetic projection differs hugely in dynamic from an acoustic-to-
phonetic projection (Auer et al. 1997). However, a crucial analysis performed
by Sumby and Pollack shows a rather different characterization of the interplay
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of visual and auditory contributions. Although the absolute visual contribution to
audiovisual speech perceptionwas greatest when the S/Nwas smallest, the relative
contribution of vision was actually constant across a wide range of S/N. To
assess this, Sumby and Pollack estimated the potential contribution of vision and
the actual contribution, finding the ratio of these two estimates at each S/N.
Remarkably, the constancy of the ratio shows that the relative information supplied
byvisual observation of the talker’s face is independent of the S/N. Their schematic
illustration of this assessment of the visual contribution is shown in Figure 1.1.

If the greatest absolute benefit of audiovisual speech perception occurs when
the auditory component is compromised, the findings also indicate that there is
benefit of vision to intelligibility regardless of the auditory baseline. This shows
that the perceptual disposition to combine the two sensory streams is robust, and
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Figure 1.1 The relation between auditory and visual speech perception in a
classic study by Sumby and Pollack (1954).
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provides a glimpse of the principles of the perceptual organization of speech
apprehended audiovisually. To unpack the surprise in this early study, consider
the conditional dependence on vision that Sumby and Pollack imply as a default
hypothesis. If speech perception relied on auditory inflow only when it yielded
adequate intelligibility, visual attention to a talker would be conditional on the
degree of auditory failure. Instead, the finding that visual attention persists, and
contributes to speech perception over wide ranges of variation in auditory
success exposes two aspects of perceptual organization.

First, audiovisual attention to a talker is primary, perhaps reflecting a natural
mode of attention. Second, audiovisual attention is independent of the symbolic
process that projects auditory forms into phonetic attributes. The combination
of visual and auditory streams occurred regardless of the degree of success or
failure in lexical identification. Two ensuing projects show that this early
finding of Sumby and Pollack was genuine. They conclude that beyond the
propensity of a perceiver to treat visual and auditory samples of speech as
combinable by default, the audiovisual dynamic is remarkably indifferent to
superordinate linguistic or symbolic properties (Remez et al. 1994).

1.2.2 The autonomy of audiovisual coherence

The audiovisual speech perception study of McGurk and MacDonald (1976) is
now well known. In their project, a perceiver reported the syllable pair spoken
on each trial by a recorded female talker, with auditory or auditory-visual
exposure. Although the auditory contribution to perception was unequivocal
when it was the sole basis for consonant identification, in combination with
vision it did not dominate. Instead, subjects reported a variety of compromises
or fusions between the auditory and visual streams. For understanding percep-
tual organization, the crucial evidence was provided by specific compromises.
For example, in the instance in which the audible display conveyed [pɑ] and the
visible display conveyed [kɑ], a plausible audiovisual compromise is [tɑ],
preserving the audible and visible stop manner, and the audible voicelessness,
and compromising on consonantal articulatory place.

Although such instances of fusion of the audible and visible consonants were
disclosed by each group of subjects, listeners also reported combinations that,
remarkably, were not consistent with English phonotactics. The oddity of the
audiovisual combination /bdɑ/ and /bgɑ/, for instance, is its atypicality (or,
perhaps, its illegality given English sonorance) in words. These reports express
speech perception unbiased by its service to lexical identification and released
from experience of the likely sequence of phonemes in English syllables. Once
the organization of the multisensory samples of speech is determined, the
functions of phonetic perception yield segmental values bound to the sensory
patterns, even sequences that are inconceivable given the regular properties of
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the language. It is not unreasonable to take such findings as critical counter-
evidence to accounts of speech perception appealing to simple interactive activa-
tion (McClelland and Elman 1986) because this phenomenon, while exhibiting
interaction of sensory modalities, denies interaction of lexical knowledge and
sensory resolution in the identification of segments.

1.2.3 A unimodal parallel

We found a similar function operating in perceptual organization at a funda-
mental level in a unimodal case. In explaining the means by which a listener
finds and follows a speech signal, whether a single talker speaks in the clear or a
group of talkers yak away in a cocktail party and the listener tries to pick one out
of the din, the commonplace account had been Auditory Scene Analysis
(Bregman 1990). This model added a well-grounded empirical base to the
proposal of Wertheimer (1938), that the starting point for the perception of
objects and events, whether visible or audible, was an organized sensory field,
and not simply an unaltered summary of receptor activity. Through clever tests
that extrapolated Wertheimer’s principles of grouping by likeness, the auditory
evidence seemed to warrant an account of perceptual organization in which
elements were grouped according to their similarity, or continuity, or proximity,
or their temporal coincidence. Given a welter of auditory elements in sensory
flux, this account described the creation of segregated perceptual streams of like
elements, binding them in a domain over which perceptual analysis then
occurred (cf. Triesman 1993).

In contrast to the ideal test cases that provided empirical motivation for
Auditory Scene Analysis, speech posed a recalcitrant instance with its acousti-
cally heterogeneous signal and its extremely brief elements that fade without a
trace in auditory memory within 100ms of transduction. A perceiver who sorted
a speech stream into its like elements would bind the clicks together, the whistles
together, the hisses together, the buzzes together, and the hums together, losing
the natural intercalation of the acoustic elements and sacrificing the precise
temporal grain of the multiple acoustic correlates of phonetic expression that
arguably confers perceptual robustness (Liberman and Cooper 1972). We
proposed (Remez et al. 1994) that perceptual organization of speech must,
instead, be keyed to coarse-grain modulation of the spectrum, but indifferent
to the short-term acoustic elements composing the stream. The constituents of a
speech signal would cohere in a perceptual stream, we claimed, when a physical
acoustic pattern consistent with phonologically governed articulation can be
sampled by a listener despite the dissimilarities among the acoustic constituents.
Clearly, the key to this kind of perceptual organization is a perceptual susceptibility
to the characteristic modulations imposed by articulation on an acoustic carrier
(see also Smith et al. 2002; Elliott and Theunissen 2009).

8 R. E. Remez



Our experiments aimed to test this conjecture by attempting to disrupt
perceptual organization, in order to deduce the principle of organization from the
conditions in which interference succeeded or failed. After Sumby and Pollack,
and after McGurk and MacDonald, we suspected that perceptual organization
was certainly subphonemic, not dependent on a lexical process, and possibly
subphonetic, not dependent on segment identification. In establishing the sen-
sory integrity of speech, listeners were acutely sensitive to the pattern of
frequency variation of acoustic patterns, we found. We presented a sinewave
replica of a sentence with a supernumerary tone in the frequency range of the
second formant. If this tone varied over a natural extent in a natural manner it
impeded the integration of the elements of a speech signal, similarly replicated
in tone analogs. But, perceptual organization was not impaired by an extraneous
tone when it exhibited an arbitrary pattern of variation inconsistent with vocal
resonance changes (also, Roberts et al. 2010).

Whether the supernumerary tone interfered or not, our control tests showed
that it did not evoke phonetic impressions, a crucial bit of evidence that it was
interfering with the step at which the auditory flux is resolved into streams of
common origin, rather than the step at which segmental phonetic attributes are
resolved. Although this finding is incompatible with a version of pandemonium
proposed in a peremptory account by Liberman (1979), as an instance of
perceptual verticality, Liberman (1996) conceded that it is a legitimate alternative
to Auditory Scene Analysis.

1.2.4 The puzzle

Together, these projects allow a sketch of the characteristics of audiovisual
perceptual organization preliminary to new research. For one, audiovisual
attention to speech is ineluctable, as Sumby and Pollack showed, and perceivers
combine visible and audible samples of speech naturally. For another, inter-
sensory integration in perceiving speech is fundamental to success in extracting
the linguistic message, but it is not contingent on the likely or regular properties.
An organized stream of visible and audible samples, once formed, is analyzed as
if its sensory pattern is projected into a phonetic sequence without the influence
of the lexical or indeed the phonemic experience of the perceiver. By this
assumption we can reconcile the reports of McGurk and MacDonald with
those of Sumby and Pollack. Last, our studies with sinewave replicas of speech
show that even within the auditory modality a listener does not find the speech
signal by applying a standard of similarity to the variety of auditory impressions
in any moment or brief temporal span. Instead, a rather abstract sensitivity to
vocal modulation, independent of the elements, appears to do the trick, and such
sensitivity surely applies to the intermodal circumstance. Perhaps a voiced stop
hold, a release burst, and a voiced oral resonance are less dissimilar to one
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another than any of these is to a 2½ -D sketch of the vermilion border of the lips.
But, the principle that this research defends is that of organization by sensitivity
to characteristic change, rather than to characteristic elements, and is a candi-
date for evaluation as a principle of multimodal organization in speech percep-
tion, not just within the auditory modality.

1.3 Event perception and speech perception

A second puzzle about multimodal speech perception stems from the rather
different ontology that results from introducing the visual modality to the
description. As long as the theoretician’s goal is restricted to explaining the
speech chain in auditory terms, the present simplifying assumptions typical of
our field can endure. Specifically, the perceiver can be characterized as a listener
to language, as if the expression of speech were brought about by linguistic
plans alone. Similarly, the precise situation of speech within the plenum of
events that engages a perceiver need not be specified. It is enough to conceptu-
alize the listener identifying the next item in a list of syllables or words or
sentences, and distinguishing the present one from all other possibilities that a
vocal tract produces. In this constrained world, speech originates in no partic-
ular place, and the talker remains occult, literally, though the effects of speech
are detectable by ear. The circumstances differ in an audiovisual setting.

The events of audiovisual speech perception, while arrayed through the
artifice of video technology, are less readily subject to the common explanatory
idealizations of auditory non-linearity or vocal tract gestures. A specific talker is
finally visible, and many of the depicted characteristics are unassailable.
Clearly, the theoretical burden alters, for the visible and audible talker is
encountered within an ongoing scene in which durable objects and events,
albeit non-distinctive linguistically, are concurrent with the acts of language
production. The coalescence of event perception and speech perception is a
fundamental topic of investigation now, and the basic problems are beginning to
take shape. Specifically, the perception of speech appears to use different
criteria, and possibly a different grain of sensitivity than the perception of
events more generally.

1.3.1 Temporal coincidence and phonetic perception

Is it tautology to assert that the perceiver registers that an event includes speech,
and therefore, when it is possible, perceives the linguistic properties of the
speech? In a vulgar ecology of language, it must be true that the distribution of
phonetic properties lies within the distribution of vocally produced sound, and it
is reasonable to suppose that the perception of speech is contingent on the
perception of vocalization. The relation of the two distributions is that of subset

10 R. E. Remez



and superset, for wemust include paralinguistic sound aswell as the non-linguistic
acoustic effects of respiration and deglutition, originating from the same bodily
parts under different organization in this ecological miniature. The logic of this
nesting is the key to the surprise in some studies that revealed an odd relation
between event perception and phonetic perception.

In movie houses, temporal misalignment of the visible action and the sound-
track used to be common not long ago, although the present generation of
technology prevents this from happening under ordinary circumstances.
Because of the hazard for slack in the film path through the projector, the
moving picture would occasionally lead the sound by as much as a third of a
second. It was noticeable. The benchmark for distinguishing coincidence from
temporal discrepancy is 20ms, according to Hirsh and Sherrick (1961). But, the
matter of fixing a corresponding threshold for audiovisual speech perception is a
technical problem. Perceivers notice discrepancy in sight and sound though
audiovisual integration is not blocked over a wide range of divergence.

With discrepancy up to 80ms in audiovisual presentation of sentences,
McGrath and Summerfield (1983) reported little deterioration in transcription
performance. We can safely conclude that perceivers were aware of the audio-
visual misalignment in such presentation, and therefore that there are two
perceptual states accompanying a spoken event in such a circumstance. In
one, the perception of the speaker is registered as an artifact in which visual
appearance and auditory experience are discrepant. In the other, the visual
appearance and auditory experience remain coherent phonetically, jointly pro-
moting the perception of the linguistic message. This paradoxical phenomenon
was the topic of a study by Munhall et al. (1996), who used temporal misalign-
ment and the audiovisual perceptual integration discovered by McGurk and
MacDonald to calibrate the relation of event perception and phonetic
perception.

In their procedure, Munhall et al. asked perceivers to report the intervocalic
consonant in an audiovisual presentation of vowel-consonant-vowel (VCV)
syllables. The visible face said either [ɑgɑ] or [igi] and the audible speech
said [ɑbɑ]. Temporal coincidence evoked reports of an intervocalic [d], a blend
typical of the original phenomenon reported by McGurk and MacDonald.
Temporal discrepancy was manipulated in 60ms steps over a range of 360ms
of acoustic lead to 360ms of acoustic lag. Naturally, at the extreme divergence,
the participants reported [b] as the intervocalic consonant, an indication that the
effect of the visible articulation no longer combined with the audible speech.
However, even at values of discrepancy as great as 180ms, at which the
temporal misalignment was unmistakable, viewers continued to report [d],
reflecting the place feature blend brought about by audiovisual integration.
The terrifying conclusion of this study, since replicated by Bertelson et al.
(1997), is that the perceptual criteria for intersensory combination in speech
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perception do not derive from the threshold for the detection of coincidence in
event perception. The simple distinction between one and two, so to speak, is
expressed differently if the perceiver is appraising the phonetic series or the
event of vocalization. Perhaps no less troubling for a general account is the
report by Brancazio and Miller (2005) that the distribution of conditions in
which a McGurk effect occurs actually underestimates the range in which
audiovisual integration affects phonetic perception.

1.3.2 Whose face, whose voice?

In addition to temporal misalignment, the audiovisual study of speech permits the
assessment of other factors in perception. It seems that perceivers are extremely
forgiving of acoustic speech samples presented with video samples of speech of
an obviously different talker. This flexibility expresses the versatility inherent in
speech perception, we should conclude, and is akin to the tolerance for speech
produced under all sorts of distorting conditions: with a cold, over a battlefield
telephone, with a diplophonic larynx, with a dental appliance, with a sabre wound
of the cheek, with a walkie-talkie, with a partial glossectomy, with a bolus of food
in the mouth, with a pipe clenched between the teeth, with a decorative stud worn
in the tongue. However, perceivers are not indefinitely plastic.

If acoustic speech samples are presented with video displays of an articulat-
ing face, it seems to matter perceptually if the talker is familiar to the perceiver.
Again exploiting the propensity of perceivers to blend visible and audible
features of speech, d’aprèsMcGurk and MacDonald, the incidence of instances
of blending was used byWalker et al. (1995) to assay the effect of familiarity on
intersensory integration. A set of audiovisual samples was created in which half
of the trials exhibited mismatched faces and voices. The same test materials
were used with two groups of subjects, one who knew the talkers and one who
knew none of them. The critical performance measure was the perception of
consonant place reflecting audiovisual blending. Remarkably, the listeners who
were not familiar with the talkers did not seem to mind the mismatches, even
those in which a male face and a female voice or a female face and a male voice
were paired, although the rude power of discernment would have been enough
to determine that a discrepant event was unfolding. This instance parallels the
case of temporal misalignment, in which the conditions sufficient to detect
discrepancy did not impair multimodal integration of speech perception.
There is more to this story, of course. The eventual solution to this puzzle
appears to lie in the effects of perceptual familiarity with the articulatory habits
of specific individuals (cf. Remez et al. 1997). For those perceivers who knew
the talkers in Walker’s project, a tendency towards diminished fusion was
observed, although familiarity did not cause a complete blockade on intermodal
integration.
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The extent of the puzzle, too, can be appreciated from an ingenious study in
this genre by Schwippert and Benoît (1997). Their method also imposed a
mismatch between visible and audible speech samples. A male and a female
talker spoke a carrier sentence with a three-syllable nonsense word (a VCVCV)
in sentence-final position. These acoustic samples were mixed with noise at −6
or −12 dB S/N, and synchronized to a video sample of the female talker outfitted
in the manner of a gamine, with short hair, wearing neither jewelry nor make-up,
and whose goggles concealed her eyes (see Figure 1.2). Here, familiarity with
the female talker led to greater intelligibility across the conditions, even those in
which acoustic samples of a male talker were used. And, in a revealing (and
wild) finding that deserves renewed attention, subjects of the study were misled
by the experimenters’ ruse in unimodal presentation but not in the audiovisual
presentation. Specifically, when the female speech samples were presented
unimodally in noise at −12 dB, 82 percent of listeners believed that the talker
was male. When the video presentation of the articulating face was shown
unimodally to naive observers, 68 percent of them believed that the gamine was
a gamin. But, in the audiovisual conditions, 75 percent of naive observers
reported that the talker was female. This study suggests that the ability to notice
an audiovisual discrepancy in the event within which the speech occurs is
potentially subordinate to the appropriation of multimodal streams for speech
perception. It should go without saying that this ordering of the nesting of

Figure 1.2 A video frame of the gamine used in a study of audiovisual
intelligibility by Schwippert and Benoît (1997).
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events is exactly inverted from common sense, in which speech takes its context
from preceding and following social events. At the perceptual level, this is an
instance in which the perception of the talker (man or woman) is contingent on
the audiovisual combination that specifically promotes the perception of the
linguistic attributes. It is a provocative observation.

1.3.3 Whose vowels?

A related approach to this method was applied in a study of talker attributes by
Johnson et al. (1999). The general question was motivated by classic consider-
ations of normalization, otherwise understood as the perceptual accommodation
of differences in acoustic-phonetic expression that are consistent within the
utterances of a talker but that vary between talkers. A synthesized set of acoustic
syllables was used spanning the vowels /ʊ/ and /ʌ/, each realized in an /hVd/
frame. When this series of hood to hud was synthesized with a low fundamen-
tal, it was considered to be robustly male in quality, andwith a higher fundamental
frequency and breathy source it was considered to be robustly female.

Video samples were also prepared of two talkers pronouncing hud, each of
whom had won a laboratory pageant as “most male looking” or “most female
looking,” the complementary conditions to the androgyne of Schwippert and
Benoît. When the male or female acoustic series was presented with the male or
female visual samples, the category boundary between /ʊ/ and /ʌ/ changed
accordingly, as if the depiction of a male talker drew the category crossover
toward a lower frequency of the first formant, all other things being equal, and
the depiction of the female talker drew the crossover toward a higher frequency
first formant. Consistent with the relation that we have seen between event
perception and speech perception, an effect of sex typicality of the acoustic
samples was also observed independently of the visually depicted sex of the
talker. This circumstance is familiar from the brief review of selected cases here,
and indicates the difficulty of reconciling the perception of speech with general
perceptual focus on the attributes of events.

1.3.4 The puzzle

Bringing speech perception into a multimodal framework seemed initially to be
one way to rescue phonetic perception from the historical dispute between
proponents of general auditory mechanisms and special phonetic sensitivity
(cf. Remez 1996; Trout 2001). It is not too inaccurate to propose that an
emphasis on intersensory coalescence placed a premium on identifying the
useful samples delivered by each of the senses, admitting that the phonetic
categories of experience held intrinsic linguistic standing.
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The experiments that we reviewed here show how difficult it will be to place
speech perception neatly within a general account of event perception. The
perceivers in each of these studies readily tolerated huge discrepancies in the
event structure without losing the thread of the phonetic structure. This con-
founds common sense by suggesting that the obvious nesting of speech per-
ception within the perception of events cannot be simply true. Although it
would be logical for the global parameters of events to be registered by general
perceptual faculties that passed the values to specific phonetic functions, it
seems as if nothing so elegant occurs. Instead, the perceiver is built to sustain
two incompatible states, one responsive to subtle incongruities and misalign-
ments in the structure of events, and the other determined to resolve the phonetic
segments despite the appearance of disorder in the event. And, in at least one
provocative instance the perception of the event depends on the integration of
sensory samples of speech, reversing the causal chain that ordinary impressions
recommend. This is a puzzle that promises to expose the relation of speech to
other concurrent perceptual capabilities, and should provide the vehicle to take
our accounts far from the old debate between auditory or gestural form.

1.4 Experience

The infinite use of finite means is a clear characterization of the relation between
the fixed stock of linguistic objects and the expressions that they compose
without limit. A perceiver, aware of the finite means through personal experi-
ence, must resolve them from the states that they induce in the sensorium, and to
declare that sensory variation is infinite hardly stretches the point. Although the
perceiver of English can be confident that at any moment speech is likely to
contain an orderly progression of segments drawn from a set of no more than
three dozen, the sensory manifestations of this small set are indefinitely graded.
The signature problem of speech perception is an account of the perceiver’s
accommodation to variation in sensory form of the phoneme, and this problem
recurs in the multimodal circumstance. The complete measure of this problem
has not yet been taken. Audiovisual speech perception studies presently focus
on citation forms, with a well-lighted face presented without shadow or blem-
ish, head-on. The rare study examines the perceptual effect of oblique views of
the face (for example, Jordan and Thomas 2001), a rather commonplace circum-
stance in which speech is encountered multimodally. To acknowledge that
things stand at the very beginning in the study of multimodal speech perception
is not to deny that we still have far to go to gauge the natural variation that
perceivers contend with on the acoustic side of things, too. In aiming to create a
descriptively adequate account it will be productive to keep in mind that the
search for the distinctive acoustic correlates of the phonetic distinctive features
(Delattre et al. 1955) falsely presumed that the sensory effects of speech would
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be no more varied than the finite set of features. Of course, the limits on the
sensory tolerance for multimodal integration remain to be found, but there are
several studies that indicate that the perceiver is likely to be no less tolerant of
variation multimodally than unimodally.

1.4.1 Perceptual tuning to a talker

In perceiving speech, the acoustic variation attributable to talker differences has
several causes. Talkers differ in scale, some larger, some smaller, and this affects
the overall range and central tendency over which vocal sound production
occurs. In addition to this physical difference, talkers express the dialectal
characteristics of the local language community in habits of articulation and
style. The implementation of phoneme contrasts in a set of phonetic forms
typical of a community does not yet exhaust the variation, for individuals
express personal style within a dialect, and this also colors utterances. If some
of this style is phonetic, the balance is paralinguistic, and affective expression
that rides along on the stream of language also perturbs the consistency in the
relation of contrastive phoneme and phonetic expression. A perceiver who
identifies the message of a talker negotiates these confluent causes that drive
the phonetic realization to vary, and because the variation is phonetic, and not
simply a matter of physical scale, the attributes of talker differences derived
from consideration of auditory samples apply with equal force to visual sam-
ples. To accommodate this variation in perception takes resources (Pardo and
Remez 2006).

The effect of perceptual tuning to the characteristics of a visible talker was
reported by Yakel et al. (2000). This was a unimodal visual project, but it is
useful to consider in this context because it assesses the potential contribution in
the multimodal case. In this straightforward project, a normal-hearing volunteer
was asked to speechread a list of 100 sentences. Two presentation procedures
were used. In one, the same talker was shown producing all of the sentences. In
another, ten different talkers, five men and five women, were sampled to
compose the video corpora and sentences were ordered to assign a different
talker to consecutive trials. Using a measure of intelligibility, Yakel found that
subjects who attended to the visible speech of a single talker fared better in
transcription than those who attended to a different talker on each trial. The
resources required for normalization of talker differences were applied in the
condition of multiple talker presentation, leaving less available for visual
speech perception, but this demand occurred far less consistently or not at all
in the condition of single talker presentation. The authors conclude that the
normalization of talkers perceived visually is similar to that which had been
observed in auditory unimodal instances. It is important to note that the specific
problem of non-uniform vocal tract scaling that has characterized this technical
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problem since Fant (1966) really does not apply in the silent speechreading
circumstance. The scale variation observed among fronto-parallel projections of
articulating faces lacks an isomorphism with the acoustic version, because the
visible features of a face do not match the audible structures of the supralaryngeal
vocal tract.

Are there properties common to the visual and auditory normalization of
talker differences? Our own project in the perception of individual talker
characteristics determined that perceivers notice and remember personal attrib-
utes of talkers far more detailed and extensive than vocal quality (Remez et al.
1997). Indeed, the precise habits of articulation that express the phonetic variety
of dialect and idiolect are useful for recognizing familiar talkers from their
speech and for learning to identify new talkers (Sheffert et al. 2002). When a
new talker is encountered multimodally, it is easy to imagine a perceiver taking
an inventory of the excursion of the landmarks of a talker’s face, especially in
view of the prospect of gleaning phonetic attributes from the movement of facial
features other than the oral articulators when they are correlated with the
message (Vatikiotis-Bateson et al. 1998). The attunement of perception to a
talker’s characteristics apparently occurs early in development, and there may
be no time in life during which such attention is learned from rudiments.
Nonetheless, some studies with subjects who use sensory prostheses illustrate
the nature of experience that promotes intersensory coherence.

1.4.2 Sensory substitution

What kind of experience is useful in promoting intermodal integration and the
resolution of linguistic attributes from sensory combination? In the broadest
setting of this problem, it is important to note that speech is multisensory in
nature, and not just audiovisual. Of course it is auditory, and a primary expe-
rience of speech is that of the listener. Another sort of auditory function, though,
is reafference, when the sound of one’s own production is used to control
coordinated action. Speech is also visual, both when viewing a talker and
when viewing the self, which mirrors and other technology permit. With the
exception of Tadoma, speech is not haptic in the ordinary sense, but production
of speech elicits reafferent orofacial somatosensory impressions, and a kind of
haptic experience of effort and placement that is not simply kinesthetic. This
sensory mix is useful in self-regulation and in perception, as a study by Lachs
et al. (2001) showed. This study is a variant of Sumby and Pollack, in which
Lachs aimed to determine the conditions in which a cochlear implant delivered
successful sensory inflow for speech perception.

The children examined by Lachs had all used electrocochlear substitution for
audition for two years, and had developed language after being implanted at the
average age of four-and-a-half years. These youngsters, almost seven years old
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at the time of testing, were assayed with a variety of speech perception instru-
ments under auditory, visual, and combined audiovisual presentation. A test of
common phrases was the main dependent measure, obtained with several other
measures of the identification of isolated words, and of the intelligibility of
speech produced by each child. Most generally, this investigation found that a
child’s ability to perceive words in unimodal auditory conditions predicted the
ability to integrate auditory and visual sensory streams multimodally. This
corroborates Sumby and Pollack, specifically, that the integration of vision
and hearing in service of speech perception is a natural mode of attention, and
that the implanted children who resolved auditory information about words with
the greatest proficiency were also the most adept at detecting the coherent
properties of a visible face. Moreover, the same children who were proficient in
multimodal speech understanding were also the sources of the most intelligible
speech among the subjects.

It would be difficult to ascribe productive differences in speaking to the
duration in which the cochlear implant had been in use, for the subjects were
nearly uniform in this regard. Although experience with the sensory effects of
speech did not distinguish the subjects from one another, susceptibility to
symbolic processes predicted better articulation and receptive language, both
uni- and multimodally. This is an unfortunate outcome for a sensory-based
premise for speech perception, for it looks as though the children were matched
on the distribution of sensory effects yet differed nonetheless in their linguistic
facility. Evidently, there is a complex interchange between the reafferent sen-
sory function of hearing, even prosthetically, and the perception of spoken
words, suggesting at coarsest grain that experience producing language makes
the greatest difference in multimodal speech perception, rather than experience
with a specific form of incident sensory effects. In a theoretical note, Lachs et al.
argue this point without disputing the historical resonance of the motor theory
and efferent readiness in the account.

1.4.3 Natural quality

How important is naturalness? We have presented a case report of an adventi-
tiously deafened adult, Mr. S, who had become an expert speechreader by the
time he was implanted with an electrocochlear auditory prosthesis (Goh et al.
2001). Although the cochlear implant provides auditory samples of the incident
speech, the device does not evoke natural vocal qualities. The rasping, noisy
character of sound delivered by the implant contrasts with the melodiousness of
the voice, yet the modulation of this anomalous sounding carrier is effective in
sustaining speech perception. In the case of Mr. S, we sought to determine
whether his lifelong experience with natural speech conveyed auditorily would
inhibit his ability to derive linguistic attributes from multimodal settings. And,
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just to guarantee that the auditory properties he experienced would differ from
natural vocal qualities, we used sinewave replicas of speech as the auditory
driver.

We testedMr. S’s speech perception when he saw the talker but could not hear
her, or when he heard her but could not see her, and in the multimodal setting.
We compared his scores to group data from normal hearing adults evaluated
under the same test conditions (Remez et al. 1998). It was hardly a surprise that
this expert speechreader excelled in the visual presentation of speech, nor that
his performance level surpassed the normal hearing adults. In the auditory
presentation, the normal hearing subjects fared slightly better than Mr. S,
indicating that experience with the natural auditory qualities of speech did not
impair the use of anomalous signals in apprehending phonetic properties. Most
surprising, though, was the special ability of Mr. S to function in the multimodal
case, in which the gain available from sensory combination exceeded the
performance of normal hearing subjects by almost 30 percent. Although this
subject’s excellent skill in speechreading was evident in the unimodal condi-
tions, his facility with visual presentation allowed him to extract more useful
value from the auditory stream than normal subjects did, despite the absence of
speech-like auditory qualities delivered over the implant.

1.4.4 The puzzle

This finding of greater auditory benefit due to experience with a visible face
is a bit confounding, because it suggests that the coalescence of sensory
streams is susceptible to the education of attention acting transmodally. It
highlights an aspect of audiovisual speech perception that warrants adequate
description, namely, that there is potential for superadditivity in combining
vision and audition. In this respect, the reliance of the field on the paradigm
of McGurk and MacDonald has been limiting though extremely useful (and
see Brancazio and Miller 2005). Specifically, the circumstance of multimodal
rivalry and the reconciliation of conflict presupposes that the eye and the ear
each capture a phoneme sequence to contribute to a common sensory metric.
Our study with Mr. S revealed that he and the normal hearing listeners alike
were able to resolve phonetic properties multimodally that were unavailable
unimodally. Although it is possible that such perceptual prowess inheres in
facile comparison of a new circumstance to a remembered sensory experi-
ence of speech, this seems to be an unlikely role of experience in multimodal
speech perception. Instead, it seems as though the experience of linguistic
properties however they are expressed promotes the ability to transpose the
perceptual standards across modalities. This perceptual ability lies well
beyond the versatility that we are used to considering when we describe
perception.
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1.5 A conclusion

In some opinion, research on audiovisual speech perception holds the force to
break the cherished theoretical stalemates of our community, and to dislodge
even the most durable accounts of speech perception. However, the fifty years
since Sumby and Pollack’s report evidently has not given us long enough to take
the conceptual plunge, although a glance at contemporary research shows that
we are in a phase right now during which we are looking before we leap. This
conservatism is justified, for few research problems in perception match the
complexity of intermodal correspondence, audiovisual integration, and multi-
sensory perceptual organization. Within the audiovisual speech perception
community it has been possible to escape the feeling of déjà vu, although the
penalty for seeking this excitement has been uncertainty about the useful or
applicable theoretical devices. There are a few ways that contemporary studies
try to reconcile multimodal speech perception with the rest of speech percep-
tion, and, indeed, with the rest of perception. To scope the range of conservative
accommodations to multimodal speech perception, at one end of the distribu-
tion we are asked to imagine the nature of phonology had Trubetzkoi been deaf;
in another, we are asked to favor the agency of the productive phonetic
homunculus whichever lemniscus its effects excite; in yet another, we are
asked to remain calm about the pathways of sensory inflow because it all
winds up in the same place, anyway. In this brief and selective review of
research on multimodal speech perception, a set of three puzzles is offered
that holds the promise to push the field forward. At the same time that basic
research on audiovisual speech perception uncovers new phenomena that
warrant explanation, the findings of intersensory combination provoke attention
to unnoticed aspects of speech in a traditional tract-to-ear chain. The benefits
anticipated of the campaign, therefore, are salutary for the traditionalists and the
pioneers alike.
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2 Visual speech perception

L. E. Bernstein

2.1 Introduction

Phonetic perception is the perception of the linguistically relevant attributes of
physical speech signals. In the mid twentieth century, phonetic perception
research was almost exclusively on auditory phonetic perception. By the end
of the century, significant research effort had shifted to audiovisual and visual-
only phonetic perception. The shift took place following discovery of the
so-called McGurk effect (McGurk and MacDonald 1976), which is brought
about when visual speech information that conflicts with auditory speech
information influences auditory perception. Before the discovery of the
McGurk effect, researchers had reported that under noisy conditions, enhance-
ments to auditory speech intelligibility and language comprehension occur
when the listener can also view the talker (e.g., Sumby and Pollack 1954); but
the significance of those reports in showing visual influences on auditory speech
perception was not particularly well-appreciated until after the McGurk effect
was reported.

The McGurk effect focused attention on phonetic perception, because the
stimuli were nonsense syllables as opposed to words, and the effect was at the
level of phonetic perception. But the McGurk effect drew attention primarily to
audiovisual integration of speech and not to visual phonetic perception. Visual
speech perception still is viewed primarily as an influence on auditory speech
perception (Schroeder et al. 2008). However, the literature in audiology and
deaf education offers studies on speech perceived by vision alone (via lipread-
ing/speechreading) (see for an early review, Jeffers and Barley 1971). In
addition, experimental studies have been published on visual speech perception
(e.g., Summerfield 1991; Dodd et al. 1998; Bernstein et al. 2000b; Mohammed
et al. 2005; Auer and Bernstein 2007).

This chapter discusses research on visual phonetic perception and spoken
word recognition. Experiments are described that are consistent with the view
that visual speech stimuli are phonetically impoverished, but that the phonetic
information is not so reduced that accurate visual spoken word recognition is
impossible. Spoken word recognition involves the projection of visual phonetic
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information to the mental lexicon, whose structure supports word recognition,
even when only incomplete visual phonetic information is available (Auer
2000; Mattys et al. 2002). A spoken word can be recognized despite phonetic
impoverishment, if it is sufficiently distinct from other words in the mental
lexicon; and visual phonetic information can be sufficiently distinct.
Furthermore, the research presented here is consistent with the hypothesis that
word distinctiveness is modality-dependent: Visual phonetic perceptual
patterns of segmental similarity predict word distinctiveness for lipreading
words better than do auditory phonetic perception patterns (Auer 2002). In
emphasizing the role that visual phonetic perception plays in visual spoken
word recognition, the chapter departs from treatments of visual speech percep-
tion that focus on either phoneme identification or sentence lipreading.

Although the view that speech perception is a specialized function of the
auditory system (e.g., Liberman 1982) has yielded (e.g., Liberman and
Mattingly 1985) in response to multiple demonstrations of visual influences
on speech perception, knowledge about visual phonetic perception lags far
behind knowledge about auditory phonetic perception. For over sixty years,
studies of auditory phonetic perception detailed the acoustic characteristics
of natural and synthesized speech signals and their effects on perceptual
discrimination and identification. Hand in hand with studies of acoustic
speech signals has gone the development of a range of theoretical explan-
ations for auditory speech perception (e.g., Fowler 1986; Remez 1994;
Nearey 1997; Liberman and Whalen 2000; Pisoni and Remez 2004). In
contrast, relatively little is known about visual speech perception, particu-
larly, visual phonetic perception and visual speech signals (c.f., Benguerel
and Pichora-Fuller 1982; Montgomery and Jackson 1983; Montgomery et al.
1987; Jiang et al. 2007).

Specifically, knowledge is lacking about visual speech signal characteristics
and their relationships to visual speech perception. There are various impedi-
ments to acquiring such knowledge. There are difficulties in measuring and
manipulating visual speech stimuli. There is a longstanding view that visual
speech information is so impoverished that there is not much to see in the
stimulus (e.g., Kuhl and Meltzoff 1988). In addition, the visual system and
visual perception have been entirely separate scientific domains from auditory
speech perception. Thus, the vast literature on low- and high-level human visual
processing has for the most part not influenced thinking about visual speech
perception (c.f., Jordan et al. 2000; Thomas and Jordan 2004). This chapter
includes suggestions for research strategies for visual phonetic perception that
draw on knowledge from visual perception.

Understanding of visual speech processing can be accelerated by inves-
tigating perception in congenitally deaf1 perceivers. Individuals with visual
perception of speech but without auditory experience, or with only highly
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degraded auditory experience, afford the opportunity to inquire about the
extent to which the visual system by itself can support the operations
involved in acquiring and using a spoken language. In this chapter, the
experiments that are described in detail involved participation by both deaf
and hearing adults.

2.1.1 Visual speech perception and visual speech signals

Phonetic attributes of speech stimuli are the linguistically relevant, physical
(measurable) attributes of speech signals. The face reveals less phonetic infor-
mation than does the voice. The impoverishment of optical phonetic signals
relative to acoustic phonetic signals is simply explained. The vocal organs
(Catford 1977) – nasal cavity, oral cavity, velum, tongue, pharynx, larynx,
glottis, trachea, and lungs – are mostly hidden from the eye, although their
activities and dimensions are the distal cause of the acoustic signals to the ear
(Stevens 1998). That is, information about the linguistically relevant state of all
of the vocal organs is present in acoustic signals. In contrast, the visual perceiver
can obtain direct information about the vocal organs only from the lips and
intermittently the interior of the oral cavity with views of the tongue. However,
vocal activities have effects on other visible face parts such as the jaw and the
skin tissue of the lower face and cheeks. The jaw and cheeks are not considered
to be vocal organs (Catford 1977), but the activities of the vocal organs have
direct effects on them.

Movements of labeled points on the skin surface of the cheeks and jaw have
been shown to be highly correlated with both tongue motion and acoustic
characteristics (Yehia et al. 1998; Jiang et al. 2000). Perceptual studies confirm
that perceivers use the information from the jaw and cheeks, in addition to the
mouth and view into the oral cavity (Benoît et al. 1995b; Preminger et al. 1998).
But all these sources of visual phonetic information are limited in comparison
with auditory phonetic information, which can be available whether the mouth
is open or not and is available for the activity of vocal organs that have minimal,
if any, effect on visible structures: The state of the velum, related to nasality, and
the state of the larynx, related to voice fundamental frequency are not available
to the visual perceiver.

As a result of the impoverishment of visual phonetic information, visual
speech perception and spoken word recognition performed by even the upper
quartile of hearing lipreaders is similar in accuracy to listening to speech under
difficult to somewhat difficult conditions (at the level of approximately 27–69
percent words correct in sentences) (Bernstein et al. 2000a; Auer and Bernstein
2007). Accuracy achieved by the upper quartile of deaf lipreaders (at the level of
approximately 48–85 percent words correct in sentences) is similar to listening
under somewhat difficult to somewhat favorable conditions.
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2.1.2 Phonetic impoverishment in relationship to words

A fundamental question is the extent to which the phonetic impoverishment of
visual speech stimuli results in too little phonetic information to preserve the
distinctiveness of the forms of different morphemes or words (c.f. Jakobson et al.
1969). Typically, lexical or morphological distinctiveness is described in terms
of constituent phonemes. Phonemes are not sound units but rather distinctions
at the segmental level of language. Phonemes are phonemes, because they differ-
entiate morphemes or words and are identified within a language by conducting
an inventory of the distinct lexical forms in that language (Gleason 1961). That
is, phonemes are the phonological units of a language that comprise the differ-
ent lexical forms in that language. Particular phonemes are instantiated on the
basis of many phonetic characteristics that typically vary across phonetic con-
texts (e.g. Lisker 1978; Liberman 1982). However, as Liberman and Mattingly
(1985) point out, “while each [acoustic phonetic] cue is, by definition more or
less sufficient, none is truly necessary. The absence of any single cue, no matter
how seemingly characteristic of the phonetic category, can be compensated for
by others, not without some cost to naturalness or even intelligibility, perhaps,
but still to such an extent that the intended category is, in fact, perceived”
(pp. 11–12). That speech perception is resistant to loss of phonetic information
is demonstrated, for example, by perception of sinewave speech, for which the
formants are replaced by single sinusoidal components at the formant center
frequencies (Remez et al. 1981). These stimuli do not have fundamental fre-
quencies, frication, aspiration, or harmonic spacing – all of which are phonetic
attributes – but listeners can frequently recover their linguistic content.

Estimation of the phonetic information in visible speech has almost invariably
involved asking perceivers to identify nonsense syllables under forced-choice
laboratory conditions (c.f., Bernstein et al. 2000b). Phoneme identification rates
for nonsense syllable stimuli, depending on phonetic context, have been
reported to be below 50 percent correct (Fisher 1968; Wozniak and Jackson
1979; Lesner and Kricos 1981;Walden et al. 1981; and rates range between 19
percent and 46 percent in Owens and Blazek 1985, and between 21 and 43
percent in Auer et al. 1997). Percent correct identification of vowels in /h/V/g/
(where V = vowel) stimuli by adults with normal hearing in a study by
Montgomery and Jackson (1983) varied between 42 percent and 59 percent.
However, Auer et al. (1997) reported 75 percent correct vowel identification
for 19 vowels, including r-colored vowels across four phonetic contexts.
Visual phonetic stimuli are impoverished, but phoneme identification scores
are not a complete answer to the question of whether or not the information
afforded visually to recognize words is adequate. In order to answer that
question, other factors need to be known, such as the confusion patterns
among phonemes and their effects on word distinctiveness.
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Visemes Investigation of the information in visible speech has typ-
ically involved, in addition to the collection of percent correct scores, the
examination of correct and incorrect response patterns. Fairly systematic,
although far from invariant (cf., Owens and Blazek 1985), clusters of confu-
sions among phonemes have been observed. For example, /m b p/ are typically
highly confused by perceivers. These clusters have come to be regarded as
perceptual categories referred to as visemes (e.g., Massaro 1998b).

Fisher (1968) coined the term viseme as shorthand for visual phoneme and
defined the viseme to be the visible analogue to the phoneme. That is, Fisher
equated phonemes with sound units and then equated phonemes to visemes.
However, as explained earlier, phonemes are not sound units but rather distinc-
tive units at the segmental (phonological) level of language. Phonemes are
phonemes, because they differentiate words or morphemes. Phonemes are
phonological units. In contrast, visemes are visemes, because the phonemes
they comprise are phonetically impoverished, and their ability to differentiate
words is reduced. In his experiment on visemes, Fisher asked participants to
identify the initial or final phoneme of a word. However, the forced-choice
identification options given the participants did not include the phoneme that
the talker had actually spoken. That is, Fisher assumed that the stimulus
phoneme was ambiguous with at least one other phoneme.

This assumption was probably based on results in Woodward and Barber
(1960), cited in Fisher (1968). Woodward and Barber had sought to discover the
minimal perceptual units of lipreading. They conducted a discrimination experi-
ment with CV (consonant-vowel) nonsense syllables. They did not test every
phonemic contrast in English but rather based selection of stimulus pairs on
feature analysis and a theoretical scale of perceptual dissimilarity. They calcu-
lated a discrimination value for each of their stimulus pairs by subtracting the
percentage of same responses from different responses for each order of stimuli
and adding the results. They then divided the range of obtained values into
phoneme pairs that were considered to be contrastive, similar, or equivalent.
Although they had quantified a dissimilarity scale, they concluded that almost
all the articulatory features of English were neutralized for the lipreader. Only
four sets of English consonants were classified as visually contrastive: /t, d, n, l,
θ, ð, s, z, tʃ, dZ, ʃ, Z, j, k, g, h/, /p, b, m/, /f, v/, and /hw, w, r/. They concluded that
the derived groupings were perceptual units, and that further differentiation
within groups required information from grammar, the lexicon, and/or phono-
logical context. Fisher adopted the suggestion that phonemes that were grouped
together according to such criteria were perceptual categories, and his research
methodology did not have the potential to disconfirm the suggestion.

Subsequently,Walden, Prosek, Montgomery, Scherr, and Jones (1977) devel-
oped a methodology for defining visemes based on nonsense syllable confusion
matrices obtained in identification studies. The responses in the confusion
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matrices were submitted to cluster analysis. Phonemes were assigned to viseme
groups when a cluster represented at least 75 percent of responses to the
phonemes in that cluster. This method has become standard for reducing
confusion data to visemes (e.g., Owens and Blazek 1985). Interestingly, the
cluster analysis method implies that perception is not as categorical as the
viseme notion implies. Were visemes discrete perceptual categories, confusion
matrices would have only responses within the clusters, and the hierarchical
cluster analysis methodology would not be needed to assign phonemes to
visemes. In fact, confusion matrices are usually quite noisy, therefore requiring
an operational approach to assigning viseme clusters. Despite this problem, as
suggested earlier, the perceptual category status of visemes has become accep-
ted (e.g., Massaro 1998b).

Homophenous words Words comprising visemes are said to be
homophenous, different-sounding but like-appearing to the lipreader (Nitchie
1916; Berger 1972). For example, / p, b, m / are considered to be a viseme, and
therefore, the words bat, mat, and pat are predicted to be homophenous. Berger
(1972) and Nitchie (1916) suggested that approximately 50–60 percent of the
words in English are homophenous. The notions of the viseme and of homo-
pheny are consistent. They have both been invoked to explain the difficulty of
lipreading. Low mean lipreading scores for word stimuli reported in the liter-
ature (e.g., Rönnberg 1995; Rönnberg et al. 1998) are consistent with the
prediction that phonetic information is inadequate to maintain lexical distinc-
tiveness. But mean scores fail to disclose wide performance ranges across
individuals, including perceivers who are highly effective in identifying spoken
words visually (Bernstein et al. 2000a; Mohammed et al. 2005; Auer and
Bernstein 2007). So mean word lipreading scores do not answer the question
about the extent to which adequate phonetic information is afforded in visual
speech signals. Also, as discussed below, word recognition is not completely
explained in terms of phonetic perception.

2.1.3 Spoken word recognition

During the bottom-up, auditory perceptual processing of spoken words, pho-
netic information is thought to activate word forms stored in lexical memory.
Word recognition is described as selection of (or discrimination of) a word form
from among other stored word forms (e.g. Luce 1986; McClelland and Elman
1986; Luce and Pisoni 1998). Lexical access follows recognition, making
information such as the word’s meaning available to yet higher-level psycho-
linguistic processes (Tyler and Frauenfelder 1978). The generally accepted view
is that spoken word recognition involves both activation and competition
among stored word forms during the temporal processing of speech information
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(Forster 1979; Morton 1979; McClelland and Rumelhart 1981; Marslen-Wilson
1987; Marslen-Wilson 1989; Marslen-Wilson 1993; Norris 1994). The similar-
ity between the stimulus input representation and the stored word forms is what
drives activation levels of the stored word forms. Activation is a continuous
temporal function that is sensitive to phonetic information (e.g., Andruski et al.
1994; Connine et al. 1994; Marslen-Wilson and Warren 1994; Luce and Pisoni
1998). That is, form-based similarity is a function of phonetic or segmental
similarity between the input representation and the stored word forms over time.
Given that form-based activation spreads among stored word forms as a func-
tion of their similarity to the input representation, word recognition theories
have incorporated mechanisms to explain competition, and how it is resolved
(e.g., TRACE McClelland and Elman 1986; Marslen-Wilson 1987; Marslen-
Wilson 1990; SHORTLIST Norris 1994; PARSYN Luce, Goldinger et al.
2000).

If visual phonetic stimuli lack most of the information for distinguishing
among words, then the problem of selecting words in memory based on bottom-
up stimulus information is indeed severe, if not virtually impossible. A highly
impoverished visual spoken word stimulus would be predicted to afford too
little information to select a single word stored in memory. Instead it would be
predicted to result in a low level of activation for a large set of competing word
candidates, and threshold for recognition would be predicted to be insufficient
for recognition.

Several relevant empirical issues arise from the foregoing discussion. How
impoverished are visual phonetic signals? Is visual speech perception the
perception of a small set of segmental categories? Are visual spoken word
stimuli processed relationally at the level of the lexicon in terms of their visual
phonetic distinctiveness? Or is visual spoken word recognition achieved by
some type of transformation to the form-based representations that auditory
processes ordinarily output? Does our understanding of visual speech percep-
tion depend on the characteristics of the perceiver? The studies discussed below
addressed these questions.

2.2 Evaluation of visemes and word homopheny

Some investigators have noted that viseme clusters vary across talkers and
phonetic contexts (e.g., Owens and Blazek 1985), suggesting that the viseme
can only loosely be interpreted as a perceptual category. An experiment was
carried out based on the question whether words that comprise visemes are
actually homophenous. The phoneme equivalence class (PEC), the general-
ization of the viseme, was defined as a set of phonemes that are grouped
together due to their perceptual similarity (Auer and Bernstein 1997). The
lexical equivalence class (LEC) was defined as the set of words rendered
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notationally identical by re-transcribing words in a lexicon in terms of a set of
PECs (Auer and Bernstein 1997). For example, if / b p m / are a PEC, B = {b, p,
m}. In addition, if T = {t, s, z} and A = {i, ɪ, ε, ai, e, æ, Ã}, then bat,mat, and pat,
would be in the same LEC, BAT = {bat, mat, pat, mass, miss, bate, . . . }.

The notation “{}” is used to define a set. The use of the term equivalence
class to define the PEC and the LEC is not intended to imply stimulus equiv-
alence. The formation of phoneme equivalence classes is an operation on
confusion matrices that involves groupings that represent levels of perceptual
similarity. For any sets of PECs and associated LECs, it is an empirical question
to what extent the members of the class are perceptually equivalent to each
other.

Bernstein et al. (1997) conducted an experiment with hearing adults to
examine whether words predicted to be in the same LEC under several different
definitions of PECs were in fact visually distinguishable. Their results are
summarized below. In addition, two groups of participants (deaf and hearing)
with above-average lipreading were tested, and their results are also reported
here. The stimuli used in both studies were video recorded spoken monosyllabic
words (Bernstein and Eberhardt 1986a). Participants performed a target identi-
fication task: On each trial, they were presented with an orthographic word (the
target word), followed by a spoken target-distracter word pair, with the order of
the spoken words counterbalanced and the sets of target–distracter pairs
pseudo-randomized for each participant. Participants were directed to indicate
which of the spoken words matched the orthographic target. Feedback was
given during practice but not during experimental trials. Chance performance
would suggest that target-distracter word pairs were homophonous.

The target identification task required both discrimination between target and
distracter and target identification. That is, to be successful, participants had to
discriminate between the two stimuli in a pair, and they had to identify which of
the two stimuli was the target. Had the task been simply AX (same–different)
discrimination, participants could have detected non-linguistic differences in
the naturally spoken words and used those differences in generating their
response. By requiring a linguistic identification, uncontrollable non-linguistic
stimulus differences did not compromise the experiment.

2.2.1 Experimental method

For each target identification trial, the distracter was a word that, given a particular
criterion for PECs, was predicted to be perceptually indiscriminable from its
corresponding target word. The procedure for selecting target–distracter
pairs comprised multiple steps. Briefly stated, they included (1) collection of
stimulus–response confusion matrices for phoneme identification in nonsense
syllables (spoken by the same talker who spoke the words in the target
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identification trials), (2) hierarchical cluster analysis of stimulus–response
phoneme confusion matrices, (3) generation of PECs from the hierarchical
cluster analyses, and finally (4) selection of target–distracter word pairs from
groups of words within the same LECs.

Target–distracter pairs were selected using three different PEC criteria,
difficult, standard, and easy. The standard (viseme) level2 PECs were defined
as the lowest level in the hierarchical cluster analysis solution (an inverted tree
structure) for the phoneme identifications at which at least 75 percent of all
responses were within one of the clusters. (The levels from low to high being,
respectively, the level at which no phonemes are grouped together versus the
level at which all phonemes are grouped together.) The difficult equivalence
class level was defined as the level in the hierarchical cluster analysis halfway
between the standard level and the lowest level in the hierarchical cluster
analysis. At intervening levels in the hierarchy, classes were based on the
frequency of phoneme confusions; phonemes joined classes at low levels if
they were often confused and joined at higher levels, if they were rarely or never
confused. Therefore, in order for phonemes to be in PECs at the difficult level,
they had to be frequently confused. The easy equivalence class level was
defined as the level in the hierarchical cluster analysis halfway between the
standard level and the highest level in the hierarchical cluster analysis. PECs at
the easy level included phonemes that were infrequently confused with each
other.

The phoneme equivalence classes are listed in Table 2.1. The hierarchical
relationship between levels can be observed in the tabled PECs. The table also
lists percent correct phonemes from the identification experiments used to
generate the confusions (Bernstein et al. 1993; Iverson et al. 1998). Due to
the hierarchical relationship among PECs, words that were members of the
standard LECs could inadvertently have been target–distracter pairs at the
difficult equivalence class level. Likewise, words that were members of easy

Table 2.1 Phoneme equivalence classes.

Correct % Level Phoneme Equivalence Classes

Consonants 47.8 Difficult {p} {b m} {f v} {θ ð} {w}{r} {tʃ dƷ ʃƷ}
Vowels 51.3 {t} {d} {s z} {k} {ɡ} {n} {1} {h} {i ɪ}

{ε e ӕ} {ai} {ə} {a ɔ} {o} {au} {oi} {ʌ} {ʊ u}

Standard {p b m} {f v} {θ ð} {w} {r} {tʃ dƷ ʃƷ d} {t s z}
{k ɡ h} {n 1} {i ɪ ɛ ai e æ ʌ} {ə o oi ʊ u} {a ɔ} {au}

Easy {p b m w} {f v} {θ ð t s z} {r tʃ dƷ ʃƷ d} {k ɡ n 1 h}
{i ɪ ɛ ai e æ a ɔ au ʌ} {ə o oi ʊ u}
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lexical equivalence classes could inadvertently have been members of LECs at
the two lower levels. For this reason, target–distracter pairs were selected only if
they did not also qualify at a more difficult level.

During experimental trials, every participant received every target word and
an equal number of distracters for each phoneme equivalence class level.
However, the distracters were counterbalanced across participants so that each
received only one of the potential distracters for each target. For example, for
the target word pane, one third of participants received the difficult level
distracter word pan, one third received the standard level distracter word
peal, and one third received the easy level distracter word puck. Fifteen target
words were presented twice in each trial order (the target was either the first or
second spoken word), for a total of sixty trials. Forty-six hearing adults, who
were not screened for lipreading ability, were tested.

2.2.2 Results

Figure 2.1 shows the results for this experiment (results labeled unscreened
hearing in the figure) and its companion reported further below. Scores at the
standard level showed performance to be significantly above chance [t (45) =
13.603, p = .000; where chance = .50]. Inspection of individual participants’
scores revealed that six participants obtained at least .90 proportion correct at
the standard level. Performance at the difficult level was also above chance
[t (45) = 7.199, p = .000]. Thus, this experiment showed that the standard
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Figure 2.1 Results from the target identification task.
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(viseme) level of phoneme groupings resulted in discriminable and identifiable
words. Even at the difficult level, performance was above chance. The results
suggested that participants processed sub-PEC phonetic information, even at
the difficult level.

Word pairs were selected according to criteria that had predicted progres-
sively better performance from difficult, to standard, to easy levels. Repeated
measures analyses of variance were conducted with level as the repeated factor.3

Level was a significant main effect [F (2, 90) = 68.745, p =.000]. Contrasts
showed that each level was significantly different from the next [difficult
to standard, F (1, 45) = 42.970, p = .000; standard to easy, F (1, 45) = 32.277,
p = .000]. These results showed that although none of the levels corresponded
to homopheny, they did result in graded differences.

In a subsequent experiment, deaf and hearing participants with above-
average lipreading screening scores were tested. Nine hearing young adults
and nine deaf college students, who all scored above the passing score on a
lipreading screening test (normed separately for deaf vs. hearing adults) (Auer
and Bernstein 2007), were recruited. Thirty-seven out of 257 words was the
minimum score for hearing participants and 86 out of 257 was the minimum for
deaf participants. Obtained scores for the hearing participants ranged between
46 and 166 words correct (mean 101). Scores for the deaf participants ranged
between 104 and 168 words correct (mean 126). There was not a statistically
significant difference between group means. All of the deaf participants had a
pre-lingual hearing impairment of at least 85 dB HL pure tone average bilat-
erally. Better ear pure tone averages ranged between 85 dB HL and 120 dB HL.
Eight out of nine deaf participants reported birth as the age of hearing impair-
ment onset. All of the deaf participants reported having been educated for eight
or more years in an environment in which English (either spoken or in a signed
form) was the language of instruction.

Figure 2.1 shows the mean scores for the screened deaf and hearing partic-
ipants. Across all participants, scores for the standard pairs were above chance
[t (17) = 10.72, p = .000]. At the difficult level, performance was also above
chance [t (17) = 5.10, p = .000]. Inspection of individual participants’ scores
revealed that five deaf participants obtained scores in the range .65 to .75 correct
at the difficult level. Three hearing participants obtained scores in the range of
.65 to .80 at the difficult level. Six deaf participants obtained scores of .80 to 1.0
at the standard (viseme) level. Seven hearing participants obtained scores in the
range of .85 to .90 at the standard level.

In a repeated measures analysis of variance with the between factor group
(deaf vs. hearing), group was not a significant factor (p = .454). Level was a
significant factor [F (2, 32) = 46.757, p = .000]. Contrast tests showed each level
was significantly different from the next [standard versus difficult F (1, 16) =
31.569, p = .000, and easy versus standard F (1, 16) = 15.475, p = .001].
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2.2.3 Summary

The experiments reported above show that phonetic information available to
lipreaders is not so impoverished that words comprising PECs (even at the
difficult level) cannot be discriminated and identified. When given a choice
between two words that were homophenous according to the definition for
standard viseme groupings, perceivers were very accurate at selecting the
correct spoken target word. This supports the conclusion that loss of phonetic
information is not equivalent to creation of a small set of segmental perceptual
categories as implied by the notion of the viseme. One argument in support of
the viseme could be that the concept is correct, but the grouping procedures to
generate PECs should comprise only more similar members. However, in the
experiments above, the difficult level used twelve distinctions more than did
the standard level, and yet performance was above chance. So, the concept of
the viseme could be retained by generating a still more difficult set of PECs, that
is, ones that resulted in greater similarity of words within LECs; but the general
notion that phonetic information is so impoverished that only a few broad
categories are perceived would seem to be discredited. In addition, the study
demonstrated that segmental similarity estimated with nonsense syllable iden-
tification was able to predict the similarity of whole words. This is evidence that
the phonetic information is relevant at the level of word recognition. Although
the results imply that above-average deaf and hearing lipreaders are not differ-
ent from each other, other results suggest that overall, the best lipreaders are
individuals with prelingual deafness and reliance on spoken language
(Bernstein et al. 2000b; Mohammed et al. 2005; Auer and Bernstein 2007).

2.3 Phonetic distinctiveness of English words

In the experiments described above, participants demonstrated accuracy in their
judgments of the target word under forced choice conditions. Speech commu-
nication does not typically afford such a restricted range of words to be
recognized. As discussed earlier, during the bottom up, auditory perceptual
processing of spoken words, phonetic information is thought to activate mem-
ory of word forms. Word recognition is the process of selection of (or discrim-
ination of) a word form from among other stored word forms. The experiments
described in the previous section showed that more phonetic information was
available for word recognition than implied by the viseme notion. Nevertheless,
the fundamental question remains how, under open set conditions, the impov-
erished visual phonetic word stimulus is recognized from among other similar
word forms stored in memory.

Some insights into the magnitude of the open set word recognition problem
have been achieved by conducting computational modeling studies of the
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effects of phonetic impoverishment on the form-based distinctiveness of words.
Auer and Bernstein (1997) investigated the effects of visual phonetic impover-
ishment on phonemically transcribed words in the PhLex database (Seitz et al.
1995). The modeling method involved the following steps:
1. Rules were developed to re-transcribe words so that their transcriptions

comprised only the single-character expressions standing for PECs at a
particular level of phoneme confusability.

2. Re-transcription rules were applied to the words in a phonemically tran-
scribed, computer-readable lexicon.

3. The re-transcribed words were sorted so that words rendered identical (no
longer notationally distinct) were placed in the same lexical equivalence
classes (LECs).

4. Quantitative measures were applied to estimate the effects of the re-
transcription on the lexicon and on word recognition.

Application of this method to the 32 377-word PhLex database (Seitz et al.
1995) showed that when only 12 PECs were used – {u ʊ ər}, {o aʊ}, {i ɪ ε e æ},
{ɔi}, {ɔ ai ə ɑ Ã j}, {p b m}, {f v}, {l n k ŋ ɡ h}, {d t s z}, {w r}, {θ ð} and {tʃ dZ ʃ
Z} – 54 percent of words (frequency weighted) were notationally distinct. When
19 PECs were used – {u ʊ ər}, {o aʊ}, {i ɪ}, {ε e}, {æ}, {ɔi}, {ɔ}, {ai ə ɑ Ã j},
{p b m}, {f v}, {1}, {n k}, {ŋ ɡ}, {h}, {d}, {t s z}, {w r}, {θ ð} and {tʃ dZ ʃ Z} –
76 percent of words (frequency weighted) were distinct. These results showed
that when the lexicon as a whole is considered, relatively small improvements in
segmental distinctiveness (fewer phonemes within PECs) resulted in large
increases in word distinctiveness. This result is consistent with the target
identification results above in that both suggest that lexical distinctiveness is a
function of available phonetic information.

Iverson, Bernstein, and Auer (1998) applied the same type of analyses but
used 13 PECs – {p bm}, {f v}, {θ ð}, {tʃ dZ ʃ Z d}, {t s z}, {l n}, {j k ŋ g h}, {w},
{r}, {i ɪ ei ai ɛ æ Ã ə}, {ər o ɔi u ʊ}, {aʊ} and {ɔ ɑ} – and also analyzed
monosyllabic separately from multisyllabic words: 31 075 words in the PhLex
database were found to comprise 5 073 monosyllabic and 26 002 di- and multi-
syllabic words. Few monosyllabic words were distinct on this re-coding, 15
percent (12 percent frequency weighted). But most di- and multisyllabic words
were distinct, 78 percent (74 percent frequency weighted).

In the context of attempting to understand the implications of phonetic
impoverishment on word recognition, it is important in addition to consider
not just the number but also the size of LECs under a particular set of PEC
re-transcription rules. In Iverson et al., it was found that the expected class size
for monosyllabic words was 9.2 (9.8 frequency weighted), and the expected
class size for di- and multisyllabic words combined was 1.7 (1.8 frequency
weighted). That is, on average, monosyllabic words become similar to 8.2 other
words under the PECs that were used there to re-transcribe the lexicon, but
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di- and multisyllabic become similar to fewer than one word. Given that the
PECs in that study represented a very conservative estimate of available
phonetic information (the standard level), the results suggested that the structure
of the lexicon is very favorable to relatively high levels of accurate visual
spoken word recognition under conditions of good phonetic perception (i.e.,
proficient lipreading).

2.3.1 Predictability of visual spoken word recognition

If spoken word recognition is a process of selecting within the mental
lexicon a single word candidate most similar to the input phonetic stimulus,
then with modeling methods of the type described above, it should be
possible to predict relative visual spoken word recognition accuracy. As a
corollary, if similarity is modality-specific, predictions based on visual
phoneme identification should be more accurate than ones based on auditory
perception.

The first prediction was investigated by Mattys, Bernstein, and Auer (2002)
who conducted a study in which eight deaf and eight hearing adult participants
performed open set identification for words that varied in word frequency of
occurrence (high vs. low) and size of the LEC (UNIQUE, MEDIUM,
LARGE) in which they were grouped. The PECs used to re-transcribe the
lexicon in order to generate the stimulus word lists were based on the standard
level of phoneme clustering and confusion data obtained from a very large
phoneme identification study (Auer et al. 1997). Words in UNIQUE size LECs
were predicted to be visually distinct and most intelligible. Stimulus words
from MEDIUM LECs had 1–5 possible words that were highly similar to the
stimulus word, and therefore predicted to be less intelligible. Words from
LARGE LECs had 9–59 possible words that were highly similar to the
stimulus word, and therefore predicted to be least intelligible. In addition,
for each combination of frequency and LEC size, words were selected that
were monosyllables or disyllables.

All the participants in the study were screened for better-than-average lip-
reading accuracy, because a goal of the study was to test the prediction method.
Random selection of participants would virtually have guaranteed that some
individuals would perform at low levels of accuracy, and therefore increased the
variance in the estimated effects. The participants’ task was to view 150 isolated
monosyllabic and 130 isolated disyllabic spoken words presented pseudo-
randomly within length groupings, and after each word, type at a computer
terminal their identification response. Responses were scored in terms of whole
words correct and the number of phonemes correct.

Statistical analyses showed significant effects of LEC size, word frequency of
occurrence, and word length. Whole words were identified more accurately
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when their LEC size was low, when their frequency of occurrence was high, and
when they were monosyllables. Mattys et al. interpreted their results as a clear
indication that visual spoken word recognition is strongly influenced by the
number of visually similar words in the lexicon and by the frequency of
occurrence of the test words.When responses were scored in terms of phonemes
correct, statistical analysis showed that deaf participants were more accurate
than hearing participants (63 percent vs. 57 percent, respectively, phonemes
correct across all words). The highest accuracy was obtained for UNIQUE
words, for which deaf participants’ mean was 82 percent, with a maximum of
93 percent for one individual.

Mattys et al. performed various analyses of the word and phoneme errors in
the responses. They found that when participants incorrectly identified a stim-
ulus word, they chose a word within the same LEC as their response far more
often than would be predicted by chance. Furthermore, they found that the
proportion of those within-LEC errors was higher among deaf than among
hearing participants. Thus, deaf participants were more accurate in two respects,
the proportion of their phonemes correct and the proportion of their within-
class, although incorrect, word responses.

The second prediction suggested earlier was investigated in a related study.
Auer (2000) investigated, in screened deaf and hearing adults, spoken word
identification accuracy for isolated monosyllabic words selected either to
control for segmental intelligibility or to control for similarity to other
words. Similarity to other words was computed using the Neighborhood
Activation Model (NAM by Luce and Pisoni 1998). Auer showed that when
predicted stimulus segmental intelligibility was controlled, words with fewer
neighbors were easier to identify than words with many neighbors, consistent
with the findings of Mattys et al. (2002), using the LEC modeling.
Furthermore, Auer examined the effect of computing neighborhood estimates
using results from auditory speech in noise. That is, he substituted auditory
segmental confusion data for visual segmental confusion data in the NAM
computations. This substitution drastically reduced the predictability of visual
word identification based on computed NAM values. Both participant groups
showed that visual phonetic similarity was a better predictor of visual spoken
word recognition than auditory phonetic similarity. This result supports the
hypothesis that form-based similarity at the level of the lexicon is modality-
specific. That is, visual phonetic information is relevant at the level of the
mental lexicon. In addition, the fact that results with hearing adults were
similar to ones with prelingually deaf adults suggested that the stimuli were
perceived similarly across the two groups. Of course, the prelingually deaf
adults had little if any auditory phonetic experience. So the similarity across
groups in their performance supports a visual basis for perception, independ-
ent of auditory speech experience.
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2.3.2 Summary

Current theories of spoken word recognition predict that reduced phonetic
information should reduce word recognition accuracy. Furthermore, given
that words are recognized in relation to other words, the extent to which any
particular word becomes similar to other words should have a predictable effect
on the accuracy with which it is recognized. This was confirmed by the open set
word identification experiments (Auer 2000; Mattys et al. 2002). Importantly,
the evidence supports the hypothesis that word distinctiveness is modality-
dependent (Auer 2000). That is, confusability (similarity) for visually presented
nonsense syllables more adequately accounted for visual spoken word recog-
nition than did confusability for auditorily presented nonsense syllables.

2.4 Research strategies

The visual speech stimulus is complex. In addition, the face can convey the
talker’s identity, gender, state of arousal, and emotion, among other perceptible
characteristics. As a visual stimulus, speech might, for example, comprise
edges, directions of motion, kinematics, shapes, and/or configurations. These
features might map directly to linguistically relevant internal phonetic repre-
sentations. But many other features or combinations of features might be the
ones that map to internal representations.

Our current understanding of visual speech perception is limited by our
current understanding of the visual speech stimulus. One approach to a theory
of the visual speech stimulus is suggested by Stevens’ (1981) approach to
research on auditory phonetic features. He considered whether the auditory
system imposes a linguistically useful classificatory structure on the sounds of
language. He hypothesized that this psychoacoustic classificatory structure
projects onto distinctive phonological features. If this is true, the mapping
from psychoacoustics to distinctive features is essentially transparent. Stevens
(1989b) presented a set of distinctive features (such as vocalic – high, low, back,
round, etc. – nonvocalic, sonorant, continuant, coronal, etc.) and suggested that
“the perceptual correlate of each of the features can be described in terms of a
threshold phenomenon . . ., and that the human perceptual system is equipped
with fifteen to twenty of these threshold processes corresponding to features”
(pp. 84–85).

For example, the auditory system is sensitive to the contrast between rapid
versus slow spectral changes. Rapid spectral change occurs when there are
articulatory transitions between relatively constricted (consonantal) and relatively
unconstricted (vocalic) vocal tract configurations. The visual analogue for this
contrast must also be rapid movements from or to relatively open mouth posi-
tions. Other auditory contrasts include rapid versus slow amplitude change, place
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of articulation of stop consonants, and vowel features (such as high-low, and
front-back), all of which have visual manifestations (Montgomery and Jackson
1983; Abry and Boë 1986; Finn 1986). Open versus closed mouth corresponds
approximately to high versus low amplitude acoustic signals. Problematic for the
visual system are contrasts such as nasal versus non-nasal, and voiced versus
voiceless, because these distinctions originate in part at invisible structures (that
is, the velum and the glottis). For voicing, it is likely, however, that other phonetic
attributes, such as vowel duration for post-vocalic stop consonants (Raphael
1971), can in part overcome the deficit in information about the state of the
glottis. From the perspective of this chapter, which emphasizes that distinctive
information is needed for spoken word recognition, the analysis of such distinc-
tions afforded by the visual stimulus is highly attractive.

The foregoing suggests that there are visible articulatory motions that are
strongly correlated with acoustic phonetic characteristics. In fact, this has been
demonstrated by researchers such as Jiang et al. (2000) and Yehia et al. (1998).
However, auditory-to-visual correlations are not what are needed for an explan-
ation of visual phonetic perception. Stevens’ type of project applied to visual
phonetic perception would ask what classificatory structure is imposed by
visual psychophysics. Rather than pointing to the visible analogue of audible
articulatory effects, a visual explanation for speech perception would be in
terms of visual features. But that route requires a deep understanding of high-
level vision from the perspective of vision scientists. That avenue of research
remains, for the most part, to be explored.

A different approach, which was taken by Bernstein and colleagues
(Bernstein et al. 2001; Jiang et al. 2007), sought not the features of speech
but the dissimilarity relationships among speech segments. This approach
follows from an observation in Shepard and Chipman (1970). They noted that
internal representations of perceptual objects are unlikely to be structurally
isomorphic with stimuli, in the sense that the internal representation of a square
is not likely to be square. In order to approach the problem of establishing
relationships between complex stimuli and internal perceptual representations,
they argued that an “isomorphism should be sought – not in the first-order
relation between (a) an individual object, and (b) its corresponding internal
representation – but in the second-order relation between (a) the relations
among alternative external objects, and (b) the relations among their corre-
sponding internal representations. Thus, although the internal representation for
a square need not itself be square, it should (whatever it is) at least have a closer
functional relation to the internal representation for a rectangle than to that, say,
for a green flash or the taste of a persimmon” (p. 2). Shepard and Chipman
suggest that seeking first-order relationships between, for example, linguisti-
cally relevant features, might follow from seeking the relationship between the
dissimilarity of the physical speech segments and their perceptual dissimilarity.
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To operationalize this suggestion, Bernstein and colleagues (Bernstein et al.
2001; Jiang et al. 2007) used a three-dimensional optical recording system and a
video camera to record talkers saying consonant-vowel nonsense syllables.
Participants perceptually identified the talkers’ utterances in a forced-choice
identification task. Then, perceptual confusion matrices were analyzed using
multidimensional scaling. Euclidean distances were calculated between the posi-
tions of the category identifications in multidimensional space. The physical
distances among the stimuli were also calculated using the three-dimensional
optical recordings. Multilinear regression techniques were used to generate a
prediction of the perceptual distances based on the optical recordings. With
weighting and the full set of 3D optical data, the variance accounted for in the
perceptual data on consonants ranged between 46% and 66% across talkers, and
between 49% and 64% across vowels. Thus, the physical phonetic dissimilarity
of visual speech stimuli was linearly related to their perceptual dissimilarity.
Knowledge of these dissimilarity relationships can now be used in other experi-
ments on the perceptual and neural underpinnings of visual phonetic perception.

In auditory phonetic perception, the goal of mapping psychoacoustic proper-
ties to phonetic classes historically followed in part from the view that articu-
latory events are optimized for auditory perception (Stevens 1981; Ohala 1992).
That this might be true – but only for auditory perception – is a possibility. It is
easy to imagine optical phonetic cues that could contribute to a more highly
informational optical phonetics, yet do not occur. Nose wrinkling, head tilting,
cheek puffing, and brow furling are among possible facial maneuvers that are
not used for speech segment production but do occur in American Sign
Language (Valli and Lucas 1992). Furthermore, research on Cued Speech, a
manual code to augment lipreading (Cornett 1967; Charlier and Leybaert 2000),
suggests that informational distinctiveness comparable to auditory speech stim-
uli can be achieved visually, even though natural language appears not to have
opted for that possibility. Thus, while the possibility that speech is optimized for
the auditory system is plausible, the possibility that it is optimized for the visual
system seems remote. However, the extent to which optical speech signals
conform to the processing demands of the visual system and the extent to
which visual system processes impose classificatory structure on visual speech
stimuli are important empirical questions that need to be answered for a theory
of the visual speech stimulus and visual phonetic perception.

2.4.1 Summary

A detailed account of the visual phonetic stimulus is needed. It will require
knowledge of visual system processing and knowledge of the linguistically
relevant visual information in speech signals. A theory of the visual phonetic
stimulus could involve first-order relationships between the stimuli and
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perception. That is, it could involve hypothesized visual speech features.
Alternatively, a theory of the visual phonetic stimulus could involve second-
order relationships between the dissimilarities among the phonetic stimuli and
the dissimilarities in perceptual structure.

2.5 General conclusions

A complete explanation for visual speech perception will require an account of
phonetic perception and the projection of information from that level of pro-
cessing onto stored word forms in the mental lexicon. Initial studies support the
view that visual spoken word recognition crucially depends on the visual
phonetic distinctiveness of segmental information. Such information is afforded
by the talking face, although less so than by the voice. For some individuals, in a
manner that is not yet understood, the necessity of relying on visual phonetic
information for communication due to deafness results in enhanced visual
speech perceptual processing.Whether this involves specialized visual phonetic
processes that occur also in perceivers with normal hearing is an empirical
question. However, the current technologies for research on phonetic percep-
tion, including brain and behavioral methods, have the potential to help disclose
answers to such questions.

For over fifty years of the twentieth century, the study of speech perception
was mostly the study of auditory speech perception. Speech perception was
often viewed as either a specialization of the auditory system or the result of
acoustic signals specialized for the auditory system. We now know that the
visual system can be a full-fledged player in the speech perception game, but
much remains to be learned about how the game is played.
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3 Dynamic information for face perception

K. Lander and V. Bruce

3.1 Introduction

All faces share the same spatial configuration – eyes above nose above mouth.
Yet, when we look at a face, even briefly, we not only classify the face as a face,
but we also notice its individual uniqueness. The human face provides a wide
range of social signals to the perceiver. It tells us about gender, intention, health,
and approximate age. The relative shapes and postures of the facial features help
to specify the emotional state of the person (Ekman 1982), and movements of
the lips and tongue help us to distinguish different speech sounds (for example
see Campbell 1986). Direction of eye gaze often signals the focus of our
attention (Kleinke 1986), and aids turn-taking during conversation (Kendon
1967). In addition to these kinds of information, the face provides a particularly
accessible and salient cue to identity, although people can of course be identified
by means other than the face. Voice, body shape, and clothing may all act as
cues to identity, in circumstances where facial detail is not available.

Face research has been criticized for its reliance on static photographs of
faces (Bruce 1994), which may be processed in a different manner to real faces
(Pike et al. 1997). One obvious difference between a photograph of a face and
the real thing is that the latter moves. Indeed, the preponderance of our expe-
rience with faces is not with static images, but with live moving faces. At a
simplistic level, information from the face can be thought of in two distinct
ways – that based on static-based parameters (time-independent), and that based
on dynamic1 (time-varying) parameters. Dynamic information arises because
the face moves in a variety of ways, some to do with its signal-sending functions
(smiling, nodding, speaking) and some to do with other functions (looking,
chewing). When we yawn, when we laugh, when we talk, and when we smile,
our face moves in a complex manner. Faces move in both rigid and non-rigid
ways. During rigid motion, the face maintains its three-dimensional form, while
the whole head changes its relative position and/or orientation. In non-rigid
motion, individual parts of the face move in relation to one other, as during the
formation of expressions or the articulation of speech. Typically, a complex
combination of both rigid and non-rigid motion is required for everyday
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interaction, with head and face movements superimposed onto larger body
movements (Munhall and Vatikiotis-Bateson 1998). In this chapter we examine
the usefulness of facial motion for a variety of face perception tasks.

One way to illustrate the importance of information conveyed by motion is to
present displays in which motion is just about the only source of information
available. In the classic experiment of this kind, Johansson (1973) attached
small lights to the major joints of an actor’s body, videotaped in the dark
performing a range of activities. When the tape was played the contrast was
adjusted, so that just the movements of the ‘point-lights’ were visible.
Importantly, when static the point-lights appeared as a random distribution to
the viewer, and it was only when the video was played that the prevailing
structure of a moving person became apparent. Work using this point-light
technique has shown that isolated dynamic information can convey useful
information about the gender of the actor (Kozlowski and Cutting 1977), the
approximate amount of weight lifted (Runeson and Frykholm 1981; Bingham
1987), and emotion displayed during a dance routine (Dittrich et al. 1996).

A similar point-light technique has also been applied to human faces. Bassili
(1978) attached a large number of bright dots to the surface of the face, which
was then filmed carrying out a series of different expressions. Results indicated
that when the point-light display was shown moving, participants were highly
accurate at determining which expression was shown. In a follow-up experi-
ment, Bruce and Valentine (1988) created point-light displays of a number of
personally familiar colleagues, and asked other members of the department to
act as participants. Results concurred with Bassili (1978), indicating that deci-
sions such as identifying a face as a face, and discriminating between different
facial expressions, could be made much more accurately from moving point-
light displays, compared to static displays. Bruce and Valentine (1988) also
asked participants to try and decide the sex of each face as well as identifying
the person viewed. Participants’ abilities to categorize gender and to identify
which person (from the six familiar faces captured) appeared in each clip was
significantly better when the displays were seen moving, compared to when
static, though overall performance was very poor. Even though performance in
this ‘identity’ task was highly inaccurate, this study does provide us with limited
evidence that isolated dynamic information is also helpful for within-category
discriminations, of the type involved in recognizing an individual’s face.

Thus, initial evidence indicates an important role for dynamic information in
categorizing faces in various ways. The following sections review further
evidence to support this claim, focusing on the role that dynamic information
plays in categorizing facial expressions and processing visual speech. We then
address in more detail whether the additional information afforded by motion is
also useful during identity processing. Here we describe some of our own work
which suggests that dynamic information does indeed act as a useful cue when
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recognizing familiar faces, particularly when recognition is problematic from
static form alone. However, the role of motion in recognition memory for
relatively unfamiliar faces is much less clear from current evidence. Finally,
we evaluate the importance of these findings from both a practical and theoretical
perspective.

3.2 Motion information for expression perception

Much past research on facial expression processing has utilized static facial
images, devoid of motion. Bruner and Taguiri (1954) state that ‘historically speak-
ing, we may have been done a disservice by the pioneering efforts of those, who,
like Darwin, took the human face in a state of arrested animation as an adequate
stimulus situation for studying how well we recognize human emotion’. Indeed,
while it is clear that judgements of emotion from static images can be very
accurate (see Ekman 1982), ordinarily when we assess an individual’s emotion
we have a wealth of cues in addition to a fixed facial expression. The patterning
of the facial expression from onset to offset provides dynamic cues, often
accompanied by larger body movements. These cues, in turn, are supplemented
by our knowledge of the context of the emotional response, and sometimes, by
knowledge of the individual exhibiting the expression.

Although most past research has utilized static images of faces, it seems
unlikely that the information provided by motion is redundant. Edwards (1998)
suggests that humans are attuned to the dynamic aspects of facial expressions of
emotion. He presented participants with a number of photographs, each of which
depicted a ‘snapshot’ of the same expression, taken at intervals of 67ms in real
time. Participants were asked to reproduce the progression of the spontaneous
expression (from onset to offset), from the scrambled series of photographs.
Results indicated that participants were able to utilize extremely subtle dynamic
cues between the expression photographs, to reproduce the correct temporal
progression of the display, at above-chance accuracy.

Dynamic aspects (e.g. speed of onset and offset, degree of irregularity) of
facial movement also appear to distinguish genuine from posed emotional facial
expressions (see Duchenne 1990). During the 1970s, Ekman and Friesen (1978)
developed a ‘Facial Action Coding System’, or FACS. This system allows a
researcher to precisely catalogue the movement of different groups of facial
muscles over the time course of an expression. Using this system Ekman and his
colleagues claim that it is possible to distinguish between 7000 different facial
expressions (including 19 different types of smiles). Often differences between
expressions are reflected in their temporal dynamic properties. For example,
Ekman, Friesen, and Simons (1985) found that the onset of a posed ‘startle’
expression was 100msecs later than a spontaneous ‘startle’ expression. Ekman
and Friesen (1982) speculated that false (deceptive) expressions tend to have
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very short onset and offset times, and are typically over-long or unusually short.
In line with this suggestion, Weiss, Blum, and Gleberman (1987) found that
deliberate facial expressions had shorter onset times and more irregularities
(pauses and stepwise intensity changes). Hess and Kleck (1990) found these
differences were most marked when the deception involved the concealment of
a different emotion (for example, smiling while watching a disgusting episode).
However, later work by Hess and Kleck (1994) suggested that participants were
relatively poor at using these cues to differentiate between genuine and posed
expressions.

Further evidence for the importance of dynamic information during expres-
sion decoding has been found from experimental studies, studies of the patterns
of impairments found in brain-injured patients, and more recent work using
brain imaging techniques.

Matsuzaki and Sato (2008) examined the contribution of motion information
to facial expression perception using point-light displays of faces. In the motion
condition, apparent motion was induced by displaying a neutral expression
followed by an emotional face image. In the repetition condition, the same
emotional face image was presented twice. Results indicated that correct
expression perception was higher in the motion than the repetition condition,
and that this advantage was reduced when a white blank field was inserted
between the neutral and emotional expression. Thus, even viewing a simplistic
induced motion display served to increase expression recognition.

Interestingly, Kamachi et al. (2001) found that the precise dynamic character-
istics of the observed motion affected how well different expressions could be
recognized. In this study, dynamic expressions were created by displaying
morph sequences, morphing between a neutral and a peak expression. Adding
different numbers of intervening frames to the sequence, fast (6 frames),
medium (26 frames), and slow (101 frames) changed the speed of the motion.
In a free description task participants were asked to describe the emotion
viewed. Results suggested that sadness was most accurately identified from
slow sequences, with happiness, and, to a lesser extent surprise, most accurately
from fast sequences. Angry expressions were best recognized from medium
speed sequences. A second experiment confirmed that this result was not simply
due to differences in the total time of the display, but rather reflected differences
in the dynamic properties of the observed motion. Later work by Pollick, Hill,
Calder, and Paterson (2003) found that changing the duration of an expression
had a small effect on ratings of emotional intensity, with a trend for expressions
with shorter durations to have lower ratings of intensity.

Finally, in terms of experimental work, Bould,Morris, andWink (2008) inves-
tigated the importance of dynamic temporal characteristic information in facil-
itating the recognition of subtle expressions of emotion. In Experiment 1 there
were three conditions, dynamic moving sequences that showed the expression
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emerging from neutral to a subtle emotion, a dynamic presentation containing
nine static stills from the dynamic moving sequences (ran together to encapsu-
late a moving sequence) and a First-Last condition containing only the first
(neutral) and last (subtle emotion) stills. The results showed recognition was
significantly better for the dynamic moving sequences than both the Dynamic-9
and First-Last conditions. Further experiments changed the dynamics of the
moving sequences by speeding up, slowing down, or disrupting the rhythm of
the motion sequences. These manipulations significantly reduced recognition,
and it was concluded that in addition to the perception of change, recognition is
facilitated by the characteristic muscular movements associated with the por-
trayal of each emotion.

In terms of patient work, Humphreys, Donnelly, and Riddoch (1993) report
the case study of a brain-injured patient, with severe face processing impair-
ments. Patient HJA is markedly impaired at recognizing the identity of familiar
faces, and is poor at making gender and emotional expression judgements from
static photographs. In contrast, when asked to make judgements of expression
or gender from moving point-light displays, he performs normally. It seems that
with expressions, this patient is able to use movement but not static form
information. This pattern of deficits supports not only the idea that identity
and expression processing fractionate (see later in this chapter), but that expres-
sion processing itself can be separated according to whether expression is
conveyed through static form or motion information.

Recent work by Trautmann, Fehr, and Herrmann (2009) used an fMRI
study to examine the neural networks involved in the emotion perception of
static and dynamic facial stimuli separately (neutral, happy, and disgusted
expressions). Dynamic faces indicated enhanced emotion-specific brain acti-
vation patterns in the parahippocampal gyrus (PHG), including the amygdala
(AMG), fusiform gyrus (FG), superior temporal gyrus (STG), inferior frontal
gyrus (IFG), and occipital and orbitofrontal cortex (OFC). Post hoc ratings of
the dynamic stimuli revealed a better recognizability in comparison to the
static stimuli.

In conclusion, while most work by psychologists interested in emotional
expressions has used static displays of posed expressions it seems likely that
motion information provides an important dimension of emotional processing
in everyday interpersonal interactions. Dynamic facial expressions might pro-
vide a more appropriate approach to examine the processing of emotional face
perception than static stimuli.

3.3 Motion information for visual speech perception

It has been well documented that visual information from a talker’s mouth and
face plays an important role in the perception and understanding of spoken
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language (seeMassaro 1987 for an early review, and contributions to this volume).
Under noisy conditions, viewing the talking face supplements the auditory
signal, increasing perceptual accuracy (e.g. Sumby and Pollack 1954; Walden
et al. 1977). We make use of visual information from the face even during the
understanding of clear and unambiguous speech (see Reisberg et al. 1987;
Vitkovich and Barber 1994). The classic demonstration that we use visual
information when perceiving speech is ‘the McGurk effect’ where visual and
auditory speech signals are combined in a way which can give rise to illusory
percepts of phonemes which do not correspond to what was seen or heard (e.g.
auditory ‘ba’ plus visual ‘ga’ often results in observers hearing ‘da’) (McGurk
and MacDonald 1976).

Most current descriptions of visual speech information are based on static
parameters, such as lip shape, tongue height, place of cavity constriction, and
amount of visible teeth (Montgomery and Jackson 1983; Summerfield and
McGrath 1984). Indeed, there is much evidence to support the fact that static-
based parameters can convey some visual speech information. For example,
Campbell (1986) showed that participants could readily distinguish between point
vowels, such as ‘ee’ and ‘oo’ from photographs of faces posturing articulatory
positions. However, just because we can make use of static-based information
for visual speech, does not preclude the use of the dynamic information afforded
by a moving speaking face.

Evidence demonstrating the salience of isolated dynamic information for
visual speech processing comes from studies carried out using point-light dis-
plays. In early work, Summerfield (1979) used simplistic point-light displays
(four ‘points’ placed on lips) to determine if visible lip motion could help listeners
process heard speech, played against a background of interfering prose. Although
listeners were able to identify the visual displays as moving lips, comprehension
of speech was only marginally improved. However, a follow-up study by
Rosenblum, Johnson and Saldaña (1996) found that moving point-light config-
urations could indeed enhance the perception of speech, embedded in white
noise. No such advantage was found with static point-light displays.

Additional evidence for the salience of dynamic information in visual speech
processing comes from Rosenblum and Saldaña (1996), who found that point-
light displays could generate audiovisual fusion illusions (McGurk and
MacDonald 1976). For example, when a moving point-light display of a face
saying /va/ was paired with an auditory /ba/, participants often experienced that
/fa/ was spoken. No such fusions, between what was seen and what was heard,
were found when the visual display was a static image of a face mouthing /va/
(but see Benoît et al. 1995). The fact that static facial speech does not integrate
strongly with auditory speech, led Rosenblum and Saldaña (1998) to suggest
‘that time-varying (dynamic) dimensions of visible speech should be given
serious consideration as the most salient informational form’.
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Other evidence for the primacy of dynamic information in visual speech
comes from Vitkovitch and Barber (1994), who investigated the effect of frame
rate on speechreading ability. Results indicated that faster frame rates (16.5Hz
to 30 Hz) were much better at conveying visual speech, than images presented at
a slower rate (8.3 Hz to 12.5 Hz). Vitkovitch and Barber (1994) concluded that
this increase must be due to additional information becoming available to the
viewer as the frame rate is increased. The most likely source of this information
is from dynamic parameters.2

It is clear then that dynamic information has an important role to play in the
processing of visual speech, although it is difficult, based on the research
outlined so far, to assess its relative importance compared with information
based on static parameters. One interesting way to explore this issue involves
the testing of brain-injured patients, who have established problems with the
perception of visual motion (e.g. McLeod et al. 1996). Here, it is possible to
directly clarify the importance of dynamic facial information for speech-
reading, as dynamic information is not available to these patients. Campbell
and colleagues (1997) reported the speechreading ability of one such patient
(LM). While LM’s reading of natural speech was severely impaired, she was
able to recognize speech patterns from face photographs and provide reason-
able speechreading of monosyllables produced in isolation. As with other
visual events (for example, tracking the direction of gaze) the rate of pre-
sentation was critical to her performance. She was able to report events
during slow presentation (~ one event/2 seconds), but was poor at distin-
guishing between normal, fast (double-speed), or slow (half-speed) seen
speech. Campbell et al. (1997) concluded that visible speech perception
cannot be based solely on dynamic properties of speech, otherwise LM
should have lost the ability to perform any speechreading task (from either
static or moving displays). Instead, Campbell et al. (1997) suggest that both
static and dynamic information is required for effective speechreading of
natural speech. However, Rosenblum and Saldaña (1998) emphasize that data
from brain-injured patients should be cautiously interpreted, since speech-
reading ability varies considerably between individuals (Demorest et al.
1996) and the speechreading ability of these patients prior to their lesions is
not known.

In summary, much research has emphasized the importance of dynamic
information for visual speech processing. This observation, alongside the
previous discussion of expression processing, leads naturally to the question
of whether dynamic information, which is available from a moving face and
clearly used in at least some processing tasks, might also provide information
useful for the recognition of identity. Next, we report a series of experiments
that compare recognition performance from moving and static faces, to answer
this question.

46 K. Lander and V. Bruce



3.4 Dynamic information for familiar face recognition

Themajority of research on face recognition has been concerned with how static
faces are recognized, and static form-based information has – implicitly or
explicitly – been emphasized in most theoretical accounts of face recognition.
It has long been known that static-based information, about the shape and
configuration of individual features (for example, see Tanaka and Farah 1993)
and the overall shape and pigmentation of the skin, is utilized in the recognition
of identity (see Bruce and Langton 1994; Kemp et al. 1996). This information
can, of course, be as easily extracted from a static face image as a moving one.

Given that our recognition of known people from photographs or pictures is
typically so good (see Burton et al. 1999), it has often been assumed that
‘motion is little used for face identification’ (Humphreys et al. 1993).
However this conclusion seems premature, considering that dynamic informa-
tion seems to be particularly salient for both expression processing and visual
speech processing. Indeed, seeing a face move undoubtedly adds additional
information for the viewer, unavailable from a static image. The key question,
then, involves determining the nature and role this additional information
afforded by motion plays in identity processing. It is important to investigate
this issue not only to advance our theoretical understanding of the processes
involved in face recognition, but also to determine whether static images are an
adequate way to represent faces in studies of this kind.

Initial findings by Bruce and Valentine (1988), using point-light displays,
suggested that isolated dynamic information may act as a cue to identity when
static cues are impoverished. More convincing evidence that movement is
important in the recognition of individual faces comes from Knight and
Johnston (1997). Knight and Johnston (1997) presented famous faces either
in a negative (contrast-reversed) format or upside down, and compared recog-
nition performance from moving and static sequences. In experiments of this
kind it is usually necessary to degrade spatial cues to reduce recognition
performance away from ceiling. Results indicated that moving famous faces
were recognized significantly more accurately than static ones, but only when
these were shown as upright-negative images. Knight and Johnston (1997)
proposed that seeing the face move may provide evidence about its three-
dimensional structure, compensating for the degraded depth cues available
within a negative image (see Bruce and Langton 1994). Alternatively, they
suggest that known faces may have characteristic facial gestures, idiosyncratic
to the individual viewed.

Our follow-up research (see Lander et al. 1999; Lander et al. 2001) showed
that the recognition advantage for moving faces is not specific to upright-
negated images. Instead motion confers benefits through a range of image
manipulations, including thresholding (where a multiple grey-level image is
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converted to a one-bit per pixel black-and-white image), pixelation, and Gaussian
blurring. In these studies what seems important for the demonstration of a
motion recognition advantage is not the nature of the image manipulation but
rather that recognition performance is below ceiling, allowing higher recog-
nition rates to be found. Our moving sequences show famous faces, pictured
from the shoulders up, talking and expressing. Thus, these experiments clearly
demonstrate that non-rigid movement adds useful information when recog-
nizing the identity of famous faces shown in difficult viewing conditions. It is
important to note at this point that the motion recognition advantage is not
simply due to the increased number of static images shown when the face is in
motion (25 frames per second in UK). Indeed when the number of images is
equated across static and moving presentation conditions (Lander and Bruce
2001) there was still an advantage for viewing the face in motion.

Furthermore, the viewing conditions in which facial motion is observed have
been shown to affect the extent to which motion aids recognition. Research
indicates that disruptions to the natural movement of the face can influence the
size of the motion advantage in facial recognition. Lander et al. (1999) and
Lander and Bruce (2001) found lower recognition rates of famous faces when
the motion was slowed down, speeded up, reversed or rhythmically disrupted.
Thus, seeing the precise dynamic characteristics of the face in motion provides
the greatest advantage for facial recognition. A further demonstration of this
point comes from research using both natural and artificially created (morphed)
smiling stimuli (Lander et al. 2006). In order to create an artificially moving
sequence, Lander et al. (2006) used a morphing technique to create intermediate
face images between the first and last frames of a natural smile. When shown in
sequence, these images were used to create an artificially moving smile that
lasted the same amount of time, and had the same start and end point as the
natural smile for that individual. Results found that familiar faces were recog-
nized significantly better when shown naturally smiling compared with a static
neutral face, a static smiling face, or a morphed smiling sequence. This further
demonstrates the necessity for motion to be natural in order to facilitate the
motion advantage.

Lander et al. (2006)whilst investigating the effects of natural vsmorphedmotion
found a main effect of familiarity, revealing that the nature of the to-be-recognized
face can also mediate what effect motion has on facial recognition. It is posited that
themore familiar a person’s face is, themorewemaybe able to utilize themovement
of their face as a cue to identity. Indeed, characteristicmotion patternsmaybecome a
more accessible cue to identity as a face becomes increasingly familiar. Indeed, in
recent work, Butcher (2009) found a significant positive correlation between rated
face familiarity and the recognition advantage for moving compared with static
faces. This research was conducted using famous faces and found that the more
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familiar the famous face was rated to be, the larger the recognition advantage for
viewing that face in motion.

Another factor of the to-be-recognized face that has been shown to be
important in understanding what mediates the motion advantage is distinctive-
ness. Facial recognition research has demonstrated a clear benefit for faces that
are thought to be spatially distinctive, as findings indicate that distinctive faces
are better recognized than faces that are rated as being ‘typical’ (Light et al.
1979; Bartlett et al. 1984; Valentine and Bruce 1986; Valentine and Ferrara
1991; Vokey and Read 1992). It has also been established that a larger motion
recognition advantage is attained from distinctive motion than typical motion
(Lander and Chuang 2005; Butcher 2009). Lander and Chuang (2005) found
that the more distinctive or characteristic a person’s motion was rated to be, the
more useful a cue to recognition it was. This finding can be considered within
Valentine’s (1991) multi dimensional face space model of facial recognition,
which is often used to provide an explanation for the spatial distinctiveness
effect. This model posits that faces similar to a prototype or ‘typical’ face are
clustered closer together in face space making them harder to differentiate from
each other, leading to distinctive faces that are positioned away from this cluster,
to be easily recognized. Due to the homogeneous nature of faces on the whole,
many faces are perceived as similar to the prototype so their representations in
face space cluster close to the prototype representation, leading to distinction
between these faces being more difficult.

A similar theoretical explanation could be applied to moving faces, whereby
faces in the centre of the space move in a typical manner. Consequently, faces
that exhibit distinctive facial motions could be located away from the centre of
the space, making them easier to recognize than faces displaying typical motion.
It is important here to consider that distinctiveness in facial motion may refer to
(1) a motion characteristic or typical of a particular individual; (2) an odd
motion for a particular individual to produce or; (3) a generally odd or unusual
motion. Also, it may be that spatial and temporal distinctiveness of faces are in
some way related. For instance, spatially distinctive faces might naturally have
more distinctive movements, a notion that should itself be addressed in future
research.

Having clearly demonstrated a moving recognition advantage it is important
to investigate the theoretical basis of this effect. Two theories have been proposed
by O’Toole, Roark, and Abdi (2002), namely the representation enhancement
hypothesis and the supplemental information hypothesis. The representation
enhancement hypothesis (O’Toole et al. 2002) suggests that facial motion
aids recognition by facilitating the perception of the three-dimensional structure
of the face. It posits that the quality of the structural information available
from a human face is enhanced by facial motion, and this benefit surpasses
the benefit provided by merely seeing the face from many static viewpoints
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(Pike et al. 1997; Christie and Bruce 1998; Lander et al. 1999). As this
mechanism is not dependent on any previous experience with an individual
face it seems to predict that motion should aid recognition of previously
unfamiliar faces, a notion discussed later in this chapter.

In contrast, the supplemental information hypothesis (O’Toole et al. 2002)
assumes that we represent the characteristic facial motions of an individual’s
face as part of our stored facial representation for that individual. For the
particular individual’s characteristic facial motions to be learnt, experience
with that face is needed – the face must be familiar. ‘Characteristic motion
signatures’ are learnt over time, allowing a memory of what facial motions a
person typically exhibits to be stored as part of their facial representation.
Therefore when motion information for an individual has been integrated into
the representation of their face, this information can be retrieved and used to aid
recognition of that face.

When considering the theoretical basis of the motion recognition advantage
from a cognitive and representational perspective, a number of studies have
provided support for the idea that facial motion becomes intrinsic to a familiar
individual’s face representation. For example, Knappmeyer, Thornton, and
Bülthoff (2003) used two synthetic heads, each animated by the movement of
a different volunteer. Participants viewed and thus became familiar with either
head A with motion from volunteer A, or head B with motion from volunteer
B. In the test phase an animated head constructed from the morph of the two
synthetic heads (A and B) was produced. Participants were asked to identify
whose head was shown. It was found that participants’ identity judgements
were biased by the motion they had originally learnt from head A or B,
demonstrating that representations of an individual’s characteristic facial
motions are learnt and are inherent to that individual’s face representation.

Repetition priming studies (Lander and Bruce 2004; also see Lander et al.
2009) have also found evidence that is consistent with the view that dynamic
(motion) information is inherent to the face representation of a particular
individual. Repetition priming is the facilitation demonstrated at test when
the to-be-recognized item (here a face) has previously been encountered at
some point prior to the test (Lewis and Ellis 1999). Such priming effects have
previously been demonstrated for words (Jackson and Morton 1984) and
objects (Warren and Morton 1982; Bruce et al. 2000) as well for familiar
faces (Bruce and Valentine 1985). Repetition priming has been used to probe
the nature of the representations underlying recognition of faces (e.g. Ellis et al.
1996; Ellis et al. 1997). It is proposed that when priming is sensitive to some
change in the form of the faces between study and test, this parameter may be
intrinsic to the representations that mediate face recognition. In the prime phase
of Lander and Bruce’s (2004) experiments, participants were presented with
a series of famous faces and asked to name or provide some semantic
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information about the person presented. Half of the faces were presented in
static form and half in motion. In the test phase participants were presented
with a series of faces and asked to make familiarity judgements about them,
indicating whether each face was familiar or unfamiliar. Lander and Bruce (2004)
found that, even when the same static image was shown in the prime and the
test phases, a moving image primed more effectively than a static image
(Experiment 1). This finding was extended (Experiment 2) to reveal that a
moving image remains the most effective prime, compared to a static image
prime, when moving images are used in the test phase. Significantly, provid-
ing support for the notion of ‘characteristic motion signatures’ inherent to a
person’s face representation, Lander and Bruce (2004) also found that the
largest priming advantage was found with naturally moving faces, rather than
with those shown in slow motion (Experiment 3). However, it was also
observed that viewing the same moving facial sequence at prime as at test
produced more priming than using differing moving images (Experiment 4).

