


THE COSMIC MICROWAVE BACKGROUND

The cosmic microwave background (CMB), the radiation left over from the Big
Bang, is arguably the most important topic in modern cosmology. Its theory
and observation have revolutionized cosmology from an order-of-magnitude
science to a precision science. This graduate textbook describes CMB physics
from first principles in a detailed yet pedagogical way, assuming only that the
reader has a working knowledge of general relativity. Among the changes in
this second edition are new chapters on non-Gaussianities in the CMB and on
large-scale structure, and extended discussions on lensing and baryon acoustic
oscillations, topics that have developed significantly in the past decade. Dis-
cussions of CMB experiments have been updated from Wilkinson Microwave
Anisotropy Probe (WMAP) data to the new Planck data. The CMB success story
in estimating cosmological parameters is then treated in detail, conveying the
beauty of the interplay of theoretical understanding and precise experimental
measurements.
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Preface

Cosmology, the quest concerning the Universe as a whole, has been a primary
interest of study since the beginnings of mankind. For a long time our ideas about
the Universe were dominated by religious beliefs – tales of creation. Only since
the advent of general relativity in 1915 have we had a scientific theory at hand that
might be capable of describing the Universe. Soon after Einstein’s first attempt
of assuming a static universe, Edwin Hubble and collaborators discovered that
the observable Universe is expanding [Hubble, 1929; see, however, Nussbaumer
& Bieri (2009) recounting the discovery of the expansion of the Universe]. This,
together with the discovery of the cosmic microwave background (CMB) by
Penzias and Wilson (Nobel Prize 1978), has established the theory of an expanding
and cooling universe that started in a “big bang.”

For a long time observations that have led to the determination of cosmological
parameters, such as the rate of expansion, the so-called Hubble parameter, and the
mean matter density of the Universe or its curvature, have been very sparse and we
could only determine the order of magnitude of these parameters.

Roughly since the beginning of this century, this situation has changed drasti-
cally and cosmology has entered an era of precision measurements. This major
breakthrough is to a large extent due to precise measurement and analysis of the
CMB. In this book I develop the theory that is used to analyze and understand
measurements of the CMB, especially of its anisotropies and polarization, but also
its frequency spectrum. The 2006 Nobel Prize in Physics was awarded to George
Smoot and John Mather, for the discovery of these anisotropies and for precise
measurements of the CMB spectrum.

The book is directed mainly toward graduate students and researchers who want
to obtain an overview of the main developments in CMB physics, and who want
to understand the state-of-the-art techniques that are used to analyze CMB data.
I believe that the theory of CMB physics is sufficiently mature for a book on this
topic to be useful. I shall not enter into any details concerning CMB experiments.

xi



xii Preface

This is by no means because I consider them less interesting, but rather that they
are still in development and will hopefully make significant progress, especially
in polarization measurements, in the near future. Of course, my background is
also that of a theoretical physicist and my main interest lies in the theoretical
aspects of CMB physics. I hope, however, that this book will also be useful to
CMB experimentalists, or more precisely analysts, who want to know what happens
inside their cosmic parameter estimation routines.

It is assumed that the reader is familiar with undergraduate physics including
the basics of general relativity, and has an elementary knowledge of quantum field
theory and particle physics. The beauty of cosmology lies in the fact that it employs
more or less all fields of physics starting with general relativity over thermody-
namics and statistical physics to electrodynamics, quantum mechanics, and particle
physics. In this book I do not want to present an introduction to these topics as well,
since, first of all, there exist wonderful textbooks on all of them, and second, you
have learned them in your undergraduate physics courses.

Before we start, let me sketch the content of the different chapters and provide a
guide on how to read this book.

The first chapter is an overview of the homogeneous and isotropic universe. We
present and discuss the Friedmann equations, recombination, nucleosynthesis, and
inflation. Readers familiar with cosmology may skip this chapter or just skim it to
familiarize themselves with the notation used.

