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Preface
No one knows at the present time if higher spin gauge fields have anything to do with
reality. But the subject is interesting in itself, and – as its founder P. A.M. Dirac wrote
in 1936 – it might be good to have a theory at hand if they do turn out relevant for
fundamental physics [1].1 Dirac studied massive fields, and it took another 40 years
for massless higher spin gauge fields to come into focus with the work of C. Fronsdal
in 1978 [3]. The subject is now in its ninth decade. This is a first book in a planned two
volume project aimed at trying to cover some parts of this fascinating subject.

Origin of the subject
The theory of higher spin fields dates back to the beginnings of quantum field theory
in the 1930s. For a long time, the focus was on massive fields, as such could describe
massivematter particleswith spin. FromWigner’s classification of the representations
of the Poincaré group in 1939, it was known that there aremassless andmassive repre-
sentations of integer andhalf-integer spin [4]. But experimentally therewas noneed to
go beyond spin 1/2 until the end of 1950s when massive higher spin resonances were
found in strong interaction physics.2 Not until the 1970s were massless fields stud-
ied theoretically (except being mentioned in passing) – with one notable exception –
when the gauge theory of free massless fields was constructed by C. Fronsdal [3] and
J. Fang and Fronsdal [6]. The exception was S. Weinberg’s S-matrix argument [7] from
1963, showing that massless fields of spin greater than 2 cannot generate long-range
forces. And experimentally such fields were not – and still are not – seen. The history
of this fascinating subject will have its own chapter in the present book.

Free fields are not so interesting in themselves. The standard recipe for interac-
tions followed inmany early references was to try to couple massive higher spin fields
to electromagnetismand gravity, or later, to couple conservedmatter currents tomass-
less higher spin fields.3 It did not work out well, as we will have occasion to study in
detail. The investigation of self-interactions came even later with the work of Fang
and Fronsdal, who explicitly formulated the research program of finding higher spin
interactions as deformations of free field theories [8]. This program – designated as
the generalized Gupta program (after S. Gupta, who was one of the pioneers of this
approach to gravity) – was a generalization of earlier work to construct gravitational
interactions in that manner.

If a starting time for positive results in the study of massless higher spin self-
interactions can be found, it is presumably in the early 1980s with the work of

1 There is actually what can be considered as a co-founder of the subject: E. Majorana with the paper
[2] from 1932, pre-dating Dirac.
2 See, for instance, [5], Chapter 21.
3 It can be argued that coupling to gravity is an absolute requirement so that having free higher spin
fields would be impossible in principle.

https://doi.org/10.1515/9783110451771-201



VIII | Preface

I. Bengtsson, L. Brink and myself, of F. A. Berends, G. J. H. Burgers and H. van Dam
and of E. S. Fradkin and M. Vasiliev. But I think it is safe to say that during most of
its history, the theory of higher spin fields, in particular massless fields, has been
considered to be very difficult, fraught with consistency problems, experimentally
not relevant and perhaps even a totally misguided endeavor. Still a small number of
researchers pursued the subject up until the first years into the newmillenniumwhen
new and young researchers were attracted to it. In the mid 2010s, it was a thriving
subject with an established community of researchers working on it. A slight cooling
offmay be observed as wemove into the 2020s. Much has been done during the last 35
years, but the subject is still far from closed. What will happen in the future, we have
to wait and see. The basic higher spin problem – researching consistent interactions
and investigating their role in nature – is one of those problems that are relatively
easy to state, yet so hard to solve, and therefore allures the brave, or foolhardy.

The present state of the subject
The present state of the subject offers a strange picture. The Vasiliev theory is a back-
ground independent formulation of higher spin theory that can be expanded around
an anti-de Sitter background (AdS), but apparently not around a Minkowski back-
ground.4 It partly solves the interaction problem by the so-called “gauging” approach
which works very well for spin 1, can be made to work for spin 2, but for higher spin
forces a number “workarounds” that threatens to remove – in my opinion – the re-
sulting theoretical construction from the basic intuition of the original problem. This
is of course a rather common fate to fall upon fundamental questions in theoretical
physics, but here it is aggravated by the lack of experimental input. Barring that there
maybedata, perhaps cosmological, thatwedonot yet interpret as pertaining to higher
spin, there is no phenomenological guidance, except the non-occurrence of higher
spin gauge fields at presently attainable energy scales.

For quite a long time, the interaction problem could be considered to be essen-
tially solved inAdS. Theproblemswith expanding the theory aroundMinkowski space
was taken as an indication – sometimes even as a proof – that interacting higher spin
gauge theories do not exist in flat space-time. The dominating approach inMinkowski
space, the “deformation” approach, also called the Noether procedure or the Fronsdal
program,5 has been very slow in producing positive results, instead leading to severe
difficulties at the quartic level of interaction. It should be noted, though, that the gaug-
ing approach does not escape the need for deformation.6

4 “AdS” is often used as a shorthand for ‘Anti-de Sitter space-time’. “dS” is used for “de Sitter”.
5 What Fang and Fronsdal called the “generalized Gupta program”.
6 Gauging is, in a sense that will be clarified, basically a kinematical procedure of making a global
symmetry local. It remains to find the self-interactions of the introduced gauge fields. Here, one is
helped by the gauge algebra, but it does not provide the full dynamics.
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From another point of view, particle physics is done in flat background, and com-
ing from this environment, it would seem natural to look for higher spin theory in flat
space. But to get to higher spin, one must first pass spin 2 – that is gravity – which is
naturally interpreted as a curved space-time theory. So it can be argued that flat space
higher spin theory is not very natural to consider. On the other hand, gravity can be
viewed as a highly nonlinear theory of spin 2 fields, and that theory is not likely to
go unaffected by an eventual higher spin theory. Phenomenologically, it seems that
we are living in a de Sitter universe, rather than an anti-de Sitter universe. This fact
confounds the question even more, if one has hopes for finding a role for higher spin
gauge fields in nature. We just do not know enough.

Many readers may have heard that there are quite a few no-go results that rule out
either the existence, or at least the relevance, of higher spin theories. Of lately, newdif-
ficulties having to do with locality issues has been discovered, both in the Minkowski
and the AdS approaches to the theory. These issues are still researched at frontiers of
the subject. These problems, and the no-go results, concern the theory of interacting
higher spin fields, and belong to a planned second volume of the present work. In the
present work, we will mainly treat the free, noninteracting theory, which is of course
a prerequisite for any attempt at studying interactions.

A personal note
On a personal note, in the very late 1980s, after having worked on higher spin theory
since my graduate studies, I was discouraged by the difficulties, and this coupled to a
lack of new ideas and a wish to spend my time with my children as well as pursuing
other intellectual interests, made me temporarily withdraw from the subject. This ex-
plains why I did not write a single paper for 14 years. I was not completely idle though,
doing calculations for the drawer.7 Then in 2003, I saw papers “rediscovering” what
I had done in 1986–1988, apparently unaware of my work. Of this, I was irritated, but
also glad to see the new interest and I decided to take up the subject again. I was
very happy to be able to make a come-back.8 When some years later, I started to meet
the new researchers in the field, I felt very welcomed back, in particular by Mikhail
Vasiliev, who I had actually met only once before, at Ingemar Bengtsson’s place in
Göteborg some time in the late 1980s.

Therewere a few exceptions to the relative lack of interest during the 1990s, apart,
of course, fromM.A.Vasiliev’s ownwork on theAdS formulation of higher spin theory.
One is thework of E. Sezgin andP. Sundell [10] starting in 1998.Higher spin excitations
also did turn up, and were discussed, in the context of membrane theory and infinite

7 I tried to do BRST theory for singletons in AdS space-time, in that way hoping to find another ap-
proach to higher spin fields. This was inspired by the Christian Fronsdal paper [9].
8 This was to some extent helped by the presence of the arXive and TeX-ing, that made “home re-
search” feasible. The engineering school I wasworking at had no tradition at all in theoretical physics.
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dimensional algebras, but theywere not themain subject of focused interest. Thiswas
the high tide of superstring theory, and higher spin gauge field theory was definitely
at the fringe of theoretical physics. But strangely enough, massless higher spin fields
were to turn up in string theory in connection to the AdS/CFT conjectures. That gave
a boost to the interest in the Vasiliev theory.9

Now, with the subject fairly well established as an interesting part of theoretical
physics to pursue, itmay be a good time to try and condense and explicate parts of it in
book form. Thepresent book cameabout by a very unlikely – and funny– coincidence.
In January 2015, I was at the AMS/MMA Joint Mathematics Meeting in San Antonio,
Texas, and gave a presentation on a calculus textbook I was writing with a colleague.
When browsing the exhibition hall where the publishers were showing their books,
I happened upon the De Gruyter stand. I was leafing through a book when I was ap-
proached by Konrad Kieling who was reading my name tag. Now “Bengtsson” is a
quite common name in Sweden but not so internationally. Konrad asked be if I knew
IngemarBengtsson,which I of course did sincewewereworking onhigher spins in the
1980s as graduate students and post-docs. This lead to talk about how Konrad knew
about Ingemar and about what I was doing and eventually to the question if I had
ever thought about writing a book about higher spin. The idea had actually crossed
my mind – at least in the form of a review article – but it was very far from being re-
alized. My guarded answer was “yes”. After this encounter, the idea started to take on
concrete form in the course of an exchange of emails during the spring of 2015. I must
take the opportunity to thankmy (bookwriting) colleague and professor inmathemat-
ics, Dragu Atanasiu, for prompting me to go to San Antonio.

Audience
I have tried to make this book accessible to graduate students who have had standard
courses in classicalmechanics, special and general relativity and quantummechanics
and some quantum field theory.10 Although massless higher spin fields and particles
are yet to find their proper place in a fundamental description of nature, I have tried
nevertheless to connect the subject to basic physical intuition.

When planning the book, I played the game of imagining how some other generic
authormightwrite a book on higher spin, and then tried to deviate from that imagined
book. In this way, my text would not compete with other eventual texts, but rather be
a complement to them. This is my basic philosophy of doing research and writing:
I’m not that interested in redoing what others have already done or written. I guess in
the end, the book I’m presenting here simply reflects my understanding and point of

9 The subjects mentioned in this paragraph: membrane theory, infinite dimensional algebras, su-
perstring theory, AdS/CFT conjectures and the Vasiliev theory, are all very extensive. I refrain from
providing any fair subset of references at this point.
10 Roughly where I was myself when getting started on higher spins in 1983.
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view (and to be honest, lack of knowledge) of this very fascinating subject. However,
inevitablymuch of thematerial is of course standard for the subject – as is appropriate
– but hopefully the approach and emphasis is a bit different. I hope the book contains
much of what you need to know to get started on the subject. Apart from technical
skills, you will need ideas.

Contents
The book was initially planned as one volume, but due to the size of the subject,
and the time it takes to write about it, the book is divided into two volumes: the free
theory in the present Volume 1, and the interacting theory in the planned Volume 2.
Higher spin theory has indeed become a very large subject with many aspects and ap-
proaches. Even if I had the knowledge and understanding to write about it all, even
two volumes would hardly cover it. Rather than trying to write a full review of the
whole subject, I have tried to focus on a number of parts of the subject, treating them
quite thoroughly. The guiding principle has been to write a text that is concrete and
computational, physical and intuitive and conceptual and abstract. The present Vol-
ume 1 has the following contents.

Chapter 1 is an introduction. I try to motivate the subject and put it in context, as
well as introducing the basic conventions and notation used.

Chapter 2 is historical. I think it is a bit more detailed than has beenwritten on the
subject before. I often find historical comments on an area of research both interesting
in themselves and helpful for understanding. I hope it will be useful to the reader, too.

Chapter 3 is collection of background knowledge that is essential for working in
higher spin theory. Much of the material in this chapter will be used first in Volume 2
on interactions.

Chapter 4 reviews knowledge about the well established theories of spin 1 and
spin 2. However, it does so from the perspective of trying to take advantage of such
knowledge when approaching the higher spin problem.

In Chapter 5, we come to higher spin theory itself. Here, I treat the free field theory
in its various formulations. The focus is on the Minkowski space-time theory.

In Chapter 6, we develop the basics of the light-front approach to massless higher
spin fields. Again, as a preparation for a review of what is known about higher spin
interactions on the light-front. With this content, the problems of interacting higher
spin fields can be discussed in Volume 2.

Referencing
The number of papers in someway pertaining to higher spin theorymay soon run into
the thousands, if they have not already done so. I may have seenmany of them, but of
those I’ve seen Imust admit I have not read themall, and certainly notworked through
all the details.
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I’ve tried to reference original work as fairly as possible. The position of the sub-
ject at the outskirts of theoretical physics has, however, had the effect that ideas and
methods have been rediscovered over and over again from different perspectives and
in different guises – ostensibly unaware of earlier work,11 making back-tracking par-
ticularly frustrating. Of topics outside higher spin proper, my referencing has been
guided by the wish to help the reader to find relevant information in textbooks and
reviews, mostly the ones I have found useful myself.

How the book is written
As many authors have said before: it may be that I wrote the book that I would my-
self have liked to read when I started out in the subject. Another philosophy that has
guided me is something Ingemar Bengtsson said when we were graduate students to-
gether: “A good bookmust have a point of view.”. This I agree with. Inmy opinion, the
readable books are often the ones which are based on a few basic unifying ideas that
are pursued – not single-mindedly – but pragmatically. This is not an easy ideal to live
up to, specially not in a subject like the present one that is far from mature and that
has recently undergone rapid development in various directions by many researchers
employing different methods, techniques and formalisms. To review all this material,
I find out of my reach. There are many different models depending on space-time di-
mension, back-ground geometry and symmetry groups. This generality – which is of
course interesting in itself since it corresponds to a desire to map out the terrain of
possible higher spin theories – easily becomes bewildering. The subject tends to look
like botany.12 It is implicit in my way of looking at the subject, that there are other
points of view that one can stress. These you will certainly find in other texts.

To write is therefore as much about what not to include as to what to include. It is
only natural if an author wants to express his/her knowledge of the subject (while in
the preface perhaps humbly professing to limited knowledge, as I have already done).
One often feels that by leaving things out, one does harm to the subject. However,
every student of theoretical physics understands that there aremore examples of exact
solutions toNewton’s equation thanaparticle in a constant force field or in aharmonic
potential, but perhaps one does not want to read about them all, at least not just for
now.

I have employed another strategy. Almost everything is done in four space-time
dimensions and for small symmetry groups and algebras. Thus rather than using my
allotted space to listing and classifying various models, I will use the space to try to
explain things thoroughly, following a few lines of thought. I will take a walk through
the terrain rather than surveying it. I also adhere to the philosophy that formulas do

11 A fault, which I have myself been guilty of: having seen, even read, but forgot.
12 My apologies to the real world botanists.
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not speak for themselves, there must be a story surrounding them.13 I have tried to
provide such a story for higher spin theory.14

Higher spin field theory exploits quite a few tools from mathematics. Although I
had from the outset planned a chapter on such things, it eventually grew to one of the
longest. I anyway had to work things through to get signs and factors right, and fix
notation. For the expert, the contents of this chapter may seem well known or even
trivial. I am not quite sure it is so for every nonexpert reader that picks up the book, or
for that matter, to newcomers and graduate students. Explaining well-known things
in a separate chapter, allows for a shorter and more succinct treatment of the higher
spin theory itself. I also found that writing down some of these things was useful in
itself, in that hidden assumptions and glossed over details, came into focus.15

Another aspect of the large set of mathematical tools used in the subject, is the
occurrence of different notational systems, often confusing, sometimes even conflict-
ing. I have tried to streamline notation, at least to harmonize it, but also kept parallel
notational systems (the ones that seem most commonly employed). I will explicate
this in Section 1.4, in the historical chapter and in Chapter 3.

As an aside, I would actually say that devising formalism is a neglected part of
higher spin theory. Having studied computer science for some years, I came to think in
terms of objects and processes. In theoretical physics, objects can be fields, processes
can be transformations. A symbol for an object needs to carry enough information for
it to be able to – in the circumstance – convey, perhaps not all, but its salient prop-
erties. This may vary with the context. A process must be symbolized with enough
information for the reader to be able to carry through the intended computations reli-
ably. As we all know, this is no easy task. What works well in the personal notebook,
may not work so well in print.

An example of a very well devised formalism is Leibniz’s formalism for the dif-
ferential and integral calculus. This is a formalism that computes almost by itself. It

13 In the hilariously funny book onmathematics teaching [11], M. Klinewrites: “Many authors seem to
believe that symbols express ideas that words cannot. But the symbolism is invented by human beings
to express their thoughts. The symbols cannot transcend the thoughts.Hence, the thoughts shouldfirst
be stated and then the symbolic version might be introduced where symbols are really expeditious.
Instead, one finds masses of symbols and little verbal expression of the underlying thought.”
14 Regarding the question of the number of dimensions of space-time and size of groups, let me be
honest. Limiting myself to D = 4 and small groups is not just a matter of limiting the scope of the
subject. At a deeper level, it is, and has always been, my contention that the world is actually four-
dimensional. Fascinating as the subjects of higher dimensions, supersymmetry and large groups un-
doubtedly are, they have never really spoken tome. My fascination is focused on four dimensions and
small groups where I feel there might be depths still not investigated.
15 Let me also risk a quite personal opinion. In Yang–Mills theory, and even gravity, it seems that one
can get awaywith rather sloppy concepts, since one is corrected by– if not reality – by accepted canon.
This will not do in higher spin theory. Clear understanding of fundamental concepts of theoretical
physics is needed. That is not the same thing as mathematical rigor.
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does so at the price of not completely hiding, but certainly circumventing, the sub-
tleties of analysis. This may bother a mathematician, but is generally no great issue
with a theoretical physicist. That is insteadwhat we like about good formalisms. Leib-
niz’s construction of his formalism for the calculus may have been a stroke of genius
or inspiration, but certainly not of good luck. As the story goes, Leibniz spent a lot
of time on thinking about effective and transparent formalisms in mathematics and
philosophy [12].16

A physics example of a very well devised notational system is Dirac’s bra and ket
notation for quantum mechanics, introduced in 1939 in [13]. A quote from the first
paragraph of the paper says it all.

Inmathematical theories, the questionof notation,while not of primary importance, is yetworthy
of careful consideration, since a good notation can be of great value in helping the development
of a theory, by making it easy to write down those quantities or combinations of quantities that
are important, and difficult or impossible to write down those that are unimportant.

In research articles, and even in review articles, it is only natural to hurry towardwhat
is new, and focus on recent developments. In a book, even if the subject is extensive,
one should have the freedom to dwell on the basics of the subject. If not there, where
else?

Many books in theoretical physics make a point about developing the subject log-
ically rather than historically. That is a good point, but it is one-sided. Science is a
human endeavor, and history is interesting in itself, and it often – or at least some-
times – can shed light on the logic of the subject. Perhaps striking a balance at 25%
history to 75% logic, is more productive than a balance 5% to 95%.

For all these reasons, the book is therefore to a large extent, a book in the “re-
thinking” tradition. And I must admit, as the author, a “relearning” experience. For
the reader who finds the treatment unsystematic: think of it as an exploration of un-
known territory, rather than as designing a garden.

Some people like exercises and theymay be a crucial part of learning a subject. Myself, I don’t, always
having preferred to choose for myself what to work through and what to trust. The reader of this book
will have to do that, too. There are no regular exercises. But there are questions, often of a concep-
tual rather that technical nature, in certain places in the text. Sometimes tentative answers are given.
Sometimes I may not even know – at the time of writing – the answer myself. Other questions may
relate to obscure, but interesting, passages in papers. Still others to reproducing results in historical
papers. There are cases where I felt a section risked to develop into tedious detail, deflecting from the
main goal, so I relegated some material to a question. Questions of these kinds are marked as shown
here. I hope readers who enjoy exercises will appreciate these questions. Sometimes the reader has
to figure out for herself what the question is.

16 Lars Brink used to say: “The formalism is smarter than we are.”. In higher spin theory, a smart
formalism would certainly be of help.
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1 Introduction and motivation
Thedescriptionandexplanationof physical reality puts veryheavyburdensonmathe-
matics. Physics is not, not even theoretical physics, a deductivemathematical science.
Experiment or observationmust eventually, in the last analysis, decide what is true or
not, no matter how beautiful principles may be involved. Of course, physics is a prag-
matic science, and fundamentally discarded theories – such as Newtonianmechanics
– are still usedwherever they are applicable, not the least in technology, and theymay
even be axiomatized or be given a neat mathematical formulation.

Now and then, new powerful principles subsume and explain large tracts of
physics, and this is part of the beauty of physics. But grand principles tend to clash
with each other. The “quantum principle” and the “relativity principle” are not easily
united. Where they meet, there is dissonance, and quantum mechanics and special
relativity are almost incompatible [14], but have been reconciled in the theory of quan-
tum fields, of which the observationally very successful StandardModel is a particular
example. “Quantum gravity” – an umbrella denotation for quite a few attempts at
reconciling “the quantum principle” with the “general relativity principle” – is still
an unsolved theoretical problem.

Attempts to axiomatize, or even to put large parts of theoretical physics on firmer
ground, often run into problems, as the example of “axiomatic field theory” has
shown. This is not to say that one should not try, if one finds such a line of research in-
teresting. But is seems thatweoftenhave tomakedowith robust, andpracticallywork-
ing mathematical formulations, such as renormalized quantum Yang–Mills theory.

Higher spin theory – the very subject of this book – seems to be in several awk-
ward conflictswith the grand principles of theoretical physics, even though the theory
is superficially easy to couch in the language and formalisms of relativity and quan-
tum mechanics. Most physicists take these conflicts as clear indications that higher
spin gauge theories are completely out of the picture as regards fundamental under-
standing of physical reality. A few hope that higher spin gauge fields will eventually
help reconcile the grand principles. As the author of this book, I shall remain neutral
on this very question.

Having stated this piece of basic philosophy behind the book, let us continue to-
wards our particular subject. In this first chapter, I will introduce the problem and
motivate why it is interesting to study. Let us begin by playing the game howwe could
explain our field of study to an educated person who is not a physicist.

1.1 Spin
Physics is about describing systems and explaining the changes they undergo. This is
motion or dynamics. But in order to change – in order to move – there must be some-
thing that has a freedom tomove.What ismoving?We call it degrees of freedom. These
are variables that describe the states of the system.

https://doi.org/10.1515/9783110451771-001
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The simplest thing that can move is a structureless particle, what we call a point
particle. We describe it mathematically by a zero-dimensional point. Such a point par-
ticle is thought of as moving in a space of higher dimension, in reality in three dimen-
sions. It thus has at least 3 degrees of freedom since it must be somewhere in space.
This somewhere is its position. But it moves and in order to describe themotion we in-
troduce the concept of velocity. Since motion can be in three independent directions
of space we get another 3 degrees of freedom.

However, the introduction of velocity requires the concept of time. Or rather, the
notion of a particle moving requires the notion of a function describing the position
of the particle depending on some parameter. This is the trajectory or history of the
particle. Is this new parameter – time – a new degree of freedom or what is it?

And what about the velocity itself? Is it constant or is it changing? Do we need
still more degrees of freedom corresponding to what is normally designated by ac-
celeration? Since Newton, the answer is almost exclusively, a no. The acceleration is
determined by the force acting on the particle. This gives us the equation ofmotion that
allows us in simple cases to compute themotion of the particle. We are doing classical
mechanics, as we say. In the process, velocity is refined into two concepts of quantity
of motion,momentum and kinetic energy. And the question arises: what are forces?

Thinking in another direction, what happens when the particle is not without
structure? A system of two similar particles would have 2 × 6 = 12 degrees of freedom.
But if the particles are connected to each other in some way, perhaps by a thin rigid
rod, the number of degrees of freedom (d. o. f.) may be less than 12.We can think of the
particles as forming a dumbbell shaped system and the rigid rod we can abstract to
a constraint on their motion so that their relative distance is constant. If the particles
are similar, themotion can be described by themotion of themidpoint on the distance
between them – the center of motion – and a rotation around themidpoint. Even if the
relative distance between the particles can change, rotation of the two-particle sys-
tem still seems to be an interesting concept. The change of relative position could be
a vibration. It becomes interesting to figure out the number of degrees of freedom and
their nature.

As soon as we consider more than one particle, rotation becomes an inevitably
physical concept to understand.Weanalyze it using the related concepts ofangular ve-
locity and angular momentum. But so far, everything said has been within Newtonian
physics. Relativity forcesmodifications regarding time, for instance about whether we
think of time as a parameter or a degree of freedom, or if it is both depending on con-
text and point of view. Relativity also forcesmodifications to the notion of space itself.

When we move beyond classical physics, on to quantum physics, there seems to
be a need for a dramatic shift of ontology1 and epistemology.2 At least, new concepts

1 The nature of reality.
2 The nature of our knowledge about reality.
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and theoretical structures arise. In particular, a new type of degree of freedom, shar-
ing properties with rotation, emerges: the concept of spin. It is independent of space-
time angular momentum and cannot be reduced to it, yet it emerges – theoretically –
from a union of quantum mechanics with special relativity. Experimentally, its pres-
ence was first seen in the spectrum of the simplest of atoms, the hydrogen atom. It
is a truly quantum phenomenon and concept. Mathematically, it is inherent in the
Poincaré group, the group of symmetries of special relativistic space-time. Quantum
relativity predicts that spin is a degree of freedom that can take any one of the values
0, 1/2, 1, 3/2, 2, 5/2, 3, . . . continuing up to infinity.3

At this point, wemay have lost our nonphysicist audience. Let us cut short by say-
ing that electromagnetic andnuclear forces are connected to spin 1while gravitational
forces are connected to spin 2. What this means is that these forces are mediated by
fields or particles that are themselves carrying the spin degree of freedom; spin 1 and
spin 2, respectively. The question may arise: what is the role of spin 3, 4, 5, . . .? This is
indeed a very natural theoretical question to ask. Fundamental matter particles, such
as the electron, are described by fields of spin 1/2. Spin 3/2 fields occur in theoretical
extensions to gravity called supergravity theories. The Poincaré group of space-time
symmetry have representations of all integer and half-integer spin. What is the role, if
any, played by this infinite spectrum of particles and fields?

This book is therefore about one set of aspects of this intriguing concept of spin,
namely the theory ofhigher spin gaugefields,where theword “gauge”– tobe explained
in the following – denotes a concept that is central to the whole subject.4 Experimen-
tallymapped-out nature, as it is captured by the fundamental equations of theoretical
physics, however, makes do with low values of spin. If this situation persists – and
there are no indications that it will change in the near future – the theory of higher
spin may have little to do with fundamental matter and forces. Then it may just be
a piece of interesting mathematics. If it does play a physical role, then it might be a
signal from the deep structure of reality. We just do not know.

Degrees of freedom in general, and the electromagnetic field in particular

In the context of field theory (in dimension D = 4), the six degrees of freedom (d. o. f.)5 of a structure-
less point particle: the position x andmomentum p, count as just one scalar fieldϕ degree of freedom
with ϕ(t ,x)|t=t0 and 𝜕tϕ(t ,x)|t=t0 at some initial time t0. When confusion might arise, we may write
particle d. o. f. and field d. o. f., respectively. But in most cases, context will show what kinds of d. o. f.
are implied. The description of a field with ϕ(t ,x) is called configuration space description.

3 For the reader who remembers from school physics that a physical quantity must be measured in
some “unit”, spin is measured in the unit “energy⋅time”, that is, Js in SI-units.
4 Model railroaders will recognize the word “gauge” as the same word as in the measure of railroad
track gauges – the inner distance between rails – both in reality and in the model.
5 The abbreviation d. o. f. will be used in both the singular and the plural depending on context.
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This, however, shows that a fieldd. o. f. actually corresponds to two initial values: one for the field
itself, and one for its time derivative. Therefore, counting in phase space where the time derivative of
thefield is traded for thefieldmomentum, one couldalso say that a scalar field carries twophase space
d. o. f., namely the field itself ϕ and its conjugate momentum π ∼ 𝜕tϕ. The spin degree of freedom is
almost always discrete – running over a finite set of values – and it is often represented with a label
on the field, for instance as ϕσ .

The electromagnetic field is a particularly interesting example. It can be described by an electric
field E and a magnetic field B, both being three-dimensional vectors. They therefore together consti-
tute six field degrees of freedom. Are these configuration space d. o. f. or phase space d. o. f.? This
innocent looking question immediately throws us into the depths of our subject.

The electromagnetic field can also be described by the vector potential A and the Coulomb po-
tential Φ = A0. The relation between the two descriptions is given by E = 𝜕tA + ∇Φ and B = ∇ × A. The
first of these equations gives a hint that the electric field E should be counted as a field momentum
d. o. f., while the second is consistent with taking themagnetic fieldB to be a field d. o. f., andwe have
six phase space degrees of freedom.

However, there are four partial differential equations connecting the electric andmagnetic fields
– the Maxwell equations – and these relations reduce the number of degrees of freedom. Two of the
equations, namely ∇ ⋅ E = ρ and ∇ × B − 𝜕tE = j (where ρ and j are the electric charge and current
densities), reduce the number of phase space d. o. f. from six to four. The other twoMaxwell equations,
namely ∇ ⋅ B = 0 and ∇ × E − 𝜕tB = 0, just reduce to the mathematical identities ∇ ⋅ (∇ × A) = 0 and
∇×(∇Φ) = 0. Alternatively, these twoequations canbe thought of as allowingus to express the electric
andmagnetic fields in terms of the vector potential and the Coulomb potential aswe have done above.
Identities of this type are called Bianchi identities.

Counting in configuration space, the electromagnetic field thus carry two field degrees of free-
dom. These d. o. f. correspond to the two polarizations of light. Alternatively, one says that the photon
– themassless spin 1 particle of light – carry two field degrees of freedom. It will turn out that allmass-
less particles, regardless of their spin, will carry two field degrees of freedom in three-dimensional
space.

1.2 Quantum mechanics and relativity

The last 5 years of the nineteenth century saw dramatic new discoveries in physics:
X-rays, the electron, the Zeeman effect and radioactivity, to name a few of the most
prominent. Together with unsolved puzzles like the ultraviolet catastrophe of black-
body radiation, the photoelectric effect and the absence of an electromagnetic ether
for light to propagate in, they eventually lead to a fundamentally new understanding
of the laws of physics in terms of quantum mechanics and special relativity. General
relativity, however, was not prepared by any widely felt crisis in physics.6

Quantummechanics is often thought of, not as a physical theory per se, but rather
as a scheme that any theory of fundamental physics must conform to. The scientific
understanding, and indeed everyday experience– if contemplated–has led to a think-
ing about reality as being about states of systems and processes transforming such

6 This history is told in many places, a few of which are reference [5] which tells the “physics” story,
reference [15] which tells the “physicist” story and reference [16] tells the “conceptual” story.
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systems. The states are in physical sciences described in mathematical language in
terms of variables and functions, and the processes as transformations of the states
and equations relating them.7 This is very clear fromPaul Dirac’s formulation of quan-
tum mechanics [17]. As such, the description of states and processes in quantum me-
chanics is different from that in classical mechanics.

Special relativity, on the other hand, is a classically formulated theory of particles
and fields in space-time and of space-time transformations. One can say that when
special relativity is formulated quantum mechanically, what results is quantum field
theory. Aspects of this topic will be reviewed in the following Chapters 2 and 3.

1.3 The standard model and general relativity

The conceptual difference between special and general relativity is much greater than
the names of the theories – or the mathematical formalisms – suggest. Whereas spe-
cial relativity is a static theory of a background geometry of space-time, general rela-
tivity is a dynamical theory of the gravitational field where the field and the space-
time geometry is intrinsically related. Perhaps then it is not such a surprise that a
quantum theory of gravity still does not exist. As a classical theory, gravity is well
understood, and although there are conceptual problems, there are no mathematical
problems with the formulation of the theory.

The StandardModel of particle physics is the result of experimental investigations
and theoretical developments from the 1930s up to the end of the 1970s. In retrospect,
this is a very short time for such a successful theoretical understanding of fundamen-
talmatter and forces to beworked out. Verification of crucial predictions of themodel,
such as the existence of the vector bosons of the weak interactions, properties of the
strong interactions and the discovery of the Higgs particle, was achieved in the period
from the 1980s to the near present.

But the standard model neglects the effects of gravity, for the simple reason that
these play no measurable role for elementary particles at the energies that can be
reached in the laboratory, now and in the foreseeable future. The general consensus
among theoreticians is however that this state of affairs is unsatisfactory.8

7 This thinking is also inherent in modern computer science. One way to confront fundamental puz-
zles in physics in a new way could be to challenge this thinking, which has its expression in language
with the noun-adjective-verb structure.
8 As an aside, one could ask the question:what does the StandardModel actually achieve? It explains
the new phenomena discovered and investigated around the turn of the nineteenth and twentieth
centuries: atomic spectra, cathode rays, radioactivity, etc.. In order to do that, it was needed to probe
nature at smaller scales, in the process discovering evenmore phenomena that were also explained as
the theorydeveloped. In short, therewas a substructure to atomic andnuclear physics, nowexplained,
or at least described, by the Standard Model. It is an intriguing question whether there are more new
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1.4 Basic notation and conventions

It is impossible to devise a system of notation and conventions that is convenient in
all circumstances. Choices as to what alphabets andwhat parts of alphabets to use for
different objects and indices on objects, may seem trivial (and often seem to be treated
as trivial) but are not so if one cares about aesthetics, typography and readability,
while of course also being amatter of taste. The problem is furthermore aggravated by
the fact that the degree to which the choice of factors of 1/2, √2, π, i, signature of the
metric, etc., varies from the trivial to the deep. Here, we will record some choices that
will be adhered to throughout. They should be sufficient to read the historical chapter.
Complete conventions will be developed in Chapter 3.

Minkowski space-time coordinates are denoted by xμ with t = x0 and x =
(x1, x2, x3) and the corresponding momenta by pμ with E = p0 and p = (p1, p2, p3).
We will choose a mostly plus metric η = (− + ++). Unless otherwise stated, the di-
mension of space-time will be D = 4. When explicit four-vectors are written, the order
of indices is thus (0, 1, 2, 3). Somewhere, as for instance in Section 3.5, for practical
computational reasons, the order of indices will be (1, 2, 3,0).

I find it inconvenient to adhere to consistent index conventions throughout,
therefore, when we come to general relativity and curved space-times, the “curved”
or “world” indices will be denoted by xμ, etc., while the Minkowski local tangent and
cotangent spaceswill be indexed according to xa.9 For two-component spinor indices,
I will choose dotted and undotted Greek letters α, β, γ, . . ..

The transition from classical Poisson brackets {⋅, ⋅} to quantum commutators [⋅, ⋅]
is done through the convention:

If classically: {A,B} = C, then quantummechanically: [Â, B̂] = iℏĈ (1.1)

where the Poisson bracket is defined by

{A,B} = 𝜕A
𝜕x
𝜕B
𝜕p
−
𝜕A
𝜕p
𝜕B
𝜕x

(1.2)

for a mechanical system of one degree of freedom (x, p).10 In quantummechanics, we
have for the operators x̂μ and p̂μ

[x̂μ, p̂ν] = iℏημν with p̂ν = −iℏ
𝜕
𝜕xν
= −iℏ𝜕ν and x̂μ = xμ (1.3)

phenomena to discover, or not. This is not the same questions as to whether the Standard Model can
be improved on, or not.
9 The point of this choice is that special relativistic physics and classical and quantum field theory,
will look “normal”. Using indexing such as, for instance, xm or xM , in order to be consistent through-
out, in my opinion, make large parts of physics look unnecessarily awkward, if not baroque.
10 The generalization to several degrees of freedom and continuous systems follow naturally.
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From now on, ℏ = 1 (unless introduced for a specific reason) and where no confu-
sion can arise, hats on operators are dropped. Related to this, we choose the following
Fourier transform pair

ϕ(x) = 1
(2π)2
∫ d4pϕ(p)eip⋅x (1.4)

ϕ(p) = 1
(2π)2
∫ d4xϕ(x)e−ip⋅x (1.5)

The integral ∫ is over all of momentum space, or configuration space, respectively
(i. e., ∫∞−∞ in all directions with due care to poles and cuts). We see that a derivative
𝜕μ in configuration space is represented by ipμ in momentum space, consistent with
quantum mechanics (1.3), with pμ the eigenvalue of the momentum operator p̂μ. We
also remember that the Dirac delta function is represented as

δ(x) = 1
(2π)4
∫ d4peip⋅x (1.6)

The Lagrangian density for a scalar field is

ℒ = −
1
2
𝜕μ φ 𝜕

μ φ − m
2

2
φ2 =

1
2
φ◻φ − m

2

2
φ2 (1.7)

where ◻ = ημν 𝜕μ 𝜕ν = ∇2 − 𝜕2 / 𝜕 t2. The signs in ℒ ensure that the Hamiltonian ℋ is
positive definitive. Likewise, for a spin half-field, we have

ℒ = −ψ̄γ ⋅ 𝜕ψ −mψ̄ψ (1.8)

where ψ̄ = iψ†γ0 and where † denotes Hermitian conjugation (complex conjugation
will be denoted by ∗). Our conventions for gammamatrices are those ofWeinberg [18],
in particular,

{γμ, γν} = 2ημν (1.9)

The energy-momentum dispersion relation is, in these conventions, p2 +m2 = 0.
Regarding units, remember: setting c = 1, as we have done above, equalizes the

units for time and space. It also equalizes the units for energy andmass. Furthermore,
setting ℏ = 1 equalizes the units for energy and frequency (inverse time). This also
subsumes the unit for force and, therefore, also all the electromagnetic units. For di-
mensional analysis, we count in mass units so that, for instance, the dimension of p
is +1 and for x the dimension is −1.
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Gamma matrices and spinors

A convenient representation of the four-dimensional Diracmatrices in terms of Pauli matrices, that we
will use, is the following (also fromWeinberg):

γ0 = −i ( 0 σ0

σ0 0
) and γk = −i( 0 σk

−σk 0
) (1.10)

where the 2 × 2 σ0 unit and σk (k = 1, 2, 3) Pauli matrices are given by11

σ0 = (1 0
0 1
) σ1 = (0 1

1 0
) σ2 = (0 −i

i 0
) σ3 = (1 0

0 −1
) (1.11)

By writing σμ = (σ0, σk) and σ̄μ = (σ0, −σk), the equations (1.10) can be collected into

γμ = −i ( 0 σμ

σ̄μ 0
) (1.12)

For group theoretical reasons, that will be explained further on, the four-dimensional linear
(spinor) space upon which the 4 × 4 gamma matrices (1.12) act, is indexed by undotted and dotted
indices 1, 2, ̇1, 2̇. The indices on the σ matrices then appear as σαβ̇ and σ̄α̇β. Correspondingly, the
four-dimensional Dirac spinor ψ is written as

ψ = (
χα
λ̄α̇
) (1.13)

where the bar over λ has no operational meaning for now. The algebra of two-component spinors will
be further developed in section 3.6.4. For instance, the Pauli matrices can be used to set up a 1 ↔ 1
correspondence between vectors and spinors through the formula

Vαβ̇ = σ
μ

αβ̇
Vμ (1.14)

This formula generalize naturally to tensors (see formula (3.300)). The Pauli matrices satisfy a Lie al-
gebra

σ1σ2 − σ2σ1 = 2iσ3 and cyclic premutations of 1, 2, 3 (1.15)

In two-dimensional dotted or undotted spinor spaces, antisymmetry is essentially trivial, being cap-
tured by the matrix

ϵαβ = ϵ
αβ = (

0 1
−1 0
) (1.16)

and likewise for dotted indices. These matrices can be used for raising and lowering indices

ψα = ϵαβψβ and ψα = ψ
βϵβα (1.17)

11 This is probably the only convention in theoretical physics that everybody agrees on. Strictly speak-
ing, Pauli matrices refer – historically – only to the matrices σi with i = 1, 2, 3.
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Symmetrization and antisymmetrization of indices are symbolized with (. . .) and [. . .]
respectively, and is done with unit weight. For instance, ϕ(μν) = ϕμν + ϕνμ.12

The scope of derivatives, operators and transformation symbols δ, are always re-
stricted to the object standing immediately to the right of it. Other cases are indicated
by parentheses and arrows.

As for summation convention, repeated indices – upper-lower – are (unless other-
wise stated) summed over. In cases where the space or internal metric is a Kronecker
delta, we sometimes (for notational convenience) do not distinguish between upper
and lower indices. For unit matrices in general, we use the symbol I.

Furthermore, I will adopt a convention – often implicit, but seldomacknowledged
– regarding operations and the result of operations. Taking complex conjugation as
an example, I will use the notation z∗ for the “operation” of computing the complex
conjugate of the number z. The “result” of the operation is the complex conjugated
number ̄z. Of course, writing z∗ = ̄z gains nothing, but keeping a distinction between
an operation and the result of the operation is sometimes helpful to clarify formulas as
the notation gets more intricate.13

Finally, a few words on terminology. The Lorentz group always refers to the ho-
mogeneous Lorentz group, never to the inhomogeneous Lorentz group, which will be
denoted just so, or as the Poincaré group. By field, we refer either to a classical field
(that is a function) or a quantum field (that is an operator), with qualifiers when it
makes a difference.14 By wave function, we refer to a quantum state (with the proba-
bilistic interpretation if desired) which is a complex function.

The reader may already have noticed that I adhere to the not-so-common practice
of not using textual punctuation marks in formulas set on separate lines. Instead I
may use words such as “and” to separate expressions, or most often just an extended
space. End of sentence is not marked by a dot after the formula but by a uppercase
letter in the first word of the sentence to follow. A comma after a formula is marked by
lowercase letter in the first word of the continuation of the sentence.

12 It would perhaps be better to denote symmetrization with {. . .} – as some authors indeed do – in
harmony with anticommutators. However, round brackets are more common.
13 In computer science, such a distinction is often crucial: an operation is a process, and a result is
an object. Conflating themmay lead to syntax errors. In physics, it may not always be practical to keep
separate symbols, but the distinction is helpful conceptually anyway.
14 For the mathematical concept of a “field”, we will use the term “number system”.



2 Notes on the history of the subject
While experimental knowledge of matter spin is not more than a 100 years old, inves-
tigations into polarization phenomena for light is older, going back to the seventeenth
century. The history is intertwined with the scientific investigation of the very nature
of light itself, whether it was a corpuscle or a wave, and what kind of wave in that
case.1

Wolfgang Pauli developed the theory of the spinning electron in nonrelativistic
quantummechanics after the existence of spin had been proposed by S. Goudsmit and
G. E. Uhlenbeck. Then spin came out as a direct consequence of P. A.M. Dirac’s rela-
tivistic equation for the electron. Later on, the concept was understood, by E. Wigner,
as a characteristic of the representations of the space-time symmetry group of spe-
cial relativity. In themeantime,many authors had developed the subject of relativistic
wave equations for arbitrary spin.

At this time – the 1930s – only a handful of elementary particleswere known to ex-
ist and they all were of low spin. Still, for theorists like Dirac, it was natural to consider
the question of wave equations for higher spin particles. As Dirac wrote

[...] it is desirable to have the equations ready for a possible future discovery of an elementary
particle with spin greater than a half [...].[1]

The logic in the early investigations was, and continued to be so for a long time, the
following: find the freewave equations, or preferably theLagrangian, and try to couple
minimally to the to the existing force fields: electromagnetism and gravity.

Almost from the beginning, difficulties with interactions were discovered. These
were first thought to be possible to overcome, but starting around 1960 it began to be
understood that the problems were serious – so serious that the subject of higher spin
fields and particles got a rather bad reputation. Only with the advent of supersymme-
try and supergravity in the late 1970s, was there a revival of interest in the subject. Still
there is a large number of scientific papers on higher spinwave equations and interac-
tions, dating from the 1930s up to Christian Fronsdal’s 1978 paper. Only a few of them
are regularly referred to in current higher spin research. To chart out this literature in
detail, remains to be done. However, one very useful survey by S. Esposito is [20].

In revisiting some of these papers, we can try to reconstruct the thinking of the
times as it were expressed in the published record. This chapter will tell the story of
the old papers. Some of the detailed calculations will be reviewed in Chapters 3, 4
and 5. Revisiting the history of the subject also allows us to formulate fundamental
concepts of theoretical physics and record some of the basic equations.

1 See, for instance, Chapter 3 of [19].

https://doi.org/10.1515/9783110451771-002
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A few words of warning

The early history of the subject is tangled upwith the history of quantum theory itself to the extent that
it is the history of wave equations for particles interacting with electromagnetic fields. This history
of quantum mechanics is very convoluted, as the main characters of the story struggled with deep
conceptual problems while accounting for experimental data and constructing the theoretical tools
needed for doing the calculations.

Furthermore, whenwewritehigher spin in the present chapter we should be a little wary of dress-
ing up these words with twenty-first century connotations. Remember that AdS/CFT is still far in the
future. Furthermore, I am not a historian of science, and since I entered the subject of higher spin only
in 1983, Imissed the first 50 years of it. There is a dangerwhenwriting the history of a scientific subject
to interpret it in terms of what came later – to write “Whiggish history” – or what Stephen Jay Gould
call “textbook cardboard” history [21]: history where the development points to the present as if by
inherent logic. This is one reason why I have deliberately chosen not to write the history as if the only
outcome, or solution to the difficulties encountered, is, or will be, the Vasiliev theory. Still, a certain
amount of anachronisms, can be helpful in understanding the development of a subject. No doubt, I
am guilty of that. The particular temptations of Whiggish history in physics is also discussed by S. S.
Schweber in [22].2

Finally, this is a history of the published record. It remains for a professional historian of science
to tell the history of recollections, letters and unpublished material.

In reviewing, brief as it will be, contents of historical papers, I have decided to change
the notation of the originals, to a certain degree, into a notation coherent with the one
used throughout thepresent book. Thenotationof theoriginals hasbeenkeptwhenno
confusion is likely to occur. Again, this is not scholarly work of science history, but an
attempt to understand the history of the subject as it is recorded in the published pa-
pers. Still, direct comparison of equations between papers, might involve issues with
signs andnormalizations going back to differing basic conventions. One reference that
has turned out to be very useful during the writing of this chapter is the E.M. Corson
book from 1953 [23] on relativistic wave equations. Apart from a clear exposition, it
also contains a bibliography of the subject up to its year of publication. Furthermore,
being finished in the early 1950s, it reflects the status of the subject at that time. Fi-
nally, the narrative is not linear, like a chain, since the history itself is rather like a net.
As in other familiar contexts, there is no global time, not even in the world of ideas.

2.1 The Majorana, Dirac and Fierz–Pauli era

The early history of higher spin is the history of wave equations, and therefore, it is
linked with the history of quantum theory itself. The pioneers of quantummechanics
were thinking in terms of relativity theory from the beginning. Since nonrelativistic
mechanics could not explain the quantum phenomena, it was natural to incorporate

2 Where one can also find a reference to H. Butterfield who coined the term in 1931.
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relativity in the newmechanics and Erwin Schrödinger tried to do that.3 Already Louis
de Broglie, when he proposed his theory of matter waves, reasoned within the theory
of relativity [25].4 Let us remind ourselves of the basic ideas.

One can start from Einstein’s relation between energy and frequency E = hν = ℏω
and the de Broglie hypothesis embodied in the equation relating momenta to wave-
length p = h/λ and write it as a three-vector equation relating wave number k to mo-
menta p through p = ℏk. Then consider a plane wave Ψ = exp i(k ⋅ x − ωt). Differenti-
ating with respect to time and space, we get

iℏ 𝜕
𝜕 t

Ψ = EΨ and − iℏ∇Ψ = pΨ (2.1)

From the relativistic relation between energy and momenta,

E2 = p2c2 +m2c4 (2.2)

then follows the Klein–Gordon wave equation (first considered by Schrödinger)

(
𝜕2

𝜕 t2
− c2∇2 + m

2c4

ℏ2
)Ψ = 0 (2.3)

Note that ℏ appear in this equation only in the mass term and, therefore, the mass-
less equation can be treated as a classical wave equation. The same is true of the
massless Dirac equation. The interaction with the electromagnetic fields Φ = A0 and
A = (A1,A2,A3), is introduced through theminimal coupling prescription

E → E − eΦ and p→ p − ecA (2.4)

with e the elementary charge. In terms of space-time derivatives, we have

𝜕
𝜕 t
→
𝜕
𝜕 t
− i e
ℏ
Φ and ∇ → ∇ − i e

ℏ
cA (2.5)

We see that ℏ appears through the quantumminimal coupling prescription.
The relativistic equation was rejected by Schrödinger since it gave results in con-

flictwith spectroscopic data for the hydrogen atom.5 From the nonrelativistic equation
E = p2/2m, follows the Schrödinger equation itself

iℏ 𝜕
𝜕 t

Ψ = − ℏ
2

2m
∇2Ψ (2.6)

3 As told by Dirac in [24].
4 L. de Broglie writes – after first telling the story of the turn of the century expectations of a imminent
unification of all physics – that Lord Kelvin had brought attention to two clouds at the horizon: the
Michelson–Morley experiment and the Rayleigh–Jeans law. L. de Broglie continues with poetically
writing that in the beginning of the twentieth century, Lord Kelvin’s clouds yielded precipitation. One
leading to relativity, the other to quantummechanics.
5 See [26], Chapter 13, for a textbook calculation.
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The general Schrödinger equation

For general quantum systems, the right-hand side of the Schrödinger equation is replaced by a Hamil-
tonian operatorℋ acting on a quantum state Ψ in a Hilbert space, while the left-hand side is retained
as in equation (2.6).

The relativistic wave equations of Klein–Gordon, Dirac etc., are physically of a “tran-
sitional” character of belonging to “relativistic quantum mechanics”, a theory which
was to be replacedwith quantumfield theory.6 From this perspective, one can, at least
mathematically, consider these wave equations as classical. The conceptual status of
relativistic wave equations is something that we will have occasion to return to in sev-
eral places. It should also be noted that the pioneers of quantum mechanics were
thinking in terms of quantization of fields from the beginning of the mathematical
development of the theory [28].

Chronologically, we now know that EttoreMajoranawas very early in his thinking
[29] and writing on relativistic wave equations [2]. But the story is best started with
Paul A.M. Dirac.

2.1.1 P. A.M. Dirac

In the new nonrelativistic quantum mechanics of the mid-1920s, a particle was de-
scribed a wave function Ψ(x, t) governed by the Schrödinger equation and interpreted
as a probability amplitude. Thewave function, although being complex, describes just
one degree of freedom. But spectroscopic data (splitting of lines) indicated that this
was insufficient to explain what was seen in the laboratories. This led Goudsmit and
Uhlenbeck to assume the existence of an electron intrinsicmagneticmoment and spin
– not related to orbital angular momentum [30], [31], [32].7 Such a hypothesis could
also explain other phenomena such as the Zeeman effect and the Stern–Gerlach ex-
periment where a beam of electrons was split up in two distinct beams by an inhomo-
geneous magnetic field.8 The concept of spin was from the very beginning motivated
by the understanding of experimental results.

Mathematically, this property of electrons could be described by introducing a
newdiscrete variableσwith twovalues andwriting thewave function asΨ(x, t; σ). Due
to the discreteness of σ, the wave can just as well be described by a two-component

6 Relativistic quantummechanics is developed in the textbook by Bjorken and Drell [27].
7 For Goudsmit’s own account, see a talk “The discovery of the electron spin” given at the Golden
Jubilee of the Dutch Physical Society 1971.
8 See, for instance, Chapter 16 in [33].
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object

Ψ(x, t; σ) = Ψσ(x, t) = (
Ψ+ 12
Ψ− 12
) (2.7)

where we have anticipated that the values of σ naturally become ±1/2. The theory of
orbital angular momentum was already worked out [34], and could be adapted to the
theory of intrinsic spin by W. Pauli [35].9 Essentially, the spin operator S is written in
terms of – what became known as – the 2 × 2 complex Pauli matrices σ as

S = ℏ
2
σ (2.8)

and the ±1/2 components of the wave-function (2.7) are the eigenvectors of Sz .
Several physicists contemplated the idea of a spinning electron [36] and A.H.

Compton wrote as early as 1921:

I then conclude that the electron itself, spinning like a tiny gyroscope, is probably the ultimate
magnetic particle and is responsible for ferromagnetism.

But it was Pauli who gave the nonrelativistic theory of spin the form it still retains to-
day.10 At this time, the concept of a spinor had not yet become sharp, and C. G. Darwin
tried to describe the electron spin by a vector model, which in retrospect it is easy to
see will run into problems (as noted by Pauli). Furthermore, the spin is an intrinsic
property, not related to any space-time rotation of the particle (no “tiny gyroscope”).
It was realized that such a rotation would run into problems with relativity.

As the story goes, Dirac was searching for a relativistic generalization of the
Schrödinger equation. Such a generalization was already known as the Klein–Gordon
equation (2.3). This is partial differential equation second-order in both time and
space derivatives. It was naturally real, but by taking two fields and combining them,
complex solutions could be contemplated. Such a complex scalar field can describe
electrically charged spin zero particles and can be coupled to an electromagnetic field
through minimal coupling.

The Klein–Gordon equation has negative energy solutions and it is sometimes
said that trying to avoid thiswasDirac’smotivation for looking for an alternative equa-
tion. However, Dirac was motivated by several deficiencies – as perceived at that time
– of the Klein–Gordon equation. Any relativistic wave equation will have negative en-
ergy solutions due to Einstein’s quadratic energy momentum relation E2 = p2 + m2.
This is true also for the Dirac equation, a fact Dirac was aware of when writing his pa-
per [37]. More importantly, Dirac explicitly wanted to have a wave equation linear in
the time derivative. This is needed so that

[...] the wave function at any time determines the wave function at any later time.

9 The mathematics of angular momentum and spin will be reviewed in Chapter 3.
10 Upon reading Pauli’s paper, it is clear that the theoretical physics of the late 1920s had taken on a
form recognizable today.
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This was crucial for the Dirac–Jordan transformation theory of quantummechanics to
work. It is also connected to the probability interpretation. The invariant density that
can be formed for the Klein–Gordon equation is not positive definite (since it involves
time derivatives) and this precludes a probability interpretation.

The Schrödinger equation is first-order in the time derivative and second-order
in space derivatives. What was called for was some kind of linear square root of p2 +
m2. Today – in retrospect – we have no problem envisaging such a square root using
matrices, but in Dirac’s time it was a very clever idea come up with.11 The procedure
was however known by mathematicians [39].

The transformation theory

The transformation theory was developed by Dirac and Jordan independently [40, 41] in 1927. It con-
cerned the question of equivalence between the different formulations of quantum mechanics: the
Heisenberg matrix mechanics and Schrödinger wave mechanics theories. Both theories were first-
order in time derivatives and worked with noncommuting variables. Dirac realized that the equations
of motion of Hamiltonian classical mechanics – which are linear in time derivatives – could be reinter-
preted in quantum theory. The canonical transformations of classical mechanics become the picture
changing transformationsof quantummechanics. It is essential that the evolution equationsare linear
in time derivatives.

The theory was later elaborated by Dirac in his book on quantummechanics [17]. In this abstract
approach to quantum mechanics, states are represented by bra and ket vectors ⟨ψ| and |ψ⟩ and lin-
ear operators 𝒪 acting on them. The bra and ket notation was invented by Dirac in 1939 in [13]. It
did not appear in the first editions of the book. The transformation theory and the equivalence prob-
lem is also treated in the first chapter of J. von Neumanns “Matematische Grundlagen der Quanten-
mechanik” [42].

It should perhaps be remarked that therewas nothingwrong, after all, with the Klein–
Gordon equation. It just describes spin zero particles. The problem with negative en-
ergies was eventually overcome by the method of second quantization by M. Fierz,
and the direct probability interpretation is not relevant in the quantum field context.
There also seem to have been a perception at the time, following the success of the
Dirac equation, that relativity forced the spin to be 1/2. This was of course wrong, as
was eventually made clear by the classification of the representations of the Poincaré
group by Wigner and Bargmann–Wigner.12

11 Pauli, in his spin paper, admitting the provisional nature of his work, had doubted the possibility
of a relativistic theory of electron “[...] as long as one retains the idealization of the electron by an
infinitely small magnetic dipole [...] or whether a more precise model of the electron is required [...].”.
In Dirac’s theory, the electron is indeed an infinitely small point particle. No “model of the structure
of the electron” was needed. How Dirac may have got the idea is discussed in [38, p. 59].
12 For this misconception, see [20].
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The Dirac equation does lead to a positive density, but as we now see it, it is any-
way not an equation for a relativistic probability amplitude, but rather an equation for
a quantum field operator. This we will discuss at length in Section 3.4.

Second quantization

The deficiencies of the Klein–Gordon equation: negative energies, negative probabilities and being
quadratic in time derivatives, are mathematically related. Historically, they are related to the transi-
tion from relativistic quantum mechanics to quantum field theory. The transition was surrounded by
confusion at the time, and still may lead to confusion. The conceptual bridge was “second quantiza-
tion”: the wave functions of the Klein–Gordon and Dirac equations, were thought of as being quan-
tized once more – introducing creation and annihilation operators – yielding a multi-particle theory.
The language of second quantization is in itself confusing since the first field to be quantized was the
electromagnetic field which is surely a classical field. The bottom line – as seen from a modern point
of view – is to abandon the idea of second quantization and accept that the wave functions of Klein–
Gordon andDirac are not probability amplitudes at all, but quantumoperators acting in aHilbert space
of states. A good reference, both on the history and for clarifying the issues, is the historical chapter
in [18]. See also Chapter 15 of [5] and [16].

A much more thorough text on the history behind the Dirac equation can be read in
H. Kragh’s paper [39]. It is interesting to read: “As the understanding of the general
quantummechanical formalism advanced during 1926, the problem of including spin
and relativity in quantum mechanics remained essential. It was widely accepted, not
only that spin and relativity were intimately related, but also that spin should find its
explanation in relativity, either by the special or the general theory.”. Kragh makes it
clear that relativistic effects and spinwere introduced together inmany paperswritten
at the time on the spectrumof the “Wasserstoffatom”– in particular, in the Pauli paper
– although not in a unified way.

2.1.2 The Dirac equation

Dirac sought a wave equation linear in both time and space derivatives

(p0 + α1p1 + α2p2 + α3p3 + β)ψ = 0 (2.9)

where (in a slightly modernized notation with c = 1 and ℏ = 1)

p0 = −i
𝜕
𝜕t

and pr = −i
𝜕
𝜕xr

for r = 1, 2, 3 (2.10)

He argued that the new dynamical variables αr and βmust be independent of the mo-
menta and of the coordinates (in empty space and time). Therefore, the wave function
must indeed depend on more variables than merely x1, x2, x3 and t.



2.1 The Majorana, Dirac and Fierz–Pauli era | 17

Next, Diracmultiplied the wave equation (2.9) with the conjugated operator −p0 +
α1p1 + α2p2 + α3p3 + β and by comparing to the Klein–Gordon equation

(−p20 + p
2 +m2)ψ = 0 (2.11)

he derived quadratic equations for the new operators αr and β. These equations could
be solved by building up 4×4-matrices out of the Pauli-matrices. In the end, the Dirac
equation [37] appeared in the nowadays familiar form

(iγμpμ +m)ψ = 0 (2.12)

Dirac also showed relativistic invariance of the new wave equation and introduced
electromagnetic coupling by the, then already familiar, minimal coupling scheme, re-
placing the four-momenta according to

pμ → pμ + eAμ (2.13)

Here, Aμ denote the electromagnetic potentials and e the charge of the electron.
By using the two-component spinor formalism of B. L. van der Waerden [43],13

that we introduced in Section 1.4, the four-component Dirac equation can be written
as a pair of coupled two-component equations

pμσ
μ
αβ̇
λ̄β̇ +mχα = 0 (2.14)

pμσ̄
μα̇βχβ +mλ̄

α̇ = 0 (2.15)

making explicit the occurrence of the Pauli matrices.
This way of writing the Dirac equation soon became common, as theoreticians

were exploring the properties of the known low spin wave equations: the Dirac and
Maxwell equations [44]. Inserting any of the equations (2.14) or (2.15) into the other,
and using two-component algebra, the Klein–Gordon operator p2 + m2 is recovered
acting on either of the spinors χα or λ̄α̇.

The spin 1/2 property of the electron was of course a novel and welcome theo-
retical discovery at the time. Introduced phenomenologically, but ad hoc, by Pauli,
the spin was “explained” by the Dirac theory. But at this time, only vector and tensor
representations of the Lorentz group were known among physicists. The half-angle
θ/2 that occurred in the Lorentz transformation of a Dirac field (when the coordinates
were rotated by the infinitesimal angle θ) was noted [45]. The deeper understanding
came with the van der Waerden paper, prompted by a question of P. Ehrenfest, who
introduced the name “spinor”, as reported in the introduction to [43]. The spinor rep-
resentations were however already known inmathematics since the work of E. Cartan
in 1913.14 It is in fact possible to build the Dirac theory from such a starting point, as
is done in [18].

13 To be developed in detail in Section 3.6.4.
14 See Cartan’s book, [46], on the subject.
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Recognizing spin when you see it

It might be handy to have a heuristic way of spotting spin in wave equations. By choosing a convenient
representationsof the gammamatrices, theDirac equation (2.12) canbewritten in “Hamiltonian” form,
reminiscent of the nonrelativistic Schrödinger equation

iℏ𝜕ψ
𝜕t
=
ℏc
i
αk 𝜕ψ
𝜕xk
−mc2βψ ≡ Hψ (2.16)

where we have also reintroduced ℏ and c for a physical flavor. The 4×4matrices αk are built from Pauli
spin matrices σk and β from the σ0 matrix. The message is that when one sees a three-vector object
contracted into a the three-gradient or the three-momentum, then we know that spin is involved. In
covariant language, expressions such as ζ ⋅ p betray the presence of spin.

2.1.3 Dirac’s arbitrary spin wave equations

About 8 years later, in 1936, Dirac returned to the problem of relativistic wave equa-
tions. The paper [1] starts with the classical relativistic connection between energy
and momentum of free particles – quadratic in all the variables – and the quantiza-
tion procedure as in equations (2.10). He then briefly reviews the road to the spin- 12
equation.

Quantum mechanics requires a wave equation of the form (p0 − H)ψ = 0, but
the obvious equation following from (2.11), namely (p0 − √p2 +m2 )ψ = 0 is “[...] un-
satisfactory on account of the square root, which makes the application of Lorentz
transformations very complicated.”. Allowing the particles to have spin, one can get
an equation linear in all the momenta. An example of such an equation is (2.9) with
“anticommuting matrices whose squares are unity” which is of course what we now
call the Dirac equation. The concern of the new paper was to generalize this to spin
greater than ahalf. Themotivation thatDirac gives for the paper is interesting to quote.

The elementary particles known to present-day physics, the electron, positron, neutron and pro-
ton, each have a spin of a half, and thus the work of the present paper will have no immediate
physical application. All the same, it is desirable to have equations ready for a possible future dis-
covery of an elementary particle with a spin greater than a half, or for approximate application
to composite particles. Further, the underlying theory is of considerable mathematical interest.

The first part of the paper is a concrete and detailed investigation into representations
of spin angular momentum Sμν. Dirac returns to the factorization of the Einstein dis-
persion relation E2 = p2c2 + m2c4 in terms of certain matrices, but now does it in
general, arriving at arbitrary spin equations, not just spin 1/2. What Dirac does, in
modern terms, is to rewrite the Lorentz Lie algebra into two SU(2) algebras that are
interchanged under Hermitian conjugation. He does it utilizing the, at that time quite
new, now very well-known, two-component spinor notation of van der Waerden and
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Laporte–Uhlenbeck. The paper is however rather taciturn when it comes to motiva-
tions and the logic is not spelled out very clearly.

The end results of the investigation are coupledhigher spinwave equations, linear
in derivatives, written in terms of two multispinors A and B

Aβ̇1β̇2 ...αγ1γ2 ... 2k undotted indices down, 2l − 1 dotted indices up (2.17)

Bα̇β̇1β̇2 ...γ1γ2 ... 2k − 1 undotted indices down, 2l dotted indices up (2.18)

The spinors are symmetric in dotted and undotted indices separately. This means that
all traces with the antisymmetric metric spinors ϵαβ and ϵα̇β̇ vanish. Group theoreti-
cally, the A-spinor corresponds to the D(k, l − 1

2 ) representation of the Lorentz group,
while the B-spinor corresponds to the D(k − 1

2 , l) representation.
The wave equations are

pα̇βAβ̇1 ...β̇nβγ1 ...γn
= −mBα̇β̇1 ...β̇nγ1 ...γn (2.19)

pαβ̇B
β̇β̇1 ...β̇n
γ1 ...γn = −mA

β̇1 ...β̇n
αγ1 ...γn (2.20)

It is clear from comparing the equations to the Dirac equation (corresponding to k =
l = 1

2 ) that all but one index on each spinor just “tag along”, so to speak. This fact is
a bit remarkable, because referring back to the Dirac equation in the form (2.9), one
would perhaps have expected more complicated generalized gamma “operators” to
occur in the higher spin case. As it turns out, it is possible to do with just the Pauli
matrices, all gamma matrix structure moved into the simple operators pαβ̇ and pα̇β.
We will see further on how this comes about.15

Inserting one of the equations (2.19) or (2.20) into the other, and vice versa, yields

(p2 +m2)Aβ̇1 ...β̇nαγ1 ...γn = 0 (2.21)

(p2 +m2)Bα̇β̇1 ...β̇nγ1 ...γn = 0 (2.22)

As we will see, not requiring the dispersion relation p2 +m2 = 0 (as Majorana did not
do), leads to interesting consequences that has been investigated by many authors.

By contracting equation (2.19) by ϵα̇β̇1 and equation (2.20) by ϵαγ1 , it follows that
the divergence of the spinors vanish. These are subsidiary conditions that are needed
inorder to get the correct number of degrees of freedom.AlthoughDiracwrites of “sup-
plementary” conditions, he does not compute them or present them in this systematic
fashion.

15 It can be explained from the group theory of the Lorentz group. The same phenomenon occurs in
the spinor-tensor formulation of higher spin fermions, where it is enough to use the ordinary 4 × 4
γ-matrices. However, not requiring the second-order Klein–Gordon equation allows for “more compli-
cated matrices” as we will see.
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Dirac did not consider any actions leading to the field equations. Nor did he dis-
cuss gauge invariance in the massless case. Although the paper is to a large extent
very concrete and calculational, there are not much ofmotivations in it. It was instead
Fierz in 1939 who clarified and developed the theory considerably. But let us first try
to understand the logic in what Dirac did.

Trying to understand Dirac

Let us focus on the logic, the specially interested reader will figure out the details for herself.
The spin 1/2 Dirac equation can be written in two-component notation as the two coupled equa-

tions pμ̇νAν = −mBμ̇ and pμ ̇νB
̇ν = −mAμ (we are reverting here to Dirac’s convention to index two-

component spinors by μ, ν , . . .). These equations are special cases of the higher spin equations. Now
we want to generalize them.

Dirac starts with the spin 1/2 Dirac equation in the form (pt + αxpx + αypy + αzpz + αmm)ψ = 0.
Here, we understand the α matrices as 4 × 4 matrices and ψ as a 4-component spinor. Next, he turns
to the six spin angular momentum generators sjk and linearly recombines them into

αx =
1
2
(syz − isxt ) βx =

1
2
(syz + isxt )

αy =
1
2
(szx − isyt ) βy =

1
2
(szx + isyt )

αz =
1
2
(sxy − iszt ) βz =

1
2
(sxy + iszt ) (2.23)

These matrices separately satisfy SU(2) Lie algebras, and commute with each other. They are Hermi-
tian conjugates of each other. What we see here is a split of the Lorentz algebra that we will study in
more detail inSections 3.4.2 and3.5.6. Thematrices being angularmomenta generators, we also have
α2x + α

2
y + α

2
z = k(k + 1) and β

2
x + β

2
y + β

2
z = l(l + 1) with k and l positive integers or half-integers. Here,

one should understand that the α are (2k+1)×(2k+1)matrices andβ are (2l+1)×(2l+1)matrices.We
have a generalization of spin 1/2 in which case the α and β together build up the γ matrices (compare
also Section 1.4).

Dirac then introduces 2-component notation through the identifications

s12 = αx − iαy s21 = αx + iαy s11 = −s
2
2 = αz (2.24)

s 2̇
̇1 = βx − iβy s ̇12̇ = βx + iβy s ̇1̇1 = −s

2̇
2̇ = βz (2.25)

and from then on it is enough to explicitly treat the undotted case, as the dotted is similar. Next, the
matrices s μν are arranged in a 2(2k + 1) × 2(2k + 1)matrix A

A = (s
1
1 s12

s21 s22
) (2.26)

The drift of the argument is that the Amatrices, and the corresponding 2(2l + 1) × 2(2l + 1)matrices B
for dotted indices, will build up the “gamma matrices” of higher spin. Correspondingly, there will be
multicomponent spinors ψA and ψB.

Dirac shows that A(A + 1) = k(k + 1) from which follows that the eigenvalues of A are k and
−(k + 1). So although these matrices may be fairly complicated in structure, their diagonal form is
simple. Dirac argues (not assuming the αi to be Hermitian, which they obviously not are from (2.23))
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that A can anyway be diagonalized through A = U−1DU with U a nonunitary matrix, and D having the
firstm diagonal elements as k and the remaining n elements as−(k+1) so thatm+n = 2(2k+1). Dirac
then makes an ansatz for U and U−1 in the form

U = (2k + 1)−
1
2 (

b1 b2
v1 v2
) U−1 = (2k + 1)−

1
2 (

a1 u1

a2 u2
) (2.27)

where theb’s arem×(2k+1), the v’s aren×(2k+1), thea’s are (2k+1)×mand theu’s are (2k+1)×n. Then
from UU−1 = U−1U = 1 follows quadratic equations relating the matrices a, b, u and v. Furthermore,
the equation A = U−1DU relates these matrices to the s matrices. But the matrices a, b, u and v are
not uniquely determined by these equations, although as was elaborated by Fierz, the bmatrices are
simply related to the v matrices, and the amatrices to the umatrices (see next section). Dirac uses the
equations to show that the number of eigenvalues of A are m = 2k + 2 and n = 2k. Then after some
further algebra he reduces the equations to the following set (remember i, j = 1, 2 and the summation
convention is in force)

sμν + (k + 1)δ
μ
ν = a

μbν and sμν − kδ
μ
ν = −u

μvν (2.28)

bμa
μ = vμu

μ = 2k + 1 and bμu
μ = vμa

μ (2.29)

Dirac does not explicitly write down the following interesting consequences:

vμs
μ
ν = −(k + 1)vν and bμs

μ
ν = kbμ (2.30)

that bring us back to the observation about the eigenvalues of the matrix A. But he does write “[...] we
may assume that ai ,bi , ui , vi transform under Lorentz transformations like single-suffix spinors [...]”.
In anyway, equations (2.30) are presumably behindDirac “assuming” –without any furthermotivation
– the following form for the higher spin wave equations:

pμ̇νvνψA = m
󸀠v μ̇ψB (2.31)

pμ̇νv
μ̇ψB = m

󸀠󸀠vνψA (2.32)

where the matrices vμ and v μ̇ play the role of “gamma” matrices.
The structure of the “spinors” ψA and ψB are not specified at this stage. However, for the equa-

tions to make algebraic sense, the wave vector ψA must have (2k + 1)2l components, labeled by one
undotted index set related to the 2k + 1 columns of vμ and by one dotted set of indices related to the
2l rows of v μ̇. Also, the wave vector ψB must have 2k(2l + 1) components, labeled by one dotted index
set related to the 2l + 1 columns of v μ̇ and by one undotted set of indices related to the 2k rows of vμ.
With these choices, left- and right-hand sides of (2.31) and (2.32) can be equated (each side having 4kl
components).

Clearly, the equations are not unique, aswould not be expected fromexperiencewith the spin 1/2
equations where there are also choices as to explicit representations of the γ-matrices to use. In the
final section of thepaper, Dirac argues for “an alternativewayofbuildingup the theory”, essentially by
showing that the effect of the vμ matrices is to convert a spinor with 2k+1 undotted indices to a spinor
with 2k undotted indices, and for the v μ̇ matrices to convert a spinor with 2l + 1 dotted indices to a
spinorwith 2l dotted indices (aswe indeedsaw in the previousparagraph). Basedon this, Dirac arrives
at equations (2.19) and (2.20) (although still with differentmasses). We will return to this development
when reviewing what M. Fierz did.
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2.1.4 M. Fierz

The Fierz paper of 1939 (in German) [47] treats the integer spin fields in tensor lan-
guage, and the half-integer fields in the Dirac spinor language of [1]. In principle, the
spinor language also covers the integer spin cases, and Fierz has a section (3) where
the correspondence is outlined.16 Fierzwrites in the “Einleitung” that it is not possible
to use tensor language for half-integer spin, and one has to resort to the “recht scwher-
fälligen Spinorkalkül” of van der Waerden [43]. This, Fierz points out, is however not
just a technical problem but has a physical basis in that the half-integer fields obey
the exclusion principle and, therefore, the fields are not classically observable.

The stated object of the paper is to quantize the fields andderive expression for the
energy-momentum tensors and currents. This is done for integer spin in the first four
sections of the paper, the first section discussing the field equations and subsidiary
conditions. Although actions are not discussed, it is fair to say that the Fierz paper
provides the first substantive treatment of free higher spin fields. For those who wish
to go deeper into the very early history of higher spin fields, Fierz has references to
the, at that time, contemporary work by Sakata-Yukawa, Jauch, Proca and Kemmer.17

Let us however move on the second part of the paper (Section 5 and onwards) where
the spinor theory of half-integer spin fields is developed. It should also be noted that
Fierz is quite critical (not at all unfair) of the Dirac paper, listing several deficiencies,
not the least the failure of minimal coupling, an issue that wewill return to in the next
section.

Fierz starts directly with the spinors (2.17) and (2.18) that we defined above, satis-
fying the second-order wave equations (2.21) and (2.22). The spinors are demanded to
be symmetric in dotted and undotted indices. This can also be expressed as all traces
with ϵα̇β̇ and ϵ

αβ vanish. Fierz then goes on to discuss the A-spinors.

It follows that a spinor Aβ̇1β̇2 ...αγ1γ2 ... has (2k + 1)2l independent components. Group the-
oretically, the A-spinor corresponds to the D(k, l − 1

2 ) representation of the Lorentz
group (while theB-spinor corresponds to theD(k− 12 , l) representation). To bring down
the number of components to the correct number, Fierz imposes the subsidiary, diver-
gence conditions

p α
β̇1
Aβ̇1 ...αγ1 ... = 0 (2.33)

These are 2k(2l−1) in number. The spinorA then describes 2(k+ l) = 2s+1 components
as it should. The corresponding argument can be made for the B spinors.

16 Essentially, spinorswith an evennumber of dotted andundotted indices corresponds to symmetric
and traceless tensors through translation with the “Pauli” matrices σ aḃ

μ . See our formulas (1.14) and
Section 3.6.4 for more details.
17 We will briefly review some of this work in Section 2.2 below.
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Counting field components in Dirac’s theory

A totally symmetric object with n indices in two dimensions has n + 1 components. The field Aβ̇1 ...β̇nαγ1 ...γn

therefore has (n + 1)(n + 2) components. The subsidiary condition p α
β̇1
Aβ̇1 ...β̇nαγ1 ...γn = 0 removes n(n + 1)

components. With s = n + 1
2 , the correct number 2s + 1 of field components follow. The argument

is the same for the B-field. The resulting doubling in field components comes from A and B together
describing a particle and an antiparticle.

Now, the second-order field equations (2.21) and (2.22) can be rewritten into the cou-
pled first-order field equations (2.19) and (2.20). Conversely, the first-order equations
imply the subsidiary divergence conditions through the index symmetry requirement.
However, this is not the way Dirac arrived at the field equations, and Fierz has a long
Section (7) where he explicates the connection to the Dirac treatment. Apart from this,
Fierz derives the energy-momentum tensor and current vector for half-integer spin
fields, as well as performing the quantization.

Fierz elaborates on Dirac

One development of Fierz is to clarify and simplify the structure of the U and U−1 matrices (2.27) of
Dirac. According to Dirac, the v matrices in (2.27) has dimension 2k(2k + 1) and similarly for the a,
b and u matrices. Fierz keeps track of this by writing v(k) and likewise for the other matrices. From
Dirac’s formulae, it is clear that the a and bmatrices are not independent of the v and umatrices, and
Fierz writes:

Dabei haben wir das Dirac’sche bν = uν (k +
1
2 ) und a

ν = vν (k + 1
2 ) gesetzt; denn diese Matrizen

erfüllen genau die gleichen Relationen, die für uν (k), vν (k) gelten, fallsman k durch k+
1
2 ersetzt.

Fierz thus gives U and U−1 in the form

U = (2k + 1)−
1
2 (

u1(k +
1
2 ) u2(k +

1
2 )

v1(k) v2(k)
) U−1 = (2k + 1)−

1
2 (

v1(k + 1
2 ) u1(k)

v2(k + 1
2 ) u2(k)

) (2.34)

He then derives, after discussing the matrix dimensions of products of the u and v matrices, the con-
sequences of the requirementA = U−1DU and in particular of the requirementsUU−1 = 1 andU−1U = 1.
The most interesting of these being the off-diagonal products that follows from UU−1 = 1.18 In detail,
we get (summation convention in force)19

uμ(k +
1
2
)uμ(k) = 0 of matrix dimension (2k + 2) × 2k (2.35)

vμ(k)v
μ(k + 1

2
) = 0 of matrix dimension 2k × (2k + 2) (2.36)

18 There is a misprint in the Fierz paper: the reference, on page 24, to formula (6.3) should be to
formula (7.3) on the same page.
19 Fierz writes the formula with our k replaced by k − 1

2 .
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The interest stems from the fact that, for instance (2.35), implies that

u1(k + 1
2
)u2(k) = u2(k + 1

2
)u1(k) (2.37)

This innocent looking equation tells us that the matrix product uμ(k + 1
2 )u

ν (k) is symmetric in the
indices μ, ν. Furthermore, from the matrix dimension of the product, one sees that stringing together
several such matrices, in products with the arguments in arithmetic progression with difference 1

2 ,
one gets rectangular spinor matrices of various dimensions. In particular,

Pμ1μ2 ...μ2k (k) = uμ1 (k)uμ2(k − 1
2
) . . . uμ2k( 1

2
) (2.38)

is a column matrix with 2k + 1 rows. Likewise

Rμ1μ2 ...μ2k (k) = vμ1( 1
2
)vμ2 (1) . . . vμ2k (k) (2.39)

is a rowmatrix with 2k+1 columns. That the spinors P and R are symmetric in all indices is guaranteed
by the equations (2.35) and (2.36). These spinors can then serve as “wave vectors” for higher spin.

The next step is to observe that a fully symmetric spinor with n undotted indices can be com-
pletely characterized by just one number, namely the number s, say, of indices taking the value 1. Call
such an object ψs with s ranging from 0 to n. Taking n = 2k we begin to see that it ought to be pos-
sible to set up a 1 ↔ 1 relation between these objects and spinors ψμ1 ...μ2k . Fierz, based on further
“orthonormality” properties of P and R (deriving from the basic UU−1 = U−1U = 1 equations), then
writes the identifications

Pμ1μ2 ...μ2ks (k)ψμ1μ2 ...μ2k = √(2k)!ψs (2.40)

Rs,μ1μ2 ...μ2k (k)ψs = √(2k)!ψμ1μ2 ...μ2k (2.41)

Clearly, the corresponding constructions can be carried through for the dotted indices. One then ar-
rives at mixed spinors with both undotted and dotted indices. In this way, the Dirac step from the
higher spin wave equations in the form of (2.31) and (2.32) to (2.19) and (2.20) can be taken. The Fierz
calculations are also reviewed in Corson, [23], Section 17(ii).

2.1.5 Fierz and Pauli

As we saw in the previous section, Fierz had followed up Dirac’s paper on higher spin
wave equations with a paper [47] where he second quantized the freemassive fields of
arbitrary spin – in themanner thenwell established for low spin fields20 – andderived
expressions for the currents and energy-momentum tensors. This was continued with
a paper together with Pauli which can be said to have set the stage for higher spin
studies for a very long time. In this paper, the electromagnetic coupling problems,

20 The reference is to P. Jordan and W. Pauli, Z. S. f. Ph. 47 (1928), S. 151.
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already mentioned in the Fierz paper, that were to plague the theory into the future,
were first analyzed. Dirac wrote in [1] that the higher spin particles could be coupled
to electromagnetism through minimal coupling. Apparently, he had not checked the
details, otherwise it is unlikely that he would have failed to spot the problems with –
in modern parlance – noncommutativity of the covariant derivatives.21

The Fierz–Pauli paper starts by considering minimal coupling for the spin 3/2
equations in the two-component spinor formalism of Dirac’s paper. They show that,
what we now call covariant derivatives, do not commute, and that this leads to incon-
sistent restrictions on the fields of the theory. An attempt to circumvent the problemby
weakening the higher spin equations leads to new problems. They then go on to show
that an analogous problem arise for a massive spin 2 field, doing the calculations in
tensor notation. The root of the problem is that the field equations and the needed
supplementary conditions, become inconsistent when derivatives are replaced by co-
variant derivatives. New conditions arise, involving the electromagnetic field strength
tensor.

The solution to these problems, proposed by Fierz and Pauli, is to derive the field
equations and supplementary conditions from an action, and to introduce interac-
tions into the action in a way that ensure that the theory remains consistent in the
presence of the interaction.

The main body of the paper treats in detail the Lagrangian field theory of massive
and massless fields of spin 3/2 and 2. By introducing suitably auxiliary fields – first in
the free theory, then with electromagnetic interaction – all the differential equations
of the theory can be derived by varying the action. Interactions are introduced into
the Lagrangian so that not only the correct field equations result, but also the right
number of subsidiary conditions.

From Fierz and Pauli: the spin 3
2 electromagnetic inconsistency

We will be using the notation from Section 2.1.3. The force-free Dirac equations for spin 3/2 are then

pα̇αA ̇γαβ = −mB
α̇ ̇γ
β and pαα̇B

α̇β̇
γ = −mA

β̇
αγ (2.42)

Minimal electromagnetic coupling to a vector potentialϕμ amounts a replacementpμ → pμ+eϕμ = Πμ.
This translates to spinor language as

pα̇α → Πα̇α and pαα̇ → Παα̇ (2.43)

21 In the early follow-up literature, the theory is often referred to as the “Fierz–Pauli” theory, perhaps
because Dirac did not develop it very far, and the oversight about the coupling problem. The also
quite common “Dirac–Fierz–Pauli” (DFP) designation is well motivated by the early history, and will
be used occasionally.
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The definition of field strengths fμν = [Πμ,Πν ] translates to

[Παβ̇,Π
̇γδ] = δδα f

̇γ
β̇
+ δ ̇γ

β̇
f δα (2.44)

The number of components of f δα and f ̇γ
β̇
are correct, since they are both traceless in their indices.

The equations (2.42) have two consequences. First, they imply the Klein–Gordon equation for the
A and B spinors, respectively. This is seen by applying pγα̇ to the first equation and then using the
second. The σ-matrix algebra22 yields −p2A ̇γγβ = m

2A ̇γγβ. The corresponding calculation is then done
for the second equation. Second, the spinors have zero divergence. This follows from contracting the
first equation with ϵα̇ ̇γ and using index symmetry of the B spinor. The corresponding result holds for
the B spinor. For the A spinor, we get

pα̇γA
̇γ
αβ = 0 (2.45)

In the presence of a minimally coupled electromagnetic field, the calculation resulting in the
Klein–Gordon equation now produces

−Π2A ̇γγβ + f
α
γ A
̇γ
αβ = m

2A ̇γγβ (2.46)

Since the spinor A ̇γγβ is symmetric in γ and β, we can contract the equation with ϵ
γβ to get

f βαA ̇γαβ = 0 (2.47)

This is a new subsidiary condition. It can be viewed as either a restriction on the electromagnetic field,
or a restriction on the spinor field, reducing the number of degrees of freedom in the interacting theory
as compared to the free theory.

Fierz and Pauli then notes that an analogous problem arises for a spin 2 field, de-
scribed by a traceless tensor Aμν satisfying the equations

◻Aμν = m
2Aμν and 𝜕μAμν = 0 (2.48)

Now it is incompatibility of the second divergence equation, with the first Klein–
Gordon equation, when the derivatives are replaced by the minimally coupled covari-
ant derivatives, that leads to the inconsistency. The spin 3/2 inconsistency can also
be seen in this way, so it can be traced back to the appearance of subsidiary condi-
tions on the fields. Such conditions, whether they are implicit consequences of the
field equations (as for the Dirac spinor form of the equations), or just supplemented
(as in the tensor form of the equations) is the root of the problem, together with the
noncommutativity of the covariant derivatives.

In this particular case, electromagnetic coupling, Fierz and Pauli were able cure
the problem by deriving the equations of motion and subsidiary conditions from an

22 See Section 3.6.4.
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action. This involved the introduction of auxiliary fields.23 In the absence of an electro-
magnetic field, the auxiliary fields should vanish, and the force-free subsidiary con-
ditions be satisfied. “[...] it is important that a one-to-one correspondence should be
possible between the states (eigenfunctions) with the external field and without. This
is equivalent to saying that the number of conditions which the field and the auxiliary
variables (and their time-derivatives for integral spins)must satisfy at a definite time is
not diminished by the presence of an external field.”. In short, the number of degrees
of freedommust remain the same with or without the external field.

The problem that Fierz and Pauli thus identified, and proposed a solution to, was
to define the “research program of relativistic wave equations” for a long time. One
branch of this program was to construct and investigate first-order Dirac-type wave
equations with no subsidiary conditions, thus avoiding the noncommutativity prob-
lem. The first such paper actually predated Dirac and Fierz–Pauli by a few years, but
its motivation had nothing to do with electromagnetic coupling.

Let us also note that Fierz and Pauli treated the case of massless spin 2 and spin
3/2 fields, for spin 2 noting that the free field equations corresponded to a first approx-
imation of Einstein’s equations without matter sources. We end by two quotes. The
first one regarding spin 2.

The gauge transformation [reference to an equation] occurs in gravitational theory as an infinites-
imal coordinate transformation.When interactionswithmatter occur and it is no longer sufficient
to restrict oneself to the linear terms the gauge group is altered. This keeps the dimensionality of
the possible transformations unchanged; four functions of position always remain arbitrary. It
is well known that the existence of an energy-momentum tensor is closely connected with the
invariance of gravitational theory under these transformations. Similarly, the gauge invariance
of Maxwell’s theory is connected with the conservation of charge.

The second quote concerns spin 3/2.

Whereas the theory for the spin value 2 has an important generalization for force fields, namely
the gravitational theory, we here have no connexion with a known theory. To get a generalization
of the theory with interactions, one would first of all have to find a physical interpretation of the
gauge group, and of the conservation theorem connected with this group.

For spin 3/2, this question has received an answer with the theory of supergravity. For
spin higher than 2, the question remains with us to this day.

2.1.6 E. Majorana

Let us go back in time. In 1932, Ettore Majorana published a paper on relativistic par-
ticles with arbitrary spin [2]. It may be, and often is, regarded as the very first paper

23 Later it was shown that, despite this, there are other problems with the solutions to the equations.
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on “higher spin theory”. However, as discussed in the Introduction to this chapter, we
should be careful when we interpret old papers in the light of a present day research
program. As such, it is reasonable to date “higher spin theory” in the modern sense
back to the Fronsdal work in the 1970s. Before that, it makes more sense to label the
research area as “relativistic wave equations”.24

Majorana’s work was motivated by trying to avoid the negative energy solutions
of the Dirac equation. When the positron was discovered in August 1932, and the C. D.
Anderson paper appeared in early 1933, this was not such a pressing need any longer.
Dirac had also proposed his hole theory solution for the negative energy states in 1931.
The chronology of these developments with regard to the Majorana work is discussed
in [49]. Majorana’s paper did not become known at the time, and it did not have any
influence on the subsequent development of the subject of relativisticwave equations.
The Dirac theory successfully accounted for the fine structure of the hydrogen atom
and the magnetic moment of the electron.

Majorana’s paper was reviewed by D.M. Fradkin [50] in 1966, who also discussed
other reasons behind the Majorana paper being forgotten. A further review of Majo-
rana’s paper is [49], which also discusses connections with the 1960s work on infi-
nite component wave equations,25 and [20] which is also a useful history of relativis-
tic wave equations in general. A thorough study of the Majorana representations and
their relation to infinite component field theory can be found in [51]. Majorana’s the-
ory was studied and extended by the higher spin community in the 2010s, for this; see
[48] and references therein.

As to the actual contents of the Majorana paper, it starts with the Dirac equation,
but then proceeds in a different direction. Consider the Dirac equation, written in the
form (slightly modernized and with c = 1)

(E + α ⋅ p − βM)ψ = 0 (2.49)

with E the energy, pmomentum,M mass, and αk and β numerical matrices. Majorana
did not require the Klein–Gordon equation to hold for the components of the wave
function. Indeed, the Dirac–Fierz–Pauli higher spin theories, and many subsequent
approaches, can all be seen as based on factorizing the Einstein/Klein–Gordondisper-
sion relation (2.2) or (2.11) into two coupled first-order wave equations for multicom-
ponent fields, the number of components being related to the spin of the particles. As
we have seen, these coupled first-order equations yield extra restrictions on the wave-
functions: the subsidiary conditions. By requiring only the linear form (2.49), these
restrictions can be avoided, as pointed out in [50].

24 There is an aura ofmystery surroundingMajorana’s life andwork. In [48], the authors cite scholarly
work indicating thatMajoranamayhave obtainedwave equations for singlemassive spin of theDirac–
Fierz–Pauli-type previous to his 1932 paper.
25 We will discuss such work in our Volume 2.
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By not requiring the Klein–Gordon equation, the matrices αk and β need not sat-
isfy the quadratic equations that allowedDirac to determine their properties that lead,
first to the spin 1/2 equation, and later to the general spin equations. Instead the form
of the matrices was determined by only requiring relativistic invariance of the action
leading to (2.49) and, this is crucial: that the eigenvalues of β should all be positive.
This last requirement leads to unitary representations of the Lorentz group.26 These
are infinite dimensional, andMajorana studied the two simplest representations. Con-
sequently, the wave function ψ has an infinite number of components, and the mass
spectrum becomes

Mj =
M

j + 1/2
where j = j0, j0 + 1, . . . with j0 = 0 or 1/2 (2.50)

Such a mass spectrum, with mass decreasing as a function of spin, has found no phe-
nomenological application.27

2.2 Wave equations of the late 1930s

As the 1930s drew to an end, many authors had written on relativistic wave equa-
tions. Apart from the already reviewed works by Majorana, Dirac, Fierz and Pauli, we
have papers by L. de Broglie, A. Proca, F. J. Belinfante and N. Kemmer to name a few
that we will briefly comment upon. These papers were written toward a backdrop of
the theoretical and phenomenological situation at the time: theoretical regarding the
problems with quantum electrodynamics which for some authors prompted a search
for “new wave equations”, phenomenological regarding the problems of understand-
ing and describing the nuclear reactions.28 In particular, we have the backdrop of the
Yukawa meson theory from 1935 for the interaction between protons and neutrons.
Yukawa had proposed a wave equation for the nuclear force, and in order to describe
the short range of the force, the waves must be governed by a wave equation with a
mass term in it. The history of the Yukawa force is very interestingly told by A. Pais
in [5] where also Proca, Bhabha and Kemmer played role. Here, we will focus on the
wave equations as such, not commenting much more on the phenomenology.29

26 The detailed reasoning can be found in Majorana’s paper and the review papers cited here.
27 The much later studied Regge trajectories concerned increasing linear mass spectra.
28 This must indeed be born in mind. Even though we here review parts of the history from a
theoretical-retrospective higher spin point of view, the theoreticians involved in the wave equation
research of this era, did their work in order to explain the physics of the laboratories.
29 The reprint volume [52] contains the original papers by Yukawa and other physicists working on
the Yukawa model. One paper on wave equations is “On the Wave Equation of Meson” by M. Taketani
and S. Sakata, reprinted in pages 84–97. This concerns the so-called DKP-equation to be considered
below.
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2.2.1 The Proca equation

The wave equation and theory of massive spin 1 particles are due to A. Proca. From to-
day’s viewpoint, it may look rather trivial, but thatwas not so in themid 1930s. Proca’s
first papers on the subject are from 1936 [53], contemporary with the Dirac 1936 paper,
and predating Fierz 1939 and Fierz–Pauli 1939. It was early times for wave equations
and there were a lot of things to do: relativistic invariance, Lagrangian formulation,
calculation of the energy-momentum tensor and conserved currents and electromag-
netic coupling. So onemust not be fooled by the simple appearance of the wave equa-
tions themselves.

The Proca equation reads

◻ψs − 𝜕s𝜕
rψr = k

2ψs (2.51)

It can be split up into two first-order equations

𝜕rGrs = k
2ψs and Grs = 𝜕rψs − 𝜕sψr (2.52)

Upon contracting the first equation with 𝜕s, one gets 𝜕sψs = 0. Therefore, the field
equation (2.51) is equivalent to

◻ψs = k
2ψs and 𝜕sψs = 0 (2.53)

The second equation is needed in order to remove the negative terms in the energy
coming from the time component ψ0 of the field in the first equation.

The similarity of equations (2.51) and (2.52) to electrodynamics, is apparent. With
the mass k zero, one gets the electromagnetic wave equations. In that case, however,
𝜕sψs = 0 is not a consequence of the equations (2.52), and it should not be. It was Pauli
in his review article [54] who pointed out that the Proca theory allowed no “gauge
transformations of the second kind”. Phenomenologically, the Proca equation found
application in the Yukawa theory of the nuclear force.

2.2.2 From de Broglie’s photon theory to the Bhabha equations

Theoriginal thinker Louis deBroglie for a long timeentertaineda theory for thephoton
as being a composite system of two spin 1/2 fermions. In case these fermions carried
a mass, the so formed photon should also carry a small, indeed very small, mass. The
theory had many problems, analyzed at the time by M.H. L. Pryce in [55]. The theory
was first formulated in 1934.

One can construe strands of researchwork onwave equations fromde Broglie, via
a few other researchers, G. Petiau, J. Géhéniau, R. J. Duffin and N. Kemmer up to the
work of H. J. Bhabha in the 1940s. The details of this history is told in [56] and [20]. A
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crucial ingredient in the work was an algebra of matrices that came to be known as
the DKP-algebra (after Duffin, Kemmer and Petiau).

L. de Broglie had studied a first-order wave equation of the “Majorana” type, in-
volving four 16 × 16 matrices that however did not obey the Dirac gamma matrix al-
gebra. The actual algebra for a variant of these matrices was found by G. Petiau.30

Denoting the matrices with βμ where μ is a space-time index, the algebra reads

βμβνβρ + βρβνβμ = βμδνρ + βρδνμ (2.54)

The so formed theory acquired a theoretical life of its own, independent of the de
Broglie theory. Phenomenologically, it also became applied to the Yukawameson the-
ory, as evidenced by papers in the reprint volume [52].

2.2.3 The Kemmer equations

We can start the story with a 1938 Kemmer paper [58], set in the context of the Yukawa
theory, that elaborated on the Proca spin 1 theory. Although our focus is not on the
phenomenology, it is of some interest to quote, at some length, from the Introduction
to the paper, as it gives a flavor of the times, in particular of the thinking of forces as
being mediated by particles, an idea that was quite new at the time.

The description of nuclear interaction in terms of a neutron-proton “exchange force” ap-
pears to bewell justified and generally accepted. However, there has hitherto beenno satisfactory
suggestion as to the nature of the field of charged particles, the virtual emission and reabsorp-
tion of which, according to Heisenberg’s (1932) picture, would give rise to this type of interaction.
It may be now considered certain that this field is not identical with the electron-neutrino field
of Fermi’s theory, the magnitude of nuclear forces being far too large to be compatible with the
small empirical value of the constant of β-decay.

As an alternative and simpler description of the nuclear field, Yukawa (1935) put forward
the idea that the interaction is transmitted by charged particles obeying Einstein–Bose statistics.
He showed that the resulting nuclear potential would be proportional to r−1exp(−2πm0cr/h),m0
being the rest mass of the Bose particles. Thus, forces of a correct range would be obtained with
a rest mass about 100 times that of the electron.

The apparent discovery of particles (“heavy electrons”) with a mass of this order of magni-
tude in cosmic radiation by Neddermeyer and Anderson (1937) has aroused considerable interest
in Yukawa’s suggestion, and various aspects of this possibility have been discussed by a number
of authors (Yukawa 1935, 1937; Yukawa and Sakata 1937; Oppenheimer and Serber 1937; Stueckel-
berg 1937; Frohlich and Heitler 1938; Kemmer 1938; Bhabha 1938b).[...]

It is the purpose of this paper to consider this theory from a more general point of view.
There are various ways of generalizing Yukawa’s treatment, the most important concerning the
spin of the new particle. From the mechanism suggested, it is clear that the spin must be taken

30 I have not been able to retrieve this reference. I believe the correct bibliographic data is given
in [57].



32 | 2 Notes on the history of the subject

to be integral, that is, 2n times that of the neutron or proton. Yukawa’s equations are one way of
describing the case n = 0. For this value, there is a second alternative theory, and there are also
two independent possibilities for n = 1. On the other hand, a consistent theory for higher values
of n does not appear possible.

The “heavy electron” discovered in cosmic radiation in 1937, turned out not to be the
right meson, one of the staple stories of elementary particle physics. Anyway, let us
get started on the wave equations.

After briefly reviewing the quantization of the Proca equations, Kemmer turns to
the Dirac spinor equations, which he intends to “abandon” but first use to find the
tensor equations that he is actually interested in. These Dirac equations for spin 1 are
written as

pα̇κAκγ = √2m0B
α̇
γ and pα̇κB

α̇
γ =

m0
√2

Aκγ (2.55)

Here, Aκγ is symmetrical in its indices, but Kemmer goes on to study the anti-sym-
metrical case when Aκγ = ϵκγA. Then the equations become

pα̇κA = √2m0B
α̇
κ and pκα̇B

α̇
κ = −√2m0A (2.56)

Kemmer writes that the transition to tensor equations can be done “immediately” but
that the result is not unique, in that the spinor equations do not specify how the wave
functions transform under “reflexions”. Taking this into account, the second pair of
equations (2.56) can be written as31

𝜕ϕ
𝜕xα
= κχα and 𝜕χ

α

𝜕xα
= κϕ (2.57)

and the first pair (2.55) become

𝜕ϕβ

𝜕xα
−
𝜕ϕα
𝜕xβ
= κχαβ and 𝜕χ

αβ

𝜕xα
= κϕβ (2.58)

Alternatively, equations (2.55) can be transcribed as

𝜕ϕβγ

𝜕xα
−
𝜕ϕαγ

𝜕xβ
+
𝜕ϕαβ

𝜕xγ
= κχαβγ and 𝜕χ

αβγ

𝜕xα
= κϕβγ (2.59)

and the equations (2.57) as

𝜕ϕβγδ

𝜕xα
−
𝜕ϕαγδ

𝜕xβ
+
𝜕ϕαβδ

𝜕xγ
−
𝜕ϕαβγ

𝜕xδ
= κχαβγδ and 𝜕χ

αβγδ

𝜕xα
= κϕβγδ (2.60)

31 People did not care that much about index conventions in those early days.
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Kemmer then notes that the equations (2.57) are equivalent to the Klein–Gordon
equation, while the equations (2.58) are equivalent to the Proca equations. The second
set of equations are analogous in all respects, for instance the spin they describe and
their quantization, but their properties under reflections differ. In modern parlance,
they describe pseudo-scalar and pseudo-vector particles. They were needed for the
proper description of the nuclear force, and this constitutes the rest of the paper.

A study in spin one spinors and tensors

The translation between the Proca equation and the corresponding Dirac spinor equations ought to
be “immediate” but is actually a bit tricky to carry through in detail. Holmes intuition is however the
following: the Dirac equations are first-order in derivatives, therefore, it may be suspected that one
should compare to the Proca equations written in first-order form as in formulas (2.52).

The next piece of evidence comes from askingwhat representations of the Lorentz groupmay cor-
respond to spin 1? Referring back to Dirac’s analysis in Section 2.1.3, wemay expect that the represen-
tationsD(1,0),D(0, 1) andD(1/2, 1/2) are appropriate. These sit between the pairs (D(1/2,0),D(0, 1/2))
and (D(1, 1/2),D(1/2, 1)) that we know correspond to spin 1/2 and 3/2 respectively. Thus we are look-
ing for symmetric spinors Fαβ and Fα̇β̇ corresponding to D(1,0) and D(0, 1), respectively. The num-
ber of components are 3 + 3 suggesting a relation to the anti-symmetric tensor Fab. Deferring de-
tails, one may write an abstract correspondence Fab ↔ Fαα̇ββ̇. Then taking into account that antisym-
metry is essentially trivial in two-dimensional spinor space, the correspondence can be refined into
Fab ↔ Fαβϵα̇β̇ + Fα̇β̇ϵαβ with ϵ the antisymmetric symbol in either undotted or dotted two-dimensional
spinor spaces.

Furthermore, the representationD(1/2, 1/2) corresponds to the spinorAβ̇α whichaccording to stan-
dard translation rules represents a space-time vector Aa. Finally, the Dirac equations read

pα̇βFβγ = −mA
α̇
γ and pαβ̇A

β̇
γ = −mFαγ (2.61)

Assuming that all spinors are real, we also have the complex conjugates of the equations above

pαβ̇Fβ̇ ̇γ = −mA
α
̇γ and pα̇βA

β
̇γ = −mFα̇ ̇γ (2.62)

For Watson, it is now a matter of algebra to prove that these are the Proca equations in disguise. For
the second set of equations, taking “reflexions” into account: treat the spinors as complex.