3.5 Dynamic information for unfamiliar face learning

O’Toole et al.’s (2002) first explanation of the advantages of dynamic presen-
tation of faces should predict benefits for unfamiliar face recognition too.
However, in contrast to these intriguing effects on the identification of familiar
faces, the effect of motion on the learning of unfamiliar faces is much less clear.
Early work conducted by Christie and Bruce (1998) found no advantage for
either rigid or non-rigid motion in face learning. In this incidental learning task,
participants were shown faces either as a moving computer-animated display or
as a series of static images, and were asked to decide whether they thought each
person shown studied arts or science subjects at university. The number of
frames in the moving and static conditions was equated in the learning phase.
The motion involved was either non-rigid (expression changes) or rigid (head
nodding or shaking). At test, participants either saw moving sequences or a
single static image (so the number of frames was not equated at test) and were
asked which were the faces of people seen earlier in the arts/science task.
Results indicated there was no benefit for studying faces in motion on the
subsequent recognition task. However, there was a slight benefit for testing
faces in (rigid) motion, compared to static images. In line with this finding,
Schiff, Banka, and De Bordes Galdi (1986) found an advantage for testing
recognition memory for unfamiliar faces using a moving sequence rather than a
static ‘mug-shot’ photograph. These findings can be compared with those using
familiar faces (Knight and Johnston 1997; Lander et al. 1999; Lander et al.
2001) who also found a beneficial effect of motion at test.

Despite this early work a number of studies have found an advantage for
learning faces from moving sequences. For example, Pike, Kemp, Towell, and

Dynamic information for face perception 51



Phillips (1997) filmed actors rotating on a motorized chair, which was illumi-
nated from a single light source. In the learning phase, participants were asked
to try and learn the identity of previously unfamiliar faces from either dynamic
sequences (10-second clip), multiple static images (5 images selected from the
moving sequence, each presented for 2 seconds) or a single static image (single
image presented for 10-seconds). The dynamic sequence showed the target
initially facing the video camera, and then undergoing a full 360-degree rotation
of the chair. At test, participants viewed a single (full-face) static image, differ-
ent from any shown in the learning phase. They were asked to decide if the face
shown had been present in the earlier learning phase. Results indicated that
there was a significant advantage for faces learned via a coherent moving
sequence. Bruce and Valentine (1988) reported a similar trend in an experiment
which compared learning from video sequences of the target faces speaking,
nodding etc. to sequences of single static images. Again, test images were single
images taken from a different viewpoint, on a different occasion. In this experi-
ment performance was best when the faces were learned via a moving sequence,
although the difference between the moving and static condition failed to reach
significance. The failure to reach significance was explained by the authors in
terms of the variability of performance, for this task, across the participant
population.

In later follow-up work, Lander and Bruce (2003) conducted four experi-
ments that aimed to investigate the usefulness of rigid (head nodding, shaking)
and non-rigid (talking, expressions) motion for establishing new face represen-
tations of previously unfamiliar faces. Results showed that viewing a face in
motion leads to more accurate face learning, compared with viewing a single
static image (Experiment 1). The advantage for viewing the face moving rigidly
seemed to be due to the different angles of view contained in these sequences
(Experiment 2). However, the advantage for non-rigid motion was not simply
due to multiple images (Experiment 3) and was not specifically linked to
forwards motion but also extended to reversed sequences (Experiment 4).
Thus, although there seems to be clear beneficial effects of motion for face
learning, they do not seem to be due to the specific dynamic properties of the
sequences shown. Instead, the advantage for non-rigid motion may reflect
increased attention to faces moving in a socially important manner.

Finally, Lander and Davies (2007) investigated the impact of facial motion as
a previously unfamiliar face becomes known. We presented participants with a
series of faces each preceded by a name, and asked participants to try to learn the
names for the faces. When the participants felt they had learnt the names
correctly they continued onto the recognition phase in which they were pre-
sented with the same faces (same presentation method as in learning phase), and
asked to name the individual. The learning phase was repeated and the partic-
ipant was asked to try and learn the names of the faces again if any of the names
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were incorrectly recalled, after which they took the recognition test again. This
procedure was replicated until the participant correctly named all 12 faces
shown. In the test phase, participants were presented with 48 degraded faces;
24 as single static images and 24 moving. In the moving condition the faces
were each presented for 5 seconds. Participants were informed that some would
be learnt faces and some would be ‘new’ faces, for which they had not learnt
names. Participants were asked to name the face or respond ‘new’ and to
provide a response for every trial. Results suggested that facial motion learning
was rapid, and as such the beneficial effect of motion was not highly dependent
on the amount of time the face was seen for. Rather there was support for the
idea of rapidly learnt characteristic facial motion patterns, with results only
revealing an advantage for recognizing a face in motion (at test) when the face
had been learnt moving. Conversely, when the face was learnt as a static image,
there was no advantage for recognizing moving faces compared with a static
image. Indeed, it seems that participants were able to extract and encode
dynamic information even when viewing very short moving clips of 5 seconds.
Furthermore, the beneficial effect of motion was shown to remain stable despite
prolonged viewing and learning of the face identity in Experiment 2. In this
experiment, participants were assigned to one of four experimental groups.
Group 1 viewed episode 1 of a TV drama before the test phase, group 2 viewed
episodes 1 and 2, group 3 episodes 1 to 3 and group 4 episodes 1 to 4. Each
episode was 30 minutes in length. In the test phase, participants viewed moving
and static degraded images of the characters and were asked to try and identify
them by character name or other unambiguous semantic information. The
results revealed that, although better recognition of characters from the TV
drama was seen as the number of episodes viewed increased, the relative
importance of motion information did not increase with a viewer’s experience
with the face (O’Toole et al. 2002). The size of the beneficial effect remained
relatively stable across time demonstrating how rapidly motion information,
through familiarization with the to-be-recognized face, can be integrated into a
face representation and utilized at recognition.

To summarize, the role of movement in building face representations is
somewhat unclear. Christie and Bruce (1998) found no benefit for learning
faces that were moving either non-rigidly or rigidly. In contrast Pike et al.
(1997) and Lander and Bruce (2003) found that learning faces in rigid motion
did subsequently help participants recognize the faces more accurately, com-
pared with when they were originally presented as a single static image or as a
series of statics. It is clear, however, that as a face moves from being unfamiliar
to familiar that motion information becomes an important cue to identity
(Lander and Davies 2007), however it is unknown how this process is under-
taken. Further work is needed to investigate the familiarization process, and to
evaluate the role of motion in building face representations.
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3.6 Practical considerations

The effects we have reviewed have practical as well as theoretical implications.
It has become increasingly important to gain an understanding of how human
observers process moving faces, from an applied perspective. In terms of
application, facial ‘animation’ has become a developing computer technology,
highly important in the entertainment industry (for example Parke and Waters
1996). Animation techniques also have wider impact, for example allowing the
construction of realistic dynamic faces useful in the planning of reconstructive
facial surgery and forensic medicine (Alley 1999). A better understanding of
how dynamic information is processed by the human observer should help the
development of face animation systems, as well as giving a practical estimate of
when (and why) seeing a face move can aid the recognition of identity.

With the use of Closed Circuit Television (CCTV) surveillance systems now
commonplace in the UK, moving video footage is often used as a source of
evidence in the criminal justice process. Often the video footage captured is of
poor ‘grainy’ quality with additional image size, lighting, and focus problems
(Aldridge and Knupfer 1994). Typically the role of the police, witnesses, and
jurors alike is either to identify the (familiar) target from the footage or to ‘match’
the viewed person to a (captured) suspect. Experiments described in this chapter
suggest that the recognition of known faces from degraded video footage is
significantly better when the image is viewed moving rather than static. It
seems likely that viewing moving CCTV footage will help to maximize the
chances of an observer recognizing a known person. This suggestion also has
implications for the design and installation of CCTV systems, as many current
systems do not capture continuous motion, but rather operate on a time lapse
basis. There may be some very real benefits to be gained from the installation of
‘continuous’ motion systems, although further work is needed to investigate the
extent of this potential beneficial effect under these circumstances.

While often it is important to reveal the identity of people shown in video
sequences, sometimes attempts must be made to conceal this. In the UK, for
example, documentary programmes often show people who for various legal or
security reasons should not be identifiable to viewers of the programme.
Sometimes faces are concealed by pixellating the face area – presenting the
face as a small number of square pixels whose grey levels flicker as the image
moves on the screen. More recently some television companies have been using
blurring rather than pixellation to conceal identity. While these effects on the
surface appear to disguise information which could specify individual identity,
our research has shown that familiar faces can quite often be recognized from
such image sequences, with moving sequences giving very much higher rec-
ognition than static ones (Lander et al. 2001). It may be extremely difficult for a
film editor unfamiliar with a person shown on the film to judge appropriate
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levels of image degradation to protect a person from recognition by someone
who knows them well. We recommend that the only certain way to conceal
identities of faces in moving sequences is to cover them completely with an
opaque block.

3.7 Theoretical interpretations

So, it seems that non-rigid movement patterns – either of faces generally, or of
specific faces, aid the recognition of identity. How might this ‘dynamic’ infor-
mation be stored in memory? One possibility is that the motion trace is quite
distinct from the static form-based representation. If this were the case then
dynamic information may feed into the face identity system either directly or via
other aspects of face processing, where dynamic information is known to be
important, for example via expression and/or visual speech processing.
However, it is difficult to conceptualize how dynamic information from expres-
sion processing and/or visual speech processing could play a role in identity
processing, in terms of our current understanding of face processing, as we now
explain in a little more detail.

Bruce and Young (1986) proposed that expression and visual speech process-
ing operate independently of each other and of face identification, and all are
processed in parallel from a viewed face (see Figure 3.1). There is a considerable
body of converging evidence to support this suggestion of independence.

Firstly, between expression processing and identity processing, evidence
comes from prosopagnosic patients who are unable to recognize familiar
faces, instead typically identifying the person from their voice or gait
(Damasio et al. 1990). Bruyer et al. (1983) reported the case of ‘Mr W’, who
could accurately perceive and interpret expressions, but was unable to accu-
rately recognize familiar faces (also see Shuttleworth et al. 1982;
Schweinberger et al. 1995). Conversely, a number of non-prosopagnosic
patients have been found who are impaired at facial expression judgements,
but have no problems identifying familiar people (Kurucz et al. 1979; Etcoff
1984; Parry et al. 1991; Humphreys et al. 1993; Young et al. 1993). It seems
that there is a double dissociation between facial expression processing and
identity processing, supporting the notion of independence. Further support for
this dissociation comes fromYoung,McWeeny, Hay, and Ellis (1986) who did a
matching task with ‘normal’ participants. Participants were required to decide
as quickly as possible whether two faces presented simultaneously belonged to
the same person (identity matching) or showed the same expression (expression
matching). Half of the stimuli faces were familiar to the participants and half
were unfamiliar. For the identity matching task, reaction times were signifi-
cantly faster with familiar faces, but there was no difference across familiarity in
the expression matching task. Results clearly support the view, proposed by
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Bruce and Young (1986), that expression processing and identity are carried out
independently.

Secondly, support for independence between visual speech processing and
identity processing comes from a study by Campbell, Landis, and Regard
(1986). They reported the case of a prosopagnosic patient, ‘Mrs D’, who despite
being severely impaired at identifying familiar faces, performed entirely nor-
mally on all visual speech processing tasks. In contrast, another patient, ‘Mrs T’,
was unable to perform these speechreading tasks but was unimpaired at recog-
nizing faces or expressions. This pattern of impairments indicates that there is a
double dissociation between visual speech processing and identity processing.
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Figure 3.1 A functional model for face recognition (Bruce and Young 1986)
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Campbell, Brooks, De Haan, and Roberts (1996) also found that while matching
judgements based on identity were significantly affected by familiarity (reaction
times to familiar faces were significantly faster than to unfamiliar faces), no such
effect of familiarity was found when the matching task involved decisions about
visual speech (Experiment 1). Results again confirm that visual speech decisions
are relatively insensitive to face familiarity.

In summary then, there is considerable evidence to support the notion that
both expression processing and visual speech processing operate independently
to identity processing. However, most of the studies supporting independence
have used static images of faces as stimuli. Here, we are concerned with the
importance of dynamic information, provided by expression and/or visual
speech processing, for identity processing. It is difficult to address this issue
using static stimuli, instead dynamic faces should be used. Indeed, a number of
recent studies, using dynamic stimuli, have indicated that there may be some
subtle links between these different types of processing. For example, Walker,
Bruce, and O’Malley (1995) utilized the McGurk effect to examine the claims
of independence between identity and facial speech processing. The issue of
familiarity and speechreading was studied by manipulating the familiarity of the
faces used to create the McGurk stimuli, in that participants were either familiar
or unfamiliar with the people ‘speaking’ the syllables. Also the faces and voices
used were either congruent (they were from the same person) or incongruent
(from different people, some gender matched, some not). Results showed that
participants who were familiar with the people reported significantly less
expected combination responses, compared to those participants who were
unfamiliar with the seen face (regardless of the whether the face and voice
were congruent or incongruent). A similar familiarity effect was reported for the
expected blend responses when the seen face and heard voice were incongruent
(from different people). So, when the face and voice came from different but
familiar people, participants rarely reported McGurk blend illusions (perceived
‘da’ following seen ‘ga’ with auditory ‘ba’), but when the same materials were
shown to participants unfamiliar with the faces then McGurk blend illusions
were common even when face and voice were of people of different genders.
These results do not support the dissociation between facial identity and facial
speech processing found previously using static stimuli (see Campbell et al.
1986; de Gelder et al. 1991 outlined earlier in this chapter) but show instead that
audiovisual speech integration can be influenced by signals from the identity
system.

It is clear that speakers show systematic individual variations in the articu-
lation of phonemes. These idiosyncrasies are evident in facial speech as well as
auditory speech (see Montgomery and Jackson 1983). Evidence has suggested
that speech perception is affected by familiarity with a speaker’s voice (Nygaard
et al. 1994). Similarly Lander and Davies (2008) found that speechreading
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performance is influenced by face familiarity. In this experiment, we first
measured the baseline speechreading performance of participants, from unfa-
miliar faces. Next, participants were familiarized with the face and voice of
either the same or a different speaker, or were asked to take part in a word puzzle
instead. Speechreading performance was measured again, before participants
completed a further period of familiarization (or puzzle completion) and a final
speechreading performance task. Results showed that speechreading perform-
ance increased overall with practice but that performance increased significantly
more as participants became increasingly familiar with the same speaker. Our
findings demonstrate the importance of talker-specific variations or other
instance-based characteristics and suggest that these are a useful source of
information for speechreading.

Recently there have also been demonstrations that identity can influence
facial expression processing as well as facial speech processing. Schweinberger
and Soukup (1998) used a Garner (1974) interference paradigm to test the
independence between face identification and facial speech processing, and face
identification and expression analysis. Consistent with the Bruce and Young
framework, they observed that responses based upon facial identities were unaf-
fected by variation in expressions, or by facial speech; however, responses based
upon facial expressions and facial speech were affected by variations in identity –
suggesting that the identity of a face can influence the analysis conducted within
these other routes. This asymmetric interference of identities onto expressions, but
not expressions onto identities, was replicated by Schweinberger, Burton, and
Kelly (1999).

These recent findings suggest that there may be some moderation of the facial
expression routes and the facial speech analysis routes on the basis of facial
identity (see also Baudouin et al. 2000). Importantly, though, the facial identi-
fication route itself appears uninfluenced by variations in expression or speech.
This affirms the position of Bruce and Young (1986) that the task of face
recognition is logically and functionally independent of other uses made of
facial information which has consequences for the ways in which face recog-
nition can be studied and explained. Importantly for our purposes here, however,
it makes it appear unlikely that the source of the effects of dynamic information
on identification lies within the expression and facial speech systems, since there
is no evidence that these feed into the person identification pathway.

Instead it seems that dynamic information may in some way be represented
within the identification system itself. The Bruce and Young (1986) model and
more recent developments of it (Burton et al. 1990; Burton et al. 1999) have
assumed that the face is one of a number of means by which more abstract
person identities can be established. Voices and written names are the most
frequently mentioned examples of other access routes, but occasionally it has
been suggested that ‘gait’ forms a further means of access (though gait patterns
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alone seem to be relatively poor cues to identity – see Burton et al. 1999). It is
possible that the dynamic information associated with a person’s expressive and
speech movements is part of some more general memory of the way people
move. Such a view would see facial dynamics as a discrete source of informa-
tion about personal identity, like voices and written names, but not incorporated
within the face representation system itself. Alternatively if dynamic informa-
tion is stored within the face identity system then it may be linked to the static
form-based face representations, or, may be intrinsically incorporated into the
representations themselves (cf. dynamic representations in Freyd 1987; 1993).
If the representations mediating face recognition are dynamic (whereby the
temporal dimension is inextricably embedded in the representation, see Freyd
and Pantzer 1995) then recognition from a static image should be thought of as a
‘snapshot’ within an essentially dynamic process.

Finally, when considering the underpinning theoretical basis for the moving
recognition advantage, it is interesting to note that a possible dissociation has
been revealed between the ability to recognize a face from the motion it
produces, and the ability to recognize it from a static image. In this work,
Steede, Tree, and Hole (2007) reported the case study of a developmental
prosopagnosic patient, CS. Despite CS being impaired at recognizing static
faces, he was able to effectively discriminate between different dynamic iden-
tities, and demonstrated the ability to learn the names of individuals on the basis
of their facial movement information (at levels equivalent to control subjects).
This case study indicates a possible dissociation between the cognitive mech-
anisms involved in the processes of recognizing a static face and those involved
in recognizing a dynamic face. This research is supported by neuroimaging
studies that have demonstrated functional separation of motion and structural
aspects of face perception in humans (Haxby et al. 2002). Haxby et al. (2002)
found that facial movements activated the superior temporal sulcus (STS) area
while the more shape-based aspects of the face activated the fusiform gyrus.
Further neuropsychological studies have revealed differential activations for
processing motion and static face information (Schultz and Pilz 2009). Based on
such neuroimaging studies O’Toole et al. (2002) proposed a ‘two-route’ model
of face recognition that could explain why facial motion information aids
recognition when other stimulus cues, e.g. spatial information and pigmenta-
tion, are absent. O’Toole et al. (2002) argued that the moving aspects of a face
may be encoded and represented separately from static-based aspects of the
face. However, Schultz and Pilz (2009) have provided evidence to suggest that
spatial and temporal aspects of a face are processed in an integrative manner.
Schultz and Pilz (2009) found that for most of the classic face-sensitive areas
(bilateral fusiform gyrus, left inferior occipital gyrus and the right superior
temporal sulcus [STS]) the response to dynamic faces was higher than to static
faces, with the STS revealed as the region most sensitive to moving faces. Thus,
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there is evidence that both motion and form related areas participate in the
processing of moving faces, with higher brain activation for moving than static
faces.

Despite support for a potential dissociation between the processing of static
and moving faces, research findings are mixed. Steede et al. (2007) suggested
that CS could use motion as a cue to identity, even when impaired at static face
recognition. However, Lander, Humphreys and Bruce (2004) found that an
acquired prosopagnosic patient HJA was not able to overtly or covertly use
motion as a cue to facial identity. In Experiment 1, HJA attempted to recognize
the identity of dynamic and static famous faces. HJAwas found to be severely
impaired in his ability to recognize identity, and was not significantly better at
recognizing moving faces compared with static ones. In order to test HJA’s
ability to learn face–name pairings a second experiment was conducted using an
implicit face recognition task. In this experiment HJAwas asked to try and learn
true and untrue names for famous faces, which were shown in either a moving
clip or a static image. HJA found this a difficult task and was no better with
moving faces or true face–name pairings. Some prosopagnosic patients have
previously found it easier to learn true face–name pairings more accurately and
efficiently than untrue ones (covert recognition by de Haan et al. 1987). A final
experiment demonstrated that HJAwas able to decide whether two sequentially
presented dynamic unfamiliar faces had the same or differing identities. HJA
was found to be better at doing this task with moving rather than static images
and performance with moving stimuli was found to be comparable to the
performance of control participants. His good performance on this matching
task demonstrates that HJA retains good enough motion-processing abilities to
enable him to match dynamic facial signatures, yet insufficient abilities to allow
him to store, recognize, or learn facial identity on the basis of facial movements.

3.8 Future research and conclusions

Our current and future programme of research is aimed at trying to tease apart
different theoretical interpretations of the effects of dynamic information on
face recognition.

Some questions could be answered making use of the kind of synthetic
animated face displays that Christian Benoît was developing at the time of his
death (e.g. Le Goff and Benoît 1997 – see also several contributions to this
volume). For example, what would happen if we showed one face displaying
someone else’s movements? Would Al Gore’s face be easier to recognize if
animated with movements derived from Bill Clinton’s face? Here static-based
and dynamic cues to identity would be in conflict, allowing us to investigate the
relative importance of static and dynamic cues to identity. Using high-quality
three-dimensional models of faces derived from cyberware scanners and
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animated using sophisticated models of expressive and speech movements it
should be possible to ask such questions. Using animated head models we
should also be able to investigate whether benefits of movement for face
identification depend upon the face having been learned in movement. Most
of us are familiar with famous faces from past centuries that we have seen only
in portraits or photographs. Would Abraham Lincoln be easier to recognize if
shown as an animated model than in conventional portrait form? If no effects are
found, then this further supports the idea that dynamic benefits do not arise from
a very general facilitation of the identification system from patterns of natural
movement, but rather reflect specific knowledge about characteristic individual
facial gestures. Such experiments in the future could help us to understand the
ways in which patterns of movement in facial expressions and facial speech help
us to retrieve the identities of faces.

To conclude, while faces are complex, mobile surfaces which change both
rigidly and non-rigidly when gesturing, expressing, and talking, much past
research on face perception has ignored this mobility, and considered informa-
tion to be derived from static snap shots of the facial form. Here we have
reviewed evidence suggesting that dynamic information provides an important
source of information for expression processing, speech perception, and for
identification of faces. Future research will help us to understand the way in
which dynamic information from the face is represented in memory and the
precise mechanism by which it facilitates the retrieval of other information
about personal identity.
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4 Investigating auditory-visual speech
perception development

D. Burnham and K. Sekiyama

4.1 Speech perception is auditory-visual

Optical information from facial movements of a talker contributes to speech
perception not only when acoustic information is degraded (Sumby and Pollack
1954) or when the listener is hearing-impaired, but also when the acoustic
information is clearly audible. This is most clearly shown in the classic
McGurk effect or fusion illusion, in which dubbing the auditory speech syllable
/ba/ onto the lip movements for /ga/ results in the emergent perception of ‘da’ or
‘tha’. This occurs both when the observer is aware, and when the observer is
unaware of the conflicting sources of information (McGurk and MacDonald
1976; McDonald and McGurk 1978). The beauty of this effect is not the fact
that it results in an illusion, but that it unequivocally shows that visual informa-
tion is used in speech perception even when auditory information is clear and
undegraded.

Thus speech perception is a multisensory event, and as such it is an exemplar of
humans’ and other animals’ ubiquitous propensity for multisensory perception.
Multisensory perception occurs across various modalities, e.g., across vision and
touch, both in human adults (Singer and Day 1969; Calvert et al. 2004), and
infants (Rose et al. 1981). In the auditory-visual realm, there is some evidence
that auditory-visual speech perception is a phenomenon that stands apart from
non-linguistic auditory-visual perception of events (Saldaña and Rosenblum
1993; Saldaña and Rosenblum 1994; Sekular et al. 1997; Shams et al. 2000).
Be that as it may, here only the development of auditory-visual speech perception
is discussed (for an excellent review and theoretical proposal regarding the
development of auditory-visual perception in general, see Lewkowicz 2000).

Given that speech perception is an auditory-visual phenomenon, two
intriguing questions arise:
� By what process does auditory-visual speech perception occur?
� What is the developmental course of auditory-visual speech perception; how

does auditory-visual speech perception change as a function of age and type
of experience?
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This chapter addresses these two questions, with due consideration of the appro-
priate research methods to be used for their resolution. The chapter concludes
with a discussion of the implications of this work for automatic speech
recognition.

4.2 Auditory-visual speech perception

How does auditory-visual speech perception occur? One of the most persistent
models of auditory-visual speech processing is the Fuzzy Logical Model of
Perception (FLMP – Massaro 1987; Massaro and Stork 1998), which is a late
integration, prototype model. The model operates in three stages. First, incom-
ing information from various sources, including auditory, visual, and top-down
sources, is evaluated in parallel, and fuzzy truth values are independently
assigned for the features in each source. Second, information from the various
sources is integrated, with the least ambiguous carrying the most weight. (As
this is the point at which the fuzzy truth values from different modalities are
integrated, it is here that auditory-visual integration could be said to occur.)
Finally, the result is compared with all relevant phoneme prototypes so that a
decision can be made about the identity of the incoming phoneme.

Another major class of theory holds that speech perception is a multimodal
perceptual event and, as for any other event, auditory and visual speech
information are perceived early and directly, without the need for learned
associations or phonological prototypes. Such early integration models involve
the (re)presentation of auditory and visual speech information in a common
metric, which may be auditory (Summerfield 1987), gestural or articulatory
(Summerfield 1979; McGurk and Buchanan 1981; Liberman and Mattingly
1985; Liberman and Mattingly 1989), amodal (Kuhl and Meltzoff 1984;
Studdert-Kennedy 1986; Kuhl and Meltzoff 1988) or phonetic (Green et al.
1991; Burnham and Dodd 1996; Burnham 1998; Green 1998). Thus in these
models multimodal information is perceived before auditory and visual speech
information are processed unimodally. As speech information could be consid-
ered to be fully processed once language-specific phonemes are identified, then
in these early integration models, speech should be represented in a common
metric at a sensory or phonetic level of speech processing, i.e., before language-
specific phonemic processing is engaged (Burnham 2000; Burnham et al.
2002). In contrast, in the FLMP, as prototypes are learned on the basis of
specific linguistic input, and as their resolution improves with experience, the
common metric is engaged at or beyond the phonemic level of processing, i.e.,
at or after when language-specific speech processing comes into play.

The issue of the processing level at which auditory-visual speech percep-
tion occurs intersects with the issue of speech perception development. If
auditory-visual speech perception were to be present at or soon after birth,
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then auditory-visual speech perception processes must necessarily be rela-
tively low level, and/or unencumbered by experience. If, on the other hand,
auditory-visual speech perception did not appear until a certain age or until
after certain critical experiences, then this would imply that auditory-visual
speech perception processes involve higher mental processes and/or that they
are established as a function of experience.

Where and when a common representation of auditory and visual speech
information occurs is of course an empirical question, and developmental
studies are crucial for resolving this issue. Developmental studies are also
crucial for determining whether and to what extent perceptual, linguistic, or
cultural experience on the one hand, and cognitive processing capacity on the
other, affect auditory-visual speech processing. The results of developmental
studies will also be of interest with respect to theoretical formulations of speech
perception, and applications of auditory-visual speech processing, such as ASR
(automatic speech recognition). These various developmental issues drive the
content of this chapter.

4.3 Methods for investigating development

The two main methods for investigating human development are set out below.
� The Ontogenetic (Amount) Method involves comparing the abilities of

individuals of different ages brought up in functionally identical environ-
ments on a common task. By suchmeans the effect that amount of experience
(perceptual, linguistic, cultural etc.), and amount of maturation (such as
cognitive processing capacity) may have on development can be determined.
� The Differential Experience (Type) Method involves comparing the ability

of individuals of the same age brought up in functionally different environ-
ments on a common task. By such means the effect that the type of exposure
or experience (for example, perceptual, linguistic, cultural) may have on
development can be determined.

When speech and language are involved, these methods take on interesting
characteristics. In the ontogenetic method there are various developmental mile-
stones which may affect language processing – the increased attention to
language-specific phonemes around 6 to 12 months of age (see Werker and
Tees 1984a; Werker and Tees 1999), the attachment of meaning to sounds and
the onset of speech production in the second year (Stager andWerker 1997; Stager
and Werker 1998), the incredible exponential expansion of vocabulary, syntax,
and semantics from 2 to 5 years, and the onset of reading instruction around age
6 years (Burnham 1986; Burnham 2000; Burnham 2003; Horlyck et al. 2010).

In the differential experience method the fact that human civilizations
developed in valleys and over seas means that well before the first scientist
strode the earth and wondered why, mini-speech-perception laboratories – that
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is, languages – evolved. Languages differ in many ways, so by judicious
cross-language comparisons, researchers can investigate the effect of the
presence, absence, or degree of certain syntactic, semantic, pragmatic, or
phonological devices. To take the case of phonology, languages differ in the
number and types of consonants and vowels they employ, the particular
consonant and vowel oppositions, and whether pitch information is used
just in prosody or whether it is also employed as lexicalized tone. These
differences give rise to cross-language differences in speech perception abil-
ities. For example, we have found that adult speakers of English (a language
which does not have lexicalized tone), perceive pitch differences carried on
speech syllables rather poorly, but perceive the same pitch differences much
better when they are presented as hums or violin sounds. On the other hand,
tonal and pitch-accented-language speakers (Thai, Cantonese, Swedish) per-
ceive pitch well under all three conditions (Burnham et al. 1996). Thus
experience with particular language structures modifies the manner in which
speech is processed.

To return to the two types of developmental methods of study, their separate
and combined attributes are summarized in Table 4.1.

4.4 The ontogenetic development method

4.4.1 Auditory-visual speech perception in infants

To evaluate the role of the amount of experience on development, it is first
necessary to know the initial state of the system. It is well established that
speech perception is sophisticated and universal at birth: newborns, irrespective
of their language environment, perceive just about any speech contrast research-
ers like to test them on. Then as a function of phonemic experience their speech
perception is reorganized such that the phones phonemically relevant in the

Table 4.1 Ontogenetic (amount) and cross-language (type) methods for
investigating linguistic development.

Ontogenetic (amount) Cross-language (type)
Ontogenetic and cross-
language (amount and type)

By judicious choice of ages,
the effect of linguistic
experience and maturation
on development can be
evaluated.

By judicious choice of
languages, the effect of
particular linguistic
structures on development
can be evaluated.

By judicious choice of ages
and languages, the effect of
linguistic experience,
maturation, and linguistic
structures on development
can be evaluated.
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ambient language continue to be perceived (Pegg and Walker 1997), while
phonemically irrelevant phones tend to be disregarded (Werker and Tees 1999).
Nevertheless, such disregarded sounds can still be perceived under certain
conditions, e.g., following extensive training, or in discrimination tasks with
short inter-stimulus intervals (Werker and Tees 1984b;Werker and Logan 1985)
(for reviews see Werker and Tees 1999; Burnham et al. 2002; Burnham and
Mattock 2010). Thus infants’ perception of the wide range of speech sounds
remains intact (there is no sensorineural loss), but the way in which they
perform in discrimination tasks changes – the more relevant native speech
sounds have precedence over non-native sounds.1

The status of auditory-visual speech perception at birth is not explicitly
known, though there is evidence for auditory-visual speech perception abilities
shortly after birth. Infants match faces and voices on the basis of whether face
and voice are in or out of synchrony by two months of age (Dodd 1979;
Burnham and Dodd 1998); on the basis of the gender of face and voice by six
months of age (Francis andMcCroy 1983;Walker-Andrews et al. 1991); and on
the basis of vowel colour (Kuhl and Meltzoff 1982; Kuhl and Meltzoff 1984;
Kuhl and Meltzoff 1988; Patterson and Werker 1999) and consonant–vowel
combinations (MacKain et al. 1983) by four and six months respectively.
Interestingly, matching face and voice on the basis of vowel colour, precedes
matching on the basis of gender: 2-month-old (Patterson and Werker 2003) and
4.5-month-old (Patterson and Werker 1999) infants match for vowel colour but
not gender, and 8-month-olds match on the basis of both (Patterson and Werker
2002). Thus it appears that matching on the basis of gender requires more
culturally specific learning than does matching on the basis of linguistic fea-
tures, at least when considered at the behavioural level. At the neural level,
however, it may be the case that gender matching emerges as early as lip–voice
matching (Bristow et al. 2008). The question thus arises whether linguistic
matching skills are affected by specific language experience. It appears so, at
least in early infancy. Studying language specificity in lip–voice matching,
Dodd and Burnham (1988) found that when 4.5-month-old English language
infants are presented with two people side-by-side, one speaking English, and
the other speaking Greek, infants match the appropriate face with a centrally
located voice, but only when the voice is speaking English. Younger infants of
2.5 months, did not show this effect. This is consistent with a recent finding on
the development of visual language discrimination – 4- to 6-month-old English
learning infants have been shown to discriminate silent movie clips of English
from those of French (Weikum, et al. 2007).

These results generally show that infants perceive structural correspondences
between seen and heard speech, and match visual and auditory speech by at
least three months. Auditory-visual speech matching appears to precede other
auditory-visual matching skills and appears to be first and most evident in
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infants’ native language. However, these matching studies cannot distinguish
between two possible mechanisms that might be invoked to explain their
results: (a) that infants perceive speech as an integrated auditory-visual event,
or (b) that infants match the characteristics of one modality with those of the
other. Investigations require infants to integrate rather than just match auditory
and visual components. If infants were found to perceive an emergent percept in
the McGurk effect paradigm, then it could be more confidently claimed that the
first alternative is the case.

There is now good evidence that infants integrate auditory and visual informa-
tion in their perception of speech. A study by Rosenblum and colleagues
(Johnson et al. 1995; Rosenblum et al. 1997) rests on the observation that adults
perceive auditory /ba/, visual /va/ as ‘va’, but auditory /da/, visual /va/ as ‘da’.
They habituated 5-month-old infants’ visual fixation to auditory-visual /va/ and
then tested them on different auditory-visual combinations. There was general-
ization of habituation to an auditory /ba/, visual /va/ presentation, showing that
infants perceived this to be the same as, or at least similar to, auditory-visual /va/.
However, habituation did not generalize to an auditory /da/, visual /va/ presenta-
tion, showing that infants perceived this to be different from auditory-visual /va/.
These results show that 5-month-old infants appear to perceive auditory /ba/,
visual /va/ as ‘va’, whereas auditory /da/, visual /va/ is not perceived as ‘va’, but
possibly as ‘da’. Thus in one combination the auditory information is dominant,
and in the other the visual information is dominant, just as is the case with adults.
Secondly, in a similar study Desjardins and Werker (1996, 2004) found that
4-month-old infants habituated to auditory-visual /vi/ showed no recovery of
visual fixation (i.e., no novelty response) when presented with auditory /bi/,
visual /vi/, but that infants habituated to auditory-visual /bi/ did show recovery
of visual fixation to auditory /bi/, visual /vi/ (although this was the case only for
female infants). These results support Rosenblum’s (Johnson et al. 1995;
Rosenblum, Schmuckler et al. 1997) conclusion that infants perceive auditory
/b/, visual /v/ as ‘v’, and like Rosenblum, that there is a visual influence in speech
perception by infants (Kushnerenko et al. 2010).

Using the traditional McGurk effect, Burnham and Dodd (1996; 1998; 2004)
tested whether 4.5-month-old infants perceive an emergent percept, /da/ or /ða/,
when presented with auditory /ba/, visual /ga/, just as children and adults do.
Infants habituated to auditory /ba/, visual /ga/ had greater test trial fixations to
hear /da/ or /ða/ than /ba/, whereas infants habituated to matching auditory-
visual /ba/, showed no such preference. (In auditory-visual speech perception
studies, familiarity preferences are often found – see Burnham and Dodd 2004).
This study provides strong evidence that infants of this age perceive auditory
/ba/, visual /ga/ as /da/ or /ða/. So, it appears that, over and above the differential
auditory and visual dominance under certain auditory-visual stimulus condi-
tions (Johnson et al. 1995; Desjardins andWerker 1996; Rosenblum et al. 1997;
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Desjardins and Werker 2004) there is an emergent or fusion percept in infancy,
evidence for auditory-visual integration of speech by at least 4.5 months of age.
Together these studies from three separate laboratories provide strong evidence
that (a) infants use both auditory and visual information in their speech percep-
tion, (b) infants perceive auditory and visual information in a commonmetric, and
(c) as they do so at an age which is presumably prior to full language-specific
phonemic processing, this common metric is possibly phonetic in nature.

Recently, neural correlates of the McGurk effect have been reported in
5-month-old infants (Kushnerenko et al. 2008). In this study, event-related
brain potentials (ERPs) were measured during presentations of audiovisual
speech stimuli: congruent auditory-visual /ba/ and auditory-visual /ga/, a fusion
pair (auditory /ba/, visual /ga/), and a combination pair (auditory /ga/, visual /ba/).
In the resultant ERP, the waveforms for these four types of stimuli were different.
In the occipital cortex, waveforms of early components (190~290ms) were the
same irrespective of the auditory component, but were different depending on the
visual component, indicating discrimination of visual /ba/ from visual /ga/. In the
frontal and temporal cortices, only the combination pair showed a different
waveform compared with the other stimuli in late components (290~590ms),
perhaps due to the detected incongruence. These results indicate that the fusion
pair was perceived as if it were a congruent stimulus. They are further inves-
tigating whether or not this means integrated auditory-visual perception for the
fusion pair (Kushnerenko et al. 2010).

Finally, the development of auditory-visual speech perception in infancy may
be affected by the nature of the linguistic environment. Testing Japanese infants,
Mugitani et al. (2008) found that development of lip–voice vowel matching in
Japanese-learning infants is slower (8 to 11 months) compared with reported
data in English (2 to 4 months, see above in this section).

4.4.2 The development of auditory-visual speech perception

The original report of the McGurk effect included ontogenetic development data
(McGurk and MacDonald 1976) with pre-schoolers (3 to 5 years), school children
(7 to 8 years), and adults (18 to 40 years). Participants were tested with auditory
/ba/, /ga/, /pa/, and /ka/, each of which was combined with an incompatible visual
syllable. For these incongruent auditory-visual stimuli, for example, auditory /ba/
paired with visual /ga/, participants reported hearing ‘da’ (fused response) ‘ga’
(visual response), or ‘ba’ (auditory response). In other cases, for example, auditory
/ga/ paired with visual /ba/, ‘combined’ ‘bga’ responses were observed. All non-
auditory (fused, combined, and visual) responses can be regarded as being visually
influenced. Mean visually influenced responses were 59%, 52%, and 92% for
pre-schoolers, school children, and adults respectively, in spite of the fact that
the three groups identified the auditory-only stimuli equally accurately (91%,
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97%, and 99%). Thus, younger children showed a much weaker visual
influence, about half that of the adults.

Massaro et al. (1986) reported similar results using ambiguous speech sounds.
They tested children (4 to 6 years) and adults, with synthesized speech sounds
ranging from /ba/ to /da/ in five steps. Each of these was combined with a face
articulating /ba/or /da/. In the visual-only condition speechreadingperformancewas
poorer in children (79% correct) than adults (96%). For the auditory-visual stimuli,
similar age differenceswere observed: therewasmore visual influence for the adults
than for the children for each of the stimuli. The authors suggested that the weaker
visual influence for the children is possibly due to their poorer speechreading ability.

Hockley and Polka (1994) also reported a developmental increase in visual
influence, this time between 5 and 11 years of age. They tested five age groups
(5-, 7-, 9-, 11-year-olds, and adults) using /ba/, /va/, /ða/, /da/, and /ga/ articu-
lated by a male talker. Similar to the earlier research, the results showed an
increase across ages in speechreading ability and in the degree of visual
influence as a function of increasing age.

The developmental increase in visual influence in these three studies is possi-
bly related to experience in articulating speech sounds. Desjardins et al. (1997)
showed that preschool children who make articulation errors are less influenced
by visual cues than are children who can correctly produce consonants. Based on
an articulation test they divided preschoolers (3 to 5 years of age) into two groups:
those whomade substitution errors and those who did not. Subsequent perception
tests revealed that the substituter children were the poorest at speechreading, and
had the lowest degree of visual influence in auditory-visual speech perception,
followed by the non-substituter children and then the adults. The three groups did
not differ, however, in auditory-only speech perception. The authors concluded
that experience in correctly producing consonants impacts upon the representa-
tion of visible speech. It is, of course, possible that the opposite causal effect is the
case, namely, that poor speechreading impacts upon articulation ability. However,
Siva and colleagues (Siva 1995; Siva et al. 1995) have shown that cerebral-
palsied adults, lacking in experience of normal speech production, tend to show
less visual influence in speech perception under some conditions than non-
impaired adults. Thus, it appears that articulation experience affects speechread-
ing, rather than the other way around.

4.5 The cross-language development method

In an attempt to replicate the original McGurk effect results, we tested native
speakers of Japanese with speech stimuli, /ba/, /da/, /ga/, /pa/, /ta/, /ka/, /ma/, /na/,
/ra/, and /wa/, articulated by a native Japanese talker (Sekiyama and Tohkura
1991). In a pilot experiment, the evidence of the McGurk effect was very weak.
So we set up two conditions. In the noise-added condition, white noise
was added to the auditory component of the stimuli. In the quiet condition, no
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noise was added. The Japanese participants reported a weak McGurk effect in
the quiet condition, but a strong effect in the noise-added condition. It was as if
the native Japanese talkers used visual information in speech perception only
when the auditory component of the stimuli was not perfectly intelligible (but see
Massaro et al. 1993). Although the cause of this weak visual influence is not
clear, it may be related to the Japanese cultural habit of avoiding staring at the
person to whom one is talking. (Note that this cultural habit seems to be
diminishing as younger generations of Japanese become more westernized.)

Subsequently, we conducted cross-language comparisons (Sekiyama and
Tohkura 1993) with two sets of stimuli. One set was Japanese (identical to the
stimuli in the above study), and the other English (stimuli articulated by a native
English talker). The two sets of stimuli were presented to two language groups,
native speakers of Japanese and of American English. On average the Japanese
participants showed a weakerMcGurk effect than did the Americans. So again a
language-influenced McGurk effect was found. Nevertheless, the Japanese
reported a stronger McGurk effect with the non-native (English) speech stimuli
than with the native (Japanese) stimuli. Intriguingly, a similar foreign talker
effect was found for the American participants: the Americans showed a
stronger McGurk effect for the (foreign) Japanese than for the (native)
English stimuli. The generality of this foreign talker effect is supported by
subsequent studies. The effect for American English and Japanese talkers and
perceivers has also been found by Kuhl and her colleagues (Kuhl et al. 1994). In
other languages, the foreign talker effect has been found with Austrian and
Hungarian participants presented with an Austrian talker (Grassegger 1995),
Dutch and Cantonese language participants listening to a Dutch talker (de
Gelder et al. 1995), and German and Spanish participants listening to German
and Spanish talkers (Fuster-Duran 1996). The exact nature of this foreign
speaker effect is not yet known, although it appears that there may be some
element of expectancy involved: a study by Burnham and Lau (1999) suggests
that when perceivers expected to see a foreign face there were greater foreign
speaker effects than when they did not expect to see a foreign speaker. Thus one
reason for the weak Japanese McGurk effect may be the lack of expectancy for
foreign speakers in everyday situations, due to the homogeneity of race and
language and the relatively isolated habitation on the islands of Japan.

To return to the language-influenced McGurk effect, one might think that the
Japanese adult perceivers are poor speechreaders like young English-speaking
children (Massaro et al. 1986; Hockley and Polka 1994; Desjardins et al. 1997).
However, this is unlikely because the Japanese adults did use visual information
in the noise-added condition. Thus, in the quiet condition they must also have
perceived visual information, but did not make use of it. In fact, Sekiyama
(1994) showed that the Japanese perceivers more frequently noticed the incom-
patibility between auditory and visual cues in the McGurk-type stimuli than did
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the American perceivers. This implies that the cultural habit explanation put
forward above for the weak visual influence for Japanese perceivers is incorrect.
It seems that the Japanese are subject to auditory capture in spite of perceiving
visual cues.

Further data were obtained from native speakers of Chinese (Sekiyama 1997).
The same Japanese and English stimuli were used as in the above study, thus both
stimulus setswere non-native for the perceivers. The Chinese participants showed
a weak McGurk effect for both Japanese and English stimuli (this is consistent
with results of a study by de Gelder and Vroomen 1992; but may be inconsistent
with Chen and Massaro 2004). Comparison of these results with Sekiyama’s
Japanese and American results (Sekiyama and Tohkura 1993; Sekiyama 1994)
revealed that the McGurk effect was weakest in the Chinese, intermediate in the
Japanese, and strongest in the Americans. This suggests another explanation of
the language-influenced McGurk effect, other than the cultural habit explanation
given above. It may be that the degree of visual influence in the McGurk effect is
inversely proportional to the use of tonal information in the perceivers’ native
language. Consider the following. In Chinese the meanings of spoken words are
determined not only by vowel and consonant combinations, but also by the pitch
pattern (tone) of the word. A similar device, pitch-accent, operates in Japanese on
multisyllabic words. Now, while it has recently been found that there is some
reliable visual information for tone (Burnham and Lau 1998; Burnham et al.
2000; Burnham et al. 2001), it may reasonably be assumed that tone and pitch-
accent are most strongly carried by the auditory modality. If so, then auditory
information should be weighted more strongly and visual information less
strongly in tonal languages. This proposal is consistent with the observed results:
auditory information is used less (and visual more) in English (no tones), than in
Japanese (two pitch-accents), and in turn than Chinese (four tones in Mandarin,
and six tones in Cantonese).

Finally, using ERP, we examined neural processes in auditory-visual speech
perception in adult native speakers of Japanese and English. With auditory-
visual congruent syllables and auditory-only syllables as stimuli, Hisanaga et al.
(2009) found that a visual facilitation (i.e., a reduction in latency due to addi-
tional visual speech) for the Japanese speakers was not observed at P2, but
limited to N1, whereas the English speakers showed a reduction in latencies at
both N1 and P2 as reported by van Wassenhove et al. (2005). These results
indicate that the visual influence for the Japanese speakers is only at the sensory
and not at the perceptual (integration) level.

4.6 Combined methods

From the ontogenetic studies we have found that the sheer amount of experience
affects both auditory-visual speech perception and speechreading. From the
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differential experience cross-language studies we have found (a) that the
McGurk effect is influenced by language background (it is stronger in English
than in Japanese language perceivers); and (b) that theMcGurk effect is stronger
when viewing a foreign language speaker.

Thus, both the ontogenetic and the differential experience methods provide
valuable information about auditory-visual speech perception development.
Both the amount and the type of language experience affect auditory-visual
speech perception. To obtain a full picture of auditory-visual speech perception
development, a combined amount–type study is required. We (Sekiyama and
Burnham 2008) conducted a series of experiments combining the ontogenetic
and differential experience methods in order to examine how the amount and
type of language experience may affect the ontogenetic source and course of
cross-language differences in auditory-visual speech perception.

In the first study native Japanese and native Australian English language
adults were tested; in the second their results were compared with native
Japanese and native Australian English language children (6-, 8-, and 11-year
olds). To control for the foreign/native language talker effect, we used both
English and Japanese syllables (congruent auditory-visual combinations and
McGurk-style mismatches) articulated by two English and two Japanese talk-
ers. The first experiment showed the expected greater use of visual information
by the English than the Japanese adults. The inclusion of reaction time (RT)
measures allows information to be garnered regarding a possible sensory-bias
basis of this result: while Japanese adults reacted more quickly to auditory-only
(AO) stimuli than did English-language adults, English language adults were
relatively much faster in the visually-only (VO) than in the AO condition. In the
second experiment at 6 years Japanese- and English-language children demon-
strated an equivalent level of visual influence in auditory-visual speech percep-
tion. However, between 6 and 8 years the amount of visual influence increased
significantly and dramatically for the English- but not the Japanese-language
children. Thereafter, 8-, 11-years, and adulthood, the level of visual influence
remained at this elevated level for English-language participants, and remained
at the same lower level across age for the four Japanese groups – 6-, 8-, 11-year-
olds, and adults. An additional result that may help explain this effect is that at 6
years Japanese participants were more accurate with auditory-only stimuli than
the English language participants, though this difference disappeared at later
stages. Such an early auditory superiority in Japanese children may render
visual supplementation redundant and the fact that Japanese adults have lower
RTs to auditory information than English language adults may be a consequence
of this early auditory proficiency.

Thus the onset of the difference in auditory-visual speech perception between
Japanese and English speakers has been localized between 6 and 8 years using
this combined ontogenetic/differential experience method. Nevertheless, the

72 D. Burnham and K. Sekiyama



exact cause of this effect is yet unknown. Sekiyama and Burnham (2008)
speculate that due to the very crowded vowel space in English and its predom-
inance of consonant clusters, visual information is more important for English-
language children as they begin to learn to read than for Japanese children who
have a phonologically less crowded 5-vowel language with few if any clusters.
(Indeed a follow-up study by Erdener and Burnham (under review) suggests
that English-language children’s relative use of visual speech information is
related to their language-specific speech perception, their ability to attend to
native and disregard non-native speech sounds as they begin to learn to read.)
This study (Sekiyama and Burnham 2008) shows the power of the combined
ontogenetic/differential experience method and paves the way for further
in-depth studies of auditory-visual speech perception.

4.7 Conclusions and an application: automatic speech recognition

There are now very good reasons to move away from considering speech
perception as purely auditory to considering it to be auditory-visual. This is
evident in three areas: experimental studies, theories, and applications such as
automatic speech recognition (ASR). Early experimental studies of speech and
speech perception were concerned only with auditory speech. As we have
shown in this chapter, it is now well established that speech perception is a
multisensory event, and that human speech perception both uses and benefits
from visual information when it is available (see, for example, Benoît 2000).
Similarly, speech perception theories have mostly concerned auditorily pre-
sented phonemes (Nygaard and Pisoni 1995), but have now been elaborated to
cover auditory-visual speech perception (Massaro 1987; Burnham 1998; Green
1998; Massaro 1998b). Finally automatic speech recognition (ASR) systems
and speech synthesis systems first contented themselves with recognition and
manufacture of auditory phonemes. Now ASR and synthesis systems based on
auditory-visual information are becoming evident, and the use of visual in
conjunction with auditory speech information significantly improves the per-
formance of such systems (Cohen and Massaro 1990; Benoît and Pols 1992;
Brooke and Scott 1998b).

One of the main drawbacks of ASR at the moment is that it requires extensive
training on any particular voice (and face) before anywhere near adequate
accuracy is attained. This is not the case in human speech perception (Rosner
and Pickering 1994), and so some understanding of how human speech per-
ception has become so efficient would be very useful. Human learning about
speech (at least auditory speech) proceeds in what might be considered a
perverse manner; human infants perceive just about all speech sounds at birth,
and then learn to ignore just those sounds that are not useful to them in their
native language environment. However, the ability to perceive these sounds is
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not lost; with some training adults can discriminate non-native speech sounds
separated by a short inter-stimulus interval (Werker and Tees 1984b; Werker
and Logan 1985). Thus humans learn to attend to the critical aspects of speech,
and perhaps learn to attend to higher-order invariant speech characteristics that
remain unchanged across speakers and situations.

We believe that the next step in ASR development, following the inclusion of
visual information, is to incorporate knowledge about the development of the
perception of both auditory and visual speech. As visual information has been
found to augment ASR systems, we feel that so will also be the addition of
developmental information. For example, the language-specific manner in
which a particular language is processed is the result of a developmental process
in which infants resonate to and learn about the regularities of that language.
This happens at both the phone and word level. At the phone level, infants pick
up what phonetic variations are and are not important in their native language,
and respond preferentially to distinctions that are phonemically relevant in their
native language (Werker and Tees 1999). At the word level it has been shown
that infants take into account the statistical regularities of phoneme strings in the
language they hear about them, and use this information in parsing the speech
stream (Saffran et al. 1996). Developmental processes of auditory-visual speech
perception both within and between languages, will also inform ASR techni-
ques. Why do humans use visual information more when they observe a foreign
talker? When do they start to do this and how?What phonetic or cultural factors
cause Cantonese language users to use visual information less than their
Japanese language counterparts and they less, in turn, than their English lan-
guage counterparts? When and how do infants or children in these language
environments learn to use visual information more or less? How does speech-
reading ability and its development relate to auditory-visual speech perception
ability? Answers to these questions will assist in the development of theories of
auditory-visual speech perception development, and the development of ASR
systems. One obvious implication is that auditory-visual ASR algorithms
should allow multiple determinants (accents, allophones, auditory information
and visual information) of relevant phonemes and words, and constrain these
multiple inputs to meaningful distinctions, while still registering the variations.
On the basis of our knowledge of infant speech perception development such
exposure to a range of auditory-visual information in speech in a particular
language may result in better recognition rates, but only if there are subtle shifts
in the way in which speech corpora and accompanying acoustic models and
language models are used by ASR systems.

It is clear that speech is a rich, over-specified stimulus. We humans are
extremely good at learning very quickly to use just that speech information
that is useful to us in a specific language or situation. Only if we can discover
how we learn to do this can we then teach machines to do the same.
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5 Brain bases for seeing speech: fMRI studies
of speechreading

R. Campbell and M. MacSweeney

5.1 Introduction

This volume confirms that the ability to extract linguistic information from
viewing the talker’s face is a fundamental aspect of speech processing. In this
chapter we explore the cortical substrates that support these processes. There are a
number of reasons why the identification of these visual speech circuits in the
brain is important. One practical one is that it may help determine suitability for
hearing aids, especially cochlear implants (Okazawa et al. 1996; Giraud and Truy
2002; Lazard et al. 2010). Another is that there are brain correlates of good or
poorer speechreading which may offer insights into individual differences in
speechreading ability (see Ludman et al. 2000). There are also theoretical reasons
to explore these brain bases. Cortical architecture reflects our evolutionary
inheritance: Ape brains resemble human ones in very many respects, including
the cortical organization of acoustic and visual sensation. Neurophysiological
responses in macaque cortex show mutual modulation of vision and audition
within key temporal regions formerly thought to be “purely” auditory. In turn, this
suggests a broad-based, multimodal processing capacity for communication
within lateral temporal regions, which could be the bedrock upon which a
dedicated human speech processing system has evolved (see Ghazanfar et al.
2005; Ghazanfar and Schroeder 2006; Ghazanfar 2009).

However, our interest was initially driven by other concerns. There had
been suggestive evidence from patients with discrete lesions of the brain that
watching faces speaking might call on distinct brain mechanisms, and that these
could be different from those used for identifying other facial actions, such as
facial expressions (see Campbell 1996). Nevertheless little was known about
the precise brain networks involved in speechreading. Watching speech was
known to be more similar to hearing speech than to reading written words; for
example, in terms of its representations in immediate memory (Campbell and
Dodd 1980). But did this extend to cortical circuits? In our first studies, we
wanted to know to what extent speech that is seen but not heard might engage
the networks used for hearing speech, and which other brain networks might be
engaged. These questions are related to further issues. How do the circuits for
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audiovisual speech relate to those for visual or auditory speech alone? How
might the cortical bases for silent speechreading reflect the individual’s expe-
rience with heard language? That is, do people who are born deaf show similar
or different patterns of activation than hearing people when (silently) speech-
reading? The technique that we have exploited to address these questions is
functional magnetic resonance imaging (fMRI). This brain mapping technique
is non-invasive, unlike positron emission tomography (PET), which requires
the participant to ingest small amounts of radioactive substances.1 fMRI offers
reasonably high spatial resolution (i.e., on the order of millimeters) of most
brain regions. It can give a “cumulative snapshot” of those areas that are active
during the period of scanning (typically several seconds). It does not lend itself
to showing the discrete temporal sequence of brain events that are set in train
when viewing a speaking face, although recent developments in analytic meth-
ods can model the fMRI data with respect to stages of information flow (e.g. von
Kriegstein et al. 2008). For good temporal resolution, dynamic techniques,
using, for example, scalp measurements of electrochemical brain potentials
(event-related potentials, ERPs; see e.g. Callan et al. 2001; Allison et al. 2000),
or magnetoencephalography (MEG Ð see Levänen 1999) are preferred, although
spatial resolution is less good using these techniques. One compelling strategy is
to combine inferences from spatial analysis using fMRI or PET, alongside
analysis of the fine-grain temporal sequences of brain events using MEG or
scalp electroencephalography (EEG), and this is where much current research
activity is focused (e.g. Calvert and Thesen 2004; Hertrich et al. 2007; Hertrich
et al. 2009; Arnal et al. 2009; Hertrich et al. 2010). A further imaging technique
which has been used to explore audiovisual speech processing is TMS – trans-
cranial magnetic stimulation. To date, this has been used to explore contributions
of primary motor cortex (M1 – see below) to audiovisual speech processing
(Watkins et al. 2003; Sato et al. 2010).

5.2 Route maps and guidelines

5.2.1 Brain regions

The cerebral cortex shows local specialization. The visual areas of the human
brain are located at the back of the brain in the occipital lobes. Acoustic
sensation is processed initially just behind the ears, in the left and right temporal
lobe, within Heschl’s gyrus on the temporal plane (planum temporale) below
the lateral surface of the temporal lobe (see Figure 5.1 to Figure 5.4 for these
locations).

The left temporal lobe is preferentially involved in understanding language,
and the superior part of the left temporal lobe is named Wernicke’s region, after
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the nineteenth-century neurologist and psychiatrist Karl Wernicke, who has
been credited with the suggestion that these regions support language compre-
hension. Another important brain region for language is in the inferior part of
the left prefrontal lobe. Here lies Broca’s area, named after the French clinician
Paul Broca who first described a case with damage in just this region in 1847.
Patients with lesions in Broca’s area have difficulty in verbal production. The
region is also implicated in syntactic processing, especially function words and
verbs, and in processing inflectional morphology.

One mode of understanding cortical organization that has stood the test of
time was indicated by the Russian neurologist, A. R. Luria (1973). He suggested
a three-part functional hierarchy reflected in brain topography. Primary regions
are where sensation and action are implemented at the most fine-grained level.
For sensation, these regions are those that receive projections from the afferent
sensory neurons via subcortical relays. For action, they are the regions that
project to the efferent neural system, also via subcortical structures. For vision,
this means that primary cortex in the calcarine fissure of the occipital lobes
(visual areas V1, V2) is organized so that the visual features and spatial
organization of the visual field are retained in the organization of cortical cell
responses. Because of this, damage to parts of the occipital lobe leads to
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Figure 5.1 A schematic view of the left hemisphere, showing its major folds
(sulci) and convolutions (gyri). Two language areas are also shown: “B” is
Broca’s area; “W” is Wernicke’s area. These are general (functional) regions,
not specific cortical locales (adapted from Damasio and Damasio 1989).
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blindness as dense and as localized to specific parts of the visual field as that
caused by retinal damage.

As for perception, so too for action. The primary motor region, which lies on
the anterior surface of the central sulcus, maps the human body topographically
(somatotopic organization). If there is damage to the motor strip, immobility
will be as acute as that suffered if the spinal nerve to that set of muscles is
severed, and as specific to those muscle groups.

So, to summarize, in addition to a primary motor area, at least three discrete
and cortically widely separated primary sensory regions can be identified:
(1) vision in occipital regions (V1/2), (2) audition in Heschl’s gyrus, a deep
“fold” in the superior lateral temporal surface (A1), (3) somatosensory percep-
tion in the sensory strip on the posterior surface of the central sulcus (S1). These
locations are indicated in Figure 5.2. They are, by definition, modality-specific.

Regions proximate to these primary sites show higher-level organization
with less strict “point-for-point” organization. Such secondary areas for vision,
for example, include V5/MT, a visual motion sensitive region, as well as some
parts of the inferior temporal lobe that specialize for face or written-word or
object processing. Within the parietal lobes, various spatial coding relations are
mapped, so that cells here may be sensitive to spatial location but relatively
indifferent to the type of object in view.
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Figure 5.2 Functional organization of the cortex, lateral view, adapted from
Luria (1973). Primary regions are shaded darker, secondary areas are shaded
lighter. Unshaded regions can be considered tertiary. V=vision, A=audition,
S = somatosensory, M = motor.
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Finally, Luria suggested that tertiary areas are multimodal in their sensitivity
and can support abstract representations. The tertiary zones are proximate to the
secondary ones, but are distant from the primary ones. One good example of this
is in the frontal lobe. The tertiary region here is the most anterior, prefrontal part.
This is concerned with the highest level of executive function: general plans,
monitoring long-term outcomes. This can be thought of as the strategic centre of
the brain, involved in planning (“I want to make a cup of tea”). Moving in a
posterior direction, the secondary motor areas effect more tactical aspects of
action preparation (“I need to find the kettle, fill it with water and set it to boil”),
while the most posterior part of the frontal lobe includes M1 where voluntary
actions of specific muscle groups are initiated (Figure 5.2).

This general organizational landscape suggests that Broca’s area, lying
within secondary (motor) regions has become specialized for the realization
of specialized language functions including speech planning and (relatively
abstract) aspects of production. A recent perspective emphasizes the role of
Broca’s area in the selection of word and action (Thompson-Schill 2005).
Wernicke’s area, on one account, specializes in processing speech-like and
language-like features of the auditory input signal (Wise et al. 2001), but the
role of these regions in relation to visible speech and audiovisual speech
processing had not been addressed.

5.2.2 Networks and connections

The organization of cortical greymatter, as sketched here, is not the only aspect of
brain organization that should guide us. The brain is a dynamic system across
which neural events unfold that support the various functional analyses and action
plans that comprise behavior. In addition to connections between neighboring
neurons that allow the development of functionally distinct cortical regions to
emerge as sketched above, long fiber tracts (white matter) connect posterior and
anterior regions (uncinate and arcuate tracts), as well as homologous regions in
each hemisphere (commissural tracts). White matter tracts are now imageable,
using diffusion tensor techniques (DTI, see Appendix). The neural pathways for
the analysis of the signal from its registration in primary sensory regions for vision
and audition right up to the conscious awareness and representation of a speech
act require many different levels of analysis, supported by multiple neural
connections, including white matter connections between different brain regions.
These levels of analysis can be described in terms of different information
processing stages, with bi-directional qualities. That is, the direction of informa-
tion flow can be top-down, aswell as bottom-up. Thus, a network approach can be
used to describe how different functional processesmay be supported bymultiple,
interrelated patterns of activation across discrete brain regions.
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5.2.3 Processing streams

The acoustic qualities of the auditory signal are processed hierarchically accord-
ing to spectrographic characteristics within Heschl’s gyrus and surrounding
auditory belt (roughly Brodmann area 41) and parabelt (including Brodmann
area 42) regions of the planum temporale and very superior parts of the lateral
surface of the temporal lobes (Binder et al. 2000; Hackett 2003; Binder et al.
2004). From these sites, which constitute, essentially, primary auditory cortex in
Luria’s terms (A1), emerge two distinct processing streams, first identified in
animal models (for a review, see Scott and Johnsrude 2003; Rauschecker and
Scott 2009; Hickok and Poeppel 2004; Hickok and Poeppel 2007). One, the
postero-dorsal stream, projecting to the temporo-parietal junction, on to inferior
parietal sites, thence to dorsolateral pre-frontal cortex (DLPFC) supports the
localization of sounds. This is conceptualized as a “where” stream (Scott and
Johnsrude 2003). The other, the “what” stream, comprises an anterior projection
along the superior temporal gyrus towards the temporal pole, and thence via
uncinate tracts to ventrolateral prefrontal cortex including Broca’s area (Scott
and Johnsrude 2003; Hickok and Poeppel 2004). This route allows the identi-
fication of discrete sounds as events/objects, and also supports the identification
of individual voices (Warren et al. 2006). Figure 5.3 shows the approximate
directions of these streams, overlaid on a schematic of the “opened” superior
temporal regions.

Can this model, based originally on animal data, accommodate speech
processing? PET studies using systematically degraded speech signals show a
gradient of activation reflecting the intelligibility of the sound signal. Higher
intelligibility correlates with more anterior superior temporal activation, irre-
spective of the complexity of the speech sound (Scott et al. 2006). Lesions of
anterior temporal regions lead to impaired comprehension of speech (Scott and
Johnsrude 2003; Hickok and Poeppel 2004; Hickok and Poeppel 2007). The
anterior stream appears to constitute a “what” stream, supporting the progres-
sive identification of phonological, lexical, and semantic features of the audi-
tory signal. What, then, is the role of the posterior stream in speech processing?
One compelling suggestion is that this constitutes a “how” pathway for speech,
integrating articulatory and acoustic plans online, to enable not only fluent
speech production, but also its accurate perception in terms of the intended
speech act. The sensorimotor characteristics of speech may be better captured
by this stream (Scott and Johnsrude 2003; Rauschecker and Scott 2009).
Hickok and Poeppel (2007) suggest that it is this dorsal route that shows very
strong (left-) lateralization, in contrast to the ventral stream which may involve a
greater degree of bilateral processing of the speech signal.

Why should the speech processing system require the “belt-and-braces” of
two speech processing streams? One reason is in the variability of speech. We
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are surprisingly good at identifying an utterance whether it is spoken by a man
or child, slowly or quickly, over a poor phone line or by a casual speaker. Speech
processing takes account of coarticulatory processes used by the talker. It
manages wide variation in talker style (accent, register). All of these affect the
acoustic properties of the signal in such varied ways that there are rarely
observable regularities in the spectrographic record. Speech constancy is a
non-trivial issue for speech perception. This was recognized by motor theorists
of speech perception, who proposed a critical role for the activation of articu-
latory representations in the listener in order for speech to be effectively heard
and understood (Liberman and Mattingly 1985; Liberman and Whalen 2000).
Recent models of sensorimotor control offer more detailed outlines of how
motor representations and sensory inputs may interact dynamically to shape
ongoing perceptual processes as speech is perceived (Rauschecker and Scott
2009). Hickok and Poeppel (2007) suggest tasks that require the recognition of
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Figure 5.3 This schematic view “opens out” the superior surface of the
temporal lobe, as if the frontal lobe has been drawn away from the temporal
lobe on which it normally lies. This reveals the superior temporal plane (STP)
including the planum temporale (PT), and Heschl’s gyrus (HG). Within this
extensive region are critical sites for acoustic analysis. Primary auditory cortex
(A1) occupies HG. On the lateral surface of the temporal lobe, and visible in
lateral view, the uppermost gyrus is the superior temporal gyrus (STG), with
the superior temporal sulcus (STS) along its ventral parts (after Wise et al.
2001). This comprises region A2. The lower shaded arrow shows the
approximate direction of forward flow of the anterior, ventral auditory
stream (“what”); the upper shaded arrow shows the posterior, dorsal
(“where/how”) stream.

82 R. Campbell and M. MacSweeney



a spoken utterance may rely more on the ventral stream, while speech percep-
tion itself makes more use of the dorsal stream.

Finally, it would be a mistake to conceive of these streams as solely forward-
flowing. Neuroanatomical studies suggest that there can be modulation of
“earlier” regions by “later” processing stages. That is, information could, for
some processing, flow “back” to primary sensory regions as well as “forward”
to tertiary sites. This is discussed in more detail below. For the dorsal stream,
especially, it seems necessary to invoke both forward and inverse models to
match the action plan for a speech gesture (frontal, fronto-parietal), with the
acoustic properties of its realization (temporal, temporo-parietal).

5.2.4 Implications for speechreading and audiovisual speech

We have provided a broad brushstroke picture of the brain areas implicated in
cognitive function, and of speech processing cortex in particular. We have
outlined the characteristics of the cortical flow of the auditory speech stream(s)
from primary auditory regions within Heschl’s gyrus, through secondary, neigh-
boring regions in the planum temporale and on the lateral surface of the mid-
superior temporal gyrus, firstly, to tertiary regions in anterior parts of the superior
temporal lobe (“what” – a “ventral route”) and, secondly, to posterior, temporo-
parietal regions (“how” – a dorsal route), with each stream involving frontal
activation as a putative processing “endpoint” of forward information flow from
the sensorium. This was clarified in order to set the groundwork for analyzing
speechreading, since speechreading by eye must lead to a representation that is
speech-based (Campbell 2011). We are now in a better position to pose specific
questions about speechreading in terms of cortical activation. To what extent will
watching silent speech activate well-established hearing and speech regions
including Wernicke’s and Broca’s areas? How are primary and secondary audi-
tory areas implicated? Does seen speech impact more on the dorsal than the
ventral stream, or vice versa? Are there indications of distinct processing streams
for seen silent speech, echoing those that have been demonstrated for heard
speech? Most importantly, how might circuits specialized for visual processing
interact with those that engage the language and hearing regions?

5.3 Silent speechreading and auditory cortex

Our initial study (Calvert et al. 1997) asked to what extent do listening to and
viewing the same speech event activate similar brain regions. We used a video-
tape of a speaker speaking numbers, and in order to be sure that the participant
actually speechread the material we asked them to ‘mentally (silently) rehearse’
the lipread numbers in the scanner. The results are summarized, schematically,
in Figure 5.4, which is based on Calvert et al.’s (1997) findings.
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In our study, as in many others, auditory speech activation was confined to
temporal regions, and was focused on Heschl’s gyrus (HG) extending through-
out much of the superior temporal gyrus (STG). These areas are indicated in
Figure 5.4. Watching silent speech activated visual regions in posterior
temporo-occipital cortex. Many of these had been identified by other studies
as active when watching any sort of moving event. More interestingly, we found
that in some regions, the activation pattern for heard and for seen speech was
co-incident. These included the lateral parts of Heschl’s gyrus (primary auditory
cortex (A1)), and secondary auditory cortex in superior temporal regions (A2)
bilaterally. Previous studies had suggested that only acoustic stimuli activated
these regions; they were believed to be dedicated solely to auditory sensory
processing.

The fact that seeing speech could generate activation in acoustically speci-
alized regions immediately suggested further questions: Was seen speech the
only type of visual event that could activate these auditory sites? What caused
this pattern? Would we see it in deaf people?

5.3.1 How specific is the activation?

In one of Calvert et al.’s 1997 experiments (Experiment 3) we attempted to see
if all face actions generated similar activation patterns. In the scanner,

posterior anterior

listening to speech speechreading

anterior

LEFT RIGHT

Figure 5.4 Lateral views of the left and right hemispheres, with areas of
activation indicated schematically as bounded ellipses. Speechreading and
hearing activate primary and secondary auditory cortex (small grey textured
ellipse, white border). Speechreading alone (open ellipses, black border)
activates other lateral temporal and posterior, visual processing regions. The
ellipses correspond approximately to the regions illustrated in figure 1 of
Calvert et al. (1997).
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participants counted closed mouth twitching gestures (gurns) that could not be
interpreted as speech. The patterns of activation for watching speech and for
watching gurning actions were then compared. Speechreading activated lateral
superior temporal regions, including auditory cortex, to a greater extent than
counting the number of closed-mouth facial actions (gurning). This suggested
that speechreading, rather than other forms of facial action, “reached the part
others could not reach,” namely auditory cortex. However, this may have been a
premature conclusion. Because speechreading and gurning were contrasted
directly, rather than in relation to a control (baseline) condition, we could not
determine what the common regions of activation were. The contrast analysis
only allowed us to conclude that there were differences between the conditions.

We therefore returned to this question, incorporating appropriate baseline
conditions andmore powerful image acquisition techniques. Our volunteers this
time were a new population of fourteen right-handed English speakers
(Campbell et al. 2001). We replicated the original findings (see below), but
additionally were able to specify those areas activated by watching gurns and
those activated by seeing speech, when both these face action conditions were
contrasted with watching a still face.

Watching gurns activated visual movement cortex (V5/MT) – a posterior
(occipito-temporal) region activated by any kind of visual movement. But
activation extended beyond V5/MT into the temporal lobes, including the
temporal gyri on the lateral surface of the temporal lobe (inferior, middle, and
superior). Activation tended to be right-sided. The peak activation locus was in
inferior-middle temporal regions, extending into superior temporal gyrus.
However activation did not extend into primary/secondary auditory cortex
(A1/A2).

Compared with watching a still face, watching speech also generated activa-
tion in lateral posterior regions including V5/MT. However, the speech task
generated activation that showed a peak within the superior temporal gyrus,
bilaterally. Thus the sites that were activated both by watching speech and by
watching gurning movements included areas specialized for visual movement
processing of any sort (V5/MT), parts of inferior temporal lobes and (posterior
parts of) the superior temporal gyrus. When the gurn and speechreading con-
ditions were contrasted directly, the pattern is as appears in Figure 5.5, and
closely replicated the original findings.

This study confirmed that watching speech – not watching gurns –activates
auditory cortex, where we define auditory cortex as those regions hitherto
shown to be specific for the processing of acoustic input (Heschl’s gyrus at its
lateral junction with superior temporal gyrus). Speech was more left-lateralized
than gurn watching. More recent results from our own labs (e.g. Calvert and
Campbell 2003; Capek et al. 2008b; Capek et al. 2008a), and from others (e.g.
Sadato et al. 2005; Paulesu et al. 2003), confirm this general picture.
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5.3.2 Controversy: which parts of auditory cortex are activated by silent
seen speech in hearing people?

That seeing speech could activate auditory cortex in hearing people has been a
controversial finding, since it implies that dedicated acoustic processing regions
may be accessible by a specific form of visual stimulation. One possibility was
that the concurrent noise of the scanner may have contributed to auditory cortex
activation when viewers observed silent speech, by giving an illusion of (heard)
speech in noise. In the gurn condition, the “listener” would be unlikely to be
subject to such an illusion. We were able to test this by taking advantage of one of
the principles of functional magnetic resonance imaging. fMRI gives an indirect
measure of blood flow in brain regions. Blood flow lags the electrophysiological
event by several seconds. Peak dynamic blood flow changes, measured by the
scanner, can occur three to eight seconds after the stimulus event and its imme-
diate neurochemical localized response. The scanner is noisy only during the
period when the brain activation pattern is being measured (“image collection”).
By presenting a silent speechreading task, and then waiting for five seconds
before image collection, it was possible tomeasure the activation generated by the
single, silent speechreading event. Under these sparse-scanning conditions,
where noise during speechreading was absent, we still found activation in
auditory cortex in the lateral parts of Heschl’s gyrus (A1), and its junction with
the superior temporal gyrus – BA 41, 42 (MacSweeney et al. 2000).

anterior posterior anterior

RIGHTLEFT

gurns speechreading

Figure 5.5 Schematic showing differential activation in the lateral temporal
lobes when watching non-speech actions (white-bordered grey ellipse) and
watching speech (black-bordered ellipse). Renderings based on data from
Campbell et al. (2001). A peak activation site in right STS is activated by
both types of face action. Speech, but not gurn observation extended into
auditory cortex.
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Nevertheless, not all investigators find activation in these regions when
people are speechreading. In particular, Bernstein et al. (2002) claim that
auditory cortex is not activated by silent speechreading. Their studies required
participants to match speechread words presented in sequence (a recognition
task) in one condition, while in another they measured activation induced by
hearing words. They then mapped the two activation patterns, seeking the
regions of overlap on a person-by-person basis. They found activation by the
seen-speech matching task in superior temporal gyri, including STS, but they
report no activation in primary auditory cortex as such. By contrast, in our
studies, participants were required to generate a language-level representation
of the lipread stimulus by covert rehearsal. A further, independent study by
Sadato et al. (2005) used yet another task. They required respondents to match
the first and last of a series of four images of vowel actions, where the mouth
patterns were selected from four point vowel mouthshapes. For a group of
nineteen hearing respondents, they reported activation within the planum tem-
porale for this task, compared to a similar task requiring matching closed
(gurning) mouths. In a further study specifically designed to address the issue
of whether primary auditory cortex is activated during silent speech perception,
Pekkola et al. (2005), using more powerful fMRI (3T) scanning procedures,
found clear evidence, on a person-by-person basis, for activation in A1 by seen
vowel actions in six out of nine participants.

It is possible that A1 activation by visible speech is task-specific. Speech
imagery may be critical. Speech imagery appears to be an important aspect of
the degree of activation in Heschl’s gyrus when other visual material, such as
written words, is presented (Haist et al. 2001). A dual processing stream
account could be invoked to address these discrepant findings across different
processing tasks and individuals. Activation within A1 may be more likely
when the dorsal stream is involved, since this involves sensorimotor aspects of
processing, where the viewer is engaged in active auditory speech imagery.

5.3.3 Still and moving speech: dual routes for silent speechreading?

Visible speech has some unique characteristics as a visual information source.
While it is dynamic, and the temporally varying trace of the visible actions of
the face corresponds closely to a range of acoustic parameters of speech (Yehia
et al. 2002; Munhall and Vatikiotis-Bateson 1998; Jiang et al. 2002; Jiang et al.
2007; Chandrasekaran et al. 2009), the stilled facial image itself can afford
some speech information. For instance the shape of an open mouth can (to some
extent) indicate vowel identity (compare “ee”, “ah”, and “oo”). Sight of tongue
between teeth (“th”) or top teeth on lower lip (“ff”) is also indicative of a speech
gesture (a dental or labiodental “sound”). Lesion studies suggest that speech
seen as a still image and speech seen in natural movement can dissociate.
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A neuropsychological patient has been described who accurately reported the
speech sound visible from a still photograph, but not from a movie clip of
speech (Campbell et al. 1997). Other patients show the opposite dissociation
(Campbell 1996; Munhall et al. 2002). Do these doubly dissociable character-
istics of seen speech have implications for the neural networks that support
speechreading in normal hearing populations?

Calvert and Campbell (2003) compared fMRI activation in response to
natural visible (silent) speech and to a visual display comprising sequences of
still photo images digitally captured from the natural speech sequence. Spoken
disyllables (vowel-consonant-vowel) were seen. The still images were captured
at the apex of the gesture – so for ‘th’, the image clearly showed the tongue
between the teeth, and for the vowels, the image captured was that which best
showed the vowel’s identity in terms of mouth shape. The series of stills thus
comprised just three images: vowel, consonant, and vowel again. However, the
video sequence was built up so that the natural onset and offset times of the
vowel and consonant were preserved (i.e., multiple frames of vowel, then
consonant, then vowel again). The overall duration of the still lip series was
identical to that for the normal speech sample, and care was taken to avoid
illusory movement effects. The visual impression was of a still image of a vowel
(about 0.5 s), followed by a consonant (about 0.25 s) followed by a vowel.
Participants in the scanner were asked to detect a dental consonantal target (“v”)
among the disyllables seen. Although the posterior superior temporal sulcus
(STSp) was activated in both natural and still conditions, it was activated more
strongly by natural movement than by the still image series.

STSp seems particularly sensitive to natural movement in visible speech pro-
cessing. In a complementary finding, Santi et al. (2003) found that pointlight
illuminated speaking faces which carried no information about visual form gen-
erated activation in STSp. Finally, a recent study (Capek et al. 2005; Campbell
2008) used only stilled photo-images of lip actions, each presented for one second,
for participants in the scanner to classify as vowels or consonants. Under these
conditions, no activation of STSp was detectable. So, images of lips and their
possible actions are not always sufficient to generate activation of this region;
STSp activation requires either that visual motion be available in the stimulus, or
that the task requires access to a dynamic representation of heard or seen speech.

It may be no accident that two routes for speechreading echo those that have
been described for acoustic speech processing. Similar principles may underlie
each. Thus, the anterior visible speech stream may be essentially associative,
reflecting, for example, (learned) co-incidence of a particular speaker’s auditory
and visual characteristics, and likely to be activated in the context of a task that
need not require on line speech processing. By contrast, tasks that recruit more
“lifelike” representations may be invoked by natural movement, involving
sensorimotor processes within the dorsal stream.
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5.3.4 The role of the superior temporal sulcus

The superior temporal gyrus (STG) runs the length of the upper part of the
temporal lobe along the superior plane of the sylvian fissure. We have already
noted that this structure supports, in its anterior parts, the “what” stream, and,
posteriorly, the “how” stream for auditory speech processing. The underside or
ventral part of the gyrus is the superior temporal sulcus (STS; see Figure 5.6).
Outwith speech processing, neurophysiological studies have long suggested that
the posterior half of STS (STSp) appears to be a crucial “hub” region in relation to
the processing of communicative acts – whatever their modality. The STSp,
extending to the temporoparietal junction at the inferior parietal lobule, is a tertiary
region in Luria’s terminology. It is highly multimodal, with projections from not
only auditory and visual cortex, but also somatosensory cortex. It can be activated
by written, heard, or seen language (including sign language – see, for example,
Sadato et al. 2005; Söderfeldt et al. 1997; Pettito et al. 2000; MacSweeney et al.
2002b; MacSweeney et al. 2004; MacSweeney et al. 2006; Newman et al. 2010).
It is also a key region for the perception of socially relevant events and supports
theory-of-mind processing (Brothers 1990; Saxe and Kanwisher 2003).
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Figure 5.6 Schematic lateral view of left hemisphere highlighting superior
temporal regions. Superior temporal sulcus (STS) is the ventral (under-) part
of superior temporal gyrus (STG). The directions of the (auditory) ventral,
anterior (“what”) and dorsal posterior (“how”) speech streams are
schematically indicated as shaded arrows – the lighter arrow indicates the
dorsal stream, the darker arrow the ventral stream.
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As we have seen, STSp is especially sensitive to mouth movement (see
Figure 5.5) as also quoted by other authors (Puce et al. 1998; Pelphrey et al.
2005). To what extent could its role in speechreading reflect a more profound
specialization – that of integrating speech across modalities? How might acti-
vation in STSp be related to activation in primary auditory cortex (A1)?

5.3.5 STSp and audiovisual speech: a binding function?

An early indication that lateral superior temporal regions were implicated in
seeing speech was the demonstration by Sams and colleagues (Sams et al. 1991;
Sams and Levänen 1996; Levänen 1999) that a physiological correlate of
auditory speech matching could be induced by an audiovisual token. The
localization of this function, which used magnetoencephalography (MEG) to
measure the response, appeared to be in auditory cortex, extending into superior
temporal cortex. However, MEG has relatively poor spatial localization, mak-
ing it difficult to be certain just which lateral superior temporal regions were
differentially activated by audiovisual speech compared with heard speech.
Calvert et al. (1999; 2000) used fMRI to explore the pattern of activation
generated by audiovisual speech in relation to that for heard or seen speech
alone. Bimodal speech is much easier to process than speech that is seen silently,
because many phonetic contrasts that are hard to distinguish by eye are available
readily to the ear. Perhaps less obviously, seeing the speaker improves speech
perception even when the acoustic input is sufficient for identification (Reisberg
et al. 1987). When the acoustic and visual displays are congruent, the integrated
percept is more readily identified than would be predicted from a simple
additive model based on performance in each modality alone.

Calvert et al.’s idea was that this superadditive characteristic of audiovisual
speech with respect to the combining modalities might be related to STSp
activation. Furthermore, it was predicted that STSp, receiving input from both
visual and auditory sensory regions, might then enhance activation in each of
the primary sensory regions, by recursive or back-projected neural projections.
Activation of both primary visual movement (V5/MT) and primary auditory
(A1) regions was compared when the input condition was bimodal compared
with each of the unimodal conditions. Under bimodal stimulation, there was
greater activation in both V5 and A1. This unimodal enhancement was linked
directly to STSp activation, co-occurring with STS activation in the bimodal
condition. Moreover, it only occurred when congruent, synchronized audiovi-
sual stimuli were presented. Thus, STSp appears to offer a cortical mechanism
for the modulation of the influence of one speech modality on another, in
particular for the superadditive properties of congruent audiovisual speech
(see Figure 5.7). Many further independent studies now confirm a special role
for STSp in audiovisual speech processing compared with unimodal seen or
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heard speech (e.g. Wright et al. 2003; Capek et al. 2004; Sekiyama et al. 2003;
Callan et al. 2003; Callan et al. 2004; Miller and D’Esposito 2005; Hertrich
et al. 2010).

The acoustic trace does not need to bewell specified for audiovisual integration
to occur, and for STSp to be implicated. Thus sinewave speech comprising time-
varying pure tone analogues of acoustic speech formants, is typically initially
heard as a non-speech sound, such as a series of tweets. However, when
synchronized to coherent visible speech, some listeners perceive the signal as
speech (Remez et al. 1994). Möttönen et al. (2006) showed that STSp is
specifically activated when sinewave speech is accompanied by coherent natural
visible speech – but only when this is “heard” as speech, and not when there is no
(integrated) speech perception.2

Increasingly sensitive fMRI methods are revealing further organizational
principles in relation to STSp function in audiovisual speech. Van Atteveldt
et al. (2010) used fMRI adaptation to explore the effects of audiovisual speech
congruence. Neural populations that are sensitive to a specific signal can adapt
readily to repetitions of that signal, and this is detected as a reduction in fMRI
activation for repeated compared with single exposures. Adaptation to congru-
ent audiovisual syllables was restricted to regions within STS. It did not extend
back to primary cortices. Benoît et al. (2010) report similar findings in relation

Figure 5.7 Audiovisual binding: A role for STS. Activation in STS
(audiovisual speech) can enhance activation in primary auditory sensory
cortex (A) and visual movement cortex (V5/MT) (from Calvert et al. 2000).
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to audiovisual illusory syllables (McGurk stimuli, McGurk and MacDonald,
1976). However, in this case, sensitivity to McGurk illusions correlated with
activation in primary cortices, underlining the relationship between primary
sensory cortex activation, via binding sites, and perceptual experience of
audiovisual congruence.

More direct imaging methods also illustrate the special role of STSp in
audiovisual speech integration. Reale et al. (2007) made use of a surgical
technique to explore the role of STSp in audiovisual speech integration. Ten
patients awaiting surgery for intractable epilepsy were implanted with electrode
nets inserted subdurally, on the pial covering of the temporo-parietal cortical
surface. The patients were then shown auditory, visual, and a variety of audio-
visual speech tokens (CV syllables). STSp, and only this region (compared with
other lateral temporo-parietal fields covered by the net) showed an evoked
auditory response to a spoken syllable that was sensitive to the congruence of
a synchronized visual mouth pattern. While this study could not explore further
the impact of this activation on primary visual or auditory regions, other
electrophysiological studies using scalp and deep electrodes have attempted
to do this, and these are discussed further, below.

5.4 Audiovisual integration: timing

We have noted that, in principle, connections within speech processing streams
can sometimes allow back as well as forward information flow, and have
invoked this as a principle to account for activation in A1 and V5/MT by seen
speech, consequent on activation in STSp. In fact, it is likely that such “back-
activation” can be even more radical, with the sight of speech or music affecting
(subcortical) auditory brainstem responses (Musacchia et al. 2006; Musacchia
et al. 2007). But at what stage in processing do such multisensory interactions
occur? Is STSp the only brain site that effects cross-talk between input modal-
ities for speech that is seen, heard, and seen-and-heard? In order to explore this,
we need a model of the time-course of neural events in audiovisual speech
processing.

fMRI is not a sensitive technique to explore when in processing the visible
and auditory speech signals affect each other. Its temporal resolution cannot
track the speed of synaptic transmission to a specific event. For that, an electro-
physiological signature of such an event is needed to trace (forward) informa-
tion flow between different regions. While this review is focused on fMRI work,
at this point we should consider how other techniques, especially EEG and
MEG, may clarify the time-course and locales of audiovisual speech
processing.

Until recently it appeared that a simple sequential analysis model sufficed.
This assumed that integration in STSp occurred after the auditory and the visual
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speech signals had been independently analyzed (e.g. Calvert and Campbell
2003; Colin et al. 2002). However, evidence is accumulating that there can be
more direct, early influences of vision on auditory speech processing. From
scalp EEG studies using natural audiovisual speech, auditory event-related
potentials (ERPs), were found to be affected by visual speech cues as early as
around 100 msec. from sight of a mouth gesture (the acoustic N1 stage – Besle
et al. 2004; Möttönen et al. 2004; van Wassenhove et al. 2005; Pilling 2009).
Since visible mouth gestures can precede the acoustic onset of an utterance by
up to 100 ms, it would appear that vision can “prime” auditory cortex. Direct
pathways from visual to auditory cortex could be implicated, since neural
events affecting auditory regions, but originating within STSp (back projection)
would generate much longer latencies reflecting the recruitment of “higher-
level” functions.

However, such studies give no direct information concerning the location
source of the critical events. A deep electrode study with ten patients awaiting
surgery for epilepsy (see the description above, on Reale et al. 2007), supported
the direct cortical activation inference more clearly (Besle et al. 2008). Patients
were shown audiovisual clips of a single speaker uttering CV syllables (“pi, pa,
po, py. . .”), as well as auditory-alone and visual-alone versions, and were asked
to respond to a specific target syllable. Electrodes on the brain surface were
positioned to track excitation at Heschl’s gyrus and other parts of the planum
temporale. More electrodes, lying over inferior and middle temporal regions
could track neural events in (visual) movement cortex and other visual regions.
The recorded EEG events were locked to the onset of both the auditory and the
visual signal in natural audiovisual speech tokens. In addition to superior
temporal activation indicating late integration, neural events were recorded at
both MT/V5 and in A1/2 “well before visual activations in other parts of the
brain” (Besle et al. 2008). Such feed forward activation need not imply that
visual movement cortex analyzes speech qualities exhaustively, but rather that
some more general aspect of speech – possibly an alerting signal that a speech
sound might occur – allows the visual system to affect processing of the
upcoming auditory signal.3

Another way to explore such direct feed forward modulation of vision on
audition is to combineMEG or EEGwith fMRI and behavioral data. A study by
Arnal et al. (2009) used audiovisually congruent and incongruent syllables as
stimulus material. MEG established an early, possibly direct, effect of excitation
in V5/MT on A1/2 by coherent audiovisual speech. Here is another piece of
evidence that events in relatively low level visual regions can impact quickly on
auditory cortex. In an fMRI study, this team then showed that correlations
between activation in visual motion regions and auditory regions reflected the
extent to which the visual event predicted the auditory stimulus. By contrast,
audiovisual congruity (i.e. detecting whether a particular syllable was composed
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of congruent or incongruent audiovisual tracks) was the factor which character-
ized connections between STSp and primary regions.

The picture that is emerging from these studies is of at least two mechanisms
that support audiovisual speech processing. One involves secondary auditory
regions, focused on STSp, which can not only integrate acoustic and visual
signals, but coordinate back projections to sensory regions. This route is likely
to be implicated in identifying (linguistic) components in the audiovisual
speech stream. The other is a fast route that allows visual events to affect an
auditory speech response before STSp has been activated. However, the precise
functional characteristics of the two routes, and their interactions, await further
clarification.

5.5 Speechreading: other cortical regions

The discussion so far has focused on lateral temporal cortical regions and the
interaction of auditory and visual signal streams. Yet other cortical regions are
strongly implicated in visual and audiovisual speech processing. Activation in
insular regions and in frontal (dorsolateral as well as inferior frontal – i.e.
Broca’s area) is consistent with the dual-path model of speech processing,
where pathways extending from posterior to anterior brain regions allow for
speech processing to be fully effected. Following the implication that different
cortical regions show functional differentiation within the speech streams we
should predict different patterns of stimulus sensitivity in frontal (“later”) than
more posterior (“earlier”) processing regions. Skipper et al (2007) showed that
“illusory” McGurk stimuli (“ta” experienced when seen “ga” and heard “pa”
were coincident) more closely resembled auditory “ta” representations within
frontal regions, while posterior sensory regions showed more distinctive
responses reflecting the characteristics of each sensory modality.

Often, watching speech generates greater frontal activation than observing
other actions, or listening to speech (e.g. Campbell et al. 2001; Buccino et al.
2001; Santi et al. 2003; Watkins et al. 2003; Callan et al. 2003; Callan et al.
2004; Skipper et al. 2005; Ojanen 2005; Fridriksson et al. 2008; Okada and
Hickok 2009). This suggests that speechreading can make particular demands
on the speech processing system. However, to date there are no clear indications
of the extent to which distinctive activation in different frontal regions may
relate to the specific speechreading or audiovisual task, or to one or other speech
processing stream (but see Skipper et al. 2007; Fridriksson et al. 2008; Okada
and Hickok 2009; Szycik et al. 2009, for speculations). Nor is there any
compelling evidence for direct, unmoderated connections between frontal and
inferior temporal regions – for instance, for visual motion detection. Such a
scheme might be implied by strong versions of mirror-neuron theory, which
give primacy in neural processing to prefrontal regions that specialize in
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matching observed actions with those that can be produced by the observer (see
Appendix). A study by Sato et al. (2010), using single pulse TMS, noted (fast –
around 100 ms) changes in excitability in the region of tongue representation in
primary motor cortex, M1, consequent on observing audiovisual stimuli that
involved bilabial syllables (“ba”). Such studies need to be replicated and
extended, since it is not clear to what extent these effects were specific to the
observed syllables – or even to M1. The tongue and mouth area of primary
somatosensory cortex, S1, which is close to the homologous regions in M1, is
activated specifically when watching speech compared to listening to it
(Möttönen et al. 2005).

The coordinated activation of cortical networks that involve frontal systems
with multiple sensory systems seems to be a hallmark of visual speech process-
ing, not just of audiovisual speech processing. Both the anterior and the
posterior speech stream can be implicated (and see Campbell 2008). The
broader picture is of a cortical system that is inherently sensitive to the multi-
modal correspondence of coherent speech events.

5.6 Speechreading in people born deaf

For many deaf people a spoken language, perceived by watching the speaker’s
face, is the first language to which they are exposed, since fewer than 5 percent
of deaf children are born to deaf, signing parents (Mitchell and Karchmer 2004).
Deaf speechreaders often outperform hearing people on tasks of speechreading
(Mohammed et al. 2006; Rönnberg et al. 1999; Andersson and Lidestam 2005)
and visual speech discrimination (Bernstein et al. 2000b). Skilled deaf speech-
readers appear to process seen speech in ways that look very similar to the
processes used by hearing people (Woodhouse et al. 2009).

The cortical circuits activated when deaf people speechread offer unique
insights into how sensory loss, combined with “special” experience, may
shape the developing brain. Which brain regions might be activated by speech-
reading in individuals who have never experienced useable heard speech, but
who understand it entirely by eye? If speech processing is inherently multi-
modal, and seen speech processing in hearing people calls on auditory, soma-
tosensory, and action systems, how do deaf brains become configured to process
speech that is not heard? The first question that we asked was would STSp be
less – or more – implicated in deaf than hearing speechreading? Thirteen
profoundly congenitally deaf volunteers, all of whom were native signers of
British Sign Language, and thirteen hearing non-signers were asked to speech-
read a list of unrelated words (Capek et al. 2008a). Their task was to identify the
target word ‘yes’. Both groups showed extensive bilateral activation of fronto-
temporal regions for this task. There was significantly greater activation in the
deaf than hearing group in the left and right superior temporal cortices. Was this
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because deaf participants were just better speechreaders? Performance on the
Test of Adult Speechreading (TAS: Mohammed et al. 2006), performed outside
the scanner, showed that the deaf group were superior speechreaders. Moreover,
individual TAS scores correlated positively with activation in left STSp.
However, when these scores were included as a covariate in the analyses, the
left superior temporal region was still the only region showing a significant
group difference (deaf > hearing). That is, the activation in this region was not
only related to speechreading skill, but also to some other factor distinguishing
deaf and hearing participants.4

These findings suggest, firstly, that “auditory” cortical regions in deaf-
native signers may be relatively more susceptible to activation by a
visual language than would be the case for hearing people or for deaf people
who do not use a sign language (also see Sadato et al. 2005). It’s also likely
that the word detection task (Capek et al. 2008a) may preferentially activate
the “how” (dorsal) stream, compared with rehearsal of overlearned
(lipread) digit sequences (MacSweeney et al., 2001, 2002b – at least in
deaf speechreaders).

But where does this leave the binding hypothesis – that activation in STSp
reflects audiovisual experience in which visual and acoustic signals become
bound together in a coherent experience of audiovisual speech? While this
region is engaged for audiovisual binding in hearing people, its extensive
activation in deaf speechreading (Capek et al. 2008a) suggests a further func-
tional specialization. The positive correlation of activation of (left) STSp with
speechreading skill in both deaf (Capek et al. 2008a) and hearing people (Hall
et al. 2005) indicates that this region is specialized for analyzing speech from
facial actions – irrespective of hearing status. However, the further finding, of
greater activation of this region in deaf people, supports an interpretation in
terms of cross-modal plasticity. That is, when auditory input is absent, auditory
cortex is relatively more sensitive to projections from other sensory modalities,
especially vision (see MacSweeney et al. 2002a; MacSweeney et al. 2004;
Bavelier and Neville 2002; Sadato et al. 2005).

How specific is the activation in superior temporal regions in relation to
language, speech, and hearing status? Capek et al (2010) directly compared deaf
people (who knew British Sign Language – BSL), and hearing participants
(who did not knowBSL). Theywere scanned in two experimental conditions. In
one, they observed lists of signs and were asked to respond when a particular
target gesture occurred. This was a task that both deaf and hearing respondents
could do readily and accurately. In the other they speechread word lists. Left
STSp showed a particular pattern of activation that was sensitive both to task
and to group. This region was strongly activated by silent speech in the deaf and
the hearing participants. However activation in STSp for sign lists was seen only
in the deaf group, who knew BSL. We interpreted this pattern as suggesting that
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STSp has a specific role in (visible) language processing: both language modes
were available to deaf, while only one (speechreading) was accessible to
hearing participants. Sadato et al. (2005) drew rather different conclusions
from their study of deaf and hearing participants performing recognition match-
ing tasks on seen speech and videoclips of Japanese sign language. That study
also included a further task of dot detection. Focusing on planum temporale
rather than STSp5, they found greater activation in deaf than hearing partic-
ipants – irrespective of task. Only in the speechreading condition did they
observe significant activation in this region in hearing participants. They
argue that the involvement of the planum temporale in speechreading in deaf
participants reflects general colonization of auditory cortex by visual projec-
tions, and is specific neither to speech nor language processing. Further studies
are needed to probe this issue further.

The long-term experience of deafness may also re-set the relative salience
and neural activation patterns of regions other than superior temporal ones in
relation to speechreading. For example, in people who had been deaf, but who
experienced hearing anew through cochlear implantation, the pattern of audio-
visual and visual activation looks different than that observed in people with an
uninterrupted developmental history of normal hearing (Giraud and Truy 2002).
People with CI can show distinctive activation in (inferior temporal) visual
areas when hearing speech through their implants. Since these regions include
face processing regions within the fusiform gyrus, it has been suggested that
representations based on seen speech are activated when speech is newly heard
via an underspecified acoustic signal (Giraud and Truy 2002). Such re-setting of
the relative activation of visual and auditory signals in relation to audiovisual
exposure can occur on a short time-scale, too. Thus, for people with normal
hearing, some short-term exposure to the sight of someone speaking improves
later perceptual processing when that talker is heard. Visual face-movement
regions were implicated in this skill (von Kriegstein et al. 2008; and see
Campbell 2011, for further discussion). Similarly, Lee et al. (2007) suggest
that the (more efficient) specialization of superior temporal regions for speech-
reading in deaf compared with hearing people may be a relatively fast-acting
process: they reported superior temporal activation in a small group of deaf
adults which was independent of the duration of their deafness.

Recent MEG studies (Suh et al. 2009) show that latency of responses from
superior temporal regions varied with the duration of deafness in adults. Two
groups were studied: adults who were born deaf, and those who became deaf
later. Neural responses were fastest in the late deaf, slowest in people born deaf.
People with normal hearing showed intermediate latency for the auditory dipole
event. The implications of this study are as yet unclear, since latency of the
neural response did not correlate with the amplitude of the response (number of
dipoles activated), nor with speechreading skill.
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To summarize, recent studies suggest that speechreading engages a fronto-
temporal network in born-deaf and in hearing people, alike. However, the extent
to which the planum temporale and adjacent STSp play a language-specific role
in deaf people, and the impact of early hearing experience in people who
become deaf, or of duration of deafness itself, is not yet clear. It is likely that
some non-specific activation of putative auditory regions by vision can occur in
people born deaf when these regions have not experienced coherent acoustic
stimulation, while in people who become deaf, some “resetting” of the activa-
tion patterns in different brain regions is likely. Cochlear implantation can
“reset” patterns of activation – especially for speech processing. It should also
be noted that the resting brain (i.e. when no specific task is performed during
neuroimaging) shows a more widespread pattern of activation – including
visual regions in the inferior temporal lobe – following CI than before CI
(Strelnikov et al. 2010).

5.7 Conclusions, directions

The studies reported here cover a relatively short time span of around fifteen
years. Yet, in this period, the use of neuroimaging techniques to map brain
function has expanded at an enormous rate. The first ten years of human fMRI
studies were largely concerned with defining cortical specializations in terms
that could relate to lesion studies in neuropsychology, such as those of Luria
(1973). That was the direction that we came from, since our earlier work showed
how speechreading could be implicated in various ways in people with discrete
brain lesions (Campbell 1996). Those studies showed us clearly that watching
speech activates auditory speech processing regions, albeit via biological move-
ment signals. In this respect, speechreading may enjoy a special status com-
pared with other types of visual material such as written words, or compared to
other types of facial or manual communication (Capek et al. 2010).
Speechreading may engage multisensory and sensori-motor speech processing
mechanisms to a greater degree than simply listening to speech. This is not
surprising: speechreading cannot deliver all the acoustically available speech
contrasts – it must make do with a systematically degraded signal that may
require relatively greater input from “higher” processing stages (Calvert and
Campbell 2003; Campbell 2008). In deaf people, speechreading seems to
involve similar, primarily superior temporal (i.e. auditory) processing regions
as in hearing people – but to a greater extent.