In Chapter 2 we develop cosmological perturbation theory. This is the basics of
CMB physics. The main reason why the CMB allows such an accurate determina-
tion of cosmological parameters lies in the fact that its anisotropies are small and
can be determined mainly within first-order perturbation theory. In Fourier space
the linear perturbation equations become a series of ordinary linear differential
equations, which can be solved numerically to high precision without any difficulty.
We derive the perturbations of Einstein’s equations and the energy–momentum
conservation equations and solve them for some simple but relevant cases. We
also discuss the perturbation equation for light-like geodesics. This is sufficient
to calculate the CMB anisotropies in the so-called instant recombination approx-
imation. The main physical effects that are missed in such a treatment are Silk
damping on small scales and polarization. We then introduce the matter and CMB
power spectrum and draw our first conclusions for its dependence on cosmological
and primordial parameters. For example, we derive an approximate formula for the
position of the acoustic peaks. Section 2.7 discusses fluctuations not laid down at
some initial time but continuously sourced by some inhomogeneous component, a
so-called source. This section lies somewhat outside the main scope of this book
and can be skipped in a first reading. An experimentalist mainly interested in
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parameter estimation may jump, after Chapter 2, directly to Chapter 9 and skip
the more theoretical parts between.

The third chapter is devoted to the initial conditions. Here we explain how the
unavoidable quantum fluctuations are amplified during an inflationary phase and
lead to a nearly scale-invariant spectrum of scalar and tensor perturbations. We also
calculate the small non-Gaussianities generated during single-field inflation and
discuss the initial conditions for mixed adiabatic and isocurvature perturbations.

In Chapter 4 we derive the perturbed Boltzmann equation for CMB photons.
After a brief introduction to relativistic kinetic theory, we first derive the Liouville
equation, that is, the Boltzmann equation without collision term. We also discuss
the connection between the distribution function and the energy–momentum tensor.
We then derive the collision term, that is, the right-hand side of the Boltzmann
equation, due to Thomson scattering of photons and electrons. In this first attempt
we neglect the polarization dependence of Thomson scattering. This treatment,
however, includes the finite thickness of the last scattering surface and Silk damp-
ing. The chapter ends with a list of the full system of perturbation equations for a
�CDM universe, including massless neutrinos.

In Chapter 5 we discuss polarization. Here we derive the total angular momen-
tum method that is perfectly adapted to the problem of CMB anisotropies and
polarization, taking into account its symmetry, which allows a decomposition into
modes with fixed total angular momentum. The representation theory of the rotation
group and the spin weighted spherical harmonics that are extensively used in this
chapter are deferred to an appendix. We interpret some results using the flat sky
approximation, which is valid on small angular scales. This is the most technical
chapter of this book and may be glanced over by readers not interested in the gory
details.

In Chapter 6 we present an introduction to the vast subject of non-Gaussian
perturbations. We mainly concentrate on the bispectrum and the trispectrum. We
define some standard shapes of the bispectrum in Fourier space and translate them
to angular space. For a description of an arbitrary N -point function in the sky
we introduce a basis of rotation-invariant functions on the sphere in Appendix 4,
Section A4.2.5. This chapter has been added in the second edition.

In Chapter 7 we introduce weak lensing due to foreground structures with the
aim of treating lensing of CMB anisotropies and polarization. This second-order
effect is especially important on small scales but has to be taken into account for
� >∼ 400 if we want to achieve an accuracy of better than 1%. We first derive the
deflection angle and the lensing power spectrum. Then we discuss lensing of CMB
fluctuations and polarization in the flat sky approximation, which is sufficiently
accurate for angular harmonics with � >∼ 50 where lensing is relevant.
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In Chapter 8 we present the analysis of the large scale matter distribution within
linear perturbation theory in a fully relativistic way. We take into account that only
directions and redshifts are observable while lengths scales are always inferred
from a cosmological model. We first introduce the traditional density and redshift
space distortion contribution to the observed fluctuations and then proceed to dis-
cuss the smaller lensing and large-scale relativistic terms. We express the clustering
properties of matter in terms of directly observable quantities and study their scale
and redshift dependence. We also discuss “intensity mapping,” a new observational
technique that will hopefully bear fruit in the near future. This chapter has been
newly added in the second edition.

Chapter 9 is devoted to parameter estimation. We first discuss the physical
dependence of CMB anisotropies on cosmological parameters. After a section on
CMB data we then treat in some detail statistical methods for CMB data analysis.
We discuss especially the Fisher matrix and explain Markov chain Monte Carlo
methods. We also address degeneracies, combinations of cosmological parameters
on which CMB anisotropies and polarization depend only weakly. Because of
these degeneracies, cosmological parameter estimation also makes use of other,
non-CMB related, observations, especially observations related to the large-scale
matter distribution. We summarize them and other cosmological observations in
two separate sections.