The story of what happened next is told in [56]. Instead, let us step back and take an
anachronistic top-down view of where we are. The kind of first-order wave equations
thatwere studied at the time, andwell into the 1950s, could all bewritten in anabstract
Dirac–Majorana way as

(Bμ𝜕μ −mA)ψ = 0 (2.63)

It is all to easy to think of ψ as a spinor and the Bμ and A matrices as some kind of
gamma matrices. That is however not a priori necessary, as the Kemmer equations
indeed show. Of course, after E. Wigner’s work on the representations of the Poincaré
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group (to be reviewed below), and after the dust had settled, the independent possible
choices are indeed delimited by group theory. But that was not clear at the time, and
even so, the equations could very well be phenomenologically interesting. With this
understanding, let us continue to the next Kemmer paper of 1939, [59]. In this paper,
Kemmer starts with the wave equation32

𝜕μβμψ = κψ (2.64)

with the “commutation rules” for the operators βμ given by the formula (2.54) above.33

By actingwith 𝜕ρβρβν on thewave equation andusing the algebra of the βmatrices one
gets

𝜕μψ = 𝜕νβνβμψ (2.65)

Kemmer writes that “[...] the differential relation (2.65) appear as a consequence
of the wave equation (2.64) and not as ‘initial conditions’ to be imposed on the
wave function.”.34 This is in contrast to the Dirac formalism where supplementary
conditions arise on the wave functions, leading to the Fierz–Pauli problem with min-
imal electromagnetic coupling. At this stage in reading the paper, this is actually not
quite clear, although one may suspect that the equations (2.65) are merely identities,
and do not constitute further differential conditions one the wave function compo-
nents. This, indeed, is the case. But first let us note that the Klein–Gordon equation for
ψ can be derived from (2.65) by contracting with 𝜕μ and using the wave equation (2.64)
twice.

Kemmer has a section on the electromagnetic interaction where he again writes
that there can be no inconsistency. He also proves relativistic invariance. Then the
algebraic properties of the βμ matrices are studied.35 It turns out that there are three
inequivalent representations: a ten-dimensional, a five-dimensional and a trivial one-
dimensional. There are no more irreducible representations [54]. The explicit form of
the matrices are given. As the reader may already have guessed, the ten-dimensional
and thefive-dimensional representations correspondprecisely to the scalar and vector
wave equations from the 1938 paper (our equations (2.57) and (2.58)). Equally well, the
representations can describe the pseudo-scalar and pseudo-vectors equations. From

32 We use Kemmer’s notation.
33 In a footnote, Kemmer acknowledges the work of R. J. Duffin, who in a short “letter to editor” [60],
derived the algebra (2.54) by rewriting the Proca spin 1 equations (our equations (2.58)) in terms of a
10-row columnmatrixψ containing the vectorϕα and tensor χαβ satisfying aDirac-typewave equation.
Duffin also showed that the algebra could be realized in terms of 5 × 5 matrices, and the spin 0 wave
equations (our equations (2.57) were obtained.
34 Our quote is not verbatim.
35 Kemmer acknowledges Pauli’s suggestion to perform a detailed study of the matrices, elaborating
the analysis of Duffin [60].
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the explicit form for the βmatrices, it is also seen that the equations (2.65) are indeed
differential identities, and does not subject the wave ψ to any further subsidiary con-
straints.

2.3 E. Wigner and the representations of the Poincaré group

The 1939 paper by Eugene Wigner [4] on the unitary representations of the inhomo-
geneous Lorentz group is fundamental to modern quantum field theory, and the re-
sults of the paper are now deeply worked into the theory. At the time, the paper was
also motivated by the problem of constructing a relativistic quantum theory. Wigner
writes, in an acknowledgement, that the subject of the paper was suggested to him
by Dirac in 1928. A major theme in Dirac’s oeuvre was indeed the construction of a
relativistic quantum theory, and in this context one could note his 1949 paper [61] on
“forms of relativistic dynamics”. This paper can be regarded as proposing a research
program into finding (all) nonlinear realizations of the Poincaré group. The Dirac pa-
per is mentioned here, because just as theWigner paper on the linear representations
is important for free higher spin theory, so is the Dirac paper for interactions. We will
therefore have occasion to return to it in several places, in particular in Chapter 6 on
the light-front formulation.

2.3.1 Wigner’s 1939 paper

The paper, 56 pages long, can be seen as a foundation for higher spin theory and it
makes sense to take the opportunity here to review its “conceptual” contents in some
more detail than is usually done.36 The paper consists of 8 sections.

The first introductory section puts the problem in its quantum mechanical con-
text. Although the contents are by now very familiar, upon reading it, it becomes quite
clear that there was nothing at the time of writing, very difficult or strange, with the
actual “concept of relativistic quantum mechanics” as far as noninteracting particles
went. Technical problems there certainly was and still is, but the basic frameworkwas
natural.37

36 Reviewing its mathematical details would be too lengthy. Since unitarity of an operator is defined
in relation to the inner product of the Hilbert space of states in which it acts, this must be ascertained
throughout. This takes up a large part of the Wigner paper. The subject, in the sense of “one-particle
states” will be treated in our Section 3.5, but not with the rigor of Wigner.
37 The aura of inconsistency, evenmysteriousness, that still surrounds the subject of relativistic quan-
tum mechanics to some extent, probably emanates to a large part from the conceptual and technical
problems with the consequences of the theory: negative energy states, anti-particles and infinities, to
mention a few. Pictorially speaking, the struggles of the pioneers – up to and including the develop-
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The states of the theory, called wave functions, form a linear manifold in which
a unitary scalar product can be defined. Since the wave function φ, and φmultiplied
with a constant, represent the same state, it is possible to normalize the states. Then
only the phase of the wave function is arbitrary. The linearity is an expression of the
superposition principle. Denoting the scalar product between two normalized states
φ and ψ by (ψ,φ), the square of the modulus |(ψ,φ)|2 is interpreted as the transition
probability between the states. In short, we have a Hilbert space of states.

Relativity enters when the same state φ is described in two different coordinate
systems, denoted l and l󸀠. Then φl and φl󸀠 represent the same state but with different
functions. If φl is given, all Lorentz transformed38 states φl󸀠 are determined up to a
constant factor. Invariance of the transition probability implies |(ψl,φl)|

2 = |(ψl󸀠 ,φl󸀠 )|2.
Wigner then argues that the statesφl󸀠 can be obtained fromφl by the action of a linear
unitary operator through

φLl = D(L)φl (2.66)

where L is the Lorentz transformation that carries the system l into l󸀠 = Ll. Next, it is
shown that the operators D(L) form a representation of the inhomogeneous Lorentz
group up to a phase factor ω, that is,

D(L2)D(L1) = ωD(L2L1) (2.67)

The object of the paper is then to determine all such continuous39 unitary represen-
tations. Wigner stresses the generality of the approach, writing: “[...] no assumptions
regarding the field nature of the underlying equations are necessary.”.

In the second section, after referring to previous work,40 Wigner states that two
representations are physically equivalent if there is a one-to-one correspondence be-
tween the states of both representations,which is: (i) invariant under Lorentz transfor-
mations and, (ii) such that the transition probabilities between corresponding states
are the same. From the second condition follows that there is a unitary operator S con-
necting states Φ in the two representations41

Φ(2) = SΦ(1) (2.68)

ments in the 1940s – with these questions, left behind debris that still may cause confusion for the
new-coming student. The tension between first and second quantization can perhaps be felt in the
paper, but as Wigner comments elsewhere, the paper is written on the Schrödinger level and it only
treats the one-particle theory. The need for second quantization – amany particle theory – or what we
now call quantum field theory, can be seen as a consequence of relativistic quantummechanics. And
it was of course in understanding the interaction between electrons and the electromagnetic field that
most of the difficulties arose. Standard references treating this intellectual history are [38, 62, 16].
38 Here, Lorentz transformations means inhomogeneous Lorentz transformations.
39 The meaning of this term is defined in the paper.
40 By Majorana 1932, Dirac 1936, Proca 1936 and O. Klein 1936.
41 S could also be antiunitary, and Wigner comments on this case.
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Then the first condition means that if Φ(1) and Φ(2) correspond to each other in one
coordinate system, then the Lorentz transformed statesD(1)(L)Φ(1) andD(2)(L)Φ(2) cor-
respond each other also. From this, it follows that

D(2)(L) = SD(1)(L)S−1 (2.69)

Therefore, as Wigner writes, the existence of a unitary operator S which transforms
D(1) into D(2) is the condition for equivalence of the representations. The rest of the
section discusses technical questions. Section 3 is a summary of the contents of the
rest of the paper.

The longSection4beginswith adescription of the inhomogeneous Lorentz group.
Then follows a study of the properties of the homogeneous group. Its characteristic
values and vectors (i. e., eigenvalues and eigenvectors) are determined and it is shown
that it has no finite dimensional unitary representations. Next, the decomposition of
a homogeneous Lorentz transformation into two rotations and an acceleration in a
given direction, is discussed. Finally, it is shown that the group is simple. The long
Section 5 is also a technical section on the reduction of the representations from “up
to a factor” to “two-valued” representations or “up to a sign”. Denoting the translation
operators by T(a) and the homogeneous Lorentz transformations by d(Λ), the group
multiplication laws then read

T(a)T(b) = T(a + b) (2.70)
d(Λ)T(a) = T(Λa)d(Λ) (2.71)
d(Λ)d(L) = ±D(ΛL) (2.72)

These operators act in the Hilbert space of states. After these preliminaries, Section 6
turns to the derivation of the actual representations using the method of the “little
group”. This is also a technical section, but let us try to capture the ideas.42

Since the translation operators T(a) form an Abelian invariant subgroup of the
whole inhomogeneous Lorentz group, it is possible to introduce a “coordinate system”
in Hilbert space such that the wave functions φ(p, ζ ) contain momentum variables
p1, p2, p3, p4 and a discrete variable ζ so that

T(a)φ(p, ζ ) = eip⋅aφ(p, ζ ) (2.73)

After discussing the unitary scalar product of twowave functions,Wigner defines new
operators P(Λ) through

P(Λ)φ(p, ζ ) = φ(Λ−1p, ζ ) (2.74)

42 For the reader who wants to localize where we are in relation to S. Weinberg’s treatment in [18],
this corresponds to Section 2.5 in the reference. See also our Section 3.5.



38 | 2 Notes on the history of the subject

The properties of these operators are discussed, with the result that one can write
d(Λ) = Q(Λ)P(Λ) where Q(Λ) is an operator in the space of ζ alone, commuting with
all T(a), which can, however, depend on the value of p

Q(Λ)φ(p, ζ ) = ∑
η
Q(p,Λ)ζηφ(p, η) (2.75)

and where Q(p,Λ)ζη are the components of a finite or infinite matrix. Then one gets

d(Λ)φ(p, ζ ) = ∑
η
Q(p,Λ)ζηP(Λ)φ(p, η) = ∑

η
Q(p,Λ)ζηφ(Λ

−1p, η) (2.76)

Wigner then argues that it is sufficient to consider only representations for which
the wave functions vanish except for momenta that can be obtained from any one
momenta p0 (a particular four-momenta) by a homogeneous Lorentz transformation.
Such representations can be divided into four classes:
1. p2 = P > 0
2. p2 = P = 0 ; p ̸= 0
3. p = 0
4. p2 = P < 0

The classes 1 and 2 contain two subclasses each according towhether the time compo-
nent of themomentap is positive or negative. The two subclasses of class 1 are denoted
by P+ and P−, the two subclasses of class 2 by 0+ and 0− and the class 3 by 00. Class 4
is denoted by −P and has no subclasses.43

Wigner then goes on to “[...] give [...] a characterization of the representationswith
a given P, which is independent of the coordinate system in Hilbert space.”. This in-
vestigation ends with the result that “[...] when characterizing a representation to the
whole inhomogeneous Lorentz group by P and the representation of the little group,
it is not necessary to say which p0 is left invariant by the little group.”.

In the last subsection of Section 6, Wigner lists the little groups for the first three
classes. In the case 1+, the little group momentum p0 is taken as the vector (0,0,0, 1).
The little group then contains all rotations in the space of the first three coordinates.
In the case 00, the little group is the whole homogeneous Lorentz group. In both sub-
classes of the case −1 (P = −1), p0 can be taken as the vector (1,0,0,0) and the little
group contains all transformations that leave the form −x22 − x

2
3 + x

2
4 invariant. This

is the 2 + 1 dimensional homogeneous Lorentz group. For the remaining case 0+, the
determination of the little group is somewhat more complicated, Wigner writes. Since
this is also the case that is the most interesting from the higher spin perspective, let
us follow its determination in some detail.

43 In modern treatments,m2 is used instead of P.
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Wigner’s determination of the little group for massless representations

Lorentz transformations44 can be realized in a two-dimensional complex space by collecting the coor-
dinates into matrices

(
x4 + x3 x1 + ix2
x1 − ix2 x4 − x3

) (2.77)

A Lorentz transformation is represented by a 2×2 complexmatrixwith unit determinant, and its action
on the coordinates is given by

(
a b
c d
)(

x4 + x3 x1 + ix2
x1 − ix2 x4 − x3

)(
a∗ c∗

b∗ d∗
) = (

x󸀠4 + x
󸀠
3 x󸀠1 + ix

󸀠
2

x󸀠1 − ix
󸀠
2 x󸀠4 − x

󸀠
3
) (2.78)

The little group momentum p0 is now taken as a vector (0,0, 1, 1). In two-dimensional notation, this
is a matrix with zeros except for the upper left element, which is 2. The conditions for p0 to be left
invariant by a Lorentz transformation is |a|2 = 1 and c = 0. Hence, a general element of the little group
can be written

(
e−iβ/2 (x + iy)eiβ/2

0 eiβ/2
) = (

1 (x + iy)
0 1

)(
e−iβ/2 0
0 eiβ/2

) ≡ t(x, y)δ(β) (2.79)

whichwe can interpret as a rotation δ(β) followedby a translation t(x, y) in a two-dimensional space.45

Here, x, y and β are real and 0 ≤ β < 4π. Wigner then argues that the range of variation for β can be
restricted to 0 ≤ β < 2π. The exponents ±iβ/2 are required by the matrix δ(β) to describe a rotation
be an angle β. The group multiplication laws become

t(x, y)t(x󸀠, y󸀠) = t(x + x󸀠, y + y󸀠) (2.80)

δ(β)t(x, y) = t(x cosβ + y sinβ, −x sinβ + y cosβ)δ(β) (2.81)

δ(β)δ(β󸀠) = δ(β + β󸀠) (2.82)

These equations are analogous to the equations (2.70)–(2.72) and show that the little group is isomor-
phic to the inhomogeneous rotation group in two dimensions, that is, the two-dimensional Euclidean
group.

Section 7 of the paper treats the P (massive) and 0 (massless) classes of repre-
sentations, the massive case being the well-known representations of the three-
dimensional rotation group.

For the massless case, we will follow Wigner’s treatment in some detail. Due to
the similarity to the inhomogeneous Lorentz group itself, it is a possible to introduce
momenta-like variables (ξ , η) and a spin-like variable ν instead of ζ in such a way that

t(x, y)φ(p0, ξ , η, ν) = e
i(xξ+yη)φ(p0, ξ , η, ν) (2.83)

44 See our Section 3.4.3.
45 This will be commented on below in connection with the next Wigner paper to be discussed.
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and rotation operators R(β), acting only on the ξ , η variables

R(β)φ(p0, ξ , η, ν) = φ(p0, ξ
󸀠, η󸀠, ν) (2.84)

where

ξ 󸀠 = ξ cos β − η sin β and η󸀠 = ξ sin β + η cos β (2.85)

Then δ(β)R(β)−1 = S(β) will commute with the t(x, y) operators and will contain the
ξ , η variables only as parameters, acting only on the ν variable. This is in analogy with
the Q(p,Λ) operator of the inhomogeneous Lorentz group itself. The transformation
law corresponding to (2.76) is

δ(β)φ(p0, ξ , η, ν) = ∑
ω
S(β)νωφ(p0, ξ

󸀠, η󸀠,ω) (2.86)

Now the little groupmethod can be applied to the little group itself.46 All vectors (ξ , η)
can be obtained fromone particular vector (ξ0, η0)by a rotation (2.85). Since themetric
in the ξ , η space is positive definite, this leads to two disjoint cases

ξ 2 + η2 = Ξ = 0 ⇒ ξ = η = 0 (2.87)

ξ 2 + η2 = Ξ ̸= 0 (2.88)

A little group transformation should leave the vector (ξ0, η0) invariant. In the first case,
any rotation in two dimensions does so, and we are interested in one- or two-valued
irreducible representations. Then S(β) = eisβ, with s integer or half-integer. These are
the standard massless particle representations denoted by O+.

In the second case, the “little group of the little group” is trivial since the only
rotation that leaves a vector in two dimensions invariant, is a rotation with β = 0. For
the little group of the inhomogeneous Lorentz group, written in terms of 2×2 complex
matrices, this corresponds to theunitmatrix I and−I.47 Of these representations, there
is one kind denoted by O(Ξ) which is single valued, and one kind denoted by O󸀠(Ξ)
that is double valued. Both are characterized by the positive real number Ξ. In the
Introduction to the paper, Wigner writes

[...] the new representation of the Lorentz groupwhichwill be described in Section 7may interest
the physicist also. It describes a particle with continuous spin.

There is nothing specific about wave equations in the 1939 paper. For that, we have to
look at the next paper.

46 The role played the homogeneous Lorentz transformations leaving p2 invariant, are nowplayed by
the two-dimensional Euclidean rotations, leaving the length of a two-dimensional vector invariant.
47 Due to the map from two-dimensional complex matrices to the Lorentz group being 2 → 1. See
Section 3.4.3.
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2.3.2 Relativistische Wellengleichungen

As we have already seen in Section 2.2, a few authors wrote on relativistic wave equa-
tions during the 1930s, and more would do so in the second part of the 1940s as we
will see in Section 2.4. These papers were not based on any general analysis of the
representations of the Poincaré group, at least as far as can be judged from their ex-
plicit content, but rather, the authors wrote down Lorentz invariant wave equations a
priori. Exceptions are the Majorana 1932 paper where unitary representations of the
Lorentz group are investigated [2] and the 1936 Dirac paper [1] where the finite di-
mensional nonunitary representations were constructed. This circumstance is how-
ever natural enough, since the Wigner paper appeared first in 1939, and perhaps did
not become well known until later. It seems that not until the 1960s was the Wigner
analysis taken as a baseline for work on wave equations for elementary particles.48

So it still remained to sort out how relativistic wave equations were related to the rep-
resentations of the homogeneous and inhomogeneous Lorentz group. Explicit wave
equations had not been discussed in the Wigner 1939 paper.

This issue is discussed in the Wigner 1947 paper on “Relativistische Wellengle-
ichungen” [63].49 In this paper, Wigner discusses two ways of approaching the ques-
tion of “das relativistische Einkörperproblem in der Quantenmechanik”, or relativis-
tically invariant wave equations.

One way is to directly look for relativistic invariant equations by supplementing
the continuous configuration space-time variables of the wave function φ with dis-
crete coordinates, such as one does in the Dirac equation with the spin, or employ
vectors and tensors as in the Maxwell equations.

Wigner then notes that many workers have followed this road, and gives a list of
papers both predating and antedating the 1939 paper.50 A drawback of this method is
that “[...] derselbe physikalische Sachverhalt in verschiedenemathematische Formen
gekleidet werden kann.”. This nonuniqueness is exemplified by the electromagnetic
field that can described by field strengths or by vector potentials.

The otherway “invariantentheoretische” – group theoretical – is the one followed
in the Wigner 1939 paper. In the 1947 paper, Wigner describes the method as trying to
determine a relativistic invariant linear manifold of states. Wigner first outlines the
conceptual basis of this approach, roughly as in the first section of the 1939 paper. He
notes that the two approaches are, of course, related, but that the “wave equation”
approach often is complicated because several irreducible representations are aggre-

48 See Section 2.6.
49 Predating the more often referred Bargmann–Wigner paper on wave equations [64].
50 The authors cited are Majorana, Dirac, Proca, Kemmer, Fierz, Duffin, Belinfante and O. Klein from
the 1930s and Bhabha and Harish-Chandra from the 1940s.
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gated.51 On the other hand, the group theoretical way gives no hint how to introduce
interactions.52

After this, Wigner goes on the present systems of wave equations corresponding
to the representations withm ̸= 0 andm = 0. One point must not be overlooked when
reading the paper: as quoted above, after equation (2.67), Wigner initially makes no
assumption as to the field nature of the “wave functions”. In general, any representa-
tion can be described by an appropriate list of functions φ1,φ2, . . . ,φl, but nothing is
yet said about what variables they depend on. However, when going over to discuss
wave equations, Wigner writes

Es laßt sich zeigen, daß die Funktionen φ1,φ2,φ3, . . . ,φl durch Funktionen φ(p1, p2, p3, p4, ζ ) er-
setzt werden konnen, so daß die Variablen p1, p2, p3, p4, ζ einfachen Index l ersetzen.

The p-variables are interpreted as themomentumof the particle in the standardway.53

In an irreducible representation, only functions where p24 − p
2
1 − p

2
2 − p

2
3 takes a defi-

nite value, occur. In the case when this value is positive, there is a representation for
ζ taking values 0, 1, 2, 3, . . . corresponding to the spin values 0, 12 , 1,

3
2 , . . . (the classes

P+ and P−). Wigner notes that, since the wave equations in the previous works he re-
ferred to, all describe particles with nonzero mass, they all correspond to combina-
tions of representations with various masses and spin of this kind. Wigner then con-
siders wave functions ψ(x, y, z, t, σ1, σ2, . . . , σ2s) symmetric in 2s “Spinkoordinaten” of
the Dirac kind, that is, the σj are gamma-matrices γjl satisfying the usual anticommu-
tators and matrices with different index j commute. The equations read54

(
h
i
∑
jl
γjl
𝜕
𝜕xl
− 2smc)ψ(xl, σj) = 0 (2.89)

h2( 𝜕
2

𝜕x21
+
𝜕2

𝜕x22
+
𝜕2

𝜕x23
+
𝜕2

𝜕x24
)ψ = m2c2ψ (2.90)

For s = 0, there is no equation (2.89). For s = 1/2, equation (2.90) is a consequence
of (2.89), but not so for s > 1/2. Then the Klein–Gordon equation must be supplied

51 The contrast between the two approaches is sometimes overemphasized in the secondary litera-
ture. True, relativistic wave equations constructed ab initio, often turn out to correspond to reducible
representations, but on the other hand, there is no way to derive wave equations from the irreducible
representations. As we will see, assumptions has to be made as to what spaces to realize the “wave
equations” on.
52 Unless, as proposed by Dirac in [61], one looks for nonlinear realizations of the group.
53 Thepoint discussedheremaybe of some relevance for the higher spin problem.Although in almost
all cases one would like to have momentum space or configuration space fields, it may very well be
that higher spin interactionsmust be described in some other kind of space. The representation theory
of the Poincaré group leaves that option open.
54 Wigner denotes space-time indices with l here and takes x4 = ct.
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separately in order to have an irreducible representation. The discussion then shifts
to themassless representations. There is a paragraph in the paper about settingm = 0
in the wave equations. We will defer commenting on this issue to the next section in
connection with the Bargmann–Wigner paper of 1947.

Much of the paper concerns the so-called infinite spin or continuous spin repre-
sentations, which belong to the case m = 0, but had not been discussed in any de-
tail before. Wigner notes that for a wave travelling in the z-direction with momenta
(0,0, p, p) there are Lorentz transformations

(

1 0 0 0
0 1 −γ γ
0 γ 1 − 1

2γ
2 1

2γ
2

0 γ − 12γ
2 1 + 1

2γ
2

) and (

0 1 −γ󸀠 γ󸀠

0 1 0 0
γ󸀠 0 1 − 1

2γ
󸀠2 1

2γ
󸀠2

γ󸀠 0 − 12γ
󸀠2 1 + 1

2γ
󸀠2

) (2.91)

and their product (the matrices commute)

(

1 0 −γ󸀠 γ󸀠

0 1 −γ γ
γ󸀠 γ 1 − 1

2γ
2 − 1

2γ
󸀠2 1

2γ
2 + 1

2γ
󸀠2

γ󸀠 γ − 12γ
2 − 1

2γ
󸀠2 1 + 1

2γ
2 + 1

2γ
󸀠2

) (2.92)

that leave the wave invariant. In this case, the spin coordinate ζ , can be replaced by
two continuous variables π and π󸀠. These variables correspond to the variables ξ and
η of the 1939 paper. The notation in the Wigner papers is compared in Table 2.1 be-
low. After briefly summarizing the results of the 1939 paper, Wigner turns to the wave
equations.

Table 2.1: Notation for the massless little group in Wigner’s papers of 1939, 1947 and 1963.

Symbol Wigner 1939 Wigner 1947 Wigner 1963

Spin coordinates ξ , η π, π󸀠 π󸀠󸀠, π󸀠

Lorentz parameters x, y λ, λ󸀠 β, α
2-dimensional invariant product xξ + yη λπ + λ󸀠π󸀠 βπ󸀠󸀠 + απ󸀠

“Casimir” of the little group ξ2 + η2 = Ξ π2 + π󸀠2 π󸀠2 + π󸀠󸀠2 = Ξ2

Rosetta stone for the Wigner 1939, 1947 and 1963 papers

The notation regarding the infinite, or continuous spin, representations are different, and a bit con-
fusing, in the three Wigner papers. For the translation part of the little group, the table 2.1 translates
between the papers.
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The two Lorentz matrices corresponding to little group translations denoted by Tξ (α) and Tη(β)
in the 1963 paper correspond to the matrices (2.91) of the 1947 paper. The four-dimensional transfor-
mation matrix (2.92) corresponds to the two-dimensional complex matrix (see (2.79))

(
1 γ + iγ󸀠

0 1
) (2.93)

The wave equations are given without much in the way of motivation. Wigner writes

Es ist unschwer, eine relativistisch invariante Gleichung im Impulsraume aufzuschreiben, deren
losungen die obengenannte Mannigfaltigkeit bilden. Die Wellenfunktionen hangen außer von
p1, p2, p3, p4 noch von vier anderen Vektorkomponenten ξ1, ξ2, ξ3, ξ4 = cτ ab. Im Falle des ganz-
zahligen unendlichen Spins haben wir

(p24 − p
2
1 − p

2
2 − p

2
3)φ = 0 (2.94a)

(p4ξ4 − p1ξ1 − p2ξ2 − p3ξ3)φ = 0 (2.94b)

(ξ 21 + ξ
2
2 + ξ

2
3 − ξ

2
4 − l

2)φ = 0 (2.94c)

(p1
𝜕
𝜕ξ1
+ p2
𝜕
𝜕ξ2
+ p3
𝜕
𝜕ξ3
+ p4
𝜕
𝜕ξ4
+ ihΞ)φ = 0 (2.94d)

Wigner, however, discusses how the two variables π and π󸀠 subject to a condition on
the sum π2 + π󸀠2, can be replaced by the four variables ξ1, ξ2, ξ3, ξ4 subject to three
conditions on the wave-functions, expressed by the three equations (2.94b)–(2.94d).
This way of writing the equations make it easy to read off their relativistic invariance.
The equations define four operators Q acting on wave functions Ψ such that

Q1Ψ = 0 Q2Ψ = 0 Q3Ψ = 0 Q4Ψ = 0 (2.95)

Wigner then comments, that although the equations may look arbitrary, and one
can write down other similar systems of equations, they are all equivalent according
to the general representation theory of the 1939 paper, provided that the equations
are consistent and do not describe particles with finite spin or imaginary mass.55 The
consistency requirement is expressed as a set of commutation relations between the
operators Q that has to be satisfied. The operator Q1 (i. e., the “Klein–Gordon” opera-
tor) commutes with all the rest, for which we have

[Q2,Q3] = 0 [Q2,Q4] = Q1 [Q3,Q4] = −2Q2 (2.96)

So far, the equations describe the single valued, integer spin, representations. For the
double valued, half integral, representations, the first equation (Klein–Gordon) is re-
placed by

(
1
c
𝜕
𝜕t
−∑ sk

𝜕
𝜕xk
)Ψ = 0 (2.97)

where the sk are “die Paulische Spinmatrizen”.

55 Wigner states in several places that while the states themselves, the particles, are uniquely deter-
mined by the representation theory, the wave equations are not so.
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Let us comment here that the “operator algebra” of (2.96) is reminiscent of the
kind of the “first class constraint algebra” that later appeared in Dirac’s analysis of
constrained Hamiltonian systems (see Sections 3.2.4 and 3.3.3).

The rest of the 1947 paper is devoted to questions having to do with the scalar
product in the space of wave functions. It ends with a few comments on the physical
interpretation of the infinite spin representations.

Second – or third – thoughts on Wigner’s “two ways”

Regarding the two ways of approaching the subject of relativistic wave equations that Wigner dis-
cussed in the Introduction to the paper: “wave equation first” versus “representation first”, it must
be pointed out that the situation is not so clear-cut. Three points may clarify the issue. First, Wigner
puts the Majorana 1932 and Dirac 1936 papers in the first category. However, although both papers
start with wave equations of the Dirac type, Majorana constructs infinite dimensional unitary repre-
sentations of the Lorentz group, and Dirac constructs finite dimensional nonunitary representations.
The categorization is a therefore not unambiguous. Second, one must not see the categorization as a
value judgement.Wigner’smethod leads from irreducible representations towave equations for parti-
cleswith a certainmassanddefinite spin. The othermethodoften lead to equationsdescribing several
mass and spin particles. This is not necessarily a drawbackof themethod, andwasnot seen as such by
the authors, asmultiparticle wave equations could be phenomenologically interesting. From themod-
ern higher spin perspective, where we know that wemust consider infinite spectra of spin, irreducibil-
ity is also not so important. Third, irreducibility of wave equations come with a price: wave equations
often must be supplied with subsidiary conditions, or what essentially amounts to sets of equations,
aswehave seen above, andwill see in the sequel. Such subsidiary conditions lead to problemswith in-
teractions, even simple interactionssuchas theelectromagnetic, as the Fierz–Pauli paper pointedout.
Indeed,Wigner computed the commutators between his field equations to check their internal consis-
tency.Such computations in general lead to the Fierz–Pauli problem,when external fields are coupled.

2.3.3 The Bargmann–Wigner paper of 1948

This is the paper [64] that is most often referred to regarding relativistic wave equa-
tions based on the representation theory. The paper summarizes the results of the 1939
paper, and then goes on to a systematic discussion of wave equations for the most in-
teresting representations: the massive with finite spin (now denoted by Ps) and the
massless with finite spin (Os) and infinite – or continuous – spin (O(Ξ)). In all cases,
there is a detailed discussion about the norm, or invariant scalar product, in the space
of wave functions. The form of the spin operators and of the Casimir operators are also
treated in all cases. Indeed, the infinitesimal operators of the Poincaré group, that did
not play any significant role in the 1939 paper,56 are now introduced, as well as the
Pauli–Lubanski vector. Here, we will be content to focus on the wave equations.

56 See Section 2.A in the 1939 paper.
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In the case Ps with s = 0, the wave equation is pkpk = m2 acting on a one-
component wave function ψ. In the higher spin cases, with s = N/2 and N =
1, 2, 3, . . ., wave functions ψ(p; ζ1, . . . , ζN ) are chosen that depend on N four-valued
variables ζ1, . . . , ζN just as in the “Wellengleichungen” paper. Again, for each ζν, four-
dimensional gamma-matrices γ k

ν are introduced, commuting for different values of
the “spin index” ν. However, in contrast to the “Wellengleichungen” paper, the wave
equations are now given as

γ k
ν pkψ = mψ (ν = 1, 2, . . . ,N) (2.98)

From any one of these equations, one gets the Klein–Gordon equation pkpkψ = m2ψ
by acting with an operator γ k

ν pk and using the gamma-matrix algebra and using the
wave equation again. These wave equations then correspond to irreducible represen-
tations. To investigate that, Bargmann andWigner defines a little group by choosing a
momentumwith components (0,0,0,m).57 Then they assume that γ4 is diagonal with
components (1, 1, −1, −1).58 For each spin coordinate, the wave equation then reduces
to

(

1,0,0,0
0, 1,0,0
0,0, −1,0
0,0,0, −1

)(

ψ1
ψ2
ψ3
ψ4

) =(

1,0,0,0
0, 1,0,0
0,0, 1,0
0,0,0, 1

)(

ψ1
ψ2
ψ3
ψ4

) (2.99)

Thus only the first two components are nonzero. This reduces the number of compo-
nents of the wave function from 4N to 2N . This number is further reduced to N + 1 =
2s+ 1 due to the total symmetry in the ζ coordinates as applied to the first two compo-
nents of eachψ. This shows that the wave equations (2.98) describe amassive particle
with spin and correspond to an irreducible representation. These equations are some-
times referred to as the Bargmann–Wigner equations. As such, they are equivalent
to the Dirac–Fierz–Pauli equations discussed in Section 2.1.3 through the standard
transcription between four-component and two-component spinors (see Section 1.4
formula (1.14)). The equivalence to the more common traceless and divergence-free,
symmetric tensor formulation or tensor-spinor in the half- integer spin case, will be
discussed in Section 2.4.1.

The next item is the class Os of representations. The wave equations are obtained
by settingm = 0 in (2.98). It is argued, in the casem = 0, that the linear manifold de-
fined by the wave equation can be decomposed into invariant manifolds with definite

57 Corresponding to choosing a frame where the particle is at rest and then counting the number of
independent field components.
58 The “Dirac” representation.
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values for any one of the operators Γ = iγ 1
ν γ

2
ν γ

3
ν γ

4
ν . In particular, the following split is

considered:

Γψ = ψ (ν = 1, 2, . . . ,N) (2.100)
Γψ = −ψ (ν = 1, 2, . . . ,N) (2.101)

“Both manifolds are invariant under proper Lorentz transformations but go over into
each other by reflections: they correspond physically to right and left circular polar-
ization.”.59

In this case, the little group is defined by a momentum of the form (0,0, 1, 1). The
wave equations become, after multiplication with γ3ν

γ 3
ν γ

4
ν ψ = ψ (ν = 1, 2, . . . ,N) (2.102)

The authors then “assume” that the γ 3
ν γ

4
ν matrices are diagonal with elements

(1, 1, −1, −1). Since the Γν matrices commute with the γ 3
ν γ

4
ν , but are not identical with

them, they may also be assumed to be diagonal with elements (1, −1, 1, −1). Now, in
the manifold defined by (2.102) and (2.100) only the first component of each ψ can be
nonzero. In the manifold defined by (2.102) and (2.101), only the second component
of each ψ can be nonzero.60 One thus gets two one-dimensional manifolds of states:
”For a given momentum, ψ has only two independent components.”.

Comparing the Wigner 1947 and Bargmann–Wigner 1948 wave equations

The reader has certainly noticed a curious difference as to how the wave equations are presented in
these two papers. Provided that the wave functionψ is the same in the two papers, the wave equation
(2.89) of the Wigner paper corresponds to the sum of the N wave equations (2.98) of the Bargmann–
Wigner paper. The first wave equation is therefore weaker than the second set of equations. This may
also be surmized by the fact that the Klein–Gordon equations cannot be inferred in the first case, but
has to be supplied separately. There is, as far as I can tell, only one explicit comment on the contrasting
choices of wave equations. In footnote 8 of the Bargmann–Wigner paper, it says that the sum over all
ν was postulated in a paper by H. A. Kramers, F. J. Belinfante and J. K. Lubanski (our [65]) and that this
form of the equations were used in the Wigner 1947 paper. This type of equation is closely related to
Belinfante’s “undor” theory [66] where Belinfante studied quantities that transformed as products of
Dirac wave-functions under Lorentz transformations (including reflections).

Implicitly, however, there are two comments in the Wigner paper. The first concerns the need
to supply the Klein–Gordon equations separately. It is needed in order to avoid complications that
are discussed in a paper by O. Klein [67] (as stated by Wigner, but not elaborated), and to make the
system irreducible. Then as a second comment, it ismentioned that the equations are just an example,

59 It is what we now call a chirality split.
60 In the chiral representation of the gamma-matrices, γ 3γ 0 is diagonal with elements (−1, 1, 1, −1)
and γ5 is diagonal with elements (1, 1, −1, −1). The corresponding argument goes through.
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and that another example is the equations of the Majorana 1932 paper. As we saw in Section 2.1.6,
Majorana does neither assume the Klein–Gordon equations, nor the Dirac-type gamma matrices.

Furthermore, regarding going fromm ̸= 0 to m = 0, no subtleties connected with this are noted
in the Bargmann–Wigner paper, apart from the drop in number of components from 2s + 1 to 2. No
actual limiting processm→ 0 is involved. In the “Wellengleichungen” paper, Wigner writes

Die Sachlage ist die, daß fur s > 1/2 die durch [our equations (2.89), (2.90)] beschriebene Man-
nigfaltigkeit nicht mehr irreduzibel ist, wenn man darin m = 0 setzt[removed footnote], sondern in
mehrere Mannigfaltigkeiten zerfallt, denen man die Spins s, s− 1, s−2, zuschrieben kann. Diese
Mannigfaltigkeiten enthalten fur gegebene p zwei linear unabhangige Elemente. Nur dieMannig-
faltigkeit mit s = 0 enthalt nur ein Element, wenn die p gegeben sind.

So in this case there is no drop in the number of components, but rather a redistribution according to
2s + 1 = 2 + 2 + ⋅ ⋅ ⋅ + 2 + 1, the sum containing s terms equal to 2.

For the continuous spin representations, the equations for the caseO(Ξ) andO󸀠(Ξ) are
taken from the Wigner 1947 paper.

2.3.4 The 1963 “review” paper

This paper is quite interesting. It was presented at an IAEA Seminar on Theoretical
Physics, inMiramare, Trieste, in 1962 [247].Wignerwrites that A. Salamhad asked him
to report “[...] on equations for elementary particles which are not believed to exist in
nature.”. The rationale for this strange request was the interest, at that time, in studies
of scattering amplitudes where the momenta of the particles were extended into the
complex plane. The focus of the paper is therefore on equations for the continuous
spin representation and representations with imaginary mass. Apart from this, the
paper spells out explicitly a general method to set up wave equations corresponding
to a given representation.

The first section of the paper is introductory and outlines its context. Sections II–V
review theunitary representations of thePoincaré group, the little group, infinitesimal
and Casimir operators and the case of positive rest mass.

In the case of zero rest mass, the little group again can be considered to consist
of rotations in the xy plane as well two sets of commuting operations Tξ (α) and Tη(β),
which together form a group isomorphic to the two-dimensional Euclidean group. The
four-dimensionalmatricesTξ (α) andTη(β) correspond to thematrices (2.91) of the 1947
paper (with the translation α ↔ γ󸀠 and β ↔ γ). About the geometrical interpretation
of the little group, Wigner writes:

Clearly, there is no plane in the four-space of momenta in which these transformations could
be interpreted directly as displacements and rotations because all transformations considered
are homogeneous. The simplest geometrical picture known to me uses two vectors pξ and pη,
of length −1 and orthogonal to each other as well as to p0. These vectors could be unit vectors
parallel to the x and y axes. The Tξ (α) then adds αp0 to pξ , whereas Tη(β) then adds βp0 to pη.
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The representation theory of the massless little group is treated at some length in the
paper (Section VI.A). In particular, it is again pointed out that the little group method
can be applied to the little group itself, so that if π󸀠 and π󸀠󸀠 are interpreted as “mo-
menta”, then one must have π󸀠 + π󸀠󸀠2 = Ξ2.

But let us turn to the question of setting up wave equations (Section VI.B). Since
this is a subject that is very seldom treated in the literature, we will take the oppor-
tunity to follow Wigner in detail.61 Wigner first notes that all known zero mass equa-
tions permit only solutions belonging to the representation Os or its complex conju-
gate: “[...] the negative energy solutions which are then eliminated or reinterpreted in
the second quantized form of the theory.”. On the other hand, equations for the O(Ξ)
and O󸀠(Ξ) cases, were only obtained after the general method for obtaining equations
from representations was devised. Only the case O(Ξ) is then treated (the case O󸀠(Ξ)
requires spinor wave functions). It is also noted that the term “equation for a repre-
sentation” is not clearly defined and that several equations may correspond to the
same representation. Not even the variables upon which the wave function depend
are determined by the representation. The objective of the method is to systematically
delimit the choices.

Wigner’s method for obtaining wave equations from representations

Thewave function,whichmayhaveoneormore components, satisfyingoneormore equations, should
transform under the Poincare group according to the representation in question. Then the variables
upon which the wave function depend, should be of such a nature that they clearly indicate how the
wave function transform. Thismeans that the variablesmust be four vectors, called “ordinary vectors”,
or differencesbetween four vectors, called “difference vectors”. Next,Wigner goeson to determine the
number of vectors and difference vectors needed.

The principle is to find precisely the right number of variables so that every Poincaré transforma-
tion that changes the representation, also changes thewave function. The intuition behind this can be
understood as follows. Suppose we were interested in finding the wave function for the spin 1 mass-
less representation. A scalar field would obviously not do since it is invariant under the spin part of a
Lorentz transformation. On the other hand, a tensor fieldφkl would be redundant since the symmetric
part can be set to zero.

Thus, the variables should be able to completely describe a frame of reference. A frame of refer-
ence can be given by an ordinary vector, defining the origin and four difference vectors, defining the
coordinate axes. These are too many, but the number can easily be reduced.

Wigner startswith thedifference vectors.Oneof themcannaturally be identifiedwith themomen-
tum vector p and given the lengthm2. The other three difference vectors are assumed to be mutually
orthogonal, orthogonal to the momentum vector and of length 1 or −1, whichever is possible. One of
them is therefore completely fixed in terms of the momentum and the other two. Another one of them
is fixed up to a single variable. This one variable will also turn out to be unnecessary, although it is not
immediately clear, apart form the fact that we want to have quadruplets of vector components. We are

61 The section in the paper is interesting and well worth reading in its entirety.
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left with two difference vectors, p and ξ say. The conditions on them give the wave equations

(p ⋅ p)ψ = m2ψ (2.103)

(ξ ⋅ ξ)ψ = −ψ (2.104)

(p ⋅ ξ)ψ = 0 (2.105)

These equations are so far common to all representations. The wave function ψ depends on the com-
ponents of the difference vectors p and ξ as well as on the ordinary vector x that allows the wave
function to vary under translations. This variation yields one more equation common to all represen-
tations. In order to represent the translation part of the Poincaré group according to formula (2.73), the
wave functions must satisfy

𝜕
𝜕xk

ψ = −ipkψ (2.106)

Then the vectors x are “unnecessary variables”. If ψ is given as a function of p and ξ for say x = 0,
equation (2.106) determines ψ for all x according to

ψ(x,p, ξ) = e−ip⋅xψ(0,p, ξ) (2.107)

By integrating over p and x, respectively, this provides us with the familiar Fourier transform pairs
of p-space or x-space wave functions. We therefore has the option to work with wave functions that
depend on either x, ξ or p, ξ with the transcription 𝜕/𝜕x = −ip.

What remains to be done is to find further equations defining the representation in question.
Wigner exemplifies for the case P0, and then goes on to the case O(Ξ). There is first a geometrical
interpretation for the constraints (2.104) and (2.105). Then Wigner goes on to calculate an expression
for the squareW = −w ⋅ w of the Pauli–Lubanski vector

wk =
1
2
ϵklmnplMmn (2.108)

where the angular momentum operators are taken as

Mmn = i(pm
𝜕
𝜕pn
− pn
𝜕
𝜕pm
+ ξm
𝜕
𝜕ξn
− ξn
𝜕
𝜕ξm
) (2.109)

The space-time momentum part ofMmn does not contribute to wk (due to the contraction of two mo-
menta into the antisymmetric ϵ tensor). Even so, W is a quite complicated expression, but acting on
thewave function and taking the already establishedwave equations (2.103)–(2.105) into account, one
finally arrives at

W = − 𝜕
2

𝜕ξn𝜕ξl
pnplψ = (i

𝜕
𝜕ξl

pl)
2

ψ (2.110)

SinceWψ = Ξ2ψ, the linear space of wave functions can be decomposed into two subspaces with

i 𝜕
𝜕ξl

plψ = ±Ξψ (2.111)

Wigner then argues that these two spaces are equivalent, and that one can choose the positive sign.
This then is the fourth wave equation for the representation space O(Ξ). We thus arrive at the wave
equations (2.94) of the 1947 paper.
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There is obviously a lotmore that can be said about these representations and the corresponding
wave equations, and Wigner does so, but we will defer further discussion to later chapters.

The paper [68], written for a conference on group theoretical concepts in theoretical
physics, is a review paper and it does not contain much new on the subject, apart
fromsimplifications and anew formalism. Thepaper discuss space and time reflection
symmetry. As an aside, it can be noted that Wigner did not write more on Poincaré
representations. Obviously, he thought that notmuchmore could be said on the topic.

2.4 The 1940s and early 1950s

In very broad terms, there was a hiatus in fundamental research during the Second
World War, except military related. After the war, focus continued to be on nuclear
physics, but there was also a return to the problems of quantum electrodynamics,
which were quite rapidly solved in the well known way. Experimentally, the 1950s
was a period of building new powerful particle accelerators. It is in a way paradox-
ical that the destructive development of bombs and military technology62 had, as a
side effect, a positive effect on fundamental physics research. In 10 years time, after
the end of the war, there would be ample reasons to return to higher spinmassive par-
ticles and fields. But a few new developments occurred just before, during and just
after the war.

2.4.1 Rarita and Schwinger

A couple of years after the Fierz and Pauli paper, in 1941, came the short Rarita–
Schwinger letter on half-integral spin fields [69]. The paper introduces the now com-
mon way of representing higher spin fermions in terms of tensor-spinors, instead of
the “complicated” – as the authors write – spinor formalism of Dirac and Fierz–Pauli.
The field equations, with the spinor index suppressed, appear as

(γτ𝜕τ + κ)Ψμ1 ...μk = 0 with γαΨαμ2 ...μk = 0 (2.112)

As the authors write, the supplementary conditions from integer spin theory

𝜕αΨαμ2 ...μk = 0 and Ψα
αμ3 ...μk = 0 (2.113)

follows from the second, γ-trace equation of (2.112).

62 An example is Lamb–Retherford of measurement of the Lamb shift using newmicrowave technol-
ogy.
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Spin 3/2 is then treated as a special case, a Lagrangian is given and it is pointed
out that no auxiliary spinors are needed. In the case of zero mass, the theory is gauge
invariant. Subsequently, spin 3/2 fields became known as Rarita–Schwinger fields.63

Electromagnetic coupling could be introduced without the Fierz–Pauli inconsistency
appearing. However, in 1969, G. Velo and D. Zwanziger [70] showed that a more subtle
inconsistency – waves propagating faster than light – arises when charged spin 3/2
fields are coupled to the electromagnetic field.64

Jumping ahead a bit, in 1954, a new formulation of the spin 3/2 wave equation
was proposed by S. N. Gupta [71]. He combined the two-component spin 3/2 spinors
aα̇βν, b

α̇β̇
ν and the spin 1/2 auxiliary spinors cα, dα̇ of Fierz and Pauli, into a 16- com-

ponent object ψ. From there on, a Lagrangian theory could be developed yielding a
wave equation αμ(𝜕ψ/𝜕xμ) + κψ = 0 with the 16 × 16 matrices αμ satisfying an algebra
∑(αμαν−δμν)αλαρ = 0where∑denotes a sumover all permutations of the indicesμ, ν, λ
and ρ. Gupta quantized the theory and introduced electromagnetic interactions in the
standard fashion. From a higher spin perspective, this paper underscores the Wigner
point:wave equations are not unique.Wehave seen three, in their appearance at least,
different formulations of spin 3/2 theory.65

Then in 1955, P. A. Moldauer and K.M. Case published a paper on half-integer spin
particles, in particular spin 3/2 and spin 5/2,motivated by the “[...]manynewparticles
whose spins and moments have not yet been measured [...]” [72]. The authors derive
the spinor-tensor form of the wave equations (2.112) and (2.113) from the Dirac–Fierz–
Pauli equations. They then proceed from there on to study electromagnetic interac-
tions of the particles and compute magnetic moments for spin 3/2 and 5/2.

2.4.2 The representations of the Lorentz group

Toward the end of the 1940s, the problem of the representations of the homogeneous
Lorentz group was completely solved by a number of workers, one of them Harish-
Chandra, who worked with H. J. Bhabha in India before going to Cambridge to study
under Dirac for a PhD.66 The situation regarding the general representations was very
well summed up in the first paragraph of Harish-Chandra’s paper [74], that also is his
thesis:

All the finite irreducible representations of the Lorentz group are well known. Every such repre-
sentation is characterized by an ordered pair of numbers p and q such that 2p and 2q are integral

63 In the same issue of Physical Review, the Rarita–Schwinger letter is followed by a letter (to which
Rarita and Schwinger refer) by S. Kusaka on β-decay with a tentative spin 3/2 neutrino.
64 We will return to this problem in volume 2 of the present work.
65 Gupta does not refer to the Rarita–Schwinger paper.
66 For a biography of Harish-Chandra, see [73].
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and ≥ 0. None of these representations, however, is [sic] unitary. Dirac (1945) has recently drawn
attention to the existence of some unitary, though infinite, representations with a view to their
possible physical applications. The present paper is concerned with the investigation of the gen-
eral irreducible representations of the proper Lorentz group.

Then follows a succinct summary of the main, somewhat involved, results of the pa-
per.67

It is found that such a representation can, in general, be characterized by an ordered pair (k, k∗)
of complex numbers such that 2(k − k∗) is an integer and may therefore be denoted by𝒟(κ, κ∗).
However, in case both κ and κ∗ are of the form 1

4n (n ̸= −2) there exist two irreducible repre-
sentations 𝒟+(κ, κ∗) and 𝒟−(κ, κ∗) corresponding to the pair (κ, κ∗). The finite representations
correspond to 𝒟−(κ, κ∗) with κ, κ∗ both of the form 1

2n (n ̸= −1), the connexion between (p, q)
and (κ, κ∗) being given by p = |κ + 1

2 | −
1
2 , q = |κ

∗ + 1
2 | −

1
2 . In general𝒟(κ, κ

∗) is unitary only if
either

κ = − 1
2
+ iν + 1

2
n, κ∗ = − 1

2
+ iν − 1

2
n (2.114)

or κ = κ∗ = − 1
2
+ ν, |ν| ≤ 1

2
(2.115)

Here, ν is an arbitrary real number. However, in the special case when κ, κ∗ are both of the form
1
4n (n ̸= −2),𝒟

−(κ, κ∗) is unitary only if 1
2 ≥ |κ+

1
2 | = |κ

∗ + 12 |, while𝒟
+(κ, κ∗) is unitary whenever

|κ + 1
2 | = |κ

∗ + 1
2 |.

For finite component field theory, it is the finite, nonunitary representations that are
interesting. We will return to them in Chapter 3.

Wave functions and/or fields in the 1930s and 1940s

There seems to be a persistent confusion throughout the literature over the concepts of “waves” ver-
sus “fields”, ranging from a real confusion over concepts to an inattentive use of words (no doubt,
sometimes the confusion rests with the reader). Involved in this are the designations “classical” ver-
sus “quantum”, “nonrelativistic” versus “relativistic”, as well as the ideas of first and second quanti-
zation. The issues are tied up with the way the theoretical development of quantum mechanics came
about, but also with phenomenological questions regarding the nuclear forces and their description.
One way of understanding the theoretical problems may be the following.

Although quantum mechanics was developed with clear knowledge of special relativity, what
initially worked very well (and still works well) and solved the paradigm crisis from the end of the
nineteenth century, was the nonrelativistic theories of Heisenberg and Schrödinger. In particular, the
Schrödinger equation, which was a “wave equation”. But Schrödinger had already found a relativis-
tic “wave equation”, soon found by other authors,68 and from Dirac’s 1936 paper, the search was on

67 In the quote below, I have made typographical changes to notation as well removed a footnote
explaining the meaning of “integer”. See paragraph 17 of Corson [23], or the original paper by Harish-
Chandra [74]. Others workers credited with these results are Bargmann [75] and I. M Gelfand and M.
Naimark. For references to work by these authors; see the book [76].
68 for instance, V. A. Fock and T. E. de Donder.
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for relativistic wave equations. But the waves of these relativistic wave equations had various related
problems, as we have seen, and could not be interpreted as probability waves. The problems were
solved by a second round of quantization.

As regards the phenomenological side, in the second half of the 1930s, efficient computational
techniques were needed in connection to the Yukawa meson theory of the nuclear force. Ontologi-
cally, however, it seems that the meson, thought to mediate the nuclear force, was regarded in two
different ways according to whether one was interested in its electromagnetic interaction or nuclear
interactions. This is clear from the following quote from [77].

Up to the present much work on meson theory has been done by considering it as a field theory,
and the equation as field equation. This situation has its origin in the fact that the meson was
found originally as a field of the heavy particles. However, if we restrict ourselves to the problems
of the interaction between the meson and the electromagnetic field, it seems more adequate
to treat the meson equation in the form of a wave equation just like the case of other charged
particles [...].

From this quote, we can read off a thinking where the meson was considered a “wave” when it inter-
acted with electromagnetism, but as a “field” when it itself mediated the nuclear force. These authors
also comment (in a footnote that I have removed from the quote), on a similar discussion in the intro-
duction to the Kemmer 1939 paper (see our Section 2.2.3).

Let us now take up the story where we left it in late 1930s. Much was known about
relativisticwave equations, but the subject lacked systematics. A state of the art review
[54] regarding lower spin theory, was published by Pauli in 1941.

2.4.3 H. J. Bhabha’s general theory of wave equations

In the mid-1940s, much was known about relativistic wave equations, but the sub-
ject lacked systematics, and there were still confusing issues having to do with the
wave-particle duality, second quantization and unitarity versus nonunitarity of the
representations.

As we have had occasion to remark in several places, the origin of the subject
of relativistic wave equations within the development of quantum mechanics itself,
lead to a confusion about the ontological nature of the wave equations. This confu-
sion seems to have persisted well into the 1960s. From amathematical point of view, a
wave equation is just a partial differential equation, and awave function is just a func-
tion. However, in nonrelativistic quantummechanics, thewave function, governed by
the Schrödinger equation, describes a quantum state and it is interpreted as probabil-
ity amplitude. It was only natural to take over this ontology to the Dirac equation and
Klein–Gordon equation and the further wave equations that were invented and stud-
ied. Apart from other problems with this flawed conception – as it turned out to be –
the spin 1 wave equation for the electromagnetic field did not fit into this conceptual
scheme verywell. Since it was a classical field, it could only be “first” quantized,while
the “already quantized” relativistic wave equations, must be “second” quantized. The
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eventual resolution of all this is now well known. Relativistic wave equations do not
govern quantum states, that is, quantum wave functions, but quantum field opera-
tors. This is the essence of the ontology of quantum field theory. Wemake this remark
here, because, as we will also occasionally remark, it may be helpful to have in the
back of one’s mind when issues about unitarity or nonunitarity of representation of
the Poincaré and Lorentz group come up, as it does regularly. In short: quantum states
need to be unitary, operators not.69

The Bhabha papers [78–80], as many papers from this time and tradition, more
or less explicitly made a direct connection between elementary particles and wave
equations. Every elementary particle was thought to have its own governing relativis-
tic wave equation as a free, noninteracting, particle. Investigating the general form
of such wave equations therefore was an important research area. The application of
various wave equations to calculating properties of elementary particles then became
in the 1950s a driving force behind this research, alongside the theoretical interest.
When Bhabha wrote, however, no particles with spin exceeding 1 were known.

In the paper from 1945 [79], Bhabha studies linearwave equations of theDirac-like
type

(pkα
k + χ)ψ = 0 (2.116)

where pk are the usual space-time differential operatorsmultiplied by i and αk are four
d × dmatrices describing the spin properties of the particle. Bhabha works in four di-
mensions, so k runs from 0 to 3. The goal is to determine the nature of these matrices.
He makes no assumption about χ apart from it being a constant.70 We recognize the
equations as having the same form as the Majorana 1932 equation, but since there is
no positivity requirement on χ, we will not be lead to infinite dimensional unitary rep-
resentations. But like Majorana, Bhabha does not require the Klein–Gordon equation
to hold for the individual components of ψ; therefore – as he explains clearly – his
theory will not be equivalent to the Dirac–Fierz–Pauli theory. For short, there will be
no subsidiary conditions.71 This is one of the main motivations for Bhabha’s work: to
study linear wave equations without any subsidiary conditions.

69 This is not to say that the Bhabha papers – the subject of the present section – suffer from this
conflation of notions more than other then contemporary papers on relativistic wave equations. The
Bhabha papers are clearly written, and perhaps therefore the distinctions here discussed come more
easily to mind.
70 In principle, χ could be a matrix. However, if it is nonsingular one could multiply the equation by
a multiple of χ−1. At this stage, taking χ as number is no strong restriction.
71 A bit more elaborate (according to Bhabha): the Dirac–Fierz–Pauli equations connect two irre-
ducible spinors that can be split by a transformation into two sets, one of which still connects the
two irreducible spinors, while the other set of equations only involve one spinor and are subsidiary
conditions.
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We will now follow Bhabha a bit into his paper so that we can formulate his re-
sults more clearly. Denoting Lorentz transformations by matrices t l

k , Bhabha starts
by stating that form invariance of the wave equation (2.116) requires the matrices αk

to transform according to

αm = t m
n (Sα

nS−1) (2.117)

for some nonsingular d × dmatrices S to be determined. It may be good to pause and
remember the details of how this comes about.72

Recapitulating Lorentz invariance of linear wave equations

Consider two systems with coordinates xμ and x󸀠μ connected by a Lorentz transformation x󸀠 = Λx. The
wave equations in the two systems are (we are here using our own conventions of Section 3.4)

αμ 𝜕
𝜕xμ

ψ(x) +mψ(x) = 0 (2.118a)

αμ 𝜕
𝜕x󸀠μ

ψ󸀠(x󸀠) +mψ󸀠(x󸀠) = 0 (2.118b)

The wave functions (fields really) are assumed to be linearly related through the transformation

ψ󸀠(x󸀠) = S(Λ)ψ(x) (2.119)

where, in the general case, S(Λ) is a nonsingular d × dmatrix corresponding to d-component fieldsψ.
Using this transformation and the chain rule, equation (2.118b) can be referred back to the unprimed
system of coordinates

αμ 𝜕x
ν

𝜕x󸀠μ
𝜕
𝜕xν

S(Λ)ψ(x) +mS(Λ)ψ(x) = 0 (2.120)

where 𝜕xν/𝜕x󸀠μ = (Λ−1)νμ. Then inserting S
−1S = 1 in equation (2.118a) and multiplying by S we find

that (2.118b) follows from (2.118a) provided that

S(Λ)αμS−1(Λ) = (Λ−1)μνα
ν (2.121)

This is Bhabha’s equation (2.117). In this derivation, we have tacitly assumed – as is often done – that
the α matrices are the same in the two systems. Though a bit illogical, this assumption can be made,
as pointed out in [27] who refer to a proof [82] of the unitary equivalence of all 4 × 4 gammamatrices.

The matrices S must form a d-dimensional representation of the Lorentz group. The
corresponding infinitesimal generators are denoted by Imn. Their algebra is

[Imn, Irs] = −gmrIns + gmsInr + gnrIms − gnsImr (2.122)

72 For a textbook reference, see for instance [27], Section 2.2 and [81], Section 2-1-3.
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The infinitesimal version of Bhabha’s equation (2.117) then becomes

[αm, Irs] = gmrαs − gmsαr (2.123)

Bhabha then argues that it is consistent to choose matrices αm so that the following
equation holds:

[αm, αn] = cImn (2.124)

The choice is not amandatory, but it can be done consistentwith equations (2.122) and
(2.123). The constant c can take any value, so by redefining the α’s it can be set to 1.
This changes the parameter χ, but since it is anyway arbitrary at this stage, that is of no
consequence, although it clearly related to the rest mass of the particle. Before contin-
uing, let us dig a little deeper into the motivation behind the equation [αm, αn] = Imn.

Bhabha’s principles

In order tounderstand thehistorical contextofBhabha’smotivationandapproach, it is very interesting
to read a review type paper [78] of Bhabha that appeared just before [79]. The paper beginswith a very
crisp summary of the development of atomic, nuclear and then elementary particle physics from the
end of the nineteenth century to the 1940s. The well-known low spin wave theories of Klein–Gordon,
Dirac, Proca and Kemmer (DKP), that described the known elementary particles, are reviewed. Bhabha
then turns to higher spin wave equations and states two general principles that must be common to
them all (I quote freely here).
A It can be deduced from the equations that each component of the wave function satisfies the

second-order Klein–Gordon equation. This is physically equivalent to the statement that the
particle described by the field has in each case only one value of the rest mass (except for sign).

B The particle-field is completely described by an equation of the Dirac form (2.116)73 without the
help of any further subsidiary conditions. The transformation properties of the wave function,
and hence the spin of the particle, are determined entirely by the infinitesimal transformations
Imn defined by Imn = [αm, αn] satisfying (2.123).

The insistence on principle B is given in the next paragraph where the DFP theory is reviewed and
criticized. First, Bhabha notes that the Dirac theory does not include all equations that are consistent
with assumption A. There are equations

pγ
λ̇
Aαβ...μ̇ ̇ν ... = χB

γαβ...
̇γμ̇ ̇ν ... (2.125)

p ̇γγB
γαβ...
̇γμ̇ ̇ν ... = χA

αβ...
μ̇ ̇ν ... (2.126)

For low spin values, these equations correspond to the DKP equations. Second, Bhabha takes up the
minimal coupling problem of Fierz–Pauli, and third, in connection to this, he points out that not even
the free Dirac equations for higher spin can be derived from an action without the introduction of

73 Bhabha notes that it would be allowed to replace the constant mass term χ by a matrix term βχ
with β a matrix that commutes with all the Irs.
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auxiliary fields. This becomes increasingly cumbersome as the spin increases. These problems then,
pave the way for the alternative scheme proposed by Bhabha.74

Let us now return to the 1945 paper [79]. There are therefore two alternatives, Bhabha
writes: either the equation [αm, αn] = Imn holds, or it does not hold. If it does not hold,
then the only restriction on the αm matrices is equation (2.123) governing the correct
Lorentz transformationproperties of thematrices. In the long technical Section 5of the
paper, Bhabha investigates the general formof the αmatrices. It is found that equation
(2.124) does not hold in general. In particular, it does not hold for the DFP equations
beyond spin 1.

Turning instead to the case where the equation [αm, αn] = Imn is assumed to hold,
Bhabha shows that the three sets of commutation relations given by (2.122), (2.123)
and (2.124) can be viewed as a Lorentz algebra in 5 dimensions. This is achieved by
extending the index range to 0, 1, 2, 3, 4 and putting Im4 = −I4m = αm and defining
g44 = −1 and gm4 = 0 for m ̸= 4. With Bhabha’s original metric gmn with signature
(+ − −−), this yields a new metric with signature (+ − − − −) and an SO(1, 4) Lorentz
algebra.75 This means that the known representation theory of the five-dimensional
Lorentz group can be used for the αm matrices.

Such representations can be labelled by the numbers λ1 and λ2 with λ1 ≥ λ2 ≥ 0,
both integer or half-integer. These representations are closely related to the finite di-
mensional representations D(k, l) of the four-dimensional Lorentz group, as might be
expected. The theory is outlined in Sections 2–4 in Bhabha’s paper. Here, wewill state
the multimass/multispin nature of the equations. A particle of integral spin λ = λ1
has 2λ possible values for the rest mass, and a particle of half-integral spin has 2λ + 1
possible values for the rest mass according to

Integral spin: ± χ, ±χ/2, ±χ/3, . . . , ±χ/λ (2.127)
Half-integral spin: ± 2χ, ±2χ/3, ±2χ/5, . . . , ±χ/λ (2.128)

One may notice a close resemblance to the Majorana spectrum of equation (2.50). The
difference is only that the Majorana spectrum is infinite, whereas the Bhabha spec-
trum is finite. The hope, at the time of Bhabha, that such a spectrummight have phe-
nomenological applications, never materialized.

The implication of this result is that the principle A can only be satisfied for spin
1/2 and 1. Only in these two cases, can a single mass Klein–Gordon equation be de-
rived form the linear wave equation. Therefore, the two principles A and B cannot be
reconciled for higher spin.

74 Approaches similar to Bhabha’s was researched by J. K. Lubanski and by B. S. Madhava Rao, re-
ferred to by Bhabha.
75 Startingwith signature (−+++), onemust choose c = −1 to get SO(1, 4), otherwise one gets SO(2, 3).
Actually, SO(2, 3) also results with the choice c = −1 for metric signature + − −−.



2.4 The 1940s and early 1950s | 59

2.4.4 Directions in mid century: where we have been and where we are heading

Anyone entering the literature on relativistic wave equations will most likely be struck
by how extensive it is, a fact remarked on by Bargmann and Wigner in 1947.76 On sec-
ond thoughts, this is however not so strange, given that wave equations was the theo-
retical tool for understanding elementary particles in those years. The readermayben-
efit from a coarse top-down view before reading on. If we allow ourselves – anachro-
nistically for sure – to refer everything treated here to “higher spin field theory” one
could discern one period, fromDirac and Fierz–Pauli in the late 1930s up to Bhabha in
the late 1940s, thatmay be designated the “wave equation period”. It roughly split into
two branches, one concerned with Lagrangians with auxiliary fields capable to inte-
grate electromagnetic and gravitational interactions, and another one concernedwith
Dirac-like wave-equations without subsidiary conditions. This second branch ended
with the Bhabha papers of the 1940s, when the subject was more or less completely
clarified. Then there is a second period from the early 1960s up to the Fronsdal 1978
paper, that could be designated the “Lagrangian period”. As such, it can be seen as a
continuation of the first branch of the first period.

At the end of the 1970s, the Yang–Mills Standard Model was established as the
phenomenological model of elementary particles and forces. One may perhaps say
that there was no need for new wave equations any longer, and the ones already re-
searched were anyway sufficient for any conceivable phenomenological need, if such
a need would arise. Our particular direction, “higher spin gauge field theory”, mate-
rialized at this time with the C. Fronsdal and J. Fang papers.

When it comes to the wave equations themselves, one can discern three ap-
proaches. First, one that is “postulational” starting from a given wave equation type
such as the Bhabha equation (inspired and generalized from Dirac, also studied by
Majorana), that is rather easily motivated since it has a quite obvious relativistic in-
variant form. Second, there is the “Bargmann–Wigner” approach that starts from the
representations of the Poincaré group and sets up wave equations as realizations of
the abstract representations. Third, there is the “Weinberg” approach of the early
1960s that starts from the physical states of given mass and spin that may appear
in scattering experiments and derives the wave equations from there. The Weinberg
approach is actually an elaboration of the Bargmann–Wigner approach.

2.4.5 H. Umezawa’s general theory of wave equations

Hiroomi Umezawa, in his 1956 textbook on quantum field theory [83], has an exten-
sivediscussionof relativisticwave equations, extendingover four chapters. The theory

76 Quite a few authors writing at the time and later make similar remarks.
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is quite general, and subsumes much of what lay before and came later.77 The book
starts with a historical introductory chapter that is still interesting to read today, as
it gives a view of the thinking of those days. Those were days before the explosion of
new particle discoveries of the late 1950s and the 1960s. Days when it was not known
if the, newly sorted out, renormalized quantum field theory of the electromagnetic in-
teraction, could be extended to the nuclear forces. Second quantized relativistic wave
equations, for particles of various mass, spin and other characteristics, were an im-
portant theoretical tool for calculations aimed at comparison with experiment.

Let us briefly review the Umezawa text. Umezawa considers78 wave functions ψj
with n components and writes a relativistic wave equation as

Dij(𝜕)ψj(x) = 0 (2.129)

with the matrix indices i, j, . . . as yet unspecified. It is not explicitly stated in the book,
but the matrix Dij(𝜕) may be of finite order in partial derivatives 𝜕μ. Requiring the
Klein–Gordon equation to hold then prompts the existence of another “derivation op-
erator” (Umezawa’s designation) d(𝜕) with the property

dij(𝜕)Djk(𝜕) = (◻ −m
2)δik (2.130)

For the d(𝜕) operator, Umezawa gives an ansatz of finite order b in 𝜕μ:

dij(𝜕) = αij + α
μ
ij𝜕μ + ⋅ ⋅ ⋅ + α

μ1 ...μb
ij 𝜕μ1 . . . 𝜕μb (2.131)

Turning to linear wave equations, the most general form is again given by

D(𝜕) = ρμ𝜕μ +mβ (2.132)

with matrices ρμ and β. An ansatz of order b = 1 for the operator d(𝜕) is

d(𝜕) = α + αμ𝜕μ (2.133)

with matrices α and αμ. One immediate consequence of the Klein–Gordon condition
(2.130) ismαβ = −m2I, fromwhich we see that β is nonsingular and has an inverse β−1.
Multiplying D(𝜕) with β−1 and defining new matrices βμ = β−1ρμ yields the new wave
equation

(βμ𝜕μ +m)ψ = 0 (2.134)

77 Umezawa is, in the book, careful with original references, but there are no references cited for
the general equations. One may assume that the synthesis given in Chapter II of his book is his own
version of theory that at this time was considered “well known”. It could also be noted that there is no
reference to the Majorana 1932 paper.
78 We depart somewhat from the notation used by Umezawa.
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The Klein–Gordon condition now reads

(α + αμ𝜕μ)(β
ν𝜕ν +m) = (◻ −m

2)I (2.135)

from which we get the three equations

mα = −m2I αβμ +mαμ = 0 αμβν + ανβμ = 2ημν (2.136)

Thus α = −mI and αμ = βμ. All in all, we now have

D(𝜕) = βν𝜕ν +m and d(𝜕) = βν𝜕ν −m with βμβν + βνβμ = 2ημν (2.137)

The Dirac equation is of course a special case of these equations.
Umezawa then devotes a chapter to the Dirac equation, which he, at the end, re-

formulates in terms of two-component spinors. In the following Chapter IV, arbitrary
spin wave equations are studied within the formalism of Dirac–Fierz–Pauli as well
as Rarita–Schwinger. In this chapter, Umezawa discusses massless gauge invariant
wave equations in the gauge where the divergence and trace of the gauge fields are
set to zero. The system retains an invariance under gauge transformations with pa-
rameters subject to the same conditions as the fields. In modern parlance, the trans-
formations are really re-gauge transformations, and the gauge is called TT-gauge (see
Section 5.1.1).79

In Chapter V on wave equations, Umezawa returns to the general case of Chap-
ter II and develops the theory that overlapswith the theory of Bhabha. Umezawa starts
from the linear equation (2.134), and using Lorentz invariance, arrives at precisely the
equations (2.122) and (2.123) of Bhabha (with βmatrices instead of αmatrices). He then
notes that these equations are not sufficient to completely determine the algebra of the
βmatrices.80 They only show that the βmatrices may transform in reducible finite di-
mensional representations of the Lorentz group, these being possible to decompose
into irreducible representations of the three-dimensional rotation group. In effect, the
particles described by the wave equation are multispin.

Umezawa then considers two cases, CASE Iwhere thewave functions are required to
satisfy the Klein–Gordon equation, and CASE IIwhere a multimass Klein–Gordon equa-
tion

n
∏
s=1
(◻ −m2

s)ψ = 0 (2.138)

should be derivable from the linear wave equation (βμ𝜕μ + m)ψ = 0. He then consid-
ers an example of this case which is precisely the Bhabha theory with the β matrices
satisfying the equation [βμ, βν] = Sμν with Sμν the infinitesimal Lorentz generators.

79 The equations indeed correspond to TT gauge-fixed Fronsdal equations, although the Fronsdal
equations were not known at this time.
80 As noted by Bhabha, see our Section 2.4.3.
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Umezawa’s CASE I leads to an inverse wave operator of the form (2.131) with an ex-
plicit solution for theαμ1 ...μj matrices in terms of sumsof products ofmatrices βμi . These
matrices, in their turn, satisfy higher order equations of the form

∑
perm.

βμ1 . . . βμb−1[δμbμb+1 − βμbβμb+1] = 0 (2.139)

where b is the border of derivatives in the inverse wave operator d(𝜕).
But enough is enough, and I choose to stop here, leaving the reader to peruse the

Umezawa theory at her own leisure. In this connection, a paper by Harish-Chandra
[84], to which Umezawa refers, is interesting. Harish-Chandra investigates properties
of the βμ matrices in linear wave equations of the Bhabha type in relation to the ques-
tion of subsidiary conditions and the demand of a singlemass second-order equation.
We will briefly return to this question in connection to C. Fronsdal’s thesis paper to be
discussed below in Section 2.5.1.

2.4.6 Last words on covariant wave equations

During writing the above notes, I have not visited the whole network of research into
covariant wave equations, rather I have stopped at some of the major stations. As oth-
ers have noted, Bhabha’s work can be seen as a terminus for the Dirac-type trains. As
regards Bhabha’s work, a follow-up paper [85] from 1949 can be seen as “rethinking”
the theory in quantum field theory terms. There are also a series of papers from the
mid-1970s by R. A. Krajcik and M.M. Nieto, investigating the Bhabha theory. The ref-
erences can be found in the overview paper [56] that also recounts the history of this
kind of wave equation. As regards other contributions, there are papers by Harish-
Chandra, who with his more mathematical inclination, supplied results and proofs
to the general theory. One such paper is [84] to which we have already referred. The
reader may note the following stations [67, 86–91], that I did not stop at. I also de-
cided to pass by F. J. Belinfante’s “undors” (“unda” = wave) [92, 66, 65], as stopping
there might have lured me to take a look at the spin-statistics theorem. Undors figure
implicitly in Wigner’s 1947 paper (see Section 2.3.2). There are plenty of other stops,
directions can be found in [23] and [20].

2.5 The search for Lagrangians for massive fields

In the 1960s, some researchers took up the problem of constructing wave equations
and Lagrangians for free higher spin fields and their interactions. The motivation was
the higher spin resonances discovered in the new high energy accelerator laborato-
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ries. Many new particles had been discovered starting already in the 1950s,81 but their
masses and spins were uncertain at first. It anyway prompted a few authors in the
mid-1950s – S. J. Gupta [71], P. A. Moldauer and K.M. Case [72] and C. Fronsdal [93] –
to return to the Dirac–Fierz–Pauli theory, in particular to the case of spin 3/2.

A basic problem for the free theory is the mismatch between the number of physi-
cal states for massive spin s particles, as stipulated by the irreducible representations
of the Poincaré group, and the number of components of covariantly indexed fields
that one would like to use to describe them in field theory. Already beyond spin 1, this
problem becomes nontrivial. One gets a two-way problem of projecting out physical
states from the covariant wave fields, and the inverse problem of building covariant
wave fields from one-particle states.

It may be thought that the problem of formulating arbitrary spin wave equations
and Lagrangians was already solved by the Dirac–Fierz–Pauli theory of the early
1930s, but as it turned out, much more had to be done and could be done, both the-
oretically and in relation to applying the theory to high energy particle processes.
From the mid-1950s on, the problem became motivated by phenomenology, and not
just by curiosity. As we will see, there was a drive from the two-component spinor
formalism of Dirac–Fierz–Pauli coupled equations to, a perhaps more easily handled
and conventional, tensor and tensor-spinor formalism. No doubt, the severe minimal
coupling problems inherent in the DFP theory, with its need for ever more intricate
choices of auxiliary fields and Lagrangian terms, as the spin increased, was a major
motivation.

Counting massive states

A fully symmetric tensor field φμ1 ...μs has (
s+3
3 ) components in four space-time dimensions, whereas a

massive spin s particle has 2s + 1 states. The field satisfies the Klein–Gordon field equation

(◻ −m2)φμ1 ...μs = 0 (2.140)

The number of field components is brought down by requiring the field to be traceless and divergence-
free, that is by imposing the conditions

φ󸀠μ3 ...μs = 0 (2.141)

𝜕 ⋅ φμ2 ...μs = 0 (2.142)

In the case of half-integer spin, with spinor-tensor fields, the equations are replaced by the “Rarita–
Schwinger” equations (2.112).

The counting of field components, in the integer spin case, becomes

(
s + 3
3
) − (

s + 1
3
) − ((

s + 2
3
) − (

s
3
)) = 2s + 1 (2.143)

81 Thediscovery of theneutral pion in 1950 at theBerkeley synchrocyclotronwas thefirst newparticle
to be discovered by an accelerator laboratory. See [5], Chapter 19(b).
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where we have taken into account that the trace of the divergencemust not be counted twice. The con-
dition on the divergence is motivated by another consideration: the necessity of positive energy [47].
Consider a plane wave with momentum kμ satisfying k2 = −m2. Transform to the rest system where
kμ = (m,0,0,0). The equation (2.142) then impliesmφ0μ2 ...μs=0. This means that all field components
with at least one time-like index are zero. With only space-like indices, the energy will be positive.
Again counting the number of field components (now symmetric traceless tensors in three space di-
mensions) yields 2s + 1.

2.5.1 Fronsdal’s thesis paper

One paper that can be said tomark the beginnings of the “modern” Lagrangian theory
of higher spin, is Fronsdal’s thesis paper [93] published in 1958. It takes its motivation
partly from the newly discovered higher spin massive resonances in high energy col-
lisions, in particular the hyperons Λ and Σ. At the time, the spin of the particles were
still uncertain. Another motivation was a wish to further simplify the formalism of
the Fierz–Pauli theory and to develop the structure of arbitrary spin theory. Fronsdal
writes that, in spite of simplificationsbyRarita–Schwinger,Gupta andMoldauer-Case:
“[...] calculations are very lengthy [...]”. The aim of the paper is “[...] to present a new
simple formulation of the Fierz–Pauli theory, and to analyze in some detail the struc-
ture of this theory for arbitrary spin.”.

The paper is situated within Wigner’s Poincaré invariant theory and works from
the tensor-spinor formulation, rather than the Dirac–Fierz–Pauli two-component lan-
guage. It is noted that the Klein–Gordon equation for each component of the wave
function follows from the first invariant of the Poincaré group p2 = −m2, while the
second invariant S2 = s(s + 1) requires that the projections on lower spin values van-
ish. This yields the conditions of symmetry, vanishing divergence and tracelessness.82

Fronsdal therefore introduces projection operators to project out physical com-
ponents from symmetric tensor fields subject to the subsidiary conditions (2.141) and
(2.142), and correspondingly for half-integer spin fields. Denoting the wave equation
with ηφ = 0 and the subsidiary conditions collectively with ηiφ = 0, Fronsdal requires
a projection operator Θ to obey

ηi(Θφ) = 0
(ηiφ = 0) → (φ = Θφ)

(ηφ = 0) → (ηΘφ = 0) (2.144)

Such projection operators are constructed but they turn out to be nonlocal in that they
involved the inverse of thed’Alembertianoperatorp2 (thiswill be illustrated in thenext
Section 2.5.2).

82 Compare to the Wigner approach reviewed in Section 2.3.4.
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After developing the general theory of the projection operators, Fronsdal contin-
ues with a discussion of the Fierz–Pauli problem with electromagnetic interaction of
higher spin particles.Writing thewave equations and Lagrangianswith projection op-
erators simplifies the deduction of the subsidiary conditions, but creates a new prob-
lemwith the nonlocal nature of the projectors. The problem becomes one of replacing
such nonlocal equations with equations linear in momenta. The spin 3/2 case is then
treated in detail. Themethod amounts to moving the terms involving 1/p2 into an aux-
iliary field that can subsequently be eliminated. For instance, the theory of Moldauer
and Case (referenced in the paper) and the Rarita–Schwinger spin 3/2 theories, are
obtained as special cases.

After this (in Section 4 of the paper), Fronsdal turns to the general case of arbitrary
spin. He starts from a Dirac-like first-order equation

(pμαμ + imβ)φ = 0 with α†μ = αμ and β† = β (2.145)

The wave function transforms according to some reducible representation of the
Lorentz group. To get an irreducible representation, it is required that the wave equa-
tion is equivalent to the projected equations

(1 − Θ)φ = 0 and (p + im)Θφ = 0 where p = pμαμ (2.146)

with the wave equation invariant under reflection (chirality). From these require-
ments, Fronsdal then derives commutation relations for the matrices αμ and β. The
equations are given in terms of a matrix Γμ = β−1αμ. There is a set of equations, but
the interesting one can be written as

(Γμp
μ − p)(Γνp

ν)n̄ = 0 (2.147)

Here, n̄ is the largest number of fields of given spin that occur in the reducible unpro-
jected wave function φ. Similar, higher order, equations had been derived by Harish-
Chandra and by Umezawa and Visconti from the requirement of the wave function to
satisfy a single mass Klein–Gordon equations (see our Section 2.4.5 above). Fronsdal
derives it from the requirement of the solutions of the wave equation to describe a
unique spin. The Fronsdal paper ends with three section on applications of the meth-
ods.

2.5.2 S-J. Chang and L. P. S. Singh – C. R. Hagen

Then in 1967, S-J. Chang built upon the Fronsdal theory and proceeded to resolve the
nonlocalities through the introduction of auxiliary fields [94]. This interplay between
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nonlocalities and auxiliary fields is a phenomenon that is common in higher spin the-
ory.83 Chang carried through the program up to and including spin 4. The Chang pro-
cedure is to some extent a return to the Fierz–Pauli approachwith auxiliary fields, but
now in a tensor formulation.

The introduction to the Chang paper is quite interesting, as it clarifies the respec-
tive advantages and disadvantages of the, at that time, prevailing approaches to arbi-
trary spin theory.

The first approach emphasizes the transformation properties of field variables under the homo-
geneous Lorentz group. [...] The second approach follows that of Pauli and Fierz and demands
that all field equations and subsidiary conditions should be derived from a generalized action
principle.

For the first approach, Chang cites work by S. Weinberg [95, 96], D. L. Pursey [97] and
W.K. Tung [98, 99]. We now recognize this way of doing quantum field theory as the
one advocated and elaborated in great detail in the Weinberg quantum field theory
textbook [18]. Parts of this approach will be reviewed in our Sections 3.3 and 3.4. For
historical remarks, see Section 2.6.

As to the procedure actually employed by Chang, it is reminiscent of the deliber-
ations of Fronsdal, but the objective is different. Fronsdal’s was to show equivalence
between different formulations, Chang’s is to replace the need for projectors with aux-
iliary fields. Although the procedure as such seems a bit ad hoc, it does throw some
light on the origin of the auxiliary fields.

What Chang did: the spin 2 example

Following Fronsdal, Chang symbolized the conditions φ󸀠μ3 ...μs = 0 and 𝜕 ⋅ φμ2 ...μs = 0 by writing ηφ =
0. Fronsdal actually included index symmetry in the conditions, but that is not necessary. He then
introduces an orthogonal projection operator Θ = Θ2 with the properties

ηΘφ = 0

ηφ = 0⇒ φ = Θφ (2.148)

For the almost trivial case of a vector field, Chang quotes the spin 0 and spin 1 projectors as Θμν (0) =
◻−1𝜕μ𝜕ν and Θμν (1) = ημν − ◻−1𝜕μ𝜕ν = Θμν . Indeed, for the spin 1 part φμ(1) = Θμν (1)φν of the vector
field, we immediately get 𝜕 ⋅ φ(1) = 0. The projector Θ(S) that projects out a spin S state is then given
in terms of Θ(1).

Chang then works through the spin 2 case. The nonlocal field equation is taken to be

m2φμν = ◻[Θ(2)φ]μν (2.149)

83 It resurfaced again for higher spin gauge fields with the work of D. Francia and S. Sagnotti in the
early 2000s. See Section 5.3.2, Chapter 5.
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for a symmetric and traceless field φμν . The spin 2 projector is given by

Θμν ,λσ =
1
2
[ΘμλΘνσ + ΘμσΘνλ −

2
3
ΘμνΘλσ] (2.150)

in terms of the spin 1 projector. It may seem a bit inconsequential to take φμν as traceless, as the
projector is supposed to project out the traceless part. The same can be said about the field equation
(2.149). In any way, one finds that [Θ(2)φ]μν is traceless and divergence-free no matter whether φμν
itself is traceless or not. The field equation (2.149) works out to

m2φμν = ◻φμν − (𝜕μ𝜕 ⋅ φν + 𝜕ν𝜕 ⋅ φμ) −
1
2
ημν𝜕 ⋅ 𝜕 ⋅ φ + (𝜕μ𝜕ν −

1
4
ημν◻)Ψ (2.151)

where Ψ is the nonlocal field Ψ = 2
3◻
−1𝜕 ⋅ 𝜕 ⋅φ. Next, Chang wants to reinterpret Ψ as an auxiliary field,

whose field equation should imply Ψ = 0 and 𝜕 ⋅ 𝜕 ⋅ φ = 0. In order to do that, he contracts the field
equation (2.151) with 𝜕μ𝜕ν and gets

(◻ + 2m2)𝜕 ⋅ 𝜕 ⋅ φ = 3
2
◻2Ψ (2.152)

Finally, if Ψ is chosen to satisfy the equation

𝜕 ⋅ 𝜕 ⋅ φ = 3
2
(◻ − 2m2)Ψ (2.153)

we get −6m2Ψ = 0 and consequently also 𝜕 ⋅ 𝜕 ⋅ φ = 0. Chang proceeds with writing an action for the
system, and then goes on to some further reworkings of the system.

Chang’s paper contains higher spin Lagrange functions for spin ≤ 4 constructed along
these lines. One cannot escape the feeling that the procedure is quite cumbersome,
and it soonbecame superseded.Once it is clear that one cannot escapeauxiliaryfields,
they can be introducedmuchmore systematically without prior recourse to the Frons-
dal projectors. It should also be said that the Chang paper treats quantization and
Greens functions.

The general theory for massive spin s was then constructed by L. P. S. Singh and
C. R. Hagenwithout any recourse to projection operators [100]. Referring to the Chang
paper, these authors write that Chang’s method “[...] does not yield a closed form for
the Lagrangian of a general-spin field.”.84 The main body of the paper is taken up by
the construction of the Lagrangians, but the authors also discuss quantization and
electromagnetic interactions. They begin by analyzing the field equations.

The spin 1 theory is almost trivial. The wave equation (the Proca equation) reads

𝜕μ(𝜕μϕν − 𝜕νϕμ) −m
2ϕν = 0 (2.154)

84 I have not checked this, and seen no other reference to it. It is not clear to me whether the state-
ment means that the Chang method cannot be extended beyond spin 4, or if it means that no general
formulas can be written.
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Contracting with 𝜕ν yields 𝜕νϕν = 0 and the wave equation reduces to the Klein–
Gordon equation. Of course, the mass m must be nonzero. For spin 2, a new phe-
nomenon appears.

A general wave equation for a symmetric traceless field ϕμν takes the form

(◻ −m2)ϕμν − a(𝜕μ𝜕 ⋅ ϕν + 𝜕ν𝜕 ⋅ ϕμ −
1
2
ημν𝜕 ⋅ 𝜕 ⋅ ϕ) = 0 (2.155)

where a is a constant to be determined. All terms are symmetric and traceless as is
appropriate if this is to be an Euler–Lagrange equation. Contracting with 𝜕ν yields

m2𝜕 ⋅ ϕμ = ◻(1 − a)𝜕 ⋅ ϕμ −
1
2
a𝜕μ𝜕 ⋅ 𝜕 ⋅ ϕ (2.156)

The best one can do here is to choose a = 1, but 𝜕 ⋅ 𝜕 ⋅ ϕ = 0 cannot be deduced from
(2.154). To impose this condition, Singh and Hagen introduced a scalar auxiliary field
ϕ(0) satisfying its own wave equation, as well as modifying (2.154). The only way to
couple the scalar is through a Lagrangian term 𝜕 ⋅ ϕμ𝜕

μϕ(0). The new Euler–Lagrange
equation must then take the following form with new parameters b and c to be deter-
mined:

(◻ −m2)ϕμν − (𝜕(μ𝜕 ⋅ ϕν) −
1
2
ημν𝜕 ⋅ 𝜕 ⋅ ϕ) − b(𝜕μ𝜕νϕ

(0) −
1
4
ημνϕ
(0)) = 0 (2.157)

(◻ − cm2)ϕ(0) − 𝜕 ⋅ 𝜕 ⋅ ϕ = 0 (2.158)

Then contracting the first equation with 𝜕μ𝜕ν and using the second equation for sub-
stituting 𝜕 ⋅ 𝜕 ⋅ ϕ yields

cm2ϕ(0) = 1
4
(2 + 3b)◻◻ϕ(0) − ( 1

2
c − 1)ϕ(0) (2.159)

Choosing b = −2/3 and c = 2 then gives ϕ(0) = 0. This then, through equation (2.158),
implies the desired result 𝜕 ⋅ 𝜕 ⋅ ϕ = 0.

Singh and Hagen performed the corresponding analysis for massive spin 3 field
ϕ(3)with the result that auxiliary fieldsϕ(1) andϕ(0)were needed in order to ensure the
conditions (2.141) and (2.142) aswell as the vanishingof the auxiliaryfields themselves.
A general pattern then emerged. To construct field equations for a massive spin s field
ϕ(s) that are equivalent to the Klein–Gordon equation with the constraints (2.141) and
(2.142), that is, are traceless and divergence-free:

One must successively obtain ϕ(s,λ) = 0 for λ = s, s − 1, s − 2, . . . , 2, where

ϕ(s,λ)μλ+1 ...μs = 𝜕μ1 . . . 𝜕μλϕ(s)μ1 ...μs (2.160)

is a symmetric traceless tensor of rank s−λ. At each stage [of the derivation] an auxiliary field – a
symmetric, traceless tensor of the same rank asϕ(s,λ) – is needed. Thus one introduces symmetric,
traceless tensors of rank 0, 1, 2, . . . , s − 2. These will be labeled ϕ(0),ϕ(2), . . . ,ϕ(s−2), respectively,
and correspond to the representations D( 12 j,

1
2 j), j = 0, 1, 2, . . . , s − 2, of the Lorentz group. Thus

the second-order theory requires (s + 1)2 + 1
6 s(s − 1)(2s − 1) field components.
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Singh and Hagen then writes down the most general second-order quadratic La-
grangianwith undetermined coefficients involving these fields, and compute the field
equations. The coefficients are solved for in steps so as to yield the constraints (2.160)
and set the auxiliary fields to zero. In this way, a Lagrangian is obtained that gives the
Klein–Gordon equation for a symmetric traceless spin s field free of divergence. The
auxiliary fields themselves vanish– in the free field theory –due to the field equations.
The calculations are quite lengthy. The need for the spectrum ϕ(0),ϕ(2), . . . ,ϕ(s−2) of
auxiliary fields was actually suggested by Fierz and Pauli in [101]. The authors also
discuss the need for a first-order formalism “[...] in order that electromagnetic inter-
actions can be introduced in an unambiguous fashion. For this purpose, more fields
have to be introduced.”.

2.6 Feynman rules for any spin

Let us turn to the approach referred to by Chang. “Feynman rules for any spin” is the
title of a 1963 paper by S. Weinberg, the first in a series of three papers. Even though
it has had limited influence on the technical development involved in what became
higher spin field theory, one of its off-shots – and now we are referring to massless
fields – the Weinberg “no long-range forces” result [7], did indeed become one of the
defining points of the research program. Despite the fact that higher spin gauge fields
were ruled out as regards having any long range effects reminiscent of the spin 1 and
spin 2 gauge fields, researchers have had to argue that they are interesting to study
nevertheless.

Historically, it is interesting to dwell a bit on Weinberg’s motivations behind the
approach, as well as the basic assumptions behind it. The actual theory itself will be
partly reviewed in our Chapter 3 where focus will be moved to massless fields. As
already noted, the approach was at the time an alternative to the Lagrangian-field
equation-canonical approach.

2.6.1 The Weinberg papers

We quote from the very first lines of Weinberg’s paper [95].

This article will develop the relativistic theory of higher spin, from a point of view midway be-
tween that of classical Lagrangian field theories and the more recent S-matrix approach. Our
chief aim is to present the explicit Feynman rules for perturbation calculations, in a formalism
that varies as little as possible from one spin to another.

Then Weinberg states the assumptions behind the approach.85

85 We stay close to Weinberg’s own wording, but not exactly so.
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The Weinberg assumptions

(1) Perturbation theory. The S-matrix can be calculated from Dyson’s formula

S =
∞

∑
n=0

(−i)n

n!

∞

∫
−∞

dt1 . . . tnT {H
󸀠(t1) . . .H

󸀠(tn)} (2.161)

where the Hamiltonian H is split into a free-particle part H0 and an interaction part H󸀠 and where
the interaction H󸀠 is defined in the interaction representation H󸀠(t) = exp(iH0t)H󸀠 exp(−iH0t).

(2) Lorentz invariance. The S-matrix is invariant under proper orthochronous Lorentz transforma-
tions. Weinberg writes that a “sufficient and probably necessary condition” for the invariance of
S is: H󸀠(t) = ∫d3xℋ(x, t) where
–ℋ(x) is a scalar. To every inhomogeneous Lorentz transformations xμ → Λμνx

ν + aν there cor-
responds a unitary operator U[Λ, a] such that

U[Λ, a]ℋ(x)U−1[Λ, a] = ℋ(Λx + a) (2.162)

– For x − y space-like: [ℋ(x),ℋ(y)] = 0.
(3) Particle interpretation. ℋ(x) is constructed out of creation and annihilation operators for the

free particles described by H0. Weinberg then writes that “the only known way of making sure”
that such anℋ(x) satisfy the restrictions under item (2) is to form it as a function of sets of fields
ψn(x)which are linear combinations of the creation and annihilation operatorswith the following
properties:
– The fields transforms according to

U[Λ, a]ψn(x)U
−1[Λ, a] = ∑

m
Dnm(Λ

−1)ψm(Λx + a) (2.163)

where Dnm is some representation of Λ. This makes it possible to satisfy Lorentz invariance by
coupling the fields ψn(x) in various invariant combinations.
– For x − y space-like [ψn(x),ψm(y)]± = 0. This guarantees [ℋ(x),ℋ(y)] = 0.

The reader of the first volume of the Weinberg textbooks on quantum field theory [18]
no doubt recognizes these items, and indeed, Chapters 2–5 of that book develops this
approach in great detail. The rest of the paper itself, is a detailed implementation of
the assumptions, resulting in explicit Feynman rules. As to the choice of interactions,
Weinbergwrites that the choice of an interactionHamiltonian is nomore difficult than
the choice of an interaction Lagrangian in the canonical approach.

Some further aspects of the approach are interesting to note. In the Weinberg pa-
per, there is no explicit relation with covariant field equations, as that is not the aim
of the work. Such relations are, however, explored in papers by D. L. Pursey and W-K.
Tung (referred to in the Chang paper).

Weinberg instead constructs physical 2j + 1 fields (and 2(2j + 1) component fields
for parity conserving interactions) that only obey the Klein–Gordon equation. Noth-
ing else is needed since there are no extra components. Weinberg writes “[...] any field
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equation except [the Klein–Gordon equation] is nothing but a confession that the field
contains superfluous components.”. The asymptotic states are “states”, or “elemen-
tary particles”, represented by unitary representations of the inhomogeneous Lorentz
group.86 This means that the states are labelled by – apart frommass and momenta –
spin labels of the ordinary three-dimensional rotation group.

In the absence of manifestly covariant fields, Weinberg constructs invariant inter-
actions by coupling fields using angular momentum addition rules. This approach is
fully developed in the third paper in the series [102].

In the second paper [96], Weinberg treats the massless case. From a higher spin
perspective, this is a very interesting paper and we will review its technical details in
several sections in the next chapter. For here, a quote will suffice.

For massive particles of spin j, we have already seen in [our [95]] that a field ψ(+) can be con-
structed out of the 2j + 1 annihilation operators a(p, σ), which will satisfy the transformation re-
quirements [Poincaré transformations], for any representation (A,B) that “contains” j, i. e., such
that

j = A + B or A + B − 1 or ⋅ ⋅ ⋅ or |A − B|.

[A spin-one field could be a four-vector ( 12 ,
1
2 ), a tensor (1,0) or (0, 1), etc.] We might expect the

same to be true for mass zero, but this is not the case [emphasis of the original]. We will prove [...]
that a massless particle operator a(p, σ) of helicity λ can only be used to construct fields which
transform according to representations (A,B) such that

B − A = λ.

[...] at least until we broaden our notion of what we mean by a Lorentz transformation. It will be
seen that the restriction [removed formula number] arises because of the non-semisimple struc-
ture of the little group.

The cryptic comment “at least until we broaden our notion of what we mean by a
Lorentz transformation.” refer to gauge transformations.87Wewill prove theWeinberg
restriction B − A = λ in Section 3.5.6.

2.6.2 The D. L. Pursey andW-K. Tung papers

There are quite few papers from the mid-1960s treating field theory using techniques
similar to the ones employed in the Weinberg papers. The backdrop is the need to do
efficient calculations to interpret experimental scattering data in high energy particle

86 In those days, elementary particles were often taken as theWigner representations of the Poincaré
group.
87 In the light-cone gauge, the interplay between Lorentz transformations and gauge transformations
is very concrete. See Section 6.1.5.
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reactions.88 Here, we will just briefly mention papers by D. L. Pursey [97] and W-K.
Tung [98, 99], from the mid-1960s. Both authors study the relation between canoni-
cal versus covariant free particle wave equations. The basic formalism of these papers
is similar to Weinberg’s in that they start from wave functions corresponding to the
Wigner representations of the Poincaré group. Both papers contain quite interesting
discussions, in their respective introductions, of the general situation regarding rela-
tivistic wave equations and the problems that were at this time well known.

The papers differ (apart from details of notation) in – at least one respect – that is
interesting from thehigher spin perspective. ThePursey paper aims at giving amethod
by which all possible manifestly covariant wave equations, together with subsidiary
constraints, for particles with given spin andmass can be constructed, at least in prin-
ciple. The Tung papers, on the other hand, aim at avoiding the need for subsidiary
constraints for the covariant equations. In the second paper [99], it is shown that this
is only possible for spin less than or equal to one.89

2.7 Gupta on gravitation and electromagnetism

Suraj N. Gupta worked on the quantization of gravity in the early 1950s, en route in-
venting, independently of Bleuler, what became known as the Gupta–Bleuler indefi-
nite metric quantization method for gauge fields [103, 104]. In a first paper [103] from
1952, Gupta quantized linearized Einstein gravity, and found that the field excitations
– gravitons – had spin 2 with two independent spin states (i. e., helicities) with axis
parallel or antiparallel to the motion of the particles.90

Then, in 1954, Gupta wrote an article comparing gravitation and electromagne-
tism [112]. In this paper, Gupta rewrites the Einstein nonlinear field equations

Rμν − 1
2
Rgμν = − 1

2
κ2Tμν (2.164)

88 We may have occasion to return to this topic in Volume 2 of the present work in connection with
higher spin interactions.
89 The first Tung paper [98], written as a preliminary report, this restriction to low spin is not found.
The author, in the second paper, explains this as due to not having considered CPT in detail. I have
not checked the details myself.
90 In a follow up article, he studied the full nonlinear theory. As for quantum gravity, it is an enor-
mous subject. Several authors, among them L. Rosenfeld, P. G. Bergmann and Dirac, approached the
problem in the early days. This work became subsumed under Bryce DeWitt’s comprehensive set of
three long articles [105–107]. The book [108] reviewsmuch of the subsequent development of the sub-
ject. For a history of quantum gravity, see for instance [109], Appendix B. The proceedings from the
two Oxford Symposia on Quantum Gravity in 1974 and 1980 respectively, give an interesting flavor of
the subject as it stood by the end of the 1970s and before string theory became a dominant paradigm
[110, 111].
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where Tμν is the energy-momentum tensor of matter, into the form

ηαβ 𝜕
2gμν

𝜕xα𝜕xβ
= κ2Θμν (2.165)

𝜕gμν

𝜕xν
= 0 (2.166)

withΘμν theBelinfante improved energy-momentum tensor of the combined systemof
matter and gravity. The second equation is a coordinate condition. As Gupta remarks,
this form of the gravitational equations are not manifestly covariant (since neither η
norΘare general coordinate tensors), still they canbewritten in this form in any frame
of reference. Gupta stresses that in equation (2.165), the left-hand side is linear in gμν,
while all the nonlinearities reside in Θμν. After these equations, Gupta writes:

Further, we can regard the flat space as the zeroth-order approximation to the Riemannian space.
It can thenbe shown [Gupta reference to our [103]] that the field quantities, occurring in Einstein’s
theory, can be expressed as infinite series in the flat space.

This, presumably, refers to linearizing the field equation (2.165), because then Gupta
continues:

Therefore, keeping Einstein’s theory mathematically unchanged, we can pass over from the Rie-
mann space to the flat space. After passing over to the flat space, the general covariance of the
theory is no longer apparent, but the theory still remains manifestly Lorentz covariant. In this
way, Einstein’s theory can also be regarded as a theory of gravitation in flat space with a La-
grangian density containing an infinite number of terms.

This passagemayverywellmark a shift in perspective to regarding gravity not somuch
as a inherently geometrical theory, but rather as a highly nonlinear field theory in
Minkowski space-time, much like the paradigm of particle physics. Gupta had in fact
adopted this point of view of linearizing gravity in the 1952 paper on quantization. But
now focus shifted from linearizing the nonlinear theory to constructing the nonlinear
theory from the linear spin 2 field equations.91 In the very same year, 1954, the first
nonlinear spin 1 theory was constructed by Yang and Mills [114].