However, these pioneering fMRI studies presented a rather static view of
brain function, focusing on specializations as relatively fixed and discrete. More
recently, with the technical developments in imaging neural connections and in
aligning fMRI with event-locked electrophysiological recordings, as well as
with longitudinal and developmental studies, a more dynamic picture of brain

98 R. Campbell and M. MacSweeney



function is starting to emerge. Firstly, on the behavioral front, work with
atypical populations, such as deaf people, offers unique insights into long-
term brain plasticity (see, for instance, Strelnikov et al. 2010). We have noted
that cross-modal plasticity plays a role in the recruitment of superior temporal
regions for non-auditory processing in the brains of people born deaf. Long-
term studies with deaf children learning to master visual speech, and ongoing
studies with cochlear implant patients should clarify the extent to which (for
instance) particular visual regions, especially in V5/MT, may become recruited
for speech processing, as well as the role of STSp in moderating such activation,
if present. So, too, the involvement of frontal parts of the speech processing
system can be addressed in deaf, as in hearing people, to offer insights into the
extent to which hearing speech moderates the cortical bases of speech repre-
sentations and speech processes (MacSweeney et al. 2009).

Audiovisual speech processing offers a natural model system for addressing
key questions in neural function such as how are sensory events analyzed by
dedicated, sensory-specific mechanisms, then “aligned” to deliver multimodal
and, indeed, amodal percepts. Do signal characteristics that contribute to the
unified percept, based on correspondences between the visual and auditory
speech signal play a key role (Bernstein et al. 2008; Loh et al. 2010)?
To date, while two processing mechanisms – a fast forward flow from visual
to auditory cortex, and a slow integrative mechanism utilizing STSp – have
been described, much work remains to be done to clarify how these systems
function and interact.

Despite the many recent advances in neuroimaging methods, lesion studies
can still offer important clues to the organization of seen speech. Hamilton et al.
(2006) describe a patient with parietal damage who lost the ability to experience
audiovisual speech coherently, with no apparent difficulty in processing uni-
modal speech. No such patient had been described before, and no parietal
regions (other than inferior parietal regions bordering on STSp) had been
implicated in seeing speech. Nowadays, we have tools and techniques that
could probe the possible bases for such anomalous perceptions – and relatively
well formulated models of signal processing and information flow to guide
interpretation. They will lead us in interesting directions.
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5.9 Appendix: Glossary of acronyms and terms

5.9.1 Functional imaging techniques (and see Cabeza and Kingstone 2006
for further details)

fMRI – functional Magnetic Resonance Imaging. A brain imaging technique
that uses the changes in local electromagnetic fields due to blood-flow changes
following neural activity, to map cortical activation. To measure these changes,
the participant is placed in a high-intensity magnetic field (1.5 to 4 Tesla), and
images are acquired based on computerized tomography. Because it uses a high
magnetic field to track brain activation it is currently unsuitable for testing
people wearing hearing aids (including cochlear implants). It also requires
relatively rigid head position to be maintained throughout scanning. A certain
number of repeated scans are not thought to be harmful to health. Spatial
resolution is, at best, about five millimeters; temporal resolution half to three-
quarters of a second. More recent developments in magnetic resonance imaging
include Diffusion Tensor Imaging (DTI) – a technique that enables the measure-
ment of the restricted diffusion of water in tissue in order to produce neural tract
(white matter) images as opposed to images based on grey matter regions of
activation (Jones in press). This is a form of structural imaging, especially useful
for analyzing long-distance connections between brain regions. In order to
analyze functional connections between brain regions, correlational analysis
(principal component analysis – see Friston et al. 1993) can be used to explore
BOLD signal similarity between a seed region (ROI) and other brain regions.

PET – Positron Emission Tomography. A brain imaging technique that
maps activation by tracing changes in cortical metabolism associated with
neural activity. These are tracked by scanning for local changes in uptake of
radioactive tracer metabolites. Because of the ingestion of radioactive materials,
PET scanning should not be undertaken more than once over several years
unless clinical conditions dictate it. PET scanning can be used to measure brain
activation with relative freedom of movement and can also be used with people
wearing hearing aids. Spatial resolution is similar to that for fMRI.

MEG and EEG –magnetoencephalography and electro-encephalography.
Both track changes in cortical activity across the brain by mapping changes in
scalp fields. These are local magnetic and electrical fields respectively, and can be
measured non-invasively. The idea is that these scalp waveforms reflect under-
lying neural sources. As functional mapping techniques, they tend to use
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waveform signatures associated with specific cognitive events and explore their
distribution in time and space. The most immediate such waveforms are pre-
attentive ones such as the visual/auditory evoked responses to a non-specific
visual or acoustic event. More high-level cognitive events can include a range
of “mismatch” phenomena, when an unexpected cognitive event occurs following
a series of expected ones. For example, a semantic mismatch negativity wave may
occur when, after listening to spoken examples from one category, a category
switch is introduced.

While temporal resolution is extremely fine, spatial localization to the level
achieved by fMRI and PET is currently difficult to achieve, since it relies on
mathematical modeling of the source electromagnetic properties of deep brain
structures as surface (scalp) waveforms. The complexity of these resultant
waveforms may set insoluble limits on the precision of localization of some
brain structures.

TMS – Transcranial magnetic stimulation offers a form of “reversible
brain lesion.” The application of localized magnetic induction to particular
regions of the scalp can temporarily block neural transmission in the region
lying below the induction wand. If used over primary motor cortex (M1), it
produces muscle activity which can be recorded as a motor-evoked potential
(MEP). The extent to which this is, in turn, disrupted by performing an
experimental task can indicate the specialization of that region for the task.

5.9.2 Anatomical regions

STG – superior temporal gyrus. The uppermost of the three gyri (folds) on the
lateral surface of each temporal lobe. It extends from the temporal pole (ante-
rior) to the supra marginal gyrus (posterior).

STS – superior temporal sulcus. The ventral (underside) of the superior
temporal gyrus. It extends for the length of the gyrus.

HG – Heschl’s gyrus. A deep fold within the Planum Temporale on the
upper (hidden) surface of the temporal lobe. It is the first cortical processing site
for acoustic input analysis.

PT – Planum Temporale (temporal plane). The upper or superior surface
of the temporal lobe, normally lying under the posterior inferior parts of the
frontal lobe. The infold between the two lobes is the Sylvian fissure. Most of the
PT is associated with acoustic processing.

FG – Fusiform gyrus. A long gyrus which lies within Brodmann area 37,
within the inferior temporal lobe. Bordered medially by the collateral sulcus and
laterally by the occipitotemporal sulcus, it can be considered a secondary visual
region with several “specializations” along its length. In its midregions it is
reliably activated in observing faces, including speechreading. Other parts of
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FG appear specialized for recognizing written words and word-parts (left
hemisphere).

Insular cortex (insula) lies medially between frontal and temporal lobes.
The anterior insula, with many connections to the limbic system, is functionally
specialized for “own body awareness.” It is often implicated in speech process-
ing, both in perception and in production. Insular lesions can give rise to
progressive aphasia.

DLPFC – Dorsolateral prefrontal cortex (Brodmann areas 9, 46), can be
considered a secondary motor area, responsible for motor planning and organ-
ization. It is implicated in working memory and is part of the dorsal speech
processing stream.

5.9.3 Functionally defined regions

A1 – primary auditory cortex. Regions within HG, in each temporal lobe, that
support a number of basic analyses of acoustic information. It receives major
projections from the inferior colliculus, a subcortical relay from the auditory
nerve. Its internal organization is tonotopic (high spectral frequencies in specific
locations, low ones distant from them). Further principles of organization within
A1 remain to be determined.

A2 – secondary auditory cortex. Those regions, contiguous to primary
auditory cortex, within the PT, that receive most of their input from primary
auditory cortex and support higher-order acoustic analyses. A2 extends laterally
to the upper part of STG.

V1 – primary visual cortex within the calcarine fissure. The area that
receives projections primarily from the subcortical visual relay site, the lateral
geniculate nucleus. The elements of vision start to be represented and analyzed
here (contours, movement).

V2 – secondary visual cortex. Projections from V1 to neighboring regions
extending into occipital and inferior temporal regions constitute V2.
Functionally, these regions support a range of more complex visual analyses
than in V1, including hue-sensitive and motion-direction sets of cells. The
columnar organization of cells in this region and in V1 give them both a striped
appearance, and these areas are also known as striate visual cortex. Unlike more
anterior visual regions (V3,V4), V1 and V2 have small receptive fields, and
therefore show fine sensitivity to location.

V5/MT – visual movement cortex. At the boundary between the occipital,
parietal, and temporal lobes, and extending into inferior temporal cortex (parts
of Brodmann areas 19 and 37), this cortical region supports the processing of
visual movement. It receives inputs from the motion-sensitive detectors of V1
and from similar motion-sensitive regions (the thick stripes) of V2.
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S1 – primary somatosensory cortex, the first cortical projection site for
touch sensation, lies on the most anterior surface of the parietal lobe, reflecting
primary motor cortex (M1) on the posterior strip of the frontal lobe. Both
strips are organized somatotopically, with feet represented at the most superior
parts, tongue, lips and teeth at the most inferior, close to STSp.

5.9.4 Historically defined regions

Broca’s area. A fairly extensive part of the left inferior frontal lobe, including
Brodmann’s anatomical regions 44 and 45. Traditionally associated with lan-
guage production.

Wernicke’s area A fairly extensive part of the left superior temporal lobe
bounded by the supramarginal gyrus posteriorly and the inferior temporal gyrus
ventrally (Brodmann areas 22 and 21). It is traditionally associated with lan-
guage perception.

Mirror neurons First described as a population of neurons in macaque
prefrontal cortex that fired when an action was observed, made or planned
(Rizzolatti et al. 1996a), mirror neuron theory led to the proposal that inten-
tional motor systems were necessarily and inevitably engaged in observing the
actions of a conspecific. When applied to speech processing, it implicated
ventral prefrontal regions (including Broca’s area) as “drivers” of speech
perception. The underlying notion is that speech is perceived through simula-
tion of its production (Rizzolatti and Arbib 1998). More recent formulations of
mirror neuron theory have retracted from this focus on prefrontal cell popula-
tions, towards a network model in which mutually interactive action/perception
processing occurs, involving not only frontal but inferior parietal, and espe-
cially STSp regions (Rizzolatti and Craighero 2004). In many respects, mirror-
neuron theory can now be aligned with dorsal route processing assumptions
(Rauschecker and Scott 2009).
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6 Temporal organization of Cued Speech
production

D. Beautemps, M.-A. Cathiard, V. Attina, and
C. Savariaux

6.1 Introduction

Speech communication is multimodal by nature. It is well known that hearing
people use both auditory and visual information for speech perception
(Reisberg et al. 1987).1 For deaf people, visual speech constitutes the main
speech modality. Listeners with hearing loss who have been orally educated
typically rely heavily on speechreading based on lips and facial visual informa-
tion. However lipreading alone is not sufficient due to the similarity in visual lip
shapes of speech units. Indeed, even the best speechreaders do not identify more
than 50 percent of phonemes in nonsense syllables (Owens and Blazek 1985) or
in words or sentences (Bernstein et al. 2000).

This chapter deals with Cued Speech, a manual augmentation for lipreading
visual information. Our interest in this method was motivated by its effective-
ness in allowing access to complete phonological representations of speech for
deaf people, from the age of one month, access to language and eventually
performance in reading and writing similar to that of hearing people. Finally
with the current high level of development of cochlear implants this method
helps facilitate access to the auditory modality.

A large amount of work has been devoted to the effectiveness of Cued Speech
but none has investigated the motor organization of Cued Speech production,
i.e. the coarticulation of Cued Speech articulators. Why might the production of
an artificial system as long ago as 1967 be of interest? Apart from the clear
evidence that such a coding system helps in acquiring another artificial system
such as reading, Cued Speech provides a unique opportunity to study lip–hand
coordination at syllable level. This contribution presents a study of the temporal
organization of the manual cue in relation to the movement of the lips and the
acoustic indices of the corresponding speech sound, in order to characterize the
nature of the syllabic structure of Cued Speech with reference to speech
coarticulation.
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6.2 Overview on manual cueing

6.2.1 Cued Speech system

Cued Speech was designed to complement speechreading. Developed by
Cornett (Cornett 1967; Cornett 1982), this system is based on the association
of lip shapes with cues formed by the hand.While uttering, the speaker uses one
hand to point out specific positions around the mouth, palm towards the speaker
so that the speechreader can see the back of the hand simultaneously with the
lips. The cues are formed along two parameters: hand placement and hand
shape. Placements of the hand code vowels while hand shapes (or configura-
tions) distinguish the consonants. In English, eight hand shapes and four hand
placements are used to group phonemes (Figure 6.1). The primary factor in
assignment of phonemes to groups associated with a single hand shape or hand
placement is the visual contrast at the lips (Woodward and Barber 1960). For
example, phonemes [p], [b], and [m], with identical visual shapes, are associ-
ated to different hand shapes, while phonemes easily discriminated from the lips
alone are grouped in the same configuration. Each group of consonants is
assigned to a hand shape. For the highest frequency group the hand shapes
that require less energy to execute are chosen. The frequency of appearance of
consonant clusters and the difficulties these might present in changing quickly
from one hand configuration to another are also taken into account.

Vowel grouping was worked out similarly, high priority being given to the
ease of cueing for diphthongs. Vowel positions are indicated with one of the
fingers. The middle finger is used for all the consonant cues except those of
the [d, p, Z], [j, tʃ], and [l, ʃ, w] groups, for which the index finger is used. An
exception exists for the [j, tʃ] group: The middle finger is used as the pointer for
the mouth position, while the index finger is used for the chin, throat, and side
positions.

The information given by the hand is not sufficient for phoneme identifica-
tion. The visible information of the lips is still essential. The identification by
the lips of a group of look-alike consonants and the simultaneous identification
of a group of consonants by the hand shape result in the identification of a single
consonant. Thus the combination of hand shape and hand location with the
information visible on the lips identifies a single consonant-vowel syllable.

The system was based on the CV syllabification of speech. The syllable
strings C(Cn)V(Cm), as complex as they can be, are broken down into CVs each
CV being coded both by the shape of the hand for the consonant and by the
place of the hand on the face side for the vowel.When a syllable consists only of
a vowel, this V syllable is coded using hand shape N°5 (Figure 6.1), with the
hand at the appropriate position for the vowel. If a consonant cannot be linked to
a vowel, as is the case when two consonants follow each other or when a
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consonant is followed by a schwa, the hand is placed at the side position with the
associated consonant hand shape. Diphthongs are considered to be pairs of
vowels (VV) and are therefore cued with a shift from the position of the first
vowel towards the position of the second vowel (cf. Figure 6.1).

N°1

N°5**

N°2 N°3

N°7

N°4

N°8N°6

English Vowels and Diphthongs

English Consonants

Side*** Mouth Chin Throat

Side-Throat Diphthong Chin-Throat Diphthong

d, p, Z

A:, V, @U, @

eI, OI aI, aU

O:, e, u: {:, I, Ui:, 3:

l, S, w

k, v, D, z h, s, r

t, m, f g, dZ, T N, j, tS

n, b, hw≈

Figure 6.1 Visible cues for English consonants, vowels, and diphthongs (from
Cornett 1967)
Notes: * Some teachers of Cued Speech may prefer to cue /hw/ as /h/ plus w;
** This hand shape is also used for a vowel without a preceding consonant;
*** The side position is used also when a consonant is cued without a
following vowel.
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Finally, in the adaptation of Cued Speech to other languages (more than 50 in
Cornett 1988), the criterion of compatibility with the English version was given
a higher priority than phoneme frequency of the considered language. An
additional position next to the cheekbone is needed for coding all vowels
used in French, German, Italian, and Spanish. In German, some hand shapes
code consonant clusters directly (as it is the case for the frequently encountered
[ʃt], [ʃp], [tʃ], and [ʃv] clusters) to avoid affecting speech rhythm, a problem that
would occur with frequent consecutive hand shape modifications (Pierre Lutz,
personal communication).

6.2.2 Perceptual effectiveness of manual cueing

The perceptual effectiveness of Cued Speech has been evaluated in many
studies. Nicholls and Ling (1982) presented eighteen profoundly hearing-
impaired children with CV or VC syllables made of twenty-eight English
consonants combined with the vowels [i, a, u] in seven conditions, with
auditory, lipreading and manual cue presentations combined. A similar test
was conducted with familiar monosyllabic nouns inserted in sentences. Under
audition (A) alone, subjects correctly identified 2.3% syllables, whereas scores
in lipreading (L), audition + lipreading (AL), manual cues alone (C) and
audition + manual cues (AC) reached 30 to 39%without significant differences.
Higher scores were obtained with lipreading + manual cues (LC = 83.5%) and
audition + lipreading + manual cues (ALC = 80.4%). This last result was also
found for the test sentences where the mean scores for key words reached more
than 90% in the LC and ALC conditions.

Uchanski et al. (1994) confirmed the effectiveness of Cued Speech for the
identification of various conversational materials (sentences with high or low
predictability). The highly trained subjects obtained mean scores varying from
78% to 97% with Cued Speech against 21% to 62% with lipreading alone.

For French, Alégria et al. (1992) tested deaf children who had been exposed
to Cued Speech early (before the age of three) both at home and at school. They
compared these early-exposed children with children exposed late from the age
of six and only at school. The subjects exposed early and intensively to Cued
Speech were better lipreaders and better Cued Speech readers in identifying
words and pseudo words. It seems that early exposure to Cued Speech allows
children to develop more accurate phonological representations (Leybaert
2000). Thereafter their reading and writing skills progress in a similar way to
those of hearing children since Cued Speech early-exposed deaf children can
use precise grapheme to phoneme correspondences (Leybaert 1996).

Finally, the studies on working memory of Cued Speech deaf children reveal
that they use a phonological loop probably based on the visual components of
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Cued Speech: mouth shapes, hand shapes, and hand placements (Leybaert and
Lechat 2001).

6.2.3 Phonological representations in Cued Speech

Fleetwood and Metzger (1998, p. 29) proposed the term cuem, which ‘refers to
an articulatory system that employs non-manual signals (NMS) found on the
mouth and the hand shapes and hand placements of Cued Speech to produce
visibly discrete symbols that represent phonemic (and tonemic) values’. Neither
the production nor the reception of acoustic information or of speech is implied
in the term ‘cuem’. The authors maintain that Cued Speech can be delivered
without production of an acoustic speech signal. This is the usual situation in an
interpreting task where the Cued Speech speaker translates silently into cues for
deaf people as the hearing speaker is talking. The authors also refer to the
studies of Nicholls (1979) and Nicholls and Ling (1982), which claim that the
acoustic signal is not necessary in Cued Speech. Nicholls and Ling (1982)
found no advantage of audition for syllable identification; the score obtained in
the Cued Speech presentation (manual cues alone; C = 36%) was not signifi-
cantly different from the Audition + Cued Speech score (AC = 39%). Similarly,
there was no difference between the lipreading + Cued Speech condition (LC =
83.5%) and audition + lipreading + Cued Speech condition (ALC = 80.4%).
The pattern of results was quite different for key words; a better score was
recorded for the AC condition (59.2% for low predictability sentences and
68.8% for high predictability) than for the C condition (respectively, 42.9%
and 50.0%); in LC and ALC, key word scores were similar, around 96%,
revealing a ceiling effect. The advantage of the AC condition for key words
in sentences was explained as the use of supra-segmental information. Nicholls
and Ling (1982) concluded that speech information in Cued Speech can be
perceived through vision alone. Thus Fleetwood and Metzger (1998) proposed
that the phonological representations underlying the perception of Cued Speech
be defined only by the mouth shapes, hand shapes and hand positions (Fleetwood
and Metzger 1998).

However we think this position is perhaps too restrictive. In their taxonomy
of tactile speech perception methods, Oerlemans and Blamey (1998) proposed
to distinguish between the speech-based and language-based tactile codes.
The code was considered speech-based when the user had direct access to the
articulatory gestures, as in the Tadoma method (Reed et al. 1985), where the
blind-deaf user directly touches the vocal tract of the speaker, placing a hand on
the talker’s face. In contrast, the tactile version of Sign Language was classified
as language-based. If the same taxonomy for visual perception is used, speech-
based and language-based methods can be distinguished. In our view, Cued
Speech is clearly a speech-based code, since the visual lip and mouth information
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directly results from the articulatory gestures. The fact that the emission of sound
is not necessary for the production or reception of Cued Speech does not mean
that the code is purely visual.

We maintain that Cued Speech is speech-based in the sense that articulatory
gestures are recovered from the visual modality. As we will show, these visual
lip cues are highly dependent on the speech flow for their temporal time-course.

6.2.4 Face and hand coordination for Cued Speech

The fact that manual cues must be associated with lip shapes to be effective for
speech perception reveals a real coordination between hand and mouth. As yet
no fundamental study has been devoted to the analysis of the skilled production
of Cued Speech gestures, i.e. the temporal organization existing between lip
movements and hand gestures in relation to the acoustic realization.2 Except for
a theoretical aside by Cornett pointing out some consonant clusters where
speech should be delayed to leave the hand enough time to reach the correct
position (Cornett 1967, p. 9), the problems of cue presentation timing are only
incidentally touched on in the course of technological investigations.3

In the Cornett Autocuer system (Cornett 1988), cues are defined from the sound
recognition of the pronounced word and are displayed on one group of LEDs on
glassesworn by the speechreader. Thewhole process involves a delay of 150 to 200
ms for the cue display, compared to the production time of the corresponding sound.
This system, designed for isolated words, attained 82% correct identification.

In the system for the automatic generation of Cued Speech developed by
Duchnowski et al. (2000) for American English the cues are presented with the
help of pre-recorded hands, and rules for temporal coordination with sound are
proposed. This system uses a phonetic recognizer of audio speech to obtain a list
of phones which are then converted to a time-marked stream of cue codes. The
appropriate cues are visually displayed by superimposing hand shapes on the
video signal of the speaker’s face. The display is presented with a delay of two
seconds, a delay that is necessary to correctly identify the cue (since the cue can
only be determined at the end of each CV syllable). The superimposed hand
shapes are always digitized images of a real hand. Scores of correct word
identification reached a mean value of 66% and were higher than the 35%
obtained with speechreading alone but they were still under the 90% level
obtained with Manual Cued Speech. This 66% mean score was obtained for
the more efficient display, called ‘synchronous’, in which 100ms were allocated
to the hand target position and 150ms to the transition between two positions. In
this ‘synchronous’ display, the time at which cues were displayed was advanced
by 100 ms relative to the start time determined by the recognizer; i.e. for stop
consonants, the detected instant of acoustic silence (Duchnowski, personal
communication). This advance was fixed empirically by the authors.
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In these investigations, the time of cue presentation is related only to the
corresponding acoustic events: there is no discussion of the relation
between cue presentation and lip motion. However it is well known that
lip gesture can anticipate acoustic realization (Perkell 1990; Abry et al.
1996, for French). In the Autocuer system, the cue presentation is automati-
cally later than lip motion. The impact of this delay was not evaluated and
the identification scores were still high for isolated words. On the other
hand, the closer timing of the hand to the acoustic realization is a key factor
for the improvement of the Duchnowski et al. (2000) system. It should be
stressed that this latter system functions with continuous speech and uses
hand cues; thus it is closer to the natural Cued Speech conditions than the
Autocuer.

6.3 First results on Cued Speech production

It has been mentioned that the Cued Speech system is based on CV syllabic
organization, the hand giving information on both the consonant and the vowel.
The shifting of the hand between two hand positions corresponds to the vocalic
transition and the hand shape (or finger configuration) constitutes the consonant
information. Themain objective of this section is to determine precisely how the
hand gesture co-produces the consonantal and vocalic information. In short, is
the temporal organization of vocalic and consonant hand gestures similar to the
organization of speech, as revealed by the classical model of coarticulation
(Öhman 1967b)?

To this end we will examine a comparative study of the temporal organization
of manual cues with lip and acoustic gestures. The temporal organization of
Cued Speech articulators is analysed from a recording of a Cued Speech
speaker. The time-course of the lip parameter and the hand x y coordinates
are investigated in relation to acoustic events. The occurrence of hand shape
formation is measured in relation to hand position.

6.3.1 The Cued Speech speaker

The Cued Speech speaker is a thirty-six-year-old French female who has been
using Cued Speech at home with her hearing-impaired child for eight years. She
qualified in Cued Speech for French in 1996 and regularly translates into Cued
Speech code at school.

6.3.2 Audiovisual data

The different parameters involved in the analysis were derived from the pro-
cessing of an audiovisual recording of the Cued Speech speaker. The recording
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was made in a soundproof booth, at 50 frames per second. A first camera in wide
focus was used for the hand and the face. A second one in zoommode dedicated
to the lips was synchronized with the first one. The lips were made up in blue.
Coloured marks were placed on the hand for tracking hand movement. A
second experiment was devoted to the analysis of hand shape formation. In
this investigation the Cued Speech speaker was wearing a data glove with two
sensors for each of the five fingers covering the first and second articulation with
an additional sensor between the fingers. The sensor raw data has a linear
relationship to the deviation angle between two segments of a finger articula-
tion. The hand position is located with the use of coloured landmarks placed on
the glove. In both experiments, the subject wore opaque goggles to protect her
eyes against the halogen spotlight and her head was maintained in a fixed
position with a helmet. Blue marks were placed on the speaker’s goggles as
reference points.

Two Betacam recorders had to be synchronized. At the beginning of the
recording session a push button was activated, switching on the set of LEDs
(placed in the field of the two cameras) during the first A-frame instant of
the video image. This enabled the correspondence between the time codes of the
two cameras to be calculated. The audio line was digitized in synchrony with
the video image. When the data glove was used a system for synchronization
with the audio part was needed. In this system an audio signal was released at
the thumb and index finger contact and recorded on the audio line of the video
tape. Finger contact resulted in a plateau on the raw data from the glove sensors
measuring the movement of the two fingers which allowed synchronization of
the data glove with the audio recording. The delay between the time codes of the
two cameras was calculated using the first system.

The image processing-based automatic extraction system developed at ICP
(Lallouache 1991) provided a set of lip parameters every 20 ms. We chose to
explore the temporal evolution of the between-lip area (S), which is a good
parameter for characterizing sounds at both the acoustic and articulatory
levels. In synchrony with lip area parameter and audio signal, the x and y
coordinates of the hand landmark placed near the wrist were extracted. The
onset and offset of hand and lip gesture transitions were manually labelled at
the acceleration peaks (Schmidt 1988; Perkell 1990).4 On the audio signal, the
onsets and offsets of the acoustic realization for consonants and the vowels
were also labelled.

These two experiments had complementary objectives. The first explored
the movement of the hand from one hand position to another, i.e. the carrier
gesture of Cued Speech. Because the hand shape was fixed, interference
with hand shape formation was avoided. The second experiment tested the
timing of the production of hand shape formation in relation to hand
position.
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6.3.3 Experiment 1: Hand displacement

6.3.3.1 Corpus Displacement of the hand was analysed with [CaCV1CV2

CV1] sequences made up of [m, p, t] consonants for C combined with the vowels
[a, i, u, ø, e] for V1 and V2, i.e., the vowel with the best visibility for each of the
five hand positions of the French code (Figure 6.2).

N°1

N°5*

p (par)
d (dos)
   (joue)

t (toi)
m (ami)

f (fa)

s (sel)
R (rat)

N°2 N°3

g (gare)
N°7

N°4

N°8

k (car)
v (va)
z (zut)

N°6

French Vowels

French Consonants

l (la)
   (chat)
  (vigne)
w (oui)

j (fille)
   (camping)

Side** Mouth Chin Throat

b (bar)
n (non)
    (lui)

Cheek
bonea (ma)

o (eau)
   (neuf)

i (mi)
   (on)

      (rang)

   (mais)
  (mou)
 (fort)

   (main)
   (feu)

   (un)
y (tu)
e (fée)

Z

S
J

{
O

E
u
O |

Ÿ EŸ
{Ÿ

a Ÿ

N

H

Figure 6.2 Hand placements and hand shapes used in French.
Notes: * This hand shape is also used for a vowel not preceded by a consonant.
** This position is also used when a consonant is isolated or followed by a
schwa.
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The choice of consonants was fixed according to their labial or acoustic
characteristics: [m, p] present a typical bilabial occlusion that appears on the
lip video signal as a null lip area, and [p, t] are marked by a clear silent period.
The hand shape was fixed during the production of the whole sequence: [m]
and [t] are coded with the same hand shape as isolated vowels are (hand shape
N°5), while [p] is associated with hand shape N°1. The whole corpus con-
tained twenty sequences, such as [mamamima], for each of the three conso-
nants. A control condition with no consonant for the second (S2) and third (S3)
syllables was also used, i.e., [maV1V2mV1], made up of the vowels [a, i, u,
ø, e] for V1 and V2 (e.g., [maaima]). We thus obtained twenty additional
sequences. For each of the eighty sequences the analysis was carried out on
[CV2] or [V2] in the absence of a consonant (i.e. on transitions from the S2
syllable towards S3 and from S3 towards S4), in order to avoid the biases
inherent at the beginning of the gesture.

Consider, for example, the [pupøpu] S2S3S4 sequence (from the whole
[papupøpu] S1S2S3S4 sequence) in Figure 6.3. The following events were
determined for the hand trajectory:
� M1 is the beginning of the hand gesture (determined by acceleration peak)

towards the position corresponding to S3;
� M2 is the hand position target reached (coding S3). It is determined by peak

deceleration and maintained until M3, the instant of peak acceleration and the
time at which the hand begins the gesture towards the following position for
S4 coding;
� M4 corresponds to the S4 hand target reached. In the case of non-

concordance of acceleration events on x and y, the first M1 and M3 and
the last M2 and M4 points were considered. The hand target is defined as a
time when the hand reaches the target both in x and y, i.e. between the end
of the transition and the beginning of the transition towards the following
target.
� For lip area, L1 marks the beginning of the vowel gesture. This was easily

detectable for sequences with [p] and [m] consonants, since L1 was coinci-
dent with the end of the lip closure phase. We used the beginning of the
acoustical silence to determine L1 in the case of sequences with [t]. L2 is the
lip target instant labelled at the end of the lip transition towards the maximal
lip-opening target (in the case of absence of a lip vocalic plateau the accel-
eration peak coincided with the maximal lip value).
� For the corresponding acoustic signal A1 marks the beginning of the con-

sonant of the S3 syllable.

6.3.3.2 Results For this analysis we took into account only the transitions
from the S2 syllable towards S3 and from S3 towards S4. In order to evaluate the
coordination between lip, hand, and sound, we determined different duration
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intervals. From the events labelled on each signal, we located the following
intervals:
� M1A1 corresponds to the interval between the beginning of the manual

gesture for S3 and the acoustic consonant closure;

12

10
M1

M2 M3

M4
M4L2

M3L2

M1A1

A1M2 M2L2

0.6 0.8 1 1.2 1.4

20

15

M1
M4

M2

L1

L2

M3

0.6 0.8 1 1.2 1.4

05

0
0.6 0.8 1 1.2 1.4

A1
p p uu op

0.2

0

–0.2
0.6 0.8 1 1.2 1.4

Figure 6.3 Speech vs. lips and hand motion for the [pupøpu] sequence. From
top to bottom: horizontal x (cm) and vertical y (cm) hand motion paths are
shown in the top two panes (an increase in x means that the hand moves from
the face to the right side, an increase in y means the hand moves towards the
bottom of the face); the two bottom panes contain the lip area (cm2) time-
course and the corresponding audio signal.

114 D. Beautemps, M.-A. Cathiard, V. Attina, and C. Savariaux



� A1M2 is the interval between the acoustic consonant closure and the onset of
the hand target;
� M2L2 is the interval between the onset of the hand target and the onset of the

lip target of the vowel of S3;
� M3L2 is the interval between the lip target and the beginning of the following

hand Cued Speech gesture.
All intervals were computed as arithmetic differences, i.e. the second label
minus the first. For example, M1A1 = A1 – M1 (ms). For sequences without
a consonant in S2S3, such as [maaima], mean values of 183 ms were obtained
for the M1A1 interval and 84 ms for the A1M2 interval, the A1 instant
corresponding to the onset of the glottal stop that the speaker inserted between
the production of the two consecutive vowels. The hand target is clearly in
advance of the lip area target (M2L2 = 73 ms). The following hand gesture
begins after the lip target (M3L2 = –84 ms).

For sequences with consonants, such as [mamamima], a mean value of 239
ms was obtained for the M1A1 interval. This differed significantly from the
consonant acoustical beginning. The A1M2 interval reached a mean value of 37
ms. The hand target was therefore reached during the acoustic realization of the
consonant in a quasi-synchronization with the acoustic closure event. The lip
target was usually reached after the corresponding hand target since a mean
value of 256 ms for M2L2 was obtained. Finally the hand movement towards
the following syllable placement began, on average 51 ms before the peak of the
vowel lip target (M3L2 = 51 ms).

In conclusion, the hand gesture begins before the acoustical onset of the CV
syllable (183 ms and 239 ms) and reaches the hand position largely before the
lip target, in fact, during the consonant.

6.3.4 Experiment 2: Hand shape formation

This experiment examined the association between hand shape formation and
consonant information. The corpus was selected so as to have only one finger
component per consonant hand shape transition in each sequence. For example,
the transition from [p] to [k], i.e., from hand shape N°1 to hand shape N°2
(Figure 6.2), is effected by the extension of the middle finger. Thus the mod-
ification of the hand shape required only one main sensor of the data glove. This
choice was made to simplify data reading.

6.3.4.1 Corpus Hand shape formation was analysed for two kinds of
sequences:
� (i) [mVC1VC2V] sequences with the same vowel (V = [a] or [ε]) were

designed to investigate consonant variation. The C1 and C2 consonants
were [p] and [k], [s] and [b], or [b] and [m]. This choice resulted in hand
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shape modification at fixed hand placement (for example, the [mapaka]
sequence is coded at the side position with the appropriate hand shape
modifications). Ten repetitions of each sequence were recorded. The analysis
focused on the C1V syllable, resulting in 60 syllables (10 repetitions × 3
consonant groups × 2 vowels).
� (ii) [mV1C1V2C2V1] sequences varied both vowel and consonant, thus

involving both hand shape modification and hand placement transitions.
The C1 and C2 consonants were [p] and [k], [ʃ] and [g], [s] and [b], or [b]
and [m]. The V1 and V2 vowels were [a] and [u], [a] and [e], or [u] and [e].
Thus, for the [mabuma] sequence (see Figure 6.4) coding implicates a
transition of the hand from the side position towards the chin and then
back to the side position, while the hand shape changes from the N°5 to N°
4 configuration and back to the N°5. The change from 5 to 4 is realized with
the thumb facing towards the palm. Five repetitions of each sequence were
recorded. The analysis focused on the C1V2 syllable, resulting in 60 syllables
(5 repetitions × 4 consonant groups × 3 vowel groups). Since an error
occurred in the recording for a realization of a [mubemu] sequence, 59
sequences were considered for this corpus.
� In all sequences (with vowel-not-changed and vowel-changed), the begin-

ning of the consonant (A1) is labelled on the acoustic signal. The beginning
of the finger gesture is marked at the D1 maximum point of acceleration and
the end is marked at the D2 deceleration point of the corresponding raw data
trajectory. Similarly for sequences with hand movement from one hand
position to another (case of vowel-changed sequences), the hand trajectory
was marked by M1 and M2 (Figure 6.5).

6.3.4.2 Results It should be remembered that the analysis focused only on
the second syllable. In order to evaluate the coordination between sound, finger,
and hand different duration intervals were derived from the events labelled on
each signal. For all the sequences:
� D1A1 is the interval between the beginning of the finger gesture and the

beginning of the corresponding acoustic consonant;
� A1D2 corresponds to the interval between the beginning of the acoustic

consonant and the end of the digit movement.

Figure 6.4 Cues for the [mabuma] sequence.
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In addition, for vowel-changed sequences:
� M1A1 is the interval between the beginning of the hand movement and the

beginning of the acoustic consonant;
� A1M2 corresponds to the interval between the acoustic consonantal begin-

ning and the end of the hand gesture.
As in the first experiment, all intervals were computed as arithmetic differences,
i.e., the second label minus the first label; for example, D1A1 = A1 – D1 (ms).
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Figure 6.5 Speech vs. lips and hand motion for the [mabuma] sequence. From
top to bottom: Horizontal x (cm) and vertical y (cm) hand motion paths are
shown in the top two frames (an increase in x means moving the hand from the
face to the right side, an increase in y means moving the hand towards the
bottom of the face); the bottom two frames contain the temporal deviation of
the raw data of the thumb first articulation glove sensor and the corresponding
acoustic signal.
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For the vowel-not-changed sequences (sequences with only hand shape
change, the hand placement being maintained), we obtained mean values of
124 ms for the D1A1 interval and 46.5 ms for the A1D2 interval. Thus the
beginning of the finger gesture precedes the acoustic onset of the consonant.
The finger finishes its movement just after the beginning of the acoustic
realization of the consonant.

For the vowel-changed sequences (both hand shape and hand placement
change), mean values of 171 ms for the D1A1 interval and −3 ms for
the A1D2 interval were obtained. Thus, for the finger gesture relative to the
sound, we observed the same pattern as in the previous result. As regards
the hand gesture, mean values of 205 ms for the M1A1 interval and 33 ms for
the A1M2 interval were obtained. The hand gesture begins before the finger
gesture and consequently well before the onset of the acoustic consonant. The
hand target is reached at the beginning of the acoustic realization of the
consonant. Finally if we compare duration for hand shape formation in refer-
ence to hand transition between two hand placements, we note that the con-
sonant finger gesture is encapsulated in the hand transition.

6.3.5 Summary of the two experiments

There is a noticeable convergence in the results of the two experiments. To
summarize, for hand position, it was observed that
� the movement of the hand towards its position begins about 200 ms before

the acoustic beginning of the CV syllable. This implies that the gesture
begins during the preceding syllable, i.e. during the preceding vowel;
� the hand target is attained at the beginning of the acoustic consonant onset;
� this hand target is therefore reached on average 250 ms before the vowel lip

target.
These three results reveal the anticipatory gesture of the hand motion relative to
the lips as the hand placement gesture covers the duration of the whole syllable,
with a temporal advance over the vocalic speech gesture.

Finally, it was observed from the data glove that the hand shape is completely
formed at the instant when the hand target position is reached. In addition it was
noticed that the hand shape formation gesture uses a large part of the hand
transition duration.

6.4 General discussion

6.4.1 Cued Speech co-production

The consideration of the two Cued Speech components within the framework of
speech control has a bearing on the future elaboration of a quantitative control
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model for Cued Speech production. For transmitting consonant information, the
control type is figural, i.e., a postural control of the hand configuration (finger
configuration). The type of control for transmitting the vowel information is a
goal-directed movement performed by the wrist and carried by the arm. These
two controls are linked by an in-phase locking. On the other hand, for speech,
there are three types of control:
� (i) The mandibular open-close oscillation is the control of a cycle, self-initiated

and self-paced (MacNeilage 1998; Abry et al. 2002). This is the control of the
carrier of speech, the proximal control that produces the syllabic rhythm.
� (ii) Following Öhman (1966; see also Vilain et al. 2000), the vowel gesture is

produced by global control of the whole vocal tract – from the glottis to the
lips –, i.e., a figural or postural motor control type.
� (iii) The consonant gesture is produced by the control of contact and pressure

performed locally along the vocal tract.
The carried articulators (tongue and lower lip) together with their coordinated
partners (upper lip, velum, and larynx) are involved in these two distal (global
and local) controls.

The mandibular and vowel controls are coupled by in-phase locking.
Consonantal control is typically in-phase with the vowel for the initial conso-
nant of a CV syllable. But it can be out-of-phase for the coda consonant in a
CVC syllable. Finally consonant gestures in clusters within the onset or the coda
can be in-phase (e.g., [psa] or [aps]) or out-of-phase ([spa] or [asp]).

As for speech, Cued Speech vowels and consonants depend on the wrist-arm
carrier gesture, which is analogous to the mandibular rhythm. The control of
the vowel carried gesture is a goal-directed movement, which aims at local
placement of the hand around the face. On the other hand, the consonant carried
gesture is a postural (figural) one. Thus the two types of control in Cued Speech
are inversely distributed in comparison to speech: the configuration of global
control of the speech vowel corresponds to a local control in Cued Speech,
whereas the local control for the speech consonant corresponds to a global
control in Cued Speech.

Once speech rhythm has been converted into Cued Speech rhythm (that is a
general CV syllabification with some cluster specificities as in German), the two
carriers (mandible and wrist) can be examined with respect to their temporal
coordination, i.e., phasing. This CV re-syllabification means that every con-
sonantal Cued Speech gesture will be in phase with its vocalic one, which is not
always the case in speech for languages that have more than just CVs. Unlike
speech the Cued Speech consonant gesture never hides the beginning of the
in-phase vocalic gesture (Öhman’s model). As for the phasing of the two carried
vowel gestures, our experiments made clear that the Cued Speech vowel gesture
did anticipate the speech vowel gesture.
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6.4.2 Towards a topsy-turvy vision of Cued Speech

The coordination obtained between hand, lips, and sound confirms, in our
opinion, the in-principle validity of the advance (lead) of the hand on the
sound, programmed as an empirical rule by Duchnowski et al. (2000) for
their automatic Cued Speech display. Of course the range of this anticipatory
behaviour will vary with different speakers, rates, etc., and should be examined
by subsequent articulatory studies.

These considerations result in quite a rather upside-down vision of the Cued
Speech landscape. The in-principle advance of the hand over the lips (and on
sound) is crucial for the question of the integration of manual and lip informa-
tion. Currently Cued Speech has been designed as an augmentation for lip
disambiguation. A general pattern seems to appear from our data on the
temporal organization of hand and lip gestures in the production of successive
CV sequences. The hand attains the vowel placement at the beginning of the CV
syllable and moves from that position towards a new one even before the peak
acoustic realization of the vowel and before the corresponding vocalic lip target
is reached. It seems therefore that production control imposes its temporal
organization on the perceptual processing of Cued Speech. This organization
leads us to think that the hand placement first gives a set of possibilities for the
vowel then the lips determine a unique solution. This hypothesis has been
successfully tested within the framework of gating experiments for phoneme
identification where recognition of CV syllables has been evaluated across the
time course of available online information resulting from the coordination of
hand and lip motion (see Cathiard et al. 2004; Troille et al. 2007; Troille 2009;
Troille et al. 2010). These studies demonstrated the ability of deaf subjects to
recover the anticipatory behaviour of the hand in their Cued Speech perception.
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7 Bimodal perception within the natural time-course
of speech production

M.-A. Cathiard, A. Vilain, R. Laboissière, H. Loevenbruck,
C. Savariaux, and J.-L. Schwartz

7.1 Introduction

The purpose of this contribution is to answer a set of questions about the visual
perception of speech, given that speech is bimodal. We will claim that, in order
to understand the perception of visual speech and its integration to auditory
perception, a production and control stance must be adopted. Such a stance
leads to the learnability issue of movement control in growing children, i.e. the
mastery of speech sound production. These two orientations – the production-
control stance and the developmental one – are of course highly disputable.
Perception can be conceived as not having any link per se with speech produc-
tion control and learning. Our bet is that bimodal perceptual processing is given
for free by the natural course of speech production. We consider the integration
of auditory-visual information to be dependent on the timing coherence of the
two dynamic signals. Coherence does not mean simply synchronous acoustic
and optic events. It must be emphasized that the articulatory-acoustic temporal
organization of speech follows a determined unfolding of action, a time-course
that is the basis for perceptual processing. Actually, the possibility that speech
can be seen before it is heard, due to anticipatory coarticulation, deserves careful
modeling of speech production and its timing in order to be thoroughly
understood.

Such a conception of perception based on production timing crucially
depends on the model assumed for the structure of speech. Speech is a
coarticulated structure. In Öhman’s classic model of coarticulation (Öhman
1967a) consonants were superimposed on the vowel-to-vowel (V-to-V) tran-
sition. This is somewhat different from related models, as proposed at Haskins
Laboratories, where vowel-consonant-vowel gestures simply overlap. In
Öhman’s model the vowel component has the specific status of a slow-varying
signal compared to the relatively fast-varying consonant. In addition, the vowel
can be conceived of as a set of features/gestures involving the tongue, the lips,
and other articulators, like the velum, including the control of larynx height.
Without taking any linguistic-ontological stance about these features/gestures,
this is the simplest way we can describe the time-course of the main articulators
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and identify anticipation and carry-over phenomena in normal dynamic speech,
i.e., specify patterns of coarticulation. It should be remembered that, for Öhman,
the vowel requires global control of the whole vocal tract, whereas the conso-
nant needs only local control. The coarticulated structure of speech à la Öhman
does not imply that the carrier vocalic component will be a primitive. As we
demonstrate later this is clearly not the case from a developmental point of view.
Moreover, as regards the global vowel command in the basic vowel-to-vowel
transition, it will be shown that this is not the only component needed to account
for the control of vowel production.

What we propose here is an embedding of different models, which could
account for the neural and behavioral development of speech control. We will
focus on visible gesture data for the main sound types, ranging from vowels to
fricatives, in the vein of our first synthesis on Phonetics and Labiality (Abry
et al. 1980) dedicated to the tug-of-war between rounding in vowels and
protrusion in sibilants, the main new topic being the addition of glides.
Because of this focus, we will start by integrating a selected set of models and
theories of speech production which account precisely for the control of these
different types. Our embedding plan starts with MacNeilage’s Frame/Content
theory, via Öhman’s coarticulation model, followed by our 2-Component-
Vowel model, which takes into account glide production, and ending with the
latest-developing control, the one for sibilants.

Speech movements must be studied within the framework of the theory of
biological motion control, integrating the theory of physical motion (biome-
chanics) and control theory (biocybernetics). When speech movements seem to
contradict the well-known laws of motion, one has to search for an explanation
within the above-mentioned theories. This is why we will tap into a new control
resource for vowel production, our 2-Component-Vowel model. This model
deals with a necessary part of the agenda of speech research, namely how to
explain why transitional sounds, so-called epentheses, can be produced between
voluntary planned sounds, without any specific command. It is of course
fundamental to explain why glides emerge in the basic vowel-to-vowel tran-
sition that is ubiquitous in speech. Epenthetic sounds are not simply minor
physical events. Apart from the fact that they can be recovered in language
change by linguistic representations and planned like other sounds, the explan-
ation of epentheses forces us to consider linguistic sounds in the realm of
biophysics and biocybernetics. In these domains there is no minor movement
that does not have to be explained within a more comprehensive theory.

In movement control, one of the main issues is representation of motion in
speech. This issue has direct implications for perception. While it is true that, for
consonants, there is no question about the dynamic aspect of at least some
phases of these sounds (typically the release phase for plosives), it is not the
same for vowels. For vowels, the theory of dynamic specification (Strange and
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Bohn 1998) does not seem absolutely necessary to account for production and
perception phenomena. The issue of the perception of lip configurations and
motion will be discussed when it is relevant to our results.

We present below in three parts the ontogenetic, production, and perception
aspects of motion in speech. The V-to-V transition is central to each aspect. The
2-Component-Vowel model, which is designed to incorporate previous V-to-V
modeling, and which leads ultimately to the basic VCV temporal organization
of speech, is a vital thread linking development to perception. Finally we will
obtain a model of speech production in which visual perception can naturally
settle, taking into account audiovisual timing. In the concluding section, we
propose tests of the global validity of the proposed model, via further audio-
visual integration experiments, and increased knowledge of motor control of the
inner parts of the vocal tract (which depends at present more crucially on the lips
than on accurate data from time-varying area functions).

7.2 The 2-Component-Vowel model

In this section we acknowledge that the priority for our 2-Component-Vowel
(2-Comp-V) model is the analysis of the basic vowel-to-vowel transition.
We take for granted that on this component Öhman’s model is correct. In
the V-to-V transitions that display the three major universal dimensions used
for vowels, two are highly visible: rounding and height. We will leave aside for
the moment one of the main concerns of Öhman’s: the timing of the onset of
the second vowel with respect to the consonant closure (before and/or during
this phase?). We return to this question – specifically in relation to the visibility
of the vowel onset through the consonant – in a special section (7.3.1.2)
dedicated to further elaboration of the 2-Component-Vowel model. Actually
the primary aim of the present section is to show that V-to-V control is not a
primitive from a developmental point of view. Our test of Öhman’s model uses
quantitative articulatory modeling in order to identify the V-to-V component
within the intervocalic consonant by using the second vowel’s characteristic
configuration, and without specifically analyzing the timing of the second
vowel onset.

7.2.1 An articulatory modeling test of Öhman’s V-to-V

7.2.1.1 An articulatory model built from cineradiographic data Articu-
latory modeling allows us to test quantitatively different theories of coarticula-
tion. The models used in this study have been designed in such a way that their
parameters represent the degrees-of-freedom of the vocal tract of the speaker.
This modeling method allows us to study the effects of the action of the
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degrees-of-freedom, and, at a higher level, to infer motor commands from the
observed behaviors.

The data comprise two cineradiographic corpora of two French speakers
uttering VCV combinations with C = [b, d, g, ʒ, v], and V = [i, y, u, a]. From
these data, two linear anthropomorphic articulatory models have been elabo-
rated. (The present contribution will exemplify only one of these two speaker-
based models.) The degrees-of-freedom of the speaker’s vocal tract are obtained
through an articulatory-driven PCA (Principal Component Analysis) and used
as parameters of the model.

The nine parameters: jaw height (JH), tongue body (TB), tongue dorsum
(TD), tongue tip (TT), lip height (LH), lip protrusion (LP), lip vertical
elevation (LV), larynx height (LH), and tongue advancement (TA), can be
assumed to represent the degrees-of-freedom of the articulators of the vocal
tract fairly well.

We have developed a method to analyze the coarticulation patterns involved
in the production of the VCV sequences in our corpus (described more exten-
sively in Vilain et al. 1999). The model affords us a view of global vocal tract
contours, as well as insight into the individual actions of each degree-of-
freedom of the vocal tract, not only those of the lips and the jaw (which are
the most visible), but also those of the tongue namely the body (TB), dorsum
(TD), and tip (TT). In other words, we decompose the sagittal function into
various activated articulatory parameters and track the evolution in the recruit-
ment of these parameters from the vowel into the consonant.

Figure 7.1 to Figure 7.4 exemplify this method of extracting the actions of
the first four articulatory parameters. The midsagittal contours are given in the
upper row. In the lower row, the horizontal axis gives the rank order of the lines
of the midsagittal grid used to measure and model the vocal tract, from the
glottis (line 1) to the apex (line 27). The vertical axis gives the sagittal distance.
The upper solid line is the roof contour of the vocal tract, from the pharyngeal
wall to the palate and the teeth. The dashed line is the neutral position, to
which has been added the variation resulting from the actions of the last five
parameters of the model (this is labeled as “raw data”). Two of these five
parameters have a small effect on the tongue: namely tongue advance (TA,
horizontal displacement of the tip of the tongue), and larynx height (LH). The
other three parameters concern the lips: height, protrusion, and vertical eleva-
tion. Our analysis does not include the TA and LH parameters, because their
effects on the tongue are so small relative to those of the first four tongue
parameters.

Among the first four parameters, the “circle” line represents the sagittal
configuration of the vocal tract, once the action of the jaw height parameter
has been added. Then the action of the tongue body (TB) parameter is added,
giving the position of the “plus” line. Adding the tongue dorsum (TD)

124 M.-A. Cathiard, A. Vilain, R. Laboissière et al.



parameter yields the “x-marked” line. The addition of the tongue tip (TT) action
results in the “star” line denoting the final vocal tract configuration, all param-
eter effects having been computed.

This successive addition of parameter effects is also exemplified when these
effects interact (for example, when the action of JH should have lifted up the
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Figure 7.1 Sagittal contours for the three center phases of [u], [b], and [u], in
the production of [ubu] (speaker J1X).
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Figure 7.2 Contributions of the four main command parameters for the three
center phases of [u], [b], and [u] in the production of [ubu] (speaker J1X).

12

10

8

6

4

2

2 4 6 8 10 12 14

12

10

8

6

4

2

2 4 6 8 10 12 14

12

10

8

6

4

2

2 4 6 8 10 12 14

Figure 7.3 Sagittal contours for the three center phases of [a], [b], and [a], in
the production of [aba] (speaker J1X).
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tongue, but TB, TD, and TT bring it back down; see Figure 7.1, Figure 7.2 and
discussion in 7.2.1.2), thereby enabling us to highlight the compensation
strategies that are implemented during coarticulated speech.

7.2.1.2 A puzzling sequence for coarticulation modeling For all the
VCV sequences in the corpus, it proved unproblematic to interpret vocal tract
configurations in terms of Öhman’s articulatory commands, considering the
consonant command as superimposed on the V-to-V command. When we take
an [ubu] sequence as an illustration for visible speech of the vocalic rounding
dimension, it is obvious that the commands for the vowel are observable
throughout the consonant (cf. Figure 7.1); the vocal tract, which is narrowed
at the lips and at the velum, is lengthened by lip protrusion and larynx lowering.
This is a perfect illustration of the global control of the whole vocal tract for the
vowel configuration upon which the lip closure for the consonant is a local
perturbation.

Our analysis now focuses on a case that may challenge Öhman’s view. In
[aba], a developmentally important sequence which displays another effective
visible vocalic dimension, height, articulatory modeling revealed, in adult
speech, what seemed to be at first examination a lingual compensatory strategy
for the vowel: this occurred only during the consonant, not for the vowel and
appears paradoxical for Öhman’s modeling where the labial consonant must not
in principle recruit the tongue for lowering it.

Along the [aba] sequence presented in Figure 7.3, the sagittal contours in the
top figures show that the overall open configuration of the vocal tract for the [a]
vowel is still fairly present during the labial closure phase. What is this config-
uration due to? If we now observe Figure 7.4 we can see how the vowel and
consonant configurations are achieved by the combination of model parameters.
The first [a] is realized by the action of the mandible alone, since the effect of the
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Figure 7.4 Contributions of the four main command parameters (below)
for the three center phases for [a], [b], and [a], in the production of [aba]
(speaker J1X).
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jaw height parameter (symbolized with the circled line) can be seen to explain
almost all of the variation in movement away from the neutral position. The
second [a], which comes after the consonant, has exactly the same articulatory
components as the first one.

The completion of the consonant is made with quite a different strategy. Jaw
height in this case is recruited for another job, i.e., helping the lower lip to
reach occlusion with the upper one. Note that it is now the tongue parameters
that act to keep the anterior vocal tract open, allowing the posterior tract to be
classically constricted. Following Maeda and Honda (1994), we can interpret
the tongue body backing as an action of the hyoglossus, pulling the tongue
back and down, and the apex positioning can be interpreted as action of the
anterior genioglossus, which lowers the anterior part of the tongue. The final
tongue configuration is only slightly higher than the preceding and following
[a]s. But it is noticeably lower than the position the tongue would have
reached if it were simply carried passively by the jaw, as demonstrated
below by our simulation data,

As restated above, a bilabial consonant would not be expected to be specified
for the action of the tongue, and therefore its production in a context that does
not recruit the tongue would be thought to be executed with the jaw and lips
only. But strikingly [b] appears here to necessitate a complete recombination of
the articulators, aimed at recomposing the open shape of [a]; the very low jaw
height parameter necessary for the production of [a] is brought back to zero for
the consonant. Yet the body of the tongue is not passively raised by this position
of the jaw, as could be supposed. Instead we observe a reorganization of the
articulators, whose combined actions recover the vocal tract shape of [a], by
compensating for jaw elevation by tongue lowering.

To illustrate the extent of this phenomenon, we have simulated in the
articulatory model what would happen if, as we first thought, the consonantal
gesture recruiting the jaw and lips were produced with no active tongue shaping
as in the previous and following [a] vowel configurations. Figure 7.5 shows the
comparison between the modeled contour regenerated from the original [b]
configuration (solid line) and a simulated configuration without the compensa-
tory activity of the tongue (dashed line). Rather unexpectedly, the new position
of the tongue compensates for the high position of the jaw implied by the lip
occlusion. This new combination cannot be considered as a retropropagation of
the next [a] configuration, since this second [a] is produced exactly as the first
one was, i.e., with the same jaw height parameter value and, again, without any
effect of tongue parameters.

Notice that, if this sequence is read in area function terms, Öhman’s model
of coarticulation is supported, since we have approximately a steady [a] global
configuration, just perturbed locally by [b] closure. So it is only at a higher
level, that of motor control, that we meet the paradox. In order to support a
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dual-channel motor control model of speech, the command parameters of
articulatory modeling must be reinterpreted.

7.2.1.3 Questions for Öhman’s model at the motor control level This
unfolding of events interpreted as commands raises the following questions.
� Is this lingual activity during [b] due to a rapid change in motor

commands?
� Does this lingual activity pertain to the vowel? That is, does this contradict

the idea of a passive V-V gesture on which the consonant is superimposed,
since there exists an active maneuver to keep the vowel stable? If so, the
vowel would be controlled through two different articulatory strategies,
between which the speaker would have to switch, from the vowel to the
vowel within the consonant closure, an abrupt change which seems
unlikely.
� Does this lingual activity pertain to the consonant, in which case

these different strategies represent the successive activation of vowel and
consonant control?

One possibility is that the observed pattern is due to a context-free, phoneme-to-
phoneme activation process, such as Joos’ overlapping innervation wave theory
(Joos 1948), which is very similar to the Haskins model, as disseminated in

Figure 7.5 Comparison between the modeled contour regenerated from the
original [b] configuration (solid) and a simulated configuration without the
compensating activity of the tongue (dashed).
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speech face synthesis via Löfqvist (1990). But the acceptance of such a process
implies that the lingual gesture should be considered as a constraint pertaining
to the labial consonant, like jaw raising and the labial upward movement. This
solution goes against the idea of labials being unspecified for lingual gestures,
and cannot be explained by any articulatory or acoustic need.

In the original theory of coarticulation by Öhman (1967a), the dual-channel
model is explained by the fact that tongue activity in speech is controlled by sets
of muscles with separate neural representations: one for vowels, one for apical
consonants, one for dorsals, and one of course for labials. The articulatory
commands are therefore transmitted independently of each other, which allows
the diphthongal vowel-to-vowel gesture to be carried out while the consonantal
gesture is superimposed on it.

What we might propose here is that the configuration for the [a] vowel can be
completed with only the action of the jaw, but that actually the lingual muscles
are also recruited during the jaw movement. The activation may not result in an
effective displacement, since one and the same configuration can correspond to
a different set of muscle activations. Nevertheless, activation still exists. In this
case, it is the recruitment of the jaw for the production of the consonant that
results in tongue activation. The control for the [a] vowel, which was supposed
to consist of jaw opening alone, is thus revealed to be more complex, since it
involves the tongue as well, through lowering muscles such as the hyoglossus
and anterior genioglossus.

This solution is now in line with Öhman’s dual-channel model of coarticu-
lation, not only at the level of resulting area functions, but also at the level of
motor commands. The vowel command setting is actually constant at the
control level for hyoglossus, genioglossus, and jaw muscles for lowering. The
consonant command for the labial closure also recruits the jaw muscles, but for
an elevating action. The fact that the consonant command is superimposed on
the steady vowel command lets the jaw position emerge with different values,
lowered for [a], but more elevated for [b] in the [a] context.

A consideration of recently available developmental data – stimulating
though limited – will help us rethink Öhman’s modeling as embedded within
a coherent framework.

7.2.2 What developmental path for coarticulation control?

7.2.2.1 Milestones in the development of coarticulation control The
applicability of Öhman’s model to the issue of speech ontogeny is not unpro-
blematic since there is no evidence that the V-to-V carrier transition is a
primitive. Hence it is clear that such a model is basically correct, but must be
revised to fit the developmental data. Our approach is to start from the jaw
cycles of the 7-month-old canonical babbler (resulting in the common [bababa]
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or [dadada] types), as a primitive, and to settle the V-to-V transition within the
babbling cycle. In other words we will borrow from MacNeilage’s (1998)
theory before revising Öhman’s model.

In a more systematic longitudinal view, recent studies have led us to propose
that the unfolding of speech production development could take the following
path:
(1) Starting at the so-called canonical babbling stage, we posit a global master-

ing of the carrier articulator, the mandible alternating closing and opening
phases.

(2) Then, what emerges is the independence of the carried articulators, the
lower lip and the tongue which allows, during the closing or so-called
“closant” phases, the control of local constrictions, together with
anatomical parts of the mouth roof (upper lip, hard and soft palate,
pharynx wall).

(3) Thereafter we have evidence of the learning, during the opening or so called
“vocant” phases, of a global control of the vocal tract.

(4) The stage at which occurs what we will call a local control in vowel
production – as accounted for by our 2-Comp-Vmodel – remains uncertain.
To our knowledge this question has not yet been addressed by speech
developmentalists in these proper terms. But it is rather obvious that glide
production precedes mastery of vowel steady states.

(5) There seems to exist a final stage where fricative control of the [ʃ]-type
is contrasted with the more precocious [s]; this stage follows the famous
fish/fis phenomenon (Moskowitz 1970), also worked out by Johnson et al.
(1981) and cited by Oller andMacNeilage (1983, p. 94). A French child can
say “Mathieu sait pas dire casser [“to break” instead of cacher “to hide”], il
dit casser”). The adult mastery of this production corresponds to a rather
global “freezing” of at least the tongue blade configuration [as evidenced
by, among others, our own observations (Vilain et al. 1998); here for [ʃ] in
Figure 7.6].

It is important to note that our proposal for an embedding of control schemas is
framed in the vein of the development of control for body segments. The parts
of the vocal tract that form the core of the “articulatory speech body” are first
mastered locally (as the eyes, the head, the trunk, and the hindquarters in
locomotor development) before the global mastery of postures (as in locomo-
tion) or figural movements controlling the whole body shape (as in dancing). In
this sense we outline here for the first time an integrative developmental model
for the control of speech body segments. The alternating succession of global
and local controls denotes the integration path in development. In the following
section, we will discuss only stages (2) and (3) which are directly relevant in
revising Öhman’s model.
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7.2.2.2 Emergence of local constriction control for closants Munhall
and Jones (1998) recorded the activities of the lower and upper lips during the
production of a [bababa] cycle, by an 8-month-old female baby, and compared
this with a [bababa] sequence (with serial order control) produced by an adult
(Figure 7.7). The baby pattern shows oscillation, from closed to open config-
urations, of the lower lip carried by the mandible, but no active movement of
the upper lip. “The only upper lip movement occurs in phase with the lower lip
motion and is presumably caused by the lower lip forces pushing the upper lip
upward after contact . . . This pattern is consistent with [MacNeilage’s] pro-
posal that initial babbling primarily involves mandibular motion” (subsequent
studies corroborated this interpretation quantitatively, starting with Green et al.
2000). At this stage, no control over lip constriction for speech has yet
emerged.
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Figure 7.6 Sagittal contours for [ʃ] in all combinations with [i, y, u, a]. Notice
the control of a large subpart of the vocal tract: the lips are specifically
protruded for this consonant and the tongue blade is specifically stable
together with jaw height.
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Figure 7.7 Vertical displacement of upper lip (top traces in each figure) and
lower lip (bottom traces) as a function of time during repetitive production of
[bababa] by (a) an 8-month-old girl and (b) an adult (from Munhall and Jones
1998).
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In contrast, the adult pattern shows a similar oscillation of the lower lip
together with the jaw, but also an active displacement of the upper lip. The
upper lip moves downward to meet the lower lip, and then resists against the
pushing of the lower lip (which has proven to be active in current data).

These two patterns exemplify the development of control of the lips for
speech. This local control, which assists in completing controlled constrictions,
is obviously not yet present in the 8-month-old baby, i.e., by the time of
canonical babbling. It becomes available later in development. When? We
have at present no information about the date of this emergence. However
there is clear evidence that babbling of hearing babies shows more oral [baba]
or [dada] than corresponding nasal [mama] or [nana], in the babbling of
hearing-impaired infants (Davis and MacNeilage 2000). This calls for an
explanation. In addition, the babbling of a baby fitted with hearing aids soon
switches towards the production of more oral segments (McCaffrey et al. 2001).
Could it be that in order to obtain a more effective production (a better effect/
effort ratio), the developmental path is to acquire a better control of the closed
state of the vocal tract (including nasal port closing and lip contact), a control
that could be precociously reinforced through auditory feedback? A relevant
example of more effective production in these terms is the greater acoustic
intensity found in [baba] than [mama], which would correspond more closely to
opening and closing movements induced by jaw articulation.

7.2.2.3 Emergence of global control for vocants What then of the global
control of the vocal tract that is necessary for the realization of vowels coarticu-
lated with consonants? Sussman et al. (1999) have studied the development of
CV coarticulation by analyzing the acoustic signal, using locus equations based
on formants.1 In their case study, Sussman and colleagues follow a female baby
from age 7 months to age 40 months, from babbling to meaningful speech, and
analyze her utterances to obtain F2 at onsets and at vowel midpoints. The locus
equations are interpreted as an index of the evolving degree of coarticulation of
labial, alveolar, and velar consonants across different vowel contexts from baby
to adult patterns. These data are regarded as representative of the way in which
segmental independence is progressively acquired with the increasing mastery
of coarticulation.

The articulatory paths towards adult-like norms appear to differ across con-
sonant types. For labials, the baby has to learn how vowel tongue position must
be integrated with and also independent of lip closure. Locus equations for
labials show slow slopes at first. The slopes increase towards adult target slopes
around 1 year, at about 14 months, probably indicating that the child is begin-
ning to produce vocalic tongue placements that are quite independent from the
consonant.
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Coarticulatory effects in alveolars start with a high slope that decreases
rapidly in the first months, and then remains below adult slope values until
the third year. It can be hypothesized that the child is at first unable to produce
independent tongue movements with the two parts of the tongue needed for
alveolars and vowels. Then she gains more independent motor control over the
different degrees-of-freedom of her tongue, probably guided by the auditory
input she receives from her environment. The very low slopes seen during the
next months seem to indicate some hyper-resistance to coarticulation, which is a
classical phenomenon in the development of new skills. The newly acquired
capacity for independent control tends to be over-exploited, before being finely
tuned, according to the actual needs of communication.

Velars show the most stable slope values relative to the adult norms; after
large fluctuations in the very first months, they retain a high level of coarticu-
lation, even higher than for adults.

It seems easier to produce CVs where both consonant and vowel share the
same articulator (as in velar + vowel, where they overlap completely), than to
“integrate (labial + vowel), or differentiate (alveolar + vowel) articulatory
components in the achievement of CV utterances that meet adult norms”
(Sussman et al. 1999, p. 1094).

What appears to be going on here is that when the baby acquires the ability to
produce differentiated consonant constrictions, she still has to learn global vocal
tract control – à la Öhman, that is, from the lips to the larynx, to adapt her
production strategies to adult coarticulation norms.

One interesting point is that adult coarticulation values are reached at about
the emergence of the first words. This suggests that coarticulation can be used in
first word harmony, that is, in continuity with the pre-word stages, preserving
frame dominance (Davis and MacNeilage 1995).

7.2.2.4 Öhman revisited in a developmental framework In summary,
the development of speech coarticulation seems to proceed as follows:
� The first control is over the mandible, giving rise to syllable-like frames, i.e.,

global control of the overall carrier component of speech.2

� As independence of carried articulators is gained, that is, when the baby
begins to control local constrictions (control of the upper and lower lips is
obviously not yet mastered at 8 months; it will be available later), here is the
very emergence of segmental content.
� The global control of the vocal tract needed to perform adult-like coarticu-

lation patterns coincides in development with control of harmony in first
words.

This latter stage is the one in which control of Öhman’s V-to-V transition
occurs. We can now rephrase our [aba] case. The two [a] vowels, with their
tongue lowering actions, do not need any jaw command nor does the [b]
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consonant, which involves lip actions, but no elevating command on the jaw.
These jaw movements are attributed to the carrier component, from which the
lip contact control and the lowering of the tongue have, through learning,
become independent. The core of the coarticulation phenomenon is that this
independence is gained when the lowering action of the vowel can be performed
during the closure of the consonant. What seems to be a retro-propagation of the
vowel feature/gesture into the consonant is more likely to be a by-product of
global control over the whole speech body, which requires a larger time span.
This global, slow, control is perhaps the most significant part of Öhman’s
legacy, the one that we have reinterpreted in terms of postural or figural move-
ment control. Finally Öhman’s coarticulation is thus superimposed on the whole
babbling cycle, and not the other way round (i.e., not consonants superimposed
on V-to-V transitions, as he proposed).

The jaw carrier component is also visible in [ibi], [ubu], and [yby] sequences,
though with less or minimal amplitude, depending on the speaker. Unlike for the
[a] vowel, the lip and tongue local or global controls have recruited the
mandible for these high vowels, as they did for the tongue and/or lip control
of fricatives like [s] and [ʃ]. Visible [aba] and [yby], which illustrate height and
rounding vowel dimensions, respectively (not to mention the extremely differ-
ent types of consonant movements such as [b] and [ʃ]), could thus be controlled
in a talking face such as conceived (Borel et al. 2000; Revéret et al. 2000; Badin
et al. 2002) using learnable control-embedded models.

7.3 The 2-Comp-Vowel model and visible speech

When the V-to-V transition has been mastered, vocalic coarticulation is perva-
sive in the speech flow, letting vowel dimensions appear more or less auditorily
and/or visibly through consonants. In the span of this V-to-V transition, we will
claim that glides are as ubiquitous in the speech flow as vowels are. For these
glides appear naturally as the transitional portions – say as glide epentheses –
between the so-called vowel “steady-state” phases. The question whether these
glides are audible and visible during the consonant phase will be addressed later.
The main question for the moment will be: Why do they appear within the V-to-
V transition? Since the phenomenology of glide epenthesis between vowels has
been so poorly established in the motor control literature – although in descrip-
tive phonetics their notation can be traced back at least to Bell and Sweet (Sweet
1880) –we will take time to give an experimental proof of their existence within
the different phases of the V-to-V transition: on-gliding, climax (and plateau),
off-gliding. Then we will outline the 2-Comp-Vowel model which delivers a
more comprehensive account of these different phases of V-to-V transitions
including glide epenthesis production and relative timing of V-to-V through C
in VCV.
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7.3.1 Major visible and audible phases in V-to-V transitions

7.3.1.1 VV transitions As an example, we consider the interpretation of
articulatory measurements of lip movement for three French V-to-V phases.
Why is this of interest? At present, there is no precise description of the time-
course of articulatory constriction inside the vocal tract. In addition, French
features an [i]/[y] contrast, which is supported mainly by lip movement.
Currently, this analysis is the first direct articulatory evidence available in
the world which rests on precise, repeated measurements of lip area sampled
at fifty frames per second, using the system developed in our laboratory
(Lallouache 1991; Audouy 2000). In our lip motion capture technique, we use
blue lips for image preprocessing via chroma-key. This is not a “dirty trick”: it
is the best non-invasive method to get precise measurements of between-lip
area. We will see that this is the only available measurement setup that meets
the accuracy requirements for speech, where quite small differences in lip
area can produce very different acoustic results, for example, in VV [yi] and
VCV [ybi].

From Figure 7.8, we can interpret changes in upper lip protrusion and lip
constriction area in a production of a sentence by a male French speaker: “Tu dis
(Do you say): ‘UHI ise’?” [tydi#yiiz] (where UHI is a “pseudo-Indian” proper
name and “ise,” third person of pseudo-verb “iser”). For more details see
Cathiard (1994). We can identify the following sequence of events:
(1) Constriction and protrusion movement onset for [y] appear to start in phase

(note that protrusion starts after a maximum retraction during preceding [i]
and a plateau during the pause);

(2) constriction plateau for [y] (but not constriction maximum as discussed
further below) is reached first (constriction plateau onset);

(3) then protrusion maximum (indicating vowel climax) together with con-
striction plateau;

(4) shortly after, protrusion decreases (retraction onset towards the following
[i]), a slight constriction area decrease occurs (leading to maximum con-
striction); this is what we call “off-glide epenthesis,” in this case a [ç]-glide;
this glide is produced by a retraction of the lips together with a narrowing of
the lip slit;

(5) and area of constriction increases (constriction offset) finally rejoining
protrusion decrease towards the following [i] vowel.

From event (1) to event (2), phase (1)–(2) can be considered as the on-gliding
phase of the vowel [y]; this phase will be modeled articulatorily and percep-
tually with reference to our Movement Expansion Model (MEM), which deals
essentially with extent of anticipation (Abry et al. 1996). Phase (2)–(4) will be
labeled as the climax phase; it may comprise plateau phases, for example, for [y]
an area plateau and even a protrusion plateau; these plateau phases will be
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explored perceptually. Phase (4)–(5) is the off-gliding phase of [y], during
which an “off-glide epenthesis” occurs; this phase will also be explored percep-
tually and modeled articulatorily.

Notice that the production can be transcribed more narrowly as [iyçi], or
more precisely as [ijyçi]. The first [j] glide is produced by the tongue, which is
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Figure 7.8 Acoustic signal (above) and time-course (below) of upper lip
protrusion and lip area for the sentence “Tu dis: UHI ise?” On the horizontal
axis, the video frames are indicated by vertical ticks each 20ms. The following
events are indicated. Event (1) corresponds to the constriction and protrusion
movement onset for [y] and event (2) to the beginning of the constriction
plateau. From event (1) to event (2), phase (1)–(2) can be considered to be the
on-gliding phase of the vowel [y]. Event (3) corresponds to the protrusion
maximum and index of vowel climax, together with constriction plateau, that
is, event (2). Event (4) is a slight constriction area decrease leading to
maximum constriction: this is what we call “off-glide epenthesis,” in this
case a [ç]-glide. Event (5) corresponds to an increase in area of constriction
together with the protrusion decrease towards the following [i] vowel. Phase
(4)–(5) is the off-gliding phase of [y], during which an “off-glide epenthesis”
occurs. It is also possible to read events on our time functions in terms of
placing and shaping commands, as indicated by labels in lower cases (see text).
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not visible in the lip signal, hence not relevant; in addition, the first glide is
produced during the off-setting of the [i] vowel, that is, during the [i] off-gliding
phase. “On-glide epentheses,” that is, epentheses produced during the on-glide
phase of the vowel, will occur for transitions from the [a] vowel to higher
vowels (in this case in a [açy] transition), as explained below.

Depending on context, some of these phases will be partly audible, partly
visible. In this particular production, due to the silent pause, the on-gliding
phase of the vowel [y] is not audible until the first glottal pulses, at about
protrusion maximum. When pause length is varied, this pause context allows
V-to-V transition to appear without an intervening consonant; then the influence
of the consonant can be added (for pausal contexts, see Cathiard 1994, for
visible consonantal types influences, see Troille et al. 2010). In other cases the
glide could occur during a consonantal closure and be also more visible than
audible (see [tydi] description in Section 7.3.1.2).

Let us now focus on this glide epenthesis. For us, the existence of this
epenthesis is as evident as other consonantal or vocalic epenthetic by-products
like the famous English “Thompson phenomenon” (French chambre from Latin
camera, or svarabhactic vowels, like Russian alternations Leningrad versus
Novgorod, etc.). To such examples can be added a well-traced Provençal reflex
of Latin maturu “ripe” [mavyr], in the Drôme Department (at Mirabel-aux-
Baronnies and Nyons, in Duraffour 1969, entry 6446), where after intervocalic
[t] spirantization [ð] and deletion, the [v] approximant stemmed from a glide of
the [ç]-type. We dub this process mnemonically the “power phenomenon,”with
a French-English example, Latin potere, Old French poeir (Modern French
pouvoir), giving as a loanword English power, through Middle English poër,
pouer.3

7.3.1.2 VCV Transitions One of our recent examples is shown in
Figure 7.9, where the same speaker, ten years later, utters: “Tu dis ‘RUHI
ise’?” [tydiRyiiz]. Among his set of variants, the behavior of this glide is quite
“hypertrophic.” For RUHI, he starts with a plateau constriction, produced during
the coarticulated initial rounded [R], which is about 90mm2, an area value small
enough to contribute quantally to acoustic [y] characteristics (Schwartz et al.
1993). Finally, a minimal area constriction of 0.50mm2 is reached (20ms, or
1 image, before = 1.47mm2; 2 images before = 10.32mm2; and 1 image
after = 3.62mm2; see Figure 7.10). If one looks backwards at the “Tu dis . . .”
span, we observe a minimal area constriction of 1.10mm2 (1 image
before = 2.42mm2; 2 images before = 8.92mm2; and 1 image after = 6.82mm2;
see Figure 7.11). These values are not observed for vowels but for approximants.
The aeroacoustic production of various degrees of frication, in such a small area,
depends on pressure values. We did not observe frication into our [yçi] signals;
and into [tydi] the [d] closure prevents any such phenomenon. The crucial point
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here is that, given the accuracy of our measurement system (and we still await the
challenge of a similar accuracy from other lip image processing techniques), these
sounds with 0.5 or 1mm2 constriction at the lips do not reach complete closure,
with the corresponding acoustic result, as in our [b] examples.4 Hence RUHI
[Ryi], as in Ruy Blas, is definitively not [Rybi] “ruby,” giving a weird Ruby Blas!
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Figure 7.9 Acoustic signal (below; in abscissa: video frame numbers) and
time-course of lip area (above; in cm2) for the sentence “Tu dis RUHI ise?” See
Figure 7.10 and Figure 7.11 for area values close to 0 cm2.

Figure 7.10 Front images extracted from the sequence RUHI in: “Tu dis:
RUHI ise?” with lip area measurements. A minimal lip area constriction of
0.5mm2 is reached between the [y] and the [i] of “RUHI.”

Figure 7.11 Front images extracted from the sequence “Tu dis” in: “Tu dis:
RUHI ise?” with lip area measurements. A minimal lip area constriction of
1.1mm2 is reached between the [y] and the [i] of “tu dis”, i.e., during the
closure.

Bimodal perception as framed by speech production 139



The VCV “Tu dis . . .” sequence offers an insight into the disputed issue of the
timing of the vowel onset into the V-to-V transition. The minimum constriction
area of the [ç] approximant occurs about the middle of the [d] closure. Given
this, it could be said that the end of the [ç] constriction indicates the beginning
of the movement toward the following [i]; in other words, this is the onset of the
following vowel. In fact, in terms of describing the sequence of movements, and
interpreting these movements as consequences of motor control, there is a time
delay between the relaxing phase of [y] and the onset phase of [i]. Otherwise the
glide would not occur. We will see that the 2-Comp-Vowel model offers such an
account of this phenomenon. This represents a different point of view from the
classical approach which identifies the onset of the following vowel by using a
given criterion such as zero velocity crossing, peak acceleration or 10 percent
movement amplitude (see Perkell and Matthies 1992; Abry and Lallouache
1995a; Abry and Lallouache 1995b). For instance, in a C1V1C2V2 sequence
like [CyCi], the beginning of movement toward V2 can be seen to occur in the
protrusion signal within the first consonant (compare Figure 7.9 where protru-
sion maximum in “Tu dis . . .” occurs during the burst of [t]). The same occurs
for [CiCy], where the maximum retraction can occur within the first consonant,
and hence be considered as the onset of the movement toward the [y] vowel.
The small area value which is quantally efficient for [y] acoustic structure will
be reached only within the second consonant: this is classic anticipatory lip-
rounding into the preceding consonant. Whereas the maximum area value for [i]
in [CyCi] will be reached only within the [i] vowel, even if, taking account of
the quantal articulatory-acoustic asymmetry between [i] and [y] regarding their
sensitivity to lip area, we set a quantal area value for [i] acoustic structure. Thus
this maximum value will definitely not be reached until the acoustic onset of the
vowel. Our claim will be that glide epenthesis offers a criterion for indexing the
relaxation of the preceding vowel posture, hence a cue to the boundary between
successive vowels in the V-to-V transition. As we will see in Section 7.3.2.5, the
50 percent perceptual [yi] visual boundary is located at about this glide epen-
thesis. The simple reason is that in this [yi] transition, one cannot detect the [i]
direction of movement until the area increases again. The [ç] approximant, the
tail of [y] where this vowel is relaxed, which constitutes the first part of the
transition towards [i], is actually misleading since it is not indicating a [i]
direction, but a closer [y] (cf. infra).

More generally glide epenthesis movement can not be attributed to the
detour in the transition from one goal to another, qualified as an overshoot
in the classical second-order models, where such a detour is due to given
stiffness and dampening values (the same for an equilibrium point control).
This detour has yet to be explained in biomechanical and biocybernetical
terms, if our aim is to keep speech biological movement control within the
laws of motion.
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7.3.2 Modeling the “power phenomenon”

7.3.2.1 Glides under control Wewill show that glide epentheses are given
for free in a 2-Comp-Vowel control model. Consequently do they need a special
control status? From a phonological standpoint, it seems that it is only when the
transitional glide phase can be manipulated linguistically that there is evidence
for a dynamic feature under the control of speakers of a particular language.
This is typically the case when the natural transitional consonant [p] in
“Thompson” can be lengthened or reduced depending on the linguistic com-
munity, Anglo-American or South African (Fourakis and Port 1986).
Additionally, since glides (like any other epenthetic phenomenon) can be
phonologized, it is not surprising (and not contradictory, as assumed by
Ladefoged and Maddieson 1996, pp. 322–324) that, in spite of their transitional
origin, they can display a steady-state phase, when they need to be linguistically
lengthened or rather geminated (like French nous plions “we fold” [plijɔ ̃] versus
nous pliions “we folded” [plijjɔ ̃]).

What is relevant from the control point of view – in production as in
perception – is that these transitional glides, like other epentheses, are not ab
initio programmed per se. They are kinematic by-products of a controlled
transition, typically from or onto a high vowel. But initially, as transitional
by-products, where do they come from?

7.3.2.2 Glides in the 2-Comp Model: placing and shaping Our produc-
tion results – together with relevant perception data – are discussed here in the
framework of a double-component account of V-to-V transitions. The 2-Comp-
Vowel model assumes that in order to control the geometry necessary for their
aeroacoustic result, all speech sounds can recruit the degrees-of-freedom of the
vocal tract in two ways. First, they all have a placing component. Second, some
of them have an additional shaping component, morphing the sagittal and/or
coronal geometry, i.e., a control in 2D or 3D vocal tract space.5

Placing is the global component. For vowels it is achieved mainly by the
extrinsic muscles of the tongue, plus the lips. Intrinsic muscles finish the job,
shaping the tongue groove for [i], bunching the tongue arch for [u]. Other
proposals following Öhman’s legacy, by Perkell (1969) and Fowler and Smith
(1986) converge on the role of this intrinsic-muscle local component for con-
sonants, adopted here for glides sometimes considered as “semi-consonants.”
For the lips the same shaping job is done by the two orbicularis muscles as main
agonists for [u] and our French [y]. Notice that [a] will not basically display this
second component, as we will see below.

When the placing and shaping components are fairly synchronous, V-to-V
transitions without glide epenthesis are produced. Glide epenthesis occurs when
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shaping is relaxed asynchronously with respect to placing changes. Such an
asynchrony gives rise to glide epenthesis in the transition between vowels.

In summary, during the V-to-V transition there is a change from placing to
placing, i.e., in the targets of the global component which determine the vocal
tract configurations for the vowel. But, during this transition, there is not a
control of shaping, i.e., the second, local component, which morphs the sagittal
and/or coronal vocal tract geometry. Our claim is that glide emergence is a mere
consequence of asynchrony between placing and shaping. Consequently, if
such an emergence can be monitored afterwards in order to be linguistically
inhibited or enhanced, glides are not a priori controlled.

7.3.2.3 Glides in French syneresis/dieresis French phonology has differ-
ent timing control of VV sequences in northern versus southern dialects. The
name of the town of Lyon can be syllabified either [ljɔ ̃] or [lijɔ ̃]. This is
classically described as two trends: northern syneresis versus southern dieresis.
As an example of this second usage, in the dialect of Savoy, there is no differ-
ence between ciller “to blink” and scier “to saw,” both [sije] (instead of standard
French [sije] versus [sje]); the main phonetic difference between this
Francoprovençal usage and the Provençal one is the shortness of the glide in
the latter. The same is true for puer “to stink” [pyçe] versus [pçe], the second
northern trend being exemplified in backslang verlan [çep] (not [epy]). Notice
that, in spite of these clearly audible transitions, the current practice of French
phonologists (Klein 1991) is to transcribe [plije] for plier “to fold,” but not
[pyçe] for puer, [byçe] for buée “condensation,” nor [buwe] for bouée “buoy.”

7.3.2.4 “True” glides and epenthetic glides on the lips As stated pre-
viously, there is at present no accurate description of the time-course of articu-
latory constriction inside the vocal tract that is comparable to what we can obtain
at the lips. In order to contrast epenthetic glides versus proper glides in French,
we used two sequences uttered by the same speaker discussed previously: “T’as
dit: ‘HUE hisse’?” [tadi#yis] and “T’as dit: ‘HUIS’?” [tadi#çis] – where HUE
and HUIS are real family names and “hisse,” third person form of hisser “to
raise” (see Cathiard et al. 1998). As illustrated in Figure 7.12(a), the VV [yi],
i.e., [yçi] data clearly display, after the plateau (here with a mean of 28mm2), a
60–80ms phase of constriction [ç] (19mm2 for the minimum). Notice that this
epenthetic glide occurs when the protrusion begins to decrease. The “true” glide,
as realized in the sequence “T’as dit: ‘HUIS’?” (Figure 7.12(b)), displays the
same swift phase but lacks a preceding plateau. In short, both display a glide
constriction phase, the main differences being the absence of protrusion and
constriction plateaus in the true glide, and the presence of more constriction (a
7mm2 minimum). These [ç] constrictions correspond to a lowering of both F2
and F3 in a typical [y] formant convergence (Schwartz et al. 1993).
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It is now possible to interpret the events numbered on our time functions in
Figure 7.8 in terms of placing and shaping commands:
(1) Constriction and protrusion movements for [y], starting fairly well in phase,

are cues of placing initiation (on-placing);
(2) constriction plateau for [y] represents the achievement of placing;
(3) protrusion maximum, index of vowel climax, together with constriction

plateau, represents the achievement of shaping (placing and shaping
climaxes);

(4) shortly after protrusion decrease, which is an index of placing command
towards [i] (in this case, [y] off-placing or unplacing), the [ç] glide epen-
thesis occurs and is an index of [y] off-shaping or unshaping;

(5) and constriction area increase, with protrusion decrease towards the follow-
ing vowel, is index of [i] placing.

Our claim is that glide epenthesis production is explained by command asyn-
chrony. If [i] shaping began synchronously with [i] placing (and coincided with
[y] unplacing), [y] unshaping would not be observed so there will be no glide
epenthesis. Since [y] unplacing occurs in advance of [i] shaping, [y] unshaping
emerges alone, resulting in a glide.

It should also be noted that if epenthetic glides are generally manifested on
the area time-course by a dip, they are also detectable by a simple singularity,
i.e., an increase in area as sudden as in a plosive release. This [ç] offset, as

1

t a d i y i s t a d i i  s

10 1 10

(a) (b)

Figure 7.12 Acoustic signal (above) and time-course (below) of upper lip
protrusion (line with black boxes) and lip area (continuous line) for the
sentence (a) “T’as dit: Hue hisse?” and (b) “T’as dit: Huis?”. On the
horizontal axis, the frames are indicated by vertical ticks each 20ms. The
numbers from 1 to 10 specify the domain explored, frame by frame, each
indicating the last image number of the 10 gated sequences in the
corresponding visual perception experiments (see text).

Bimodal perception as framed by speech production 143



abrupt as a [b] release (except that it does not start from 0mm2), means that this
singularity in movement time-course is due to peripheral constraints and is not
planned as an abrupt movement trajectory. Hence one can infer here also a
desynchronization of the shaping command with respect to the placing one.

7.3.2.5 Glide topology in vowel space The glides that emerge during the
main V-to-V transitions, from point-vowel to point-vowel, are the following.
The transition [iju] corresponds to its asymmetrical counterpart [uwi] as [ijy]
corresponds to [yçi]. This argues decisively in favour of glides as by-products
of the shaping component release: the lip slit for [u] diminishes (due to
unshaping, as for [y]), and the same for the tongue groove of [i] (due to
unshaping of the tongue groove).

Transitions [ija], like [aji], and [uwa], like [awu], involve the low vowel [a]
which does not glide. As noted by Ladefoged and Maddieson (1996), non-high
[e] and [o] vowels can glide, and we can even exemplify this for a vowel as low as
[ɔ] in French bohémien “gipsy,” [bɔemε]̃ or [bwemε̃]. But [a] does not glide.
Maxacali, from Brazil, is not a counterexample, since the low vowel glides only
in its “low back variety” (Gudschinsky et al. 1970). As far as we know, it could be
the same forMarphali, a group of Tibeto-Burman languages in Nepal, where field
workers’ transcriptions vary between unrounded high-mid [Ɣ], low-mid [Λ]̥ and
low rounded [ɒ̥] (Mazaudon 1997). So in the case where the transition starts from
[a], the glide corresponds to the phase where the final tongue or lip shape is not yet
achieved. This is a shaping component setting or “on-glide epenthesis.”6

7.3.2.6 Glides as by-products due to placing and shaping timing As a
first modeling attempt, we will consider for simplicity’s sake that observed
movement patterns are produced by step commands applied to a second-order
system, the actual issue being the timing of such commands.

In [a] with high vowel transitions, on-glide and off-glide epentheses
([awuwa], [ajija], [açyça] etc.) are produced by the onset and offset shaping
commands, respectively, starting from a zero shaping value. As regards shap-
ing/placing asynchrony, in getting from [a] to the higher vowel, the high vowel
placing command occurs before the shaping command, and in getting back to
[a] the high vowel placing command is carried over into the shaping one. Notice
that every shaping onset starting from zero or every shaping offset coming back
to this value will produce an epenthetic glide.

In transitions between high vowels command timing can be inferred as
follows. Consider as a first simple case, [i]-to-[i] transition, when placing is
the same for the two vowels. The fact that a [iji] dieresis is encountered shows
that even in the case where the same placing command can be sustained (in tied
V-to-V transitions, excluding pauses that are too long), shaping command is
reset for each vowel. At the tongue level, shaping command for the first [i] and
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the shaping for the second [i] are separated by a time gap, sufficient for relaxing
shaping towards zero. Hence a [j] epenthetic offglide-onglide is produced.

In [ijy] or [yçi] ([iju], [uwi]) cases, the shaping functions for the lips are
brought into action. We will consider here also that we get the same time gap
between shaping functions at the tongue as for [iji], and that the placing
commands are overlapping at least during this gap, the overlap being necessary
for getting the glide.

Coming back to shaping function at the lips, there is a characteristic asym-
metry, already mentioned, between [ijy] and [yçi].

In [ijy] the lip configuration for [y] is clearly more anticipated than is the case
for [i] in [yçi]. So in [ijy], one can infer a shaping [y] command overlapping
with [i] shaping. Since there is no time gap, shaping does not go to zero; so no
glide is produced at the lips and no [içy] is observed. The [j] glide produced at
the tongue during the time gap is perfectly audible, since, in spite of rounding
anticipation, the lips are sufficiently open (see [jyjy] perceived as such, not as
[çyçy], and this in spite of being rounded throughout; the same is true for
[juju]). It should be remembered that, at the tongue, the production of this glide
needs the [i] placing command to be active after the shaping one.

In [yçi], in order to account for the asymmetry just mentioned, there is a gap
between the shaping commands at the lips, hence a [ç] glide. Notice that the
[j] glide, produced simultaneously at the tongue, is not audible as such since the
lips are too closed during [ç]. We can check in this case that placing commands
for the lips are as overlapping as for the tongue since, as noted before, the
[i] shaping command is late in its placing, which lets the [ç] glide emerge.

In the context of classical issues about coarticulation modeling, this timing
organization in the 2-Comp model deserves the following remarks.

The placing component is controlled with overlap whereas the shaping
component is not basically overlapping, except for rounding anticipation (cf.
the undisputed asymmetry). It should be remembered that non-overlapping
commands have not been a creed in speech modeling where overlap can
conveniently account for the continuity of movements and evolving dominance
of speech units (cf. Haskins’ lab view presented by Löfqvist 1990). In our
model, when shaping is not overlapping (as in the general case), it could be
relevant for the discussion about “troughs” (Gay 1980), provided one considers
epenthetic glide to be a concern. In this case, [iji] dieresis could be evidence of
two successive vowel-related commands (even in French, at least for Northern
dialects; for the difficulty to evidence troughs in French see Perkell 1986). This
glide epenthesis movement, a detour in the transition from one vowel goal to
another, can then be integrated in a classical second-order model, being
explained as a second-order dip-trough, in biomechanical and biocybernetical
terms, thus in line with our aim of keeping speech biological movement control
within the laws of motion.
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When command signals are overlapping, whether for rounding, shaping, or
placing in general, the issue about anticipation extent remains. Our MEMmodel
(Abry and Lallouache 1995a; Abry and Lallouache 1995b; Noiray et al. 2011) is
neither a time-locked, nor a look-ahead stance, but it accounts for the variable
expansion of movement, that depends on the amount of time available to
achieve the phonetic goal, more specifically depending on the interval left
between two successive phonetic goals (the milliseconds necessary for realizing
the consonant(s) within the V-to-V transition or the pausal length between
vowels). It is adaptable to individual speaker behavior; this means that the
rate of movement expansion is speaker-dependent. The debate is not solved
by ad hoc modeling such as in Saltzman (1999), where an arbitrary “side
constraint” allows continuous modeling of gestural anticipation from look-
ahead to “pure time locking” curves (their Figure 2). In our French data the
MEM accounts for the first phase of the V-to-V transition, the so-called on-
gliding phase (cf. above).

7.3.2.7 Conclusion In summary, what is relevant from the control point of
view is that these transitional glides, like other epentheses, are not programmed
per se. They are kinematic by-products of a controlled transition, typically from
vowel to vowel, i.e., from placing to placing. However they do not need a
proper control during this transition, i.e., a control of shaping, since shaping is
set to zero. In the off-gliding phases, like in [iju], [ija], [uwi], [uwa], shaping is
not initially controlled for the glide; but it is for the preceding vowel. And in the
on-gliding phases, like in [aji] and [awu], shaping is controlled for the following
vowel. To sum up, the 2-Comp-Vowel model can produce epenthetic glides by
specifying only the relative timing of its two components, placing and shaping,
in their vowel-to-vowel transitions, whatever the type of control of these
transitions, be it dynamic in principle (with step or ramp command signals
applied to a second-order system) or even postural in principle (like in the
equilibrium point-interpolated shift approach). The gliding movement, which is
thus a by-product, can be cancelled if the two transition controls are perfectly
synchronous. When the glide is present, its kinematics is in no way the result of
a dynamic parameter of control, namely shaping, which is explicitly set to zero.

Consequently, even though glides may be afterwards recovered as true
controls, in order to be linguistically inhibited or enhanced, they are not a priori
controlled in order to produce a dynamic perceptual effect, with the proper aim
to constrain control recovery in learning.

7.4 The perceptual benefit of the model

Such a dynamic perceptual stance is claimed by the influential Dynamic
Specification Theory of vowel perception by Strange and colleagues (Strange
and Bohn 1998). Since this theory is not limited to the auditory modality of
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speech, we will present its basic idea from an auditory-visual perspective. In
their chapter in Hearing by Eye II, Rosenblum and Saldaña (1998, p. 76)
repeatedly claim this idea, “The recent evidence on speechreading, auditory
speech and visual event perception – along with a new conception of speech
events as gestural – supports time-varying information as primary.” After an
examination of counterarguments, coming from Cathiard (1994) and Campbell
(1996), against their preceding experiment (Rosenblum and Saldaña 1996),
they finally put forward the following visual issue, “Still, the question remains
of where the most salient visual information lies. According to the time-varying
information thesis, the most coarticulated portions of the utterance should be the
most visually salient. Specific predictions could be made based on the auditory
speech findings: for example, dynamic margins around a visible vowel should
be more informative than the ‘steady-state’ portions. Thus, examining the
salience of coarticulated portions of visible speech should be a straightforward
way to test time-varying information” (Rosenblum and Saldaña 1998, p. 76).

In these “dynamic margins,” we easily recognize the on-gliding and
off-gliding phases, and in the “steady-state” portion, the climax phase (compris-
ing in fact a culmination, and optional plateaus). We will show where it is in the
off-gliding phase that the glide epenthesis plays its role. In short, our present
agenda is to show where, in these visible and/or audible phases, perception
settles. Rephrased in terms of our modeling approach: what is the perceptual
benefit of the timing organization of the two components of the 2-Comp-Vowel
model in the V-to-V transition?

Instead of dividing this part into three sections, corresponding to each of the
three phases, we choose a presentation in two phases: perception of on-gliding,
then of off-gliding. What about the perception of the climax phase? The reason
is not that this “steady-state” phase would be the worse phase for vowel
identification (as advocated by Strange’s theory). We will show that at the
climax, perceptual visual identification is . . . at the climax. So the reason is
simply that when taking account of the dynamic issue (when is dynamics
needed?), we will always have to compare perceptually this climax phase
with the preceding and following phases.

7.4.1 Why can speech be seen before it is heard?

7.4.1.1 On-gliding vowel phases in visual perception The answer to
Rosenblum and Saldaña (1998) lies explicitly in our perceptual data on the
visual perception of anticipation for the rounding gesture (Cathiard 1994;
Cathiard et al. 1996). It was shown that the “steady-state” portions, correspond-
ing to the articulatory climaxes (or “targets”) of the visible vowels, displayed
obviously the best identification scores for rounding, whereas the “dynamic
margins” gave scores that waxed and waned, like the articulatory gestures did
(Cathiard et al. 1996, p. 215). Just to deal with the case of anticipation,
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presentation of frozen images taken in the vicinity of the vowel acoustic onset
delivered the same ceiling values (100 percent) as for a time-varying display.
The only effect of this moving display concerned the location of the perceptual
50 percent rounding boundary, which occurred during the “dynamic margin” of
the vowel; it could occur sometimes 30ms ahead of the curves recovered from a
static presentation. Interestingly, this dynamic benefit was not obtained for an
optimal view (which in the case of the rounding gesture we demonstrated to be a
profile one); but for front views, where protrusion in-depth can be recovered
from shading (in frozen views) or shading-from-motion (in a movie). To
account for this pattern of results, we proposed a shape-from-shading-from-
motion approach, arguing that the visual vowel shape could be a possible
representational format, whereas movement would just be a help for recovering
shape, when shape is undersampled (which is typically the case for the point-
light displays used by Rosenblum and Saldaña 1996), or not optimally projected
(in our case, for the front-viewed waxing rounding gesture).

7.4.1.2 On-gliding phases in auditory-visual vowel timing As concerns
specifically the bimodal vowel timing, one of the strongest pieces of natural
counterevidence against the claim that “time-varying information is primary”
comes from the very temporal organization of visible and audible vowel
information in speech (Cathiard et al. 1996, p. 219, footnote 1). What we
observed in our articulatory-acoustic data was that, in initiating an utterance,
after a pause, typically with an initial vowel, the first glottal pulse occurred at or
nearly at the point where the articulatory setting of the desired vocalic config-
uration of the vocal tract was achieved. In the rounding of our French [y], the
constriction plateau onset typically occurs first (achievement of placing), and
the protrusion component is at its maximum (climax) later, at about the first
glottal pulse. It should be remembered that protrusion climax can be an index of
the achievement of the shaping component of the rounded vowel. This means
that it is only when the two components are settled that the acoustics of the
vowel is triggered. If the featural/gestural information in the oncoming vowel
had to take advantage of the dynamics of the gesture towards its target, the
glottal excitation would have to be initiated as soon as possible, that is during
the transitional gliding phase, just in order for it to be heard. But this is clearly
not what the natural temporal organization of speech reveals. This is why
speech can be seen before it is heard (for this now well established view, see
our own challenge in Troille et al. (2010) demonstrating that in VCVs, speech
can also be heard before it is seen, depending on the coordination between the
two auditory and visual streams).

The perceptual benefit of this on-gliding phase is predicted by our Movement
Expansion Model (which was based primarily on anticipatory rounding data for
French) both in the protrusion MEM (Abry and Lallouache 1995a; Abry and
Lallouache 1995b) and in the constriction MEM versions (see Abry et al. 1996,
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for a synthesis and a discussion of these perceptual predictions). The perceptual
benefit from rounding anticipation, which is predicted by MEM, is clearly due
to the achievement of the placing component, a sufficiently small lip area (cf.
constriction MEM). This natural configurational and temporal coherence of
anticipation has been tested through desynchronization (Cathiard et al. 1995;
Abry et al. 1996). Contrary to global desynchronization results (which show
that AV speech is in this respect very robust, see Campbell and Dodd 1980), or
to null effects on the sensitivity of vowels to desynchronization (Massaro and
Cohen 1993), a categorical switch from [y] to [i] can be obtained when making
the acoustic [y] vowel glide ahead of the visual anticipatory [i]/[y] boundary
(for a discussion see Abry et al. 1994; for AV [i]/[y] integration, see Robert-
Ribes et al. 1998).