In the final chapter, spectral distortions of the CMB are discussed. We first
introduce the three relevant collision processes in a universe with photons and
nonrelativistic electrons: Compton scattering, Bremsstrahlung, and double Comp-
ton scattering. We derive the corresponding collision terms and Boltzmann equa-
tions. For Compton scattering this leads us to the Kompaneets equation, for which
we present a detailed derivation. We introduce timescales corresponding to these
three collision processes and determine at which redshift a given process freezes
out, that is, becomes slower than cosmic expansion. We also discuss the generation
of a chemical potential in the CMB spectrum by a hypothetical particle decay
and by Silk damping of small-scale fluctuations. Finally, we study the Sunyaev–
Zel’dovich effect of CMB photons that pass through hot cluster gas.

All chapters are complemented with some exercises at the end.
In the appendices we collect useful constants and formulas, information on spe-

cial functions, and some more technical derivations. The solutions to a selection of
exercises can be found in Appendix 11 available online.

This book has grown out of a graduate course on CMB anisotropies that I have
given on several occasions. Thanks are due to the students of these courses, who
have motivated me to write it up in the form of a textbook. I am also indebted to
many collaborators and colleagues with whom I have discussed various aspects
of the book and who have helped me to clarify many issues. I especially want
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to mention Camille Bonvin, Chiara Caprini, Martin Kunz, Toni Riotto, Uros
Seljak, Norbert Straumann, and Filippo Vernizzi. I am also immensely grateful to
students and colleagues who have read parts of the draft and helped me correct
numerous typographical errors and other mistakes: Giulia Cusin, Jean-Pierre
Eckmann, Jérémie Francfort, Alice Gasparini, Basundhara Ghosh, Goran Jelic-
Cizmek, Francesca Lepori, Ermis Mitsou, Sandro Scodeller, Vittorio Tansella,
Szabolcs Zakany, and others. Of course any remaining mistakes are entirely my
responsibility. Basundhara Ghosh, Francesca Lepori, Vittorio Tansella, Marcus
Ruser, and Martin Kunz have also helped me with some of the figures. Finally,
I wish to thank Susan Staggs, who provided me with a most useful dataset of the
CMB frequency spectrum (which unfortunately had no need to be updated for the
second edition of the book).





1

The Homogeneous and Isotropic Universe

Notation

In this book we denote the derivative with respect to physical time by a prime and
the derivative with respect to conformal time by a dot,

τ = physical (cosmic) time
dX

dτ
≡ X′, (1.1)

t = conformal time
dX

dt
≡ Ẋ. (1.2)

Spatial 3-vectors are denoted by a boldface symbol such as k or x whereas four-
dimensional spacetime vectors are denoted as x = (xμ).

We use the metric signature (−, + , + ,+) throughout the book.
The Fourier transform is defined by

f (k) =
∫
d3x f (x) eik·x, (1.3)

so that

f (x) = 1

(2π)3

∫
d3k f (k) e−ik·x. (1.4)

We use the same letter for f (x) and for its Fourier transform f (k). The spectrum
Pf (k) of a statistically homogeneous and isotropic random variable f is given by

〈f (k)f ∗(k′)〉 = (2π)3 δ(k− k′)Pf (k). (1.5)

Since it is isotropic, Pf (k) is a function only of the modulus k = |k|.
Throughout this book we use units where the speed of light, c; Planck’s

constant, h̄; and Boltzmann’s constant, kB , are unity: c = h̄ = kB = 1. Length and
time therefore have the same units and energy, mass, and momentum also have the
same units, which are inverse to the unit of length. Temperature has the same units

1



2 The Homogeneous and Isotropic Universe

as energy. We may use cm−1 to measure energy, mass, and temperature, or eV−1 to
measure distances or times. We shall use whatever unit is convenient to discuss a
given problem. Conversion factors can be found in Appendix 1.

1.1 Homogeneity and Isotropy

Modern cosmology is based on the hypothesis that our Universe is to a good
approximation homogeneous and isotropic on sufficiently large scales. This
relatively bold assumption is often called the “cosmological principle.” It is an
extension of the Copernican principle stating that not only should our place in the
Solar System not be a special one, but also that the position of the Milky Way in the
Universe should be in no way statistically distinguishable from the position of other
galaxies. Furthermore, no direction should be distinguished. The Universe looks
statistically the same in all directions. This, together with the hypothesis that the
matter density and geometry of the Universe are smooth functions of the position,
implies homogeneity and isotropy on sufficiently large scales. Isotropy around
each point together with analyticity actually already implies homogeneity of
the Universe.1 A formal proof of this quite intuitive result can be found in
Straumann (1974).