This has lead to two distinct approaches to gravity. One approach – the deforma-
tion theoretic – trying to build up the field theory iteratively, order by order, starting
with the free theory and successively adding interactions as well as corrections to the
symmetries. The other approach, gauge theoretic, was pioneered by Utyiama in a pa-
per [115] where the Yang–Mills procedure was applied to the Lorentz group (see Sec-
tion 2.9.2).

91 Already Fierz and Pauli discuss the massless spin 2 field equations and find that they agree with
the linearized Einstein equations in the absence ofmatter. Furthermore, N. Rosen in a paper from 1940
[113], considers a version of general relativity in flat space, but according to J. Fang and C. Fronsdal in
[8]: “[...] the idea was not well received at first.”.
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The deformation theoretic program – named the Gupta program by J. Fang and C.
Fronsdal in [8] – then formed the basis for an analogous proposal for a program for
higher spin: the generalized Gupta program. But let us get back to the Gupta paper.

Gupta compares the gravitational equations with the electromagnetic equations

◻2Aμ = −jμ (2.167)

𝜕μAμ = 0 (2.168)

and notes the similarity in form. Both sets of equations are Lorentz covariant and in-
variant under gauge transformations that leave the supplementary (divergence equa-
tions) conditions invariant. The striking difference is of course that the electromag-
netic equations are linear in the fields Aμ (since they are uncharged). With Yang–Mills
theory, this difference disappeared.

Next, comes amost interesting part of the paper where Gupta shows that the non-
linearities are a consequence of the fact that the gravitational field carries spin 2. Start
with the spin 2 free field equations (Gupta refers to Fierz and Pauli [101])

◻hμν = 0 (2.169)

𝜕μhμν = 0 (2.170)

In the presence of interactions, the field equation is modified to

◻hμν = κΘμν (2.171)

Taking the divergence, and using (2.170), this equation leads to the condition

𝜕μΘμν = 0 (2.172)

what we now call a source constraint. Then Gupta argues that “the only known quan-
tity, which is described by a symmetrical tensor with vanishing divergence, is the total
energy momentum tensor of a closed system of fields.”.

Now, either Θμν contains contributions from the gravitational field itself, or it does
not. The last case is however inconsistent if the closed system of fields provide sources
for the gravitational field. Then we must have Θμν = Tμν + tμν, the sum of “matter”
energy-momentum and gravitational energy-momentum. Thus in a theory with only
gravitational fields, Θμν must be the energy-momentum tensor tμν of the gravitational
field itself, and the pure spin 2 field equation reads

◻hμν = κtμν (2.173)

Next, one assumes that the field equations can be derived from an action. The
source-free field equations (i. e., with tμν = 0) follow from an action quadratic in first-
order derivatives of the fields. This action, however, also yields an energy-momentum



2.8 The generalized Gupta program | 75

tensor quadratic in the fields. This tensor must appear in the right-hand side of the
field equation. Obtaining it from an action requires adding a term that is cubic in the
field and derivatives of the field. This then produces a new contribution to the energy-
momentum tensor of cubic order. It adds to the field equation, and obtaining it from
the action requires adding still a new term, now quartic in the field and derivatives
of the field. Clearly, this procedure iterates indefinitely, and a nonpolynomial theory
results.

Gupta argues that this phenomenon is a consequence of the spin 2 of the gravi-
tational particles, basically because energy-momentum sources gravity, and gravity
itself carries energy-momentum. The contrast to spin 1 electromagnetism is that the
photon carries no charge, so it does not contribute to the electromagnetic current. The
iteration then never starts. However, as is well known now, allowing a set of spin 1
fields to carry a non-Abelian charge like SU(2), one does get an iteration that produces
Yang–Mills theory. In this case, the iteration stops due to algebraic reasons.

2.8 The generalized Gupta program

It is fairly easy to understand that upon self-coupling a set of fields with themselves,
as outlined above, and envisioned by Gupta for spin 2, one will get a potentially in-
finite iteration yielding a nonpolynomial theory. Carrying it out in practice is an en-
tirely different story. The “Gupta program” for spin 2 – although the designation was
not generally adopted and was coined after the program was completed – was under-
taken by many authors: R. H. Kraichnan in 1955 [116], W. E. Thirring in 1961 [117], R. P.
Feynman in 1962 [118], W. Wyss in 1965 [119], S. Deser in 1970 [120] and D.G Boulware
and S. Deser in 1975 [121]. The history of the program is described by Fang and Frons-
dal in their paper Deformations of gauge groups. Gravitation [8] (see Section 2.8.1).92

Further historical comments can be found in J. Preskill’s and K. S. Thorne’s foreword
to the Feynman Lectures on Gravitation [118].

It may seem that the philosophy behind the program – a deformation theoretic,
self-coupling, iterative procedure starting from a free field theory in a flat background
– from the outset will run into problems with the interpretation of gravity as a geo-
metric theory. This is something that also irritates in the gauge-theoretic approach, as
wewill see. However, the authors of the papers mentioned are careful to write that the
deformation approach is complementary to the geometric approach, even though it

92 There is a slight anachronism in the history, as Fang andFronsdal does not refer to the S. Deser 1970
paper [120] where the deformation problem is solved in a first-order formulation (treating gμν and Γ λ

μν
as independent fields), unless the authors consider such an approach as being outside the program.
See our Section 2.9.1. Perhaps it should also be pointed out that, most likely, the authors of the papers
cited in this “program”, were not thinking of it as a program. Indeed, according to the reference lists
in these papers, they were perhaps not aware of all work done previous to their own.
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may lead to alternatives to or variations of the Einstein theory.93 Today, gravity is well
understood in this framework. The same cannot be said about the “gauging” approach
which suffers from more obstinate issues of principle. For the history of the gauging
approach, see Section 2.9 and for the theory itself, see Section 4.6.

The generalizedGupta program for higher spin is still in its infancy. The firstmajor
step forward was the F. A. Berends, G. H. J. Burgers and H. van Dam approach to spin 3
[122] and their general analysis of the procedure [123], and the light-cone approach to
arbitrary spin self-interactions [124] of I. Bengtsson, L. Brink and myself. Nowadays,
the generalized Gupta program goes under the name of the Fronsdal program. These
are topics to be treated in Volume 2 of the present work.

2.8.1 The Fang and Fronsdal formalization of the Gupta program

A successful completion of the Gupta program resides in utilizing gauge invariance.
As Fang and Fronsdal writes, this was pointed out by Wyss in 1965, who showed that
under certain assumptions – criticized and improved on by Fang and Fronsdal – the
structure of the deformed gauge group coincides with the Lie algebra of vector fields
on a differentiable manifold.

In previous attempts at deriving gravity by deforming the free theory, there had
always been a model of matter involved. Using the notation wμν for the free wave
equation for the massless spin 2 field, the coupling to matter is through the energy-
momentum tensor tμν

wμν = −κtμν (2.174)

The explicit formula for wμν is divergence-free, that is, 𝜕μwμν = 0, therefore, the right-
hand source term must also be divergence-free (as would indeed be expected for an
energy-momentum tensor). This is often referred to as a source constraint.

Fang and Fronsdal interpreted Gupta’s idea as aiming at classifying all physically
acceptable sources Sμν for the wave equation (2.174) (the Fierz–Pauli equation as Fang
and Fronsdal writes) as formal power series94

Sμν = κtμν +
∞

∑
n=1

κnδntμν (2.175)

where δntμν are polynomials in hμν and in their first and second derivatives, with co-
efficients constructed from other fields. The first term, tμν, represents matter and does

93 The designation “deformation” is not used in the original papers. It came into use in the higher
spin related literature after the Fang and Fronsdal paper. Fang and Fronsdal were familiar with the
mathematical theory (from which the notion derives) of deforming groups and algebras.
94 For the right-hand side, we follow the notation of Fang and Fronsdal.
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not depend on hμν. Fang and Fronsdal wanted the reconstruction of gravity to be in-
dependent of any particular model of matter, so they proposed a “restricted Gupta
program”. That meant taking tμν = 0 in (2.175). The iteration starts by requiring the
field equation to be derivable from an action.

The Gupta and the restricted Gupta program

Denoting the action by the letter f and the free spin 2 action by f0, Fang and Fronsdal start from

fm + f0 − κh
μν tμν +

∞

∑
n=1

κnfn ≡ f (2.176)

where fk , k = 0, 1, 2, . . . are polynomials in the components of h and their first-order derivatives.95 The
matter energy-momentum tμν is included, as well as the free matter action fm. These terms will be
dropped in the restricted program. The spin 2 field equations are

δf0
δhμν
= κtμν +

∞

∑
n=1

κnδntμν where δntμν = −
δfn
δhμν

by definition (2.177)

The source constraint is still in force, so we get

𝜕μ(tμν + δ1tμν +
∞

∑
n=2

κn−1δntμν) = 0 (2.178)

where the first term in the iteration δ1tμν is separated out by dividing through by κ. Now Fang and
Fronsdal argue: the first term is of order κ, since t is divergence free in the limit t → 0 by virtue of the
matter field equations. It follows that the second term must also be of order κ, and thus it must have
the form

𝜕μδ1tμν = −Aν ,αβ(
δf0
δhαβ
) − D K

ν (
δfm

δϕK
) (2.179)

with Aν ,αβ and D K
ν first-order differential operators (including nonderivative terms) and ϕK denoting

the matter fields.
After this, Fang and Fronsdal describe a way to proceed that starts by writing a general ansatz

for δ1tμν and restricting coefficients for the terms so as to make the left-hand side of (2.179) take the
form of the right-hand side. Based on this, historical comments are made on previous work by Kraich-
nan, Thirring, Wyss and Feynman, which were all based on matter models. The suggestion by Wyss,
that “[...] the structure of the Lie algebra of infinitesimal gauge transformations may be fixed by the
requirement of consistency of the field equations to lowest order in κ.” then leads Fang and Fronsdal
over to the restricted program.

95 One would perhaps assume that the polynomial order of fk is k + 2, but the authors make no such
statement, only writing that f1 is assumed to have no constant term and no term linear in h. The point
is that, in the presence of matter, the terms involve factors of the matter fields (as remarked after the
formula (2.175)). For instance, in the work of Wyss, part of f2 is found to be bilinear in h and bilinear
in matter fields.
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In the restricted program, the source Sμν and the action f , are to be constructed entirely from
hμν and its first derivatives, and all matter related terms drop out of the equations written above. In
particular, this means that consistency of the field equations to order κ reduces to equation (2.179)
without the D K

ν term. Fang and Fronsdal interpret this equation in the sense

[
δf0
δhαβ
= 0] ⇒ [𝜕μδ1tμν = 0] (2.180)

The authors argue for an ansatz for f1 of homogeneous order 3 in hμν (reasonable enough) and then
discuss equivalence of formal power series in hμν under nonlinear field redefinitions not involving
any derivatives. Then they state a theorem to the effect that with f0 the free spin 2 action and f1 a
homogeneous polynomial of order 3, then (2.180) is satisfied if and only if f is equivalent to order κ,
either to the series defined by expanding Einstein’s Lagrangian (with the zero cosmological constant)
with gμν = ημν + κhμν , or to the series with f1 = 0.

The authors describe the proof as a direct computation: from themost general ansatz for f1, ignor-
ing exact divergences, calculate 𝜕μδ1tμν . Then eliminate all terms that contain the d’Alembertian ◻ by
the free field equations and require that the resulting expression vanishes identically. This leaves five
undetermined coefficients of which four can be adjusted by field redefinitions, turning f1 into a con-
stantmultiple of the corresponding term in Einstein’s Lagrangian. Thus, Fang and Fronsdal concludes,
the order κ spin 2 energy-momentum tensors and self-interactions previously derived by Gupta, Wyss
and Feynman, under more special assumptions, are unique up to field redefinition equivalence.

In order to continue up to the next order in κ, one would have to retain the particular form of the
operator Aν ,αβ and work from (2.179). Fang and Fronsdal, instead, turn to gauge invariance.

The Fang and Fronsdal paper continues with a discussion of the gauge algebra. As the
discussion is technically quite involved,wewill just state the result here in a simplified
way. A generator of a local infinitesimal coordinate transformation can be written as
ξ μ𝜕μ. Commuting two such generators, acting on a scalar field ϕ for simplicity, one
gets96

[ην𝜕ν , ξ
μ𝜕μ]ϕ = (η

ν𝜕νξ
μ − ξ ν𝜕νη

μ)𝜕μϕ = [η, ξ ]
μ𝜕μϕ (2.181)

This defines a Lie algebra, and Fang and Fronsdal prove that this is the Lie algebra
resulting from the restricted Gupta program applied to massless a spin 2 field. The
result is Einstein’s theory of gravity.97

2.9 Gauge invariance, interactions and self-interactions

We reviewed the program of deriving Einstein gravity by deforming the Fierz–Pauli,
massless free spin 2 theory in some detail above, since it inspired Fang and Fronsdal
to formulate the generalized Gupta program of deriving higher spin gauge field inter-

96 See also Section 3.13.1 where the action on general tensor fields is discussed.
97 In themid-1980s, I. Bengtsson andmyself tried to construct higher spin gauge algebras by general-
izing (2.181) in an obvious, but naive way, taking for instance gauge generators for spin 3 as ξ aμνTa𝜕

μ𝜕ν

and correspondingly for higher spin [125, 126]. We did not succeed.
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actions in an analogous way. As we saw, quite a few authors wrote on this subject in
the 1950s and 1960s. There is indeed a very extensive literature devoted to the ques-
tion of alternative derivations of the theory of gravity, both deformation theoretic and
gauge theoretic. Such work has of course been highly interesting as a source of ideas
and intuition for work on the higher spin problem, in particular since a “geometric”
approach has also proved evasive. We will not go very deeply into this history here,
partly because it is not explicitly “higher spin”, partly because it belongs more prop-
erly to Volume 2, where we will return to it. A few comments will suffice for now.

2.9.1 Stanley Deser’s first-order deformation

A paper from 1970 by S. Deser [120] is highly interesting in the context of deformation
theoretic approaches to gravity. When expanded in terms of a spin 2 field, gravity be-
comes anonpolynomial theory. This fact indicates that an approach toderiving gravity
by deforming a free spin 2 theory is difficult to carry through, as the analysis referred
to above by Fang and Fronsdal indeed shows. However, it is possible rewrite the Ein-
stein action in a first-order form where the metric and the connection are considered
as independent fields. Deser writes the action as

I = ∫ d4xgμνRμν(Γ) (2.182)

where the metric tensor density is gμν = √ggμν and the Ricci tensor

Rμν = 𝜕μΓ
α

να − 𝜕αΓ
α

μν + Γ
α

μβ Γ β
αν − Γ

α
αβ Γ β

μν (2.183)

is expressed entirely in terms of the connection Γ. Taking g and Γ as independent
fields, the action is cubic.98 Varying the action with respect to gμν is trivial, and just
gives Rμν = 0 with Rμν given by equation (2.183). Varying with respect to Γ

ρ
μν is more

complicated, but it eventually leads to the familiar equation

Γ σ
μν =

1
2
gσρ(
𝜕gνρ
𝜕xμ
+
𝜕gμρ
𝜕xν
−
𝜕gμν
𝜕xρ
) (2.184)

The calculations indicated so far are standard, and we review them in Section 4.7.2.
Deser first linearizes the action and field equations by taking gμν = ημν + hμν. The

linearized Rμν = 0 is then the free spin 2 field equation. He then adds to the right-hand
side of this equation the “stress-tensor” of the linear action. This starts an iteration
that is expected to continue with an infinite number of terms, as we have seen above.

98 The contractions over indices in the expression forRμν donot involve themetric. Index contraction
is an operation in tensor algebra and have nothing in particular to with any metric on the manifold.
Deser writes Rμν so that it is explicitly symmetric.
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However, Deser shows that in this particular approach it stops already after the first
step, producing the first-order cubic action. Intuitively, the nonpolynomicity of gravity
emerges due to the need to invert gμν = ημν + hμν where hμν is taken as the spin 2 field.
We will not go any further here with the details of the argument. It is elaborated and
discussed in [127].

2.9.2 Utiyama, Sciama and Kibble

Two years after the construction of the SU(2) gauge theory of isotopic spin by C. N.
Yang and R. L. Mills in 1954 [114], R. Utiyama [115] proposed a gauge theory of gravity
where the Lorentz group played the role of gauge group. According to historical com-
ments in L. O’Raifeartaigh’s overview The Dawning of Gauge Theory [128], some parts
of Utiyama’s work was done independently at the same time as the Yang–Mills paper
was published. Upon learning about the Yang–Mills paper, he did not at first pub-
lish his own work until he realized that it was more general. Utiyama, who thought
in terms of a “general gauge theory”, was in particular interested in the gravitational
example. His paper treated general finite-dimensional (compact or noncompact) Lie
groups [115, 128]. His work has however become mostly known for the gauging of the
Lorentz group.

As we will see in the technical Section 4.6.1, gauging the Lorentz group naturally
leads to the introduction of connections as Lorentz gauge fields, but yields nomotiva-
tion for the metric or vierbein fields. Consequently, Utiyama’s paper was criticized for
introducing the vierbeins in an ad hoc manner, and therefore, begging the question
of a nongeometrical motivation for gravity.

The problem of gauging the Lorentz group was then considered by D. Sciama
[129, 130] from a different viewpoint.99 Sciama started from the full Einstein general
relativity in the vierbein formulation, and then “on that background”, so to speak,
gauged the Lorentz group. The difference in relation to Utiyama was that Sciama did
not aim at deriving general relativity, but rather to clarify the role of “spin” as a kind
of “charge” in general relativity. The result was Einstein gravity with torsion coupled
to the angular momentum current.

A proper “gauge theory of gravity” was studied by T.W. B. Kibble [131], who un-
dertook the gauging of the in-homogeneous Lorentz group, in that way providing a
motivation for the vierbeins. Simply put, the vierbeins are the gauge fields of the lo-
cal translations. Due to the importance of the problem, a large number of papers have
appeared over the years, but I will not try to relate the history of the subject. The prob-
lem was actively researched during the late 1970s and the 1980s in connection to su-
pergravity. For the premid-1980s history, see [132–134] and the very useful commented

99 Sciama does not refer to Utiyama.
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reprint volume [135] which contains very many references, as well as articles that put
the central papers in perspective. In our Section 4.6, we will study Kibble’s approach.

2.9.3 Ogievetskij – Polubarinov

In the early 1960s, there are a number of papers by V. I. Ogievetskij and I. V. Polubari-
nov investigating the interplay between space-time symmetries, internal symmetries
(such as isospin) and the spin of the fields in the theory. This was after Yang–Mills but
before the establishment of the standard model, and the phenomenology of time had
still not received its now well-known systematization. This is reflected in the context
of the paper [136], parts of which are relevant for the general problem of finding self-
interacting field theories. One theme of the paper is set out in the first, one and a half
paragraphs.

In the strong interactions of elementary particles, quantities such as isotopic spin, strangeness,
and number of baryons, are conserved. At first glance, this group of conservation laws and the
corresponding invariances are bynomeans connectedwith theMinkowski space-timeproperties.
At the same time, conservation of energymomentum and angularmomentum is explicitly bound
up with the homogeneity and isotropy of space-time.
In the abstract [of the paper], we have stated that the first group of conservation laws is [sic]
intrinsically connected with the space-time property of vector fields having definite spin. This
statement is surprising, and we shall attempt to explain it.

The statement is indeed surprising, since we are accustomed to thinking about in-
ternal symmetries, global or local, as having nothing to do with space-time symme-
tries. In fact, the no-go theorems of Coleman-Mandula [137] and O’Raifeartaigh [138]
some years later, ruled out the possibility any nontrivial relations between internal
and space-time symmetries. So, if the Ogievetskij–Polubarinov paper is not wrong, it
is interesting to understand what they are claiming.

The paper concerns field theories for spins 0, 1/2 and 1, as was appropriate for
strong interaction physics. To get started, consider field equations for a set of vector
fields biμ, indexed by i with possibly different massesmi (no sum over i)

◻biμ − 𝜕μ𝜕 ⋅ b
i −m2

i b
i
μ = −j

i
μ (2.185)

Here, jiμ are currents constructed out of other fields, as well as of the b
i
μ themselves in

the self-interacting case. It is required that it should follow from the field equations
that the spin of the each field is 1, that is, superfluous field components should be
removed.100 In themassive case, computing the divergence of the field equation yields

100 The mismatch between the number of components for Lorentz invariant fields and the number
of d. o. f. for Poincaré invariant physical states, is briefly discussed in the paper.
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m2
i 𝜕 ⋅ b

i = 𝜕 ⋅ ji. Therefore, when the fields biμ are free (j
i
μ = 0), they must have zero

divergence. This condition must be maintained in the interacting case in order that
the number of field components do not change when the interaction is present (see
the Fierz–Pauli analysis reviewed in Section 2.1.5). This, in its turn, leads to current
conservation 𝜕 ⋅ ji = 0. In the massless case, computing the trace of the field equation,
also yields current conservation, but no condition at all on 𝜕 ⋅ bi. In conclusion,

𝜕 ⋅ bi = {
0 if m2 ̸= 0
arbitrary if m2 = 0

(2.186)

In both cases, the current jiμ is conserved, indicating that the theory is invariant under
some phase transformation. In both cases, the divergence of the field equation is zero.
This leads to the question: “What invariances and what interactions are possible?”.

This is the question investigated in the paper. We now cut straight to Section V of
the paper that concerns the self-interaction of vector fields, massive or massless. The
most general Lagrangian for vector fields biμ with cubic and quartic self-interaction
terms, restricted by requiring dimensionless coupling constants, are set up as an
ansatz. The authors include parity violating terms, but let us for simplicity neglect
these. The ansatz is then101

ℒ = −
1
4
f iμνf

i
μν −

1
2
(m2)ijb

i
μb

j
μ + αijk𝜕νb

i
μb

j
μb

k
ν + βijklb

i
μb

j
μb

k
νb

l
ν (2.187)

where f iμν = 𝜕μb
i
ν − 𝜕νb

i
μ as usual. Since the mass-matrix (m2)ij and coupling constants

αijk and βijkl are completely arbitrary at this stage (except being real and certain sym-
metry properties of the β’s that follow from the definition of the quartic term), these
are indeed all possible terms.

Next, the field equations are derived. Then requiring that the divergence of the
field equations be zero, and using the field equations again, a sum of different terms
arise, equated to zero. Investigating the structure of the terms, it turns out that there is
a single term of a particular structure that imposes the condition αjki = −αkji. Then the
sum of another two terms being zero, impose the condition αijk = −αikj. Together we
find that the αijk must be totally antisymmetric. Then the rest of terms involving only
αijk sum to zero.

Continuing with the rest of the terms, Ogievetskij and Polubarinov find that

8βijkl + αmkiαmlj + αmkjαmli = 0 (2.188)
αmijαklm + αmkiαjlm + αmjkαilm = 0 (2.189)

The first of these equations, when inserted back into the Lagrangian ℒ, yields the fa-
miliar Yang–Mills quartic interaction term. The second equation is a Jacobi identity.

101 The summation convention is in force for both types of indices.
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It thus transpires that what we get is an adjoint representation of a finite dimensional
Lie algebra. The Lagrangian ℒ is a massive Yang–Mills Lagrangian

ℒ = −
1
4
Gi
μνG

i
μν −

1
2
(m2)ijb

i
μb

j
μ where Gi

μν = 𝜕μb
i
ν − 𝜕νb

i
μ + αijkb

j
μb

k
ν (2.190)

Further considerations show that allmasseswithin an irreducible representationmust
be equal. The theory is invariant under global, infinitesimal transformations

δbiμ = αijkω
jbkμ (2.191)

We can now appreciate the claimmade at the beginning of the paper. The authors
may just as well speak for themselves.

The form of the vector field interaction obtained by us is in general similar to that obtained by
many other authors who treat the vector fields on the basis of the so-called “gauge principle”
[references removed]. This similarity is not accidental and is due to the following facts: From the
very beginning they have postulated the symmetry properties (e. g., the isotopic invariance) and
have assumed the vector field masses equal to zero. They require further the “local” symmetry
properties, but they are equivalent to the requirement of arbitrariness of 𝜕μbμ, and also single out
spin 1 [references removed]. At the same time, we do not suppose any symmetries; we derive these
symmetries.

To conclude, the Ogievetskij–Polubarinov derivation of massive and massless Yang–
Mills theory is an early, and successful instance of the “deformation theoretic” ap-
proach to interactions. The authors also go on to fix the interactions to spin 1/2 and
spin 0 matter in a similar way.

2.10 The 1970s and Fronsdal’s theory

Let us take up the story of wave equations where we left it with Singh and Hagen. Up
to the mid-1950s, investigations into higher spin field theory had been focusedmainly
on massive fields. In the 1950s and 1960s, more and more higher spin massive parti-
cleswerediscovered in the accelerator laboratories. Yang–Mills theorywas invented in
1954 [114] and investigated thereafter, but themasslessness of the fields initially made
them unlikely to mediate short-range forces. Then in about 20 years the mechanism
of spontaneous symmetry breaking was developed and asymptotic freedom was dis-
covered. This together with the renormalization proof made Yang–Mills and massless
spin 1 fields viable candidates for the fundamental interactions of weak and strong
forces.102

102 Rather than trying to supply a list of references here, I refer the reader to the second Volume
[139] of S. Weinberg’s quantum field theory textbook, which contains both the theory and original
references.
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Partly as a consequence of the invention of supergravity in 1976 byD. Z. Freedman,
P. vanNieuwenhuizen andS. Ferrara [140, 141] andby S. Deser andB. Zumino [142], the
focus of theoretical studies of higher spin shifted to massless fields. Before this, there
were no strong motivations for studying massless gauge fields of spin greater than 2.
Utiyamahad initiated the gauge theory approach two gravity, continued byKibble and
Sciama, but this did not lead to investigations ofmassless higher spin until Fronsdal –
and collaborators – raised the question. Themajority ofworkers in the supersymmetry
and supergravity research programs, were content with, or most interested in, ruling
out massless higher spin fields.

2.10.1 Fronsdal’s road to the Fronsdal theory

Christian Fronsdal’s 1978 paper [3] onmassless fieldswith integer spin is pivotal in the
history of higher spin gauge fields. In this paper, several strands of history from the
Dirac, Fierz and Pauli papers, the Bargmann and Wigner papers and the later work
by Singh and Hagen converge. It is the starting point of almost all modern research
into higher spins. Here, the problem of introducing self-interactions is posed as the
central problem. The paper is followed by a companion paper on half-integer spin
fields, written together with J. Fang [6].103

Fronsdal had been publishing on representations of space-time isometry groups
since the late 1950s and the long series of papers [143–148] from 1965 to 1978 on ele-
mentary particles in curved space, lead to group theoretical insights that have become
relevant for the AdS approach to higher spin and to the AdS/CFT correspondence con-
jectures, although actually not having been involved in the initial stages of those de-
velopments.

Fronsdal’s classic paper on higher spin fields takes up the theory of massive fields
where it had been left by Singh and Hagen a few years earlier. As we have seen, the
Singh–Hagen work built on the work of S-J. Chang, which in its turn built on Frons-
dal’s thesis paper. Fronsdal uses the massive theory as a springboard to the massless
theory.104 This signals the shift of perspective from matter higher spin fields that had
indeed been the main focus of the pioneers Dirac, Fierz and Pauli, and had remained
so up until the advent of supergravity in the early 1970s. This period is also the fine era
of accelerator physics investigating the weak and strong interactions and the higher
spin, strongly interacting, mesons and hadrons.

It is clear from the paper, both from the abstract and from the final section on
nonlinear theory, that Fronsdal’s main interest concerned self-interactions. The call

103 The two papers are consecutive in the Physical Review.
104 The attempts by many authors to construct higher spin theories inspired Fronsdal to “take the
massless limit of my thesis”, as he wrote to me in answer to questions.
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for a such a research program is explicitly stated.105

A generalized Gupta program is proposed, that is, a search for a scheme for generating a theory
of interacting, massless particles, consistent to all orders in the coupling constant.

Two motivations for reviving higher spin theory are stated in the Introduction to the
paper, the first being the recent discovery of supergravity and the spin 2 barrier that it
seemed to impose. The second motivation came from neutrino physics. At this time,
the neutrino was thought to be massless and Fronsdal speculated that its properties
and the weak interactions could perhaps be understood from some gauge principle,
and that higher spin gauge theory might give clues. Nothing of this sort has material-
ized.106

The paper then takes its starting point in thewell-knownfield equations for amas-
sive spin s field, described by symmetric, traceless and divergence-free tensor ϕμ1 ...μs ,
abbreviated as ϕs, each component satisfying the Klein–Gordon equation (see equa-
tions (2.140)–(2.142)). As discovered by Fierz and Pauli, attempts to introduce inter-
actions directly in the field equations lead to changes in the number of degrees of
freedom of the field. They had therefore suggested deriving the field equations from
an action, something which requires the introduction of auxiliary fields “in order to
have enough field components to vary.”. This was the problem studied in detail by
Singh and Hagen in [100]. Fronsdal agrees with these authors that the set of fields
Φ = {ϕs,ϕs−2,ϕs−3, . . . ,ϕ0} is the “simplest viable choice”, all of which are supposed
to be traceless.

Fronsdal then writes down the most general Lagrangian, second-order in deriva-
tives, with arbitrary coefficients. The requirement is that the Euler–Lagrange equa-
tions must yield the correct field equations for ϕs and ϕk = 0 for k ̸= s, that is, all
of the auxiliary fields must be set to zero by varying the action. Fronsdal then solves
for the coefficients by a particular method, different from the one used by Singh and
Hagen, arriving at the same result.107 We will try to capture the essence of Fronsdal’s
derivation, without entering into the rather complex details.

Fronsdal’s derivation of the massless theory and the emergence of gauge invariance

Fronsdal considers the following Lagrangian for a massive free field:

ℒ = ∑
k
[
1
2
αk(𝜕ϕ

k) ⋅ (𝜕ϕk) + 1
2
βk(𝜕 ⋅ ϕ

k) ⋅ (𝜕 ⋅ ϕk)

105 It is repeated in [8]. See Section 2.8.1.
106 Neutrinos are now known to be massive.
107 Noting a misprint in Singh and Hagen that these authors had informed Fronsdal about.
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−γkϕ
k−2 ⋅ (𝜕𝜕 ⋅ ϕk) + δkϕ

k−1 ⋅ (𝜕 ⋅ ϕk) − 1
2
σkm

2ϕkϕk] (2.192)

where the sum over k runs over 0, 1, 2, . . . s − 2, s. All indices are suppressed “contracted in a unique
and self-evident manner”.108 The Euler–Lagrange equations, written with p = −i𝜕 become

δϕk ⋅ [αkp
2ϕk + βkp(p ⋅ ϕ

k) + γk+2pp ⋅ ϕ
k+2 + γkppϕ

k−2

+ iδk+1p ⋅ ϕ
k+1 − iδkpϕ

k−1 − σkm
2ϕk] = 0 (2.193)

The aim is to solve for the coefficients. The details will not concern us, except that in the process, the
components of the fields ϕk are split up according to “spin content” into a sum of objects ϕk,l, with
particular coefficients, where eachϕk,l contains2l+1 components corresponding to representationsof
rotation group. The count is correct, since the number of components ofϕk is (k+1)2 and∑kl=0(2l+1) =
2∑kl=0 l + k + 1 = (k + 1)

2. Correspondingly, the field equations (2.193) split up into equations for the
spin components ϕk,l. To repeat, the problem is to solve for the coefficients so that (p2 −m2)ϕs,s = 0
and ϕk,l = 0 for all other components. This is done and the result is in agreement with Hagen and
Singh.

Then Fronsdal turns to the case of zeromass. In that case, the coefficients γs−2 vanish, “[...] an un-
expected boon.” as Fronsdal writes. Furthermore, δk = 0 in the massless case, and this has the effect
that the fields ϕs and ϕs−2 become decoupled from the rest ϕs,s−3,ϕs,s−4, . . ., which can be ignored.
What remains of the field equations are now p2ϕs,s = 0 for the component ϕs,s. For the component
ϕs,s−1, the equation reduces to an identity. For the components ϕs,l and ϕs−2,l, a matrix equation re-
main

p2 (αs,l γs
γs,l αs−2,l

)(
ϕs,l

ϕs−2,l
) (2.194)

for l ≤ s− 2. The matrix is singular which implies that the components ϕs−2,l are expressed in terms of
the components ϕs,l for l ≤ s − 2. This is the source of gauge invariance. Accepting these equations –
which we have only stated – we can now perform a d. o. f. count.

First, the fieldsϕs andϕs−2 together has 2(s+1)2 components, which is the same number as for a
single double traceless fieldϕs. The way one normally reduces this number down to the physical num-
ber 2, is to invoke gauge invariance with a traceless gauge parameter ξs−1 which has s2 components.
Subtracting gauge and regauge components, yields the number 2. This can be done here also, after
the Lagrangian and field equations are rewritten for the massless case (which Fronsdal does). More
true to the present context is however the following simpler argument.

The field ϕs,s has 2s + 1 components. The field ϕs,s−1 decouples since its equation is an identity.
The field ϕs−2 has 2s − 1 components, but all its spin projections ϕs−2,l with l ≤ s − 2 are equal by the
matrix equation (2.194) to the lower spin projectionsϕs,s−2,ϕs,s−3, . . .ofϕs,s. These are thusall “gauge”
and should not be counted as physical components. Therefore, the number of physical components
are 2s + 1 − (2s − 1) = 2. Examining this argument in more detail, one will, however, realize that one
needs to invoke the “gauge/regauge” procedure here also.

108 Readers familiar with modern “condensed notation” for higher spin should be warned here (see
Section 5.1). By the expression 𝜕ϕk , Fronsdal intends 𝜕μϕkμ1 ...μk with no symmetrization understood.
Fronsdal gives the example (𝜕ϕ) ⋅ (𝜕ϕ) = (𝜕μϕν ...)(𝜕μϕν ...). A dot denotes contraction and it should
also be noted that in the expression 𝜕𝜕 ⋅ ϕk both partial derivatives are contracted (contrary to the
convention in modern condensed notation).
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The details of the Fronsdal theory will be reviewed in Chapter 5 beginning in Sec-
tion 5.1. Here, we will just record the Lagrangian as it is finally written in the Fronsdal
paper:

−ℒ =
1
2
(ph) ⋅ (ph) − (s/2)(p ⋅ h) ⋅ (p ⋅ h) − (s/2)(s − 1)h󸀠 ⋅ (pp ⋅ h)

− (s/4)(s − 1)(ph󸀠) ⋅ (ph󸀠) − (s/8)(s − 1)(s − 2)(p ⋅ h󸀠) ⋅ (p ⋅ h󸀠) (2.195)

The higher spin field of spin s is denoted by h. A condensed notation is used, that in
various versions has become common in much of the later higher spin literature (see
Section 5.1). Here, h stands for hμ1 ...μs and p for pμ interpreted as a derivative p = −i𝜕.
A dot “⋅” stands for index contraction and prime “󸀠” stands for an index trace. When
no dot occurs between p and h, as in the first term in ℒ, then the two p’s should be
contracted into each so that 1

2 (ph) ⋅ (ph) = −
1
2h ⋅ (p ⋅ p)h upon partial integration.

109

The action is invariant under gauge transformations

hμ1 ...μs → hμ1 ...μs +∑
1
pμ1ξμ2 ...μs (2.196)

with a traceless gauge parameter ξ 󸀠 = 0, provided that the field is double traceless,
that is h󸀠󸀠 = 0. This somewhat strange condition appeared when Fronsdal com-
bined the two traceless symmetric tensors ϕs and ϕs−2 into the symmetric tensor
field h.110 The symbol ∑1 stands for a symmetric sum. This summation notation was
later dropped as the condensed notation was further developed.

Within a year, two investigations into higher spin gauge fields were published by
T. Curtright [149] and by B. de Wit and D. Z. Freedman [150] that clarified the structure
of the new theory.

2.10.2 T. Curtright’s derivation of the Fronsdal theory

T. Curtright’s paper [149] takes its stated motivation from the newly found arbitrary
spin gauge field theories,111 and the observation byM. Gell-Mann112 that an irreducible
supermultiplet limited to spins less that or equal to 2, “[...] cannot accommodate a lo-
cal SU(3)color × (SO(2) × U(1))electroweak gauge theory with the necessary vector bosons

109 Note that a misprint in the first term of −ℒ, as written in the paper, is corrected here: the prime 󸀠

should be a dot ⋅.
110 As we will see in Chapter 5, the theory can just as well be developed in terms of tensor fields of
rank s and s − 2.
111 It is written in the paper that the higher spin Lagrangians were obtained before learning of the
Fronsdal papers.
112 See reference [5] in Curtright [149].
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appearing as fundamental fields”, thus perhaps pointing toward the need for “struc-
tureless” higher spin fields, at least of spin 3 and spin 5/2. This is interesting since it
is an example of how supersymmetry, at this time, was injecting new energy into the
old higher spin program.

The Fronsdal theory, both for integer and half-integer spin, was rederived by Cur-
tright by an ansatz-verificationmethod. Thehigher spin gauge transformation lawwas
postulated to be the one found by Fronsdal in equation (2.196), and similarly for the
half-integer case.

The explicit calculations are not presented in the paper, but it is said that themost
general form for the free Lagrangians were written down, and that invariance up to
total derivatives are only possible for traceless gauge parameters and Lagrangians not
containing double or higher traces of the fields. What results are precisely the Fang–
Fronsdal Lagrangians for integer and half-integer spin.113

Having found the Lagrangians for integer and half-integer spin fields, Curtright
then goes on to discuss supersymmetric theories with the spectra (s, s− 1/2) and (s, s+
1/2). Supersymmetry is actually used to show that the massless higher spin theories
are free of lower spin modes.

Toward the end of the paper there are remarks on interactions and the known
coupling problems. These questions are also further discussed in a review paper by
Curtright [151] from 1980 that offers an interesting view of the standing of the subject
at that time. For instance, the at the time newly discovered (by E. Cremmer and B.
Julia) nonlinear SU(8)-invariance in N = 8 supergravity, again raised the hopes to
incorporate the standard model group within supergravity.

2.10.3 B. de Wit and D. Z. Freedman

In their paper [150], B. de Wit and D. Z. Freedman clarified the structure of the theory
by introducing a hierarchy of generalized Christoffel symbols

Γ(m)ρ1 ...ρm ;μ1 ...μs (2.197)

The μ indices indicate the spin of the fundamental field φμ1 ...μs , while the ρ indices
indicate the number of derivatives 𝜕ρ that appear in the definition of the respective
symbols. The symbols are symmetric in both index sets separately. For lower spin, the
symbols generalize the spin 1 electromagnetic field strength and the spin 2 free theory
Christoffel symbol and curvature tensor.

113 In retrospect, it is interesting to note that Curtright comments that the approach “[...] appears not
to be very methodological, beginning as it does with a guess, [...]”. The guess concerns the free field
gauge transformations. This is actually how the Vasiliev theory starts out, as writing down free field
gauge transformations, but then not in the “metric-like” formulation, but in a “frame-like” formula-
tion.
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The symbols have simple gauge transformation properties deriving from the un-
derlying gauge field transformation. Generalizing the spin 1 and 2 cases, the “highest”
symbol Γ(s) is gauge invariant. The special case of spin 3 was further investigated by T.
Damour and S. Deser in [152], motivated by a possible geometric origin of the higher
spin field theories, hinted at by the existence of these generalized Christoffel symbols.
This is a possibility noted also by deWit and Freedman. This theme was later revived,
and studied, by a number of authors (see our Section 5.3.2). The last section of the
paper discuss interaction problems and possibilities. More technical details of the de
Wit–Freedman construction will be reviewed in Section 5.2.

2.10.4 Hypergravities

Following the successful construction of the supergravity theories in 1976,114 interest
in higher spin gauge fields increased, in particular after the appearance of the Frons-
dal theory. We have already noted Curtright’s study of simple supersymmetric higher
spin gauge multiplets and their free field theory. During the period 1979 to 1982, quite
a few authors studied coupling of higher spin gauge fields to gravity, and in partic-
ular the coupling of spin 5/2 fields. Such tentative interacting theories were called
hypergravities. Since this is belongs to the theory of higher spin interactions, we will
return to its history in the second volume of the present work. Here, we just list a set
of references: [153–157]. Hypergravity theories turned out to suffer from consistency
problems.

2.11 The mid-1980s: the BRST approach

In the beginning of 1986, quite a few researcherswere apparentlyworking onBRST ap-
proaches to massless higher spin fields, myself being one of them. The first paper ap-
pearing in print [158] was written by S. Ouvry and J. Stern and published in a Septem-
ber issue of Physics Letters B. It was quite a shock to me when I saw their preprint one
morning in the physics department at Queen Mary College, just a week or so after I
had submitted my own manuscript to the same journal [159]. I cannot refrain from a
bit of personal history at this point.

A bit of personal history

I had worked on the problem of finding field equations and actions for higher spin gauge fields us-
ing BRST methods, all through the winter and spring. Covariant string field theory were very active
subjects at this time and it was natural to look to string theory for inspiration and methods. I went to

114 in [140, 142, 141].
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string seminars at the colleges in London, but I was thinking of massless higher spin all of the time.
Ingemar Bengtsson and I had worked on and off since our 1983 work with Lars Brink, on extending it
to higher order and to covariantize it. From Fang and Fronsdal [8] and from my own work [125], it was
clear that a higher spin theory needed to include a spectrum of all spins. The program I set myself
after arriving at Queen Mary College in London was to at least unify free field wave equations and La-
grangians. I approached the problem from two sides. First, I experimented with low spin fields. From
various preprints [160–162] that I read at the time, I got the idea that I needed to introduce auxiliary
fields for divergences and traces of the gauge fields in order to be able to uniformize the field equa-
tions. In parallel, I read papers on free string BRST field theory. This together with experimenting with
the α󸀠 →∞ limit of the string theory Virasoro algebra – where it was “pictorially” clear that all Regge
trajectories would pile up on the spin axis with zero mass for all fields – finally led to the solution. I
actually remember seeing it all clear one afternoon walking up Highgate Road to fetch my son Olof.
While mywife and I were working, he was looked after by Kerstin, a Swedish lady thatmywife hadmet
by chance at the playground. As usual on the way backhome, Olof and I stopped at the bridge over the
railway tracks in Kentish Town to look at the trains running to and from Kings Cross.115 The problem
was solved and it remained to work out the details.

The reverse engineering of the Fronsdal field equations will be reviewed later in Sec-
tion 5.3.1. Here, we will start by putting the higher spin problem into the context of the
string field theory of the mid-1980s.

2.11.1 String field theory backdrop

Following the so-called “1984 superstring revolution”,116many authors and groups
were busy covariantizing the light-front string field theory (bosonic and fermionic)
that had been generalized to superstrings byM. B. Green and J. H. Schwarz also in col-
laboration with L. Brink. There were two aspects of the problem: first, to clarify the
nature of the covariant free field theory, and second, to extend the light-front cubic in-
teraction into covariant cubic interactions. In regard to the interactions, the method
applied was invented byW. Siegel in [163]. In short, it consisted of extending the light-
front transverse momenta pi to fully covariant momenta pμ while compensating with
twonewghostmomenta. In the fully elaboratedmethodof [164] the light-front dynam-
ical Lorentz generator Ji− could be identified with the BRSTQ operator. While working
well for free strings, and for field theories in general, this method also promised a way
to the interactions via the known interactions in the light-cone gauge. Themethodwas
largely superseded by E. Witten’s covariant open string field theory [165] that worked
a priori with a BRST-invariant interaction.

115 Olof apparently picked up two things in London. He became a model railway enthusiast just like
me, and he is now running the O/O Brewing craft beer company with his friend Olle.
116 M.B. Green and J. H. Schwarz had shown that a certain chiral anomaly, disastrous for theories
with the ambition to unify the fundamental forces – as pointed out by E. Witten – did not occur in
superstring theory. This inspired the huge interest in string theory that has lasted up to the present
time.
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In regard to the free string theory, it was first treated using BRST methods a few
years earlier by M. Kato and K. Ogawa [166] and by S. Hwang [167].117 These authors
arrived at the major conclusion that BRST-nilpotency Q2 = 0 for the bosonic string
required the critical dimension D = 26 and zero intercept α0 = 1, also showing the
theory to be ghost-free and unitary. While the Kato–Ogawa paper utilizes a “covariant
operator formalism” from a paper by T. Kugo and I. Ojima [168] devoted to Yang–Mills
theory, the Hwang paper derives the same result using the somewhat more stream-
lined Fradkin–Vilkovisky formalism.118 In this formalism, once one has derived the
first class constraintsψa of the theory and their first class algebra – for instance using
the Dirac procedure – one can write down the BRST operator as

Q = ψaη
a −

1
2
𝒫cU

c
abη

aηb (2.198)

Here, the Uc
ab are the structure constants of the first class algebra

{ψa,ψb}− = ψcU
c
ab (2.199)

and η and 𝒫 are ghost coordinates and momenta satisfying the bracket119

{ηa,𝒫b}+ = δ
a
b (2.200)

For the bosonic string, the constraints are the Virasoro generators and the algebra the
Virasoro algebra. The so found theory is a first quantization of the string considered
as a mechanical system. In retrospect, it may seem quite easy to see how this method
can be applied to massless higher spin theory, if only the proper first class constraints
are known, or if the corresponding mechanical model is known – if such exists. The
story was however not so simple. In a series of papers [163, 172, 173], W. Siegel worked
on covariantly second quantized string field theory.

String fields

A string field Φ is a “function” of the string coordinate xμ(σ) where σ is runs from end to end of
the string. The field is thus written Φ(xμ(σ)). The string, viewed as a mechanical system, is actually
parametrized by two world-sheet coordinates σ and τ playing the roles of two-dimensional space and
time, respectively. The free string coordinate xμ, after certain gauge fixing, obey a two-dimensional

117 Stephen Hwang was then a graduate student with R. Marnelius in Göteborg.
118 The Hwang paper also treats the “sigma model string theory” in detail, discovered by L. Brink,
P. Di Vecchia and P. Howe [169] and S. Deser and B. Zumino [170] in 1976. This string model was later
studied by A.M. Polyakov [171].
119 We assume that the underlying theory is bosonic so that the ghosts are fermionic. Thus {⋅, ⋅}− de-
notes an antisymmetric bracket (Poisson bracket or quantum commutator) and {⋅, ⋅}+ denotes a sym-
metric bracket.
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wave equation which can be solved in the standard mathematical physics way in terms of a Fourier
series expansion over oscillating modes. For the string field Φ(xμ(σ)), this means that it contains a
denumerable infinite number of component fields of increasing spin and mass. To see this in a little
more detail, consider first-quantizing the string. There is also a string momentum pμ(σ) that is conju-
gate to xμ(σ) and one arrives at the quantization condition

[xμ(σ),pν (σ󸀠)] = iημνδ(σ − σ󸀠) (2.201)

There is an indefinitemetric problem here that traditionally was solved by going to a light-cone gauge,
but in the 1980s started to be treated by the covariant BRST method. The coefficients of the oscillat-
ing modes of the string become harmonic oscillator annihilation and creation operators aμn and aμ†n
satisfying the commutation relations

[aμm, a
ν†
n ] = δmnη

μν (2.202)

The string field can now be expanded in the Fock space of these oscillators

|Φ(x)⟩ = ϕ(x)|0⟩ + ϕnμ(x)a
μ†
n |0⟩ + +ϕ

mn
μν (x)a

μ†
m aν†n |0⟩ + ⋅ ⋅ ⋅ (2.203)

with implicit sums over the mode numbers m, n, . . .. The x in the fields is the zero mode in the string
coordinate Fourier expansion, corresponding to the space-time coordinate.

Siegel realized that the BRST transformations of the first quantized string could be
used to set up second quantized gauge field theory of the string. The result was a
gauge-fixed covariant string field theory. The action was BRST-invariant but not gauge
invariant. The string field employed in the procedure depended on ghost coordinates,
apart from xμ(σ), corresponding to the mechanics BRST ghosts of the string. The field
therefore contained enough components to set up a gauge fixed theory, but needed
complicated field redefinitions to get a gauge invariant theory.

Then in collaboration with B. Zwiebach,W. Siegel arrived at a gauge invariant for-
mulation of the bosonic string [174]. Quite a few other authors and groups were also
working on this problem: D. Friedan [175], T. Banks and M. Peskin [176], T. Banks, M.
Peskin, C.R Preitschopf, D. Friedan and E.Martinec [177], A. Neveu and P. C.West [178],
A. Neveu,H. Nicolai andP. C.West [179], K. Itoh, T. Kugo, Kunimoto andH.Ooguri [180]
and P. Ramond [160]. E. Witten then pointed out, in [165] that the ⟨Φ|Q|Φ⟩ form of the
string action was already gauge invariant without the need to integrate out superflu-
ous auxiliary modes, as had been done in the other approaches. For a review of string
field theory, see [181]. Let us briefly outline the method to construct a field theory out
of a mechanics theory that was invented by W. Siegel.

From mechanics to field theory

The Siegel algorithm for constructing a classical field theory from an underlying mechanics model is
expressed in the paper [182]. The paper is about superstrings. Themethod is not formulated in general
terms, rather Siegel phrases it as a “strategy”: classical mechanics→ first quantizedmechanics BRST
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→ field theory BRST→ classical field theory. The method is first exemplified for the bosonic strings,
then for the superparticle and finally for the superstring. It is clear from these examples how to apply
the method in general.

Siegel notes that it is convenient to work in a Hamiltonian, rather than a Lagrangian, formulation
ofmechanics, as it involves one less step. This is seen already in themost simple example of the point
particle, where the procedure is L = 1

2 ( ̇x
2 − m2) → H = 1

2 (p
2 + m2) → ℒ = 1

2ϕ(◻
2 − m2)ϕ. In this

example, the algorithm is sowell known that it often goesunnoticed. It doeshowever provide thebasic
intuition behind the general method. What is added in the Siegel method is that the Hamiltonian H
corresponds to the reparametrization constraint of the point particle. In the BRST approach, there is
then a corresponding ghost coordinate-momentum pair (η,𝒫) and the BRST charge become Q = ηH.
For a detailed description of the general method, see Section 3.3.3.

One goal that both the Ouvry and Stern paper and my own paper achieved, was to
collect all higher spin gauge fields into one object and writing an action that unified
all higher spin gauge actions into one single action. In retrospect, that can be done,
and has been done quite easily, but somewhat clumsily, by writing a formal string
field-like expansion of the type (2.203) over just one oscillator, thus giving a simple
spectrum of higher spin fields, and devising an appropriate kinetic operator.

What could have been done ...

A list of all integer spin fields can be collected into a string-like field120

|Φ⟩ = (ϕ + ϕμα
μ† + ϕμνα

μ†αν† + ⋅ ⋅ ⋅)|0⟩ (2.204)

The list of all Fronsdal actions for fields of spin s = 0, 1, 2, 3, . . . can then be written

S = ⟨Φ|K |Φ⟩ (2.205)

with the kinetic operator K given by

K = 1
2
(◻ −

1
2
α† ⋅ α†◻α ⋅ α − α† ⋅ 𝜕α ⋅ 𝜕 + α† ⋅ α†α ⋅ 𝜕α ⋅ 𝜕 − 1

4
α† ⋅ α†α† ⋅ 𝜕α ⋅ 𝜕α ⋅ α) (2.206)

This is actually just a term by term transcription of the Fronsdal action (2.195) for arbitrary spin where
the action of the oscillators in ⟨Φ|K |Φ⟩ picks out the individual actions. S is invariant under gauge
transformations

δΦ⟩ = α† ⋅ 𝜕|Ξ⟩ (2.207)

120 Somemodern higher spin theorists refer this kind of expansion over a coordinate zμ to a paper by
V. Bargmann and I. T. Todorov from 1977 [183]. These authors however state that ”[this has been] recog-
nized since the early days of representation theory [...]”. In the Introduction of the paper, it explicates
the mathematics needed to define scalar products such as the one below (2.205). Here, we compute it
using first quantized oscillator algebra.
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provided that α ⋅ α|Ξ⟩ = 0. To make the action explicitly real, the fourth term in the operator K should
be written 1

2 (α
† ⋅ α†α ⋅ 𝜕α ⋅ 𝜕 + α ⋅ αα† ⋅ 𝜕α† ⋅ 𝜕). Then the naive Euler–Lagrange equation that follows

from the action is gauge-invariant.

That was not how it was done however.121 The constructions in both papers was based
on a more sophisticated “reverse engineering” of the Fronsdal equation; in my own
case inspired by level expansions in string theory rather than the Fronsdal theory it-
self.

2.11.2 The Ouvry and Stern paper

The paper starts with a short introduction putting it in the context of dual resonance
models and covariant string models. It then states the problem, independent of this
context, of finding actions andgauge transformations for local fields of arbitrarily high
spin. The string field would then appear as a particular collection of such fields Aμ1 ...μn
represented by a vector |A(x)⟩ in a Fock space spanned by an infinite set of oscillators
as described above in formula (2.203). The authors then remark that one may just as
well start with massless gauge fields, and obtain the string theory through some kind
of Higgs-like effect.122 The authors note that with an infinite set of oscillators, fields of
any spin and permutation symmetry can be accommodated.

Thepaper first turns to the particular case of just one oscillator. The spectrum then
simplifies to one symmetric tensor field at each excitation level. The Fronsdal action123

and the gauge transformations arewritten in terms of a Fock space vector |A⟩ of higher
spin fields and a vector of supplementary fields |B⟩ whose components play the role
of the traces of the components of |A⟩. The Lagrangian they write can be seen as a
reversed engineered Fronsdal Lagrangian (2.195)124

L = − ⟨A|𝜕2 + (a† ⋅ 𝜕)(a ⋅ 𝜕)|A⟩ − ⟨B| − 𝜕2 + (a ⋅ 𝜕)(a† ⋅ 𝜕)|B⟩

+ ⟨A|(a† ⋅ 𝜕)2|B⟩ + ⟨B|(a ⋅ 𝜕)2|A⟩ (2.208)

121 I have no recollection of having seen this particular approach published until 1989. Although it
works as a formal unification of the Fronsdal actions, there is no deeper rationale for it than doing just
that; see, however, Section 2.11.5 below.
122 Such a conjectured connection between higher spin gauge theory and string theory has become
a quite standard motivation for working on massless higher spin theory. The remark made by Ouvry
and Stern is perhaps the first occurrence in print. It was discussed at length by the authors at the time
of writing. At the end of paper, the authors return to the question of mass generation in the context of
introducing interactions.
123 The authors here refer to a paper by T. Curtright.
124 There is a misprint in the paper: there is an A in one place where there should be an a. This is
corrected as the formula is reproduced here.
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It is invariant under the gauge transformations δ|A⟩ = a† ⋅ 𝜕|Λ⟩ and δ|B⟩ = a ⋅ 𝜕|Λ⟩.
In this formulation of the theory, the gauge parameter is not required to be trace-

less. The original Fronsdal action can be recovered setting |B⟩ = − 12a ⋅ a|A⟩.
125 The

authors want to generalize this action to the case an arbitrary number of oscillators.
In order to this, they introduce a pair of Grassmann variables ξ and ηwith conjugates
ξ † = 𝜕/𝜕η and η† = 𝜕/𝜕ξ . A scalar product can be defined so that the action (2.208)
can be rewritten in terms of a field |ψ0⟩ = |A⟩ + ξη|B⟩.

In the general case, Grassmann variables ξn and ηn are introduced for each oscil-
lator an. Then a set of generators are defined and the algebra they satisfy. We collect
these in the box below, as well a few more formulas that are used later in the paper.

The Ouvry–Stern generators and algebras

Associated with the Grassmann variables there are generators

T+ = ∑
n
ηn
𝜕
𝜕ξn

T− = ∑
n
ξn
𝜕
𝜕ηn

T3 =
1
2
∑
n
(ηn
𝜕
𝜕ηn
− ξn
𝜕
𝜕ξn
) (2.209)

satisfying an SU(2) algebra. Then there are generators

G+ = ∑
n
(a†n ⋅ 𝜕𝜕/𝜕ξn − an ⋅ 𝜕ηn) G− = −∑

n
(a†n ⋅ 𝜕𝜕/𝜕ηn + an ⋅ 𝜕ξn) (2.210)

All together, the generators satisfy the algebra

[T3,G±] = ±
1
2
G± [T±,G∓] = G±

[T±,G±] = 0

{G+,G−} = −2𝜕
2T3 G2± = ±𝜕

2T± (2.211)

The paper also defines generators

In = −√nan ⋅ 𝜕 I−n = √na
†
n ⋅ 𝜕 I0 = −𝜕

2 (2.212)

satisfying the algebra

[In, Im] = f
k
nmIk where f knm = −nδ

k0δn+m,0 (2.213)

The authors state that the Lagrangian (2.208) can now be generalized to the case of
an arbitrary number of oscillators based on the algebra (2.211). The case of a single
oscillator is given explicitly

L = ⟨ψ0| − 𝜕
2 + G+T−G+|ψ0⟩ (2.214)

125 This should lead to the action (2.205) with kinetic operator (2.206) written above, with a traceless
gauge parameter.
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invariant under the gauge transformation

δ|ψ0⟩ = G+|Ω1/2 where Ω1/2 = ξ |Λ⟩ (2.215)

The paper then discusses properties of the theory, among them the “gauge invariance
for gauge invariance” that the theory shows. This is taken as a motivation for a BRST-
invariant gauge-fixed formulation. Here, the paper follows the Siegel procedure (re-
viewed above in Section 2.11.1).

Ghost coordinates c−n and cn and their derivatives, related to the Grassmann vari-
ables ξn and ηn and associated conjugates, are introduced. These are associated to the
generators I±n of (2.212). Furthermore, a ghost coordinate θ, and its derivative, is asso-
ciated to the generator I0. The BRST generator so constructed, according to the Siegel
algorithm, is written

Q = −θ𝜕2 + (𝜕/𝜕θ)T+ + G+ (2.216)

The nilpotencyQ2 = 0 follows from the algebra (2.211). A BRST gauge fixed Lagrangian
is given by

LG.F. = ∫ dθ⟨χ, θ|[θ𝜕/𝜕θ,Q]|χ, θ⟩ (2.217)

invariant under BRST transformations δ|χ⟩ = ϵQ|χ⟩. The field |χ, θ⟩ = |ψ⟩ + θ|ϕ⟩ con-
tains BRST auxiliary fields and Fadeev–Popov ghosts as well as the physical fields.

Toward the end of the paper, the authors turn to the question of interactions, in
which context, the fully gauge invariant action

L = ∫ dθ⟨χ0, θ|Q|χ0, θ⟩ (2.218)

is given. In the field |χ0, θ⟩ = |ψ0⟩ + θ|ϕ⟩, the component |ψ0⟩ contains the higher spin
fields A and B, whereas the component |ϕ⟩ contains nonpropagating auxiliary fields.
This action is gauge invariant under transformations δ|χ⟩ = Q|Λ⟩. When the fields |ϕ⟩
are substituted via their nondynamical field equations, one recovers the Lagrangian
(2.208). The paper endswith some further discussion of interactions,mass generation
and connection to string theory.

2.11.3 The Bengtsson paper

My own paper also employs methods from the then active string field theory research,
but it is not motivated by string theory. Rather it is situated squarely in the massless
higher spin tradition of Fronsdal.126 Rereading the paper now, it however becomes
apparent how much it was written in the context of discovery rather than the con-

126 Reflecting a basic philosophy of mine regarding higher spin.
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text of justification. This context of discovery was very much colored by the reading
of string field theory papers and the pedestrian experimentation with auxiliary and
Stueckelberg fields, just as in many string field theory papers of the time that were
expanding the theory level by level. In retrospect, the ⟨Φ|Q|Φ⟩ action invariant under
gauge transformations δ|Φ⟩ = Q|Ξ⟩, with Q constructed from the mechanics first class
constraints, is shouting for attention.127

In my paper, the issue of finding a BRST gauge-fixed action is bypassed, instead
the focus is on BRST gauge invariance from the outset. Inspired by string field theory,
I introduced bosonic and fermionic oscillators, generators and their algebra.

The Bengtsson generators and algebras

Bosonic and fermionic oscillators obey the commutators and anticommutators

[αμm, α
ν
n] = mδm+n,0η

μν {βm, β̄n} = δm+n,0 (2.219)

From string theory, the zero-mode degenerate vacua |+⟩ and |−⟩, are borrowed, subject to

β̄0|+⟩ = 0 β0|−⟩ = 0 β̄0|−⟩ = |+⟩ β0|+⟩ = |−⟩ (2.220)

Then departing from string theory, new higher spin generators are defined according to

Km = iα
μ
m𝜕μ and K0 = −

1
2
𝜕μ𝜕μ (2.221)

The algebra is

[Km,Kn] = 2mδm+n,0K0 and [K0,Km] = 0 (2.222)

Three further, string theory inspired, operators are introduced

D ⋅ 𝜕 = ∑
m ̸=0

β†mKm M = −2 ∑
n>0

nβ†nβn 𝒲 = − 1
2
(1/n)β̄†nβ̄n (2.223)

After this preliminary work, the paper postulates an action

I = −⟨−|ϕ†K0ϕ|+⟩ − ⟨−|ϕ
†D ⋅ 𝜕𝒲D ⋅ 𝜕ϕ|+⟩ (2.224)

The fieldϕ is an expansion over the creationmodes (negative indicesm) of the bosonic
αm and fermionic oscillators βm and β̄m (with an equal number of unbarred and barred

127 It apparentlywas not so in the 1984 to early 1985 string field theory research. During 1985, with the
research referred to in Section 2.11.1, it gradually became clear that the mechanics BRST chargeQ lead
to gauge invariant field theorywithout first having to go through theBRST invariant gauge fixed theory,
and then removing the Fadeev–Popov ghosts and auxiliary fields. One of the first clear statements of
this is in the Witten October 1985 paper [165].
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oscillators) as well as over the zero mode β0. It is subject to the constraintMϕ|+⟩ = 0.
It is shown that the action is invariant under the gauge transformations

δϕ|+⟩ = D ⋅ 𝜕Ω|+⟩ (2.225)

The proof rest on algebraic relations satisfied by the operators defined in (2.223).128

The paper then proceeds to working out the details for spin 1, 2 and 3. In the case
of spin 2, it is noted that a scalar field C, occurring at the same excitation level as the
spin 2 field hμν, can be identified with the trace of hμν through a constraint Tϕ|+⟩ = 0
with T = 1

2α1α1 + β̄1β1. This is the repeated at the spin 3 level where a vector field Dμ
can be identified with the trace of the spin 3 field ϕμνρ. The spin 4 level is not done in
detail, but it is noted a constraint Tϕ|+⟩ = at this level implies double tracelessness of
the spin 4 field through the equationsDμν = 6ϕμνρρ andDμμ = 0. A general formula for
the T operator is given.

It is noted that the T operator commutes with the BRST operator so that the con-
straint can be consistently applied to both fields and parameters, reproducing trace-
lessness for the gauge parameters and double tracelessness for the fields. It is also
noted that there is no need to apply these constraints, gauge invariance is assured by
the nilpotency of the BRST operator. The reason for this is the presence of extra inde-
pendent fields of spin s − 2 for each spin s higher spin field.129

The paper ends with a section on the relation to string theory, briefly discussing
the limit α󸀠 → ∞ (the zero-tension limit).130 I discussed the limit in the Veneziano
amplitude with M. Green, who showedme that it did not make any sense. This was an
early indication that any massless higher spin self-interactions, most likely, must be
different from string induced interactions.

There was however one way that the zero tension limit could be interesting. I took
the open bosonic string theory Virasoro generators and their algebra and performed
the limit α󸀠 → ∞ (see Section 5.4.4). The result is precisely the generators (2.221) and
the algebra (2.222) that I had postulated for massless higher spin. Using the Fradkin–
Vilkovisky–Batalin procedure, I could write the BRST operator as

Q = − 1
2
β0◻ + D ⋅ 𝜕 + β̄0M (2.226)

128 The structure of the action (2.224) is similar to the Ouvry–Stern action (2.214) and the proof of
invariance rests on the similar algebraic relations. The difference is that the action written here is
gauge invariant, not just BRST gauge-fixed invariant.
129 Inmodern higher spin research, such formulations, that do not require trace constraints on fields
and parameters, are called “unconstrained”. Such models will be treated in Sections 5.3 and 5.5. Note
also the correspondence to the Fronsdal fields ϕs and ϕs−2 (see Section 2.10.1) and to the Ouvry–Stern
fields A and B above.
130 The Regge trajectory slope is α󸀠.
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Nilpotency is easy to check, and the action is

I = −⟨Φ|Q|Φ⟩ (2.227)

with a field expanded as |Φ⟩ = ϕ|+⟩ + ψ|−⟩. The action is gauge invariant under the
gauge transformations δ|Φ⟩ = Q|Λ⟩ by nilpotency only, with no need for any further
arguments.

This seemed almost to good to be true, but the fact was that when worked out
level by level, the action I and gauge transformations δ|Φ⟩ produced the correct for-
mulas for the component fields. The connection between the ⟨Φ|Q|Φ⟩ action and the
action given in formula (2.224), is the constraint Mϕ|+⟩ = 0, which is actually a par-
tially gauge choice that allows the auxiliary fields in ψ|−⟩ to be integrated out, just as
in string field theory [177]. In modern parlance, the ⟨Φ|Q|Φ⟩ theory yields a “triplet”
formulation of higher spin gauge fields, whereas the action (2.224) yields a “doublet”
formulation. These distinctions will be clarified in Chapter 5.

There is almost nothing written in the paper about interactions.131 I do however
comment that some “underlying two-dimensional invariance principle” of “similar
strength to string theory” might be needed in order to construct interactions.132

2.11.4 A few more papers from the 1980s

Some months after the Ouvry–Stern and Bengtsson papers, there appeared a paper
by Y. Meurice [184]. It is not widely cited, perhaps because it does not explicitly take
its motivation from string theory or higher spin theory. Rather its motivation was to
apply the Siegel “mechanics to field theory algorithm” to more systems. Although the
method was, by that time, rather well understood, the paper is nevertheless interest-
ing as it provides a clear exposition of the algorithm: starting from point mechanics,
adding further coordinate-momentum pairs, defining bilinear constraints, studying
their algebra, first quantization, defining the mechanics BRST charge, studying the
ghost andvacuumstructure, definingfields andfinally settingupactions, gauge trans-
formations and field equations. All this is done quite systematically in the paper.

There is however no application of the method to higher spin theory in the paper,
even though the generic fields written down include general mixed symmetry tensor
fields. The examples given explicitly concern low spin models such as spin 1, spin 2
and rank 2 antisymmetric tensor field. The reason for this is that the author requires
one particular constraint to hold in all models. In the particular case of one additional
coordinate-momentum pair (y, py), it constrains p2y + y

2. When this is expressed in

131 I was luckily advised by M. Green to drop much of the text I had written for the preprint about
interactions. The referee on the paper then convinced me to drop the rest.
132 This is a conviction that has followed me up to the present.
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terms of oscillators, it becomes a number operator constraint a†a − n = 0 restricting
to one particular spin, or representation of the Poincaré group. This puts the paper
somewhat out of the higher spin theory line of research.

In 1989, there appeared a paper [185] by F. Hussain, G. Thompson and P. D. Jarvis,
where the BRSTmethod, as formulated byOuvry and Stern, was reviewed and applied
to massive fields of any spin and symmetry, among a few other examples. In regard to
higher spin fields and supersymmetry, there is a follow-up paper to the Ouvry–Stern
paper by M. Bellon and S. Ouvry that treats this subject [186].

A comprehensive review of models of point particles of any spin, bosonic as well
as fermionic, with and without supersymmetry, can be found in [187].

Apropos early references to a higher spin Higgs effect, there is a paper, preprinted
in the spring of 1985, by C. S. Aulakh, I. G. Koh and S. Ouvry, discussing higher spin
fields with mixed symmetry [188]. The motivation behind the paper is ”[the] recent
surge in interest in string theories [that] has refocused attention on the old problem of
formulating field theories of particles carrying arbitrary representations of the Lorentz
group.”. The Singh–Hagen theory for massive higher spin fields is briefly discussed
in the Introduction, especially in relation to dimensional reduction from D to D − 1
dimensions that produces massive field theories from massless. The example of lin-
earized Einstein action is given. This is called a “telescopic Higgs effect”. The pa-
per works out the BRS-symmetry in the case of massless fields with Young Tableaux
symmetry (2, 1, . . . , 1)n. Dimensional reduction and the ensuing massive theory is dis-
cussed. Mixed symmetry massless higher spin fields were subsequently studied by
J.M. F Labastida.

Mixed symmetry fields

Mixed symmetry fields refer to tensor fields corresponding to Young tableaux with more than one row.
They arise as representations of the Poincaré group in dimension higher thanD = 4. Theywere studied
comprehensively in [189, 190] and reviewed in [191]. They also occur as “connection-type” fields in
D = 4, in particular in the Vasiliev theory. An early study is by T. Curtright in [192].

2.11.5 The Labastida series of papers

Starting with a paper with T. R. Morris [193], and referring to the Aulakh, Koh and Ou-
vry paper [188], there is a series of papers by J.M. F. Labastida on mixed symmetry
fields of arbitrary spin. Themotivation is again the interest in string field theory, but as
the authors of [193] argue, ”onewouldprefer a field theoretical descriptionof themass-
less representations based on the principle of gauge invariance.”. At the time, only a
few examples of mixed Young tableaux symmetry fields had been investigated. There
had been neither any need nor any interest. String field theory changed that. These
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circumstances are again mentioned as motivations in the second paper by Labastida
[194]. Working backwards from the known massive representations from string field
theory tomassless by some “anticompactification”method is “tedious and inelegant”
and “does not teach us anything about the rich physics contained in the description
of massless particles.”.

The paper [194] is interesting in that it uses a bosonic string-like field |A(x)⟩ with
no ghost excitations and the corresponding set of N covariant oscillators aμn in order to
find gauge invariant field equations 𝒪|A(x)⟩ = 0 for mixed symmetry massless fields.
Themethod can be viewed as an “ansatz-coefficient solving”method although it is not
phrased so in the paper. Instead, possible contributions to the operator𝒪, built from
derivatives and oscillators are listed, taking into account various natural restrictions
on its structure. Then gauge invariance, also formulated in the same language, is im-
posed to restrict the possible operators occurring in the field equation. What results is
a generalization of the Fronsdal equations to mixed symmetry fields. The operator is
determined to be

𝒪 = ◻ + a†αm a†βm 𝜕α𝜕β +
1
2
a†αm a†βn aγman,γ𝜕α𝜕β (2.228)

The paper ends with a sentence on breaking the symmetry to generate some connec-
tion to string theory, and a sentence on interactions. The third paper in the series treats
fermionic fields [195].

The fourth paper [196], referring to theOuvry–Stern andBengtsson papers treats a
BRST formulation along the lines of these two papers. The paper starts out by formally
introducingN copies of the string BRST operator; the open string is N=1 and the closed
string is N=2. The theory is then restricted to massless fields. It is said to be related to
the Ouvry–Stern and Bengtsson formulations, but not identical to, as the field content
differs.

The fifth paper [197] is in my opinion the most interesting. It sums upmuch of the
previous work done by the author, and formulates the theory in terms of a string field
with only bosonic oscillators (no ghost coordinates) as in the third paper [194]. An ac-
tion of the form ⟨A(x)|𝒪|A(x)⟩, reproducing the field equation of [194], is constructed.
What results is a generalization of Fronsdal’s theory tomixed symmetry fields. The au-
thorwrites in the conclusion that the paper does not prove that the number of physical
degrees of freedom is correct in all cases. The problem is the trace constraints that be-
come complicated in the mixed symmetry cases.

Let us end with a computation showing an interesting role played by the double
tracelessness constraint in this kind of formulation.
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... and was actually done. Labastida’s action

In [197], Labastida sets the problem of finding an action for higher spin gauge fields of the form

⟨A(x)|(𝒪 + ℰ)|A(x)⟩ (2.229)

with a Hermitian operator (𝒪 + ℰ)† = 𝒪 + ℰ. The operator𝒪 is the one given above in formula (2.228).
Let us simplify to just one oscillator. Then

𝒪 = ◻ − α† ⋅ 𝜕α ⋅ 𝜕 + 1
2
α† ⋅ 𝜕α ⋅ α (2.230)

The Fronsdal field equations should be derivable from the action (2.229). As we reviewed in Section
2.10.1, that is not possible without an intermediate step of computing the trace of the Euler–Lagrange
equations. Labastida requires equivalence of the field equations (𝒪 + ℰ)|A(x)⟩ = 0 and𝒪|A(x)⟩ = 0.
The result is that the operator ℰ is

ℰ = − 1
4
α† ⋅ α†α ⋅ α𝒪 (2.231)

It is quite interesting to note that in order to show that the Labastida action (2.229) is the same
as the action (2.205) with kinetic operator (2.206), one has to use double tracelessness in the form
α ⋅ αα ⋅ α|A(x)⟩ = 0.

From the story told here, it is clear that a small number researchers were interested in
massless higher spin field theory in 1985–1989, approaching the subject from different
angles and interests. Attempts at interactions were done (see Section 2.12.3). The in-
terest did not last long, and apart fromM. Vasiliev’s ownwork on the AdS approach to
interacting higher spin gauge fields during the 1990s, the subject of Minkowski higher
spin theory was almost dormant for about 10 years.

2.11.6 New BRST papers of the late 1990s

About a decade after the initial construction of the BRST approach to Minkowski
higher spin gauge fields, there was a return to the theory by A. Pashnev and M. Tsu-
laia. Their first two papers on the subject concernedmassive higher spin fields, falling
on a single Regge trajectory, with or without daughter trajectories, depending on the
choice of constraints.

The authors assume a first-class constraint L0 = −p2 − α󸀠a† ⋅ a and two pairs of
second class constraints L1 = p ⋅ a, L−1 = p ⋅ a† and L2 =

1
2a ⋅ a, L−2 =

1
2a
† ⋅ a†. The first

pair corresponds to transversality and the second to tracelessness, thus being poten-
tially able to describe massive particles.133 In the first paper [198], both sets of second

133 Compare to the Ouvry–Stern and Bengtsson constraints in Sections 2.11.2 and 2.11.3.
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class constraints are converted to first class by the introduction of new canonical vari-
ables.134 That allows for a BRST formulation of the theory. The authors however deem
the result unsatisfactory due to the occurrence of square roots √p2 in the converted
constraints. In the second paper [199], the authors employ a modified method to the
theory with the constraints L0, L1, L−1. By dimensional reduction of a corresponding
massless theory in D + 1 dimension, the massive BRST theory in D dimensions is de-
rived. Since the tracelessness constraints are not imposed, the theory has daughter
Regge trajectories.

The constructions become a bit involved, and one may perhaps argue that con-
verting second class constraints to first class, is not so natural. But it is interesting to
ponder the comparison to the bosonic string where the spectrum contains an infinite
number of Regge trajectories of massive states. However, the string has an underlying
infinite-dimensional algebra of first class constraints, namely the Virasoro algebra.
This algebra, in its turn, emanates from the two-dimensional reparametrization in-
variance of the string world sheet. Apparently, the truncation of the string to a single
Regge trajectory is not so natural from a mechanical gauge theory perspective since
the first class property of the constraints do not survive. On the other hand, the first
class property survives the zero-tension limit. Then the truncation to one trajectory
can be made.

The third paper [200] concerns the massless theory. The authors treat the second
class tracelessness constraints (i. e., the constraints that impose double tracelessness
for the gauge fields) by converting them to first class. There is a standard part in the
BRST Q operator, imposing the first class constraints p2 = 0, L1 = 0, L−1 = 0 and the
second class constraints L2 = 0, L−2 = 0 (now treated as first class), and the concomi-
tant structure constant terms. Furthermore, there is an additional term in Q that takes
the form of ghost oscillators times square roots of a sum of number operators.

In regard tomassive higher spin theories treated using BRST techniques, there is a
paper from 2005 that discuss this problem [201]. It also contains further references to
the massive problem. The research into BRST constructions of massless and massive
higher spin theories, both in Minkowski and AdS space-times of general dimension
D has continued into the new millennium. As this falls outside the limits set for this
chapter, we will refer the reader to the review [202].

2.12 Positive interaction results of the 1980s and 1990s

During the early 1980s, there appeared the first positive results on self-interactions
for massless higher spin fields. We will just mention the papers here, and return to a
proper history in Volume 2 of the present work.

134 For references to a general method of converting second class constraints to first class, see the list
in the papers [198, 199].
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2.12.1 Cubic interaction terms on the light-cone

Lars Brink had worked on light-cone formulations of supersymmetric gauge theories,
in particular in connection the proof of finiteness of the N = 4 Yang–Mills theory to-
gether with O. Lindgren and B. E.W. Nilsson [203, 204], but also on supergravity and
superstrings together with M. B. Green and J. H. Schwarz. He introduced the method
to Ingemar Bengtsson and me, and suggested that we should do higher spin in that
formulation.

Lower spin massless – and massive – field theory can be reformulated “on the
light-cone” so to speak. The space-time coordinates xμ can be recombined into the
light-front coordinates

x+ = 1
√2
(x0 + x3) x = 1

√2
(x1 + ix2)

x− = 1
√2
(x0 − x3) x̄ = 1

√2
(x1 − ix2) (2.232)

and similarly for momenta pμ and other kinds of vectors and tensors. For gauge fields,
for instance the spin 1 electromagnetic fieldAμ, one can furthermore choose the “light-
cone gauge” with A+ = 0. It then turns out that the component A− can be solved for
explicitly as

A− = 1
𝜕+
(𝜕Ā + 𝜕̄A) (2.233)

in terms of the physical transverse components A and Ā. The free field equations are
simply ◻A = ◻Ā = 0. To stay in the light-cone gauge, one must “regauge” the fields.
This leads to modifications of the Poincaré transformations (see Section 6.1.4). The
modified infinitesimal transformations still satisfy the Poincaré algebra. This analysis
is true also for spin 2, and indeed for any spin, integer or half-integer. Regardless of
spin, a massless gauge field on the light-cone can always be described by a complex
field ϕ and its complex conjugate ϕ̄, corresponding to the two helicities ±λ in four
space-time dimensions.

One may now attempt to construct nonlinear contributions to the free equations
of motion and action. In the first instance, this means quadratic contributions to the
field equations. Setting up an ansatz for such terms, one then requires the – now non-
linear – Poincaré transformations to close. The result for arbitrary integer spin λ is the
following cubic interaction term [124]

∫ d4x
λ
∑
n=0
(−1)n(λ

n
)(𝜕+)λϕ [ 𝜕

𝜕+
]
(λ−n)

ϕ̄ [ 𝜕
𝜕+
]
n
ϕ̄ + c.c. (2.234)

with gauge group structure constants (antisymmetrization) understood for odd spin.
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A characteristic feature of the light-front cubic interactions for massless higher
helicity fields is the simple binomial expansion form they take. This came out some-
what mysteriously from the computations. The structure becamemore clear when the
interaction terms were reformulated in momentum space in terms of vertex operators
a few years later in a paper by I. Bengtsson, N. Linden andmyself. In that formulation,
the momentum structure for the helicity λ cubic interaction is essentially given by ℙλ

where ℙ is defined by

ℙ = −
1
3

3
∑
r=1
(p+r+1 − p

+
r+2)pr (2.235)

where the index r is counted modulo 3.135

The light-cone approach to higher spin, in the vertex operator formalism of [205],
was taken up my R. R. Metsaev in the early 1990s. The cubic vertices were general-
ized to arbitrary dimension D by E. S. Fradkin and in R. R. Metsaev in [206] and in a
“generating function” formalism in [207]. The first analysis of the quartic level of inter-
action on the light-front was performed by Metsaev in two papers from 1990 and 1991,
[208] and [209], respectively.136 As this belongs to the theory of interacting higher spin
fields, we will defer further discussion of these interesting papers to the second vol-
ume of the present work. Suffice it to say that theMetsaev papers on quartic light-front
interactions came to the attention of the higher spin community in the mid-2010s in
connection to a general resurgence of interest in Minkowski higher spin theory. The
situation regarding light-front interactions was largely clarified by D. Ponomarev and
E. Skvortsov in [210] and by Ponomarev in [211].

2.12.2 Covariant spin 3 self-interaction

Thefirst positive result in a covariant formulationofmassless higher spin gauge theory
was the paper [122] by F. A. Berends and G. J. H. Burgers and H. van Dam, published in
1984, concerning cubic self-interactions for spin 3. The authors apply the deformation
theoretic approach discussed by Fang and Fronsdal in [8] (see our Section 2.8). As the
authors write “[...] it has never been applied successfully to a case, where the theory
wasnot knownbeforehand.”. A gauge invariant cubic interaction term for spin 3 gauge
fieldswas constructed. The interaction is consistentwith the corresponding light-front

135 The momentum variable ℙ was first introduced in light-front superstring theory.
136 It seems that these works went largely unnoticed at the time. Few people was working on higher
spin, and for those who did, the Vasiliev approach formed a paradigm. Ingemar Bengtsson sent me
a copy of [208], but we did not pay it the attention that it deserved (I had left theoretical physics for
other intellectual interests).
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result: there are three space-time derivatives in the interaction and the gauge field
must be antisymmetrized over an internal index.

In a follow-up paper [123], the same authors investigate general properties of self-
interactinghigher spin gauge theories inMinkowski space-time. It is shown that apure
spin 3 theory cannot exist (see also [212] and [125]). It is noted that a way out of this
negative conclusion may be a theory containing an infinite family of massless higher
spin fields. This had been suggested in 1979 by Fronsdal in a conference paper [213].

The spin 3 theory was revisited by X. Bekaert, N. Boulanger and S. Cnokaert in
2006 [214] and by X. Bekaert, N. Boulanger and S. Leclercq in 2010 [215] usingmodern
BRST cohomological methods. As these works are beyond the scope of the present
chapter, I will defer discussion to the second volume of the present work; suffice it to
say that the nonexistence of a pure spin 3 gauge theory is verified.

2.12.3 Cubic interaction terms in the BRST approach

Soon after the discovery of the BRST approach to free higher spin gauge fields, there
appeared a paper by I. G. Koh and S. Ouvry investigating interactions in the BRST for-
malism [216]. The authors study and construct a cubic string-like vertex of the type
constructed by E. Witten.137 The method is in principle to find a vertex operator ⟨V123|
coupling three higher spin gauge fields |χr⟩ in a cubic interaction term of the form
⟨V123|χ1⟩|χ2⟩|χ3⟩. The vertex operator also contributes with nonhomogeneous gauge
transformations bilinear in fields and parameters. The free theory contains an infinite
number of oscillator modes (as in the underlying Ouvry–Stern model).

Demanding gauge invariance to cubic order, which in this formalism is the same
as the nilpotency of the cubic BRSToperator, leads to a specific formof the vertex oper-
ator. Its general form is the same as the string vertex operator with operatorsN rs

n α
r
n ⋅p

s

bilinear in oscillators and momenta where n summed over an infinite number of os-
cillator modes, and r, s are numbering the three higher spin fields entering the inter-
action. There are also the corresponding BRST-ghost operators. The notation N rs

n is
borrowed from string theory, but does not denote the same functions. There are no
string-like operators of the type N rs

nmα
r
n ⋅ α

s
m bilinear in oscillator modes.

Regarding the resulting interactions, the authors conclude “Finally, as for the
component expansion, our gauge invariant interacting theory is quite different from
the string’s one. For example, the spin-one local field is shown to couple to other spin
fields with higher derivatives but does not have the AApA coupling of Yang–Mills the-
ories.”. This fact can be understood as an effect of the absence of the operator terms
N rs
nmα

r
n ⋅ α

s
m in the vertex.

137 They also refer to work by A. Neveu and P. C.West, J. L. Gervais, andwork by L. Baulieu and S. Ou-
vry.
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General aspects of this type of BRST-invariant interacting theories of higher spin
fields were studied in a 1989 paper by L. Cappiello, M. Knecht, S. Ouvry and J. Stern
[217] and in a 1991 preprint by F. Fougère, M. Knecht and J. Stern [218].

I worked on a BRST-invariant cubic vertex for higher spin gauge fields during the
winter and spring of 1987, inspired by the Witten open string field theory and by pa-
pers byD. J. Gross andA. Jevicki [219–221] that expressed theWitten constructionmore
explicitly in termsof vertex operators. The year before I hadworked togetherwith Inge-
mar Bengtsson and Noah Linden on a vertex operator construction of the light-front
cubic vertices. This was, in its turn, inspired by Linden’s work on light-front string
field theory, which apart from vertex operator techniques, also featured the momen-
tum variablesℙ of formula (2.235) that promised a rationale for the binomial structure
of the cubic interactions. However, there was no way we could get even Yang–Mills
out of the vertex operators we tried. They were written in terms of string-like bilinears
Y rsαrαs in light-front oscillators (r, s numbering higher spin fields participating in the
vertex) and terms Xrαrℙ. The reason was that the nonlinear Poincaré algebra unre-
lentingly forced Y rs = δrs. Therefore, no Yang–Mills coupling resulted. It then dawned
on us that we could try operators of the form Y rstαrαsαtℙ. It was clear that this ansatz
promised to produce all cubic self-interaction terms. Now the Poincaré algebra did not
object, but instead gave precisely the correct structure Y rst = p+t /p

+
r p
+
s of p
+ momenta.

This resulted in our 1987 paper [205]. This paper also contains a full list of all possible
cubic interaction terms among higher spin massless fields.

After this, it was only natural to try the same structure in a covariant BRST-gauge
invariant formalism. In that way, it was possible to derive a BRST-invariant cubic ver-
tex that did produce the Yang–Mills interaction as well as higher spin interactions of
the correct overall derivative structure [222]. As a by-product, it was verified that even
in the BRST formalism, covariant operators of the typeN rsαr ⋅αs are only possible with
N rs ∼ δrs in massless higher spin theory. What was needed was operators of the form
Y rstuαr ⋅ αsαt ⋅ pu and corresponding ghost operators.

After this, the project came to a standstill, due to difficulties that I did not have
tools at the time to address. We will return to this approach in Volume 2 of the present
work.

2.12.4 The Fradkin–Vasiliev and Vasiliev anti-deSitter theory

The Fradkin–Vasiliev approach to higher spin has been the most successful so far. It
started out in 1980 with a reformulation of free higher spin field theory by M. Vasiliev
in terms of what has become known as the frame formulation (see Section 5.7). Then
there was a lapse in time in the published record until a “tree” of papers appeared at
the end of the 1980s and beginnings of the 1990s. This “tree” of papers is constituted
of a sequence of papers treating the free field theory, a sequence of papers treating
higher spin algebras, a sequence of papers constructing interactions – in particular
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cubic interactions, and a sequence of papers introducing the free differential algebra
and unfolding approach. We will study these sequences of papers in detail in Volume
2 of the present work.138

It is very natural to seek guidance from the lower spin gauge field theories when
trying to set up an interacting field theory for higher spin gauge fields. For a long time,
as we have seen, the focus was on electromagnetic and gravitational interactions of
massive (nongauge) higher spin fields. The problems then encountered added to the
impression that higher spin field theories are inherently inconsistent. After the shift of
focus tomassless gauge fields initiated by Fang and Fronsdal, the interaction problem
also shifted focus: to self-interactions. Then the guidance from lower spin gauge the-
ory also shifted focus: from minimal coupling to trying to generalize the very “gauge
invariance” itself and the “equational form” of the lower spin theories to higher spin.

The free field theory gauge invariance of actions and field equations for higher
spin was by now – as the 1970s turned to the 1980s – fairly well understood through
[3, 150, 149]. Yang–Mills gauge theory ofmassless spin 1was of coursewell established
and gauge theory approaches to gravity as massless spin 2 had been investigated (see
Section 2.9). But as pointed out in the review article by Kibble and Stelle [134], treat-
ing gravity as a gauge theory of the Poincaré group did not generalize very naturally
from the spin 1 gauge theory of a (semisimple) Lie group. There are several ways of
understanding this – and we will study the problems in Section 4.6. One source of
the difficulties being the fact that the Poincaré group is not semisimple, but rather a
semidirect sum of the Lorentz group and the Abelian translation group. It turned out
that there was a way out, namely to instead gauge the groups SO(4, 1) or SO(3, 2), the
de Sitter or anti-de Sitter groups, respectively. This was done by MacDowell and Man-
souri [223] and Stelle and West [224]. Now the action could be written in terms of the
curvatures, generalizing Yang–Mills theory. It was here that E. S. Fradkin and M.A.
Vasiliev found a way to promote the theory to a field theory of higher spin [225, 226].
The detailed history of theVasiliev theory, however, belongs toVolume 2 of the present
work. For now, I can only refer the reader to existing reviews of the Vasiliev theory, for
instance [227] and [228].

2.13 Chapter 2 epilogue

Toward the end of the twentieth century, the interest in higher spin gauge theory
started to grow, but this is where the story stops for now. The limit is set at the millen-
nium and at the very beginning of the interacting field theory. An attempt to tell the
story of what has happened during the last 20 years, as well as the story of interac-
tions, will be made in the second volume of the present work.

138 A few of the papers are written with collaborators S. E. Konstein and V. E. Lopatin.
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To all those authors who cannot find their papers in the list of references, that is
most likely because your work has been done after year 2000 and mainly concerned
interactions. I started to compile a list of names, but realized that it was doomed to
be incomplete, and as the sadness of those not on it would likely be greater than the
happiness of those on the list, I gave up. I can only offer my apologies.

Anyway, I hope that these historical notes, if nothing else, can be of some help
for the researcher who wants to dig deeper into the literature on higher spin wave
equations. It should give a first overview at least.



3 Concepts, mathematical structures and notation
In this chapter, wewill recapitulate basic concepts of relativity and quantummechan-
ics and their fusion into quantum field theory as well as some relevant group theory,
algebra and differential geometry. In doing this, we can also establish our notation.
However, rather than first developing these subjects in the abstract and then applying
them to higher spin theory, we will from the outset be guided higher spin thinking.
This saves time and space and makes the enterprise more interesting. So even though
the contents are well known, the skipping reader may miss some ideas. On the other
hand, the chapter is not a intended to be a substitute for proper study of the topics cov-
ered, but may serve as a set of reminders, and perhaps a few alternative perspectives.
There is a strong focus on the Poincaré group and its representations as it is central to
higher spin theory.

Features of higher spin theory suchas the infinitenumber of fields, arbitrarily high
orders of derivatives, raises subtle questions of principle within the theory of fields.
For this reason partly, I have also decided to include some discussions that seldom
find their way into reviews.

The literature on higher spin theory is naturally written on many different levels
of mathematical sophistication depending on the various authors inclinations and
interests. That is of course not surprising, but is perhaps not optimal for communica-
tion. In the hope of, at least to some extent, alleviate the confusion, I have therefore
endeavored to phrase the same mathematical concepts in isomorphic language, so to
speak. However, rather than trying to invent some kind of “consistent” notation cov-
ering all corners of theoretical physics, I have stayed close to standard notation that
the newcomer will find in the major texts off the subject. This will be apparent to the
expert reader.1

Theoretical physics needs a lot of mathematical concepts and techniques, but sel-
dom the sometimes quite heavy notation needed inmathematics tomake the concepts
precise. I have therefore chosen to be more “verbal” than “formal” in the definitions,
trying to avoid introducing notation that are not subsequently used. Further concepts
and mathematical structures, needed for interactions, will be introduced in a sister
chapter in Volume 2.

1 As already mentioned in Section 1.4, a “unified consistent” notation throughout would risk making
large parts of the subject look baroque.

https://doi.org/10.1515/9783110451771-003
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3.1 Lagrangian mechanics

Consider amechanical systemdescribed by the coordinates yi. The action S is the time
integral of the Lagrangian L

S[y(t)] =
t2

∫
t1

Ldt (3.1)

where L is a function of coordinates and their time derivatives y, ẏi, ÿi, . . . , yi(k) up to
somefinite order k. The action S[y(t)] is a functional of the trajectory y(t), but as is clear
from the formula, not a function of the time t. For most ordinary mechanical systems,
only first- and second-order derivatives occur.2 But in higher spin theory, we will have
to consider theories with arbitrarily high orders of derivatives. In this section, we will
develop some parts of Lagrangian and Hamiltonian mechanics, the generalization to
field theory will be done in the last section of this chapter.

3.1.1 Locality

The requirement of a finite order of derivatives in the Lagrangian is a kind of strong
locality assumption. It can be understood in the following way.

Consider a smooth function y = y(t󸀠) (see figure 3.1). In order to Taylor expand
it around a point t say, we in general need derivatives at that point to all orders. For
functions that describe the trajectory (or history) of a system, we escape that since
the equations of motion give us all the higher order derivatives in terms of the lower
ones.3 In field theory, locality assumptions concern space-time derivatives, not just
time derivatives.

In higher spin field theory, this requirement of strong locality must be given up
since already at the cubic interaction level there are derivatives of arbitrarily high or-
der, the basic spin s–s–s interaction term having s space-time derivatives. Even the
free field theory contain objects – the gauge invariant generalized Christoffel symbols
– that are higher order in derivatives. These are however normally not used in the ki-
netic terms as one can use the two-derivative Fronsdal tensor instead (see Section 5.2).

Therefore, by requiring locality in higher spin theory, we do allow arbitrarily high
powers of derivatives. This is presumably acceptable, since thinking in terms of Tay-
lor expansions of smooth functions, the whole trajectory can be reconstructed from a
denumerable infinite set of data: the values of all the derivatives at a certain point, at

2 Partial integration makes for a certain amount of trading between first and second order in deriva-
tives.
3 Either we have an exact formula for the solution to differentiate, or we can step forward in time,
using the equations of motion, from the initial point.
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t󸀠

y

t

y(t󸀠)
y(t), ẏ(t), ÿ(t), . . .

Figure 3.1: Smooth trajectory, Taylor expanded around t󸀠 = t.

least within certain radii of convergence. There is a mathematical apparatus to han-
dle such situations: infinite jet spaces, which will introduced in Volume 2 where the
concept will be needed.

A kind of nonlocality that ismuchmore difficult – perhaps impossible – to accept,
is the occurrence of inverse powers of derivatives. Now, an operator (d/dt)−1 has no
well-defined meaning as it stands, but it can be defined as a integral operator. This
makes it nonlocal. Its value cannot be found locally at any point t.4

3.1.2 Functional and variational derivatives

The Lagrangian can be viewed either as a function of the coordinates yi and their time
derivatives or as a functional of the trajectory y(t󸀠). In the first view, varying the action
leads to the Euler–Lagrange equations

δS = ∫ δLdt = ∫ dt( 𝜕L
𝜕yi

δyi + 𝜕L
𝜕ẏi

δẏi + 𝜕L
𝜕ÿi

δÿi + ⋅ ⋅ ⋅ )

= ∫ dt( 𝜕L
𝜕yi
−

d
dt
𝜕L
𝜕ẏi
+

d2

dt2
𝜕L
𝜕ÿi
+ ⋅ ⋅ ⋅ )δyi (3.2)

This calculation is interpreted according to

δS = ∫ dt δS
δyi(t)

δyi(t) = ∫ dt δL
δyi

δyi (3.3)

so that we can read off

δS
δyi(t)
=
δL
δyi
=
𝜕L
𝜕yi
−

d
dt
𝜕L
𝜕ẏi
+

d2

dt2
𝜕L
𝜕ÿi
+ ⋅ ⋅ ⋅ (3.4)

4 Such operators do occur in the light-front formulation of field theory. There, however, they can be
considered as an artefact of the noncovariant formalism. We defer that discussion to Chapter 6.
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This equation defines the relation between the functional derivative of the integrated
Lagrangian (i. e., the action) and the variational derivative of the Lagrangian. The dif-
ference between variational and functional derivatives should be clear from the fol-
lowing formulas:

δyj

δyi
= δji

δyj(t)
δyi(t󸀠)
= δjiδ(t − t

󸀠) (3.5)

δẏj

δyi
= 0 δẏj(t)

δyi(t󸀠)
= δjiδ̇(t − t

󸀠) (3.6)

In the second view of the Lagrangian, we therefore have

δL(t)
δyi(t󸀠)
= δ(t − t󸀠) 𝜕L

𝜕yi
(t) + δ̇(t − t󸀠) 𝜕L

𝜕ẏi
(t) + δ̈(t − t󸀠) 𝜕L

𝜕ÿi
(t) + ⋅ ⋅ ⋅ (3.7)

The two views are consistent as can be seen by computing the functional derivative of
the action

δS
δyi(t󸀠)
= ∫ dt δL(t)

δyi(t󸀠)

= ∫ dt [δ(t − t󸀠) 𝜕L
𝜕yi
(t) + δ̇(t − t󸀠) 𝜕L

𝜕ẏi
(t) + ⋅ ⋅ ⋅ ]

=
𝜕L
𝜕yi
−

d
dt
𝜕L
𝜕ẏi
+ ⋅ ⋅ ⋅ (3.8)

and we recover the Euler–Lagrange equations. Note that in the just presented formu-
las, the dots “. . .” represent a finite number of higher derivatives in standard theories
or an infinite series in higher spin-type theories.

3.1.3 General gauge transformations

Gauge transformations depend on arbitrary functions of time in mechanics, and of
space-time location in field theory. They can be parametrized by the formula5

δξ y
i = R̄i(0)aξ

a + R̄i(1)a ̇ξ
a + R̄i(2)a ̈ξ

a . . . = Riaξ
a (3.9)

where in the last equality, Ria acts as derivative operator. The transformations are
called local when the parameter depends on time, as opposed to global when the
parameter ξ is constant.

To connect this somewhat abstract formula to something well known, consider
the Yang–Mills gauge transformations δAaμ = 𝜕μξ

a + gf abcAbμξ
c. The first, inhomo-

geneous, derivative term 𝜕μξ a corresponds to R̄i(1)a ̇ξ
a in the general formula with

5 We are adopting the notation of [229].
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space-time derivatives instead of the time derivative. The second, homogeneous, term
gf abcAbμξ

c corresponds to abstract term R̄i(0)aξ
a. Thus with the coefficients R̄i(k)a taken

as appropriate powers (or polynomials) of the coordinates (fields in field theory) the
abstract formula (3.9) captures very general types of transformations, local as well as
global.

In general discussions, it is customary touse an evenmore abstract condensedno-
tation,where the time variable (inmechanics) or the space-time variables (in field the-
ory) are subsumed under abstract indices i or a symbolizing all of the “coordinate” de-
pendence on discrete and continuous variables.6 Sums over the index is then thought
of as including also integrals as appropriate for the context. For the gauge transforma-
tions (3.9), the sum over the discrete index a is extended to include a time integration.
Thus

δξ y
i = Riaξ

a is defined as δξ y
i(t) = ∫ dt󸀠Ria(t, t

󸀠)ξ a(t󸀠) (3.10)

To make this reproduce (3.9), we take

Ria(t, t
󸀠) = R̄i(0)a(t)δ(t − t

󸀠) + R̄i(1)a(t)δ̇(t − t
󸀠) + ⋅ ⋅ ⋅ (3.11)

where the overdot signifies derivatives with respect to t. It has to be kept in mind,
when this formalism is employed, that every occurrence of a repeated index may also
include integrals as appropriate to context.

3.1.4 Noether identities and gauge algebra

Wenow compute the variation of the action under a gauge transformation and require
it to be zero

δξS =
δS
δyi

δξ y
i =

δS
δyi

Riaξ
a = 0 ⇒ δS

δyi
Ria = 0 (3.12)

since the equality must hold for ξ a an arbitrary function of time. As we have just dis-
cussed, in this expression we have an implicit integration. Using (3.4), we have

δS
δyi

Ria = ∫
δL
δyi
(t󸀠)Ria(t, t

󸀠)dt󸀠

=
δL
δyi

R̄i(0)a +
d
dt
(
δL
δyi

R̄i(1)a) + ⋅ ⋅ ⋅ = 0 (3.13)

These are the Noether identities giving equations connecting various components of
the equations of motion. Not all of them can therefore be independent. This is a re-
flection of the gauge invariance of the system. We will return to these identities, in

6 This notation was introduced by B. DeWitt in [106] in the context of quantum gravity.
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Section 3.14 in connection with the deformation theoretic approach to interactions in
field theory.

In order to get some grip on the gauge algebra, we compute the commutator of two
gauge transformations δϵyi = Riaϵ

a and δηyj = R
j
bη

b, the result of which is

[δϵ, δη]S =
δ2S
δyiδyj
(RjaR

i
b − R

i
aR

j
b)ϵ

aηb + δS
δyi
(Rja

δRib
δyj
− Rjb

δRia
δyj
)ϵaηb (3.14)

The first term is zero, and the second we interpret as a new gauge transformation.
To proceed from here, we recognize that one can construct trivial gauge transfor-

mation by using the equations of motion. Consider

δηy
i = ηij δS

δyj
(3.15)

with ηij some arbitrary, infinitesimal, antisymmetric function ηij = −ηji of the yi. Trans-
formations of this form satisfy the Noether identities by construction, and are present
for any action, and should therefore not be regarded as proper gauge transformations.
They may, however, appear when commuting proper gauge transformations or when
redefining gauge transformations [229]. Such trivial transformations form an ideal of
the gauge algebra, and can thus be “factored out” (see Section 3.9).