7.4.2 Perception of the off-gliding phase

7.4.2.1 The “true” glide versus the vowel with epenthetic glide Our
preceding results about the representation of the visual vowel (Cathiard et al.
1996) draw attention to the specific case of glides, which could differ from the
vowels since they might typically be made of “dynamic margins” only, i.e.,
basically conceived as intrinsically time-varying in nature. The experiments that
we summarize here were designed to address three questions: (1) How many
subjects can visually identify the vowel versus glide contrast which is possible
in their speech community? This question tests the robustness of a contrast that
is rather unstable in the world’s languages. (2) Do contrasting and non-
contrasting subjects process the “steady-state” portion differently? (3) Do the
contrasting subjects display a special skill for processing the dynamic portion,
i.e., the off-gliding phase with the retraction event and the glide constriction
phase? And if so, under what condition?

7.4.2.2 Stimuli and articulatory analysis We used [i#yi] and [i#i] tran-
sitions which were embedded in the following carrier sentences which con-
trolled for the pause: “T’as dis: Hue hisse?” [tadi#yis] and “T’as dis: Huis?”
[tadi#çis]. Ten repetitions of each of these two sentences were recorded audio-
visually, at 50 frames/second, by our French talker, with simultaneous front and
profile views. After image processing, which delivered, among other parame-
ters, upper lip protrusion and area between the lips, two utterances were
selected. Their articulatory time-courses (Figure 7.12) are very similar as con-
cerns the “dynamic margins,” i.e., the build-up phase of the rounding gesture
and the retraction phase towards [i]. As noted above, they differ essentially in
their “steady-state” portion, i.e., the plateau phase of protrusion and lip con-
striction, which is clearly longer for [y] in “T’as dis: Hue hisse?”. As mentioned,
the “true” glide displays the minimum area constriction, but there is still clearly
a glide epenthesis in the “T’as dis: Hue hisse?” realization.
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7.4.2.3 Pretest: contrasting [y] and [ç] In order to know if the two
sequences “T’as dit: Hue hisse” and “T’as dit: Huis” could be identified using
visual information only, we presented these two sequences in their full time-
course, ten times each in a random order, in frontal view. Of the twenty-seven
normally hearing French subjects, who had no visual deficit, sixteen obtained an
identification score higher than or equal to 60 percent.

Accuracy in identification of the glide versus its corresponding vowel, with
visual information only, varied by subject. As we noted in our first experiment
(Cathiard et al. 1998), of twenty-seven subjects, only thirteen succeeded in
perceiving the contrast using visual information only.

This corresponds to a phonological dialectal situation in the French-speaking
community, where, for example, “muet” (“dumb”) can be pronounced [myçe]
or [mçe], depending on the degree of sensitivity of the subject to realizations
with or without a glide. According to Klein’s scale for Parisian French (Klein
1991), “Hue hisse” has the lowest probability of being syllabified as [çi],
whereas “Huis” could hardly give rise to a di-syllabic [yi] ([yçi] in a more
narrow transcription). Consequently we can consider that our experiment cor-
responds to a kind of maximum possible visual difference.

We decided to test the contribution of the plateau duration and the contri-
bution of the timing of the onset of the retraction phase for all subjects
(in Cathiard et al. 1998, we tested only subjects who succeeded in the pretest).
We hope to specify precisely which articulatory event is differently processed
by the subjects who can identify the vowel and the glide on the basis of visual
information only (group 1), in comparison with the subjects who cannot
(group 2).

7.4.2.4 Variation of the climax phase We first tested the sensitivity of the
subjects to plateau duration in rounding. We prepared a continuum between
“T’as dis: Huis?” and “T’as dis: Hue hisse?”. For this aim, we removed from the
stimulus “Hue hisse” one full image at the plateau centre, i.e., two frames
(interlaced fields), then two and three full images, respectively. So we obtained
three intermediate stimuli. Notice that the suppression of a fourth full image of
the plateau in “T’as dis: Hue hisse?” would have resulted in a stimulus with a
plateau duration as small as the plateau duration of “T’as dis: Huis?.”

We presented the five stimuli, in frontal view, ten times each in a random
order. Subjects were asked to identify each of them as “Huis” or as “Hue hisse.”
We separately plotted the mean “Hue hisse” identification percentages for the
two groups of subjects (see Figure 7.13). Group 1 comprises subjects who
visually distinguished the vowel and the glide contrast (pretest score > 60
percent) and group 2 comprises subjects who did not (pretest score < 60
percent). For the two groups, the identification curves are very similar, with a
regular increase of “Hue hisse” identifications from 29 percent to 73 percent
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between “Huis” and “Hue hisse.” So all subjects are able to detect the linear
increase of the plateau duration, and they do this in a rather psychophysical
style, which is not categorical at all. Thus it is not the capacity to process this
plateau duration per se that differentiates the two groups of subjects.

7.4.2.5 Perception of the off-glide epenthesis In this second experiment,
we explored the timing of the retraction event by a gating technique, in order
to obtain the evolution of identification scores step-by-step. For each
sequence “T’as dis: Huis?” and “T’as dis: Hue hisse?,” we prepared ten
gates (each with a duration of 1200ms), which always included the onset
of the sentence and the middle of the rounding plateau. The gates were moved
in 20-ms steps, along the retraction gesture. In this display (Figure 7.12) a
20-ms step is achieved by stopping on one of the two fields (or frame, each
with an image number) of the video full image (the missing lines being restored
by linear interpolation). We tested identification with front and profile angle
views. So we have a set of four tests: front “Hue hisse,” profile “Hue hisse,”
front “Huis,” and profile “Huis.” For each test, the ten gated sequences were
presented in random order.

To test whether there could be an effect of perceptual expectancy towards the
more dynamic component of the glide (as in our preceding experiment, cf.
Cathiard et al. 1998), we manipulated the form of the instructions. In one case, a
“dynamic” linguistic instruction was given where the subject was asked to
identify the gated stimuli as “T’as dit: Hue?” or “T’as dit: Huis?.” In the other
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Figure 7.13 “Hue hisse” identification percentages obtained for the
continuum (duration of plateau) between “Huis” and “Hue hisse” by the two
groups of subjects (see text for explanation).
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instruction type, a “static” instruction was given where the subject was asked to
identify the gated stimuli as “T’as dit: Hue?” or “T’as dit: Hue hisse?.” The
motivation behind this instruction manipulation was the following: Does the
subject take more advantage of movement when he/she expects a rather
dynamic lip configuration (as it is the case for the “dynamic” instruction, with
which the subject is prepared to identify a glide), than when he/she expects a
rather stable lip configuration (with the “static” instruction, with which the
subject is prepared to identify a vowel)?

Stimulus, instruction order, and angle view were counterbalanced for each
subject. As in our preceding experiment, we obtained no significant effect of
angle view (see Cathiard et al. 1998, for a comment). We therefore mixed the
results for front and profile views. The identification curves obtained for each
group for the two stimuli and the two instructions are given in Figure 7.14.
Notice that the comparison of the two stimuli is made possible because the time-
course of the two retraction phases are very similar and closely synchronized
respective to the time reference of the last image (10) of the gating procedure.
Moreover, the protrusion values for all ten images never differ by more than
6 percent, and the velocity and acceleration profiles are quite similar in both
stimuli. We determined the visual boundaries (50 percent) of each curve by
probit regression analyses. For the “Hue hisse” stimulus, in both groups, there is
no significant difference between the two instructions (dynamic and static). So
we pooled their data for further probit comparisons. For group 1, there is a
significant difference between the stimuli (“Hue hisse” [Dyn. + Stat.] versus
“Huis” [Dyn.]: Δm= 1.0, i.e., one image number or frame, p < .05; “Hue hisse”
[Dyn. + Stat.] versus “Huis” [Stat.]: Δm=0.71, p < .05). Moreover, the dynamic
instruction gives the most advantage to the glide itself (“Huis” [Dyn.] versus
“Huis” [Stat.]: Δm =0.41, p < .10). Group 2 shows also an advantage for the
glide, but only for the dynamic instruction (“Hue hisse” [Dyn. + Stat.] versus
“Huis” [Dyn.]: Δm =0.75, p < .05).

Figure 7.15 displays the results of our preceding experiment (Cathiard et al.
1998) with front and profile views pooled. After probit comparisons, we
obtained the following pattern of results. There was no significant difference
between the two instructions for the “Hue hisse” stimulus. But there was a
significant difference between the two stimuli (“Hue hisse” [Dyn. + Stat.]
versus “Huis” [Dyn.]: Δm =1.26, p < .05 ; “Hue hisse” [Dyn. + Stat.] versus
“Huis” [Stat.]: Δm =0.74, p < .05); and a significant difference between the
two instructions for the “Huis” stimulus (“Huis” [Dyn.] versus “Huis” [Stat.]:
Δm =0.50, p < .05).

In other terms, we can observe a pattern that is globally similar for the
subjects in our preceding experiment and group 1 in this experiment, both
being contrasting subjects (cf. pretest).
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7.4.2.6 The glide versus vowel contrast: conclusions The three questions
we asked about visual perception were answered as follows. (1) We found that
half of our French subjects (sixteen of twenty-seven) were good at identifying
the phonological contrast between the vowel [y] versus the glide [ç]. This is the
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Figure 7.14 Identification curves obtained by contrasting subjects (group 1)
compared with non-contrasting subjects (group 2) for “Hue hisse” (HH) and
“Huis” (Huis) stimuli, with static (Stat) and dynamic (Dyn) instructions.
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Figure 7.15 Identification curves obtained for “Hue hisse” (HH) and “Huis”
(Huis) stimuli, with static (Stat) and dynamic (Dyn) instructions.
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same proportion we found previously (thirteen out of twenty-seven subjects in
Cathiard et al. 1998). This corresponds to the weak linguistic status of the
contrast in the French-speaking community. (2) The length of the steady-state
portion of the vowel compared to the glide – tested by varying the plateau
duration in rounding – was taken into account by all subjects in the present
experiment, but it was a psychophysical rather than a categorical processing.
(3) When tested on a specific phase, the off-gliding phase, i.e., the retraction
event and the glide constriction phase, only the contrasting subjects were able to
demonstrate an advantage for the true glide stimulus whatever the attentional
linguistic instruction. Moreover, they showed a possible dynamic expectancy
advantage for this very stimulus. These contrasting subjects, in this experiment,
showed the same pattern as the group we tested in our preceding experiment
(Cathiard et al. 1998), where we kept only the contrasting subjects. In addition,
in the present experiment, we were able to demonstrate that even non-
contrasting subjects benefited from dynamic expectation. But in contrast with
contrasting subjects, they needed to be oriented by such an expectation in order
to take advantage of the gliding nature of the stimulus. So whatever the
contrasting skill of the subjects, the off-gliding margin seems to confer an
advantage in identifying the vowel/glide contrast; but under a specific percep-
tual control, that is expectation.

7.4.2.7 Glide boundaries, orwhy transitions canbemisleading Whatever
the stimuli and conditions, subjects were able to detect the presence of the
following [i] vowel at about the time of glide minimum area, i.e., when con-
striction area increases again towards the following [i] vowel. This means that
the perceptual [y]/[i] boundary is at about the glide constriction phase. The
consequence is that there is a fundamental asymmetry between the on-gliding
[i]/[y] boundary and the off-gliding [y]/[i] boundary. In this off-gliding phase,
the decrease in area constriction is misleading, since even if protrusion decrease
(retraction) is an index of [y] unshaping, area decrease cannot be an index of an
unrounded vowel such as [i]. So we have a clear case where a dynamic margin
is not a monotonic input to information processing about the category of the
up-coming vowel (whereas in the [i]/[y] on-gliding phase the visible margin is
increasingly informative of [y]).

Such an asymmetry can be accounted for by the 2-Comp-Vowel model and
brings constraints to the time-course of perception; it is not possible to explain
asymmetrical results in V-to-V perception of the up-coming vowel without
taking into account the natural organization of speech events. This is another
perceptual benefit from such production modeling.

7.4.2.8 When are visual dynamics needed? From our preceding results
we can conclude that dynamic margins cannot be said to be more informative
than climaxes unless their temporal and configurational organization is analyzed.
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When such a glide epenthesis occurs in a V-to-V transition – this possibility is
generally predicted by the 2-Comp-Vowel model – this transition can be mis-
leading for a significant portion of time. And for a true glide for which the
dynamic margins are a priori crucial, only half of the subjects are able to visually
distinguish this glide versus a vowel at first. So the skill to use current dynamic
margin contrasts is still limited to a subset of the linguistic population. The fact
that we can, under proper conditioning, i.e., by expectancy pressure, improve
this contrast perception (even for unskilled subjects) adds to our understanding
of the variability of such a skill. The use of the dynamic margin for the
perception of contrasts, at least in visual speech, seems rather marginal, even
when this gliding margin – initially a by-product of V-to-V transition in our
2-Comp-Vowel model – can be variably controlled, as in French, for a potential
linguistic contrast. More generally such intrinsically variable control seems to be
the destiny of epenthetic sounds. As speakers we have of course the potential to
detect them, but this does not mean that we use them in linguistic interaction.

This conclusion is in agreement with our previous research stance that not
everything in speech is movement. This is precisely what we argued when we
proposed to account for our pattern of results in the on-gliding phase of round-
ing, by suggesting that the visual vowel shape could be a possible representa-
tional format, whereas movement would be just a help in recovering shape,
when this shape is undersampled, or not optimally viewed. More generally, we
argue that not every phase of speech in movement is automatically processed as
such (but it remains possible that some movement phases are processed as such,
e.g. plosive release movement?). Hence the status of margin does not ipso facto
confer a perceptual bonus, from the simple fact of being dynamic, and so-called
steady-state centers are not de facto less informative for sound identification.
This is different from the pervasive Gibsonian time-varying claim, and it is also
different from claiming that all is static in speech. It should be remembered that,
since a steady-state command can dynamically produce movement (see voicing
and trills in Abry et al. 1998), we must not neglect the neural mechanisms
dedicated to recovering steady shapes frommotion, as demonstrated abundantly
for vision (e.g. Bradley et al. 1998), if not for sound. Until then, one will wonder
how babies spontaneously develop audible and visible raspberries . . .

7.5 Conclusion and perspectives

Around 1680–1681, Giovanni Alfonso Borelli published De motu animalium
(Romæ, ex typographia Angeli Bernabò). After having decisively considered –
in his Theoricæ Medicæorum Planetarum ex causis physicis deductæ
(Florentiæ, ex typographia S.D.M., 1666, where he analyzed the motion of
the four so-called Medicis’ planets of Jove) – that celestial motions and terres-
trial ones had to be unified (pace the Aristotelian view of a sublunarian disorder
without nomos), this true heir to Galileo in Pisa applied mechanics to muscle
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force (as levers) for locomotion, flight, and swimming, in a project to transform
Biology into a true branch of Physics and Mathematics.

Since then, Movement Control Science has settled in Biocybernetics as well as
in Biorobotics. In this connection, in order to achieve stability in the embedding
of multiple non-linear control systems, as proposed above for speech, a very
promising property is contraction (Slotine and Lohmiller 2001). A non-linear
dynamic system is said to be contractant if it “forgets” exponentially its initial
conditions, and returns quickly to its nominal behavior. This offers a solution to a
major problem that could confront our proposal of embedding systems devel-
opmentally. For even if our isolated systems were stable, overall stability is not
guaranteed when the systems are combined. But if they satisfy the contraction
property, it can be demonstrated that this propertywill bemaintained in any serial,
parallel, or hierarchical combination of such contractant systems. Stability theory
clearly addresses the possibility that the intermediate cerebellum (a good candi-
date for learning internal models) may achieve stability through a wave variable
processor (Massaquoi and Slotine 1996), in other words a virtual mechanical
beam (rod) model transmitting waves with different delays, like the different fast
and slow loops of the brain, giving for free the inherent beam stability.

From a related perceptual point of view, biological motion is now a
new agenda for the brain. The MT/V5 area has been shown to be active for
motion, as well as apparent motion (Stevens et al. 2000), illusory motion
(Tootell et al. 1995), imagined motion (O’Craven et al. 1997), and
implied motion in static images (Kourtzi and Kanwisher 2000). In a review
of the social significance of biological motion, Allison and colleagues
(2000, p. 275) pointed to the fact that, in addition to proper motion of bodies or
body parts, “the human S[uperior] T[emporal] S[ulcus] region is activated
by static views of eyes, mouths [gurning and lipreading, see Campbell,
Calvert, and MacSweeney this volume], hands and faces. Thus static
views might activate the STS region when they imply motion. However,
many of these stimuli do not imply motion in any obvious way.” Hence, to
quote the Theory-of-Mind approach of Gallagher et al. (2000), “this region is
sensitive not merely to biological motion but, more generally, to stimuli which
signal intentions or intentional activity”. At least two other regions that are
concerned with the understanding of observation/imitation of intentional
actions can be added: in the premotor-Broca region and in the parietal upper
and lower lobes. Dubeau and colleagues (2002) added to the somatotopy
launched by Rizzolatti and colleagues’ “mirror neurons” (Rizzolatti et al.
1996b; Rizzolatti et al. 2000) for the understanding of intentional action by
body parts, and proposed a network. Dubbing their proposal, when observing a
mouth action, we will dub STS as answering to “you dig what it is?,” the
parietal cortex to “you feel how it is to do that?,” and the frontal one to “just
do it the way you can!,” reafferenting to STS for intersensory coordination of
self-monitoring.
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In our cumulative view ofmotion in science, the agenda starts from old and new
questions. Even the smallest creatures that are visiblewith the naked eye – aswhen
the seventeenth-century French philosopher, Pascal, exemplified the infinitely
small with “cirons,” i.e., acarians on Savoy cheese “tomme” – can make us
hesitate as to whether we perceive agentive movement of small bugs or aerial
movement of dust. And this is still a problem encountered by the Theory of Mind
in Cog’s robotic agent for leaves in the wind (Scassellati 2001). Let’s just quote a
series of seminal failures in activating brain regions which detect agentive motion:
a bar making the same movement as a hand (no STS: Perrett et al. 1989); a virtual
hand display, in spite of being driven by a real hand (Decety et al. 1994; as
criticised by Rizzolatti et al. 1996b, p. 249); a mechanical grip instead of a hand
(no infant imitation: Meltzoff 1995); mirror neurons non activated for a grooming
proposal played on a TV screen, instead of a live performance, for a macaque
monkey (Fogassi 2002, pers. comm.) . . . A few years ago the most famous virtual
talking head, Baldi, failed to replicate the classic McGurk illusion: no [da] percept
for audio [ba] dubbed on visual [ga] (Massaro 1998a). It was in fact a replication of
the failure of Summerfield and colleagues (1989), which could have been attrib-
uted at the time to the skeletal caricature of the vector-graphic display (no wire +
Gouraud). Not the least instructive point of this story is that Summerfield et al.
finally succeeded with such a poor synthesis, but only after having exposed their
subjects to real McGurk displays. Rosenblum and Saldaña (1998) suffered the
samemishap with a twenty-eight point-light display. It should not be forgotten that
this two-stage procedure – real, then artificial – is the best way of convincing
subjects to process sinewave speech as speech. Consequently, embedded bench-
mark tests (more articulated than simple “believability”) for motion processing in
speech AV synthesizers could comprise, for both audio and visual motion signals
(tactile, say haptic ones in Tadoma), illusion production and/or brain imaging of:
� naïve physical motion;
� naïve biological motion;
� face motion (if specific);
� talking face motion (if specific).
� It is clear that the McGurk illusion is an ultimate challenge for artifacts that

would fail to allow the human brain to integrate visual velocity and auditory
motion (our proposal in Cathiard et al. 2001).

As regards the processing of fine phonetic details for control, detecting very
small areas at the lips corresponding to no plosive regime is crucial even for
simple computer puppetry. Otherwise your talking head would utter mean-
inglessly, “Et pubis Rubis Blas subtil marché . . .” (and pubis Ruby Blas subtle
trade), instead of the intended, “Et puis Ruy Blas sût-il marcher?” (and then
could Ruy Blas walk?). More specifically, as concerns the control and percep-
tion of the time-course of V-to-V gestures through C – with a general glide
phenomenon “the power effect” (misleading only for those who think that any
movement in the transition is the real vowel identity) – our proposals lead us to

Bimodal perception as framed by speech production 157



investigate why, as long as the consonant is there, labial glides are not producing
regular McGurk combinations,7 something like “Tu vdis” or “povtere”?

Visible glides at closures generally give rise to labial consonants only once
the plosives have disappeared (for a brief presentation of the experimental test
of what we dubbed the “Power McGurk effect,” see Cathiard and Abry 2007).
The time-course of glides probably counts for something in this trend of
“phonological neglect.”

These considerations encourage us in our endeavor to explain the main
phenomenon which has been of interest in this chapter: how can a ripple in
the flow of lip movements give rise to an island in the brain’s word memory with
such potential power?

7.6 Post-scriptum

The brain imaging agenda we called for just above has begun to be fulfilled.
Santi et al. (2003) showed that perception of point-light locomotion activated
different motor areas from point-light visible speech, which involved, somato-
topically, Broca’s “mouth” area (see Buccino et al. 2001, for a “mirror neuron”
account). As regards the static/dynamic issue in visible speech perception we
can now take advantage of what seems for us to be the major result in Calvert
and Campbell (2003): namely that the network for processing static views (i) is
fully included within the dynamic one (which is much larger), and (ii) is
left lateralized (unlike the bilateral dynamic one); as in Santi et al. (2003) it
activates the Broca region. Taken together these results show that a speech – left
lateralized – circuit for body parts (“mouth-face”) is recruited whenever a
linguistic lip shape has to be recognized, i.e. understood; a shape recovered
by a structure-from-motion processing in moving point-light displays; whereas
full-image motion necessitates a common bilateral processing in order to extract
from the flow the shape to be processed by, say, the speech mirror action-
understanding system. For a neurocomputational implementation of shape and
motion integration, see Giese and Poggio (2003) and for the priority of shape in
aperture processing, see Lorenceau and Alais (2001).
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8 Visual and audiovisual synthesis and recognition
of speech by computers

N.M. Brooke and S. D. Scott

8.1 Overview

It is now a little while since the authors last worked in this area. One (NMB), has
now retired, having entered the field when only a handful of researchers around
the world were working in visual speech; the other (SDS), who has now moved
into new areas of work, became involved in the field when statistical methods
were becoming increasingly powerful and useful. During the period of their
research activity, the power, speed, and capabilities of computer systems and
computer graphics were increasing very rapidly and their cost was simultane-
ously falling. There was consequently a shift away from the identification of
facial features whose movements could be used to represent and model the
visual cues to speech and towards the processing and use of facial images
themselves. The increased complexity and volume of data that had to be
handled was offset by using statistically based methods to identify and represent
those characteristics of the images that might be applied to synthesize and
recognize visual speech events. Some of these studies also suggested that a
relatively small set of parameters might characterize the dimensionality of the
space that separated specific speech events, though their physical and anatom-
ical nature generally remained somewhat obscure. During the same period, the
growth of the Internet and of local networks has generated new applications for
audiovisual speech synthesis and recognition whilst at the same time eliminating
others.

There are many new techniques for exploring human speech production and
for developing new approaches to audiovisual processing, including, for exam-
ple, fMRI. On the other hand, there are other areas that remain relatively
unchanged or intractable. Thus, for example, there is still no comprehensive
catalogue of facial features or points whose behaviour can fully define, or,
alternatively, distinguish the set of visual speech events. Speakers differ greatly
in their visible articulatory gestures and this is one of the main obstacles to
progress. However, some speakers’ visible gestures are known to be easier to
understand than others and this may offer a way forward. The paralinguistic
gestures, involving the face, head, and body are still incompletely understood,
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despite the advances that have beenmade in this area. For example, as this chapter
indicates, very simple modelling appears to be very successful in synthesizing
the visual effects of speech embodying major head movements. Like the lip
gestures themselves, however, many paralinguistic gestures may be small,
short-lived, and subtle. The problem in the visual domain is compounded by
the partial or intermittent invisibility of some of the visual features, which only
complex, intrusive, and expensive methods, like micro-beam X-radiography
can reveal fully. Additionally, there may be significant difficulties in relating
surface activity on the face to the underlying musculature and its changes.
Measurements of the visible movements of particular, identifiable points at
the skin surface, for example, around the lips themselves, are unlikely to bear
a simple relationship to the underlying muscular changes.

Visual coarticulation effects are known to exist in speech production and the
integration of the audio and visual signals, especially in recognition, also remains
an interesting area because it is clear that there can be modal asynchronies in the
audio and the visual signals which may be complex and temporally extended,
certainly beyond phone boundaries and possibly further and both phenomena
are likely to be a continuing focus for attention. One of the most successful early
models for recognition that takes account of audiovisual asynchrony is
described in this chapter. Conversely, the synthesis of facial gestures using an
acoustic speech signal as the driver also presents interesting challenges, since it
can lead to one-to-many mappings. That is, a single acoustic output may arise
from several possible articulatory gestures. In spite of this, it is possible to
associate at least some acoustic speech signals with facial measurements. At the
same time, the existence of the McGurk effect reinforces the importance of
‘getting it right’, since mismatched audio and video cues can convey a third,
quite different, audiovisual percept.

One major advance for research into visual and audiovisual speech synthesis
and recognition is the greatly increased availability of well-defined and agreed
corpora of speech data that can be used to compare and assess objectively the
performance of synthesizers and recognizers. This marks a very great advance
on the situation that pertained when the very early TULIPS corpus appeared.
There are, however, still major issues concerning the detailed specification of
corpora for particular purposes. For example, the effects of different lighting
conditions and angles of view, as well as the controlled construction of multi-
speaker corpora, in particular, remain to be fully evolved. Performance measures
for synthesis and recognition are also still developing; is it, for example, still
appropriate to choose human performance as a measurement baseline, as
suggested in this chapter?

The current chapter is concerned to a large extent with the work from the
early stages of the field to the point in the new millennium at which significant
advances were being made using image data and statistical techniques. It is
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primarily intended to indicate, therefore, how we got to be where we are now.
Some of the issues and problems have now been resolved and others have not.
This chapter is therefore intended to complement the other contributions to this
volume; it is for the reader to determine which issues remain to be dealt with and
which have now been either partially or, indeed, fully resolved. There is still
much that needs to be done, including, importantly, continuing analytical
experiments in audiovisual speech perception that will support the development
of synthesizers and recognizers. It is offered with the hope and wish that our
successors will be successful in their endeavours.

8.2 The historical perspective

8.2.1 Visual speech processing and early approaches

One of the prime motivations for the processing of visual speech signals arose
from the need to investigate and understand better the nature of speechreading,
so that the rehabilitation of the hearing-impaired could be improved. The face is
the visible, external termination of the human speech production system, whose
articulatory gestures can convey useful cues to production events and, in
particular, to the place of articulation of speech sounds. Although the visible
gestures by no means uniquely identify individual speech events (Summerfield
1987), the benefits of seeing the face of a speaker, especially where there is
noise or hearing-impairment (Sumby and Pollack 1954; Erber 1975), can none-
theless be worthwhile, as the hearing-impaired have of course known for many
years. The benefit has been estimated to be equivalent to an increase in the
signal-to-noise ratio of about 10–12 dB when identifying words in a sentence
uttered against a noise background (MacLeod and Summerfield 1987).

Studying speechreading was severely constrained by the inability to carry out
analytical investigations using controlled continua of natural stimuli. Speakers
are not able to vary the articulatory gestures of speech in a controllable way and
some experiments may even require the presentation of stimuli that cannot be
naturally produced by a human speaker. An example of the latter included an
experiment to investigate the role of the teeth in the visual identification of the
vowel in a range of /bVb/ utterances, using stimuli that were visually identical
apart from the presence or absence of the teeth (McGrath et al. 1984;
Summerfield et al. 1989). Animated computer graphics displays of speech move-
ments of the face are in principle capable of overcoming all of these difficulties.
One very early attempt at visual speech synthesis used Lissajou’s figures dis-
played on an oscilloscope to simulate lip movements and was probably also the
first to be driven by a speech signal (Boston 1973). Controllable syntheses could,
however, be achieved more flexibly and easily by using computer graphics
simulations of talking faces. The ready availability of relatively cheap, general
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purpose mini-computers that were powerful enough to create such computer
graphics prompted the development of some of the earliest visual speech
synthesizers (e.g. Brooke 1982; Montgomery and Hoo 1982; Brooke 1989).

Most of the early visual speech synthesizers were simple vector graphics
animated displays of outline diagrams of the main facial articulators, namely,
the lips, teeth, and jaw. Very high performance computers were prohibitively
expensive for all but the most specialized applications and most general purpose
computers were capable only of approximately one million operations per
second. The generation of up to ten thousand separate vectors per second,
which was the rate needed to create the early visual speech synthesizers, there-
fore represented a fairly severe requirement. Although it was well known at the
time that the teeth and tongue could convey important visual cues, for example,
to the identity of vowels, these articulators were difficult to simulate with vector
graphics. The teeth posed a problem because they were only intermittently or
partially visible and required an effective hidden-line removal algorithm in
order to be displayed accurately. The tongue was almost impossible to display
because it usually appeared as an indistinct area, rather than as an outline shape.
Raster graphics systems were able to generate much more realistic, rendered
displays of the human head, but were very expensive (typically ten times the
cost of a vector graphics system). In addition, fully rendered animated displays
required significantly longer and were significantly more complex to generate
than vector graphics displays, which could themselves take over 20 times realtime
for the creation of short ‘copy’ syntheses (syntheses in which the gestures were
driven directly from measurements of a human utterance). Nonetheless, a
forerunner of the modern visual speech synthesizers had already been devel-
oped by the mid 1970s (Parke 1975) and the approach was quickly developed to
display facial expressions (e.g. Platt and Badler 1981). The state of visual
speech synthesis in the early 1990s has been more fully reviewed elsewhere
(Brooke 1992a; Brooke 1992b).

The apparently modest gain that results from seeing a speaker’s facial gestures
when speech is uttered in a noisy background acquires greater significance
when it is realized that changes in the signal-to-noise ratio of a speech signal
from −6 dB to +6 dB represent an improvement in word intelligibility from
about 20 percent to 80 percent (e.g. MacLeod and Summerfield 1987). Acoustic
cues to the place of articulation tend to be easily destroyed by acoustic noise
because they are dependent upon phonetic context and upon low intensity, short
duration signals usually associated with fine spectral details at the higher
frequencies. Acoustic cues to the manner of articulation, however, tend to be
associated with relatively slowly changing, spectrally strong features of the
acoustic signal at the lower frequencies that are resistant to corruption by noise
(Summerfield 1987). The acoustic and visual signals of speech therefore tend to
complement each other so that, for example, if both are used together in speech
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recognition, speech intelligibility in noise should be enhanced. Indeed, human
audiovisual speech recognition performance is better than either audio or visual
performance in acoustically noisy conditions (Adjoudani and Benoît 1996).
This immediately suggests an important potential application for the enhance-
ment of conventional, automatic speech recognition in noisy environments.
Automatic visual speech recognition began to develop in the 1980s, when
image capture hardware and software capable of capturing the dynamic facial
gestures from successive frames of film or video recordings became available.
One of the earliest devices was Petajan’s visual recognition system, which used
special-purpose hardware to capture binary black and white images of the oral
region in realtime (Petajan 1984). This device typified many later recognition
systems in using image data to extract a relatively small number of time-varying
facial features such as the width and height of the lip aperture and the area of
the oral cavity. In the 1980s these were used as templates for matching the
characteristics of test utterances with libraries of reference templates from the
utterances forming the vocabulary of the recognizer (Petajan et al. 1988a;
Petajan et al. 1988b). The main objective of the early prototypical recognition
systems was to establish the benefits that were available from the use of visual
speech signals. As Section 8.4.4 shows, this issue remains incompletely resolved.

8.2.2 Digital image processing and the data-driven approach

One of the main challenges facing automatic visual speech processing has been
to develop the ability to process the quantity of information represented by
continuous sequences of moving images within a useable time scale. The
synthesis of TV-quality, full-screen colour images, for example, requires the
generation of millions of bits of information per second. The data processing
rate needed for image capture and analysis was also a problem in early recog-
nition systems and was usually dealt with by extracting feature information
from oral images, even when special-purpose hardware began to be available
for image capture in realtime (e.g. Petajan 1984). However, it is not always
possible to describe all of the important visible information in terms of simple
parameters and, despite some early studies (Finn 1986), there is still no compre-
hensive catalogue describing the facial features that are relevant to speechreading.

By the second half of the 1980s digital image processing equipment was
becoming more widely accessible and processor speeds were rapidly increasing
through the megahertz range. Fully rendered facial images displayed on raster
graphics devices had supplanted the earlier vector graphics and several software
packages had been implemented (e.g. Yau and Duffy 1988; Saintourens et al.
1990; Terzopoulos andWaters 1990). It also became possible to process images
directly. For the first time, data-driven synthesis and, more especially, recog-
nition that did not involve pre-selection of relevant features became a real
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option. For example, visual speech recognizers were reported that used auto-
matic image processing to follow movements of the lower facial region by
detecting the differences between successive images, or by computing optical
flows (e.g. Nishida 1986; Pentland and Mase 1989).

One early application of image processing was the use of chroma-key
methods to extract lip parameters from video recordings of the face of a speaker,
as described in Section 8.3.1 below. Another study from the same period
involved the processing of video recordings of the oral region of a speaker
enunciating five long vowels in a /hVd/ context. The image sequences were
processed to create moving images of the speaker at different spatial and grey-
level resolutions (Brooke and Templeton 1990). These were used as visual
stimuli in a vowel identification experiment. For this very simple vowel set, the
results suggested that images of low resolution (about 16 × 16 pixels and eight
grey levels) adequately captured the essential visual cues to vowel identity. The
experiment was helpful in setting an approximate lower bound on the amount of
data that images had to embody if speechreading was to be possible. To capture
even these minimal, low-resolution monochrome video images at the standard
25 frames per second implied the storage of about 20 000 bits per second. For
both synthesis and recognition, there is also a lower limit to the frame rate
beneath which significant visual information is lost (Pearson and Robinson
1985; Frowein et al. 1991). Normal video recording rates (25 frames, or 50 fields
per second) are above this lower limit.

The greater computing power of the 1980s also marked the emergence of new,
statistically oriented data-processing methods that were proving extremely suc-
cessful in pattern-recognition tasks, including conventional acoustic speech rec-
ognition. The techniques included the so-called Artificial Neural Networks
(ANNs) and the class of finite state machines known as hidden Markov models.
These have been described elsewhere (e.g. Rabiner 1989b; Beale and Jackson
1990). Both are well suited to data-driven processing as they can build an internal
description of images of a speaker’s visible gestures without needing a detailed
description or understanding either of the nature of the gestures, or how they arise.
Images can be treated at the lowest level purely as arrays of pixels.

One form of ANN, theMulti-Layer Perceptron (or MLP), was swiftly applied
to visual speech processing. MLPs consist of layers of rather simple processing
units. Every unit at each layer generates inputs to all the units of the layer above
and the connections can be weighted. These weightings, together with the bias
parameters that typically define the properties of each of the processing units,
can be adjusted. Given a starting set of random values, the parameters can be
successively refined by a training process. In a typical training process, many
examples of ‘labelled’ patterns are presented as input to the first layer of units
and the MLP parameters are reiteratively adjusted, using a standard algorithm,
until the output units generate the correct labels for each input pattern. The
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output units usually form an encoder in which, conceptually, one unit produces
an output for each specific label and all other units give no output. MLPs can
thus ‘learn’ to generate internal mappings between sets of inputs and outputs
during the training process (e.g. Elman and Zipser 1986). One very early use of
a three-layer MLP in visual speech processing was to find a mapping between
single, 16 × 16 pixel, monochrome images of the oral region of a speaker
captured at the nuclei of the three vowels that lie at the corners of the vowel
triangle. Once trained, theMLPwas used to determine the vowel class labels for
previously unseen test images (Peeling et al. 1986). Only two processing units
were needed in the intermediate layer of the trained MLP. Since this layer is a
gateway through which input data passes to the output units, it effectively holds
an encoded internal representation of the vowel images and this result suggested
that the essential visual cues to vowel identity could be captured by a very small
number of parameters. A second MLP-based experiment shortly afterwards
(Brooke and Templeton 1990) showed that a machine with just six processing
units in the intermediate layer could be trained to identify vowels using 16 × 12
pixel monochrome images of a speaker captured at the nuclei of the eleven non-
diphthongal British English vowels in a /bVb/ context. Overall performance
was 91 percent correct vowel identification and, for the worst case individual
vowel class, 84 percent correct identification. Once again, the real importance of
these results was the indication that visual cues to vowel identity could be
retained in images of relatively low resolution and, furthermore, that additional
significant gains in image compression could be gained by noting that the
essential cues could be internally encoded by theMLPwith a very small number
of parameters.

Whilst MLPs suggested the possibility of further image compression, they
were not particularly stable coders; small changes in images could produce large
changes in the MLPs’ internal representations and vice versa. Awell-established
statistical technique, Principal Components Analysis, or PCA (Flurry 1988),
proved more stable and was potentially at least as efficient in compressing
image data as MLPs (Anthony et al. 1990). PCA transforms a pattern space
into a new space in which as much of the variance of the original data as possible
is accounted for by as small a number of axes, or principal components, as
possible. Images of the articulatory movements of the face, which is a highly
constrained anatomical structure, should show a high degree of structuring. One
of the earliest examples of this approach to facial image encoding was reported in
1991 (Turk and Pentland 1991). An independent preliminary experiment also
originally reported in 1991 (Brooke and Tomlinson 2000) established the validity
of using PCA to compress and encode monochrome oral images of a speaker’s
gestures. When PCAwas performed on approximately 15 000 monochrome oral
images of a speaker uttering digit triples, captured at a resolution of 32 × 24
pixels, it was found that about 80 percent of the variance was captured by just
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15 principal components (the uncompressed 32 × 24 pixel monochrome images
correspond to points in a 768-dimensional space). Given a representative set of
training images, it is possible to use the computed principal components to
compress similar test images. Results from perceptual tests on the speech read-
ability of monochrome oral images of spoken digit triples reconstructed from a
PCA-encoded format showed that the use of more than 15 components did not
significantly improve the visual intelligibility of the images (Brooke and Scott
1994b). In one unpublished project (Brooke, Fiske, and Scott), PCA performed
on two-dimensional images of the outer lip margins during unrestricted speech
production also suggested that two components sufficed to describe their varying
contours, a finding consistent with one animated lip model, which uses three
parameters to model full three-dimensional movements (Guiard-Marigny et al.
1996). A later, multistage variant of PCA was also successfully developed
(Brooke and Scott 1998a). It involved dividing images into sub-blocks, PCA
encoding each of the sub-blocks and then applying PCA a second time to the
coded versions of all of the sub-blocks. This method was used to compress the
data from a corpus of sentence utterances video recorded in colour (see
Section 8.3.1 below). PCA has been widely used to reduce the dimensionality
of data that arises in visual speech processing (e.g. Welsh and Shah 1992;
Goldschen et al. 1996; Vatikiotis-Bateson et al. 1999).

Another technique used to reduce the dimensionality of video image data for
audiovisual speech recognition is discrete cosine transforms. In the work carried
out by Potamianos et al. (Potamianos et al. 2001a; Gravier et al. 2002b), the size
and position of the speaker’s mouth in video fields, captured at a rate of 60 Hz,
was estimated using face-tracking algorithms. The portions of the video fields
containing the mouth were then extracted and size-normalized to 64 × 64 pixels.
A two-dimensional, separable discrete cosine transform (DCT) was applied to
these normalized mouth images and the twenty-four highest-energy DCT
coefficients were stored for each image. Linear interpolation was then applied
to the stored features to derive sets of visual coefficients that corresponded to the
audio coefficients (100 Hz). Finally, changes in lighting conditions were dealt
with by applying feature mean normalization to the sets of linear interpolated
coefficients. The reader can find in Potamianos et al. (this volume) recognition
experiments where this DCT technique is compared to PCA.

Although ANNs can be used to handle time-varying speech patterns (Stork
et al. 1992; Bregler et al. 1993; Lavagetto and Lavagetto 1996; Krone et al.
1997), a second type of model, though a very poor representation of the speech
production process, has proved to be very successful in speech recognition
tasks. It comprises the finite state machines known as hidden Markov models
(HMMs). HMMs can embody the time-varying properties of real speech signals
and are also able to capture their inherent variability (Rabiner 1989a). HMMs
describe each speech event (whether a word, phone or sub-phone element) as a
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synchronous finite state machine that begins in a starting state then changes state
and generates an output pattern for each tick of a clock until it reaches an end
state. The properties of the machine are determined by its parameters, which are
the set of transition probabilities that govern the likelihood of a particular state
succeeding any other, plus a set of state-dependent probability density functions
that determine the probability of a particular state generating any one from the
set of all possible output patterns. In conventional acoustic speech recognition,
each output pattern is a vector that describes the short-term characteristics of the
speech signal, for example, as a set of short-term cepstral coefficients. The clock
period of HMMs is conventionally equivalent to the frame rate of the short-term
observations. The HMM parameters can be computed by presenting the model
for each unit in the recognizer’s vocabulary with corresponding examples of
real speech signals, in the form of sets of pattern vectors. The model parameters
are then reiteratively adjusted, using standard algorithms, starting from a set of
initial parameter estimates. The recognition process consists in identifying the
trained HMM most likely to have generated an unknown test signal. It is
possible to build HMMs that represent each phone in the context of its preced-
ing and succeeding phone; these so-called ‘triphone’ models can help to
account for coarticulatory effects. Additionally, since the pattern vectors that
HMMs use can be modified very easily, HMMs are well suited to visual speech
recognition and to audiovisual recognition simply by replacing or augmenting
the conventional, acoustic pattern vectors with a suitable vector to describe the
visual features of the speech event. Some pattern vectors use extracted feature
values (e.g. Adjoudani and Benoît 1996; Goldschen et al. 1996; Jourlin et al.
1997; Tamura et al. 1998), rather than the image data itself, in a suitably
compressed and encoded form, as described earlier in this section and in
Section 8.4.4 below.

Both ANNs and HMMs require considerable amounts of training data and a
great deal of computational power, especially in the training phase. The resour-
ces to deal with these requirements became steadily more abundant during the
latter part of the 1980s, which therefore marked a period during which there was
an upsurge in visual speech processing. The recognition phase when using
trained ANNs and HMMs is relatively light on computing resources. In
MLPs, for example, the content and structure of the images presented to a
trained machine make no difference to the processing time. Consequently, it
became practicable to undertake more demanding applications in audiovisual
speech synthesis and recognition as explained in Section 8.4.

8.2.3 Redefining the goals of visual speech processing

By the early 1990s, the benefits of visual speech processing were generally
recognized and visual speech processing was moving from pilot studies of
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techniques towards practicable and challenging applications. In speech recog-
nition, work has been focused on capturing, encoding, and integrating visual
speech with its audio component to permit robust recognition in noisy environ-
ments where, for example, hands-free control of devices is required. In speech
synthesis, work has focused on building interactive applications. One such
application is the teaching of speechreading by allowing an instructor to gen-
erate training material for private use, with the system adapting the training
material presented to a learner in response to the learner’s progress (Cole et al.
1999). Another application is a computer information system controlled by
interaction with a complete, computer-generated, virtual humanoid capable of
responding to input by the user, via speech and vision (Cassell et al. 2000).
Given the importance of the head and face to such applications, they have
become the prime foci for recent research.

8.3 Heads, faces, and visible speech signals

The head has a complex three-dimensional structure capable of quasi-
rotational global movements in three dimensions relative to the rest of the
body. These can be informally characterized as head shaking, head nodding,
and head tilting, though there is not a simple centre of rotation. In addition, the
head is carried on the body, whose movements are therefore superimposed on
those of the head itself. The face is also a complex anatomical structure whose
tissues possess great mobility and elasticity. In the simplest terms, the surface
layers are underlaid by a complex musculature through which they are
attached to the rigid bone of the skull. At least thirteen separate groups of
muscles are involved in movements of the lips alone (Hardcastle 1976), but
many more muscles are involved in the generation of the full range of facial
expressions. The latter have been classified and characterized in terms of the
actions of the muscle groups in the Facial Action Coding System (Ekman and
Friesen 1978).

Not only are the visible gestures of the primary speech articulators therefore
complex and subtle, they are normally accompanied by many secondary ges-
tures of the face and indeed of the body, including changes in facial expression
and body posture or movements. These are discussed in Section 8.3.2, below.
They can all convey important speech cues; often they have less to do with the
phonetic content than with the speaker’s meaning and intention, that is, they are
related more to the understanding of speech than its recognition (see for
example, Dittmann 1972; Ekman and Friesen 1978; Ekman 1979; Ekman and
Oster 1979). They also play a part in dialogue. Visible, non-verbal cues may
even be made in response to a speaker, in order to direct the discourse. An
example of this is the quizzical expression that a listener may use to prompt a
speaker into giving further information.
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However, knowledge about the nature and significance, even of head and
body movements, let alone facial expression, during speech production is still
far from complete. It is, however, at least conceivable that inappropriate global
movements and facial expressions could change the meaning or intention of an
utterance in a way similar to that in which mismatched visual and acoustic cues
to phonetic content can induce changed percepts (McGurk and MacDonald
1976). This has important implications for automatic visual speech synthesis, as
discussed in Sections 8.4.2 and 8.4.4 below.

8.3.1 Recording and measuring visible speech gestures

Most of the earliest recordings of speakers’ faces were captured on film (e.g.
Fujimura 1961). In the 1970s, video recordings were becoming a cheaper
alternative, despite having a lower spatial resolution and generally rather long
frame exposure times that smeared rapid movements of the oral region (e.g.
Brooke and Summerfield 1983). Video recordings were also difficult to handle
because of the high cost and limited availability of the equipment that was
needed to retrieve the individual fields or frames in sequence so that movements
could be tracked. Short time intervals were necessary; 20 to 40 ms intervals
were considered only just adequate for capturing the rapid consonantal articu-
lations. Furthermore, the measurement and analysis of speech movements is
difficult because the articulatory gestures (a) involve only small movements (the
largest excursions rarely if ever exceed 25mm and are often much smaller); and
(b) are superimposed upon the global head and body movements which accom-
pany natural speech. In the experiments conducted to date there has been a
trade-off between the accuracy of the data gathered and the range of head and
body movements or free facial expressions permitted to the speaker. Recordings
have tended to concentrate on the primary visible articulations around the lower
face that are most closely related to the phonetic content of an utterance. In some
of the very early recordings, the speaker’s head was clamped so that any visible
movements could be ascribed to articulatory movements of the mouth region
alone. This was hardly a way to capture ‘natural’ speech movements and later
experiments allowed the speaker greater freedom of head movement. Where
global head movement was permitted, a common strategy has been to track
selected points on the head that are not involved in articulation and use their
position to compensate for the global movements of the head (Brooke and
Summerfield 1983). The tracking of these fixed points has the advantage that it
permits the head position and orientation to be quantified so that the global
movements and their relation to speech production could in principle be
explored. Fixed points of this kind can, however, vary considerably from one
individual to another and are not always marked by easily identified anatomical
features. It can thus be difficult to establish an accurate reference frame for
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measurements when speakers are allowed to move freely. Another approach has
been to create a 3D model of the speaker’s head and then deform the model,
through a set of parameters, until it matches the current image of the speaker
(Eisert and Girod 1998). A third approach to the elimination of effects due to
global head movements is to fix the camera relative to the head, for example, by
using a head-mounted boom. Even then, however, there are still small but
significant residual head movements relative to the camera. Petajan’s ‘nostril
tracker’ is an early example of tracking used in this situation (Petajan 1984).
Contemporary recordings of speakers still tend to employ a front facial image
and compensate for any global movements by assuming that they are small x
and y translations that can be compensated by tracking the position of a few
identifiable facial feature points (e.g. Brooke and Scott 1998b).

While many important articulatory gestures can be seen in frontal face images,
others, such as lip protrusion, require observation of movements in all three
dimensions. Simultaneous recording of movements in all three dimensions is
not easy to achieve, especially if the subject is allowed complete freedom of
movement. One early method (Brooke and Summerfield 1983) used a mirror
angled at 45 degrees to capture simultaneously the front and side views of a
speaker in a single recorded image. Usually the recordings involve the marking of
points on the face, especially around the lips, lower face, and jaw. These techni-
ques may be acceptable in analytical studies of speech production, but are
unlikely ever to be appropriate in a practicable visual speech recognition system,
which will probably use a single camera to observe the unmarked faces of
speakers with at least a reasonable freedom of movement. Articulators that are
only partially or intermittently visible, such as the teeth and the tongue, are known
to convey important visual cues also. Their movements can be continuously
recorded, but only by the use of very complex, expensive and specialized
techniques such as X-ray microbeams, X-ray cineradiography, dynamic MRI,
or ultrasound measurements (Perkell 1969; Fujimura 1982; Keller and Ostry
1983; Perkell and Nelson 1985; Echternach et al. 2008). These are frequently
invasive, and involve the placement of targets at points in the internal vocal tract.

In the 1980s, video recording systems had improved and digital image
processing techniques were more widely available. It became possible to collect
and analyse facial speech movements using automatic techniques. These
included the capture of binary oral images in realtime (Petajan 1984) from
which lip contours could be derived, or the extraction of lip parameters from lips
that had been painted a cyan colour so that they could be separated from skin
tones by chroma-keying (Benoît et al. 1992). Large digital frame stores began to
make possible the processing and storage of sequences of video-recorded
images that could then be retrieved and replayed at normal video frame rates as
described in Section 8.2.2 above. Given the increasing capacity of disc storage
systems, the greater speed of modern processors, the widespread availability
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of relatively cheap and efficient digital colour video cameras, and access to
very efficient video data compression tools such as MPEG coding, the capture
of high-quality moving images of a speaker’s face in timescales close to, or
even at, realtime is now relatively straightforward. The high capacity of very
cheap storage media such as CD-ROM allows large corpora of speech material
embodying both video and audio recordings to be created and distributed. For
example, 90 minutes of speech material consisting of a single speaker uttering
132 sentences from the SCRIBE corpus has been video recorded in colour at
50 fields (25 frames) per second, complete with audio sampled at 16 KHz. The
digitized, 64 × 48-pixel colour images of the oral region were stored and the
audio was encoded as the first 24 LPC cepstral coefficients, sampled at 20 ms
intervals. All the audiovisual data could be held on just three CD-ROMs
(Brooke and Scott 1998b).

Despite the remarkable advances in the technology for data capture, there are
still no readily available, general-purpose tools for tracking either the global
movements of the head or the topographical features. Automatic feature extrac-
tion remains non-trivial. For example, while the most sophisticated real-time
tracking systems (e.g. Blake et al. 1993; Blake and Isard 1994; Dalton et al.
1996) can accuratelyfind and follow changes in shape of the outer lipmargins, the
inner lip margins, which are known to convey important visual cues to speech
(Plant 1980; Montgomery and Jackson 1983), are not so well defined and remain
difficult to locate reliably. Also, tracking the variations in lip contours is not
necessarily equivalent to tracking the movements of marked points on the face
that represent specific locations on the skin surface. Facial surface features are not
defined on a contour, except at a few clearly identifiable positions such as the lip
corner. Thus, while contours may be an efficient descriptor for lip shapes, they
may not be well suited for examining the effects of actions by the facial muscu-
lature on changes in configuration of the surface topography.

8.3.2 Creating visual and audiovisual speech databases

The main problem in recording speech data for use in audiovisual speech
processing applications is agreeing on what kind of material should be captured
and under what conditions. Without necessarily attempting to constrain the
specific material, a generally-agreed-upon framework is important in order to
establish at least the structure and size of a common database that can be used to
compare objectively the results obtained, for example, from automatic audio-
visual or visual speech recognition using different systems. This has been
attempted and to a large extent achieved for conventional audio speech process-
ing. For example, much confusion can be created by simple inconsistencies
such as attempting to compare the results from isolated word and continuous
audiovisual speech recognition systems (e.g. Brooke et al. 1994; Adjoudani and
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Benoît 1996; Tomlinson et al. 1996). Also, many prototypical audiovisual
speech recognition systems used corpora of training and test data, such as the
TULIP database and its derivatives, that were really too small to be completely
reliable for the assessment of recognition performance (e.g. Movellan and
Chadderdon 1996; Matthews et al. 1998).

Even now, there is relatively little systematic data available to describe and
classify the visible speech articulations, though some work has been done to
identify the visemes (e.g. Benoît et al. 1992), which are the closest visual
equivalent of the abstract sound classes known as phonemes. Just as phoneme
sets are language-specific, it seems likely that viseme sets may be language-
specific as well; but thus far, there are too few systematic studies available to
draw any clear conclusions. It is even possible that the facial gestures for speech
events whose production methods are similar may differ among native speakers
of different languages. Furthermore, since speech production involves time-
varying movements of many articulators that may possess different mechanical
properties, like stiffness and inertia, there is not a single, fixed articulatory
configuration associated with a particular speech sound. Rather, the vocal tract
configurations for a particular speech event are affected by the sounds that
precede and follow it. This effect is known as coarticulation and, not surpris-
ingly, manifests itself in the visible, facial gestures as well as in the acoustic
outputs of the vocal tract (Benguerel and Pichora-Fuller 1982; Bothe et al.
1993). Consequently, a database of speech material must include many samples
of each phoneme in different phonetic contexts. An early study (Brooke and
Summerfield 1983) employed VCV syllables in the context of the three vowels
that lie at the corners of the vowel triangle (see Ladefoged 1975) and a series of
/bVb/ and /hVd/ utterances. However, a comprehensive library with multiple
samples of all phonemes in the context even of the two adjacent phonemes (in
other words, the complete set of triphones) involves a very large database of
samples and the coarticulatory effects can in fact extend across a much wider
spread of neighbouring phonemes (Ladefoged 1975). Even 90 minutes of
recordings of SCRIBE sentences (see Section 8.3.1) can cover only a small
proportion of all the possible triphones. Multiple tokens are needed to take
account of the natural variations in the productions of even a single speaker.
However, recordings of multiple speakers also need to be made to study the
inter-speaker variations in articulatory strategies and gestures that are known to
exist (Montgomery and Jackson 1983). Until recently, these variations have
seriously restricted the application of articulatory synthesis to the creation of
acoustic speech signals, despite the potential attractiveness of early accurate and
detailed articulatory models (e.g. Mermelstein 1973). Lately, however, there has
been a revival in this area with work on fricative constants (Mawass et al. 2000;
Beautemps et al. 2001), and biomechanical modelling of velar stops (Perrier
et al. 2000).
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Recordings of speakers’ faces may be treated at one extreme as images whose
coded representations define the specific gestures and configurations of the
visible articulators. At the other extreme, they can be analysed to find the spatial
positions of particular topographical features, such as the corners of the lips, for
example. The simplest approach is to make front-facial video recordings under a
fixed level of lighting from two sources close to either side of the camera and in
the same horizontal plane as the nose, so as to minimize unwanted shadowing
and asymmetry. In reality, however, speakers’ heads may be presented under a
range of lighting conditions and lighting conditions may vary even during short
utterances. Similarly, whilst it is possible to make simple x- and y-corrections to
measurements taken from different frames to compensate for the small head and
body movements made by a speaker in controlled conditions, these corrections
do not adequately compensate for the larger variations due to the changes in a
speaker’s head orientation and position with respect to the observer that can
occur in natural speech. While lighting conditions may or may not interfere with
techniques that search for and track facial points or features, they can have a
large effect on the appearance of the facial image. Consequently, were PCA, for
example, to be used to encode facial images (e.g. Brooke and Scott 1998b;
Brooke and Tomlinson 2000), it might be expected that codes representing
images of identical facial presentations in differing lighting conditions, would
vary widely. However, the broadly fixed patterns of articulatory movement for
specific utterances might manifest themselves at a deeper level through partic-
ular kinds or rates of change in the PCA coefficients, for example. Changes in
facial orientation and position would generate additional time-varying changes
in the PCA coefficients that would be confounded with the changes due to the
visible articulatory gestures.

Recent work has led to the development of an automatic system for facial
recognition (Moghaddam et al. 1998); it modelled the two mutually exclusive
classes of variation in facial images. The first was the class of intra-personal
variations due to differences in appearance of the same individual resulting from
changes in lighting conditions, facial expression, facial orientation, and position
with respect to the camera. The second class, of extra-personal variations, are the
differences in facial appearance presented by different individuals. A Bayesian
classifier was used to determine whether a pair of images represents the same
individual or two different individuals. The technique used an embedded algo-
rithm to isolate, scale, and align the faces from images and was able to deal with
changes in head orientation, though the images tested were all essentially front-
face presentations and the orientation variations were small. The images also
included some lighting changes and variations in facial expression that the
recognition system was able to deal with. However, the major objective of the
face-recognition task seeks to discount precisely the differences in facial expres-
sions and gestures that are relevant to visual speech processing and, furthermore,
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seeks to find the extra-personal differences that it would be highly desirable to
discount, for example, in visual speech recognition. There currently appear to be
no studies that have recorded speakers under controlled ranges of lighting con-
ditions and facial orientations to explore the effects of either on (a) image
encoding, in the case of image-based systems; or (b) the effectiveness of tracking
algorithms, in the case of feature-oriented systems. Since separate recordings
would be needed for each condition, the analysis of the results would need to take
account also of the natural variations in articulatory gestures noted earlier. The
outcome of the investigations would be directly relevant, for example, to recog-
nition systems, like hiddenMarkovmodels, that essentially attempt to account for
the variance of the input data.

In addition to the recording of basic visual material as outlined above,
account needs to be taken of the differences between gestures that may occur
in different kinds of speech activity. For example, spontaneous speech and
conversation may not employ the same vocabulary of gestures as reading out
loud, or using the telephone. In the very long term, material that reveals the
interaction between speakers in a dialogue may be important, but it may perhaps
be premature to attempt the specification of corpus material to investigate these
aspects of visual speech signals when there is still a dearth of data for exploring
more basic questions like the ones outlined above.

One further aspect of visible speech signals is becoming very important, for
example, if a synthetic computer agent is to be realized that can simulate
realistically a human speaker. It concerns the addition of appropriate facial
expressions to the visible articulatory gestures and the interaction between the
two. There is currently no analytical information available and no corpus of
recorded data, for the following reasons. The simplest view of facial expressions
is that the relevant muscular activities concerned with their production, which
are well defined (Ekman and Friesen 1978), can be superimposed upon the
muscular activities associated with the articulatory gestures. However, it seems
more likely that there is a complex coupling between the two. For example,
anyone who has attempted to utter speech whilst simultaneously producing a
fixed smile or a permanent scowl will be aware that this is unnatural and difficult
to do. Not only are the articulatory gestures of speech time varying, the facial
expressions themselves are essentially dynamic gestures that vary during
speech utterances. A very simple example (Ekman 1979) is provided by the
well-known baton gestures of the eyebrows. Furthermore, making a specific
facial expression can actually modify the speech production process. Scowling,
for example, produces a tightening of the lower facial muscles and a drawing
down of the lip corners that dramatically changes the normal articulations and
also affects the voice quality of the acoustic output. The empirical investigation
of the interaction between facial expressions and speech movements would
most naturally start from studies of the articulatory movements in a ‘neutral’
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face, which may be considered the normative baseline. Audiovisual recorded
material from natural speech that embodies a range of natural expressions is also
required and the time-varying expressions would need to be labelled by hand,
much as phonetic transcriptions are created by manual labelling of conventional
spoken corpora. It would then be possible to attempt to measure the differences
between the expressive and the ‘neutral’ faces for each class of labelled
expressions, in a range of phonetic contexts. This field has yet to be explored
in any real depth and the development of an appropriate methodology remains a
major challenge. Existing work is centred on the perception of audiovisual
speech in the presence of emotions such as amusement, which are easy to
activate spontaneously in constrained speech (Aubergé and Lemaître 2000).

A proper understanding of the interaction between the expressive and the
articulatory processes demands a far more sophisticated and extensive model of
language than we yet possess. Attempts to engineer expressive agents without
greater knowledge of this kind may be not only misplaced, but also positively
damaging, for reasons that are discussed in Section 8.4.3 below, in relation to
purely articulatory gestures.

8.4 Automatic audiovisual speech processing

Additional sources of relevant knowledge should enhance the performance of
conventional automatic speech recognition (ASR) systems. This is one of the
main reasons for current interest in the visible aspects of speech production. As
Section 8.2.1 above argued, visual speech signals tend to complement and
therefore augment the acoustic signals. Indeed, the potential relevance and
usefulness of visual signals is confirmed by the employment of speechreading,
not only by those suffering from hearing-impairment, for whom it is an essential
part of successfully managing everyday communication, but also for most
normal hearing people, especially when there is a noisy environment. For the
reasons given earlier, one of the principal application areas for automatic
audiovisual speech recognition is the robust recognition of speech in the
presence of background noise in locations such as aircraft cockpits, where
hands-free voice control may be required.

The primary requirement in automatic audiovisual speech recognition is
therefore to identify the cues from each of the two modalities that are important
to the accurate phonetic identification of speech events and to combine those
information sources so as to make the best use of both together. This is in fact
the second major issue in visual speech processing, along with the management
of the volume of information that visual data presents, as noted in Section 8.2.2
above. There is as yet an incomplete understanding of the nature of the visual
cues to speech events. Features such as lip separation and lip width are known to
be important cues (e.g. McGrath et al. 1984), and others have been suggested
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(Finn 1986). However, there is still no reliable literature to indicate anything
approaching a complete list of visual cues and no established methodology for
identifying them. In addition, some of the cues may be very subtle. For example,
when some of the identifiable visible features of speech signals were encoded
using PCA, some of the higher-order coefficients that contributed very little to
the data variance were more important in contributing to successful recognition
than lower-order components that accounted for a much greater proportion of
the data variance (Goldschen et al. 1996). Conventional (acoustic) automatic
speech recognition systems can now handle speaker-independent continuous
speech with sizeable vocabularies of the order of thousands of words. Variations
due, for example, to movements of the speaker relative to the microphone can
be fairly readily eliminated (see, for example, Holmes 1988). As the discussion
of visual corpora above indicated, there is as yet no adequate body of systematic
data to support the construction of speaker-independent audiovisual recognizers
and it is much more difficult to compensate for visual variations such as move-
ments of the speaker. Any practicable recognition systemwill ultimately have to
allow the speaker reasonably free movement, at least within a fixed field of view.

Visual speech synthesis, on the contrary, has a wide range of potential
applications and the requirements may vary. One possibility is the construction
and presentation of material for helping in the teaching, for example, of speech-
reading skills. A second is the construction of lifelike computer agents, and a
third is the cheap and rapid construction of animated cartoon films. Other,
longer-term applications could include automatic film dubbing into a variety of
languages by substituting generated facial syntheses for the original actor’s face.

In an agent application, high-resolution colour images are required that
model very accurately both speech gestures and facial expressions in essentially
complete and photographic detail; realism is the primary motivation. For train-
ing purposes, the primary requirement for visual speech syntheses is more likely
to be that they are speech-readable and embody the essential visual cues to
speech events. It may or may not be essential to model the whole head or face. In
film cartoon applications, it may bemore important to generate animated displays
that exaggerate speech and expressive gestures, possibly, in the extreme limit, in
a highly formalized or anatomically inappropriate way. This is typical of the
animator’s art and may rely upon generally accepted conventions that are
divorced from reality to achieve a kind of plausibility. A limited ability to
exaggerate articulatory movements may also be attractive in training applications
when specific gestures may need to be emphasized. One other potentially
important application area is the analytical investigation of visual and audiovisual
speech perception itself. This could also require the generation of artificial
visual stimuli that defy normal articulatory realization, for example, because
articulators must be coupled or decoupled in an unnatural way. To illustrate this,
consider a hypothetical experiment to determine whether it is the jaw opening or
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the lip opening that ismore important in the perception of the British-English long
vowel /a/. One approach might subject observers to a continuum of visual stimuli
in which, at one extreme, the mouth opens while the jaw remains stationary and,
at the other, the jaw drops while the lips remain closed. In this example, the
normally coupled movements of these two articulators must be decoupled.

8.4.1 Head model architectures for visual speech synthesis

The development of visual synthesizers basically sprang from early approaches
that involved a model of the head, or face, whose conformation could be
adjusted to generate a sequence of frames. These could then be displayed in
succession sufficiently rapidly to simulate movement. Two-dimensional facial
topographies that could be realized through vector graphics were the cheapest
and simplest to implement (e.g. Brooke 1982; Montgomery and Hoo 1982;
Brooke 1989). One of the earliest raster graphics displays that could be fully
rendered to simulate texture and shading was the three-dimensional ‘wire-frame’
model of Parke (1975) in which the polygonal surfaces making up the head
could be modified. Indeed, this model was the archetype for its contemporary
counterparts, which can also include details of internal features like the teeth and
tongue (e.g. Cohen et al. 1998). Themain challenge underlying the animation of
computer graphics displays of this kind remains the derivation and application
of control parameters for driving accurately the time-varying movements of the
model. They must be simple enough to adjust the time-varying conformation of
the wire-frame economically, yet powerful enough to permit a full range of
movements and gestures. One way to achieve this is to configure the model for a
set of idealized target gestures, for example, a set of phones, then to generate
intermediate image frames by interpolating between the target images (Lewis
and Parke 1987). There are now techniques for modelling coarticulatory effects,
of which the application of a gestural theory of speech production was one
important step (Cohen and Massaro 1993). This technique can, however,
involve a very great deal of manual tuning to optimize performance. An
alternative approach is to attempt to model the head anatomically, including
descriptions of the skin, muscle, and bone structures (Platt and Badler 1981;
Terzopoulos and Waters 1990; Waters and Terzopoulos 1992). Time-varying
muscle-based parameters can then be used to change the shape of the head
model. While this is attractive in principle, mechanisms for deriving the muscle
parameters are not straightforward. Additionally, the derivation of the control
parameters for features that are only partially or intermittently visible may
require sophisticated and invasive measurement techniques. Given the greater
power of modern processors, it is now also possible to use facial images
themselves as the head models for a series of phonetic targets and to ‘morph’
between the target images to simulate movements (e.g. Bregler et al. 1997a;

Audiovisual speech synthesis and recognition 177



Ezzat and Poggio 1997). Visible coarticulation effects have to be carefully
handled in this type of synthesis.

The major advantage of methods based on head models is that they can in
principle include facial expressions very easily if suitable modifications can be
made to the control parameters to augment the purely articulatory gestures.
Attempts have been made to achieve this using a simple catalogue of basic
emotions (e.g. Lundeberg and Beskow 1999), but the difficulties of a general
solution to the problem have been described earlier. A further advantage of
using head models for visual synthesis is that the images can be rendered to any
resolution so that it is possible to generate photographically realistic images at
only marginally greater computational expense. Modelling of exaggerated or
anatomically implausible gestures is potentially straightforward and could in
principle be achieved by applying appropriate control parameters.

8.4.2 Data-driven methods for visual speech synthesis

By using HMMs for capturing and describing the statistical properties of image
sequences, it is possible to develop visual recognizers, as discussed in
Section 8.2.2 above. However, a more unconventional application of trained
HMMs (that is, HMMs whose parameters have been established) is to use them
to generate outputs. In this way HMMs can become image synthesizers. One of
the earliest applications of HMMs for synthesizing oral images (Simons and
Cox 1990) used only lip widths and separations as parameters. Parametric
representations of a wider range of facial features and their time-varying changes
can be used in this way to generate more sophisticated syntheses (e.g. Tamura
et al. 1998; Okadome et al. 1999). It is also possible to create syntheses from
HMMs trained on images of a speaker’s face without any knowledge of the
underlying structure of the images. In order to do this, HMMs are combined
with a second statistically based technique, namely, PCA, which can efficiently
compress and encode image data as discussed in Section 8.2.2 above. This is the
basis of an entirely data-driven approach to visual speech synthesis (Brooke and
Scott 1994a; Brooke and Scott 1998a). No modelling of the anatomy or structure
of the head and face is required. In effect, the computer can be presented with
many sequences of images of a speaker’s face, in a PCA-encoded format, from
which it can ‘learn’ how the speaker’s facial gestures vary when uttering
specific speech sounds. That is, it can use time-varying encoded versions of
images to train HMMs to represent each of a set of phones. To synthesize an
utterance, the HMMs for the appropriate sequence of sounds are invoked in
order and reconstruct what they have ‘learned’. In principle, they generate as
their outputs a sequence of images, also in a PCA-encoded format. However,
since the outputs of HMMs are generated independently, they cannot be used
directly to simulate a human speaker’s smooth, physiologically constrained
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outputs. Instead, the HMMs are used to generate PCA-encoded outputs at key
points within speech events that are then used to compute a smoothly time-
varying sequence of outputs (Brooke and Scott 1998a). Since each HMM is
probabilistically driven, the image sequence that any particular HMM generates
will vary from one invocation to another. Overall, however, the statistical
properties of a large number of invocations will essentially match the variations
in production that the HMM encountered during the learning phase. The data-
driven methods can therefore model the variations of real speakers’ productions.
In order to model at least some of the coarticulatory effects, triphone models are
employed; the disadvantage of triphone modelling is that a much greater amount
of training data is required.

One of the greatest virtues of data-driven modelling is that, because the HMMs
are trained on images of real speakers, the images quite naturally embody facial
features like the teeth and tongue that are only partially and intermittently
visible. There is thus no requirement to estimate and track the position of
those features that are most difficult to measure. For the same reason, natural
asymmetries of the facial movements and the imperfect skin textures of real
faces also arise naturally from the training process. It is thought that some of the
shadowing and texturing of the skin surface may provide cues to particular
speech events (e.g. Fujimura 1961). In many models, bilateral symmetry of the
face is assumed to minimize the volume of control data that is needed to drive
the syntheses. In reality, faces are rarely, if ever, entirely symmetrical and one of
the advantages of the data-driven approach is that the natural asymmetries are
built in. The training phase, although it employs well-defined, standard algo-
rithms (Rabiner 1989b), is computationally expensive. However, the generation
of the colour syntheses is rather rapid. Using the prototype synthesizer running
on a modest 166 MHz PC, complete sentences could be synthesized at 50
frames per second from a phonetically transcribed input in approximately 6–8
times realtime. At these timescales, it is possible to envisage the interactive
construction of visual speech stimuli that can be presented in response to a user.
This capability would be important in training applications.

Much of the computational load in synthesis is due to reconstruction of the
images from their PCA-encoded format. To reduce this load, codebooks of
images together with their PCA codes can be constructed. Image sequences can
then be generated entirely by a form of vector quantization that selects the
codebook images with PCA codes closest to those computed by the HMM-based
synthesizer. These syntheses approach realtime but are less smoothly varying
(Brooke and Scott 1998b). In principle it is possible to set a tolerance such that
codebook images are selected if their PCA codes lie within the tolerance, but
images are reconstructed from the PCA codes otherwise. By adjusting the
tolerance, it should be possible to trade off better synthesis timescales against
a reduced image quality. The speech-readability of the prototype, non-codebook
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version of the data-driven synthesizer was estimated in visual perception experi-
ments. These showed that single digit recognition rates in monochrome syn-
theses of spoken digit triples at a spatial resolution of only 32 × 24 pixels, could
reach 63 percent, compared with a rate of 68 percent for monochrome visual
displays of real digit triple utterances video-recorded at the same spatial resolution
(Scott 1996).

The data-driven approach implies, importantly, that unlike most model-based
methods, very little manual tuning or adjustment is needed and a synthesizer can
be trained on any speaker if sufficient annotated training data is available. The
prototype data-driven visual speech synthesizer described above was con-
structed to be speech-readable. As a result, it has relatively low spatial reso-
lution. Use of a PCA-based coding scheme with greater image resolution would
carry additional computational costs, especially if the whole face were to be
generated. It is possible to adjust the transition probabilities of the HMMs to
modify the rate of speech production in the syntheses, though this capability is
restricted. Similarly, it is not easy to realize significant changes in facial
expressions by manipulating the model parameters in the way the head models
can be manipulated, though some small adjustments are possible, as described
in Section 8.5 below. Data-driven models are thus less convenient if detailed
control of the movements of specific facial features is required, for example, to
exaggerate particular gestures in a speechreading training application. On the
other hand, the increasing power and size of computer systems is such that it
may be possible within the fairly near future to consider the creation of sets of
trained HMMs that include the variations due to facial expressions. That is, it
may be possible to use captured data from real speakers to create HMMs not
simply for each triphone, but for each triphone in a number of different facial
expressions (see Section 8.3.2 above). At present, however, limited adaptability
is one of the major drawbacks of the data-driven approach to synthesis.

8.4.3 Data-driven audiovisual synthesis and synchronization

Visual speech synthesizers, like conventional acoustic speech synthesizers, can
be, and frequently were, driven by providing an essentially phonetic description
of the utterances to be created, possibly with additional markings to specify their
durations. However, for many applications, including the generation of car-
toons, or for the film-dubbing application outlined earlier, lip synchronization is
vital in order to be able to generate the visual speech syntheses so that they are
matched to a pre-existing sound track. One solution might be to generate
complete audiovisual syntheses. It is possible to generate an audio speech
output using the HMM-based method (from initial proposals by Falaschi
et al. 1989; Brooke and Scott 1998a; to recent work by Zen et al. 2009) in
much the same way that the visual output is generated. Feasibility experiments
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have been carried out using short-term spectral descriptions of acoustic speech,
which, although of rather poor quality, were adequate to demonstrate the princi-
ples of audiovisual synthesis. Audiovisual syntheses can be created by invoking
both the audio and the visual synthesizers and running them independently, but in
parallel (Tamura et al. 1999; Bailly 2002). Given the natural variations inherent
to human articulatory movements, it might not be surprising to encounter
complex (and variable) phasing relations between the salient events characterizing
the acoustic and the visual consequences of the same articulatory movement.
This may have important implications for audiovisual speech recognition, as
described in Section 8.4.4 below.

Ideally, however, it would be desirable to drive visual speech synthesizers
using acoustic speech signals themselves. This was indeed the way in which one
of the earliest data-driven synthesizers was used (Simons and Cox 1990). The
same method was developed (Brooke and Scott unpublished) in a pilot experi-
ment that used ergodic (that is, fully connected) HMMs with approximately
sixteen states. They were trained on audio and visual data to generate both PCA-
encoded image data and cartoon-like syntheses from an acoustic input. Other
methods for speech-driven synthesis have also been reported (e.g. Morishima
1998; Agelfors et al. 1999). The ability of ANNs to find complex mappings has
made them popular tools for both synthesis and recognition. Time-delay neural
networks have been used in synthesis for attempting, for example, to map from
acoustic speech signals to articulatory parameters (Lavagetto and Lavagetto
1996) and from phones to facial images selected from a pre-determined set
(Bothe 1996). A specific acoustic signal may be generated from a number of
different articulatory configurations. A rather extreme illustrative example is the
production of the /i/ sound. This is usually articulated as a high front vowel with
lip spreading, but can also be created with rounded lips if the tongue is moved
abnormally far forward and upward (Stevens and House 1955). The inverse
problem, namely, the computation of an articulatory configuration given an
acoustical or phonetic description of the speech event, is an intractable one-to-
many mapping problem (Atal et al. 1978). Artificial Neural Networks can
present problems if they are used where one-to-manymappings may be encoun-
tered. Even if methods exist in which multiple mappings from specific sounds to
articulatory gestures can be reliably and successfully found (e.g. Toda et al.
2004; Toda et al. 2008), the utterance context is likely to be critical in selecting a
plausible articulation within a sequence of articulations. One interesting study
(Kuratate et al. 1998) shows that acoustic speech syntheses, as well as visual
syntheses can be achieved using parameters derived from measurements of the
facial movements, which indicates a link between the two modalities that might
ultimately offer a new route to intrinsic lip synchronization.

It is very important to combine acoustic and visual speech signals accurately.
De-synchronization of the acoustic and visual speech signals beyond a critical
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time window can cause severe perceptual difficulties (see McGrath 1985).
However, the naturally occurring time offset between visual and auditory events
can provide cues to particular speech events. For example, changes in the
categorical perception of sounds in the /ma/, /ba/, and /pa/ continuum can be
induced by changing the voice onset timings with respect to visible lip opening
(Erber and de Filippo 1978). The McGurk effect (McGurk and MacDonald
1976) is a compelling demonstration of the results of failing to match acoustic
and visual data appropriately. For example, a visual /ga/ combined with an
acoustic /ba/ produces the percept of a spoken /da/. In other words, not only may
a mismatch cause the observer to fail to perceive what was uttered, it may result
in an entirely different percept that was neither seen nor heard.

8.4.4 Models for visual and audiovisual automatic speech recognition

One of the earliest approaches to automatic speech recognition used template-
matching methods to match test and reference utterances encoded as descriptions
of time-varying visible features such as lip width and separation, or oral cavity
area and perimeter. Even purely visual recognition was shown to be useful for
vocabularies of isolated words such as spoken digits and letters (Petajan 1984;
Petajan et al. 1988b). Audiovisual recognition at that stage was managed by a
heuristic that combined separate audio and visual recognition processes and it
was not easy to estimate quantitatively the benefits of using the visual compo-
nent. Speech intelligibility by humans in all but the very best and quietest of
acoustic conditions is always improved if a speaker’s face is visible. This is the
basis of all attempts to employ visible speech data as an additional source of
information, especially in acoustically noisy conditions that severely degrade
the performance of most conventional speech recognition systems, even at
relatively low levels.

By the mid 1990s, for reasons noted in Section 8.2.2 above, the range of
experimental visual and audiovisual recognition systems was already very wide,
extending from purely image-based systems at one extreme, to model-based
systems at the other. These were reviewed in a contemporary article (Stork
et al. 1996); it revealed a fundamental division between the feature-based and
the image-based views of visual data that persists. What emerged then as a
major issue, prompted by investigations of audiovisual speech perception, was
the combination of visual and auditory information so as to obtain the maximum
benefit from the two together, the importance of which has already been noted.
Four models were proposed (Robert-Ribes et al. 1993; Robert-Ribes et al.
1996). The first is the Direct Identification, or DI, model, in which acoustic
and visual data are combined and transmitted directly to a single, bimodal
classifier. The second is the Separate Identification, or SI, model that carries
out two unimodal classifications. The results from these are then sent forward
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for fusion and decision-making. The third is the Dominant Recoding, or DR,
model. Here, auditory processing is assumed to be dominant and visual data is
recoded into the dominant modality. For example, both modalities might be
recoded into a tract transfer function. The two estimates are then fed forward for
final classification. The fourth model is the Motor-space Recoding, or MR,
model. Inputs from both modalities are recoded into an amodal common space,
such as the space of articulatory configurations. The two representations are
then passed to the classifier.

The DR model was implemented in one early prototype recognition system
that attempted to code the visual data into a vocal tract transfer function
(Sejnowski et al. 1990). However, most of the recognizers to date lie in the
continuum between the SI model (e.g. Petajan 1984; Petajan et al. 1988a) and
the DI model (Brooke et al. 1994). Perceptual evidence seems least strong for
the SI model and the most general view is that fusion takes place at a level higher
than the peripheral system, but prior to categorization (Summerfield 1987;
Massaro 1996). The DI model, using a composite audiovisual feature vector,
is a particularly straightforward architecture to implement with HMM-based
recognition systems. It does not rely on early feature extraction and defers the
decision-making process so that as much of the available data as possible can be
retained for use. One speaker-dependent system of this kind used continuously
spoken digit triple utterances as the vocabulary (Brooke et al. 1994; Brooke
1996). The acoustic data, stored at 100 frames per second, consisted of the
outputs of a 26-channel filter bank covering the frequency range between 60 Hz
and 10 kHz. The visual data was a 10-component PCA-encoded version of 10 × 6
pixel monochrome images of a speaker’s oral region. Visual data was captured
at 25 frames per second and four replications of each visual frame were used to
match the acoustic data rate. The recognizer used the 36-element composite
vectors in 3-state triphone HMMs, each state of which was associated with a
single multivariate continuous Gaussian distribution and a diagonal covariance
matrix. The HMMs were trained on 200 digit triples and tested on 100 digit
triples. The visual signals were clean, but spectrally flat noise at various levels
was added to the acoustic signal to investigate the performance of the recognition
system on speech in noise. The results showed that, although the simple addition
of visual data could improve a recognizer’s performance, the gain was small,
essentially because the contribution from the visual channels was swamped by the
errors induced by the noise in the acoustic channels. The gains became more
significant when compared to the best available acoustic recognizers that
used techniques such as silence tracking and noise masking (Klatt 1976) to
counter the effects of acoustic noise. In contrast, other, contemporary
approaches to recognition using HMMs tended to compute explicit weighting
factors to bias the system in favour of the visual signal when the acoustic noise
levels became high (e.g. Adjoudani and Benoît 1996). None of these recognition
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systems was able to demonstrate a bimodal recognition performance that was
consistently better than the unimodal performance in either of the two domains
across a wide range of acoustic signal-to-noise ratios. Many of the early systems
did not investigate speech in high levels of noise (such as signal-to-noise ratios
much below 0 dB).

Conventional HMM-based audiovisual speech recognizers that conform to
the DI model, like that described in the previous paragraph, implicitly assume
synchrony between the acoustic and the visual data. The HMMs typically
consist of three state, left-to-right models without state skipping. It is, however,
possible to build HMM-based recognizers that permit a degree of audio and
visual asynchrony, at least within phones, though synchrony is re-asserted at the
phone boundaries. This approach was tested in a prototypical audiovisual
speech recognizer using a technique that was based on single signal decom-
position (e.g. Varga and Moore 1990). The operation of this recognizer was
similar to that described in the paragraph above, except that the HMMs in this
type of architecture were 9-state triphone models arranged as a two-dimensional
array of 3 × 3 states (Tomlinson et al. 1996). The rows corresponded to the states
of an audio model and the columns to the states of a visual model. The models
were entered at the top left-hand state and exited at the bottom right-hand state.
Transition between states from top to bottom and left to right, including diagonal
transitions, were permitted. Thus, for example, a diagonal path through the
HMM would correspond to complete synchrony between the audio and visual
signals. The HMMswere trained using separate audio and visualmodels. This was
one of the first experiments on continuous speech recognition to demonstrate a
performance that was better in the audiovisual domain than in either of the audio
or visual domains separately, throughout a full range of signal-to-noise ratios
between +23 dB and –22 dB. In addition, it achieved this performance in a
continuous speech recognition task. Despite the novel architecture, this recog-
nizer remains a form of DI model. Work on similar HMM architectures, such as
coupled HMMs, is currently being undertaken (Nefian et al. 2002). The capa-
bility to extend the asynchrony across phone boundaries has not yet been
investigated and presents some challenges (see proposals by Saenko and
Livescu 2006; Lee and Ebrahimi 2009).

8.5 Assessing and perceiving audiovisual speech

Assessment of the performance of both recognition and synthesis systems is
complex, partly because, as Section 8.4 described, there are many possible
application areas for these technologies that can have different requirements. In
addition, it may be appropriate to distinguish between performance measures
based on purely visual speech processing and those based on audiovisual speech
processing. For both synthesis and recognition, speech-readability is a central

184 N.M. Brooke and S. D. Scott



issue, whether it is speech-readability of human signals by machines, as it is in
recognition, or speech-readability of machine outputs by humans, as it is in
synthesis. More precisely (Kuratate et al. 1998), the activity of the vocal tract
that generates the acoustic speech signal has time-varying visible correlates that
are conveyed by many parts of speakers’ faces. The identification of the visual
correlates makes them available for automatic speech recognition, whether or
not humans actually use them. Conversely, synthesizers that attain a level of
‘communicative realism’ would minimally embody the audible-visual corre-
lates observed in human oro-facial movement. That is, in a minimal synthesizer,
attention should be focused on the visible-acoustic or phonetic aspects of facial
movements. Whilst this is a sensible starting point and would be satisfactory for
some applications, in others the minimal synthesis would not be adequate.
Facial expressions and paralinguistic gestures would also need to be included,
as described in Section 8.4 above. In the case of synthesis, most of the guidance
in the development of systems is likely to be provided by studies of speech
production and speech perception. Conversely, although there is no inherent
reason why machines should be bounded by human constraints on operation or
performance, it may, however, still be beneficial to understand how (successful)
human systems work in order to exploit their known strengths and capabilities
when developing artificial processing methods. For both automatic speech
synthesis and recognition, human performance is the obvious baseline with
which to compare machine performance (e.g. Brooke and Scott 1994a; Brooke
et al. 1994).

Like the construction of corpora of speech material described in Section 8.3,
above, the design of standardized performance assessment material and the
precise specification of test conditions is central to the progressive refinement of
all automatic systems. The design and application of test material is complex
because some speech events are inherently easier to identify in the acoustic
domain than in the visual domain and vice versa. In audiovisual testing, it is also
necessary to separate the contributions from each of these modalities. No
generally agreed-upon methodology appears yet to have emerged.

8.5.1 Automatic audiovisual speech recognition

Some sources of difficulty in comparing results from recognition experiments
were indicated in Section 8.3.2 above. A starting point for the comparison of
results from different systems would have to include at least specifications to
define, for example: whether the recognizer was speaker-dependent, multiple
speaker, or speaker-independent; whether the speech was uttered as isolated
words, as connected (that is, carefully pronounced) words, or as continuous
speech; the acoustic and visual conditions under which the test and training data
were acquired; and the nature of the test vocabulary. There is a separate issue
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concerning the speaker that has to be taken into account. Speakers do not
enunciate equally clearly and some speakers produce significantly better results
with ASR systems than others. Clarity in the auditory domain has its counterpart
in the visual domain also and some speakers are much easier to speechread than
others. Without clear specifications of recognition conditions, it is impossible to
make a valid comparison of the merits of the various recognizers themselves,
let alone of the alternative models for audiovisual speech perception as applied
to recognition systems (see Section 8.4.4 above).

It is possible to quote the benefits of using a visual component in recognition
systems in a number of different ways. Thus, for example, in early experiments
to investigate the benefits of using a visual component when attempting auto-
matic recognition of acoustically noisy speech signals (Brooke et al. 1994), one
way to express the gain was to indicate, for a fixed level of word accuracy, the
change in signal-to-noise ratio of an acoustic speech signal that was equivalent
to adding a visual component to the recognizer’s input. Alternatively, it was
possible to quote the difference in word accuracy for acoustic-only versus acoustic
plus visual signal inputs at stated acoustic signal-to-noise ratios. Significant
differences in interpretation could result from this choice of presentation. In
addition, the conservative use of percentage word accuracy accounted for word
insertion errors as well as word deletion and word substitution errors. The
commonly used percentage word correct recognition rate accounts only for
word substitution and word deletion errors and generally produces an appa-
rently more favourable recognition performance (Tomlinson 1996).

The use of PCA-encoded oral image data to represent the visible aspects of
the speech signal showed that it is not the low-order components that always
contribute the biggest improvements to audiovisual speech recognition (e.g.
Brooke et al. 1994; Goldschen et al. 1996). This is not necessarily surprising. It
may simply imply that, though a particular component contributes a significant
variance to the image data, it contributes little to discrimination between different
speech events. PCA has nothing to reveal about the way that the phonetic
classes are distributed along a particular dimension and linear discriminant
analysis (see, e.g. Chatfield and Collins 1991) may offer more useful insights
(Brooke et al. 1994; Tomlinson et al. 1996). Attempting to identify and retain
the components that contribute significantly to the speech recognition process,
while eliminating those that do not, should improve recognition efficiency.
Scatter plots of PCA component values for pairs of phonetic events should
reveal which components contribute most to the recognition process for dis-
crimination between particular phonetic pairs. However, no comprehensive
study of this kind seems to have been reported yet. A similar approach might
also yield information about the usefulness of feature parameters, like lip
separation and lip spreading, for the discrimination between different pairs of
phonetic events. One objective of such studies might be to compare experimental
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estimates of the perceptual distances between different speech events with
observable visible feature parameters and to seek correlations. Additionally,
in order to investigate the value of feature parameters in contrast to pure image
data, it might also be possible to perform PCA upon a composite vector of both
feature parameters and image pixel intensity data and seek the most significant
components for speech recognition.

8.5.2 Automatic visual and audiovisual speech synthesis

The production of animated, computer-generated audiovisual speech displays
poses a number of perceptual questions. One is whether or not observers treat
the syntheses in the same way as normal, human speech productions. In an early
vowel identification experiment with a vector graphics synthesizer that dis-
played only an outline diagram of the facial topography (McGrath et al. 1984),
errors in vowel identification were similar to those obtained from natural speech
recordings. This suggested that the synthetic stimuli were being perceived in a
manner analogous to that which is applied to real speech. The ability of the
synthesizer to induce the McGurk effect was further confirmation that the
syntheses could be perceived as speech-like (see Brooke 1992a). Though it is
likely that the more sophisticated syntheses now available are also treated as
speech-like, a successful outcome to this test should not necessarily be taken for
granted. The test may define one criterion in determining the validity of facial
speech syntheses. The literature of human–computer interaction offers guidance
on subjective measures for determining the naturalness and acceptability of
visual speech syntheses, but more objective tests are difficult to devise. A very
simple test for the naturalness of visual speech synthesis, not dissimilar from the
well-known Turing test for artificial intelligence, might be to determine whether
viewers can discriminate between real and synthesized images of talking faces.

Even now, a very large number of fundamental issues concerning visual and
audiovisual speech perception remain to be completely investigated. Some illus-
trative examples are set out below. Section 8.4 noted the capacity of the data-
driven visual speech synthesizers to model bilateral facial asymmetries and real
skin textures that could be a possible cue to some speech events. It is not known
how important the bilateral asymmetries are, but they are certainly very common
in real speakers and their absence might render facial images less natural looking.
There is also some anecdotal evidence thatfixed frontal views of the oral region of
speakers can induce a sense of unease, especially when the viewers are children.
The natural globalmovements of the head, despite not playing a significant part in
conveying cues to the phonetic content of speech, may nonetheless also contrib-
ute to the acceptability of artificial computer-generated displays.

Some perceptual issues are directly relevant to the synthesis of visual speech
gestures. For example, unreported experiments with the data-driven visual
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speech synthesizer described in Section 8.4.2 above (Brooke and Scott 1998b)
indicated that there was no difference in digit recognition rates when otherwise
identical syntheses of digit triples were presented in monochrome and in colour.
It is, however, not known how colour and monochrome presentations would be
likely to affect the results for different vocabularies or the perceived accept-
ability and naturalness of syntheses. A separate pilot study explored the feasi-
bility of using a simple algorithm to generate facial displays in which the visible
articulatory gestures could be accompanied by time-varying global movements
of the head. The two-dimensional reconstructed oral images of the visible
speech movements were electronically pasted onto a three-dimensional wire-
frame model of the lower face in which the oral area was a plausible three-
dimensional shape, but did not include the mouth as a feature (Brooke and Scott
1998b). It acted as a shaped screen that could carry the animated display of the
visible speech gestures while the wire-frame head model was rotated about the
x, y, and z axes. Though no analytical experiments were carried out, the
informal response of a number of observers suggested that the syntheses were
interpreted as plausible speech-readable gestures even when the head was
shown in views that were far from direct frontal presentations. This was
unexpected, especially as the three-dimensional information about features
like the teeth and tongue that lay within the oral cavity could not be accurately
represented in the two-dimensional image projections at large angles of head
rotation. However, useful information about visual speech intelligibility might
be gained from a programme of analytical experiments. If the results supported
the informal observation, it would suggest that there might be a range of
applications for a type of talking computer agent (see Section 8.4 above) that
could be implemented without the need for detailed three-dimensional head
models.

One unresolved issue in visual speech synthesis and its assessment is the need
to find objective methods for measuring the differences between the images of a
synthesized talking face and the images of a real speaker’s facial gestures. One
application would be to determine, for example, how accurately a synthesizer is
able to simulate specific coarticulatory gestures that may be critical to speech-
readability. A simple approach to this problem is possible when using the data-
driven method of visual speech synthesis in which the output images are
reconstructed from sets of PCA code values generated by HMMs trained on
the PCA-encoded images of a real speaker (Scott 1996). Here, it is possible to
measure the differences between either the PCA code values or the image pixel
values obtained from (a) the synthesized and (b) the recorded images for
particular utterances. Optimal time alignment of the real and synthesized utter-
ances can be computed by dynamic time warping. Pilot experiments were
carried out with monochrome images of synthesized and real digit triples
utterances. A significant correlation was found between the fraction of the
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total variance accounted for by the PCA coding scheme and both (a) the visual
digit recognition rate of synthesized oral images and (b) the root mean squared
intensity difference computed from the corresponding sub-blocks of pixels in
the reconstructed and raw images. The correlations thus linked subjective and
objective performance measures and suggested that the general quality of
syntheses could be predicted without necessarily performing complex and
expensive perceptual experiments or detailed image analyses.

However, it would be highly desirable to find a generalized method for
matching and comparing synthesized images and images of real speakers.
This would, minimally, involve scaling and overlaying the image pairs accu-
rately and defining a suitable metric to describe the differences between the
image pairs in a way that focused on the visible articulatory gestures.
Potentially relevant methods for facial image alignment and comparison
have been successfully developed for systems designed to perform facial
recognition (Moghaddam et al. 1998). As noted in Section 8.3.2, however,
facial recognition methods are not designed to focus on the effects of those
facial gestures and expressions that are the ones relevant to assessments of
the performance of visual speech synthesizers. In the context of visual speech
processing, therefore, image comparison appears to remain a largely unresolved
problem.

With the development of other facial image alignment and comparison
techniques (Moghaddam et al. 1998; Hall et al. 2000), there has been a move
towards generalized methods for matching and comparing synthesized images
and images of real speakers (Elisei et al. 2001). These methods involve scaling
and overlaying image pairs accurately and defining suitable metrics to describe
the differences between image pairs in a way that focuses on the visible
articulatory gestures.

8.6 Current prospects

The development of powerful, statistically oriented techniques for capturing,
analysing, and describing data, together with the availability of large, fast
computer systems able to support them, has played a major role in the develop-
ment of automatic visual and audiovisual speech processing. However, while
statistical methods can, for example, find efficient ways to reduce and manage
large volumes of data, they are not usually informative about the significance or
interpretation of the transformed representations. Spaces like those generated by
PCA directly from images as described in Section 8.2.2 illustrate this; the
components are unlabelled and even when the effects of variations in individual
components are plotted, they rarely suggest simple, equivalent, feature-based
facial parameters (e.g. Turk and Pentland 1991); to obtain interpretable move-
ment parameters, it is necessary at least to resort to multistage image analysis (as
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in Ezzat et al. 2002a). The same applies to HMMs, in which the states of the
finite state machines relate only weakly, if at all, to the articulatory stages in the
production of the speech events that the HMMs model. The properties and
behaviour of ANNs like MLPs tend to be expressed by parameters that are
distributed throughout the networks. This is one of the characteristics of ANNs
that makes them powerful, because they can, for example, continue to function
(though not as well) even if part of the network is damaged or destroyed.
However, the distribution of the parameters generally makes the behaviour of
ANNs difficult to observe and understand. Statistical analyses, including PCA,
though powerful and useful techniques, may not be sufficient on their own to
reveal the full pattern and structure of the data they themselves generate. This
may only emerge through the simultaneous application of sophisticated visual-
ization techniques.

In contrast to the statistically oriented models, speech production processes
that involve the muscular control of the configurations of articulatory organs
and their time-varying changes are the physical basis of the visible changes
that manifest themselves in the gestures and movements of facial features. For
this reason, the identification and tracking of the time-varying movements of
facial features remains attractive and appropriate. An objective posed by one
of the authors (NMB) in 1982 is still relevant, namely, to find the minimal set
of facial points whose movements can generate complete and accurate des-
criptions of a facial speech synthesis that is ‘communicatively realistic’. The
techniques for achieving this goal are, however, now emerging (Kuratate et al.
1998). Notwithstanding this progress, much concerning the speech production
process is still not well understood. In particular, there is no convincing
account for the inter-speaker differences in the visible articulatory gestures
that are known to exist. There are no well-established techniques for seeking
the ‘deep structures’ of speech and there is thus no clear answer, in either the
acoustic or visual domains, to questions about what exactly it is that character-
izes specific speech events. Similarly, a comprehensive catalogue showing the
‘perceptual distance’ that separates phones would set a baseline for human
recognition performance that could be compared to machine recognition
performance. Some studies of this kind have been undertaken (e.g.
Summerfield 1987), but the relationship between perceptual distances and
the conformation of facial features remains incomplete, as noted in
Sections 8.2.2 and 8.5.2 above.

The identity and characteristic properties of phones are among the factors that
make the problem of automatic speech recognition difficult and interesting.
Perceptual studies suggest numerous mechanisms for visual and audiovisual
speech recognition in terms of the categorization of phones. They support the
conventional view that the human system operates in a highly parallel way. It
seems likely therefore that parallelism could play a major role in automatic
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visual and audiovisual speech processing systems. The development of highly
parallel computing systems is, however, still at a comparatively rudimentary
stage. In particular, it is difficult to find useful metalanguages to describe the
nature of parallelism and how it can be applied to computational processes.
Specifically, appropriate mechanisms are needed for the fusion of inform-
ation computed by different processes prior to decision making (see also
Section 8.4.4).

The success of the modern computational methods has been remarkable. The
techniques that have been developed, such as multidimensional morphable
models (Ezzat et al. 2002a), have made it possible to achieve plausibly realistic
visual speech synthesis and to carry out audiovisual speech recognition suffi-
ciently accurately to make some useful applications possible (Brooke et al.
1994). It is therefore tempting to concentrate on improving the performance of
those techniques and to seek to meet the many demands of the modern world for
short-term solutions to specific problems. However, there are risks in doing this
without a proper understanding of the nature of visual and audiovisual speech
processing. This can be gained only by patient and careful analytical studies,
using well-designed and systematic bodies of test data, as this chapter has
indicated. For example, even the best of today’s visual speech synthesizers
would probably be unlikely to pass the ‘Turing test’ for communicative realism,
proposed in Section 8.5.2, let alone a test that included the facial expressions
that a computer agent would have to simulate. It is important to understand why
they would not.

As Section 8.1 indicated, the early studies of visual speech were generally
prompted by interest in the analytical investigation of visual speech processing
and the desire to improve the rehabilitation of the hearing-impaired through the
better-informed and improved teaching and training of speechreading skills.
Speech production studies and perceptual studies of speechreading therefore
prompted much of the initial work in the field and, as Section 8.5 suggests, will
continue to offer an important contribution to the development of automatic
visual and audiovisual speech processing systems. This is likely to be a syner-
gistic collaborative process with the technologists and computer scientists who
will in their turn develop the systems that are needed to assist in carrying out
those studies.

On a final, more personal note, perhaps the greatest single impetus to the
contemporary development of the audiovisual processing of speech was the
NATO Advanced Study Institute at Bonas in 1995. For the first time, the whole
community of audiovisual speech scientists was brought together, including
mathematicians, statisticians, psychologists, linguists, engineers, and com-
puter scientists. This was important because audiovisual speech processing
encompasses an unusually wide spectrum of specialist studies and demands a
cross-disciplinary approach. The NATO meeting was the catalyst that led to a
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rapid expansion of the field and also inspired the regular succession of
Audiovisual Speech Processing (AVSP) meetings that has followed, largely
due to the energy, enthusiasm, and unique leadership of Christian Benoît. The
outcomes have now established the field securely and ensured that it will move
forward constructively on a suitably broad knowledge base.
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9 Audiovisual automatic speech recognition

G. Potamianos, C. Neti, J. Luettin, and I. Matthews

9.1 Introduction

We have made significant progress in automatic speech recognition (ASR) for
well-defined applications like dictation and medium vocabulary transaction
processing tasks in relatively controlled environments (O’Shaughnessy 2003).
However, ASR performance has yet to reach the level required for speech to
become a truly pervasive user interface. Indeed, even in “clean” acoustic
environments, and for a variety of tasks, state-of-the-art ASR system perform-
ance lags human speech perception by up to an order of magnitude (Lippmann
1997). In addition, current systems are quite sensitive to channel, environment,
and style of speech variation. A number of techniques for improving ASR
robustness have met with limited success in severely degraded environments
(Ghitza 1986; Nadas et al. 1989; Juang 1991; Liu et al. 1993; Hermansky and
Morgan 1994; Neti 1994; Gales 1997; Jiang et al. 2001; De la Torre et al. 2005;
Droppo and Acero 2008; Benesty et al. 2009). Clearly, novel, non-traditional
approaches that use sources of information orthogonal to the acoustic input are
needed to achieve ASR performance closer to the level of human speech
perception, and robust enough to be deployable in field applications. Visual
speech is the most promising source of additional speech information, and it is
obviously not affected by the acoustic environment and noise.