But which scale is “sufficiently large”? Certainly not the Solar System or
our Galaxy. But also not the size of galaxy clusters. [In cosmology, distances
are usually measured in Mpc (Megaparsec). 1 Mpc = 3.2615 × 106 light years
= 3.0856 × 1024 cm is a typical distance between galaxies; the distance between
our neighbor Andromeda and the Milky Way is about 0.7 Mpc. These and other
connections between frequently used units can be found in Appendix 1.]

It turns out that the scale at which the galaxy distribution becomes homogeneous
is difficult to determine. From the analysis of the Sloan Digital Sky Survey (SDSS)
it has been concluded that the irregularities in the galaxy density are still on the
level of a few percent on scales of 100 Mpc (Hogg et al., 2005). Fortunately,
we know that the geometry of the Universe shows only small deviations from
the homogeneous and isotropic background, already on scales of a few Mpc. The
geometry of the Universe can be tested with the peculiar motion of galaxies, with
lensing, and in particular with the cosmic microwave background (CMB).

The small deviations from homogeneity and isotropy in the CMB are of utmost
importance, since, most probably, they represent the “seeds,” that, via gravitational
instability, have led to the formation of large-scale structure, galaxies, and eventu-
ally solar systems with planets that support life in the Universe.

1 If “analyticity” is not assumed, the matter distribution could also be fractal and still statistically isotropic
around each point. For a detailed elaboration of this idea and its comparison with observations see Sylos
Labini et al. (1998).
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Furthermore, we suppose that the initial fluctuations needed to trigger the process
of gravitational instability stem from tiny quantum fluctuations that have been
amplified during a period of inflationary expansion of the Universe. I consider
this connection of the microscopic quantum world with the largest scales of the
Universe to be of breathtaking philosophical beauty.

In this chapter we investigate the background Universe. We shall first discuss
the geometry of a homogeneous and isotropic spacetime. Then we investigate
two important events in the thermal history of the Universe. Finally, we study the
paradigm of inflation. This chapter lays the basis for the following ones where we
shall investigate fluctuations on the background, most of which can be treated in
first-order perturbation theory.

1.2 The Background Geometry of the Universe

1.2.1 The Friedmann Equations

In this section we assume a basic knowledge of general relativity. The notation and
sign convention for the curvature tensor that we adopt are specified in Appendix 2,
Section A2.1.

Our Universe is described by a four-dimensional spacetime (M,g) given by
a pseudo-Riemannian manifold M with metric g . A homogeneous and isotropic
spacetime is one that admits a slicing into homogeneous and isotropic, that is,
maximally symmetric, 3-spaces. There is a preferred geodesic time coordinate τ ,
called “cosmic time,” such that the 3-spaces of constant time,�τ = {x|(τ,x) ∈M},
are maximally symmetric spaces, hence spaces of constant curvature. The metric g
is therefore of the form

ds2 = gμν dx
μ dxν = −dτ 2 + a2(τ )γij dx

i dxj . (1.6)

The function a(τ) is called the scale factor and γij is the metric of a 3-space of
constant curvatureK . Depending on the sign ofK this space is locally isometric to
a 3-sphere (K > 0); a three-dimensional pseudo-sphere (K< 0); or flat, Euclidean
space (K = 0). In later chapters of this book we shall mainly use “conformal time”
t defined by a dt = dτ , so that

ds2 = gμν dx
μ dxν = a2(t)

(−dt2 + γij dxi dxj ) . (1.7)

The geometry and physics of homogeneous and isotropic solutions to Einstein’s
equations were first investigated mathematically in the early 1920s by Friedmann
(1922, 1924) and physically as a description of the observed expanding Universe
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in 1927 by Lemaı̂tre.2 Later, Robertson (1936), Walker (1936), and others redis-
covered the Friedmann metric and studied several additional aspects. However,
since we consider the contributions by Friedmann and Lemaı̂tre to be far more
fundamental than the subsequent work, we shall call a homogeneous and isotropic
solution to Einstein’s equations a “Friedmann–Lemaı̂tre universe” (FL universe) in
this book.