Furthermore, given gauge transformations δyi = Riaϵ
a satisfying the Noether iden-

tities nontrivially, one can construct new transformations according to

δηy
i = (RiaM

a
b )η

b (3.16)

When the matricesMa
b are allowed to depend on the y

i, such transformations are lin-
early independent of the original transformations δyi = Riaϵ

a. However, they do not
lead to independent Noether identities, since

δS
δyi

RiaM
a
b = 0 (3.17)

are direct consequences of the original Noether identities (3.12).
These circumstances lead to the concept of a generating set of gauge transforma-

tions, a set of gauge transformations that contain all information about the Noether
identities in “minimal way”. If such a set of gauge transformations are denoted by
δϵyi = Riaϵ

a, then any other gauge transformation, according to the discussion above,
can be written as

δyi = maRia +M
ij δS
δyj

(3.18)

where the coefficientsma andMij = −Mji may depend on the yi. Returning now to the
commutator of two gauge transformations in equation (3.14), and taking the transfor-
mations to belong the generating set, the commutator must be possible to express as
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in (3.18), that is, we get

Rja
δRib
δyj
− Rjb

δRia
δyj
= C c

ab R
i
c +M

ij
ab
δS
δyj

(3.19)

Generating sets are clearly not unique. In case the coefficients Mij
ab are nonzero, one

speaks of an open algebra. On the other hand, in case the coefficients Mij
ab are zero,

the algebra is called closed. A closed algebra is a classical true Lie algebra when the
coefficients C c

ab are constants.

Higher spin gauge algebras?

Although “higher spin algebras” – taken in a loose sense – are clearly important for the interaction
problem and therefore, properly belongs to Volume 2 of the present work, this is a good place for a
few general comments.

As pointed out in [229], a generating set of gauge transformations is in general not a basis in the
Lie algebra sense. However, on general grounds, the set of all gauge transformations is always a Lie
algebra. Gauge theories for which the generating set is a true Lie algebra is therefore quite special
in that one may treat the gauge transformations in an abstract way, independent of the field content
or the dynamics. As stressed in [229]: “In that case, one can construct the generating set before writ-
ing down the action. This is a very lucky instance, however, and many interesting gauge theories are
characterized by generating sets that do not form a Lie algebra.”.

As we will see in Section 4.2, Yang–Mills theory is the cardinal example of this lucky instance.
Indeed, the “gauging paradigm” of taking an abstract global symmetry algebra and making it local in
order to perform the kinematical part of the gauging is intuitively based on the successful Yang–Mills
example. There is no guarantee that higher spin gauge theory will work out so simple.

3.2 Hamiltonian mechanics

The analysis of constrained dynamical systems is due to Dirac [230–232].7 Wewill fol-
low the standardwayof describing it for finite dimensional systems, that ismechanics,
and then just wave the pen and write that the generalization to infinite dimensional
systems, that is field theory, is straightforward, at least in principle. The reader should
however be aware of the fact that this straightforwardness is notwithout its subtleties,
complications coming from finite or countable sums being replaced by integrals and
the ensuing questions about function spaces to work over. It is at the present not clear
if such nontrivialities has any bearing on the higher spin interaction problem. As will
be briefly mentioned in Chapter 6 on light-front higher spin theory, there are indeed
problems related to the Dirac procedure. For a comprehensive textbook treatment of

7 According to [233], there is a largely unknown precursor work by Léon Rosenfeld.
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constrained dynamics; see [229] and for a classic review text, see [234] which also con-
tains some further references to original work on the subject apart from Dirac. A geo-
metrical treatment can be found in [235]. Another classic textbook reference is [236].
For an alternative approach and discussion of specific field theory issues, see [237].

The passage from Lagrangianmechanics to Hamiltonianmechanics is interesting
and well motivated in classical generalized mechanics, but it became even more so
in view of Dirac’s fundamental insight that it provides a natural road for quantiza-
tion. We have already had several occasions to see the tension between relativity and
quantum theory. In this context, it is interesting to quote from Dirac’s first paper on
the subject.

With theLagrangian form the requirements of special relativity canvery easily be satisfied, simply
by taking the action, that is, the time integral of the Lagrangian, to be Lorentz invariant. There is
no such simple way of making the Hamiltonian form relativistic.
For the purpose of setting up a quantum theory, onemust work from theHamiltonian form. There
are well-established rules for passing from Hamilton’s dynamics to quantum dynamics, by mak-
ing the coordinates and momenta into linear operators. [...]
Thus both forms have their special values at the present time and one must work with both.8

Consider an action for a system of N classical degrees of freedom described by gener-
alized coordinates qn and velocities q̇n = dqn/dτwhere τ is some evolution parameter
of the system, not necessarily the reference frame time t = x0 in relativistic systems.
Write the action as

SL =
τ2

∫
τ1

L(qn, q̇n)dτ (3.20)

The Euler–Lagrange equations are (see formula (3.4))

d
dτ
(
𝜕L
𝜕q̇n
) =
𝜕L
𝜕qn

n = 1, . . . ,N (3.21)

If “everything goes as intended”, so to speak, the Euler–Lagrange equations yield
equations for the accelerations q̈n. That it may not always turn out “as intended” can
be seen by using the chain rule on the left-hand side of (3.21)

q̈m
𝜕2L
𝜕q̇m𝜕q̇n

=
𝜕L
𝜕qn
− q̇m
𝜕2L
𝜕qm𝜕q̇n

(3.22)

8 Of course, one may protest by pointing out that one can quantize covariantly using Lagrangian–
Feynman path integrals [238] (a method incidentally also going back to Dirac [239]), but that does not
make the conceptual tension alluded to here, less interesting.
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In order for it to be possible to uniquely express the accelerations in terms of the po-
sitions and velocities, the Hessian matrix

Wmn =
𝜕2L
𝜕q̇m𝜕q̇n

(3.23)

must be invertible. As wewill see, in relativistic systems this is in general not the case.
In fact, this is the most interesting case, as it leads to the concept of general gauge in-
variance. In this case, there will be constraints among the coordinates and momenta
that require a more elaborate method to pass from Lagrangian mechanics to Hamilto-
nian mechanics. But let us first do the standard case.

3.2.1 The unconstrained – standard – case

The passage to the Hamiltonian H goes via the definition of the canonical momenta

pn = 𝜕L
𝜕q̇n

(3.24)

and the Legendre transformation9

H = pnq̇n − L (3.25)

The rationale for introducing H is that it only depends on the velocities q̇ through the
canonical momenta p(q, q̇), and therefore can be expressed as function of positions
andmomenta only. This can be seen from computing of the variation δH of the Hamil-
tonian with independent variations δqn and δq̇n of positions and velocities

δH = q̇nδp
n + δq̇np

n −
𝜕L
𝜕q̇n

δq̇n −
𝜕L
𝜕qn

δqn = q̇nδp
n −
𝜕L
𝜕qn

δqn (3.26)

Here, δpn is not an independent variation, but follows from equations (3.24). In fact,

δpn = Wnmδq̇m +
𝜕pn

𝜕qm
δqm (3.27)

Thus, a variation in the q̇n that preserves the definition of the momenta while keeping
δqn = 0 and δpn = 0, leaves H invariant. Hence, H can be expressed as a function of
the qn and pn only. These variables, collectively called canonical variables, together
form the phase space of the system. It is a 2N-dimensional space.

9 The summation convention is used.
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The Euler–Lagrange equations of themotion cannowbe replaced by theHamilton
equations of the motion

ṗn = − 𝜕H
𝜕qn

and q̇n =
𝜕H
𝜕pn

(3.28)

At this stage one can introduce Poisson brackets. Let f and g be functions of the
phase space variables qn and pn. Then their Poisson bracket {f , g} is defined through

{f , g} = 𝜕f
𝜕qn
𝜕g
𝜕pn
−
𝜕f
𝜕pn
𝜕g
𝜕qn

(3.29)

In terms of Possion brackets, the Hamilton equations become

ṗn = {pn,H} and q̇n = {qn,H} (3.30)

The time evolution of the system can, in principle, be computed from these equa-
tions.10 In order to do that, one needs initial conditions in the form of values for all
the canonical variables at a certain initial time. Pictorially, the initial state is a point
in phase space that subsequently moves around as the clock ticks away.

Properties of the Poisson bracket

The Poisson bracket is by definition antisymmetric in the sense that {f ,g} = −{g, f }. It is linear in
either of its members: {f + h,g} = {f ,g} + {h,g} and correspondingly for the second member. More
interestingly, we have the Leibniz-type rule

{fh,g} = f {h,g} + {f ,g}h (3.31)

and the Jacobi identity

{f , {g,h}} + {g, {h, f }} + {h, {f ,g}} = 0 (3.32)

These properties translate to quantum commutators upon quantization according to the rule (1.1).

3.2.2 The constrained case

When the HessianmatrixWmn in (3.23) is singular, it is not possible to invert the defin-
ing equations (3.24) for the momenta, and express all the velocities in terms of the co-
ordinates andmomenta. Nevertheless, the Legendre transformation anyhowmakes it
possible to express the Hamiltonian as a function of positions and a momenta, but

10 Or at least be numerically simulated.
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not in a unique way. The argument at the beginning of Section 3.2.1 is still valid even
though the Hessianmatrix in formula (3.27) is not of maximal rank. There will now be
constraints among the momenta and positions. Suppose there areM such constraints
ϕm(p, q) = 0 corresponding to the matrixWmn being of maximal rank N −M.

Aquickway11 to develop the theory in this case is to state that theHamiltonianH in
equation (3.25) is not unique, rather one can replace it with an “effective”Hamiltonian
H̃ defined by

H̃ = H + umϕm(p, q) ≈ H (3.33)

where the ≈ equality sign was introduced by Dirac [230] to signify weakly equal. In-
deed, the constraints should be written

ϕm(p, q) ≈ 0 m = 1, . . .M (3.34)

In [231], Dirac introduces the weak equality to remind us that equalities such as
ϕm(p, q) = 0 should not be used before working out Poisson brackets. The reason
being that the Poisson brackets of (3.29) presuppose that the qn and pn can be con-
sidered as independent variables, which is not the case here. In short, the Poisson
brackets and the constraints are incompatible. The coefficients um are indeterminates
with no definite dependence on positions and momenta.

Continuing, with this preliminary understanding, one can compute the equations
of motion

q̇n = {qn, H̃} ≈
𝜕H
𝜕pn
+ um 𝜕ϕm
𝜕pn

(3.35)

ṗn = {pn, H̃} ≈ − 𝜕H
𝜕qn
− um 𝜕ϕm
𝜕qn

(3.36)

where the constraints have indeed been used after the computation of the Poisson
brackets. Likewise, the time evolution of any variable f is computed according to12

̇f = {f , H̃} ≈ {f ,H} + um{f ,ϕm} (3.37)

The constraints so far considered are called primary constraints since they follow
from the form of the Lagrangian and the equations of motion have not been used. The
presence of the constraints in the Hamiltonian equations of motion means that the
time evolution contains arbitrary functions of time. This is a manifestation of the orig-
inal impossibility to solve for all the accelerations in equation (3.22) when the Hessian
matrix is singular. However, the story does not end here, because the analysis of this
arbitrariness is not yet complete.

11 As it is done, for instance, in [234]; this is actually the commonmethod in the secondary and tertiary
literature.
12 Note that when performing these computations, one is relying on the abstract properties of the
Poisson bracket collected in the box above, in conjunction with the weak equality. For instance,
{f , umϕm} = um{f ,ϕm} + {f , um}ϕm ≈ um{f ,ϕm}.
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Understanding the multipliers um

The terms {f , um}ϕm, that one would perhaps expect to occur in the computations (3.35) and (3.36) are
weakly zero. That is just as well, because factors such as {f , um} cannot be computed since the um

are not well-defined functions of qn and pn, rather they can be interpreted as new canonical variables
[230]. A more elaborate derivation of the time development formulas is to return to the variation of H
in the computation (3.26) and write it as

δH = 𝜕H
𝜕qn

δqn +
𝜕H
𝜕pn

δpn = q̇nδp
n −
𝜕L
𝜕qn

δqn (3.38)

from which follows

(
𝜕H
𝜕qn
+
𝜕L
𝜕qn
)δqn + (

𝜕H
𝜕pn
− q̇n)δp

n = 0 (3.39)

In the unconstrained case, where qn and pn can be varied freely, both coefficients of δqn and δpn must
be zero. This returns us to the Hamilton equations (3.28). In the constrained case, where we can think
of the constraintsϕ(p,q)m as defining a surface in phase space, the “tangential variations” cannot be
made independently. It may then be shown that any solution of an equation of the type

λnδqn + μnδp
n = 0 (3.40)

is of the form

λn = um 𝜕ϕm
𝜕qn

and μn = u
m 𝜕ϕm
𝜕pn

(3.41)

Combining this with (3.39) again yields the equations (3.35) and (3.36). For details of this argument,
see [229]. For Dirac’s own argument, see [230].

The Hamiltonian equations of motion (3.35)–(3.36) and the constraints (3.34) can be derived from
the action

SH =
τ2

∫
τ1

(q̇np
n − H − umϕm)dτ (3.42)

by independent varying qn, pn and um. The variables um may therefore be interpreted as Lagrange
multipliers enforcing the primary constraints. As such, they are indeed indeterminate at this stage of
the discussion.

The next step is to require that the τ derivatives of the primary constraints are zero,
that is, the constraints should be maintained in time. This gives us the equations

ϕ̇n ≈ {ϕn,H} + u
m{ϕn,ϕm} ≈ 0 (3.43)

These equationsmay reduce to equations among the qn and pn independent of the um,
or may impose restrictions on the um. In the first case, we get new constraints, called
secondary constraints. They are so-called because they follow from the equations of
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motion. This procedure is then repeated, computing the time derivatives of the sec-
ondary constraints and requiring them to be zero, which againmay result in new con-
straints or conditions on the um.13 The process is repeated until no more secondary
constraints result or no more conditions on the um occur. At this stage, the set of M
initial primary constraints may be enlarged by an additional number K of secondary
constraints. Since there is from now on no particular reason to discriminate between
primary and secondary constraints, they will all denoted byϕj(q, p)where j runs from
1 toM + K = J.

Finally, assuming that all constraints have been found, the next step is to investi-
gate if there are any restrictions on the multipliers um. Lettingm run over the primary
constraints and j index any constraint, the restrictions are

{ϕj,H} + u
m{ϕj,ϕm} ≈ 0 (3.44)

We have here a system of J linear equations in theM undetermined variables um with
coefficients that are definite functions of the qn and pn. These equationsmust have so-
lutions14 that wemaywrite as a sumof a particular solutionUm to the inhomogeneous
equation, and a general solution Vm to the corresponding homogeneous equation

Vm{ϕj,ϕm} ≈ 0 (3.45)

Nowdenote byVm
a , a = 1, . . . ,A the linearly independent solutions to the system (3.45).

Then the general solution the system (3.44) is

um = Um + vaVm
a (3.46)

with undetermined arbitrary coefficients va. This means that we have split of the mul-
tipliers um into a fixed part Um and an arbitrary part. The split is however not unique
in that the particular solutions, as always, are just any particular solutions.

At this stage, it is customary to define what, somewhat unimaginatively, is called
the total Hamiltonian. The idea is however to take advantage of the split (3.46) to sep-
arate the piece of the time evolution that is completely arbitrary. Returning to the ef-
fective Hamiltonian of formula(3.33), we can now write

H̃ = H + umϕm = H + Umϕm + v
aVm

a ϕm (3.47)

13 Note that in doing this, one should still use the “effective” Hamiltonian in formula (3.33), that
is, one does not add the secondary constraints to H. Dirac comments on this in [231]. Dirac writes
that, from the Hamiltonian point of view, the essential difference between primary and secondary
constraints, is that the primary constraints occur in the equation of motion, while the secondary do
not.
14 Unless the original Lagrangian in the action (3.20) is inconsistent for some reason.
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This may prompt the following two definitions:

H󸀠 = H + Umϕm (The “fixed part” of the Hamiltonian) (3.48)
ϕa = V

m
a ϕm (A linear combination of the primary constraints) (3.49)

The total Hamiltonian HT is the defined according to

HT = H
󸀠 + vaϕa (3.50)

thus clearly separating out the part of the time evolution that is arbitrary.

3.2.3 Systematics of the constraints

It remains to understand the structure of the constraints in some more detail. Up to
now, we have the split into primary constraints and secondary constraints. The pri-
mary constraints follow from the Lagrangian and the definition of themomenta (3.24).
The secondary constraints follow from the consistency of the Hamiltonian equations
of motion. Then we have the linear combination of primary constraints ϕa = Vm

a ϕm
coming from the consistency conditions. Wewill now define the concepts of first class
and second class constraints.Wewill thenhave three kinds of constraints thatwehave
to understand how they relate to each other.

A function F(q, p) is said to be first class if its Poisson bracketwith every constraint
ϕj is weakly zero, that is if

{F,ϕj} ≈ 0 for j = 1, . . . , J (3.51)

If the function is not first class, then it is said to be second class. Thatmeans that it has
a nonzero Poisson bracket with at least one of the constraints. This definition allows
for a division of all the constraints into two disjoint sets: first class constraints, all of
which have weakly vanishing Poisson brackets among themselves, and the second
class constraints where each constraint has a nonvanishing bracket with at least one
other constraint in the set.

Focusing on first-class functions, a number of consequences of the definition can
be derived. If two functions F and G are first class, then their Poisson bracket {F,G} is
also first class. This follows from the Jacobi identity (3.32) for the Poisson bracket. This
means that the set of first-class functions are closed under the Poisson bracket opera-
tion. In particular, this is true for the first-class constraints themselves. Furthermore, it
follows that theHamiltonianH󸀠 is first class aswell as all theϕa. Thus referring back to
(3.49), we learn that theϕa constitute a complete set of first- class primary constraints.

Now, one must exercise a bit of thinking. The set of first-class constraints may
derive both from primary constraints and secondary constraints. That means, among
other things, that their number is somewhere between 0 and J. The fact that they form
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a closed set under the Poisson bracket hints at an algebraic structure. To continue, we
choose to denote the first-class constraints by γr with r = 1, . . . ,R, and the second-class
constraints by χf with f = 1, . . . , F. Clearly, R + F = J.

We may tentatively write

{γr , γs} ≈ ∑
t
crstγt (3.52)

where the range of the sum is yet unspecified. This is suggestive of a Lie algebra struc-
ture (see Section 3.11). This equation can bemotivated from the fact that since the Pois-
son bracket of any two first-class constraints is weakly zero, then it must be a linear
combination of first-class constraints. There is no risk that second-class constraints
appear on the right-hand side because that would violate the Jacobi identity.

3.2.4 First-class constraints and gauge transformations

Let us take stock of where we are. We have the constraints, sorted into the kinds of
Section 3.2.3. We have the first-class total Hamiltonian HT of formula (3.50). It gener-
ates the time evolution of the system, that is, of any dynamical variable F, according
to Ḟ = {F,HT }. Due to the presence of the term vaϕa inHT , the time evolution contains
arbitrary functions, parametrized by the coefficients va. This arbitrariness we would
like to interpret as gauge transformations. But how does that come about?

A brief reminder of canonical transformations

Remember that (not explicitly time dependent) canonical transformations in Hamiltonian dynamics
are transformations of the phase space variables

Qm = Qm(qn,pn) and Pm = Pm(qn,pn) (3.53)

such that in terms of the new variables, the equations of motion keep their form

Q̇m = {Qm,K} and Ṗm = {Pm,K} (3.54)

in termsof a newHamiltonianK(Q, P)which is the transformation ofH(q,p). For infinitesimal canonical
transformations, close to the identity transformation, one can show that they can be represented as

δqn = ϵ{qn,g} and δpn = ϵ{pn,g} (3.55)

where the generator g = g(q,p) is some function of the phase space variables, and ϵ an infinitesimal
parameter. For other dynamical variables, the transformation reads

δF = ϵ{F ,g} (3.56)

For the full story, consult the Chapters 5 and 6 in the book [236].
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A fundamental notion of classical mechanics is that if we know the values of all the
canonical variables at a certain time τ (the state of the system at that time) then the
equations of motion shall determine the state completely at a later time τ + δτ. There-
fore, by decree, ambiguities in the state at the later time should be physically irrele-
vant. Consider then the time evolution generated by the total Hamiltonian in (3.50)

δF = δτ{F,H󸀠} + δτva{F,ϕa} = δτ{F,H
󸀠} + ϵa{F,ϕa} (3.57)

where in the last equality we have absorbed the time increment δτ into the arbitrary
parameters va to get the arbitrary infinitesimal increments ϵa. Thus, on top of thewell-
defined time evolution given by δτ{F,H󸀠}, we have arbitrary transformations given by
ϵa{F,ϕa}. These are called gauge transformations.15

Now, it would be very nice if the complete set of first class primary constraints ϕa
occurring in the first-class total HamiltonianHT closed on itself, as the full set of first-
class constraintsmust do in (3.52). However, there is nothing in the general theory that
guarantees that, and in concrete systems, secondary first-class constraints do occur
as the result of Poisson brackets between first-class primary constraints. This raises
the question of whether secondary first-class constraints should also be considered
as gauge generators or not. Dirac “conjectured” that they should.16

I think itmay be that all the first class secondary constraints should be included among the trans-
formations which do not change the physical state, but I have not been able to prove it.

There are counterexamples to the Dirac conjecture. Quite a few simple examples are
given in [229], but they appear rather contrived. Instead, as the authors write, there
are good reasons for including the secondary first-class constraints among the gauge
generators:
– The distinction between first class and second class is natural from the Hamil-

tonian point of view, while the Lagrangian distinction between primary and sec-
ondary is not so.

– The Poisson bracket of two first-class constraints is again a combination of first-
class constraints, leading an algebra of gauge transformations.

– The conjecture is true for the major gauge theories of physics.
– The conjecture can be proved under certain regularity conditions.

One may now go on to define an extended Hamiltonian that includes all the first- class
constraints

HE = H
󸀠 + vrγr (3.58)

15 As far as I understand, the physical irrelevance of gauge transformations, cannot be proved. It is
rather a phenomenological observation elevated to a principle.
16 See page 23 of [232].
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where the index r runs over all the first-class constraints, and the coefficients va

are supplemented with extra arbitrary variables corresponding to the first-class sec-
ondary constraints.

So far, we have tacitly assumed that the set of constraints is irreducible, that is,
that they are all independent. For the reducible case, we refer the reader to [229] that
treats this case in detail.

3.2.5 Second-class constraints, Dirac brackets and gauge fixing

Second-class constraints, if they are present, can be treated by the introduction of the
Dirac bracket. This is a bracket that replaces the Poisson bracket in such a way that
the second-class constraints can be set strongly equal to zero either before or after the
evaluating a Dirac bracket. The definition of the Dirac bracket hinges on the fact that
the matrix of all Poisson brackets

Cαβ = {χα, χβ} (3.59)

between second-class constraints is invertible. The matrix is antisymmetric, and this
incidentally imply that the number of second-class constraints must be even, since
the determinant of an antisymmetric matrix is zero if the dimension is odd.

The Dirac bracket between two phase space functions F and G is then defined in
terms of the Poisson bracket and the inverse of C

{F,G}D = {F, χα}C
−1
αβ{χβ,G} (3.60)

The Dirac bracket has all the desirable properties, such as antisymmetry, linearity, the
Leibniz rule and the Jacobi identity, that one could wish for.

Since the second-class constraints become identities, there are simple cases
where they can be used to completely eliminate some phase space variables from
the system. On the other hand, there are examples where the equations cannot be
explicitly solved, and the Dirac brackets are quite awkward to work with. We refer the
reader to the references cited above for more details. Wewill employ the Dirac bracket
in light-front field theory in Section 6.2.1.

In this context, we may also briefly mention gauge-fixing. One may view the first
class constraints, and the concomitant arbitrariness, as a nuisance (although we will
not take that point of view). One way of getting rid of this ambiguity is to introduce
a number of gauge conditions, equal to the number of first-class constraints. These
gauge conditions – in practice functions of the phase space variables set weakly to
zero – should be such that the full set of first-class constraints and gauge conditions
together become second class. Then the theory of Dirac brackets can be employed.

Let us end by noting a very useful heuristic for counting physical degrees of free-
dom in a theory with constraints. Every second-class constraint removes one phase
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space degree of freedom, regardless of whether it can be done explicitly or not. Every
first-class constraint removes two phase space degrees of freedom. This follows if one
imagines supplying a gauge condition for every first-class constraint, thus rendering
the whole set second class.

#physical d. o. f. = #phase sp. d. o. f. − #2nd cl. constr.’s − 2(#1st cl. constr.’s) (3.61)

This removal of twice the number of first-class constraintswill comebackwhengauge-
fixing gauge field theories, as the heuristic: “gauge-fixing and regauging” (see Sec-
tion 5.1.1).

One of the most conspicuous examples

A most conspicuous example in field theory occurs already in electrodynamics. The Lagrangian den-
sity is proportional to FμνF μν , with Fμν antisymmetric in its components. Therefore, the A0 component,
the Coulomb field, has no time derivative in L. Thus, without performing any computation, it is imme-
diately clear that the corresponding field momentum Π0 must be zero. This is a primary constraint.
The momenta conjugate to A are the electric fields E = 𝜕tA + ∇A0. The Dirac analysis then turns up the
Colulomb law as a secondary constraint ∇ ⋅ E ≈ 0. Together with Π0 ≈ 0, it is first class.

3.3 Quantum mechanics and quantum field theory

The topics of this section are book size subjects in their own right. We will confine
ourselves to drawing a few baselines, useful for the application to higher spin field
theory.

It may be a little confusing, when encountering it for the first time, to accept that
the nonrelativistic Schrödinger equation in its abstract form

iℏ 𝜕
𝜕t
Ψ = HΨ (3.62)

still holds in quantum field theory. The explanation is, perhaps not simple, but cer-
tainly illuminating.17 The observable time is normally not represented by anHermitian
operator. In quantummechanics, time t is a mere parameter labeling the states. What
we can do to pave theway for relativity is to treat also the position vector x as a param-
eter labeling states and consider quantum fields φ(x, t). Alternatively, the coordinate
time t could be considered as an observable corresponding to an operator T. Then the
proper time τ can be used as evolution parameter in the abstract Schrödinger equa-
tion (3.62) instead of t. This is possible since relativity allows for a reparametrization
invariance under transformations τ → τ󸀠.

17 For a textbook explanation, see for instance [240].
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Quantum mechanics do treat space and time in an unsymmetrical way. This ap-
parent conflict with relativity was a driving force in the theoretical evolution of quan-
tum theory, and the history of the subject actually throws light on the question. Very
briefly, de Broglie’s intuitive particlewave-mechanics of 1923was based on special rel-
ativistic reasoning (see Section 2.1). However, de Broglie’s theory was still within the
“old” quantum mechanics. The next step, Heisenberg’s matrix mechanics was non-
relativistic, as was Schrödinger’s wave mechanics, after he had rejected the relativis-
tic equation. Then came Dirac’s insight, that unified the Heisenberg and Schrödinger
approaches within the transformation theory. Dirac realized that quantum mechan-
ics could be seen as the equations of classical Hamiltonian mechanics being reinter-
preted as quantum equations. The point is that the equations of Hamiltonianmechan-
ics – whether it is nonrelativistic or relativistic – are always linear in time derivatives.
This “explains” the general applicability of the Schrödinger equation even for rela-
tivistic quantum theories. Or rather, nonrelativistic quantummechanics becomes the
special case it really is. We have seen another aspect of this in the historical chapter.
The relativistic wave equations are not equations governing states, they are equations
governing quantum operators.

Perhaps significantly, themajor theory that does not sit comfortably in this frame-
work is quantum general relativity. One of the major difficulties with quantum gravity
is “the problem of time”. In quantizing general relativity along conventional lines
(canonical quantization), the problem of time does not yield to the above men-
tioned method of replacing time by another evolution parameter and then relying
on reparametrization invariance. Time is too deeply embedded in the kinematics and
dynamics of general relativity. For a discussion of these matters, see [108].

Even without invoking classical or quantum mechanics, nonrelativistic or rela-
tivistic physics, it is in modern physics thinking clear that in order to perform experi-
ments and do theoretical calculations, we need to set up a grid of spatial coordinates
and clocks.We need to put our laboratory, experimental or theoretical, in a coordinate
system. That can be done classically, or quantummechanically, or nonrelativistically,
or relativistically, or in any combinations thereof – exactly or approximately. What
the relativity theories say (among other things) is that the equations that we either
employ or discover, do not depend in any essential way on any particular choice of
coordinates. As the theory is developed, gauge symmetries and gauge independence,
has to be worked into the picture of relativistic physics.

3.3.1 Baseline quantum mechanics

Two basic ingredients in any quantum theory are the operators and the states, nei-
ther of which are themselves generally accessible to direct observation. Together they
constitutewhatwemeanby a quantum system. Closer tomeasurable quantities are the
matrix elements of operators evaluated between pairs of states. Another, almost defin-
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ing, property of quantum systems is the linear superposition of states into new states.
The mathematical structure that has turned out to encode these features of quantum
systems in general in a successful way, are the Hilbert spaces (see Section 3.7.6).

Hilbert space in few lines

A Hilbert space is a complex linear vector space (superposition possible) with a metric (distance mea-
sure between vectors) that derives from an inner product (matrix elements). Linear operators can be
applied to the vectors andmatrix elements can be computed using the inner product. There is a notion
of continuity in the sense of nearness of vectors as measured by the metric.

Relying on the Hilbert space concept, states of a quantum system are represented by
equivalence classes of vectors Ψ, called rays. The inner product between two rays Ψ
and Φ is denoted by ⟨Φ,Ψ⟩ and it evaluates to a complex number. The rays are nor-
malized in the sense that ⟨Ψ,Ψ⟩ = 1 and Ψ and Ψ󸀠 belong to the same ray if and only
if Ψ󸀠 = cΨ with c a complex number with |c | = 1. A ray, that is, a state, can be repre-
sented by any of its vectors Ψ belonging to the ray.

The following properties for the inner product between states, are fundamental

⟨Φ,Ψ⟩∗ = ⟨Ψ,Φ⟩ (3.63)
⟨Ψ,Ψ⟩ ≥ 0 with ⟨Ψ,Ψ⟩ = 0⇔ Ψ = 0 (3.64)

⟨Φ, c1Ψ1 + c2Ψ2⟩ = c1⟨Φ,Ψ1⟩ + c2⟨Φ,Ψ2⟩ (3.65)
⟨c1Φ1 + c2Φ2,Ψ⟩ = c

∗
1 ⟨Φ1,Ψ⟩ + c

∗
2 ⟨Φ2,Ψ⟩ (3.66)

where the two last equations express how the norm behaves under superposition of
states. States are superposed by summing them with complex coefficients. This is the
vector space property of the Hilbert space of states.

Operators A of a quantum system are linear mappings Ψ → AΨ of the Hilbert
space into itself.Matrix elements of an operator A are given by inner products ⟨Φ,AΨ⟩
between states Φ and Ψ. The adjoint A† of an operator A is defined by

⟨Φ,A†Ψ⟩ def= ⟨AΦ,Ψ⟩ = ⟨Ψ,AΦ⟩∗ (3.67)

The first equality is the actual definition and the second equality follows from (3.63).
Next, self-adjoint or Hermitian operators A are such that A† = A.

Observables for a quantum system are represented by Hermitian operators. The
motivation is the following. Perform the computation

⟨Φ,AΨ⟩∗ = ⟨AΨ,Φ⟩ = ⟨Ψ,A†Φ⟩ = ⟨Ψ,AΦ⟩ (3.68)

where we have used the norm property, adjoint definition and Hermiticity in that or-
der. It is clear that nothing can be said about the reality properties for matrix elements
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between two different states Ψ and Φ. Such matrix elements are called transition ele-
ments. However, if the two states are equal, we get

⟨Φ,AΦ⟩∗ = ⟨Φ,AΦ⟩ (3.69)

This means that Hermitian operators have real diagonal matrix elements. Further-
more, considering the eigenvalue equation AΨ = aΨ for a Hermitian operator A, a
theorem of linear algebra tells us that the eigenvalues a are all real and that the eigen-
vectors Ψ are orthogonal. Orthogonality of two states is defined as their inner prod-
uct being zero. Since measurements of any kind are always real numbers (in practice
rational numbers), it makes sense to represent observable quantities with Hermitian
operators.

Probability interpretation of quantum mechanics

Since states can be in superposition with other states, a quantum system can, in a specific sense,
be in several states simultaneously. Consider therefore a system that is in a state represented by a
vector Ψ. An experiment is done to measure if it is any one of a set of mutually orthogonal states {Ψi}i
corresponding to some observable. The probability of finding the system in the particular state Ψk is
|⟨Ψ,Ψk⟩|

2. Probabilities sum to 1.

Symmetries of a quantum system are represented by unitary operators, with one ex-
ception, to be mentioned shortly. The motivation is the following. In order for a linear
transformation with an operator U to be a symmetry, “something” must be invariant.
This something are the probabilities |⟨Φ,Ψ⟩|2 computed between states of the quan-
tum system. Consider a transformation effected by an operatorU so that Φ󸀠 = UΦand
Ψ󸀠 = UΨ. Invariance of the probabilities then means demanding

|⟨Φ󸀠,Ψ󸀠⟩|2 = |⟨Φ,Ψ⟩|2 (3.70)

This demand can be satisfied by linear unitary operators

⟨UΦ,UΨ⟩ = ⟨Φ,Ψ⟩ (3.71)

Referring back to the definition (3.67) of an operator, we have for the adjoint of U the
equation ⟨Φ,U†Ψ⟩ = ⟨UΦ,Ψ⟩. The requirement (3.71) then implies for a unitary oper-
ator

U† = U−1 (3.72)

The invariance condition (3.70) can also be satisfied by antilinear and antiunitary
operators (for details, see [18]). Time reversal symmetries are represented by such op-
erators.
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3.3.2 Simple phase space quantization

Quantization is the process of passing from a classical description of a system to a
quantum description. It is not always explicitly recognized, but for a classical system,
the states of the system and the physical variables are one and the same. More pre-
cisely, if the states are described in phase space by points (qn, pn), then all physical
variables of the system may be computed as functions of the phase space variables.
In the quantum description, there is bifurcation of concepts: we have states and op-
erators. It is clearly seen in the original Schrödinger formulation with wave functions
as states, and operators acting on states. It is formalized in the Dirac formulation of
quantummechanics, as outlined in Section 3.3.1 above.

Quantization itself may be a quite complicated procedure, and there is an exten-
sive theory – and philosophy – on the subject. Here, we just repeat the basic scheme
already briefly stated in Section 1.4. If a classical mechanical theory is given in the
Hamiltonian formulation, then the transition from classical Poisson brackets {⋅, ⋅} to
quantum commutators [⋅, ⋅] is done through the convention:

If classically: {A,B} = C, then quantummechanically: [Â, B̂] = iℏĈ (3.73)

where the Poisson bracket is defined in formula (3.29). In terms of the phase space
variables qn and pn obeying {qn, pm} = δmn , we have

[q̂n, p̂
m] = iℏδmn (3.74)

In wave mechanics à la Schrödinger, the operators are realized as

p̂n = −iℏ 𝜕
𝜕qn

and q̂n = qn (3.75)

The time evolution of a classical dynamical variable F turns into the time evolution of
the corresponding quantum operator F according to

Ḟ = {F,H} → iℏdF
dτ
= [F,H] (3.76)

This corresponds to the Heisenberg picture where the time evolution of the quantum
system is carried by the operators, and the states are constant in time. The Schrödinger
equation, given above in formula (3.62), corresponds to the Schrödinger picturewhere
the time evolution is carried by the states, and the operators are constant in time.

3.3.3 The Siegel mechanics to field theory algorithm

We will very briefly review a simple instance of a method – based on BRST-symmetry
– of passing from amechanical model to a corresponding field theory. It was invented
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byW. Siegel, and clarified by E. Witten, in connection with work on string field theory
(see Section 2.11.1). The basic intuition behind themethodmay be argued to go back to
L. de Broglie and E. Schrödinger. It is also implicit inWigner’s work onwave equations
discussed above (see in particular Section 2.3.2). The method is further developed in
[241, 242] and reviewed in [187].

Indeed, referring back to the discussion at the beginning of Section 2.1, a classical
free relativistic massless particle “moves” subject to the constraint p2 = 0. Upon first
quantization, we get the Klein–Gordon wave equation ◻Ψ(x) = 0. This we may regard
as a classical field equation. If the particle sports some internal structure such as spin
and the corresponding extra variables, then there may be further constraints. If these
are of first class, it is possible to construct a field theory via the BRST quantization
method, so that the first class constraints generate gauge transformations not just in
the mechanics theory, but also in the field theory.

TheBRSTmethod itself arose in the covariant quantizationand renormalizationof
the Yang–Mills gauge theory. It was discovered by Becchi–Rouet–Stora and Tyutin in-
dependently (hence the name of themethod). It was found that the covariantly gauge-
fixed – and thus not gauge invariant – action, together with the Faddeev–Popov ghost
term, still retained a symmetry closely related to the underlying gauge invariance of
the theory. A description of the method can be found in the Weinberg textbook [139].
The method was later generalized to general gauge theories. We will return to this in
more detail in our Volume 2 in connection with interacting higher spin theory. Here,
we will just outline enough for the BRST approach to be applied to free higher spin
gauge field theory in Section 5.4.

The Siegel algorithm starts from a mechanical gauge theory, constructs its BRST
operator, and from therewrites downa gauge invariant field theory. Let us assume that
the mechanical theory only involves bosonic degrees of freedom.18 The Hamiltonian
theory developed above in Section 3.2 may serve as a foundation. We will conform to
general notation that has become quite common in the literature.

The Poisson brackets of the mechanical theory will be denoted by [⋅, ⋅]. This al-
lows for a certain flexibility in that onemay think of the brackets as quantum commu-
tators. This is actually quite common, and is done in the Siegel algorithm. Once one
has derived the first class constraints γa of the theory and their first-class algebra – for
instance using the Dirac procedure – one can write down the classical BRST generator
as

Q = γaη
a −

1
2
𝒫cU

c
abη

aηb (3.77)

Here, the Uc
ab are the structure constants of the first class algebra

[γa, γb] = ψcU
c
ab (3.78)

18 Fermionic degrees of freedom can be treated at the price of a more elaborate formalism. It adds no
further conceptual depth beyond the existence of the fermionic variables themselves.
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and η and 𝒫 are ghost coordinates and momenta satisfying the brackets19

{ηa, ηb} = 0 {𝒫a,𝒫b} = 0 {ηa,𝒫b} = δ
a
b (3.79)

This bracket is symmetric, as is appropriate for Grassmann variables. A generalGrass-
mann variable θ is one that satisfies θ2 = 0.20 The first two brackets in (3.79) show that
the ghost phase space variables are Grassmann.

The BRST generator Q is nilpotent under these brackets, that is,

Q2 =
1
2
{Q,Q} = 0 (3.80)

To show this, one has to use the first class constraint algebra, as well as the Jacobi
identities for the structure constants of the algebra. Thus Q records all information
about the first class structure of the mechanical theory. To make this statement a lit-
tle bit more exact, we may also provide information about the ghost extended phase
space of the theory (qn, pn, ηa,𝒫b). Let us now focus on the intuition behind the Siegel
algorithm.

Intuitive approach to the Siegel algorithm

We have a classical BRST generator Q that the records the structure of a mechanical gauge theory.
Upon quantization, the phase space variables become operators that act in a Hilbert space of wave
functions. TheBRST generatorQbecomesaBRST operator Q (for whichweuse the samenotation). The
wave functionsΨmaybe expected to be functionsΨ(qn, ηa). Since the ghost variables are Grassmann,
wemay expandΨ in a short polynomial over the ghost variables. Among the coefficientwave functions
so obtained, we may suspect that some are “physical” and some are “auxiliary”.

Then, among the quantized first class constraints, there may be one constraint that is recog-
nizable as part of a kinetic operator, such as the d’Alembertian ◻, and some constraints that may
be recognizable as generating gauge transformations of the wave functions. Taking advantage of the
nilpotency of the BRST operator, one may then try to make sense of the following equations:

Action S = ∫⟨Ψ†,QΨ⟩ ⇒ Wave equations W = QΨ = 0 (3.81)

δS = 0 and δW = 0 under gauge transformations δΨ = QΞ (3.82)

In order to make such a scheme consistent, certain requirements must be met. As a
matter of principle, it must be possible to construct an inner product in the Hilbert
space of wave functions. This involves not just the original phase space variables
(qn, pn) but also the ghost extension (ηa,𝒫b). This inner product must be such that

19 We assume that the underlying theory is bosonic so that the ghosts are fermionic.
20 This is no more strange than i2 = −1 (or just as strange, one might perhaps venture).
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the BRST operator is nilpotent not just algebraically (as the classical BRST operator
is) but also as acting in the Hilbert space. This may involve issues about normal or-
dering. Furthermore, properties under Hermitian conjugation must be defined so that
Q is self-adjoint as a Hilbert space operator. The corresponding reality of the classical
BRST generator (which is simple to arrange if not already checked) is not sufficient
in general. All this must be arranged so that the action S is real. All occurrences of
ghosts, must be “integrated out” so to speak. This is in practice kept track of by defin-
ing ghost numbers distinguishing different types of ghost coordinates and momenta
from the physical coordinates and momenta.

All this can be done in great generality (see [241]), but a general formalism tends
to be somewhat opaque, and it may obscure the underlying idea, which is quite sim-
ple. However, the general formalismprovides limits to the applicability of themethod,
for instance on the important question of existence of a Lagrangian for the field the-
ory. Field equations are often more easy to come by than Lagrangians, as they do not
require the existence of an inner product on the extended phase space. This is a non-
trivial problem in the Vasiliev higher spin theory.

The algorithm is often not too difficult to carry through in concrete caseswhere the
structure of the constraints may serve as a guide toward a consistent implementation.
We will see an example in Section 5.4 where the algorithm is used to derive the Frons-
dal equations from a simple mechanical model in the way of the original references
[158, 159].

3.4 Elements of special relativity

Special relativity, in theoretical physics, and vector spaces, in mathematics, are the
archetypes out of which general relativity and manifold theory grew, respectively.
Since higher spin theory relies heavily upon abstractions and generalizations of these
basic concepts – perhaps eventually going beyond them – we will start with special
relativity here and vector spaces in Section 3.7.5.

There are three classes of constant curvature space-times: de Sitter space-time
(dS) with positive constant scalar curvature, anti-de Sitter (AdS) space-time with neg-
ative curvature and Minkowski space-time (Mi) which falls in between with zero cur-
vature. Considered as vacuum solutions to Einstein’s equations of general relativity,
these space-times correspond to positive, negative and zero cosmological constant, re-
spectively. The isometry groups, that is, the groups of coordinate transformations that
leave the metric invariant21 are SO(3, 2), SO(4, 1) and the Poincaré (inhomogeneous
Lorentz) group ISO(3, 1), respectively. The space-times AdS and dS will be treated in
Volume 2. Here, we will focus on Minkowski space-time.

21 Really, form invariant; the metric is the same function of the new coordinates as of the initial coor-
dinates. See, for instance, [243], Chapter 13.
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A Poincaré transformation is a change of coordinates from one system xμ to an-
other x󸀠μ given by the formula

x󸀠μ = Λμ
νx

ν + aμ (3.83)

that leaves the proper time interval dτ, defined through

dτ2 = −ημνdx
μdxν = dt2 − dx2 (3.84)

invariant. The proper time is expressed in terms of the coordinate differentials dxμ,
which according to (3.83) transform as

dx󸀠μ = Λμ
νdx

ν (3.85)

The condition dτ󸀠2 = dτ2 allows aμ to be arbitrary translationswhile the Lorentz trans-
formation matrices must satisfy

ημνΛ
μ
ρΛ

ν
σ = ηρσ (3.86)

From this equation follows that |det Λμ
ν| = ±1. The Lorentz transformations are there-

fore invertible.
One can, for practical purposes such as solving field equations in special situa-

tions, consider curvilinear coordinates in Minkowski space-time. The preferred sys-
tems where the metric takes the form diag(−1, 1, 1, 1) are called inertial coordinates.

We want to represent Poincaré transformations on other, more abstract spaces,
than space-time itself, such as, for instance states of physical systems, vector and ten-
sor fields. For that purpose, it is convenient to introduce abstract transformation oper-
ators TΛ,a implementing the transformations on some, as yet unspecified set, butmost
often on a vector space. Then on space-time itself, we have

xμ 󳨃→ TΛ,a(x
μ) = Λμ

νx
ν + aμ (3.87)

By performing two consecutive Poincaré transformations with parameters Λ1, a1 and
Λ2, a2

x󸀠󸀠μ = Λμ
2 ρx
󸀠ρ + aμ2 = Λ

μ
2 ρ(Λ

ρ
1 νx

ν + aρ1 ) + a
μ
2

= (Λμ
2 ρΛ

ρ
1 ν)x

ν + (Λμ
2 ρa

ρ
1 + a

μ
2 ) (3.88)

we can read of the abstract composition rule for the Poincaré group

TΛ2 ,a2TΛ1 ,a1 = TΛ2Λ1 ,Λ2a1+a2 (3.89)

This formula is an expression of the fact that the Poincaré algebra is a semidirect sum
of the Lorentz algebra so(3, 1) and the Abelian algebra of translations. The Poincaré
group is not semisimple. Any representation of the Poincaré group must conform to
this equation (see Section 3.5).
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Active versus passive transformations

A space-time transformation x → x󸀠 and its effects on functions f (x) can be viewed in two ways: ei-
ther passively or actively. Passively, a transformation x → x󸀠 is viewed as a coordinate change. The
actual point p labeled by coordinates x, is after the transformation labeled by new coordinates x󸀠. Ac-
tively, a transformation x → x󸀠 is viewed as actually moving the point p, labeled by coordinates x,
to a new location, labeled by new coordinates x󸀠, in the same coordinate system. The two views are
complementary, and convenient depending on context.

3.4.1 Vectors and tensors and Lorentz transformations

Focusingon theLorentzpart of thePoincaré transformationsoffers a goodopportunity
to introduce concepts and notation that will be used throughout, while at the same
time gaining helpful intuition. Remember that a contravariant vector Vν is any object
that transforms – under Lorentz transformations – in the same way as the coordinate
differentials dxμ do, that is,

Vμ 󳨃→ V 󸀠μ = Λμ
νV

ν (3.90)

On the other hand, a covariant vector Vμ transforms as

Vμ 󳨃→ V 󸀠μ = Λ
ν

μ Vν (3.91)

where Λ ν
μ = ημαη

νβΛα
β. The Lorentz matrices in these transformation formulas are

each others inverses, as can be directly calculated, or understood, from the fact that
VμVμ must transform as a scalar. One can write

(Λ−1)μν = Λ
μ

ν (3.92)

for the inverse.
The distinction between contravariant and covariant vectors becomes really effec-

tive first in nonflat space-times (and spaces), but even in Minkowski space-time – its
constant metric notwithstanding – the coordinate differentials are natural to treat as
contravariant. Furthermore, the partial derivatives or gradients are natural to write as
covariant vectors. By differentiating the inverse of the Lorentz transformation of the
coordinates xμ = Λ ν

μ x󸀠ν we get, using the chain rule,

𝜕
𝜕 x󸀠μ
=
𝜕 xν

𝜕 x󸀠μ
𝜕
𝜕 xν
⇒
𝜕
𝜕 x󸀠μ
= Λ ν

μ
𝜕
𝜕 xν

This can be interpreted as a transformation rule

𝜕μ 󳨃→ 𝜕
󸀠
μ = Λ

ν
μ 𝜕ν (3.93)
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Tensors are objects with several covariant and contravariant indices. The trans-
formation rule generalizes from formulas (3.90) and (3.91). For instance,

Tρσ μν 󳨃→ T󸀠ρσμν = Λ
ρ
αΛ

σ
βΛ

γ
μ Λ δ

ν Tαβ γδ (3.94)

The general rule is that “all tensor indices transform”: contravariant according to
(3.90) and covariant according to (3.91).

Tensors with p covariant and q contravariant indices, sometimes abbreviated to
Tqp and designated (p, q)-tensors, form a vector space by themselves: linear combina-
tions of (p, q)-tensors are (p, q)-tensors. Tensors can furthermore bemultiplied and the
result is a new tensor. Inmore detail, the product of a (p, q)-tensor and an (m, n)-tensor
is a (p + m, q + n)-tensor. How does one know that the product is a tensor? Well, the
rule is: an object is a tensor if it transforms as a tensor. That a product of any two ten-
sors transform as a tensor therefore follows from the transformation rule applied the
factors. The idea is captured by the heuristic formula

T󸀠qp T
󸀠n
m = (Λ

−1)p(Λ)qTqp (Λ
−1)m(Λ)nTnm = (Λ

−1)p+m(Λ)q+nTqpT
n
m

The possibility tomultiply tensors inwell-definedways, offers the prospect of pro-
moting the set of all vector spaces of tensors to tensor algebras. That leads to very in-
terestingmathematics that is useful in the theory of higher spin fields.Wewill explore
this mathematics in Sections 3.7.8–3.7.11.

3.4.2 The Poincaré algebra

The Poincaré group is a Lie symmetry group, although not of one of the particularly
nice types: simple or semisimple. Properties of Lie groups can to a large extent be
analyzed by studying the group elements near the identity, and such an analysis leads
to the Lie algebra of the group. We will glimpse the theory in Section 3.11.

For the particular theory of the Poincaré group, it suffices to note that the transla-
tion part aμ of a transformation is clearly continuous and we can choose to consider
an infinitesimal transformation with parameter ϵμ. Somemore thought makes it clear
that also the Lorentz transformationmatrices Λ ν

μ form a continuous group.22 The cor-
responding infinitesimal parameter will be denoted by λμν. It is antisymmetric in its
indices and thus parametrizes six independent transformations as is appropriate in
four space-time dimensions.

There is a standardway of deriving the Poincaré Lie algebra that is often employed
in particle physics and quantum field theory.23 In very brief outline, the procedure is

22 A good down to earth argument can be found in [244], Chapter 1, Sections 1–3.
23 See [18], Chapter 2 for a detailed derivation, or [245], Chapter 10.
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the following. Write the transformation operators TΛ,a as unitary operators U(Λ, a) –
thought of as acting on quantum states (see Section 3.3) – obeying the composition
rule (3.89). An infinitesimal Poincaré transformation is

U(1 + λ, ϵ) = 1 + i
2
λμνJ

μν − iϵμP
μ (3.95)

in termsof the generators of Lorentz transformations Jμν and translationsPμ. Thenone
considers the product U(Λ, a)U(Λ󸀠, a󸀠)U−1(Λ, a) for infinitesimal U(Λ󸀠, a󸀠). This leads
to the transformation rules for the generators themselves

U(Λ, a)JμνU−1(Λ, a) = Λ μ
ρ Λ ν

σ (J
ρσ − aρPσ + aσPρ) (3.96)

U(Λ, a)PμU−1(Λ, a) = Λ μ
ρ Pρ (3.97)

Thus, under Lorentz transformations (ϵρ = 0), Jρσ is a tensor and Pρ a vector. Under
pure translations (λρσ = 0), Pρ is invariant, but Jρσ transforms as an angular momen-
tum is expected to do under a change of origin.

Next, letting U(Λ, a) itself become infinitesimal, one derives the commutators of
the Poincaré generators

[Jμν , Jρσ] = i(ημρJνσ − ηνρJμσ + ησμJρν − ησνJρμ) (3.98)

[Jμν ,Pρ] = i(ημρPν − ηνρPμ) (3.99)

[Pμ,Pν] = 0 (3.100)

To bring out the physical significance of the generators and the algebra, it is cus-
tomary to split them into the momentum three-vector P, the energy H, the angular
momentum three-vector J and the boost three-vector K According to

P = (P1,P2,P3) (3.101)

H = P0 (3.102)

J = (J23, J31, J12) ≡ (J1, J2, J3) (3.103)

K = (J10, J20, J30) ≡ (K1,K2,K3) (3.104)

The Lorentz subalgebra then takes the form

[Ji, Jj] = iϵijkJk (3.105)
[Ji,Kj] = iϵijkKk (3.106)
[Ki,Kj] = −iϵijkJk (3.107)

and the rest of the nonzero commutators are

[Ji,Pj] = iϵijkPk (3.108)
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[Ki,Pj] = iHδij (3.109)

[Ki,H] = −iPi (3.110)

Of these commutators, (3.105), (3.106) and (3.108) tell us that J, K and P transform as
three-vectors under space rotations.

The form of the Poincaré algebra reviewed here can be thought of as a quantum
version of the algebra. A trivial representation is given by

Pμ = pμ and Jμν = xμpν − xνpμ with [xμ, pν] = iημν (3.111)

An explicit representation that we will often use is (with the Lorentz generators de-
noted by L)

Pμ = −i𝜕μ and Lμν = −i(xμ𝜕ν − xν𝜕μ) (3.112)

It may be convenient to use a different realization, more classically oriented, in order
to remove the occurrence of i in the commutators. With the explicit representation,

Pμ = −𝜕μ and Mμν = xμ𝜕ν − xν𝜕μ (3.113)

we get for the nonzero commutators

[Mμν ,Mρσ] = ημρMσν − ηνρMσμ − ημσMρν + ηνσMρμ (3.114)

[Pρ,Mμν] = ημρPν − ηνρPμ (3.115)

This is sometimes referred to as the coordinate representation because it corresponds
to a transformation of a scalar field φ: δφ = −ξ μ𝜕φ with ξ μ = λμνxν + ϵμ.

In preparation for the discussion of representations of the Lorentz group, it is con-
venient todoonemore rewritingof theLorentz Lie algebraof equations (3.105)–(3.107).
Introduce the non-Hermitian operators

Mi =
1
2
(Ji + iKi) and Ni =

1
2
(Ji − iKi) (3.116)

In terms of these generators, the Lorentz algebra breaks up in two conjugated su(2)
algebras

[Mi,Mj] = iϵijkMk (3.117)

[Ni,Nj] = iϵijkNk (3.118)

[Mi,Nj] = 0 (3.119)
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3.4.3 Connectedness properties of the Lorentz group

Equation (3.86), which reads ημνΛ
μ
ρΛν

σ = ηρσ, has two important consequences.
First, it follows that |det Λμ

ν| = ±1. This implies that the Lorentz transformations split
into two disconnected sets. The transformations with |det Λμ

ν| = +1 are called proper
Lorentz transformations as they are continuously connected to the identity. A further
split follows from setting ρ = σ = 0 in the formula. Then

−Λ0
0Λ

0
0 +

3
∑
i=1

Λi
0Λ

i
0 = −1 (3.120)

from which follows the either Λ0
0 ≥ 1 or Λ0

0 ≤ −1. Lorentz transformations with
Λ0

0 ≥ 1 are referred to as ortochronous Lorentz transformations as they do not change
the sign of the time coordinate. The Lorentz transformations with both |det Λμ

ν| = +1
and Λ0

0 ≥ 1 are called proper ortochronous Lorentz transformations. These are con-
tinuously connected to the identity. This is also called the restricted Lorentz group.
The other three components are disconnected from the proper ortochronous, and from
each other.24

The full group of Lorentz transformation can be recovered by adjoining the proper
ortochronous Lorentz transformations with time reversal 𝒯 : x0 → −x0, space inver-
sion𝒫 : xi → −xi and the combination𝒫𝒯 : xμ → −xμ. In the representation theory of
the Lorentz group, the operations of time reversal and space inversionmust be treated
separately.

Two notions of “connectedness”

There are two notions of connectedness involved here. What we have discussed above is the concept
of a set – or space – being connected. In simple terms: a set is connected if it consists of “one piece”
not being the union of two or more disjoint open sets (where “open sets” are defined by the topology
of the set).

Then there is the notion simple – or path – connectedness. A space is simply connected – or path
connected – if every path in the space can be continuously contracted to a point. Pictorially: there are
no “holes” in the space.

Consider now the group of proper ortochronous Lorentz transformations, denoted by
L↑+ = SO(3, 1)

↑. It has a double covering group, the spin group Spin(3, 1). Here, we will
instead work with the isomorphic group of complex 2× 2 matrices of unit determinant
SL(2,C). The 2 → 1 homomorphism (double cover) from SL(2,C) to L↑+ can be made
explicit in the following way (see, for instance, [244]).

24 It is not possible to pass continuously from a positive real number to a negative real number with-
out passing zero.
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For any real four-vector vμ, we can compute a unique Hermitian 2 × 2 matrix V

V = vμσμ = (
v0 + v3 v1 − iv2

v1 + iv2 v0 − v3
) (3.121)

where σμ are the Pauli matrices of (1.11). Conversely, any 2× 2 complex matrix V deter-
mines a unique four-vector through

vμ = 1
2
Tr(Vσμ) (3.122)

where matrix multiplication is understood in Vσμ. Since the diagonal elements of an
Hermitian matrix must be real, the formula (3.122) indeed yields a real four-vector.

In this language, Lorentz transformations are given by

V → λVλ† (3.123)

with λ complex 2 × 2 matrices with unit determinant. The Hermiticity of the matrices
V are clearly preserved by such transformations. The square of the four-vector vν can
be computed as

vμv
μ = (v0 + v3)(v0 − v3) − (v1 − iv2)(v1 + iv2) = −det v (3.124)

This determinant is preserved by the transformations (3.123) provided that |det λ|=1.25

The correspondence between the real 4 × 4 matrices Λ and the complex 2 × 2 matrices
can be explicated through

λvμσμλ
† ≡ (Λμ

ν(λ)v
ν)σμ (3.125)

from which it follows that Λ(λλ󸀠) = Λ(λ)Λ(λ󸀠) for two matrices λ and λ󸀠.
However, it is clear from (3.123) that two matrices λ whose quotient is a phase

factor, produce the same transformation of v. Therefore, consistent with (3.125), one
may take det λ = 1. This yields the group SL(2,C), the special linear group of 2 × 2
complex matrices.

The map (group homomorphism) from SL(2,C) to L↑+ is 2 → 1. Intuitively, if λ is a
matrix in SL(2,C), so is −λ and they both produce the same Lorentz transformation as
can be seen from (3.123) or (3.125). The result can be proved26 by considering the kernel
of the transformation (3.123), that is, those transformations for which V → λVλ† = V .
It follows that Λ(λ) = Λ(λ󸀠) implies λ󸀠 = ±λ. Therefore, SL(2,C) covers L↑+ twice as
we run through all 2 × 2 complex matrices with unit determinant. In the language to
be introduced in Section 3.9, this can be written as L↑+ = SL(2,C)/Z2 where Z2 is the
invariant subgroup consisting of the two elements I and −I. The group SL(2,C) is itself
simply connected (as are all groups SL(n,C)).

25 This condition brings down the number of parameters of λ from eight to six.
26 See [246], Section 17.2.
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Group coverings

The fact that the group homomorphism from SL(2,C) to L↑+ is 2→ 1 is also expressed as SL(2,C) being
the two-fold cover of L↑+. The concept of one group covering another is naturally generalized to n-fold
coveringswhen the phenomenon arises. Note that the group Lie algebras, being infinitesimal objects,
are exactly the same for the group and the cover group.

Amuchmore complete discussion of the topology of the Lorentz group canbe found in
[18]. This topology – nonsimple connectedness – explains the existence of the spinor
representations.

3.5 Poincaré and Lorentz representations and particle states

In brief outline, we will now review the crucial steps in deriving the representations
of the Poincaré algebra on quantum one-particle states. This is the method of induced
representation ofWigner.Wewill follow [18].We focus on the logical steps, leaving out
the calculational details. These are not difficult, but the surrounding arguments are
somewhat involved, and these we want to focus on.

The underlying logic of the method is the following. The Poincaré group, as well
as the Lorentz group, is noncompact. This implies that unitary representations – the
ones we need in quantum mechanics for the states – are infinite dimensional. The
Wigner method handles this by employing the infinite dimensionality of the transla-
tion group: there are finite dimensional unitary representations for each value of the
momentum pμ, precisely the representations of the little group. This works well for
massive representations where the little group is compact. In the case of zero mass,
there are interesting complications, since the little group is also noncompact. The
complications are, as may be guessed, connected to gauge invariance.

The one-particle states are taken as eigenstates of themomentum operator Pμ and
are denoted by Ψp,σ where p is the momentum and σ is a collective label for all other
distinguishingdegrees of freedomsuchas spin,which iswhatweare actually focusing
on here. We thus have PμΨp,σ = pμΨp,σ . Under Poincaré transformations, these states
are supposed to transform as Ψ→ U(Λ, a)Ψ. For pure translations, we get

U(1, a)Ψp,σ = e
−ip⋅aΨp,σ (3.126)

The remaining work resides in working out the effect of pure Lorentz transformations
on the states. Acting on the state Ψp,σ with U(Λ,0) ≡ U(Λ) should give a state with
momenta Λp. Working this out, using equation (3.97) yields27

PμU(Λ)Ψp,σ = Λ
μ
νp

νU(Λ)Ψp,σ (3.127)

27 Or rather, with an inverse Lorentz matrix, see formula (3.92).
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This means that U(Λ)Ψp,σ must be a linear combination of states ΨΛp,σ̄

U(Λ)Ψp,σ = ∑
σ̄
Cσ̄σ(Λ, p)ΨΛp,σ̄ (3.128)

In general, it may be that the matrix Cσ̄σ can be broken up into block-diagonal form.
Each such block then corresponds to an irreducible representation, and those are the
ones that we focus on finding.

The quantities p⋅p = p2 and sign (p0) are invariant under Lorentz transformations.
We now choose p0 > 0 and p2 ≤ 0, the last clause which splits up intomassive (p2 < 0)
andmassless (p2 = 0) cases, respectively. Due to the invariance, one can for each value
of p2 ≤ 0 and positive sign (p0) choose a standard momentum kμ and write any other
momentumwithin the class28 as pμ = Lμνkν where L

μ
ν is a Lorentz transformation that

depends on pμ and also on the choice of kμ. Having done this, it is natural to define –
due to equation (3.127) – the state Ψp,σ as the corresponding Lorentz transformation
of the standard state Ψk,σ

Ψp,σ = N(p)U(L(p))Ψk,σ (3.129)

where N(p) is a normalization factor. The normalization is discussed in detail in [18].
We will follow this reference and choose

N(p) = √k0/p0 (3.130)

Orbits of the Lorentz group

The possible combinations of p2 and sign (p0) can be worked out taking the condition p2 = −m2 into
account. We then get the
– time-like orbits with p2 < 0 and disconnected branches p0 > 0 or p0 < 0,
– light-like orbits with p2 = 0 and branches p0 > 0 and p0 < 0 connected at p0 = 0,
– space-like connected orbit with p2 > 0,
– vacuum orbit with pμ = 0.

Time-like orbits correspond to massive particles and light-like orbits to massless particles.

The next step is to figure out the transformation properties of the standard state, and
to reduce the transformation properties of the general state to the properties of the
standard state. In order to do that, one applies a Lorentz transformation U(Λ) to both
sides of the definition (3.129), and using the group multiplication law, rewrites the
result in the form

U(Λ)Ψp,σ = N(p)U(L(Λp))U(L
−1(Λp)ΛL(p))Ψk,σ (3.131)

28 Those are indeed equivalence classes.
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The second U-factor produces a Lorentz transformation that takes the standard
momentum k to p = L(p)k, then to Λp and finally back to k. It therefore belongs to the
subgroup of Lorentz transformationsW that leave the standardmomentum invariant,
that is,

Wμ
νk

ν = kμ (3.132)

These Lorentz transformations define the so-called little group. On the standard states,
the transformation law (3.128) is realized as29

U(W)Ψk,σ = ∑
σ̄
Dσ̄σ(W)Ψk,σ̄ (3.133)

The matrices Dσ󸀠σ are precisely what we want to find.
Denote the particular little group transformation occurring in (3.133) as

W(Λ, p) = L−1(Λp)ΛL(p) (3.134)

Using this particular transformation in the transformation formula (3.131) and using
the definition (3.129) connecting general states and standard states, the transforma-
tion law (3.131) becomes

U(Λ)Ψp,σ =
N(p)
N(Λp)
∑
σ̄
Dσ̄σ(W(Λ, p))ΨΛp,σ̄ (3.135)

Comparing to the transformation (3.128) we see that this is precisely what we aimed
for.

Finally, according to the composition rule (3.89) we have U(Λ, a) = U(1, a)U(Λ,0),
and we can combine the transformation rules (3.126) and (3.135) into

U(Λ, a)Ψp,σ = e
−i(Λp)⋅a√(Λp)0/p0∑

σ̄
Dσ̄σ(W(Λ, p))ΨΛp,σ̄ (3.136)

where we have used the normalization (3.130). This transformation law generalizes in
an obvious way to many-particle states. Note also that the states can just as well be
labelled by the three-vector p part of p. So far, the formula (3.136) is general. In the
following, it will be specialized to the two most important cases: first massive, and
then, massless representations.

Thismethod of constructing representations of the Poincaré group from represen-
tations of the little group, is called themethod of induced representations. The formula
(3.136) for a general Poincaré transformation is referred to as orbit completion.

29 Put p = k and Λ = W , and k becomes redundant in Cσ̄σ(W , k), then denote by Dσ̄σ(W).
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Massive representations

Massive representations are defined by p2 = −m2 and p0 > 0. The standard momentum is taken as
kμ = (0,0,0,m).30 The little group is SO(3), the group of rotations in three spatial dimensions. The
irreducible representations can be given by matrices D(j)σ̄σ(R) of dimension 2j + 1 for j = 0,

1
2 , 1, . . . (the

indices σ run j, j−1, . . . , −j). Explicitly, for infinitesimal rotations Rik = δik +θik with θik = −θki , we have

D(j)σ̄σ(1 + θ) = δσ̄σ +
i
2
θik(J
(j)
ik )σ̄σ (3.137)

(J(j)23 ± iJ
(j)
31)σ̄σ = δσ̄,σ±1√(j ∓ σ)(j ± σ + 1) (3.138)

(J(j)12)σ̄σ = σδσ̄σ (3.139)

It canbe shown that the little groupelements, theWigner rotationsW(Λ,p), has the followingproperty:
when Λ is a three-dimensional rotation R, then W(R,p) = R. It does not depend on the momentum of
the particle, and the states of a moving particle transform under spatial rotations as the particle at
rest. The formulas are the same as in nonrelativistic quantum mechanics.

Example 1 (A reminder on SO(3) in quantum mechanics). We recognize the formulas
for massive representations, given in the box above, as the angular momentum oper-
ators J acting on states |j,m⟩. Representing J as {J3, J± = J1 ± iJ2} then we have, with m
running over the values j, j − 1, . . . , −j,

J3|j,m⟩ = |j,m⟩m (3.140)

J±|j,m⟩ = |j,m ± 1⟩√j(j + 1) −m(m ± 1) (3.141)

J2|j,m⟩ = |j,m⟩j(j + 1) (3.142)

The two simplest nontrivial examples are with j = 1/2 and j = 1. For j = 1/2, we get
precisely Ji =

1
2σi in terms of the 2 × 2 Pauli matrices acting on the spin 1/2 states

| 12 ,
1
2 ⟩ = (

1
0
) and | 12 , −

1
2 ⟩ = (

0
1
) (3.143)

with

J3 = (
1 0
0 −1
) J+ = (

0 1
0 0
) J− = (

0 0
1 0
) (3.144)

It is easy to convince one-self that it all works as expected and that the algebra of
generators, for instance [J+, J−] = 2J3, is satisfied. J+ thus raises the spin and J− lowers
it.

30 Since it is conventional to consider boosts in the 3 direction, it is convenient to have the 0 and 3
directions adjacent in concrete vectors and matrices, therefore, the ordering 1, 2, 3,0.
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In the case j = 1, the 3 × 3 matrices become

J3 = (
1 0 0
0 0 0
0 0 −1

) J+ = (
0 √2 0
0 0 √2
0 0 0

) J− = (
0 0 0
√2 0 0
0 √2 0

) (3.145)

and the basis states upon which they act are (written as row vectors)

|1, 1⟩ = (1 0 0) |1,0⟩ = (0 1 0) |1, −1⟩ = (0 0 1) (3.146)

These should not be confused with three-dimensional space-time basis vectors. For a
space-time representation, one should instead usematrices (Rk)ij = −iϵijk . These work
out to

R1 = −i(
0 0 0
0 0 1
0 −1 0

) R2 = −i(
0 0 −1
0 0 0
1 0 0

) R3 = −i(
0 1 0
−1 0 0
0 0 0

) (3.147)

These matrices generate infinitesimal rotations around the k axes with angles θk re-
spectively. This can be seen by multiplying space basis vectors

e1 = (
1
0
0
) e2 = (

0
1
0
) e3 = (

0
0
1
) (3.148)

with matrices I − iθkRk . The relation between these two realizations of the SO(3) rota-
tion groupwill come into play whenwe study spin 1 quantum fields. Another property
of the matrices that we need is

(R2)ij = ∑
k
(Rk)

i
l(Rk)

l
j = 2δ

i
j (3.149)

Textbook references are for instance [26], Section 27 or [33], Chapter 17. 󳶣

3.5.1 From state transformations to field transformations

Weinberg, in [18], has a detailed discussion on how to build relativistic quantumfields
from relativistic quantumone-particle states. As the logic itself is very interesting from
the point of view of understanding the role of the Poincaré symmetry in physics, we
will outline the main steps here, again leaving out the computational details.

The question we want to answer is the following. What is the relation between
the little group transformations – and finite dimensional unitary representations – for
the states, and the Lorentz group transformations – and finite dimensional nonunitary
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representations – for the fields?What, in fact, is the relation between the representations
of the Lorentz and Poincaré groups?

The question is actually acute, since the representations for the states are unitary
while the representations for thefields arenot unitary. This potentially confusing issue
is important to clarify. As we saw in the historical chapter, this was indeed a confused
issue in the earlier days of quantum field theory.

Weinberg’s starting point is the formula for the interactions31

V(t) = ∫ d3xℋ(x, y, z, t) (3.150)

where the Hamiltonian density ℋ(x) is built from the creation and annihilation op-
erators corresponding to the particle states of the theory considered.32 Interactions,
modelled as V(t), will produce a Lorentz-invariant S-matrix if ℋ(x) is a scalar under
Poincaré transformations

U(Λ, a)ℋ(x)U−1(Λ, a) = ℋ(Λx + a) (3.151)

It must also satisfy the requirement

[ℋ(x),ℋ(x󸀠)] = 0 for (x − x󸀠)2 ≥ 0 (3.152)

ThePoincaré invariance requirement is satisfiedbybuilding theHamiltonianden-
sity, not out of creation and annihilation operators directly, but out of certain linear
combinations of them, called quantum fields

ψ+l (x) = ∑
σ
∫ d3p ul(x;p, σ)α(p, σ) (3.153)

ψ−l (x) = ∑
σ
∫ d3p vl(x;p, σ)α

†(p, σ) (3.154)

Here, the ψ+l (x) are annihilation fields, and ψ−l (x) are creation fields. The intuition is
that the oscillators annihilate or create states of definite momentum and spin that
are linearly combined with configuration space “wave function” coefficients ul and
vl. These functions carry Lorentz indices l that will be related to the state labels σ.33

Denoting the vacuum with Ψ0, a one-particle state is created out of the vacuum

Ψp,σ = α
†
p,σΨ0 (3.155)

31 Compare to Section 2.6.1 in the historical chapter.
32 For instance, in QED: operators creating and destroying photons, electrons and positrons, com-
bined to model the fundamental (cubic) interactions of the theory. In general, it is a weighted sum of
products of creation and annihilation operators.
33 The + and − notation refers to the signs in the exponentials of ip ⋅ x soon to appear. We suppress,
for simplicity, any further labeling of particle types in case there are several particles with the same
spin.
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The Hamiltonian is written as a sum of products of annihilation and creation fields,
corresponding to the various basic interaction vertices of the theory, with constant
coupling coefficients.34 Requiring such a Hamiltonian to transform as a scalar, force
the fields to transform according to

U(Λ, a)ψ±l (x)U
−1(Λ, a) = ∑

̄l

Dl ̄l(Λ
−1)ψ±̄l (Λx + a) (3.156)

where the Dl ̄l matrices must form a representation of the Lorentz group.35 What we
want to do now is to understand how these nonunitary finite dimensional matrices
Dl ̄l(Λ
−1) are related to the unitary finite dimensional matrices Dσσ̄(W) of the little

group.36

From the transformation law (3.136) for the one-particle states, follows the trans-
formation formulas for the annihilation and creation operators

U(Λ, a)α(p, σ)U−1(Λ, a) = ei(Λp)⋅a√(Λp)
0

p0
∑
σ̄
D(j)σσ̄(W

−1(Λ, p))α(pΛ, σ̄) (3.157)

U(Λ, a)α†(p, σ)U−1(Λ, a) = e−i(Λp)⋅a√(Λp)
0

p0
∑
σ̄
D(j)
∗

σσ̄ (W
−1(Λ, p))α†(pΛ, σ̄) (3.158)

Some changes of notation have been introduced here as compared to (3.136). The uni-
tarity of the Dσσ̄ matrices has been used to rewrite Dσ̄σ(W) = D∗σσ̄(W

−1). Furthermore,
the Dσσ̄ matrices have been labeled by the spin j. Finally, the momentum label p has
been changed to the three momentum p (since the states are on-shell anyway) and pΛ
stands for the three-vector part of Λp.37

Now, the formulas (3.157) and (3.158) are consequences of the analysis of the uni-
tary transformations of the Poincaré group as expressed in the language of operators
creating and annihilating quantum states. The formulas (3.153) and (3.154) are defini-
tions, and the formula (3.156) is a requirement. Combining them yield38

∑
σ̄
u ̄l(Λx + a;pΛ, σ̄)D

(j)
σ̄σ(W(Λ, p)) = √

p0
(Λp)0
∑
l
D ̄ll(Λ) exp(i(Λp) ⋅ a)ul(x;p, σ) (3.159)

34 The coupling constants should be Lorentz covariant in a sense made clear in [18].
35 Although there could be different matrices for the creation and annihilation fields, it is always
possible make choices as to make them equal; see [18].
36 Remember the l ̄l are indices for field components while the σσ̄ label representations.
37 The formulas (3.157) and (3.158) are adjoints of each other. Note that the adjoint in theHilbert space
of states means complex conjugation for the c-number matrices D.
38 There is a certain amount of algebra involved here. Note in particular that there is an implicit trans-
position of the σσ̄ indices in order that coefficient functions ul(x;p, σ) and vl(x;p, σ) can be treated as
row vectors in σ-space. Treating the coefficient functions as column vectors in l space, the formulas
then becomematrix equations with σ-labeled columns and l-labeled rows. This is convenient for prac-
tical calculation.
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∑
σ̄
v ̄l(Λx + a;pΛ, σ̄)D

(j)∗
σ̄σ (W(Λ, p)) = √

p0
(Λp)0
∑
l
D ̄ll(Λ) exp(−i(Λp) ⋅ a)vl(x;p, σ)

(3.160)

First, specializing to translations with Λ = 1 the formulas show that the fields must be
Fourier transforms

ψ+l (x) =
1
(2π)3/2
∑
σ
∫ d3p eip⋅xul(p, σ)α(p, σ) (3.161)

ψ−l (x) =
1
(2π)3/2
∑
σ
∫ d3p e−ip⋅xvl(p, σ)α

†(p, σ) (3.162)

Using this, and specializing to Lorentz transformations, we get

∑
σ̄
u ̄l(pΛ, σ̄)D

(j)
σ̄σ(W(Λ, p)) = √

p0
(Λp)0
∑
l
D ̄ll(Λ)ul(p, σ) (3.163)

∑
σ̄
v ̄l(pΛ, σ̄)D

(j)∗
σ̄σ (W(Λ, p)) = √

p0
(Λp)0
∑
l
D ̄ll(Λ)vl(p, σ) (3.164)

These formulas can then be further specialized to boost and rotations.

Boost formulas
For boosts, choose p = 0 corresponding to a state at rest, and let Λ be the standard
boost L(q) that takes the state to the four-momentum qμ, that is, q = L(q)p. Then L(p) =
1 and the little group element becomes W(Λ, p) = L−1(Λp)ΛL(p) = 1. The formulas
(3.163) and (3.164) become

u ̄l(q, σ) = √
m
q0
∑
l
D ̄ll(L(q))ul(0, σ) (3.165)

v ̄l(q, σ) = √
m
q0
∑
l
D ̄ll(L(q))vl(0, σ) (3.166)

These formulas relate the functions ul(p, σ) and vl(p, σ) at arbitrary three-momentum
p to the rest-frame objects ul(0, σ) and vl(0, σ). As wewill see, these are the “germs out
of which the fields are grown”. So far there are no conditions on ul(0, σ) and vl(0, σ).
Such will come when rotations are considered.

Rotation formulas
For rotations, again take p = 0 but now choose Λ to be a rotation R. Then pΛ = 0 and
the little group element isW(Λ, p) = R. The formulas (3.163) and (3.164) become

∑
σ̄
u ̄l(0, σ̄)D

(j)
σ̄σ(R) = ∑

l
D ̄ll(R)ul(0, σ) (3.167)
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∑
σ̄
v ̄l(0, σ̄)D

(j)∗
σ̄σ (R) = ∑

l
D ̄ll(R)vl(0, σ) (3.168)

These are formulas that relate little group representations – which are rotations of the
states labeled by σ – with Lorentz group rotations of the functions labeled by “space-
time” indices l. It is convenient to bring this aspect to the fore a little by writing the
equations as

∑
σ̄
u ̄l(0, σ̄)J

(j)
σ̄σ = ∑

l
ℛ ̄llul(0, σ) (3.169)

∑
σ̄
v ̄l(0, σ̄)J

(j)∗
σ̄σ = −∑

l
ℛ ̄llvl(0, σ) (3.170)

The minus sign appearing in the last equation comes from the complex conjugated
matrices of the rotation group; see formulas (3.147). In the next section, we will work
out the consequences of these formulas in detail for the interesting case of spin 1.

Bottom line on unitary vs. nonunitary representations

In quantum theory, wave functions are states, andmust therefore transform unitarily. Fields, however,
are operators and need not transform unitarily.

In more detail: The c-number wave functions ul(p, σ)eip⋅x and vl(p, σ)e−ip⋅x transform unitarily un-
der the Poincaré group. They are coefficient functions that relate the state creation and annihilation
operators a†(p, σ) and a(p, σ) to the quantum fieldsψ+l (x) andψ

−
l (x). The quantum fields transform as

finite dimensional nonunitary representations of the Lorentz group. In short: states transform unitar-
ily, operators need not, c-number wave functions straddle the gap.

3.5.2 The cardinal example: massive spin 1 fields

Let us refer to the pairs of formulas (3.165)–(3.166) and (3.169)–(3.170) relatingPoincaré
and Lorentz representations as the boost and rotation formulas, respectively. As a
backdrop for spin 1, we start by applying the formulas to the case of a spin 0 scalar
field. Then the label σ takes just one value 0 and can be dropped, and all the represen-
tation matrices are identity matrices. The rotation formulas trivialize. The constants
u(0) and v(0) in the boost formulas can be taken as (2m)−1/2. These formulas then give

u(p) = (2p0)−1/2 and v(p) = (2p0)−1/2 (3.171)

and we immediately get the annihilation and creation fields

ϕ+(x) = 1
(2π)3/2
∫ d3p(2p0)−1/2 eip⋅xα(p) (3.172)

ϕ−(x) = 1
(2π)3/2
∫ d3p(2p0)−1/2 e−ip⋅xα†(p) (3.173)
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The combinationϕ(x) = ϕ+(x)+ϕ−(x) is recognizable as a quantumfield for a neutral,
that is, charge-less, scalar field, although the normalization is different from what is
perhaps more common in textbooks.39

For spin 1, we expect the coefficient wave-functions in the quantum fields to be
four-vector functions uμ(p, σ) and vμ(p, σ). That is, the l indices are taken as space-
time vector indices μ, and consequently the Lorentz representation matrices D ̄ll(Λ)
are taken as D(Λ)μ ν = Λμ

ν as is appropriate for vectors. Therefore, we can write
D ̄ll(Λ(p)) → L(p)μ ν. The boost formulas specialize to

uμ(p, σ) = √ m
p0

L(p)μ νu
ν(0, σ) (3.174)

vμ(p, σ) = √ m
p0

L(p)μ νv
ν(0, σ) (3.175)

The rotation formulas will provide more interesting information. They now read

∑
σ̄
uμ(0, σ̄)J(j)σ̄σ = ℛ

μ
νu

ν(0, σ) (3.176)

∑
σ̄
vμ(0, σ̄)J(j)∗σ̄σ = −ℛ

μ
νv

ν(0, σ) (3.177)

whereℛμ
ν denote the rotation generators in the vector representation. We have kept

the spin j arbitrary on the left (little group) side of the formulas sincewewant to decide
the possible values for j. To proceed, we write down the explicit form forℛμ

ν which is
(see formulas (3.147))

(ℛk)
0
0 = (ℛk)

0
i = (ℛk)

i
0 = 0 and (ℛk)

i
j = −iϵijk (3.178)

Let us now focus on the formula (3.176) for the u coefficient.We observe that it is three-
vector equation. The idea is to “rotate” the left- and right-hand sides of the equation,
for each three-direction k, with J(j)k and use the formula again for the k-direction to
write the right-hand sides as aproduct ofℛkmatrices. That sequenceofmanipulations
result in

∑
σ̄σ

uμ(0, σ̄)(J(j)k )σ̄σ(J
(j)
k )σσ󸀠 = (ℛk)

μ
ν(ℛk)

ν
ρuρ(0, σ

󸀠) (3.179)

Next, summing over k and using equations (3.178) yields

∑
σ̄
u0(0, σ̄)(J(j))2σ̄σ󸀠 = 0 (3.180)

39 I am following Weinberg in [18] closely.
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∑
σ̄
ui(0, σ̄)(J(j))2σ̄σ󸀠 = 2ui(0, σ󸀠) (3.181)

where we have also used (3.149). Then since (J(j))2σ̄σ󸀠 = j(j + 1)δσ̄σ󸀠 we get
j(j + 1)u0(0, σ󸀠) = 0 (3.182)

j(j + 1)ui(0, σ󸀠) = 2ui(0, σ󸀠) (3.183)

The only solutions to these equations are

j = 0 with u0 ̸= 0 and ui = 0 (3.184)

j = 1 with u0 = 0 and ui ̸= 0 (3.185)

Analyzing the equation (3.177) for the v coefficient yields the same constraints on j and
vμ(0, σ). A vector field can thus describe a spin 0 particle or a spin 1 particle.

Spin zero
For spin 0, we drop the σ label and the boost equations yield

uμ(p) = √ m
p0

L(p)μ0u
0(0) (3.186)

vμ(p) = √ m
p0

L(p)μ0v
0(0) (3.187)

where L(p)μ0 is a boost that takes the standard momentum kμ = (0,0,0,m) to pμ. This
means that L(p)μ0m = p

μ. Then

uμ(p) = (mp0)−1/2pμu0(0) (3.188)

vμ(p) = (mp0)−1/2pμv0(0) (3.189)

These formulas indicate that the field is a derivative of a scalar field. Choosing u0(0) =
i(m/2)1/2 and v0(0) = −i(m/2)1/2 yields

uμ(p) = i(2p0)−1/2pμ (3.190)

vμ(p) = −i(2p0)−1/2pμ (3.191)

Comparing to the formulas for a scalar field (3.171), we get the identification for a spin
zero vector field ϕμ = 𝜕μϕ.

Spin one
For spin 1, we have u0 = v0 = 0 and we want to determine ui(0, σ) and vi(0, σ) for
σ = 1,0, −1. Working out the consequences of the rotation equation (3.176) for J(1)3 ,
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yield the following partial determination of the uμ(0, σ) coefficients:

uμ(0, 1) = (

u1

iu1

0
0

) uμ(0,0) = (

0
0
u3

0

) uμ(0, −1) = (

u2

−iu2

0
0

) (3.192)

where u1, u2 and u3 are undetermined constants. Next, working out the raising and
lowering cases of the rotation equation (3.176) result in fixing u1 = −u2 = −2−1/2u3.
Then u3 can be normalized to (2m)−1/2.

The corresponding calculations can thenbedone for the vμ(0, σ) coefficients using
the rotation formula (3.177). Doing that leads to vμ(0, 1) = −uμ(0, −1), vμ(0,0) = uμ(0,0)
and vμ(0, −1) = −uμ(0, 1). Therefore, uμ(0, σ)∗ = vμ(0, σ). It is conventional to introduce
polarization vectors through the definition eμ(0, σ) = √2muμ(0, σ). These then become

eμ(0, 1) = − 1
√2
(

1
i
0
0

) eμ(0,0) = (

0
0
1
0

) eμ(0, −1) = 1
√2
(

1
−i
0
0

) (3.193)

Finally, using the boost equations (3.174) and (3.175) we can be put everything together
into a massive spin 1 quantum field

ϕμ(x) = 1
(2π)3/2
∫

d3p
√2p0
(eμ(p, σ)α(p)eip⋅x + eμ∗(p, σ)e−ip⋅xα†(p)) (3.194)

where eμ(p, σ) = L(Λ)μ νeν(0, σ). From the general formulas (3.161) and (3.162) as ap-
plied to vector fields, we recognize the identifications

uμ(p, σ) = (2p0)−1/2eμ(p, σ) and vμ(p, σ) = (2p0)−1/2eμ∗(p, σ) (3.195)

This “normalization” will be used also in themassless case, although the polarization
vectorswill bedifferent in a significantway.Alsonote that thefieldϕμ(x) is divergence-
free as it should be, since pμeμ(p, σ) = kμeμ(0, σ) = 0 due to Lorentz invariance.

3.5.3 The little group for zero mass

Massless representations are defined by p2 = 0 and p0 > 0. The standard momentum
is taken as kμ = (0,0, 1, 1).40 The little group in the massless case is ISO(2), the inho-
mogeneous group of translations and rotations in two space dimensions. This group

40 Remember the concrete index ordering 1, 2, 3,0.
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is also referred to as the Euclidean group in two dimensions and denoted by E2. The
general little group element can be written as41

W(θ, α, β) = S(α, β)R(θ) (3.196)

where the matrices S and R are given by

Sμ ν(α, β) = (

1 0 −α α
0 1 −β β
α β 1 − ζ ζ
α β −ζ 1 + ζ

) (3.197)

Rμ ν(θ) = (

cos θ sin θ 0 0
− sin θ cos θ 0 0
0 0 1 0
0 0 0 1

) (3.198)

where ζ = (α2 + β2)/2 in S(α, β).

The form of the massless little group

An argument leading to this form of the massless little group Lorentz transformations goes like this.
Consider a time-like four-vector tμ = (0,0,0, 1) andaparticular little groupelementS. Using invariance
of the scalar product, one finds that (St)μkμ = (St)μ(Sk)μ = tμkμ = −1 and (St)μ(St)μ = tμtμ = −1. The
first of these equations can be satisfied by (St)μ = (α,β, ζ , 1 + ζ) with undetermined α, β and ζ . The
second equation then forces ζ = (α2 + β2)/2.

This argument, however, does not fixW to S completely, since the four-vectors t and k are totally
inert to pure rotations and rotations around the third axis, respectively. Indeed, fromWt = St we find
that S−1W is a pure rotation and fromWk = Sk find that S−1W is a rotation R(θ) around the third axis.
This yields the equation (3.196) with S and R given by (3.197) and (3.198).

The two subgroups generated by S and R are Abelian, and explicitly we have
S(α󸀠, β󸀠)S(α, β) = S(α󸀠 + α, β󸀠 + β) and R(θ󸀠)R(θ) = R(θ󸀠 + θ) as is appropriate for
translations and rotations in two dimensions. Furthermore, from

R(θ)S(α, β)R−1(θ) = S(α cos θ + β sin θ, −α sin θ + β cos θ) (3.199)

we see that S generates an invariant Abelian subgroup. The little group for massless
representations is thus not semisimple (see Section 3.11.1).

The infinitesimal group element is

W(θ, α, β)μ ν = δ
μ
ν + λ

μ
ν with λμ ν = (

0 θ −α α
−θ 0 −β β
α β 0 0
α β 0 0

) (3.200)

41 To clarify, this is E2 represented on four-dimensional space-time vectors.
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The corresponding unitary operator on the space of states is

U(W(θ, α, β)) = 1 + iαA + iβB + iθJ3 where {
A = −J13 + J10

B = −J23 + J20
(3.201)

The Lie algebra is (see Section 3.4.2)

[J3,A] = iB [J3,B] = −iA [A,B] = 0 (3.202)

or in terms of non-Hermitian operators T+ = A + iB and T− = A − iB

[J3,T±] = ±T± [T+,T−] = 0 (3.203)

An interesting phenomenon occurs when one simultaneously diagonalizes T+ and T−
by states Ψk,t+ ,t−

T+Ψk,t+ ,t− = t+Ψk,t+ ,t− and T−Ψk,t+ ,t− = t−Ψk,t+ ,t− (3.204)

From the group law (3.199) follows

U(R(θ))T±U
−1(R(θ)) = T±e

±iθ (3.205)

It then follows that there is an infinite set of eigenstates Ψθ
k,t+ ,t− of the translation gen-

erators T± with eigenvalues e±iθt± parametrized by θ. Namely,

T±Ψ
θ
k,t+ ,t− = (e±iθt±)Ψθ

k,t+ ,t− with Ψθ
k,t+ ,t− = U−1(R(θ))Ψk,t+ ,t− (3.206)

Physically, this means that if we have an eigenstate of the translation generators, then
all the rotated states are eigenstates, too.

Massless particles in nature, the photon for instance, do not possess any such
continuous, dimensionful, eigenvalue. Therefore, for the regular massless represen-
tations one chooses eigenvalues t± = 0. However, from a theoretical higher spin per-
spective, the nonzero eigenvalue representations are interesting. These are called con-
tinuous spin representations, not because the spin is continuous, but because of this
parametrization in terms of the rotation angle θ. Spin, or helicity, is still discrete, but
runs from zero to infinity in integer or half-integer steps. We will devote a special Sec-
tion 3.6, to the representation theory of this, from the higher spin perspective, very
interesting group.

Massless representations

Massless representations are defined by p2 = 0 and p0 > 0. The standard momentum is taken as
kμ = (0,0, 1, 1), and the little group is ISO(2). The eigenvalues for the translation generators T+ and T−
are chosen to be zero.
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From the form of the general little group element in equation (3.196) and the analysis just pre-
formed, we have the unitary operators U(W(θ, α,β)) acting on states Ψk,σ ,

U(S(α,β)R(θ))Ψk,σ = exp(iαA + iβB) exp(iθJ3)Ψk,σ = exp(iθσ)Ψk,σ (3.207)

Comparing to the general formula (3.133), we find the little group representationmatrices for massless
states

Dσ̄σ(W) = exp(iθσ)δσ̄σ (3.208)

Finally, referring back to the general formula (3.136), a Lorentz transformation of massless state of
helicity σ is

U(Λ)Ψp,σ = √(Λp)0/p0 exp(iσθ(Λ,p))ΨΛp,σ (3.209)

where θ(Λ,p) is defined by W(θ, α,β) = S(α(Λ,p),β(Λ,p))R(θ(Λ,p)). It should be clear that even
though the S part of the little group is trivially represented on the states, it does not mean that S
itself is a unit matrix.

From the transformation rule (3.209), it is clear that helicity is invariant under proper
orthochronous Lorentz transformations. But we are used to the fact that, in four di-
mensions, a massless particle – or field – has two degrees of freedom corresponding
to the helicities ±σ where σ takes integer or half-integer values. The restriction to inte-
ger or half-integer values for the helicity comes from the topology of the Lorentz group.
The connection between positive and negative helicities is mediated by the space in-
version piece of the Lorentz group. Space inversion in three space dimensions is con-
nected to left- or right-handedness, or in general dimensions to what we refer to as
chirality in particle physics.

3.5.4 The Pauli–Lubanski vector, Casimir operators and the little group

Much of the preceding discussion can be streamlined and understood with the help
of the Pauli–Lubanski vector

Wμ =
1
2
ϵμνρλP

νJρλ (3.210)

In quantum field theory, it is common to split up the Lorentz generators as

Jμν = Lμν + Sμν (3.211)

withLμν denoting the orbital angularmomentumpart, explicitly realized as in formula
(3.112), and Sμν the spin angular momentum part, explicitly realized from case to case
on the indices of quantum fields. Due to the commutativity of partial derivatives, the
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angular momentum part of Jμν drops out of the Pauli–Lubanski vector, and only the
spin part contributes.

The Pauli–Lubanski vector has he following algebraic properties

WμP
μ = 0 (3.212)

[Pμ,Wν , ] = 0 (3.213)

[Jμν ,Wρ] = i(ημρWν − ηνρWμ) (3.214)

[Wμ,Wν] = iϵμνρλW
ρPλ (3.215)

The first two equations follow from the commutativity of momentum operators, the
second can be derived from the Poincaré algebra but is also a necessary consequence
ofWμ being built from vectors and tensors, it thus transforms as a vector. The fourth
equation follows from the second and third. Furthermore, the square of the Pauli–
Lubanski vector commutes with the whole Poincaré algebra, it thus serves as a second
Casimir operator alongside the square of the momentum vector.

Generically, the little group is a subgroupof the Lorentz group that leaves a certain
momentum vector k invariant, that is, Lorentz transformations for which

Wμ
νk

ν = kμ (3.216)

This is the same equation as (3.132). The choice of the symbolW here is not arbitrary.
Whenactingonone-particle states, thefirst Casimir operator P2 gives the squaredmass
of the particle. Furthermore, due to equation (3.213), when acting on such states, the
momentum operator inWμ can be replaced by its eigenvalue pμ.

Massive representations
We can now make the connection to little groups. Choosing a standard momentum
kμ = (0,0,0,m) for massive representations, we find W0 = 0, while the interesting
components are

Wi = −
m
2
ϵijkJ

jk (3.217)

generating the rotation algebra in three dimensions. The Casimir operator becomes

WμW
μ = WiW

i = m2JiJ
i = m2J2 (3.218)

On a spin j representation, the Pauli–Lubanski vector evaluates tom2j(j + 1).

Massless representations
Choosing a standardmomentum kμ = (0,0,ω,ω) formassless representations,wefind
the components
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W1 = −ω(J1 + K2)
W2 = −ω(J2 − K1)

W3 = −W0 = −ωJ3 (3.219)

generating the algebra of iso(2). Here,W0 i redundant. Identifying with the notation
of formulas (3.202), we findW1 = ωB andW2 = −ωA. The Casimir operator becomes

WμW
μ = (W1)

2 + (W2)
2 = ω2(A2 + B2) (3.220)

There are two types of massless representations. The regular one-dimensional helic-
ity representations are labelled by helicity λ taking positive and negative integer or
half-integer values. These representations have eigenvalues zero for the translation
generators A and B. The second Casimir operator is zero. The second type of massless
representations, the continuous spin representations, are discussed in Section 3.6.

3.5.5 The emergence of gauge invariance

Wewill now try to construct a quantum field for a massless spin 1 particle, transform-
ing as a vector, along the lines followed in Section 3.5.2 for amassive particle. This will
lead to the emergence of gauge invariance. We look for a field of the form of equation
(3.194) with polarization vectors, or wave-functions, as in (3.195) but now appropriate
for massless particles. But we start more general and consider wave-functions ul and
vl and representation matrices D ̄ll(Λ), and write the formulas for Lorentz transforma-
tions corresponding to (3.163) and (3.164),

u ̄l(pΛ, σ) exp(iσθ(Λ, p)) = √
p0
(Λp)0
∑
l
D ̄ll(Λ)ul(p, σ) (3.221)

v ̄l(pΛ, σ) exp(−iσθ(Λ, p)) = √
p0
(Λp)0
∑
l
D ̄ll(Λ)vl(p, σ) (3.222)

where we have used (3.208) for the massless little group Dσ̄σ(W) matrices. Note that
for massless particles p0 = |p|.

In analogy to the massive case, we first consider boosts. Then let pμ be a standard
momentum that can be chosen with p0 = |p| and p = (0,0, |p|). Also let Λ = L(q) be a
Lorentz transformation that boosts the particle to momentum q. Then θ = 0 (so that
Dσ̄σ(Λ) is a unit matrix) and (Λp)0 = q0 or pΛ = Λp = q. The equations then become42

u ̄l(q, σ) = √
|p|
q0
∑
l
D ̄ll(L(q))ul(p, σ) (3.223)

42 Note the subtle difference as compared to the massive case. There is no rest-frame here, but the
equations still relate wave functions at general momentum q to wave functions at the standard mo-
mentum p.
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v ̄l(q, σ) = √
|p|
q0
∑
l
D ̄ll(L(q))vl(p, σ) (3.224)

Next, in the massive case, we considered SO(3) rotations R in space. Here, we must
consider little group ISO(2, 1) transformationsW of the type discussed in Section 3.5.3
above. The standard momentum is still given by p0 = |p| and p = (0,0, |p|) but the
Lorentz transformation Λ is a little group transformationW . These leave the standard
momentum invariant.The equations then become

u ̄l(p, σ) exp(iσθ(W , p)) = ∑
l
D ̄ll(W)ul(p, σ) (3.225)

v ̄l(p, σ) exp(−iσθ(W , p)) = ∑
l
D ̄ll(W)vl(p, σ) (3.226)

The equations can now be specialized to rotations R(θ) around the 3-axis and boosts
S(α, β) in the 1-2 plane. Using equations (3.198) and(3.197), we can write for rotations

u ̄l(p, σ) exp(iσθ) = ∑
l
D ̄ll(R(θ))ul(p, σ) (3.227)

v ̄l(p, σ) exp(−iσθ) = ∑
l
D ̄ll(R(θ))vl(p, σ) (3.228)

and for boosts

u ̄l(p, σ) = ∑
l
D ̄ll(S(α, β))ul(p, σ) (3.229)

v ̄l(p, σ) = ∑
l
D ̄ll(S(α, β))vl(p, σ) (3.230)

In the sequel, it is enough to discuss the u wave-functions since the equations are
complex conjugate of each other and we can choose v = u∗.43

Let us now be more specific and see if we can construct a four-vector field ϕμ cor-
responding to the Lorentz group representation ( 12 ,

1
2 ). As in themassive case, we then

have D(Λ)μ ν = Λ
μ
ν. We also work in terms polarization vectors eμ(p, σ) related to the

wave-functions in the same way as in the massive case; see formula (3.195). The equa-
tion (3.223), that encodes boosting a standard momentum wave-function to arbitrary
momentum, then reads

eμ(q, σ) = Lμ ν(q)e
ν(p, σ) (3.231)

Equation (3.227) becomes

eμ(p, σ) exp(iσθ) = Rμ ν(θ)e
ν(p, σ) (3.232)

43 This amounts to normalization. Details are given in [18], Chapter 5.
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This equation requires eμ(p, σ) to have zero components in the 3 and 0 directions and
forces σ = ±1. With a suitable normalization, we get the familiar solutions

eμ(p, ±1) = 1
√2
(1, ±i,0,0) (3.233)

Next, equation (3.229) becomes

eμ(p, σ) = Sμ ν(α, β)e
ν(p, σ) (3.234)

When the solution (3.233) is inserted into this equation with σ = ±1 it becomes

1
√2
(1, ±i,0,0) = 1

√2
(1, ±i, α ± iβ, α ± iβ) (3.235)

This requires α ± iβ = 0 which would mean that Sμ ν(α, β) becomes a unit matrix and
the little group collapses into rotations around the third axis.

The interpretation of this, according toWeinberg, is that it is impossible to use the
creation and annihilation operators for massless helicity ±1 particle states to build a
vector quantum field.

It could perhaps be objected thatwe started froma little group representationwith
zero eigenvalues for the translation generators of the little group, and that therefore
one could put α and β to zero with good conscience. However, that would entail con-
flating Poincaré group representations on states, with Lorentz group representations
on quantum fields, the very distinction that this whole discussion aims to clarify. The
fieldsmust still transform covariantly under the full Lorentz group and, therefore, un-
der the full little group, not just under the rotation factor.

While the Rμ ν factor of the little group transforms the polarization vectors covari-
antly, the Sμ ν factor transforms the polarizations according to

Sμ ν(α, β)e
ν(p, ±1) = eν(p, ±1) + 1

√2
(α ± iβ) p

μ

|p|
(3.236)

with an inhomogeneous term. The full little group transformation law for the polar-
ization vectors become

Dμ
ν(W(θ, α, β))e

ν(p, ±1) = exp(±iθ)(eν(p, ±1) + 1
√2
(α ± iβ) p

μ

|p|
) (3.237)

Towards gauge invariant vector fields

Still following [18], one could go on and consider a vector field aμ(x) constructed out of these polariza-
tion vectors, even though they do not transform covariantly. Doing that, by boosting the polarization
vectors to arbitrary momentum, leads to the conditions a0 = 0 and ∇ ⋅ a = 0 on the vector field com-
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ponents, apart from the Klein–Gordon equation ◻aμ(x) = 0. From formula (3.237) follows that under a
general Lorentz transformation we have

U(Λ)aμ(x)U
−1(λ) = Λν μaν (Λx) + 𝜕μΩ(x, Λ) (3.238)

where the gauge parameter itself is a linear combination of creation and annihilation operators.
This formula can then be abstracted to a general vector Aμ field transforming covariantly under

the Lorentz group. In order for such a field to describe massless states it must be subject to gauge
transformations δAμ(x) = 𝜕μξ(x)with an arbitrary gauge parameter ξ(x). Its gauge invariant, free field
equation is ◻Aμ − 𝜕μ𝜕 ⋅ A = 0. When gauge-fixing such a field, equation (3.238) returns in the guise of
the need to perform a compensating gauge transformation when a Lorentz transformation takes the
field “out of the gauge”. We will see a concrete example when gauge-fixing to the light-cone gauge
(see Section 6.1.4).