Human speech perception is bimodal in nature: Humans combine audio and
visual information in deciding what has been spoken, especially in noisy environ-
ments. The benefit of the visualmodality to speech intelligibility in noise has been
quantified as far back as in Sumby and Pollack (1954). Furthermore, bimodal
fusion of audio and visual stimuli in perceiving speech has been demonstrated in
the McGurk effect (McGurk and MacDonald 1976). For example, when the
spoken sound /ba/ is superimposed on the video of a person uttering /ga/, most
people perceive the speaker as uttering the sound /da/. In addition, visual speech is
of particular importance to the hearing-impaired: Mouth movement is known to
play an important role in both sign language and simultaneous communication
among the deaf (Marschark et al. 1998). The hearing-impaired speechread well,
possibly better than the general population (Bernstein et al. 1998).
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There are three key reasons why the availability of visual speech benefits
human speech perception (Summerfield 1987): It helps speaker (audio source)
localization; it contains speech segmental information that supplements the
audio; and it provides complementary information about the place of articula-
tion. The latter is due to the partial or full visibility of articulators such as
the tongue, teeth, and lips. Place of articulation information can help disambig-
uate, for example, the unvoiced consonants /p/ (a bilabial) and /k/ (a velar), the
voiced consonant pair /b/ and /d/ (a bilabial and alveolar, respectively), and the
nasal /m/ (a bilabial) from the nasal alveolar /n/ (Massaro and Stork 1998). All
three pairs are highly confusable on the basis of acoustics alone. In addition, jaw
and lower face muscle movement is correlated to the produced acoustics (Yehia
et al. 1998; Barker and Berthommier 1999), and when this movement is visible,
human speech perception has been shown to be enhanced (Summerfield et al.
1989; Smeele 1996).

The benefits of visual speech information for speech perception have
motivated significant interest in automatic recognition of visual speech, for-
mally known as automatic lipreading, or speechreading (Stork and Hennecke
1996). Work in this field aims at improving ASR by exploiting the visual
information from the speaker’s mouth region in addition to the traditional
audio information, leading to audiovisual automatic speech recognition sys-
tems. Not surprisingly, systems that include the visual modality have been
shown to outperform audio-only ASR over a wide range of conditions. Such
performance gains are particularly impressive in noisy environments, where
traditional acoustic-only ASR performs poorly. Improvements have also been
demonstrated when speech is degraded due to speech impairment (Potamianos
and Neti 2001a) and Lombard effects (Huang and Chen 2001). Coupled with
the diminishing cost of quality video capturing systems, these facts make
automatic speechreading tractable for achieving robust ASR in certain scenarios
(Hennecke et al. 1996; Connell et al. 2003).

Automatic recognition of audiovisual speech introduces new and challenging
tasks when compared to traditional, audio-only ASR. The block diagram of
Figure 9.1 highlights these: In addition to the usual audio front end (feature
extraction stage), visual features that are informative about speech must be
extracted from video of the speaker’s face. This requires robust face detection,
as well as location estimation and tracking of the speaker’s mouth or lips,
followed by extraction of suitable visual features. In contrast to audio-only
recognizers, there are now two streams of features available for recognition, one
for each modality. The combination of the audio and visual streams should
ensure that the resulting system performance exceeds the better of the two
single-modality recognizers. Both issues, namely the visual front end design
and audiovisual fusion, constitute difficult problems, and they have generated
significant research work by the scientific community.
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Indeed, since the mid eighties, numerous articles have concentrated on audio-
visual ASR,with the vastmajority appearing during the lastfifteen years. The first
automatic speechreading systemwas reported by Petajan (1984). Given the video
of a speaker’s face, and using simple image thresholding, he was able to extract
binary (black and white) mouth images, and subsequently, mouth height, width,
perimeter, and area, as visual speech features. He then developed a visual-only
recognizer based on dynamic time warping (Rabiner and Juang 1993) to rescore
the best two choices of the output of the baseline audio-only system. His method
improvedASR for a single-speaker, isolatedword recognition task on a 100-word
vocabulary that included digits and letters. Petajan’s work generated significant
excitement, and soon various sites established research in audiovisual ASR.

Among the pioneer sites was the group headed by Christian Benoît at the
Institute de la Communication Parlée (ICP), in Grenoble, France. For example,
Adjoudani and Benoît (1996) investigated the problem of audiovisual fusion for
ASR, and compared early and late integration strategies. In the latter area, they
considered modality reliability estimation based on the dispersion of the like-
lihood of the top four recognized words using the audio-only and visual-only
inputs. They reported significant ASR gains on a single-speaker corpus of fifty-
four French nonsense words. Later, they developed a multimedia platform for
audiovisual speech processing, containing a head-mounted camera to robustly
capture the speaker’s mouth region (Adjoudani et al. 1997). Recently, work at
ICP has continued in this area, with additional audiovisual corpora collected
(French connected letters and English connected digits) and a new audiovisual
ASR system reported by Heckmann et al. (2001). In addition, the group has
been working in related areas, including audiovisual speech enhancement
(Girin et al. 2001b), speech separation (Girin et al. 2001a; Sodoyer et al.
2004), coding (Girin 2004), synthesis (Bailly et al. 2003), and other aspects
of audiovisual speech and face-to-face communication (Dohen et al. 2010).
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Figure 9.1 The main processing blocks of an audiovisual automatic speech
recognizer. The visual front end design and the audiovisual fusion modules
introduce additional challenging tasks to automatic recognition of speech, as
compared to traditional, audio-only ASR. They are discussed in detail in this
chapter.
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As shown in Figure 9.1, audiovisual ASR systems differ in three main aspects
(Hennecke et al. 1996; Potamianos and Neti 2003): The visual front end design,
the audiovisual integration strategy, and the speech recognition method used.
Unfortunately, the diverse algorithms suggested in the literature for automatic
speechreading are very difficult to compare, as they are rarely tested on a common
audiovisual database. In addition, until the beginnings of this decade (Neti et al.
2000; Hazen et al. 2004), early audiovisual ASR studies have been conducted on
databases of small duration, and, in most cases, limited to a very small number of
speakers (mostly less than ten, and often single-subject) and to small vocabulary
tasks (Chibelushi et al. 1996; Hennecke et al. 1996; Chibelushi et al. 2002). Such
tasks are typically nonsense words (Adjoudani and Benoît 1996; Su and Silsbee
1996), isolated words (Petajan 1984; Matthews et al. 1996; Movellan and
Chadderdon 1996; Chan et al. 1998; Dupont and Luettin 2000; Gurbuz et al.
2001; Huang and Chen 2001; Nefian et al. 2002), connected letters (Potamianos
et al. 1998), connected digits (Potamianos et al. 1998; Zhang et al. 2000;
Patterson et al. 2002), closed-set sentences (Goldschen et al. 1996), or small-
vocabulary continuous speech (Chu and Huang 2000). Databases are commonly
recorded in English, but other examples are French (Adjoudani and Benoît 1996;
Alissali et al. 1996; André-Obrecht et al. 1997; Teissier et al. 1999; Dupont and
Luettin 2000), German (Bregler et al. 1993; Krone et al. 1997), Japanese
(Nakamura et al. 2000; Fujimura et al. 2005), Hungarian (Czap 2000), Spanish
(Ortega et al. 2004), Czech (Železný and Cisař 2003), and Dutch (Wojdel et al.
2002), among others. However, if the visual modality is to become a viable
component in real-word ASR systems, research work is required on larger
vocabulary tasks, developing speechreading systems on data of sizable duration
and of large subject populations. A first attempt towards this goal was the authors’
work during the summer 2000 workshop at the Center for Language and Speech
Processing at the Johns Hopkins University, in Baltimore, Maryland (Neti et al.
2000), where a speaker-independent audiovisual ASR system for Large
Vocabulary Continuous Speech Recognition (LVCSR) was developed for the
first time. Significant performance gains in both clean and noisy audio conditions
were reported.

In this chapter, we present the main techniques for audiovisual speech
recognition that have been developed since the mid eighties. We first discuss
the visual feature extraction problem, followed by a discussion of audiovisual
fusion. In both cases, we provide details of some of the techniques employed
during the Johns Hopkins summer 2000 workshop (Neti et al. 2000). We also
consider the problem of audiovisual speaker adaptation, an issue of significant
importance when building speaker-specific models or developing systems
across databases. We then discuss the main audiovisual corpora used in the
literature for ASR experiments, including the IBM audiovisual LVCSR database.
Subsequently, we present experimental results on automatic speechreading and
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audiovisual ASR. As an application of speaker adaptation, we consider the
problem of automatic recognition of impaired speech. Finally, we conclude the
chapter with a discussion on the current state of audiovisual ASR, and on what
we view as open problems in this area.

9.2 Visual front ends

As was briefly mentioned in the Introduction (see also Figure 9.1), the first main
difficulty in the area of audiovisual ASR is the visual front end design. The
problem is two-fold: Face, lips, or mouth tracking is first required, followed by
visual speech representation in terms of a small number of informative features.
Clearly, the two issues are closely related: Employing a lip-tracking algorithm
allows one to use visual features such as mouth height or width (Adjoudani and
Benoît 1996; Chan et al. 1998; Potamianos et al. 1998), or parameters of a
suitable lip model (Chandramohan and Silsbee 1996; Dalton et al. 1996; Luettin
et al. 1996). On the other hand, a crude detection of the mouth region is
sufficient to obtain visual features, using transformations of this region’s pixel
values that achieve sufficient dimensionality reduction (Bregler et al. 1993;
Duchnowski et al. 1994; Matthews et al. 1996; Potamianos et al. 2001b).
Needless to say, robust tracking of the lips or mouth region is of paramount
importance for good performance of automatic speechreading systems (Iyengar
et al. 2001).

9.2.1 Face detection, mouth, and lip tracking

The problem of face and facial-part detection has attracted significant interest in
the literature (Graf et al. 1997; Rowley et al. 1998; Sung and Poggio 1998;
Senior 1999; Li and Zhang 2004; Garcia et al. 2007). In addition to automatic
speechreading, it has applications to other areas related to audiovisual speech,
for example visual text-to-speech (Cohen andMassaro 1994b; Chen et al. 1995;
Cosatto et al. 2000; Bailly et al. 2003; Aleksic and Katsaggelos 2004b;
Melenchón et al. 2009), person identification and verification (Jourlin et al.
1997; Wark and Sridharan 1998; Fröba et al. 1999; Jain et al. 1999; Maison
et al. 1999; Chibelushi et al. 2002; Zhang et al. 2002; Sanderson and Paliwal
2004; Aleksic and Katsaggelos 2006), speaker localization (Bub et al. 1995;
Wang and Brandstein 1999; Zotkin et al. 2002), detection of intent to speak
(DeCuetos et al. 2000) and of speech activity (Libal et al. 2007; Rivet et al. 2007),
face image retrieval (Swets and Weng 1996), and others. In general, robust face
and mouth detection is quite difficult, especially in cases where the background,
face pose, and lighting are variable (Iyengar and Neti 2001; Jiang et al. 2005).

In the audiovisual ASR literature, where issues such as visual feature design,
or audiovisual fusion algorithms are typically of more interest, face and mouth
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detection are often ignored, or at least, the problem is simplified: In some
databases for example, the speaker’s lips are suitably colored, so that their
automatic extraction becomes trivial by chroma-key methods (Adjoudani and
Benoît 1996; Heckmann et al. 2001). In other works, where audiovisual corpora
are shared (for example, the Tulips1, (X)M2VTS, and AMP/CMU databases,
discussed later), the mouth regions are extracted once and re-used in subsequent
work by other researchers, or sites. Further, there have been efforts in the
literature to design wearable audiovisual headsets that, when properly worn,
reliably capture the speaker mouth region alone (Huang et al. 2004). It should
also be noted that in the vast majority of audiovisual databases the faces are
frontal with minor face pose and lighting variation. Therefore, in this chapter we
focus on frontal pose visual feature extraction. Nevertheless, the approaches
and algorithms discussed here carry on to non-frontal head poses as well to a
large extent, as demonstrated by the work of Iwano et al. (2007), Kumar et al.
(2007), Kumatani and Stiefelhagen (2007), and Lucey et al. (2009).
In general, all audiovisual ASR systems require determining a region-of-

interest (ROI) for the visual feature extraction algorithm to proceed. For exam-
ple, a ROI can be the entire face, in which case a subsequent active appearance
model can be used to match to the exact face location (Cootes et al. 1998).
Alternatively, a ROI can be the mouth-only region, in which case an active
shape model of the lips can be used to fit a lip contour (Luettin et al. 1996). If
appearance-based visual features are to be extracted (see below) the latter is all
that is required. Many techniques of varying complexity can be used to locate
ROIs. Some use traditional image processing techniques, such as color seg-
mentation, edge detection, image thresholding, template matching, or motion
information (Graf et al. 1997), whereas other methods use statistical modeling
techniques, employing “strong” classifiers like neural networks for example
(Rowley et al. 1998), or cascades of “weak” classifiers (Viola and Jones 2001).
In the following, we describe one such statistical modeling based approach.

9.2.1.1 Face detection and mouth region-of-interest extraction A typ-
ical algorithm for face detection and facial feature localization is described in
Senior (1999). This technique is used in the visual front end design of Neti et al.
(2000) and Potamianos et al. (2001b), when processing the video of the IBM
ViaVoiceTM audiovisual database, described later. Given a video frame, face
detection is first performed by employing a combination of methods, some of
which are also used for subsequent face feature finding. A face template size is
first chosen (an 11 × 11-pixel square, here), and an image pyramid over all
permissible face locations and scales (given the video frame and face template
sizes) is used to search for possible face candidates. This search is constrained
by the minimum and maximum allowed face candidate size with respect to the
frame size, the face size increment from one pyramid level to the next, the
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spatial shift in searching for faces within each pyramid level, and the fact that no
candidate face can be of smaller size than the face template. In Potamianos et al.
(2001b), the face width is restricted to lie within 10% and 75% of the frame
width, with a face size increase of 15% across consecutive pyramid levels.
Within each pyramid level, a local horizontal and vertical shift of one pixel is
used to search for candidate faces.

If the video signal is in color, skin-tone segmentation can be used to quickly
narrow the search to face candidates that contain a relatively high proportion of
skin-tone pixels. The normalized (red, green, blue) values of each frame pixel
are first transformed to the (hue, saturation) color space, where skin tone is
known to occupy a range of values largely invariant to most humans and
lighting conditions (Graf et al. 1997; Senior 1999). In this particular implemen-
tation, all face candidates that contain less than 25% of pixels with hue and
saturation values that fall within the skin-tone range, are eliminated. This
substantially reduces the number of face candidates (depending on the frame
background), speeding up computation and reducing spurious face detections.
Every remaining face candidate is subsequently size-normalized to the 11 × 11 face
template size, and its grayscale pixel values are placed into a 121-dimensional
face candidate vector. Each vector is given a score based on both a two-class
(face versus non-face) Fisher linear discriminant and the candidate’s distance
from face space (DFFS), i.e., the face vector projection error onto a lower, 40-
dimensional space, obtained by means of principal components analysis
(PCA – see below). All candidate regions exceeding a threshold score are
considered as faces. Among such faces at neighboring scales and locations,
the one achieving the maximum score is returned by the algorithm as a detected
face (Senior 1999). An improved version of this algorithm appears in Jiang et al.
(2005).

Once a face has been detected, an ensemble of facial feature detectors is used
to estimate the locations of twenty-six facial features, including the lip corners
and centers (twelve such facial features are marked on the frames of Figure 9.2).
Each feature location is determined by using a score combination of prior
feature location statistics, linear discriminant, and distance from feature space
(similar to the DFFS discussed above), based on the chosen feature template
size (such as 11 × 11 pixels).

Before incorporating the described algorithm into our speechreading system,
a training step is required to estimate the Fisher discriminant and eigenvectors
(PCA) for face detection and facial feature estimation, as well as the facial
feature location statistics. Such training requires a number of frames manually
annotated with the faces and their visible features. When training the Fisher
discriminant, both face and non-face (or facial feature and non-feature) vectors
are used, whereas in the case of PCA, face and facial-feature-only vectors are
considered (Senior 1999).
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Given the output of the face detection and facial feature finding algorithm
described above, five located lip contour points are used to estimate the mouth
center and its size at every video frame (four such points are marked on the
frames of Figure 9.2). To improve ROI extraction robustness to face and mouth
detection errors, the mouth center estimates are smoothed over twenty neigh-
boring frames using median filtering to obtain the ROI center, whereas the
mouth size estimates are averaged over each utterance. A size-normalized
square ROI is then extracted (see Eq. (9.1), below), with sides M = N = 64
(see also Figure 9.2). This can contain just the mouth region, or also parts of the
lower face (Potamianos and Neti 2001b).

9.2.1.2 Lip contour tracking Once the mouth region is located, a number
of algorithms can be used to obtain lip contour estimates. Some popular
methods are snakes (Kass et al. 1988), templates (Yuille et al. 1992; Silsbee
1994), and active shape and appearance models (Cootes et al. 1995; Cootes
et al. 1998).

A snake is an elastic curve represented by a set of control points. The control
point coordinates are iteratively updated, by converging towards the local
minimum of an energy function, defined on the basis of curve smoothness
constraints and a matching criterion with respect to desired features of the

Figure 9.2 Region-of-interest extraction examples. Upper rows: Example
video frames of eight subjects from the IBM ViaVoiceTM audiovisual
database (described below), with superimposed facial features, detected by
the algorithm of Senior (1999). Lower row: Corresponding mouth regions-of-
interest, extracted as in Potamianos et al.(2001b). © 1999 and 2001 IEEE.
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image (Kass et al. 1988). Such an algorithm is used for lip contour estimation in
the speechreading system of Chiou and Hwang (1997). Another widely used
technique for lip tracking is by means of lip templates, employed in the system
of Chandramohan and Silsbee (1996) for example. Templates constitute para-
meterized curves that are fitted to the desired shape by minimizing an energy
function, defined similarly to snakes. B-splines, used by Dalton et al. (1996),
work similarly to the above techniques as well. Combinations of the above have
also been used in the literature, as for example by Aleksic et al. (2002), where
both snakes and templates are employed.

Active shape and appearance models construct a lip shape or ROI appearance
statistical model, as discussed in following subsections. These models can be used
for tracking lips by means of the algorithm proposed by Cootes et al. (1998). This
assumes that, given small perturbations from the actual fit of the model to a target
image, a linear relationship exists between the difference in the model projection
and image, and the required updates to the model parameters. An iterative
algorithm is used to fit the model to the image data (Matthews et al. 1998).
Alternatively, the fitting can be performed by the downhill simplex method
(Nelder and Mead 1965), as in Luettin et al. (1996). Examples of lip contour
estimation by means of active shape models using the latter fitting technique are
depicted in Figure 9.3.

9.2.2 Visual features

Various sets of visual features for automatic speechreading have been proposed
in the literature over the last twenty years. In general, they can be grouped into
three categories: (a) Video pixel- (or, appearance) based ones; (b) Lip contour-
(or, shape) based features; and (c) Features that are a combination of both

Figure 9.3 Examples of lip contour estimation by means of active shape
models (Luettin et al. 1996). Depicted mouth regions are from the Tulips1
audiovisual database (Movellan and Chadderdon 1996), and they
were extracted preceding lip contour estimation. Reprinted from Computer
Vision and Image Understanding, 65:2, Luettin and Thacker, Speechreading
using probabilistic models, 163–178, © 1997, with permission from
Elsevier.
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appearance and shape (Hennecke et al. 1996; Aleksic et al. 2005). In the
following, we present each category in more detail. Possible post-feature
extraction processing is discussed at the end of this section.

9.2.2.1 Appearance-based features In this approach to visual feature
extraction, the image part typically containing the speaker’s mouth region is
considered as informative for lipreading, i.e., the region-of-interest (ROI). This
region can be a rectangle containing the mouth, and possibly include larger parts
of the lower face, such as the jaw and cheeks (Potamianos and Neti 2001b), or the
entire face (Matthews et al. 2001). Often, it can be a three-dimensional rectangle,
containing adjacent frame rectangular ROIs, in an effort to capture dynamic
speech information at this early stage of processing (Li et al. 1995; Potamianos
et al. 1998). Alternatively, the ROI can correspond to a number of image profiles
vertical to the lip contour (Dupont and Luettin 2000), or just be a disc around the
mouth center (Duchnowski et al. 1994). By concatenating the ROI pixel gray-
scale (Bregler et al. 1993; Duchnowski et al. 1994; Potamianos et al. 1998;
Dupont and Luettin 2000), or color values (Chiou and Hwang 1997), a feature
vector is obtained. For example, in the case of an M × N-pixel rectangular ROI,
which is centered at location (mt,nt) of video frame Vt(m,n) at time t, the resulting
feature vector of length d = M.N will be (after a lexicographic ordering)1

xt  Vtðm; nÞ : mt � M=2b c � m5mt þ jm=2j;
nt � N=2b c � n5nt þ N=2d e

� �
(9:1)

This vector is expected to contain most visual speech information. Notice that
approaches that use optical flow as visual features (Mase and Pentland 1991;
Gray et al. 1997) can fit within this framework by replacing in Eq. (9.1) the
video frame ROI pixels with optical flow estimates.

Typically, the dimensionality d of vector xt in Eq. (9.1) is too large to allow
successful statistical modeling (Chatfield and Collins 1991) of speech classes,
by means of a hidden Markov model (HMM), for example (Rabiner and Juang
1993). Therefore, appropriate transformations of the ROI pixel values are used
as visual features. Movellan and Chadderdon (1996) for example, use low-pass
filtering followed by image subsampling and video frame ROI differencing,
whereas Matthews et al. (1996) propose a non-linear image decomposition
using “image sieves” for dimensionality reduction and feature extraction. By
far however, the most popular appearance feature representations achieve such
reduction by using traditional image transforms (Gonzalez and Wintz 1977).
These transforms are typically borrowed from the image compression literature,
and the hope is that they will preserve most information relevant to speech-
reading. In general, a D × d-dimensional linear transform matrix P is sought,
such that the transformed data vector yt = Pxt contains most speechreading
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information in its D « d elements. To obtain matrix P, L training examples are
given, denoted by xl, l = 1, . . . , L. A number of possible such matrices are
described in the following.

Principal components analysis (PCA) This constitutes the most popular
pixel-based feature representation for automatic speechreading (Bregler et al.
1993; Bregler and Konig 1994; Duchnowski et al. 1994; Li et al. 1995; Brooke
1996; Tomlinson et al. 1996; Chiou and Hwang 1997; Gray et al. 1997; Luettin
and Thacker 1997; Potamianos et al. 1998; Dupont and Luettin 2000; Hazen et al.
2004). The PCA data projection achieves optimal information compression, in the
sense of minimum square error between the original vector xt and its reconstruc-
tion based on its projection yt; however, appropriate data scaling constitutes a
problem in the classification of the resulting vectors (Chatfield and Collins 1991).
In the PCA implementation of Potamianos et al. (1998), the data are scaled
according to their inverse variance, and their correlation matrix R is computed.
Subsequently,R is diagonalized asR = AΛAT (Chatfield and Collins 1991; Press
et al. 1995), whereA = [a1,..,ad] has as columns the eigenvectors ofR, andΛ is a
diagonalmatrix containing the eigenvalues ofR. Assuming that theD largest such
eigenvalues are located at the j1, . . .,jD diagonal positions, the data projection
matrix is PPCA = [aj1, . . .,ajD]

T. Given a data vector xt, this is first element-wise
mean and variance normalized, and subsequently, its feature vector is extracted as
yt = PPCAxt.

Discrete cosine, wavelet, and other image transforms As an alternative
to PCA, a number of popular linear image transforms (Gonzalez and Wintz
1977) have been used in place of P for obtaining speechreading features. For
example, the discrete cosine transform (DCT) has been adopted in several
systems (Duchnowski et al. 1994; Potamianos et al. 1998; Nakamura et al.
2000; Neti et al. 2000; Scanlon and Reilly 2001; Nefian et al. 2002; Barker and
Shao 2009); the discrete wavelet transform (DWT –Daubechies 1992) in others
(Potamianos et al. 1998), and the Hadamard and Haar transforms by Scanlon
and Reilly (2001). Most researchers use separable transforms (Gonzalez and
Wintz 1977), which allow fast implementations (Press et al. 1995) whenM and
N are powers of 2 (typically, valuesM, N= 16, 32, or 64 are considered). Notice
that, in each case, matrix P can have as rows the image transform matrix rows
that maximize the transformed data energy over the training set (Potamianos
et al. 1998), or alternatively, that correspond to a priori chosen locations (Nefian
et al. 2002).

Linear discriminant analysis (LDA) The data vector transforms pre-
sented above are more suitable for ROI compression than for ROI classifi-
cation into the set of speech classes of interest. For the latter task, LDA (Rao
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1965) is more appropriate, as it maps features to a new space for improved
classification. LDA was first proposed for automatic speechreading by
Duchnowski et al. (1994). There, it was applied directly to the ROI vector.
LDA has also been considered in a cascade, following the PCA projection of
a single frame ROI vector, or on the concatenation of a number of adjacent
PCA projected vectors (Matthews et al. 2001).

LDA assumes that a set of classes, C (such as HMM states), is a priori
chosen, and, in addition, that the training set data vectors xl , l =1,..,L are
labeled as c(l) ∈ C. Then, it seeks matrix PLDA, such that the projected training
sample [PLDA xl , l = 1, . . ., L] is “well separated” into the set of classes C,
according to a function of the training sample within-class scatter matrix SW
and its between-class scatter matrix SB (Rao 1965). These matrices are
given by

SW ¼
X
c2C

PrðcÞ�ðcÞ and SB ¼
X
c2C

PrðcÞðmðcÞ �mÞðmðcÞ �mÞT; (9:2)

respectively. In Eq. (9.2), Pr(c) = Lc/L, c ∈ C, is the class empirical probability
mass function, where Lc =

PL
l¼1 �cðlÞ;c and δi,j = 1, if i = j; 0, otherwise; in

addition,m(c) and∑(c) denote the class samplemean and covariance, respectively;
and finally, m = ∑c∈C Pr(c) m(c) is the total sample mean. To estimate PLDA, the
generalized eigenvalues and right eigenvectors of the matrix pair (SB, SW), that
satisfy SBF = SWFΛ, are first computed (Rao 1965; Golub and van Loan 1983).
MatrixF = [f1, . . .,fd] has as columns the generalized eigenvectors. Assuming that
the D largest eigenvalues are located at the j1,..,jD diagonal positions of Λ, then,
PLDA = [fj1, . . .,fjD]

T. It should be noted that, due to Eq. (9.2), the rank of SB is at
most |C| − 1, where |C| denotes the number of classes (the cardinality of set C);
hence D ≤ |C| − 1 should hold. In addition, the rank of the d × d-dimensional
matrix SW cannot exceed L − |C|; therefore, having insufficient training data with
respect to the input feature vector dimension d is a potential problem.

Maximum likelihood data rotation (MLLT) In our speechreading system
(Potamianos et al. 2001b), LDA is followed by the application of a datamaximum
likelihood linear transform (MLLT). This transform seeks a square, non-singular,
data rotation matrix PMLLT that maximizes the observation data likelihood in the
original feature space, under the assumption of diagonal data covariance in the
transformed space (Gopinath 1998). Such a rotation is beneficial, since in most
ASR systems diagonal covariances are typically assumed when modeling the
observation class conditional probability distribution with Gaussian mixture mod-
els. The desired rotation matrix is obtained as
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PMLLT ¼ argmax
P
fdetðPÞL

Y
c2C
ðdetðdiagðP�ðcÞPTÞÞÞ�Lc

2 g (9:3)

(Gopinath 1998). This can be solved numerically (Press et al. 1995).
Notice that LDA and MLLT are data transforms aiming at improved classi-

fication performance and maximum likelihood data modeling. Therefore, their
application can be viewed as a feature post-processing stage, and clearly, should
not be limited to appearance-only visual data.

9.2.2.2 Shape-based features In contrast to appearance-based features,
shape-based feature extraction assumes that most speechreading information
is contained in the shape (contours) of the speaker’s lips, or more generally
(Matthews et al. 2001), in the face contours (such as jaw and cheek shape, in
addition to the lips). Two types of features fall within this category, geometric
features and shape model-based features. In both cases, an algorithm that
extracts the inner and/or outer lip contours, or in general, the face shape, is
required. A variety of such algorithms were discussed above.

Lip geometric features Given the lip contour, a number of high-level
features meaningful to humans can be readily extracted, such as the contour
height, width, and perimeter, as well as the area contained within the contour.
As demonstrated in Figure 9.4, such features do contain significant speech
information. Not surprisingly, a large number of speechreading systems
make use of all or a subset of them (Petajan 1984; Adjoudani and Benoît
1996; Alissali et al. 1996; Goldschen et al. 1996; André-Obrecht et al. 1997;
Jourlin 1997; Chan et al. 1998; Rogozan and Deléglise 1998; Teissier et al.
1999; Zhang et al. 2000; Gurbuz et al. 2001; Heckmann et al. 2001; Huang and
Chen 2001).

Additional visual features can be derived from the lip contours, such as
lip image moments and lip contour Fourier descriptors (see Figure 9.4), that
are invariant to affine image transformations. Indeed, a number of central
moments of the contour interior binary image, or its normalized moments, as
defined in Dougherty and Giardina (1987), have been considered as visual
features (Czap 2000). Normalized Fourier series coefficients of a contour
parameterization (Dougherty and Giardina 1987) have also been used to aug-
ment previously discussed geometric features in some speechreading systems,
resulting in improved automatic speechreading (Potamianos et al. 1998;
Gurbuz et al. 2001).

Lip model features A number of parametric models (Basu et al. 1998) have
been used for lip- or face-shape tracking in the literature, and briefly reviewed
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in a previous subsection. The parameters of these models can be readily used
as visual features. For example, Chiou and Hwang (1997) employ a snake-
based algorithm to estimate lip contour, and subsequently use a number of
snake radial vectors as visual features. Su and Silsbee (1996), as well as
Chandramohan and Silsbee (1996), use lip template parameters instead.

Another popular lip model is the active shape model (ASM). These are
flexible statistical models that represent an object with a set of labeled points
(Cootes et al. 1995; Luettin et al. 1996). The object can be the inner and/or outer
lip contour (Luettin and Thacker 1997), or the union of various face shape
contours as inMatthews et al. (2001). To derive an ASM, a number ofK contour
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Figure 9.4 Geometric feature approach. Top: Reconstruction of an estimated
outer lip contour from 1, 2, 3, and 20 sets of its Fourier coefficients.
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scale, tracked over the spoken utterance “81926” of the connected digits
database of Potamianos et al. (1998). Lip contours are estimated as in Graf
et al. (1997). © 1997 and 1998 IEEE
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points are first labeled on available training set images, and their coordinates are
placed on the 2K-dimensional shape vectors

xðsÞ ¼ ½x1; y1; x2; y2;...;xK; yK�T: (9:4)

Given a set of vectors in Eq. (9.4), PCA can be used to identify the optimal
orthogonal linear transform P

ðSÞ
PCAin terms of the variance described along each

dimension, resulting in a statistical model of the lip or facial shape (see
Figure 9.5). To identify axes of genuine shape variation, each shape in the
training set must be aligned. This is achieved using a similarity transform
(translation, rotation, and scaling), by means of an iterative Procrustes analysis
(Cootes et al. 1995; Dryden and Mardia 1998). Given a tracked lip contour, the
extracted visual features will be yðSÞ ¼ P

ðSÞ
PCAx

ðSÞ. Note that vectors in Eq. (9.4)
can be the output of a tracking algorithm based on B-splines for example
(Dalton et al. 1996), or specific “meaningful” points of the lips, appropriately
tracked, as the facial animation parameters (Pandzic and Forchheimer 2002;
Ekman and Friesen 2003) in Aleksic et al. (2002).

9.2.2.3 Joint appearance and shape features Appearance- and shape-
based visual features are quite different in nature. In a sense they code low- and
high-level information about the speaker’s face and lip movements. Not sur-
prisingly, combinations of features from both categories have been employed in
a number of automatic speechreading systems.

In most cases, features from each category are just concatenated. For exam-
ple, Chan (2001) combines geometric lip features with the PCA projection of a
subset of pixels contained within the mouth. Luettin et al. (1996), as well as
Dupont and Luettin (2000), combine ASM features with PCA-based ones,
extracted from a ROI that consists of short image profiles around the lip contour.
Chiou and Hwang (1997), on the other hand, combine a number of snake lip

Figure 9.5 Statistical shape model. The top four modes are plotted (left-to-
right) at ±3 standard deviations around the mean. These four modes describe
65% of the variance of the training set, which consists of 4072 labeled images
from the IBM ViaVoiceTM audiovisual database (Neti et al. 2000; Matthews
et al. 2001). © 2000 and 2001 IEEE.
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contour radial vectors with PCA features of the color pixel values of a rectangle
mouth ROI.

A different approach to combining the two classes of features is to create a
single model of face shape and appearance. An active appearance model
(AAM – Cootes et al. 1998) provides a framework to statistically combine
them. Building an AAM requires three applications of PCA:
� A shape eigenspace calculation that models shape deformations, resulting in

PCA matrix P
ðSÞ
PCA, computed as above (see Eq. (9.4)).

� An appearance eigenspace calculation to model appearance changes, result-
ing in a PCA matrix PðAÞPCA, of the ROI appearance vectors. If the color values
of the M × N-pixel ROI are considered, such vectors are

xðAÞ ¼ ½r1; g1; b1; r2; g2; b2; . . . ; rMN; gMN; bMN�T
similar to vectors of Eq. (9.1).

(9:5)

� Using these, calculation of a combined shape and appearance eigenspace.
The latter is a PCA matrix P

ðA;SÞ
PCA on training vectors

xðA;SÞ ¼ ½xðAÞTWP
ðAÞT
PCA; xðSÞ

T

P
ðSÞT
PCA; �T ¼ ½yðAÞ

T

W; yðSÞ
T �T; (9:6)

where W is a suitable diagonal scaling matrix (Matthews et al. 2001). The
aim of this final PCA is to remove the redundancy due to the shape and
appearance correlation and to create a single model that compactly describes
shape and the corresponding appearance deformation.

Such a model has been used for speechreading in Neti et al. (2000), Matthews
et al. (2001), and Papandreou et al. (2009). An example of the resulting learned
joined model is depicted in Figure 9.6. A block diagram of the method,
including the dimensionalities of the input shape and appearance vectors
(Eq. (9.4) and Eq. (9.5), respectively), their PCA projections y(S), y(A), and
the final feature vector y(A,S)PðASÞ

PCAx
(A,S) is depicted in Figure 9.7.

9.2.2.4 Visual feature post-extraction processing In an audiovisual
speech recognition system, in addition to the visual features, audio features are
also extracted from the acousticwaveform. For example, such features could bemel-
frequency cepstral coefficients (MFCCs), or linear prediction coefficients (LPCs),
typically extracted at a 100 Hz rate (Deller et al. 1993; Rabiner and Juarg 1993;
Young et al. 1999). In contrast, visual features are generated at the video frame rate,
commonly 25 or 30 Hz, or twice that, in the case of interlaced video. Since feature
stream synchrony is required in a number of algorithms for audiovisual fusion, as
discussed in the next section, the two feature streams must achieve the same rate.

Typically, this is accomplished (whenever required), either after feature
extraction, by simple element-wise linear interpolation of the visual features
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to the audio frame rate (as in Figure 9.7), or before feature extraction, by frame
duplication, to achieve a 100 Hz video input rate to the visual front end.
Occasionally, the audio front end processing is performed at a lower video rate.

Another interesting issue in visual feature extraction has to do with feature
normalization. In a traditional audio front end, cepstral mean subtraction is often
employed to enhance robustness to speaker and environment variations (Liu
et al. 1993; Young et al. 1999). A simple visual feature mean normalization
(FMN) by element-wise subtraction of the vector mean over each sentence has
been demonstrated to improve appearance feature-based visual-only recogni-
tion (Potamianos et al. 1998; Potamianos et al. 2001b). Alternatively, linear
intensity compensation preceding the appearance feature extraction has been
investigated by Vanegas et al. (1998).

A very important issue in the visual feature design is capturing the dyna-
mics of visual speech. Temporal information, often spanning multiple phone

Figure 9.6 Combined shape and appearance statistical model. Center row:
Mean shape and appearance. Top row: Mean shape and appearance +3
standard deviations. Bottom row: Mean shape and appearance −3 standard
deviations. The top four modes, depicted left-to-right, describe 46% of the
combined shape and appearance variance of 4072 labeled images from the
IBM ViaVoiceTM audiovisual database (Neti et al. 2000; Matthews et al.
2001).© 2000 and 2001 IEEE.
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segments, is known to help human perception of visual speech (Rosenblum and
Saldaña 1998). Borrowing again from the ASR literature, dynamic speech
information can be captured by augmenting the visual feature vector with its
first- and second-order temporal derivatives (Rabiner and Juang 1993; Young
et al. 1999). Alternatively, LDA can be used, as a means of “learning” a
transform that optimally captures the speech dynamics. Such a transform is
applied on the concatenation of consecutive feature vectors adjacent to and
including the current frame (see also Figure 9.7), i.e., on

xt ¼ ½yTt� J=2cb ; . . . ; yTt ; . . . ; y
T
tþ J=2ed �1�T (9:7)

with J = 15 for example, as in Neti et al. (2000) and Potamianos et al. (2001b).
Clearly, and as we already mentioned, LDA could be applied to any category

of features discussed. The same holds for MLLT, a method that aims to improve
maximum likelihood data modeling and, in practice, ASR performance. For
example, a number of feature post-processing steps discussed above, including
LDA and MLLT, were interchangeably applied to DCT appearance features, as
well as to AAM ones, in our visual front end experiments during the Johns
Hopkins workshop, as depicted in Figure 9.7 (Neti et al. 2000; Matthews et al.
2001). Alternate ways of combining feature post-extraction processing steps
can easily be envisioned. For example, LDA andMLLTcan be applied to obtain
within-frame discriminant features (Potamianos and Neti 2001b), which can
then be augmented by their first- and second-order derivatives, or followed by
LDA and MLLT across frames (see also Figure 9.11). Additional feature trans-
formations can also hold benefit to the system, for example a Gaussianization
step, as reported by Huang and Visweswariah (2005).

Finally, an important problem in data classification is the issue of feature
selection within a larger pool of candidate features (Jain et al. 2000). In the
context of speechreading, this matter has been directly addressed in the selec-
tion of geometric, lip contour-based features by Goldschen et al. (1996) and in
the selection of appearance, DCT-based features by Scanlon et al. (2004) and
Potamianos and Scanlon (2005).

9.2.3 Summary of visual front end algorithms

We have presented a summary of the most common visual feature extraction
algorithms proposed in the literature for automatic speechreading. Such techni-
ques differ both in their assumptions about where the speechreading information
lies, as well as in the requirements that they place on face detection, facial part
localization, and tracking. On the one extreme, appearance-based visual features
consider a broadly defined ROI and then rely on traditional pattern recognition
and image compression techniques to extract relevant speechreading information.
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On the other end, shape-based visual features require adequate lip or facial shape
tracking and assume that the visual speech information is captured by the shape’s
form and movement alone. Bridging the two extremes, various combinations of
the two types of features have also been used, ranging from simple concatenation
to joint modeling.

Comparisons between features within the same class are often reported in the
literature (Duchnowski et al. 1994; Goldschen et al. 1996; Gray et al. 1997;
Potamianos et al. 1998; Matthews et al. 2001; Scanlon and Reilly 2001;
Seymour et al. 2008). Comparisons however across the various types of features
are rather limited, as the feature types require quite different sets of algorithms
for their implementation. Nevertheless, Matthews et al. (1998) demonstrate
AAMs to outperform ASMs, and to result in similar visual-only recognition to
alternative appearance-based features. Chiou and Hwang (1997) report that
their joint features outperform their shape and appearance feature components,
whereas Potamianos et al. (1998), as well as Scanlon and Reilly (2001), report
that DCT-based visual features are superior to a set of lip contour geometric
features. Also, Aleksic and Katsaggelos (2004a) compare PCA appearance-
based and shape-based features, but with inconclusive results. However, the
above are all reported on single-subject data and/or small vocabulary tasks. In a
larger experiment, Matthews et al. (2001) compare a number of appearance-
based features with AAMs on a speaker-independent LVCSR task. All appear-
ance features considered outperformed AAMs. However, it is suspected that the
AAM used there was not sufficiently trained.

Although much progress has been made in visual feature extraction, it seems
that the identification of the best visual features for automatic speechreading,
features that are robust in a variety of visual environments, remains to a large
extent unresolved. Of particular importance is that such features should exhibit
sufficient speaker, pose, camera, and environment independence. However, it is
worth mentioning two arguments in favor of appearance-based features. First,
their use is well motivated by human perception studies of visual speech.
Indeed, significant information about the place of articulation, such as tongue
and teeth visibility, cannot be captured by the lip contours alone. Human speech
perception based on the mouth region is superior to perception on the basis of
the lips alone and it further improves when the entire lower face is visible
(Summerfield et al. 1989). Second, the extraction of certain well-performing,
appearance-based features such as the DCT is computationally efficient. Indeed,
it requires a crude mouth region detection algorithm, which can be applied at a
low frame rate, whereas the subsequent pixel vector transform is amenable to fast
implementation for suitable ROI sizes (Press et al. 1995). These observations are
encouraging with regard to work towards the ultimate goal of implementing
realtime automatic speechreading systems (Connell et al. 2003), operating
robustly in realistic visual environments (Potamianos and Neti 2003).
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9.3 Audiovisual integration

Audiovisual fusion is an instance of the general classifier combination problem
(Jain et al. 2000; Sannen et al. 2010). In our case, two observation streams are
available (audio and visual modalities) and provide information about speech
classes, such as context-dependent sub-phonetic units, or at a higher level, word
sequences. Each observation stream can be used alone to train single-modality
statistical classifiers to recognize such classes. However, one hopes that com-
bining the two streams will give rise to a bimodal classifier with superior
performance to both single-modality ones.

Various information fusion algorithms have been considered in the literature
for audiovisual ASR (for example, Bregler et al. 1993; Adjoudani and Benoît
1996; Hennecke et al. 1996; Potamianos and Graf 1998; Rogozan 1999; Teissier
et al. 1999; Dupont and Luettin 2000; Neti et al. 2000; Chen 2001; Chu and
Huang 2002; Garg et al. 2003; Lewis and Powers 2005; Saenko and Livescu
2006; Marcheret et al. 2007; Shao and Barker 2008; Papandreou et al. 2009). The
proposed techniques differ both in their basic design, and in the adopted termi-
nology. The architecture of some of these methods (Robert-Ribes et al. 1996;
Teissier et al. 1999; Lewis and Powers 2005) is motivated by models of human
speech perception (Massaro 1996; Massaro and Stork 1998; Berthommier 2001).
Inmost cases however, research in audiovisual ASR has followed a separate track
from work on modeling the human perception of audiovisual speech.

Audiovisual integration techniques can be broadly grouped into feature
fusion and decision fusion methods. The first ones are based on training a
single classifier (i.e., of the same form as the audio- and visual-only classifiers)
on the concatenated vector of audio and visual features, or on any appropriate
transformation of it (Adjoudani and Benoît 1996; Teissier et al. 1999;
Potamianos et al. 2001c; Aleksic et al. 2005). In contrast, decision fusion
algorithms utilize the two single-modality (audio- and visual-only) classifier
outputs to recognize audiovisual speech. Typically, this is achieved by linearly
combining the class-conditional observation log-likelihoods of the two clas-
sifiers into a joint audiovisual classification score, using appropriate weights
that capture the reliability of each single-modality classifier, or data stream
(Hennecke et al. 1996; Rogozan et al. 1997; Potamianos and Graf 1998;
Dupont and Luettin 2000; Neti et al. 2000; Nefian et al. 2002; Tamura et al.
2005; Marcheret et al. 2007; Shao and Barker 2008).

In this section, we provide a detailed description of some popular fusion
techniques from each category (see also Table 9.1). In addition, we briefly
address two issues relevant to automatic recognition of audiovisual speech.
One is the problem of speech modeling for ASR, which poses particular interest
in automatic speechreading, and helps establish some background and notation
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for the remainder of the section. We also consider the subject of speaker
adaptation, an important element in practical ASR systems.

9.3.1 Audiovisual speech modeling for ASR

Two central aspects in the design of ASR systems are the choice of speech classes
that are assumed to generate the observed features, and the statistical modeling of
this generation process. In the following,we briefly discuss both issues, since they
are often embedded into the design of audiovisual fusion algorithms.

9.3.1.1 Speech classes for audiovisual ASR The basic unit that describes
how speech conveys linguistic information is the phoneme. For American English,
there exist approximately forty-two such units (Deller et al. 1993), generated by
specific positions or movements of the vocal tract articulators. Only some of the
articulators are visible, however; therefore among these phonemes, the number of
visually distinguishable units is much smaller. Such units are called visemes in the
audiovisual ASR and human perception literatures (Stork and Hennecke 1996;
Campbell et al. 1998; Massaro and Stork 1998). In general, phoneme to viseme
mappings are derived from human speechreading studies. Alternatively, such
mappings can be generated using statistical clustering techniques, as proposed
by Goldschen et al. (1996) and Rogozan (1999). There is no universal agreement
about the exact partitioning of phonemes into visemes, but some visemes are well-
defined, such as the bilabial viseme consisting of the phoneme set [/p/, /b/, /m/].
A typical clustering into thirteen visemes is used by Neti et al. (2000) to conduct
visual speech modeling experiments, and is depicted in Table 9.2.

In traditional audio-only ASR, the set of classes c ∈C that needs to be
estimated on the basis of the observed feature sequence most often consists of

Table 9.1 Taxonomy of the audiovisual integration methods considered in this
section. Three feature-fusion techniques that differ in the features used for
recognition and three decision-fusion methods that differ in the combination
stage of the audio and visual classifiers are described in more detail in this
chapter.

Fusion Type Audiovisual Features Classification Level

Feature fusion: one classifier
chosen

1. Concatenated features
2. Hierarchical discriminant
features

3. Enhanced audio features

Sub-phonetic (early)

Decision fusion: two
classifiers chosen

Concatenated features 1. Sub-phonetic (early)
2. Phone or word (intermediate)
3. Utterance (late)
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sub-phonetic units, and occasionally of sub-word units in small vocabulary
recognition tasks. For LVCSR, a large number of context-dependent sub-
phonetic units are used, obtained by clustering the possible phonetic contexts
(tri-phone ones, for example) using a decision tree. In this chapter, such units are
exclusively used, defined over tri- or eleven-phone contexts, as described in the
Experiments section (Section 9.5).

For automatic speechreading, it seems appropriate, from the human visual
speech perception point of view, to use visemic sub-phonetic classes, and their
decision tree clustering based on visemic context. Such clustering experiments
are reported by Neti et al. (2000). In addition, visual-only recognition of visemes
is occasionally considered in the literature (Potamianos et al. 2001b; Gordan et al.
2002). Visemic speech classes are also used for audiovisual ASR at the second
stage of a cascade decision fusion architecture proposed by Rogozan (1999), as
well as in the dynamic Bayesian network proposed for audiovisual fusion by
Terry and Katsaggelos (2008) and a number of experiments reported by Hazen
(2006). In general, however, the vast majority of works in the literature employ
identical classes and decision trees for both modalities.

9.3.1.2 HMM-based speech recognition The most widely used classifier
for audiovisual ASR is the hidden Markovmodel (HMM), a very popular method
for traditional audio-only speech recognition. Additional methods also exist for
automatic recognition of speech, and have been employed in audiovisual ASR
systems, such as dynamic time warping (DTW), used for example by
Petajan (1984), artificial neural networks (ANN), as in Krone et al. (1997),
hybrid ANN-DTW systems (Bregler et al. 1993; Duchnowski et al. 1994), hybrid

Table 9.2 The forty-four phonemes to thirteen visemes mapping considered by
Neti et al. (2000), using the HTK phone set (Young et al. 1999).

Silence /sil/, /sp/

Lip-rounding based vowels /ao/, /ah/, /aa/, /er/, /oy/, /aw/, /hh/
/uw/, /uh/, /ow/
/ae/, /eh/, /ey/, /ay/
/ih/, /iy/, /ax/

Alveolar semivowels /l/, /el/, /r/, /y/
Alveolar fricatives /s/, /z/
Alveolar /t/, /d/, /n/, /en/
Palato-alveolar /sh/, /zh/, /ch/, /jh/
Bilabial /p/, /b/, /m/
Dental /th/, /dh/
Labio-dental /f/, /v/
Velar /ng/, /k/, /g/, /w/

Audiovisual automatic speech recognition 215



ANN-HMM ones (Heckmann et al. 2001), and support vector machines
(SVM, see Gordan et al. 2002) – in the latter case for visual-only ASR.
Various types of HMMs have also been used for audiovisual ASR, such as
HMMs with discrete observations after vector quantization of the feature
space (Silsbee and Bovik 1996), or HMMs with non-Gaussian continuous
observation probabilities (Su and Silsbee 1996). However, the vast majority of
audiovisual ASR systems, to which we restrict our presentation in this chapter,
employ HMMs with a continuous observation probability density, modeled as
a mixture of Gaussian densities.

Typically in the literature, single-stream HMMs are used to model the gen-
eration of a sequence of audio-only or visual-only speech informative features,
foðsÞt g, of dimensionality Ds, where s = A,V denotes the audio or visual modal-
ity (stream). The HMM emission (class conditional observation) probabilities
are modeled by Gaussian mixture densities, given by

PrðoðsÞt cj Þ ¼
XKsc

k¼1
wsck NDs

ðoðsÞt ;msck; ssckÞ (9:8)

for all classes c ∈C, whereas the HMM transition probabilities between classes are
given by rs ¼ ½fPrðc0jc00Þ; c0jc00 2 Cg�T. The HMM parameter vector is therefore

as¼ rTs ; b
T
s

� �T
;where

bs ¼ wsck;m
T
sck; s

T
sck;

� �T
; k ¼ 1; . . . ;Ksc; c 2 C

n oh iT
;

(9:9)

In Eq. (9.7) and Eq. (9.8), c∈C denote the HMM context-dependent states,
whereas mixture weights wsck are positive adding to one; Ksc denotes the
number of mixtures; and ND(o;m,s) is the D-variate normal distribution with
mean m and a diagonal covariance matrix, its diagonal being denoted by s.

The expectation-maximization (EM) algorithm (Dempster et al. 1977) is
typically used to obtain maximum likelihood estimates of Eq. (9.9). Given a
current HMM parameter vector at EM algorithm iteration j, aðjÞs , a re-estimated
parameter vector is obtained as

aðjþ1Þs ¼ argmax
a

QðaðjÞs ; ajOðsÞÞ: (9:10)

In Eq. (9.10), O(s) denotes training data observations from L utterances o
ðsÞ
l ,

l = 1, . . .,L, andQ(•,•|•) represents the EM algorithm auxiliary function, defined
(Rabiner and Juang 1993) as

Qða0;a00jOðsÞÞ ¼
XL
l¼1

X
cðlÞ

PrðOðsÞl ; cðlÞja0Þ logðOðsÞl ; cðlÞja00Þ: (9:11)
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In Eq. (9.11), c(l) denotes any HMM state sequence for utterance l. Replacing it
with the best HMM path reduces EM to Viterbi training. As an alternative to
maximum likelihood, discriminative training methods can instead be used for
HMM parameter estimation (Bahl et al. 1986; Chou et al. 1994; Woodland and
Povey 2002; Huang and Povey 2005).

9.3.2 Feature fusion techniques for audiovisual ASR

As already mentioned, feature fusion uses a single classifier to model the
concatenated vector of time-synchronous audio and visual features, or appro-
priate transformations of it. Such methods include plain feature concatenation
(Adjoudani and Benoît 1996), feature weighting (Teissier et al. 1999; Chen
2001), both also known as direct identification fusion (Teissier et al. 1999),
and hierarchical linear discriminant feature extraction (Potamianos et al.
2001c). The dominant and motor recording fusion models discussed by
Teissier et al. (1999) also belong to this category, as they seek a data-to-data
mapping of either the visual features into the audio space, or of both modality
features to a new common space, followed by linear combination of the
resulting features. Audio feature enhancement on the basis of either visual
input (Girin et al. 1995; Barker and Berthommier 1999), or concatenated
audiovisual features (Girin et al. 2001b; Goecke et al. 2002) also falls within
this category of fusion, under the general definition adopted above. In this
section, we expand on three feature fusion techniques, schematically depicted
in Figure 9.8.
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Figure 9.8 Three types of feature fusion considered in this section: Plain
audiovisual feature concatenation (AV-Concat), hierarchical discriminant
feature extraction (AV-HiLDA), and audiovisual speech enhancement (AV-Enh).
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9.3.2.1 Concatenative feature fusion Given time-synchronous audio and
visual feature vectors oðAÞt and o

ðVÞ
t , with dimensionalities DA and DV, respec-

tively, the joint, concatenated audiovisual feature vector at time t becomes

o
ðAVÞ
t ¼ ½oðAÞTt ; o

ðVÞT
t �T 2 RD; (9:12)

where D = DA + DV. As with all feature fusion methods (i.e., also for vectors in
Eq. (9.13) and Eq. (9.14), below), the generation process for a sequence of
features in Eq. (9.12) is modeled by a single-stream HMM, with emission
probabilities (see also Eq. (9.7))

Pr ðoðAVÞ
t

���cÞ ¼XKc

k¼1
wck NDðoðAVÞ

t ;mck; sckÞ

for all classes c ∈C (Adjoudani and Benoît 1996). Concatenative feature fusion
constitutes a simple approach for audiovisual ASR, implementable in most
existing ASR systems with minor changes. However, the vector dimensionality
in Eq. (9.12) can be rather high, with the consequent risk of inadequate model-
ing in Eq. (9.8) due to the curse of dimensionality (Chatfield and Collins 1991).
The following fusion technique aims to avoid this, by seeking lower-
dimensional representations of Eq. (9.12).

9.3.2.2 Hierarchical discriminant feature fusion Visual features con-
tain less speech classification power than audio features, even in the case of
extreme noise in the audio channel (see Table 9.3 in the Experiments section).
One would therefore expect that an appropriate lower-dimensional represen-
tation of Eq. (9.12) could lead to equal and possibly better HMM performance,
given the problem of accurate probabilistic modeling in high-dimensional
spaces. Potamianos et al. (2001c) have considered LDA as a means of
obtaining such a dimensionality reduction. The goal is in fact to obtain the
best discrimination among the classes of interest and LDA achieves this on the
basis of the data (and their labels) alone, without an a priori bias in favor of
either of the two feature streams. LDA is followed by an MLLT-based data
rotation (see also Figure 9.8), in order to improve maximum-likelihood data
modeling using Eq. (9.8). In the audiovisual ASR system of Potamianos et al.
(2001c), the proposed method amounts to a two-stage application of LDA and
MLLT, first intra-modal on the original audio MFCC and visual DCT features,
and then inter-modal on Eq. (9.12), as also depicted in Figure 9.11. It is therefore
referred to as HiLDA (hierarchical LDA). The final audiovisual feature vector is
(see also Eq. (9.12))

o
ðHiLDAÞ
t ¼ P

ðAVÞ
MLLT P

ðAVÞ
LDA o

ðAVÞ
t : (9:13)
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One can set the dimensionality of Eq. (9.13) to be equal to the audio feature
vector size, as implemented by Neti et al. (2000).

9.3.2.3 Audio feature enhancement Audio and visible speech are corre-
lated since they are constrained to use a common orofacial anatomy. Not
surprisingly, a number of techniques have been proposed to obtain estimates
of audio features utilizing the visual-only modality (Girin et al. 1995; Yehia
et al. 1998; Barker and Berthommier 1999), or joint audiovisual speech data, in
the case where the audio signal is degraded (Girin et al. 2001b; Goecke et al.
2002). The latter scenario corresponds to the speech enhancement paradigm.
Under this approach, the enhanced audio feature vector oðAEnhÞ

t can be simply
obtained as a linear transformation of the concatenated audiovisual feature
vector of Eq. (9.11), namely as

o
ðAEnhÞ
l ¼ P

ðAVÞ
ENH o

ðAVÞ
t (9:14)

where PðAVÞ
ENH ¼ ½pðAVÞ

1 ; p
ðAVÞ
2 ; . . . ; p

ðAVÞ
DA

; �Tconsists of D-dimensional row vec-

tors pðAVÞT
i for i = 1, . . .,DA, and has dimension DA × D (see also Figure 9.8).

A simple way to estimate matrix P
ðAVÞ
ENH is by considering the approximation

o
ðAEnhÞ
t � o

ðACleanÞ
t in the Euclidean distance sense, where vector o

ðACleanÞ
t

denotes clean audio features available in addition to visual and noisy audio
vectors, for a number of time instants t in a training set, T. By Eq. (9.14), this
becomes equivalent to solving DA mean square error (MSE) estimations

p
ðAVÞ
i ¼ argmin

p

X
t2T
½oðACleanÞ

t;i � pTo
ðAVÞ
t �2 (9:15)

for i = 1, . . .,DA, i.e., one per row of the matrix PðAVÞ
ENH. Equation (9.15) results in

DA systems of Yule–Walker equations that can be easily solved using Gauss–
Jordan elimination (Press et al. 1995). A more sophisticated way of estimating

P
ðAVÞ
ENH by using a Mahalanobis type distance instead of Eq. (9.15) is considered

by Goecke et al. (2002). Non-linear estimation schemes are proposed by Girin
et al. (2001a) and Deligne et al. (2002).

9.3.3 Decision fusion techniques for audiovisual ASR

Although feature fusion techniques (for example, HiLDA) that result in improved
ASR over audio-only performance have been documented (Neti et al. 2000), they
cannot explicitly model the reliability of each modality. Such modeling is
extremely important, as speech information content and the discrimination
power of the audio and visual streams can vary widely, depending on the spoken

Audiovisual automatic speech recognition 219



utterance, acoustic noise in the environment, visual channel degradation, face
tracker inaccuracies, and speaker characteristics. In contrast to feature fusion
methods, the decision fusion framework provides a mechanism for capturing the
reliability of each modality, by borrowing from classifier combination literature.

Classifier combination based on individual decisions about the classes of
interest is an active area of research with many applications (Xu et al. 1992;
Kittler et al. 1998; Jain et al. 2000; Sannen et al. 2010). Combination strategies
differ in various aspects, such as the architecture used (parallel, cascade, or
hierarchical combination), possible trainability (static or adaptive), and infor-
mation level considered at integration: abstract, rank-order, or measurement
level, i.e., whether information is available about the best class only, the top n
classes (or the ranking of all possible classes), or the likelihood scores. In the
audiovisual ASR literature, examples of most of these categories can be found.
For example, Petajan (1984) rescores the two best outputs of the audio-only
classifier by means of the visual-only classifier, a case of cascade, static, rank-
order level decision fusion. Combinations of more than one category, as well as
cases where one of the two classifiers of interest corresponds to a feature fusion
technique are also possible. For example, Rogozan and Deléglise (1998) use a
parallel, adaptive, measurement-level combination of an audiovisual classifier
trained on concatenated features (Eq. (9.12)) with a visual-only classifier,
whereas Rogozan (1999) considers a cascade, adaptive, rank-order level inte-
gration of the two. The lattice rescoring framework used during the Johns
Hopkins University workshop (as described in the Experiments section that
follows) is an example of a hybrid cascade/parallel fusion architecture (Neti
et al. 2000; Glotin et al. 2001; Luettin et al. 2001).

However, by far the most commonly used decision fusion techniques for
audiovisual ASR belong to the paradigm of audio- and visual-only classifier
integration using a parallel architecture, adaptive combination weights, and class
measurement level information. These methods derive the most likely speech
class or word sequence by linearly combining the log-likelihoods of the two
single-modality HMM classifier decisions, using appropriate weights (Adjoudani
and Benoît 1996; Jourlin 1997; Potamianos and Graf 1998; Teissier et al. 1999;
Dupont and Luettin 2000; Neti et al. 2000; Gurbuz et al. 2001; Heckmann et al.
2001; Nefian et al. 2002; Tamura et al. 2005; Marcheret et al. 2007; Shao and
Barker 2008). This corresponds to the adaptive product rule in the likelihood
domain (Jain et al. 2000), and it is also known as the separate identificationmodel
of audiovisual fusion (Rogozan 1999; Teissier et al. 1999).

Continuous speech recognition introduces an additional twist to the classifier
fusion problem, due to the fact that sequences of classes (HMM states or words)
need to be estimated. One can consider three possible temporal levels for
combining stream (modality) likelihoods, as depicted in Table 9.1: (a) “Early”
integration, i.e., likelihood combination at the HMM state level, which gives
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rise to the multi-stream HMM classifier (Bourlard and Dupont 1996; Young
et al. 1999), and forces synchrony between its two single-modality components;
(b) “Late” integration, where typically a number of n-best audio and possibly
visual-only recognizer hypotheses are rescored by the log-likelihood combina-
tion of the two streams, which allows complete asynchrony between the two
HMMs; and (c) “Intermediate” integration, typically implemented by means of
the product HMM (Varga and Moore 1990), or the coupled HMM (Brand et al.
1997), which forces HMM synchrony at the phone, or word, boundaries. Notice
that such terminology is not universally agreed upon, and our reference to early
or late integration at the temporal level should not be confused with the feature
versus decision fusion meaning of these terms in other work (Adjoudani and
Benoît 1996).

9.3.3.1 Early integration: state-synchronous multi-stream HMM In its
general form, the class conditional observation likelihood of the multi-stream
HMM is the product of the observation likelihoods of the HMM single-stream
components, raised to appropriate stream exponents that capture the reliability
of each modality, or equivalently, the confidence of each single-stream classi-
fier. Such a model has been considered in audio-only ASR where, for example,
separate streams are used for the energy audio features and MFCC static
features, as well as their first and possibly second-order derivatives, as in
Hernando et al. (1995) and Young et al. (1999), or for band-limited audio
features in the multi-band ASR paradigm (Hermansky et al. 1996), as in
Bourlard and Dupont (1996), Okawa et al. (1999), Glotin and Berthommier
(2000), among others. In the audiovisual domain, the model becomes a two-
stream HMM, with one stream devoted to the audio, and another to the visual
modality. As such, it has been extensively used in audiovisual ASR (Jourlin
1997; Potamianos and Graf 1998; Dupont and Luettin 2000; Miyajima et al.
2000; Nakamura et al. 2000; Neti et al. 2000; Tamura et al. 2005; Marcheret
et al. 2007; Shao and Barker 2008; Terry et al. 2008). In the system reported by
Neti et al. (2000) and Luettin et al. (2001), the method was applied for the first
time to the LVCSR domain.

Given the bimodal (audiovisual) observation vector oðAVÞ
t , the state emission

“score” (it no longer represents a probability distribution) of the multi-stream
HMM is (see also Eq. (9.8) and Eq. (9.12))

PrðoðAVÞ
t

���cÞ ¼ Y
s2fA;Vg

XKsc

k¼1
wsckNDs

ðoðsÞt ;msck; ssckÞ
" #lsct

(9:16)

Notice that Eq. (9.16) corresponds to a linear combination in the log-
likelihood domain. In Eq. (9.16), λsct denote the stream exponents (weights),
that are non-negative, and in general, are a function of the modality s, the
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HMM state c ∈C, and locally, the utterance frame (time) t. Such state- and
time-dependence can be used to model the speech class and “local”
environment-based reliability of each stream. The exponents are often con-
strained to λAct + λVct = 1, or 2. In most systems, they are set to global,
modality-only dependent values, i.e., λs ←λsct, for all classes c ∈C and time
instants t, with the class dependence occasionally being preserved, i.e.,
λsc ←λsct, for all t. In the latter case, the parameters of the multi-stream
HMM (see also Eq. (9.8), Eq. (9.9), and Eq. (9.16))

�aAV ¼ ½aTAV; f½lAc; lAc�T; c 2 CgT�; where aAV ¼ ½rT; bTA; bTV�T
(9:17)

consist of the HMM transition probabilities r and the emission probability
parameters bA and bVof its single-stream components.

The parameters of aAV can be estimated separately for each stream compo-
nent using the EM algorithm, namely, Eq. (9.10) for s ∈[A,V] and subsequently,
by setting the joint HMM transition probability vector equal to the audio one,
i.e., r = rA, or alternatively, to the product of the transition probabilities of the
two HMMs, i.e., r = diag(rA rV

T) (see also Eq. (9.9)). The latter scheme is
referred to in the Experiments section as AV-MS-Sep. An obvious drawback of
this approach is that the two single-modality HMMs are trained asynchronously
(i.e., using different forced alignments), whereas Eq. (9.16) assumes that the
HMM stream components are state synchronous. The alternative is to jointly
estimate parameters aAV, in order to enforce state synchrony. Due to the linear
combination of stream log-likelihoods in Eq. (9.16), the EM algorithm carries
on in the multi-stream HMM case with minor changes (Rabiner and Juang
1993; Young et al. 1999). As a result,

a
ðjþ1Þ
AV ¼ argmax

a
�a
ðjÞ
AV; ajOðAVÞ

� �
(9:18)

can be used, a scheme referred to as AV-MS-Joint. Notice that the two
approaches basically differ in the E-step of the EM algorithm.

In both separate and joint HMM training, the remainder of parameter vector
�aAV, consisting of the stream exponents, needs to be obtained. Maximum
likelihood estimation cannot be used for such parameters, and discriminative
training techniques have to be employed instead (Jourlin 1997; Potamianos and
Graf 1998; Nakamura 2001; Gravier et al. 2002a). This issue is discussed later.
Notice that HMM stream parameter and stream exponent training iterations can
be alternated in Eq. (9.18).

9.3.3.2 Intermediate integration: product HMM It is well known that
visual speech activity can precede the audio signal by as much as 120 ms
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(Bregler and Konig 1994; Grant and Greenberg 2001), which is close to the
average duration of a phoneme. A generalization of the state-synchronous
multi-stream HMM can be used to model such audio and visual stream asyn-
chrony to some extent, by allowing the single modality HMMs to be in asyn-
chrony within a model, but forcing their synchrony at model boundaries instead.
Single-stream log-likelihoods are linearly combined at such boundaries using
weights, similarly to Eq. (9.16). For LVCSR, a reasonable choice is to force
synchrony at the phone boundaries. The resulting phone-synchronous audio-
visual HMM is depicted in Figure 9.9, for the typical case of three states used
per phone in each modality.

Recognition based on this intermediate integration method requires the
computation of the best state sequences for both audio and visual streams. To
simplify decoding, the model can be formulated as a product HMM (Varga and
Moore 1990). Such a model consists of composite states c ∈C × C, that have
audiovisual emission probabilities of a form similar to Eq. (9.16), namely

PrðoðAVÞ
t

���cÞ ¼ Y
s2fA;Vg

XKscs

k¼1
wscskNDs

ðoðsÞt ;mscsk; sscskÞ
" #lscst

(9:19)

where c = [cA, cV]
T. Notice that in Eq. (9.18), the audio and visual stream

components correspond to the emission probabilities of certain audio- and visual-
only HMM states, as depicted in Figure 9.9. These single-stream emission prob-
abilities are tied for states along the same row, or column (depending on the
modality); therefore the original number of mixture weight, mean, and variance
parameters is kept in the new model. However, this is usually not the case with the
number of transition probability parameters fPrðc0jc00Þ; c0; c00 2 C� Cg, as addi-
tional transitions between the composite states need to be modeled. Such proba-
bilities are often factored as Prðc0jc00Þ ¼ Prðc0A

��c00ÞPrðc0V��c00Þ, in which case the
resulting product HMM is typically referred to in the literature as the coupled
HMM (Brand et al. 1997; Chu and Huang 2000; Chu and Huang 2002; Nefian
et al. 2002). A further simplification of this factorization can be employed,
fPrðc0jc00Þ ¼ Prðc0A

��c00AÞPrðc0V��c00VÞ, as in Gravier et al. (2002a) for example,
which results in a product HMM with the same number of parameters as the state
synchronous multi-stream HMM.

Given audiovisual training data, product HMM training can be performed
similarly to separate, or joint, multi-stream HMM parameter estimation, dis-
cussed in the previous subsection. In the first case, the composite model is
constructed based on individual single-modality HMMs estimated by Eq.
(9.10), and on transition probabilities equal to the product of the audio- and
visual-only ones. In the second case, referred to as AV-MS-PROD in the experi-
ments reported later, all transition probabilities and HMM stream component
parameters are estimated at a single stage using Eq. (9.18) with appropriate
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parameter tying. In both schemes, stream exponents need to be estimated
separately. In the audiovisual ASR literature, product (or, coupled) HMMs
have been considered in some small-vocabulary recognition tasks (Tomlinson
et al. 1996; Dupont and Luettin 2000; Huang and Chen 2001; Nakamura 2001;
Chu and Huang 2002; Nefian et al. 2002), where synchronization is sometimes
enforced at the word level, and recently for LVCSR (Neti et al. 2000; Luettin
et al. 2001; Gravier et al. 2002b).

It is worth mentioning that the product HMM allows the restriction of the
degree of asynchrony between the two streams by excluding certain composite
states in the model topology. In the extreme case, when only the states that lie in
its “diagonal” are kept, the model becomes equivalent to the state-synchronous
multi-stream HMM (see also Figure 9.9).

9.3.3.3 Late integration: discriminative model combination A popular
stage of combining audio- and visual-only recognition log-likelihoods is at the
utterance end, giving rise to late integration. In small-vocabulary, isolated
word speech recognition, this can be easily implemented by calculating the
combined likelihood for each word model in the vocabulary, given the acous-
tic and visual observations (Adjoudani and Benoît 1996; Su and Silsbee 1996;
Cox et al. 1997; Gurbuz et al. 2001). However, for connected word recog-
nition, and even more so for LVCSR, the number of possible hypotheses of
word sequences becomes prohibitively large. Instead, one has to limit the log-
likelihood combination to the top n-best only hypotheses. Such hypotheses
can be generated by the audio-only HMM, an alternative audiovisual fusion

COMPOSITE HMM STATES

VISUAL HMM STATES

HMM STATESAUDIO

Figure 9.9 Left: Phone-synchronous (state-asynchronous) multi-stream
HMM with three states per phone in each modality. Right: Its equivalent
product (composite) HMM; black circles denote states that are removed
when limiting the degree of within-phone allowed asynchrony to one state.
The single-stream emission probabilities are tied for states along the same row
(column) to the corresponding audio (visual) state probabilities.
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technique, or can be the union of audio-only and visual-only n-best lists. In
this approach, n-best hypotheses for a particular utterance, [h1,h2, . . ., hn], are
first forced-aligned to their corresponding phone sequences hi = [ci,1 , ci,2, . . .,
ci,Ni] by means of both audio- and visual-only HMMs. Let the resulting phone
ci,j boundaries be denoted by ½tstarti;j;s ; t

end
i;j;s�, for s ∈[A,V], j = 1, . . ., Ni and

i = 1, . . ., n. Then, the audiovisual likelihoods of the n-best hypotheses are
computed as

Pr ðhiÞ / PrLMðhiÞlLM
Y

s2fA;Vg

YNi

j¼1
Pr o

ðsÞ
t ; t 2 ½tstarti;j;s ; t

end
i;j;s � ci;j

��� �lsci;j

(9:20)

where PrLM(hi) denotes the language model (LM) probability of hypothesis hi.
The exponents in Eq. (9.20) can be estimated using discriminative training
criteria, as in the discriminative model combination method of Beyerlein
(1998) and Vergyri (2000). The method is proposed for audiovisual LVCSR
in Neti et al. (2000), and it is referred to as AV-DMC in the Experiments
section.

9.3.3.4 Stream exponent estimation and reliability modeling We now
address the issue of estimating stream exponents (weights), when combining
likelihoods in the audiovisual decision fusion techniques presented above (see
Eq. (9.16), Eq. (9.19), and Eq. (9.20)). As already discussed, such exponents
can be set to constant values, computed for a particular audiovisual environment
and database. In this case, the audiovisual weights depend on the modality and
possibly on the speech class, capturing the confidence of the individual classi-
fiers for the particular database conditions, and are estimated by seeking optimal
system performance on matched data. However, in a practical audiovisual ASR
system, the quality of captured audio and visual data, and thus of the speech
information present in them, can change dramatically over time. To model this
variability, utterance-level or even frame-level dependence of the stream expo-
nents is required. This can be achieved by first obtaining an estimate of the local
environment conditions and then using pre-computed exponents for this con-
dition, or alternatively, by seeking a direct functional mapping between “envi-
ronment” estimates and stream exponents. In the following, we expand on these
methodologies.

In the first approach, constant exponents are estimated, based on training data,
or more often, on so-called held-out data. Such stream exponents cannot be
obtained by maximum likelihood estimation (Potamianos and Graf 1998;
Nakamura 2001), although approaches based on likelihood normalization have
appeared in the literature with moderate success (Hernando 1997; Tamura et al.
2005. Typically though discriminative training techniques are used. Some of
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these methods seek to minimize a smooth function of the minimum classification
error (MCE) resulting from the application of the audiovisual model on the data,
and employ the generalized probabilistic descent (GPD) algorithm (Chou et al.
1994) for stream exponent estimation (Potamianos and Graf 1998; Miyajima
et al. 2000; Nakamura et al. 2000; Gravier et al. 2002a). Other techniques use
maximum mutual information (MMI) training (Bahl et al. 1986), such as the
system reported by Jourlin (1997), or the maximum entropy criterion (Gravier
et al. 2002a). The latter is reported to be faster than MCE-GPD and performs
better than it in the case of class-independent exponents. Alternatively, one can
seek to directly minimize the word error rate of the resulting audiovisual ASR
system on a held-out dataset. In the case of global exponents across all speech
classes, constrained to add to a constant, the problem reduces to one-dimensional
optimization of a non-smooth function, and can be solved using simple grid
search (Miyajima et al. 2000; Luettin et al. 2001; Gravier et al. 2002a). For class-
dependent weights, the problem becomes of higher dimension, and the downhill
simplex method (Nelder and Mead 1965) can be employed. This technique is
used by Neti et al. (2000) to estimate exponents for late decision fusion.

In order to capture the effects of varying audio and visual environment
conditions on the reliability of each stream, utterance-level, and occasionally
frame-level, dependence of the stream weights needs to be considered. In most
cases in the literature, exponents are considered as a function of the audio
channel signal-to-noise ratio (SNR), and each utterance is decoded based on
the fusion model parameters at its SNR (Adjoudani and Benoît 1996; Meier
et al. 1996; Cox et al. 1997; Teissier et al. 1999; Gurbuz et al. 2001). This SNR
value is either assumed known, or estimated from the audio channel (Cox et al.
1997). A linear dependence between SNR and audio stream weight has been
demonstrated by Meier et al. (1996). An alternative technique sets the stream
exponents to a linear function of the average conditional entropy of the recog-
nizer output, computed using the confusion matrix at a particular SNR for a
small-vocabulary isolated word ASR task (Cox et al. 1997). A different
approach considers the audio stream exponent as a function of the degree of
voicing present in the audio channel, estimated as in Berthommier and Glotin
(1999). This method was used at the Johns Hopkins summer 2000 workshop
(Neti et al. 2000; Glotin et al. 2001), and is referred to in the Experiments
section as AV-MS-UTTER. Finally, Heckmann et al. (2002) use a combination
of the above-mentioned audio stream indicators to estimate the audio stream
exponent.

The above techniques do not allow modeling of possible variations in the
visual stream reliability, since they concentrate on the audio stream alone.
Modeling such variability in the visual signal domain is challenging, although
one could for example consider face detection confidence as one such measure
(Connell et al. 2003). Typically however this is achieved using confidence

226 G. Potamianos, C. Neti, J. Luettin, and I. Matthews



measures of the visual-only classifier applied on the extracted visual feature
sequence. For example, Adjoudani and Benoît (1996) and Rogozan et al. (1997)
use the dispersion of both audio-only and visual-only class posterior log-
likelihoods to model the single-stream classifier confidences, and then compute
the utterance-dependent stream exponents as a closed form function of these
dispersions in an unsupervised fashion. Similarly, Potamianos and Neti (2000)
consider various confidence measures, such as entropy and dispersion, to
capture the reliability of audio- and visual-only classification at the frame
level, and they obtain stream exponents using a look-up table over confidence
value intervals, estimated on the basis of held-out data. Extensions of this work
appear in Garg et al. (2003), where a sigmoid function is used instead of the
look-up table. This sigmoid is discriminatively trained to map the vector of
audiovisual reliability measures to frame-dependent audiovisual exponents.
Further, Marcheret et al. (2007) employ Gaussian mixture models for this
purpose using the above reliability measures, whereas Shao and Barker
(2008) use an ANN in a two-step approach to estimating the desired exponents.
As input to the ANN, they utilize the entire vector of audio and visual like-
lihoods of all classes (or an appropriate clustering of them). An alternative
approach is followed by Terry et al. (2008), where the audio and visual
observations are first vector quantized, allowing estimation of the conditional
probability of the visual observation centroids given the audio ones. This is
subsequently employed (as a measure of audio visual consistency) together with
audio-only SNR in stream exponent estimation via an introduced sigmoid
function. Finally, Sanchez-Soto et al. (2009) propose an entirely unsupervised
approach, where stream exponents are estimated as functionals of the inter- and
intra-class distances that are computed for each stream observation sequence
over the given test utterance.

9.3.4 Audiovisual speaker adaptation

Speaker adaptation is traditionally used in practical audio-only ASR systems to
improve speaker-independent system performance, when little data from a
speaker of interest is available (Gauvain and Lee 1994; Leggetter and
Woodland 1995; Neumeyer et al. 1995; Anastasakos et al. 1997; Gales 1999;
Goronzy 2002; Young 2008). Adaptation is also of interest across tasks or
environments. In the audiovisual ASR domain, this is of particular importance,
since audiovisual corpora are scarce and their collection expensive; therefore
adaptation across datasets (in addition to speakers) is also of interest. In general,
adaptation can be performed in a supervised or unsupervised fashion, as well as
in a batch or incremental mode, depending on the type and availability of the
adaptation data (Young 2008).
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Given little bimodal adaptation data from a particular speaker, and a baseline
speaker-independent HMM, one may wish to estimate adapted HMM parame-
ters that better model the audiovisual observations of the particular speaker.
Two popular algorithms for speaker adaptation are maximum likelihood linear
regression (MLLR) (Leggetter and Woodland 1995) and maximum a posteriori
(MAP) adaptation (Gauvain and Lee 1994). MLLR obtains a maximum like-
lihood estimate of a linear transformation of the HMM means, while leaving
covariance matrices, mixture weights, and transition probabilities unchanged,
and it provides successful adaptation with a small amount of adaptation data
(rapid adaptation). On the other hand, MAP follows the Bayesian paradigm for
estimating the HMM parameters. MAP estimates of HMM parameters slowly
converge to their EM-obtained estimates as the amount of adaptation data
becomes large; however such a convergence is slow, and therefore, MAP is
not suitable for rapid adaptation. In practice, MAP is often used in conjunction
with MLLR (Neumeyer et al. 1995). Both techniques can be used in the feature
fusion (Potamianos and Neti 2001a) and decision fusion models discussed
above (Potamianos and Potamianos 1999), in a straightforward manner. One
can also consider feature-level (front end) adaptation by adapting, for example,
the audio-only and visual-only LDA and MLLT matrices and, if HiLDA fusion
is used, the joint audiovisual LDA and MLLT matrices (Potamianos and Neti
2001a). Experiments using these techniques are reported in a later section, all
performed in a supervised, batch fashion. Alternative adaptation algorithms also
exist, such as speaker adaptive training (Anastasakos et al. 1997) and front end
MLLR (Gales 1999) that can be used in audiovisual ASR (Vanegas et al. 1998;
Huang et al. 2005; Huang and Visweswariah 2005).

9.3.5 Summary of audiovisual integration

We have presented a summary of the most common fusion techniques for
audiovisual ASR. We first discussed the choice of speech classes and statistical
ASR models that influences the design of some fusion algorithms. Subsequently,
we described a number of feature and decision integration techniques suitable for
bimodal LVCSR, and finally, briefly touched upon the issue of audiovisual
speaker adaptation.

Among the fusion algorithms discussed, decision fusion techniques explic-
itly model the reliability of each source of speech information, by using stream
weights to linearly combine audio- and visual-only classifier log-likelihoods.
When properly estimated, the use of weights results in improved ASR over
feature fusion techniques, as reported in the literature and demonstrated in the
Experiments section. In most systems reported, such weights are set to a
constant value over each modality, possibly dependent on the audio-only
channel quality (SNR). However, robust estimation of the weights at a finer
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level (utterance or frame level), based on both audio and visual channel
characteristics remains a challenge. Furthermore, the issue of whether speech
class dependence of stream weights is desirable has also not been fully inves-
tigated. Although such dependence seems to help in late integration schemes
(Neti et al. 2000), or small-vocabulary tasks (Jourlin 1997; Miyajima et al.
2000), the problem remains unresolved for early integration in LVCSR (Gravier
et al. 2002a).

There are additional open questions relevant to decision fusion. The first
concerns the stage of measurement level information integration, i.e., the degree
of allowed asynchrony between the audio and visual streams. The second has to
do with the functional form of stream log-likelihood combination, as integration
by means of Eq. (9.16) is not necessarily optimal and it fails to yield an emission
probability distribution. Finally, it is worth mentioning a theoretical shortcom-
ing of the log-likelihood linear combination model used in the decision fusion
algorithms considered. In contrast to feature fusion, such combination assumes
class conditional independence of the audio and visual stream observations.
This appears to be a non-realistic assumption (Yehia et al. 1998; Jiang et al.
2002).

A number of models are being investigated to overcome some of the above
issues (Pan et al. 1998; Pavlovic 1998). Most importantly, recent years have
seen increasing interest in the use of dynamic Bayesian networks for audio-
visual fusion, as a generalization to HMMs (Zweig 1998; Murphy 2002; Bilmes
and Bartels 2005). Such examples are the work of Saenko and Livescu (2006),
Livescu et al. (2007), Lv et al. (2007), Terry and Katsaggelos (2008), and
Saenko et al. (2009).

9.4 Audiovisual databases

Amajor contributor to the progress achieved in traditional, audio-only ASR has
been the availability of a wide variety of large, multi-subject databases on a
number of well-defined recognition tasks of different complexities. These
corpora have often been collected using funding from US government agencies
(for example, the Defense Advanced Research Projects Agency and the
National Science Foundation), or through well-organized European activities,
such as the Information Society Technologies program funded by the European
Commission, or the European Language Resources Association. The resulting
databases are made available to interested research groups by the Linguistic
Data Consortium (LDC) and the European Language Resources Distribution
Agency (ELDA), for example. Benchmarking research progress in audio-only
ASR has been possible on such common databases.

In contrast to the abundance of audio-only corpora, there exist only few
databases suitable for audiovisual ASR research. This is not only because the
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field is relatively young, but also due to the fact that audiovisual databases pose
additional challenges concerning collection, storage, and distribution not found
in the audio-only domain. Most early databases being the result of efforts by a
few university groups or individual researchers with limited resources suffer
from one or more of the following shortcomings (Chibelushi et al. 1996;
Hennecke et al. 1996; Chibelushi et al. 2002; Potamianos et al. 2003): They
contain a single or small number of subjects, affecting the generalization of
developed methods to the wider population; they typically have small duration,
often resulting in undertrained statistical models, or non-significant perform-
ance differences between various proposed algorithms; they mostly address
simple recognition tasks, such as small-vocabulary ASR of isolated or con-
nected words; and finally they mostly consider ideal visual environments with
limited variation in head pose (mostly frontal), lighting, and background that do
not reflect realistic human–computer interaction scenarios. These limitations
have caused a gap in the state of the art between audio-only and audiovisual
ASR in terms of recognition task complexity and have hindered practical
system deployment. Nevertheless, the past few years have witnessed an effort
to address some of these shortcomings; for example, IBM Research has col-
lected a large corpus suitable for speaker-independent audiovisual LVCSR,
employed in the experiments during the Johns Hopkins summer 2000 workshop
(Neti et al. 2000) and discussed further in this section, whereas a number of
groups have collected corpora in realistic, visually challenging environments
such as automobiles, or data where the recorded subjects appear at a non-frontal
head-pose. Details are provided in the next subsections.

9.4.1 Early audiovisual corpora

The first database used for automatic recognition of audiovisual speech was
collected by Petajan (1984). Data of a single subject uttering from 2 to 10
repetitions of 100 isolated English words, including letters and digits, were
collected under controlled lighting conditions. Since then, several research sites
have pursued audiovisual data collection. Some of these early resulting corpora
are discussed in this subsection. They cover a number of small-vocabulary
recognition tasks and are mostly recorded under ideal visual environment
conditions.

Some of these early databases are designed to study audiovisual recognition
of consonants (C), vowels (V), or transitions between them. For example,
Adjoudani and Benoît (1996) report a single-speaker corpus of 54 /V1CV2CV1/
nonsense words (3 French vowels and 6 consonants are considered). Su and
Silsbee (1996) recorded a single-speaker corpus of /aCa/ nonsense words for
recognition of 22 English consonants. Robert-Ribes et al. (1998), as well as
Teissier et al. (1999) report recognition of 10 French oral vowels uttered by a
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single subject. Czap (2000) considers a single-subject corpus of /V1CV1/ and
/C1VC1/ nonsense words for recognition of Hungarian vowels and consonants.

The most popular task for audiovisual ASR is isolated or connected digit
recognition. Various corpora allow digit recognition experiments. For example,
the Tulips1 database (Movellan and Chadderdon 1996) contains recordings of
12 subjects uttering digits “one” to “four,” and has been used for isolated
recognition of these four digits in a number of papers (Luettin et al. 1996;
Movellan and Chadderdon 1996; Gray et al. 1997; Vanegas et al. 1998; Scanlon
and Reilly 2001). The M2VTS database, although tailored to speaker verifica-
tion applications, also contains digit (“0” to “9”) recordings of 37 subjects,
mostly in French (Pigeon and Vandendorpe 1997), and it has been used for
isolated digit recognition experiments (Dupont and Luettin 2000; Miyajima
et al. 2000). XM2VTS is an extended version of this database containing 295
subjects in the English language (Messer et al. 1999). Additional single-subject
digit databases include the NATO RSG10 digit-triples set, used by Tomlinson
et al. (1996) for isolated digit recognition, and two connected-digits databases
reported by Potamianos et al. (1998) and Heckmann et al. (2001). Finally, three
recent databases suitable for multi-subject connected digit recognition are
the 36-subject CUAVE dataset, as discussed in Patterson et al. (2002), a 100-
subject set collected at the University of Illinois at Urbana-Champaign with
results reported in Chu and Huang (2000) and Zhang et al. (2000), the
97-subject Japanese dataset Aurora-2J-AV (Fujimura et al. 2005), and an
11-subject Japanese set reported by Tamura et al. (2005). Among these,
CUAVE remains the most popular, having been employed by many researchers
in their experiments.

Isolated or connected letter recognition constitutes another popular audiovi-
sual ASR task. German connected letter recognition of data of up to six subjects
has been reported by Bregler et al. (1993), Bregler and Konig (1994),
Duchnowski et al. (1994), and Meier et al. (1996). Krone et al. (1997) worked
on single-speaker isolated German letter recognition. Single-, or two-subject,
connected French letter recognition is considered in Alissali et al. (1996),
André-Obrecht et al. (1997), Jourlin (1997), Rogozan et al. (1997), and
Rogozan (1999). Finally, for English, a 10-subject isolated letter dataset is
used by Matthews et al. (1996) and Cox et al. (1997), as well as a 49-subject
connected letter database by Potamianos et al. (1998).

In addition to letter or digit recognition, a number of audiovisual databases
have been collected that are suitable for recognition of isolated words. For
example, Silsbee and Bovik (1996) have collected a single-subject, isolated
word corpus with a vocabulary of 500 words. Recognition of single-subject
command words for radio/tape control has been examined by Chiou and
Hwang (1997), as well as by Gurbuz et al. (2001), and Patterson et al.
(2001). A 10-subject isolated word database with a vocabulary size of 78
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words is considered by Chen (2001) and Huang and Chen (2001). This corpus
was collected at Carnegie Mellon University (AMP/CMU database), and has
also been used by Chu and Huang (2002), Nefian et al. (2002), and Zhang
et al. (2002), among others. Single-subject, isolated word recognition
in Japanese is reported in Nakamura et al. (2000) and Nakamura (2001).
A single-subject German command word recognition is considered by
Kober et al. (1997).

Further, a few audiovisual databases are suitable for continuous speech
recognition in limited, small-vocabulary domains. Bernstein and Eberhardt
(1986a) and Goldschen et al. (1996) report small corpora containing TIMIT
sentences uttered by up to two subjects. Chan et al. (1998) present a dataset of
400 single-subject military command and control utterances. An extended
multi-subject version of this database (still with a limited vocabulary of 101
words) is reported in Chu and Huang (2000).

Finally, a number of databases offer a combination of some or all of the above
tasks. One example is the AVOZES corpus (Goecke and Millar 2004) that
contains 20 subjects uttering connected digits, /VCV/ and /CVC/ words, as
well as a small number of sentences, all in Australian English. Another is
reported in Wodjel et al. (2002) and contains data in Dutch.

9.4.2 Large-vocabulary databases and the IBM ViaVoiceTM corpus

Following both technology progress that simplified recording and storage of
larger audiovisual sets and research progress in the development of audiovisual
speech recognition algorithms, the community started becoming interested in
more challenging recognition tasks. In support of such quest, some sites have
proceeded with the collection of larger corpora to allow the development of
speaker-independent audiovisual LVCSR systems. Two such datasets are the
AVTIMIT corpus that contains 4 hrs of phonetically balanced continuous
speech utterances by 223 subjects in English (Hazen et al. 2004) and the
UWB-04-HSCAVC set that contains 40 hrs of data from 100 subjects in
Czech (Cisař et al. 2005).

A third database suitable for speaker-independent LVCSR is the IBM
ViaVoiceTM audiovisual database, which remains the largest such corpus to
date. It consists of full face frontal video and audio of 290 subjects (see also
Figure 9.10), uttering ViaVoiceTM training scripts in dictation style, i.e., contin-
uous read speech with mostly verbalized punctuation. The database video is 704
× 480 pixels, interlaced, and captured in color at a rate of 30 Hz (i.e., 60 fields per
second are available at a resolution of 240 lines). It is MPEG2 encoded at the
relatively high compression ratio of about 50:1. High quality wideband audio is
collected synchronously with the video at a rate of 16 kHz and in a relatively clean
audio environment (quiet office, with some background computer noise),
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resulting in a 19.5 dB SNR. The duration of the entire database is approximately
50 hours, and it contains 24 325 transcribed utterances with a 10 403-word
vocabulary, from which 21 281 utterances are used in the experiments reported
in the next section. In addition to LVCSR, a 50-subject connected digit database
has been collected at IBM Research, in order to study the benefit of the visual
modality on a popular small-vocabulary ASR task. This DIGITS corpus contains
6689 utterances of 7- and 10-digit strings (both “zero” and “oh” are used) with a
total duration of approximately 10 hrs. Furthermore, to allow investigation of
automatic speechreading performance for impaired speech (Potamianos and Neti
2001a), both LVCSR and DIGITS audiovisual speech data of a single speech-
impaired male subject with profound hearing loss have been collected. In
Table 9.3, a summary of the above corpora is given, together with their partition-
ing as used in the experiments reported in the following section.

9.4.3 Other recent audiovisual databases

Another recent direction that has attracted the interest of the research commun-
ity has been the application of audiovisual ASR in realistic human–computer
interaction environments. One such environment is the automobile cabin, where
the driver needs to interact with the vehicle voice interface, for example for
navigation or other command and control tasks. Not surprisingly, a number of
research sites have collected in-vehicle audiovisual databases in support of this
scenario. Resulting corpora of such efforts in English are the AVICAR dataset
that contains 100 subjects uttering digit strings and TIMIT sentences, recorded
using 4 cameras and a microphone array (Lee et al. 2004), and a corpus
collected by IBM Research containing 87 subjects uttering digit strings, word
spellings, and continuous speech geared towards various navigation and other
in-vehicle command and control tasks (Potamianos and Neti 2003). Similar, but
smaller corpora have also been collected in other languages, for example the

Figure 9.10 Example video frames of 10 subjects from the IBM ViaVoiceTM

audiovisual database. The database contains approximately 50 hrs of
continuous, dictation-style audiovisual speech by 290 subjects, collected
with minor variations in face pose, lighting, and background (Neti et al. 2000).
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Japanese Aurora 3J-AV dataset containing 58 subjects recorded with 2 cameras
and multiple microphones (Fujimura et al. 2005), the Czech UWB-03-CIVAVC
corpus containing 12 subjects (Železný and Cisař 2003), and the Spanish
AV@CAR set of 20 subjects (Ortega et al. 2004). Finally, a larger and more
recent effort is that of the UTDrive project (Angkititrakul et al. 2009).

Yet another interesting aspect of visual and audiovisual speech recognition
concerns the head pose of the recorded subject with respect to the camera. In the
vast majority of the above mentioned datasets, this is assumed to be mostly
frontal. A few researchers though have ventured to investigate how head pose
affects speechreading performance. For this purpose, they have collected datasets
of mostly small-vocabulary tasks and few subjects, as for example in Iwano et al.
(2007), Kumar et al. (2007), Kumatani and Stiefelhagen (2007), and Lucey et al.
(2009). Most of these are multi-view databases, i.e. more than one camera
(typically, two or three) captures the speaker’s face at relatively fixed head-pose
view angles.

Finally, a few additional databases exist that can be used for audiovisual
ASR, but are most appropriate for other audiovisual speech processing tasks,
closely related to ASR. Two such are for example the XM2VTS corpus, already
mentioned above (Messer et al. 1999), and the VidTIMIT database (Sanderson
2003) that contains data from 43 subjects uttering short sentences. Both are
most suitable for speaker recognition experiments. Other interesting datasets are
the AVGrid corpus (Cooke et al. 2006) that is best suited for audiovisual speaker
separation and the MOCHA (Wrench and Hardcastle 2000) and QSMT
(Engwall and Beskow 2003) databases that have been used for speech inversion.

9.5 Audiovisual ASR experiments

In this section, we present experimental results on visual-only and audiovisual
ASR using mainly the IBM ViaVoiceTM database discussed above. Some of
these results were obtained during the Johns Hopkins summer 2000 workshop
(Neti et al. 2000). Experiments conducted later on both these data and the IBM
connected digits task (DIGITS) are also reported (Potamianos et al. 2001c;
Goecke et al. 2002; Gravier et al. 2002a). In addition, the application of
audiovisual speaker adaptation methods to the hearing impaired dataset is also
discussed (Potamianos and Neti 2001a). First, however, we briefly describe the
basic audiovisual ASR system, as well as the experimental framework used.

9.5.1 The audiovisual ASR system

Our basic audiovisual ASR system utilizes appearance-based visual features
that use a discrete cosine transform (DCT) of the mouth region-of-interest
(ROI), as described in Potamianos et al. (2001b). Given the video of the
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speaker’s face, available at 60 Hz, it first performs face detection and mouth
center and size estimation employing the algorithm of Senior (1999). On the
basis of these, it extracts a size-normalized, 64 × 64 greyscale pixel mouth ROI,
as discussed in Section 9.2.1 (see also Figure 9.2). Subsequently, a two-
dimensional, separable, fast DCT is applied on the ROI, and its 24 highest
energy coefficients (over the training data) are retained. A number of post-
processing steps are applied on the resulting “static” feature vector, namely:
linear interpolation on the audio feature rate (from 60 to 100 Hz); feature mean
normalization (FMN) for improved robustness to lighting and other variations;
concatenation of 15 adjacent features to capture dynamic speech information
(see also Eq. (9.7)); and linear discriminant analysis (LDA) for optimal dimen-
sionality reduction, followed by a maximum likelihood data rotation (MLLT)
for improved statistical data modeling. The resulting feature vector oðVÞt has
dimension 41. These steps are described in more detail in the visual front end
section of this chapter (see also Figure 9.7). Improvements to this DCT-based
visual front end have been proposed in Potamianos and Neti (2001b), including
the use of a larger ROI, a within-frame discriminant DCT feature selection, and
a longer temporal window (see Figure 9.11). During the Johns Hopkins summer
workshop, and in addition to the DCT-based features, joint appearance and
shape features from active appearance models (AAMs) have also been
employed. In particular, 6000-dimensional appearance vectors containing the
normalized face color pixel values and 134-dimensional shape vectors of the
face shape coordinates are extracted at 30 Hz and are passed through two stages
of principal components analysis (PCA). The resulting “static” AAM feature
vector is 86-dimensional, and it is post-processed similarly to the DCT feature
vector (see Figure 9.7) resulting in 41-dimensional “dynamic” features.

In parallel to the visual front end, traditional audio features that consist of mel
frequency cepstral coefficients (MFCCs) are extracted at a 100 Hz rate. The
resulting “static” feature vector is 24-dimensional, and following FMN, LDA
on 9 adjacent frames and MLLT, it gives rise to a 60-dimensional dynamic
speech vector, oðAÞt , as depicted in Figure 9.11. The audio and visual front ends
provide time-synchronous audio and visual feature vectors that can be used in a
number of fusion techniques discussed previously in Section 9.3. The derived
concatenated audiovisual vector o

ðAVÞ
t has dimension 101, whereas in the

HiLDA feature fusion implementation, the bimodal LDA generates features
o
ðHiLDAÞ
t with reduced dimensionality 60 (see also Figure 9.11).
In all cases where LDA and MLLT matrices are employed (audio-only, visual-

only, and audiovisual feature extraction bymeans of HiLDA fusion), we consider
|C|= 3367 context-dependent sub-phonetic classes that coincidewith the context-
dependent states of an existing audio-only HMM that was previously developed
at IBM for LVCSR and trained on a number of audio corpora (Polymenakos et al.
1998). The forced alignment (Rabiner and Juang 1993) of the training set audio,
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based on this HMM and the data transcriptions, produces labels c(l) ∈C for the
training set audio-only, visual-only, and audiovisual data vectors xl, l = 1, . . .,L.
Such labeled vectors can then be used to estimate the required matrices PLDA,
PMLLT, as described in the visual front end section of this chapter.
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Figure 9.11 The audiovisual ASR system employed in some of the
experiments reported in this chapter. In addition to the baseline system used
during the Johns Hopkins summer 2000 workshop, a larger mouth ROI is
extracted, within-frame discriminant features are used, and a longer temporal
window is considered in the visual front end (compare to Figure 9.7). HiLDA
feature fusion is employed.
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9.5.2 The experimental framework

The audiovisual databases discussed above were partitioned into a number of
sets in order to train and evaluate models for audiovisual ASR, as detailed in
Table 9.3. For both LVCSR and DIGITS speech tasks in the normal speech
condition, the corresponding training sets are used to obtain all LDA andMLLT
matrices required and the phonetic decision trees that cluster HMM states on the
basis of phonetic context, as well as to train all the HMMs reported. The held-
out sets are used to tune parameters relevant to audiovisual decision fusion and
decoding (such as the multi-stream HMM and language model weights, for
example), whereas the test sets are used for evaluating the performance of the
trained HMMs. Optionally, the adaptation sets can be employed for tuning
the front ends and/or HMMs to the characteristics of the test set subjects. In
the LVCSR case, the subject populations of the training, held-out, and test sets
are disjoint, thus allowing for speaker-independent recognition, whereas in the
DIGITS data partitioning, all sets have data from the same 50 subjects, thus
allowing multi-speaker experiments. Consequently, the adaptation and held-out
sets for DIGITS are identical. For the impaired speech data, the duration of the
collected data is too short to allow HMM training. Therefore, LVCSR HMMs
trained on the IBMViaVoiceTM dataset are adapted on the impaired LVCSR and
DIGITS adaptation sets (see Table 9.3).

To assess the benefit of the visual modality to ASR in noisy conditions (as well
as to the relatively clean audio condition of the database recordings), we artificially

Table 9.3 The IBM audiovisual databases discussed and used in the
experiments reported in this chapter. Their partitioning into training, held-out,
adaptation, and test sets is depicted (duration in hours and number of subjects
are shown for each set). Both large-vocabulary continuous speech (LVCSR)
and connected digit (DIGITS) recognition are considered for normal, as well as
impaired speech. The IBM ViaVoiceTM database corresponds to the LVCSR task
in the normal speech condition. For the normal speech DIGITS task, the held-
out and adaptation sets are identical. For impaired speech, due to the lack of
sufficient training data, adaptation of HMMs trained in the normal speech
condition is considered.

Speech condition Recognition task Training Held-out Adaptation Test

Dur. Sub. Dur. Sub. Dur Sub. Dur. Sub.

Normal LVCSR 34:55 239 4:47 25 2:03 26 2:29 26
DIGITS 8:01 50 0:58 50 0:58 50 0:46 50

Impaired LVCSR N/A N/A 0:11 1 0:11 1
DIGITS N/A N/A 0:08 1 0:06 1
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corrupt the audio data with additive, non-stationary, speech babble noise at various
SNRs. ASR results are then reported at a number of SNRs, within [−1.5,19.5] dB
for LVCSR and [−3.5,19.5] dB for DIGITS, with all corresponding front end
matrices and HMMs trained in the matched condition. In particular, during the
Johns Hopkins summer 2000 workshop, only two audio conditions were consid-
ered for LVCSR: the original 19.5 dB SNR audio and a degraded one at 8.5 dB
SNR.Notice that, in contrast to the audio, no noise is added to the video channel or
features. Many cases of “visual noise” could have been considered, such as
additive noise on video frames, blurring, frame rate decimation, and extremely
high compression factors, among others. Some studies on the effects of video
degradations to visual recognition can be found in the literature (Davoine et al.
1997; Williams et al. 1997; Potamianos et al. 1998; Seymour et al. 2008). These
studies find automatic speechreading performance to be rather robust to video
compression for example, but to degrade rapidly for frame rates below 15 Hz.

The ASR experiments reported next follow two distinct paradigms. The
results on the IBMViaVoiceTM data obtained during the Johns Hopkins summer
2000 workshop employ a lattice rescoring paradigm, due to the limitations in
large-vocabulary decoding of the early HTK software used there (Young et al.
1999). Lattices were first generated prior to the workshop using the IBM
Research stack decoder (Hark) with HMMs trained at IBM Research, and
subsequently rescored during the workshop, by trained triphone context-
dependent HMMs on various feature sets or fusion techniques using HTK.
Three sets of lattices were generated for these experiments and were based on
clean audio-only (19.5 dB), noisy audio-only, and noisy audiovisual (at the 8.5
dB SNR condition) HiLDA features. In the second experimental paradigm, full
decoding results obtained by directly using the IBM Research recognizer are
reported. For the LVCSR experiments, 11-phone context-dependent HMMs
with 2808 context-dependent states and 47 k Gaussian mixtures are used,
whereas for DIGITS recognition in normal speech the corresponding numbers
are 159 and 3.2 k (for single-stream models). Decoding using the closed set
vocabulary (10 403 words) and a trigram language model is employed for
LVCSR (this is the case also for the workshop results), whereas the 11-digit
(“zero” to “nine,” including “oh”) word vocabulary is used for DIGITS (with
unknown digit string length).

9.5.3 Visual-only recognition

The suitability for LVCSR of a number of appearance-based visual features and
AAMs was studied during and after the Johns Hopkins summer workshop (Neti
et al. 2000; Matthews et al. 2001). For this purpose, noisy audio-only lattices
were rescored by HMMs trained on the various visual features considered,
namely 86-dimensional AAM features, as well as 24-dimensional DCT, PCA

238 G. Potamianos, C. Neti, J. Luettin, and I. Matthews



(on 32 × 32 pixel mouth ROIs), and DWT-based features. All features were
post-processed as previously discussed to yield 41-dimensional feature vectors
(see Figure 9.7). For the DWT features, the Daubechies class wavelet filter of
approximating order 3 is used (Daubechies 1992; Press et al. 1995). LVCSR
recognition results are reported in Table 9.4, depicted in word error rate (WER),
%. The DCT outperformed all other features considered. Notice however that
these results cannot be interpreted as visual-only recognition, since they corre-
spond to cascade audiovisual fusion of audio-only ASR, followed by visual-
only rescoring of a network of recognized hypotheses. For reference, a number
of characteristic lattice WERs are also depicted in Table 9.4, including the
audio-only result (at 8.5 dB). All feature performances are bounded by the
lattice oracle and anti-oracle WERs. It is interesting to note that all appearance-
based features considered attain lower WERs (e.g., 58.1% for DCT features)
than the WER of the best path through the lattice based on the language model
alone (62.0%). Therefore, such visual features do convey significant speech
information. AAMs on the other hand did not perform well, possibly due to
severe undertraining of the models, resulting in poor fitting to unseen facial
data.

As expected, visual-only recognition based on full decoding (instead of
lattice rescoring) is rather poor. The LVCSRWER on the speaker-independent
test set of Table 9.3, based on per-speaker MLLR adaptation, is reported at
89.2% in Potamianos and Neti (2001b), using the DCT features of the

Table 9.4 Comparisons of recognition performance based on various visual
features (three appearance-based features, and one joint shape and appearance
feature representation) for speaker-independent LVCSR (Neti et al. 2000;
Matthews et al. 2001). Word error rate (WER), %, is depicted on a subset of the
IBM ViaVoiceTM database test set of Table 9.3. Visual performance is obtained
after the rescoring of lattices that had been previously generated based on noisy
(8.5 dB SNR) audio-only MFCC features. For comparison, characteristic
lattice WERs are also depicted (oracle, anti-oracle, and best path based on
language model scores alone). Among the visual speech representations
considered, the DCT-based features are superior and contain significant speech
information.

Modality Remarks WER Modality Remarks WER

Visual DCT 58.1 Acoustic MFCC (noisy) 55.0
DWT 58.8 None Oracle 31.2
PCA 59.4 Anti-oracle 102.6
AAM 64.0 LM best path 62.0
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workshop. Extraction of larger ROIs and the use of within-frame DCT discrim-
inant features and longer temporal windows (as depicted in Figure 9.11) result
in the improved WER of 82.3%. In contrast to LVCSR, DIGITS visual-only
recognition constitutes a much easier task. Indeed, on the multi-speaker test set
of Table 9.3, a 16.8% WER is achieved after per-speaker MLLR adaptation.

9.5.4 Audiovisual ASR

A number of audiovisual integration algorithms presented in the fusion section
of this chapter were compared during the Johns Hopkins summer 2000 work-
shop. As already mentioned, two audio conditions were considered: the original
clean database audio (19.5 dB SNR) and a noisy one at 8.5 dB SNR. In the first
case, fusion algorithm results were obtained by rescoring pre-generated clean
audio-only lattices; in the second condition, HiLDA noisy audiovisual lattices
were rescored. The results of these experiments are summarized in Table 9.5.
Notice that every fusion method considered outperformed audio-only ASR in
the noisy case, reaching up to a 27% relative reduction in WER (from 48.10%
noisy audio-only to 35.21% audiovisual). In the clean audio condition, among
the two feature fusion techniques considered, HiLDA fusion (Potamianos et al.
2001c) improved ASR from a 14.44% audio-only to a 13.84% audiovisual
WER. However, concatenative fusion degraded performance to 16.0%. Among
the decision fusion algorithms used, the product HMM (AV-MS-PROD) with
jointly trained audiovisual components (Luettin et al. 2001) improved perform-
ance to a 14.19% WER. In addition, utterance-based stream exponents for a
jointly trained multi-stream HMM (AV-MS-UTTER), estimated using an aver-
age of the voicing present at each utterance, further reduced WER to 13.47%

Table 9.5 Test set speaker-independent LVCSR audio-only and audiovisual
WER (%), for the clean (19.5 dB SNR) and a noisy audio (8.5 dB) condition.
Two feature fusion- and five decision fusion-based audiovisual systems are
evaluated using the lattice rescoring paradigm (Neti et al. 2000; Glotin et al.
2001; Luettin et al. 2001).

Audio condition Clean Noisy

Audio-only 14.44 48.10
AV-Concat (FF) 16.00 40.00
AV-HiLDA (FF) 13.84 36.99
AV-DMC (DF) 13.65 →12.95 -
AV-MS-Joint (DF) 14.62 36.61
AV-MS-Sep (DF) 14.92 38.38
AV-MS-PROD (DF) 14.19 35.21
AV-MS-UTTER (DF) 13.47 35.27
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(Glotin et al. 2001), achieving a 7% relative WER reduction over audio-only
performance. Finally, a late integration technique based on discriminative
model combination (AV-DMC) of audio and visual HMMs (Beyerlein 1998;
Vergyri 2000; Glotin et al. 2001) produced a WER of 12.95%, amounting to a
5% reduction from the clean audio-only baseline of 13.65% (this differs from
the 14.44% audio-only result due to the rescoring of n-best lists instead of
lattices). For both clean and noisy audio conditions, the best decision fusion
method outperformed the best feature fusion technique considered. In addition,
for both conditions, joint multi-stream HMM training outperformed separate
training of the HMM stream components, something not surprising, since joint
training forces state synchrony between the audio and visual streams.

To further demonstrate the differences between the various fusion algorithms
and to quantify the visual modality benefit to ASR, we review a number of full
decoding experiments recently conducted for both the LVCSR and DIGITS
tasks, at a large number of SNR conditions (Potamianos et al. 2001c; Goecke
et al. 2002; Gravier et al. 2002a). All three feature fusion techniques discussed
in Section 9.3 are compared to decision fusion by means of a jointly trained
multi-stream HMM. The results are depicted in Figure 9.12. Among the feature
fusion methods considered, HiLDA feature fusion is superior to both concate-
native fusion and the enhancement approach. In the clean audio case for
example, HiLDA fusion reduces the audio-only LVCSR WER of 12.37% to
11.56% audiovisual, whereas feature concatenation degrades performance to
12.72% (the enhancement method obviously provides the original audio-only
performance in this case). Notice that these results are somewhat different from
the ones reported in Table 9.5, due to the different experimental paradigm
considered. In the most extreme noisy case considered for LVCSR (−1.5 dB
SNR), the audio-only WER of 92.16% is reduced to 48.63% using HiLDA,
compared to 50.76% when feature concatenation is employed, and to 63.45%
when audio feature enhancement is used. Similar results hold for DIGITS
recognition, although the difference between HiLDA and concatenative feature
fusion ASR is small, possibly due to the fact that HMMs with significantly
fewer Gaussian mixtures are used, and to the availability of sufficient data to
train on high-dimensional concatenated audiovisual vectors. The comparison
between multi-stream decision fusion and HiLDA fusion reveals that the jointly
trained multi-stream HMM performs significantly better. For example, at −1.5
dB SNR, LVCSR WER is reduced to 46.28% (compared to 48.63% for
HiLDA). Similarly, for DIGITS recognition at −3.5 dB, the HiLDA WER is
7.51%, whereas the multi-stream HMM WER is significantly lower, namely
6.64%. This is less than one third of the audio-only WER of 23.97%.

A useful indicator when comparing fusion techniques and establishing the
visual modality benefit to ASR is the effective SNR gain, measured here with
reference to the audio-only WER at 10 dB. To compute this gain, we need to
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Figure 9.12 Comparison of audio-only and audiovisual ASR by means of three
feature fusion (AV-Concat, AV-HiLDA, and AV-Enhanced) algorithms and one
decision fusion (AV-MS-Joint) technique, using the full decoding experimental
paradigm. WERs vs. audio channel SNR are reported on both the IBM
ViaVoiceTM test set (speaker-independent LVCSR – top), and on the multi-
speaker DIGITS test set (bottom) of Table 9.3. HiLDA feature fusion
outperforms alternative feature fusion methods, whereas decision fusion
outperforms all three feature fusion approaches, resulting in an effective SNR
gain of 7 dB for LVCSR and 7.5 dB for DIGITS, at 10 dB SNR (Potamianos
et al. 2001c; Goecke et al. 2002; Gravier et al. 2002a). Notice that the WER
ranges in the two graphs differ.



consider the SNR value where the audiovisual WER equals the reference audio-
onlyWER (see Figure 9.12). For HiLDA fusion, this gain equals approximately
6 dB for both LVCSR and DIGITS tasks. Jointly trained multi-stream HMMs
improve these gains to 7 dB for LVCSR and 7.5 dB for DIGITS, at 10 dB SNR.
Full decoding experiments employing additional decision fusion techniques are
currently in progress. In particular, intermediate fusion results by means of the
product HMM are reported in Gravier et al. (2002a).

9.5.5 Audiovisual adaptation

We now describe recent experiments on audiovisual adaptation in a case study
of single-subject audiovisual ASR of impaired speech (Potamianos and Neti
2001a). As already indicated, the small amount of speech-impaired data col-
lected (see Table 9.3) is not sufficient for HMM training, and call for speaker
adaptation techniques instead. A number of such methods, described in a
previous section, are used for adapting audio-only, visual-only, and audiovisual
HMMs to LVCSR. The results on both speech-impaired LVCSR and DIGITS
tasks are depicted in Table 9.6. Due to poor accuracy on impaired speech,
decoding on the LVCSR task is performed using the 537-word test set
vocabulary of the dataset. Clearly, the mismatch between the normal and

Table 9.6 Adaptation results on the speech impaired data. WER, %, of the
audio-only (AU), visual-only (VI), and audiovisual (AV) modalities, using
HiLDA feature fusion, are reported on both the LVCSR (left table part) and
DIGITS test sets (right table) of the speech-impaired data using unadapted
HMMs (trained in normal speech) as well as a number of HMM adaptation
methods. All HMMs are adapted on the joint speech-impaired LVCSR and
DIGITS adaptation sets of Table 9.3. For the continuous speech results,
decoding using the test set vocabulary of 537 words is reported. MAP followed
by MLLR adaptation, and possibly preceded by front end matrix adaptation
(Mat), achieves the best results for all modalities and for both tasks considered
(Potamianos and Neti 2001a).

Task LV C S R D I G I T S

Method/Modality AU VI AV AU VI AV

Unadapted 116.022 136.359 106.014 52.381 48.016 24.801
MLLR 52.044 110.166 42.873 3.770 16.667 0.992
MAP 52.376 101.215 44.199 3.373 12.103 1.190
MAP+MLLR 47.624 95.027 41.216 2.381 10.516 0.992
Mat+MAP 52.928 98.674 46.519 3.968 8.730 1.190
Mat+MAP+MLLR 50.055 93.812 41.657 2.381 8.531 0.992
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impaired-speech data is dramatic, as the “Unadapted” table entries demonstrate.
Indeed, the audiovisual WER in the LVCSR task reaches 106.0% (such large
numbers occur due to word insertions), whereas the audiovisual WER in the
DIGITS task is 24.8% (in comparison, the normal speech, per subject, adapted
audiovisual LVCSRWER is 10.2%, and the audiovisual DIGITS WER is only
0.55%, computed on the test sets of Table 9.3).

We first consider MLLR and MAP HMM adaptation using the joint speech-
impaired LVCSR and DIGITS adaptation tests. Audio-only, visual-only, and
audiovisual performances improve dramatically, as demonstrated in Table 9.6.
Due to the rather large adaptation set, MAP performs similarly well to MLLR.
Applying MLLR after MAP improves results, and it reduces the audiovisual
WER to 41.2% and 0.99% for the LVCSR and DIGITS tasks, respectively,
amounting to a 61% and 96% relative WER reduction over the audiovisual
unadapted results, and to a 13% and 58% relative WER reduction over the
audio-only MAP+MLLR adapted results. Clearly, therefore, the use of the
visual modality confers dramatic benefits on the automatic recognition of
impaired speech. We also apply front end adaptation, possibly followed by
MLLR adaptation, with the results depicted in the Mat+MAP(+MLLR) entries
of Table 9.6. Although visual-only recognition improves, the audio-only rec-
ognition results fail to do so. As a consequence, audiovisual ASR degrades,
possibly due to the fact that, in this experiment, audiovisual matrix adaptation is
only applied to the second stage of LDA/MLLT.

9.6 Summary and discussion

In this chapter we provided an overview of the basic techniques for automatic
recognition of audiovisual speech proposed in the literature over the past twenty
years. The two main issues relevant to the design of audiovisual ASR systems
are, first, the visual front end that captures visual speech information, and
second, the integration (fusion) of audio and visual features into the automatic
speech recognizer used. Both are challenging problems, and significant research
effort has been directed towards finding appropriate solutions.

We first discussed extracting visual features from the video of the speaker’s
face. This process requires first the detection and then tracking of the face,
mouth region, and possibly the speaker’s lip contours. A number of mostly
statistical techniques suitable for the task were reviewed. Various visual features
proposed in the literature were then presented. Some are based on the mouth
region appearance and employ image transforms or other dimensionality-
reduction techniques borrowed from the pattern-recognition literature, in
order to extract relevant speech information. Others capture the lip contour
and possibly face shape characteristics by means of statistical or geometric
models. Combinations of features from these two categories are also possible.

244 G. Potamianos, C. Neti, J. Luettin, and I. Matthews



Subsequently, we concentrated on the problem of audiovisual integration.
Possible solutions to this problem differ in various aspects, including the
classifier and classes used for automatic speech recognition, the combination
of single-modality features versus single-modality classification decisions, and
in the latter case, the information level provided by each classifier, the temporal
level of the integration, and the sequence of the decision combination. We
concentrated on HMM-based recognition, based on sub-phonetic classes and
assuming time-synchronous audio and visual feature generation. We reviewed a
number of feature and decision fusion techniques. Within the first category, we
discussed simple feature concatenation, discriminant feature fusion, and a linear
audio feature enhancement approach. For decision-based integration, we con-
centrated on linear log-likelihood combination of parallel, single-modality
classifiers at various levels of integration, considering the state-synchronous
multi-stream HMM for “early” fusion, the product HMM for “intermediate”
fusion, and discriminative model combination for “late” integration. We dis-
cussed the training of the resulting models.

Developing and benchmarking feature extraction and fusion algorithms
requires available audiovisual data. A limited number of corpora suitable for
research in audiovisual ASR have been collected and used in the literature. A
brief overview of them was also provided, including a description of the IBM
ViaVoiceTM database, suitable for speaker-independent audiovisual ASR in the
large-vocabulary, continuous speech domain. Subsequently, experimental
results were reported using this database, as well as research on additional
corpora collected at IBM Research. Some of these experiments were conducted
during the summer 2000 workshop at the Johns Hopkins University and
compared both visual feature extraction and audiovisual fusion methods for
LVCSR. More recent experiments, as well as a case study of speaker adaptation
techniques for audiovisual recognition of impaired speech were also presented.
These experiments showed that a visual front end can be designed that success-
fully captures speaker-independent, large-vocabulary continuous speech infor-
mation. Such a visual front end uses discrete cosine transform coefficients of the
detected mouth region of interest, suitably post-processed. Combining the
resulting visual features with traditional acoustic ones results in significant
improvements over audio-only recognition in both clean and of course
degraded acoustic conditions, across small and large vocabulary tasks, as well
as for both normal and impaired speech. A successful combination technique is
the multi-stream HMM-based decision fusion approach, or the simpler, but
inferior, discriminant feature fusion (HiLDA) method.

This chapter clearly demonstrates that, over the past twenty-five years, much
progress has been made in capturing and integrating visual speech information
into automatic speech recognition. However, the visual modality has yet to
become utilized in mainstream ASR systems. This is due to the fact that both
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practical and research issues remain challenging. On the practical side, the need
for high-quality captured visual data, necessary for extracting visual speech
information capable of enhancing ASR performance, introduces increased cost,
storage, and computer processing requirements. In addition, the lack of com-
mon, large audiovisual corpora that address a wide variety of ASR tasks,
conditions, and environments, hinders development of audiovisual systems
suitable for use in particular applications.

On the research side, the key issues in the design of audiovisual ASR systems
remain open and subject to more investigation. In the visual front end design,
for example, face detection, facial feature localization, and face shape tracking,
robust to speaker, pose, lighting, and environment variation constitute challeng-
ing problems. A comprehensive comparison between face appearance- and
shape-based features for speaker-dependent versus speaker-independent auto-
matic speechreading is also unavailable. Joint shape and appearance three-
dimensional face modeling, used for both tracking and visual feature extraction,
has not been considered in the literature, although such an approach could
possibly lead to the desired robustness and generality of the visual front end,
successfully addressing challenging visual conditions in realistic environments,
such as the automobile cabin. In addition, when combining audio and visual
information, a number of issues relevant to decision fusion require further study.
These include the optimal level of integrating the audio and visual log-
likelihoods, the optimal function for this integration, and the inclusion of
suitable, local estimates of the reliability of each modality into this function.

Further investigation of these issues is clearly warranted, and it is expected to
lead to improved robustness and performance of audiovisual ASR. Progress in
addressing some or all of these questions can also benefit other areas where joint
audio and visual speech processing is suitable (Chen and Rao 1998; Aleksic
et al. 2005). Such are for example: speaker identification and verification
(Jourlin et al. 1997; Wark and Sridharan 1998; Fröba et al. 1999; Jain et al.
1999; Maison et al. 1999; Chibelushi et al. 2002; Zhang et al. 2002; Aleksic and
Katsaggelos 2003; Chaudhari et al. 2003; Sanderson and Paliwal 2004; Aleksic
and Katsaggelos 2006); visual speech synthesis (Cohen and Massaro 1994b;
Chen et al. 1995; Yamamoto et al. 1998; Cosatto et al. 2000; Choi et al. 2001;
Bailly et al. 2003; Aleksic and Katsaggelos 2004b; Fu et al. 2005; Melenchón
et al. 2009; Tao et al. 2009); speech intent detection (De Cuetos et al. 2000);
speech activity detection (Libal et al. 2007; Rivet et al. 2007); speech syn-
chrony detection (Iyengar et al. 2003; Bredin and Chollet 2007; Sargin et al.
2007; Kumar et al. 2010); speech enhancement (Girin et al. 2001b; Deligne
et al. 2002; Goecke et al. 2002); speech coding (Foucher et al. 1998; Girin
2004); speech inversion (Yehia et al. 1998; Jiang et al. 2002; Kjellström et al.
2006; Katsamanis et al. 2009); speech separation (Girin et al. 2001a; Sodoyer
et al. 2004); speaker localization (Bub et al. 1995; Wang and Brandstein 1999;
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Zotkin et al. 2002); emotion recognition (Cohen et al. 2003); and video index-
ing and retrieval (Huang et al. 1999). Improvements in these technologies are
expected to result in more robust and natural human–computer interaction.
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10 Image-based facial synthesis

M. Slaney and C. Bregler

10.1 Facial synthesis approaches

There are many ways to organize a discussion of facial synthesis. Some people
highlight quality, or computational efficiency, or particular geometrical repre-
sentations. In this work we describe a trade-off between smart algorithms and
lots of data.

A conventional approach to synthesizing a face is to model it as a three-
dimensional computer graphics object. This approach has been used for nearly
thirty years and researchers now understand many aspects of the human face.
Given an audio signal we know the desired shape of the mouth, how muscles
move, how skin stretches, and how light reflects off the skin (Terzopoulos and
Waters 1993). Yet with all this knowledge the results using computer graphics
approaches are not 100 percent realistic. This observation is not meant as a
criticism of previous work, but instead should be considered an indication of the
full richness and subtlety of human behavior and perception.

Recently many researchers have advocated an approach based on simple
algorithms, but lots of data. This new approach gets its realism from a large
collection of image data, reorganizing the images to synthesize new audiovisual
utterances. Oversimplifying, an image-based approach knows nothing about
how muscles move, or any other properties of a face. Instead the system learns
that when the natural face says “pa,” the video pixel one inch below the nose
changes from pink (lip-colored) to white (teeth). In a sense, we reduce the face
synthesis problem to a simple database problem.

In practice, image-based work is not so extreme. A little bit of knowledge
about faces goes a long way.We can use this knowledge to reduce the size of the
dataset we need to collect and, more importantly, to help synthesize utterances
or head poses we have not seen before.

The continuum between knowledge-based and image-based synthesis is
shown in Figure 10.1. On the left, the smart algorithms encode knowledge
about how faces move and reflect light in computer algorithms. Their advantage
is that they can easily generate images of new people, new lighting conditions,
or even different animals. On the right, the image-based approaches have the
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potential to create super-realistic images. There are uses for both extremes, but
practical systems will probably fall somewhere in the middle (Cohen and
Massaro 1990).

It is important to note that this dichotomy between knowledge- and data-
based algorithms is common in Computer Science. People doing speech
recognition used to build a hierarchy of specialized recognizers (Cole et al.
1983) but this approach was quickly surpassed by hidden Markov models
(HMMs) that learn the probabilities of speech from large collections of speech
data (Jelinek 1998). Music synthesis in the 1970s was done using frequency
modulation (FM) techniques that synthesize many interesting sounds when
given the right parameters. Now musicians use wave tables to synthesize
musical sounds – if you want a piano note then record it once and play it
back every time you need that note. The polygons of the computer graphics
world are often replaced by image-based rendering techniques such as light-
fields (Levoy and Hanrahan 1996). Finally the original work on text-to-speech
(TTS) calculated the formant frequencies for each phone and synthesized
speech by rule (Carlson and Granström 1976; Klatt 1979). The very highest
quality results are now generated by collecting hours of speech data, chopping
the waveform into collections of phonemes, and rearranging and concatenat-
ing them to produce the final results. This approach, known as concatenative
synthesis (Hunt and Black 1996), is closest in spirit to our image-based
techniques.

While concatenative synthesis systems for speech and music domains were
pioneered in the early 1990s (Moulines et al. 1990), such example-based
techniques were first introduced to animation and video synthesis in 1997
(Bregler et al. 1997b) and later refined by Ezzat et al. (2002b), and extended
to motion capture animation (Arikan and Forsyth 2002; Kovar et al. 2002;
Pullen and Bregler 2002; Reitsma and Pollard 2007). Another line of research
close in spirit to this philosophy has been introduced by Efros and Leung (1999)
to image texture synthesis, and by Schoedl et al. (2000) to video texture

Knowledge-based
methods

Data-based
methods

Video Rewrite,
MikeTalk and 
Voice Puppetry

Polygonal
face
synthesis

Figure 10.1 The range of options on the knowledge- to data-based axis of
facial synthesis methods.
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synthesis. More recent research combines acoustic and facial speech with other
motion modalities, like facial expression, head motions, and body gestures
(Stone et al. 2004; Chuang and Bregler 2005; Bregler et al. 2009; Williams
et al. 2010).

Specific to human motion and facial speech synthesis, all of these data-based
approaches use a learning/training normalization step to create a database. Most
systems do the bulk of the analysis work when building the database so that the
synthesis step is as easy as possible. Given a particular task, the synthesis stage
finds the appropriate data in the database, warps it to fit the desired scene, and
outputs the final pixels.

We will use the Video Rewrite system (Bregler et al. 1997b) to demonstrate
the basic ideas of image-based facial synthesis. Section 10.2 gives an overview
of image-based facial synthesis and Video Rewrite in particular. Section 10.3
describes the analysis stage of Video Rewrite and Section 10.4 describes the
synthesis stage of Video Rewrite. Section 10.5 compares and contrasts two
other approaches – based on static images and Markov models – for facial
synthesis.

10.2 Image-based facial synthesis

Video Rewrite uses a training database of video of a person speaking naturally.
To synthesize talking faces it rearranges the contents of the video database to fit
the new words. To start, the analysis stage Video Rewrite uses a conventional
speech recognition system to segment the speech, and computer vision techni-
ques to find the face and the exact location of the mouth and jaw line. In the
synthesis stage, the same speech recognition technology segments the new
utterances and then an image-morphing step warps the database images to fit
the new words. A separate piece of video, called the background video or
background sequence, provides the rest of the face and the overall head move-
ments. The lip and jaw sequences from the database are inserted into the
background sequence. This is shown in Figure 10.2.

In a strict image-based approach we can synthesize only the conditions we
have already seen in the training data. Under controlled lighting conditions, we
can capture the reflectivity of a simple object from every possible angle (Levoy
and Hanrahan 1996) but this is not possible with a talking face. Instead, we look
for ways to simplify the problem.

The most important factor when synthesizing talking faces is coarticulation.
The shape of the mouth depends primarily on the acoustic phone before and
after the current sound. As we are saying one sound our lips are still moving
from the shape of the previous sound and starting to move towards the shape of
the next sound. It is easier to store a sequence of prototypical phoneme images,
but working with triphones is not difficult. In 8 minutes of training video, we
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found 1700 different triphones, of more than the 19 000 naturally occurring
triphone sequences (if we don’t have exactly the right triphone, we use the
triphone that is closest visually). We found it was important to store the
prototypes of many different triphones, and choose the triphone that most
closely matched our synthesis needs. Three examples of triphones from a
Video Rewrite database are shown in Figure 10.3.

Other factors we need to consider are listed below.
� Head pose: We want our subjects to speak and move naturally. But an image

of the mouth changes as the head rotates and tilts. Video Rewrite adjusts for
small changes in head pose with a planar model. Video Rewrite adjusts for
larger changes by modeling the face as an ellipsoid. But even with a
sophisticated ellipsoidal model, an image-based approach will never be
able to synthesize the profile of a head if all our data is from frontal images.
The planar and elliptical model approaches for compensating for head pose
are described in Section 10.3.1.
� Lighting: We assume without too much error that the reflectivity of skin does

not change over the range of allowable head poses. But lighting changes are
another matter. Some lighting changes are corrected by fitting a simple
illumination model to the data, but if one wants to synthesize a face at a
beach and in a nightclub then the training dataset will need images in daylight
and in a dark room with the appropriate lights. A lighting-correction techni-
que is described in Section 10.4.3.

Background face

Figure 10.2 The Video Rewrite synthesis system. Speech is recognized and
triphone visemes from a database are found. A separate background video is
used to provide the headmovements and the rest of the face. The database images
are transformed and inserted into the background video to form the final video.
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� Emotional content: There is data indicating that we can hear a smile (Ohala
1994). We can certainly identify a smiling speaker, but we don’t have a good
model of how the emotional state, as conveyed by an auditory signal, maps
into facial positions. It is important that the two signals are consistent since a
viewer can identify how much smile is present in both the audio and the
visual signals.
� Utterance length: The way that we speak changes as we change our rate of

speech. Most speakers slur their words as they speak faster. Thus the word
“pat” will look different when spoken slowly and carefully, compared to
when it is spoken rapidly. We can adjust for this effect by using phone
sequences from our database that are close in length to the new audio.
Otherwise, we can change the video playback speed to fit the new audio.
� Eyebrows: Video Rewrite uses a background face to provide most of the

facial image. This includes the eyes and the eyebrows. There is evidence that
a speaker’s eyebrows are used in concert with their voice to convey a
message, but there is no straightforward mapping between acoustics and
eyebrow locations. One possible correlation is with the speaker’s pitch
(Ohala 1994).

In all cases, an image-based solution combines multiple views of the speaker
with algorithms that can modify the video to fit the need. Any one image in the
training data comes with a coarticulation context, a head pose, a lighting model,

Figure 10.3 The effects of coarticulation. Frames from our training data
showing three different triphones show the wide variation in mouth
positions, even for the same phones.
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and an emotional state. The art in image-based facial synthesis is trading off the
different features to choose the best input sequence to modify and concatenate.
Fortunately, collecting a large database minimizes all these problems.

The importance of this trade-off was made clear to us when we started
working with John F. Kennedy footage from the Cuban missile crisis. This
footage was shot before the advent of teleprompters: Kennedy spent half the
time looking directly into the camera, and half the time looking down at his
notes. Moving from an affine model of the face to an elliptical model helped
improve the realism of the Video Rewrite results. But in the end we avoided
warping a downward-looking image to a full frontal view unless we really had
nothing close to the right viseme sequence in the desired pose. In effect, for any
one desired pose we could use only half our training data.

We describe image-based facial synthesis in terms of a video database where
images corresponding to small chunks of speech are first normalized so they
appear in a standardized form and are stored for easy retrieval. But this is not
how we implemented Video Rewrite. Instead, Video Rewrite labels the original
video so that it can easily find the appropriate sections of video. There might be
ten instances of the word “Cuba” but each will have a slightly different pose,
length, and context. We improve the synthesis results by choosing a training
example from the original video that has the closest context.

There are two reasons we get better results by leaving the video in its original
form. First we improve the image quality by storing just the parameters that
normalize each frame. Later when we need to denormalize by a different trans-
form (to insert the mouth pixels into a new background face) we just multiply
the transforms. Thus instead of doing two image transforms, each with its own
image interpolation stage, we can combine the transforms mathematically and
just do one interpolation step. Secondly, by leaving the video in its original form
we can more easily choose long sequences of phonemes if they happen to occur
in the training set in the right order. The minimum sequence of phones used by
Video Rewrite is three phones, or a triphone, but we improve our synthesis
quality by using the longest sequence we can find in our database.

10.3 Analyses and normalization

Video Rewrite analyzed the training data to find the location of each segment of
speech, and the location and pose of each facial feature. This section describes
the analysis Video Rewrite performed on the audio and video data.

Video Rewrite used an HMM speech recognition system (Jelinek 1998) to
segment the audio signal. Video Rewrite trained two gender-dependent recog-
nition models using the TIMIT database. If we know the word sequence,
segmentation into phonemes is easy. Given the word sequence the recognizer
can look up the words in the dictionary and find the expanded phoneme
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sequence.1 The recognizer then fits the known phone sequence to the audio data
and returns the segment boundaries. This is a comparatively easy task for a
speech recognition system.

Video Rewrite knew the approximate location of the head in each video
sequence but if this information is not available, a face-finding algorithm
(Rowley et al. 1998) could be used to get the approximate location.
Depending on the amount of out-of-plane motion, Video Rewrite used either
an affine transform or an elliptical model to transform each facial image into the
canonical pose. Any image can be chosen as the canonical pose, but it is best to
use a median pose so that the average pose correction is small.

10.3.1 Pose estimation

For relatively static facial sequences, Video Rewrite used an affine warp to
transform each face image in the training set into the canonical form. This
transform not only aligns the size, position, and rotation of each facial image,
but can also correct some small out-of-plane tilts of the head.

This step is critically important to Video Rewrite’s success. Early in the
development process the isolated mouth sequences looked realistic, but they
looked horrible when inserted into a face. At that point we were inserting the
new mouth image into the background at a location determined by the pose
estimate, but rounded to the nearest integer pixel location. Our results
improved dramatically when we interpolated the mouth images to place the
mouth images exactly. Evidently, viewers are so sensitive to the position of the
mouth on the face that one pixel jitter was enough to destroy the illusion of a
realistic talking face.

Accurately locating the new mouth images on a face is difficult because the
true measure of success is how well the teeth are fixed on the skull. We occa-
sionally see the teeth in the training video, but the skull is harder to see. Instead,
Video Rewrite looks at portions of the face that are relatively stable and can
provide a good estimate of the underlying skull location. These portions of the
face are indicated with a mask, which multiplies the facial image. This mask
avoids several sections of the face that are unreliable estimates of facial position,
including the mouth (it is always moving), the nose (there is specular reflection
from the tip, and the nose represents the biggest discrepancy from planar or
elliptical models of the face), and eyes (movement). The mask and typical
images are shown in Figure 10.4.

Video Rewrite used an affine tracker (Bergen et al. 1992) or an elliptical
model of the face (Basu et al. 1996) to normalize each image in the training data
and the background video. The affine warp can exactly compensate for trans-
lations and in-plane rotations. The compensation for out-of-plane rotations,
such as tilting the head forward, is approximate – compressing the y-axis
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approximates small amounts of tilt. The affine tracker is less computationally
expensive, but does not work as well with out-of-plane rotations of the head.
Both algorithms find a transform that warps each image so that it closely
matches a reference image.

10.3.1.1 Affine model An affine tracker (Bergen et al. 1992) adjusts the
parameters of these equations

uðx; yÞ ¼ a1 þ a2xþ a3y

vðx; yÞ ¼ a4 þ a5xþ a6y

so that a warped image, It(u(x,y),v(x,y)), at time tmatches as closely as possible
the reference image I0(x,y) with the affine warp defined by the a parameters.
Using vector notation, this is written

U ¼ Xa

where U = [x y]T, a = [a1, a2, a3, a4, a5, a6]
T and

X ¼ x y 0 0 1 0
0 0 x y 0 1

	 

:

Figure 10.4 The masked portion of the face shown at the top is a reference
image used to find the head pose. Awhite rectangle is superimposed on three
facial images to show the estimated affine warp that best matches the reference
image.
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We can use Gauss–Newton to iterate and find a solution for a in terms of
small steps δa. The change in a, at each iteration step is given byX

XT rIð Þ rIð ÞTX
j k

�� ¼ �
X

XT rIð Þ �Ið Þ

Where ∇I is a 2 × 1 derivative of a pixel location versus x and y, and ΔI is a scalar
and describes the difference between the first image and the warped second
image using the current estimate of a.

For both computational efficiency and to avoid local minima in the opti-
mization, this optimization step is often combined with hierarchical process-
ing. At the start it is not necessary to work with images at the highest
resolution. Instead, the images can be low-pass filtered and subsampled
before the iteration described above is performed. Once we converge to a
good answer at low resolution we can use this as a starting point on a slightly
higher resolution image. An example of the affine model is shown in
Figure 10.4.

10.3.1.2 Elliptical model An affine image transformation model is a good
fit for planar objects that are rotating by small amounts in space, but a human
face is not planar. With large rotations, the 3D structure of the face is apparent
and a richer model is needed to capture, and normalize, the motion.

Basu and his colleagues proposed an elliptical model of the face (Basu
et al. 1996). We would like to find parameters of an elliptical model of the
face, [α,β,γ,tx,ty,tz], where α, β, and γ describe the ellipse’s rotations, and tx, ty,
and tz describe its position. We would like to recover the best parameters that
explain the 2D image data we are considering.

We start with a reference image, usually showing a frontal view of the
face, and then hand-fit a 3D ellipse to the image data. (Basu suggests using
face-finding software to locate the face in the image and then starting with
the closest example from a pre-adjusted set of ellipses.) The optimization
step is straightforward. We want to find choices for the six ellipsoidal
parameters that best represent the new image in terms of the reference. A
set of parameters describes a 3D ellipse, which has a particular projection
onto the image plane. We can then take the image points and map them
back through the projection transformation to find the brightness of each
point on the ellipse. In effect, we color the proposed ellipse with the pixels
from the image. When we have the correct transformation parameters, the
data for the new image, as mapped onto its ellipse, will agree with the
original image’s transformation. The multidimensional parameters of this
new ellipse can be easily optimized using, for example, the simplex method
(Press et al. 1995).
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10.3.2 Feature tracking

In an image-based rendering system, database entries are chosen and then must
be blended. Speech synthesis systems often simply concatenate the database
entries to form a new speech signal; listeners are not particularly sensitive to
spectral discontinuities at unit boundaries. The same is not true for visual
motion. Our eyes are excellent feature trackers and discontinuities in position
or velocity are quite evident.

Thus an important step of image-based video synthesis is the ability to track
features and blend their positions, velocities, and appearance across synthesis
units. This is especially important for Video Rewrite since Video Rewrite
combines overlapping triphones using image morphing; the location of the
features controls the morphing algorithm.

The tracking problem is simplified once we have used the pose-estimation
algorithm described in Section 10.3.1 to normalize the size and the position of
the face. There are many ways to track features. Video Rewrite used a technique
known as EigenPoints (Covell and Bregler 1996) because it is computationally
efficient.

EigenPoints models the connection between an image, I, and the x–y coor-
dinates of the feature we are tracking as a linear relationship. In mathematical
terms

x y½ �T� x y½ �T¼M I� I
� �

;

where M is the matrix that connects the image data, I and its mean, I, with the
location of the features x y½ �T, with its mean, x y½ �T, subtracted.

EigenPoints finds a linear coupling by using a large training set of images
and labeled x–y coordinates of the features. The data from one image and its
corresponding coordinates are concatenated and form one row of a new
matrix. If the image and coordinate data are scaled so they have similar
variance, then a singular-value decomposition (SVD) is used to find the vector
direction that best characterizes the combined spread of data. Taking into
account the effects of noise, the linear mapping, M, is calculated using
equation 9 of Covell and Bregler’s paper (1996). The result of this processing
is shown in Figure 10.5.

The EigenPoints connection is only valid over a limited range of movement.
Underlying the EigenPoint theory is the assumption that the image and the
coordinate data are linear functions of a single underlying driving process. Thus
given an image patch from the face, with the mean removed, we can find the
deviation of the control points by a simple matrix multiplication.

But, it is unlikely, for example, that the same process drives the upper lip and
the jaw line. In fact they can move relatively independently of each other. Thus
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Video Rewrite uses two different EigenPoints models to capture all the dynam-
ics of the mouth and jaw line.2

In Video Rewrite there were two separate EigenPoints analyses. The two
EigenPoint models label each image in the training video using a total of 54
EigenPoints: 34 on the mouth (20 on the outer boundary, 12 on the inner
boundary, one at the bottom of the upper teeth, and one at the top of the lower
teeth) and 20 on the chin and jaw line. The first eigenspace controlled the
placement of the 34 fiduciary points on the mouth, using 50 × 40 pixels around
the nominal mouth location, a region that covers the mouth completely. The
second eigenspace controlled the placement of the 20 fiduciary points on the
chin and jaw line, using 100 × 75 pixels around the nominal chin location, a
region that covers the upper neck and the lower part of the face.

We created the two EigenPoints models for locating the fiduciary points from
a small number of images. We hand-annotated 26 images (of 14 218 images
total; about 0.2%). We extended the hand-annotated dataset by morphing pairs
of annotated images to form intermediate images, expanding the original 26 to
351 annotated images without any additional manual work. We then derived
EigenPoints models using this extended dataset.

Video Rewrite used EigenPoints to find the mouth and jaw, and to label
their contours. The derived EigenPoints models located the facial features
using 6 basis vectors for the mouth and 6 different vectors for the jaw.
EigenPoints then placed the fiduciary points around the feature locations: 32
basis vectors place points around the lips and 64 basis vectors place points
around the jaw.

Figure 10.5 EigenPoints is a linear transform that maps image brightness into
control point locations. The three images at the bottom show the fiduciary
points for the facial images on top.
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10.4 Synthesis

Synthesis in an image-based facial animation system is straightforward. Given a
signal, we need to identify the speech sounds, find the best image sequences
in our database, and stitch the results together. The synthesis procedure is
diagrammed in Figure 10.6.

Video Rewrite uses a speech recognition system to recognize the new speech
and translate the audio into a sequence of phonemes (with their durations). In
the sections that follow, we will explain how Video Rewrite uses the back-
ground image (Section 10.4.1), how the database visemes are selected
(Section 10.4.2), and finally how the visemes are morphed and stitched together
(Section 10.4.3).

10.4.1 The background video

Video Rewrite uses a background video to set the stage for the new synthesized
mouth. The background video provides images of most of the face – especially
the eyes – and natural head movements. In the Video Rewrite examples, the
background video came from the training video, so the normalization parame-
ters have already been computed. After we selected the new mouth images, the
normalizing parameters for each database image are multiplied by the inverse of
the background image transform to find the transformation that maps each
database image into the background frame.

We chose a background sequence from the training set where the speaker
spoke a sentence with roughly the same length as the new utterance. There are
undoubtedly important speech cues in the way that we move our head, eyes, and
eyebrows as we speak. We do not know what all these cues are. By starting with
real facial images and facial movements, we can show some of these cues,
without understanding them.

10.4.2 Selecting visemes from the database

The most difficult part of an image-based synthesis method is selecting the right
units to combine. There is always a limited database, and many different
constraints to satisfy. Video Rewrite chooses the longest possible utterance
from the database that has the right visemes, phoneme lengths, and head pose.
The design of this trade-off is complicated by the fact that we have information
about how some of the factors affect performance (see for example the viseme
confusability data in Owens and Blazek 1985), but we have no information
about how these factors combine. The problem is more acute because we can
partially correct many factors – such as viseme length, head pose, and lighting –
but the errors that remain are hard to quantify.
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The new speech utterance, as understood by the automatic speech recognition
system, determines the target sequence visemes. We would like to find a
sequence of triphone videos from our database that matches this new speech
utterance. For each triphone in the new utterance, our goal is to find a video
example with exactly the transition we need, and with lip shapes that are
compatible with the lip shapes in neighboring triphone videos. Since this goal
often is not reachable, we compromise by choosing a sequence of clips that
approximates the desired transitions and shape continuity. This process is
quantified as follows.

Given a triphone in the new speech utterance, Video Rewrite computes a
matching distance to each triphone in the video database. The matching metric
has two terms: the phoneme-context distance, Dp, and the distance between lip
shapes in overlapping visual triphones, Ds. The total error is

Error ¼ � Dp þ ð1� �ÞDs;

where the weight, α, is a constant that trades off the two factors.
The phoneme-context distance,Dp, is based on categorical distances between

phoneme categories and between viseme classes. Since Video Rewrite does not
need to create a new soundtrack (it needs only a new video track), we can cluster
phonemes into viseme classes, based on their visual appearance.

We use twenty-six viseme classes. Ten are consonant classes: (1) /CH/, /JH/,
/SH/, /ZH/; (2) /K/, /G/, /N/, /L/; (3) /T/, /D/, /S/, /Z/; (4) /P/, /B/, /M/; (5) /F/, /V/;
(6) /TH/, /DH/; (7) /W/, /R/; (8) /HH/; (9) /Y/; and (10) /NG/. Fifteen are vowel
classes: one each for /EH/, /EY/, /ER/, /UH/, /AA/, /AO/, /AW/, /AY/, /UW/,
/OW/, /OY/, /IY/, /IH, /AE/, /AH/. One class is for silence, /SIL/.

The phoneme-context distance, Dp, is the weighted sum of phoneme dis-
tances between the target phonemes and the video-model phonemes within the
context of the triphone. This distance is 0 if the phonemic categories are the
same (for example, /P/ and /P/). The distance is 1 if they are in different viseme
classes (/P/ and /IY/). If they are in different phoneme categories but are in the
same viseme class (/P/ and /B/), then the distance is a value between 0 and 1.
The intraclass distances are derived from published confusion matrices (Owens
and Blazek 1985).

When computing Dp, the center phoneme of the triphone has the largest
weight, and the weights drop smoothly from there. Although the video model
stores only triphone images, we consider the triphone’s original context when
picking the best-fitting sequence. In current animations, this context covers the
triphone itself, plus one phoneme on either side.

The second error term, Ds, measures how closely the mouth contours match
in overlapping segments of adjacent triphone videos. In synthesizing the mouth
shapes for “teapot” we want the contours for the /IY/ and /P/ in the lip sequence
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used for /T-IY-P/ to match the contours for the /IY/ and /P/ in the sequence used
for /IY-PP-AA/. Video Rewrite measures this similarity by computing the
Euclidean distance, frame by frame, between four-element feature vectors
containing the overall lip width, overall lip height, inner lip height, and height
of visible teeth.

The lip-shape distance (Ds) between two triphone videos is minimized with
the correct time alignment. For example, consider the overlapping contours for
the /P/ in /T-IY-P/ and /IY-P-AA/. The /P/ phoneme includes both a silence,
when the lips are pressed together, and an audible release, when the lips move
rapidly apart. The durations of the initial silence within the /P/ phoneme may be
different. The phoneme labels do not provide us with this level of detailed
timing. Yet, if the silence durations are different, the lip-shape distance for two
otherwise well-matched videos will be large. This problem is exacerbated by
imprecision in the HMM phonemic labels.

We want to find the temporal overlap between neighboring triphones that
maximizes the similarity between the two lip shapes. Video Rewrite shifts the
two triphones relative to each other to find the best temporal offset and duration.
Video Rewrite then uses this optimal overlap both in computing the lip-shape
distance,Ds, and in cross-fading the triphone videos during the stitching step. The
optimal overlap is the one that minimizes Ds while still maintaining a minimum-
allowed overlap. Since the fitness measure for each triphone segment depends on
that segment’s neighbors in both directions, Video Rewrite selects the sequence
of triphone segments using dynamic programming over the entire utterance. This
procedure ensures the selection of the best segments from the data available.

The experiments performed with Video Rewrite to date have used relatively
small databases. We had 8 min of “Ellen” footage, most of which we could easily
repurpose. We had 2 min of the “JFK” footage, of which half was useable at any
one time due to the extreme poses. Concatenative text-to-speech systems use tens
of hours of speech data for their task. The big advantage of data-based approaches
for synthesis is that the quality gets better as the database gets larger. Given larger
databases, one ismore likely tofind the exact triphone in the right context, or, in the
worst case, to find a segment that needs less modification for the final synthesis.

10.4.3 Morphing and stitching

Video Rewrite produces the final video by stitching together the appropriate
entries from the video database. At this point, Video Rewrite has already selected
a sequence of triphone videos that most closelymatches the target audio.We need
to align the overlapping lip images temporally. This internally time-aligned
sequence of videos is then time-aligned to the new speech utterance. Finally,
the resulting sequences of lip images are spatially aligned and are stitched into the
background face.Wewill describe howVideoRewrite performs each step in turn.
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10.4.3.1 Time alignment of triphone videos We combine a sequence of
triphone videos to form a new mouth movie. In combining the videos, we want
to maintain the dynamics of the phonemes and their transitions. We need to
time-align the triphone videos carefully before blending them. If we are not
careful in this step, the mouth will appear to flutter open and closed
inappropriately.

Video Rewrite aligns the triphone videos by choosing a portion of the over-
lapping triphones where the two lip shapes are as similar as possible. Video
Rewrite makes this choice when we evaluate Ds to choose the sequence of
triphone videos (Section 10.4.2). We use the overlap duration and shift that
provide the minimum value of Ds for the given videos.

10.4.3.2 Time alignment of the lips to the utterance We now have a self-
consistent temporal alignment for the triphone videos. We have the correct
articulatory motions, in the correct order to match the target utterance, but these
articulations are not yet time-aligned with the target utterance.

Video Rewrite aligns the lip motions with the target utterance by compar-
ing the corresponding phoneme transcripts. The starting time of the center
phone in the triphone sequence is aligned with the corresponding label in the
target transcript. The triphone videos are then stretched or compressed so that
they fit the time needed between the phoneme boundaries in the target
utterance.

10.4.3.3 Illumination matching Video Rewrite inserts a series of fore-
ground images into the background video to synthesize new words. Under the
best of conditions, the lighting on the face will be consistent and there will not
be a noticeable difference at the boundary between the two sets of data.
Unfortunately, with the need to collect as large a database as possible, there
will often be lighting differences between different portions of the database.
This is also likely to happen if we are trying to synthesize audiovisual speech in
a large number of lighting conditions.

Video Rewrite uses a planar illumination model to adjust the lighting in the
background and foreground images before stitching them together. The edge of
the mask image, shown in Figure 10.4, defines a region where we want to be
careful to match the lighting conditions. Video Rewrite models the average
brightness of the pixels at the edge of the mask with a plane. The foreground
image is adjusted by linearly scaling its brightness so that it matches the planar
model of the background image. This measurement, in both cases, is only done
using the pixels near the edge of the mask so that portions of the face that are
moving, such as the mouth, are not included in the matching calculation. A
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more sophisticated approach to lighting control and image splining was pro-
posed by Burt and Adelson (1983a).

10.4.3.4 Combining the lips and the background The remaining task is to
stitch the triphone videos into the background sequence. The correctness of the
facial alignment is critical to the success of the synthesis. The lips and head are
constantly moving in the triphone and background footage. Yet, we need to align
them so that the new mouth is firmly planted on the face. Any error in spatial
alignment causes the mouth to jitter relative to the face – an extremely disturbing
effect.

Video Rewrite again uses the mask from Figure 10.4 to find the optimal
global transform to register the faces from the triphone videos with the back-
ground face. The combined transforms from the mouth and background images
to the template face (Section 10.4.2) give a starting estimate in this search.
Reestimating the global transform by directly matching the triphone images to
the background improves the accuracy of the mapping.

Video Rewrite uses a replacement mask to specify which portions of the final
video come from the triphone images and which come from the background
video. This replacement mask warps to fit the new mouth shape in the triphone
image and to fit the jaw shape in the background image. Figure 10.6 shows an
example replacement mask, applied to triphone and background images.

Local deformations are required to stitch the shape of the mouth and jaw line
correctly. Video Rewrite handles these two shapes differently. The mouth’s

Morphing

Figure 10.6 The Video Rewrite synthesis process. Two images from the
database, with their control points, are combined using morphing. Then this
image is transformed to fit into the background image and inserted into the
background face.
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shape is completely determined by the triphone images. The only changes made
to the mouth shape are imposed to align the mouths within the overlapping
triphone images: The lip shapes are linearly cross-faded between the shapes in
the overlapping segments of the triphone videos.

The jaw’s shape, on the other hand, is a combination of the background jaw
line and the two triphone jaw lines. Near the ears, we want to preserve the
background video’s jaw line. At the center of the jaw line (the chin), the shape
and position are determined completely by what the mouth is doing. The final
image of the jaw must join smoothly together the motion of the chin with the
motion near the ears. To do this, Video Rewrite smoothly varies the weighting
of the background and triphone shapes as we move along the jaw line from the
chin towards the ears.

The final stitching process is a three-way trade-off in shape and texture among
the fade-out lip image, the fade-in lip image, and the background image. As we
move from phoneme to phoneme, the relative weights of the mouth shapes
associated with the overlapping triphone-video images are changed. Within
each frame, the relative weighting of the jaw shapes contributed by the back-
ground image and by the triphone-video images is varied spatially.

The derived fiduciary positions are used as control points in morphing. All
morphs are done with the Beier–Neely algorithm (Beier and Neely 1992a). For
each frame of the output image we need to warp four images: the two triphones,
the replacement mask, and the background face. The warping is straightforward
since Video Rewrite automatically generates high quality control points using
the EigenPoints algorithm.

10.4.3.5 Results The facial animation results for Video Rewrite are docu-
mented elsewhere (Bregler et al. 1997b). Typical results using John F. Kennedy
as a subject are shown in Figure 10.7.

The results are difficult to quantify. Our ultimate goal is lifelike video that is
indistinguishable from a real person. We are not at that stage yet, and are often
faced with difficult trade-offs, especially when choosing among many different
choices in our database.

There are many factors that lead to the overall perception of quality. Most
importantly, are the lips and the audio synchronized? This is easiest to judge on
plosive sounds and also the hardest to get right since the closure produces little
sound.

Are the lip motions smooth? In a sense, the Video Rewrite database is directly
capturing motion data.We need to blend the database triphones and preserve the
motion information.

Is the border visible between the background and foreground portions of the
face? The lighting control described above helps with much of this problem.
Yet, with the high-resolution images on a computer screen we could see a slight
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reduction in resolution in the lip region. We think that our feature tracking was
accurate, but not accurate enough to align the individual pores on the face.
When neighboring triphones are overlapped, the pores are often averaged out.

Is the jaw line smooth? Does it move in a natural fashion? Does the neck stay
fixed? There is a lot happening at the jaw line and its overlap with the neck. It is
important that this region of the face look realistic.

10.5 Alternative approaches

There are many ways to use video from real speakers to learn the mapping
between audio and facial images – Video Rewrite is just one example. Two
other approaches we would like to discuss represent simpler and more complex
models of facial animation. In Section 10.5.1 we will describe two systems that
represent the face by static images that capture the position of the face at its
extreme pose when speaking a viseme. In Section 10.5.2 we describe a system
that trains a hidden Markov model to capture the facial motions.

10.5.1 Synthesis with static visemes

Actors (Scott et al. 1994) and MikeTalk (Ezzat and Poggio 1998) are systems
that synthesize a talking face by morphing between single static exemplar
images. For each phoneme, a single prototypical image is captured and repre-
sents the target location for the face when saying that particular sound. Thus the
/o/ sound is characterized by a single facial image with rounded lips. Image
morphing techniques are used to synthesize the intermediate images. MikeTalk
uses sixteen static images to synthesize speech – some of these visemes are
shown in Figure 10.8.

Systems based on static viseme examples have the same alignment and
morphing problems addressed by Video Rewrite. In the Actor system, several
dozen fiduciary points on the head and shoulders are manually identified. These
provide the alignment information and the control points needed for morphing.
In MikeTalk the optic flow procedure described below is used to track facial

Figure 10.7 Images synthesized by Video Rewrite showing John F. Kennedy
speaking (from Bregler et al. 1997b).
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features, and linear regression on the fixed portions of the face are used to find
the global alignment. Optic flow computes the motion between two images by
finding a two-dimensional vector field [dx dy]

T that shows how each pixel in an
image moves into the new image. There is little motion between images that are
close in time; this makes the optic flow calculation easier. By looking at how
each pixel moves every 33 ms, MikeTalk can establish the correspondence
between prototype viseme images and morph between visemes.

Synthesizing facial images from prototypical (static) viseme images is
straightforward. Using either a TTS system to generate phonemes, as done by
MikeTalk, or recognizing the phonemes with ASR, as done by Actor, drives the
synthesis process. The correspondence between viseme pixels has already been
computed, so synthesis is just a matter of morphing one viseme into the next.

There are two disadvantages of a static viseme system. Most importantly, the
detailed motion information that was calculated in the analysis stage is not used.
The lips do not move smoothly from one position to the next. Secondly, this
type of synthesis does not take into account the effects of coarticulation. When
we speak naturally the shape of our mouth and the sounds that we make are
dramatically affected by the phonemic context.

Figure 10.8 Ten of the sixteen static visemes used by the MikeTalk system to
synthesize speech (from Ezzat and Poggio 1998).
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We might not, for example, round our lips quite as much when we say the
word “boot” at a slower rate as when we say it at a faster rate. Coarticulation has
been modeled by filtering the control points, but this approach has not been
applied to image-based rendering. Doing so would result in a system that is
nearly identical to a system described by Dom Massaro and Mike Cohen based
on polygonal models of the face and using texture mapping to provide realistic
skin and details.

In contrast, Video Rewrite uses a large database of phonemes in context to
capture specific motions and coarticulation. Given a large enough database of
examples, this is a simple solution. But it is, perhaps, not as elegant as building a
statistical model of visual speech.

10.5.2 Voice puppetry

Matthew Brand (1999) proposed building an HMM to map between an audio
signal and the appropriate facial shapes. His system is called Voice Puppetry and
it learns a highly constrained model from the data and uses it to drive a
conventional polygonal face model or cartoon drawing.

HMMs are a common technique for recognizing speech signals. The HMM
model recognizes hidden states – the phoneme sequence the speaker is trying to
communicate – based on the observed acoustic signals. The model assumes that
the probability of entering any new state depends on a small number of previous
states and the observations depend only on the current state.

Voice Puppetry builds a model in four stages. First, the system analyzes the
video and builds a spring-constrained model of facial feature positions. These
facial features are used to build an entropic Markov model that represents the
video signal. Second, the audio corresponding to states determined by the video
analysis is noted. Now each stage in the Markov model has both a visual and an
auditory observation vector. Third, given new audio, the speech can be decoded
and the most likely set of states is determined. Fourth, and finally, the system
can traverse the discovered state sequence and generate the most likely set of
facial trajectories. These trajectories are used to drive the cartoon character.

An entropic HMM is the key to this method. In a conventional speech
recognition system, there are many paths through the model to account for all
possible ways of saying any given word. This is unnecessarily complicated for
synthesis since we want to produce only the best facial feature locations given
any audio signal. Voice Puppetry learns the mapping between audio and video,
without converting the speech to a phoneme sequence (and thus avoiding the
errors this produces.)

An entropic HMM maximizes the likelihood of a model by adjusting the
model parameters. In a Bayesian framework we say
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�� ¼ argmax
�

P � Xjð Þ / f X �jð ÞPe �ð Þ½ �;

where the model parameters are described by θ, and the data is represented by X.
The final term in this equation says that we want to maximize the product of (1)
the probability of the model as a function of X and a given parameter set, and (2)
the probability of seeing that parameter set.

This last term, an entropic prior in Voice Puppetry, says that models that are
ambiguous and have less structure are not likely. The entropy of a discrete
system is defined as

H �ð Þ ¼ ��pi log pið Þ;

and this function is minimized when most of the probabilities are zero. The
entropy is turned back into something that looks like a likelihood by
exponentiation

Pe �ð Þ / e�H �ð Þ:

Themodel is not very specific if any state can follow any other state. Insteadwe
want to drive most of the parameter values to zero so that redundant links in the
model are removed. Voice Puppetry starts with a fully connected set of twenty-six
states, and prunes this model so that only one of twenty-two states havemore than
one alternative. This dramatic reduction in model complexity makes it possible
for Voice Puppetry to synthesize new facial movements from audio.

Voice Puppetry uses the entropic HMM to drive a conventional 3D polygonal
model of a face. The biggest advantage of such an approach is that the model
can be built from data collected from one speaker, and applied to any other
face – cartoon or otherwise. The face model captures many of the movements,
primarily by stretching and shrinking the skin, but does not account for changes

Figure 10.9 Output from the Voice Puppetry system showing how an
inanimate object can be made to talk using entropic HMM facial synthesis
(from Brand 1999).
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in appearance due to folding, or even teeth appearing and disappearing (see
Figure 10.9).

Some forms of coarticulation are handled well by the entropic HMM that
Voice Puppetry has learned. But the very nature of the structure reduction that
Voice Puppetry enforces means that there is only one way to say each word.
Current work, however, on speech recognition suggests that a different HMM is
needed to capture the coarticulation for different speaking rates (Siegler 1995).

10.5.3 Summary of approaches

Table 10.1 summarizes the approaches of each of the three major image-based
synthesis systems. The need to handle many of these factors is described in
Section 10.2. It should be noted that the extra complexity in Video Rewrite – the
need for more robust head-pose and lightingmodels – is due to the fact that large
amounts of data are collected and repurposed to fit new synthesis needs. Since
both MikeTalk and Video Puppetry build simple models of how each piece of
sound is said, they do not need large databases. This rich database is both a
source of complexity and potentially a source of additional randomness that
could make the synthesis more lifelike.

Table 10.1 Comparing animation systems.

MikeTalk Video Rewrite Voice Puppetry

Head pose Average of tracked
points

Affine or elliptical Not needed

Lighting
correction

Not needed Adjust planar model of
brightness at mask
edges

Not needed

Utterance
length

Stretch the
interpolation

Choose closest match
from database, then
linear stretch

Move through model
more slowly

Eyebrow
movement

No provision No provision Some control (but
prosody is ignored)

Feature
tracking

Optic flow EigenPoints Texture-based tracker
with spring
constraints

Synthesis Morph between
static visemes

Morph overlapping
triphones

Drive polygonal
graphics model

Coarticulation No provision Triphone model Probabalistic based
on training data

Emotion No provision No provision No provision

Image-based facial synthesis 269



10.6 Conclusions

Image-based algorithms are a powerful way to create realistic synthetic images.
By starting with real images and rearranging them, we have the potential to
create the highest-quality animations, at minimal computational cost and human
effort. This chapter has described a wide range of synthesis options: from using
static images, to rearranging dynamic segments, to full mathematical models of
facial movement. The results so far are not perfect, but they have the potential to
do much better, by just adding more data to their databases.

More work is needed in a number of areas. Most importantly, we would like
to learn how to capture many more features of the human face, while keeping
the database collection effort to a reasonable size.
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11 A trainable videorealistic speech
animation system

T. Ezzat, G. Geiger, and T. Poggio

11.1 Overview

Is it possible to record a human subject for a few minutes with a video camera,
process the recorded data automatically, and then re-animate that subject uttering
entirely novel utterances? In this work, we present such a system for achieving
videorealistic speech animation.

We choose to focus our efforts in this work on the issues related to the
synthesis of novel video, and not novel audio. Thus, novel audio needs to be
provided as input to our system. This audio can be either real human audio
(from the same subject or a different subject), or synthetic audio produced by a
text-to-speech (TTS) system. All that is required by our system is that the audio
be phonetically transcribed and aligned. In the case of synthetic audio from TTS
systems, this phonetic alignment is readily available from the TTS system itself
(Black and Taylor 1997). In the case of real audio, publicly available phonetic
alignment systems (Huang et al. 1993) may be used.

Our visual speech processing system is composed of two modules. The first
module is the multidimensional morphable model (MMM), which is capable of
morphing between a small set of prototype mouth images to synthesize new,
previously unseen mouth configurations. The second component is a trajectory
synthesis module, which uses regularization (Wahba 1990; Girosi et al. 1993) to
synthesize smooth trajectories in MMM space for any specified utterance. The
parameters of the trajectory synthesis module are trained automatically from the
recorded corpus using gradient descent learning.

Recording the video corpus takes on the order of 15 minutes. Processing of
the corpus may take several weeks, but, apart from the specification of head and
eye masks shown in Figure 11.3, is fully automatic, requiring no intervention on
the part of the user. The final visual speech synthesis module consists of a small
set of prototype images (forty-six images in the case presented here) extracted
from the recorded corpus and used to synthesize all novel sequences.
Figure 11.1 shows sample images synthesized by the system.

Application scenarios for videorealistic speech animation include: user inter-
face agents for desktops, TVs, or cell phones; digital actors in movies; virtual
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avatars in chatrooms; very low bitrate coding schemes (such as MPEG4); and
studies of visual speech production and perception.

In the following section, we begin by first reviewing the relevant prior work
and motivating our approach.

11.2 Background

11.2.1 Facial modeling

One approach to modeling facial geometry is to use 3D methods. Parke (1974)
was one of the earliest to adopt such an approach by creating a polygonal facial
model. In current approaches, to increase the visual realism of the underlying
facial model, the facial geometry is frequently scanned in using Cyberware laser
scanners. Additionally, a texture map of the face extracted by the Cyberware
scanner may be mapped onto the 3D geometry (Lee et al. 1995b). Guenter et al.
(1998) demonstrated recent attempts at obtaining 3D face geometry from
multiple photographs using photogrammetric techniques. Pighin et al. (1998)
captured face geometry and textures by fitting a generic face model to a number
of photographs. Blanz and Vetter (1999) demonstrated how a large database
of Cyberware scans may be morphed to obtain face geometry from a single

Figure 11.1 Some of the synthetic facial configurations output by the
Mary101 system.
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photograph. More recent 3D methods include Sifakis et al. (2005) and Zhang
et al (2004).

An alternative to the 3D modeling approach is to model the talking face using
image-based techniques, where the talking facial model is constructed using a
collection of example images captured from the human subject. These methods
have the potential of achieving very high levels of videorealism, and are inspired
by the recent success of similar sample-based methods for audio speech synthesis
(Charpentier and Moulines 1990). We adopt such an approach in this work.

Image-based facial animation techniques need to solve the video generation
problem: How does one build a generative model of novel video that is simulta-
neously photorealistic, videorealistic, and parsimonious? Photorealism means
that the novel generated images exhibit the correct visual structure of the lips,
teeth, and tongue. Videorealism means that the generated sequences exhibit the
correct motion, dynamics, and coarticulation effects (Cohen and Massaro 1993).
Parsimony means that the generative model is represented compactly using few
parameters.

Bregler et al. (1997b) describe an image-based facial animation system called
Video Rewrite in which the video generation problem is addressed by breaking
down the recorded video corpus into a set of smaller audiovisual basis units.
Each one of these short sequences is a triphone segment, and a large database
with all the acquired triphones is built. A new audiovisual sentence is con-
structed by concatenating the appropriate triphone sequences from the database
together. Photorealism in Video Rewrite is addressed by using only recorded
sequences to generate the novel video. Videorealism is achieved by using
triphone contexts to model coarticulation effects. In order to handle all the
possible triphone contexts, however, the system requires a library with tens and
possibly hundreds of thousands of subsequences, which seems to be an overly
redundant and non-parsimonious sampling of human lip configurations.
Parsimony is thus sacrificed for videorealism.

Essentially, Video Rewrite adopts a decidedly agnostic approach to anima-
tion: since it does not have the capacity to generate novel lip imagery from a few
recorded images, it relies on the re-sequencing of a vast amount of original
video. Since it does not have the capacity to model how the mouth moves, it
relies on sampling the dynamics of the mouth using triphone segments.

This work presents another approach to solving the video generation prob-
lem, an approach that has the capacity to generate novel video from a small
number of examples as well as the capacity to model how the mouth moves.
This approach is based on the use of a multidimensional morphable model
(MMM), which is capable of multidimensional morphing between various lip
images to synthesize new, previously unseen lip configurations. MMMs have
already been introduced in other works (Poggio and Vetter 1992; Beymer and
Poggio 1996; Cootes et al. 1998; Jones and Poggio 1998; Lee et al. 1998; Blanz

A trainable videorealistic speech animation system 273



and Vetter 1999; Black et al. 2000). In this work, we develop an MMM variant
and demonstrate its utility for facial animation.

MMMs are powerful models of image appearance because they combine the
power of vector space representations with the realism of morphing as a gener-
ative image technique. Prototype example images of the mouth are decomposed
into pixel flow and pixel appearance axes that represent basis vectors of image
variation. These basis vectors are combined in a multidimensional fashion to
produce novel, realistic, previously unseen lip configurations.

As such, an MMM is more powerful than other vector space representations
of images that do not model pixel flow explicitly. Cosatto and Graph (1998), for
example, describe an approach that is similar to ours, except that their gener-
ative model involved simple pixel blending of images, which fails to produce
realistic transitions between mouth configurations.

An MMM is also more powerful than simple one-dimensional morphing
between two image endpoints (Beier and Neely 1992a), as well as techniques
such as those of Scott et al. (1994), Watson et al. (1997), and Ezzat and Poggio
(2000), which morph between several visemes in a pairwise fashion. By
embedding the prototype images in a vector space, an MMM is capable of
generating smooth curves through lip space, handling complex speech anima-
tion effects in a non-ad hoc manner. The important relationship between
MMMs, vector spaces, and regularization networks was pointed out and dis-
cussed by Beymer et al. (1993; Beymer and Poggio 1996).

11.2.2 Animation

The reader may complete this short state of the art with already published
overviews of speech animation methods (Bailly et al. 2003; Fagel 2007;
Theobald 2007; Fagel et al. 2009). Speech animation techniques have tradi-
tionally included both key framing methods and physics-based methods, and
have been extended more recently to include machine learning methods. In key
framing, the animator specifies particular key frames, and the system generates
intermediate values (Parke 1974; Pearce et al. 1986; Cohen and Massaro 1993;
Le Goff et al. 1996). In physics-based methods, the animator relies on the laws
of physics to determine the mouth movement, given some initial conditions and
a set of forces for all time. This technique, which requires modeling the under-
lying facial muscles and skin, was demonstrated quite effectively by Waters
(1987) and Lee et al. (1995b). Data-driven methods include the work of Cao
et al. 2004, who use a motion graph approach similar to that of Bregler et al.
1997a. and Cosatto and Graf 1998. Finally, machine learning methods are a new
class of animation tools that are trained from recorded data and then used to
synthesize new motion. Examples include hidden Markov models (HMMs),
which were demonstrated effectively for speech animation by Brooke and Scott
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(1994a), Masuko et al. (1998) and Brand (1999). More recent methods that are
more sophisticated include those of Bailly et al. (2008b; 2009).

Speech animation needs to solve several problems simultaneously. Firstly,
the animation needs to have the correct motion, in the sense that the appropriate
phonemic targets need to be realized by the moving mouth. Secondly, the
animation needs to be smooth, not exhibiting any unnecessary jerks. Thirdly,
it needs to display the correct dynamics: for example, plosives such as /b/ and /p/
need to occur fast. Finally, speech animation needs to display the correct
coarticulation effects, which determine the effects of neighboring phonemes
on the current phoneme shape.

In this work, we present a trajectory synthesis module that addresses the
issues of synthesizing mouth trajectories with suitable motion, smoothness,
dynamics, and coarticulation effects. This module uses a regularization frame-
work (Wahba 1990; Girosi et al. 1993) to map from an input stream of
phonemes (with their respective frame durations) to a trajectory of MMM
shape-appearance parameters. This trajectory is then fed into the MMM to
synthesize the final visual stream that represents the talking face.

Unlike Video Rewrite (Bregler et al. 1997b), which relies on an exhaustive
sampling of triphone segments to model phonetic contexts, coarticulation
effects in our system emerge directly from an underlying speech model. Each
phoneme in our model is represented as a localized Gaussian target region in
MMM space with a particular position and covariance. In the regularization
framework that computes the trajectory, the covariance of each phoneme acts as
a spring whose tension pulls the trajectory towards each phonetic region with a
force proportional to observed coarticulation effects in the data.

However, unlike Cohen and Massaro (1993), who also modeled coarticula-
tion using localized Gaussian-like regions, our model of coarticulation is not
hand-tuned, but rather trained from the recorded corpus itself using a gradient
descent learning procedure. The training process determines the position and
shape of the phonetic regions in MMM space in a manner that optimally
reconstructs the recorded corpus data.

11.3 System overview

An overview of our Mary101 system is shown in Figure 11.2. After recording
the corpus (Section 11.4), analysis is performed to produce the final visual
speech module. Analysis itself consists of three sub-steps. First, the corpus is
pre-processed (Section 11.5) to align the audio and normalize the images to
remove head movement. Next, the MMM is created from the images in the
corpus (Section 11.6.2). Finally, the corpus sequences are analyzed to produce
the phonetic models used by the trajectory synthesis module (Sections 11.6.4
and 11.7.2).
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Given a novel audio stream that is phonetically aligned, synthesis proceeds in
three steps. First, the trajectory synthesis module is used to synthesize the
trajectory in MMM space using the trained phonetic models (Section 11.6.4).
Secondly, the MMM is used to synthesize the novel visual stream from the
trajectory parameters (Section 11.7). Finally, the post-processing stage compo-
sites the novel mouth movement onto a background sequence containing
natural eye and head movements (Section 11.8).

11.4 Corpus

An audiovisual corpus of a human subject uttering various utterances was
recorded. Recording was performed at a TV studio against a blue “chroma-
key” background with a standard Sony analog TV camera. The data was sub-
sequently digitized at a 29.97 fps NTSC frame rate with an image resolution of
640 by 480 and an audio resolution of 44.1 kHz. The final sequences were stored
as Quicktime sequences compressed using a Sorenson coder. The recorded
corpus lasts for 15 minutes, and is composed of approximately 30 000 frames.

The recorded corpus consisted of one-syllable and two-syllable words, such
as “bed” and “dagger”. A total of 152 one-syllable words and 156 two-syllable
words were recorded, which comprised about 7 minutes of recorded video. In
addition, the corpus included 105 short sentences, such as “The statue was
closed to tourists Sunday”, which comprised about 7 minutes of recorded video.
However, these short sentence utterances were not used in our development of
the animation system, but were used only for testing and evaluation purposes.

The subject was asked to utter all sentences in a neutral expression. In addition,
the sentences themselves were designed to elicit no emotion from the subject.

Analysis

Pre-
processing

Corpus
database

MMM
building

Analyzing
trajectories

Phoneme
models MMM

Synthesis

Post-
processingAudio VideoTrajectory

synthesis
MMM

synthesis

Figure 11.2 An overview of our videorealistic speech animation system.
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11.5 Pre-processing

The recorded corpus data needs to be pre-processed in several ways before it
may be processed effectively for re-animation.

First, the audio needs to be phonetically aligned in order to be able to
associate a phoneme for each image in the corpus. We perform audio
alignment on all the recorded sequences using the CMU Sphinx system
(Huang et al. 1993), which is publicly available. Given an audio sequence
and an associated text transcript of the speech being uttered, alignment
systems use forced Viterbi search to find the optimal start and end of
phonemes for the given audio sequence. The alignment task is easier than
the speech recognition task because the text of the audio being uttered is
known a priori.

Second, each image in the corpus needs to be normalized so that the only
movement occurring in the entire frame is the mouth movement associated
with speech. Although the subject was instructed to keep her head steady
during recording, residual head movement nevertheless still exists in the final
recorded sequences. Since the head motion is small, we make the simplifying
assumption that it can be approximated as the perspective motion of a plane
lying on the surface of the face. Planar perspective deformations (Wolberg
1990) have eight degrees of freedom, and can be inferred using four corre-
sponding points between a reference frame and the current frame. We employ
optical flow (Horn and Schunck 1981; Bergen et al. 1992; Barron et al. 1994)
to extract correspondences for 640 × 480 pixels, and use least squares to
solve the over-determined system of equations to obtain the eight parameters
of the perspective warp. Among the 640 × 480 correspondences, only those
lying within the head mask shown in Figure 11.3 are used. Pixels from the
background area are not used because they do not exhibit any motion at all,
and those from the mouth area exhibit non-rigid motion associated with
speech.

11.6 Multidimensional morphable models

At the heart of our visual speech synthesis approach is the multidimensional
morphable model (MMM) representation, which is a generative model of video
capable of morphing between various lip images to synthesize new lip
configurations.

The basic underlying assumption of the MMM is that the complete set of
mouth images associated with human speech lies in a low-dimensional space
whose axes represent mouth appearance variation and mouth shape variation.
Mouth appearance is represented in the MMM as a set of prototype images
extracted from the recorded corpus. Mouth shape is represented in the MMM
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as a set of optical flow vectors (Horn and Schunck 1981) computed automa-
tically from the recorded corpus. In the work presented here, 46 images are
extracted and 46 optical flow correspondences are computed. The low-
dimensionalMMMspace is parameterized by shape parameters α and appearance
parameters β.

The MMM may be viewed as a “black box” capable of performing two
tasks: Firstly, given as input a set of parameters (α,β) the MMM is capable
of synthesizing an image of the subject’s face with that shape-appearance
configuration. Synthesis is performed by morphing the various proto-
type images to produce novel mouth images that correspond to the input
parameters (α,β).

Conversely, theMMM can also be used for analysis: given an input lip image,
the MMM computes shape and appearance parameters (α,β) that represent the
position of that input image in MMM space. In this manner, it is possible to
project the entire recorded corpus onto the constructed MMM, and produce a
time series of (αt,βt) parameters (one set per frame) that represent trajectories of
mouth motion in MMM space. We term this operation analyzing the recorded
corpus.

In the following sections, we describe how a multidimensional morphable
model is defined, how it may be acquired automatically from a recorded video

Figure 11.3 The head, mouth, eye, and background masks used in the pre-
processing and post-processing steps. Specification of these masks is the only
manual step required by this system.
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corpus, how it may be used for synthesis, and, finally, how such a morphable
model may be used for analysis.

11.6.1 Definition

An MMM consists of a set of prototype images {Ii, i = 1, N} that represent the
various lip textures that will be encapsulated by the MMM. One image is
designated arbitrarily to be the reference image I1.

Additionally, the MMM consists of a set of prototype flows {Ci, i = 1,N} that
represent the correspondences between the reference image I1 and the other
prototype images in the MMM. The correspondence from the reference image
to itself, C1, is designated to be an empty, or zero, flow.

In this work, we choose to represent the correspondence maps using relative
displacement vectors:

Cið~pÞ ¼ dixð~pÞ; diyð~pÞ
n o

(11:1)

A pixel in image I1 at position ~p ¼ ðx; yÞ corresponds to a pixel in image Ii at
position xþ dixðx; yÞ; yþ diyðx; yÞ

� �
.

Previous methods for computing correspondence (Beier and Neely 1992b;
Scott et al. 1994; Lee et al. 1995a) adopted feature-based approaches, in which a
set of high-level shape features common to both images is specified. When it is
done by hand, however, this feature specification process can become quite
tedious and complicated, especially in cases in which a large amount of imagery
is involved. In this work, we make use of optical flow (Horn and Schunck 1981;
Bergen et al. 1992; Barron et al. 1994) algorithms to estimate this motion. This
motion is captured as a two-dimensional array of displacement vectors, in the
same exact format as that shown in Eq. (11.1). In particular, we utilize the coarse-
to-fine, gradient-based optical flow algorithms developed byBergen et al. (1992).
These algorithms compute the desired flow displacements using the spatial and
temporal image derivatives. In addition, they embed the flow estimation proce-
dure in a multiscale pyramidal framework (Burt and Adelson 1983b), where
initial displacement estimates are obtained at coarse resolutions, and then propa-
gated to higher resolution levels of the pyramid.

11.6.2 Building an MMM

An MMMmust be constructed automatically from a recorded corpus of {Ij, j =
1,S} images. The two main tasks involved are to choose the image prototypes
{Ii, i = 1,N}, and to compute the correspondences {Ci, j = 1,N} among them.
We discuss the steps to do this briefly below. Note that the following operations
are performed on the entire face region, although they need only be performed
on the region around the mouth.
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11.6.2.1 PCA For the purpose of more efficient processing, principal com-
ponent analysis (PCA) is first performed on all the images of the recorded video
corpus. PCA allows each image in the video corpus to be represented using a set
of low-dimensional parameters. This set of low-dimensional parameters may
thus be easily loaded into memory and processed efficiently in the subsequent
clustering and Dijkstra steps.

Performing PCA using classical autocovariance methods (Bishop 1995)
however, usually necessitates loading all the images and computing a very
large autocovariance matrix, which requires a lot of memory. To avoid this,
we adopt an online PCA method, termed EM-PCA (Roweis 1998; Tipping and
Bishop 1999), which allows us to perform PCA on the images in the corpus
without loading them all into memory. EM-PCA is iterative, requiring several
iterations, but is guaranteed to converge in the limit to the same principal
components that would be extracted from the classical autocovariance method.
The EM-PCA algorithm is typically run in this work for ten iterations.

Performing EM-PCA produces a set of D 624 × 472 principal components
and a matrix Σ of eigenvalues. In this work, D =15 PCA bases are retained.
The images in the video corpus are subsequently projected on the principal
components, and each image Ij is represented with a D-dimensional parameter
vector pj.

11.6.2.2 k-means clustering Selection of the prototype images is per-
formed using k-means clustering (Bishop 1995). The algorithm is applied
directly on the {pj, j =1,S} low-dimensional PCA parameters, producing N
cluster centers. Typically the cluster centers extracted by k-means clustering
do not coincide with actual image data points, so the nearest images in the
dataset to the computed cluster centers are chosen to be the final image proto-
types {Ii, i =1,N} for use in our MMM.

It should be noted that k-means clustering requires the use of an internal
distance metric with which to compare distances between data points and the
chosen cluster centers. In our case, since the image parameters are themselves
produced by PCA, an appropriate distance metric between two points pm and pn
is the Mahalanobis distance metric (although other distance metrics may be
used):

dðpm; pnÞ ¼ ðpm � pnÞT��1ðpm � pnÞ (11:2)

where
P

is the aforementioned matrix of eigenvalues extracted by the EM-
PCA procedure.

We selected N = 46 image prototypes in this work, which are partly shown in
Figure 11.4. The top left image is the reference image I1. There is nothing
magical about our choice of 46 prototypes; it is simply in keeping with the

280 T. Ezzat, G. Geiger, and T. Poggio



typical number of visemes other researchers have used (Scott et al. 1994; Ezzat
and Poggio 2000). It should be noted that the 46 prototypes have no explicit
relationship to visemes, and instead form a simple basis set of image textures.

11.6.2.3 Dijkstra After theN =46 image prototypes are chosen, the next step
in building anMMM is to compute correspondence between the reference image
I1 and all the other prototypes. Although it is in principle possible to compute
direct optical flow between the images, we have found that direct application of

Figure 11.4 Twenty-four of the 46 image prototypes included in the MMM.
The reference image is the top left frame.
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optical flow is not capable of estimating good correspondence when the under-
lying lip displacements between images are greater than five pixels.

It is possible to use flow concatenation to overcome this problem. Since the
original corpus is digitized at 29.97 fps, there aremany intermediate frames that lie
between the chosen prototypes. A series of consecutive optical flow vectors
between each intermediate image and its successor may be computed and con-
catenated into one largeflowvector that defines the global transformation between
the chosen prototypes (see Appendix for details on flow concatenation).

Typically, however, prototype images are very far apart in the recorded visual
corpus, so it is not practical to compute concatenated optical flow between them.
The repeated concatenation that would be involved across the hundreds or
thousands of intermediate frames leads to a considerably degraded final flow.

To compute good correspondence between prototypes, a method is needed to
figure out how to compute the path from the reference example I1 to the chosen
image prototypes Ii without repeated concatenation over hundreds or thousands of
intermediates frames. We accomplish this by constructing the corpus graph
representation of the corpus: A corpus graph is an S-by-S sparse adjacency
graph matrix in which each frame in the corpus is represented as a node in a
graph connected to k nearest images. The k nearest images are chosen using the
k-nearest neighbors algorithm (Bishop 1995), and the distance metric used is the
Mahalanobis distance in Eq. 11.2 applied to the PCA parameters p (although other
distance metrics are possible). Thus, an image is connected in the graph to the k
other images that look most similar to it. The edge weight between a frame and its
neighbor is the value of the Mahalanobis distance. We set k =20 in this work.

After the corpus graph is computed, the Dijkstra shortest path algorithm
(Cormen et al. 1989; Tenenbaum et al. 2000) is used to compute the shortest
path between the reference example I1 and the other chosen image prototypes Ii.
Each shortest path produced by the Dijkstra algorithm is a list of images from
the corpus that cumulatively represent the shortest deformation path from I1 to Ii
as measured by the Mahalanobis distance. Concatenated flow from I1 to Ii is
then computed along the intermediate images produced by the Dijkstra algo-
rithm. Since there are 46 images, N = 46 correspondences {Ci, i =1,N} are
computed in this fashion from the reference image I1 to the other image
prototypes {Ii, i = 1,N}.

11.6.3 Synthesis

The goal of synthesis is to map from the multidimensional parameter space (α,β)
to an image that lies at that position in MMM space. Since there are 46 corre-
spondences, α is a 46-dimensional parameter vector that controls mouth shape.
Similarly, since there are 46 image prototypes, β is a 46-dimensional parameter
vector that controls mouth texture. The total dimensionality of (α,β) is 92.
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Synthesis first proceeds by synthesizing a new correspondence Csynth using
linear combination of the prototype flows Ci:

C
synth
1 ¼

XN
i¼1

aiCi (11:3)

The subscript 1 in Eq. (11.3) above is used to emphasize that C synth
1 originates

from the reference image I1, since all the prototype flows are taken with I1 as
reference.

Forward warping may be used to push the pixels of the reference image I1
along the synthesized correspondence vectorCsynth

1 . Notationally, we denote the
forward warping operation as an operatorW(I,C) that operates on an image I and
a correspondence map C (see Appendix for details on forward warping). Also
we rewrite Csynth

1 as C1,s for brevity.
However, a single forward warp will not utilize the image texture from all

the examples. In order to take into account all image texture, a correspondence
re-orientation procedure first described by Beymer et al. (1993) is adopted that
re-orients the synthesized correspondence vector C1,s so that it originates from
each of the other example images Ii. Reorientation of the synthesized flow C1,s

proceeds in two steps, shown figuratively in Figure 11.5. First, Ci is subtracted
from the synthesized flow C1,s to yield a flow that contains the correct flow

Ii Ii

Ci Ci
C1

synth

Ci – C1
synth

W(Ci – C1
synth,Ci) 

I1 I1

Figure 11.5 The flow reorientation process: First, Ci is subtracted from the
synthesized flow C1,s. Second, this flow vector is itself forward warped
along Ci.
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geometry, but which originates from the reference example I1 rather than the
desired example image Ii.

Secondly, to move the flow into the correct reference frame, this flow vector is
itself warped alongCi. The entire re-orientation processmay be denoted as follows:

Ci;s ¼WðC1; s � Ci;CiÞ (11:4)

Re-orientation is performed for all examples in the example set.
The third step in synthesis is to warp the prototype images Ii along the re-

oriented flows Ci,s to generate a set of N warped image textures Ii,w:

Ii;w ¼WðIi;Ci;sÞ (11:5)

The fourth and final step is to blend the warped images Ii,w using the β
parameters to yield the final morphed image:

Imorph ¼
XN
i¼1

�iIi;w (11:6)

Combining Eq. (11.1) through Eq. (11.6) together, our MMM synthesis may be
written as follows:

Imorph ¼
XN
i¼1

�iWðIi;Wð
XN
j¼1

�jCj � Ci;CiÞÞ: (11:7)

Empirically we have found that the MMM synthesis technique is capable of
surprisingly realistic re-synthesis of lips, teeth, and tongue. However, the
blending of multiple images in the MMM for synthesis tends to blur out some
of the finer details in the teeth and tongue (see Appendix C for a discussion of
synthesis blur). Shown in Figure 11.6 are some of the synthetic images pro-
duced by our system, along with their real counterparts for comparison.

11.6.4 Analysis

The goal of analysis is to project the entire recorded corpus {Ij, j =1 . . . S} onto the
constructedMMM, and produce a time series of {αi, βi, j =1 . . . S} parameters that
represent trajectories of the original mouth motion in MMM space.

One possible approach for analysis of images is to perform analysis-by-
synthesis. In this approach, used in various forms in Jones and Poggio (1998)
and in Blanz and Vetter (1999), the synthesis algorithm is used to synthesize an
image Isynth(α, β) that is then compared to the novel image using an error metric
(i.e., the L2 norm). Stochastic gradient descent is then usually performed to
change the parameters in order to minimize the error, and the synthesis process
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is repeated. The search ends when a local minimum is achieved. Analysis-by-
synthesis, however, is very slow in the case when a large number of images are
involved.

In this work we choose another method that is capable of extracting parameters
{α, β} in one iteration. In addition to the image Inovel to be analyzed, the method
requires that the correspondenceCnovel from the reference image I1 in theMMM
to the novel image Inovel be computed beforehand. In our case, most of the novel
imagery to be analyzed will be from the recorded video corpus itself, so we
employ the Dijkstra approach discussed in Section 11.6.2.3 to compute good
quality correspondences between the reference image I1 and Inovel.

Given a novel image Inovel and its associated correspondence Cnovel, the first
step of the analysis algorithm is to estimate the parameters α that minimize:

Cnovel �
XN
i¼1

�iCi


: (11:8)

This is solved using the pseudo-inverse:

� ¼ ðCTCÞ�1CTCnovel (11:9)

where C above is a matrix containing all the prototype correspondences
{Ci, i =1,N}.

After the parameters α are estimated, N image warps are synthesized in the
same manner as described in Section 11.6.3 using flow-reorientation and
warping:

I
warp
i ¼WðIi;Wð

XN
j¼1

�jCj � Ci;CiÞÞ (11:10)

Figure 11.6 Top: Original images from our corpus. Bottom: Corresponding
synthetic images generated by our system.
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The final step in analysis is to estimate the values of β as the values that
minimize:

Inovel �
XN
i¼1

�iIi


 subject to �i50 8i and

XN
i¼1

�i ¼ 1: (11:11)

The non-negativity constraint above on the βi parameters ensures that pixel
values are not negated. The normalization constraint ensures that the βi param-
eters are computed in a normalized manner for each frame, which prevents
brightness flickering during synthesis. The form of the imposed constraints
causes the computed βi parameters to be sparse (see Figure 11.7), which enables
efficient synthesis by requiring only a few image warps (instead of the complete
set of 46 warps). Equation (11.11), which involves the minimization of a
quadratic cost function subject to constraints, is solved using quadratic pro-
gramming methods. In this work, we use the Matlab function “quadprog”.
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Figure 11.7 Top: Analyzed αi flow parameters computed for one image.
Bottom: The corresponding analyzed βi texture parameters computed for the
same image. The βi texture parameters are typically zero for all but a few image
prototypes.
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Each utterance in the corpus is analyzed with respect to the 92-dimensional
MMM created in Section 11.6.2, yielding a set of zt = (αt, βt) parameters for each
utterance. Analysis takes on the order of 15 s per frame on a circa 1998 450
MHz Pentium II machine. Shown in Figure 11.9 in solid lines are examples of
analyzed trajectories for α12 and β28 computed for the word “tabloid.”

11.7 Trajectory synthesis

11.7.1 Overview

The goal of trajectory synthesis is to map from an input phone stream {Pt} to a
trajectory yt = (αt, βt) of parameters in MMM space. After the parameters are
synthesized, Eq. (11.7) from Section 11.6.3 is used to create the final visual
stream that represents the talking face.

The phone stream is a stream of phonemes {pt} representing that phonetic
transcription of the utterance. For example, the word “one” may be represented
by a phone stream {pt,, t =1 . . . 15} = (/w/,/w/,/w/,/w/,/uh/,/uh/,
/uh/,/uh/,/uh/,/uh/,/n/,/n/,/n/,/n/,/n/). Each element in
the phone stream represents one image frame.We define T to be the length of the
entire utterance in frames.

Since the audio is aligned, it is possible to examine all the flow and texture
parameters for any particular phoneme. Shown in Figure 11.8 are histograms
for the α1 parameter for the /w/, /m/, /aa/, and /ow/ phones. Evaluation of
the analyzed parameters from the corpus reveals that parameters representing
the same phoneme tend to cluster inMMM space. We represent each phoneme p
mathematically as a multidimensional Gaussian with mean μp and diagonal
covariance Σp. Separate means and covariances are estimated for the flow and
texture parameters.1

The trajectory synthesis problem is framed mathematically as a regularization
problem (Wahba 1990; Girosi et al. 1993). The goal is to synthesize a trajectory
y that minimizes an objective function E consisting of a target term and a
smoothness term:

E ¼ ðy� �ÞTDT��1Dðy� �Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
target term

þl yTWTWy|fflfflfflfflfflffl{zfflfflfflfflfflffl}
smoothness term

: (11:12)

The desired trajectory y is a vertical concatenation of the individual yt = αt terms at
each time step (or yt = βt, since we treat flow and texture parameters separately):

y ¼
y1

..

.

yT

2
64

3
75: (11:13)
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The target term consists of the relevant means μ and covariances Σ constructed
from the phone stream:

� ¼
�P1

..

.

�PT

2
64

3
75;�¼ �P1

. .
.

�PT

2
64

3
75: (11:14)

The matrix D is a duration-weighting matrix that emphasizes the shorter
phonemes and de-emphasizes the longer ones, so that the objective function is
not heavily skewed by the phonemes of longer duration:

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I� DP1

T

q
. .
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I ¼ DPT

T

q
2
6664

3
7775: (11:15)
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Figure 11.8 Histograms for the α1 parameter for the /w/, /m/, /aa/, and /ow/
phones.
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One possible smoothness term consists of the first-order difference operator:

W ¼
�I I

�I I
. .
.

�I I

2
664

3
775: (11:16)

Higher orders of smoothness are formed by repeatedly multiplying W with
itself: second order WTWTWW, third order WTWTWTWWW, and so on.

Finally, the regularizer λ determines the trade-off between both terms. Taking
the derivative of Eq. (11.12) and minimizing yields the following equation for
synthesis:

ðDT��1Dþ lWTWÞy ¼ DT��1D�: (11:17)

Given known means μ, covariances Σ, and regularizer λ, synthesis is simply a
matter of plugging them into Eq. (11.17) and solving for y using Gaussian
elimination. This is done separately for the flow and the texture parameters. In
our experiments a regularizer of degree four yielding multivariate additive
septic splines (Wahba 1990) gave satisfactory results (see next subsection).

Coarticulation effects in our system are modeled via the magnitude of the
variance Σp for each phoneme. Small variance means the trajectory must pass
through that region in phoneme space, and hence neighboring phonemes have
little coarticulatory effect. On the other hand, large variance means the trajectory
has a lot of flexibility in choosing a path through a particular phonetic region, and
hence it may choose to pass through regions that are closer to a phoneme’s
neighbors. The phoneme will thus experience large coarticulatory effects.

There is no explicit model of phonetic dynamics in our system. Instead,
phonetic dynamics emerge implicitly through the interplay between the magni-
tude of the variance Σp for each phoneme (which determines the phoneme’s
“spatial” extent), and the input phone stream (which determines the duration in
time of each phoneme). Equation (11.12) then determines the speed through a
phonetic region in a manner that balances nearness to the phoneme with
smoothness of the overall trajectory. In general, we find the trajectories speed
up in regions of small duration and small variance (i.e., plosives), while they
slow down in regions of large duration and large variance (i.e., silences).

11.7.2 Training

The means μp and covariances Σp for each phone p are initialized directly from
the data using sample means and covariances. However, the sample estimates
tend to average out the mouth movement so that it looks under-articulated.
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This is particularly problematic in the case of plosives such as /b/ or /p/, where
the sample means do not coincide with the complete closure of the lips. As a
consequence, there is a need to adjust the means and variances to better reflect
the training data.

Gradient descent learning (Bishop 1995) is employed to adjust the mean and
covariances. The idea is to use Eq. (11.17) to synthesize a trajectory y for a
particular utterance present in the training corpus, and compare it with the actual
trajectory of MMM parameters z for that utterance using an error metric. The
locations and covariances, μp and Σp , for the phonemes involved in synthesiz-
ing that utterance may then be adjusted using gradient descent to minimize the
error between y and z.

We develop this idea as follows. First, the Euclidean error metric is chosen to
represent the error between the original utterance z and the synthetic utterance y:

E ¼ ðz� yÞTðz� yÞ: (11:18)

The parameters μp, Σp need to be changed to minimize this objective function E.
The chain rule may be used to derive the relationship between E and the
parameters:

@E

@�i
¼ @E

@y

� �T @y

@�i

� �
and

@E

@�ij
¼ @E

@y

� �T @y

@�ij

� �
: (11:19)

The relation, @E@y, may be obtained from Eq. (11.18)

@E

@y
¼ �2ðz� yÞ: (11:20)

Since y is defined according to Eq. (11.17), we can take its derivative to compute
@y
@�i

and @y
@�ij

:

ðDT��1Dþ lWTWÞ @y
@�i
¼ DT��1D

@�

@�i

ðDT��1Dþ lWTWÞ @y
@�ij
¼ 2DT��1

@�

@�ij
��1Dðy� �Þ:

(11:21)

Finally, gradient descent is performed by changing the previous values of the
parameters according to the computed gradient:

�new ¼ �old � �
@E

@�
and �new ¼ �old � �

@E

@�
: (11:22)
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Cross-validation sessions were performed to evaluate the appropriate value of λ
and the correct level of smoothnessW to use. The learning rate ηwas set to 0.001
for all trials, and 15 iterations performed. Comparison between batch and online
updates indicated that online updates perform better, so this method was used
throughout training. Testing was performed on a set composed of one-syllable
words, two-syllable words, and sentences not contained in the training set. The
Euclidean norm between the synthesized trajectories and the original trajectories
was used to measure error. For flow parameters, the results showed that an
adequate smoothness operator is fourth order and an adequate regularizer is λ =
1000. For texture parameters, the results showed that an adequate smoothness
operator is fifth order and an adequate regularizer is λ = 100. Figure 11.9 depicts
synthesized trajectories for the α12 and β28 parameters before training (in dots)
and after training (in crosses) for these optimal values ofW and λ.

11.8 Post-processing

Due to the head and eye normalization that was performed during the pre-
processing stage, the final animations generated by MMM synthesis exhibit
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Figure 11.9 Top: The analyzed trajectory for α12 (in solid), compared with the
synthesized trajectory for α12 before training (in dots) and after training (in
crosses). Bottom: Same as above, but the trajectory is for β28. Both trajectories
are from the word “tabloid.”
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movement only in the mouth region. This leads to an unnerving “zombie”-like
quality to the final animations. As in Bregler et al. (1997b) and Cosatto and Graf
(1998), we address this issue by compositing the synthesized mouth onto a
background sequence that contains natural head and eye movement.

The first step in the compositing process is to add Gaussian noise to the
synthesized images to regain the camera image sensing noise that is lost as a
result of blending multiple image prototypes in the MMM. We estimate means
and variances for this noise by computing differences between original images
and images synthesized by our system, and averaging over 200 images.

After noise is added, the synthesized sequences are composited onto the
chosen background sequence with the help of the masks shown in Figure 11.3.
The head mask is first forward-warped using optical flow to fit across the head
of each image of the background sequence. Next, optical flow is computed
between each background image and its corresponding synthetic image. The
synthetic image and the mouth mask from Figure 11.3 are then perspective-
warped back onto the background image. The perspective warp is estimated
using only the flow vectors lying within the background head mask. The final
composite is made by pasting the warped mouth onto the background image
using the warped mouth mask. The mouth mask is smoothed at the edges to
perform a seamless blend between the background image and the synthesized
mouth. The compositing process is depicted in Figure 11.10.

11.9 Computational issues

To use our Mary101 system, an animator first provides phonetically annotated
audio. The annotation may be done automatically (Huang et al. 1993), semi-
automatically using a text transcript (Huang et al. 1993), or manually (Sjolander
and Beskow 2000).

Trajectory synthesis is performed by Eq. (11.17) using the trained phonetic
models. This is done separately for the flow and the texture parameters. After
the parameters are synthesized, Eq. (11.7) from Section 11.6.3 is used to create
the visual stream with the desired mouth movement. Typically only the image
prototypes Ii that are associated with the top 10 values of βi are warped, which
yields a considerable saving in computation time. MMM synthesis takes on the
order of about 7 s per frame for an image resolution of 624 × 472. The back-
ground compositing process adds on a few extra seconds of processing time. All
times are computed on a single processor 450 MHz Pentium II PC running
Linux.

We have synthesized numerous examples using our system, spanning the
entire range of one-syllable words, two-syllable words, short sentences, and
long sentences. In addition, we have synthesized songs and foreign speech
examples.
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Experimentally we have found that reducing the number of prototypes below
30 degrades the quality of the final animations. An open question is whether
increasing the number of prototypes significantly beyond 46 will lead to even
higher levels of videorealism.

Currently, the time taken to process the entire eight minute recorded corpus to
produce the 46-prototypeMMM is two to three weeks on a single processor 450
MHz Pentium II PC. In terms of corpus size, it is possible to optimize the spoken
corpus so that several words alone elicit the 46 prototypes. This would reduce
the duration of the corpus from eight minutes to a few seconds. However, this
would degrade the quality of the correspondences computed by the Dijkstra
algorithm. In addition, the phonetic training performed by our trajectory syn-
thesis module would degrade as well. Further systematic experiments need to be
made in order to evaluate how final performance changes with the size of the
corpus.

11.10 Evaluation

The animations produced by the Mary101 system were perceptually evaluated.
These animations consisted of synthetic mouth region sequences that were

Figure 11.10 The background compositing process. Top: A background
sequence with natural head and eye movement. Middle: A sequence generated
from our system, with the desired mouth movement and appropriate masking.
Bottom: The final composited sequence with the desired mouth movement, but
with the natural head and eye movement of the background sequence. The masks
from Figure 11.3 are used to guide the compositing process.
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re-composited into real video sequences of Mary101. Evaluation of video-
realism of image-based synthesis is currently a very active area of research
(Odisio and Bailly 2004; Cosker et al. 2005; Theobald et al. 2008).