The problems encountered here do not appear if one instead attempts to construct an anti-
symmetric tensor field fμν for massless spin 1 states. Such a field transforms as (1,0) ⊕ (0, 1) un-
der the Lorentz group, and it is of course related to the vector field through the familiar formula
fμν = 𝜕μaν − 𝜕νaμ.

3.5.6 Finite dimensional representations of the Lorentz group

The representation theory of the Lorentz group is quite complicated, but since themid
1940s it is well understood (see Section 2.4.2). The group is noncompact, and all its
unitary representations are infinite-dimensional. For field theory, at least finite com-
ponent field theory, it is however the nonunitary finite dimensional representations
that are interesting. As we have already discussed, there is no paradox in this fact. For
the sake of completeness, we will here very briefly just state the facts regarding the
representation theory of the restricted Lorentz group.

Wewill only review the finite-dimensional nonunitary representations. Aswe saw
at the end of Section 3.4.2, the Lorentz algebra can be written in terms of two inde-
pendent, but conjugated, so(3) Lie algebras with generators Mi and Ni (see formulas
(3.117)–(3.119)). Each of these two algebras has matrix representations in terms of an-
gular momentum matrices as in formulas (3.137)–(3.139). The combined algebras can
be represented as a direct sum of the components.We therefore only have to introduce
a convenient notation for the present context. To that end, let the indicesm and n run
over the values −M, −M + 1, . . . ,M and −N , −N + 1, . . . ,N, respectively, whereM and N
may be integer or half-integer. The combined representation matrices are taken as

Mm̄n̄,mn = δn̄nL
(M)
m̄m (3.239)

Nm̄n̄,mn = δm̄mL
(N)
n̄n (3.240)

where the L(M)m̄m matrices are given by the formulas

(L(M)1 ± iL
(M)
2 )m̄m = δm̄,m±1√(M ∓m)(M ±m + 1) (3.241)
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(L(M)3 )m̄m = mδm̄m (3.242)

and correspondingly for the L(N)n̄n matrices. Both sets of matrices are unitary. The di-
mension of the representation is (2M + 1)(2N + 1).

The boost part of the Lorentz group, with generators Ki, is represented non-
unitarily through the combination Ki = −i(Mi − Ni), while the rotation part with
generators Ji, is represented unitarily through the combination Ji = Mi + Ni. This
can then be used to classify how the fields transform according to the D(M,N) repre-
sentations by using the rules of angular momentum addition. A field in the D(M,N)
representation will rotate like states with spin j where

j = M + N ,M + N − 1, . . . , |M − N | + 1, |M − N | (3.243)

and where for each j themj quantum number runs over −j, −j + 1, . . . , j − 1, j as usual.
General quantum fields transforming in the D(M,N) representation are con-

structed in [18]. The procedure is quite straightforward, but results in a somewhat
unwieldy formalism. We will not need the particulars in our work. However, we will
take the opportunity to derive the restriction, that we reviewed in Section 2.6.1, on the
possibilities to represent massless states in terms of fields.

Weinberg’s restriction on massless field realizations

Remember the equations relating momentum space wave functions to representations. For rotations,
we have (3.227) and (3.228) and for boosts (3.229) and (3.230). In order to have wave functions trans-
forming in the D(M,N) representation, we label them as um̄n̄(p, σ). Following Weinberg, infinitesimal
generators for rotations and boosts in the space of wave functions are given by

(𝒥ij)m̄n̄,mn = ϵijk[(Mk)m̄n̄,mn + (Nk)m̄n̄,mn] (3.244)

(𝒦i)m̄n̄,mn = (𝒥i0)m̄n̄,mn = −i[(Mk)m̄n̄,mn − (Nk)m̄n̄,mn] (3.245)

in terms of the matrices (3.239) and (3.240). Considering first rotations, for an infinitesimal θ we have
D(R(θ)) = 1 + iθ𝒥23. The rotation equation (3.227) gives

um̄n̄(p, σ)(1 + iσθ) = [δm̄mδn̄n + iθ(L
(M)
3 )m̄mδn̄n + iθ(L

(N)
3 )n̄nδm̄m]umn(p, σ) (3.246)

Using (3.242), we get σ = m̄ + n̄. The corresponding calculation for the vm̄n̄ wave function yields −σ =
m̄ + n̄. Considering next a boost with infinitesimal α and β = 0, we get (see formula (3.201))

0 = iα(𝒥31 + 𝒥01)m̄n̄,mnumn

= iα[(L(M)2 )m̄mδn̄n + (L
(N)
2 )n̄nδm̄m + i(L

(M)
1 )m̄mδn̄n − i(L

(N)
1 )n̄nδm̄m]umn(p, σ)

= iα[(L(M)2 + iL
(M)
1 )m̄mumn̄(p, σ) + (L

(N)
2 − iL

(N)
1 )n̄num̄n(p, σ)] (3.247)

The two terms must be zero separately, so we have

(L(M)1 − iL
(M)
2 )m̄mumn̄(p, σ) = 0 (3.248)
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(L(N)1 + iL
(N)
2 )n̄num̄n(p, σ) = 0 (3.249)

Aboostwith α = 0 and infinitesimalβ, yields precisely the same two equations. Furthermore, the com-
putations for the vm̄n̄ wave function gives the same equations. Now, since the first of these equations
is a lowering equation, it implies m̄ = −M. Likewise, the second equation, being a raising equation,
implies n̄ = N. In conclusion, we get the restrictions on possible wave function representations

for um̄n̄ : σ= M − N (3.250)

for vm̄n̄ : σ= N −M (3.251)

For instance, this shows way it is not possible to represent a particle-antiparticle pair with helicities
(1, −1) with a vector field Aμ representation D(1/2, 1/2), while a D(1,0) ⊕ D(0, 1) representation corre-
sponding to an antisymmetric tensor Fμν is possible.

As noted in [96] (see our Section 2.6.1), we can now see that it is precisely the structure
of themassless little group that brings this restriction about. More exactly, it is its non-
semisimplicity, the fact that the internal translation generators commute.44 However,
as we have also seen in Section 3.5.5, the little group then makes a second entrance,
and saves the day, by introducing vector field gauge transformations corresponding to
the internal translations.

3.6 Representations of the two-dimensional Euclidean group

The two-dimensional Euclidean group turns up as the little group for massless repre-
sentations of the Poincaré group. This group is therefore not surprisingly quite inter-
esting from a higher spin perspective, and we will study its representation theory in
some detail.45

The group consists of translations T(a1, a2) = T(a) and rotations R(θ) in two-
dimensional space R2, together constituting group elements g(θ, a). As the notation
indicates, translations are parametrized by a vector (a1, a2) and rotations by an angle
θ. The effect on the space coordinates is given by

(
x󸀠1
x󸀠2
) = (

cos θ − sin θ
sin θ cos θ

)(
x1
x2
) + (

a1
a2
) or x󸀠 = R(θ) ⋅ x + a (3.252)

This is the defining formula for the group. The group law then follows as

g(θ2, a2)g(θ1, a1) = g(θ2 + θ1,R(θ2) ⋅ a1 + a2) (3.253)

where we have used the relation R(θ2)R(θ1) = R(θ2 + θ1) satisfied by the rotation sub-
group. There are indeed two readily recognizable subgroups; the subgroupof rotations

44 See Wigner’s discussion reviewed in our Section 2.3.4.
45 We are following [245], Chapter 9.
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g(θ,0) = R(θ) and the subgroup of translations g(0, a) = T(a). The subgroup of trans-
lations is Abelian and can be realized in the standard way as a unitary operator

U(T(a)) = e−ia⋅P (3.254)

in terms of a momentum operator P. Likewise, the subgroup of rotations can be real-
ized as

U(R(θ)) = e−iθJ (3.255)

in terms of the rotation angular momentum operator J. The group law (3.253) applied
to g(θ, a)g(−θ,0) implies that a general group element can be written as

g(θ, a) = T(a)R(θ) (3.256)

We have seen this formula before in (3.196) where E2 is represented as Lorentz trans-
formations on four-dimensional Minkowski space-time. The Lie algebra that we have
already encountered in (3.202) is

[P1,P2] = 0 (3.257)
[J,Pk] = iϵklPl (3.258)

This way of writing the algebra makes it clear that Pk transforms as a vector under
rotations

e−iθJPeiθJ = R(−θ) ⋅ P (3.259)

It is also clear that the group has one Casimir operator, namely P2. Furthermore,
a short calculation using (3.256) and the group law, shows that g(θ,b)T(a)g(θ,b)−1 =
T(R(θ)a). This means that the translation subgroup is an invariant subgroup. Since it
is Abelian, this shows that E2 is not semisimple. The group is also noncompact, since
the parameters for translations (a1, a2) have infinite ranges.

The representation theory of the group can be approached in two ways, corre-
sponding to the two natural sets of operators to diagonalize; either the momentum
operators P, or the angular momentum operator J. We will look for unitary represen-
tations, but in order to simplify notation we will write the unitary operators plainly as
U(θ) and U(a) instead of U(R(θ)) and U(T(a)).

3.6.1 Induced plane wave representations

The method of induced representations that we used for the Poincaré group in Sec-
tion 3.5, can be used for the little group itself, precisely because it contains an invari-
ant Abelian subgroup.46

46 Apart from dimension and signature of space, the groups are of the same type: inhomogeneous
SO(p, q) groups; see Section 3.11.2.
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Reminder of where we left off continuous spin representations

Let us return to the discussion about the little group representations in the massless case where we
left it off at the end of Section 3.5.3. There we considered states that are eigenstates of the translation
generators A and B. With nonzero eigenvalues a and b of A and B, the second Casimir operator evalu-
ates to ρ2(a2 + b2) in the standard momentum (0,0, ρ, ρ) state. In two-dimensional transverse space,
(ρa, ρb) is thus a vector of constant length ρ and can therefore be parametrized by an angle φ, and we
can write the states as Ψ(φ) suppressing all other quantum numbers. Working with the generators A
and B, we write the eigenvalues as a = cosφ and b = sinφ. Thus

AΨ(φ) = cosφΨ(φ) and BΨ(φ) = sinφΨ(φ) (3.260)

or in terms of T± = A ± iB

T±Ψ(φ) = exp(±iφ)Ψ(φ) (3.261)

Intuitively, the action of J3 is to rotate these states by an angle.

Based on the above reminder,wedenote the states –usingDirac notation–with any of
the expressions |p⟩ = |p cosφ, p sinφ⟩ = |p,φ⟩. Choosing a standard two-momentum
k = (k,0), the corresponding state is |k,0⟩. Then we have

P1|k,0⟩ = k|k,0⟩ P2|k,0⟩ = 0 P2|k,0⟩ = k2|k,0⟩ (3.262)

The only rotation leaving this state invariant is U(θ = 0). The “little group of the little
group” is trivial. Acting on the state with U(θ = φ) should give a rotated state. Let us
check this

PU(φ)|k,0⟩ = U(φ)[U−1(φ)PU(φ)]|k,0⟩ (3.263)
= U(φ)R(−φ) ⋅ P|k,0⟩ = U(φ)|k,0⟩R(−φ) ⋅ k (3.264)

We find that U(φ)|k,0⟩ is a new eigenstate |p⟩ rotated by the angle φ

|p⟩ ≡ U(φ)|k,0⟩ = |k,φ⟩ (3.265)

ofmomentum (k cosφ, k sinφ). Such eigenstates, considered as continuous set of vec-
tors, are closed under the group transformations

U(b)|p⟩ = |p⟩e−ib⋅p (3.266)
U(θ)|p⟩ = |q⟩ = |p,φ + θ⟩ (3.267)

Note that the length of the vectors are fixed so that p = |p| = k = |k| = q = |q|. The
states are distinguished by the angle 0 ≤ θ < 2π. The basis |p⟩ = |p,φ⟩ vectors are
eigenstates of the translation operators

P1|p,φ⟩ = p cosφ|p,φ⟩ P2|p,φ⟩ = p sinφ|p,φ⟩ (3.268)
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while for the rotation generator we have J = i𝜕/𝜕φ consistent with (3.255) and (3.267).
The full group transformation is

U(θ,b)|p,φ⟩ = U(b)U(θ)|p,φ⟩ = e−ip(b1 cos(φ+θ)+b2 sin(φ+θ))|p,φ + θ⟩ (3.269)

The states are subject to the orthonormality conditions

⟨p󸀠|p⟩ = ⟨p, θ󸀠|p, θ⟩ = 2πδ(θ󸀠 − θ) (3.270)

3.6.2 Angular momentum representation

In the angular momentum basis, one chooses to diagonalize the rotation generator J
and considers states |p,m⟩where again p2 is the value of the Casimir operator P2, thus
we have

P2|p,m⟩ = p2|p,m⟩ (3.271)
J|p,m⟩ = m|p,m⟩ (3.272)

The operators P± = P1 ± iP2 are step operators, and the unitary representation space
is given by the direct sum of the SO(2) subspaces parametrized bym = 0, ±1, ±2, . . ..

We saw in Section 3.5.3 that the regular helicity representations for massless
Poincaré states corresponds to representations of the little group with zero eigen-
values for the translation operators. The nonzero eigenvalue representations, on the
other hand, are the continuous spin representation. Let us now study this in the
angular momentum basis. Normalizing the states so that ⟨p,m|p,m⟩ = 1, one gets

󵄨󵄨󵄨󵄨P±|p,m⟩
󵄨󵄨󵄨󵄨 = ⟨p,m|P∓P±|p,m⟩ = ⟨p,m|P

2|p,m⟩ = p2 (3.273)

Taking p2 = 0 implies P±|p,m⟩ = 0 and the representations consist of single states
|0,m⟩ with J|0,m⟩ = m|0,m⟩ and

U(b)|0,m⟩ = |0,m⟩ (3.274)

U(θ)|0,m⟩ = e−imθ|0,m⟩ (3.275)

In the Poincaré context,m is interpreted as helicity.

Multi-valued representations

The group SO(2) hasmultivalued representations with U(θ) = e−imθ/n. The group SO(3), however, has
only two-valued representations corresponding to integer and half-integer spin for massive states.
Even for massless states, only one- or two-valued representations have to be considered [247]. The
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“valuedness” of representations are determined by the global, topological, property of path connect-
edness of the group manifold.

The situation for p2 > 0 is more interesting. Given any initial reference state |p,m0⟩,
repeated application of the raising and lowering operators yields an infinite represen-
tations space of states {|p,m⟩ : m = 0, ±1, ±2, . . .}. We define

P±|p,m⟩ = ∓ip|p,m ± 1⟩ (3.276)

The phase factors ∓i, allowed by normalization, will be motivated below. These states
are eigenstates of rotation, but we must work out their properties under translations
since translations mix the states (but note that p is constant characterizing the repre-
sentation). We do this by calculatingmatrix elements ofU(θ) andU(b) between states
of differentm andm󸀠. In a notation conforming to the one used for the Poincaré group,
we want to compute

D(p)m̄m(θ,b) = ⟨p, m̄|U(θ,b)|p,m⟩ = ∑
m󸀠 ⟨p, m̄|U(b)|p,m󸀠⟩⟨p,m󸀠|U(θ)|p,m⟩

= ∑
m󸀠 ⟨p, m̄|U(b)|p,m󸀠⟩e−iθmδm󸀠m = ⟨p, m̄|U(b)|p,m⟩e−iθm (3.277)

To compute the U(b)matrix element, we write the translation vector in polar coordi-
nates b = (b,φ), and then refer it back to a translation along the 1 direction through
U((b,φ)) = U(φ)U((b,0))U(φ)−1. This gives

⟨p, m̄|U(b)|p,m⟩ = ei(m−m̄)φ⟨p, m̄|U((b,0))|p,m⟩ (3.278)

where

U((b,0)) = e−ibP1 = e−ib(P++P−)/2 = ∞∑
k=0

∞

∑
l=0

(b/2)k+l

k!l!
(−iP+)

k(−iP−)
l (3.279)

The matrix elements are nonzero when m̄ = m − l + k. Each factor (−iP+)k(−iP−)l will
yield a factor (−1)k(i(−i)p)k(−i ⋅ ip)l = (−1)kpk+l when using (3.276) so that the matrix
elements become

⟨p, m̄|U((b,0))|p,m⟩ = ∑
k,l
(−1)k (pb/2)

k+l

k!l!
(3.280)

Since k − l is fixed to m̄ − m the sum can be rearranged into a single sum that turns
out to precisely yield the Bessel function Jm−m̄(pb). Putting all together, we get the
representations matrices

D(p)m̄m(θ, (b,φ)) = e
i(m−m̄)φJm−m̄(pb)e

−iθm (3.281)
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Series for Bessel functions

Put m̄−m = c. With a new summation index n = k + l, we get k = (n+ c)/2 and l = (n− c)/2. Then k ≥ 0
and l ≥ 0 implies n ≥ |c|. In case c ≤ 0, shift the summation index to n󸀠 = (n + c)/2 and recognize the
sum formula for Jc(pb). In case c ≥ 0 shift the summation index to n󸀠 = (n − c)/2 and recognize the
sum formula for J−c(pb).

Relation between the representations

It should be clear that the angularmomentum eigenstates |p,m⟩ and the planewave eigenstates |p,θ⟩
are related through Fourier analysis. The exact relation involves a phase factor. We just quote the
formulas [245]

|p,θ⟩ =
n=∞
∑

n=−∞
|p, n⟩e−in(θ+π/2) (3.282)

|p, n⟩ = 1
2π

2π

∫
0

|p,θ⟩ein(θ+π/2) (3.283)

3.6.3 Continuous spin representations

The two types of E2 representations that we considered in the preceding sections play
the same role for continuous spin representations as the SO(3) representations do for
massive particles and the zero translational eigenvalue representation of E2 do for reg-
ular massless helicity representation. Since the faithful representations of E2 are in-
finite dimensional, we expect the corresponding quantum fields to depend on some
continuous variable rather than being finite component fields. We will follow Wigner
[63] and introduce an auxiliary four-vector coordinate ξ . Alternatively, one couldwork
with complex two-spinor variables ζ a, ̄ζ ȧ as done in [248].

First, wemust connect the Poincaré group little groupnotationwith the ISO(2)no-
tation developed above. The second Casimir operator for the Poincaré group evaluates
to ρ2 for amassless state of standardmomentum kμ = (0,0, ρ, ρ). Thismeans that in all
our formulas for ISO(2) representations derived above, we just put p = ρ. The induced
plane wave representations that we have denoted by |p,φ⟩ are the ones related to the
states Ψθ

k,t+ ,t− discussed at the end of Section 3.5.3. The notation is a bit redundant and
we can write just Ψθ

k . Likewise, corresponding to the rotation eigenvalue states |p,m⟩
we write Ψm

k . The translation vector b corresponds to the vector (α, β).
Thus for continuous spin representations we can write the little group transfor-

mations in two ways. In the plane wave basis, also denoted the angle basis, we have

W(θ, α, β)Ψφ
k = e
−iρ(α cos(φ+θ)+β sin(φ+θ))Ψφ+θ

k =
2π

∫
0

dφ̄Dφ̄φ(θ, α, β)Ψ
φ̄
k (3.284)
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with

Dφ̄φ(θ, α, β) = δ(φ̄ − φ − θ)e
−iρ(α cos φ̄+β sin φ̄) (3.285)

In the angular momentum basis, also denoted the spin basis, we have

W(θ, α, β)Ψm
k = e

i(m−m̄)φJm−m̄(ρ√2ζ )e
−iθmΨm̄

k = D
(p)
m̄m(θ, (√2ζ ,φ))Ψ

m̄
k (3.286)

where we sum over m̄.

Physical intuition on Poincaré little groups

Having come so far, the reader may suspect that the massless little group does not have any obvious
relation to physical space-time. This is indeed so, as pointed out byWigner in [247]. This is in contrast
to the massive little group SO(3).

Consider a massive spin 1 particle. It has a rest frame that we can imagine boosting ourselves to.
There we can study the geometry of the polarization vector e of the particle. It behaves under rotations
as any other three-dimensional spatial vector. There are no translations in the group, so we don’t have
to worry about such.

A massless spin 1 particle, on the other hand, has no rest frame. There is no way to “catch up”
with the particle to study the geometry of its polarization vector e, which by the way lives in just two
dimensions. What we can do is to observe the behavior of the polarization vector in the plane of po-
larization perpendicular to the momentum of the particle. But the translational part of the massless
little group has no obvious interpretation in ordinary physical space. As we have seen, however, the
translationsmanifest themselves in the form of gauge transformations. One cannot escape the feeling
that there is more to understand here.

3.6.4 Two-component formalism

The two-component formalism is often convenient to use. It is based on the acciden-
tal47 2→ 1 homomorphism fromSL(2,C) to L↑+ thatwediscussed in Section 3.4.3. It pro-
vides a concrete realization of the finite-dimensional representations of the Lorentz
group.

We have alreadymet this formalism in connection with the Dirac and Fierz higher
spin formalism in the historical chapter.48 There are a lot of variations regarding the
basic concrete conventions, but as stressed by Corson, all relations can be derived ab-
stractly from two “axioms”, one regarding the complex conjugation of the σ matrices

47 That is, not generalizing to “bigger” groups or algebras.
48 The two-component spinor formalism was introduced by B. L. van der Waerden [43] and further
developedbyO. Laporte andG. E. Uhlenbeck [44]. Laporte andUhlenbeck point out that the formalism
was implicit inWeyl’s bookGruppentheorie undQuantenmechanik [249] aswell as in a paper byV. Fock
referenced as Zeits. f. Physik 57, 261 (1929).
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and the other their matrix product.49 Wewill however follow tradition and jump right
in with a concrete realization. Corresponding to the two conjugated su(2) Lie subalge-
bras there are two carrier linear spinor spaces indexed by undotted and dotted indices.
For raising and lowering indices, we choose the following convention:

ψα = ϵαβψβ and ψα = ψ
βϵβα (3.287)

and likewise for dotted spinors. This convention is consistent with

ϵαβ = ϵ
αβ = (

0 1
−1 0
) (3.288)

and likewise for dotted indices. Note also the following consequences of these defini-
tions:

ϵαγϵγβ = −δ
α
β and ϕαψ

α = −ϕβψβ (3.289)

and likewise for dotted indices.
The complex conjugate of a spinor with undotted indices is a spinor with dotted

indices, and it is quite convenient to enhance the notation with a bar (in particular
when indices are not shown), that is,

(ψα)
∗ = ψ̄α̇ ⇔ (ψ̄α̇)

∗ = ψα (3.290)

The components of spinors are complex. The notation for complex conjugation is con-
sistent with taking (ϵαβ)∗ = ϵα̇β̇ and likewise for upper indices.

Group theoretically, a spinor with an undotted index down corresponds to the
D(1/2,0) representation. It is also denoted chiral or left-handed. A spinor with a dotted
index up corresponds to the D(0, 1/2) representation. It is also denoted antichiral or
right-handed.

The formulas (3.290) generalize to multispinors

(χα1 ...αm β̇1 ...β̇n
)∗ = ̄χα̇1 ...α̇m β1 ...βn ⇔ ( ̄χα̇1 ...α̇m β1 ...βn )

∗ = χα1 ...αm β̇1 ...β̇n
(3.291)

Roughly speaking, a multispinor with m undotted indices and n dotted, corresponds
to the D(m/2, n/2) representation.

We now return to the 1 ↔ 1 correspondence between Hermitian 2 × 2 σ-matrices
and real four-vectors of Section 3.4.3 explicated by the formulae (3.121) and (3.122).50 In

49 See [23], Chapter II, Section 9. The large number of differing two-spinor conventions in the litera-
ture is bewildering. Grassmann spinors may add further confusion. One should be wary that this is an
area where notation tends to clash with itself (see comments in [250]).
50 The vector spaces are indeed isomorphic, it is the transformation groups that are 2→ 1 homomor-
phic.
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the present context, it is natural to index the Hermitian 2 × 2 matrices by an undotted
and a dotted index, concretely

σμαβ̇ = (σ
0, σi) (3.292)

A four-vector Vμ can then be represented as

Vαβ̇ = Vμσ
μ
αβ̇ (3.293)

The group theoretical basis for this indexing is that a vector corresponds to the
D(1/2, 1/2) representation.

Raising the indices on the matrices σμαβ̇ results in a matrix that is conventionally
denoted by σ̄μα̇α

σ̄μα̇α = ϵα̇β̇ϵαβσμββ̇ = (σ
0, −σi) (3.294)

The bar notation here has, so far, no obvious relation to complex conjugation, it sig-
nifies the minus sign in front of the space components σi when the spinor indices are
raised.51

By explicit calculation, one can show the following useful relations for the matri-
ces:

σμαα̇σμββ̇ = −2ϵαβϵα̇β̇ (3.295)

(σμσ̄ν + σνσ̄μ) βα = −2η
μνδ β

α (3.296)

(σ̄μσν + σ̄νσμ)β̇α̇ = −2η
μνδβ̇α̇ (3.297)

Tr(σμσ̄ν) = Tr(σ̄μσν) = −2ημν (3.298)

In the last three formulas, there are implicit summations over indices. Due to the ϵ
metric in spinor space,we haveψαϕα = −ψαϕα, so onemust pay attention to the place-
ment of the indices. We adopt the convention: A suppressed pair of undotted indices
are contracted as γ

γ, and a suppressed pair of dotted indices are contracted as
̇γ
̇γ .52

The first equation (3.295) can be written as

ημνσ
μ
αα̇σ

ν
ββ̇ = −2ϵαβϵα̇β̇ (3.299)

offering a representation of the Minkowski metric in spinor space. The σ-matrices
can be interpreted as a kind of “vierbeins” connecting the metrics in tensor space

51 This will be further commented on in the box below.
52 The differing conventions are natural if one looks at the placement of the indices on thematrices σ
and σ̄ in the formulas (3.296) and (3.297). There are different conventions of this type in the literature.
Ours is the same as in [240].
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and spinor space. In fact, the σ-matrices are Clebsch–Gordan coefficients relating the
D(1/2, 1/2) representation of SL(2,C) to the vector representation of SO(3, 1).53 The awk-
ward factor of −2 in the formula is convention dependent. The minus sign is related to
our choice of a mostly plus Minkowski metric in relation to our raising and lowering
conventions for undotted and dotted spinor indices, as well as choice of undotted and
dotted ϵ-matrices. The factor of 2 can be defined away by redefining the σ-matrices
with a factor of 1/√2. For the relation between two-component and four-component
spinor formalism, see Section 1.4.

We can now translate between tensor indices and two-component spinor indices
through the formulas

T β̇1 ...β̇nα1 ...αn = Tμ1 ...μn
n
∏
i=1

σ β̇i
μi αi (3.300)

Tμ1 ...μn = T
β̇1 ...β̇n
α1 ...αn

n
∏
i=1
(
1
2
σ αi
μi β̇i
) (3.301)

which are generalizations of (3.121) and (3.122).
Let us explicate the pair of formulas (3.300) and (3.301). Since they work index

by index it is enough to check them for a vector. In that case, Vμ = σ α
μ β̇V

β̇
α and V

β̇
α =

Vνσ β̇
ν α. We get the calculation

Vμ =
1
2
σ α
μ β̇(V

νσ β̇
ν α) = −

1
2
σμαβ̇(V

νσ̄ β̇α
ν )

= −
1
4
Vν(σμαβ̇σ̄

β̇α
ν + σναβ̇σ̄

β̇α
μ ) = −

1
4

2
∑
α=1
(−2ημνδ

α
α ) = Vμ

In the third equality, we are using the fact that we are actually computing a matrix
trace. The first equality can be written Vμ =

1
2 Tr(σμV) in accordance with the index

summation convention mentioned above.

Some peculiarites of two-component formalisms

The relative order between dotted and undotted indices is of no consequence, although it is conven-
tional to keep a certain order as in the matrices σ and σ̄. The over-bar notation for the σ-matrix with
raised indices can then be understood as Hermitian conjugation in the sense

(σαβ̇μ )
† = σ̄β̇αμ (3.302)

where the matrix elements of σμ are first complex conjugated and then transposed. The over-bar no-
tation then signifies complex conjugated matrix elements. Now, since the matrices σμ are in fact Her-
mitian, we get

σ̄β̇αμ = σ
αβ̇
μ (3.303)

53 These relations are elaborated in Penrose and Rindler [250].
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As the reader may discern, there is a notational clash here in the use of the over-bar notation as com-
pared to its use formultispinors in formula (3.291). Here, the over-bar doesnot signify switching dotted
and undotted indices, as that would produce (σαβ̇)∗ = σ̄α̇β.54

It is however essential to keep track of the order among the dotted indices themselves when they
are raised or lowered. The same holds for undotted indices. The indices must be “staggered” in the
sense that each lower index must have an “empty” upper position to which it can be raised, and vice
versa.55 In this connection, one may consider not using the Kronecker symbol, and instead use ϵ β

α
and ϵβα with staggered indices.

Introduce provisionally the symbol 1βα to denote what we normally would mean by δβα . That is:
111 = 1

2
2 = 1, 1

2
1 = 1

1
2 = 0 and do not consider it a part of the spinor algebra. Then everywhere where

one would write a δβα , instead write with staggered indices

ϵ β
α = −ϵ

β
α numerically equal to 1βα (3.304)

Instead of the first formula of (3.289), we now write ϵαγϵγβ = ϵαβ.
Another bonus comes when one considers derivatives. The antisymmetric metric in spinor space

can play tricks if one is not careful. Start by defining, as is natural

𝜕αx
β ≡
𝜕
𝜕xα

xβ = ϵ β
α (3.305)

Then, curiously enough, the two “equally natural” formulas

𝜕αxβ =
𝜕
𝜕xα

xβ = 1
α
β and 𝜕αxβ = ϵ

α
β

produce conflicting results. It is the first formula that has to be given up, because the second is con-
sistent with (3.305) using the raising and lowering conventions. For the rest of the derivatives, we take

𝜕αxβ = ϵ
α
β 𝜕αxβ = ϵαβ 𝜕αxβ = ϵαβ (3.306)

Example 2 (Translating massive wave equations). The translationbetween theDirac–
Fierz–Pauli spinor formulation of the massive field equations, quoted in the formulas
(2.19) and (2.20) of Chapter 2, and the more common tensor formulation of equations
(2.140), (2.141) and (2.142) can now be performed.

As alreadynoted, theKlein–Gordon equation for themultispinors follows from in-
serting one linear spinor equation into the other. Then the Klein–Gordon equation for
the tensor field follows immediately from the correspondence (3.301) using equations
(3.296) and (3.297) to show

pα̇γpγβ̇ = −p
2δα̇β̇ and pα ̇γp

̇γβ = −p2δ β
a (3.307)

54 I know of no set of conventions that avoids this clash in one way or another. Most authors seem
to use the over-bar notation for both complex and Hermitian conjugation, letting context determine
when is what. A resolution of the clash would most likely need a more elaborate formalism. The only
reference I know of, which note and discuss the clash is Penrose and Rindler [250] on pages 123–124.
Indexing σ-matrices by αα̇ one may escape noting it at all (ibid. p. 114).
55 See [250], Section 2.5.
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Symmetry in the spinor indices leads to the divergence condition on the multispinor.
It can be exemplified for a spin 3/2 field where the field equations read

pα̇βA ̇γβγ = −mB
α̇ ̇γ
γ and pαβ̇B

β̇ ̇γ
γ = −mA

̇γ
αγ (3.308)

Contracting, for instance, the first equation with ϵα̇ ̇γ and using symmetry of Bα̇ ̇γγ in α̇γ̇,
yields p β

̇γ A
̇γ
βγ = 0, and similarly for the B field.

Tracelessness of the tensor fields follow from the translation formula (3.301) using
formula (3.295) and symmetry in all dotted and undotted spinor indices. Thus, the
DFP spinor field equations for massive integer spin fields, contain exactly the same
information as the field equations in terms of traceless, divergence-free tensors. 󳶣

3.7 Basic algebraic structures

Much of abstract algebra is pivoted around the concept of vector spaces and it is also
central to field theory in general and higher spin theory in particular. Here, we will
collect basic definitions and formulas, pertaining to algebra, trying to motivate them
with what will follow. The text can be read as a collection of “reminders” and it is
quite informal. Detailed expositions of the material can be found in many places, for
instance, in [251–254] .

3.7.1 Morphisms

Morphisms are structure-preserving mappings between mathematical objects of the
same “kind”. For instance, mappings between sets are ordinary functions, mappings
between vector spaces are linear transformations and mappings between topological
spaces are continuous functions. In the case of sets, there is no structure to preserve.
For vector spaces, the sum and product with scalars, must be preserved. In Table 3.1,
we list various types of general morphisms and their properties.

Table 3.1: Vocabulary of morphisms.

Type of morphism Meaning

mono-morphism injective (one-to-one)
epi-morphism surjective (onto)
iso-morphism injective and surjective (bijective)
endo-morphism morphism to the same set
auto-morphism isomorphism to the same set
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3.7.2 Groups

Remember that a group is a set endowedwith an internal binary operation that is asso-
ciative, has a left and right identity and where every element has an inverse. Denoting
the set with X and its elements by x, y, . . . and so on, the unit element by ι and inverses
by x−1 we have a map X × X → X : (x, y) 󳨃→ xy with properties for all elements x, y, z,

(xy)z = x(yz) (3.309)
xι = ιx = x (3.310)

x−1x = xx−1 = ι (3.311)

Morphisms between groups are called homomorphisms. They map the group op-
eration in one group to the group operation in another, thus preserving the group
structure.

From the simple concept of a group– in itself very rich–wecan construct newuse-
ful algebraic structures that play various roles in particle and field theory. The groups
are generically transformation groups, acting on the states of systems which are mod-
eled on vector spaces, further on promoted to normed vector spaces or Hilbert spaces
depending on context. We then talk about (linear) representations of the groups. In
much of theoretical physics, groups, algebras, vector spaces and Hilbert spaces are
the most commonly used structures. But occasionally (and some authors prefer gen-
erality) a more elaborate set of concepts may be needed. Thus the following list of
structures. The basic definitions will be collected here, pointing out the roles they
play. Deeper properties of these structures will be reviewed as need arise. First, we
have rings and fields which are abstractions of the usual number systems.

3.7.3 Rings and fields

A ring is a set X endowed with two internal binary operations (x, y) 󳨃→ xy and (x, y) 󳨃→
x+y (multiplication and addition) such that X is an Abelian group under addition and
multiplication is associative and distributive over addition. Thus for all x, y, z

(xy)z = x(yz) (3.312)
x(y + z) = xy + xz (3.313)
(y + z)x = yx + zx (3.314)

A ring is Abelian if multiplication is Abelian. A ring may have a multiplicative unit el-
ement ι and it may be the case that every element (except the additive neutral element
0) has a multiplicative inverse. In that case, the ring is called a division ring. If such a
ring is also Abelian, then it is a field.
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Fields are abstractions of our ordinary number systems Q, R and C.56 The role
model for a ring with a multiplicative unit but without multiplicative inverses is the
integers Z. Another such example is the ring of polynomials in some indeterminate x
with coefficients again in some ring. Note also that the set of real valued functions of
a real variable on some given subset of the real numbers is a ring where addition and
multiplication is defined pointwise. An example of a noncommutative ring is given by
the set of n×nmatrices with real entries. The main point is: rings do not have division.

One use of rings and fields are to form linear combinations of states of systems.
From now on, to avoid unnecessary confusion with the “fields” of physics, we will
write number systems for the “fields” of mathematics. Anyway, this leads to the con-
cepts of modules and vectors spaces.

3.7.4 Modules

A module over a ring R is an Abelian group X (with the operation denoted by +) to-
gether with an external operation (scalar multiplication) R ×X → X : (α, x) 󳨃→ αx with
properties

α(x + y) = αx + αy (3.315)

(α + β)x = αx + βx (3.316)

(αβ)x + α(βx) (3.317)

for all α, β ∈ R and x, y ∈ X. If the ring has an identity, then ιx = x.
Modules are the simplest sets with enough structure to serve as representation

spaces for groups. The point is that the elements of a module can be linearly com-
bined, as is clear from the properties above. However, modules are not well behaved
with respect to the concept of bases.57 There is a risk of confusion here since in repre-
sentation theory a G-module is also defined as vector space upon which a group G is
linearly represented.58

56 Hamilton’s quaternions is a noncommutative division ring, closely related to D = 4 special relativ-
ity. The eight-dimensional octonions is a division ring where the associativity of multiplication is not
required.
57 The reason for this, related to the ring not having multiplicative inverses, is quite deep. See [255],
Article III.81.
58 Groups canalsobe realized on sets that arenotmodules or vector spaces.However, as vector spaces
are well understood due to their linear structure and existence of bases, they are often preferable. It
seems that in the literature, the word “module” is often used simply as a synonym to “linear represen-
tation space”.
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3.7.5 Vector spaces

A vector space is a module for which the ring is a field. In practice, we almost al-
ways work with vector spaces over the real numbers or the complex numbers. The
role models for vector spaces are the ordinary m-dimensional Euclidean spaces Rm.
Vector spaces are also called linear spaces.

Recall that in an m-dimensional vector space V we can set up a basis consisting
ofm linearly independent basis vectors ej such that any vector v can be expressed as a
linear combination v = v1e1+v2e2+⋅ ⋅ ⋅+vmemwithunique components vi. Furthermore,
the dual vector space V∗ is introduced by considering linear functions f (with f (0) = 0)
defined on the spaceV . From the linearity, it then follows that f (v) = v1f (e1)+v2f (e2)+
⋅ ⋅ ⋅ + vmf (em). It is therefore enough to know f (ei) for all i in order to compute f (v) for
any vector v. This makes the set of linear functions a vector space itself, namely the
dual vector space. The basis vectors in V∗ is conveniently denoted by e∗i. Thinking
about these as linear functions, they are completely specified by giving their values
e∗i(ej) for all j. A particularly simple choice is the dual basis given by e∗i(ej) = δij.

Using this machinery, we can now compute the inner product between a dual vec-
tor f = fie∗i and a vector v = vjej as f (v) = fivi. It is convenient to have a notation for
the inner product, such as ⟨ , ⟩ : V∗ × V → R. Then we have

⟨e∗i, ej⟩ = δ
i
j (3.318)

Using this notation, we can write

f (v) = ⟨f , v⟩ = ⟨fie
∗i, vjej⟩ = fiv

j⟨e∗i, ej⟩ = fiv
jδij = fiv

i (3.319)

This is an abstraction of the ordinary scalar product between row and column
vectors in elementary linear algebra. To bring this out more clearly, we use the fact
that since the dual vector space has the same dimension as the vector space, they are
actually isomorphic. Let g be such an isomorphism V → V∗ : vi = gijvj.

Now we can compute the inner product between two vectors u and v in the vector
space itself as ⟨u, v⟩ = ⟨g(u), v⟩ = gijujvi. It is very natural to interpret gij as a metric on
the vector space and to think of it as a matrix and its action on a vector vi as lowering
indices. Therefore, we may require gij to be a positive definite as well as symmetric.
Then ⟨v, v⟩ becomes a squared norm of the vector v and we have effectively turned our
vector space into a linear metric space.

Of course, in relativity, we have metrics that are not positive definite, and we then
get vectors that may classified as space-like, null, or time-like.

There is clearly a certain “symmetry” betweenvectors anddual vectors. Therefore,
just as we can think of the inner product ⟨f , v⟩ as a function f (v), we can think of it as
a function v(f ). This is useful when introducing tensors and tensor spaces.

All these operations have a natural generalization to complex vector spaces over
the complex numbersC. Furthermore, they work just as well in the tangent and cotan-
gent vector spaces of manifolds (see Section 3.10).
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3.7.6 Banach and Hilbert spaces

We are now very close to the spaces of quantum mechanics. Let us be very brief and
just list the basic definitions. A Banach space is a complete normed linear (vector)
space. That the space is normedmeans that there is a real number ‖v‖ for every vector
v with the properties

‖v‖ ≥ 0 and ‖v‖ = 0⇔ v = 0
‖u + v‖ ≤ ‖u‖ + ‖v‖ (triangle inequality)

‖av‖ = |a|‖v‖ (3.320)

That the space is complete means that notions of analysis such as limits and deriva-
tives can be defined using the norm. More precisely, every Cauchy sequence of vectors
is convergent.59 Intuitively, in the finite dimensional case, Banach spaces are abstrac-
tions of Euclidean spaces Rn. Then, one further generalization is to differential mani-
folds. Another application of Banach spaces are spaces of functions between two sets.

Finally, a Hilbert space is a complex Banach space whose norm derives from an
inner product. This is precisely what we need for quantum mechanics. This is indeed
very nice. The arena of quantum mechanics is Hilbert spaces – finite dimensional or
infinite dimensional – which are complex linear metric spaces where one can use the
methods of analysis! If one is not so concerned about rigor, the methods of calculus
are sufficient.

3.7.7 Algebras

Intuitively, an algebra is a vector space where one has defined a multiplication. More
exactly, it is a vector space equipped with a binary operation ⬦ : V × V → V that is
bilinear

(u + v) ⬦ w = u ⬦ w + v ⬦ w and u ⬦ (v + w) = u ⬦ v + u ⬦ w (3.321)
(αu) ⬦ (βv) = (αβ)u ⬦ v (3.322)

for all elements u, v,w in the algebra, and α, β in the number system.60 An algebra is
associative if the following formula holds:

(u ⬦ v) ⬦ w = u ⬦ (v ⬦ w) (3.323)

59 See, for instance, [253].
60 As for vector spaces, some physicists follow mathematical customs, writing “algebra over K”
where K is the chosen number system. We will do that when it is needed for clarity, otherwise letting
it be implicit by the context.
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for all elements u, v,w in the algebra. Algebras that have a unit element are called
unital.

Important examples of associative unital algebras are the matrix algebras gl(n) of
n×n arbitrarymatrices and theirmany subalgebras. The axioms for unital, associative
algebras are quite strong, and one can prove that any such algebra of finite dimension
is actually isomorphic to a subalgebra of the algebra of n × n matrices over the same
number system.

The following concepts are useful for algebras in general. A subalgebra H of an
algebra G is a subspace H ⊆ G which is itself an algebra. This requirement is often
written as H ⬦ H ⊆ H (any h1, h2 ∈ H implies h1 ⬦ h2 ∈ H) where now ⬦ signifies all
operations in the algebra.

A specific kind of subalgebras are the invariant subalgebras, often called ideals.61

The intuition is that multiplying elements in the invariant subalgebra H with any ele-
ment in G still gives an element in H. Since the algebra may not be commutative, one
actually needs to define left and right invariant ideals. The defining property for a right
ideal can be written H ⬦ G ⊆ H (any h ∈ H and g ∈ G implies h ⬦ g ∈ H). Left ideals
are defined analogously. IfH is both a right and left ideal, then it is called an invariant
subalgebra or two-sided ideal.

When an algebra A possessess an invariant subalgebra I, one can define the quo-
tient algebraA/I of equivalence classes. The quotient is with respect to themultiplica-
tion in the algebra. An invariant subalgebramust first of all be a vector subspace of the
underlying vector space. Then multiplication by any element in the algebra (right or
left) produces an element in the ideal. Further properties for algebras will be defined
in the context of Lie-algebras (see Section 3.11).

3.7.8 Gradings and derivations

For many algebraic structures, one can define the concepts of gradings and deriva-
tions, and they play important roles in higher spin theory. These concepts are often
most usefully defined when needed and relevant, but the underlying intuition can be
captured in general terms. A graded vector space is a vector space that can be decom-
posed into a direct sum of vector spaces. The grading is often over natural numbers or
the integers, but other “index” sets are possible. If Vn denotes the individual, homo-
geneous, vector spaces, then one writes for the full graded vector space

V =
∞

⨁
n=0

Vn (3.324)

or something analogous for other kinds of index sets.

61 There are, however, many concepts of “ideals” in mathematics, prompting caution.
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A role model is given by ordinary polynomials in an indeterminate variable x
over the real numbers. Then the homogeneous elements Vn are given by the mono-
mials. Supplying this vector space with ordinary multiplication of monomials, we get
a graded algebra with Vn ⬦ Vm ⊂ Vn+m. This can be generalized, but that may just as
well be done in the proper contexts.

Furthermore, it may be possible to define a derivation d with the property dVn ⊂
Vn−1 and satisfying a generalized Leibniz type rule. Also here, the exact definitions
are most usefully given as needed and relevant. In the example of polynomials in a
variable x, the derivation d can be taken as the ordinary derivative d/dx.

3.7.9 Tensor products and tensors

Tensor products are extremely useful mathematical constructions that play important
roles in many areas of theoretical physics; for instance in classical tensor calculus it-
self, in quantummechanics and in higher spin theory. Since the concept is notwithout
its subtleties, let us approach it from a few different angles.

In Section 3.7.5 when discussing vectors and dual vectors, we saw that it was natu-
ral to write vectors with upper indices and dual vectors with lower indices.62 In prepa-
ration for manifold theory, we now call vectors (upper indices) contravariant vectors
and dual vectors (lower indices) covariant vectors. This is also in conformity to the us-
age within the special theory of relativity as we reviewed it in Section 3.4.1. This now
generalizes to tensors, indeed just as in special relativity.

A (p, q) tensor is an object T i1 ...iqj1 ...jp
with p covariant and q contravariant indices. In

analogy to how a contravariant vector – a (0, 1) tensor –maps covariant vectors to real
numbers, and how a covariant vector – a (1,0) tensor – maps contravariant vectors
to real numbers, we can think of a (p, q)-tensor as mapping q covariant vectors and p
contravariant vectors to real numbers.

It can be thought of as a multi-linear map (linear in each “index slot”) from the
Cartesian product of q copies of the vector space V and p copies of the dual vector
space V∗ to the real numbers, that is a map Tqp

V×q × (V∗)×p
Tq
p
󳨀→ R (3.325)

explicitly given by

Tqp (u1, . . . , uq; v1, . . . , vp) = T
i1 ...iq
j1 ...jp

u1,i1 . . . uq,iqv
i1
1 . . . v

ip
p (3.326)

62 Which is which, is a convention.
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Tensors of the same type can be multiplied by numbers and added, therefore, the
space of (p, q) tensors is a itself vector space. As noted in Section 3.4.1, tensors can be
multiplied. This offers the possibility to turn the set of all tensors into an algebra.

Indeed, denoting the vector space of (p, q) tensors by ϒqp, the tensor product

ϒqp × ϒ
n
m

⊗
󳨀→ ϒq+np+m ⊂ ϒ

q
p ⊗ ϒ

n
m : Tqp ⊗ Tnm = T

q+n
p+m (3.327)

This, somewhat heavy formula, says that multiplying a (p, q)-tensor from the vector
space of (p, q)-tensors and a (m, n)-tensor from the vector space of (m, n)-tensors, pro-
duces a (p + m, q + n)-tensor in the vector space of (p + m, q + n)-tensors, this vector
space being a subspace of the tensor product of the vector spaces of (p, q)-tensors and
(m, n)-tensors.

It is the “subspace” that is the interesting and somewhat subtle point here.
Namely, not all tensors in the tensor product space ϒqp⊗ϒ

n
m can be factored as products

of tensors Tqp ⊗ Tnm (similar symbol notwithstanding). The concept can be distilled a
little bit by considering two vector spaces V and U with generic vectors v and u. The
product of vectors v ⊗ u then lives in the tensor product V ⊗ U, this space, however,
contains tensors that cannot be factored. This will be explained in the box below.

3.7.10 Tensor algebra

The algebra aspect of the tensor product can be brought forth if one considers the
following list of successive tensor products of a single vector space V , of covariant
vectors say, with itself

R,V ,V ⊗ V ,V ⊗ V ⊗ V , . . . (3.328)

where R represents the scalars. The elements of this list are covariant tensors of rank
n ∈ N. Clearly, any tensor can be multiplied by a scalar. Any two tensors of the same
rank canbe linearly combined. This is an example of an graded vector space.63 Further-
more, any two tensors can be multiplied using the product⊗. This gives us a example
of a graded algebra. Wewill use the notation ϒ(V) for this tensor algebra and ϒn(V) for
the tensors of rank n.

Even though a tensor cannot in general be factored as a product of vectors, it can
always be written as a sum of products of vectors. This means that the tensor algebra
ϒ(V) is generated by the vector space V in the sense of the list (3.328). More exactly,
mathematicians say that it is freely generated, or that it is free graded algebra over V ,
“free” meaning that it is in a certain sense the most general such algebra. These no-
tionswill be further elaborated inSection 3.7.12. Let usnowcompare the tensor product
to the direct product, or direct sum.

63 Adding tensors of different rank cannot be done, nor is it needed.
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3.7.11 Direct sums (or products)

Somewhat confusingly, a direct sum and a direct product of vector spaces, is actually
the same thing.64 Intuition can be gained by considering ordinary Euclidean R2 vec-
tor space. The underlying set is the Cartesian product of two copies of the real line
Rx × Ry with elements represented as ordered pairs (x, y). Vector addition and scalar
multiplication is lifted from the two real lines in the following standard way:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) (3.329)
a(x, y) = (ax, ay) (3.330)

These formulae generalize to the case of a direct product of two vector spaces X and
Y of dimensionm and n, respectively, just by interpreting x1 + x2 as vector addition in
X and analogously for the rest of the indicated operations. From this, it is clear that
the dimension of the product vector space is m + n. For notation, the product of the
vector spaces may be denoted by the same symbol × as the Cartesian product of the
underlying sets, or the symbol ⊕, in which case one writes X ⊕ Y . The reason for this
latter choice of notation may be that ⊗ is already used for tensor products.65 As we
saw above, the tensor product of the two vector spaces are of dimension m ⋅ n, so the
concepts are fundamentally different. We can now write for the graded vector space
(and algebra) based on (3.328) discussed in Section 3.7.9,

ϒ(V) =
∞

⨁
i=0

ϒi(V) (3.331)

A further comment on tensor versus Cartesian products

Working abstractly one might still get momentarily confused over the difference between Cartesian
products × and tensor products ⊗. The difference is most easily understood for vector spaces.

Consider a two-dimensional vector space V with basis vectors e1 and e2. Then consider two arbi-
trary vectorsu = u1e1+u2e2 and v = v1e1+v2e2. Their “product” can bewritten by formallymultiplying
the vectors and collecting all terms u1v1e1e1 + u1v2e1e2 + u2v1e2e1 + u2v2e2e2. Having done that one
would like to consider e1e1, e1e2, e2e1 and e2e2 as basis elements in a new vector space and consider
for example vectors of the form w11e1e1 +w22e2e2. This is precisely what the tensor product allows us
to do. Thinking in termsnot of a product of the vectorsper se, but rather of a product of the vector space
V with itself (indeed the tensor product V ⊗V ) allows us to consider tensors such asw11e1e1+w22e2e2

64 For other algebraic structures, direct sums and direct products may differ in some respects. In my
opinion, the terminology is not very well chosen.
65 Some further insight into this notational conundrum can be gleaned from the concept of a product
of two groups G andH, where the “product” in the product group G×H is defined as (g1, h1) ⋅ (g2, h2) =
(g1g2, h1h2). For an illuminating discussion, see [255] Section I3.
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that cannot be written as products of vectors. It can, however, be written as a linear combination of
products of vectors.66

So what is the Cartesian product of two vector spaces? Perhaps it is best to think of it as just the
Cartesian product of the underlying sets. The Cartesian product is a set theoretic notion, the corre-
sponding concept for vector spaces is the direct sum, or direct product, denoted by⊕. The connotation
of “direct sum” is in relation to the “adding of vector spaces” as explicated by the formula (3.329). The
connotation of “direct product” is in relation to the underlying Cartesian product of the sets.

3.7.12 Free algebras

The concept of a free algebra is natural and very useful. Consider a set of n “in-
determinates” (variables of some unspecified kind) x1, x2, . . . , xn. The xi’s can also be
viewed as letters of an alphabet. From these, one can form strings (or words) of any
length by concatenating them. This can be considered as formal products where the
order is important. There are no restrictions, conditions or equations relating prod-
ucts of the indeterminates xi, so no simplifications can be done. This is indeed the
meaning of the characterization “free”. Then consider formal linear combinations of
such words with coefficients chosen from some number system

S(xi) = C + ∑
k=1

Ci1 ...ikxi1 . . . xik (3.332)

where the first term C signifies the empty word. Each index ik run from 1 to n, and the
sum is a sum over index sets {i1, . . . , ik} for each word length k. A little thought con-
vinces one-self that the S(xi) span an algebra by concatenation (product) and sum.
Indeed, the countable set of words {xi1 . . . xik }with k = 0, 1, 2, . . ., form a basis for the al-
gebra. One can also think of the S(xi) as noncommutative polynomials in the variables
xi. The algebra is however clearly associative (since word concatenation is associative
and concatenation distributes over the summation).

If one chooses as indeterminates the basis vectors ei of a n-dimensional vector
space V , it turns out that the free algebra of the S(ei) is isomorphic to the tensor alge-
bra ϒ(V) of (3.331). This isomorphism will become important when we consider uni-
versal enveloping algebras in Volume 2. The isomorphism hinges on the one-to-one
correspondence between the coefficients Ci1 ...ik and rank k tensors.67

66 The quantum mechanical phenomena of entanglement is captured mathematically by these con-
cepts. Some states – the entangled ones – of a system built from two systems cannot be realized as a
product of states of the individual systems.
67 It should be quite clear that the graded tensor algebra of (3.331) is indeed a free algebra, once the
concept as such is grasped.
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3.8 Exterior algebra and differential forms

The exterior algebra of antisymmetric covariant tensors – or differential forms – play
an important role in field theory. Here, we will see how such an algebra can be con-
structed68 out of the tensor algebra ϒ(V). The subject will then be returned to in Sec-
tion 3.10.2 where we discuss differential forms on manifolds.

Consider a vector space V of covariant vectors and the tensor algebra ϒ(V) built
upon it according to Section 3.7.10. For antisymmetric tensors, we need an anti-
symmetric product, to be denoted by ∧ and called a wedge product. The product
⊗ of general tensors have no particular symmetry apart form it being associative but
not commutative.69 Thus we require of the product ∧ that for any tensors s and t:
s ∧ t = −t ∧ s. This can be achieved by mapping the product t ⊗ t (and all multiplies of
it) to zero. This results in a quotient algebra, which turn out to be precisely the exterior
algebra of antisymmetric tensors. Since for any two tensors s and t, we have s ∧ s = 0
and t ∧ t = 0 we can do the following short calculation:

(s + t) ∧ (s + t) = 0 ⇒ s ∧ t + t ∧ s = 0 (3.333)

thus ensuring antisymmetry of the new product. This new algebra will be denoted by
Ω(V) and called an exterior algebra. It has certain special properties. It is graded just
as the tensor algebra ϒ(V) and the components will be analogously denoted by Ωp(V).
The tensor type p is called form degree. However, due to the antisymmetry, the form
degree cannot be higher that the dimension n of the underlying vector space V , and
we now have

Ω(V) =
n
⨁
i=0

Ωi(V) (3.334)

The reason for the name differential forms has to do with the fact that the coordi-
nate differentials dxμ provide a natural basis for covariant vectors. Somewhat deeper,
differential forms are objects that are naturally integrated.

A basis for the vector space of p-forms Ωp(V) can be constructed from a basis of
the vector space V . Let θi with 1 ≤ θ ≤ n be a basis for V . Consider two vectors

u = uiθ
i and v = viθ

i (3.335)

It is easy to see by direct computation that the antisymmetry u ∧ v = −v ∧ u requires
for the basis vectors

θi ∧ θj = −θj ∧ θi (3.336)

68 Inspired by [256], Chapter VII.
69 On a lower level, this is what one have for word concatenation: stringing onem letter word to an n
letter word produces anm+n letter word. This is clearly an associative but not commutative operation.
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This also leads to an explicit expression for the wedge product of the two 1-forms

u ∧ v = ∑
i<j
(uivj − ujvi)θ

i ∧ θj (3.337)

Then any antisymmetric 2 index covariant tensor t, that is, a 2-form, can be expanded
as

t = ∑
i<j
tijθ

i ∧ θj (3.338)

Therefore, the set {θi ∧ θj : i < j} is a basis for the vector space Ω2(V) of 2-forms.
Continuing this argument for higher order wedge products of vectors shows that a
basis for Ωp(V) is the set {θi1 ∧ ⋅ ⋅ ⋅ ∧ θip : i1 < i2 < . . . < ip. To formalize this, we can
introduce the index sets Ip for every p

Ip = {i1, i2, . . . , ip} where i1 < i2 < . . . < ip (3.339)

and the independent basis vectors

θIp = θi1 ∧ θi2 ∧ . . . θip (3.340)

The dimension of the vector space spanned by this basis is (np ) since there are that
many different index sets Ip. Using this notation, a p-form α can formally be written as

α = αIpθ
Ip (3.341)

where the sum over the abstract index Ip runs over the (np ) independent index combi-
nations of (3.339).

The exterior product of any two p- and q-forms can now be defined and consis-
tently computed according to

Ωp(V) × Ωq(V) → Ωp+q(V) : (αp, βq) 󳨃→ αp ∧ βq (3.342)

with αp and βq expanded in the basis (3.340).
The linearly independent basis (3.340) is convenient in explicit calculations. One

can also use an overcomplete basis and express a p-form as

α = 1
p!
αi1i2 ...ipθ

i1 ∧ θi2 ∧ ⋅ ⋅ ⋅ ∧ θip (3.343)

where all indices are summed over all values. The combinatorial factor 1/p! ensures
equality to (3.341). This expansion is useful when writing general formulas.

The formalism developed so far has been entirely algebraic with no reference to
an underlying space supporting the vector space V or the p-forms built upon it. Al-
ternatively, one could think of everything so far as applying to a specific point x in a
flat space E. Moving around with this point, we easily generalize to vector fields and
p-form fields on E. In particular, we could identify E and V (as is often the case in ele-
mentary applications). For the next step in the development – introducing the exterior
derivative – such a generalization is needed.
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3.8.1 Exterior derivative

To be specific, consider a n-dimensional Euclidean vector space E (identified with V).
As in elementary vector analysis, the coordinate differentials dxi form a natural ba-
sis of covariant vectors (as does the partial derivatives 𝜕i for contravariant vectors).
Everything from the previous section can now be carried over with the coordinate dif-
ferentials dxi playing the role of the basis vectors θi. Furthermore, this holds at every
point x in E so we can think about fields defined on E. This opens up the possibility to
compute partial derivatives.

Indeed, since the derivatives 𝜕/𝜕xi = 𝜕i can be viewed as covariant vectors, we can
consider the 1-form

dxi𝜕/𝜕xi = dxi𝜕i ≡ d (3.344)

Acting with this operator on a p-form will produce a (p + 1)-form according to the fol-
lowing calculation:

d ∧ ωp = dx
i 𝜕
𝜕xi
∧ ωp = dx

i 𝜕
𝜕xi
∧ ωIdx

I =
𝜕
𝜕xi

ωIdx
i ∧ dxI (3.345)

This derivative is called the exterior derivative. It is a linear operator that satisfies the
following rules:

d(αp ∧ βq) = dαp ∧ βq + (−1)
pαp ∧ dβq (3.346)

d(dα) = 0 (3.347)

The first equation resembles the Leibniz rule for derivatives. The last equation follows
from the equality of mixed partial derivatives. Alternatively, one can take the proper-
ties of the exterior derivatives as axioms defining it.

Example 3 (Forms in three dimensions). In three-dimensional Euclidean space, we
have the following forms:

0-form: f
1-form: α = axdx + aydy + azdz
2-form: β = bzdxdy + bydzdx + bxdydz

3-form: γ = gdxdydz (3.348)

where, as is usual when no confusion can arise, the wedge symbol is suppressed.70

Then letting d act on these forms, we get

70 The choice of the order dzdx in the second term for the 2-form is dictated by getting the conven-
tional sign in the second term for dβ below.
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df = 𝜕f
𝜕x

dx + 𝜕f
𝜕y

dy + 𝜕f
𝜕z
dz

dα = (
𝜕ay
𝜕x
−
𝜕ax
𝜕y
)dxdy + (𝜕ax

𝜕z
−
𝜕az
𝜕x
)dzdx + (𝜕az

𝜕y
−
𝜕ay
𝜕z
)dydz

dβ = (𝜕bx
𝜕x
+
𝜕by
𝜕y
+
𝜕bz
𝜕z
)dxdydz

dγ = 0 (3.349)

Here, we recognize the usual derivative operators grad, curl and div of three-dimen-
sional vector analysis. Furthermore, forms are natural objects to integrate over. 󳶣

So far, we have not made clear in what space the forms are valued. When working on the base mani-
fold Rn, we can always think, mathematically, of the components of vectors and tensors as being real
valued and consequently, vectors being valued in Rn. However, this Rn is only isomorphic to the base
space Rn and not identical. As physicists, we only have to think of electromagnetic fields, to realize
that there is a difference – electric fields do not really “point” in geometric space even thoughwe often
depict it that way. The solution to the riddle is, of course, that the electric force on a charged test par-
ticle can be thought of as balanced by a mechanical force (from a spring dynamo-meter for instance)
that can be represented in geometrical space. Alternatively, one can think of the acceleration that the
electric force would impart if the particle are free to move.71 In principle though, the forms describing
physical fields are valued in vector spaces appropriate to the phenomena to be described. Mathemat-
ically, we can consider the tensor vector space as built on the tangent and cotangent spaces of the
manifold.

3.8.2 Integration

One source of importance of differential forms is that they are natural objects to inte-
grate. This is important since in field theorywewant to integrate Lagrangian densities
to get actions. Furthermore, integrals are global objects, and as such they are sensitive
to the topological properties of the underlying space.

The three-dimensional example of the previous section is enough to bring out the
idea. 1-forms leads to line integrals, 2-forms to surface integrals and so on. In particu-
lar, in d dimensions, d-forms are natural objects to integrate over – pieces of, or all of
– the underlying space.

3.8.3 de Rahm cohomology

The introduction of the exterior derivative turns the graded algebra Ω(V) into a differ-
ential graded algebra. The operator dmaps the vector space of p-forms into the vector

71 What we observe are the effects of electromagnetic fields on charged particles mapped via the
Lorentz force, into geometrical space.
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space of (p + 1)-forms. One gets a sequence of maps

Ω0
d
󳨀→ Ω1

d
󳨀→ Ω2

d
󳨀→ ⋅ ⋅ ⋅

d
󳨀→ Ωp

d
󳨀→ 0 (3.350)

More specifically, this structure is called the de Rahm complex on Rn. Due to the prop-
erty d2 = 0 of the map d, one can define two interesting types of forms.

In general, the kernel of a map m between two spaces X and Y , consists of those
elements in X that are mapped to zero in Y . Here, forms in any of the spaces Ωi that
are mapped to zero in the space Ωi+1 by the derivation d, are called closed. That is, the
kernel of d are the closed forms. On the other hand, the image of the derivation d are
called exact or exact forms. The exact forms are automatically closed.

Why is this interesting? Onemay gain intuition from the simple example of differ-
ential forms on R2. Consider 1-forms fdx + gdy. To find the closed 1-forms, one must
solve the differential equation 𝜕g/𝜕x − 𝜕f /𝜕y = 0. Among the solutions are the trivial
“uninteresting” exact forms that are closed automatically. Onewould like “divide out”
the exact forms in order to “measure” the size of the interesting solution space. This,
admittedly vague idea, may serve as amotivation for the definition of the qth de Rahm
co-homology of Rn as the vector spaces

Hq
dR(R

n) = {closed q − forms}/{exact q − forms}
= ker(d)|Ωq

/ im(d)|Ωq
(3.351)

The “dividing out” – a modulo construction – can be made mathematically sound
(since the spaces involved are vector spaces and, therefore, Abelian groups as well)
using the concepts reviewed in Section 3.9.

The de Rahm co-homology is the cohomology of the full de Rahm complex (3.350).
It is meant to capture topological properties of the space Rn. Now, this space is obvi-
ously trivial topologically, and this is reflected in the so-called Poincaré lemmawhich
states72

Hq
dR(R

n) = {
R for q = 0
0 for 1 ≤ q ≤ n

(3.352)

However, the de Rahm cohomology can be generalized to differential manifolds with
more complicated topology. Since differential forms are natural objects to integrate,
and integrals depend on global properties of the manifold, one may suspect that we
here have a tool to analyze the topology of manifolds. Furthermore, the fairly concrete
constructions that we have mentioned here, can be generalized by carefully extract-
ing the generic properties of co-homology and turning them into axioms. In that way
yielding more abstract differential graded algebras and cohomology theories. This is

72 For more discussion and a proof, see [257].
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a huge area of mathematics. We will introduce examples as they may be relevant for
higher spin gauge theory.

Example 4 (Poincaré lemma for the real line). For the real line R, the Poincaré lemma
can be proved using only elementary calculus. The sequence of spaces (3.350) is very
short: Ω0

d
󳨀→ Ω1

d
󳨀→ 0. On the space of functions Ω0(R), the kernel of d are the

constant functions. The image of d is empty, so H0
dR(R) = R. On the space of 1-forms

Ω1(R), the kernel of d is all the 1-forms. It remains to show that every 1-form is exact.
If ω = g(x)dx is a 1-form, we can integrate it to f (x) = ∫x0 g(t)dt. Then df (x) = g(x)dx
and we see that every 1-form is exact. Therefore, H1

dR(R) = 0. 󳶣

3.8.4 The Hodge dual

The dimensions of the vector spaces Ωp and Ωn−p are the same. This makes it possible
to define a duality operation that map p-forms into (n − p)-forms and vice versa

⋆(dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxip ) = 1
(n − p)!

ϵi1 ...ip ip+1 ...indxip+1 ∧ ⋅ ⋅ ⋅ ∧ dxin (3.353)

with ϵi1 ...ipip+1 ...in the totally antisymmetric tensor in n dimensions. This operation is
called the Hodge duality transformation. It can be used to define an inner product
between two p-forms αp and βp as the integral

⟨αp, βp⟩ = ∫
M

αp ∧ (⋆βp) (3.354)

This is handy when writing actions for field theories formulated in the form language
(see example 6). In terms of the coefficient functions of the forms one gets

⟨αp, βp⟩ = p! ∫
M

αi1 ...ipβi1 ...ipdx
1 ∧ ⋅ ⋅ ⋅ ∧ dxn (3.355)

This shows that ⟨αp, βp⟩ = ⟨βp, αp⟩ from which we also conclude

αp ∧ (⋆βp) = βp ∧ (⋆αp) (3.356)

Applying the Hodge operation twice yields ⋆ ⋆ ωp = (−1)p(n−p)ωp.

3.9 Transformation groups

Groups can be studied in the abstract, but in physics they are most often defined and
studied as transformation groups acting on sets or spaces. When a group acts on a set
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(or a space) it “moves” the elements (or points) around, resulting in a permutation.73

When the set that the group acts on has structure of its own (which is the common
case in physics), then the group action should preserve that structure.

Intuitively, a permutation of the elements of any setX, with afinite of infinite num-
ber of elements, canbe thought of as a rearrangement of the elements.Mathematically,
a permutation is a bijection in X. As an example, any linear function is a permutation
of the real numbers. It is quite clear that the set of permutations constitutes group in
itself: two consecutive permutations is a permutation, permutations can be inverted
(undone) and “no” permutation is the unit element. Furthermore, according to Cay-
ley’s theorem:74

Any group G is isomorphic to a subgroup of the permutations σ : X → X of a suitable set X. The
group σ(X) is called the symmetric group of X.

Cayley’s theorem offers the possibility to study realizations of a group G in the group
of permutations σ(X) of some appropriate set X. To bring this forth, wemust introduce
some terminology and notation.

First, remember that a homomorphism between two groups G and H is a map
γ : G → H that preserves the group law so that γ(g1g2) = γ(g1)γ(g2) for all g1 and g2 in
G. Note that such a homomorphism need not be injective or surjective.

Next, consider homomorphisms between a group G and the permutations σ of a
set X: A group G is defined to be represented by the permutations of a set X, if there is
a homomorphism γ : G → σ(X).

By a small shift in perspective, this can be thought of as transformations on the
set X produced by the group acting on the set. Writing the permutation σ(g) : X → X
induced by the group element g as Lg , the preservation of the group structure becomes

Lg2 ∘ Lg1 = Lg2g1 for all g1, g2 ∈ G (3.357)

We have already seen an instance of this general formula, for the Poincaré group, in
(3.89).

A simplified notation is often used. The action of a group element g on the point
x gives a new point γ(g)(x) = Lg(x). This new point, and the action of g is often
just written, with a bit of “syntactic sugar”75 as gx, saying that the group acts on the
left.

The group may also be thought of as acting on the right, which would be written
as xg. The difference between left and right actions appears when one considers con-

73 We here adopt the active point of view on transformations.
74 For a proof, see [252].
75 The term “syntactic sugar” was coined by the computer scientist Peter Landin (of Queen Mary Col-
lege, London). I prefer it over the phrase “abuse of notation”.
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secutive actions of the group. Two left actions with g1 and g2 yields g2g1x, while two
right actions yields xg1g2. The difference shows up in the order of group elements. Left
and right actions can be traded for each other using the formula (g1g2)−1 = g−11 g−12 ,
but it is often convenient to work with both. For right actions Rg , the formula (3.357)
is modified accordingly: Rg2 ∘ Rg1 = Rg1g2 .

3.9.1 Transitive, effective and free actions

Three important types of group actions on a set that may be desirable in various con-
texts are: transitive, effective and free.

The group action is transitive if any two elements x1 and x2 in X can be related by a
group element g, i. e., if x2 = gx1 for some g. This can be phrased in space terminology:
any point y can be reached from any point x by a transformation T : y = Tx.

The group action is effective (or faithful) if different group elements g1 and g2 in-
duce different permutations in the set X. This can be phrased as: for any two different
g1 and g2, there exist at least one x in X such that g1x ̸= g2x. Taking one group ele-
ment as the unit e this means that for any other group element g ̸= e we have gx ̸= x
for at least one x. In space terminology, every transformation T except the identity
transformation, moves at least one point x of the space.

The occurrence of transformations that fail tomove points, prompts the following
two concepts. The kernel of a group action is defined as the set of group elements g for
which gx = x (“no action”). The kernel is obviously a subgroup. The group action is
effective precisely when the kernel is trivial, that is, only contains the unit element of
the group.

On the other hand, a fixed point of the group action is a point xg for which gxg = xg
for some group element g ∈ G. A group action without any fixed points is said to be
free. Free actions are effective, but an action may be effective without being free. One
may very well have gxg = xg for a fixed-point xg and still have gx ̸= x for some other
point in X. On the other hand, if there are no fixed points at all, then one can never
have gx = x for any g and any x.

3.9.2 Orbits, stabilizers and cosets

Orbits, stabilizers and cosets are three concepts that aim to capture the structure of
group actions.

An orbit of the group action through a point x is the set of all points gx traversed
as g varies throughout the group. In some more detail, the orbit of G through x ∈ X is
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defined as the set76

𝒪G|x = {gx : g ∈ G} (3.358)

It should be clear that the orbits through two different points x1 and x2 must either
coincide or be disjoint. Indeed, choosing orbits through two distinct points x1 and x2
and assuming that their orbits coincide at some point, we must have g1x1 = g2x2 for
some group elements g1 and g2. But then x1 = g−11 g2x2 and x1 belongs to the orbit of x2.

So in general, the action of a group on a set, partitions the set into disjoint orbits.
These orbits are indeed equivalence classes under the group action. In the special case
that the group action is transitive, there is just one orbit (the complete set X) and of
course just one equivalence class.

Referring back to the concept of fixed points, one may wish to consider subsets
of group actions that do not move certain points. More exactly, fix some point x0 and
consider the subset of G,

Gx0 = {g ∈ G : gx0 = x0} (3.359)

This is in fact a subgroup of G called the stabilizer or the stability subgroup of G. In
various contexts, it is also called the isotropy group or the little group. We have already
seen examples of this when discussing representations of the Poincaré group.

An important variant of orbits occurs when a proper subgroup H of a group G
acts on the group itself. Consider right actions Rh(g) = gh where we think of g as a
particular element in G (but not in H) and h as ranging over the subgroup H. This
action is not transitive. Take an element h1 inH and a “point” g1 in the complement of
H in G. If the action were transitive, then there would exist a h ∈ H such g1 = h1h, in
conflict with the proper subgroup assumption. Therefore, the group G is partitioned
into a set of disjoint orbits of H. In analogy to formula (3.358), we can consider sets

l𝒞H |g = {gh : h ∈ H} (3.360)

These sets are called left cosets of H in G. A strongly sugared notation is used: the set
l𝒞H |g is denoted gH and the set of all left cosets is denoted by G/H.

All this can be repeated for left actions Lh(g) of H on G. The set of right cosets

r𝒞H |g = {hg : h ∈ H} (3.361)

is then denoted byH\G. The reason why left cosets are defined through right action of
H, and vice versa, will become clear in the next section.77

76 The orbit is here defined with the group acting on the left.
77 Mnemonics: G/H reads “G partitioned by H” and H\G reads “H partitioning G”.
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3.9.3 Quotient spaces

One can now ask what happens if the cosets are acted upon by elements of the group
G? It may perhaps be suspected that the cosets gets permuted, and that is indeed the
case. Consider the left action of an element g2 of G on a left coset g1H. This yields the
left coset g2g1H. The action is transitive since two disjoint cosets g1H and g2H can be
related by the action of g1(g2)−1.

Thismeans that the setG/H carries a transitive left action ofG. It is therefore quite
natural to consider it as a “space”. Aswewill show in example 5, thiswill, for instance,
allow to us to view Minkowski space-time as ISO(3, 1)/SO(3, 1). But in order to do that
in an unambiguous way, we need the converse to the above argument:

If X is a space upon which the group G acts transitively, then X can be realized as G/H for some
suitable subgroup H of G.

The proof is an application of the concepts discussed so far. It can be found in [252].
Spaces that are constructed in this way are called quotient spaces.

Example 5 (Minkowski space-time as a quotient space). For a relevant example, con-
sider the Poincaré group acting on Minkowski space-time in the standard way. First,
note that the Poincaré group acts transitively on Minkowski space-time, but the
Lorentz subgroup does not. We want to realize Minkowski space-time as the quo-
tient G/H with G = ISO(3, 1) and H = SO(3, 1). The group law is

g(Λ2, a2)g(Λ1, a1) = g(Λ2Λ1,Λ2a1 + a2) (3.362)

Choose an arbitrary element g0 = g(Λ0, a0) in G and consider the right action of ele-
ments h = g(Λ,0) in H on g0. The result is g0H = g(Λ0Λ, a0). These are the orbits, one
for each value of a0, parametrized by Λ.

Next, consider right action of an arbitrary element g󸀠 = g(Λ󸀠, a󸀠) in G on an orbit.
The result is g󸀠(g0H) = g(Λ󸀠Λ0Λ,Λ󸀠a0 + a󸀠) = (g󸀠g0)H producing a new left coset. The
action is clearly transitive.

The intuition is that picking an arbitrary point (Λ0, a0) in Poincaré group space
and considering all actions of the Lorentz subgroup as equivalent, one is left with the
translations a0 that are isomorphic to Minkowski space-time. 󳶣

3.9.4 Normal subgroups and the group of cosets

Finally, let us return to the set of left cosets G/H and note that, although a space, it
is in general not a group by itself, unless an extra requirement is added: H must be a
so-called normal subgroup of G. To understand what needs to be done, consider the
following reasoning.
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The points in the left coset space G/H are the left cosets gH. One may attempt to
define a group multiplication through the tentative formula

(g1H)(g2H)
?= g1g2H

But since we are trying to multiply equivalence classes, we must make sure that the
result does not depend on the choice of representatives, in this case the choice of g1
and g2.

Now g1 and g1hH represents the same coset in G/H for any h in H. Then the tenta-
tive formula implies

(g1hH)(g2H)
?= g1hg2H

?= g1g2H

The second tentative equality may not be true. It would however become true if one
could find an element h󸀠 in H such that g1hg2 = g1g2h󸀠 because then we will get the
true equality g1hg2H = g1g2h󸀠H = g1g2H of equivalence classes.

Multiplying the equation g1hg2 = g1g2h󸀠 with g−11 on the right yields hg2 = g2h󸀠.
Thus we have to require that for any h in H and any g in G there should exist a h󸀠 in
H such that gh = h󸀠g. This is the same thing as requiring the left and right actions of
H on G to coincide: gH = Hg. This means that the left and right cosets are the same.
Subgroups that have this property are called normal.

3.10 Differential manifolds

The flat space of Euclid – perhaps even the flat space-time of Minkowski – is immedi-
ately given to themodern student. Andwe have no problem of thinking about a scalar
field, for instance temperature, varying from point to point. Even vector fields such as
the velocity of a particle v or the electric field E, should cause no great strain on the
imagination. Concepts such as differentiation that require considering nearby points
can also be thought about quite easily.

However, if the space is not flat, several related problems appear. The velocity v or
the electric field E, “where are they pointing”, so to speak?When differentiating, how
dowe compare neighboring points if the space is not flat? How dowe compare vectors
at neighboring points? The pointing problem is in fact acute even in flat space since
the electric field, being electrical, is clearly not pointing in geometrical space. This
puzzle is solved, or glossed over, in elementary physics by defining the electric field
in terms of the force on a test charge; this force in its turnmanifested in the geometrical
acceleration of the particle.

The established solution to these conundrums lies in the theory of differential
manifolds and in the accompanying theory of fiber bundles (see Section 3.12).

Intuitively, a manifold is characterized by being locally, around every point, pos-
sible to map to a flat space. Such a map may not be possible to define throughout the
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whole space and, therefore, one has to think about different maps defined in differ-
ent regions of the space. Where the regions overlap (as they have to do) there must
be transition functions relating the maps. These are the coordinate transformations
of theoretical physics. Let us draw the conventional picture (figure 3.2) illustrating the
situation.

Rm Rm

M

U1
U2

ϕ1
ϕ2

ϕ2 ∘ ϕ−11

Figure 3.2: Change of coordinate systems.

The manifold M is thought of as covered by open sets Ui. In each Ui, points p are
mapped to flat space Rm by homeomorphic78 coordinate maps ϕi. A pair (Ui,ϕi) is
called a chart. Where any two charts (numbered by i and j) overlap, there must be
infinitely differentiable transition functions ϕi ∘ ϕ−1j and ϕj ∘ ϕ−1i .

Coordinate functions

The coordinate functions ϕi map points p in the manifold to coordinates xμ in flat space. This can be
formalized as xμ(p) = (uμ ∘ ϕ)(p) using slot functions uμ : Rm → R. For physics, this is often too heavy
a formalism, and we use xμ generically for the coordinates. The coordinates in an open set Ui can be
thought of as a parametric representation of the manifold in that open set. Although the xμ are flat
space coordinates, in physics we customarily call the indices μ curved indices or world indices. For
further comments regarding tangent spaces, see Section 4.5.1.

The elaborate language of differential manifold theory is seldom used in theoretical
physics, where the mathematical infrastructure is taken for granted.79

In this context, it is perhaps important to keep in mind that differential geometry
is a more general mathematical theory than Einstein General Relativity which can be
formulated in a differential geometrical language – with varying degrees of sophisti-
cation – through a sequence of physically motivated choices. For instance, so far we
have made no choices as to connections or metrics. As we will see, such choices are
closely connected to the gauge theory approach to general relativity, a subject that will

78 That is, one-to-one continuous functions with continuous inverses.
79 We will however return to it in Volume 2 when we will introduce jet-spaces.
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be treated in Sections 4.5 and 4.6. Formathematically elaborate formulations of differ-
ential geometry see, for instance, [258, 259]. For physics informed presentations, the
books [260, 127, 261] are helpful.

3.10.1 Tangent space and cotangent space

Due to its (still not entirely understood) significance for generalizing the theory of
lower spin fields to in higher spin fields, we will review in some detail the construc-
tion of tangent vectors and tangent space. The coordinate basis in tangent space canbe
thought of as spanned by the partial derivatives 𝜕μ and a general vector can be written
as Vμ𝜕μ. How does this come about?

The definition of a tangent vector must be80 intrinsic to the manifold, without
reference to any embedding space where the vector can “directed”. For the purpose of
defining tangent vectors at a point p, one considers parametrized curves c(τ)mapping
anopen real interval about τ = 0 into themanifoldwithϕ(c(0)) = ϕ(p). Thenone takes
a function f from M to R and defines a tangent vector as the directional derivative of
the function along the curve, that is,

df (c(τ))
dτ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨τ=0
=
𝜕f
𝜕xμ

dxμ(c(τ))
dτ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨τ=0
(3.363)

where, using the chain rule, the derivative has been expressed in terms of the coordi-
nate functions xμ. In this construction, the function f plays no deep role – it is just a
place holder –whereas the choice of curve c corresponds to a particular tangent vector
X(c) (among the infinitely many). It is then natural to think of the partial derivatives
as spanning a vector space and write an arbitrary tangent vector X as a differential
operator

X = Xμ 𝜕
𝜕xμ
= Xμ𝜕μ (3.364)

with componentsXμ that uponactingona functionproduces thedirectional derivative
at the point p through

df (c(τ))
dτ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨τ=0
= Xμ 𝜕f
𝜕xμ
≡ X[f ] (3.365)

To sum up, X = Xμ𝜕μ defines a vector, tangent to the manifold at the point p = c(0)
along the direction given by the curve c(τ). In these formulas, 𝜕f𝜕xμ is syntactic sugar
for the more correct expression 𝜕(f ∘ϕ

−1(x))
𝜕xμ .

80 At least, this is the conventional wisdom, and we will go along with it. For a discussion of various
approaches to the definition of tangent space, see [260].
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Having so motivated the use of the partial derivatives as a basis in tangent space,
we can discard of the curves c and functions f and just think instead of arbitrary vec-
tors Xμ. Before that however, to clinch the construction, one should really consider
equivalence classes of curves, where two curves c1 and c2 subject to

c1(0) = c2(0) (3.366)
dxμ(c1(τ))

dτ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨τ=0
=
dxμ(c2(τ))

dτ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨τ=0
(3.367)

are considered equivalent. A tangent vector (at a point) is then identified with an
equivalence class of curves, rather than with a particular curve.

The coordinate derivative

Aswe will see, this fact that the coordinate derivatives serve as a natural basis in tangent space, plays
a significant role in gauge treatments of gravity and is source of both similarities and differences be-
tween spin-1 (Yang–Mills) theory and spin-2 (gravity) theory. It is also basic to many attempts of con-
structing interacting higher spin theories as generalizations of the lower spin theories. As such, it is
a root of both successes and failures. The construction of vectors as tangent vectors to the manifold is
indeed elegant, but it has certain weaknesses.

The tangent space at the point x – denoted by TxM – is then the vector space of all the
tangent vectors (all the equivalence classes of curves at the point).81 The basis vec-
tors eμ = 𝜕μ just defined are called the coordinate basis. Clearly, the dimension of the
tangent space is equal to the dimension of the manifold. The collection of all tangent
spaces at all points x is the tangent bundle TM = ⋃x∈M TxM. The word “bundle” here
has a special meaning that we will discuss in Section 3.12.

One by-product of the definition of tangent vectors in terms of directional deriva-
tives is that the left-hand side of the formula (3.363) shows that the tangent vector
exists independently of any particular coordinate system. Using this, we can derive
the transformation properties under a change of coordinates of the components of a
vector. Consider two coordinate systems symbolized as xμ and x󸀠μ and a vectorV . Then
we have

Vμ(x) 𝜕
𝜕xμ
= V 󸀠μ(x󸀠) 𝜕

𝜕x󸀠μ
(3.368)

A simple application of the chain rule yields the transformation formula

V 󸀠μ(x󸀠) = Vν(x)𝜕x
󸀠μ

𝜕xν
(3.369)

81 The notation for tangent spaces and the various other kinds of spaces to be considered is not stan-
dardized. But the variation is bounded and it is often possible to recognize the objects. Furthermore,
I will be using the notation for the coordinates x as designating the points p of the manifold, not al-
ways, but when convenient.
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Cotangent space T∗p (at the point p) is the vector space dual to tangent space Tp.
A basis in cotangent space is given by the differentials dxμ. The intuition here is to
consider the differential df of a function f

df = 𝜕f
𝜕xμ

dxμ (3.370)

A cotangent vector ω – or a one-form – can now be expanded as

ω = ωμdx
μ (3.371)

In analogy with general vector space theory, we can now write

⟨dxμ, 𝜕ν⟩ = δ
μ
ν (3.372)

Note that this have nothing to do with the existence or not of a metric on the mani-
fold. As discussed in Section 3.7.5, a metric can be supplied in order to raise and lower
indices. Such ametricwill then in general not be constant.Wewill return to this in Sec-
tion 4.5.1. Tensors in differential geometry are defined on the tangent and cotangent
spaces of the manifold. The theory runs just as in the flat space of special relativity.

3.10.2 Differential forms on manifolds

The apparatus of differential forms that we developed in Section 3.8 can be taken over
with minor modifications to differential manifolds. The theory of differential forms
draws its strength from the interesting properties of totally antisymmetric tensors.82

Generalizing the concept of a 1-form, which is a covariant vector, a p-form, or a
differential form of degree p, is a totally antisymmetric covariant tensor, generically
denoted by ωμ1 ...μp . Such tensors form a subspace of the vector space of all type (p,0)
tensors. A short notation for a p-form is ωp with

ω = 1
p!
ωμ1μ2 ...μpdx

μ1 ∧ dxμ2 ∧ ⋅ ⋅ ⋅ ∧ dxμp (3.373)

The vector space of p-forms will be denoted by Ωp(M)|x. It is a subspace of the space
(T∗x )
⊗p, the tensor product of p copies of the cotangent space. As the point x varies over

the manifold, we have a p-form field.83

Due to the antisymmetry of the wedge product, the expansion (3.373), while per-
fectly valid, is redundant. Indeed, the set {dxμ1 ∧⋅ ⋅ ⋅∧dxμp } is over-complete as a vector

82 See [243], Section 4.11 which has been an inspiration for the present section.
83 An alternative notation is ∧pT∗x which supports the intuition of an algebra with product ∧ defined
on T∗x .
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space basis. Since any particular value for the indices μi can only occur once, we can
choose to represent a component of a p-form as ωμ1μ2 ...μp with the indices ordered as
μ1 < μ2 < ⋅ ⋅ ⋅ < μp. An independent basis is thus the set {dxμ1 ∧ ⋅ ⋅ ⋅ ∧ dxμp }with ordered
indices.84 This explains the convenience of the factor 1/p! in formula (3.373).

One would like to turn the vector space of all p-forms (for 0 ≤ p ≤ m) into an
algebra by defining a product between forms. Let αμ1 ...μp be a p-form and βμ1 ...μq be a
q-form. The direct product αβ, although a tensor, is not antisymmetric. An antisym-
metric product can be defined as follows:

(α ∧ β)μ1 ⋅⋅⋅μp+q = N(p, q)∑
𝒫
sign ((αβ)μ𝒫(1) ...μ𝒫(p+q)) (3.374)

The sum is over all permutations𝒫 of the indices needed tomake the product fully an-
tisymmetric. The factor N(p, q) determines the “weight” of the anti-symmetrization.
There are two often made choices, either “averaging” with N(p, q) = 1/(p + q)! or
N(p, q) = 1/p!q!. In higher spin theory, it is more common practice to symmetrize and
antisymmetrize with unit weight, that is, N(p, q) = 1.

The Hodge duality formula (3.353) gets modified

∗(dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxip ) = √
g

(n − p)!
ϵi1 ...ip ip+1 ...indxip+1 ∧ ⋅ ⋅ ⋅ ∧ dxin (3.375)

The factor √g provides the correct factor to make the volume element in the inner
product between two p-forms αp and βp invariant

⟨αp, βp⟩ = ∫
M

αp ∧
∗ βp (3.376)

Indeed, the curved space Hogde dual is defined in order to achieve just this.

Example 6 (Maxwell theory). The formalism can be usefully calibrated on electrody-
namics in four dimensions. The condensed notation F = dA = d ∧ A for the field
strength Fμν in terms of the gauge potential Aμ, expands into

1
2Fμνdx

μ ∧dxν. This in its
turn rewrites to 𝜕μAνdxμ ∧ dxν. A gauge transformation δAμ = 𝜕μξ can be written as
δA = dξ from which δF = 0 follows without calculation.

In order to write the action for electromagnetism in form language, one must use
the Hodge-dual of the field strength as the following calculation shows:

∗F ∧ F = 1
2
FμνFαβϵ

μν
ρσdx

ρ ∧ dxσ ∧ dxα ∧ dxβ

=
1
2
FμνFαβϵ

μν
ρσϵ

ρσαβdx1 ∧ dx2 ∧ dx3 ∧ dx4

= FμνFαβ(η
μαηνβ − ηναημβ)dx1 ∧ dx2 ∧ dx3 ∧ dx4 = 2FμνF

μνd4x (3.377)

84 See, for instance, [257], Chapter 1 or [251] Chapter IV.
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Thus the action is

SEM = −
1
4g2
∫ FμνF

μνd4x = − 1
8g2
∫
M

∗F ∧ F (3.378)

Had we tried F ∧F wewould have found 1
2
∗FμνFμν instead, which yields a total deriva-

tive. We have employed the useful formula dxαdxβdxγdxδ = ϵαβγδdx0dx1dx2dx3. This
is a purely combinatorial formula, so there is no factor of√g. 󳶣

The epsilon tensor in four dimensions

Formulas for contractions over pairs of indices of the product of two epsilon tensors are needed now
and then. From ϵαβγδϵαβγδ = 4! it is clear that wemust have ϵ

αβγ
μ ϵναβγ = 3!ημν . This is its turn requires

that we have ϵ αβ
μν ϵρσαβ = 2(ημρηνσ − ηνρημσ). Continuing in this way, one can infer equations for

epsilon tensors contracted over one index pair and no index pair in terms of sums of products of η
tensors (with the correct antisymmetry).

3.11 Lie groups and Lie algebras

A Lie group G is a group which is also amanifold – the groupmanifold – in such a way
that the group structure and the manifold structure are compatible. This means that
the group multiplication and inversion, viewed as maps G × G → G and G → G, are
smooth maps.

The compatibility of the group and manifold structures are quite restrictive, and
formany purposes it is enough to study the group in the vicinity of the group unit. This
iswhere the Lie algebra resides. The Lie algebra is spanned by generatorsT which also
span a vector space, indeed the tangent space located at the origin (the identity ele-
ment) in the group manifold. All this can be made exact, and we refer the reader to
[262] for details. Here, we will review what we will eventually need from Lie algebra
theory itself with only cursory remarks on the corresponding Lie groups. Lie algebra
theory is a huge subject in itself, a thorough treatment can be found in [263]. The con-
cept of a Lie algebra can be defined independently of the Lie group and it is often
convenient to do so. The association of a Lie algebra to a Lie group can then be made
separately.85

3.11.1 Lie algebras

A Lie algebra g is a vector space upon which an internal bilinear operation, denoted
by a bracket [ , ] : g × g→ g, is defined with the following properties:

85 See, for instance, [251], Section III D.
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[x, y] = −[y, x] for all x, y ∈ g (3.379)
[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ g (3.380)

The first equation records the antisymmetry (or skew-symmetry) of the bracket, the
second the Jacobi identity. Givenanassociative algebrawithproduct⬦, one canalways
define a Lie algebra with the bilinear operation given by the commutator

[u, v] = u ⬦ v − v ⬦ u (3.381)

Then the defining properties of Lie algebras are immediately satisfied, and the Jacobi
identity is really an identity.86 The converse operation, constructing an associative
product from a Lie product is nontrivial and leads to the very interesting concept of
universal covering algebras, a topic that will be treated in Volume 2. For Lie algebras
that do not derive from an associative product, the Jacobi identities are nontrivial and
an essential part of the definition.

The dimension n of a Lie algebra is the same as for the underlying vector space,
and it is spanned linearly by a set of basis elements, or generators {Ta : a = 1, 2, . . . n}
(the dimensionmay be countable infinity).87 Due to the bilinearity, the structure of the
Lie algebra, is fully captured by the commutators between the basis elements

[Ta,Tb] = f abcT
c (3.382)

in terms of the structure constants f abc. The indicated summation convention in play
heremay trigger the question about upper and lower indices andmetrics on the under-
lying vector space. Let us pause this question, and just note for now that (3.382) implies
that the structure constants are antisymmetric in their upper indices. It should also be
clear that the values of structure constants depend on the basis chosen. In all cases,
however, using (3.382), the Jacobi identity translates into an equation for the structure
constants

f abcf
cd

e + f
da

cf
cb

e + f
bd

cf
ca

e = 0 (3.383)

A concept that is prominent in gauge field theory is semisimplicity of algebras and
groups. It is related to the often desirable nonoccurrence of invariant sub-algebras.
The point is that if there is an invariant subalgebra h then we have [h, g] ⊂ h and we
get stuck in the subalgebra if we happen toworkwith elements in the subalgebra. This
motivates thedefinitionof simpleLie algebras asnon-AbelianLie algebras that haveno

86 It may be useful sometimes to think of the algebra elements as acting on a space of functions, then
the commutator is written [u, v]f = (u ⬦ v − v ⬦ u)f .
87 Note that the word “generator” is also used in related but different meanings as “generator of sym-
metry” and “generating element” allowing nonlinear combinations of algebra elements.
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invariant subalgebras. Evenworse is the occurrence of Abelian invariant subalgebras,
because since then [h, h] = 0 and the corresponding basis elements do not show up
in the structure constants of the algebra.88 However, accepting the lesser evil of non-
Abelian invariant subalgebras, but not Abelian, leads to the concept of semisimple
algebras: noAbelian invariant subalgebras are allowed (but non-Abelian are allowed).
These concepts are analogous to the corresponding concepts for groups. A group is
simple if it does not contain any invariant subgroup. A group is semisimple if it does
not contain any Abelian invariant subgroup.89

Semisimple algebras can be characterized in several equivalent ways, for in-
stance, as direct sums of simple algebras or as algebras where all elements may be
written as commutators of other elements. A further refinement in terminology is
reductive algebras where Abelian terms are allowed in the direct sum.

The concept of direct sums of algebras needs to be clarified. Consider two Lie al-
gebras g1 and g2. It should be clear what is meant by the direct sum V1 ⊕ V2 of the
underlying vector spaces. The direct sum of the Lie algebras is denoted in the same
way as g1⊕g2 but with the condition that [g1, g2] = 0. The concept generalizes easily to
more than two algebras. The Lie algebra g is a direct sum of Lie algebras g = g1+⋅ ⋅ ⋅+gn
if each gi is an ideal of g.

Direct sum and semidirect sums of Lie algebras

To get this straight and define a natural direct sum of Lie algebras, let {gi ; i = 1, 2, . . . n} be a set of Lie
algebras. Denote by g the vector space direct sum

g =
n
⨁
i=0

gi (3.384)

In order to be a direct sum in the Lie algebra sense, we require two properties: First, for any two el-
ements x and y in a certain gi , the product is [x, y] = [x, y]i . That is, the product is computed within
the Lie algebra to which the elements belong. Second, [gi ,gj] = 0. That is, elements from different
components commute.

The concept of direct sums of algebras can be weakened somewhat. In the case of two Lie subal-
gebras g1 and g2 of g where [g1,g2] ⊆ g1, one says that g is a semidirect sum of g1 and g2 (the order
here is essential).

An example is the Poincaré algebra where we take as g1 the translation generators Pμ and for g2
the Lorentz generators Jμν . The algebra of equations (3.98)–(3.100) then falls precisely into the pattern
of a semidirect sum of the translations and the Lorentz transformations.

Somewhat ironically – if one can say so – the perhaps most prominent of all alge-
bras in theoretical physics, the Poincaré algebra is not semisimple. It fails semisim-
plicity since it contains an Abelian invariant subalgebra, namely the translations. The

88 As sowell phrased byH.Georgi: “Particularly annoying areAbelian invariant sub-algebras.” [264].
89 When we write subalgebra and subgroup here, we mean nontrivial subalgebras and sub-groups.
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Poincaré algebra furthermore fails to be a direct sum of algebras since the Lorentz
subalgebra and the translation subalgebra do not commute. Thus it is not even a re-
ductive algebra (it does not help to allow Abelian terms since it is not anyway a direct
sum). However, it is a semidirect sum of the translations and homogeneous Lorentz
algebra.90

3.11.2 Structure of Lie algebras and the classical Lie algebras

Just as for groups, abstract Lie algebras may conveniently be represented on vector
spaces. As always, the main focus is on irreducible representations, as such repre-
sentations cannot, by definition, be broken up into “smaller” representations. They
are therefore the ones that one may seek to classify. However, vector spaces may be
defined over the real numbers or over the complex numbers, and this makes a signifi-
cant difference for the representation theory. This can be understood in various ways.
A simple example will be given below based on the angular momentum Lie algebra.

Complex versus real Lie algebras illustrated: a small algebra redux

Consider the rotationpart of the Lorentzalgebra of (3.105), or alternatively the two conjugatedalgebras
of equations (3.117) and (3.118) Let us write any one of these equivalent algebras in terms of generic
Hermitian generators Li

[Li , Lj] = iϵijkLk (3.385)

Using complex coefficients, these generators may be linearly recombined into

L± =
1
√2
(L1 ± iL2) with L†+ = L− (3.386)

Then the algebra reads

[L3, L±] = ±L± and [L+, L−] = L3 (3.387)

The question arises as to the equivalence or not of these two algebras. Thismay be understood by first
remembering that a Lie algebra is also a vector space with the generators as basis vectors. Then it is
clear that considered as complex vector spaces, the two vector spaces are equivalent. Then they are
also equivalent as complex Lie algebras.

To investigate if they are equivalent also as real Lie algebras, that is, Lie algebras where only real
coefficients are allowed in linear combinations of the basis generators, one may return to the general
three-dimensional orthogonal group Lie algebra, which we can take from formula (3.98) with an as

90 This has profound consequences for our subject matter, and may very well be one of the roots of
the problems of higher spin field theory.
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yet unspecified diagonal metric gμν (since we want to defer the choice of signature) and with generic
generators Lij . We also have the standard transcription L12 = L3, L23 = L1, L31 = L2. Then we get91

[L12, L31] = −ig11L23 [L31, L23] = −ig33L12 [L23, L12] = −ig22L31 (3.388)

We may now try to diagonalize one of the generators, say L12, by linearly recombining the others into
aL23 ± bL31. Then the requirement

[L12, aL23 ± bL31] = ±(aL23 ± bL31) (3.389)

can bemet, provided thatb = iag22 and a = −ibg11 which impliesg11g22 = 1. If the requirement cannot
bemet, one continues and tries another generator to diagonalize. Nowsupposewe are successfulwith
g11g22 = 1. Then we can take g11 = g22 = 1, implying b = ia. Normalizing a = 1/√2 we now get

[L12, L±] = ±L± and [L+, L−] = g33L12 (3.390)

If we choose g33 = 1, then the metric signature is (+ + +) and we have the compact three-dimensional
rotation Lie algebra so(3) ∼ su(2). This is precisely what we had above. However, we may choose
g33 = −1. Then the metric signature is (+ + −) and we get the noncompact Lie algebras sl(2,R) ∼
su(1, 1).

Suppose now, having these two Lie algebras, we restrict ourselves to real coefficients in linear
combinations of the basis generators. We then talk of real forms of the Lie algebra defined above in
equation (3.385).

A little bit of linear algebra shows that there is no way to linearly recombine the Lie algebra with
g33 = −1 into the one with g33 = 1 using real coefficients, therefore, we have two different real forms
of the same complex Lie algebra (3.385). However, the one with g33 = 1 may be turned into the one
with g33 = −1 using complex coefficients. Choose for instance L± → iL±. Then the new generators
are anti-Hermitian, but that is as it should be, since a noncompact algebra has no finite-dimensional
unitary representations.

Finally, returning to our initial question as to whether the algebra (3.387) is equivalent as a real
Lie algebra to (3.385), the answer can nowbe given. It is very easy to be fooled by sloppy notation here.
In order to answer the question, without producing to much confusion, let us return to fundamentals
and write the algebra (3.385) in a notation that does not assume any one definite metric

[Li , Lj] = iϵ
k

ij Lk (3.391)

Along with this, the transcription to “two-index generators” must be written Lij = ϵ k
ij Lk . Now we can

compare the two ways of writing the algebra: as in (3.388) and as in (3.391)without missing out on any
hidden signs. The result of such a comparison is

ϵ 3
12 ϵ 2

31 = g11 ϵ 1
23 ϵ 3

12 = g22 ϵ 2
31 ϵ 1

23 = g33 (3.392)

From here, it follows that lowering the indices using the metric, the structure constants ϵijk with lower
indices are the same no matter the signature of the metric. This shows that no generality is lost in
writing the algebra as we did to begin with.

Nowwe can proceedwith confidence and answer the question. Of course, the algebras are differ-
ent as real Lie algebras! After all, they are related by a complex linear combination. Choosing different

91 We are following A. O. Barut in [265], recommended for all who relish small algebras!
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linear combinations, one can get to either of structures [L3, L±] = ±L± with [L+, L−] = ±L3 which are –
as already noted – different as real algebras.

Moregenerally, inworkingout the representation theory, onewill have to solve charac-
teristic equations for eigenvalue equations, and the fact that C is algebraically closed
while R is not, becomes crucial and, therefore, the abstract representation theory is
done over the complex numbers.

Let usdenotebyV agenericn-dimensional vector spaceoverC. The set of all linear
mappings – endomorphisms – of V to itself is again a vector space. Since the compo-
sition of linear mappings associate, we get an associative algebra for free. Composing
the associative product as in (3.381), we get a Lie algebra called the general linear alge-
bra gl(V) of V . Then, choosing a basis in V , the linear mappings may be represented
by matrices acting on the vectors and the composition of mappings by matrix multi-
plication. The corresponding Lie algebra is denoted by gl(n). This is then the backdrop
toward which the classical matrix Lie algebras can be investigated. Wewill not review
any details, but rather just state the facts, point out a few items of importance and
then refer the reader to the specialized literature.

The Lie algebra gl(n) contains an invariant Abelian subalgebra, consisting of all
multiples of the unit matrix. Imposing tracelessness of the matrices, removes this
ideal. The resulting complex Lie algebra is denoted sl(n) and designated as special
linear. There is a corresponding Lie group which is the special linear group SL(n) of
n × n complex matrices with unit determinant. In the abstract classification scheme
of semisimple Lie algebras, this algebra is denoted by An−1.92 As n runs from 2 to∞,
we get a denumerable infinite series of Lie algebras. The Cartan classification scheme
results in three further series of complex Lie algebras, plainly denoted by Bn, Cn and
Dn. Following the comprehensive text book [263] and the succinct summary in [139],
we just list the algebras for easy reference, with further explanations, below. The basis
matrices A of the algebra corresponding group matricesM are defined near the group
identity according toM = 1 + iA.

Cartan classification of complex finite dimensional semisimple Lie algebras

An sl(n + 1) as defined in the paragraph above. Real compact form: special unitary algebra su(n + 1)
with traceless Hermitian matrices as basis.

Bn so(2n + 1) of matricesM ∈ gl(2n + 1) obeying the equationMTK 󸀠 + K 󸀠M = 0. Real compact form:
so(2n+1)with corresponding groupO(2n+1) of unitary and orthogonal (real) matrices. The basis
matrices B satisfy B∗ = BT = −B. Such matrices are a also traceless.

92 The first nontrivial algebra is for n = 2. The case n = 1 would correspond to the relatively trivial
one-dimensional Abelian algebra: think u(1).
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Cn sp(2n) of matricesM ∈ gl(2n) obeying the equationMT = JMJ. Real compact form: usp(2n) with
corresponding group Usp(2n) of unitary symplectic matrices. The basis matrices C are Hermitian
and satisfies CT J + JC = 0.

Dn so(2n) of matrices M ∈ gl(2n) obeying the equation MTK + KM = 0. Real compact form: so(2n)
with corresponding group O(2n) of unitary and orthogonal (real) matrices. The basis matrices D
satisfy D∗ = DT = −D. Such matrices are a also traceless.

The matrices occurring in the definitions are defined as follows in terms of n-dimensional zero and
unit matrices 0n and 1n, respectively.

K 󸀠 = (
1 0 0
0 0n 1n
0 1n 0n

) J = ( 0n 1n
−1n 0n

) K = (0n 1n
1n 0n

) (3.393)

In addition to these series of algebras, there are five exceptional algebras : G2, F4, E6, E7 and E8.

All these Lie algebras find their applications in theoretical physics: the su(n)’s as
Yang–Mills algebras, the so(n)’s as infinitesimal rotation algebras in n-dimensional
spaces and the sp(2n)’s as algebras of infinitesimal canonical transformations in
classical phase spaces.

One very important fact that comes out of the general analysis of semisimple Lie
algebras g is that they have a vector space direct sum structure (called triangular de-
composition in [263])

g− ⊕ g0 ⊕ g+ (3.394)

with

[g0, g0] = 0 [g+, g−] ⊆ g0 [g±, g0 ⊕ g±] ⊆ g± (3.395)

The notation is intended to show that the subalgebras g+ and g− consists of raising
and lowering operators respectively, while the subalgebra g0 is Abelian.

3.11.3 Bottom line on real Lie algebras

The Lie algebras most often used in physics are real Lie algebras, meaning that lin-
ear combinations over the basis generators are taken with real coefficients. This is so
even if the basis generators are representedwithmatriceswith complex entries and/or
structure constants that are imaginary. It also leads to the distinction between com-
pact and noncompact Lie algebras. It becomes quite complex (!).

One way to think straight about it, is to take stock of the following facts, start-
ing from the compact/noncompact distinction. This distinction only makes sense if
there is a metric on the underlying vector space that may be of definite or nondefinite
signature. Such a metric can be defined for real Lie algebras, but not for complex Lie
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algebras. The metric is based on a bilinear inner product κ(x, y) (that exists for the
complex Lie algebras considered here) called the Killing form. A complex linear com-
bination such as x → ix, y → iy leads to κ(x, y) → −κ(x, y) which upsets the signature
of the metric (as we saw also in the box above).

Furthermore, for any simple real Lie algebra, κ is nondegenerate and there is an
orthonormal basis in which κ takes the form

κ = (−1p 0
0 1n−p

) (3.396)

Such ametric canbeused to raise the indices for the structure constants of the algebra.
The three upper indices then become totally antisymmetric. When the metric is of a
definite sign, that is, when p = 0, and κab = δab, then the real Lie algebra is said to be
compact. This Lie algebra is actually unique up to isomorphism. However, since κ can
in general be of various signatures, there are several real forms corresponding to one
and the same complex Lie algebra. A list can be found in [263], Section 8.4. There we
can also find information on the isomorphism between low dimensional Lie algebra.
For instance, the three Lie algebras A1, B1 and C1 are isomorphic. This leads to the
following isomorphisms (among others) for their compact forms: su(2) ≅ so(3) and for
their noncompact forms: su(1, 1) ≅ sl(2,R) ≅ so(2, 1).

3.12 Fiber bundle theory

Fiber bundles are generalizations and abstractions of the basic theoretical physics
concept of fields carrying degrees of freedom valued in “internal” spaces. Since this is
so central to field theory in general and higher spin theory in particular, we will dis-
cuss it at some length here. “Solving” the higher spin problem may very well involve
some deep rethinking at precisely this point. We will recite the mathematics terminol-
ogy and try to explain it in reference to physics concepts, but leave out proofs.

3.12.1 Basic intuition

Mathematically, the fields of physics are functions y = f (x) from one space X to an-
other Y . A simple example is a scalar temperature field T(x) and for many purposes
one need not think of it anymore deeply than that. It is simply a function T : R3 → R+.
Another example is the electromagnetic potential A(x) which is a three-dimensional
vector field. Now, one may start to worry in what space the vector is pointing? It is
certainly not geometrical space, even though it can be illustrated in that way. We can
resort to view it is a function A : R3 → R3 where the points in the range carry physical
dimension of Vsm−1. And, of course, the points in the range of the temperature field
carry physical dimension of K. Still another example is the Yang–Mills field Aaμ which
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is four-vector and carries a color index a. In this context, where one normally use units
where ℏ = c = 1, the dimension of the field is the same as momentum and mass.

However, onemay also think of a function f : X → Y in terms of its graphwhich is
the set of points (x, f (x)) in the Cartesian product X ×Y .93 The graph is itself a function
grf andwe canwrite grf : X → X ×Y , where for any point x in the domain X, the graph
evaluates according to grf (x) = (x, f (x)).

Anticipating the terminology to be introduced, the set X is called the base space
and the set X × Y the total space. Incidentally, the reason to call these sets spaces is
that in physics (and in the correspondingmathematics) these setsmaintain additional
structure. It is also convenient to introduce projections from X × Y to X and Y . Then
pr1(X × Y) = X and pr2(X × Y) = Y . We can then state: any function g : X → X × Y ,
for which it holds pr1 ∘ g = idX , is the graph of a unique function pr2 ∘ g. The graph
concept is thus well-defined.

As noted in [266], this view of functions has two advantages: conceptually, a func-
tion can be thought of as field (precisely in the sense of physics) where for each point
x in the domain X there is a copy {x} × Y of the range Y and a single point in that copy
gives the value of the field at x. Furthermore, the concept can be generalized to total
spaces that are not diffeomorphic to a product of a base space and another space. For
such a generalization to be useful, there must nevertheless be a local product struc-
ture, in the sense that each point in the total space must have a neighborhood that
looks like a product of spaces. We are now ready to define these structures in some
more detail.94

3.12.2 Fibered manifolds, bundles and fiber bundles

A fibered manifold is given by three objects, denoted a triple: (E,π,M) where E, the
total space, and M, the base space, are manifolds and π is a map π : E → M that
projects the full space onto the base manifold (see figure 3.3). For each point p ∈ M,
the subset π−1(p) ≡ Fp of E is called the fiber over p.95

This definition offers enough structure to show that a fibered manifold has a lo-
cal product structure. This means: around every point p of E there is a neighborhood
Up and another manifold Fp and a diffeomorphism tp : Up → π(Up) × Fp such that
pr1(tp(q)) = π(q) for all points q in Up.

93 According to the set theoretic definition of functions, a function and its graph are precisely the
same thing, simply because a function from X to Y is a subset of X × Y .
94 The language becomes a bit stiff in the next section, but we are far from stringent in the mathe-
matical sense. Some references treating the subject in a way useful for our topic are [258, 266, 251].
95 The meaning of π−1(p) is the set π−1({p}) = {e ∈ E : π(e) = p}, that is, the inverse image of the
one-element subset {p} ofM.
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Fp

p
M

E
π

Figure 3.3: Intuitive picture of a fibered manifold.

However, the fibers of these local products may differ: the manifolds Fp may not
be the same or even homeomorphic for different neighborhoods Up. Having the fibers
“look the same” is in general desirable. In order to achieve that, one defines local
trivializations that make the product structure more uniform.

For (E,π,M), a fibered manifold and x a point in the base spaceM, a local trivial-
ization around x is a triple (Wx , Fx , tx)whereWx is a neighborhood of the point x, Fx a
manifold (the fiber) and tx : π−1(Wx) → Wx ×Fx is a diffeomorphismwith the property
pr1 ∘ tx = π|π−1(Wx).

When at least one such local trivialization exists around every point of the base
space, the fibered manifold is said to locally trivial. Such a fibered manifold is a bun-
dle.96 It is then possible to show that the local fibers Fx are diffeomorphic to a typical
fiber F for all x ∈ M. If one wants to record all the data for a bundle, one could write
(E,M,π, F).

In applications to physics, the fibers may be, for instance: vector spaces, tangent
and/or cotangent spaces or Lie groups. Thus one often has some additional structure
in the fibers formalized as the action of a group. One then speaks of fiber bundles.

A fiber bundle (E,M,π, F,G) is a bundle (E,M,π, F) together with a group G of dif-
feomorphisms (or homeomorphisms) in the typical fiber F, and a set of local trivializa-
tions (Ui, ti, F)where Ui is a cover of the base spaceM with i running over some index
set. The group G is called the structure group of the fiber.

The bundle properties ensure that there are at least one local trivialization
(Wp, tp, Fp) around each point p of the base space. The extra requirement for be-
ing a fiber bundle is the existence of a cover of special local trivializations (Ui, ti, F),
all to the product spaceM × F.

In conclusion, starting with the basic concept of a fiberedmanifold, one arrives at
the concept of a fiber bundle by successively adding structure. First, the typical fiber,
then the group acting in the typical fiber and the cover of local trivializations. Fiber
bundles have enough structure to serve as models of the field theories of physics.

It is important to realize that – even though the fibers Fx are diffeomorphic to the
typical fiber F – there is no “canonical” relation between fibers Fx at different points
x. For that, one needs to add further structure, namely: connections, a concept that
we will elaborate in Section 3.13 and in Chapter 4.

96 Note that “local” in the trivializations refer to the base spaceM.
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Of particular importance are the principal fiber bundles. These are fiber bundles
for which the typical fiber is identical to the structure group. Yang–Mills theories can
be described in this way. The fiber is the gauge group, meaning that the Yang–Mills
gauge fields are valued in the group.

Furthermore, we can now see how the concepts of tangent bundles and cotangent
bundles of Section 3.10.1, naturally fit into this general scheme. These bundles play an
important role in the theory of gravity, of which we will have more to say in Chapter 4.

3.12.3 Tangent and cotangent bundles

Let us elaborate a little on the definitions of Section 3.10.1. The tangent bundle TM is
the union of all tangent spacesTp at all pointsp in themanifoldM. This concept allows
for clear notion of a vector field varying from point to point in the manifold.

First, introduce a projection map π from the tangent bundle to the manifold. This
map associates a point p with every vector V(p) in the tangent bundle. In formulas,
we have

TM = ⋃
p∈M

Tp (3.397)

π : TM → M, V(p) 󳨃→ p (3.398)

The inverse π−1 map, maps points p in the manifold to tangent spaces Tp (i. e., the set
of all tangent vectors at the point). In formulas,

π−1 : M → TM, p 󳨃→ Tp. (3.399)

It is important to realize that π−1 maps a specific point p to the vector space of all
tangent vectors at that point, and not to a particular tangent vector. The tangent space
at p is an example of a fiber at p. The dual concept of the cotangent bundle can then
be introduced in the analogous way.

Interesting and important examples of these concepts arise in classical mechan-
ics. Thinking of the configuration space of coordinates qn of a mechanical system as
a base space, one can consider the tangent spaces formed by the velocities q̇n at each
point qn. Together they form a tangent bundle. Correspondingly, there is a cotangent
bundle with fibers formed out of the conjugate momenta pn. Then one may consider
mechanical systems on phase spaces with nontrivial topology.

3.12.4 Fields as cross-sections of bundles

The physics concept of a field defined on a spaceM valued in some other space F, can
now be modeled as cross-sections of bundles, generalizing the graph of a function.
The definition – for a fiber bundle – is as follows.
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A map ϕ : M → E is called a cross-section (or a section) of the fiber bundle
(E,π,M, F) if it satisfies the condition π ∘ ϕ = idM .

The concept of section can also defined for a bundle, or even for a fibered mani-
fold, and it reads in exactly the same way in these cases. If all the sections Fx are the
same, that is, if Fx is “constant”, then sections reduce to ordinary functions. Vector
fields and 1-forms can be viewed as sections of the tangent bundle and the cotangent
bundle, respectively.

3.13 Infinitesimal coordinate transformations

The mathematical theory so briefly reviewed is very neat, but we will now return to a
more physics oriented point of view. Let us here reconsider general coordinate trans-
formations xμ → x󸀠μ(x) as we do in general relativity oriented presentations. The pur-
pose is to introduce the Lie derivative and the affine connection in a natural way. An
infinitesimal coordinate transformation then reads97

Δεx
μ = x󸀠μ − xμ = εμ(x) (3.400)

We are interested in the behavior of fields under such transformations. According to
standard general relativity we have the transformations laws for scalar and covariant
and contravariant vector fields, respectively,

φ󸀠(x󸀠) = φ(x) (3.401a)

V 󸀠μ(x
󸀠) = Vα(x)

𝜕xα

𝜕x󸀠μ
(3.401b)

V 󸀠μ(x󸀠) = Vα(x)𝜕x
󸀠μ

𝜕xα
(3.401c)

The transformation laws for covariant and contravariant vectors are the same as the
transformation laws for partial derivatives 𝜕μ and coordinate differentials dxμ, respec-
tively. All this is essentially applications of the chain rule (see formula (3.369)).98

The transformation rules (3.401) generalize to general (p, q)-tensors in a natural
way [243]. Let us compute the infinitesimal transformation rule for a scalar field in
detail

δεφ(x) = φ
󸀠(x) − φ(x) = φ󸀠(x󸀠 − ε) − φ(x)
= φ󸀠(x󸀠) − εμ𝜕μφ

󸀠(x) − φ(x) = −εμ𝜕μφ
󸀠(x)

= −εμ𝜕μ(φ(x) + δεφ(x)) = −ε
μ𝜕μφ(x) (3.402)

97 One can think of it as a passive point of view.
98 It works due to the assumed existence of the smooth transitions functions between overlapping
coordinate charts; see Section 3.10.
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where in the last approximate equality the term of second order in ϵ is discarded. Per-
forming the corresponding detailed analysis for a covariant and contravariant vector
fields, using (3.401), yields

δεVμ(x) = −ε
α𝜕αVμ(x) − (𝜕με

α)Vα (3.403a)

δεV
μ(x) = −εα𝜕αV

μ(x) + (𝜕αε
μ)Vα (3.403b)

where one should note the signs and index contractions in the second term in the
equations. These transformation laws also generalize to tensor fields in a natural way.
For each covariant or contravariant index, there is a term of the type 𝜕ε corresponding
to the second terms in (3.403a) and (3.403b), respectively. For instance, for Vρ

μν we get

δεV
ρ
μν(x) = −ε

α𝜕αV
ρ
μν − (𝜕με

α)Vρ
αν − (𝜕νε

α)Vρ
μα + (𝜕αε

ρ)Vα
μν (3.404)

The generalization to higher order tensors should be obvious.

3.13.1 The Lie derivative

The transformation formulas for tensors suggest introducing a certain differential op-
erator called the Lie derivative Lε. Its action on a tensor V

ρ
μν is defined by

LεV
ρ
μν = −δεV

ρ
μν ≡ ε

α𝜕αV
ρ
μν + (𝜕με

α)Vρ
αν + (𝜕νε

α)Vρ
μα − (𝜕αε

ρ)Vα
μν (3.405)

Clearly, the Lie derivative is simply defined to give the infinitesimal form of a general
coordinate transformation. The Lie derivative transforms a tensor of given type into
a tensor of the same type. It is, as is obvious from the definition, linear in ϵ. By di-
rect computation, it can be shown that it obeys the Leibniz rule and commutes with
index contractions. Therefore, we can consistently compute (although we have not
introduced the metric as yet)

LεV
μ(x) = (Lεg

μν)Vν + g
μνLεVν (3.406)

As would be expected, the Lie derivative satisfies the infinite dimensional Lie al-
gebra of general coordinate transformations. Its action on a contravariant vector ξ μ

motivates the following definition of the Lie bracket:

[ϵ, ξ ]μ = Lϵξ
μ (3.407)

It now follows

[Lξ , Lη] = L[ξ ,η] (3.408)
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Furthermore, the Lie derivative as well as the Lie bracket, also satisfy the Jacobi iden-
tity. Acting on scalars ϕ, the Lie derivative can be represented simply as Lϵϕ = ϵμ𝜕μϕ
and (3.408) computes to

[ην𝜕ν , ξ
μ𝜕μ]ϕ = (η

ν𝜕νξ
μ − ξ ν𝜕νη

μ)𝜕μϕ = [η, ξ ]
μ𝜕μϕ (3.409)

and it is natural to think of the Lie bracket in (3.407) as “structure functions” for the
infinite dimensional Lie algebra of general coordinate transformations.

The Lie derivative also subsumes familiar results on Poincaré transformations. Let
εμ be an infinitesimal Poincaré transformation εμ = aμ + λμνxν where aμ and λμν are
constant (and infinitesimal). Thenwe get the Poincaré transformations of vector fields
as

δεVμ(x) = −LεVμ(x) = −ε
α𝜕αVμ(x) − λ

α
μVα (3.410a)

δεV
μ(x) = −LεVμ(x) = −ε

α𝜕αV
μ(x) + λμαV

α (3.410b)

where we recognize the second terms as the spin part of the Lorentz transformations.

3.13.2 Covariant derivative and connection

It is a generic phenomenon pertaining to local symmetries that the derivative of a field
does not transform as the field itself. Here, the derivative of a tensor do not transform
as a tensor under coordinate transformations. Perform the following sample calcula-
tion:99

δ(𝜕μVν) = 𝜕μ(δVν) = −ϵ
α𝜕α𝜕μVν − 𝜕μϵ

α𝜕αVν − 𝜕νϵ
α𝜕μVν − 𝜕μ𝜕νϵ

αVα
= −Lϵ(𝜕μVν) − (𝜕μ𝜕νϵ

α)Vα (3.411)

The offending term is elegantly compensated for by introducing the covariant deriva-
tive ∇μ according to

∇μVν = 𝜕μVν − VαΓ
α

μν (3.412)

where the affine connection Γ α
μν transforms inhomogeneously as

δΓ α
μν = −LϵΓ

α
μν − 𝜕μ𝜕νϵ

α (3.413)

Due to the properties of the Lie derivative, the termVαΓ α
μν transforms as a tensor apart

from an inhomogeneous term that precisely cancels the corresponding term in (3.411).

99 The first equality is indeed correct since δ denotes a local transformation at the same space-time
point.
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All in all, ∇μVν transforms as a tensor in both indices. The corresponding formula for
a contravariant vector is

∇μV
ν = 𝜕μV

ν + Γ ν
μα Vα (3.414)

The formulas (3.412) and (3.414) generalize to general tensors in the obvious way.
The transformation law (3.413) suggests splitting the connection in a nontensor,

symmetric part and a tensor, antisymmetric part according to

Γ α
μν =

1
2
(Γ α
(μν) + Γ

α
[μν] ) (3.415)

where the antisymmetric part defines the torsion tensor

T α
μν = Γ

α
[μν] (3.416)

In standard general relativity, the torsion is set to zero, but it plays an interesting
role in gauge theory approaches to gravity, as we will see. In this context, it is impor-
tant to realize that the affine connection – or any other connection – is a structure
that is added to the manifold. So far it can be any field with the transformation prop-
erty (3.413). As we proceed, we will encounter other kinds of connections. We return
to these questions in Section 4.5.

The covariant derivative acting on a tensormaps (p, q)-tensors to (p+1, q)-tensors.
It satisfies the Leibniz rule and the Jacobi identity. It is closely related to the Lie deriva-
tive which can be written in terms of covariant derivatives and the torsion tensor. So,
for instance, we have

LϵV
μ = ϵα∇αV

μ − ∇αϵ
μVα + ϵαT μ

αβ vβ (3.417)

This rewriting notwithstanding, the Lie derivative is independent on any connec-
tion.100

3.14 Lagrangian field theory

It is a curious fact that the classical action has dimension of angular momentum. In
quantummechanics, it is therefore naturally measured in terms of ℏ. For the purpose
of setting up the basic theory, we will consider models where the dynamical variables
are fields and their first derivatives, although in higher spin theory we will have to
work with higher derivative theories, albeit presumably only in the interaction terms
and not in the free theory kinetic term.

100 What happens is that the torsion termcancels the antisymmetric connection terms that arise from
the covariant derivative terms. In that way, the rewriting is fairly trivial.
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Consider therefore a set of classical fields φi(x) labeled by a generic index i, pos-
sibly related to a symmetry transformation of some kind. We write for the action S,
Lagrangian L and Lagrangian density ℒ

S =
τ2

∫
τ1

dtL(φi(x), φ̇i(x)) = ∫
Ω

d4xℒ(φi(x), 𝜕μφi(x)) (3.418)

where Ω is the region of space-time integration (possibly bounded at spatial and/or
temporal infinity). The first equality is the definition of the action as the time inte-
gral of the Lagrangian from which one can develop the Hamiltonian formulation if
one wish. The second equality involves the assumption that the Lagrangian can be
expressed as a space integral of a scalar Lagrangian density depending on the fields
and their space and time derivatives. This is away of building Poincaré invariance into
the theory. By studying the behavior of S and ℒ under variations and transformations
of the fields, we can derive the field equations and Noether’s theorem.

Terminology and notation for transformations

Consider a space-time point p that in one coordinate system is labeled by x and in another by x󸀠. The
smooth coordinate transformation x → x󸀠 is then calledpassive. For the active viewpoint, the transfor-
mation x → x󸀠 is thought of as mapping the point p to another point x󸀠 = f (p) in the same coordinate
system. A function ϕ defined on the space-time will be denoted byϕ(x) andϕ󸀠(x󸀠), respectively, in the
two systems. For an infinitesimal transformation, we define the total variation as Δϕ = ϕ󸀠(x󸀠) − ϕ(x)
and the local variation as δϕ = ϕ󸀠(x) −ϕ(x). Neglecting terms second order in infinitesimals, we have

Δϕ = δϕ + Δxμ𝜕μϕ where Δx = x󸀠 − x = δx (3.419)

Note that for local variations: δ(𝜕μϕ) = 𝜕μδϕ.101 Finally, for internal transformations (like matter field
gauge transformations where no space-time transformation is involved) we have Δϕ = δϕ.

In order to clearly understand such notions as “on-shell” and “off-shell”, Noether cur-
rents and the Noether method, it is useful to make a conceptual distinction between
variations and transformations although the notation mixes them by using the same
symbols δ and Δ. Transformations are always given by specific rules for the fields and
coordinates. Variations are not governed by such rules, they are essentially arbitrary.

101 Note that if one adopts a passive viewpoint, then the variation ϕ󸀠(x󸀠) − ϕ(x) can be thought of as
“local” in that the x and x󸀠 denote the same point in different coordinate systems. This seems not to
be a common choice, but it is done in [23].
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3.14.1 The action principle

Consider first an arbitrary local infinitesimal variation δφi(x) in the field. The coordi-
nates are not varied. The variation of the action becomes (writing just φ for the fields)

δS = ∫
Ω

d4xδℒ = ∫
Ω

d4x[𝜕ℒ
𝜕φ

δφ + 𝜕ℒ
𝜕(𝜕μφ)

δ(𝜕μφ)]

= ∫
Ω

d4x[𝜕ℒ
𝜕φ
− 𝜕μ
𝜕ℒ
𝜕(𝜕μφ)
]δφ + ∫

Ω

d4x𝜕μ[
𝜕ℒ
𝜕(𝜕μφ)

δφ] (3.420)

The last term, a total derivative, can bewritten as an integral over the surface σ bound-
ing Ω

∮
σ

𝜕ℒ
𝜕(𝜕μφ)

δφ (3.421)

Requiring the action to be stationary under variations δφ that vanish on the boundary
σ we get the Euler–Lagrange field equations

𝜕ℒ
𝜕φ
− 𝜕μ
𝜕ℒ
𝜕(𝜕μφ)
= 0 (3.422)

One can identify the Euler–Lagrange equations with the functional derivative of the
action, if we perform the computation in more detail (discarding the surface term)

δS
δφi(x)
= ∫

Ω

d4y δℒ(y)
δφi(x)

= ∫
Ω

d4y[ 𝜕ℒ(y)
𝜕φj(y)

δφj(y)
δφi(x)
+

ℒ(y)
𝜕(𝜕μφj(y))

δ(𝜕μφj(y))
δφi(x)

]

=
𝜕ℒ(x)
𝜕φi(x)
− 𝜕μ
𝜕ℒ(x)
𝜕(𝜕μφi(x))

(3.423)

where we have used

δφj(y)
δφi(x)
= δijδ

4(y − x) (3.424)

This computation is a generalization of the corresponding one in Section 3.1.2.

Derivatives revisited

The action S is a functional (a function of functions) from the vector space of functions to the real num-
bers. The Lagrangian densityℒ is an ordinary composite function, composed of fields and derivatives
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of fields. Therefore, it makes sense to write ℒ(x). It also makes sense to write and compute partial
variational derivatives of ℒ with respect to the fields φi(x). Writing S = ∫d4x ℒ(x) we can think of S
as depending on the functionsφ(x) building upℒ(x). The partial derivatives of the action with respect
to the fields are functional derivatives. Via the chain rule, the variational derivatives of ℒ(x) may be
computed in terms of ordinary partial derivatives ofℒ(x) with respect to the fields φi(x), as indicated
in the second line of the computation (3.423); compare to the analogous discussion in Section 3.1.2
on mechanics.

This is the Hamilton action principle, that is δS = 0 for variations δφi(x) that vanish
on the boundary of Ω. For variations that do not vanish on the boundary, we have the
generalized Hamilton action principle

δS(Ω) = ∫
Ω

d4x𝜕μK
μ(x) ̸= 0 (3.425)

where the remaining integral represents the boundary contributions to the variation.

3.14.2 General transformations

Consider now transformations Δxμ and Δφi. For Noether’s first theorem, we are inter-
ested in global transformations, that is, where Δxμ and Δφi are constant. However,
we may just as well perform the initial calculations with local space-time dependent
transformations, as that will anyway be needed for the second theorem. That will also
help clarify the exact nature of the second theorem as compared to the first.

We want to compute ΔS which is related to δS through the following calculation:

ΔS = ∫Δ(d4xℒ ) = ∫
Ω

((Δd4x)ℒ+d4xΔℒ ) =

= ∫ d4x(𝜕μΔx
μ ℒ+δℒ+Δxμ𝜕μ ℒ ) = δS + ∫ d

4x𝜕μ(Δx
μ ℒ) (3.426)

where we have used

Δd4x = d4x𝜕μΔx
μ (3.427)

as well as Δℒ = δℒ+Δxμ𝜕μ ℒ (see formula (3.419)). Then using δS from (3.420), re-
taining the surface term, and expressing the Euler–Lagrange term as the functional
derivative of S according to (3.423), we get

ΔS = ∫
Ω

d4x𝜕μ(Δx
μ ℒ+
𝜕ℒ
𝜕(𝜕μφi)

δφi) + ∫
Ω

d4x δS
δφi

δφi

≡ ∫
Ω

d4x𝜕μJ
μ + ∫

Ω

d4x δS
δφi

δφi (3.428)
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where the “not yet Noether current” Jμ is defined by this formula. It is convenient, in
order to consider two important cases, to rewrite it in terms of total variations

Jμ = 𝜕ℒ
𝜕(𝜕μφi)

Δφi + (δ
μ
ν ℒ−
𝜕ℒ
𝜕(𝜕μφi)
𝜕νφi)Δx

ν (3.429)

We are interested in transformations that leave the action invariant, i. e., ΔS = 0. It is
then useful to write (3.428) as102

∫
Ω

d4x δS
δφi

δφi = −∫
Ω

d4x𝜕μJ
μ (3.430)

3.14.3 The first Noether theorem

To arrive at the first Noether theorem, we demand the field equations to hold, so that
the left-hand side of (3.430) is zero. We are now interested in global transformations.
Then the derivatives in 𝜕μJμ will be zero on the parameters of the transformation and
it will be possible to define parameter independent Noether currents. Two important
cases can be discerned.

The first case is global gauge transformations. Then Δxμ = 0, and in order to be
able to write a “not to abstract” formula for the Noether current we need to fix the
detailed form of the transformation in some more detail. In analogy to what we did in
Section 3.1.3, we now write for a global gauge transformation

δφi = R
a
i θa (3.431)

with the θa infinitesimal constant parameters andRai capturing the details of the trans-
formation depending on the fields and their derivatives.103 Then we immediately get
the on-shell conservation law or continuity equation in terms of the Noether current Jaμ

𝜕μJ
aμ = 0 where Jaμ = 𝜕ℒ

𝜕(𝜕μφi)
Rai (3.432)

The second case concerns space-time transformation Δxμ ̸= 0, of which there are
two important subcases:

Translations Δxμ = ϵμ and Δφi = 0 (3.433)

Lorentz transformations Δxμ = λμνx
ν and Δφi =

1
2
λμνM

μν
ij φ

j (3.434)

102 If the action is only invariant up to a boundary term, it can naturally be added to the right-hand
side; compare to (3.425).
103 A concrete example are global gauge transformations of a Yang–Mills charged scalar field, where
δφi(x) = −θa(Ta)ijφj(x) (see formula (4.14) in Chapter 4).
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The first symmetry of the field equations leads to the conserved energy-momentum
tensor and the second to the conserved angular momentum tensor. The energy-
momentum tensor can be copied from (3.429). Raising one index it is conventional to
write it as

Tμν = 𝜕ℒ
𝜕(𝜕μφi)
𝜕νφi − η

μν ℒ (3.435)

This defines the canonical energy-momentum tensor. It is not symmetric, but can be
made so by taking advantage of the possibility to add total derivatives to ΔS.

The Noether theorems in words

Rather than stating the first Noether theoremmore exactly, we capture its essence as:104

There is a one-to-one correspondence between symmetry groups of an action and conservation
laws of its Euler–Lagrange equations.

In a similar fashion, the essence of the second Noether theorem can be phrased as:

An infinite-dimensional symmetry of an action, depending on arbitrary functions of space-time,
corresponds to nontrivial differential relations among the Euler–Lagrange equations.

3.14.4 Internal gauge symmetries

For the second Noether theorem, we change the perspective and consider transforma-
tions that leave the action invariant without using the field equations. By an infinite-
dimensional symmetry transformation,wemean a variation of the fields that leaves the
action invariant even when the Euler–Lagrange equations are not satisfied.

Consider then internal symmetries, that is, symmetrieswithΔxμ = 0. Inparticular,
we have in mind gauge symmetries. For the general theory, it is then customary to
write105 as we did in Section 3.1.3

δφi(x) = R
a
i (φ)ξa(x) (3.436)

with ξa(x) infinitesimal and space-time dependent, and Rai (φ) capturing the details of
the transformation depending on the fields and their derivatives. We are here employ-
ing a condensed notation. In field theory, we have

Rai (x)ξa(x) = ∫ d
4yRai (x, y)ξa(y) (3.437)

104 Adapted from a talk by P. Olver, “Noether’s Two Theorems”, Perimeter Institute, 2015.
105 See, for instance, [229].
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where (derivatives with respect to x)

Rai (x, y) = R̄
a
i δ(x − y) + R̄

aμ1
i 𝜕μ1δ(x − y) + R̄

aμ1μ2
i 𝜕μ1𝜕μ2δ(x − y) + ⋅ ⋅ ⋅ (3.438)

The gauge functions themselves R̄aμ1μ2 ...i 𝜕μ1𝜕μ2 may be polynomials in the field φi.
When there is no risk for confusion, we write δφi = Rai ξa.

106 Note also that the
fields φi may not be just matter fields, but also the gauge fields themselves, which is
our main interest.

The basic variational equation can now be read off immediately from the formula
(3.428). We explicate it again in the form relevant for local symmetries

δS = ∫
Ω

d4x δS
δφi(x)

Rai (φ)ξa(x) + ∫
Ω

d4x𝜕μJ
μ = 0 (3.439)

where from (3.429) we have

Jμ = 𝜕ℒ(x)
𝜕(𝜕μφi(x))

Rai (φ)ξa(x) (3.440)

Let us now focus on the interpretation of this fundamental equation.

Interpreting the variational equation

According to the general formula δS = ∫ δℒd4x we can write the variational equation for the La-
grangian density

δℒ(x) = δS
δφi(x)

δφi(x) + 𝜕μ[
𝜕ℒ(x)
𝜕(𝜕μφi(x))

δφi(x)] (3.441)

The expression within the square bracket is the (parameter dependent) Noether current Jμ

Jμ = Jaμξa =
𝜕ℒ(x)
𝜕(𝜕μφi(x))

Rai (φ)ξa(x) (3.442)

In terms of Jμ, we now have

δℒ(x) = 𝜕μJ
μ +

δS
δφi(x)

δφi(x) (3.443)

This fundamental equation tells us several things.
– If the Lagrangian density is invariant under the transformations, that is, δℒ(x) = 0, then (as we

already know) the Noether current is conserved on-shell.
– We say that we have a symmetry of the action if, without using the equations of motion, we can

write δℒ = 𝜕μjμ.
– For symmetries where jμ vanish on the boundary, we get gauge identities.

The last point will be explicated in the next section.

106 In Section 4.2 we will study the case of non-Abelian gauge transformations.
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3.14.5 Gauge identities – source constraints

From (3.443) we get for currents vanishing on the boundary

δS
δφi

Rai = 0 (3.444)

These identities, called gauge identities, or Noether identities (see Section 3.1.4) hold
independent of the equations of motion. The simplest example is for electromagnetic
field theory where the variation of the action is 𝜕μFμν = ◻Aν − 𝜕ν𝜕 ⋅ A and Rν = 𝜕ν,
where we get 𝜕ν(◻Aν − 𝜕ν𝜕 ⋅ A) = 0 as an identity. Gauge identities are also called
source constraints as we have seen in the historical chapter (see Sections 2.7, 2.8.1).
The reason for this terminology is that if S(0) denotes the action of free fields φi, and if
we attempt to couple these free fields to a current J i through an invariant contribution
φiJ i to the action, then the gauge identity (3.444) reads

(
δS(0)

δφi
− J i)Rai = 0 (3.445)

Since the free action itself satisfies the identity, we get J iRai = 0 which is a constraint
on the source current.

3.14.6 Noether coupling method

TheNoether couplingmethod is another name for the deformation theoretic approach
to deriving interactions in initially free field theories. It was first analyzed in detail for
higher spin byBerends, Burgers and vanDam in themid 1980s [123, 212]. The deforma-
tion theoretic program for higher spin interactions was explicitly formulated by Fang
and Fronsdal [8] based on earlier work on Yang–Mills and gravity. Parts of this history
is told in Chapter 2 (see Sections 2.8.1 and 2.12.2).

The starting point is a free field theory with action S(0), quadratic in the fields φi,
and transformations δ(0)ξ φi linear in derivatives on the parameters but independent of
the fields if we think of the gauge transformations of conventional higher spin theory.
The idea is next to think of the – yet to be constructed – full interacting theory as given
by a (weak field) expansion

S = S(0) + S(1) + S(2) + ⋅ ⋅ ⋅ (3.446)

δξ = δ
(0)
ξ + δ

(1)
ξ + δ

(2)
ξ + ⋅ ⋅ ⋅ (3.447)

where the subscript (n) denotes the power of some expansion parameter g. The power
of fields is n + 2 in the action terms and n in the transformation terms. Demanding
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invariance of the action δξS = 0 then leads to the set of iterative equations

δ(0)ξ S(0) = 0

δ(0)ξ S(1) + δ(1)ξ S(0) = 0

δ(0)ξ S(2) + δ(1)ξ S(1) + δ(2)ξ S(0) = 0

... (3.448)

These equations are analogous to the equations one gets by expanding the gauge iden-
tities (3.444) in powers of the fields

(
δS(0)

δφi
+
δS(1)

δφi
+
δS(2)

δφi
+ ⋅ ⋅ ⋅) (R(0)ai + R

(1)a
i + R

(2)a
i + ⋅ ⋅ ⋅) = 0 (3.449)

There is one difference though. While equations (3.448) are on the level of the action
(so that partial integrations can and must be done) and involve the gauge parameters
ξ , the equations (3.449) are on the level of field equations and are actual identities and
do not involve the gauge parameters. Partial integrations can be done.107

A typical attempt to solve these equations would start with an initially given spec-
trum of higher spin fields and explicit expressions for S(0) and δ(0)ξ φi satisfying the
first, zeroth-order equation. To solve the second, first-order equation (cubic in fields),
one can look for an on-shell solution where S(0) is stationary. Then the cubic action
term must be invariant under the free theory gauge transformations, i. e., δ(0)ξ S(1) = 0,
as is seen from the second of the equations (3.448). In the next step, one determines
δ(1)ξ . We will see how this works out for Yang–Mills theory where the iteration stops
at n = 2 corresponding to quartic order in the action (see Section 4.4). We will in the
course of our development of the subject, encounter this system of equations in sev-
eral guises.

As the system of equations (3.448) and (3.449) stands here, they do not constitute
a complete set of consistency conditions on a higher spin theory. One still must inves-
tigate the gauge algebra, as it is captured be commutators of gauge transformations
and Jacobi identities, and possibly higher order commutators.

It is also apparent from the discussion so far that the fields and the gauge param-
eters are treated in a very different way. A systematic way of capturing all the structure
of a gauge theory; invariance of the action, closure of the gauge algebra, Jacobi iden-
tities and possible higher order structure, is to reformulate the theory in terms of the
BRST-BV field-antifield language. This, however, belongs to Volume 2.

107 There are implicit integrations in (3.449) (hidden in the abstract index i), the field theoretic ana-
logue of the type explained in Section 3.1.4 on mechanics. These can all be done since they involve
delta functions and derivatives on delta functions.
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3.15 Chapter 3 epilogue

This chapter has covered quite a lot of material, some in detail, some superficially.
As stated at the outset, the objective has been to collect in one place concepts and
methods needed in higher spin field theory. There are certainlymore, andwewill have
to introduce some more in the second volume. What can be found above should be
enough to study the free field theory of higher spin fields, as well as the known lower
spin theory for Yang–Mills and gravity.



4 Lower spin theory

In this chapter, wewill work through some aspects of the spin 1 and spin 2 gauge theo-
ries as these may serve as templates for higher spin. Yang–Mills is the cardinal exam-
ple where a few, quite different approaches all produce the same end result. It is also
the best understood example of a gauge theory. For gravity, which originally and con-
ceptually is best understood as a geometrical theory, we will see that problems arise
as soon as we try to view it as a gauge theory.

From a higher spin point of view, Yang–Mills theory is indeed the prototypical
gauge theory of massless fields, in this case for spin 1 fields. The next step up, to spin
2, is considerably more complex both technically and conceptually. The problem of
a gauge theory of gravity, was first approached by R. Utiyama [115] in a paper gener-
alizing the Yang–Mills construction to arbitrary gauge groups. It was followed up by
D. W. Sciama [129, 130] and T.W. B. Kibble [131], and from there on a large literature
has grown.1 The next step again, up to spin 3, requires an infinite tower of higher spin
fields – as surmised by C. Fronsdal in [213] – and is still an open area of research.

There have been many attempts to model spin 2 theory on spin 1 theory – we will
review some of them in due time – and it is only natural to seek clues for a higher
spin theory from the Yang–Mills example. One can indeed say that Yang–Mills the-
ory provides the role model for the gauge principle. It can be approached either with
a minimum of mathematical apparatus, or with much more sophisticated concepts.
In the first two sections to follow, we will treat Yang–Mills theory as an example of
the gauging method. This approach has two aspects to it: a kinematical part which is
fairly straightforward and can be formalized for a wide class of theories, and a non-
trivial dynamical part. As far as known at the present, the dynamical part can only
be approached one theory at a time. To dampen hope – for a simple route from spin 1
via spin 2 to higher spin – it is a fact that the only physical interesting theory that has
been fully constructed2 by the gauging method – without knowing the end result be-
forehand – is Yang–Mills theory itself. Nevertheless, it is one of our few solid stepping
stones toward higher spin theory.

4.1 Gauge fixing and counting degrees of freedom

Let us start with the free field theories of massless lower spin particles in order to
prepare the ground for higher spin fields in the next chapter. In particular, we need to
clarify certain points about countingnumber of degrees of freedomandgauge choices.
To begin, a massless spin zero particle is represented by a scalar field satisfying the

1 See the reprint volume [135] which also contains useful introductory essays on the subject.
2 By which is here meant: there is a gauge invariant Lagrangian.

https://doi.org/10.1515/9783110451771-004
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massless Klein–Gordon wave equation

◻ϕ = 0 (4.1)

There is of course no gauge invariance in this case. The field carries one dynamical
degree of freedom. However, the equation is a second-order PDE and in order to solve
it completely one would need to specify Cauchy initial value data. Essentially, this
involves specifying the space variation of the field and its first time derivative at some
initial time.3 Having done this, in principle, we think of the fieldϕ as propagating one
dynamical degree of “field” freedom.

Next, consider the spin one Maxwell field Aμ with wave equation

◻Aμ − 𝜕μ𝜕 ⋅ A = 0 (4.2)

invariant under the gauge transformation

δAμ = 𝜕μξ (4.3)

The vector field contains four components. The gauge can be partly fixed by the co-
variant Lorenz condition

𝒢 = 𝜕 ⋅ A = 0 (4.4)

To fix a gauge, the freedom in the arbitrary gauge function ξ must be used, at least
partly. Under a gauge transformation Aμ → Aμ + 𝜕μξ , the gauge condition transforms
as 𝜕 ⋅ A → 𝜕 ⋅ A + ◻ ξ . Thus, to stay in the gauge, the gauge parameter must satisfy a
wave equation ◻ ξ = 0 by itself. This is a very weak condition on ξ , in fact still leaving
it with one propagating degree of freedom. This d. o. f. can be used to “gauge away”
one more component of the vector field. This is called regauging. The situation is now
the following. The covariantly gauge fixed field is subject to the two equations

◻Aμ = 0 𝜕 ⋅ A = 0 (4.5)

both of which are invariant under gauge transformations with a parameter satisfying
◻ ξ = 0. The gauge condition removes one d. o. f. while the regauging removes one
more d. o. f., all in all leaving two propagating components corresponding to the two
helicity components.

It is interesting to repeat the analysis for a free spin two field. Now the wave equa-
tion reads

◻hμν − 𝜕μ𝜕 ⋅ hν − 𝜕ν𝜕 ⋅ hμ + 𝜕μ𝜕νh
󸀠 = 0 (4.6)

3 Subtleties that may occur is not important for this general discussion. In the case of a bounded
region of space, boundary data has to be supplied also.
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where h󸀠 is the trace of hμν. The wave equation is invariant under the gauge transfor-
mations

δhμν = 𝜕μξν + 𝜕νξμ (4.7)

A covariant gauge choice is now given by the de Donder condition

𝒢μ = 𝜕 ⋅ hu −
1
2
𝜕μh
󸀠 = 0 (4.8)

The gauge variation of 𝒢μ is δ𝒢μ = ◻ ξμ. Therefore, to stay in the gauge, it is enough for
the parameters to satisfy wave equations ◻ ξμ = 0. We thus still have the possibility to
regauge four components of the spin 2 field. The gauge condition removes four degrees
of freedom and so does the regauging, leaving us with two propagating components.
Wewill see (Section 5.1.1) that this pattern continues for higher spin fields with certain
complications.

Spin 1 and 2 Fronsdal tensors and Bianchi identities

Let us streamline the equations in terms of tensors ϕμ and ϕμν , where ϕμν is symmetric in its indices.
For these fields, we introduce Fronsdal tensors

ℱμ = ◻ϕμ − 𝜕μ𝜕 ⋅ ϕ (4.9)

ℱμν = ◻ϕμν − 𝜕μ𝜕 ⋅ ϕν − 𝜕ν𝜕 ⋅ ϕμ + 𝜕μ𝜕νϕ
󸀠 (4.10)

where ϕ󸀠 = ημνϕμν . These tensors are invariant under the gauge transformations

δϕμ = 𝜕μξ (4.11)

δϕμν = 𝜕μξν + 𝜕νξμ (4.12)

respectively. For free field equations, we have ℱμ = 0 and ℱμν = 0. For spin 1, we note that ℱμ is
subject to a differential identity 𝜕μℱμ = 0. For spin 2, we first introduce the “Einstein” tensor (the
linearized Einstein tensor of GR)

Gμν = ℱμν −
1
2
ημνℱ
󸀠 (4.13)

In terms of this tensor we have the spin 2 “Bianchi” identity 𝜕μGμν = 0.

4.2 Yang–Mills theory (I) – algebraic version

The non-Abelian SU(2) gauge theory of isotopic spin was constructed in 1954 by C. N.
Yang and R. L. Mills [114]. It subsequently developed over several decades into becom-
ing the backbone of the Standard Model. We will now reconstruct Yang–Mills theory
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with aminimumof apparatus.We are aiming for a field theory of self-interactingmass-
less spin 1 fields. Assume therefore that the gauge field is valued in a simple compact
Lie group G.4 We can represent it either explicitly with a Lie algebra index a as Aaμ(x)
or as Aμ = Aaμ(x)T

a where Ta are the anti-Hermitian traceless N × N matrices of the
algebra. In analogy with electromagnetism (see formula (2.5)), we expect to introduce
covariant derivatives Dμ = 𝜕μ + Aμ encoding minimal coupling. The gauge coupling
constant you would perhaps expect here is absorbed into the field.5 The field strength
Fμν should be given by the commutator of covariant derivatives. Let us nowderive this,
in the standard fashion, by promoting a global symmetry to a local one by themethod
of gauging.

To start with, there are not any massless spin-1 gauge fields; instead, we think of
a Lagrangian density ℒM(φi, 𝜕μφi) for a set of matter fields φi(x), invariant under a
global symmetry transformation

δφi(x) = −ξ
a(Ta)ijφj(x) (4.14)

which is the infinitesimal form of the group rotations

φ(x) 󳨃→ φ󸀠(x) = U(ξ )φ(x) = exp(−ξ aTa)φ(x) (4.15)

The matrices T are particular to the representation that the matter fields transform
under, but they always satisfy the commutation relations (3.382).

Typically we would have a matter Lagrangian

ℒM(φi, 𝜕μφi) = −
1
2
(𝜕μφ̄i𝜕

μφi +m
2φ̄iφi) (4.16)

When the parameters ξ a are taken as arbitrary functions of position, the kinetic term
will not be invariant since the derivative of the fields will transform as

δ(𝜕μφi(x)) = −ξ
a(x)(Ta)ij𝜕μφj(x) − 𝜕μξ

a(x)(Ta)ijφj(x) (4.17)

The offending terms can be compensated for by introducing6 a new fieldAaμ(x) and the
corresponding covariant derivative

Dμ = 𝜕μ + A
a
μT

a ≡ 𝜕μ + Aμ (4.18)

4 A thorough discussion on the restrictions on the groups and concomitant details of the formalism
can be found in [139].
5 The relative sign between the derivative and the field, is a matter of convention. Furthermore, the
derivative term should also be thought of as being multiplied by a unit matrix of the same dimension
as the Lie algebra matrices.
6 For a critical discussion of the necessity of this step, see [267].
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Then we require the covariant derivative to transform in the same way as the field in
order to restore invariance of the kinetic term in the action. That is, we require

δ(Dμφi(x)) = −ξ
a(Ta)ij(Dμφj(x)) (4.19)

From this follows the transformation law for the gauge field

δAaμ = 𝜕μξ
a + f abcAbμξ

c or δAμ = 𝜕μξ + [Aμ, ξ ] (4.20)

It is clear from the computations that in contrast to electromagnetism, the Yang–Mills
fieldmust be a self-interacting field which is reflected in the transformation law. Phys-
ically it must be so since it carries non-Abelian charge. This is also evident from com-
puting the field strength as the commutator of two covariant derivatives

Fμν = [Dμ,Dν] = 𝜕μAν − 𝜕νAμ + [Aμ,Aν] (4.21)

This non-Abelian field strength Fμν = FaμνT
a can also be expressed explicitly as

Faμν = 𝜕μA
a
ν − 𝜕νA

a
μ + f

abcAbμA
c
ν (4.22)

The field strength transform homogeneously as

δFaμν = f
abcFbμνξ

c or δFμν = [Fμν , ξ ] (4.23)

The gauge invariant action for the gauge field is

ℒYM = −
1
4g2

FaμνFaμν =
1
2g2

Tr(FμνFμν) (4.24)

where g is the gauge coupling constant. It is interesting to expand the Yang–Mills
Lagrangian density in powers of the fields. For this, we redefine the gauge fields as
A→ gA. Then

ℒYM = −
1
2
(𝜕μAaν𝜕μA

a
ν − 𝜕

μAaν𝜕νA
a
μ)

− gf abcAaμAbν𝜕μA
c
ν −

1
4
g2f abef cdeAaμAbνAcμA

d
ν (4.25)

Even expanded like this, it is a very simple and beautiful Lagrangian. We also record
the field equations that follow from this form of the Lagrangian,

Faν = 𝜕
μ(𝜕μA

a
ν − 𝜕νA

a
μ) − gf

abc (Abμ𝜕νA
c
μ + A

b
ν𝜕 ⋅ A

c − 2Abμ𝜕μA
c
ν)

− g2f abef cdeAbμAcνA
d
μ = 0 (4.26)

The equations can be written in a compact way as

Faν = (D
μFμν)

a ≡ 𝜕μFaμν + gf
abcAbμFcμν = 0 (4.27)

where we have rescaled f abc → gf abc in the formulas for Dμ and Faμν.
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4.3 Yang–Mills theory (II) – geometric version

Wewill do the geometric approach in two stages: as a direct “calculus” application of
exterior algebra, and then indicate a more sophisticated “analysis” approach.

4.3.1 Yang–Mills on differential forms – calculus

As we will see, when Yang–Mills theory is formulated based on differential forms,
there is no formal difference between the theory in curved space-time as compared
to flat space-time.7 Let us start with the “calculus” of forms.

The basic idea is to think of a covariant vector Vμ as 1-form V

V = Vμdx
μ (4.28)

where the differentials dxμ are basis elements in cotangent space. In particular, the
derivative operator 𝜕μ, which transforms as a covariant vector, is represented as d =
dxμ 𝜕μ. Likewise, any antisymmetric covariant tensor Vμν is represented as

V = Vμνdx
μ ∧ dxν = Vμνdx

μdxν (4.29)

where in the second equality thewedge product∧ is suppressed, as is often donewhen
confusion is not likely to occur.

With respect to Lie algebras, there is an extra bonus to this formalism. Consider a
1-form A valued in a Lie algebra A = AaμTadx

μ. Then perform the following computa-
tion:

A2 = A ∧ A = AaμTadx
μ ∧ AbνTbdx

ν =
1
2
(AaμTaA

b
νTb − A

b
νTbA

a
μTa)dx

μ ∧ dxν

=
1
2
AaμA

b
ν [Ta,Tb]dx

μ ∧ dxν = 1
2
f c
abA

a
μA

b
νTcdx

μ ∧ dxν

=
1
2
[Aμ,Aν]dx

μ ∧ dxν (4.30)

The formula can be derived directly without going through the explicit T-matrix alge-
bra. Now applying this formula to Yang–Mills we immediately get

dA + A2 = d ∧ A + A ∧ A = 1
2
FaμνTadx

μ ∧ dxν ≡ 1
2
F (4.31)

If the gauge group is Abelian, then A2 = 0. Although, potentially confusing, one can
write the quadratic term in the field strength as 1

2 [A,A] or perhaps better
1
2 [A,A]∧ in-

7 When it comes to solutions of the field equations, the geometry and topology of the underlying
manifold is of course of crucial importance. For reviews, see [268, 269].
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dicating that the commutator product is the wedge product (so that the bracket is for-
mally symmetric). The following formula is useful:

A ∧ B = 1
2
Aa ∧ Bb[Ta,Tb] =

1
2
AaμB

b
ν [Ta,Tb]dx

μ ∧ dxν ≡ 1
2
[A,B]∧ (4.32)

The gauge transformations can be written as

δA = dξ + [A, ξ ]∧ (4.33)

where the wedge product is understood in the first term, although it is trivial there
since the gauge parameter is a 0-form given by ξ = ξ aTa. The field strength transforms
as follows in this formalism:

δF = [F, ξ ]∧ (4.34)

Referring back to example 6 and equation (3.378) on page 199, we can write the Yang–
Mills action in form language as

SYM = −
1
4g2

Tr∫
M

∗F ∧ F (4.35)

This way of writing the action is valid also in Riemannian spaces.

4.3.2 Fiber bundles for Yang–Mills – analysis

We now turn to the reformulation of Yang–Mills theory in terms of fiber bundles. In
the calculus version of geometric Yang–Mills theory, we do not worry about where the
gauge fields are “valued”. This can be remedied by introducing the concept of a fiber
bundle,with space-time as the basemanifold, and the gauge group as the typical fiber.
What we have then is a principal fiber bundle, meaning that the structure group of the
typical fiber is the fiber itself (see Section 3.12.2). The connection on this fiber bundle
is the gauge field Aaμ itself. This should be evident from its index structure and the role
it plays in the gauge covariant derivative.

The basic algebraic formulation of the theory is precisely the same as in the calcu-
lus version. The reason we now call it “analysis” rests with the greater mathematical
strength provided by the fiber bundle formulation. For instance, global topological
propertiesmaybe addressed since the principal bundle actually is a topological space.
Although locally it has a direct product structure, that need not be so globally.8 Fur-
thermore, the theory can be formulated on curved Riemannian space-times, not just
Minkowski space-time.

8 An old but readable introductory review of Yang–Mills geometry is M. F. Atiyah’s [268].
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The gauging method – bottom line on kinematics

From [T a, T b] = f abcT c with ξ = ξaT a, the gauge algebra can be expressed as [ξ1, ξ2]a = f abcξb1 ξ
c
2 . The

Jacobi identity holds for the bracket [ξ1, ξ2]a. The kinematic part of gauging amounts to associating a
gaugefieldAaμ to eachgenerator T

a, transforming asδAaμ = 𝜕μξ
a+[Aμ, ξ]a. Field strengths F aμν , or curva-

tures, are definedas F aμν = 𝜕μA
a
ν−𝜕νA

a
μ+[Aμ,Aν ]

a transforminghomogeneouslyasδF aμν = [Fμν , ξ]
a. Note

particularly that all brackets in these expressions goes back to the gauge algebra bracket [ξ1, ξ2]a.
Thus the structure of the algebra governs the transformations of the gauge fields, the definition of the
curvatures and their transformations, as well as the covariant derivative Dμ = 𝜕μ + Aμ.

This kinematic gauge theory structure must be tailored to the kind of theory at hand,
but it remains essentially a basic ingredient in any gauge theory. Dynamics – for the
gauge fields themselves – is however more difficult to introduce.

The reader may have noted that we did not provide much in the way of motiva-
tions for the Lagrangian (4.24) for the gauge field itself. What one can offer is that it
is the simplest object that is Poincaré invariant, gauge invariant and with a kinetic –
free field theory – term of second order in derivatives. This, and some basic intuition
and experience, was enough to guess the Yang–Mills Lagrangian. This may give the
impression that the dynamics step is easy. That is not so.

4.4 Yang–Mills theory (III) – Noether coupling version

As a prototypical example of the Noether coupling (deformation theoretic) approach
to gauge theory we will now work through Yang–Mills theory in some detail. We will
explicate the calculation in the formalism (3.449), leaving the corresponding compu-
tations in the formalism (3.448) to the reader.

Since we already have the Yang–Mills equations of motion we will start by check-
ing the known solution. To zeroth order in the coupling we have the equation

δS(0)

δAaμ
R(0)abμ = 0 (4.36)

with

{
δS(0)/δAaμ = ◻A

a
μ − 𝜕μ𝜕 ⋅ A

a

R(0)abμ = δ
ab𝜕μδ(x − y)

(4.37)

Then using the implicit integration over the space-time variable y in (4.36)we find that
the equation is identically fulfilled. Then to first order in the coupling we have

δS(1)

δAaμ
R(0)abμ +

δS(0)

δAaμ
R(1)abμ = 0 (4.38)
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with the known term from (4.26)

δS(1)

δAμa
= −gf abc(Aνb𝜕μA

c
ν − A

νb𝜕νA
c
μ + 𝜕

ν(AbμA
c
ν)) (4.39)

we now get (remember partial integration of 𝜕μ)

δS(1)

δAaμ
R(0)abμ = gf

bcdAνc(◻Adν − 𝜕ν𝜕 ⋅ A
d) (4.40)

Then inserting this expression in the equation (4.38) we can identify the first-order
gauge transformation R(1) according to the scheme

δAaμ = R
(0)ab
μ ξ b + R(1)abμ ξ b (4.41)

That is

δS(0)

δAaμ
R(1)abμ = −gf

bcdAνc(◻Adν − 𝜕ν𝜕 ⋅ A
d) (4.42)

which gives

R(1)abμ = −gf
abcAcμ (4.43)

This gives the correct first-order gauge transformations.
In the literature, this procedure is often described as solving the equations

δ(0)S(1) = 0 since δ(1)S(0) = 0when the free field equations are satisfied. Then “reading
off” the first-order gauge transformations. That is confusing as a description of the
procedure. A better description is to say that one takes an ansatz for the first-order
interaction and computes the zero-order gauge variation on the ansatz and then tries
to rewrite the result as a transformation of the free field equations. Then the first-order
gauge transformations can indeed be “read off”.

To the next order, we have

δS(2)

δAaμ
R(0)abμ +

δS(1)

δAaμ
R(1)abμ +

δS(0)

δAaμ
R(2)abμ = 0 (4.44)

The first two terms can now be computed. They turn out to add up to zero due to the
Jacobi identity for the structure constants (and total antisymmetry). Therefore, there
are no second order contribution to the gauge transformations andwe have R(2)abμ = 0.

One may now perform these computations on an ansatz for the cubic couplings.
Referring back to the Ogievetskij–Polubarinov analysis (see formula (2.187) in Sec-
tion 2.9.3), there is actually just one type of term to write down; however, without any
assumption as to the nature of the coupling constants. For the second-order equation
(4.44), one also needs an ansatz for the δ(2)S/δA term. The computations get a bit in-
volved, but one may anticipate what will happen from dimensional analysis. The two
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first terms in (4.44) have the overall structure of 𝜕A3. Since δ(0)S/δA already contain
two powers of derivatives, there is no possible local R(2) term to write down. It should
also be clear that the Jacobi identity for the coupling constants will be a result of the
computations. We leave it to the reader to sort out the details.

4.5 General relativity and its generalizations

There are many good texts on general relativity9 and a standard review will not be
attempted here. Instead, we will pursue the subject as it sits, so to speak, between
Yang–Mills theory and higher spin theory while emphasizing topics that seem to be
particularly relevant for higher spin.

To avoid confusion in the sequel when we discuss various types of space-times,
we will reserve general relativity with the abbreviation GR for standard Einstein gen-
eral relativity in the terminology to follow: Riemannian space-time, that is, space-time
with a covariantly constantmetric andno torsion, andwhere themetric is dynamically
determined by the Einstein field equations.10 This is in accordance with the terminol-
ogy of [135]. Occasionally, the wordings “standard general relativity” or “Einstein gen-
eral relativity” will be used for GR.

The purpose of this section is to discuss various different space-times and struc-
tures defined on them in relation to the gauge theory approach to gravity. The back-
drop to this enterprise is the concept of a manifold in the differential geometric sense.
It comes with its infinite set of coordinate systems and its tangent and cotangent
spaces, but nothing more. To get going, let us first define the metric and the vierbeins
and investigate some properties of these objects.

4.5.1 The metric and the vierbeins

The metric is a symmetric covariant tensor gμν. Under a coordinate transformation
xμ → x󸀠μ(x), it transforms as

g󸀠μν(x
󸀠) =
𝜕xα

𝜕x󸀠μ
𝜕xβ

𝜕x󸀠ν
gαβ(x) (4.45)

Themetricmeasures the distance dτ between two infinitesimally nearby points xμ and
xμ + dxμ

dτ2 = −gμν(x)dx
μdxν (4.46)

9 Some of which have been useful in my own writing are [270, 243, 127, 271].
10 Somewould say that Lorentzian (or pseudo-Riemannian) is a better designation than Riemannian,
but the qualifier space-time should be enough to remove any confusion as to the signature of the met-
ric.
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At each point P in space-time, there is – according to the Equivalence Principle (EP) –
a freely falling inertial coordinate system with coordinates ξ αP (x). Special relativity is
valid in this system, and the proper time is given by the corresponding formula (3.84).
Of the infinitely many possible coordinate systems available at the point P, let xμ de-
note a generic one. Consider the coordinate transformation ξ αP → xμ(ξ ) from the in-
ertial system ξ to the “curved” system x. Then applying the transformation formula
(4.45), we get

gμν(x) =
𝜕ξ αP
𝜕xμ
𝜕ξ βP
𝜕xν

gαβ(ξ ) (4.47)

On the right-hand side, the metric gαβ(ξ ) is then the constant Minkowski metric ηαβ.
This formula can be used to introduce vierbein fields. In order to do that, we first trade
the label P for “flat” Minkowski coordinate labels a, b, c, . . . thus writing the formula

gμν =
𝜕ξ a

𝜕xμ
𝜕ξ b

𝜕xν
ηab (4.48)

The derivatives that occur in this formula define the vierbein fields or tetrads

e a
μ (x) =

𝜕ξ a(x)
𝜕xμ

(4.49)

and we can write the well-known formula for the metric in factors of the vierbeins

gμν = e
a
μ e

b
ν ηab (4.50)

The vierbeins can be inverted through the formula

eμa = ηabg
μνe b

ν (4.51)

and we get

eμae
ν
bgμν = ηab (4.52)

an equation that expresses the orthonormality of the tetrad basis eμa.

The inverse metric

The metric gμσ (a covariant tensor) is invertible, and its inverse gσν (a contravariant tensor) is defined
through the formula

gμσg
σν = δνμ (4.53)

where on the right-hand side we have the Kronecker tensor δνμ. It is the only tensor, apart from con-
stants and scalars, that are the same in all coordinate systems. It has nothing in particular to do with
the Minkowski metric.
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The vierbeins can be used to – as it is expressed – convert between “world” (“curved”)
indices μ and “inertial” (“tangent”) indices a. What it actually does is to transform the
coordinate basis dxμ of the cotangent space to an orthonormal noncoordinate basis ea

according to

ea = e a
μ dx

μ (4.54)

The established mathematical terminology for the 1-form field ea is coframe (“co” as
in cotangent).11 Likewise, the inverse vierbein eμa transforms the coordinate basis 𝜕μ
in tangent space to a noncoordinate orthonormal basis, or frame ea

ea = e
μ
a𝜕μ (4.55)

The frames and coframes are vector space duals in the ordinary sense of linear
algebra, as the following short calculation shows

⟨ea, eb⟩ = ⟨e
a
μ dx

μ, eνb𝜕ν⟩ = e
a
μ e

ν
b⟨dx

μ, 𝜕ν⟩ = e
a
μ e

ν
bδ

μ
ν = δ

a
b (4.56)

where we have used (3.372).
The vierbeins e a

μ themselves, being 4 × 4 asymmetric matrices, have 16 compo-
nents, whereas the symmetric metric gμν has only 10 components. The 6 extra compo-
nents of the vierbeins correspond to the possibility ofmaking Lorentz transformations
in the tangent space. There are therefore many noncoordinate bases ea that yield the
same metric, related by the transformation

ea → e󸀠a = Λa
be

b (4.57)

where the transformation matrix Λa
b depends on x. Since the dual basis transforms

as

ea → e󸀠a = (Λ
−1)baeb (4.58)

it is clear that the metric is invariant under such local Lorentz transformations.

Pause for thinking

It is important to realize that the local inertial systems are in fact local. Their role is to transform away
the effects of the gravitational field locally. There is just one inertial system, modulo Lorentz transfor-
mations, at each point in space-time. The terminology alluded to in text: “curved” or “world” indices
and “inertial” or “tangent” indices also needs clarifying. It is a very common usage in theoretical

11 In the higher spin literature, the 1-form description of higher spin fields goes under the name
“frame-like” formulation. ‘Coframe-like” formulation would perhaps be more appropriate.
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physics, and while the meaning is fairly clear, it is potentially confusing if one pauses for thinking.
According to the differential geometric view, all coordinate systems are in fact mappings into “flat”
space-times (see Section 3.10). For any particular such coordinate system, one can contemplate the
tangent and cotangent space-times. These are vector spaceswith natural coordinate bases 𝜕μ anddxμ,
respectively. Gravity may still be felt in these spaces. In fact, the existence of tangent and cotangent
spaces have nothing to do with the existence of a metric. All tensors live in tangent- and cotangent
space-time.

Then a coordinate transformation can be done into the inertial system (at the point) and the ba-
sis in this system is precisely given by ea = e a

μ dxμ. The special role played by the inertial system
motivates the use of special indices a,b, c, . . .. As we move around in space-time, the inertial coordi-
nates change.Within an inertial system, one canmake Lorentz transformations. Thus understood, the
wordings “world” indices and “tangent” indices, and the like, are convenient shorthand.

Note that the basis vectors ea do not commute in general. A short computation yields

[ea, eb] = −Ω
c

ab ec where Ω c
ab = e

μ
ae

ν
b(𝜕μe

c
ν − 𝜕νe

c
μ) (4.59)

where Ω c
ab are the anholonomy coefficients, also called Ricci rotation coefficients. The

coordinate basis is holonomic whereas the orthonormal basis is not. It is possible to
set up other tetrad bases with eμaeνbgμν = gab for some desiredmetric gab. Such a basis
is not orthonormal unless gab = ηab.

A notational issue

In this context, we note a potentially confusing notational issue that may arise if one thinks of the
coordinate basis 𝜕μ as a particular frame, namely with e

μ
a = δ

μ
a. Then one might be tempted to write

ea = 𝜕a, thinking of δ μ
a as Kronecker delta. Then it seems that one loses the distinction between

“world” and “tangent” indices/spaces. This, however, may be understood from the discussion in the
box above. The derivatives 𝜕μ are actually computed locally in tangent space-time, as are the 𝜕a deriva-
tives. On the other hand, δμa cannot be a Kronecker delta. The Kronecker deltas δ

μ
ν and δ

b
a are the only

tensors, apart from scalars, that are the same in all coordinate systems. Then the formula δμa = e
ν
aδ

μ
ν

show that δμa is a vierbein, and not a fixed Kronecker delta.
On the other hand, one may be tempted to use δ a

μ for a Minkowski vierbein, and it seems that
we get a notational clash. That is indeed the case. It may be resolved by the following reasoning. In
the first case, when one thinks of the coordinate basis as a particular frame, we have no coordinate
transformation, just the coordinate map to flat space-time, and therefore the vierbeins are δ a

μ . For
this, we may not need any notation and we may choose not to use δ in this way, reserving δ a

μ for the
Minkowski vierbein But then onemust be aware of the fact that the whole space isMinkowski, not just
locally. In this case, δμa is a Kronecker delta and there is no distinction between “curved” and “flat”
indices. Local inertial frames can obviously not be denoted by δμa.

In a perturbative approach to gravity, where one thinks in termsof aweakspin 2 field propagation
in a space-timebackground,wewill use the symbolh for thebackgroundmetric or vierbeins. Fromhere
on, e a

μ and gμν will be used for a general tetrad and metric, respectively. Anticipating working in AdS
space-time, we will use the symbol h for a background vierbein or metric (with appropriate indices).
In case of Minkowski background, we use h = η.
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This discussion is not entirely without bearing on the higher spin problem since in
settingupabasicmachinery formaintaining an infinite spectrumof higher spin fields,
one has to make choice as to how to represent these fields. The Vasiliev theory makes
one such choice, to which we will come to in Volume 2.12

Mind bending questions in the elevator

The frames can be thought of as setting up freely falling, local inertial systems. Such a freely falling
inertial system at a point P is sometimes pictorially referred to as the Einstein elevator. The formulas
(4.57) and (4.58) tell us that we can perform Lorentz transformations in the elevator. Physically, it is
clear that rotating the coordinate system makes no difference. Also, boosting it must be allowed. It
will fall a little faster, or slower, but adding or subtracting a constant velocity make no difference.

But what about translations? Would not a translation of the elevator bring it to another point
where the gravitational field is different? And come to think of it, will not the falling elevator anyway
move into new points with different gravitational fields? Is everything going haywire? But must not
one think infinitesimally, and not too literally? The elevator is indeed falling into different points, but
is not that supposed to be taken care of by the frame field that defines new elevators as it falls? The ac-
celeration is not constant unless the gravitational field is homogeneous. As for translations, an active
translationwould bring the elevator to another point, but would not a passive translation – amounting
to a change of origin in the elevator – be just fine? These questions do arise again when we consider
local Poincaré transformations in gauge theory approaches to gravity.

4.5.2 Connections

Connections on amanifold is a concept initially independent of the existence of amet-
ric or not. It has to do with comparing vectors at different points in the manifold, or
parallel transporting them. Consider a covariant vector Vν. Using infinitesimal linear-
ity, displacing the vector from the point xμ to the point x󸀠μ = xμ + dxμ, the change dVν
(at the point x) is expected to be

dVν = Γ
λ

μν Vλdx
μ (4.60)

for some object Γ λ
μν – the affine connection – that parametrizes the way the vector

change. Then computing the difference between the vector at the point x󸀠, that is,
Vν(x󸀠), and the parallel transported value Vν(x) + dVν(x), we get

Vν(x
󸀠) − (Vν(x) + dVν(x)) = (𝜕μVν − Γ

λ
μν Vλ)dx

μ = (∇μVν)dx
μ (4.61)

Sign and index conventions in (4.60), are chosen so that the result is consistent with
the action of the covariant derivative on the vector.

12 One cannot escape the feeling that the technical problems that face all approaches to higher spin
theory, has deep conceptual roots, possibly in relation to the structure of space-time.
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As we will have occasion to discuss in more detail in the following, the affine con-
nection is a structure that is added to themanifold. Thismay appear a little odd at first
thought. After all, vectors live in the tangent spaces of the manifold – in the tangent
bundle to be precise – and should not that structure be determined by the manifold
in question? That is true, but the point is that each fiber contains an infinite set of vec-
tors, andwe still have to decide howa certain vector in a fiber gets parallel transported
to another fiber. That is what the affine connection tells.

4.5.3 Curvature and the Riemann tensor

Once there is a connection on the space-time, we can define covariant derivatives as
in equations (3.412) and (3.414). The Riemann curvature tensor can be computed from
the commutator of covariant derivatives. Explicitly, one gets

[∇μ, ∇ν]Vσ = −R
α

μνσ Vα − T
α

μν ∇αVσ (4.62)

[∇μ, ∇ν]V
σ = R σ

μνα Vα − T α
μν ∇αV

σ (4.63)

The torsion terms drop out for a symmetric connection.13 In any way, the curvature
tensor works out to

R σ
μνρ = 𝜕μΓ

σ
νρ − 𝜕νΓ

σ
μρ + Γ

σ
μλ Γ λ

νρ − Γ
σ

νλ Γ λ
μρ (4.64)

where Γ still denotes the affine connection, possibly containing a torsion term.
The covariance of the covariant derivative and the curvature tensor follows from

the nonhomogeneous transformation law (3.413) for the affine connection. This is in-
dependent of any metric on the manifold. Given the formal similarity to the corre-
sponding Yang–Mills concepts, this fact is clearly interesting from a higher spin per-
spective. Can one think of the connection as a gauge field and the curvature as the
field strength? Let us pause this question and take it up in Section 4.6.

It is clear from the formulas (4.62) and (4.63) for the commutators of covariant
derivatives on vectors, that the curvature is antisymmetric in the first two indices μ
and ν

R σ
(μν)ρ = 0 (4.65)

This is also obvious from the explicit formula (4.64). Since the commutator of covari-
ant derivatives must satisfy the Jacobi identity, one can derive further identities14

R σ
[μνρ] − ∇[μT

σ
νρ] + T

α
[μν T σ

ρ]α = 0 (4.66)

13 Torsion is defined in Section 3.13.2. What actually comes out of the computation of, for instance,
(4.62), is just −(Γ α

μν − Γ
α

νμ )∇αVσ . No more explicit formula for the torsion can result from this type of
calculation.
14 To derive the second identity, the first is needed.
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∇[μR
λ

νρ]σ − T
α
[μν R λ

ρ]ασ = 0 (4.67)

In the case of zero torsion, the two equations (4.66) and (4.67) are referred to as the first
(algebraic) Bianchi identity and the second (differential) Bianchi identity, respectively.

Antisymmetrization and cyclic sums

The notation [. . .] enclosing a set of indices means total antisymmetrization with weight 1 in analogy
to how (. . .) denotes total symmetrization. For instance, A[μBνρ] = AμBνρ − AμBρν + AρBμν − AρBνμ +
AνBρμ −AνBμρ. If the tensor Bμν happens to be antisymmetric, then the antisymmetrization is equal to
twice the cyclic sum, that is, A[μBνρ] = 2(AμBνρ + AνBρμ + AρBμν ).

By lowering the contravariant index on the curvature tensor, it can be written in co-
variant formasRμνρσ . The question then arises as to further index symmetry properties
of the curvature tensor. These are the facts: the curvature tensor can be defined with-
out any reference to ametric, it only needs a connection, then no further general index
symmetry properties follow. When a metric is present to raise and lower indices, one
can compare the two equations (4.62) and (4.63).15 It then follows, under the assump-
tion that the metric is covariantly constant ∇ρgμν = 0, that the curvature tensor Rμνρσ
is antisymmetric also in the second set of indices ρσ.

From the Riemann tensor, one can compute the Ricci tensor and the curvature
scalar by contracting indices. The Ricci tensor Rμρ is defined as

Rμρ = R
ν

μνρ (4.68)

In the case of antisymmetry in both sets of indices on the curvature tensor, the Ricci
tensor is essentially the unique trace of the curvature tensor. The Ricci tensor is in
general not symmetric. Contracting once more with the metric yields the curvature
scalar R

R = Rμρg
μρ (4.69)

If the torsion is zero, then the curvature tensor Rμν,ρσ is symmetric in interchang-
ing the index groups μν and ρσ. The tensor therefore has the symmetry of the Young
tableaux (see Section 5.7.4)

μ ρ
ν σ

(4.70)

In this case, it follows that the Ricci tensor is symmetric.

15 Note the conspicuous different signs in front of the curvature terms.
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Index groups

When later on generalizing to higher spin, it will be convenient to explicitly distinguish different sets
of indices, and we will have occasion to write the curvature tensor as Rμν ,ρσ = Rμνρσ with a comma
to separate the index groups. These index groups may be subject to relations. For entirely unrelated
index groups, we will write for instance Tμν|ρσλ. Never, in this book, is a comma to be interpreted as
denoting a derivative.

4.5.4 Space-times

In Sections 3.10 and 3.13, we recapitulated the basic facts about manifolds and coor-
dinate transformations. In order to “do physics” in such a manifold, we need more
structure. For this structure, there are choices to be made. We will go trough them in
some detail here. These are choices thatmay have bearing on the higher spin problem.
The basic four-dimensional manifold will be denoted by X4 or just X. It comes with its
tangent and cotangent spaces, but to begin with, no further structure: no metric, no
connection, no curvature.16 There is a sequence of space-times: L4, L4,g , U4, V4, A4
andM4, depending on the structure added, that are often discussed in this context.

Affinely connected space-time L4
Covariant vector fields, varying from point to point, take their values in the tangent
spaces. But since the tangent spaces vary from point to point, there is no notion of
parallelism, or of a vector field being constant in X4, or even of comparing vectors
at different points. The extra structure needed for that purpose is the affine connec-
tion Γ. As we have already seen in Section 3.13.2, the affine connection also enters the
covariant derivative. This is only natural since computing derivatives entails form-
ing infinitesimal differences involving neighboring points. Connections allow us to
construct well-behaved notions of differentiation. Endowing the manifold X4 with an
affine connection Γ yields an affinely connected space-time L4.

The affine connection should be thought of as structure added to the manifold.
At this stage then, the only information about the connection is that it provides for
a covariant derivative and parallel transport of vectors. It can be any field with these
properties and the transformation law of equation (3.413). The affine connection Γ λ

μν
is asymmetric in its covariant indices μν so we split it in a symmetric Γ λ

(μν) and an
antisymmetric part Γ λ

[μν] according to Γ λ
μν =

1
2 (Γ

λ
(μν) + Γ

λ
[μν] ). The anti-symmetric

16 For readable texts, with historical comments, on thematerial presented here, see Chapter 2 of [128]
and the commented reprint volume [135]. More details are provided by [133], which is partly written
from the gauge theory of gravity perspective. See also Chapter 1 of [127].
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part defines the torsion tensor

T λ
μν = Γ

λ
[μν] = Γ

λ
μν − Γ

λ
νμ (4.71)

The torsion is indeed a tensor as the nonhomogeneous part of the transformation law
(3.413) drops out of the transformation for the antisymmetric part.

Affinely connected metric space-time L4g
The next structure to add to the manifold is themetric gμν. It is introduced, as we have
seen, by considering the invariant proper time dτ expressed in a freely falling coordi-
nate system ξ α and in an arbitrary coordinate system xμ through

dτ2 = −ηabdξ
adξ b = −gμνdx

μdxν (4.72)

which leads to the formula (4.48) for the metric.
So far, the metric is not dynamic. It is a function of the arbitrary coordinates. On

the other hand, in general relativity where the metric is determined by the Einstein
equations, the coordinates are determined by only up to general covariance. We are
not yet there. What we have, for now, is an affinely connected metric space-time de-
noted by L4,g .

In standard Einstein general relativity, where the torsion is zero, the relation be-
tween the affine connection and the metric is derived by a well-known procedure that
is interesting to dwell on a little bit. The metric is then of course dynamical, but the
derivation does not depend on that.

Example 7 (The relation between the Christoffel symbols and the metric). There are a
number of steps involved in the computation. First, in an inertial system we have the
straight line equation for free fall (actually the shortest length line)

d2ξ a

dτ2
= 0 (4.73)

in terms of the inertial coordinates ξ a. As these are functions of any other system of
coordinates xμ, one can reexpress the free fall equation in xμ according to the geodesic
equation

d2xσ

dτ2
+ Γ σ

μν
dxμ

dτ
dxν

dτ
(4.74)

where Γ σ
μν is given by the formula

Γ σ
μν =
𝜕xσ

𝜕ξ a
𝜕2ξ a

𝜕xμ𝜕xν
(4.75)

Note that this is an object that comes out of the computation of the derivatives in (4.73)
when the freely falling coordinates ξ α are expressed in terms of the coordinates xμ
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(see, for instance, [243], Chapter 3 for details). Second, contracting this formula with
𝜕ξ b/𝜕xσ and using the chain rule, one gets

𝜕2ξ a

𝜕xμ𝜕xν
= Γ σ

μν
𝜕ξ a

𝜕xσ
(4.76)

Third, differentiating the expression in equation (4.48) for the metric, yields after us-
ing precisely the formula (4.76),

𝜕gμν
𝜕xλ
= Γ σ

λμ gσν + Γ
σ

λν gσμ (4.77)

Fourth, and finally a purely algebraic step, adding the formula (4.77) to itself with
μ ↔ λ and subtracting it with ν ↔ λ, one arrives at, observing that Γσμν is symmetric
in the covariant indices μ and ν

𝜕gμν
𝜕xλ
+
𝜕gλν
𝜕xμ
−
𝜕gμλ
𝜕xν
= 2gσνΓ

σ
λμ (4.78)

from which the familiar formula

Γ σ
μν =

1
2
gσρ(
𝜕gνρ
𝜕xμ
+
𝜕gμρ
𝜕xν
−
𝜕gμν
𝜕xρ
) ≡ {σμν} (4.79)

results, defining the Christoffel symbols {σμν}. 󳶣

Let us nowcombine thiswithwhatwe already know. Perhaps equation (4.77) rings
a bell. It looks conspicuously like requiring the covariant derivative of themetric to be
zero. That is indeed the case, the equation expresses ∇λgμν = 0.

This may raise the question of whether the formula for the connection in terms of
the metric can be derived from the covariant constancy of the metric only. We see from
formula (4.75) that we have alsoworkedwith a symmetric connection, so thismight be
a necessary condition. Aswewill see, covariant constancy of themetric and symmetry
of the connection, are not sufficient conditions. It turns out that the connection must
also be torsion-free.

On the other hand, the assumptions made in example 7: the existence of a lo-
cal inertial system where geodesics (shortest length lines) are “straight lines” and the
metric is Minkowskian, leads directly to the covariant constancy of the metric. This is
therefore a necessary condition for space-time to be locally Minkowskian.

The effects of gravity in GR

Reflecting on what we have done so far, one could say that we are halfway toward standard general
relativity. Three steps have been taken. Based on the EP, the metric has been introduced to measure
the proper time between nearby points. Also based on the EP, the equation for a freely falling particle
hasbeen deduced. These equations capture the effects of the gravitational field. Thenwehave derived
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the formula expressing the affine connection in terms of derivatives of the metric. The metric can be
viewed as a gravitational potential.

In the more general setting of an affinely connected metric space-time, the procedure
for relating the connection to the metric, can be generalized. Introduce the tensor of
nonmetricity Qαβγ as

Qαβγ = −∇αgβγ (4.80)

Normally, Qαβγ is set to zero so that the metric can be said to be covariantly constant,
thus generalizing the constancy of the metric of Minkowski space-time. This is very
convenient as it makes the operations of raising and lowering indices commute with
covariant differentiation, which is a nontrivial operation in curved space-times. How-
ever, taking it nonzero, one can still compute the following combination, in analogy
with the example 7:

−ΔαβγνμσQαβγ = ∇νgμσ + ∇μgσμ − ∇σgνμ (4.81)

where the convenient permutation symbol is defined by

Δαβγνμσ = δ
α
νδ

β
μδ

γ
σ + δ

α
μδ

β
σδ

γ
ν − δ

α
σδ

β
νδ

γ
μ (4.82)

From the expressions appearing in the computation of the covariant derivatives in
(4.81), one can extract the asymmetric affine connection Γ λ

μν and the antisymmetric
torsion part T λ

μν of Γ λ
μν . What results is the general formula for the connection

Γ λ
μν = {

σ
μν} + K

λ
μν + L

λ
μν (4.83)

where the first term is the Christoffel symbol. The second term is the contorsion tensor
K λ
μν that computes to

K λ
μν =

1
2
(T λ

μν − T
λ

μ ν − T
λ

ν μ) (4.84)

The contorsion tensor is asymmetric (since it is the sum of an antisymmetric tensor
and a symmetric) and its antisymmetric part is proportional to the torsion tensor

K λ
[μν] =

1
2
T λ
μν (4.85)

The third term L λ
μν in the formula (4.83), is a combination of the nonmetricity tensor

that can be computed to

L λ
μν =

1
2
gλσΔαβγνμσQαβγ (4.86)
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Extracting the asymmetric affine connection

It is quite interesting to see how the formula (4.83) appears out of the computation of (4.81). It may, at
first, seem strange that one can extract a formula for the general affine connection, yet having torsion
related terms on the right-hand side. On second thoughts, however, this is precisely what the formula
achieves: it clearly separates different contributions to the general affine connection. Given that the
covariant derivative of the metric is ∇νgμσ = 𝜕νgμσ − Γ α

νμ gασ − Γ α
νσ gμα , one computes −Δ

αβγ
νμσQαβγ with

the result

−ΔαβγνμσQαβγ = 𝜕νgμσ + 𝜕μgνσ − 𝜕σgνμ − gμαΓ
α

[νσ] − gσαΓ
α

(νμ) − gναΓ
α

[μσ] . (4.87)

Then one takes advantage of the fact that Γ α
(νμ) = 2Γ

α
μν − Γ

α
[νμ] . Furthermore, by definition T α

μν =
Γ α
[μν] . This is enough to see how the formula (4.83) emerges.

Thismakes it explicit thatmetricity, that is, covariant constancy of themetric, and zero
torsion leads to the standard formula for the Levi–Civita connection Γ(g) given by the
Christoffel symbols in (4.79). Only requiring covariant constancy of the metric, yields
a constraint on the allowed connections that then take the general form

Γ λ
μν = {

λ
μν} + K

λ
μν (4.88)

It is clear that in order for the affine connection to be entirely expressed in terms of the
metric as the Christoffel symbols, we need both covariant constancy of the metric and
zero torsion. Symmetry is not enough, since the contorsion has a symmetric part.

Auto-parallel curves versus geodesics

We will not have much need for the concepts of auto-parallel curves and geodesics, except as under-
lining the properties of different connections. The auto-parallel curve equation reads

̈xμ + ̇xρ ̇xσΓ μ
ρσ = 0 (4.89)

where Γ μ
ρσ is any affine connection. It generalizes the concept of “straightest line” from Minkowski

space-time: it is the equation of parallel transport. It does not require a metric, only a connection.
Even though only the symmetric part of the connection enters the equation, there may be – even in
space-times with a metric – a contribution from the symmetric part of the contorsion tensor according
to equation (4.88).

The geodesic equation (4.74) has the same form, but then Γ μ
ρσ is the Christoffel connection {μρσ}

defined in terms of the metric. It is the line of “shortest length”, and as such, requires a metric. The
two concepts: auto-parallel and geodesic, coincide if the torsion – if it is present at all – is totally
antisymmetric because then the contorsion tensor vanishes.

Riemann–Cartan space-time U4: Q = 0
The first step toward the space-time of GR is to demandmetricity Qαβγ = 0 or themet-
ric postulate. This results in a general relativistic space-time with torsion, a so-called
Riemann–Cartan space-time denoted by U4. As we will see, this is the type of space-
time that results from gauging the Poincaré group.
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Riemann space-time V4: Q = 0, T = 0
Setting the torsion to zero (as well as demandingmetricity) yieldsRiemann space-time
denoted by V4. This is the space-time of GR. With zero torsion, the familiar Bianchi
identities of the GR curvature tensor, can then be deduced from the formulas of Sec-
tion 4.5.3.

Minkowski space-timeM4: Q = 0, T = 0, R = 0
Minkowski space-time results from demanding zero curvature.

Weitzenböck space-time A4: Q = 0, R = 0
To reach Riemann space-time from an affinely connected space-time,we first setQ = 0
and then T = 0. One can also contemplate first setting Q = 0 and then R = 0, keeping
torsion nonzero. The space-time that then results is calledWeitzenböck space-time.

4.5.5 Frames in tangent space

The tangent, and cotangent spaces, are of course always there, but they aremade con-
crete using vierbeins. As is well known, vierbeins are needed in order to study spinor
(half-integer spin) fields in general curved spaces. The vierbeins can be thought of as
setting up local coordinate systems in tangent space, or more correctly, in the tangent
bundle. These local coordinate systems explicitly “behave” as Minkowski space-time.
In particular, Lorentz transformations can be performed.

We then have general coordinate transformations (GCT) in the basemanifold, and
linear transformations in the fibers (which are vector spaces). The covariant deriva-
tivemust correspondingly compensate for localGCTsand local linear transformations,
that is, Lorentz transformations. We thus define the total covariant derivative

𝒟μV
ν
a = 𝜕μV

ν
a + Γ

ν
μσ Vσ

a − ω
b

μa Vν
b (4.90)

𝒟μV
a
ν = 𝜕μV

a
ν − Γ

σ
μν Va

σ + ω
a

μb Vb
ν (4.91)

and following this pattern for more general mixed tensors. What we now have corre-
sponds to an affinely connected metric space-time, only we have two unrelated con-
nections, the affine connection Γ and the spin connection ω. To compare to GR, we
must relate the connections, and the connections to the metric and vierbeins. This is
done through the two vierbein postulates.

The first vierbein postulate concerns commutativity of taking covariant deriva-
tives and converting between tangent and world indices. We would like the following
formula to hold:

eaν𝒟μV
ν = 𝒟μ(e

a
νV

ν) (4.92)
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Computing the indicated covariant derivative on the right-hand side using the Leibniz
rule yields

𝒟μ(e
a
νV

ν) = (𝒟μe
a
ν)V

ν + eaν𝒟μV
ν (4.93)

If we demand 𝒟μeaν = 0, then we can indeed “convert indices” inside a covariant
derivative. This is therefore the first vierbein postulate:

𝒟μe
a
ν = 0 (4.94)

Assuming the first vierbein postulate, the formula (4.90) applied to the vierbein eμa,
yields a relation between the two connections

ω b
μa = Γ

b
μa − e

σ
a 𝜕μe

b
σ or Γ b

μa = ω
b

μa + e
σ
a 𝜕μe

b
σ (4.95)

where Γ b
μa is the affine connection17with indicated indices converted to tangent space

using the appropriate vierbeins. An equation is an equation, but the second way of
writing the relationbetween the connectionsmay remindusof the fact that theLorentz
connection ω is what it is, it is determined by the Lorentz transformation, while the
affine connection Γmaintains a certain freedomof choice that is here taken advantage
of. Formulas like (4.90) and (4.91) for the total covariant derivative are of course still
correct, but the affine connection Γ and the Lorentz connection ω are related under
the first vierbein postulate by the equation (4.95).

The first vierbein postulate leads to an interesting equation for the torsion that
is related to the gauge theory of gravity. Antisymmetrizing the first vierbein postulate
(4.94) and using formula (4.91) applied to the vierbein e a

μ yields

Taμν = 𝜕μe
a
ν − 𝜕νe

a
μ + ω

a
μb e b

ν − ω
a

νb e b
μ = D[μe

a
ν] = 0 (4.96)

We will encounter this formula again – in form language – in equation (4.127) when
we discuss gauge theory of gravity. Then the torsion appears as the field strengths of
local translations. Here, we see that upon extracting the antisymmetric part of the first
vierbein postulate, we get a formula for the torsion where the torsion is expressed as
an antisymmetrized Lorentz covariant derivative of the coframe field.

Catalogue of covariant derivatives

To forestall confusion over notation for covariant derivatives, these are our conventions:
– ∇μ denotes the standard “differential geometric” covariant derivative – with or without the inclu-

sion of torsion as circumstances may dictate.

17 No restrictions on Γ are imposed as yet.
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– 𝒟μ denotes the total covariant derivative including affine connection and Lorentz connection.
– 𝒟a = e

μ
a𝒟μ denotes the total covariant derivative transferred to cotangent space.

– Dμ or Da denote Yang–Mills covariant derivatives (indices are dictated by circumstances). Here,
we also include the case that the gauge group is the Lorentz group. This case will appear below
in Section 4.6.1.

Note in particular that in the sequel, the notation𝒟μ or𝒟a will be used for the total covariantderivative
under the assumption of the first vierbein postulate, if not otherwise explicitly stated.

The first vierbein postulate does not in general imply the metric postulate unless one
considers orthonormal frames. For general frames, where the formula (4.50) is re-
placed by gμν = e a

μ e
b
ν gab, it is clear that covariant constancy of the metric does not

follow from covariant constancy of the vierbeins, since gab may very well be itself co-
variant nonconstant. However, the Minkowski frame metric ηab is covariant constant
due to the antisymmetry of the Lorentz connection ω ab

μ . Let us therefore continue to
investigate how the various kinds of space-times considered above, comes about in a
tetrad approach.

Consistent covariant derivatives and curvatures

Even having made up ones mind about notation for the various covariant derivatives that occur in the
subject, it might be a good idea to make a few consistency checks. Certainly, one would like formulas
such as

𝒟aVb = 𝜕a − ω
c

ab Vc and 𝒟aV
b = 𝜕a + ω

b
ac V c (4.97)

to hold and be consistent with (4.90) and (4.91). Furthermore, it is quite interesting to compute

[𝒟μ,𝒟ν ]Va = −(𝜕μω
b

νa − 𝜕νω
b

μa − ω
c

μa ω b
νc + ω

c
νa ω b

μc )Vb ≡ −R
b

μνa Vb (4.98)

with no torsion terms appearing. Also, when the equation (4.95) relating the affine connection and the
Lorentz connection holds, the two corresponding curvatures should be related. It can be checked that

R σ
μνρ (Γ) = e

a
ρ eσbR

b
μνa (ω) (4.99)

4.5.6 Space-times reconsidered

Consider an arbitrary frame, that is one inwhichwehave gμν = e a
μ e

b
ν gab. Thefirst vier-

beinpostulate is supposed tohold, but not themetric postulate and torsion is nonzero.
Then we have the general formula (4.83) for the affine connection Γ. The computation
can be redone with all indices in the frame. The result is

ω c
ab = ω

c
ab (e) + K

c
ab + L

c
ab (4.100)
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where

ω c
ab (e) = {

c
ab} −

1
2
(Ω c

ab − Ω
c

a b − Ω
c

b a) (4.101)

Here, the Christoffel symbols are computed as in formula (4.79) with all indices taken
as frame indices. Thus,ω(e) only depends on themetric and the vierbeins through the
anholonomy coefficients (4.59). Furthermore, K c

ab = e
μ
aeνbe

c
ρK

ρ
μν and similarly for L.

In the formula (4.100), the general (affine) connection ω corresponds to the general
affine connection Γ, while the connectionω(e) corresponds to the Levi–Civita connec-
tion Γ(g).

Now one can put Q = 0 ⇒ L = 0 (metricity) and K = 0 (no torsion) and then
one gets back to the Riemann space-time V4 but now with an arbitrary frame. The
connections then reduce to the Cartan and Levi-Civita connections, but they are still
not equal. Equality results in the coordinate basis or in a holonomic basis.

The metric postulate Q = 0 is in this context sometimes called the second vierbein
postulate. Only imposing this,while keeping torsionnonzero, results in the space-time
U4. Covariant derivatives commute with all kinds of index raising and lowering, thus
computations can be done as we are used to. U4 is the space-time of the so-called
Cartan–Sciama–Kibble theory which is related to the gauge theory of the Poincaré
group. We will return to it below in Section 4.6.3.

4.5.7 Standard general relativity and the Weyl tensor

In Einstein general relativity, the affine connection is solved for in terms of the metric
as in example 7 in Section 4.5.4. The calculations amount to demanding the covariant
constancy of the metric. This is very convenient in that it makes covariant derivation
commute with index contraction using the metric. The connection used in the covari-
ant derivative becomes the standard Levi–Civita connection.

The Einstein field equations for GR (without matter or cosmological constant) are

Rμν −
1
2
gμνR = 0 (4.102)

Contracting once more with the metric implies R = 0, so that an equivalent form of
the field equations are

Rμν = 0 (4.103)

The Einstein field equations follow from an action principle that we will review below
in Section 4.7.1.

The field equations set some components of the Riemann curvature tensor to zero,
and it is interesting to disentangle those components that are nonzero. This is what
the Weyl tensor achieves.
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TheWeyl tensor Wμν, ρσ can be defined by subtracting components the Ricci tensor
and the scalar curvature from the Riemann tensor. An ansatz subject to the symmetry
properties of (4.70) is

Wμν, ρσ = Rμν, ρσ − a(gμρRνσ − gνρRμσ − gμσRνρ + gνσRμρ)

+ b(gμρgνσ − gνρgμσ)R (4.104)

Contracting with gνρ and using that the Weyl tensor is itself traceless over the νρ in-
dices, yieldsa = 1/2 andb = −1/6. TheWeyl tensor satisfies the same index symmetries
and Bianchi identities as the Riemann tensor, as well as being traceless in all index
pairs.

Shift of perspective

The introduction of theWeyl tensors allows for a shift of perspective that will become important in the
Vasiliev theory of higher spin. Instead of writing Einstein’s equations as Rμν = 0, we can equivalently
write them as Rμν , ρσ = Wμν , ρσ . Instead of specifying which components of the curvature that vanish,
we specify those that do not vanish in terms of new fields.

Connection terminology

Quite a few connections occur in the theory, and although which one is meant is often clear from the
context, onemaygetmomentarily confused. Here is an attempt to set the record straight.18 Controlling
two circumstancesmay help to navigate. (i) Are we talking about connections as independent geomet-
ric objects or derivative of a metric? (ii) Are we in a purely metric context, or are we in a frame/coframe
context?

An affine connection is always a general connection as defined in Section 4.5.2. In general, it can
be expressed as in formula (4.83) if there is a metric and torsion. The Levi–Civita connection is always
given by the Christoffel symbols.

A general (affine) spin connection is given by the formula (4.100). It is on the same level of gener-
ality as an affine connection. It is related to the affine connection in equation (4.95) through the first
vierbein postulate. The Cartan connection results when the metric postulate holds but there may be
torsion.

Finally, the Lorentz connection, is always the connection corresponding to local Lorentz transfor-
mations in the frames. There is then no torsion terms. “Lorentz” connection and “spin” connection
are often used interchangeably when there is no torsion. They may differ by the anholonomicity coef-
ficients.

18 Maybe not every author would agree on the following distinctions.
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4.6 Gauge theory of gravity

Let us begin with some general comments. It is useful to be aware of a distinction that
eventually comes out of a gauge treatment of gravity – and in retrospect is present
in any gauge theory – even spin 1 theory, but which is not so often explicitly noted.
This is the distinction between the the effects of the presence of the gauge field and the
self-consistent theory of the gauge field itself. Or phrased more concretely: the matter
action as contrasted to the gauge field action. One can regard the matter action as a
crutch to motivate the introduction of the gauge field and the covariant derivative.

We saw this already for spin 1 Yang–Mills theory in Section 4.2. The reason why
we had to introduce a gauge field into the theory when we had local symmetries is the
need to have derivatives in thematter theory. This is in the last analysis an experimen-
tal fact. From Newton’s mechanics and onwards, all fundamental theories of physical
systems has turned out to be described in terms of differential equations. In field the-
ory, these are partial differential equations. In free field theory, we have linear wave
equations, in interacting field theory we have nonlinear wave equations, preferably
deriving from least action principles. Now, it is precisely the presence of derivatives
that forces the need to introduce gauge fields and the corresponding covariant deriva-
tives, in order to promote rigid, that is, global, symmetries to local symmetries.

This comment stresses a point that we have already made: before introducing an
action for the gauge field itself, we have only done the kinematical part of gauging.19

We have taken into account the effects of the gauge field, but not the dynamics of the
gauge field itself. Metaphorically, this can perhaps be phrased as follows. Stepping
into Einstein’s elevator and letting it drop, we are free of the gravitational field we
detect before the drop starts. But if we did not understand how the gravitational field
came about before the drop, we may have even less understanding of it during the
drop.

There is a trap one should try to avoid falling into when considering gauge ap-
proaches to gravity. Since we knowwhat wewant to arrive at: Einstein gravity or some
variant of it, it is all to easy to put too much of that structure into the discussion too
early. If one does that, one risks missing the subtleties. It is much more interesting to
force oneself into a mindset where flat Minkowski space-time and its Poincaré invari-
ance group is all there is.

Avoiding the trap of knowing to much

Gauge approaches to gravity were all initialized after the Einstein theory had been studied for a long
time. Imaginea contextwhere thegaugeapproach to electromagnetismhadbeenapplied toweak- and
strong interactions, but where one had been content with the special theory of relativity, Minkowski

19 This is also discussed in [132], page 34.
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space-time and Newtonian gravity. Furthermore, imagine that differential geometry had not been in-
vented, so there were no clear concepts of curved spaces and their tangent and cotangent spaces.
Under such circumstances, what theory of gravity would theoretical physicists arrive at if they under-
took the gauging of the Poincaré group?

With these caveats, we will now study two ways of approaching the problem of gaug-
ing the Poincaré group. We focus on the kinematical part. For dynamics, we will rely
on “well-known results” as well as what has been reviewed above. Actions for grav-
ity will be considered in Section 4.7. We will be quite naive as regards mathematical
apparatus, not wanting to risk submerging the problems in formalism.20

4.6.1 Poincaré gauge theory (I)

As already mentioned in Section 2.9.2, R. Utiyama [115] proposed a gauge theory of
gravity where the Lorentz group played the role of the gauge group. This was just a
couple of years after the construction of the SU(2) gauge theory of isotopic spin by
C. N. Yang and R. L. Mills in 1954 [114]. Only gauging the Lorentz group provides no
motivation for the vierbein fields, and these are indeed needed for the Lorentz group
to make any sense in a gravitational theory.