Our evaluation consisted of two sets of experiments. The first set of experi-
ments examined the “realism” of the synthetic animations by estimating a
subject’s ability to tell the animated images from the real ones. For this purpose,
three experiments of visual detection, which can be considered as “Turing
tests,” were made to gauge if the synthetic image sequences were recognized
as such. We named the experiments: single presentation, fast single presenta-
tion, and pair presentation. In every experiment we presented each subject with
the same number of synthetic and real image sequences and observed the level
of correct detection. To the best of our knowledge, to date there has been no
systematic perceptual evaluation that uses comparisons between synthetic and
real images of the same utterances spoken by the same person, as the Mary101
system has enabled us to do.

The second experiment was an intelligibility experiment, in which subjects
were asked to lipread real and synthetic animations of the same utterances. This
experiment examined how well one can operate with the animated images as
compared with the real ones. The correct recognition of the utterances was
measured, and the level of recognition of the synthetic and the real image
sequences was compared. The analyses were made for the utterances at the
level of whole words, syllables, and phonemes.

In the next few sections we briefly describe the experiments performed and
summarize their results. For further details on all experiments, please refer to
Geiger et al. (2003).

11.10.1 General method

In this section we describe aspects that were common to all the experiments.
Stimuli: The image sequences in all the experiments were run by a computer

and presented on a 2100 monitor. The resolution of the image sequences on the
monitor was 624 × 472 pixels (15 cm× 11 cm) on which the frontal view of the
head and shoulders of Mary101 were presented, in color on a blue background
(as in the images of Figure 11.1). The distance of the viewers was set to 50 cm
away from the screen. At this distance the display subtended 17 degrees × 12.5
degrees of visual arc for the viewer. The monitor’s refresh rate was 60 Hz and
the frame rate of the video image sequences was 29.97 frames per second.

In the single and the fast presentation experiments the real audio was part of
the stimuli. It was heard from two loudspeakers, one at each side of the monitor.
The average audio listening level at the viewers’ location was set to 55–65 dB
SLP. The audio signals were well-synchronized with the image sequences
whether real or synthetic.
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A real image sequence of an utterance was taken directly from the digitized
video images of Mary101. The synthetic image sequence of an utterance was
constructed as discussed in Section 11.8 by re-compositing the synthetic mouth
animation into the real image sequence. Consequently only the mouth region
was different between the real and synthetic versions, whereas the rest was
identical for both. There were minor differences in average luminance and
contrast of the mouth region between the real and the synthetic images. The
average contrast difference was 4 percent.

One hundred twenty image sequences were prepared as stimuli. They were
made of sixty utterances. From each utterance two image sequences were made,
one real and one synthetic. A small number of image sequences was randomly
selected, from the entire corpus, for presentation in each experiment. The
number of presented image sequences varied in each experiment, as will be
specified later. The order of the presented image sequences was also random-
ized. However, in each experiment equal numbers of real and synthetic image
sequences were presented to every subject.

The sixty utterances comprised forty single words and twenty sentences. Half
of the single words were single-syllable words and half were two-syllable
words. Average duration of the single words was about 2 s (range 2–3 s) and
about 3 s (range 2–3 s) for sentences. The corpus covered all the phonemes of
the English language.

Participants: The participants were recruited by a circulated email message
to a large list of addressees. All those who responded and showed up for testing
were taken as subjects. In all we had a pool of twenty-four subjects who were
assigned to the different experiments. The participants reported themselves to
have normal hearing and normal or corrected-to-normal vision. Their ages
ranged from 18 to 67 years. They all had college education or were in college
at the time of testing. Most were native speakers of American English, as will be
specified later for each experiment.

Procedure: The session began with an explanation of the general purpose of
the experiment. The subjects were asked “to tell apart animated (synthetic)
image sequences from real ones” or in the intelligibility experiment to “tell what
was said.” The subjects were seated, in a dimly lit room, in front of a computer
monitor to be viewed at 50 cm distance. The display of the stimuli was con-
trolled by a computer that was also used to record the subject’s responses. The
instructions to the subject were different for each experiment, and will be
specified accordingly. Before every stimulus presentation, an “X” on a blue
background (similar to the background of Mary101), was shown in the middle
of the display. The subjects were instructed to fixate their gaze on the X
whenever it appeared. The subjects were asked to move their eyes freely after
the X disappeared. After a verbal prompt, a stimulus was presented. The
subjects were asked to respond according to the instructions. The responses
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were given orally and were entered into the computer by the experimenter. The
options of the responses will be described later for each experiment. However,
in all the experiments there was also an option of “don’t know (DK)” for the
case in which the subject could not choose one of the other options. Thus the
experiments were not two-way forced-choice experiments. After the response
was entered into the computer, the cycle was repeated until all the stimuli for
that experiment had been presented.

After the conclusion of one experiment, the next experiment in the set was
performed in a similar manner. There were a total of four experiments, three
constituting visual “Turing Test”-like detection tasks, while the fourth was a
lipreading/intelligibility task. The order of the experiments presented to each
subject was different, but arranged in such a manner so as to yield, at the end of
testing, various levels of prior exposure to each experiment. For example, while
some subjects performed Experiment 1 with no prior exposure to any other
experiment, an equal number of different subjects had one prior exposure to
another experiment before performing Experiment 1, while another equal
number of different subjects participated in two other experiments prior to
Experiment 1. The intelligibility experiment was presented last to most subjects.
After all the experiments had been presented to the subject, the results were
analyzed and shown (upon request) to the subject. The analyses of the results
will be described for each experiment separately.

11.10.2 Experiment 1: Single presentations

In order to establish the level at which the synthetic image sequences were
distinguished from the real ones, we presented each image sequence singly, and
asked the subjects if it was a real or a synthetic image sequence.

11.10.2.1 Method In addition to the general method described above the
particular details for this experiment are described below.

Stimuli: Sixteen image sequences were randomly chosen from the corpus.
Half of these were real and half synthetic, not necessarily from the same utter-
ances. In addition, half of the image sequences were of single-word utterances
and half of sentences, evenly distributed across real and synthetic image
sequences. Every image sequence was accompanied by the real audio of the
utterance.

Participants: There were twenty-two subjects (eleven females and eleven
males) of whom nineteen were native speakers of American English. For eight
of the subjects this experiment was the first in the set of experiments. Another
eight subjects had participated in one of the other experiments before this one
and the last six subjects had participated in two experiments prior to this one.
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Procedure: The instructions to the subjects were as follows: “You will be
presented with an image sequence of a talking woman; she will say either one
word or a sentence. Please indicate if the image sequence you saw was real or
synthetic.” It was also explained that all the image sequences would be accom-
panied by the real audio recording of the utterances. As mentioned, the subjects
were asked to fix their gaze on the X. After a verbal prompt the utterance was
displayed, followed by the reappearance of the X. The subjects were asked to
indicate if the image sequence was “real,” “synthetic” or, if unable to decide,
“don’t know.” The subjects were allowed to respond without time constraints.
The response was entered into the computer by the experimenter, clicking with
the mouse on the appropriate field shown in the corner of the monitor. The next
cycle followed. There was no mention of the number of image sequences to be
presented or the ratio of real to synthetic image sequences (although it is
reasonable to assume that the subjects would think it might be half-and-half).
At the end of the presention of all sixteen stimuli, a new experiment was
prepared and the file with the collected responses was kept for evaluation.

11.10.2.2 Results and discussion Main results: A summary of the results
from this experiment is shown in Table 11.1. Results from Experiment 1 “Single
Presentations.” The column measures are means, standard deviation, and sig-
nificance from chance. The average of the correct identification of the image
sequences as either real or synthetic, for all twenty-two subjects on all sixteen
image sequences presented, was 54.26%. That number is not significantly
different from chance level (50%), as was verified by a t-test. The results are
similar when either single-word utterances or sentences were considered sepa-
rately. (There were three subjects who correctly identified the image sequences
at or above 75%, and none below 25%.)

Table 11.1 Results from Experiment 1 “Single presentations.” The column
measures are means, standard deviation, and significance from chance.

22 subjects Mean SD p<

All utterances
% correct 54.26 15.72 0.3
% of DK responses 12.50 16.70

Single words
% correct 52.84 16.78 0.5
% of DK responses 12.50 19.29

Sentences
% correct 55.68 21.73 0.3
% of DK responses 12.50 17.25
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From the real image sequences presented, 74.43% were detected as such,
compared with 34.09% of the synthetic image sequences, which means that
65.91% of the synthetic image sequences were detected incorrectly.

These results suggest that when image sequences are presented to the sub-
jects, on average they are unable to tell whether the presented image sequence is
synthetic or real.

Additional details: On average, 12.5% of the responses were “DK,” where
the subjects could not decide if the image sequence was either real or synthetic.
These “DK” responses were considered as incorrect responses. This can be
justified with relation to the aim of the experiment, which was to gauge the level
of positively detecting the animated from the real, and hence the DK responses
do not tell them apart.

In addition, a separate analysis was made with regard to subjects who had
prior exposure to similar experiments. The results show no significant differ-
ence in performance between those who had prior exposure to similar experi-
ments and those who did not (for details see Geiger et al. 2003). As there was no
significant advantage (or disadvantage) to prior exposure to the other experi-
ments, we regarded the twenty-two subjects as one group.

Regarding particular synthetic utterances, three single-word utterances and
one sentence were recognized as synthetic in all cases, suggesting that most
synthetic image sequences were evenly distributed with regard to the ability to
recognize them as such.

This experiment measures best the impression one gets from a single pre-
sented image sequence, whether it is real or animated.

11.10.3 Experiment 2: Fast single presentations

This experiment is basically the same as the previous one, with the difference
being that in this experiment the image sequences followed each other with only
1 s intervals between them. Subjects were asked to respond very rapidly, either
during the presentation of the image sequence itself or the following 1 s interval.
In performing this experiment, we wanted to examine whether the differences
between real and synthetic image sequences would be more evident if subjects
could compare one to another in rapid succession. The other differences are
detailed below.

11.10.3.1 Method Stimuli: Eighteen image sequences were randomly
chosen from the corpus for each subject, half of which were real and half
synthetic, not necessarily from the same utterances. Eight image sequences
were of single-word utterances and ten of sentences, in equal numbers of real
and synthetic. As in Experiment 1, the real audio accompanied all the image
sequences.
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Participants: Twenty-one subjects participated in this experiment (eleven
females and ten males); eighteen were native speakers of American English. For
eight subjects this was the first encounter with an experiment; seven had
participated in one similar experiment before this one and six had participated
in two previous experiments.

Procedure: The procedure was similar to that in Experiment 1. Instead of
presenting each image sequence and pausing for the subject’s response after
each presentation, here the image sequences were presented in blocks of six. In
each block the image sequences were presented one after the other with 1 s
intervals between them. During the intervals the X was displayed.

11.10.3.2 Results and discussion The results from this experiment are
shown in Table 11.2. The average correct identification for the twenty-one
subjects was 52.12%, which is not significantly different from chance (50%).
(There were no subjects with correct identification rates above 75% or below
25%.) As in Experiment 1, correct identification of the real image sequences
(66.67%) was higher than that of the synthetic ones (37.57%).

These results suggest that even when the presentations of the image sequen-
ces follow one another rapidly, the subjects, on average, are unable to distin-
guish the real from the synthetic image sequences. As in Experiment 1, the prior
exposure to similar experiments did not affect performance systematically or
significantly.

As seen in Table 11.2, the average correct identification for real and synthetic
image sequences is 50% for single-word utterances and 58.45% for sentences.
Neither is significantly different from chance (p < 1; p < 0.2 respectively) and
neither is significantly different from the other (p < 0.2). One possible explanation
for this slight difference is that the subjects had a longer time in which to respond
when sentences were presented than when single words were presented.

Table 11.2 Results from Experiment 2 “Fast single presentations.” The column
measures are means, standard deviation, and significance from chance.

21 subjects Mean SD p<

All utterances
% correct 52.12 15.66 0.5
% of DK responses 2.65

Single words
% correct 50.00 14.79 1
% of DK responses 1.19

Sentences
% correct 53.81 20.61 0.2
% of DK responses 4.76
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On average, in only 2.6% of the cases did the subjects respond with a DK
response. As before, this was considered an incorrect response. The low DK
response level suggests that fast presentation makes the experiment more
similar to a two-way forced-choice experiment.

11.10.4 Experiment 3: Pair presentations

In this experiment, image sequence pairs of the same utterance were presented
as stimuli, where one sequence was real and the other was synthetic (but
presented in randomized order). The subject’s task was to tell the order of the
presented real and synthetic image sequences. In the previous experiments the
utterances were presented singly, making direct comparisons of the real and
synthetic image sequences of the same utterance difficult. The following experi-
ment addresses this concern.

11.10.4.1 Method Stimuli: Sixteen utterances were randomly chosen from
the corpus. This gave thirty-two image sequences, one real and one synthetic
from each utterance. Half of the utterances were single words and half senten-
ces. The order of presentation within each pair was also random. There was no
audio input in this experiment.

Participants: Participants in this experiment were twenty-two subjects (ten
females and twelve males) of whom nineteen were native speakers of American
English. For eight subjects this was the first presentation of an experiment;
another eight subjects had participated beforehand in one similar experiment
and another six subjects had participated before in two similar experiments.

Procedure: The instructions to the subject were: “You will be presented with
two image sequences, of the same utterance, one after the other with an interval
of 1 s between the end of the first and the beginning of the second. One image
sequence is real and the other synthetic appearing in random order. Please
indicate the order of the presentation: “real-synthetic,” “synthetic-real,” or
“don’t know” (DK). Take your time to answer it.” In the interval between the
image sequences the X reappeared and the subject was asked to fixate on it.

11.10.4.2 Results and discussion Main results: A summary of the results
is given in Table 11.3. The average score for correctly identifying the order of
the real and the synthetic image sequences, for the twenty-two subjects, was
46.59%, which is not significantly different (p < 0.5) from chance level (50%).
The correct identification rate was similar for single-word and sentence utter-
ances (45.45% and 47.73% respectively). There were three subjects with above
75% correct identification and one below 25%. These results suggest that even
when pairs of real and synthetic image sequences of the same utterances were
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presented directly one after the other, subjects are unable to tell the synthetic
from the real.

Additional results: The average number of DK responses was 28.68%. As
mentioned before, these were considered as incorrect. As in Experiment 1, prior
exposure to similar experiments did not affect performance systematically or
significantly. On Experiments 1 to 3, which can be thought of as “Turing-like
tests,” the subjects, on average, were unable to visually distinguish between the
animated and the real image sequences.

11.10.5 Experiment 4: Visual speech recognition

In this experiment, subjects were asked to lipread real and synthetic animations
of the same utterances when presented without audio. The main difference
between this experiment and the ones above was the task: in this experiment
the subjects were asked to tell what Mary101 said, reading her lips rather than
judging if the image sequences were real or animated.

11.10.5.1 Method Stimuli: Each subject was presented with the real and
the synthetic image sequences of sixteen utterances, which were randomly
chosen from the entire corpus. Eleven utterances were single words and five
were sentences. Each utterance was presented twice to each subject, once as a
real image sequence and once as synthetic. The image sequences were pre-
sented to each subject in random, non-consecutive order to avoid direct priming
by the same utterance. On average, the same number of either real or synthetic
image sequences were presented first in an utterance.

Participants: Eighteen subjects (eight females and ten males) participated in
this experiment, of whom sixteen were native speakers of American English.

Table 11.3 Results from Experiment 3 “Pair presentations.” The column
measures are means, standard deviation, and significance from chance.

22 subjects Mean SD p<

All utterances
% correct 46.59 21.28 0.5
% of DK responses 28.69

Single words
% correct 45.45 27.43 0.5
% of DK responses 28.41

Sentences
% correct 47.73 21.70 0.7
% of DK responses 28.98
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All had participated in one or more of the experiments above. All were
proficient in English.

Procedure: The subject was instructed to “read the lips” of Mary101 and at
the end of the stimulus presentation, tell verbally what the utterance, or any part
of it, was. As in the previous experiments, at first, the subject was asked to fixate
on the X and move the eyes freely once the image sequence appeared. After a
verbal prompt of “Ready” by the experimenter, the image sequence was shown.
At the end of it, the X reappeared. After the subject’s verbal response the
experimenter entered the response into the computer by using its keyboard.
Thereafter a new cycle started. The subject was encouraged to respond to the
whole utterance; however a response to any part of it was also considered valid.
When the subject had no idea as to the content of the utterance, an appropriate
notation was entered. The evaluations of the correct responses were made
separately on three different levels: the number of correct responses to whole
words, to syllables, and to phonemes. Once all the subjects were tested, the
average responses were calculated.

11.10.5.2 Results and discussion A summary of the results is given in
Tables 11.4 and 11.5. The eighteen subjects were presented with thirty-two
image sequences each. Due to the different lengths of the sentences and words
and due to the random selection of the utterances to be presented to each subject,
the total number of words, syllables, and phonemes was different for each
subject. However, as seen from Table 11.4, the average number of words
presented to each subject was 65.56, which comprised 85.9 syllables or 224.6
phonemes. The subjects responded on average to 81.42% of all the image
sequences presented (real and synthetic); most of the responses were incorrect.
The high rate of response indicated familiarity with the mode of Mary101’s
speech whether presented as real or synthetic image sequences.

Average correct recognition of whole words from the real and synthetic
image sequences together was 10.74%, that of syllables 12.4%, and that of
phonemes, 25.6%, all significantly different from 0 (the significance level is not
shown in the table). That level of correct phoneme recognition is similar to the

Table 11.4 Numbers of subjects and stimuli, and mean numbers of words,
syllables, and phonemes used in Experiment 4, “Visual speech recognition.”

18 subjects stimuli words syllables phonemes

All utterances 32 65.56 85.89 224.56
Single words 22 22 32.93 90.93
Sentences 10 44.27 53.60 135.60
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range reported in the literature (Bernstein et al. 2000b), but the level is lower for
words.

The differential responses to real and synthetic image sequences is what
interests us most in this account. For all the utterances presented, the subjects
responded on average to 72.92% of the synthetic image sequences as compared
with a rate of 89.93% responses to the real. That suggests higher familiarity with
the real image sequences than with the synthetic. As seen in Table 11.5, on
average, the correct recognition of words, syllables, and phonemes was signifi-
cantly higher when real image sequences were presented (14.52% correct word,
16.29% correct syllable, 30.01% correct phoneme recognition) than when
synthetic ones were presented (6.96%, 8.52%, 21.19% respectively). This
relationship holds for the case when all the utterances are considered together
(as above), as well as when single words or sentences are considered alone. This
indicates that the animated image sequences are not as good for lipreading as the
real recordings.

In most cases when the participants tried to figure out what was uttered, they
moved their own lips trying to mimic the mouth movements they saw on the
screen without uttering any sound. Also, when the participants were casually
asked if they could tell if there was any difference between the image sequences,

Table 11.5 Percentage of responses and percentage correct identification of
words, syllables, and phonemes for Experiment 4, “Visual speech recognition.”

18 subjects responses words syllables phonemes

All utterances
synthetic and real 81.42 10.74 12.40 25.60
synthetic only (S) 72.92 6.96 8.52 21.19
real only (R) 89.93 14.52 16.29 30.01
t (difference S−R) –3.595 –4.004 –5.102
p< 0.01 0.001 0.001

Single words
synthetic and real 83.59 10.35 14.42 33.31
synthetic only (S) 76.26 6.06 9.45 28.07
real only (R) 90.91 14.65 19.40 38.55
t (difference S−R) –3.308 –3.989 –4.196
p< 0.01 0.001 0.001

Sentences
synthetic and real 76.67 11.00 11.17 20.45
synthetic only (S) 65.56 7.49 8.04 16.52
real only (R) 87.78 14.51 14.30 24.38
t (difference S−R) –2.278 –2.496 –3.132
p< 0.05 0.05 0.01
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or if they were real or synthetic, they could not. In most cases they thought all
the image sequences were real.

11.10.6 General discussion

The Mary101 system has given us the opportunity to compare the perception of
real and synthetic image sequences of the same utterances, where only the
mouth region was animated and the rest of the talking face was that of the
real image sequence. Eye movement and facial expression were identical in
both real and synthetic image sequences of an utterance. The advantage is that
we were able to perform comparisons using elements of visual speech alone and
no other elements of the images. This is different from previous evaluations of
animated speech where either entire 3Dmodel faces or comparisons of different
types of images were made. As a result, our method also allowed Turing-like
tests of visual speech animation.

The first three experiments (Experiments 1–3), each a modified version of the
Turing test, were designed to gauge the level of success in recognizing the
animated from the real image sequences of the utterances. Each experiment has
shown that, on average, the participants could not tell the synthetic from the
real. These results held whether the image sequences were presented singly with
time for scrutiny (Experiment 1), presented singly with little time to respond
(Experiment 2), or presented in pairs, allowing comparison of the real and the
synthetic image sequences of the same utterance (Experiment 3).

We refrained from using a simultaneous side-by-side presentation of the
image sequences of the same utterances, since the subjects would have shifted
their gaze from one image to the other while the utterance was progressing. As a
result, we believe the subjects would have compared features instead of focus-
ing on the impression the moving mouth gave throughout the utterances.

In addition, it appears that adding the real audio to the stimuli (Experiments 1
and 2), did not enhance the visual detection of the synthetic from the real, as the
detection levels without audio input (Experiment 3) were not significantly
different from those from the former ones. In future work, we intend to try
Experiment 3 with audio input.

Finally, although the animation of Mary101 achieved the ultimate goal of
passing the Turing test, i.e., viewers could not distinguish the animated from the
real, it did not satisfactorily pass a more severe scrutiny. Namely, intelligibility
of the real image sequences was significantly higher than that of the synthetic
(Experiment 4). This was true for recognition of whole words, syllables, and
phonemes. This suggests that the animation is not as good as we would like it to
be for the purpose of rehabilitation and language learning. Further analysis of
the recognition levels of the individual animated phonemes has to be made and
compared with those of the real ones.
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11.11 Further work

The main limitation of our technique is the difficulty of re-compositing synthe-
sized mouth sequences into background sequences that involve (1) large
changes in head pose, (2) changes in lighting conditions, and (3) changes in
viewpoint. All these limitations can be alleviated by extending our approach
from 2D to 3D. It is possible to envision a realtime 3D scanner that is capable of
recording a 3D video corpus of speech. Alternatively, techniques such as those
presented by Guenter et al. (1998), Pighin et al. (1998) or Blanz and Vetter
(1999) can be used to map a 2D video corpus into 3D.

The geodesic trajectory synthesis equations described by Brand (1999) and
Brand and Hertzmann (2000) are analogous to (and more sophisticated than) the
trajectory synthesis techniques we use (Eq. (11.12) and Eq. (11.17)). Although
those equations require considerably more training data, it is possible they could
lead to higher levels of videorealism.

Clearly the face is used as a conduit to transmit emotion, so one possible
avenue to explore is the synthesis of speech under various emotional states. It is
possible to record various corpora under different emotional states and create
MMMs for each state. During synthesis, the appropriate MMM is selected. An
open question to explore is emotional dynamics: how does one transition from a
happy MMM to a sad MMM? Additionally, there is also a need to learn
generative models of head movement and eye movement tailored for the type
of speech being synthesized.

While the coarticulation model proposed in this paper produces synthetic
animations that are realistic, it is still necessary to examine the degree with
which the model agrees with the recorded data. Does the model predict the
coarticulation behavior in real human speech?

Finally, the psychophysics evaluations of our synthetic animations suggest
that our animation models are not sophisticated enough yet to achieve speech
that is as intelligible as natural speech. Further work needs to be performed to
improve intelligibility. In addition, other types of psychophysical evaluations
need to be performed, such as evaluating the intelligibility of our system under
noisy speech conditions, or evaluating the aesthetic appeal of Mary101 in
certain application scenarios.
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11.13 Appendix

11.13.1 Flow concatenation

Given a series of consecutive images I0, I1 . . . In, we would like to construct the
correspondence map C0(n) relating I0 to In. We focus on the case of the three
images Ii−1, Ii, Ii+1 since the concatenation algorithm is simply an iterative
application of this three-frame base case. Optical flow is first computed between
the consecutive frames to yield Ci−1, Ci, Ci+1. Note that it is not correct to
construct C(i−1)(i+1) as the simple addition of C(i−1)i + Ci(i+1) because the two
flow fields are calculated with respect to two different reference images. Vector
addition needs to be performed with respect to a common origin.

Our concatenation thus proceeds in two steps: to place all vector fields in the
same reference frame, the correspondence map Ci(i+1) itself is warped back-
wards (Wolberg 1990) along C(i−1)i to create Cwarped

iðiþ1Þ . Then C
warped
iðiþ1Þ and Cði�1Þi

are both added to produce an approximation to the desired concatenated
correspondence:

Cði�1Þðiþ1Þ ¼ Cði�1Þi þ C
warped
iðiþ1Þ (11:23)

A procedural version of our backward warp is shown in Figure 11.11.
“BILINEAR” refers to bilinear interpolation of the four pixel values closest
to the point (x,y).

11.13.2 Forward warping

Forward warping may be viewed as “pushing” the pixels of an image I along the
computed flow vectors C. We denote the forward warping operation as an
operator W(I,C) that operates on an image I and a correspondence map C,
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producing a warped image Iwarped as final output. A procedural version of our
forward warp is shown in Figure 11.12.

It is also possible to forward warp a correspondence map C′ along another
correspondence C, which we denote as WðC0;CÞ. In this scenario, the x and y
components of

C0ð~pÞ ¼ dx
0ð~pÞ; d 0yð~pÞ

n o
are treated as separate images, and warped individually along

C: Wðdx0;CÞ and Wðdy0;CÞ.

11.13.3 Hole-filling

Forward warping produces black holes that occur in cases where a destination
pixel is not filled in with any source pixel value. This occurs due to inherent
non-zero divergence in the optical flow, particularly around the region where the
mouth is expanding. To remedy this, a hole-filling algorithm (Chen and
Williams 1993) was adopted that pre-fills a destination image with a special
reserved background color. After warping, the destination image is traversed in
rasterized order and the holes are filled in by interpolating linearly between their
non-hole endpoints.

for j = 0...height,
for i = 0...width,

x = i + dx(i,j);
y = j + dy(i,j);
Iwarped(i,j) = BILINEAR (I, x, y);

Figure 11.11 BACKWARD WARP algorithm.

for j = 0height
for i = 0width,

x = ROUND (i + α dx(i,j));
y = ROUND (j + α dy(i,j));
if (x,y) are within the image

Iwarped(x,y)= I(i,j);

Figure 11.12 FORWARD WARP algorithm.
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In the context of our synthesis algorithm in Section 11.6.3, hole-filling can be
performed before blending, or after blending. Throughout this chapter, we
assume hole-filling is performed before blending, which allows us to subsume
the hole-filling procedure into our forward warp operator W and simplify our
notation. Consequently (as in Eq. (11.6)), the blending operation becomes a
simple linear combination of the hole-filled warped intermediates Iwarpedi .

In practice, however, we perform hole-filling after blending, which reduces
the size of the holes that need to be filled, and leads to a considerable reduction
in synthesis blur. Post-blending hole-filling requires a more complex blending
algorithm than that noted in Eq. (11.6) because the blending algorithm now
needs to keep track of holes and non-holes in the warped intermediate images
I
warped
i :

Imorphðx; yÞ ¼

P
I
warped
i

6¼hole
�iI

warped
i ðx; yÞ

P
I
warped
i

6¼hole
�i

(11:24)

Typically an accumulator array is used to keep track of the denominator term in
Eq. (11.24) above. The synthesized mouth images shown in Figure 11.6 were
generated using post-blending hole-filling.
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12 Animated speech: research progress
and applications

D.W. Massaro, M.M. Cohen, M. Tabain,
J. Beskow, and R. Clark

12.1 Background

This chapter is dedicated to Christian Benoît, who almost single-handedly
established visible speech as an important domain of research and application.
During and after his residence in our laboratory for the academic year 1991–92,
Christian and his endearing partner Elisabeth were an important part of our
lives. We shared in their marriage and the births of their two children, as well as
in many professional challenges and puzzles. We hope that this book provides a
legacy for Christian’s family and friends, and helps maintain a memory of his
personal and professional value.

The human face presents visual information during speech production that is
critically important for effective communication. While the voice alone is
usually adequate for communication (and can be turned into an engaging
instrument by a skilled storyteller), visual information from movements of the
lips, tongue, and jaws enhances intelligibility of the message (as is readily
apparent with degraded auditory speech). For individuals with severe or pro-
found hearing loss, understanding visible speech can make the difference
between communicating effectively with others or a life of relative isolation.
Moreover, speech communication is further enriched by the speaker’s facial
expressions, emotions, and gestures (Massaro 1998b, Chapters 6, 7, 8).

One goal of our research agenda is to create animated agents that produce
accurate auditory and visible speech, as well as realistic facial expressions,
emotions, and gestures. The invention of such agents has awesome potential to
benefit virtually all individuals, but especially those with hearing problems,
including the millions of people who acquire age-related hearing loss every
year, and for whom visible speech and facial expression take on increasing
importance. The animated characters that we are developing can be used to
train individuals with hearing loss to “read” visible speech, to improve their
processing of limited auditory speech, and to enhance their speech production,
and will thereby facilitate access to online information presented orally, and
improve face-to-face communication with either real people or lifelike com-
puter characters.
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For the past 24 years, we at the Perceptual Science Laboratory at University
of California at Santa Cruz (PSL-UCSC) have been improving the accuracy of
visible speech produced by Baldi, an animated talking agent (Massaro 1998b,
Chapter 13). Baldi has been used effectively to provide curricular instruction
and to teach vocabulary to profoundly deaf children at the Tucker Maxon Oral
School in Portland Oregon, in a project funded by an NSF Challenge Grant
(Massaro, et al. 2000; Barker 2003). The Baldi technology in the service of
vocabulary learning has been tested in several studies. A detailed review of
these tests with deaf and hard-of-hearing students in the learning of speech and
language is given in Massaro 2006a, 2006b. Several evaluation experiments
showed that both hard-of-hearing and autistic children learned many new
words, grammatical constructions, and concepts (Massaro and Bosseler 2003;
Massaro and Light 2004a), proving that the application provided an effective
learning environment for these children. The research strategy insured that any
learning was due to the intervention itself rather than from outside of the lesson
environment. Students learned all of the items that they were specifically tutored
on and not the items that were only tested. In addition, a delayed test given more
than 30 days after the learning sessions took place showed that the children
retained over 85 percent of the words that they learned. This learning and
retention of new vocabulary, grammar, and language use is a significant accom-
plishment for these children.

Massaro (2006b) used the same multisensory approach with a computer-
animated agent to evaluate the effectiveness of teaching vocabulary to begin-
ning elementary students learning English as a second language. Children,
whose native language was Spanish, were tutored by Timo,1 a new animated
character based on Baldi, and tested on English words they did not know. The
children learned the words when they were tutored but not words that were
simply tested. This result replicates the previous studies carried out on hard-of-
hearing and autistic children with Baldi as the animated conversational tutor. In
other experiments, we have also observed that Baldi’s unique characteristics
allow a novel approach to tutoring speech production to both children with
hearing loss (Massaro and Light 2004b) and adults learning a new language
(Massaro and Light 2003).

Given the success of the tutoring program, it is important to assess whether
the facial animation is a significant influence on learning vocabulary. To
evaluate this question, an experiment compared to what extent the face facili-
tated vocabulary learning relative to the voice alone (Massaro and Bosseler
2006). The vocabulary learning consisted of both the receptive identification of
pictures and the production of spoken words. Five autistic children were tutored
in vocabulary with and without the face. Each child continuously learned to a
criterion two sets of words with the face and voice and two sets with just
the voice and without the face. The rate of learning was significantly faster
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and the retention was better with than without the face. Although two of the
children did not show a large advantage with the face, the research indicates that
at least some autistic children benefit from the face. The better learning and
retention with the face was most likely due to the additional information
provided by the face but it is still possible that the face was more engaging
and motivating which in turn would benefit performance. In either case, it
shows the value of animated tutors in the teaching of vocabulary.

The same pedagogy and technology has been employed for language learn-
ing with autistic children (Bosseler and Massaro 2004). While Baldi’s visible
speech and tongue movements probably represent the best of the state of the art
in real-time visible speech synthesis by a 3D talking face, speech perception
experiments have shown that Baldi’s visible speech is still not as effective as
video recordings of human faces. Thus, we face the challenge of improving
animated speech even more to match that produced by real persons.

12.2 Visible speech synthesis

Visible speech synthesis is a subfield of the more general areas of speech
synthesis and computer facial animation. The goal of the visible speech syn-
thesis in the PSL-UCSC has been to obtain a mask with realistic motions, not to
duplicate the musculature of the face to control this mask. Our choice is to
develop visible speech synthesis in a manner that has proven most successful
for audible speech synthesis. We call this technique terminal analogue synthesis
because its goal is to simply mimic the final speech product rather than the
physiological mechanisms that produce it. Our own current software (Cohen
and Massaro 1993, 1994a; Cohen et al. 1995; Massaro 1998b) is a descendant
of Parke’s (1974, 1975, 1982) software and his particular 3D talking head. Our
modifications over the last 15 years have included additional and modified
control parameters, texture mapping, three generations of a tongue (which
was lacking in Parke’s model), a new visual speech synthesis coarticulatory
control strategy, controls for paralinguistic information and affect in the face,
text-to-visible speech synthesis, alignment with natural speech, direct auditory
speech to visible speech synthesis, and bimodal (auditory–visual) synthesis
(Massaro 1998b; Massaro et al. 2000). Most of our current parameters move
vertices (and the polygons formed from these vertices) on the face by geometric
functions such as rotation of the jaw or translation of the vertices in one or more
dimensions (such as lower and upper lip height, or mouth widening). Other
parameters work by interpolating between two different face subareas. Many of
the face shape parameters such as cheek, neck, and forehead shape, as well as
some affect parameters such as smiling use interpolation.

Consisting of about 40 000 lines of C code, the synthesis program runs in
realtime on both SGI and PC platforms. Our talking head is available for
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research purposes to educational and governmental institutions free of charge.
When combined with the other modules in the CSLU toolkit,2 for example,
students and researchers can productively explore problems in speech science
and computer-animated agents. We have also added to the toolkit additional
modules for stimulus manipulation, response recording, and data analyses for
psychology experiments in speech and language processing,3 allowing even
more access to and utilization of our technology and research findings.

In our synthesis algorithm, each segment is specified with a target value for
each facial control parameter. Coarticulation, defined as changes in the articu-
lation of a speech segment due to the influence of neighboring segments, is
based on a model of speech production using rules that describe the relative
dominance of the characteristics of the speech segments (Saltzman andMunhall
1989; Löfqvist 1990). For each control parameter of a speech segment, there are
also temporal dominance functions dictating the influence of that segment on
the control parameter. These dominance functions determine independently for
each control parameter howmuch weight its target value carries against those of
neighboring segments, which will in turn decide how the target values are
blended. Figure 12.1 illustrates how this approach works for a lip-protrusion
control parameter for the word “stew.” The dashed curve illustrates a simple
ogival interpolation between the segment target values (indicated by circles in
the bottom panel), which is at odds with what actually occurs in speech
production (Kent and Minifie 1977; Perkell and Chiang 1986). The top panel
shows the dominance functions for lip protrusion for each phoneme in the
word. Because the functions for /s/ and /t/ are relatively weak compared to
that for /uw/, the resulting protrusion (illustrated by the solid curve in the bottom
panel) for /uw/ comes earlier in time.

Our coarticulation algorithm also produces realistic speech with changes in
speaking rate. When the speaking rate is increased, the durations for segments
are decreased but we need not otherwise change dynamic parameters of the
dominance functions. By shrinking segment durations, the dominance functions
move closer to each other and overlap more. This outcome produces under-
shooting of the target values, which also occurs when natural speech is articu-
lated more quickly. Thus, the model can handle changes in speaking rate in a
natural fashion. The PSL-UCSC coarticulation algorithm has been successfully
used in American English and Mexican Spanish (Massaro 1998b, Bands 1.1,
12.5), and French (Le Goff and Benoît 1997). More recently, Baldi now speaks
Italian (Cosi et al. 2002b) and Arabic (Ouni et al. 2003).

Important extensions of our dominance function-based algorithm have been
implemented and tested by several researchers (Le Goff 1997; Le Goff and
Benoît 1997; Cosi et al. 2002a). Rather than use a single exponential-based
dominance function form, Le Goff (1997) generalized the shape of that dom-
inance function, yielding several wider functions. In addition, the target values
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and dynamic parameters of the system were automatically trained using facial
parametric measurements of a corpus consisting of short French utterances of
the form “c’est pas V1CV2CV1z?”where V1 and V2 were from the set /a,I,y/ and
C was from the set /b,d,g,l,R,v,w,z/. Similar explorations were carried out by
Cosi et al. (2002a), who added some additional terms to the dominance
functions to represent temporal resistance of particular segments to the influ-
ence of neighbors, and also some further shape variations to the dominance
function. This system was trained on six facial parameters measured from a
small set of symmetric VCVutterances. Although the fit to these parameters was
good, it is uncertain how well the results might generalize to a larger corpus,
since in that work a plethora of parameters were highly trained on the small set
of utterances.

More parsimonious implementations of coarticulation have also been pro-
posed. In the RULSYS procedure of Gränstrom et al. (2002), a control param-
eter is either defined or undefined for a given segment. If undefined, the control
parameter would not be specified for that phoneme and, therefore, it would be
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Figure 12.1 Top panel shows dominance functions for lip protrusion for the
phonemes in the word “stew.” Bottom panel shows the resulting function of
the coarticulated control parameter based on these dominance functions (solid
line) versus a function based on an ogival interpolated non-coarticulated
pattern (dashed line).
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free to take on the value of the segment’s context. Rounding for /r/ is undefined,
for example, because it can be rounded or not depending on context. The
undefined parameters take on the values determined by linear interpolation
between the closest segments that have defined parameters. We look forward
to new solutions to implementing coarticulation and their empirical evaluation.

A central and somewhat unique quality of our work is the empirical evalua-
tion of the visible speech synthesis, which is carried out hand-in-hand with its
development. These experiments are aimed at evaluating the realism of our
speech synthesis relative to natural speech. Realism of the visible speech is
measured in terms of its intelligibility to members of the linguistic community.
The goal of this research is to learn how our synthetic visual talker falls short of
natural talkers and to modify the synthesis accordingly in order to bring it more
in line with natural visible speech. Successive experiments, data analyses of the
confusion matrices, and modifications of the synthetic speech based on these
analyses have led to a significant improvement in the quality of our visible
speech synthesis (Massaro 1998b).

12.3 Illustrative experiment of evaluation testing

Analogous to the evaluation of auditory speech synthesis (Benoît and Pols 1992),
evaluation is a critical component of visible speech synthesis. As described in
Massaro (1998b), several decisions had to be made about the test items and data
analysis. As with most decisions of this type, there are trade-offs and conflicting
constraints so that there is no apparently unique solution. In deciding what test
items to present to subjects, arguments can be made for the use of speech
segments, words, or sentences. Speech segments in the form of nonsense words
have the advantage of being purely sensory information with no possible con-
tribution from top-down context. Sentences, in contrast, represent a situation that
is more analogous to the use of speech in real-world contexts. In our initial series
of evaluations, we chose the intermediate level of single words for a number of
reasons. Test words make use of the text-to-speech component of the synthesis
and permit the testing of consonant and vowel segments as well as consonant
clusters and diphthongs. Test words are also very easy to score if we require that
subjects give only single words as responses. Because we want to compare our
synthetic talker to a real talker, we use a bimodally recorded test list of one-
syllable words in natural speech (Bernstein and Eberhardt 1986b).

Our illustrative study uses the methodology of Cohen et al. (1996) and
Massaro (1998b) in which a direct comparison is made between people’s ability
to speechread a natural talker and our synthetic talker. We presented silently for
identification monosyllabic English words (such as sing, bin, dung, dip, seethe)
produced either by a natural speaker (Bernstein and Eberhardt 1986b) or our
synthetic talker, randomly intermixed. Each evaluation test used a unique set of
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parameter values and dominance functions for each phoneme as well as our
blending function for coarticulation. The AT&T text-to-speech (TtS) module
was utilized to provide the phonemic representation for each word and
the relative durations of the speech segments, in addition to synthesizing the
auditory speech presented as feedback (Sproat 1998). Other characteristics
such as speaking rate and average acoustic amplitude were equated for the
natural and synthetic talker. The speech on the videodisk was articulated in
citation form and thus had a relatively slow speaking rate. The most recent
evaluation experiments are presented in Massaro (1998b, Chapter 13). With
three successive iterations of modifying Baldi’s control parameters, the overall
difference in viseme accuracy between the natural talker and Baldi was
decreased from .22 to .18 to .10; baseline performance was roughly .74.

In a new modification, we defined two new control parameters for retraction
and rounding, which simulate facial muscle actions. For each point involved in
the parameter, the parameter value is multiplied by three coefficients for x, y,
and z of a vector that is then added to the original point location. Such a
mechanism might also be characterized as a patch morph. A change in each
of these parameter values modifies the face from one neutral shape (for exam-
ple, unrounded) to another shape (rounded). These two control parameters
allow us to characterize the visible speech in terms of more phonetically
based terms, which should allow us to more easily simulate actual speech.
The coefficients for these two parameters were derived from physical measure-
ments of one speaker, although we might also derive them from high resolution
laser scans of speakers making these particular gestures.

Twelve college students who were native speakers of American English
served as subjects, in two 40-minute sessions each day for two days. Up to
four at a time were tested in separate sound attenuated rooms under control of
the SGI-Crimson computer, with video from the laserdisk (the human talker) or
the computer being presented over 13″ color monitors. On each trial they were
first presented with a silent word from one of the two faces and then typed in
their answer on a terminal keyboard. Only actual monosyllabic English words
were accepted as valid answers from a list of about 12 000 derived mainly from
the Oxford English Dictionary. After all subjects had responded, they received
feedback by a second presentation of the word, this time with auditory speech
(natural or synthetic depending on whether the face was natural or synthetic)
and with the word in written form on the left side of the video monitor.

There were 264 test words, and each word was tested with both synthetic and
natural speech, for a total of 2 × 264 = 528 test trials. For the counterbalancing of
the test words and presentation modes, the subjects were split into two groups.
Each group received the same random order of words but with the assignment of
the two faces reversed. Five unscored practice trials using additional words
preceded each experimental session of 132 test words.
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By comparing the overall proportion correct and analyzing the perceptual
confusions, we can determine how closely the synthetic visual speech matches
the natural visual speech. The questions to be answered are what is the extent of
confusions, and how similar are the patterns of confusions for the two talkers.
This analysis can be simplified by ignoring confusions that take place between
visually similar phonemes. Because of the data-limited property of visible speech
in comparison to audible speech, many phonemes are virtually indistinguishable
by sight, even from a natural face, and so are expected to be easily confused. To
eliminate these likely confusions from consideration, we group visually indistin-
guishable phonemes into categories called visemes. The concept of viseme has
been traditionally used to parallel that of phoneme – in other words, a difference
between visemes is significant, informative, and categorical to the perceiver; a
difference within a viseme class is not. In general, then, we expect confusions to
take place within visemes but not between them. However, some confusion does
take place between viseme categories. This is partly because of the difficulty of
speechreading. But also, as with most categories, visemes are not sharply defined
(they are “fuzzy”), and any sharp definitions imposed are therefore somewhat
arbitrary and inaccurate. Even so, it is worthwhile to use some standard viseme
groupings in order to assess how well the more meaningful visible speech
differences are perceived. As in our previous studies (Massaro 1998b), we
grouped the consonants into nine viseme categories. The results were first pooled
across experimental sessions and subjects to increase their reliability.

Figure 12.2 presents the word-initial consonant viseme accuracy and con-
fusions for natural (left panel) and synthetic (right panel) speech. The area of

Response

Natural speech

S
tim

ul
us

p

p

f

f

t

t

s

s

l

l

r

r

w

w

��

�

θ

θ
Response

Synthetic speech

S
tim

ul
us

In
iti

al
 v

is
em

e 
(W

R
D

)

p

p

f

f

t

t

s

s

l

l

r

r

w

w

�

�

θ

θ

Figure 12.2 Viseme accuracy and confusions for natural and synthetic visual
speech.

316 D.W. Massaro, M.M. Cohen, M. Tabain, et al.



each circle indicates the proportion of each response to a given stimulus. As
can be seen in the figure, the overall level of performance is relatively com-
parable for the two talkers, except for two major limitations of the synthetic
speech. The initial segment /T/ (as in thick) was frequently identified as /t/ or /l/,
and initial /r/ was often identified as /f/ or /v/. The overall proportion of correct
identification of the initial segment for natural speech (.689) was slightly higher
than that for the synthetic talker (.652). The overall difference in viseme
accuracy between the natural talker and Baldi was .086, indicating that
we achieved a small improvement over our previous set of control parameters.
The correlation of the synthetic and natural talker data yielded a correlation of
r = .927. The ratio of correct identifications for the synthetic and natural talkers
for visemes was 0.946. We turn now to our current work to improve the
animated speech.

12.4 The use of synthetic speech and facial animation

In a few instances, individuals have reacted negatively to the use of synthetic
auditory speech in our applications. Not only did they claim it sounded rela-
tively robotic (in some cases, people thought there was a resemblance to our
California governor in his previous life as a terminator), they were worried that
children may learn incorrect pronunciation or intonation patterns from this
speech. However, this worry appears to be unnecessary. In agreement with the
positive outcomes of direct experimental evaluations described below, Baldi
has been used in many different pedagogical applications at the Tucker-Maxon
School of Oral Education (www.tmos.org), where Baldi tutored quite success-
fully with about sixteen hard-of-hearing children who were about 8 to 14 years
of age (Barker 2003). The students had either hearing aids or cochlear implants,
and were tutored by Baldi an average of about 20 minutes per day. Baldi taught
these children receptive vocabulary directly, and also was used in various
applications reinforcing the school’s curriculum.

As part of the vocabulary tutor, there were recorded speech tasks in which
these students imitated and elicited words prompted by Baldi’s synthetic speech
models. The teachers’ impressions were that these children did use Baldi’s
synthetic speech to produce fairly intelligible words. These students had severe-
to-profound hearing losses (90 dB HL or greater) with varying degrees of
speech intelligibility and delayed vocabulary skills. Productions of these new
words spoken by Baldi seemed to be no better or no worse than their normal
articulatory patterns, but the teachers thought these production tasks were
beneficial to the students. In addition, the teachers were able to correct the
speech synthesizer’s pronunciation of a word when it was initially mispro-
nounced by modifying the text input. This was necessary because they noticed
that when Baldi mispronounced a word or gave it inappropriate accenting,
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students were likely to pronounce or intone the word in a similar manner.
A number of these students, also described in Barker (2003), who began
using Baldi and synthetic speech 7 years ago now have graduated from high
school. Obviously, they were still able to achieve academically despite regular
exposure to synthetic speech at a fairly young age (Barker 2003). It should be
noted that the primary goal was to improve deficit language bases among deaf
and hard-of-hearing children, which was believed to be much more critical to
academic achievement than perfect pronunciation. For example, a student could
read and write quality assignments even though some of the words would be
mispronounced. But, in fact, many of the children’s receptive vocabulary work
with the tutor carried over into intelligible expressive vocabularies.

In addition to these observations, experimental tests demonstrated that
hard-of-hearing children improved their pronunciations of words as a direct
result of Baldi’s tutoring (see Massaro 2006a, for a review). In vocabulary
lessons, the children not only improved in their receptive vocabulary but also
in their productions of these words (Massaro and Light 2004a). In speech
production tutoring on specific speech segments such as /s/, /z/, /t/, and /d/,
the application was successful in teaching correct pronunciation of the target
words and also generalized to the segments in novel words (Massaro and Light
2004b). This is gratifying because the value of synthetic speech like our
animated visible speech tutor is that anything can be said at any time by simply
entering the appropriate written text. Natural speech would require that the
content be prerecorded by voice talent. This constraint would negate the just-
in-time feature of creating lessons. Finally, notwithstanding these justifications,
synthetic auditory speech has improved considerably and the synthetic voice
of the newer Timo is much more natural sounding than Baldi’s original voice.

Analogous arguments exist for facial animation. We have shown that
Baldi can be speechread almost as accurately as a real person. In the Jesse
et al. (2000/01) study described earlier, one of 65 auditory sentences was
randomly presented in noise on each trial, and the hearing participants were
asked to watch and listen to each sentence and to type in as many words as they
could for each sentence. There were three presentation conditions: auditory,
auditory paired with the face of the original talker, and auditory paired with the
face of Baldi. Pairing the original talker with the auditory speech improved
performance by 54% whereas pairing Baldi with the auditory speech gave a
47% improvement. Thus, the large and similar improvement in the two con-
ditions demonstrates that Baldi provides respectable visible speech even though
he is synthetic. Although Timo is based on Baldi, research is in progress to test
whether Timo’s visible speech is as effective as Baldi’s. Given this foundation
in educational practice, we now turn to the importance of science vocabulary,
the unique difficulties it poses, the perceptual and cognitive underpinnings
responsible for these difficulties, and how instruction can ameliorate them.
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12.5 New structures and their control

We have added internal structures both for improved accuracy and to pedagog-
ically illustrate correct articulation. Although there is a long history of using
visible cues in speech training for individuals with hearing loss, these cues have
usually been abstract or symbolic rather than direct representations of the vocal
tract and articulators. The IBM Speechviewer III application4 (Mahshie 1998),
for example, uses cartoon-like displays to illustrate speech articulation accu-
racy. Our goal is to create a simulation that is as accurate as possible, and to
assess whether this information can guide speech production. We know from
children born without sight that the ear can guide language learning. Our
question is whether the eye can do the same, or at least the eye supplemented
with degraded auditory information.

One immediate motivation for developing a hard palate, velum, teeth, and
tongue is their potential utility in language training. Hard-of-hearing children
require guided instruction in speech perception and production. Some of the
distinctions in spoken language cannot be heard with degraded hearing – even
when the hearing loss has been compensated by hearing aids or cochlear
implants. To overcome this limitation, one application of our technology is to
use visible speech to provide speech targets for the child with hearing loss.
Given that many of the subtle distinctions among segments are not visible on the
outside of the face, a speech therapist cannot easily illustrate how articulation
should occur. The skin of our talking head, on the other hand, can be made
transparent or eliminated so that the inside of the vocal tract is visible, or we can
present a cutaway view of the head along the sagittal plane. The articulators can
also be displayed from different vantage points so that the subtleties of articu-
lation can be optimally visualized. The goal is to instruct the child by revealing
the appropriate articulation via the hard palate, velum, teeth, and tongue, in
addition to views of the lips and perhaps other aspects of the facial structure.

Visible speech instruction poses many issues that must be resolved before
training can be optimized. We are confident that illustration of articulation will
be useful in improving the learner’s speech, but, of course, this hypothesis must
be tested, and it will be important to assess how well learning transfers outside
the instructional situation. Another issue is whether instruction should be
focused on visible speech or whether it should include auditory input. If speech
production mirrors speech perception, then we expect that multimodal training
should be beneficial, as suggested by Summerfield (1987). We expect that the
child could learn multimodal targets, which would provide more resolution than
either modality alone. Another issue concerns whether the visible speech targets
should be illustrated in static or dynamic presentations. We plan to evaluate both
types of presentation and expect that some combination of modes would be
optimal. Finally, the size of the instructional target is an issue. Should
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instruction focus on small phoneme and open syllable targets, or should it be
based on larger units of words and phrases? Again, we expect training with
several sizes of targets would be ideal.

12.5.1 Tongue, teeth, hard palate, and velum

We have implemented a palate, realistic teeth, and an improved tongue with
collision detection in our talking head, Baldi. Figure 12.3 shows our new palate
and teeth. A detailed model of the teeth and hard palate was obtained
(Viewpoint Datalabs) and adapted to the talking head. To allow realtime display,
the polygon count was reduced using a surface simplification algorithm (Cohen
et al. 1998) from 16 000 to 1600 polygons. This allowed a faster rendering of
both the face and articulators. We also plan to implement a moveable velum in
the hard palate structure. Figure 12.4 displays the velum in three different states
of opening.

12.5.2 Controlling the tongue

Our synthetic tongue is constructed of a polygon surface defined by sagittal and
coronal b-spline curves. The control points of these b-spline curves are moved

Figure 12.3 New palate and tongue embedded in the talking head.
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singly and in pairs by speech articulation control parameters. Figure 12.5
illustrates the development system for our third-generation tongue. In this
image, taken from the Silicon Graphics computer screen, the tongue is in the
upper left quadrant, with the front pointing to the left. The upper right panel
shows the front, middle, and back parametric coronal sections (going right to
left) along with blending functions just below, which control where front, mid,
and back occur. There are nine sagittal and 3 × 7 coronal parameters, which can
be modified with the pink sliders in the lower right panel. The lower left part of
Figure 12.5 partially illustrates the sagittal b-spline curve and how it is specified
by the control points. For example, to extend the tip of the tongue forward, the

Figure 12.4 Half of palate with velum in three different states of opening.

Figure 12.5 Tongue development system (see text for description).

Animated speech: research progress and applications 321



pair of points E and F is moved to the right, which then pulls the curve along. To
make the tip of the tongue thinner, points E and F can be moved vertically
toward each other.

12.5.3 Handling collisions

The tongue, teeth, and palate introduce some geometric complications, since we
need to make sure that the tongue hits the teeth and palate appropriately and
does not simply travel through them (because they are virtual rather than real).
To control the tongue appropriately, we have developed a fast method to detect
and correct tongue areas that would intrude into areas of the teeth and palate.

The general principle is that once a point P on the tongue surface is found to
be on the wrong side of a boundary (the palate–teeth surface), it is moved back
onto that surface. Thus the problem is decomposed into two main parts:
detection and correction. Detection is determined by taking the dot product
between the surface normal and a vector from P to the surface. The sign of this
dot product tells us what side P is on. To correct the point onto the surface, we
have examined several strategies with varying computational requirements.
One strategy is to compute a parallel projection of the point onto the closest
polygon, or onto an edge or a vertex if it does not lie directly above a polygon.
This has the drawback that the corrected points will not always be evenly
distributed. If the boundary surface is convex, the corrected points could be
clustered on vertices and edges of the boundary surface. This approach is also
relatively slow (about 40 ms for the entire tongue). A more precise (but even
slower) solution takes the vertex normals at the corners of the triangle into
account to determine the line of projection, resulting in a better distribution of
corrected points. In both of the above methods, a search is required to find the
best polygon to correct to.

Collision testing can be performed against the actual polygon surface com-
prising the palate and teeth, but corrections should only be made to a subset of
these polygons, namely the ones that make up the actual boundary of the mouth
cavity. To cope with this, we created a liner inside the mouth, which adheres to
the inner surface. The liner was created by extending a set of rays from a fixed
origin point O inside the mouth cavity at regular longitudes and latitudes, until
the rays intersect the closest polygon on the palate or teeth. The intersection
points thus form a regular quadrilateral mesh, the liner, illustrated in
Figure 12.6. The regular topology of the liner makes collision handling much
faster (several ms for the entire tongue), and we can make all corrections along a
line towards O. With this algorithm, we can omit the polygon search stage, and
directly find the correct quadrilateral of the liner by calculating the spherical
coordinates of a point which would protrude through the palate relative to O.
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Since the hard palate and the teeth don’t change shape over time, we can
speed up the collision testing by pre-computing certain information. The space
around the internals is divided into a set of 32 × 32 × 32 voxels, which contain
information about whether that voxel is ok, not ok, or borderline for tongue
points to occupy. This provides a preliminary screening; if a point is in a voxel
marked ok, no further computation need be done for that point. If the voxel is
borderline, we need to perform testing and possibly correction, if it is not okwe
go straight to correction. Figure 12.7 illustrates an example of the screening
voxel space. In this set of voxels, the shade of each point indicates the voxel
class marking.

12.5.4 Tongue shape training

Aminimization approach has been implemented to train our synthetic tongue to
correspond to observations from natural talkers. The left panel of Figure 12.8
shows the synthetic b-spline curve along with a contour extracted from an MRI
scan in the sagittal plane of a speaker articulating a /d/. The first step in any
minimization algorithm is to construct an appropriate error metric between the
observed and synthetic data. For the present case, we construct a set of rays from
the origin (indicated in Figure 12.8 by the “+” marks interior to the tongue
outline) through the observed points and the parametric curve. The error can

Figure 12.6 Teeth and palate, showing regular quadrilateral mesh liner.
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then be computed as the sum of the squared lengths of the vectors connecting
the two curves. Given this error score, the tongue control parameters (including
tip advancement, tip thickness, top advancement) are automatically adjusted
using a direct search algorithm (Chandler 1969) so as to minimize the error
score. This general approach can be extended to the use of three-dimensional
data, although the computation of an error metric is considerably more complex.

Figure 12.8 Sagittal curve fitting. The left panel shows the sagittal outlines of
the synthetic tongue (solid line) and an outline of a /d/ articulation (points
connected by line) from an MRI scan. The lettered circles give the locations of
the synthetic b-spline curve control points. The center part shows the error
vectors between the observed and synthetic curves prior to minimization. The
bottom part shows the two curves following the minimization adjustment of
control parameters of the synthetic tongue.

Figure 12.7 Voxel space around the left jaw region, with the anterior end to the
right in the picture. Black dots toward the bottom indicate areas where the tongue
points are okay, gray dots toward the topwhere the tongue points are not okay, and
white dots for points that are borderline (neither okay nor not okay).
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12.5.5 Ultrasound measurements

In addition to MRI measurements, we are using data from three-dimensional
ultrasound measurements to train tongue movements. These data correspond to
the upper tongue surfaces for eighteen continuous English sounds (Stone and
Lundberg 1996). Four of these ultrasound surfaces are shown in Figure 12.9.
These measurements are in the form of quadrilateral meshes assembled from
series of 2D slices measured using a rotary ultrasound transducer attached under
the chin. It should be noted that the ultrasound technique cannot measure areas
such as the tip of the tongue because there is an air cavity between the transducer
and the tongue body. We adjust the control parameters of the model to minimize
the difference between the observed tongue surface and the surface of the
synthetic tongue. To better fit the tongue surface, we have added some addi-
tional sagittal and coronal parameters as well as three different coronal sections
(for the front, middle and rear sections of the tongue) instead of the prior single

Figure 12.9 Four typical ultrasound-measured tongue surfaces (for segments
/a, i, N, T/) with synthetic palate and teeth, and EPG points (data from Stone
and Lundberg 1996).
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coronal shape. The control parameters that best fit the observed measurements
can then be used to drive visual speech synthesis of the tongue.

A browser in the upper right part of the control panel in Figure 12.5 allows
one to select from available ultrasound surface data files. The upper left panel of
Figure 12.9 shows the æ ultrasound surface and synthetic tongue simultane-
ously after some fitting has occurred for the vowel as in bat. Figure 12.10 gives
a more detailed view, but part of the ultrasound surface is embedded and cannot
be seen. The error (guiding the fitting) is computed as the sum of the squared
distances between the tongue and ultrasound along rays going from (0,0,0) to
the vertices of the ultrasound quad mesh. A neighboring polygon search method
to find tongue surface intersections with the error vectors is used to speed
up (~800 ms/cycle) the error calculation after an exhaustive initial search
(about 30 s). To prepare for this method the triangular polygon mesh of the
tongue is cataloged so that given any triangle we have a map of the attached
neighboring triangles. On each iteration of the search process we find which
triangle is crossed by an error vector from the ultrasound mesh. Given an initial
candidate triangle, we can ascertain whether that triangle intersects the error

Figure 12.10 3D fit of tongue to ultrasound data. Top and bottom panels show
the two surfaces before and after minimization. Error vectors are shown on the
right half of the tongue. The size of the sphere on each error vector indicates
the distance between the ultrasound and synthetic tongue surfaces.
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vector, or if not, in which direction from that triangle the intersecting triangle
will occur. We can then use the map of neighboring triangles to get the next
triangle to test. Typically, we need to examine only a few such triangles to find
which is intersected. We are now also (optionally) constraining the total tongue
volume in the fitting process. We compute the volume of the tongue on each
iteration, and add some proportion of any change from the original tongue
volume to the squared error total controlling the fit. Thus, any parameter
changes that would have increased the tongue volume will be compensated
for by some other parameters to keep the volume constant.

12.5.6 Synthetic electropalatography

Another source of data for training the tongue is electropalatography (EPG).
This type of data is collected from a natural talker using a plastic palate insert
that incorporates a grid of about a hundred electrodes that detect contact
between the tongue and palate at a fast rate (a full set of measurements 100
times per second). Building on the tongue–palate collision algorithm, we have
constructed software for measurement and display of synthetic EPG data.
Figure 12.11 shows the synthetic EPG point locations on the palate and teeth.
Figure 12.12 shows our synthetic talker with the new teeth and palate along with
an EPG display at the left during articulation of /N/ (as in sing). In this display,
the contact locations are indicated by points, and those points that are contacted
by the synthetic tongue are drawn as larger squares. Comparison of these real
EPG data (top left) with synthetic EPG data (bottom left) provides an additional
constraint used in training our synthetic tongue. The discrepancy between the
number of real and synthetic EPG contacts provides an additional error metric
that, together with the ultrasound and volume change error metrics, guide the
automatic adjustment of the tongue control parameters to synthesize accurate
tongue shapes.

Figure 12.11 EPG points on the synthetic palate.
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12.6 Reshaping the canonical head

Our development of visible speech synthesis is based on facial animation of a
canonical head, called Baldi. In addition to the original version, which had only
the front part of the head, we now have also sculpted a canonical head with
somewhat higher resolution that includes the polygons for the back of the head
and additional polygons around the mouth. The synthesis, parameter control,
coarticulation scheme, and rendering engine are specific to Baldi. It is valuable
to be capable of controlling other faces and, therefore, we have developed
software to reshape our canonical head to match various target heads. These
target heads include both commercial models, such as Viewpoint Data Labs,
and 3DCyberware laser scans. A laser scan of a new target head produces a very
high polygon count (hundreds of thousands of polygons) representation. Rather
than trying to animate this very high resolution head (which is impossible to do
in realtime with current hardware), our software uses these data to reshape our
canonical head (the source) to take on the shape of the new target head. In this
approach, the facial landmarks on the target head are marked by an operator, and
our canonical head is then warped until it assumes as closely as possible the
shape of the target head, with the additional constraint that the landmarks of the
canonical face move to positions corresponding to those on the target head.

Figure 12.12 Face with new palate and teeth with natural (top left) and
synthetic (bottom left) EPG displays for /N/ closure. The smaller dots
indicate uncontacted points and the larger squares indicate contacted points.
Half of the head is shown cut at the midsagittal plane, except that the full
ultrasound target surface shape is displayed.
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The algorithm used is based on the work of Kent et al. (1992), and Shepard
(1968). In this approach, all the triangles making up the source and target
models are projected on a unit sphere centered at the origin. The models must
be convex or star-shaped so that there is at least one point within the model from
which all vertices of all triangles are visible. This can be confirmed by a separate
vertex visibility test procedure that checks for this requirement. If a model is
non-convex or not star-shaped (for example, the shape of the ear, the surface of
which crosses a ray from the center of the head several times) then it is necessary
to modify these sections of the model in order to meet this requirement, or
alternatively, to handle such sections separately.

In our application, the ears, eyes, and lips are handled separately. First, we
translate all vertices so that the center point of the model (determined by the
vertex visibility test mentioned above) coincides with the coordinate system
origin. We then move the vertices so that they are at a unit distance from the
origin. At this point, all the vertices of all triangles making up the model are on
the surface of the unit sphere. The weighted influence of each landmark is then
calculated to determine each source vertex’s new position. Then, for each of
these source vertices we determine the appropriate location of the projected
target model to which a given source vertex projects. This gives us a homeo-
morphic mapping (one-to-one and onto) between source and target datasets, and
we can thereby determine the morph coordinate of each source vertex as a
barycentric coordinate of the target triangle to which it maps. This mapping
guides the final morph between source and target datasets.

In general, the source and target models may not be in the same coordinate
system. In this case, the target model must be transformed to ensure that it lies in
the same coordinate space as the source. Even if the models are in the same
coordinate spaces, it is unlikely that the respective features (lips, eyes, ears, and
nose) are aligned with respect to one another. Shepard (1968) interpolation, a
scattered data interpolation technique, is used to help align the two models with
respect to one another. A different technique is used to interpolate polygon
patches, which were earlier culled out of the target model because they are non-
convex. These patches are instead stretched to fit the new boundaries of the
culled regions in the morphed head. Because this technique does not capture as
much of the target shape’s detail as Shepard interpolation, we try to minimize
the size of the culled patches. This provides the user with the final complete
source model duly morphed to the target model, with all the patches in place. To
output the final topology we patch together all the source polygonal patches and
then output them in a single topology file. The source connectivity is not
disturbed and is the same as the original source connectivity.

The morph itself is a one-to-one correspondence between all points on the
source model and unique locations on the target model. We establish absolute
coordinate mappings by computing barycentric coordinates and carrying them
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back to the original models to compute the locations to which each point on the
source model should morph. The final morphing actually transforms the source
model to the required target model in a smooth fashion. Figure 12.13 illustrates
the application of our software, morphing our canonical head based on a
Viewpoint Data Labs target head.

12.7 Training speech articulation using dynamic 3D measurements

To improve the intelligibility of our talking heads, we have developed software
for using dynamic 3D optical measurements (Optotrack) of points on a real
face while talking (Cohen et al. 2002). At ATR in Kyoto, Japan in April 2001,
with the help of Eric Vatikiotis-Bateson and Takaaki Kuratate, we recorded a
large speech database with 19 markers affixed to the face of DWM (see
Figure 12.14).

Fitting of these dynamic data occurred in several stages. To begin, we
assigned points on the surface of the synthetic model that best corresponded
to the Optotrack measurement points. There were 19 points on the face in
addition to 4 points off the top of the head that were used to remove head
motion from these 19 points. Two of the 19 points (on the eyebrows) were not
used; the other 17 points were used to train the synthetic face. These corre-
spondences are illustrated in Figure 12.15 with model points (3–4mm off the
synthetic skin surface corresponding to the LED thicknesses) shown as dark
spheres, and Optotrack points as white spheres. Before training, the Optotrack
data were adjusted in rotation, translation, and scale to best match the corre-
sponding points marked on the synthetic face.

The data collected for the training consisted of 100 CID sentences recorded
by DWM speaking in a fairly natural manner. In the first stage fit, for each time

Figure 12.13 Original canonical head (left), a target head (center), and the
morphed canonical head (right) derived from our morphing software.

330 D.W. Massaro, M.M. Cohen, M. Tabain, et al.



Figure 12.15 Illustrates placement of the points for the new model of WM,
which corresponds to Baldi’s wireframe morphed into the shape of DWM.
These dark points are placed 3mm (4mm for the chin point) off the synthetic
surface and the placements of the corresponding measured OPTOTRAK
points are given in white.

Figure 12.14 Speaker DWM with OPTOTRAK measurement points.
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frame (30 fps) we automatically and iteratively adjusted 10 facial control
parameters (shown in Table 12.1) of the face to get the best fit (measured by
the root mean square (RMS) of the sum of squared distances) between the
Optotrak measurements and the corresponding point locations for the synthetic
face. The fit of a given frame was used as the initial values for the next frame. A
single jaw rotation parameter was used, but the other 10 parameters were fit
independently for the two sides of the face. This yielded 19 best-fitting param-
eter tracks that could be compared to our standard parametric phoneme syn-
thesis and coarticulation algorithm to synthesize the parameter tracks of the
same 100 CID sentences. We used Viterbi alignment on the acoustic speech data
of each sentence to obtain the phoneme durations that are required for the
synthesis. The difference between the first stage fit and the parametric synthesis
with our initial segment definitions gave an RMS error between these curves
(normalized for parameter range) of 26 percent.

The 19 best-fitting parameter tracks were then used as the inputs to the second
stage fit. In the second stage fit, the goal was to tune the segment definitions
(parameter targets, dominance function strengths, attack and decay rates, and
peak strength time offsets) used in our coarticulation algorithm (Cohen and
Massaro 1993) to get the best fit with the parameter tracks obtained in the first
stage fit. The computed parameter tracks of this second stage fit were compared
with the parameter tracks obtained from the first stage fit, the error computed,
and the parameters (target values and dynamic characteristics) for the 39
phoneme segments adjusted until the best fit was achieved. The RMS for the
second stage fit was 12 percent, which shows that the new trained parameter
targets, dominance function strengths, attack and decay rates, and peak strength
time offsets used in our coarticulation algorithm were reasonably accurate in
describing the Optotrak data.

In addition to the phoneme definition fit, we have also used phoneme
definitions conditional on the following phoneme. In the CID sentences there

Table 12.1 The 10 facial control parameters.

1 jaw rotation
2 lower lip f-tuck
3 upper lip raising
4 lower lip roll
5 jaw thrust
6 cheek hollow
7 philtrum indent
8 lower lip raising
9 rounding
10 retraction

332 D.W. Massaro, M.M. Cohen, M. Tabain, et al.



were 509 such pairs and these context-sensitive phoneme definitions provided
an improved match to the parameter tracks of the first stage fit, with an RMS of
6 percent. In summary, we see that using data-driven synthesis can improve the
accuracy of our synthesis algorithm. Further work is being carried out to deter-
mine how well these trained segment definitions generalize to the synthesis of
new sentences by the same speaker, and to speech by other speakers. In addition,
intelligibility testing will be carried out as an additional evaluation measure.

12.8 Some applications of electropalatography to speech therapy

As stated earlier, one of our goals is to use visible speech for speech training.
This type of training would be similar in some respects to the applied use of
electropalatography (EPG). Although initially created as a tool for basic speech
research, EPG has been found to be useful in many clinical settings. Research at
Queen Margaret College in Edinburgh has shown that many speech disorders
can be helped through therapy using EPG (Dent et al. 1995; Hardcastle and
Gibbon 1997). It has been suggested that although the initial cost of the artificial
palate (for the patient) and of the equipment (for the institution or therapist) is
relatively high, the savings on clinical time are advantageous both financially
and in terms of patient motivation (Nairn et al. 1999).

EPG is useful in clinical settings because it provides direct visual feedback
(in the form of a computer display) on the contact between the tongue and the
palate during speech production. The patient wears a custom-fitted artificial
palate embedded with electrodes, and the therapist may wear one as well. The
therapist can show a target pattern (perhaps producing the target sound him- or
herself), which the patient must try to achieve. For instance, the patient may be
presentedwith a typical contact pattern for /s/: this hasmuch contact at the sides of
the palate, with a narrow constriction towards the front of the palate. Certain
speech pathologies result in /s/ being produced as a pharyngeal fricative. This
would show up on the screen as a lack of contact on the hard palate. The therapist
can then instruct the patient as to how to achieve the target pattern. Dent et al.
(1995) provide a case study where EPG therapy improved the production of
lingual stops and fricatives in a patient who had undergone pharyngoplasty.

EPG has also proven useful in clinical assessment by confirming or modify-
ing therapists’ intuitions about the nature of the speech pathology presented by a
particular speaker (Dent et al. 1992). For instance, following the repair of a cleft
palate, a patient’s speech was still perceived as being nasal during the produc-
tion of both alveolar and labial stops and fricatives. An EPG examination of the
patient’s speech showed velar closure during the articulation of all such seg-
ments. Once this problem of velar closure was pointed out to the patient, therapy
focused on removing the extraneous articulation, and a more natural-sounding
production of the alveolar and labial stops and fricatives was achieved.
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The production of grooves and affricates can be particularly problematic in
many speech pathologies. Dent et al. (1995) describe two patients whose
productions of /s, ∫, t∫/ (as in bass, bash, batch) were perceived as abnormal.
In one case, the articulations were perceived as being too dental, and in the
other case as being too palatal. An examination of EPG patterns confirmed
these perceptions, and therapy focused on achieving correct articulations for
these sounds.

Of the twenty-three children examined in the Dent et al. (1995) study, EPG
therapy was unsuccessful for five of these children. Two of the patients were
unable to continue wearing the palate (one lost a tooth to which the palate
wire was attached, and the other could not tolerate the palate), and the other
three were judged to be less mature emotionally, and less motivated to improve
their speech. The authors suggested that given the high cost of obtaining a
custom-made artificial palate, therapists and patients must be confident that
EPG therapy will succeed and the patient must show sufficient motivation and
maturity to proceed with the therapy.

Edwards et al. (1997) discuss the usefulness of EPG in examining covert
contrasts of alveolar and velar consonants in speech acquisition. Covert con-
trasts (Hewlett 1988) are phonetic-level contrasts made by a child speaker; these
contrasts are not perceptible at the phoneme level by an adult hearer. For
instance, a child may produce a significant difference in voice onset time
(VOT) for the /p/ and /b/ as in pet and bet (Macken and Barton 1980; Scobbie
et al. 1998). However, to the adult hearer, both productions fall into the
phoneme category /b/, because in neither utterance is the VOTsufficiently long.

Gibbon et al. (1993, 1998) examined two sisters, one of whom had been
judged as having acquired the alveolar-velar distinction between /d/ and /g/, and
one whose productions of /d/ and /g/ were all judged to be [g]. An EPG study
showed that both sisters made an articulatory contrast between /d/ and /g/, and
that both had simultaneous velar and alveolar closure during /d/. The difference
in perceived phonetic output was found to be due to the sequence of release of
the double articulation. If the velar closure was released before the alveolar
closure, the stop was perceived as alveolar (as intended). If the alveolar closure
was released before the velar closure, the stop was perceived as velar. Moreover,
Forrest et al. (1990) found that there are spectral differences between a [t]
produced for a /t/ and a [t] produced for a /k/. Despite this acoustic contrast, even
phonetically trained listeners can disagree on whether a given token is /t/ or /k/
when such double articulations are involved (Gibbon et al. 1993). Similar
results have been reported for covert contrasts between /s/ and /T/, and for the
deletion of /s/ in clusters.

EPG is particularly useful in the treatment of cleft palate speech (Gibbon
et al. 1998). Cleft palate speech is characterized by double articulations, such as
the alveolar-velar double articulation described above; generally weak
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consonant articulation – for instance, a lack of complete closure for stop
consonants as has also been noted in speech affected by acquired dysarthria;
abnormally broad or posterior tongue placement; and much lateralization which
allows airflow through the sides of the tongue. All of these characteristics can be
readily observed in the EPG contact patterns.

EPG is also useful in the description of segments perceived as lateralized
fricatives. There is a very wide range of contact patterns for such segments.
Some contact patterns show gaps along the sides of the palate where air might
escape, and some do not. Most of the contact patterns show complete closure
across the palate, although this is not necessarily a characteristic of lateralized
fricatives that occur in normal speech (such as those in Welsh). Moreover, the
location of the contact varies from speaker to speaker in fricatives, which are
perceived as being laterals in disordered speech.

Gibbon et al. (1998) studied language-specific effects on cleft palate speech.
They showed that overall, the most likely consonants to be affected are coronal
and velar obstruents, followed by liquids, and finally bilabial stops. However,
there were slight differences within a given language. For instance, Cantonese
speakers are more likely to replace the alveolar fricative /s/ with a bilabial
fricative and to delete initial consonants than are English speakers. It could be
hypothesized that the greater tendency to delete initial consonants is due to the
functional load of tone contrasts in Cantonese, since tone contrasts do not exist
in English. It is not clear to what extent the size and typology of the consonant
phoneme inventory affects the compensatory articulations employed by cleft
palate speakers of a given language.

EPG therapy has also proven to be useful in teaching deaf children to produce
normal-sounding lingual consonants (Fletcher et al. 1991; Dagenais et al. 1994;
Crawford 1995). The visual feedback from the EPG is deemed to be extremely
important to the significant improvement in production. Similarly EPG has been
shown to be most successful in teaching older children with functional articu-
lation disorders to produce normal-sounding fricatives, stops, and affricates
(Dagenais et al. 1994; Dent et al. 1995). Children whose /s/ productions were
perceived as being lateralized, palatalized, and pharyngalized all showed sig-
nificant improvement. None of these children could produce the anterior groove
configuration necessary for an /s/, so therapy focused on achieving this groove.

Most of the phenomena discussed above can be classified as spatial distor-
tions of speech (see Hardcastle and Gibbon 1997, for an extensive discussion).
However, certain speech disorders, such as stuttering (Harrington 1987) or
speech affected by acquired apraxia, show temporal distortions. Temporal or
serial ordering difficulties occur when the spatial configuration of the EPG
pattern looks normal, but there is an error in the duration or sequence of the
gesture. At times, a gesture may intrude during speech that is not expected, and
is not perceived by the listener or therapist because of its short duration and
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because it is not expected in the sequence. Hardcastle and Gibbon (1997) give
the example of a stutterer’s production of the sequence /εkstɪ/ (as in extinct)
transcribed as [εkst∴t∴ɪ]. The EPG trace shows not only the multiple repetitions
of the /t/ together with the long duration of the /s/, but also an intrusive velar
closure between the alveolar fricative and the first alveolar stop. This may have
been a “carryover” gesture from the velar stop preceding the fricative. At other
times, a gesture may intrude during closure for a consonant. For instance,
apraxic speakers often have a velar gesture intruding before, during, or after
an alveolar gesture; if the intrusive gesture occurs during closure for an alveolar
stop, the minimal acoustic energy would result in a lack of audible cues. EPG is
particularly useful in these instances.

Other speech difficulties that can be quantified using EPG include transitional
difficulties, typical of speakers with acquired apraxia and dysarthria. Transition
times between various segments become excessively long; this could result in
stop consonants being perceived as released where release is inappropriate, for
instance.

Given the success of EPG in speech training, we believe that the visible
speech from Baldi could be used for the tutoring of speech production.
Although there are both temporal and spatial errors in speech production, the
speech tutor developed here focuses only on spatial aspects of speech produc-
tion, since this is easier to quantify in visual terms.

12.9 Development of a speech tutor

Our speech tutor for deaf children uses Baldi’s internal productions, which are
based on EPG and ultrasound measurements as described in Section 12.5.5.
By making the skin transparent or by showing a sagittal view, Baldi can
illustrate pronunciation of sounds that are not normally visible. This section
outlines the approach used to develop the tutor. The initial stages of this work
required the categorization of a set of “internal visemes.”As the name suggests,
an internal viseme consists of a group of phonemes that cannot be distinguished
from each other, but can be distinguished from all other phonemes, based on an
internal view of the oral cavity. It should be stressed that this definition includes
only the tongue and the passive articulators in the oral cavity (in other words, the
teeth, the alveolar ridge, and the hard palate). The larynx is not included in this
scheme, nor is the soft palate (velum). For these reasons, an internal viseme
includes both voiced and voiceless cognates, as well as nasals. The scheme is
currently limited to consonants.

Ten internal visemes were defined, based primarily on the representation
of consonant articulations using EPG data. These internal visemes were inter-
dental, alveolar fricative, post-alveolar fricative, post-alveolar affricate, alveolar
stop, velar stop, lateral, rhotic, palatal approximant, and labio-velar
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approximant. A single phoneme was chosen to represent each viseme. These
were, respectively, /θ/ /s/ /∫/ /t ̟∫/ /d/ /ɡ/ /l/ /r/ /j/ /w/. Voiced and voiceless
phonemes were included in the same viseme. Thus, the viseme /θ/ also included
/ð/ (as in this), /s/ also included /z/, /∫/ also included /Ʒ / (as in rouge), /t∫/ also
included /d/ (as in judge), /d/ also included /t/ and /n/, and /g/ also included /k/
and /ŋ/ (see Table 12.2).

All of the internal visemes can be presented as static targets, with the
exception of /t∫/, which has two phases of production: complete closure in the
post-alveolar region, followed by a release into the post-alveolar fricative /∫/.
The closure portion of /t∫/ can be presented statically to show that the place of
articulation for this consonant is further back than for the alveolar stop /t/.

The second stage of this work involved the development of appropriate views
of the oral cavity for the presentation of the internal visemes. Four basic views
were developed in the first stages of this work. All views consisted only of the
teeth, palate, tongue, and, in some cases, the lips (see below for clarification of
when the lips were used). The skin and eyes were removed. The first view was a
direct frontal view of the mouth (front view), with 50 percent transparency, and
highlighting in yellow of contact between the tongue and the palate. This was
intended to partially mimic a typical presentation of the face in lipreading. The
second view was of the side of the mouth (side view), again with 50 percent
transparency and highlighting of contact between the tongue and the palate.
This view was mainly included to contrast /d/ and /l/, since, in principle, the
former has contact between the sides of the tongue and the palate, while the
latter has no such contact. The third view was called “side cut,” and was similar
to side view except that a midsagittal view of the oral cavity was presented (as
though the tongue and palate were cut in half). This view was included since it is
a typical presentation of consonant and vowel articulations in textbooks of
phonetics and speech, and in X-ray drawings of the oral cavity. Tongue high-
lighting was again present, but transparency was not used (i.e. the representa-
tion was solid). The mass of the tongue was presented as bright purple, and
contact as a thin yellow line at the top of the tongue. Grooving along the tongue
was visible as an earth-colored layer between the mass of the tongue and the
contact between the tongue and the palate. The fourth and final view was from
the top of the oral cavity (top view). Tongue highlighting was again presented,
and transparency was again set at 50 percent. This view was included since it is
used to represent tongue–palate contact.

All four views could be presented either with or without the lips. The lips
were presented if the viseme involved active rounding of the lips, which
included /∫/, /t∫/, /r/, and /w/.

Each internal viseme was then examined in each of the four views, and an
attempt was made to determine which views suited which viseme best. A
maximum of two views was chosen for a given viseme. The results are
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Table 12.2 The views which best illustrate which views best suit each internal
viseme (a category of different phonemes that have very similar internal visible
speech). No more than two views were chosen for a given viseme, although their
views could also be effective. The top row consists of the internal viseme
categories, and the first column lists the different views. A cross indicates that
that view gives appropriate and useful information for that viseme. The
numbers in each column correspond to the following instructions, which may
accompany the presentation of the viseme:
Make sure the tongue doesn’t touch the top front teeth too much. Keep the
tongue flat. The air needs to escape between the tongue and the top front teeth.
See where the tongue tip is pointing at the lower teeth. See how there is a deep
groove along the tongue.
See how the tongue tip is pointing quite low. See the deep groove along the
tongue. See how the tongue is bunched higher up and further back in the mouth
than for /s/. Don’t forget to round your lips.
The part of your tongue just behind the tip is called the blade. Put the blade
where the picture shows you – not right behind the teeth, but a little bit away
from the teeth. Keep your tongue bunched up. As you take the blade away from
the roof of the mouth, try to keep a deep groove along the tongue, like you
practiced for the /sh/.
See how the tongue presses behind the top teeth. See how there is lots of contact
between the sides of the tongue all along the mouth.
See how the tongue is pressed against the roof of the mouth at the back.
See how the tip of the tongue is pressing against the teeth, but the sides of the
tongue aren’t touching anything.
See how the back of the tongue is pushed back in the mouth, towards the throat.
See how the tongue tip curls up in the middle of the mouth, without touching the
roof. Don’t forget to round your lips.
You need to push the tongue up and back in the mouth, but don’t let it press
against the roof. Don’t forget to round your lips.
See how the tongue is raised in the middle of the mouth. The sides of the tongue
touch the teeth and the roof, but not the center part.

θ s ˖ t ̟ d ɡ l r w j

Front view
Front view with lips
Side view
Side view with lips
Side cut X X (2) X (6) X X
Side cut with lips X (3) X (4) X (8) X (9)
Top view X (1) X X (5) X (7) X (10)
Top view with lips X X X
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presented in Table 12.2. The top row consists of the internal viseme categories,
and the first column lists the different views. A cross indicates that that view
gives appropriate and useful information for that viseme. The numbers in each
column correspond to prototypical instructions, which can accompany the
presentation of the viseme. These instructions are also given in Table 12.2.
The number is placed next to the view that is deemed to be more useful in the
presentation of the viseme.

The purpose of this tutor is to instruct the speaker to produce segments whose
internal articulations are not easily viewed by the lipreader. Although the front
view was not judged to be useful for any of these internal visemes, it would be
useful for the viseme /v/ to show the upper teeth covering the lower lip. The side
view was also not judged to be very useful. This was perhaps due to the fact that
it repeated much of the information present in the side cut, but without the same
level of clarity. (The difference in lateral contact between /d/ and /l/ could be
shown clearly using the top view.)

The information presented in Table 12.2 can be used when the viseme
is presented in isolation, or as part of a CV sequence. However, when direct
comparisons are made between two visemes, it was not always clear
what the difference is between them in a given view. For instance, in a top
view of /s/ and /∫/, there appears to be little difference in contact patterns.
However, a side cut view shows that there is a difference, with bunching and
raising of the tongue for /∫/ but not /s/. For this reason, direct comparisons were
made for each possible pair of visemes. Given the results in Table 12.2, only
top view and side cut were considered as possible views. These appropriate
views are marked by an X in Table 12.3. The view with the lips is presented if
either or both of the visemes involve lip rounding. If neither viseme involves
lip rounding, it is not presented. It can be seen that for most combinations,
both top view and side view can be presented. An X in parentheses, (X),
denotes that it is not clear whether this view is useful or not. Testing will be
necessary to determine the usefulness of these views in particular, as well as of
all the views.

The information in Table 12.3 can also be used in CVC sequences such as the
word “sash” or “Seth.” The commentaries for the single internal visemes
(Table 12.3) can be incorporated for these pairs. For instance, if the word
is “Seth,” the views would be presented with the following instructions: “For
the /s/, see where the tongue tip is pointing at the lower teeth. And see how there
is a deep groove along the tongue.” Then, “For the /T/, make sure the tongue
doesn’t touch the top front teeth too much. Keep the tongue flat. The air needs to
escape between the tongue and the top front teeth.” Although vowels are not
explicitly discussed here, for didactic purposes, all vowels would be presented
with either the side cut or side cut with lips view (according to whether rounding
is being taught or not).
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Table 12.3 Optimal view to be chosen when direct comparisons are being made
between two visemes.

Side cut Side cut + lips Top view Top view + lips

T vs. g X (X)
T vs. l X
T vs. r X (X)
T vs. w X
T vs. j X
s vs. ∫ X
s vs. t∫ X X
s vs. d X
s vs. g X X
s vs. l X X
s vs. r X (X)
s vs. w X (X)
s vs. j X
∫ vs. t∫ (X) X
∫ vs. d X X
∫ vs. g X (X)
∫ vs. l X X
∫ vs. r X
∫ vs. w X (X)
∫ vs. j (X)
t∫ vs. d X X
t∫ vs. g X X
t∫ vs. l X X
t∫ vs. r X X
t∫ vs. w X X
t∫ vs. j (X) X
d vs. g X (X)
d vs. l X X
d vs. r X X
d vs. w X (X)
d vs. j X
g vs. l X (X)
g vs. r X (X)
g vs. w X (X)
g vs. j X (X)
l vs. r X (X)
l vs. w X (X)
l vs. j X (X)
r vs. w X
r vs. j X
w vs. j X (X)
T vs. s X X
T vs. ∫ X X
T vs. t∫ X X
T vs. d X X
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12.10 Empirical Studies

This system was initially developed for the presentation of the internal visemes
to deaf children, and the initial application gave very valuable and effective
results (Massaro and Light 2004b). It has also been successfully used for native
Japanese speakers learning English /r/ and /l/ (Massaro and Light 2003).

More recently, we examined (1) whether speech perception and production of
a new language would be more easily learned by ear and eye relative to by ear
alone, and (2) whether viewing the tongue, palate, and velum during production
is more beneficial for learning than a standard frontal view of the speaker. In
addition, we determine whether differences in learning under these conditions
are due to enhanced receptive learning from additional visual information, or to
more active learning motivated by the visual presentations. Studies were carried
out in three different languages: Mandarin, Arabic, and Spanish. Test stimuli
were two similar vowels in Mandarin, two similar stop consonants in Arabic,
and the two Spanish phonemes absent in English /r/ and /rr/. All of the training
and test items were presented in different word contexts. Participants were
tested with auditory speech and were either trained (1) unimodally with just
auditory speech or bimodally with both auditory and visual speech (Arabic and
Spanish studies), and (2) a standard frontal view versus an inside view of the
vocal tract (Mandarin study). The visual speech was generated by the appro-
priate multilingual versions of Baldi, Arabic Badr, Mandarin Bao, and Spanish
Baldero. The results test the effectiveness of visible speech for learning a new
language. We expected that visible speech would contribute positively to
acquiring new speech distinctions and promoting active learning. However,
the results did not support that expectation. Rather than forgoing our commit-
ment to visible speech, however, we in retrospect saw many reasons why our
short training and testing experiments did not produce positive results. A post
mortem analysis produced support for implementing the following embellish-
ments to our training procedure:
1. Tutorial and scrubbing feature on our audiovisual text-to-speech system

Bapi (Ouni et al. 2005). The animation literature indicates that people
learn more from animation when it is demonstrated and explained to
them – for example, how it corresponds to what they are supposed to do,
what it represents, etc. So with this in mind, we considered ways for
participants to learn how the Baldi videos demonstrate what they are sup-
posed to be doing with their articulators. This may be especially relevant
with the sagittal view. Suggestions included a brief tutorial at the beginning
of the experiment where the experimenter brings attention to relevant fea-
tures of the video, like where Baldi places his tongue. We could also ask
participants to imitate this. An additional possibility is to let participants play
with the scrubbing feature on Bapi, which allows the learner to control the
time course of the animation by simply moving the mouse.
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2. Motivation. Motivation is a potential problem with our experiment: for
example, the learning has little context, meaning, or usefulness, and partic-
ipants are not really accountable for learning, since testing is isolated and no
feedback is given regarding pronunciation. One solution that was discussed
is to tell participants that they will be tested afterwards by the experimenter.
This inter-personal sort of test might motivate participants because they will
not want to look ignorant in front of an actual person.

3. Compatibility between training and testing. In the Arabic and Spanish
experiments, there is an incompatibility between the training and the testing
prompt (training is with the sagittal view, testing is with a frontal view),
while this isn’t the case in the control condition in which both the training
and testing are in a frontal view. Learning is usually optimal when the
training and test conditions are equivalent. This discrepancy might hide
some of the learning that is potentially gained by experiencing the sagittal
view during training.

12.10.1 Baldi on the iPhone and iPad

The Baldi app on the iPhone and the iBaldi app on the iPad transforms any text
into Baldi-animated speech. The animation is done locally, which is the only
iPhone or iPad application of its kind at this time. Given some text, the user
simply presses Play to have Baldi’s face and voice communicate the message.
One can easily change Baldi’s size and orientation using the touch screen
interface.

In the Settings view, you can change the audio volume and the speaking rate,
as well as show Baldi in a standard Outside View or an Inside View that shows
the tongue and inside the mouth (this view is valuable for language learning).
You can change Baldi’s emotions by varying the sliders for six basic emotions.
You can change several at the same time to give a mixture of different emotions.

The text you import can come from Notes, Web pages, RSS feeds, and so on.
In all cases, simply select and copy the text from the application, and start Baldi.
You can then paste the text. You can also permanently save your favorite texts in
your Notes app, and then copy and paste one into the i-Baldi app.

It is possible to show visual cues to help people who are deaf or hard of
hearing. The app can show the visual cues alongside of Baldi that would show
on the iGlasses we are developing (see the following section). There are two sets
of cues: Facial cues on Baldi’s face: red nostrils indicate Nasal sounds like m
or n; clouds of dots coming out of the mouth indicate Frication sounds like s and
sh; and circles indicate Voicing sounds like the sounds of d and v. Disk cues on
the side of Baldi’s head signal the same Nasal, Frication and Voicing informa-
tion by lighting up red, white, and blue, respectively.
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12.10.2 iGlasses

The need for language aids is pervasive in today’s world. There are millions
of individuals who have language and speech challenges, and these individuals
require additional support for communication and language learning. Currently,
however, the needs of these persons, such as limited understanding in face-to-
face communication, are not being met. One problem that the people with
these disabilities face is that there are not enough skilled teachers, interpreters,
and professionals to give them the one-on-one attention that they need. One of
our current goals is to develop and implement a pair of eyeglasses (iGlasses)
that will facilitate face-to-face communication particularly for hard-of-hearing
persons and in difficult hearing situations. The iGlasses project develops tech-
nology to supplement the common face-to-face language interaction to enhance
intelligibility, understanding, and communication.5

Given the limitation of hearing speech for many individuals, the iGlasses
will supplement the sound of speech and speechreading with an additional
informative visual input. Acoustic characteristics of the speech will be trans-
formed into readily perceivable visual characteristics. The goal is to develop
and test the technology required to design a device seamlessly worn by the
listener, which will perform continuous real-time acoustic analysis of his or
her interlocutor’s speech. This device would transform several continuous
acoustic features of the talker’s speech into continuous visual features, which
will be simultaneously displayed on the speechreader’s eyeglasses. These
acoustic features provide important linguistic information not directly
observed on the face and are transformed into visual cues intended to enhance
intelligibility and ease of comprehension. This wearable computing device
does not require any learning on the part of the talker and is perceptually
and linguistically motivated because it is directly based on acoustic and
phonetic properties of speech and gives continuous rather than only catego-
rical information.

This work will advance engineering research and speech science by devel-
oping a real-time system to automatically detect and track robust characteristics
of auditory speech and to transform these continuous acoustic features into
continuous supplementary visible features. Previous research and pilot research
have demonstrated that neural networks can detect and track robust character-
istics of speech. The proposed research extends this work and implements a
complete system of transforming continuous acoustic features into continuous
supplementary visible features displayed on eyeglasses during face-to-face
communication. Pilot research indicates that people can learn to combine
these visual cues with the visual information from the face to enhance intelli-
gibility and comprehension. The proposed work will evaluate the learning of
several potential visible features in real-world contexts.
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The proposed activity will benefit society by providing a research and
theoretical foundation for a system that would be naturally available to almost
all individuals at a very low cost. It does not require automatic speech recog-
nition, and will always be more accurate regardless of the advances or lack of
advances in speech recognition technology. It does not require literate users
because no written information is presented as would be the case in a captioning
system; it is age-independent in that it might be used by toddlers, adolescents,
and throughout the life span; it is functional for all languages because all
languages share the corresponding acoustic characteristics; it would provide
significant help for people with hearing aids and cochlear implants; and it would
be beneficial for many individuals with language challenges and even for
children learning to read.

For more information, see www.speechspecs.org/welcome.html

12.11 Additional potential applications

Although our development of a realistic palate, teeth, and tongue is aimed at
speech training for persons with hearing loss, several other potential applica-
tions are possible. Language training more generally could utilize this technol-
ogy, as in the learning of non-native languages and in remedial instruction with
children with language challenges. Speech therapy during the recovery from
brain trauma could also benefit. Finally, we expect that children with reading
disabilities could profit from interactions with our talking head.

In face-to-face conversation, of course, the hard palate, the back of the teeth,
and much of the tongue are not visible. Thus, we have not had the opportunity
to learn the functional validity of these structures in our normal experience
with spoken language. We might speculate whether an infant nurtured by our
transparent talking head would learn that these ecological cues are functional. If
their functional validity was learned, then deaf persons without any hearing at
all might be able to completely understand language spoken by a transparent
talking head.

Finally, although we have characterized our approach as terminal analogue
synthesis, this work brings us closer to articulatory synthesis. The goal of
articulatory synthesis is to generate auditory speech via simulation of the
physical structures of the vocal tract. It may be that the high degree of accuracy
of the internal structures would allow articulatory synthesis based on the
synthetic vocal tract shape. Thus we see something of a convergence between
the terminal analogue and articulatory-based approaches.

The improvements obtained from measures of real talking faces and doc-
umented in the evaluation testing will be codified, incorporated, and imple-
mented in current uses of the visible speech technology. Baldi has achieved
an impressive degree of initial success as a language tutor with deaf children
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(Massaro et al. 2000; Barker 2003). The same pedagogy and technology has
been employed for language learning with autistic children (Massaro et al.
2003; Bosseler and Massaro 2004; Massaro and Light 2004a). A new Speech
Training Tutor is being designed with our colleagues at the Tucker-Maxon Oral
School (TMOS) to teach deaf and hearing-impaired children to perceive and
produce spoken words, the skills needed for ordinary communication in every-
day contexts. One tutor consists of three parts: Same–different discrimination,
in which two words are presented and the student decides if they are the same
word or two different words; Identification, in which a single word is presented
and the student must choose the spoken word from a set of pictures or printed
words; and Production, in which the student is presented with a printed word
or picture and must pronounce the word. A goal of the Speech Training Tutor is
to enable teachers to design specialized applications quickly for individual
students. Applications can test a student’s ability to discriminate specific sounds
in words, to provide training as needed using enhanced auditory and visual
features, and continue training and testing until desired performance is achieved
with unaltered stimuli. Ultimately, improved visible speech in computer-
controlled animated agents will allow all users to extract information from
orally delivered presentations. This is especially important for enhanced acqui-
sition of speechreading in newly deafened adults, language acquisition together
with word enunciation in children with hearing loss, and those learning a new
language.
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13 Empirical perceptual-motor linkage of
multimodal speech

E. Vatikiotis-Bateson and K.G. Munhall

13.1 Introduction

The view that speech perception and speech production are closely linked is not
new and has taken many forms. Stetson (1928) depicted speech as “movements
made audible”. For Alvin Liberman and colleagues at Haskins Laboratories
the production system was integrated with speech perception (Liberman et al.
1967). As Liberman (1996) has said:

In all communication, sender and receiver must be bound by a common understanding
about what counts; what counts for the sender must count for the receiver, else commu-
nication does not occur. Moreover the processes of production and perception must
somehow be linked; their representation must, at some point . . . , be the same. (p. 31)

Liberman was wise in his use of “at some point” in the quote above, because the
actual relation between perception and production is still largely a mystery.
Neither an explicit process nor a neurological mechanism for this linkage in
speech has yet been demonstrated; this is despite the discovery of mirror neurons
(Rizzolatti et al. 1996a), which has created excitement about the action–
perception linkage, but has done little to characterize it. In part, brain function
studies have glossed over the fact until recently, mainly because production
and perception have not been and could not be examined together. Despite their
insistence that speech perception is informed by the time-varying characteristics
of the vocal tract Liberman and his colleagues (Liberman et al. 1967) never
examined the link between production data and perception. Indeed they often did
not use production-based stimuli for their perception studies, preferring instead
to use synthesized speech continua that manipulated formant values, durations,
and other parameters useful in determining perceptual category boundaries.

In this chapter, we describe a research paradigm we have developed over the
past decade that provides a methodologically sound framework for examining
the production and perception of multimodal (auditory and visual) speech
together. Briefly, the system entails:
1 the analysis of measured physical structures such as the face and head during

speech behavior,
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2 an animation system driven by both static and time-varying data to produce
linguistically realistic talking heads,

3 audiovisual perception experiments whose stimuli consist of synthesized
and/or modified natural talking heads.

As we have started to work on these issues, our data-driven animation system
was unique in its scope and perceptual validation. Massaro’s parameter face
model – Baldi – predated and indeed inspired our efforts (Massaro and Cohen
1993). Baldi was validated perceptually, but was not driven by measured
production data. Thankfully, there are now other groups in both the science
and entertainment industries that have developed talking head systems that
take measured data as input and produce linguistically interpretable output
(see Bailly et al., this volume).

13.2 The perception of audiovisual speech

More than fifty years ago, Sumby and Pollack (1954) showed that the intelli-
gibility of speech presented in noisy acoustic conditions was significantly
higher when subjects could see the speaker talking. Indeed, this early work
underscores most, if not all, of the work presented in this volume. A second
critical discovery was reported about 20 years later byMcGurk andMacDonald
(1976). The so-called McGurk effect, or fusion illusion, occurs when a subject
is presented with auditory and visual stimuli corresponding to different speech
utterances and perceives something which is neither one. The most consistently
tested example is presentation of auditory [bɑ] and visual [ɡɑ] resulting in
perceived /dɑ/ or /ðɑ/.1

Sumby and Pollack’s work had the important, if now obvious, ramification
that speech production must have visual characteristics, though it in no way
defined what these characteristics are or what their source might be. As an
extreme example of the power of visible events in perceiving audiovisual (AV)
speech, the late Christian Benoît’s group at the former ICP in Grenoble dem-
onstrated that speech intelligibility is enhanced by the addition of unrealistic
visible components such as disembodied lips and/or a skeletal jaw (for over-
view, see Benoît and Le Goff 1998). Minimally, Benoît’s results suggest that
speech intelligibility can be enhanced by visible events that have the temporal
synchronization and spatial scaling appropriate to the opening and closing of
the vocal tract. This line of reasoning has been significantly extended by the
work on cued speech carried out subsequently by Benoît’s colleagues (see
Beautemps et al., this volume).