The problem was reconsidered by T.W. B. Kibble [131], who by gauging the in-
homogeneous Lorentz group, found a way of providing amotivation for the vierbeins.
As we noted in the historical chapter, there is an extensive literature on the subject
of “gauge theory of gravity”. The problem is both technically and conceptually com-
plicated. The bottom line is: what group to gauge? The translation group, the Lorentz
group, the full Poincaré group or some larger group containing the Poincaré group?
As the Kibble and K. S. Stelle write in the review [134]:

The basic problem is that the analogy between gravity and other gauge theory is necessarily less
than perfect.

This description of the situation is not an exaggeration. In the example below, we will
follow [134] in an attempt to generalize the standard Yang–Mills gauging procedure,
from an internal gauge group to the Poincaré group, to see where it leads.

Before starting, it may be useful to ask oneself the question: why is it so relatively
simple to generalize the gauge approach of electromagnetism to an arbitrary internal
semisimple group? No conceptual problems seem to arise, if one does not count the
effort to imagine a copy of the internal group residing at every space-time point. In-
deed, being in Minkowski space-time and having mastered quantum mechanics, we

20 As the readerwill surely suspect, there is an extensive literature on the subject of gauge approaches
to gravity and supergravity. What follows below is at best an introduction to the subject. Again, the
focus is on intuition, not rigor or formalism.
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simply think of the matter fields as carrying an internal quantum number and being
subject to a concomitant symmetry transformation.

Thepoint seems tobe that themathematics of this symmetry appears tobe entirely
separate from space-time itself. Of course, it can be elegantly formulated in terms of
fiber bundles – and then more subtle topological phenomena can be investigated –
but we are not forced to do that. A simple-minded approach using matrices (Ta)ij is
sufficient to set up the theory and carry through the gauging recipe. The matrices T
and the indices a have nothing to do with space-time. It is all separate and clean. This
is not the case when gauging the space-time symmetry group, in particular not the
translation part. At some stage onemust introduce a distinction between “world” and
“tangent” space indices. The questions are: when and with what motivation? What
from a geometric perspective is a strength of gravitational theory, is from a gauging
perspective a weakness: the fibers of gravity are just tangent spaces, not truly inde-
pendent internal spaces.

The effect of this is the impression that it seemsalmost impossible to rederive grav-
ity from the gauge principle without already knowing the answer. This is in contrast
to Yang–Mills: none of the inventors of that theory knew the equations beforehand.

Example 8 (Naive gauging the Poincaré group). Start with an active infinitesimal
Poincaré transformation

δxμ = λμνx
ν + ϵμ ≡ ξ μ (4.105)

where we imagine being in Minkowski space-time. Correspondingly, a set of matter
fields ψ will transform as (compare Section 4.2)

δψ = − 1
2
λabSabψ − ξ

μ𝜕μψ (4.106)

In the first term, we have changed indices from space-time indices μ, ν to – what will
eventually be interpreted as – tangent space indices a, b. However, as that would be
running in advance of one-self, for now these indices indicate a particular represen-
tation of the Lorentz group on thematter fields. This first term in the transformation is
analogous to the internal transformation of formula (4.14). Alternatively, the different
indexing can be thought of as distinguishing between terms involving the parameters
λμν and ξ μ.21

Already at this stage, we see a difference as compared to spin 1. True, the role of
the Yang–Mills Tamatrices are now played by the Lorentz so(3, 1)matrices Sab. But the
internal field rotation in group space is now induced by the space-time transformation
(4.105). In the second term of (4.106), we see the effect of these transformations. We
see that the generators involve space-time derivatives.

21 Note that, following [131, 133] we parametrize the Poincaré transformations with these parameters,
rather than with λμν and ϵμ.
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The next step is to let the parameters λμν and ξ μ become local functions of the co-
ordinates xμ. Precisely here, one runs into the first problem. The distinction between
local translations and local Lorentz transformations in (4.105) becomesblurred. Trans-
lations with a local ξ μ(x) already contains all local coordinate transformations gener-
ated by the vector field ξ μ(x)𝜕μ. On the other hand, if the corresponding local Lorentz
transformations λab(x)Sab are discarded, the transformations on the fields (4.106) be-
come ambiguous [134].

However, this problem may very well be due to an overreliance on mathematical
formalism. As argued in [133], we know that there are local Lorentz transformations on
matter fields. We need a formalism that can maintain precisely that structure. So let
us pause this line of inquiry and instead compute the transformation of the derivative
of the matter field

δ𝜕μψ = −
1
2
λabSab𝜕μψ − ξ

ν𝜕ν𝜕μψ −
1
2
(𝜕μλ

ab)Sabψ − (𝜕μξ
ν)𝜕νψ (4.107)

As in Yang–Mills, we find inhomogeneous terms. The third term can be taken
care of by introducing a gauge fieldω ab

μ with an inhomogeneous transformation term
𝜕μλab. Correspondingly, we have a covariant derivative22

Dμ = 𝜕μ +
1
2
ω ab
μ Sab ≡ 𝜕μ + ωμ (4.108)

in close analogy to the formalism of Yang–Mills theory, definingωμ ≡
1
2ω

ab
μ Sab. Since

the Lorentz group is non-Abelian, the transformation for the law for the gauge field is

δω ab
μ = 𝜕μλ

ab + [ωμ, λ]
ab (4.109)

which is exactly as in Yang–Mills theory.
The last term in (4.107) must be treated in a different way since it involves deriva-

tives 𝜕μ instead of matrices. Focusing on this term by itself, one could introduce a
gauge field h ν

μ transforming as δh ν
μ = 𝜕μξ

ν + 𝒪(ξ , h) and a covariant derivative Dμ =
𝜕μ + h ν

μ 𝜕ν = e
ν
μ 𝜕ν with e ν

μ = δ
ν
μ + h

ν
μ . Although it is not quite clear what we are do-

ing here physically, the mathematics indicates a “multiplicative” covariant derivative
rather than an “additive”. This is the second problem, or at least a new phenomenon,
that has to be accommodated in the gauge theory. 󳶣

We see that a gauge theory for spin 2 is not likely to be a simple rewriting of the
gauge theory for spin 1. In a loose language, we could say that Yang–Mills theory is
basically very algebraic whereas gravity is very geometric. One way to equalize the
differenceswouldbe tomakeYang–Mills theorymore geometric. This is preciselywhat
one does in themodern fiber bundle approach. Another waywould be tomake gravity
more algebraic. Let us analyze the second problem from example 8.

22 We are still “thinking” Yang–Mills, so the notation is consistent with the note above about covari-
ant derivatives.
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Example 9 (Naive gauging of the translations). Consider a space-time dependent
translation δxμ = ξ μ(x). The matter field transforms as δψ = −ξ μ𝜕μψ. We want
to construct a covariant derivative Dμ such that the covariant derivative on the
field transforms as the field itself, that is, we want δDμψ = −ξ ν𝜕νDμψ. Follow-
ing the recipe, we introduce a gauge field h ν

μ and write the covariant derivative
according to Dμ = 𝜕μ + h ν

μ 𝜕ν = e ν
μ 𝜕ν with e ν

μ = δ ν
μ + h

ν
μ . Then we compute

δDμψ = (δe ν
μ )𝜕νψ + e

ν
μ δ(𝜕νψ) and demand that the result be equal to −ξ ν𝜕νDμψ.

This yields the transformation rule

δe ν
μ = −ξ

σ𝜕σe
ν
μ + 𝜕σξ

νe σ
μ (4.110)

for the field e ν
μ .

This looks familiar, but it is not quite right. Assuming thatweknowabout differen-
tial geometry, this is howacontravariant vectorwould transform (see Section 3.13). But
the covariant index on e ν

μ does not transform, we lack the expected term −𝜕μξ σe ν
σ . 󳶣

Taking this result at face value, the conclusion is that the covariant index on the
field e ν

μ plays a different role than the contravariant. Let us therefore replace it and
write the field as eνa, thinking about it as a set of contravariant vectors parametrized by
the index a. Furthermore, it makes intuitive sense that local translations corresponds
to general coordinate transformations. But we have to remember that we are making
local translations in a, to begin with, flat space-time. The coordinate transformations
are therefore between a flat space-time and a curved. Indeed, transforming the ini-
tially flat coordinates xμ locally as δxμ = ξ μ(x) does make the coordinates curvilinear.
Again, assuming we know differential geometry, we can consider the tangent space-
time with basis 𝜕μ. Then repeating the discussion in Section 4.5.1 we can set up a local
inertial system of coordinates eμa𝜕μ. In this way, onemaymotivate introducing the two
sets of coordinates, indexed by different indices. Phrased pictorially, making a global
translation ξ μ local, that is, ξ μ → ξ μ(x), will “deform” space-time. It is then restored
locally by the gauge fields eμa.

After these preliminaries, we can now approach the problem of constructing a
derivative covariant under local Poincaré transformations. The matter fields ψ(x) still
transform as in equation (4.106).Wewant to construct a covariant derivativeDa acting
on a matter field ψ such that the Daψ transforms in the same way as the field itself,
that is, without derivatives on the parameters. We will do it in two steps: first writing
a derivative Dμψ covariant under local Lorentz transformation. Second, writing the
derivative Daψ that is also covariant under local translations.

Note that we continue, for a while, to use Yang–Mills-like notation D for the co-
variant derivative. At the end of our deliberations, we will see that what we have got
is actually the total covariant derivative𝒟.

For the first step, we take the covariant derivativeDμ from equation (4.108) but the
transformation law for the gauge field ω ab

μ (a covariant vector) must be amended by
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general coordinate transformation terms

δω ab
μ = 𝜕μλ

ab + [ωμ, λ]
ab − ξ ν𝜕νω

ab
μ − 𝜕μξ

νω ab
ν (4.111)

Then we get the transformation

δ(Dμψ) = −
1
2
λabSabDμψ − ξ

ν(𝜕νDμ)ψ − (𝜕μξ
ν)Dνψ (4.112)

For the second step, we introduce the multiplicative covariant derivative

Da = e
μ
aDμ (4.113)

Computing δ(Daψ), we find a transformation free of derivatives on parameters

δ(Daψ) = (δe
μ
a)Dμψ + e

μ
aδ(Dμψ)

= −
1
2
λbcSbcDaψ − ξ

ν(𝜕νDa)ψ + λ
b
a Dbψ (4.114)

where we have used the transformation law (4.110) augmented by a Lorentz transfor-
mation on the covariant tangent space index.

δeμa = −ξ
σ𝜕σe

μ
a + 𝜕σξ

μe σ
a + λ

b
a e μ

b (4.115)

The calculation shows that it is possible to carry out the kinematical part of the
gauging procedure for the Poincaré group: introducing gauge fields and a suitable co-
variant derivative. However, as compared to Yang–Mills theory, some jury-rigging is
needed. We have to amend the gauge transformation formula for the gauge field ω
with a general coordinate transformation as seen in equation (4.111). True, it can be
motivated with what we learned in example 8, but it is still rather ad hoc. Or more to
the point, we are using what we already know is true.

We can now compute commutators of covariant derivatives, in that way arriving
at expressions for the “field strengths” of the theory, or what we will interpret as cur-
vature and torsion. First, we get by commuting the Lorentz covariant derivatives

[Dμ,Dν]ψ =
1
2
R ab
μν Sabψ (4.116)

where we read off

R ab
μν = 𝜕μω

ab
ν − 𝜕νω

ab
μ + (ω

ac
μ ω db

ν − ω
ac
ν ω db

μ )ηcd (4.117)

Next, commuting the Poincaré covariant derivatives we get

[Da,Db]ψ = [e
μ
aDμ, e

ν
bDν]ψ =

1
2
R cd
ab Scdψ + T

c
ab Dcψ (4.118)
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where the Lorentz curvature is reproduced as

R cd
ab = e

μ
ae

ν
bR

cd
μν (4.119)

We also get, from the action of the D covariant derivatives on the vierbeins,

T c
ab = (e

μ
aDμe

ν
b − e

μ
b Dμe

ν
a )e

c
ν (4.120)

This is the torsionwhere the Lorentz covariant derivative on the vierbeins is computed
as

Dμe
ν
a = 𝜕μe

ν
a − ω

b
μa e ν

b (4.121)

Frames of coframes?

Readers, as well as the author, may suffer from some index confusion at this point. We started out
with a flat space-time with coordinates xμ. We deformed it by making local Poincaré transformations.
To restore order as far as the local Lorentz transformations went, it was natural to introduce gauge
fieldsω ab

μ . So far the story is analogous to Yang–Mills. But for the local translations, it was natural to
introduce the frame fields eμa. Why not the coframe fields e

a
μ ?

Technically, one could say that the vierbein field eμa is an invertible matrix, so it really does not
matter that much which of the fields eμa or e

a
μ are introduced first. From a physical point of view, it is

perhaps better to say that the coordinates xμ start out as flat and that gauging the Lorentz transfor-
mations can be partly accommodated by introducing the gauge fields ω ab

μ . Then the gauging of the
translations make the coordinates xμ curved, or the tangent space basis vectors 𝜕μ curved. However,
it is still possible to set up local tangent spaces with basis vectors eμa𝜕μ. As we will see, a shift of
perspective brings in the coframe fields as basic translation gauge fields.

4.6.2 Thinking through the Cartan–Sciama–Kibble theory

The theory outlined in the previous section,when suppliedwith an action for the grav-
itational field as well as for thematter field, is often referred to as the Cartan–Sciama–
Kibble theory (CSK), perhaps with a couple of other names attached such as Einstein
and Weyl (or some names detached). We have not done the details, but we know that
vierbeins have to be introduced in general relativity in order to accommodate half-
integer spin matter fields.23 In fact, we have seen this in our treatment of the gauge
theory approach above. The “matter crutch” could very well be, andmost naturally is,
a half-integer spin field.

In the standard approach to introducing half-integer matter into general relativ-
ity, one starts by introducing the vierbein fields. This provides for local inertial frames

23 As always, the history is convoluted. Original literature as well as comments can found in either of
the reprint volumes [128] or [135].
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whilemaintaining general covariance. Then the principle of equivalence requires that
special relativity should apply in the local frames. This means that we should be able
to perform Lorentz transformations in every local frame, that is, the Lorentz transfor-
mations are local. The Lorentz transformations comewith the possibility to transform
not just tensors, but also spinors. Then since thematter action always involves deriva-
tives of the fields, wemust introduce covariant derivatives in order to make derivation
compatible with local Lorentz invariance. This entails introducing spin connections.
Note that this construction can be arguedwithout actually invoking any idea of “gaug-
ing” the Poincaré group. We are simply introducing a Lorentz covariant derivative in
the theory. The vierbeins transfer indices betweenworld and tangent spaces according
to (4.113). The theory so obtained allows for torsion.

Theories flowing naturally from principles

In much of the discussion on gauge approaches to gravity, there seems to be an implicit notion of
“theories flowing naturally from principles” such as in “the gauge principle leading to Yang–Mills
theory” or the “equivalence principle leading to general relativity”. However, upon examining what is
actually done in such endeavors, it seems clear that quite a few number of choices have to be made
along the way from the principle to the theory. The principle prompts problems that have to be solved
by judicious choices or inventions. Is it perhaps a matter of basic outlook whether one views such
choices as dictated by the principle, or just inspired by it? Einstein’s own struggles (the story told in
many places) is testimony to the fact that the road from principle to theory is not at all easy to travel
the first time, or even the second or third time.

Be that as it may, let us instead count degrees of freedom, and do this from the point
of view of gauge theory. The vierbein field has 16 components, of which 8may be fixed
by general coordinate transformations, interpreted as gauge transformations. The re-
maining 6 unphysical components are removed by local Lorentz-transformations. The
Lorentz connection contains 24 components. Clearly, none of these can be physical if
wewant to recover Einstein general relativity. So the Lorentz connectionmust be fixed
in terms of the vierbeins. That can be done at an early stage of theory development by
imposing the vierbein postulates which allow for expressing the Lorentz connection
in terms of the Levi–Civita connection and the contorsion (see Section 4.5.6). Upon
setting torsion to zero, the Lorentz connection is completely determined in terms of
the vierbeins. The “gauge” transformations of the spin connection, needed for local
Lorentz invariance of the matter Lagrangian, are still in effect, but may now be seen
as following from the local Lorentz transformations of the vierbeins. They do not re-
move any d. o. f. as there are none to remove, and the freedom in the local Lorentz
transformations are anyway already used up (as we argued above). In this approach,
when seeking an action for the gravitational fields, it is inherent in the approach that
the metric is the only dynamical field.



258 | 4 Lower spin theory

On the other hand, if one remains with the connections as independent fields,
then upon seeking an action, one is lead to consider first-order actions involving both
vierbeins and spin connections or themetric and the affine connection. The equations
relating the two kinds of fields must then follow from the action.

We will now run a little ahead of ourselves, since we are not yet finished with our
investigations of the gauge approach to gravity, andwehavenot discussed actionprin-
ciples for gravity. It turns out thatwhen gauging the Poincaré group, the vierbeinsmay
be interpreted as the gauge fields of the local translations and the torsion is the cor-
responding field strength. The spin connection is the gauge field of the local Lorentz
transformations, and the curvature tensor is the corresponding field strength. The dy-
namics (in matter free space-time) then force the torsion to be zero, that is, zero field
strength for local translations. The dynamics also determine the spin connection to
be auxiliary and expresses it in terms of the vierbeins. The spin connection suffer no
independent gauge transformations. In the presence of matter with spin, then the tor-
sion is algebraically related to the spin-current density of the matter fields. It is in any
way a nonpropagating field.

4.6.3 Poincaré gauge theory (II). Formalizing and understanding

Let us now turn to another approach to gauging the Poincaré group that is more for-
mal in its nature. We want to see how far we can stretch the analogy with Yang–Mills
theory. As was announced at the start of the computations, we want to ascertain that
the Yang–Mills resembling covariant derivative for the local Poincaré transformations,
does turn out to be the total covariant derivative. Examining the above computations,
we see that they were done relying on the matter crutch ψ.

Is the “Kibble–Stelle” covariant derivative equal to the total covariant derivative?

The matter crutch ψ is assumed to live entirely in the tangent space, so the covariant derivative only
contain the spin connection per definition. But suppose thematter is a vector Va. Thenwe can transfer
its tangent space index to the world by V ν = eνaV

a, and what happens then?
Again, we must be conscious about how much of standard vierbein GR we want to assume. What

are our objectives? Do we want to derive GR by gauging the Poincaré group (Kibble) or are we content
with accommodating local Lorentz invariance within vierbein GR (Sciama)?

We now start out afresh and introduce the coframe field ea = e a
μ dx

μ (as in formula
(4.54)) and the connection ωab = ω ab

μ dxμ. Then, without worrying about interpreta-
tive issues, we attempt to gauge the Poincaré algebra by combining these fields into
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one 1-form gauge field B valued in the Lie algebra according to24

B = eaPa +
1
2
ωabMab (4.122)

and the corresponding 0-form gauge parameter

Ξ = −ξ aPa −
1
2
λabMab (4.123)

The gauge transformation then reads

δB = dΞ + [B,Ξ]∧ (4.124)

In these formulas, Pa andMab are assumed to satisfy the Poincaré Lie algebra (3.114)–
(3.115). All this is in analogy with Yang–Mills theory (see Section 4.3.1). The curvature
(field strength) is defined as

G = d ∧ B + B ∧ B = dB + 1
2
[B,B]∧ (4.125)

It can be computed with the result

G = TaPa +
1
2
RabMab (4.126)

where

Ta = d ∧ ea + ωa
b ∧ e

b = D ∧ ea (4.127)

Rab = d ∧ ωab + ωac ∧ ω b
c = D ∧ ω

ab (4.128)

These two formulas – called the Cartan structure equations – clearly have the form of
covariant derivatives acting on the fields, as indicated, and indeed it is the Lorentz
covariant derivative D = d + ω that appears here. Compared to the formulas of the
previous section, the curvature 2-form is exactly the same, and the torsion is the same
up to a sign.

We can also compute the infinitesimal gauge transformations of the fields that
follow from (4.124):

δea = −Dξ a + λacec = −dξ
a − ωacξc + λ

acec (4.129)

24 In the previous section, the fields e, ω, T and R have their conventional meaning as vierbein, spin
connection, torsion and curvature respectively. In this section, we will consider gauge fields and field
strengths for the Poincaré group. I have resorted to denote these new fields with B for the connections
(gauge fields) and G for the curvatures (field strengths). In that way, the traditional fields can keep
their names.
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δωab = −Dλab = −dλab − ωacλ b
c + ω

bcλ a
c (4.130)

We have now approached the kinematical gauging of the Poincaré group in two
different ways. In the first “matter crutch approach”, space-time was initially flat and
we attempted tomake the Poincaré transformations of amatter field local. This forced
the introduction of the spin connection ω ab

μ and the vierbein e a
μ as well as need to

distinguish indices as “frame” and “world”.
In the second “formal approach”, we started in an arbitrary space-time as indi-

cated by working in the form language. Therefore, general coordinate invariance –
but not necessarily gravity – is built into the theory from the outset. Onemay therefore
suspect that the transformations generated by Pa – what we may think of as transla-
tions in a local frame –may not be the same as local coordinate transformations. This
is related to what we discussed above regarding the Einstein elevator in Section 4.5.1.
There is no problem, in accordance with the equivalence principle, with rotating and
boosting the elevator. But perhaps translating within the elevator to another point in-
side it may be problematic?

That something along these linesmaybe going onhere can be seen from the trans-
formation formulas in the two different approaches. Consider an infinitesimal GCT
with δxμ = ζ μ. Then we know how the vierbein e a

μ transforms. This transformation is
then rewritten in a way as to resemble the transformation (4.129). The result of such a
rewriting is [133]

δe a
μ = −ζ

ν𝜕νe
a
μ − 𝜕μζ

νe a
ν = −Dμ(ζ

νe a
ν ) + ζ

νD[μe
a
ν] + (ζ

νω a
ν c)e

c
μ (4.131)

This shows that an infinitesimal GCT δxμ = ζ μ can be reproduced by a local translation
with parameter ξ a = ζ νe a

ν and local Lorentz transformation with parameter λab =
ζ νωab

ν provided the torsion is set to zero.
Looking back at what we have done in this section, we see that we have treated

the Poincaré group as an internal symmetry group just like any Yang–Mills group. This
point of view offers another way to understand the discrepancy between infinitesimal
GCTs and local Poincaré translations. Making them agree requires an additional step:
the field strength of the “translation connection” e a

μ must be set to zero.
There are two further observations that should be noted. First, the Poincaré group

is not semisimple, having the translations as an Abelian invariant subgroup. Yang–
Mills theory is normally done with simple or semisimple internal groups. Second, the
arguments presented so far are all in the infinitesimal. The infinite-dimensional diffeo-
morphismgroup is structurally different from the local group of Poincaré translations.

4.7 Actions for gravity

Wewill review a few versions of the action for general relativity, startingwith the stan-
dard Einstein–Hilbert action.
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4.7.1 The Einstein–Hilbert action

The Einstein–Hilbert action reads

SEH ∼ ∫
M

d4x√gR (4.132)

where g denotes −det(gμν) and R is the curvature scalar. The constant in front of the
integral depends on conventions chosen.With themetric dimensionless, the constant
should have mass dimension 2 in units where c = ℏ = 1.

Varying the action with respect to the metric to get the Einstein field equations
goes through a number of standard steps that we will just briefly indicate. We start
with

δ(√gR) = √gRμνδg
μν + Rδ√g + √ggμνδRμν (4.133)

In this formula, δgμν is computed from δ(gμνgνσ) = 0 with the result

δgμν = −gμρgνσδgρσ (4.134)

Next, the variation of√g is computed from the formula for the derivative of the deter-
minant of a matrix, with the result

δ√g = 1
2
√ggμνδgμν (4.135)

And then δRμν is the so called Palatini identity which is computed by straightforward
variation in the formula for the Ricci tensor

δRμν = ∇μδΓ
ρ

ρν − ∇ρδΓ
ρ

μν (4.136)

Now the first two terms in (4.133) combine into

−√g (Rμν − 1
2
gμνR) (4.137)

while the last term can be written as

√g ∇μv
ν with vμ = gμσδΓ ρ

ρσ − g
ρσδΓ μ

ρσ (4.138)

Here, the covariant constancy of the metric is used. In general, a covariant divergence
can be written

∇μv
μ =

1
√g
𝜕μ(√g v

μ) (4.139)
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Thus (4.138), the last term of (4.133), turns out to be a total derivative. Putting every-
thing together, we get the variation of the Einstein–Hilbert action

δSEH ∼ −∫
M

d4x√g (Rμν − 1
2
gμνR)δgμν + ∫

M

d4x𝜕μv
μ (4.140)

The total derivative termcannot bediscardedoff lightly. It canbe converted to a surface
integral – assuming the integration regionM to be bounded as is appropriate – but it
turns out not to be sufficient to assume a constant metric on the boundary 𝜕M of M
(so that δgμν vanishes on 𝜕M). Also the first derivatives of the metric must be fixed
on 𝜕M. This problem is often cured by adding a surface term to the Einstein–Hilbert
action, such that it cancels the offending surface integral upon variation.25 Here, we
will simply assume that to be done, and conclude that demanding the action to be
stationary (under arbitrary variationsof themetric that vanishon theboundary) yields
the Einstein field equations

Gμν ≡ Rμν − 1
2
gμνR = 0 (4.141)

4.7.2 First-order action

Our discussions of the gauge theory treatments of gravity have suggested that it should
be possible, and interesting, to treat the metric and the affine connection as indepen-
dent fields.26 Since the connection, under certain assumptions (no torsion, metricity)
eventually turn out to be expressible in terms of derivatives of the metric, this points
toward a first-order formulation of the theory where the expression for the connection
should be one of the field equations.

The action, as it turns out, can be taken to be the Einstein–Hilbert action, but now
with the curvature scalar explicitlywritten as themetric contraction of the Ricci tensor

SP ∼ ∫
M

d4x√ggμνRμν(Γ) (4.142)

From the formula for the Riemann tensor (4.64), we get for the Ricci tensor

Rμν = R
α

μαν = 𝜕μΓ
α

να − 𝜕αΓ
α

μν + Γ
α

μβ Γ β
αν − Γ

α
αβ Γ β

μν (4.143)

25 Details of this can be found in [271, 127].
26 Although the Palatini identity is used in the computation, it seems that the first-order variational
approach is due to Einstein himself, rather than to A. Palatini; see [272].
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entirely expressed in terms of the affine connection Γ ρ
μν which is assumed to be free

of torsion.27 Its variation, with respect to a variation in the connection, is given by the
Palatini identity (4.136).

Since there is such clear separation of the variables √ggμν and Γ ρ
μν , it is more

convenient to vary the action with respect to the tensor density gμν = √ggμν rather
than the metric itself. Without further ado, we then get

δSP ∼ ∫
M

d4x(Rμσδg
μσ + gμσ(∇μδΓ

ρ
ρσ − ∇ρδΓ

ρ
μσ )) (4.144)

The first term immediately gives the field equation for Γ

δSP
δgμσ
∼ Rμσ(Γ) = 0 (4.145)

The second term of (4.144) involving δΓ needs some reworking to bring forth a
field equation for the metric. Essentially, we want to get the derivatives off δΓ. First, it
is rewritten using the Leibniz rule

∫
M

d4x[∇ρ((g
ρσδαβ − g

ασδρβ)δΓ
β

ασ ) + (∇βg
ασ − ∇ρg

ρσδαβ)δΓ
β

ασ ] (4.146)

Then, using a formula for the covariant divergence of a vector density that reads∇μvμ =
𝜕μv

μ, the first term yields a total derivative that is discarded (with the same caveat as
before), and a torsion term that goes with the second term of (4.146). Finally, one gets
the following contribution to the variation of the action:

∫
M

d4x(∇βg
ασ − ∇ρg

ρσδαβ)δΓ
β

ασ (4.147)

This may look like a complicated field equation for the metric density. But taking
advantage of the symmetry of δΓ β

ασ in the lower indices, the equation can be sym-
metrized and written

∇βg
ασ −

1
2
(∇ρg

ρσδαβ + ∇ρg
ραδσβ ) = 0 (4.148)

We have a homogeneous system of 40 equations for the 40 variables ∇βgασ and the
only solution is ∇βgασ = 0. From here follows the covariant constancy of the metric
itself, and the formula for the Levi–Civita connection canbe calculated as in example 7
above.

27 So far, Rμν is asymmetric in its indices, but the metric, assumed to be symmetric, projects out any
antisymmetric part in the Lagrangian density. A version with torsion and non-symmetric metric can
be found in [127]. Compare also to S. Deser’s work reviewed in Section 2.9.1.
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4.7.3 First-order vierbein action

The first-order vierbein action can be written as

S ∼ ∫R ab
μν (ω)e

r
ρ e

s
σ ϵabrsϵ

μνρσ (4.149)

where R ab
μν is the curvature expressed as a function of the spin connection according

to formula (4.98). The form of this action is dictated by what we already know about
actions for gravity. The superficial resemblance to the Einstein–Hilbert action (4.132)
and inparticular to thefirst-order action (4.142) shouldbe clear. Independent variation
of this action with respect to e and ω yield the field equations

Ga
μ = 0 and D[μe

a
ν] = 0 (4.150)

Here,Ga
μ corresponds to the Einstein tensor calculated from R ab

μν using the vierbeins
to contract indices appropriately. In the second equation, Dμ is the Lorentz covari-
ant derivative, hence this equation expresses zero torsion (see equation (4.96)). The
equivalence to standard GR follows upon requiring the first vierbein postulate. Then
the spin connection and the Levi–Civita connection become equal.

The action principles reviewed here are essentially the available choices for the
dynamical part of the gaugingmethod, at least if onewants to reproduceEinstein grav-
ity closely. Nonpropagating torsion can be accommodated, as in the Cartan–Sciama–
Kibble U4 theory. Torsion also occurs in supergravity, for instance, in the first-order
formulation of the Deser–Zumino N = 1 supergravity [142].

4.7.4 Provisional summary of gauge Yang–Mills versus gauge gravity

It is quite clear that the resemblance to Yang–Mills theory is “less than perfect”. I
would dare say that it is not perfect at all. At the kinematical level of gauging, there
are conceptual problems as regards the gauging of the translation part of the Poincaré
group and its relation to general coordinate transformations. This shows up in the
gauging procedure as the question of the nature of the tetrad fields: when and with
what motivation should they be introduced and what is the nature of their indices?
Formally, the tetrads become the gauge fields of local translations. The correspond-
ing field strength is the torsion, which is forced to be zero in the absence of matter
at least. The tetrads furthermore must be invertible viewed as matrices in order to re-
trieve standard GR. This is a feature not seen in Yang–Mills theory. The tetrad fields
may formally be viewed as connections on the local tangent bundle. The invertibility,
however, seems to introduce a novel concept of a kind of dualitywhere the base space-
time manifold may be viewed as a fiber bundle over the local Minkowski space-time.

The kinematical gauging of the Lorentz group works out a little better. No deep
conceptual problems seem to appear. The gauge field is the spin connection and the
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field strength is the curvature. However, when we come to the dynamical part of the
gauging procedure, the Lagrangian density is not quadratic in field strengths, but lin-
ear. The equation of motion for the gauge field will be a constraint: the covariant con-
stancy of the metric. As we have seen, the end result is the Einstein field equations
where the dynamical field indeed turn out to be themetric itself, or the vierbein fields.
The connections, either the Levi–Civita or the spin connection are auxiliary and com-
pletely determined by the metric or the vierbeins.

One way of viewing all this is to realize that there is an extra tier to spin 2 theory
as compared to spin 1 theory. For spin 1, there is just the gauge potential and the field
strength which is also the gauge covariant curvature. For spin 2, there are three tiers:
the gauge potential (the metric), a second tier (the connections) and a third which is
the curvature. The three tiers are related in a special way as we have seen.

Higher spin gauge field theory will exhibit a generalization of this in that there
are s+ 1 tiers for spin s. We have already seen this in the deWit–Freedman elaboration
of the Fronsdal theory (see Section 2.10.3). This structure – in the free field theory –
has been investigated by D. Francia and A. Sagnotti, a topic that will be reviewed in
Sections 5.3.2 and 5.5. It will also appear in the “frame-like” approach to higher spin
field theory that is on the route to the Vasliev theory (see Section 5.7).

In this context, it should be mentioned that there is an approach to gauge the-
ory of gravity that aims to circumvent the problems surrounding the special way that
the translations has to be managed. It basically amounts to gauging the semisimple
group SO(3, 2) instead of the Poincaré group, and then breaking the symmetry down
to Poincaré. This method was much in use in the research into various supergravity
theories. We will not go further here, neither with reviewing the material, which is
outside our scope, nor with references, but rather refer the reader to the Kibble–Stelle
review [134] from that time.

4.8 Chapter 4 epilogue

I am afraid I may have left the reader in a stage of confusion. It was not my intention.
I must say I am somewhat confused myself. To see it from the bright side, let us agree
that it is probably a healthy confusion. The step from spin 1 gauge theory to spin 2
gauge theory is fraught with conceptual and technical problems. In the light of this,
one could just press ahead nonetheless, or try to understand the conceptual problems
and the low spin cases better. Most likely one must do both. We will try to do so in the
second volume. Pressing ahead using the gauge principle heuristically will lead to the
Vasiliev theory. If it may lead to other kinds of higher spin theories, I, at least, do not
know. It ismy belief that trying to understand the conceptual problemswill eventually
be necessary. However, for now we turn to the free field theory of arbitrary spin.



5 Exploring the free field theory
In this chapter, we will analyze parts of the classical work on higher spin gauge fields.
Contrary to Chapter 2 where we followed the historical route, we will here start with
the Fronsdal theory in order to lay down the foundations of the theory and explain
the notation that is needed in order to work efficiently with higher spin fields. It will
also allowus to contrastwhat camebefore and after Fronsdalwith the Fronsdal theory
itself.

5.1 The Fronsdal theory

It is natural to use a symmetric tensor field φμ1 ...μs with s indices for the field theoretic
realization of a spin s representation of the Poincaré group. This formulation of the
free theory has become known as the metric-like formulation. The frame-like formula-
tion will be reviewed in Section 5.7. However, as we have already noted, the spin of a
massless, or massive, representation of the Poincaré group has no simple relation to
the number of indices on the space-time field realization. There are many choices of
sets of fields available, and one must take field equations, subsidiary conditions and
gauge invariances into account. This story will be unraveled as we proceed.

We studied the free field equations and Lagrangians for spin 1 and 2 in Section 4.1.
Higher spin field equations turn out to be quite close to their lower spin counterparts.
Let us first define the Fronsdal tensor1

ℱμ1 ...μs = ◻φμ1 ...μs − 𝜕(μ1 𝜕 ⋅φμ2 ...μs) + 𝜕(μ1 𝜕μ2 φ
󸀠
μ3 ...μs) (5.1)

In terms of this tensor, the wave equation reads

ℱμ1 ...μs = 0 (5.2)

This equation naturally generalizes the wave equations for massless fields of spin 0, 1
and 2. Under a gauge transformation,

δφμ1 ...μs = 𝜕(μ1 ξμ2 ...μs) (5.3)

we record, for the readers convenience, the transformations of the trace and diver-
gence

δφ󸀠μ3 ...μs = 2 𝜕 ⋅ξμ3 ...μs + 𝜕(μ3 ξ
󸀠
μ4 ...μs) (5.4)

δ 𝜕 ⋅φμ2 ...μs = ◻ξμ2 ...μs + 𝜕(μ2 𝜕 ⋅ξμ3 ...μs) (5.5)

1 B. de Wit and D. Z. Freedman [150] wroteWμ1 ...μs for this tensor, certainly a better choice, but F has
become standard in the modern higher spin literature. To disambiguate its use from other prominent
F’s, I resort to writeℱ .

https://doi.org/10.1515/9783110451771-005
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The three terms in the Fronsdal tensor transform as

δ(◻φμ1 ...μs) = 𝜕(μ1 ◻ξμ2 ...μs)
δ( − 𝜕(μ1 𝜕 ⋅φμ2 ...μs)) = − 𝜕(μ1 ◻ξμ2 ...μs) − 𝜕(μ1 𝜕(μ2 𝜕 ⋅ξμ3 ...μs))
δ( 𝜕(μ1 𝜕μ2 φ

󸀠
μ3 ...μs)) = 2 𝜕(μ1 𝜕μ2 𝜕 ⋅ξμ3 ...μs) + 𝜕(μ1 𝜕μ2 𝜕(μ3 ξ

󸀠
μ4 ...μs)) (5.6)

The Fronsdal tensor itself transforms as

δℱμ1 ...μs = 3 𝜕(μ1 𝜕μ2 𝜕μ3 ξ
󸀠
μ4 ...μs) (5.7)

In order to have gauge invariant wave equations, we have to require the gauge param-
eters for spin 3 and higher to be traceless, that is, ξ 󸀠μ4 ...μs = 0. This is however not the
full story. We have to ensure that the number of dynamical components of the field
come out right. InD = 4, the number of physical degrees of freedom2 is 2 independent
of spin, while a symmetric tensor field has (s+33 ) components in D = 4.

For the moment, we assume that the higher spin gauge transformations remove
twice the number of components of the gauge parameter just as for spin 1 and 2. Tak-
ing the tracelessness into account, this number then works out to 2 ((s+23 ) − (

s
3 )) = 2s

2

which is clearly not enough to reduce (s+33 ) down to 2. A clue of what to do can be ob-
tained by explicitly computing the number of components of the field and it first and
second traces. We record the result in Table 5.1.

Table 5.1: Number of components of φ and ξ and their traces.

Field or Parameter Number of components

φμ1 ...μs (s+33 ) =
1
6 (s

3 + 6s2 + 11s + 6)
ξμ2 ...μs (s+23 ) =

1
6 (s

3 + 3s2 + 2s)
φ󸀠μ3 ...μs (s+13 ) =

1
6 (s

3 − s)
ξ 󸀠μ4 ...μs (s3 ) =

1
6 (s

3 − 3s2 + 2s)
φ󸀠󸀠μ5 ...μs (s−13 ) =

1
6 (s

3 − 6s2 + 11s − 6)

It is clear that a field subject to a vanishing double trace condition – double traceless-
ness – effective from spin 4 onwards

φ󸀠󸀠μ5 ...μs = φ
αβ

αβμ5 ...μs
= 0 (5.8)

will carry 2s2 +2 degrees of freedom. Subtracting the gauge freedom leaves us with the
required 2 physical components. A symmetric, double traceless field may be referred
to as a Fronsdal field. The number of field components, 2s2 + 2, is the same number

2 We are now counting field degrees of freedom; see Section 1.1.
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as in two symmetric and traceless fields with s and s − 2 indices, respectively. As we
saw in Section 2.10.1, this combination of fields appeared in Fronsdal’s analysis of the
massless limit of massive higher spin theory. We will work through the counting of
degrees of freedom inmore detail in Section 5.1.1, but first some comments on notation
for higher spin fields.

Index symmetrization

The (. . .) notation means symmetrization of the enclosed indices with weight 1. Thus, in the simplest
case

𝜕(μ1 φμ2 ...μs) = 𝜕μ1 φμ2 ...μs + 𝜕μ2 φμ3 ...μsμ1 + ⋅ ⋅ ⋅ + 𝜕μs φμ1 ...μs−1 (5.9)

including as many terms as needed (but not any more) to make the expression fully symmetric, in
this case s terms. With this logic, the last term in the Fronsdal tensor (5.1) has s(s − 1)/2 terms. In
some computations, for instance in the computation of the gauge variation of the second term in the
Fronsdal tensor there will appear the expression 𝜕(μ1 𝜕(μ2 ξμ3 ...μs)), that is, a double symmetrization.
This expression contains s(s − 1) terms and, therefore, overcounts the number of terms as compared
to 𝜕(μ1 𝜕μ2 ξμ3 ...μs) with a factor of 2. Note that 𝜕(μ1 𝜕μ2) = 2 𝜕μ1 𝜕μ2 . The following formula captures the
general case:

𝜕(μ1 . . . 𝜕μp𝜕(μp+1 . . . 𝜕μp+qξμp+q+1 ...μn)) = (p + qq )𝜕(μ1 . . . 𝜕μp+qξμp+q+1 ...μn) (5.10)

To denote symmetrizations over two independent index groups, onewritesA(μ1(ν1 ...νn)μ2 ...μm), each
index group being enclosed by round brackets in a hopefully not too confusing manner. As with all
shortened notation, a bit of care is needed in parsing the formulas.

As is soon discovered, unit weight symmetrization is very convenient in higher spin theory. Using
full symmetrization by summing over all s permutations and dividing by s! would produce lots of un-
necessary terms as the expressions to be symmetrized often already possess a large index symmetry,
as for instance in formula (5.9). Such factors of 1/s! would be a nuisance, and in writing a formula one
would have to compute the number of terms in order to get the factor right.

There are various versions of condensed notation employed in the higher spin litera-
ture.3 Common to most condensed notation are to use round brackets ( ) to enclose
indices that are to be symmetrized, most often with unit weight as noted above.

Condensed notation

The following notation will be used here. A symmetric tensor with n indices φμ1 ...μn is written φ(n) and
correspondingly for tensors with lower indices. If symmetrization is needed, it is always done with
unit weight. Traces of a tensor are decorated with a prime 󸀠 or a double prime 󸀠󸀠 and the number of

3 At least going back to some of the 1960s work cited in Chapter 2.
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remaining symmetrized indices. Thus the trace of an n index tensor φ(n) is written as φ󸀠(n−2). Multiple
traces are denoted by a square bracket superscript as in φ[p].

A dot ⋅ and sometimes, a double dot : are used for divergences and double divergences as in
𝜕 ⋅ φ(n−1) and 𝜕 ⋅ 𝜕 ⋅ φ(n−2) = 𝜕𝜕 : φ(n−2). The superscript (or subscript) (p) always denotes the number
of symmetrized indices left after the indicated contraction operations (traces, divergences etc.). Con-
tractions between tensors are often left implicit in writing for instance A(n)B(n) where all indices are
contracted. If care is exercised, it is possible to calculate reliably using this notation. As an example,
computing a divergence as in 𝜕 ⋅ (𝜕(1φs−1)) = ◻φs + (s − 1)𝜕 ⋅ φ(s−1), we see that the total number of
terms are preserved on both sides of the equation. The Fronsdal field equations can be written in this
notation as

◻φ(s) − 𝜕 (1𝜕 ⋅ φs−1) + 𝜕(1𝜕2φ󸀠 s−2) = 0 (5.11)

We will also write integrals simply as ∫ when the integration variables are obvious.
An even more condensed notation was introduced by D. Francia and A. Sagnotti in [273] where

the decoration telling the number of indices are dropped. Unit weight symmetrization is always as-
sumed and not explicitly written. Multiple partial derivatives are the written 𝜕m denoting a product
ofm derivatives with different indices, for instance, 𝜕𝜕 = 𝜕2. Divergences are still denoted by 𝜕 ⋅. The
multiple symmetrization rule (5.10) becomes 𝜕p𝜕q = (p+qq )𝜕

p+q. The Fronsdal equations become

◻φ − 𝜕𝜕 ⋅ φ + 𝜕𝜕φ󸀠 = 0 (5.12)

Wewill occasionally use this simplified systemof notation. It is very convenient for fast communication
of the essentials of a situation. For detailed manipulations, one may prefer to carry more baggage.

We also record a fewmore equations involving traces and divergences of the Fronsdal
tensor that will be useful later on. We will write them in condensed notation and keep
terms with double traces on the field:

ℱ 󸀠(n−2) = 2◻φ
󸀠
(n−2) − 2𝜕 ⋅ 𝜕 ⋅ φ(n−2) + 𝜕(1𝜕 ⋅ φ

󸀠
n−3) + 𝜕(1𝜕2φ

󸀠󸀠
n−4) (5.13)

ℱ 󸀠󸀠(n−4) = 3𝜕(1𝜕 ⋅ φ
󸀠󸀠
n−3) + 3◻φ

󸀠󸀠
(n−4) + 𝜕(1𝜕2φ

[3]
n−6) (5.14)

𝜕 ⋅ ℱ(n−1) = 𝜕(1◻φ
󸀠
n−2) − 𝜕(1𝜕 ⋅ 𝜕 ⋅ φn−2) + 𝜕(1𝜕2𝜕 ⋅ φ

󸀠
n−3) (5.15)

𝜕 ⋅ ℱ 󸀠(n−3) = 3◻𝜕 ⋅ φ
󸀠
(n−3) − 2𝜕 ⋅ 𝜕 ⋅ 𝜕 ⋅ φ(n−3) + 𝜕(1𝜕 ⋅ 𝜕 ⋅ φ

󸀠
n−4)

+ ◻𝜕(1φ
󸀠󸀠
n−4) + 𝜕(1𝜕2𝜕 ⋅ φ

󸀠󸀠
n−5) (5.16)

5.1.1 Counting physical components

In order to correctly count the number of independent physical components of the
higher spin field, we impose the covariant gauge condition [150]

𝒢μ2 ...μs ≡ 𝜕 ⋅φμ2 ...μs −
1
2
𝜕(μ2φ
󸀠
μ3 ...μs) = 0 (5.17)

generalizing the Lorenz and de Donder gauge conditions for spin 1 and 2. We will call
𝒢μ2 ...μs the de Donder tensor. A short computation shows

𝜕(μ1𝒢μ2 ...μs) = 𝜕(μ1 𝜕 ⋅φμ2 ...μs) − 𝜕(μ1𝜕μ2φ
󸀠
μ3 ...μs) (5.18)
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The Fronsdal tensor may therefore be written in terms of the de Donder tensor as

ℱμ1 ...μs = ◻φμ1 ...μs − 𝜕(μ1𝒢μ2 ...μs) (5.19)

Imposing the covariant gauge condition (5.17) then reduces the wave equation to

◻φμ1 ...μs = 0 (5.20)

Thus the particles are massless. Next, we compute the trace of 𝒢μ2 ...μs to find

𝒢󸀠μ4 ...μs = −
1
2
𝜕(μ4 φ

󸀠󸀠
μ5 ...μs) = 0 if φ󸀠󸀠μ5 ...μs = 0 (5.21)

We learn that if the field is double traceless then the gauge condition is traceless and,
therefore, has asmany components as the gaugeparameter (namely s2). Next,we com-
pute the gauge variation of the gauge condition to find

δ𝒢μ2 ...μs = ◻ξμ2 ...μs −
1
2
𝜕(μ2 𝜕(μ3 ξ

󸀠
μ4 ...μs) = ◻ξμ2 ...μs (5.22)

To stay in the gauge, that is have δ𝒢μ2 ...μs = 0, it is therefore enough to use a gauge pa-
rameter all of whose components satisfy the Klein–Gordon equation. The field equa-
tion ◻φ = 0 is gauge invariant under such a gauge transformation. This allows for
regauging as many field components as components in the gauge parameter. All in
all, covariant gauge fixing and regauging removes 2s2 components leaving just 2 com-
ponents out of the 2s2 + 2 components of a double traceless symmetric tensor field.

Fixing gauges and regauging: The TT-gauge or Fierz–Pauli–Umezawa example

One may perceive the argument above as a little bit too clever for its own good. What are we actually
doing? What is a gauge choice and what does it mean to regauge? To clarify this, one may proceed as
follows. We start with field equations ℱ(φ) = 0 invariant under gauge transformations δφ = 𝜕ξ , that
is, δℱ(φ) = 0. The gauge condition is 𝒢(φ) = 0.

We then think of an initial field configuration φ0 not satisfying the gauge condition. To fix the
gauge, we perform a gauge transformation φ0 → φ = φ0 + 𝜕ξ0 so that 𝒢(φ) = 0. This can be done
with a gauge parameter ξ0 satisfying 𝒢(𝜕ξ0) = −𝒢(φ0). As we see from equation (5.22), this means
that ◻ξ0 = −𝒢(φ0) for the de Donder gauge condition and a traceless gauge parameter.

For the new field configurationφ, we nowhave the field equation◻φ = 0 and the gauge condition
𝒢(φ) = 0 removes half the number of unphysical field components. Now we may perform the regauge
transformation δφ = 𝜕ξ with ◻ξ = 0 and ξ 󸀠 = 0. The wave equation for φ is clearly invariant as is
the gauge condition! We remove the second-half of the unphysical field components. That the count
works out correctly is assured by equation (5.21) and the argument following it.

Let us now contrast this gauge choice with the TT-gauge choice (Transverse -Traceless), that re-
sults in the system of equations

◻φ = 0 𝜕 ⋅ φ = 0 φ󸀠 = 0 (5.23)
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invariant under re-gauge transformations with a parameter Λ satisfying

◻Λ = 0 𝜕 ⋅ Λ = 0 Λ󸀠 = 0 (5.24)

This system is sometimes called the Fierz–Pauli system, since it was first studied for spin 2 by Fierz
and Pauli (see Chapter 2).4 The counting of field components is exactly as for massive higher spin
fields since the conditions on the fields are the same. There is no double tracelessness now. Thus the
field contains 2s + 1 independent components. The regauge parameter Λ contains 2s − 1 independent
components. Subtracting, we get the correct number of physical components equal to 2.

It remains to study the gauge transformations that enforce the TT-gauge conditions. Consider
an initial field configuration φ00 that is neither traceless nor transverse. A first gauge transformation
φ00 → φ0 = φ00 + 𝜕ξ00, chosen so that 2𝜕 ⋅ ξ00 + 𝜕ξ 󸀠00 = −φ

󸀠
00 enforces φ󸀠0 = 0. Now in order

to have an invariant wave equation ◻φ0 − 𝜕𝜕 ⋅ φ0 and gauge condition φ󸀠0 = 0, any further gauge
transformation δφ = 𝜕ξ must satisfy 𝜕 ⋅ ξ = 0 and ξ 󸀠 = 0. Then perform a second such transformation
φ0 → φ = φ0 + 𝜕ξ0 to enforce 𝜕 ⋅ φ = 0. This requires the parameter to satisfy ◻ξ0 = −𝜕 ⋅ φ0. The
gauge conditions φ󸀠 = 0 and 𝜕 ⋅ φ = 0 are then invariant under any further transformation satisfying
𝜕 ⋅ ξ = ξ 󸀠 = ◻ξ = 0. So is the wave equation ◻φ = 0. We have arrived at the TT system of equations.

5.1.2 The Fronsdal Lagrangian

Fronsdal rederived the Singh–Hagen Lagrangian for massive higher spin fields. As we
reviewed in the historical Section 2.5, it was found that a decreasing spectrumof fields
of spin s, s − 2, s − 3, . . . was needed in order to write a Lagrangian for a massive spin s
field that yields the correct Euler–Lagrange equations (2.140)–(2.142). Fronsdal found
that all the lower spin fields except the one with spin s − 2 decouple when the mass
was set to zero. He then combined the two traceless spin s and s− 2 fields into a single
spin s field with nonzero trace but with zero double trace. This field then becomes the
higher spin massless gauge field. The Fronsdal Lagrangian is

ℒ =
1
2
(φμ1 ...μs◻φ

μ1 ...μs −
s(s − 1)

2
φ󸀠μ3 ...μs◻φ

󸀠μ3 ...μs + s𝜕 ⋅ φμ2 ...μs𝜕 ⋅ φ
μ2 ...μs

+ s(s − 1)φ󸀠μ3 ...μs𝜕 ⋅ 𝜕 ⋅ φ
μ3 ...μs +

s(s − 1)(s − 2)
4
𝜕 ⋅ φ󸀠μ3 ...μs𝜕 ⋅ φ

󸀠μ3 ...μs)

=
1
2
(φ ⋅ ◻φ − s(s − 1)

2
φ󸀠 ⋅ ◻φ󸀠 + s(𝜕 ⋅ φ) ⋅ (𝜕 ⋅ φ)

+ s(s − 1)φ󸀠 ⋅ (𝜕𝜕 ⋅ φ) + s(s − 1)(s − 2)
4
(𝜕 ⋅ φ󸀠) ⋅ (𝜕 ⋅ φ󸀠)) (5.25)

In the second expression, we have taken the opportunity to write the action in con-
densed notation. The potentially worrisome negative sign in front of the kinetic term
φ󸀠 ⋅◻φ󸀠 is correct and does not render the theory unphysical. It appears even for spin 2.

4 The only pre-Fronsdal mentioning of this particular system for arbitrary spin – that I am aware of –
is in H. Umezawa’s textbook [83] from 1956 (see our Section 2.4.5). Umezawa performs the counting of
degrees of freedom as done here.
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As mentioned in Section 2.10.2, the Fronsdal theory was rederived by T. Curtright
by an ansatz-verificationmethod. Take the higher spin gauge transformation law (5.3)
for granted and assume themost general form for the free Lagrangianwith two deriva-
tives and no double traces (or higher) on the field. Then the coefficients in the ansatz
canbefixed so that the variation of the Lagrangian is a total derivative only if the gauge
parameter is traceless. The result is the Fronsdal Lagrangian (5.25).

5.2 The de Wit–Freedman elaboration

In the paper [150] – appearing about a year after the Fronsdal paper [3] – de Wit and
Freedman clarified the structure of the theory by introducing a hierarchy of “Christof-
fel symbols” generalizing the spin 1 electromagnetic field strength and spin 2 free the-
ory Christoffel symbols and curvature tensor. The special case of spin 3 was further
investigated by T. Damour and S. Deser in [152].

The first-order spin s Christoffel symbol is defined as

Γ(1)ρ;μ1 ...μs = 𝜕ρφμ1 ...μs − 𝜕(μ1φρμ2 ...μs) (5.26)

Higher order symbols are then defined recursively

Γ(m)ρ1 ...ρm ;μ1 ...μs = 𝜕ρ1Γ
(m−1)
ρ2 ...ρm ;μ1 ...μs −

1
m
𝜕(μ1Γ
(m−1)
ρ2 ...ρm ;ρ1μ2 ...μs)

(5.27)

so that, for instance, Γ(2) comes out explicitly as

Γ(2)ρ1ρ2 ;μ1 ...μs = 𝜕ρ1𝜕ρ2φμ1 ...μs −
1
2
𝜕(ρ1𝜕(μ1φρ2)μ2 ...μs) + 𝜕(μ1𝜕μ2φρ1ρ2μ3 ...μs) (5.28)

The symmetry in the index group ρ is clear, a result that is true also for the higher order
symbols.

The coefficients in the definition of the Christoffel symbols are chosen to produce
simple gauge transformation properties for the symbols. We get

δΓ(m)ρ1 ...ρm ;μ1 ...μs = (−1)
m(m + 1)𝜕(μ1 . . . 𝜕μm+1ξρ1 ...ρmμm+2 ...μs) (5.29)

with all the indices from the group ρ appearing only on the gauge parameter.
The generalized Christoffel symbol Γ(m)ρ1 ...ρm ;μ1 ...μs is a linear combination ofm partial

derivatives on the field φ, independently symmetric in the two index groups μ and ρ.
This together with the gauge transformation property (5.29) make them unique.

Them = s Christoffel symbol for spin s is gauge invariant, that is,

δΓ(s)ρ1 ...ρs ;μ1 ...μs = 0 (5.30)
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for the very simple reason that the gaugeparameters haveone index less that the gauge
fields.5 The symbols Γ(s)ρ1 ...ρs ;μ1 ...μs are called generalized curvature tensors in [150] for this
reason, and deserve the special notation

Rρ1 ...ρs ;μ1 ...μs = Γ
(s)
ρ1 ...ρs ;μ1 ...μs (5.31)

An explicit formula can be derived from recursive equation (5.27). It reads6

Rρ1 ...ρs ;μ1 ...μs =
s
∑
k=0

(−1)k

(sk )
𝜕(ρ1 . . . 𝜕ρs−k𝜕(μs−k+1 . . . 𝜕μsφμ1 ...μs−k)ρs−k+1 ...ρs) (5.32)

where again the ρ and μ indices should be symmetrized separately. The curvature ten-
sors obey Bianchi-type relations (see Section 5.2.1).

The lower order Christoffel symbols, contracted with the Minkowski metric over
two of the ρ indices, are gauge invariant under transformations with traceless gauge
parameters, as is clear from (5.29). Since the second-order symbol is then a gauge in-
variant, second-order derivative object, it is a candidate for a wave equation. Indeed
we get

Γ(2)σσ;μ1 ...μs = ◻φμ1 ...μs − 𝜕(μ1 𝜕 ⋅φμ2 ...μs) + 𝜕(μ1 𝜕μ2 φ
󸀠
μ3 ...μs) = ℱμ1 ...μs (5.33)

which is precisely the Fronsdal tensor.

Relation to the spin 2 Riemann tensor

Already from the symmetry properties of the spin 2 tensor Γ(2)ρ1ρ2 ;μ1μ2 it is clear that it is not equal to the
usual Riemann curvature R of equation (4.64). Linearizing and writing R with all indices lowered, we
get

Rμ1μ2 ;ρ1ρ2 = 𝜕μ1Γμ2ρ1 ;ρ2 − 𝜕μ2Γμ1ρ1 ;ρ2

=
1
2
(𝜕μ1𝜕ρ1φμ2ρ2 + 𝜕μ2𝜕ρ2φμ1ρ1 − 𝜕μ1𝜕ρ2φμ2ρ1 − 𝜕μ2𝜕ρ1φμ1ρ2) (5.34)

clearly separately antisymmetric in both index pairs μ and ρ. A linear recombination yields Γ(2) accord-
ing to the formula

Γ(2)ρ1ρ2 ;μ1μ2 = Rρ2μ2 ;ρ1μ1 − Rρ1μ2 ;μ1ρ2 (5.35)

The linearized gravitational field equations can be written as

ηρ1ρ2Γ(2)ρ1ρ2 ;μ1μ2 = 0 (5.36)

5 In a nonlinear theory, one would only expect gauge covariance.
6 A formula for lower order symbols can be found in the deWit and Freedman paper.
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At this stage, we can note a curiosity of spin 1. For spin 1, it is the first-order Christoffel
symbol Γ(1)ρ;μ that is gauge invariant. It is equal to the field strength tensor Fρμ, and
the field equations are, as usual, 𝜕ρΓ(1)ρ;μ = 0. In this sense, the higher spin Fronsdal
equations could be said to be “Einstein-like” rather than “Maxwell-like”. However, if
one were to compute the second order Christoffel symbol for spin 1 according to the
general formula (5.27) one would find

Γ(2)ρ1ρ2 ;μ = 𝜕ρ1𝜕ρ2φμ −
1
2
𝜕μ𝜕(ρ1φρ2) (5.37)

This object is gauge invariant, and onewould find that theMaxwell equations can also
be written as the trace

ηρ1ρ2Γ(2)ρ1ρ2 ;μ = 0 (5.38)

There is actually quite a lot more that can be said about this, and we will review such
work beginning in Section 5.3.2 and in more detail in Section 5.5.

A note on notation

When, in the sequel, we have occasion to refer back to these generalized Christoffel symbols, we will
drop the superscript (m) instead letting the number of ρ indices indicate the order of the symbol. It will
be convenient to define a notation for tensors involving several traces over the ρ indices. Thuswe take
a superscript [n] to denote n traces, so that for instance Γ[2] = Γ󸀠󸀠.

5.2.1 Bianchi identities

In analogy to lower spin, and due to their definition in terms of derivatives, it is to be
expected that the generalized Christoffel symbols Γ(m) obey Bianchi-type identities.
This is indeed the case, although as pointed out in [150], it is only for them = s gauge
invariant “curvatures” that an unambiguous meaning can be given to the identities.7

The traditional meaning of Bianchi identities refers to general relativity. The free
Einstein equations Gμν = 0 comprise ten algebraically independent differential equa-
tions. They are related by four differential identities∇μGμν = 0 that reduce the number
of effective equations to six. This leaves four undetermined metric components in gμν
which correspond precisely to the gauge arbitrariness of the coordinate functions xμ.
The term Bianchi identity also refers to the identity ∇λRμνρσ +∇ρRμνσλ +∇σRμνλρ = 0 for
the curvature tensor from which ∇μGμν = 0 follows (see reference [243]).

An analogous phenomenon occurs for electromagnetism. The free Maxwell equa-
tions ℱμ = ◻φμ − 𝜕μ𝜕 ⋅ φ = 0 also fail to determine the vector potential φμ completely

7 With a certain exception, as we will see.
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due to the differential identity 𝜕 ⋅ ℱ = 0. This reduces the number equations to three,
leaving one undetermined component ofφμ corresponding precisely to the gauge free-
dom. Also for spin 1, we have the identity 𝜕ρFμν +𝜕μFνρ+𝜕νFρμ = 0 for the field strength
tensor Fμν.

This suggests two directions of generalization to higher spin: either for them = s
higher spin (andhigher derivative) curvatures, or for certain combinations of them = 2
Christoffel symbols. Let us follow this latter direction here.

For spin 1, we have 𝜕 ⋅ℱ = 0, and for 2 we have 𝜕 ⋅Gμ = 𝜕 ⋅ℱμ −
1
2𝜕μℱ
󸀠 = 0 in terms

of the linearized Einstein tensor (see equation (4.13)). This generalizes immediately to
𝜕 ⋅ℱμ2μ3 −

1
2𝜕(μ2ℱ

󸀠
μ3) = 0 for spin 3. However, for spin 4 and higher a new phenomenon

appears, and we get, in condensed notation

𝜕 ⋅ ℱ(s−1) −
1
2
𝜕(1ℱ
󸀠
s−2) = −

3
2
𝜕(1𝜕2𝜕3φ

󸀠󸀠
n−4) (5.39)

The term of right was called a classical anomaly in [274]. For double traceless fields –
where the right-hand side is zero – we have a higher spin Bianchi identity.

5.2.2 Lagrangians

A straightforward – after the fact – approach to finding a Lagrangian for an arbitrary
spin s field is to follow de Wit and Freedman. In terms of the Fronsdal tensor and its
trace, make the ansatz

ℒ =
1
2
φμ1 ...μsℱ

μ1 ...μs − aφ󸀠μ3 ...μsℱ
󸀠μ3 ...μs (5.40)

where a is a coefficient to determine. The double tracelessness constraint is assumed
to hold, which by the way, implies double tracelessness of the Fronsdal tensor. Then
perform a gauge transformation on the action S = ∫ℒd4x. Assuming the gauge param-
eter to be traceless from spin 3 onwards, we get

δS = −∫ ξμ2 ...μs(
s
2
𝜕 ⋅ ℱμ2 ...μs −

2a
s − 1
𝜕(μ2ℱ 󸀠μ3 ...μs))dx4 (5.41)

However, from the definition of the Fronsdal tensor, we have the Bianchi identity for
double traceless fields (see (5.39))

𝜕 ⋅ ℱμ2 ...μs −
1
2
𝜕(μ2ℱ
󸀠
μ3 ...μs) = 0 (5.42)

Thus the gauge variation of the action is zero (up to a surface term) precisely with
a = s(s − 1)/8. The Lagrangian can be written very smartly as

ℒ =
1
2
φμ1 ...μs(ℱ

μ1 ...μs − η(μ1μ2ℱ 󸀠μ3 ...μs)) = 1
2
φ(s) ⋅ (ℱ (s) − η(12F󸀠s−2)) (5.43)
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The Euler–Lagrange equations that follow from varying the action (5.43) are

ℱμ1 ...μs −
1
2
η(μ1μ2ℱ

󸀠
μ3 ...μs) = 0 (5.44)

Computing the trace of this equation yields ℱ 󸀠μ3 ...μs = 0, which reinserted yields the
Fronsdal equations. In this context – with this spectrum of fields – there is no way
to avoid this intermediate step of taking the trace of the Euler–Lagrange equations to
arrive at the Fronsdal equations [150] (as will be explained below). The expression in
equation (5.44) generalizes the linearized Einstein tensor for general relativity

Gμ1 ...μs = ℱμ1 ...μs −
1
2
η(μ1μ2ℱ

󸀠
μ3 ...μs) (5.45)

It is divergence free for spin 1 and 2 but not so for higher spin, not even for double
traceless fields.8

When the Lagrangian in (5.43) is written out explicitly it coincides precisely with
the Fronsdal Lagrangian (5.25). However, the Lagrangian clearly needs a deeper anal-
ysis, and this is the topic of the next section.

“Varying” practicalities

The following derivation formulas are useful when varying actions:9

𝜕ϕ(s󸀠)
𝜕ϕ(s)
=
𝜕ϕμ1󸀠 ...μs󸀠
𝜕ϕμ1 ...μs

=
1
s!
∑
σ(s󸀠) ημ1μ1󸀠 ⋅ ⋅ ⋅ ημsμs󸀠 = 1

s!
∑
σ(s󸀠) ηs(ss󸀠) (5.46)

𝜕ϕ󸀠(s󸀠−2󸀠)
𝜕ϕ(s)

=
𝜕ϕ󸀠μ3󸀠 ...μs󸀠
𝜕ϕμ1 ...μs

=
2
s!
η(μ1μ2 ∑

σ(s󸀠−2󸀠) ημ3μ3󸀠 . . . ημs)μs󸀠 = 2
s!
η(12 ∑

σ(s󸀠−2󸀠) ηs−2s)s󸀠 (5.47)

𝜕ϕ󸀠󸀠(s󸀠−4󸀠)
𝜕ϕ(s)

=
𝜕ϕ󸀠󸀠μ5󸀠 ...μs󸀠
𝜕ϕμ1 ...μs

=
8
s!
η(μ1μ2ημ3μ4 ∑

σ(s󸀠−4󸀠) ημ5μ5󸀠 . . . ημs)μs󸀠 = 8
s!
η(12η34 ∑

σ(s󸀠−4󸀠) ηs−4s)s󸀠 (5.48)

The permutations are over the primed indices μ󸀠 and the symmetrization over the unprimed indices μ.
When the first derivative contracts into an object with full symmetry over μ1 . . . μs, a factor s! cancels
the 1/s!. When the second derivative contracts into an object with symmetry over μ3 . . . μs, a factor
(s − 2)! appears resulting in a factor 1

s(s−1) . For the third derivative, the corresponding factor becomes
3

s(s−1)(s−2)(s−3) .

5.2.3 Understanding the Lagrangian

Consider a free field theory with field equations Kϕ = 0 with kinetic operator K in-
volving two derivatives. Wewant to derive such field equations as the Euler–Lagrange

8 Note the factor of 1/2 in front of the F󸀠 term in (5.44) and (5.45) but not in (5.43).
9 We use the symbol ϕ for a generic field, reserving the symbol φ specifically for a higher spin field.
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equations of a Lagrangianℒ. In simple enough examples,10 it workswithℒ = 1
2ϕ(Kϕ).

However, as we have seen, if the fields are subject to constraints or subsidiary condi-
tions, amore complicated Lagrangian is needed. This is also the case if the kinetic op-
erator involves traces of the fields.Wewill nowanalyze this for the case of the Fronsdal
field equations.

We start by separating out the two first terms of the Fronsdal tensor (not involving
the trace of thefield) andputℰμ1 ...μs = ◻φμ1 ...μs−𝜕(μ1 𝜕 ⋅φμ2 ...μs).We take as theprovisional
action 1

2 ∫φ
(s) ⋅ ℱ(s) written

S1 =
1
2
∫φμ1 ...μsℰμ1 ...μs +

1
2
∫φμ1 ...μs( 𝜕(μ1 𝜕μ2 φ

󸀠
μ3 ...μs)) (5.49)

For the time being neglecting the double tracelessness constraint on the field, we get
the variation

δS1 = ∫ ℰμ1 ...μsδφ
μ1 ...μs +

1
2
∫ (𝜕(μ1𝜕μ2φ

󸀠
μ3 ...μs) + η(μ1μ2𝜕 ⋅ 𝜕 ⋅ φμ3 ...μs))δφ

μ1 ...μs

= ∫ℱμ1 ...μsδφ
μ1 ...μs

−
1
2
∫𝜕(μ1 𝜕μ2 φ

󸀠
μ3 ...μs)δφ

μ1 ...μs +
1
2
∫ η(μ1μ2𝜕 ⋅ 𝜕 ⋅ φμ3 ...μs)δφ

μ1 ...μs (5.50)

We see that we cannot get the Fronsdal equations directly, since (as seen in the last
line) the variation: (i) lacks one term, and (ii) produces one term to much. Since the
problem obviously stems from the trace term in the field equations, one can attempt
to remedy it by adding a term – the same as in the de Wit–Freedman action in (5.40)
– involving the trace of the Fronsdal tensor where we put the double trace φ󸀠󸀠 to zero
in ℱ 󸀠.

S2 = −a∫φ
󸀠 μ1 ...μs−2ℱ 󸀠μ1 ...μs−2

= −a∫φ󸀠 μ1 ...μs−2(2◻φ󸀠μ1 ...μs−2 − 2𝜕 ⋅ 𝜕 ⋅ φμ1 ...μs−2 + 𝜕(μ1𝜕 ⋅ φ󸀠μ2 ...μs−2)) (5.51)

The variation becomes (still neglecting the double tracelessness of the field)

δS2 = −a(
s
2
)
−1
∫δφμ1 ...μs(4η(μ1μ2◻φ

󸀠
μ3 ...μs)

− 2η(μ1μ2𝜕 ⋅ 𝜕 ⋅ φμ3 ...μs) − 2𝜕(μ1𝜕μ2φ
󸀠
μ3 ...μs)

− 2η(μ1μ2𝜕(μ3𝜕 ⋅ φ
󸀠
μ4 ...μs))) (5.52)

The inverted binomial factor in the variation δS2 comes from the combinatorics of dif-
ferentiating the trace of the field. Themissing term (corresponding to the termwithout

10 When K is a second-order differential operator not involving any traces.
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η in the formula above) to build up the Fronsdal tensor in the variation of the action
can now gotten by choosing a = (s2 )/4, the same as we found before. With this choice,
we get the variation of the action

δ(S1 + S2) = ∫ (ℱμ1 ...μs −
1
2
η(μ1μ2ℱ

󸀠
μ3 ...μs)δφ

μ1 ...μs , (5.53)

from which follows the field equations (5.44).
So far so good, but it remains to understand the double trace constraint. We have

performed the above calculations with free variations δφμ1 ...μs . This is in principle
wrong if the field is constrained by φ󸀠󸀠μ5 ...μs = 0. Let us first note that our calculations
are unaffected by this issue for spin 1, 2 and 3.

But in principle one should use projections onto subspaces of variations that obey
the double trace condition. This would introduce the need for further terms in the ac-
tion involving products of double traces of the fields and double traces of the Fronsdal
tensor. However, since the double trace of the Fronsdal tensor is zero for double trace-
less fields, as seen from equation (5.14), one can actually ignore this complication, as
argued in [150].

Let usnow turn to the gauge variationof the action.Most of the job is alreadydone,
since we can use equation (5.53) with δφμ1 ...μs a gauge transformation. Performing a
partial integration, we get

δ(S1 + S2) = −∫ ξ
(μ2 ...μs𝜕μ1)(ℱμ1 ...μs −

1
2
η(μ1μ2ℱ

󸀠
μ3 ...μs)

= −s∫ ξ μ2 ...μs(𝜕 ⋅ ℱμ2 ...μs −
1
2
𝜕(μ2ℱ
󸀠
μ3 ...μs) −

1
2
η(μ2μ3𝜕 ⋅ ℱ

󸀠
μ4 ...μs)) (5.54)

In this formula, we recognize the first two terms as the left-hand side of the higher
spin Bianchi identity (5.39). The third term is fairly complicated and can be read of
from formula (5.16).

It is then clear that in order to have a gauge invariant action, two conditions must
bemet: (i) the fieldmust be double traceless so that the Bianchi identity holds, and (ii)
the gauge parameter must be traceless so that the third term vanishes. Now remem-
ber that for the Fronsdal field equations to be gauge invariant, it is enough to have a
traceless parameter, while the double tracelessness for the field is needed to get the
correct count of degrees of freedom. Now we see that the double tracelessness for the
field is also needed for the invariance of the action.11

11 This nice discussion is from [274].
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5.3 The triplet and minimal approaches

There are various approaches to Minkowski higher spin fields that aim to circumvent
the awkward tracelessness and double tracelessness constraint on the gauge param-
eters and fields, respectively. There is a quite extensive literature on this subject.

5.3.1 Triplet higher spin fields

The name “triplet formulation” was coined in connection to the return to the BRST-
approach to free higher spin (see Chapter 2).12 It can be developed independent of
BRST and it was indeed one of the clues – as was string field theory – to my own work
on higher spin in the mid 1980s (see comments in Section 2.11). The basic idea is to
consider the divergences 𝜕 ⋅φ and tracesφ󸀠 that occur in the Fronsdal Lagrangian and
field equations as independent fields, subsequently to be related to the conventional
higher spin gauge fields φ through field equations. We will treat the field equations
here, the Lagrangian to be reviewed in the section on the BRST approach.

Consider first spin 1which is almost trivial. The following systemof field equations
is equivalent to the usual spin 1 equation:

◻φμ − 𝜕μH = 0

H − 𝜕 ⋅ φ = 0
} ⇒ ◻φμ − 𝜕μ𝜕 ⋅ φ = 0 (5.55)

The gauge transformations are δφμ = 𝜕μξ and δH = ◻ξ .
For spin 2, we need a further field C to play the role of the trace of φμν:

◻φμν −
1
2 (𝜕μHν + 𝜕νHμ) = 0

Hμ − (2𝜕 ⋅ φμ + 𝜕μC) = 0

C + φ󸀠 = 0

}}}
}}}
}

⇒ ◻φμν − 𝜕(μ𝜕 ⋅ φν) + 𝜕μ𝜕νφ
󸀠 = 0 (5.56)

The gauge transformations are δφμν = 𝜕(μξν), δHμ = 2◻ξμ and δC = −2𝜕 ⋅ ξ .
For general spin s, we get (in condensed notation)

◻φ(s) − 1
s𝜕
(1Hs−1) = 0

H(s−1) − s𝜕 ⋅ φ(s−1) − 1
s−1𝜕
(1Cs−2) = 0

C(s−2) + (s2 )φ
󸀠(s−2) = 0

C󸀠(s−4) = 0

}}}}}}}
}}}}}}}
}

⇒ ◻φ(s) − 𝜕(1𝜕 ⋅ φs−1) + 𝜕(1𝜕2φ󸀠s−2) = 0 (5.57)

Double tracelessness of φ(s), again effective from spin 4 onwards, is enforced by the
two last equations. It also follows by direct computation on the second equation that

12 The term “triplet” seems to have occurred in print first in [274, 275].
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the auxiliary field H(s−1) is traceless. The corresponding gauge transformations work
out to

δφ(s) = 𝜕(1ξ s−1) (5.58)

δH(s−1) = s◻ξ (s−1) (5.59)

δC(s−2) = −s(s − 1)𝜕 ⋅ ξ (s−2) (5.60)

where the gauge parameter is traceless from spin 3 onwards. This requirement follows
from demanding gauge invariance for the third and fourth equations of (5.57) which
define the properties of the C field. The two first equations of (5.57) are actually gauge
invariant even without requiring ξ 󸀠 = 0. The two trace equations are not gauge invari-
ant without requiring ξ 󸀠 = 0.

So far we have just reversed engineered the Fronsdal equations. The number of in-
dependent field components are unchanged as the fieldsH(s−1) and C(s−2) are auxiliary
and can be solved for, as is indeed done above. The trace constraints are still in force
so this formulation should really be designated “constrained triplet formulation”.

When we rederive these equations in the BRST approach, we will see that the
equation for H comes out exactly as here, but C is an independent field.

5.3.2 Nonlocal minimal approach

The algebraic, trace constraints on gauge parameters and double trace constraints on
fields – although it is fairly simple to understand why they appear from counting ar-
guments – have always been considered at least awkward, if not downright mysteri-
ous, and there have consequently been several attempts to circumvent them.13 The
constrained triplet system discussed in Section 5.3.1 may be seen as one step toward
such a goal. It works by introducing an extra field C which still suffers a trace con-
straint, although the constraint is “moved”, so to speak, from the higher spin field φ
itself to the auxiliary C. As we will discuss in connection with the BRST formulation
(see Section 5.4.2), it is in fact possible to drop the trace constraint on C, and thus get
an unconstrained but nonminimalmodel, nonminimal in the sense of introducing for
each spin s a support of lower spin fields.

One approach that circumvents the trace constraints while not introducing extra
fields is the nonlocal theory of D. Francia and A. Sagnotti [273]. As we saw in Sec-
tion 5.2, the generalized Christoffel symbols of order m = s are gauge invariant for

13 It could be argued, however, that it is the single trace constraints that are “foreign” to higher spin
gauge fields. The double tracelessness constraint is an effect of Fronsdal’s decision to work with a
double traceless tensor φ(s) rather than with the two traceless tensors φ(s) and φ(s−2) inherited from
the massive theory. In the massive theory, trace constraints are natural.
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spin s. However, since they are of higher order in derivatives, their traces and diver-
gences do not serve conveniently as components of equations of motion. Instead –
in the Fronsdal approach – one generalizes the spin 2 equation of motion, which is
based on the trace of the second-order Christoffel symbol Γρ1ρ2 ;μ1μ2 , to all higher spin.
The price to pay for this is two-fold: (i) the gauge parameter must be traceless, and (ii)
the gauge field itself must be double traceless in order to have a Bianchi identity.

The nonlocal approach generalizes the lower spin cases in another direction. The
spin 1 field equation 𝜕ρ1Rρ1 ;μ1 = 0 is generalized into

1
◻n
𝜕 ⋅ R[n] ;μ1 ...μ2n+1 = 0 (5.61)

for odd spin s = 2n + 1. The spin 2 field equation R󸀠 ;μ1μ2 = 0 is generalized into

1
◻n−1

R[n] ;μ1 ...μ2n = 0 (5.62)

for even spin s = 2n.
Wewill study this approach by doing the first two nontrivial cases: spin 3 and spin

4 in the form of examples. For general spin, we refer to the original paper [273] and the
review paper [274].

Example 10 (Spin 1 and 2). As a backdrop for the first nontrivial cases, let us record
and comment on the formulas for the lower spin fields. Spin 1 is special in its sim-
plicity. The first Christoffel symbol – the field strength – is also the curvature, and we
have

Γρ1 ;μ1 = Rρ1 ;μ1 = 𝜕ρ1ϕμ1 − 𝜕μ1ϕρ1 (5.63)

𝜕 ⋅ R ;μ1 = ◻ϕμ1 − 𝜕μ1𝜕 ⋅ ϕ = ℱμ1 = 0 (5.64)

The Maxwell equation can be written in another way, based on the second-order
Christoffel symbol, which is not an entirely natural object for spin 1 but which can
nevertheless be defined

Γρ1ρ2 ;μ1 = 𝜕ρ1𝜕ρ2ϕμ1 −
1
2
𝜕μ1𝜕(ρ1ϕρ2) (5.65)

Γ󸀠;μ1 = ◻ϕμ1 − 𝜕μ1𝜕 ⋅ ϕ = 0 (5.66)

For spin 2, the field equations are naturally written in terms of the second-order
Christoffel symbol (the “curvature”)

Γρ1ρ2 ;μ1μ2 = 𝜕ρ1𝜕ρ2ϕμ1 −
1
2
𝜕(μ1𝜕(ρ1ϕρ2)μ2) + 𝜕μ1𝜕μ2ϕρ1ρ2 (5.67)

Γ󸀠;μ1μ2 = R
󸀠
;μ1μ2 = ◻ϕμ1μ2 − 𝜕(μ1𝜕 ⋅ ϕμ2) + 𝜕μ1𝜕μ2ϕ

󸀠 = 0 (5.68)

In these equations, we can see the germs of the two directions of generalization
to higher spin: In (5.66) and (5.68), the Fronsdal constrained equations, and in (5.64)
and (5.68) the Francia–Sagnotti nonlocal equations. 󳶣
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Example 11 (Spin 3). As we saw in formula (5.7) from spin 3 on, the Fronsdal tensor
transforms into an expression involving the trace of the gauge parameter. For spin 3
in particular, ℱμ1μ2μ3 transforms into 3𝜕μ1𝜕μ2𝜕μ3ξ

󸀠. As Francia and Sagnotti note, there
are several nonlocal, higher derivative constructs that transform in the same way

1
3◻
𝜕(μ1𝜕μ2F

󸀠
μ3)

1
3◻
𝜕(μ1𝜕 ⋅ Fμ2μ3)

1
3◻2
𝜕μ1𝜕μ2𝜕μ3𝜕 ⋅ F

󸀠 (5.69)

Of these, the first two terms are equal using the Bianchi identity, and taking traces all
three constructs can be turned into each other. Based on these observations, Francia
and Sagnotti introduce a second-order Fronsdal tensor

ℱ (2)μ1μ2μ3 = ℱμ1μ2μ3 +
1
6◻
𝜕(μ1𝜕μ2ℱ

󸀠
μ3) −

1
2◻
𝜕(μ1𝜕 ⋅ ℱμ2μ3) (5.70)

which is gauge invariant without imposing any constraint on the gauge parameter.
Working it out, we get the field equation

ℱ (2)μ1μ2μ3 = ◻ϕμ1μ2μ3 − 𝜕(μ1𝜕 ⋅ ϕμ2μ3) +
1
3
𝜕(μ1𝜕μ2ϕ

󸀠
μ3)

+
2
3◻
𝜕(μ1𝜕μ2𝜕 ⋅ 𝜕 ⋅ ϕμ3) −

1
◻
𝜕μ1𝜕μ2𝜕μ3𝜕 ⋅ ϕ

󸀠

=
1
◻
𝜕 ⋅ R 󸀠μ1μ2μ3 = 0 (5.71)

The ℱ (2)μ1μ2μ3 tensor satisfies a Bianchi-type identity

𝜕 ⋅ ℱ (2)μ2μ3 −
1
4
𝜕(μ2ℱ
(2)󸀠

μ3)
= 0 (5.72)

We can now count degrees of freedom. We first do the accounting of equations
and field components. There are 20 field equations in (5.71) of which only 10 are dif-
ferentially independent due to the 10 Bianchi identities (5.72). Thus from the 20 spin 3
field components, 10 are undetermined and this corresponds precisely to the 10 com-
ponents of the gauge parameter.

On the other hand, the gaugefixing count is a little bit subtler. It is clearly toonaive
to say that we have 20 field components and 10 gauge parameters, so that 20−2 ⋅10 = 0
degrees of freedom remains.

Instead, referring back to Section 5.1.1, we find that deDonder gauge fixing con-
dition is still traceless (whereas the gauge parameter has a nonzero trace). We can
therefore only gauge fix 9 field components. Furthermore, the gauge variation of the
gauge condition is δDμ2μ3 = ◻ξμ2μ3 − 𝜕μ2𝜕μ3ξ

󸀠. So in order to be able to regauge field
components using a gauge parameter that satisfies the d’Alembertian equation, we
must make the further gauge choice ξ 󸀠 = 0. 󳶣
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Example 12 (Spin 4). For spin 4, one again considers the second-order Fronsdal ten-
sor

ℱ (2)μ1μ2μ3μ4 = ℱμ1μ2μ3μ4 +
1
6◻
𝜕(μ1𝜕μ2ℱ

󸀠
μ3μ4) −

1
2◻
𝜕(μ1𝜕 ⋅ ℱμ2μ3μ4) (5.73)

This is the same formula as for spin 3. It is gauge invariant without imposing any con-
straint on the gauge parameter. Working it out, we get the field equation

ℱ (2)μ1μ2μ3μ4 = ◻ϕμ1μ2μ3μ4 − 𝜕(μ1𝜕 ⋅ ϕμ2μ3μ4) +
1
3
𝜕(μ1𝜕μ2ϕ

󸀠
μ3μ4)

+
2
3◻
𝜕(μ1𝜕μ2𝜕 ⋅ 𝜕 ⋅ ϕμ3μ4) −

1
◻
𝜕μ1𝜕μ2𝜕μ3𝜕 ⋅ ϕ

󸀠
μ4 + 𝜕μ1𝜕μ2𝜕μ3𝜕μ4ϕ

󸀠󸀠

=
1
◻
R 󸀠󸀠μ1μ2μ3μ4 = 0 (5.74)

The gauge-fixing count for spin 4 and higher is quite complicated. We refer the reader
to [274] for the details. 󳶣

Simple and nice as the formulas (5.61) and (5.62) look, they turn out not to be the
entirely correct as was later clarified in [276]. There are ambiguities in the choice of
nonlocal terms. Aunique form is fixed by requiring the correct couplingφ⋅J to external
currents J so that the correct number of degrees of freedom is exchanged. The same
result is arrived at through the compensator approach derived from the BRST triplet
formulation.

5.3.3 A note on N-complexes

The gauge invariance of the higher spin curvatures R = Γ(s) can be formalized in terms
of so called N-complexes [277] (for reviews and further references, see [278, 279]). The
complexes and differentials d introduced in this approach have the property dn = 0 for
some positive integer n. They can be used to define the curvatures as R = dsϕ = dn−1ϕ.
Consequently, under a gauge transformation δϕ = dξ , gauge invariance is automatic,
since δR = dn−1dξ = 0.

Without going into the details of the construction, it is interesting to take a glance
at one of its overall features. For spin 1, we have (as usual) the sequence of spaces

Ω0
d
󳨀→ Ω1

d
󳨀→ Ω2

d
󳨀→ Ω3 (5.75)

where Ω0 is the space of gauge parameters, Ω1 is the space of gauge fields (a subspace
of which are the pure gauge potentials dΩ0) and Ω2 is the space of field strengths (cur-
vatures). The identity d2 = 0 ensures that the field strengths do not see the pure gauge
potentials. Finally, the space Ω3 is the space of Bianchi identities.
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For spin s ≥ 2, the corresponding sequence turns out to be

Ωs−1
d
󳨀→ Ωs

ds
󳨀→ Ω2s

d
󳨀→ Ω2s+1 (5.76)

with the analogous (but not identical) interpretation of the spaces Ωs−1, Ωs, Ω2s and
Ω2s+1 as gauge parameters, gauge fields, curvatures and Bianchi identities, respec-
tively. It seems that the intriguing point here is the “jumping over” the intermediate
Christoffel symbols Γm with 2 < m < s.

5.4 BRST approach to the free theory

In a BRST approach to free higher spin gauge fields, the gauge transformations are
generated by the first class constraints of an underlying mechanics model, while the
trace conditions can be imposed through second-class constraints. Thisworkswell for
the free theory and reproduces the Fronsdal theory.

In this section, we will review the approach of [159]. That paper worked with an
infinite set of uncoupled harmonic oscillators as appropriate to the tensionless limit of
bosonic string theory. The theory therefore contains arbitrary mixed symmetry fields,
as is also the case for [158]. Here, we will simplify and just consider one oscillator so
that there is just one field of each spin from 0 to∞.

As told in the historical chapter (see Section 2.11), the BRSTmethodwas borrowed
from string field theory, but logically it is independent from string theory. Indeed, ex-
panding a spectrum of higher spin over some “internal” variable is a natural thing to
do, and the method to express the BRST operator directly in terms of the first-class
constraints of some underlying mechanical model, is general.14 We will see that the
BRST approach is in a certain sense the most fundamental; all other formulations can
be derived from it, or naturally related to it.

5.4.1 A mechanical model

Underlying string field theory there is a mechanical model, namely the relativistic
string.15 Being a one-dimensional object, the string sweeps out a two-dimensional sur-
face – theworld sheet – as itmoves in space-time. The string actionhas reparametriza-
tion invariance in the world-sheet coordinates. The string can be viewed as mapping
a two-dimensional Lorentzian surface with coordinates (σ, τ) into space-time xμ(σ, τ).

14 Many authors have written on the subject of BRST approaches to free massless higher spin theory,
both in Minkowski and AdS space-time. In addition to papers cited in Section 2.11, there are [280–285,
241]. For references to massive fields, see the introduction to [282].
15 To be specific, we think of the bosonic string.
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The reparametrization invariance is a gauge symmetry and therefore it can be viewed
as being generated by first-class constraints of the mechanical string model.16 These
constraints are precisely the Virasoro constraints, obeying the Virasoro first-class con-
straint algebra. By introducing ghost coordinates corresponding to the Virasoro con-
straints, the free string field theory can be treated using BRST techniques (for original
references, see Section 2.11.1 and the review [181]).

The question now arises: can anything similar be done for higher spin gauge
fields? That is, is there any, or perhaps several possible, underlying mechanical mod-
els with concomitant reparametrization symmetries and first-class constraints that
can be used to set up a field theory? Strangely enough, this very simple question has
not been pursued in the literature to any considerable extent. We will return to this
topic in more detail in the Volume 2.

Here, we will take as a starting point a very simple model [287, 288]. We start with
a classical (or first-quantized) two-particle relativistic mechanical system with centre
ofmotion (xμ, pν) and relative (ξμ,πν) coordinates andmomenta.Wedonot specify any
action, instead working directly from the constraints. For the relative coordinates, we
also use holomorphic coordinates classically, or oscillators (αμ, α†ν) quantummechan-
ically. In terms of the relative coordinates and momenta we have

αμ =
1
√2
(ξμ + iπμ) and α†μ =

1
√2
(ξμ − iπμ) (5.77)

We take ξμ and πν to be dimensionless. Classically, we have Poisson brackets

{xμ, pν} = ημν and {ξμ,πν} = ημν (5.78)

and quantummechanically

[xμ, pν] = iημν [ξμ,πν] = iημν [αμ, α
†
ν] = ημν (5.79)

Excluding explicit occurrence of the center of motion coordinate xμ there are six bilin-
ear scalars in terms of these variables

G0 = −p
2 G+ = α ⋅ p G− = α

† ⋅ p (5.80)

T = 1
2
α ⋅ α T† = 1

2
α† ⋅ α† N = 1

2
(α ⋅ α† + α† ⋅ α) = α† ⋅ α + 2 (5.81)

From this set, we can choose various linear combinations as first- and second-class
constraints by (weakly) equating to zero. Once such a choice is made, ghost coordi-
nates and momenta can be introduced corresponding to the first-class set and the
BRST operator Q constructed. Then a free field theory can be set up using BRST tech-
niques.

16 See, for instance, Chapter 2 of [286].
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The standard choice is to take the set {G0 = 0,G+ = 0,G− = 0} as first class. The
algebra of first-class constraints then becomes

[G+,G−] = −G0 [G+,G0] = 0 [G−,G0] = 0 (5.82)

The operators T, T† and N span an su(1, 1) algebra

[T ,T†] = N [N ,T†] = 2T† [N ,T] = −2T (5.83)

The tracelessness constraints (on fields and parameters) are given by T|state⟩ = 0
with the T operator augmented with a ghost contribution. The two operators T and
T† can be regarded as a pair of second-class constraints since we do not require any
constraint N = c for some constant c. Doing that would fix the spin to a specific value
and we would not have a tower of higher spin fields.

5.4.2 A unified action for integer spin gauge fields

The aim is to collect all the Fronsdal actions for individual higher spin gauge fields into
one Lagrangian 1

2 ⟨Φ|Q|Φ⟩with |Φ⟩ an object that for every spin s contains the triplett
fieldsφ(s),H(s−1) and C(s−2) of the reversed engineered Fronsdal theory of Section 5.3.1.
Let us review the result of such an endeavor.

The higher spin fieldsφ(s) will be coefficients in an expansion over the Fock space
spanned by the creators α†μ

|φ⟩ = |(φ0 + φ
μα†μ + φ

μνα†μα
†
ν + ⋅ ⋅ ⋅)|vac⟩ (5.84)

acting on a vacuum state |vac⟩ yet to be specified. The exact coefficients in the ex-
pansion must also be fixed in order to get a real nontrivial action. We will do that in
Section 5.4.3.

Corresponding to the first-class constraints G0 = 0, G+ = 0 and G− = 0 chosen
above, there will a Grassmann ghost variables (c0, c+, c−)with conjugates (b0, b+, b−).
The nonzero anticommutators are

{c0, b0} = {c
+, b+} = {c

−, b−} = 1 (5.85)

These ghosts satisfy the following Hermitian conjugation properties:

(c−)† = c+ (b−)
† = b+ (c0)† = c0 (b0)

† = b0 (5.86)

This ensures that the BRST operator (in momentum space)

Q = c0G0 + c
+G+ + c

−G− + c
+c−b0

= −c0p2 + c+α ⋅ p + c−α† ⋅ p + c+c−b0 (5.87)
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is Hermitian. The BRST operator is constructed according to the general algorithm
described in Section 3.3.3. The last term in the BRST operator comes from the only
nonzero structure constant of the constraint algebra (5.82). TheBRSToperator is there-
fore nilpotent with Q2 = 1

2 {Q,Q} = 0.
17

The self-conjugate “zero-mode” pair (c0, b0) require a little bit of care with respect
to the vacuum. Let |−⟩ denote a vacuum, defined by c0|−⟩ = 0.18 Then the conjugate
ghost b0 creates a new state |+⟩ = b0|−⟩. Then we can just as well think of |+⟩ as a
vacuum annihilated by b0 with respect to which the state |−⟩ is given by |−⟩ = c0|+⟩
since c0|+⟩ = c0b0|−⟩ = {c0, b0}|−⟩ = |−⟩. Since any vacuum state |0⟩ ought to be
Hermitian in the sense (⟨0|)† = |0⟩, we now see that ⟨+|+⟩ = ⟨−|−⟩ = 0whereas ⟨+|−⟩ =
⟨+|−⟩ = 1. For the rest of the ghosts, we choose c+ and b− to be creators. The following
formulas collect the properties of the vacua |−⟩ and |+⟩:

c−|+⟩ = c−|−⟩ = b+|+⟩ = b+|−⟩ = 0 (5.88)

c0|−⟩ = b0|+⟩ = 0 b0|−⟩ = |+⟩ c0|+⟩ = |−⟩ (5.89)
⟨+|−⟩ = ⟨−|+⟩ = 1 ⟨+|+⟩ = ⟨−|−⟩ = 0 (5.90)

Thenwemust assignmechanical ghost numbers ghm(⋅) to all objects in the theory.
These are collected in Table 5.2 along with data on Grassmann parity ρ(⋅) and mass
dimension d(⋅). We also collect the structure of the ghost complex in Table 5.3.

Table 5.2: Properties of objects.

Properties/Objects αμ, α†μ pμ c+, c− b+, b− c0 b0 |+⟩ |−⟩
Mechanical ghost number ghm(⋅) 0 0 1 −1 1 −1 −1/2 1/2
Grassman parity ρ(⋅) 0 0 1 1 1 1 0 1
Dimension d(⋅) 0 1 1 −1 0 0 0 0

Table 5.3: Ghost complex structure.

ghm(⋅) 3/2 1/2 −1/2 −3/2
|−⟩ |+⟩

c+|−⟩ c+|+⟩ c+b−|+⟩ b−|+⟩
c+b−|−⟩ b−|−⟩

17 There is an entertaining sign ambiguity in Q. Writing c0G0 + σc+G+ + σ∗c−G− + c+c−b0 with a
complex parameter σ and demanding Q to be formally Hermitian (Q† = Q) one finds that nilpotency
only requiresσ = ±1 orσ = ±i. This reflects the possibility towork in configuration space ormomentum
space.
18 This is one possible choice. The issue was discussed in [166].
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We can expand the higher spin fields and the auxiliary fields over the ghost complex
as

|Φ⟩ = (φ + Cc+b− + Hb−c
0)|+⟩ (5.91)

where the fields φ, H and C themselves are expansions over the oscillators as in for-
mula (5.84). The gauge parameters are expanded as

|Ξ⟩ = ξb−|+⟩ (5.92)

All component fields and gauge parameters are Grassmann even as well as Hermitian.
Finally, we must enhance the second class constraints T and T† with ghost con-

tributions

T = 1
2
α ⋅ α + b+c

− T† = 1
2
α† ⋅ α† + c+b− (5.93)

so that [T ,Q] = [T†,Q] = 0.
We now have everything needed to write down the Lagrangian, field equations

and gauge transformations under which the Lagrangian, as well as the field equations
are invariant.

ℒ =
1
2
⟨Φ|Q|Φ⟩ (5.94)

Q|Φ⟩ = 0 (5.95)
δ|Φ⟩ = Q|Ξ⟩ (5.96)

The content of the field equations (5.95) can be made more explicit as

(G0φ + G−H)|−⟩ = 0 (5.97)
(G+φ − G−C − H)c

+|+⟩ = 0 (5.98)
(G0C + G+H)c

+b−|−⟩ = 0 (5.99)

These equations have become known as the triplet equations [274, 289]. The ghosts
no longer play any role, except showing that the equations sit in the three levels of
the ghost number 1/2 sector of the theory (see Table 5.3). It is however convenient to
have this form of the field equations when computing the action. Likewise, the gauge
transformations for the component fields can be written as

δφ|+⟩ = G−ξ |+⟩ (5.100)
δHb−|−⟩ = −G0ξb−|−⟩ (5.101)

δCc+b−|+⟩ = G+ξc
+b−|+⟩ (5.102)

Again, the ghosts play no other role here than to show that the gauge transforma-
tions sit in the ghost number −1/2 sector. Gauge invariance of the field equations un-
der these transformations is equivalent to the constraint algebra. No trace constraints
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are needed for the gauge parameters and the component fields need not be double
traceless. Thus the BRST formulation is unconstrained in this sense.

To make contact with the Fronsdal theory, they should be supplied by the trace
constraint

T|Φ⟩ = 0 ⇒
{{{
{{{
{

(C − 1
2α ⋅ αφ)|+⟩ = 0

α ⋅ αCc+b−|+⟩ = 0
α ⋅ αHb−|−⟩ = 0

(5.103)

These equations imply that the component auxiliary fields H are traceless, but more
importantly that19

Cμ3 ...μs = −(
s
2
)φ󸀠μ3 ...μs and φ󸀠󸀠μ5 ...μs = 0 (5.104)

We now turn to the question of extracting the Fronsdal equations. The second
field equation (5.98) can be solved algebraically for the auxiliary field H. Doing that,
and inserting the result in the first field equation (5.97) also using the trace equation
C = 1

2α ⋅ αφ yields

(G0φ +
1
2
G−G+φ −

1
4
G−G−α ⋅ αφ)|+⟩

=
1
2
(p2φ + α† ⋅ p α ⋅ pφ − 1

2
α† ⋅ p α† ⋅ p α ⋅ αφ)|+⟩0 (5.105)

With a bit of imagination, one can already here discern the Fronsdal field equations.
Indeed, using the component expansion of φ from formula (5.84) and doing the oscil-
lator algebra, one gets precisely

p2φμ1 ...μs − p(μ1p ⋅ φμ2 ...μs) + p(μ1pμ2φ
󸀠
μ3 ...μs) = 0 (5.106)

which squares nicely with (5.57). However, as compared to our reverse engineering of
the Fronsdal equations, we see that we getmore equations in the BRST approach. This
can be clarified in twoways. Computing certain traces and divergences of the reversed
engineered equations one can see that they actually contain the extra field equation
for the C field implicitly. On the other hand, the existence of the extra field equation
(5.99) can be understood from the action yielding the equations. So let us turn to this.

5.4.3 Expansion of the action

In formula (5.94), wewrote the Lagrangian as 1
2 ⟨Φ|Q|Φ⟩ since wewanted to keep open

the question of whether we worked in configuration space or momentum space. It is

19 The minus sign will be explained below. See comment after formula (5.112).
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also very common, and convenient, in BRST approaches (as is indeed the cases in its
string theory origins) to include the space-time (or momentum-energy) integrals in
⟨| |⟩. Let us investigate this question as it will prompt us to elaborate on the oscillator
expansion of the fields as in formula (5.84).

A note on the formalism and momentum space vs. configuration space

It is convenient to write the action and field equations abstractly as in (5.94) and (5.95). It allows us
to switch between momentum space and configuration space representations quickly. With 𝜕μ = ipμ,
we have G0 = −p2 = ◻, G+ = α ⋅ p = −iα ⋅ 𝜕 and G− = α† ⋅ p = −iα† ⋅ 𝜕. The formalism is a hybrid
between a first-quantized mechanical model and classical fields, that is, we treat the oscillators and
ghosts as q-numbers whereas fields are classical on c-number space-time xμ or onmomentum-energy
pμ. The correspondence pμ = −i𝜕μ is an effect of a Fourier transform, and pμ is an eigenvalue of the
momentum operator. This boils down to the following correspondence:

S = − 1
2
∫d4x𝜕μφ(x)𝜕

μφ(x) = 1
2
∫d4pφ(−p)pμp

μφ(p) (5.107)

and correspondingly for other kinds of kinetic terms in the action.