Enhancement to intelligibility can also come from contextualizing events
such as the prosodic and paralinguistic structures that help perceivers attend to
the degraded acoustic signal and thereby retrieve more of the phonetic content.
Indeed, research by Munhall and colleagues (Munhall et al. 2004a) has
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demonstrated how head motion facilitates lexical recovery in audiovisual
Speech-in-Noise (SPIN) tasks similar to the paradigm pioneered by Sumby
and Pollack in 1954. Unlike the McGurk and MacDonald finding, which
implicates visual characteristics at the level of segmental phonetics – e.g.,
/bɑ/, /ɡɑ/, /ðɑ/, it is highly unlikely that head motion conveys information
about lexical identity. Rather, Munhall et al. may have identified a more
fundamental role of the head in aligning the perceiver to the signal, a process
that must occur in order for a perceiver to parse a signal at finer degrees of
spatial and temporal detail.

A third important antecedent to the work described in this chapter was that of
Brooke, Summerfield and colleagues who examined many facets of the visual
gain to speech intelligibility (Summerfield 1987; Summerfield et al. 1989).
Their use of quantized image sequences of the lips demonstrated that speech
intelligibility may be enhanced when the visual information is severely
degraded to just a small number of pixels (Brooke 1996). This work provided
the starting point for examining the visual contribution of the entire face. Their
attempt to divide auditory and visual speech into complementary modalities –
visual information about place and manner of articulation (ba, fa, da) vs.
auditory information about voicing (pa, ba) audiovisual speech perception –
showed that
� the auditory and visual modalities may provide complementary information

to perceivers (Summerfield 1987), such as visible information about place
and manner of articulation (ba, fa, da) as opposed to audible information
about voicing (ba vs. pa) (Green and Kuhl 1989; Green and Kuhl 1991);
� the visual gain to speech intelligibility when presented with the speech

acoustics degraded by masking noise was estimated at 8–10 dB
(Summerfield and Assmann 1989);2

� speech intelligibility may be enhanced even when the visual information is
severely degraded (e.g., by quantization) to just a small number of pixels
(Brooke 1996).
Although subsequent research has refined these early statements (see Grant

and Seitz 2000), they set the stage for considering how speech production is
related to audiovisual perception. In our work, we have insisted that under-
standing audiovisual perception requires examining audiovisual stimuli not
only for their effects on perception but also in terms of their source character-
istics – i.e., production. Note however that we state this only as a methodolog-
ical necessity for examining the correspondence between production and
perception. We do not assume that there is a direct linkage between production
and perception for speaker-hearers. This compelling concept, which is funda-
mental to the motor theory of speech perception (Liberman et al. 1967) and
theory of direct perception championed by Carol Fowler and colleagues at
Haskins Laboratories (Fowler 1986) and elsewhere (Rosenblum 1994) must
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be tested empirically. In order to do so, we cannot assume a priori that speaker-
hearers make use of the apparent direct linkage between the production and
perception processes of audiovisual speech.

13.3 Bringing speech production to the face

Throughout most of its modern history the study of speech production has been
impeded by the difficult problem of identifying and measuring relevant events
that cannot be observed directly. The production of speech sounds in which
the acoustic result is derivative of the production process, entails coordinated
action of the respiratory system to generate the air stream conditions needed
for vocal fold vibration at the larynx, and complex neuromuscular control of the
vocal tract articulators – such as the tongue, lips, jaw, and velum – that shape
the vocal tract continuously through time. Indeed, the measurement of the
tongue, arguably the most physiologically complex and important vocal tract
articulator, has yet to be adequately observed despite the development of
numerous X-ray, electromagnetic, and ultrasonic techniques for irradiating
soft tissue. In short, speech production has been difficult to visualize directly
in anything but a very incomplete and piecemeal fashion.

If direct visualization of vocal tract behavior is not feasible, what indirect
means might be attainable by examining the visible and audible outputs of the
vocal tract? This question is important both practically and theoretically, and is
not new. Alexander Melville Bell’s Visible Speech of 150 years ago was an early
commitment to the belief that hearing-impaired speakers could be trained to use
visible information about the vocal tract to improve both their production and
perception (Bell 1867). Implicit in his system was the hypothesized three-way
linkage between vocal tract behavior, visible motions of the orofacial system, and
the speech acoustics that we have exploited in the work described in this chapter.

Bell’s systemwas innovative and brilliant, but it failed to consider the linkage
from the side of perception; namely, what information about the vocal tract do
perceivers (in Bell’s case, speechreaders) need in order to recover speech
information from the face? Experiments using the Haskins Pattern Playback
(Cooper et al. 1952) showed the correspondence between time-varying proper-
ties of the speech acoustics and perception, and provided the fundamental
insight that speaker-hearers have access to time-varying vocal tract informa-
tion.3 This notion serves as the entry point for our work with multimodal speech
production and perception.

13.4 Auditory-visual speech production

The rapid development of sophisticated means for physiological data measure-
ment and analysis in recent years has led to a plethora of efforts to examine
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speech production. Some attempts have been made to model the anatomical and
physiological structures necessary to understand the neuromotor and biome-
chanical mechanisms responsible for the organization and control of observable
speech behavior – i.e., articulator motion and/or the acoustic output (Muller and
MacLeod 1982; Wilhelms-Tricarico 1995; Payan and Perrier 1997; Sanguineti
et al. 1998; Dang and Honda 2004; Gerard et al. 2006; Buchaillard et al. 2009).
However, many more have focused on the mapping between specific vocal tract
behaviors and the resulting speech acoustics (Mermelstein 1973; Titze et al.
1995; Story 2009). In the following sections, we summarize a different
approach. Our efforts have been directed at understanding the mappings
between the articulator and acoustic motion and secondly to characterize this
knowledge in a global model of speech production.

13.5 Correspondences of multimodal speech

Strong correspondences exist between the movements of the face and vocal
tract, and the speech acoustics. For the most part, these correspondences are
highly linear and are easily characterized with linear and/or simple non-linear
estimation techniques (Yehia et al. 2000). Figure 13.1 schematizes the corre-
spondences that we and our colleagues have examined between the four domains
of physiological and acoustic measurement: vocal tract, face and head, speech
acoustics, and orofacial muscle activity (electromyography – EMG).
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Figure 13.1 Schematic representation of the four measurement domains used
in our research: 2D vocal tract, 3D face and head, orofacial muscle EMG, and
speech acoustics (adapted from Vatikiotis-Bateson and Yehia 1996).
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Essentially, any signal in one domain can be recovered to a fair extent from
signals in any other using multilinear correspondence analyses and simple
statistical models such as artificial neural networks. For example, multilinear
techniques such as principal component analysis (PCA) have been used to
estimate face motion reliably from vocal tract articulation and from the speech
acoustics and vice versa for speakers of English, French, and Japanese (see
Figure 13.2 for speakers of English and Japanese). Thus, motion of vocal tract
articulators such as the tongue, lips, and jaw, which we already know can be
used to synthesize speech acoustics (Mermelstein 1973), can also be used to
estimate face motion at about 95 percent reliability (Yehia et al. 1998).

Similarly, intelligible speech acoustics can be recovered from measures of
visible motions of the head and face. Using non-linear tools such as an array
of simple neural networks, each responsible for estimating a component of
the face motion, face motion can be synthesized from the spectral acoustics
(Yehia et al. 1999). Not surprisingly, the correspondence is strongest for the
frequencies in the 2 kHz range, because this is where the second formant (F2)
is active, and the second formant is determined by the shape of the front
cavity of the vocal tract – in other words that portion of the vocal tract most
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Figure 13.2 Results of within and across domain analysis for a speaker
of English (left) and Japanese (right) show the small number of correlates
required to characterize multimodal speech data. Dashed lines depict
PCA results for recovery of variance within a measurement domain. Solid
lines show the extent to which measures in one domain can be estimated
from measures of another – e.g., face from vocal tract (adapted from Yehia
et al. 1998).
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closely linked to the shape of the visible face. Position and orientation of
the head have been shown to be highly correlated with the fundamental
frequency (F0) of vocal fold vibration (Yehia et al. 2002). In estimating F0
from head motion, orientation is removed and the dimensionality of the 3D
position is reduced to one Euclidean path. Finally, moderately accurate
estimation of acoustic amplitude requires estimation from both head and
face motion. In this way, both the laryngeal source and vocal tract filter
components of the acoustics correspond directly to events visible in the
motion of the head and face.

Table 13.1 lists the principal findings of the multi-domain analyses that
we have examined over the past 15 years. It is important to understand from
Table 13.1 that the motion of the face during speech is essentially the inevi-
table outcome of configuring the vocal tract through time to produce speech
acoustics. The jaw, lips, and tongue move continuously producing the neces-
sary vocal tract cavities for vowels and tract constrictions for consonants.
Since the face surface is the outer surface of the soft walls of the vocal tract
including the lips, it is not surprising that the neuromuscular activity control-
ling tract configuration has consequences that are inevitably both audible and
visible. Thus, from the perspective of speech motor control, the obvious
physical and simple statistical connections observed between audible and
visible speech suggest that a straightforward linkage exists between the face
and vocal tract.

Table 13.1 Eclectic summary of findings for the analysis of multimodal speech
and their causes and/or implications.

Finding Cause – Implication

Motions of the lips, cheeks, and chin are
highly correlated during speech.

Deformation of the face surface is determined
by the time-varying behavior of vocal tract.

Different facial regions are not redundant
in their correlation to vocal tract behavior.

The lips alone are not sufficient for specifying
the visible correlates of speech production.

Motions of the face, head, and vocal tract are
reducible to small numbers of independent
correlates.

The dimensionality of the mapping
between measurement domains is
tractable with simple equations.

Face motion corresponds to the spectral
acoustics, head motion to fundamental
frequency (F0).

Face and head motion can be synthesized
from speech acoustics and vice versa.

Perioral and orofacial muscle EMG corresponds
well with both face and vocal tract motion.

Visible speech and vocal tract motions
have the same motor source.

Using speech production data to animate
realistic talking heads conveys linguistically
relevant information to perceivers.

This perceptual evaluation validates a
connection between the analysis and
perceptibility of visible speech correlates.
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13.5.1 Computational model of speech motor control

By the mid 1990s, a number of research groups – e.g., ICP (France), NTT
(Japan) – had begun to generate computational models of speech production. At
ATR in Japan, Kawato, Vatikiotis-Bateson, and their colleagues made EMG
recordings of orofacial muscle activity associated with speech articulation along
with measures of articulator motion and the resulting speech acoustics. The
muscles recorded were but a small subset of the myriad muscles making up the
orofacial system, but they were the muscles typically indicated for
� extrinsic control of tongue position in the oral cavity (e.g., genioglossus

anterior and posterior),
� opening and closing the jaw (anterior belly of the digrastic and medial

pterygoid),
� combinations of extrinsic (depressor and levator inferiori, mentalis) and

intrinsic (orbicularis oris inferior and superior) muscles controlling the
position and shape of the lips.

Applying a computational paradigm originally developed by Kawato and Uno
for the control of arm motion (Uno et al. 1989; Kawato 1990), serial strings of
phonemes, representative of the cognitive intent to speak, were mapped to
intended targets arrayed in vocal tract or articulator space. Artificial neural
networks were used to learn the forward dynamics linking recorded muscle
activity and articulator acceleration (the second temporal derivative of articu-
lator position). This provided muscle force approximations (in physical systems
Force = Mass x Acceleration). When conditioned by an objective function
constraining the smoothness of motion trajectories, the muscle force approx-
imation could be used to estimate articulator motion (Hirayama et al. 1992). The
estimated articulations were then used to estimate vocal tract area functions
from which intelligible speech could be synthesized (Hirayama et al. 1994);
for details and discussion of this approach to speech motor control, see
(Munhall et al. 2000).

13.5.2 Extending the model to the face

This modeling effort was conceptually promising and mathematically elegant,
but it was difficult to make reliable estimates of tongue motion from EMG
recordings of two or three extrinsic, but no intrinsic, tongue muscles. Even the
measurement of tongue motion was limited to only four or five flesh points on
the anterior tongue.4 The absence of measures of any intrinsic muscles made it
impossible to estimate tongue shape, which would have provided the means for
specifying relations between the measured flesh points (rather than treating each
one independently in the analysis). On the other hand, accurate measures and
reliable computational estimates of jaw and lip motion were easily obtained.
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Using such measures, it was possible to consider the double role played by the
jaw and lips in shaping the vocal tract and deforming the face surface.

Specifically, the same orofacial muscle activity and motion data that were
used previously to model the vocal tract were now applied to modeling facial
motion. Two approaches to modeling audiovisual speech production using the
physiological data measured at ATR were attempted: one was a biomechanical
model incorporating stylized skeletal and tissue structures and dynamics; the
other was a functional model based on the statistical manipulation of static face
shapes and time-varying measures of visible, acoustic, and articulatory events.

The biomechanical model was a modification of the muscle-based face model
developed by Terzopoulos and Waters (Waters 1987; Terzopoulos and Waters
1990), initially for synthesizing facial motion from anatomical and physio-
logical data (Terzopoulos and Waters 1993) and later for text-to-audiovisual
synthesis (Lee et al. 1995b). As of 1995, the model contained twenty-two
muscles including the perioral muscles which were added to accommodate
our muscle EMG for speech production (see Figure 13.3). However, the
model’s muscle dynamics had to be completely restructured before the model
could synthesize facial motion from muscle EMG input (Vatikiotis-Bateson
et al. 1996). This was achieved by Lucero and Munhall in Canada (Lucero and
Munhall 1999; Pitermann and Munhall 2001), resulting in the best data driven
animations we have seen to date.

Figure 13.3 A frame taken from EMG-driven animation of the nonsense
utterance [’upa] during production of the stressed vowel [u].
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A major difficulty for this approach, as with any first principles approach, is
the high degree of structural and computational complexity required to create
realistic animations. This problem is exacerbated when one must rely on
recorded muscle EMG to drive the model because it is difficult to obtain and
interpret.5 Therefore, we undertook a statistical approach to characterizing the
visual characteristics of speech production that did not rely on complex non-
linear estimation techniques and did not require difficult muscle EMG data.

13.6 Talking head animation

In the preceding discussion of the analysis of measured data for facial motion
and vocal tract behavior, we focused on the strong correspondence that exists
between measurements made in the vocal tract and facial motion domains.
During the course of our research, we have also ascertained that phonetically
relevant facial motions are slow moving, highly linearized, distributed over
large portions of the lower face, and not so difficult to recover from either vocal
tract behavior or acoustic signals.

This last point is important because, while the face motion may be the most
accessible to measurement and recording, it is the most informationally impov-
erished of the three domains of speech measurement discussed in this chapter.
The signals of both the midsagittal vocal tract and the speech acoustics are
both richer than the face motion. Note however, this does not mean that the full
richness is easily accessed using our current measurement tools. A small number
of flesh point measures of the midsagittal tongue, lips, and jaw provide about the
same quality signal as that recovered from the 3D face (Yehia et al. 1998).

It is critical therefore to evaluate the quality of the linkage computed between
the various measurement domains. Our approach to this has been to synthesize
faces from vocal tract and/or acoustic signals and test whether or not the
resulting talking head animations contain the same linguistic information as
natural talking faces. To this end, a facial animation system was developed
whose control parameters are measured data (Kuratate et al. 1998; Kuratate
et al. 2005). The system combines time-varying measures of facial motion and
facial deformation parameters extracted from static scans of 3D faces as sche-
matized in Figure 13.4.

Animations created with this system based on recordings of face and head
motion and speech acoustics have been evaluated by Munhall and colleagues for
intelligibility under conditions of auditory degradation (Munhall et al. 2003).
Despite many cosmetic deficiencies in the animations such as lack of teeth, visible
tongue, and eyes (masked by digital sunglasses), Figure 13.5 shows that the same
order of intelligibility gain is obtained for the animations as for natural audiovisual
stimuli of the sort originally published by Sumby and Pollack (1954). In addition,
these animations demonstrate the importance of the head in lexical recovery.
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Parallel studies of brain function during audiovisual perception are being
conducted by Callan and colleagues at ATR using fMRI and the same or
similar stimuli. Natural and synthetic talking-head stimuli have been exam-
ined under various auditory and visual conditions (Callan et al. 2003; Callan
et al. 2004).

13.7 The importance of physical structure

In recent years, much emphasis has been placed on demonstrating the value of
time-varying events in modeling the processes of production and perception. In
visual perception, the recovery of structure from motion has been demonstrated
using random dot stereograms (Julesz and Payne 1968). In the perception of
speech acoustics, the same point has been made by Remez and colleagues for
spectrally degraded sinewave synthesis (Remez et al. 1994, see also this vol-
ume). As discussed in more detail below, this has been demonstrated elegantly
for multimodal speech perception by Rosenblum and colleagues who have used
point light displays to demonstrate the sufficiency of time-varying information

Dynamic facial motion
(original speech)

Static face postures Mesh adaptation

Facial animation

Generic mesh

Principal component
analysis

Linear combination
of principal components

Figure 13.4 Schematic overview of kinematics-based animation. Static 3D
head scans for nine expressive postures (top left) are fit with a generic face
mesh (top right) in order to compute a small set of geometric deformation
parameters for a speaker’s face using principal component analysis (PCA).
The resulting mean face (middle) is then parameterized frame by frame by the
time-varying position of face markers recorded during speech production
(bottom left). The video texture map is attached to the deformed mesh for
each frame (lower right) and animated along with the speech signal (original or
modified).
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in producing the McGurk effect (McGurk and MacDonald 1976, see
also chapters by Burnham and Sekiyama and others in this volume). By con-
trast, the role of the static properties of an object such as shape and texture
in conveying linguistically relevant speech information has received
relatively little attention only recently (Jordan et al. 2000; McCotter and
Jordan 2003).

In our work we have championed the importance of time-varying information
in characterizing and understanding spoken communication. Now that the
validity of dynamic information is no longer in dispute, we have begun to
consider what role the physical attributes of speakers play in multimodal
speech processing. Ironically, we must first partial out the contribution of the
dynamic attributes. Figure 13.6 shows two non-contiguous frames excerpted
from a video sequence. Superimposed on the video frames (top row) and
shown independently (bottom) are the image motion vectors, computed at
1 cm intervals using optical flow (Horn and Schunck 1981). Comparing
the motion vector (lower) frames in the figure, it is clear that shape
information for the head emerges during motion. What cannot be so easily
discerned from the motion, even when viewing the video is that in addition to
moving his head, the subject (Christian Benoît) is also speaking.

Is this just a matter of resolution? That is, if motion vectors were computed
for each pixel of the image, would viewers then be able to discern the motion of
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Figure 13.5 Percentages of correctly identified Hiragana (syllabic) characters
for Japanese sentences presented under three degraded audio plus synthetic
talking head conditions – normal head motion (NH), double head motion
(DH), and zero head motion (ZH) – and one degraded audio only condition
(AO). Intelligibility of all multimodal conditions was significantly better than
AO (adapted from Munhall et al. 2004b). The dashed line is a visual aid for
differentiating the audiovisual and audio-only conditions.
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the lips and jaw on the moving head? This is essentially what has been
demonstrated by Rosenblum and colleagues using point light displays
(Rosenblum et al. 1996). With a large number (about 40) of markers placed
on the head, around the mouth, on the chin, and even on the teeth, the visual
information was sufficient to induce the McGurk effect in viewing listeners.
Similar efforts by us using point light displays corresponding to the much
smaller sets of markers (11 or 18) used to drive our animations have also
shown enhanced intelligibility. This would suggest that resolution is not critical.
However, we have so far been unable to replicate the pattern of enhancement
effects for face and face-plus-head motion seen by Rosenblum et al. for point
lights and by us for animated talking heads driven by the same sparse motion
data (Munhall et al. 2004b).

As discussed in the next section, data resolution per se is probably not the
issue, but it may be confounded by the necessity for point light displays to be
perceived as face objects in order to obtain the same visual enhancement pattern
seen for animations and natural faces. There may be some minimum point
density required for point light arrays to be perceived as faces. This is what we
believe underlies the Rosenblum et al. results. If true, then both motion and
structure are necessary to inform speech perception.

Figure 13.6 Simple depiction using optical flow (velocity vectors scaled) of
the importance of structure in motion (top) and motion to recover structure
(bottom).
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13.7.1 The effects of spatial and temporal filtering on perception

An implication of the previous discussion is that it is the motion of structures
(rather than the motion of points) that is key to visual perception of speech, and
that the resolution of the motion of those structures need not be very high. Our
first indication that high spatial resolution might not be necessary for audio-
visual perception came when we examined perceiver eye motion (Vatikiotis-
Bateson et al. 1998). Perceivers continued to foveate on the speaker’s eyes for
substantial periods of time across a range of degraded auditory (speech in noise)
and visual (image size) conditions.

At that time, we surmised that perceivers may exploit fine-grained temporal
information instead of fine-grained spatial information. However, recent studies
conducted by us and our students suggest that neither the spatial nor the
temporal resolution needs to be fine-grained for perceivers to recover the visual
speech information. In one study (Munhall et al. 2004c), video image sequences
were spatially filtered using band-pass (one octave in width) and low-pass
filters, and presented with noise-degraded audio. Band-pass filtering demon-
strated that linguistic information exists at a range of spatial frequencies,
peaking between 5.5 and 11 cycles per face (c/f), but continuing into the higher
frequencies. No frequency band afforded full recovery of the visual informa-
tion, so we could not know to what extent the information at any given
frequency was complementary or redundant to any other. Use of low-pass
filters, whose cut offs corresponded to the upper boundary of each band-pass
filter, demonstrated that perceivers could recover all of the visual speech
information from video low-pass filtered at 7.3 c/f, which is the upper bound
of the 5.5 c/f band-pass filter shown in Figure 13.7.

Figure 13.7 Shown are images band-pass filtered at the two lowest spatial
resolutions. At 2.7 c/f, no information is recovered by perceivers, and for the
5.5 c/f face less than full recovery is attained. When these two center
frequencies are combined into one low-pass filtered image sequence, full
recovery of the speech information is achieved.
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The Munhall et al. findings for spatial frequency in English have been repli-
cated for Japanese and Portuguese and extended to the temporal domain by de
Paula et al. (2006). Earlier work by Vitkovich and Barber (1994) had suggested
that visual speech information becomes degraded at frame rates lower than about
15 frames per second (fps). However, in that study, lower frame rates were
obtained by frame decimation. It is a well-known legacy of the film industry
that frame rates below 16 fps flicker and look choppy because of the transport
time between frames during which the image is black. Therefore, in constructing
the stimuli for de Paula’s studies, temporal information was removed without
reducing the frame rate.

De Paula’s results confirmed our suspicion that frame decimation introduces
a confound. When there is no flicker, the degradation of speech information
begins between 9 and 12 fps, a substantially slower frame rate than the 16 fps
observed by Vitkovich and Barber (1994). Note that this lower rate matches the
9 Hz cut-off frequency found to provide the strongest correspondences between
the speech acoustics and motions of the vocal tract, face, and head (Yehia et al.
2002). We believe both phenomena to be related to the fact that is also the event
rate for opening and closing the vocal tract (corresponding to syllable rates of
4.5–6 Hz).

13.7.2 Non-face faces: the case of talking cuboids

Another indication of the importance of structure in processing visual speech
information is provided by Harold Hill’s work at ATR with cuboids. Cuboids
are animations of cubical heads incorporating the same kinematic data for
motion of the head, lips, and jaw that was used to animate the linguistically
informative Talking Heads discussed earlier. Perceivers were shown cuboids
animated with every possible combination of motion data components (e.g.,
head + lips, jaw alone) and presented with noise-degraded audio (cf.
Figure 13.8).

Using the same Japanese sentences that Munhall et al. used to study head
motion effects (Munhall et al. 2004b), a fundamentally different result was
obtained for the cuboids. Across all conditions, only the lips enhanced intelli-
gibility (by about 10 percent). It is also interesting that the jaw, which is the
strongest contributor to facial deformation for this speaker (Kuratate et al.
1998), makes no contribution when implemented in the cuboid animation. It
may be that the jaw’s contribution to perception is quite different than its
contribution to face deformation. What is needed is a similarly systematic test
of the contributing kinematic components using the talking head animation
system; but it is clear, at least, that the difference in structure between a face and
a cuboid does influence the recovery and perhaps the visibility of visual speech
information.
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13.7.3 The role of constant features in speech perception

The results of auditory and audiovisual studies examining speaker character-
istics such as age, gender, and familiarity have been highly variable.6

Examinations of language and ethnicity differences have also proved con-
troversial. For example, Sekiyama and Tohkura (1993) proposed a language
effect on audiovisual perception by showing that Japanese perceivers do not
make as much use of visual speech information when perceiving Japanese
as they do when listening to other languages such as English. On the other
hand, Massaro and colleagues found audiovisual performance for perceivers
of the two languages to be about equal (Massaro et al. 1993; Sekiyama and
Tohkura 1993).

Part of the problem may be due to confusion about where to look for and how
to classify linguistic and constant, non-linguistic features. Much has been made
of the dynamism of speech behavior for both production and perception (Remez
et al. 1994). It is clear that many non-linguistic features are also inherently
dynamic. Expressive gestures such as smile, discourse-related eye-blinks, and
emphatic use of the eyebrows are all dynamic. But there are more subtle links as
well. For example, perceivers can extract identity information from time-
varying speech behavior in one modality and apply it to speech behavior in
another modality (Kamachi et al. 2003; Lachs and Pisoni 2004; Rosenblum
et al. 2006). Crucial to the cross-modal identification is not the content of the
speech, but rather the manner in which it is produced (Lander et al. 2007);
identification succeeds only when the manner (e.g., casual vs. careful speech) of
the two productions is the same.7

Figure 13.8 The original 3D position data were recorded using OPTOTRAK.
Markers on the head rig, the chin, and around the border of the lips (left) were
used to animate the cuboid (right).
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Although little more than speculation at this stage, we want to emphasize that
time-varying behavior is produced by physical structures that have static prop-
erties that shape both the range and time-course of possible deformations. We
tend to forget this because important static properties such as the age, ethnicity,
and gender of a person, which can be readily discerned from a photograph, are
assumed to have either constant influence on speech behavior (age, gender) or
none at all (ethnicity). This assumption may stem from the tradition of consid-
ering only the auditory modality, perhaps non-trivially reinforced in recent
years by ethics review boards that steer science away from such classifications.
The status of static properties becomes less clear when multimodal perception is
considered. For example, as a physical account for the Sekiyama and Tohkura
(1993) result, it has been argued that the broader, flatter, and smoother surface of
Japanese faces provides fewer contrasts and therefore conveys less visual
speech information (Hiki and Fukuda 1996).

In order to begin assessing the integration of visible structural properties of
the face and head with time-varying audiovisual speech behavior, a large data-
base of 3D full-head scans was constructed at ATR International beginning in
1999 (Vatikiotis-Bateson et al. 1999). The database now consists of scan sets for
more than 500 subjects: ethnic Caucasian and Japanese males and females
(Kuratate and Vatikiotis-Bateson 2004). Each subject’s scan set consists of
nine orofacial postures represented as a facial mesh containing approximately
500 nodes and several reference features (e.g., eyes, lips, hairline). These are the
postures used for generating the facial deformation parameters of the talking
head animation system (Kuratate et al. 2005), and are the result of differences in
both the structural morphology and the interpretation of instructions such as
“smile with your mouth closed.”

Just as PCA reduces the dimensionality of the postural data to a mere handful
of principal components for generation of linguistically realistic animations,
gender and ethnicity can also be distinguished (Figure 13.9), but not with the
same degree of independence (orthogonality) of components (Vignali et al.
2003). Furthermore, perceivers have difficulty correctly identifying the gender
and ethnicity of faces re-synthesized from the reduced set of components. In
order to match the structural decomposition to perceiver judgments, more
sophisticated decomposition of the database is required. In particular, linear
discriminant analysis (LDA) recovers about 70 percent of the variability in
gender and ethnicity with two non-orthogonal components. As shown in
Figure 13.10, multiple discriminant analysis gives even better results, recover-
ing about 95 percent of the postural variability using two components, and
corresponds better to perceiver judgments (Vignali et al. 2003).

Mining the database for structural features corresponding to ethnicity, gen-
der, and facial postures is only a small, preliminary part of its usefulness. These
can now be used to create both naturalistic and systematically distorted
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animations from time-varying input of audiovisual behavior (Kuratate et al.
2005). Talking head stimuli can be generated that mix the motion data for one
speaker and the facial deformation parameters of another. Just as easily, the
structural parameters can be distorted along individual dimensions (e.g., smil-
ing, gender) or in combination in producing talking head stimuli for perceptual

Original Ethnicity Ethnicity
Gender

Ethnicity, Gender
Posture

Figure 13.10 Multiple discriminant analysis (MDA) computed for the entire
3D face database recovers 95 percent of the variability for any posture of
any subject (1, 4) using two components corresponding to ethnicity (2) and
gender (3).
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variance of 2700 3D face scans (300 subjects × 9 postures)
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evaluation. It is our hope that systematic examination of the controllable
parameters of the facial structure will provide at least a partial answer to how
speech behavior, expressive gesture, and physical structure contribute to the
production and perception of multimodal communicative behavior.

13.8 Communicative versus cosmetic realism

Substantial advances have been made by the entertainment industry to meet the
challenges posed by naturalistic animation of humans and other animals,
realistic or imaginary. Interestingly, there has been less success with realistic
animation of speaking characters. There is a trade-off between the acceptability
of the animated speech and the realism of the speaker. Cartoon characters can
talk all they want and we are amused. Yet, when a video realistic character is
synthesized, the speech becomes jarring if viewed for more than a few seconds
at a time. This conundrum, undoubtedly related to the uncanny valley phenom-
enon coined by Masahiro Mori in describing human responses to realistic
humanoid robots, continues to plague filmmakers even today in generating
video realistic humans using computer graphics. Even a decade ago, perceptual
evaluations of talking heads, when conducted at all, went no further than
“How does it look?” Such sacrifice of communicative realism in favor of
cosmetic realism received a positive response so long as shots were kept very
short (1–2 seconds). In recent years, however, Hollywood has shifted its focus
back to communicative realism, as computer graphics imagery (CGI) has
become the cost-effective way to generate special effects in an ever-widening
sphere of physically impossible realities. Now, entire films are animated using
high-quality 3D motion capture of body motion, facial expressions, and even
speech. It is no longer acceptable for characters to speak away from the camera
or for very short periods of time. Now, the sacrifice has been reversed as video
realism of the actors is replaced by increasing degrees of communicative
realism. The realism of the speech in films such as Avatar, released in 2009, is
at least as good as anything we have done in the speech science community, but
the characters doing the speech are no longer video realistic representations of
the actors doing the talking.

In this chapter, we have described work that addresses the question, “How
can linguistically relevant speech information be characterized and transmitted
auditorily and visually?” In fine-tuning our animation system to produce lin-
guistically veridical talking heads, we have focused on correcting mapping
errors between physical measures and model parameters such as the nodes of
the face mesh. We have also optimized our data collection to provide maximum
range with minimum additional computation – not to save computation time,
but to reduce the error inevitably introduced by additional computation. So, for
example, we reduced the set of scanned 3D faces used to estimate the facial
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deformation parameters from 28 to 9 postures. Finally, we have avoided
attempting to model anything that we cannot model properly and that is not
essential. Teeth and eyes are extremely difficult to do even with a team of CGI
experts, and it is not clear that parameter models can get them right without hand
tuning.

Thus, our animations are linguistically informative and we avoid the uncanny
valley by sparse representation of the finer details of the face. One of the greatest
challenges has been the modeling of the lips, which are critical cosmetically and
communicatively. The position data used to animate the lips typically are
recorded at the vermilion borders that separate the lips from the rest of the
face. Unfortunately, measures made at these borders are almost uncorrelated
with the inner dimensions of the lips, and especially the size and shape of the
oral aperture (Munhall et al. 1994). In order to specify the shape of the inner lip
surfaces, either an internal structure model or some indirect means of estimating
lip shape over time is needed. Without either, the lips tend to be more rigid than
they should be, and their range of motions smaller than in reality.

In order to examine the hypothesized trade-off between cosmetic quality and
intelligibility, we attempted to “improve” lip behavior in the animations by
adding texture and kinematic constraints on velocity and acceleration to lip
shape. The resulting lips “looked better” both statically and when animated.
However, when these new animations were presented to perceivers in a pre-
liminary Speech-In-Noise (SPIN) task, the intelligibility results were not
impressive.8 Figure 13.11 is presented for illustration only. Since the experi-
mental conditions (e.g., number of stimulus categories) and the posture sets
used to compute the static deformation parameters of the face are different for
the two studies, we cannot say for certain at this time that the cosmetically
improved animations on the right are less intelligible than the unimproved ones
on the left. We believe that a proper test will show this to be the case, because of
relatively small enhancement of the NH (normal head motion) condition com-
pared to the AO (audio alone) condition. In previous studies, we have shown
9-posture deformation sets to generate more accurate animations than the
28-posture set shown (Vatikiotis-Bateson et al. 1999) and the enhancement of
intelligibility for normal head motion to be at least as good or better than the
NH condition shown for the 28-posture set here (Munhall et al. 2004c).

One obvious reason why adding kinematic constraints might reduce the
relevant speech information in the modified animations is that the kinematic
constraints distort the motion capture data for the lips, smoothing and reducing
the range of motion of any given mesh node. It may also be that the contribution
of the recorded lip motion to speech perception is already close to threshold for
having any effect at all. Five years ago, we could barely obtain perceptual
validation of any animation. Enough progress has been made since then that we
(and many others) can now consider more elaborate questions. It is unlikely that
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communicative and cosmetic realism are simply orthogonal to each other. In all
likelihood, it is just the reverse; namely, cosmetic and communicative features
reinforce or blend into one another. Clearly, these two domains need to be
examined together, but to do so will require the collaboration of the entertain-
ment industry, whose resources span a much broader range of science and art
than most academic and even industrial research settings can afford. If achieved,
such collaboration would serve the entire spectrum of research and commercial
applications, including a major one in the entertainment industry – the anima-
tion of talking faces that incorporate the dynamic and static characteristics of
specific actors and convey linguistically relevant information.

13.9 Summary

In this chapter, we have described our approach to examining the production and
perception of multimodal speech. The key feature of the approach has been to
forge an empirical link between production and perception by using the data of
production in a controlled manner as stimuli for perceptual evaluation. Our aim
has been to keep things as simple as possible so that we can understand them and
so that we can progress in an orderly fashion. That is, by using multilinear
processes to the greatest extent possible, rather than more opaque non-linear
estimations such as those provided by artificial neural networks, we have made
modest sense of our observations of structure, function, and behavior across
a wide range of measurement domains, including brain function (fMRI),
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Figure 13.11 Intelligibility results for Japanese sentences animated from the
same motion data, but with different sets of postures defining the facial
deformation space and with kinematic constraints added to the lips for the
set on the right. These sets should not be compared (see text).
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neuromotor activity (EMG), vocal tract, orofacial, and head motions, and the
speech acoustics. In the time it has taken to prepare this volume for publication,
other research groups have made significant strides in extending this approach or
in developing their own approaches. There are now myriad commercial applica-
tions for facial animation frommotion capture data ormore abstract inputs such as
text that enable different and often more elaborate questions to be asked such as
how orofacial speech behavior and other components of communicative expres-
sion are integrated in production and processed in perception.
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14 Sensorimotor characteristics of speech production

G. Bailly, P. Badin, L. Revéret, and A. Ben Youssef

14.1 Introduction

The production of speech sounds, in which the acoustics results from the
production process, entails coordinated action of the respiratory system to
generate the air stream conditions needed for vocal fold vibration at the larynx,
and complex neuromuscular control of the vocal tract articulators – such as the
tongue, lips, jaw, and velum – that shape the vocal tract continuously through
time. When we speak, we have access to a large variety of signals that inform us
about the current state variables of the production process. These somesthetic
signals include motor commands available as copies of efferent1 motorneural
commands, proprioceptive signals that for example give access to muscular
elongation or acoustic structure via tissue vibration and haptic signals delivered
by surface tissues, as well as exteroceptive acoustic information delivered by
the ears. When we speak, the interlocutor has access to exteroceptive acoustic
and visual information about our articulation. Thus both speakers and listeners
have access to a great variety of redundant and complementary information
associated with speech movements.

In this chapter, we describe and discuss approaches to examining the visible
characteristics of speech production and their link with other sensory informa-
tion, in particular articulation and acoustics.

14.2 Speech maps

A sensorimotor representation of speech movements that links causes and
effects, somesthetic and exteroceptive signals, in a coherent and comprehensive
quantitative mapping, is a prerequisite for language learning. These predictive
speech maps (Abry et al. 1994; Abry and Badin 1996; Bailly 1997) are central
to language acquisition, articulatory planning, and multimodal perception; they
enable the comparison of sensory requirements with motor plans, the adjust-
ment of motor plans to sensory requirements or environmental conditions, as
well as the fusion of partial multimodal components using a priori information.
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The articulatory-to-acoustic map The most studied speech map is
the articulatory-to-acoustic mapping. This articulatory-to-acoustic map is cen-
tral to the controversy on the nature of speech representation. Motor theories
(Mattingly and Studdert-Kennedy 1991) suppose that the objective of speech
perception is to recover the underlying organization of articulatory gestures. As
a result these theories are confronted with the problem of acoustic-to-
articulatory inversion (Bailly et al. 1991). Direct theories (Fowler 1996) sup-
pose also that we do have access to the “objects” producing the sounds but via a
direct association between each object and its sensitive properties that requires
neither a priori experience nor understanding of the production process.
Auditory theories (Stevens 1989a) suppose that in their acoustic forms sounds
are sufficiently distinguishable (Sussman et al. 1991) and that the objective of
speech perception is to extract robust acoustic features. However auditory
theories should also propose a framework for learning articulatory control that
ought at some stage to include the acquisition of an articulatory-to-acoustic
map. Being able to recover articulation from its audible consequences seems
thus essential for language acquisition and motor control.

The articulatory-to-visual map It is also clear that vision can help
this recovery. Neither motor nor auditory theories incorporate, however, the
visual dimension in their framework. Perception experiments and developmen-
tal studies have nevertheless shown that speech is clearly multimodal. While
hearing-impaired people can supplement the impoverished auditory signal with
lipread information, listeners with good hearing also integrate visual speech
information in a noisy environment (Sumby and Pollack 1954; Erber 1975).
Even with a clear auditory source, this integration can help comprehension,
especially when listening to a foreign language or a passage with difficult
semantic content (Reisberg et al. 1987). The McGurk illusion (McGurk and
MacDonald 1976) shows that we simply cannot avoid this innate audiovisual
integration. Language acquisition studies also show that speech development is
significantly affected by a visual impairment; whereas bilabials are clearly
predominant in early speech (Vihman et al. 1985) and reinforced in hearing-
impaired children (Stoel-Gammon 1988), they are less predominant in the first
words of the blind child (Mulford 1988). Moreover, audiovisual integration is
crucial for localization and attention; both children and adults are very sensitive
to audiovisual discrepancies (Dodd 1979; Rosenblum et al. 1997).

14.3 Degrees-of-freedom in a speech task

The causal chain of audiovisual speech production is relatively complex and
seems highly non-linear. First, motor neurons set a minimal length of the muscle
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above which the muscle generates force (Feldman 1986; Leedham and Dowling
1995). The force/length relationship is almost linear for small movements, but
saturates for a higher stretching of the muscle. Displacements of insertion points
of the muscles and muscle tissues properties such as volume conservation
produce changes of the vocal tract shape and the facial geometry. The relation-
ship between muscle activations and lengths and geometric changes is again
highly non-linear, due to the nature of both the coupling between muscle tissue
and skin, and the viscoelastic properties of soft tissue. Additional sources of
non-linearity are contact between visible organs (such as those involved in
bilabials) or between deeper organs (such as contact between the teeth, the
cheeks, the lips, or the tongue). Furthermore, the movements can be audible and
visible, partially or completely inaudible or invisible, or both.

We will show in the following that, despite both this expected highly non-
linear mapping between muscular activations and their audible/visible conse-
quences, and the huge dimensionality of the state variables that describe the
speech production system, (1) statistical analysis of the experimental data can
uncover systematic sources of variation that can be identified and accounted for
by a small number of basic gestures, and (2) all movements of the biomechan-
ical system can be approximated as a linear combination of such basic gestures.

14.3.1 Degrees-of-freedom

Statisticians use the expression “degrees-of-freedom” (dof ) to describe the
number of variables in the final calculation of a statistics that are free to vary.
The lack of a priori knowledge about the observed phenomenon is often
compensated for by a statistically strong but often physically plausible assump-
tion of independence between these variables. As regards the sensorimotor
maps that organize state variables of the production process within causal
relations, one may ask whether the “natural” variables within a map (for
example, efferent motor commands of every muscle of the speech apparatus)
can be considered as dof. This is certainly not the case: first of all because of
physical constraints such as the limited elasticity and the relative incompressi-
bility of human tissue; secondly because structural arrangements of the muscu-
loskeletal system impose biomechanical coupling between muscles and organs.
Finally, as emphasized by Kelso and colleagues (Kugler et al. 1980; Kelso et al.
1986), the speech production apparatus is made of a large number of neuro-
muscular components that offer a potentially huge dimensionality and which
must be functionally coupled in order to produce relatively simple gestures.
Maeda (1991) refers to a similar concept in terms of elementary articulators.

One independent dof may be more precisely defined for a given speech
articulator as one variable that can control completely a specific variation of
shape and position of this articulator, and that is statistically independent of the
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other dof over a set of tasks. The dof are thus highly dependent on the tasks
considered. Here we will focus on dof of articulatory and facial movement
related to speech.

14.3.2 Degrees-of-freedom and speech maps

We can identify the dof of most state variables of the speech production system
including motor commands, vocal tract geometry, facial deformation, and
acoustic structure using statistical analysis. Once the proper dof have been
identified in each map, the speech production system is characterized by
independent state variables in each map, and statistical models of sensori-
motor links between the maps can be built (see for example the currently
popular Bayesian framework in Ruiz et al. 1998; Thrun 1998). These mappings
treat the speech production system as a black box fed by motor commands that
act on the system and its environment, and which receives sensory input of the
consequences of these actions. When sensory inputs are direct consequences of
the motor commands, the mapping constitutes a forward model that is supposed
to be an abstract representation of the underlying physical system – or physical
plant in terms of robotics (Jordan and Rumelhart 1991). When some character-
istics of the plant are known, it seems reasonable to drive this forward mapping
with explicit causal relations inferred from the plant. Obvious examples for
speech are bilabial or tongue-tip trills that a naive interpretation would identify
as being controlled by individual voluntary lip contractions and releases, while
they are actually controlled by only one gesture involving an adequate equili-
brium between lip contraction and intraoral pressure (McGowan 1992; Abry
et al. 1998). Another example is the intrinsic ability of the jaw to control the
global shape of the vocal tract and organize speech rhythm (MacNeilage
and Davis 1990; Studdert-Kennedy 1991). Jaw movement is a major determi-
nant of facial deformation, and the dof of such underlying articulators should
not be forgotten when analyzing movements of speech organs and/or facial
deformations.

We describe below models of underlying speech organs and facial defor-
mation and identify their dof for speech. The taxonomy of models adopted
here is common to both internal and external models. We distinguish three sorts
of models: (1) geometric models, where geometric parameters are identified as
dof of elementary points of the mesh describing the surface of the articulators
and produce ad hoc deformations of a certain number of neighboring vertices,
(2) biomechanical models where the musculoskeletal system underlying the
movements is clearly identified, and (3) functional modelswhere the dof emerge
from the analysis of corpora of data associated with task-specific mesh
deformations.
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14.4 Models of the underlying speech organs

Despite numerous studies on 3D models of the face and lips, work on 3D
models of the underlying speech organs is scarce and rarely covers the defor-
mation of the 3D vocal tract.

14.4.1 Geometric models

Most geometrical models of the tongue shape have been determined using
midsagittal contours of the tongue obtained by X-ray technology. The first 2D
articulatory models of the underlying speech organs were geometrical; the
degrees of freedom of the articulatory plant were decided a priori and fitted to
the data a posteriori (Coker 1968; Liljencrants 1971; Mermelstein 1973). The
very few 3D geometrical models of the tongue built so far follow this two-step
procedure. Based on Stone et al.’s ultrasonic tongue surface data (1990; 1996),
Cohen et al. (1998) developed a 3D tongue model made of a polygon surface
defined by sagittal and coronal b-spline curves. The dimensionality of the
control parameters is very high (9 sagittal and 21 coronal parameters). A func-
tional model was then further developed (see Section 14.4.3 below); a mini-
mization algorithm was thus used to fit parts of the synthetic 3D tongue
geometry to 3D ultrasound measurements of tongue surfaces for 18 sustained
vocalizations of English vowels and consonants (Stone and Lundberg 1996)
and high-level speech articulation control parameters have been identified and
further linked to the original b-spline control parameters (see Massaro et al., this
volume).

14.4.2 Biomechanical models

Following Perkell’s development (1974) of a midsagittal biomechanical model
of the tongue, Kiritani and colleagues (1976) developed what appears to be the
first 3D biomechanical tongue model. This simple model is constructed of 14
hexaedra defined by 24 nodes; finite element modeling (FEM) is used to imple-
ment simple linear isotropic elastic properties of muscles as well as volume
conservation. In this simple model, the number of potential control parameters
(contraction of each vertex) is of the same order of magnitude as the number of
nodes. Hashimoto and Suga (1986) also use a 3D tongue model made of 170
nodes and where 13 independent muscles can be controlled to fit X-ray contours
of vowels. More recently Wilhelms-Tricarico (1995) designed a 3D model of
the tongue with more sophisticated tissue simulation, including 8 independent
muscles and 42 elements.

Dang and Honda (1998; 2004) also developed a quasi-3D physiologically
based articulatory model of tongue, jaw, and vocal tract wall, based on
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volumetricmagnetic resonance images (MRI) from one male Japanese speaker.
The tongue is represented by a 2 cm-thick layer defined by nodes in three
sagittal planes, delimiting 120 polyhedrons. The 11 muscles of the tongue
model are simulated based on a mass-spring approach that allows large tissue
deformation and tongue-wall contact. The model includes also a mandible-
hyoid bone complex that is controlled by 8 muscles. Another line of biome-
chanical models initiated by Wilhelms-Tricarico (1995) and pursued at the
former Institut de la Communication Parlée (ICP, now part of GIPSA-Lab) by
Payan, Perrier and colleagues (Gérard et al. 2006; Buchaillard et al. 2009;
Nazari et al. 2010) focuses on a better understanding of tongue and lips move-
ment as a result of the arrangement of muscular fibers and the properties of the
muscles. Note that at present other speech organs – larynx and velum – are not
simulated or controlled in any of these models. Figure 14.1 illustrates their
structures.

Figure 14.1 2D and 3D biomechanical models of the tongue. From left to
right: Payan and Perrier’s sagittal tongue model (1997), Sanguinetti et al.’s
jaw, tongue, and hyoid midsagittal model (1998), Dang and Honda’s vocal
tract model (2004), and the latest version of GIPSA-lab’s 3D tongue model
(Gérard et al. 2003; Gérard et al. 2004; Buchaillard et al. 2009) placed in the
neighboring bony structures.
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This biomechanical approach has the advantage of always producing plau-
sible tongue or lips geometry due to muscular and tissue reactions. However,
the price for this is that the controller is also in charge of the complex
coordination of a high number of parameters controlling the muscular activity
for producing a given vocal tract geometry or a given sound (Bailly et al.
1997). In fact, the dof of these complex 3D biomechanical systems are not
task-specific; for instance, jaw models (Laboissière et al. 1996) can be
employed indifferently for studying speech or chewing (Ostry and Munhall
1994). When such complex biomechanical systems are fitted to the anatomy
of a specific speaker, the dof identified are very close to those of functional
models below. Using a fairly complete biomechanical model of the tongue,
jaw, and hyoid controlled by 17 muscles (3 intrinsic and 4 extrinsic tongue
muscles, 7 muscles attached to the jaw and 3 attached to the hyoid bone),
Sanguineti et al. (1998) showed, for example, that systematic sources of
variation in an X-ray database can be accounted for with only six independent
commands: two for controlling jaw rotation and protrusion, one for larynx
height, and three for the tongue.

14.4.3 Functional models

Unlike geometric and biomechanical models that are fitted to data a posteriori,
functional models are based on articulatory data measured on one or several
subjects, and the dof of the plant emerge from the data by statistical analysis.
Such models have been initially applied to midsagittal data (see for example
Lindblom and Sundberg 1971; Maeda 1990). We also analyzed 1200 X-ray
images of cineradiography where a French male speaker utters VCV sequences
(Beautemps et al. 2001). Degrees-of-freedom extracted from the 51 target vocalic
and consonantal configurations collected in the corpus (see Figure 14.2) are
identical to the ones extracted from the 1200 X-ray images. As can be seen
below, extensive 3D data of the vocal tract in action are currently unavailable, and
we have to rely on the generalization capabilities of our modeling procedures and
on the appropriate choice of representative configurations for validating models
learned from restricted training material.

Most studies identify at least two dof for the tongue: tongue body and tongue
dorsum components which describe, respectively, the front-back and flattening-
arching movements of the tongue. The tongue tip clearly possesses two addi-
tional independent degrees of freedom that describe, respectively, its vertical
and longitudinal movements. Additional movements of the tongue root are
observed in languages such as Akan which exploits vowel pairs contrasting
the value of the advanced tongue root (±ATR) feature (Lindau 1979). The
tongue root is also involved in less systematic phonological contrasts such as
the English tense/lax contrast (Ladefoged et al. 1972). Note that the statistical
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TB

LP

JH LH

LY

TD

TATT

Figure 14.2 Independent movements of the four articulators shaping the vocal
tract geometry: jaw, lips, tongue, and larynx. From left to right, bottom to top:
jaw rotation; lip aperture, protrusion; laryngeal vertical movement, tongue
body, dorsum, and apex (vertical and longitudinal) movements (from
Beautemps et al. 2001). Note the movements of the hyoid bone strongly
correlated with jaw rotation and vertical placement of the larynx. Some
degrees-of-freedom (velum, jaw advance, lip raising) are not shown.
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models built using these data differ in the way this tongue root movement is
taken into account. Harshman et al. (1977) showed that tongue root movement
for English tense/lax pairs can be ascribed to the sole tongue dorsum move-
ment – tense vowels generally being articulated with an advanced tongue root
and a higher tongue height, both resulting from the synergetic activity of the
posterior and anterior genioglossus (Baer et al. 1998). Jackson (1988), on the
other hand, found that three independent tongue parameters were necessary to
describe Lindau’s data, that is, independent control of tongue root advance and
tongue height that could be explained by decoupled activities of the anterior
and posterior genioglossus (Tiede 1996). In an MRI study, Tiede (1996) con-
firms the different implementations of the tongue root contrast in both lan-
guages. Once again, it is shown that muscles can be used in different ways in
order to act as either agonist or antagonist muscles for different movements.

Even though 3D data have been used extensively for the last 10 years to
complement midsagittal studies, almost no 3D functional tongue models have
been developed from real data. Stone and Lundberg (1996) reconstructed and
described the 3D tongue surface of 18 sustained vocalizations of American
English sounds using ultrasound data, but did not develop a full 3D model
(1990; 1997). Models of the vocal tract, i.e. the tract resulting from the con-
nection of the various speech articulators but without explicit reference to any
specific articulator, were developed by Yehia and Tiede (1997) based on MR
images of sustained Brazilian Portuguese vowels, and also by Badin et al. (1998),
based on a more extensive set of sustained French vowels and consonants. More
recently, Badin et al. (2000; 2002; 2006) extracted from the sameMR images the
volume surface of the tongue; instead of the simpler extraction of the supraglottal
airways in MR images, they aimed to identify the deformations of speech organs
that shape the airways that constitute the vocal tract (see Figure 14.3).

14.4.4 Discussion

Badin and Serrurier’s (2006) study shows that the articulatory dof of the tongue,
(see Figure 14.3) identified using the midsagittal contours (Beautemps et al.
2001), predict most of the variance of the 3D data. They found that 87 percent of
the variance of the MRI data is explained by the set of six parameters identified
on the midsagittal contours. The residual variance may be explained primarily
by the non-linear effects of compression of the tongue against hard surfaces
(such as the tongue tip against the hard palate) occulted by the pure statistical
representation of such observations in the 2D data. Interestingly, it was
observed that the lateral consonant [l] seems mainly to be obtained by a
depression of the tongue body achieved through a combination of jaw lowering,
tongue body backing, and tongue tip elevating. These movements, which can be
observed in the midsagittal plane, appear to be capable of creating the lateral
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channels characteristic of [l] without further transversal control of the coronal
section. These findings seem to support the view that most of the information
about tonguemovement is available in themidsagittal contour and that 3D tongue
models can supply the lateral dimension missing in experimental settings that
deliver real-time information about tongue movements in the midsagittal plane.
The findings have also been reproduced more recently by Engwall (2000) for a
Swedish speaker using a quasi-identical experimental setting and modeling
procedure. Comparing MRI, electropalatography (EPG), electromagnetic artic-
ulography (EMA) and dynamic MRI (Engwall 2004), Engwall concludes that
statistical MRI is indeed representative of dynamic speech.

14.5 Models of facial deformation

Because they have wider potential applications, 3D lip and face models are by
far more numerous than 3D tongue models. All true 3D models are made of
meshes of nodes that are connected together, usually by triangles, in order to
form surfaces. The various models that can be found in the literature differ in the
number of nodes, their arrangement, and the principles underlying their control.

14.5.1 Geometrical models

Parke (1982; 1996) was among the first researchers to develop a model of face/
lips with a relatively low number of facial nodes and a relatively high number of
control parameters; his approach involves the blending of two complementary

Figure 14.3 Illustration of a functional 3D model of the tongue (from Badin
and Serrurier 2006). Postures for extreme tongue dorsum positions are
displayed in this example.
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strategies (Parke 1982, p. 62): (1) “to observe the surface properties of faces and
develop ad hoc sets that allow these observed characteristics to be specified
parametrically,” and (2) to “deal directly with the underlying structures that
cause facial expression,” referring to a more physiologically oriented approach.
Parke’s model, that led to a number of implementations (Cohen et al. 1998;
Eisert and Girod 1998; Kulju et al. 1998), is made of approximately 400 vertices
(Parke andWaters 1996, p. 195) among which the mouth region is controlled by
10 parameters; it can produce a wide range of facial expressions, but as it was
not specifically developed for speech, it needs the coordination of many control
parameters to obtain typical speech gestures (this coordination has moreover
to be established in an ad hoc manner). In addition, these control parameters
are heterogeneous, as some can be each of the 3D coordinates of a single point
such as the mouth corner, while others can drive complex articulatory gestures
such as the tuck for labiodentals.

A similar approach has become a standard in the context of the industrial ISO/
IEC MPEG-4 norm (Pockaj et al. 1999); the 3D coordinates of the 84 feature
points are controlled by a set of 68 FAP (facial action parameters) that “are
responsible for describing the movements of the face, both at low level (i.e.
displacement of a specific single point of the face) or at high level (i.e.
reproduction of a facial expression)” (Pockaj et al. 1999, p. 33). This type of
face/lip model aims at being general, which may constitute an interesting
feature, though at the cost of a disproportion between the number of control
parameters versus the number of nodes: (1) they are developed without strong
reference to specific subjects’ data and in particular they are not speech-specific,
(2) they are controlled by a rather high number of control parameters, trans-
ferring the responsibility of the coherence of movements to the controller, and
(3) they sometimes lack spatial resolution for small details (such as wrinkles)
that can be useful for speech or expressions such as smiling.

14.5.2 Biomechanical models

Biomechanical models constitute another type of approach to face/lip modeling;
namely, this approach aims at describing not only the geometry of the face in
terms of a mesh of nodes, but also the biophysics underlying the associated
movements. One of the very first biomechanical models was developed by Platt
and Badler (1981). They simulated face muscles using fibers of springs connect-
ing the skull and jaw bones, and nodes, both defining the face mesh and muscle
interconnections. The organization of control of these muscles is based on the
facial action coding system (FACS) developed by Ekman and Friesen (1978).
The FACS constitutes a set of all possible basic actions performable on a human
face; each basic action, called an action unit (AU), is a minimal action in the sense
that it cannot be broken down into smaller actions. As Platt and Badler designed
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the AUs to be closely connected with the anatomy of the face, each AU is
controlled by either a single muscle or a small set of closely related muscles.
This allows a wide range of facial gestures to be realized, but rests on a high
number of parameters (about 40 to 50 AUs are used). Waters (1987) developed a
similar anatomically basedmodel, where about 20muscle actuators are taken into
account. Terzopoulos and Waters (1993) extended this work to incorporate a
physics-based synthetic tissue model. They defined 44 action units (AU) involv-
ing one or more muscles and associated activation levels to implement facial
expressions.More recently, Lucero andMunhall (1999) followed up Terzopoulos
and Waters’ work by implementing an EMG control applied to seven perioral
muscles, and driving the model from EMG data recorded on one subject.

Note finally that more realistic models of skin deformation using finite
element techniques (see for example Larrabee 1986; Chabanas and Payan
2000) may solve the intrinsic limitations of mass-springs models in terms of
dynamic stability (Pitermann 2004) and strain/stress relations. The biomechan-
ical model recently developed by Nazari et al (2010) consists notably of three
layers of full and degenerated hexahedral elements (see Figure 14.4). Muscle
fibres are modeled by macrofibres and cable (tension only) elements. The model
accounts for non-linear elastic properties of face tissues, contacts between upper
and lower lip and between lips and teeth.

14.5.3 Functional models

A third approach to face/lip modeling involves collecting 3D coordinates of
fleshpoints of a real speaking face and trying to explain motion variance by a

Figure 14.4 The biomechanical model of the face developed by Nazari et al.
(2010). Left: insertions of the lip muscles. Right: effect of the coordinate action
of the Mentalis and Orbicularis Oris Peripheralis.
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small number of independent parameters. Unlike the tongue where a fixed or
adaptive grid is used to intersect the moving organ and provides a constant
number of artificial fleshpoints, video- or magnetic-based motion capture devi-
ces can directly provide the positions of a few dozen real fleshpoints at high
frame rate. Geometric models should, however, complement such a pure data-
driven approach for capturing movements of organs that either are too small or
for which attaching markers is impossible (such as lips and eyes).

We show below that simple and robust linear models can be built from these
data. Note that, reciprocally, these models can be used for regularizing motion
capture data. Users of most commercial products still spend hours in manually
cleaning and labeling raw data. This lengthy and costly task can be substantially
reduced by using analysis-by-synthesis techniques that estimate the dof of a
model built from a few carefully chosen clean data: noisy and incomplete raw
data can then be cleaned and complemented by fitting them with the model,
taking advantage of the smoothing (and regularizing) capabilities related to the
model low dimensionality.

Lips Guiard-Marigny et al. (1996) have worked out a 3D model of
the lips from the geometrical analysis of the lips of one French speaker. The lip
shape is generated in two steps: (1) an articulatory model generates 3D coor-
dinates of 30 feature points organized in three contours (Revéret and Benoît
1998); (2) a geometric model interpolates between these 30 feature points to
generate the final lip mesh of continuously defined curves. This geometric
model has been adapted to lip morphologies of different speakers. For three
French subjects studied by Revéret and Benoît (1998), the lip geometry could
be controlled by three independent parameters emerging clearly from principal
component analysis (PCA); a massive lip protrusion/rounding gesture (lips1), a
lower lip opening/closure gesture (lips2), and an upper lip opening/closure
gesture (lips3) as needed for subjects to produce labio-dentals and the rounded
open fricative [ʃ]. We will show that this ranking is conserved when considering
also the jaw contribution to lip movement (see below).

Face A similar two-step procedure can be followed for the face.
Model-based video analysis (Cootes et al. 1995) consists first in adapting a 2D
or 3D generic geometric model to sample images (Pighin et al. 1999; Pighin
et al. 2002), identifying independent parameters for the shape and appearance,
eventually connecting the two of them (Cootes et al. 1998; Odisio et al. 2004)
and then using a simple analysis-by-synthesis framework to adapt automatically
the predicted appearance of the model to the series of observed appearances of
the speaker. Instead of positioning the control parameters of the generic model
manually, 3D-to-3Dmatching procedures (Szeliski and Lavallée 1996; Couteau
et al. 2000) can be used to adjust the generic mesh to the raw facial surface
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obtained by a laser range finder (Vatikiotis-Bateson et al. 1999) or motion
capture data (Bérar et al. 2003; 2006).

A one-step procedure that uses directly labeled motion-capture data confirms
that facial dof used for speech are less than a dozen. On a corpus of 34 sustained
articulations (French vowels and consonants), Badin et al. (2000; 2002) sup-
plemented the 30 feature points of the lip model described previously with 34
fleshpoints obtained by sticking beads on the right-hand side of the subject’s
face and with the 3D jaw position obtained by a jaw splint (see Figure 14.5). In
addition to a jaw height (jaw1) parameter that explains 57 percent of the lip data
variance, they found that the remaining lip geometry is effectively controlled by
the three independent parameters mentioned above, plus a marginal contribu-
tion of the jaw advance necessary to complement lips3 with a jaw retraction
(jaw2) in labio-dentals in order to enable the labio-dental contact. These five
parameters (jaw1, lips1, lips2, lips3, jaw2) explain respectively 16.2, 74.4, 3.7,
2.2, and 0.3 percent of the variance, amounting to a total of about 96.9 percent of
the 65 3D facial data points (see Figure 14.6). An additional parameter extracted
as the first PCAmode of the data residual of the entire face (skin1), connected to
clear vertical movements of the throat, explains an additional 0.8 percent of the
facial data points, amounting to a total of about 97.7 percent of the variance.
Note that this last parameter could provide a visible trace of the movement of
underlying articulators such as the larynx, the tongue, or the hyoid bone. This
parameter effectively contributes to the recovery of underlying dof, especially
larynx height (see Section 14.6.2 and Table 14.1).

Further analysis (Bailly et al. 2003) of the position of 168 beads stuck on both
sides of the subject’s face revealed no additional dof (see Figure 14.7). Note also
that these speech-specific facial dofs are expected to be language- and speaker-
independent. For the eight speakers (Arabic male, French male and females,
German male, English female, Australian-English male, Japanese male) we
have studied so far, the semantics of these parameters is robust, given the

Figure 14.5 Example of video image for /a/: Subject fitted with the jaw splint
(left); subject with the lip mesh superimposed (middle); complete mesh whose
3D vertices are determined by the measured articulatory data (right).
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fact that the same “guided” linear modeling is used (Elisei et al. 2001b; Fagel
et al. 2008; Bailly et al. 2009; Tran et al. 2010).

Analysis of extensive motion capture data (230 meaningful utterances)
collected on a speech cuer (Gibert et al. 2004b; Gibert et al. 2005) also revealed
no difference between dof estimated from a few dozen visemes and from
200 000 frames. Again, the careful choice of representative configurations
may compensate for small amounts of training material.

14.5.4 Discussion

From the description of the underlying articulators, it seems that muscle syner-
gies underlying facial motions are based on a small set of “basic motions.”

Figure 14.6 Dispersion ellipses for each original (left) and residual (right)
facial and lip point (± 1 standard deviation). The RMS residual error is less
than 0.4mm.

382 G. Bailly, P. Badin, L. Revéret, and A. Ben Youssef



Individual movements and sequences of movements can be accounted for by a
simple additive control model. For speech, less than 10 basic facial motions
have been identified (6 in Badin et al. 2000) that should be compared to the 68
MPEG4 FAP. Of course these FAP are actually mostly low level, and do not take
into account speech specific gestures, which led Vignoli and Braccini (1999) to
add another layer of control parameters, called AP (articulatory parameters),
corresponding to mouth height, mouth width, protrusion, and jaw rotation, that
control the FAP. Indeed, the implementation of the FAP is never explained
clearly; Pockaj et al. (1999) mention that “the intelligence of the decoder [the
face/lip model] . . . resides in its ability of extrapolating the movement of tens of
vertices starting from the displacement of a single feature point,” and give some
hints towards ad hoc definitions of FAP. Eisert and Girod (1998) indicate that
their “generic face model contains a table describing how the control points of
the mesh are translated or rotated for each [of the 46] FAP [that they imple-
mented].” No indication is given about how to produce this table. They finally
use their face model for facial motion estimation. However, such a model-based
image analysis, now widely used for head movement and facial motion track-
ing, is very sensitive to the dimensionality of the search space. Using Parke’s

(a) jaw rotation

(c) lip retraction/protrusion

(e) upper lip raising/lowering

(b) jaw protrusion/retraction

(d) lower lip raising/lowering

(f) laryngeal lowering/raising

Figure 14.7 Articulatory dof of facial speech movements (from Revéret et al.
2000). We show here the deformation produced from the neutral face by (very)
extreme values of each articulatory parameter (±2 standard deviations).
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(1982) terminology, “the quality of the [articulatory control] parameters set
[that] refers to the appropriateness and efficiency of the parameters.” Low
dimension articulatory parameters acting independently on the whole shape
regularize favorably the optimization method that should match the projection
of the 3D face with the analyzed image. Using AP instead of FAP is thus quite
efficient. It is also appropriate since the optimization always converges to a
plausible facial shape, and incomplete FAP specification – always possible within
MPEG4/SNHC – can be regularized via their redundancy (Elisei et al. 2001a).

14.6 Linking articulatory degrees-of-freedom

We have established that both vocal tract and facial shape can be represented in
maps with few dimensions, and that these dimensions combine in a fairly simple
way to control the corresponding shapes. A given speech gesture may be
represented as a multidimensional trajectory in these maps. In this section we
examine the complexity of the links between maps, and question the possibility
of using both forward and inverse links betweenmaps to predict the trajectory in
one map from the trajectory observed in another.

14.6.1 Complementarity, redundancy, and synergy

Psychologists have happily investigated the perception of audiovisual speech (e.
g. Sumby and Pollack 1954) for the past five decades. It is undeniable that useful
knowledge has been produced about the extent to which the visibility of a
speaker’s face enhances intelligibility of audible speech and under what condi-
tions. For example, we know that visual enhancement of intelligibility amounts to
about a 10 dB improvement in signal (MacLeod and Summerfield 1987). It is also
clear that – ceteris paribus – the auditory modality takes precedence over the
visual, though the visual modality can provide information essential to auditory
localization, which in turn influences intelligibility (Driver 1996). More phoneti-
cally oriented research carried out by Green and colleagues (1991; 1996) has
shown the sensitivity of visual information to differences in vocal tract config-
uration, such as place (for example, labial /b/ versus alveolar /d/, or velar /g/) and
manner (for example, plosive /p/ versus fricative /f/) of articulation.

The basic question investigated in this section was addressed by Summerfield
(1979; 1987); namely, how is the phonetically relevant information distributed
across the visual and auditory modalities? Are the two modalities complemen-
tary, providing mode-specific “cues” to phonetic identity? There is some evi-
dence that speech features mainly concerned with manner of articulation are
best transmitted by the audio channel, while some other features mostly related
to place of articulation are best transmitted by the visual channel (McGurk and
MacDonald 1976; Robert-Ribes et al. 1998).
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Concerning features related to place of articulation, cues provided by the lips
such as rounding are more robust in the visual channel than in the audio channel,
whereas cues provided by the tongue such as backness are most robust in the
audio channel. But complementarity does not account for all the distribution of
auditory and visual phonetic cues; in fact phonetic information seems to be
specified redundantly as well. From perception experiments on the auditory,
visual, and audiovisual identification of vowels in noise, Robert-Ribes and
colleagues showed also that all individual phonetic features are better trans-
mitted in the audiovisual mode than by each modality separately. Moreover,
vision does increase intelligibility of noisy acoustic stimuli even when it does
not convey discriminant phonetic information per se, just because of temporal
cueing (Schwartz et al. 2003) and attentional phenomena. In the following
sections we examine quantitatively the articulatory, visual, and acoustic dimen-
sions during speech production.

14.6.2 Seeing the vocal tract

Imaging techniques such as X-ray and more recently MRI provide unique
experimental setups for collecting complete midsagittal vocal tract contours
as well as profiles of the lower face at a reasonable frame rate. In our research
group, we used the 3D functional model of the lower face (see Section 14.5.3)
and of the tongue (see Section 14.4.3) to analyze the profiles extracted from
cineradio-films and used to develop a midsagittal, functional vocal tract model
for the same speaker. An analysis-by-synthesis procedure was performed on 51
target configurations, as illustrated in Figure 14.8 for two of them. Since both
sets of data have been aligned onto the same coordinate system linked to the
upper incisor and the bite plane, no head movement correction was necessary,
and only parameters of facial deformation were optimized. The RMS fitting
error for the entire dataset is less than one mm. It is of the same order of
magnitude as the usual modeling error for soft tissue reconstruction by func-
tional models.

Table 14.1 relates the correlation coefficients between the six facial parameters
obtained by the analysis-by-synthesis procedure and the ten individual vocal tract
parameters that describe each X-ray midsagittal image. We also give the correla-
tion coefficients between the six facial parameters estimated by a multi linear
regression from all visible dof and the ten individual vocal tract parameters.While
lip and jaw parameters common to bothmodels are almost perfectly reconstructed
(LH, LP, LV, and JH) – thus assessing the relevance of the mapping procedure – a
large part of the variance of some tongue parameters (TB, TT) as well as the
larynx height (LY) may be also quite well reconstructed from facial (visible)
movements. However, tongue advance (TA), velum height (VH), and tongue
dorsum (TD) cannot be faithfully recovered from facial deformation.
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Figure 14.8 Comparison of midsagittal profiles extracted from X-ray images
and fitted with the midsagittal vocal tract model (Beautemps et al. 2001), for
two articulations (the center of the occlusion in an [igy] sequence, left, and the
center of a sustained [u], right); original X-ray profiles used to derive the model
(thick lines); profiles predicted by the X-ray model, including a schematic
contour of the jaw and the hyoid bone (thin lines); and midsagittal 3D
fleshpoints (crosses) of the 3D model of the lower part of the face developed
for the same speaker using photogrammetry (Badin et al. 2000). The RMS
fitting error between the facial contour and the midsagittal 3D fleshpoints is
here 0.86mm.

Table 14.1 Mapping visible dof to underlying articulatory dof. Correlation
coefficients between individual articulatory and facial dof are computed for 51
target configurations. The last column shows the correlation coefficients
between each articulatory parameter and its estimation by a linear regression
using all facial dof. Correlation coefficients above 0.8 are in bold type. Except
for jaw rotation, no parameter that has an effect on tongue position reaches this
level of correlation.

Xray\Face jaw1 lips1 lips2 lips3 jaw2 Skin1 linear mapping

LH 0.50 – 0.84 0.83 – 0.11 0.99
LP 0.13 0.96 0.34 – – 0.33 0.98
JH -1.00 -0.19 -0.44 -0.40 – -0.15 1.00
TB 0.24 – -0.24 – 0.35 -0.24 0.71
TD -0.11 0.20 0.22 0.18 -0.50 -0.12 0.64
TT 0.33 0.34 0.39 0.37 – -0.24 0.74
TA – – – -0.18 -0.17 – 0.37
LY – 0.57 -0.26 -0.46 -0.13 0.25 0.84
VH -0.13 0.22 -0.16 -0.16 0.29 0.22 0.47
LV -0.47 0.55 -0.26 -0.50 0.99
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The fact that such a high amount of the variance of the tongue posture may be
recovered from the face seems quite surprising, and may partially explain why
good lipreaders can reach high intelligibility scores. However, we should not
deduce from these results that visible movements and articulation are correlated
to such a degree that we do not need to complement visual information! Other
linguistic and non-linguistic dimensions provided by phonotactic constraints of
the language, syntax, and topic certainly help lipreaders.

As illustrated in Figure 14.9, labial (facial) doubles cannot actually be
disambiguated; the linear model does not recover vocal tract shapes that have
the same facial correlates but differ in lingual articulation. This is also true for
tongue/palate constriction as exemplified in Figure 14.10; the higher jaw

/u/

/i //ε /

/y/

Figure 14.9 Predicting vocalic vocal tract configurations from the face. Top:
two successful examples for vowels [ε] and [i], which follow the general
synergy open/back and closed/front. Bottom: for the two labial doubles [u]
and [y], the inverse model predicts quasi-identical tongue shapes. Same
conventions as for Figure 14.8.
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posture in [ada] results in a more front position of the tongue, but that is quite
insufficient for predicting and correctly generating the adequate alveolar con-
striction. Globally, the optimal mapping between face and lingual articulation
captures the general tendency, appropriate to most languages – here French – to
associate closed lips with a frontal posture of the tongue and open lips with a
back articulation (see Figure 14.11): finer details of the lingual articulation that
are fairly important for sound characterization – notably formation of constric-
tions – cannot be recovered from facial movement only (Bailly and Badin
2002). Based on the computation of the acoustic transfer functions, we have
shown that the resulting acoustic space shrinks drastically towards its center
(Bailly and Badin 2002). These results have been confirmed by Engwall and
Beskow (2003) using simultaneous dynamic EMA and facial motion capture
recordings of a Swedish male speaker.

More complex, non-linear, and contextual mappings (see for example voice
transformation techniques applied to the articulatory-to-acoustic mapping in
Shiga and King 2004) could possibly enhance the crude multilinear mapping
considered here. We notably compared multilinear, GMM- and HMM-based
mapping techniques on EMA data (Ben Youssef et al. 2010). The aim was
to recover the xy coordinates of three coils placed on the tongue from the three
coils placed on the lips and lower incisors. The speech dataset was here much
larger (17 minutes of speech excluding silence) and consisted of short senten-
ces. The results show that contextual information crucially improves the

Figure 14.10 Failing to predict consonantal vocal tract constriction from the
face. Left: the centre of the occlusion in an [aga] sequence; right: same for
[ada]. Same conventions as for Figure 14.8.
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mapping. GMM-based mapping techniques (Toda et al. 2008; Ben Youssef
et al. 2009) using medium-sized windows (110ms) to characterize the input
facial movements outperform the other techniques, in particular HMM-based
techniques that use a phonetic alignment (Hiroya and Honda 2004; Nakamura
et al. 2006). The best parameterization results in a mean prediction error of
2.9mm and a correlation of 0.8. This should be compared with the 3.64mm
and 3.88mm obtained respectively by the HMM-based mapping and the
multilinear model. However, the detailed analysis of predicted tongue shapes
evidences the same undershooting and centralization problems commented
above: non-front vowels and unrounded consonants are still highly confused
(see Figure 14.12).

We have shown here that neither RMS results nor raw correlations are
sufficient to assess the performance of the mapping, and that geometric, acoustic,
and phonetic consequences of the predicted movements should be examined.
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Figure 14.11 Original (left) compared to recovered (right) lingual constriction
in a tentative face-to-vocal tract inversion procedure; XC is the distance from
the upper incisors to the main constriction along the vocal tract midline, while
ACL is the cross-sectional area of the constriction. The mapping does not
recover the constrictions occurring (mainly for [g], see filled dispersion
ellipsis) in the velo-palatal region and broadens the place of articulation of
original front articulations. Globally the face-to-tongue mapping tends to
correlate ACL with XC.
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Figure 14.12 Comparing confusion trees for vowels (left) and consonants
(right). The most significant three groups for vowels and nine groups for
consonantal targets are shown. From top to bottom: original face data,
original tongue data, and tongue recovered from face by the best GMM-
mapping. If the recovery of places of articulation for vowels is rather good
(particularly for [i] and [u]), consonantal contrasts are strongly degraded, with
the exception of rounded palatal fricatives.
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Thesemappings should also be subjectively evaluated. Despite a few experiments
showing that unrealistic visible components such as disembodied lips, skeletal
jaws (Benoît and Le Goff 1998), or virtual tongues (Massaro and Light 2003;
Engwall and Bälter 2007; Badin et al. 2008; Badin et al. 2010) may enhance
speech intelligibility and language-learning abilities, it is quite difficult to deter-
mine whether speech intelligibility is enhanced only by visible events that have
the temporal synchronization and spatial scaling appropriate to the opening and
closing of the vocal tract, or whether these visible components really bring
additional comprehensive phonetic features.

14.6.3 Driving facial animation from acoustics

The best-conditioned speech mapping is certainly the acoustics-to-facial motion
mapping. Most facial movements described in Section 14.5.3 – when made
audible – have acoustic consequences. For example, Yehia et al. (1998) report
that “80 percent . . . of the variance observed in the RMS amplitude and LSP
parametric representation of the spectral envelope [are explained by linear esti-
mators relating facial movement to acoustics].” Reliable, complete, and precise
characterizations of acoustics and facial motion are easily accessible and up-to-
date context-sensitive mapping techniques such as mentioned above – GMM- or
HMM-based – are very efficient (Hiroya and Honda 2004; Toda et al. 2004; Toda
et al. 2008; Ben Youssef et al. 2009). This is not the case for vocal tract motion.

An obvious application of acoustics-to-facial motion mapping is audiovi-
sual synthesis; current text-to-speech synthesis systems may be easily coupled
with facial animation if articulatory movements of the avatar can be directly
predicted from the synthetic speech output. However, most audiovisual syn-
thesizers synchronize facial animation with synthetic speech output by min-
imally imposing on facial animation the phonemic boundaries computed by
the text-to-speech system – or extracted from natural utterances (Cohen and
Massaro 1993; see also Slaney, this volume, Ezzat, this volume). The pre-
diction of facial movement via acoustics-to-facial motion mapping has the
obvious advantage of potentially preserving finer cinematic coherence
between the two modalities. We evaluate below different control models
proposed in studies for predicting facial animation using the same training
material for all models.

14.6.4 Movement generation and rendering

A system able to produce audiovisual speech from phonetic input generally
consists of three modules: (1) a movement generation system that plans artic-
ulatory movements according to the phonological task, (2) a shape model that
specifies how the geometry of the face is affected by these movements, and
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(3) an appearance model that specifies how the skin texture – or more generally
the face appearance – renders this shape deformation. Not all facial animation
systems distinguish between these steps or identify these intermediary repre-
sentation spaces (articulatory, shape, and appearance) for building synthetic
animations. For example, image-based techniques that overlay facial regions
(Bregler et al. 1997b; Slaney, this volume) or morph between target images
extracted from real videos (Ezzat and Poggio 1998, this volume) do not impose
a priori a distinction between shape and appearance. Similarly, systems using
visemes as elementary units (Ezzat and Poggio 1998) do not always distinguish
between a “high-level” parametric control and a finer “low-level” shape defor-
mation model. For a more extensive presentation of models and modules
currently used, the reader is referred to recent reviews (Bailly 2002; Bailly
et al. 2003).

The systematic evaluation performed by Pandzic et al. (1999) on 190 subjects
showed in fact that although offering quite acceptable intelligibility gains,
synthetic faces seem to require more cognitive effort and more mental resources
than natural speech. They noted that “some synthetic faces require more than
others.” If incoherent or impoverished audiovisual stimuli require more process-
ing time and result in increased cognitive load, it seems interesting to separate out
the contributions of the different generation modules to the overall quality.
Moreover evaluation procedures should distinguish between the adequacy of
the movement generation system, the shape, and the appearance models in
replicating the underlying motor control and biophysics of natural faces.

14.6.5 Comparing “pure motion” stimuli

In our experiment, a point-light display was used to get rid of any possible
improper rendering of movements due to a specific appearance model
(Rosenblum and Saldaña 1996; 1998). Despite the fact that, compared to full-
face stimuli, the point-light display tends to decrease intelligibility gains, sub-
jects proved to be quite sensitive to the degree of coherence between acoustics
and the proposed facial motion (Odisio and Bailly 2004).

Both natural ground-truth motion capture data and synthetic articulatory
trajectories pilot the same data-driven speaker-specific linear shape model
built using the procedure described in Section 14.5.3. Subjects were asked
to rate on a five-point scale (incoherent, unsatisfactory, average, satisfactory,
and excellent) the degree of coherence between the audio signal and the
proposed facial motion. No head motion was added and the face was viewed
from the front.

We compared three different synthesis methods: (1) acoustic-to-articulatory
mapping where low-pass filtered (10Hz) LSP spectral trajectories are mapped
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with articulatory movements using MLR; (2) audiovisual concatenation where
multimodal segments of the training material – here diphones – are stretched/
compressed to fit phonemic boundaries (Hällgren and Lyberg 1998; Minnis and
Breen 1998; Gibert et al. 2005, for an extension to text-to-cued speech syn-
thesis); and (3) coarticulation modeling that computes context-dependent artic-
ulatory targets and transition functions from the phonemic string (see also a
similar approach in Cohen and Massaro 1993; Elisei et al. 2001b).

Again, crude multilinear acoustic-to-articulatory mapping is quite unsatis-
factory despite a high coefficient of correlation between observed and predicted
articulatory trajectories (> 0.9 using the training material). We also showed that
an audiovisual concatenative synthesis scheme that intrinsically preserves
coherence between acoustic structure and facial motion has the potential to
generate high-quality movements. Other data-driven coarticulation modeling
techniques (Brooke and Scott 1998b; HMM-based as in Tamura et al. 1998; or
based on more complex context-dependent targets and transition functions such
as in Okadome et al. 1999; Hiroya and Honda 2004; Govokhina et al. 2006)
should also be tested.

14.7 Discussion

Underlying speech organs have clear visible and audible consequences. We
have shown that it is possible to build functional facial models that successfully
associate the movements of these organs with articulatory control parameters
that drive facial deformations. This could guarantee that the movement of
partially visible articulators can be recovered simultaneously from their direct
visible trace (teeth, tongue, or velum are sometimes partially visible) and from
their indirect visible or acoustical consequences.

We have considered in our mappings only quasi-static mapping information.
Dynamic information (see Lander and Bruce, this volume) may provide addi-
tional cues that may help listeners – and thus automatic systems – to recover
underlying gestures (for example, the articulation of [l] vs. [d] in a back context
requires a less ample jaw closing gesture and may reveal the strong recruitment
of the tongue tip versus the tongue body). The possibility that shape-from-
motion recovery schemes (Johansson 1973) may provide crucial information
requires further investigation.

Although functional models can simulate the links between articulation and
audiovisual state variables, the scarcity, the heterogeneity, and the amount
of experimental data available reduce drastically the choice of statistical models
that could be used to describe the links. Precise interactions between speech
organs such as collisions producing compressions, passive slips, or active
trills cannot be easily taken into account by standard statistical models. On
the other hand, physical models will be sufficiently mature in the near future to
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incorporate most of these precise interactions but should be scaled to conform to
speaker-specific control strategies and anatomy. This conformation problem has
been in most cases poorly addressed. Although we know that anatomy and
control strategies are far from being orthogonal dimensions (see for example the
links between tongue articulation and palate shape in Hashi et al. 1998), most
models only scale prototypical behavior to some specific anatomy such as that
promoted by the interaction between FAP and FDP in the MPEG4/SNHC face
model, where both are expressed according to basic measures such as mean
nose or mouth length. Few studies attempt to alter articulation when scaling
anatomy (Harshman 1976). Note that a similar challenge consists in coproduc-
ing speech movements and facial expressions, particularly those altering the
lower face (Bailly et al. 2008a).

Another main challenge of the sensorimotor mapping concerns timing con-
straints and their physical dynamical correlates. In fact, orofacial movements in
speech must satisfy precise timing constraints. For instance, the distinction
between voiced and voiceless stops is controlled by the simple coordination
of glottal opening and release of occlusion. On the perception side, the effect of
presentation frame rate of visual speech stimuli on lipreading performance
(Vitkovich and Barber 1994) shows that more visual information becomes
available when temporal resolution of the stimuli is increased. Data on the
sensitivity of perceivers to the phasing relation between audio and visual stimuli
is quite controversial; perceivers seem quite tolerant to asynchronous bimodal
stimuli (Massaro and Cohen 1993), but they are also highly perturbed by the
desynchronization between audio and visual events that are crucial for the
identification of phonetic features. In particular, Breeuwer and Plomp (1986)
show that the perception of the voicing contrast between /p/ and /b/ in English is
greatly affected by desynchronization that artificially manipulates the phasing
between the onset of vocal fold vibration and bilabial occlusion release.
Similarly, Cathiard et al. (1995) show that desynchronization affects perception
as soon as a configurational incoherence is detected. These results suggest that
perceivers may compensate for a certain time delay between coherent audio and
visual information but are very sensitive to phasing incoherence or errors in
stimuli alignment. This too requires further research. The TD-HMM lipsync
model proposed by Govokhina et al. (Govokhina et al. 2007; Bailly et al. 2009)
aims to capture such phone-dependent phasing relations.

Finally the poor performance of the direct sensorimotor mappings tested in
Section 14.6 does not obviate the ability of these mappings to provide audio-
visual enhancement. Audiovisual binding results from both early and late
integration processes (Bernstein et al. 2004). Early “pre-phonetic” integration
processes notably exploit audiovisual synchronization patterns that explain
reduced but significant intelligibility gains in spite of neutral (Schwartz et al.
2003) or impoverished visual information (Berthommier 2003).
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14.8 Conclusions

In spoken language production and perception, multiple sources of
information are available to support the encoding and the identification of
speech. The identification process uses the signal-dependent information
as well as general knowledge such as linguistic and phonological structure
of the language, the topic, and the situation. Priming experiments show
for example that we have expectations concerning the internal structure of
input signals (Grosjean 1983), and that cognitive load is increased when
input signals are impoverished. We thus may expect that impoverished
coherence between audio and video signals may still improve intelligibility –
notably by preserving speech detection – but should have a major effect on the
cognitive load.

The data we have shown here suggest that the visible characteristics of
speech production provide both redundant and complementary information on
the sounds actually produced. Given the phonological structure of the lan-
guage, visible movements have been shown to provide some information on
the place of articulation of underlying speech organs. This information appears
insufficient to recover the proper lingual constriction, which confirms a poste-
riori the importance of the information provided by manual cued speech
(Cornett and Daisey 1992; Beautemps et al., this volume) or gathered by the
hand placement on the face in Tadoma (Reed et al. 1992).

The amount of a priori information that our interlocutor possesses about our
idiosyncrasies, the topic, and the situation, varies continuously. Communication
is thus adaptive: we adapt our articulation to communication needs and envir-
onmental conditions (Junqua 1993). These strategies are multimodal; we can
favor visible or audible contrasts (Beautemps et al. 1999) depending on envi-
ronmental conditions (Schulman 1988; Summer et al. 1988) or communication
constraints that, for example, force us to whisper (Matsuda and Kasuya 1999).
It is understandable that speakers use both visible and audible articulators
and that the phonological systems exploit contrasts in both modalities resulting
in a synergy between the auditory and visual channels. This perception-oriented
model of communication should take into account our articulatory possibilities
and the production–perception links to elaborate optimal and ecological com-
munication strategies.

Motor – as well as auditory – theories of speech perception should thus be
able to manipulate intersensory relations and lead to models of phonetic vari-
ability within a consistent framework (Abry and Badin 1996; Yehia et al.
1998). We have presented here some preliminary comprehensive models of
speech articulation that could constitute a kernel of such intersensory maps.
These mappings should also benefit audiovisual speech technology including
synthesis, speech, language and face recognition, and audiovisual compression
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and speech enhancement by exploiting the a priori information about the
intrinsic cohesion of audiovisual stimuli (Bailly et al. 2010).

14.9 Acknowledgments

The work conducted at ICP and GIPSA-Lab within the Talking Machines team
and described in this chapter owes a lot to the initial pioneering work conducted
by the late Christian Benoît until his untimely death in 1998. We are also
indebted to Jean-Luc Schwartz and Pascal Perrier for the fruitful comments
made on earlier versions of this chapter. Frédéric Elisei and Matthias Odisio
have provided the most recent virtual clone of Pierre Badin. We thank very
sincerely Alain Arnal and Christophe Savariaux (ICP) for their help with the
video recordings. This work has been partially supported by the Agence Rhône-
Alpes en Sciences Sociales et Humaines (ARASSH; project: “AVirtual Talking
Head”), by France Telecom R&D (“3Dmodels of talking faces”), by the French
National Network for Telecom Research (RNRT, TempoValse project), and by
the French National Agency for Research (ANR-08-EMER-001–02, ARTIS).

396 G. Bailly, P. Badin, L. Revéret, and A. Ben Youssef



Notes

Chapter 2. Visual speech perception

1. Unless otherwise stated, discussion of deaf individuals refers to individuals with
profound hearing impairments (bilateral impairments of at least 90 dB HL across the
frequencies 500, 1000, and 2000Hz). The term “congenitally deaf” refers to profound
hearing impairment at birth, although identification of the condition may have
occurred later, within the first six months. Finally, the deaf individuals discussed
here have hearing parents, English as a first and primary language, and eight or more
years in oral or mainstream education. Generalizations about this group of individuals
likely vary from generalizations concerning the group with congenital, profound
hearing impairments, deaf parents, and sign language as a first and primary language.
In any event, the similarities and/or differences between the groups have not been
adequately studied, and the remarks in this chapter are not intended to extend to the
latter group.

2. In the literature, not every phoneme in a stimulus set may get assigned to a viseme
class, because at the level defined for visemes one or more phonemes is not within a
cluster that comprises the criterion number of responses. For purposes here, it was
necessary to assign every phoneme to some equivalence class for each level of
equivalence classes.

3. The analyses with arcsine transformed scores are reported here (figures show untrans-
formed results).

Chapter 3. Dynamic information for face perception

1. The term dynamic (also see Benoît et al. 1995a, Christie and Bruce 1998) has been
used to describe the informational form sometimes known as kinematic (Rosenblum,
Johnson, and Saldaña 1996) or time-varying (Rosenblum and Saldaña 1998). It must
be noted that formally, visual information cannot be truly ‘dynamic’ as it does not
contain the relevant mass component (see Runeson and Frykholm 1981). We use the
term dynamic to refer to the changes that occur in information over the time course of
an event.

2. It should be emphasized that the sampling technique used in this study to produce the
different presentation rates also varied the selection and number of frames displayed
in each condition. Hence the effect of presentation rate may simply be a reflection of
these differences rather than dependent on the temporal dynamic aspects of the
observed motion.
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Chapter 4 Investigating auditory-visual speech perception development

1. The role of attentional resources in this process becomes apparent a little later in
development; 14-month-olds discriminate a phonetically close contrast, in a simple
discrimination task but not in a word learning task that requires these nonsense words
be associated with objects. On the other hand 8-month-olds show discrimination of
the ‘bih-dih’ contrast in both tasks (Stager and Werker 1997). Thus, while 14-month-
olds can perceive the difference between ‘bih’ and ‘dih’, they do not demonstrate this
discrimination when attention is directed elsewhere (to word learning).

Chapter 5. Brain bases for seeing speech: fMRI studies of speechreading

1. See 5.9 for a glossary of all the acronyms and neuroanatomical terms used in this
chapter.

2. Inhibitory (i.e. subadditive) activation for audiovisual compared with unimodal
input can be observed in other parts of the superior temporal gyrus (e.g. Wright
et al. 2003), while incongruent or desynchronized audiovisual pairings can show
graded activation in STS correlated with their relative coherence (e.g. Stevenson
et al. 2010). While the findings are variable, they are generally consistent with the
idea that STSp is a primary binding site for congruent, coherent audiovisual speech
processing. Current research using dynamic methods is likely to moderate this
picture, since subadditive (i.e. negative) interactions between audition and vision
can also be observed over superior temporal regions in EEG responses (Besle et al.
2008; Pilling 2009).

3. Influences of vision on audition may be coordinated via subcortical (thalamic)
systems, which “set” and maintain oscillatory brain activity (whole brain rhythms),
which could tune such activity to the time-varying characteristics of an utterance.
This could provide a further mechanism for early influences of one primary sensory
modality on the other (Schroeder et al. 2008). Such phase-reset amplification
systems can apply to interactions between people, as well as to intra-individual
processes (see Scott et al. 2009, for a similar notion from the perspective of motor
systems in speech processing). Under this proposal, early influences of vision on
audition within primary sensory regions may reflect synchronized co-activation of
those regions via thalamo-cortical routes, rather than direct visual cortex to auditory
cortex routes.

4. The Capek et al. (2008a) findings appear to be at odds with an earlier study
(MacSweeney, Calvert et al. 2002a, following MacSweeney et al. 2001), which
found meager evidence of activation in superior temporal regions in deaf compared
with hearing participants. While similar analysis techniques were used, participants
and task differed in the 2008 and 2002/2001 studies. In the earlier studies, only six
deaf people took part, and their language background was more variable than that of
the native signers in the Capek et al. (2008a) study. The more recent study required
participants to assess each (unpredictable) word that they saw being spoken – while
the earlier study used well-learned digit sequences for silent rehearsal (as in Calvert
et al. 1997). It is plausible that together these task differences elicited the observed
differences.

5. It’s plausible that the apparent anatomical distinction between the Sadato et al. and the
Capek et al. studies reflects different analysis procedures, and hence different labels
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for these parts of the lateral superior temporal lobe, rather than distinct neuroanatom-
ical differences. At all events, posterior parts of the early (auditory) speech processing
system appear to be implicated in both sets of studies.

Chapter 6. Temporal organization of Cued Speech production

1. In memory of Orin Cornett who invented the Cued Speech method at Gallaudet
University and to Christian Benoît who initiated Cued Speech synthesis at the ICP
laboratory (France).

2. The first studies on Cued Speech production were conducted at the ICP laboratory by
Attina and colleagues from 2001 (Attina et al. 2002c; Attina et al. 2002b; Attina et al.
2002a; Attina et al. 2002d; Attina et al. 2003a; Attina et al. 2003b; Cathiard et al.
2003; Attina et al. 2004a; Attina et al. 2004b) in the framework of a ‘Jeune Equipe’
project of the French CNRS and a Cognitive program of the French Research
Ministry. A first prototype of an image-based Cued Speech synthesizer integrating
temporal rules has also been realized (Attina et al. 2003b; Attina et al. 2004a). A 3D
model of Cued Speech gestures followed (Gibert et al. 2004a; Gibert et al. 2004c;
Gibert et al. 2004b; Gibert et al. 2005).

3. ‘When two consonants precede a vowel, as in the word steep, the first consonant is
cued in the base [side] position and the hand moves quickly to the vowel position
while the second consonant cue is formed, in synchronization with the lip move-
ments. The lips should assume the position for the first consonant as it is cued, but
one should not begin making the sound until the hand is approaching the position in
which the contiguous consonant and the following vowel are to be cued. This makes
it possible to pronounce the syllable naturally.’ This instruction clearly means that
the cuer should wait until the covering [i] vowel gesture has settled before beginning
to utter the [s], which is artificially coded with a schwa instead of its natural [i]
covering.

4. Velocity and acceleration profiles are derived at each instant from first- and second-
order development of the 4 Hz low-pass filtered position, respectively.

Chapter 7. Bimodal perception within the natural time-course of speech
production

1. For recent use and caveat about locus equations, see respectively Tabain and Butcher
(1999), and Löfqvist (1999). Such equation slopes are obviously also dependent on
the rate of opening of the consonantal articulators; in the most clear case, that of
bilabials, even if the overall vocal tract shape for the vowel were fully anticipated into
the closure phase, the rate of opening of the lips obviously could not be as fast as
required theoretically for producing the same second formant values at the onset and
target phases of the vowel (slope 1, intercept 0). Anyway, we have to use provision-
ally the only longitudinal study which addresses specifically this issue of the emer-
gence of coarticulation.

2. Neurophysiological data give evidence that this control could originate in the medial
premotor system, with the supplementary motor area (SMA) as pacer and initiator.
See work by Abry et al. (2002), who meta-analyzed a collection of more than fifty
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cases of a specific CVCVaphasia. They coined the term “frame aphasia,” in support
of MacNeilage’s frame/content theory of speech production, ontogeny, and evolution,
in agreement (1) with the aphasiologist Chris Code, pioneer of corpora of non-
meaningful recurring utterances (see Code 2005) and (2) with MacNeilage’s theory
(see Davis and MacNeilage 2000).

3. We know the power story is more complicated than the French pouvoir one.
Interpretation of w as a glide avoiding a hiatus, as in French, cannot account for
parallels like tower, flower, or flour, hour (fromRomance), sour (fromGermanic), etc.
Due to a change of stress in poër, from ë to o, this o changed to u, which diphthon-
gized in au. Since there is actually a glide phenomenon in both languages (a w off-
glide in the realization of the au diphthong), instead of the “pouvoir phenomenon”we
will continue to dub it the “power phenomenon.”

4. This is the same precision as that required inside the vocal tract where one must be
able to generate the different regimes resulting from a “lingual traverse across a few
millimetres” as in east (Studdert-Kennedy 1989).

5. The necessity to analyze the vocal tract tube in 3D is obvious from the description of
nineteenth-century phoneticians – with terms like “pursed lips,” “grooved tongue,”
etc. – up to recent aeroacoustic modeling (Motoki et al. 2000). Using ultrasound or
MRI, vocal tract imaging has greatly improved our knowledge of sound production.
See PCA on 3D images by Badin et al. (2002), and for ultrasound, a simplified
classification of configurations in two factors, openness degree and coronal shape
type (crescent and ellipse) by Stone and Vatikiotis-Bateson (1995) (see also Stone
et al. 2000).

6. Note that our current account of glides in a control model for the vowel is not
reminiscent of any of the “particle/element/prime” phonologies, in which the combi-
natorial devices (for references see Kenstowicz 1994, p. 451) are not grounded in such
an articulatory control model. For a recent comeback of phonological discussions on
the representation of glides (after the longstanding post-SPE proposal by Kaye and
Lowenstamm (1984), that they were simply a consequence of syllabic position), see
the contributions to the Workshop Towards a Phonetic and Phonological Typology of
Glides, Albuquerque, New Mexico, US, 2006, published by Chitoran et Nevins
(2008). Contrary to the emphasis put by Padgett (2008) on the control of the
constriction feature, the solution given by our 2-Comp model is a relaxation of the
precision control for constriction (shaping), which produces a “consonantalization”
of the type jocu, jeu “play” (via [d]).

7. This may have been the case in some languages, like in Albanian where [f] (a reflex of
[v] before an unvoiced consonant) appears after a rounded vowel: trofte “trout” (cf.
Latin tructa) versus dreite “right” (cf. Lat. d(i)rectu). But Rumanian [p] is found in
noapte “night” (Lat. nocte) as in drept “right,” that is, also without an original
rounded vowel (Rosetti 1968).

Chapter 9. Audiovisual automatic speech recognition

1. Throughout this work, boldface lowercase symbols denote column vectors, and
boldface capital symbols denote matrices. In addition, •T denotes vector or
matrix transpose, and diag(•), det(•) denote matrix diagonal and determinant,
respectively.
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Chapter 10. Image-based facial synthesis

1. We had to add many pronunciation variations to the dictionary to describe how
Kennedy pronounced words in his Boston accent.

2. A better solution is to use aWiener filter, or canonical correlation, to find the optimum
linear mapping between the two spaces (Slaney and Covell 2000).

Chapter 11. A trainable videorealistic speech animation system

1. Technically, since the texture parameters are non-negative, they are best modeled
using Gamma distributions not Gaussians. In that case, Eq. (11.12) needs to be re-
written for Gamma distributions. In practice, however, we have found Gaussians to
work well enough for texture parameters.

Chapter 12. Animated speech: research progress and applications

1. http://animatedspeech.com/
2. http://cslu.cse.ogi.edu/toolkit/
3. http://mambo.ucsc.edu/psl/tools/
4. http://www-3.ibm.com/able/snsspv3.html.
5. http://www.speechspecs.org/

Chapter 13. Empirical perceptual-motor linkage of multimodal
speech

1. The McGurk effect has captivated the attention of numerous researchers and is
discussed further in the chapters by Remez and Burnham et al.

2. Such quantification of the visual gain is of limited value since it depends on so many
things. In particular the gain is affected by the signal-to-noise (S/N) level, the type of
noise (e.g., white, pink, multi-talker babble), the alertness of subject, and probably
myriad other factors.

3. The Haskins Pattern Playback synthesizes consonant-vowel sequences such as ba,
da, ga by optically tracking representations of formants painted onto a plastic sheet.
Changes in shape of the formant trajectory correspond to changes of frequency over
time.

4. Given that the anterior tongue shapes the front cavity, its effect on the acoustics will be
strongest for the second formant (F2). This could explain why the results obtained
(Yehia et al. 1998) for the mapping between vocal tract shape (based on anterior
tongue measures) and the speech acoustics were strongest in the 2–3 kHz range.

5. The model muscle dynamics specify forces for each muscle. Although muscle force
can be computed from EMG signals and the corresponding kinematics (acceleration
which is proportional to force), the interrelation of force, EMG, and acceleration is
uniquely dependent on conditions of the EMG that will change even over the course
of a single recording session for one individual (Loeb and Gans 1986).

6. We focus here on how constant perceptual features arise from amodal aspects of
speech production and do not consider their connection to non-linguistic, expressive
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gestures produced concurrently and oftenmode-dependently during interpersonal and
human–computer interaction (HCI – e.g. Cassell et al. 2000; Cassell and Tartaro
2007).

7. Manner and style of speaking are highly discernible in static presentations as well,
although attempts to account for such static dynamism seem to be limited largely to
gestalt approaches to phenomenology.

8. This work was carried out by Marcia Riley at ATR, while preparing her PhD in
Computer Science at Georgia Technical University (USA).

Chapter 14 Sensorimotor characteristics of speech production

1. Efferent signals represent the feed forward control necessary to initiate movement by
forcing the contraction of a muscle.
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