Now including either a space-time or an energy-momentum integral in the inner prod-
uct, and using (5.97)–(5.99), we find

S = 1
2
⟨Φ|Q|Φ⟩

=
1
2
⟨−|(φG0φ − CG0C − H

2 + HG+φ + φG−H − HG−C − CG+H)|+⟩ (5.108)

It is clear that the first three terms are diagonal in oscillators, but that for the last four
terms there must be an offset by one oscillator in the fields in order to get a nonzero
result when the oscillator in G− and G+ are taken into account. Take, for instance, the
fourth and fifth term

⟨−| ∫ d4x(H(x)(−iα ⋅ 𝜕)φ(x) + φ(x)(−iα† ⋅ 𝜕)H(x))|+⟩

= −i∑
n=1
⟨−| ∫ d4x(H(n−1) ⋅ α(n−1)α ⋅ 𝜕φ(n) ⋅ α†(n)

+ φ(n) ⋅ α(n)α† ⋅ 𝜕H(n−1) ⋅ α†(n−1))|+⟩ (5.109)

There are two problems with this expression: it is a total derivative and it is not real.
Both problems are solved by a simple device: in the field expansion of formula (5.84)
for the ket field |φ⟩, we make a field redefinition φ(n) → inφ(n) and similarly for and
H(n) and F(n). Correspondingly, in the bra field ⟨φ|, we get (φ(n))† → (−i)nφ(n). The
effect of this is to leave the diagonal terms in the action (5.108) unchanged, while we



5.4 BRST approach to the free theory | 291

get a crucial factor of i in the terms (5.109). The terms become

−i∑
n=1
⟨−| ∫ d4x((−i)n−1inH(n−1) ⋅ α(n−1)α ⋅ 𝜕φ(n) ⋅ α†(n)

+ (−i)nin−1φ(n) ⋅ α(n)α† ⋅ 𝜕H(n−1) ⋅ α†(n−1))|+⟩

= ∑
n=1
⟨−| ∫ d4x(H(n−1) ⋅ α(n−1)α ⋅ 𝜕φ(n) ⋅ α†(n)

− φ(n) ⋅ α(n)α† ⋅ 𝜕H(n−1) ⋅ α†(n−1))|+⟩

= 2∑
n=1

n! ∫ d4xH(n−1) ⋅ (𝜕 ⋅ φ(n−1)) (5.110)

The last two terms in the action (5.108) are computed in the same way. All in all, the
action becomes

S = n!
2
∑
n=1
∫ d4x(φ(n)◻φ(n) − 1

n(n − 1)
C(n−2)◻C(n−2) − 1

n
H2

+ 2H(n−1) ⋅ (𝜕 ⋅ φ(n−1)) − 2
n
C(n−2) ⋅ (𝜕 ⋅ H(n−2))) (5.111)

From this action, we can derive the Fronsdal action by first by using the algebraic field
equation for H

H(n−1) = n𝜕 ⋅ φ(n−1) + 1
n − 1
𝜕(1Cn−2) (5.112)

and then the trace condition C(n−2) = −(n2 )φ
󸀠2−n) from equation (5.104). Theminus sign

comes from the field redefinition φ(n) → inφ(n) discussed above. We get precisely the
Lagrangian of (5.25) with the inessential factor n!. This numerical factor can be ab-
sorbed by a further trivial field redefinition φ→ 1

√nφ.

Unconstrained BRST triplet equations

For the record, and clarification, let us write down the triplet system of field equations that result from
working out the component equations (5.97)–(5.99). The field equations are

◻φ(n) − 1
n
𝜕(1Hn−1) = 0 (5.113)

H(n−1) − n𝜕 ⋅ φ(n−1) − 1
n − 1
𝜕(1Cn−2) = 0 (5.114)

◻C(n−2) + (n − 1)𝜕 ⋅ H(n−2) = 0 (5.115)

The gauge transformations that follow from (5.100)–(5.102) are

δφ(n) = − 1
n
𝜕(1ξn−1) (5.116)
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δH(n−1) = −◻ξ (n−1) (5.117)

δC(n−2) = (n − 1)𝜕 ⋅ ξ (n−2) (5.118)

To get complete agreement with the reversed engineered gauge transformations of equations (5.58)–
(5.60), we make a parameter redefinition ξ (n−1) → −nξ (n−1).

Now one can readily check gauge invariance. We note that no trace constraints are needed on the
gauge parameters. This set of higher spin field equations may thus be termed unconstrained.

Note, and this is important, that nothing at all is claimed about traces on fields, field equations
or parameters. In particular, C is not the trace ofφ. Furthermore, and consequently, H is not traceless.
So although the equations may look the same, there are important differences between the reversed
engineered equations and the equations derived from the BRST approach. This will be further investi-
gated in the next question box.

Since there are no trace constraints on the fields and parameters, the degree of free-
dom count is simple. The H field is auxiliary and carry no independent degrees of
freedom. The φ and the C fields carry together (s+3s ) + (

s+1
3 ) d. o. f.. From this, we sub-

tract gauge and regauge components equal 2(s+23 ) to arrive at s + 1. Thus we have a
spectrum of fields with spins s, s − 2, s − 3 down to spin 1 or spin 0. That is, summing
2 + 2 + 2 + ⋅ ⋅ ⋅ + 1 or 2 + 2 + 2 + ⋅ ⋅ ⋅ + 0 yield s + 1.

Unconstrained reversed engineered triplet equations?

In the light of the above understanding of the unconstrained triplet equations, it may be interesting
to ask if one could have arrived at these equations from the reversed engineered Fronsdal equations?

Clearly, one can derive the reversed engineered equations from the BRST equations by imposing
the trace constraints H󸀠(n−2) = 0, C(n−2) = −(n2 )φ

󸀠(n−2), C󸀠(n−4) = 0 and ξ 󸀠(n−3) = 0. The field equation
for C then becomes the trace of the field equation for φ, and it can be dropped. We then have the
reversed engineered equations of Section 5.3.1.

The inverse problem, finding the unconstrained formulation from the Fronsdal reversed engi-
neered formulation, can be approached in the following way. As a first step, note that the field equa-
tions for φ and H are the same in both formulations, as are the gauge transformations. These field
equations are therefore gauge invariant without assuming a traceless parameter.

As a second step, drop the trace conditions C(n−2) = −(n2 )φ
󸀠(n−2) and C󸀠(n−4) = 0. Then traceless-

ness of H then no longer follows (as it should not).
Now we have no equation for C. As third step, guided by observations done above, onemay com-

pute the traceof thefieldequation forφ(n). One thengetsanequation that looks like theBRSTequation
for C(n−2) if one interprets φ󸀠(n−2) as −(n2 )

−1C(n−2) and takes H(n−1) traceless. This is clearly a dubious
procedure: first dropping the trace conditions on the fields, then using them anyway as hints to the
correct unconstrained triplet equations. This illogical procedure is instead a reflection of the consis-
tency of introducing trace constraints in the BRST formulation. While the procedure is plausible as a
“method of discovery”, it does not make much sense as a “method of justification”.

Another approach to the inverse problem, that seems not to have been explored in the literature,
is to modify the gauge transformations with terms involving the trace of the gauge parameter.
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5.4.4 Zero-tension limit of the Virasoro algebra

The zero-tension limit of the Virasoro algebra can be performed as follows (as done in
[159]). Take as the basic mass-shell Virasoro generator

L0 = −
1
2
◻ +

1
α󸀠
∑
n>0

α−n ⋅ αn −
1
α󸀠

(5.119)

where α󸀠 (of mass dimension −2) have been reinserted to make the formula dimen-
sionally correct. Since [Lm, Ln] ∼ L0, the Virasoro generator Lm have dimension 1 and
we find

Lm = iα ⋅ 𝜕 +
1
√α󸀠
∑
n>0

αn ⋅ αm−n (5.120)

The algebra then reads (without the central extension term)

[Lm, L−m] = 2mL0
[L0, Lm] = −(1/α

󸀠)mLm
[Lm, Ln] = (1/√α󸀠)(m − n)Lm−n with m, n ̸= 0 (5.121)

In the limit α󸀠 →∞ these generators and their algebra turns into a higher spin algebra
with an infinite number of oscillators. Truncation to a finite number of oscillators can
be done.

5.5 “Minimal” and the other approaches

Since Wigner, and as explicated by Weinberg and others (as noted in the historical
chapter) we know what particles – representations of the Poincaré group – there can
be in a special relativistic theory. As we have also seen, such particles, in particular
higher spin particles, can be represented in many reasonable ways as covariant field
theories. We have seen the dichotomies: reducible/irreducible, constrained/uncon-
strained, minimal/nonminimal and local/nonlocal. These dichotomies are further-
more related to each other, and the ensuing picture may appear quite confusing. It
turns out, as we have already alluded to, that they are all derivative of the BRST-
approach. In this section, we will analyze this situation in some more detail.

5.5.1 Compensator minimal approach

There are interesting relations between the two unconstrained formulations (non-
local minimal and BRST-triplet) and a third one, the compensator minimal approach,
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that we will now introduce and study. The original paper is [275] by A. Sagnotti and
M. Tsulaia. The theory is further developed in [289] by Francia and Sagnotti. A review
can be found in [290].

A starting point is the BRST triplet system. The auxiliary field equation for the H
field is used to substitute for it everywhere. What then results is a doublet system20

(φ,C)with field equations, gauge transformations and a Lagrangian that can be com-
puted from the BRST system. The field equations become

◻φ(s) − 𝜕(1𝜕 ⋅ φs−1 − (
s
2
)
−1
𝜕(1𝜕2Cs−2) = 0 (5.122)

◻C(s−2) + (s
2
)𝜕 ⋅ 𝜕 ⋅ φ(s−2) + 1

2
𝜕(1𝜕 ⋅ Cs−3) = 0 (5.123)

This system – still unconstrained – reduces to the Fronsdal system upon imposing
the trace conditions (5.104). The first equation becomes the Fronsdal field equation
and the second equation is then the trace of the first. One may ask if imposing the
trace constraints can be viewed as a gauge choice? This is indeed the case as can be
surmised by checking how C(s−2) + (s2 )φ

󸀠(s−2) transforms. One then finds

δ(C(s−2) + (s
2
)φ󸀠(s−2)) = (s

2
)𝜕(1ξ 󸀠s−3) (5.124)

This suggests using the trace of the gauge parameter to gauge C(s−2) +(s2 )φ
󸀠(s−2) to zero.

We will find that it is natural to define a new field α(s−3) defined through

𝜕(1αs−3) = φ󸀠(s−2) + (s
2
)
−1
C(s−2) (5.125)

transforming as

δα(s−3) = ξ 󸀠(s−3) (5.126)

The field α is called a spin s − 3 compensator in [275]. Equation (5.125) can also be
viewed as imposing the trace constraint only up to a pure gauge.

To proceed with the theory, let us return to the field equation (5.122) and write it
in terms of the Fronsdal tensor as

ℱ (s) = 𝜕(1𝜕2φ󸀠s−2) + (s
2
)
−1
𝜕(1𝜕2Cs−2) (5.127)

This again suggests introducing the field α(s−3) to write

ℱ (s) = 3𝜕(1𝜕2𝜕3αs−3) (5.128)

20 Also referred to as the reduced triplet system.
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This field equation is still unconstrained gauge invariant as both sides transform in the
same way due to equations (5.126) and (5.7). Next, we rewrite the field equation (5.123)
substituting for C(s−2) using the definition (5.125). This results in a fairly complicated
equation

◻φ󸀠(s−2) − 𝜕 ⋅ 𝜕 ⋅ φ(s−2) − 1
2
𝜕(1𝜕 ⋅ φ󸀠s−3) = 3

2
◻𝜕(1αs−3) + 𝜕(1𝜕2𝜕 ⋅ αs−4) (5.129)

However, the first three terms can be recognized as being the same as in the formula
for the trace of the Fronsdal tensor (5.13). Using this, we get

ℱ 󸀠(s−3) − 𝜕(1𝜕2φ󸀠󸀠s−4) = 3◻𝜕(1αs−3) + 2𝜕(1𝜕2𝜕 ⋅ αs−4) (5.130)

The final step of rewriting consists in computing the trace of both sides of the field
equation (5.128) and using this to substitute for the combination of terms ℱ 󸀠(s−3) −
3◻𝜕(1αs−3). The result is

𝜕(1𝜕2φ󸀠󸀠s−4) = 𝜕(1𝜕2(4𝜕 ⋅ αs−4) + 𝜕(3α󸀠s−5)) (5.131)

This equation can be satisfied by21

φ󸀠󸀠(s−4) = 4𝜕 ⋅ α(s−4) + 𝜕(1α󸀠s−5) (5.132)

The two field equations (5.128) and (5.132) are still gauge invariant under the uncon-
strained gauge transformations. We see that gauging α to zero not only yields the
Fronsdal field equations, but also enforces double tracelessness. The trace of the
gauge parameter is used up in the process. The two equations are consistent in that
the Bianchi identity (5.39) applied to the first equation (5.128) yields

𝜕(1𝜕2𝜕3φ󸀠󸀠s−4) = 𝜕(1𝜕2𝜕3(4𝜕 ⋅ αs−4) + 𝜕(1α󸀠s−5))) (5.133)

One interpretation of this is to regard the field α as parameter field that para-
metrizes the difference between the Fronsdal system and the doublet unconstrained
system.

Since in the resulting field equations (5.128) and (5.132) there is no reference to
the C field, it should be possible to motivate the equations directly from the Fronsdal
theory. This can indeed be done. Guided by the unconstrained gauge variation (5.7) of
the Fronsdal equations, one postulates fully gauge invariant field equations

ℱ(s) − 3𝜕(1𝜕2𝜕3αs−3) = 0 (5.134)

with α a new field transforming as in equation (5.126) by definition. Then applying the
Bianchi identity (5.39) to the field equation (5.128) again yields (5.133) which we can
satisfy by equation (5.132) for the double trace of φ.

21 Up to discrete degrees of freedom corresponding to nondynamical integration “functions”.
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Formal solution of the C-equation and an expression for α. Case of spin 3

The field equation (5.123) for the C field can be formally inverted to get an expression for C that in its
turn can be used to get an explicit, nonlocal, expression for the compensator α. For spin 3, we have

◻C + 1
2
𝜕μ𝜕 ⋅ C = lμ (5.135)

for a left-hand side lμ which for spin 3 is −3𝜕 ⋅ 𝜕 ⋅ φμ. We make the ansatz

Cμ =
a
◻
lμ +

b
◻2
𝜕μ𝜕 ⋅ l (5.136)

and find a = 1 and b = −1/3 so that

Cμ = −
3
◻
𝜕 ⋅ 𝜕 ⋅ φμ +

1
◻2
𝜕μ𝜕 ⋅ 𝜕 ⋅ 𝜕 ⋅ φ (5.137)

Next using equation (5.125), we learn

𝜕μα = φ
󸀠
μ +

1
3
Cμ ⇒ α = 1

◻
(𝜕 ⋅ φ󸀠 + 1

3
𝜕 ⋅ C) (5.138)

We then get an expression for α

α = 1
◻
𝜕 ⋅ φ󸀠 − 2

3◻2
𝜕 ⋅ 𝜕 ⋅ 𝜕 ⋅ φ = 1

3◻2
𝜕 ⋅ℱ 󸀠 (5.139)

where the last equality follows from comparing to (5.16).

5.5.2 An action for the compensator minimal approach

The field equations for the compensator approach can be derived from an action, that
apart from the higher spin field φ and the compensator field α, also involves a La-
grangemultiplier field β. The Lagrangian was derived, in a rather complicated way, in
[289], but a much simplified derivation can be found in [276] that we follow.

Guided by the field equations (5.134), we introduce the unconstrained gauge in-
variant tensor𝒜 defined by

𝒜(s) = ℱ(s) − 3𝜕(1𝜕2𝜕3αs−3) (5.140)

It satisfies a Bianchi-type identity

𝜕 ⋅𝒜(s−1) −
1
2
𝜕(1𝒜
󸀠
s−1) = −

3
2
𝜕(1𝜕2𝜕3(φ

󸀠󸀠
s−4) − 4𝜕 ⋅ αs−4) − 𝜕(1α

󸀠
s−5))) (5.141)

Then consider the following tentative Lagrangian:

ℒ0 =
1
2
φ(s)(𝒜(s) −

1
2
η(12𝒜
󸀠
s−2)) (5.142)



5.5 “Minimal” and the other approaches | 297

and compute its unconstrained gauge variation. Due to the gauge invariance of A we
only get contributions from the variation of φ. These work out to

δℒ0 = −
1
2
sξ(s−1) ⋅ (𝜕 ⋅𝒜(s−1) −

1
2
𝜕(1𝒜
󸀠
s−2)) +

3
4
(
s
3
)ξ 󸀠(s−3) ⋅ 𝜕 ⋅𝒜

󸀠
(s−3)

= −3(s
4
)𝜕 ⋅ 𝜕 ⋅ 𝜕 ⋅ ξ(s−4)(φ

󸀠󸀠 − 4𝜕 ⋅ α − 𝜕α󸀠)(s−4) +
3
4
(
s
3
)ξ 󸀠(s−3) ⋅ 𝜕 ⋅𝒜

󸀠
(s−3) (5.143)

where we have used (5.141). Sinceφ󸀠󸀠 −4𝜕 ⋅α−𝜕α󸀠 is an unconstrained gauge invariant
quantity, the first term can be compensated for by a Lagrange multiplier contribution
to the action

ℒ1 = 3(
s
4
)β(s−4)(φ

󸀠󸀠 − 4𝜕 ⋅ α − 𝜕α󸀠)(s−4) (5.144)

with the Lagrange multiplier β transforming as

δβ(s−4) = 𝜕 ⋅ 𝜕 ⋅ 𝜕 ⋅ ξ(s−4) (5.145)

The second term in the variation of ℒ0 is compensated for by the contribution

ℒ2 = −(
3
4
)α(s−3)𝜕 ⋅𝒜

󸀠
(s−3) (5.146)

The full Lagrangian is thus the sum ℒ0 + ℒ1 + ℒ2.

5.5.3 Current exchanges in the nonlocal unconstrained formulation

The nonlocal, geometric, free field equations of formulas (5.61) and (5.62) turn out not
to be quite correct. They are the simplest of their kind, but they are not unique in that
higher divergences and traces of the curvatures – compensated by higher inverse pow-
ers of ◻ – can be added. The problem arises when the higher spin fields are coupled to
external currents J via a source term φ ⋅ J. Then one can, and must, demand that the
correct number of physical components are exchanged, and that is not the case for the
simplest nonlocal theories.

We will not review the details of this rather elaborate discussion, but refer the
reader to the original paper [276]. It turns out that the BRST approach, when reduced
to the local compensator form and the further reduced to the nonlocal form, does in
fact yield the correct nonlocal theory. Thus it seems safe to say that the BRST uncon-
strained theory is the more fundamental one.

5.5.4 Maxwell-like equations

The Fronsdal equations for higher spin gauge fields could be considered Einstein-like
in that the form of the equations are actually the same as the spin 2 field equations
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with no new terms added. The only new properties are the traceless gauge parameters
and the double tracelessness for the fields that sets in at spin 3 and spin 4, respectively.

An alternativewould be to considerMaxwell-like field equations that resemble the
Maxwell spin 1 equations in form, adding no new terms for higher spin. This scheme
has been analyzed in the literature in [291–293]. Consider then the Maxwell-like field
equations in terms of theMaxwell tensor ℳ

ℳμ1 ...μs = ◻φμ1 ...μs − 𝜕(μ1 𝜕 ⋅φμ2 ...μs) = 0 (5.147)

In order for these equations to be invariant under the standard higher spin gauge
transformations, one must require the gauge parameter to be divergence-free, that is,
𝜕 ⋅ ξ = 0. The analysis of this system is actually a bit tricky (see Section 5.1.1 for the
method).

First, for spin higher than 1, the Maxwell equations (5.147) lead to a differential
constraint on the fields. Computing the divergence of equation (5.147), one gets

𝜕(μ4𝜕 ⋅ 𝜕 ⋅ φμ3 ...μs = 0 ⇒ 𝜕 ⋅ 𝜕 ⋅ φμ3 ...μs = 0 (5.148)

up to nondynamical degrees of freedom. This constraint affects the count of physical
field degrees of freedom. For the field itself, we get the number of components

#φ = (s + 3
3
) − (

s + 1
3
) = s2 + 2s + 1 (5.149)

while the divergence free gauge parameter has the following number of components:

#ξ = (s + 2
3
) − (

s + 1
3
) =

1
2
(s2 + s) (5.150)

Then subtracting gauge and regauge degrees of freedom,22weget s+1 physical degrees
of freedom. This, again, corresponds to a decreasing spectrum of fields with spin s,
s − 2, s − 3 down to either spin 1 or spin 0.

If one desires an irreducible field, one can demand the field and the gauge param-
eter to be traceless. In such a case, the corresponding count goes as follows. Taking
care not to double-count the trace of the double-divergence, we get for the field

#φ = (s + 3
3
) − (

s + 1
3
) − ((

s + 1
3
) − (

s − 1
3
)) = 4s (5.151)

22 This is consistent, since just as for the de Donder gauge condition for Fronsdal fields, the gauge
parameter contains the same number of components as the gauge condition 𝜕 ⋅ φ = 0 (which implies
◻φ = 0 so that the fields aremassless), and to stay in the gauge it is sufficient to use a gauge parameter
that satisfies ◻ξ = 0, thus allowing for regauging.
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For the gauge parameter, we get

#ξ = (s + 2
3
) − (

s
3
) − ((

s + 1
3
) − (

s − 1
3
)) = 2s − 1 (5.152)

Again subtracting gauge and regauge degrees of freedom, we now get 2 physical de-
grees of freedom corresponding to a single higher spin field.

A minor worry to address

We computed the divergence of the Maxwell-like equation (5.147) and found a differential constraint
(5.148) on the field. Onemay worry why a similar conclusion does not result from computing the diver-
gence of the Fronsdal equation? However, using equations (5.13) and (5.15) we find that 2𝜕 ⋅ F = 𝜕F 󸀠.

5.6 Mixed symmetry fields

Mixed symmetry higher spin fields occur in string theory, in that case of massive na-
ture. The free field theory of mixed symmetry fields, massive and massless, has been
studied by many authors. One motivation quoted for studying mixed symmetry gauge
fields is a possible connection between higher spin gauge theory and string theory.
The subject was first approached by T. Curtright in 1980 in [192], by Aulakh et al. in
[188] and explored in detail by Labastida and Morris in [193] and by Labastida in
[194, 195, 197]. The subject was also treated in [185] using the BRST methods of [158]
and [159].

Amixed symmetry field can be writtenφμ1 ...μs1 ;ν1 ...νs2 ;...
with several separately sym-

metrized index sets {μsi }, {νsj } etc.. The theory calls for an elaborate formalism.Wewill
not go deeper into this subject here, but refer the reader to the comprehensive work of
[189, 190] as well as to the exhaustive review [191]. Further references can be found in
these works.

5.7 The frame-like formulation

The frame-like formulation of free higher spin field theory – in flat space-time–was set
up by M. Vasiliev in a paper from 1980 [294] and elaborated in [295]. It is modeled on
the tetrad formulation of general relativity generalizing the vierbein e a

μ and Lorentz
connection ω ab

μ fields.
Consider first spin 2. We may choose a notation so that φ a

μ stands for the weak
field in the sense that the vierbein proper e a

μ is expanded (around Minkowski space-
time) as

e a
μ = δ

a
μ + κφ

a
μ (5.153)



300 | 5 Exploring the free field theory

in analogy with gμν = ημν + κφμν. Then from gμν = ηabe a
μ e

b
ν (see formula (4.50)), we

get to order κ,

φμν = ηab(δ
a
μ φ b

ν + δ
b
ν φ a

μ ) = φν,μ + φμ,ν (5.154)

Thus, the metric-like spin 2 field φ is the symmetrized frame-like field φ. The comma
separating the indices is needed here, as the second index is a lowered frame index.
Wewill however continue to use e a

μ (andnotφ a
μ ) temporarily. In the vierbein formula-

tion of gravity, one also considers the Lorentz connection ω ab
μ . Normally, the Lorentz

connection is expressed in terms of the vierbein, as we studied in Section 4.5.5, but it
can also be considered as an independent gauge field, at least until dynamics is intro-
duced.

5.7.1 Vasiliev fields – version 1

We now follow [295]. The frame-like fields, representing spin s, are eμ,a1 ...as−1 and
ωμ,b,a1 ...as−1 . The comma again serves to separate indices with different properties.
The ai indices can be thought of as indicating the spin s of the fields. The fields are
symmetric in the ai indices.

These fields generalize the spin 2 fields, written as eμ,a and ωμ,b,a. The anti-
symmetry in a, b for the spin 2 connection ωμ,b,a is generalized to requiring that the
complete symmetrization in the tangent space indices is zero, that is,

ωμ,(a1 ,a2 ...as) = 0 (5.155)

Furthermore, we have the contraction properties

e c
μ, ca1 ...as−3 = 0 and ω c

μ,b, ca1 ...as−3 = 0 for s ≥ 3 (5.156)

The following contraction property follows from (5.155) and (5.156):

ω c
μ, ,ca1 ...as−2 = 0 for s ≥ 2 (5.157)

The metric-like field is given by the completely symmetric part of the frame-like field

φμ1μ2 ...μs = φ(μ1 ,μ2 ...μs) (5.158)

The tracelessness of the frame fields e together with the definition (5.158) implies the
double tracelessness of the metric-like fields ϕ.23

23 This fact is sometimes offered as an explanation for the double tracelessness property.What it does
is to reduce the double tracelessness of the metric-like fields to the tracelessness in the fiber indices
for the frame fields.
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An action for a massless spin s field can be written in terms of these fields as

Ss(e,ω) ∼ ϵ
μνρσϵabcσ ∫ d

4x[ω d(s−2)
ρ,b,a ( 𝜕μ eν,d(s−2)c −

1
2
ωμ,ν,d(s−2)c)] (5.159)

The fields are written in a condensed notation.

Condensed notation for frame-like fields

A variant of condensed notation is employed in the AdS higher spin literature. Upper or lower indices,
denoted by the same letter, are considered as symmetrized and instead of writing ϕa1 ...as , one writes
ϕa(s) indicatingwithin the parentheses the number of symmetrized indices.Writing for instanceϕa,a(s)
thus means that all s + 1 a-indices are symmetrized. The symmetrizing weight is taken to 1 in contrast
to the early literature [295] which used 1/s!. The summation convention is the following: summation is
carried out over themaximumpossible number of upper and lower indices denoted by the same letter.
Symmetrization is always carried out before summation. In this notation, the frame-like higher spin
fields are written as eμ,a(s−1) and ωμ,b,a(s−1).

The action (5.159) is invariant under local transformations with three independent
kinds of parameters ξa(s−1), αb,a(s−1) and βb(2),a(s−2) subject to the following symmetriza-
tion and trace conditions, respectively,

αa,a(s−1) = 0 βba,a(s−1) = 0 (5.160)

ξ aa(s−2) = 0 α a
b, a(s−2) = 0 β a

b(2), a(s−2) = 0 for s ≥ 3 (5.161)

αa,a(s−1) = 0 β a
b ,a(s−1) = 0 β b

b ,a(s−1) = 0 for s ≥ 2 (5.162)

where the second line of trace conditions are consequences of the first line of trace
conditions, using the symmetry conditions (5.160). This, somewhat bewildering, set
of conditions can be simplified by translating it into two-component notation. This
will be done in Section 5.7.5. The transformation laws are

δeμ,a(s−1) = 𝜕μξa(s−1) + αμ,a(s−1) (5.163)

δωμ,b,a(s−1) = 𝜕μαb,a(s−1) + βμb,a(s−1) (5.164)

For spin 2, there is no parameter βμb,a, while ξa and αμ,a are linearized local coordinate
transformations and Lorentz transformations, respectively.24

5.7.2 Counting degrees of freedom

Let us check that the number of propagating field degrees of freedom are correct in the
frame-like formulation.

24 The physical interpretation of the transformation parameters for higher spin is just as enigmatic
in the frame formulation as in the metric formulation.
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The traceless fields eμ,a(s−1) maintain 4 ((s+23 ) − (
s
3 )) = 4s2 field components,

whereas the gauge parameters ξa(s−1), which have the same tangent space properties
as the fields, have s2 components. By the same argument as in Section 5.1.1, this allows
for fixing 2s2 field components. Next, the parameters αμ,a(s−1), subject to the symme-
try and trace properties (5.160) and (5.161), have 2(s2 − 1) independent components
(see box below in Section 5.7.4). Then the transformation with these parameters (see
(5.163)) can be used to fix another 2(s2 − 1) field components. The count works out to
4s2 − 2s2 − 2(s2 − 1) = 2.

5.7.3 Extended frame-like higher spin fields

Referring back to Section 5.7.1, we had the frame-like description of higher spin gauge
fields in terms of the pair of fields e and ω with the transformation laws of equations
(5.163) and (5.164). We now streamline the notation by renaming the fields eμ,a(s−1) to
ωμ,a(s−1) as well as using the symbol ξ also for the parameters α and β since they are
anyway distinguished by the index structure. The transformations then read

δωμ,a(s−1) = 𝜕μξa(s−1) + ξμ,a(s−1) (5.165)

δωμ,b,a(s−1) = 𝜕μξb,a(s−1) + ξμb,a(s−1) (5.166)

These transformations generalize the familiar results for spin 2. In that case, the pa-
rameter ξμb,a is not present. The field ωμ,b,a (the Lorentz connection) is auxiliary, as it
can be expressed in terms of the vierbein field through the torsion constraint, and the
number of propagating field degrees of freedom is 2.

This set of fields and transformations laws in (5.165) and (5.166) is now expanded
by adding further auxiliary fields ωμ,b(t),a(s−1) with 2 ≤ t ≤ s − 1. One rationale for
this is to think of the parameter ξμb,a(s−1) in (5.166) as the gauge parameter for a new
field ωμ,b(2),a(s−1) with transformation law δωμ,b(2),a(s−1) = 𝜕μξb(2),a(s−1). Then, however,
one can contemplate introducing still another parameter ξμb(2),a(s−1) and promoting
the transformation law for the new field to

δωμ,b(2),a(s−1) = 𝜕μξb(2),a(s−1) + ξμb(2),a(s−1) (5.167)

Iterating this procedure, we would get

δωμ,b(2),a(s−1) = 𝜕μξb(2),a(s−1) + ξμb(2),a(s−1)
δωμ,b(3),a(s−1) = 𝜕μξb(3),a(s−1) + ξμb(3),a(s−1)

...
δωμ,b(s−2),a(s−1) = 𝜕μξb(s−2),a(s−1) + ξμb(s−2),a(s−1)
δωμ,b(s−1),a(s−1) = 𝜕μξb(s−1),a(s−1) (5.168)
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in addition to (5.165) and (5.166). This procedure could have been continued with one
more step toωμ,b(s),a(s−1), whichwould then correspond to the deWit–Freedman gauge
invariant curvature.

Note how the μ and b indices “blend” as μb(i) → b(i + 1) in each successive step.
This blending is mediated by the background vierbein field. Referring back to the for-
mula (5.153) wherewe had e a

μ = δ
a
μ +κφ

a
μ inMinkowski space-time, we can nowwrite

in a more general background

e a
μ = h

a
μ + κφ

a
μ = h

a
μ + ω

a
μ (5.169)

where h a
μ is the background vierbein field, andwhereω denotes theweak fieldwewill

be using. Thus we can write

ξμb(t),a(s−1) = h
c
μ ξcb(t),a(s−1) (5.170)

This drastic expansion in the number of fields is not required for the free field
theory, but is an inherent feature of the Vasiliev equations. The physical higher spin
field components still reside in the coframe-like fields ωμ,a(s−1) while the Lorentz-
connection-like fields ωμ,b,a(s−1) are expressed through zero torsion-like constraints.
This is also the case for the extra fields ωμ,b(t),a(s−1), starting with spin 3 (t = 2).

The extended Vasiliev fields

The extended Vasiliev fields are

ωμ,b(t),a(s−1) with 0 ≤ t ≤ s − 1 (5.171)

where we recognize spin 2 for s = 2 and t = 0, 1. The transformations are given by

δωμ,b(t),a(s−1) = 𝜕μξb(t),a(s−1) + h
c
μ ξcb(t),a(s−1) (5.172)

where h c
μ is the background frame field. There is no parameter ξμb(s−1),a(s−1) → ξb(s),a(s−1). Fields and

parameters are subject to conditions deriving from the conditions of Section 5.7.1. For the fields, we
have

ωμ,b(t−1)a,a(s−1) = 0 for 1 ≤ t ≤ s − 1 (5.173)

ω c
μ,b(t), ca(s−3) = 0 for 0 ≤ t ≤ s − 1 and s ≥ 3 (5.174)

Note that equation (5.173) states that symmetrizing any b index with all the a indices, yields zero. The
index structure of the parameters are the same as for the fields and they satisfy analogous conditions.
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5.7.4 Tensor structure and conditions on fields and parameters

Both the fields and the gauge parameters have two types of fiber indices, denoted by a
and b. The a indices are related to the spin of the field, whereas the b index is related
to the number of derivatives occurringwhen expressing auxiliary fields in terms of the
physical fields.

Let us consider general tensors T with two groups of indices Ta(k),b(m), separately
symmetric in the a indices and the b indices, and where m ≤ k. This is precisely the
tensor structure of the 1-form gauge fields and the 0-form gauge parameters. It is con-
venient to interchange the order of the a and b indices since the number of b indices
are always less than or equal to the number of a indices. These tensors are subject to
the following conditions that generalizes the conditions discussed in Section 5.7.1.

Symmetrizing an a index with the group of b indices on the tensor Ta(k),b(m) gives
zero. That is,

Ta(k−1),ab(m) = 0 (5.175)

The tensors Ta(k),b(m) are traceless in the a indices, that is

T c
a(k−2) c,b(m) = 0 (5.176)

The two conditions (5.175) and (5.176) taken together imply that the traces over an a
and a b index, or over two b indices, are also zero. The tensors Ta(k),b(m) constitute
mixed symmetry representations of the tangent space symmetry algebra so(d − 1, 1),
although the metric signature plays no role for this.

Some facts about 2-row Young tableaux

Young tableaux are a convenient tool for keeping track of index symmetries for tensors and have been
extensively used for mixed symmetry fields in higher spin theory in dimensions d > 4. They are useful
also for the Vasiliev fields since these carry two index sets denoted by a and b.

The general theory of Young tableaux (or Young diagrams) and their use in representation the-
ory can be found in many group theory books. A book dedicated to the subject is [296].25 Here, we
will just cite without proof some basic formulae that will allow us to compute dimensions of tensor
representations in a practical way.

The symmetry type of the Ta(k),b(m) tensors may be represented by their Young tableaux

k
m

(5.177)

where k stands for 1 2 ⋅ ⋅ ⋅ k .

25 It seems that treatments of Young diagrams often either provide far too much detail as compared
to the particular need onemay have at hand, or indeed only discuss one particular application, unfor-
tunately not the needed one! Reference [228] provides more useful details pertaining to the Vasiliev
theory. See also the review [297].



5.7 The frame-like formulation | 305

The lengths of the successive rows cannot increase. Here it is convenient to switch the order of
the a and b indices, as already indicated above. We are using the convention of having symmetry in
the rows and antisymmetry in the columns corresponding to fields being 1-forms in the base space
index μ. The tracelessness in the row indices are not indicated by the tableau, but must be supplied
externally. There are formulas for computing the number of components, but for the purpose of check-
ing the simplest cases it is oftenmore instructive to use the following rules recursively. First, we quote
formulas for GL(d).

k ⊗ = k ⊕ k + 1 (5.178)

k
m

⊗ = k
m

⊕ k + 1
m

⊕ k
m + 1

(5.179)

The principle is to add the new box to rows in the given diagram in all ways that result in a new
admissible Young tableau. The corresponding formulas for SO(d) are

k ⊗ = k ⊕ k + 1 ⊕ k − 1 (5.180)

k
m

⊗ = k
m

⊕ k + 1
m

⊕ k
m + 1

⊕ k − 1
m

⊕ k
m − 1

(5.181)

The intuition is that tensoring the given diagram (which have traces removed) with the new vector
produces the diagrams corresponding to GL(d) (now without traces) but also new diagrams resulting
from computing all possible traces of the preceding ones in rows where a box has been added. Since
the metric signature plays no role in these combinatorial formulae, they are correct also for Lorentz
SO(d − 1, 1) tensors.

From these formulae, one can compute the number of components for mixed symmetry tensors
occurring in the Vasiliev theory, provided one knows the number of components of the basic fully
symmetric and fully antisymmetric tensors. In d dimensions these are

dim k = (
k + d − 1
d − 1
) − (

k + d − 3
d − 1
) (5.182)

dim k = (d
k
) where k ≤ d (5.183)

In d = 4, we have

dim k = (k + 1)2 (5.184)

dim k
m

= 2(k +m + 1)(k −m + 1) form ≥ 1 (5.185)

5.7.5 Two-component spinor reformulation

The Vasiliev set of extended higher spin fields (5.171) can be represented in a two-
component spinor form. This will bring out a symmetry between the a and b index
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sets that is not quite obvious. It will also let us represent half-integer spin fields in the
same formalism.

That a two-component spinor reformulation should be possible is clear from our
general considerations in the historical Chapter 2, and from Sections 3.6.4. A direct
transcription using the formula (3.300) may however prove to be cumbersome as we
also have to take the two-row tensor structure into account. A more simple counting
argument based on the representations of the Lorentz group can instead be tried.

Thephysical fieldωμ,a(s−1) has the symmetry of theYoung tableau s − 1 . Such
a symmetric tensor corresponds to theD(s−1, s−1) representation of the Lorentz group.
Its two-component spinor realization is immediately given by a fieldωμ,α(s−1),β̇(s−1). The
next tensor with structure s − 1 has 2(s + 1)(s − 1) components which is pre-

cisely twice the number of components in a spinor with index structure α(s), β̇(s − 2).
Adding in a spinorwith index structure α(s−2), β̇(s), for goodmeasure, we get an exact
agreement. Continuing in this way, we can ascertain the following correspondences
for 1 ≤ t ≤ s − 1,

s − 1
t

∼ D((s − 1 + t)/2, (s − 1 − t)/2) ⊕ D((s − 1 − t)/2, (s − 1 + t)/2) (5.186)

ωμ,b(t),a(s−1) ∼ ωμ,α(s−1+t),β̇(s−1−t) ⊕ ωμ,α(s−1−t),β̇(s−1+t) (5.187)

We also have the one already established for the physical field (t=0),

s − 1 ∼ D((s − 1)/2, (s − 1)/2) (5.188)
ωμ,a(s−1) ∼ ωμ,α(s−1),β̇(s−1) (5.189)

It should be clear that the counting of components agree. The formula (5.185) yields for
the number of tensor components 2(s+t)(s−t) and this is precisely the number of com-
ponents of the two multispinors together. It is convenient to abbreviate the notation
further and just write

ω(n,m) = ωμ(n,m)dx
μ = ωμ,α(n),β̇(m)dx

μ with n +m = 2s − 2 (5.190)

Thus we will think of ω(n,m) as a 1-form multi-spinor. Since the transformation pa-
rameters have the same fiber index structure as the fields we canwrite them as 0-form
multispinors

ξ (n,m) = ξα(n),β̇(m) with n +m = 2s − 2 (5.191)

There are a few extra bonuses with the two-component spinor notation. We have
not discussed half integer higher spin fields. We now get them for free by just taking
s as a half-integer.26 However, the tensor integer spin fields we have started with are

26 Details are given in [295].



5.7 The frame-like formulation | 307

real, and the multispinor fields are complex, so we have to impose reality conditions

ω†μ,α(n),β̇(m) = ωμ,α̇(n),β(m) (5.192)

For the half-integer spin fields, this means that the corresponding spinor-tensor fields
are Majorana spinors. The same holds for the gauge parameters.

A second bonus with the two-component spinor notation is that the gauge trans-
formation structure becomes particularly clear

δωμ,α(n),β̇(m) = 𝜕μξα(n),β̇(m) − h
σ̇

μα ξα(n−1),β̇(m)σ̇ form > n (5.193)

δωμ,α(n),β̇(n) = 𝜕μξα(n),β̇(n) − h
σ̇

μα ξα(n−1),β̇(n)σ̇ − h
σ

μβ̇ ξα(n)σ,β̇(n−1) (5.194)

δωμ,α(n),β̇(m) = 𝜕μξα(n),β̇(m) − h
σ

μ β̇ξα(n)σ,β̇(m−1) for n > m (5.195)

As always, lower or upper indices denoted by the same Greek letter are symmetrized.
To get a clear picture of the transformations. Let us write them out explicitly for spin
3 in the shorthand notation.

Example 13 (Spin 3 gauge transformations in two-spinor notation). For spin 3, we
have n and m running between 0 and 4. The gauge fields are ω(0, 4), ω(1, 3), ω(2, 2),
ω(3, 1) and ω(4,0). Let us also denote by h1,−1 and h−1,1 background vierbeins that
contract a dotted and inserts an undotted index, or contracts an undotted index and
inserts a dotted, respectively. The transformations can then be written in shorthand
as follows:

δω(4,0) = dξ (4,0)
δω(3, 1) = dξ (3, 1) − h−1,1ξ (4,0)
δω(2, 2) = dξ (2, 2) − h1,−1ξ (1, 3) − h−1,1ξ (3, 1)
δω(1, 3) = dξ (1, 3) − h1,−1ξ (0, 4)

δω(0, 4) = dξ (4,0) 󳶣 (5.196)

5.7.6 An intricate problem

This is where we are going to stop, because we are faced with an intricate problem.
We have transformation equations, but no field equations, and the first without the
second are not so interesting. Of course, from any free field equations in this formal-
ism one must be able to work back to the Fronsdal equations. We know from gravity
that the vierbein formulation is more general than the metric formulation, but it is
therefore possible to work back the metric formulation. In the higher spin case, we
can quote from the Vasiliev paper [295].27

27 I have exchanged the original paper references to formulas and literature with the corresponding
ones from the present work.
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By the use of the equations ofmotion δSs(e,ω) = 0, the auxiliary fieldsωμ,b,a(s−1) can be expressed
in terms of derivatives of eμ,a(s−1) up to the gauge part corresponding to the parameters βb(2),a(s−1).
Substitution of the corresponding expression for ω(e) into the action Ss(e,ω) [(5.159)] gives the
action Ss(e,ω(e)) describing the spin s field in terms of eμ,a(s−1). This action is invariant under the
gauge transformations [(5.163)] and is equivalent [294] to the known expressions for the higher
spin field actions in terms of symmetric tensors [3, 149, 150].

The equivalence of the vierbein higher spin action (5.159) to the Fronsdal action for
symmetric fields can indeed be found in Vasiliev’s paper [294]. So far, free vierbein
higher spin resembles linearized vierbein gravity.

Let us now return to the transformation formulas for the extended set of fields
as given in two-component notation. As already discussed in Section 5.7.2, the gauge
transformation formula (5.194) is such that it leaves the physical higher spin field
ωμ,α(n),β̇(n) with precisely 2 two degrees of freedom. The count is exactly the same:
4(n+ 1)2 − 2(n+ 1)2 −n(n+ 2)−n(n+ 2) = 2. This, however, means that all freedom in the
gauge parameters are used (used to fix the gauge, that is to say). The status of the other
transformation equations becomes obscure. They cannot really be gauge transforma-
tions. The number of components also does not add up to such an interpretation. This
means that all the fields ω(m, n) with m ̸= n must be auxiliary, and completely de-
termined in terms of the physical field ω(n, n). These are the field equations for the
auxiliary fields that we must find. They must be such that the transformations are
symmetry transformations.

The situation is analogous to what we have for the generalized Christoffel sym-
bols of deWit and Freedman. All of them are determined in terms of derivatives on the
symmetric tensor higher spin gauge field, and the suffer no independent gauge trans-
formations. Solving this problem is one of the first steps toward the Vasiliev theory.

5.8 Chapter 5 epilogue

I have certainly not dealt with all aspects of free higher spin theory, but hopefully
enough to approach the problem of interactions. It should be clear that much of the
Minkowski space-time theory can be subsumed under the BRST approach. The frame-
like approach provides for another kind of systematics to the theory, offering a possi-
bility to set up the theory in a generally covariant way. This has been exploited in the
Vasiliev theory. This is, however, beyond the scope of the present volume. Let us in-
stead turn to the free field theory as it can be developed in the light-front formulation.
After that we will have three broad free field theory bases upon which to approach
interactions: the metric-like BRST formulation, the covariant frame-like formulation
and the light-front formulation.



6 The light-front approach

In this chapter, we will develop the light-front, or light-cone, approach to massless
higher spin theory. This was the formalism in which the first cubic self-interaction
terms for arbitrary spin were found in 1983 [124, 298]. The structure of the chapter is
as follows: In Sections 6.1 and 6.2, we work from the ground up, reviewing the basics
of the formulation. Then in Section 6.3 we start afresh, stating our basic conventions
(based on previous sections) for free higher helicity fields on the light-front. The inter-
acting theory will be treated in Volume 2 of the present work.

6.1 Origin and overview of the formalism

The light-front formulation of relativistic dynamics was invented by P. A.M. Dirac in
1949 in a paper where he, apart from the “front form”, also discussed the more com-
mon “instant form” and the not so common “point form” [61]. The light-front formwas
later rediscovered in 1965 in the context of current algebra as the “infinite momentum
frame” by S. Fubini and G. Furlan [299]. For a late 1960s contemporary review, see
[300]. The method was extensively applied to problems in strong interaction physics
during the 1960s and 1970s and up to the present time. One should therefore be aware
of the fact that the light-front approach offers effective methods for phenomenologi-
cal calculations in quantum field theory. For a history of such applications up to 1980,
see [301] which also has a useful bibliography that points to the broad literature on
the subject. Here, we are instead interested in using the method for constructing new
dynamical systems, as it was originally envisaged by Dirac.

The formalism, as it is applied to the kinds of problems we are here interested in,
appears in the higher spin theory, gravity and supergravity literature in a few different
guises. The original 1983 papers on higher spin interactions were calculated in config-
uration space with fields ϕ(x) and nonlinear Lorentz (and supersymmetry) transfor-
mations δϕ(x)written in terms of space-time derivatives on fields.1 Since theworkwas
in four space-time dimensions, a convenient complex notation could be used where
the two ±λ helicity fields could be represented by the complex conjugated pair ϕ, ϕ̄.
Likewise, two-dimensional transverse space-time coordinates and derivatives were
rewritten into the pairs x, x̄ and 𝜕, 𝜕̄. The remaining directions, related to the “fronts”,
and denoted by + and −, deserve some further attention. The details of all this will
be summarized in the box below. This – configuration space formalism – has been
developed and extensively used in supergravity research by L. Brink and P. Ramond
and collaborators S. Ananth, S. S. Kimand S.Majumdar. The light-cone formalismalso

1 See also the author’s N = 1 supergravity paper [302] for explication of the formalism.

https://doi.org/10.1515/9783110451771-006
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played a significant role in the first finiteness proofs forN = 4 super-Yang–Mills theory
[204, 203] in 1983.

The light-front formalism had previously been used in the early 1980s superstring
research by M. B. Green, J. H. Schwarz and L. Brink, indeed going back to the very
early bosonic string days.2 Light-cone superstring theory was formulated in momen-
tum space, and this form was taken over to higher spin theory in a paper from 1987
[205] by I. Bengtsson and N. Linden and myself.

R. Metsaev took up light-front higher spin theory in the late 1980s in amomentum
space formalism. It was then employed to investigations into the quartic interactions.
This important work went largely unnoticed at the time.3 It was revived and clarified
by M. Ponomarev and E. Skvortsov in [210]. This work and R. Metsaev’s work will be
discussed in Volume 2 of the present work.

6.1.1 The Dirac forms of relativistic dynamics

In the paper [61], Dirac demands that the physical laws should be invariant under in-
finitesimal transformations of the coordinates xμ → aμ+ϖ ν

μ xν and associates “dynam-
ical variables” F = Pμaμ +

1
2M

μνϖμν with such transformations. The Poisson bracket
algebra of the Pμ and Mμν is of course the well-known Poincaré algebra which Dirac
gives in the paper. Dirac then writes:

To construct a theory of a dynamical systemonemust obtain expressions for these ten fundamen-
tal quantities [Pμ andMμν] that satisfy these P. b. relations [the Poincaré algebra]. The problem of
finding a new dynamical system reduces to the problem of finding a new solution of these equations.

Dirac notes that some of the ten fundamental quantities that actually occur in prac-
tice in dynamical systems, are simple and others are complicated. The complicated
ones he callsHamiltonians. Today we say “kinematical” and “dynamical” generators,
respectively. In the example of the instant form of dynamicswhere the dynamical vari-
ables are referred to the surface x0 = 0, it turns out that the generators P1,P2,P3 and
M12,M23,M31 are simple, while the generators P0 andM01,M02,M03 are Hamiltonians.
We recognize the latter ones as what we usually call the Hamiltonian and the boost
generators.

The last formdiscussed in the paper is the front form. Dirac considers a “[...] three-
dimensional surface in space-time formed by a plane wave front advancing with the
velocity of light.”. Sucha surface is called a front. He thengives the example x0−x3 = 0.

2 See the book [286] for a late 1980s view of string theory. There is also quite a few reviews on bosonic
string theory from the 1970s. These references are listed in [303]. For a recent history of string theory,
see the book [304].
3 Also by the present author.



6.1 Origin and overview of the formalism | 311

For a theory where the dynamical variables refer to such a front, the fundamental
quantities associated with transformations that leave the front invariant will be sim-
ple. These are P1,P2,P− andM12,M+−,M1−,M2−. The remaining ones, P+,M1+,M2+ will
be the Hamiltonians.

We now leave the Dirac founding paper and turn to a systematic introduction to
light-front dynamics.We note, however, that in the programoutlined byDirac, finding
theHamiltonians is the real difficulty in the construction of a theory of a relativistic dy-
namical system in the front form. This is precisely what light-front higher spin theory
tries to achieve.4

6.1.2 Introducing light-fronts

The light-front formulation canbe introduced inmanyways, but let us imagine amass-
less particle moving in the x3 direction with momentum p3. Since pμpμ = 0, we can
write the momentum four-vector as pμ = (p,0,0, p). A plane wave describing the par-
ticle will then take the form exp ip(x0 + x3). The three-dimensional surface defined by
the equation x0 + x3 = t for some constant t is a light-front.

For a more systematic introduction, one may follow R. A. Neville and F. Rohrlich
[305], and consider two null vectors nμ = 1

√2 (1,0,0, 1) andm
μ = 1
√2 (1,0,0, −1)with the

properties n2 = m2 = 0 and n ⋅m = −1. The projections along these vectors define two
light-front, or null-plane, coordinates

x− = −n ⋅ x = 1
√2
(x0 − x3) (6.1)

x+ = −m ⋅ x = 1
√2
(x0 + x3) (6.2)

The coordinate x+ will be interpreted as the light-front time.5 Then x− is considered a
space coordinate. Raising and lowering + and − indices is done according to x+ = −x−

and x− = −x+ as seen from formulas (6.1) and (6.2).
Consequently, the light-front time derivative is 𝜕+ = −𝜕− with 𝜕+x+ = 1 and 𝜕− =

−𝜕+ a space derivativewith 𝜕−x− = 1. The transverse directionmay be kept as xi = xi for
the remaining space indices. In four dimensions it is, however, convenient to combine
the transverse directions into complex coordinates and derivatives according to

x = 1
√2
(x1 + ix2) and x̄ = 1

√2
(x1 − ix2) (6.3)

For easy reference, we collect useful formulas in the box below.

4 This could be designated the Dirac research program.
5 Neville and Rohrlich take x− as time, calling it u. In higher spin theory, x+ has become an accepted
standard.
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Summary of light-cone coordinates

Coordinates are give by

x+ = 1
√2
(x0 + x3) x− = 1

√2
(x0 − x3) (6.4)

x = 1
√2
(x1 + ix2) ̄x = 1

√2
(x1 − ix2) (6.5)

Derivatives are given by

𝜕+ =
𝜕
𝜕x+
=

1
√2
(𝜕0 + 𝜕3) = −𝜕

− 𝜕− =
𝜕
𝜕x−
=

1
√2
(𝜕0 − 𝜕3) = −𝜕

+ (6.6)

𝜕 =
𝜕
𝜕 ̄x
=

1
√2
(𝜕1 + i𝜕2) 𝜕̄ =

𝜕
𝜕x
=

1
√2
(𝜕1 − i𝜕2) (6.7)

acting on the coordinates according to 𝜕+x+ = 𝜕−x− = 𝜕 ̄x = 𝜕̄x = 1. With a mostly-plus Minkowski
metric − + ++, the light-front scalar product becomes

AμB
μ = AB̄ + ĀB + A−B

− + A+B
+

= AB̄ + ĀB − A+B− − A−B+ (6.8)

where the light-front components of the vectorsA andB are defined exactly as for the coordinates (6.4)
and (6.5). The scalar product can be interpreted such as the light-front metric has signature + + −− in
the directions “unbarred”, “barred”, “plus” and “minus”. The light-front d’Alembertian becomes

◻ = 𝜕μ𝜕
μ = 𝜕i𝜕i − 2𝜕+𝜕− = 2(−𝜕+𝜕− + 𝜕𝜕̄) (6.9)

Other vectors and tensors can now be written in the light-front basis. For instance, a
spin one gauge field has the components A+,A−,A, Ā. In the light-front gauge, which
wewillwork throughbelow inSection6.1.4, the space componentsAand Ā correspond
to the physical helicity 1 and −1 fields. As we will see, this generalizes naturally to
massless higher spin fields.

It is no coincidence that the light-front coordinates can bewritten 1
√2x

μσμ in terms
of the σ matrices as in formula (3.121). Therefore, the coordinates, or rather the mo-
menta, can be considered as “two-spinor helicity variables” in a certain sense.6

6.1.3 The wave equation and the Cauchy problem

In choosing any one coordinate as the time, one is also committed to certain surfaces
upon which initial data should be prescribed. In the case of free field equations, it is

6 This can be taken advantage to connect light-front higher spin theory to the spinor helicity formal-
ism of modern amplitude research, as first noted by S. Ananth in [306].
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known that one gets a well-posed initial value problem if Cauchy data are provided
on a space-like surface. Such a surface has a normal pointing into the forward light-
cone. A common and convenient choice is equal time surfaces x0 = c. This is also
the quantization surface most often used in quantum field theory. However, the light-
front x+ = c is not a space-like surface. It is a null-planewith its normal n a null vector.
In general, it is not sufficient to specify initial data on such a surface. The light-front
Cauchy problem is discussed by A. Neville and F. Rohrlich in [305]. These author study
conditions underwhich themassive Klein–Gordon equation in light-front coordinates

2𝜕+𝜕−ϕ(x) = (𝜕i𝜕i −m
2)ϕ(x) (6.10)

has a unique solution.
Figure 6.1 shows the x+- x− plane in Minkowski space-time with the backward

light-cone from the point p. It is intuitively clear that specifying initial data on the
null-plane x+ = x+0 cannot be sufficient, since waves traveling in the x− direction are
not affected by such conditions.

p

x−
x+

𝒪

x+ = x+0
x− = x−0

n

m

Figure 6.1: Backward light-cone at the point p and null-planes x+ = x+0 and x− = x−0 .

Two theorems are proved, that we quote without providing the solution integrals.

Theorem 1. The Klein–Gordon equation for m ≥ 0 is uniquely determined in the region
boundedby thewedge formedbynull-planes x+ = x+0 and x

− = x−0 if ϕ and the derivatives
𝜕−ϕ and 𝜕+ϕ are specified on these planes, respectively. Initial data on the wedge but
outside the backward null cone is not necessary.

Theorem 2. Given ϕ and 𝜕−ϕ on the null plane x+ = x+0 and the asymptotic condition
limx−→±∞ ϕ = 0, the Klein–Gordon equation has a unique solution in the half-space
x+ ≥ x+0 .

It may seem a bit strange that it is the “space derivative” 𝜕−ϕ = −𝜕+ϕ that should
be specified, along with the field ϕ itself, on the null-plane x+ = x+0 , and not the time
derivative 𝜕+ϕ. However, this is as it should be. The Klein–Gordon equation is inte-
grated in two steps. First the “space” integral over x− is done. Then it is clear that the



314 | 6 The light-front approach

equation is effectively first order in the light-front time derivative. Therefore, no light-
front time derivative of the field must be specified, but rather the light-front space
derivative. The reader who is interested in these matters may consult the literature.

For our purposes, it is not necessary to go deeper as we are primarily interested
in the “algebraic” problem of constructing interactions on the light-front. We say “al-
gebraic” since our computations will be formal and perturbative in the sense of not
worrying about matters of analysis. Solutions to nonlinear wave equations are any-
way far beyond our objectives.

Light-cone or light-front?

The designations “light-cone” and “light-front” are often used interchangeably, perhaps even ran-
domly, in the literature to name this particular approach to field theory. Conceptually, however, light-
cone refers to a three-dimensional surface x2 = 0 in Minkowski space-time, or possibly, to the surface
and the interior of the cone. Light-front, or equivalently null-plane, refers to a surface such as x+ = 0,
tangential to the light-cone. With this understanding, we need not be too pedantic about the usage of
the words, as long as the meaning is clear from the context.

6.1.4 Light-front gauge fixing for spin 1

It is interesting to contrast covariant gauge fixing with light-front gauge fixing. Here,
we will perform it for spin 1. We will use the notation of Section 6.1.2. The light-front
gauge is chosen by setting

A+ = 0 (6.11)

and then studying the wave equations for the other components. First, note that in
this gauge we get

𝜕 ⋅ A = 𝜕iA
i − 𝜕+A− (6.12)

We start with the wave equation in the “+” direction. It becomes

−𝜕+(𝜕iA
i − 𝜕+A−) = 0 (6.13)

Here, we at once encounter two slight subtleties having to do with the light-front x−

direction. The equation tells us that 𝜕iAi − 𝜕+A− is a constant function of x−. To move
on,wewill ignore this subtlety, choosing the constant function to be zero.We can then
formally solve equation (6.13) as

A− = 1
𝜕+
𝜕iA

i (6.14)
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This is the, related, second subtlety. The operator 1/𝜕+ is to be thought of as an integral
operator. We will return to these questions in Section 6.2.1.

Next, we compute the wave equation in the transverse j directions. The computa-
tion gives

◻Aj − 𝜕j(𝜕iA
i − 𝜕+A−) = ◻Aj = 0 (6.15)

where we have used (6.14). Thus the two components of Aj describe a massless trans-
verse vector field. Finally, the wave equation in the “−” direction becomes

◻A− − 𝜕−(𝜕iA
i − 𝜕+A−) = ◻A− = 0 (6.16)

which is formally consistent with (6.14) since

◻A− = ◻( 1
𝜕+
𝜕iA

i) =
1
𝜕+
𝜕i◻A

i = 0 (6.17)

Barring the x− subtleties, what we see here is that one component of the vector poten-
tial A+ is set to zero, another A− is (almost) trivially solved for, while the remaining
transverse components Ai describe two dynamical field degrees of freedom. The cor-
responding gauge fixing can be performed for all integer and half-integer gauge fields.

6.1.5 Spin-Lorentz transformations for spin 1

The spin part of a Lorentz transformation can be parametrized by six infinitesimal
parameters ϖi+,ϖi−,ϖ+− and ϖij = ϖ. Consider now such a transformation of the A+

component

δsA
+ = ϖ++A

+ + ϖ+−A
− + ϖ+iA

i = ϖ+iA
i (6.18)

in the gauge A+ = 0 and since ϖ+− = −ϖ
++ = 0. We see that the vector field gets

transformed out of the gauge. To stay in the gauge, one has to perform a compensating
gauge transformation, or regauge transformation

δξA
+ = 𝜕+ξ = −ϖ+iA

i ⇒ ξ = − 1
𝜕+

ϖ+iA
i (6.19)

We can also compute the spin transformation of a physical component

δsA
i = ϖi

jA
j + ϖi

+A
+ + ϖi

−A
− + 𝜕iξ = ϖi

jA
j − ϖi+ 𝜕j
𝜕+

Aj − ϖ+j 𝜕
i

𝜕+
Aj (6.20)

where we are careful to remember the compensating gauge transformation.
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This formula will look much nicer if we pass to complex notation. With the real
ϖ = ϖ1

2 = −ϖ
2
1 and ϖ

+i recombined into

ϖ+ = 1
√2
(ϖ1+ + iϖ2+) and ϖ̄+ = 1

√2
(ϖ1+ − iϖ2+) (6.21)

we get

δsA = −iϖA − ϖ
+ 𝜕̄
𝜕+

A + ϖ̄+ 𝜕
𝜕+

A (6.22)

The transformation for Ā is the complex conjugate of this formula.
The corresponding analysis may be performed for free gauge fields of any spin. It

is however easier to take advantage of the fact that for a field ϕλ with helicity λ one
must have δϖϕλ = −iϖλϕλ and then rely on the closure of the Poincaré algebra to arrive
at

δsϕλ = λ(−iϖ − ϖ
+ 𝜕̄
𝜕+
+ ϖ̄+ 𝜕
𝜕+
)ϕλ (6.23)

6.2 Light-front basics in some detail

There are some delicate points when doing classical and quantum field theory on the
light-front. They are all, in one way or another, connected to the, so-called, 1/p+ prob-
lem. The literature on the problem is quite extensive, and the conclusions seem to
range from – to put it a bit bluntly – ”there is no real problem” to ”the method is in-
consistent”. As is often the case with field theory questions of this nature, the answer
depends on the level of rigor applied, but there is also a practical point to it when
concrete calculations has to be done. Judging from the large number of light-front and
infinite-momentumapplications to, for instance, strong interactionphysics, one could
perhaps risk arguing that, on sociological grounds, the method is basically sound. It
is anyway beyond the present work to enter too deep into these questions. For the ap-
plication, we have inmind wewill content with a fairly formal treatment of the 1/p+’s.
Our level of rigor will be defined in the box below.

6.2.1 Dirac analysis of the free field Lagrangian

For the canonical analysis of the free field theory, we start from the Lagrangian (1.7)
for two scalar fields ϕ1 and ϕ2 which we combine into ϕ and ϕ̄ according to

ϕ = 1
√2
(ϕ1 + iϕ2) and ϕ̄ = 1

√2
(ϕ1 − iϕ2) (6.24)
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The interpretation – to be eventually done – is that ϕ1 and ϕ2 are the remaining two
physical components of a higher spinmassless tensor or tensor-spinor field after light-
front gauge fixing in four dimensions. The Lagrangian, written with light-front deriva-
tives, is

L = ∫ d3xℒ = −∫ d3x(ϕ𝜕−𝜕+ϕ̄ − ϕ𝜕𝜕̄ϕ̄) (6.25)

The canonical conjugate momenta are defined by7

π(x) = δL
δ(𝜕−ϕ̄(x))

=
1
2
𝜕+ϕ(x) and π̄ = δℒ

δ(𝜕−ϕ)
=
1
2
𝜕+ϕ̄ (6.26)

Space dependence will be suppressed in formulas whenever not needed for clarity,
as in the equation for π̄. Since 𝜕+ is a space derivative, we see that the canonical mo-
menta do not depend on the time derivative of the fields, signaling the presence of
constraints.8 We therefore have two primary constraints

χ = π − 1
2
𝜕+ϕ ≈ 0 and ̄χ = π̄ − 1

2
𝜕+ϕ̄ ≈ 0 (6.27)

where ≈ means “weakly zero” in the Dirac sense. To get the Dirac procedure started,
we impose the naive Poisson brackets

{ϕ(x), π̄(y)} = {ϕ̄(x),π(y)} = δ(x− − y−)δ2(xi − yi) ≡ δ
3(x − y) (6.28)

We work with Poisson brackets here, eventually to be turned into equal x+ commu-
tators.9 All other brackets between phase space variables, except those in (6.28) are
naively zero.

We start by computing the Hamiltonian

H = ∫ d3x(π𝜕−ϕ̄ + π̄𝜕−ϕ) − L = ∫ d3xϕ𝜕𝜕̄ϕ̄ (6.29)

The Hamiltonian is not unique due to the presence of constraints, so we must add
them to H with multiplier fields u(x) and ū(x) to get the effective Hamiltonian H̃

H̃ = H + ∫ d3x(ū(x)χ(x) + u(x) ̄χ(x)) (6.30)

Next, we look for secondary constraints by requiring 𝜕−χ = 𝜕− ̄χ = 0. The results are10

𝜕−χ(x) = 𝜕𝜕̄ϕ(x) − 𝜕+u(x) = 0 (6.31)

7 The choice of which canonical momenta to be barred or unbarred is conventional.
8 See Section 3.2.2 for the Dirac analysis of constrained systems.
9 In bracket expressions such as in (6.28), it is to be understood that x, y, . . . in the right-hand side
generalized functions stand for spatial coordinates x−, xi with i = 1, 2 or x+, x, x̄.
10 In this computation, and others of a similar nature in this section, we freely allow ourselves to use
𝜕+y δ(x

− − y−) = −𝜕+x δ(x
− − y−) and partial integrations with respect to x− discarding surface terms.

Furthermore, equalities involving constraints are really weak equalities ≈.
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𝜕− ̄χ(x) = 𝜕𝜕̄ϕ̄(x) − 𝜕+ū(x) = 0 (6.32)

Thus no new constraints appear, insteadwe get equations for themultiplier fields u(x)
and ū(x). Next, we compute the matrix C(x, y) of constraints

C(x, y) = ({χ(x), χ(y)} {χ(x),
̄χ(y)}

{ ̄χ(x), χ(y)} { ̄χ(x), ̄χ(y)}
) = −(

0 1
1 0
) 𝜕+x δ(x

− − y−)δ2(xi − yi) (6.33)

This matrix can be formally inverted in the sense that

∫ d3zC(x, z)C−1(z, y) = δ3(x − y) (6.34)

with the result

C−1(x, y) = (0 1
1 0
) ϵ(x− − y−)δ2(xi − yi) (6.35)

where the step function (half-sign function) ϵ satisfies (see box below)

𝜕+x ϵ(x
− − y−) = −δ(x− − y−) (6.36)

One could perhaps suspect that this cavalier treatment is not without its subtleties,
but this is the way it is conventionally done, and wewill conform to that tradition. For
a deeper discussion, see [307].

It is now possible to compute the Dirac brackets (see Section 3.2.5). The non-zero
matrix components of C−1 are C−1χ ̄χ and C−1̄χχ . The Dirac bracket can then be computed
from the formula

{A(x),B(y)}D = {A(x),B(y)}

− ∫ d3zd3w{A(x), χ(z)}C−1χ ̄χ (z,w){ ̄χ(w),B(y)}

− ∫ d3zd3w{A(x), ̄χ(z)}C−1̄χχ (z,w){χ(w),B(y)} (6.37)

The nonzero Dirac brackets become11

{ϕ(x), ϕ̄(y)}D = ϵ(x
− − y−)δ2(xi − yi) (6.38a)

{ϕ(x), π̄(y)}D =
1
2
δ(x− − y−)δ2(xi − yi) (6.38b)

{π(x), π̄(y)}D =
1
4
𝜕+x δ(x

− − y−)δ2(xi − yi) (6.38c)

11 One must remember to compute all brackets between all canonical variables.
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All other brackets between canonical variables compute to zero. However, since in
light-front field theory, one seldomworks with the canonical momenta, we also quote

{ϕ(x), 𝜕+y ϕ̄(y)}D = δ(x
− − y−)δ2(xi − yi) (6.39)

This bracket is consistent with the bracket (6.38b) upon using the second of the con-
straints in (6.27) which can now be taken as a strong equation.12

Some authors have a factor of 1/2 in the bracket (6.39), but that is conventional.
The relevant point is that this Dirac bracket is nonzero whereas the corresponding
Poisson bracket that the analysis started from is zero.13 In any case, the bracket (6.39)
will actually be our basic bracket. Formally, we could write it as

{ϕ(x), ϕ̄(y)}D =
1
𝜕+y

δ(x− − y−)δ2(xi − yi) (6.40)

Wewill however never use it in this form, but rather the corresponding quantum com-
mutator transformed to momentum space. It will be introduced in Section 6.3.1.

Interpretation of 1/𝜕+ and 1/p+
Let us focus on the x− direction only. From the equation,

𝜕+g(x+) = f (x+) (6.41)

it is clear that g(x+) is a primitive function to f (x+) and as such involves an undetermined constant.
From this simple observation, we can devise a fairly rigorous interpretation of the operator 1/𝜕+ when
we formally write

g(x+) =
1
𝜕+

f (x+) (6.42)

For that, integrate both sides of equation (6.41) from L to x+,

x+
∫
L

𝜕 󸀠+g(x󸀠+)dx
󸀠
+ =

x+
∫
L

f (x󸀠+)dx
󸀠
+ ⇒ g(x+) − g(L) =

x+
∫
L

f (x󸀠+)dx
󸀠
+ (6.43)

Then do the same with L replaced by L󸀠 with L < x+ < L󸀠. Adding the two resulting equations yields

2g(x+) = g(L) + g(L
󸀠) +

x+
∫
L

f (x󸀠+)dx
󸀠
+ −

L󸀠
∫
x+ f (x
󸀠
+)dx
󸀠
+ (6.44)

12 Note that 𝜕+ϵ(x−) = −δ(x−) with the minus sign due to the light-front metric.
13 Starting from the Lagrangian (6.25)multiplied by a constant k, the Dirac bracket (6.39) would come
out with a factor 1/k on the right-hand side.
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This we write as

g(x+) =
g(L) + g(L󸀠)

2
+

L󸀠
∫
L

ϵ(x+ − x
󸀠
+)f (x
󸀠
+)dx
󸀠
+ (6.45)

where

ϵ(x+) = {
+ 12 for x+ > 0
− 12 for x+ < 0

with 𝜕+ϵ(x+) =
𝜕
𝜕x+

ϵ(x+) = δ(x+) (6.46)

The arbitrary integration constant in g(x+) is represented by
1
2 (g(L) +g(L

󸀠)) in (6.45). The arbitrariness
can be removed by imposing boundary conditions such as

lim
L→−∞

g(L) = lim
L󸀠→∞

g(L󸀠) = 0 (6.47)

Compare to the Neville–Rohrlich theorems of Section 6.1.3.

6.3 Free higher helicity fields

With a background of the above considerations, we now retreat a little to set up a for-
malism for approaching the problem of interactions for massless higher spin fields on
the light-front. In four space-timedimensions dimension, all gauge fields have 2 physi-
cal degrees of freedom. This simplifies themathematics since a complexified notation
can be used throughout. Thus we work with the field ϕλ and its complex conjugate
ϕ̄λ of helicities λ and −λ, respectively. These will be called helicity fields. The wave
equations are

𝜕−ϕλ =
𝜕𝜕̄
𝜕+

ϕλ and 𝜕−ϕ̄λ =
𝜕𝜕̄
𝜕+

ϕ̄λ (6.48)

irrespective of helicity. Indeed, gauge fixing the four-dimensional Fronsdal [3] equa-
tions for arbitrary spin, yield these equations, and helicity data is encoded in the
Lorentz transformations as shown in Section 6.1.5.

6.3.1 Fields, Fourier transforms and commutators

We will think of the higher helicity fields as quantum fields so that the Dirac brackets
of Section 6.2.1 will be turned into equal light-front time commutators according to the
scheme of (1.1). That is, we take as our quantization rule

If {A(x),B(y)}D = C then [A(x),B(y)]x+=y+ = iC (6.49)
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Let us startwith two real fieldsϕk(x) such as the transverse components of a light-front
higher helicity field. The basic equal x+ commutator is thus taken as

[ϕk(x), 𝜕
+
yϕl(y)]x+=y+ = iδ3(x − y)δkl (6.50)

For Fourier transform pairs, we choose

ϕk(x) =
1
(2π)3/2
∫ d3pϕk(p)e

ip⋅x

ϕk(p) =
1
(2π)3/2
∫ d3xϕk(x)e

−ip⋅x (6.51)

The complex field is introduced by defining

ϕ = 1
√2
(ϕ1 + iϕ2) ϕ̄ = 1

√2
(ϕ1 − iϕ2) (6.52)

both for x-space and p - space fields. In terms of the complex field, the nonzero equal
time commutator becomes

[ϕ(x), 𝜕+y ϕ̄(y)]x+=y+ = iδ3(x − y) (6.53)

Fourier transforming, we get the momentum space equal time commutator, using
q+e−iq⋅y = i𝜕+y e

−iq⋅y and partially integrating

[ϕk(p), q
+ϕl(q)] =

1
(2π)3
∫ d3xd3y[ϕk(x),ϕl(y)]i𝜕

+
y e
−i(p⋅x+q⋅y)

=
1
(2π)3
∫ d3xd3yδklδ

3(x − y)e−i(p⋅x+q⋅y)

= δklδ
3(p + q) (6.54)

For complex fields, this yields the convenient form

[ϕ(p), ϕ̄(q)]x+=y+ = δ3(p + q)q+
(6.55)

To maintain fields of all helicities, we introduce a two-dimensional complex in-
ternal Fock space spanned by oscillator pairs (β, ᾱ) and (β̄, α) where

[β, ᾱ] = [β̄, α] = 1 (6.56)

thus taking α and ᾱ as creation operators and β and β̄ as annihilation operators.14

14 This is a change of notation in reference to the notation of my papers, where the double use of † as
designating a creation operator and thenotation forHermitian conjugation, caused apotential conflict
with the complex notation.
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Using this, we collect all helicities in a Fock space field,

|Φ(p)⟩ =
∞
∑
λ=0

1
√λ!
(ϕλ(p)ᾱ

λ + ϕ̄λ(p)α
λ) |0⟩ (6.57)

In formulas like this, p is short for p, p̄ and γ = p+. The conjugated Fock space field is
given by

|Φ(p)⟩† = ⟨Φ(−p)| =
∞
∑
λ=0

1
√λ!
⟨0| (ϕ̄λ(−p)β

λ + ϕλ(−p)β̄
λ) (6.58)

Thefieldsϕand ϕ̄being functions of x+, p+, p, p̄, carrymassdimension−2. This follows
from the Fourier transform (6.51) since ϕ(x) has dimension 1 as usual. The vacuum
and the oscillators are dimensionless, hence the Fock space field |Φ(p)⟩ also carry
dimension −2.

The light-front internal Fock-space

The complex pairs of oscillators (β, ᾱ) and (β̄, α) can be introduced in the following way from a pair of
oscillators (αi , α†i ), i = 1, 2, with the usual commutators [αi , α

†
j ] = δij:

β = 1
√2
(α1 + iα2) β̄ = 1

√2
(α1 − iα2) (6.59)

α = 1
√2
(α†1 + iα

†
2) ᾱ = 1

√2
(α†1 − iα

†
2) (6.60)

The commutation relations of (6.56) are satisfied. The operators α and ᾱ are creation operators. One
can compute, for instance, ᾱ = β† and α = β̄†, but the use of † for designating creation operators is
confusing together with the complex notation, and will not be used.

6.3.2 The light-front Poincaré algebra

We start from the four-dimensional Poincaré algebra as given in formulas (3.98)–
(3.100) and rewrite it in terms of light-front coordinates and momenta. The algebra
consists of 45 commutators, 22 of which are nonzero.

In light-front dynamics, the Poincaré generators split into a set 𝒦 of kinematic
generators and a set𝒟 of dynamic generators. The kinematic generators are those that
leave the light-front x+ = 0 invariant, while the dynamic generator transform out of
the front. We get15

𝒦 = {p+, p, p̄} ∪ {j, j+−, j+, ̄j+} (6.61)
𝒟 = {p−} ∪ {j−, ̄j−} (6.62)

15 As there is an obvious symmetry between + and − directions, it should be noted that this particular
split corresponds to taking x+ as the light-front time. Also note that, although we refer to𝒦 and𝒟 as
sets here, they are actually Lie algebras, as will become clear.
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Transformations off the null plane

Physically, the Hamiltonian h transforms the null plane x+ = 0 into another null plane x+ = τ in-
finitesimally near. The dynamic Lorentz generators – which can be thought of as boosts – generate
infinitesimal rotations of the plane x+ = 0 around the surface of the light-cone x2 ≤ 0 , thus also
transforming off the plane.

In the free field theory, all the generators are linearly realized on the fields. The dy-
namical generators – the Hamiltonians in Dirac’s terminology – will be nonlinearly
realized in an interacting theory. The idea behind the light-front approach to interact-
ing higher spin field theory is to try to construct interactions by an ansatz-verification
method.

The light-front momentum operators p−, p+, p, p̄ are defined analogous to other
light-front vectors. The angularmomentumgenerators need a littlemorework, but the
idea is that every tensor index μ is rewritten in terms of the directions “plus”, “minus”,
“unbarred” and “barred”. Doing this, we get the following short calculations:

j = j12 (6.63)

j+− = 1
√2
(j+0 − j+3) = 1

2
(j00 + j30 − j03 − j33) = j30 (6.64)

j+ = 1
√2
(j1+ + ij2+) = 1

2
(j10 + j13 + ij20 + ij23) (6.65)

̄j+ = 1
√2
(j1+ − ij2+) = 1

2
(j10 + j13 − ij20 − ij23) (6.66)

j− = 1
√2
(j1− + ij2−) = 1

2
(j10 − j13 + ij20 − ij23) (6.67)

̄j− = 1
√2
(j1− − ij2−) = 1

2
(j10 − j13 − ij20 + ij23) (6.68)

The algebra of these generators can then be worked out. It will be convenient to
organize the resulting commutators in three groups, each containing three subtypes.
This will facilitate the task of controlling them all when constructing nonlinear inter-
action representations.

𝒦 − 𝒦 commutators
The 21 commutators of this type have the following algebraic structure:

[𝒦,𝒦] ⊂ 𝒦 #9

[𝒦,𝒦] ⊂ 𝒟 #0

[𝒦,𝒦] = 0 #12
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The three types of right-hand sides of the commutators will be called linear, non-linear
and zero, respectively. The nonzero commutators of this type are

[ j, p ] = ip [ j, p̄ ] = −ip̄ (𝒦𝒦.1)
[ j+, p̄ ] = ip+ [ ̄j+, p ] = ip+ (𝒦𝒦.2)
[ j+−, p+ ] = ip+ (𝒦𝒦.3)
[ j, j+ ] = j+ [ j, ̄j+ ] = − ̄j+ (𝒦𝒦.4)
[ j+−, j+ ] = ij+ [ j+−, ̄j+ ] = i ̄j+ (𝒦𝒦.5)

Commuting two kinematic generators can never give a dynamic generator. This part of
the algebra, being satisfied by the free theory by construction therefore has no further
consequences for the interactions.

𝒦 −𝒟 commutators
The 21 commutators of this type have the following algebraic structure:

[𝒦,𝒟] ⊂ 𝒦 #6
[𝒦,𝒟] ⊂ 𝒟 #7
[𝒦,𝒟] = 0 #8

The nonzero commutators of the first subtype are

[ p+, j− ] = −ip [ p+, ̄j− ] = −ip̄ (𝒦𝒟.1)
[ j+, p− ] = ip [ ̄j+, p− ] = ip̄ (𝒦𝒟.2)
[ j+, ̄j− ] = ij+− − j [ ̄j+, j− ] = ij+− + j (𝒦𝒟.3)

These commutators tell us that the kinematic transformations commute with the non-
linear part of the dynamic transformations. In practice, therefore, since the free part is
satisfied by construction, they form a set of zero commutators together with the third
subtype. These are

[ p, p− ] = 0 [ p̄, p− ] = 0 [ p+, p− ] = 0 (𝒦𝒟.4)
[ p, j− ] = 0 [ p̄, ̄j− ] = 0 (𝒦𝒟.5)
[ j+, j− ] = 0 [ ̄j+, ̄j− ] = 0 (𝒦𝒟.6)
[ j, p− ] = 0 (𝒦𝒟.7)

Together thesewill fix someof the structure of the interaction terms. The nonzero com-
mutators of the second subtype are

[j+−, p− ] = −ip− (𝒦𝒟.8)
[ p̄, j− ] = −ip− [ p, ̄j− ] = −ip− (𝒦𝒟.9)
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[ j+−, j− ] = −ij− [ j+−, ̄j− ] = −i ̄j− (𝒦𝒟.10)
[ j, j− ] = j− [ j, ̄j− ] = − ̄j− (𝒦𝒟.11)

These work order by order in the interaction and fix still more of the structure. There
is no mixing of interaction terms of different order in these commutators. Taken to-
gether, the 𝒦 − 𝒟 commutators determine the general form of the interactions up to
p+-structure.

𝒟 −𝒟 commutators
The 3 commutators of this type have the following algebraic structure:

[𝒟,𝒟] ⊂ 𝒦 #0
[𝒟,𝒟] ⊂ 𝒟 #0
[𝒟,𝒟] = 0 #3

Withmuch of the structure already determined, the𝒟−𝒟 commutators yield recursive
differential equations in the γr = p+r for the higher spin fields Φr entering an interac-
tion term. Note that in super-Poincaré algebras there are [𝒟,𝒟] = 𝒟 commutators. In
the case that is discussed here, without supersymmetry, there are only the zero com-
mutators

[ h, j− ] = 0 [ h, ̄j− ] = 0 [ j−, ̄j− ] = 0 (6.69)

The third commutator contain all information, as performing it requires the first two.
In the generic case, once cubic interaction termsare found, theywill lead tohigher

order terms. Commuting two transformations on the cubic level will in general not be
zero, but lead to quartic level transformations.16

The p+ structure in interacting theory
Wewill indeedsee that it is thedetailedp+ structure that is left undeterminedbykinematical part of the
algebra. Instead it is determined by the dynamical commutators. This may be a significant point: the
light-front buys us quite a few simplifications– if we are prepared towork in a non-covariant formalism
– but the price to pay is that the really hard difficulties are concentrated to the p+ structure.

A tentative connection to BRST theory

Given that all interactiondatawill be carriedby thedeformationsof j− and ̄j−, the equation [ j−, ̄j− ] = 0,
although being a commutator, resembles the {Q,Q} = 0 equation of deformed BRST-theory. Such de-

16 There is, however, a special case – discovered by R. R. Metsaev – where the cubic theory closes the
algebra by itself [208, 209]. The theory is however not unitary.
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formations result in strongly homotopy, or L∞ algebras [308]. Support for this connection comes from
Siegel’s and Zwiebach’s work in the 1980s deriving the BRST gauge fixed string theory from light-front
string theory by introducing ghost coordinates and constructing the BRST and anti-BRST operators out
of the dynamical Lorentz operators [164, 309].

6.3.3 The free theory light-front Poincaré generators

Thenext step is towrite downanexplicit realizationof the light-front Poincaré algebra.
We start in a first quantized setting with the covariant generators given by

Pμ = pμ and Jμν = xμpν − xνpμ +Mμν (6.70)

where we have [xμ, pν] = iημν. The spin Lorentz generators Mμν will be specified in
terms of the two-dimensional oscillators (6.56). In complex notation, a linear realiza-
tion can be expressed as

j = i(xp̄ − x̄p) +M j+− = i 𝜕
𝜕γ

γ = iγ 𝜕
𝜕γ
+ i (6.71)

j+ = xγ ̄j+ = x̄γ (6.72)

j− = xh + ip 𝜕
𝜕γ
−
i
γ
Mp ̄j− = x̄h + ip̄ 𝜕

𝜕γ
+
i
γ
Mp̄ (6.73)

where the momenta p+ is denoted by γ and the Hamiltonian p− is denoted by h and
given by

h = pp̄
γ

(6.74)

The helicity contributions to j, j− and ̄j− is carried by

M = αβ̄ − ᾱβ (6.75)

So far, this is a hybrid notation where we think of x and p̄ as first quantized with

[x, p̄] = [x̄, p] = i (6.76)

but we treat x− and p+ explicitly in terms of

p+ = γ and x− = −i 𝜕
𝜕γ

(6.77)

This turns out to be convenient [310].17 Further convenience will be gained by repre-
senting x and x̄ as

x = i 𝜕
𝜕p̄

and x̄ = i 𝜕
𝜕p

(6.78)

17 We differ from [205] which used β = 2p+.
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Lightfrontiana: α, β, γ or η

The motivation for introducing a new symbol for the momenta p+ is readability and aesthetics, apart
from the fact that p+ plays quite a prominent role in light-front physics. In the light-cone superstring
papers of the 1980s, p+ was denoted by α. As also the oscillators of string theory were denoted by α’s
and we had the α󸀠, too, the present author, in connection to working on the paper [205], decided to
use β instead. This was taken up by Metsaev and most subsequent authors on light-front higher spin
theory. Later on, I found β a bit typographically unaesthetic, so changed over to γ (that looks great
both in handwriting and print). One alternative would be to return to η that was used in the 1960s
research on the infinite momentum frame; see, for instance, [311–313]. I am now using β and β̄ for
transverse annihilators. Notation, notation, notation, always notation!

The generator jmeasures helicity. All basic variables are eigenvectors of j with eigen-
values equal to the helicity of the variable. Consider [j, v] = λv. Explicitly, we get the
following helicity assignments:

λ = 1 x, p, α, β (6.79)
λ = 0 x−, p+ (6.80)
λ = −1 x̄, p̄, ᾱ, β̄ (6.81)

Satisfying the Poincaré algebra

The orbital part of the generator j− is, to start with, given by j− = xp− − x−p. Then p− is replaced by the
free Hamiltonian (6.74) and x− is replaced according to (6.77). The very same replacements are made
for ̄j−. Furthermore, j+− is given by j+− = x+p− − x−p+. Then we set x+ = 0 and again x− according to
(6.77). The Poincaré algebra is still satisfied after these substitutions are made, as can be explicitly
checked.

The precise connection between these generators and field theory operators can be
worked out as follows. The basic equal time light-front field commutator is (as shown
in Section 6.3.1)

[ϕ(x), 𝜕+y ϕ̄(y)]x+=y+ = iδ3(x − y) (6.82)

It translates into the corresponding momentum space equal time commutator

[ϕ(p), q+ϕ̄(q)]x+=y+ = δ3(p + q) (6.83)

or

[ϕ(p), ϕ̄(q)]x+=y+ = δ3(p + q)q+
(6.84)

Now, taking the Hamiltonian as a template, we want to generate transformations

δHϕ(p) = hϕ(p) with h = pp̄
p+

(6.85)
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Then try the field theory operator

H = ∫ q+dq+d2qϕ̄(−q)qq̄
q+

ϕ(q) (6.86)

and compute

δHϕ(p) = [ϕ(p),H]

= ∫ q+dq+d2q([ϕ(p), ϕ̄(−q)]x+=y+)qq̄q+ϕ(q)
= −∫ q+dq+d2q([ϕ(p), ϕ̄(q)]x+=y+)qq̄q+ϕ(−q)
= −∫ dq+d2qδ3(p + q)qq̄

q+
ϕ(−q) = pp̄

p+
p+ϕ(p) (6.87)

where in second equality we have performed the change of variables q → −q. For any
one Poincaré generator g, the analogous computation can be performed andwedefine
the field theory generator G corresponding to g,

δGϕ(p) = [ϕ(p),G] with G = ∫ q+dq+d2qϕ̄(−q)gϕ(q) (6.88)

The generalization to Fock fields is given by

G = 1
2
∫ γdγdpdp̄⟨Φ|g|Φ⟩ (6.89)

In particular, for the Hamiltonian, we write

H = 1
2
∫ γdγdpdp̄⟨Φ|h|Φ⟩ (6.90)

In an interacting field theory, the dynamical transformations become nonlinear and
the dynamical generators acquire contributions cubic in fields.

6.3.4 Configuration space vs. momentum space representation

The momentum space form of the Hamiltonian operator of equation (6.86) is consis-
tent with the configuration space form

H = −i∫ d3x𝜕+ϕ̄(x) 𝜕𝜕̄
𝜕+

ϕ(x) (6.91)

as may be shown by Fourier transforming between momentum space and configura-
tion space using the transform pairs of (6.51). Using the equal time commutator (6.82),
it follows that

δHϕ(x) = [ϕ(x),H] =
𝜕𝜕̄
𝜕+

ϕ(x) (6.92)
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For any of the free theory generators, we have

G = −i∫ d3x𝜕+ϕ̄(x)gϕ(x) (6.93)

with the generalization to Fock fields

G = − i
2
∫ d3x𝜕+⟨Φ(x)|g|Φ(x)⟩ (6.94)

The one point to remember here is to use the appropriate representation for the gen-
erators g: Momenta represented by derivatives in configuration space, and vice versa
in momentum space. As we will be using the momentum space representation, this
means working with coordinates represented as in formulas (6.77) and (6.78). Having
this clear, we can nowmove on to discuss the Hermiticity properties of the generators.

6.3.5 Hermiticity properties of light-front Poincaré generators

In Section 3.3.1, we discussed the property of Hermiticity for operators in abstract
quantum mechanics. We now have to apply this to a study of the properties of the
light-front Poincaré generators. It may seem that this is a trivial issue as the covariant
generators Pμ = pμ and Jμν = xμpν − xνpμ, are obviously Hermitian. However, there are
some complications related to light-front peculiarities such as the complexified nota-
tion, setting x+ = 0, taking p− = pp̄/p+ and the nontrivial integration measure p+dp+,
that make Hermiticity well worth a study.

For instance, naive Hermiticity checking of the generators (6.71)–(6.72), along the
lines p†μ = pμ and J†μν = (xμpν − xνpμ)

† = pνxμ − pμxν = xμpν − xνpμ, does not work
by itself. It works for j+ and ̄j+. It works for the orbital part of j as the following short
calculation shows

j† = (i(xp̄ − x̄p))† = −i(px̄ − p̄x) = i(xp̄ − x̄p) (6.95)

where we use the commutators (6.76) in the last equality. However, for j+− this does
not work. The noncommutativity of p+ = γ and x− = −i𝜕/𝜕γ is not compensated by the
noncommutativity x+ and p− since we have set x+ = 0. The remedy is to consider p+j+−

where, as we will see, the factor p+ comes from the integration measure p+dp+d2p.
Then we have

(p+j+−)† = (ip+ 𝜕
𝜕γ

γ)
†

= −iγ
←󳨀𝜕
𝜕γ

p+ = iγ 𝜕
𝜕γ

p+ = p+j+− (6.96)

In the second and third equalities, we have employed the usual pragmatic algorithm
for Hermiticity checking from elementary quantummechanics (see box below).
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Similarly, for the conjugated pair j− and ̄j−, we must consider p+j− and p+ ̄j− as the
following calculation shows

(p+j−)† = (p+(xh + ip 𝜕
𝜕γ
))
†

= hx̄p+ − i
←󳨀𝜕
𝜕γ

p̄p+ = p+x̄h + p+[h, x̄] + i 𝜕
𝜕γ

p̄p+

= p+x̄h − ip̄ + ip+p̄ 𝜕
𝜕γ
+ ip̄ = p+(x̄h + ip̄ 𝜕

𝜕γ
) = p+ ̄j− (6.97)

Here, we understand that, while x and p− commutes, x and h = pp̄/γ does not. This
cannot be compensated for by commuting p and 𝜕/𝜕γ. However, the p+ factor restores
Hermiticity in the sense that j− and ̄j− is a conjugated pair. With this understanding,
we now have for the Poincaré generators

(p+g)† = p+g for g = {p+, h, j, j+−} (6.98)

(p+g)† = p+ḡ for g = {p, p̄, j+, ̄j+, j−, ̄j−} (6.99)

Hermiticity checking algorithm in elementary quantum mechanics

In elementary one-dimensional quantum mechanics, we take, perhaps without further thinking, the
operators x and p as Hermitian in the sense x† = x and p† = p. For x, this is indeed trivial, but for p,
represented as p = −id/dx we need to remember that the operator act on a wave function. To be com-
pletely clear how the Hermiticity checking algorithm works, we introduce the operations of complex
conjugation and transposition. Let G denote an operator of some sort, and Φ and Ψ wave functions. If
GΦ = Ψ, then the complex conjugate G∗ of G is defined by

G∗Φ∗ = Ψ∗ (6.100)

The transposition GT of G is defined by

∫Ψ(GTΦ)dx = ∫Φ(GΨ)dx (6.101)

For the momentum operator P = −id/dx in particular, we have

P∗ = id/dx for complex conjugation (6.102)

PT = −i
←󳨀d
dx

for transposition (6.103)

The switch of direction of action for the derivative is a direct consequence of the definition (6.101).
So is the rule (GF )T = F TGT . Consider now the expectation value ⟨G⟩ = ∫Ψ∗GΨdx and compute its
complex conjugate ⟨G⟩∗ and require it to be real

⟨G⟩∗ = (∫Ψ∗GΨdx)
∗

= ∫(GΨ)∗Ψdx ?= ∫Ψ∗GΨdx (6.104)

The first equality is the definition of the expectation value complex conjugated, the second equality
is the norm property, and the last equality is the reality requirement (marked by a ‘?’ since it is what
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needs to be checked). To show reality, we must transfer the action of the operator from (GΨ)∗ to GΨ.
This is done in two steps, first using the definition of the complex conjugate of the operator (6.100),
second using the definition of the transpose of the operator (6.101). Performing these two steps yield

∫(GΨ)∗Ψdx = ∫G∗Ψ∗Ψdx = ∫Ψ∗(G∗)TΨdx (6.105)

The reality requirement then implies (G∗)T = G, whichwe recognize asHermiticityG† = Gwith (G∗)T =
G†. Taking momentum as an example, the calculation runs as follows:

⟨P⟩∗ = (∫Ψ∗(−i d
dx

Ψ))
∗

dx = ∫(−i d
dx

Ψ)
∗

Ψdx = (6.106)

= ∫ i d
dx

Ψ∗Ψdx = ∫Ψ∗(i
←󳨀d
dx

Ψ)dx = ∫Ψ∗(−i d
dx

Ψ)dx (6.107)

where the equalities are effected by, in turn: first definition, norm property, complex conjugation,
transposition, and finally partial integration. Pragmatically, the operations of complex conjugation
and transposition, combined into Hermitian conjugation followed by partial integration, are packaged
into the algorithm

( − i d
dx
)
†

= i
←󳨀d
dx
= −i d

dx
(6.108)

supplied with the additional rule for products of operators (GF )T = F TGT .
As we have seen here, questions about Hermiticity, and unitarity, of operators are ultimately de-

pendent on the Hilbert space of states that they “live in”.

With this groundwork done, we can now check the Hermiticity properties of the field
theory Poincaré operators. We want to show that either G† = G or G† = Ḡ. In order to
do that, we customize the Hermiticity checking algorithm according to

G† = ∫ dq+d2q(q+gϕ(q))†ϕ(q) = ∫ dq+d2ϕ̄(−q)
←󳨀
g∗q+ϕ(q) (6.109)

whereϕ(q)† = ϕ̄(−q) and ϕ̄(−q)† = ϕ(q). By writing
←󳨀
g∗ we denote the effect of comput-

ing g†. This involves complex conjugation, transposition of products operators includ-
ing reversing the direction of action of the γ derivatives. Next, using the commutators
[x, p̄] = [x̄, p] = i and partial integration with respect to γ, we should arrive back at
G or Ḡ as appropriate. That this is indeed the case, follows from the discussion above
leading up to equations (6.98) and (6.99). Note that it works just as well representing
x and x̄ as derivatives according to (6.78).

6.4 Chapter 6 epilogue

A book must stop somewhere, and let us stop with a little appetizer. The following
observation has never, to the best of my knowledge, been exploited in attempts to
construct higher order interactions for massless higher spin fields on the light-front.
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The commutators between j+− and the rest of the Poincaré generators offer a way
to split the algebra into three subalgebras. Any operator A that satisfies

[j+−,A] = igA (6.110)

is said to have goodness g. Then referring back to the list of commutators in Sec-
tion 6.3.3, we can read of the following goodness classification18 of the Poincaré gen-
erators:

𝒢+ = {γ, j
+, ̄j+} with g = +1 (6.111)

𝒢0 = {p, p̄, j, j
+−} with g = 0 (6.112)

𝒢− = {h, j
−, ̄j−} with g = −1 (6.113)

These are three subalgebras (although not invariant) of the Poincaré algebra, and 𝒢+
and 𝒢− are Abelian, while 𝒢0 is non-Abelian. We also recognize the set of kinematical
generators as𝒦 = 𝒢+∪𝒢0. Again looking back at the commutators of Section 6.3.3, it is
clear that the algebra of kinematical generators is a semidirect product of the algebra
of goodness 0 generators with those of goodness +1, that is,

𝒦 = 𝒢+ ⋊ 𝒢0 (6.114)

Indeed, since [𝒢0,𝒢+] ⊂ 𝒢+, we see that 𝒢+ is an invariant subalgebra of 𝒦 (but not of
the full Poincaré algebra).19 By symmetry, the semidirect product 𝒢− ⋊ 𝒢0 also forms a
7-parameter subalgebra.

What is perhaps more intriguing is the fact that the goodness split is actually also
a triangular decomposition of the light-front Poincaré algebra. Therefore, we have

[𝒢0,𝒢±] ⊆ 𝒢± [𝒢+,𝒢−] ⊆ 𝒢0 (6.115)

One cannot escape thinking of this is terms of raising and lowering operators.
The question is: can this be exploited in some way for nonlinear representations of
the light-front Poincaré algebra? Especially since the algebra is noncompact and the
unitary representations are infinite-dimensional. It turns out, actually, that there is a
nonunitary “finite-dimensional” purely cubic theory on the light-front. It is in princi-
ple the theory found in 1983 and 1987, elaborated byMetsaev in [208, 209] and clarified
by D. Ponomarev and E. Skvortsov in [210].

18 The terminology of “goodness” derives from the infinite momentum approach to quantum field
theory. The three cases have been referred to as “good”, “bad” and “terrible” respectively.
19 Compare how the translations form an invariant Abelian subalgebra of the full Poincaré algebra,
leading to the semidirect product structure of translations with Lorentz transformations.



A Epilogue
It is time to finish this manuscript. I have to apologize to the reader for having written
so many pages and still only treated the free field theory in Minkowski space-time,
and having to ask for patience until the second volume on the interacting theory will
hopefully arrive in a couple of years. However, upon looking back at the text, I do
think that I have managed to stay true to the vision outlined in the preface and in the
introductory chapter: the “rethinking” vision, for short.

Furthermore, the text is not all about free field theory, there are actually quite a lot
on the interacting theories of spin 1 and spin 2. What we know and understand about
these theories – certainly much more than I have managed to capture – together with
the free field theory of higher spin, provide the bases from which all attempts toward
interactimg higher spin theories have sprung. This is so for the Vasiliev theory, the
light-front approach and the various covariant Minkowski approaches that has been
studied.

The plan for the second volume of the present work is to review these main differ-
ent approaches to interacting higher spin gauge theory. I will refrain fromhere passing
any judgment on their relativemerits and shortcomings. It is still early times. However,
I would like to end with the following thought.

Comparing spin 1 Yang–Mills theory and spin 2 gravitational theory, they share
properties, but theydiffer in certain respects. They canbeunderstood “geometrically”,
provided one has a general enough concept of geometry. They can be understood
“gauge theoretically”, providedonhas a general enough concept of gauge theory. They
can be understood “deformation theoretically”, provided one has a general enough
concept of deformation theory. With general enough concepts, all three aspects seem
to merge.

It seems tome that onemust ask, if these conceptual schemes are enough to really
understand the nature of higher spin theory? Or if they must be transcended in one
way or another? I, for one, do not know.

https://doi.org/10.1515/9783110451771-007
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number system 176
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open algebra 116
operator
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ortochronous Lorentz transformation 140
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passive transformation 136, 215
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permutation 190
phase space 118
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Poincaré lemma 188
Poincaré transformation 135
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Poisson bracket 6, 119, 131
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Riemann tensor 238
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– infinitesimal 146
–one-particle state 149
–Wigner 145

scalar product 177
Schrödinger 12
Schrödinger equation 14, 127
Schrödinger picture 131
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second quantization 15, 54
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self-adjoint operator see Hermitian operator
semisimple algebra 202
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Siegel 90
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–Riemann–Cartan 244
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special linear algebra 205
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141
special relativity 5, 134
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stability group 192
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Standard Model 5, 59, 226
standard momentum 143
state
– classical system 131
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string field 91
string field theory 284
structure constants 201
structure group 209, 230
subalgebra 179
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– Fierz–Pauli theory 25, 26
– Fronsdal 64
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symmetric group 190
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symmetry of the action 220
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tensor 137
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tensor field, symmetric 266
tensor of nonmetricity 243
tensor product 181
tetrad 234
time-like orbit 143
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torsion tensor 214, 241
total covariant derivative 245
total Hamiltonian 123
total space (diff. geom.) 208
total variation 215
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– tensor 63, 305
tracelessness constraint 286
trajectory 2, 111
transformation 215
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–passive 136, 215
transformation theory 15
transition element 130
transition function 195
transitive (group action) 191
translation
–generator 138
transposition
–operator 330
transverse-traceless gauge see TT-gauge
triangular decomposition (Lie algebra) 206
– light-front 332
triple (diff. geom.) 208
triplet equations 288
triplet formulation 99, 279
TT-gauge 270
two-sided ideal 179

Uhlenbeck 10, 13
unconstrained higher spin
–BRST 289
– compensator 293
–nonminimal 280

– triplet 292
undor 62
undotted index 8, 170
unfolding 108
unital algebra 179
unitary operator 130
universal covering algebra 201

vacuum orbit 143
van Dam 105
variation 215
– local 215
– total 215
variational derivative 113, 217
Vasiliev VIII
Vasiliev fields 300
–extended 303
– two-component 306
Vasiliev theory VII, 107, 108, 249, 265, 299
vector 177
– contravariant 180
– covariant 180
vector fields
– contravariant 211
– covariant 211
vector space 176, 177
–dual 177
–graded 181
velocity 2
vierbein 234
vierbein postulate 245
–first 246
– second 248
Virasoro algebra 91
– zero tension limit 293
Virasoro constraint 285
Virasoro generator 91, 293
von Neumann 15

wave equation 10, 11, 13, 29
–Bhabha theory 55
–Dirac arbitrary spin 21
– Lorentz invariance 56
–Umezawa theory 59
wave function 13, 36, 54, 147
weak equality 120
wedge product 184
Weitzenböck space-time 245
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