It is interesting to note that the Friedmann solution breaks Lorentz invariance.
Friedmann universes are not invariant under boosts; there is a preferred cosmic
time τ , the proper time of an observer who sees a spatially homogeneous and
isotropic universe. Like so often in physics, the Lagrangian and therefore also the
field equations of general relativity are invariant under Lorentz transformations, but
a specific solution in general is not. In that sense we are back to Newton’s vision
of an absolute time. But on small scales, for example, the scale of a laboratory, this
violation of Lorentz symmetry is, of course, negligible.

The topology is not determined by the metric and hence by Einstein’s equations.
There are many compact spaces of negative or vanishing curvature (e.g., the torus),
but there are no infinite spaces with positive curvature. A beautiful treatment of the
fascinating, but difficult, subject of the topology of spaces with constant curvature
and their classification is given in Wolf (1974). Its applications to cosmology are
found in Lachieze-Rey and Luminet (1995).

Forms of the metric γ , which we shall often use, are

γij dx
i dxj = δij dx

i dxj

(1+ 1
4Kρ

2)2
, (1.8)

γij dx
i dxj = dr2 + χ2(r)

(
dθ2 + sin2(θ) dϕ2

)
, (1.9)

γij dx
i dxj = dR2

1−KR2
+ R2

(
dθ2 + sin2(θ) dϕ2

)
, (1.10)

where in Eq. (1.8)

ρ2 =
3∑

i,j=1

δij x
ixj, and δij =

{
1 if i = j,
0 else ,

(1.11)

and in Eq. (1.9);

χ(r) =

⎧⎪⎪⎨⎪⎪⎩
r in the Euclidean case, K = 0,

1√
K

sin(
√
Kr) in the spherical case, K > 0,

1√|K| sinh(
√|K|r) in the hyperbolic case, K < 0.

(1.12)

2 In the English translation of (Lemaı̂tre, 1927) from 1931 Lemaı̂tre’s somewhat premature but pioneering
arguments that the observed Universe is actually expanding have been omitted.
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Often one normalizes the scale factor such thatK = ±1 wheneverK 
= 0. One has,
however, to keep in mind that in this case r and K become dimensionless and the
scale factor a has the dimension of length. IfK = 0 we can normalize a arbitrarily.
We shall usually normalize the scale factor such that a0 = 1 and the curvature is
not dimensionless. The coordinate transformations that relate these coordinates are
determined in Exercise 1.1.

Owing to the symmetry of spacetime, the energy–momentum tensor can only be
of the form (

Tμν
) = ( −ρg00 0

0 P gij

)
. (1.13)

There is no additional assumption going into this ansatz, such as the matter content
of the Universe being an ideal fluid. It is a simple consequence of homogeneity and
isotropy and is also verified for scalar field matter, a viscous fluid, or free-streaming
particles in a FL universe. As usual, the energy density ρ and the pressure P are
defined as the time- and space-like eigenvalues of (T μν ).

The Einstein tensor can be calculated from the definition (A2.12) and
Eqs. (A2.32)–(A2.39),

G00 = 3

[(
a′

a

)2

+ K
a2

]
(cosmic time), (1.14)

Gij = −
(

2a′′a + a′2 +K
)
γij (cosmic time), (1.15)

G00 = 3

[(
ȧ

a

)2

+K
]

(conformal time), (1.16)

Gij = −
(

2

(
ȧ

a

)•
+

(
ȧ

a

)2

+K
)
γij (conformal time). (1.17)

The Einstein equations relate the Einstein tensor to the energy–momentum con-
tent of the Universe via Gμν = 8πGTμν − gμν�. Here � is the so-called cosmo-
logical constant. In an FL universe the Einstein equations become(

a′

a

)2

+ K
a2
= 8πG

3
ρ + �

3
(cosmic time), (1.18)

2
a′′

a
+ (a

′)2

a2
+ K
a2
= −8πGP +� (cosmic time), (1.19)(

ȧ

a

)2

+K = 8πG

3
a2ρ + a

2�

3
(conformal time), (1.20)

2

(
ȧ

a

)•
+

(
ȧ

a

)2

+K = −8πGa2P + a2� (conformal time). (1.21)
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Energy “conservation,” T μν;μ = 0, yields

ρ̇ = −3(ρ + P)
(
ȧ

a

)
or, equivalently ρ ′ = −3(ρ + P)

(
a′

a

)
. (1.22)

This equation can also be obtained by differentiating Eq. (1.18) or (1.20) and insert-
ing (1.19) or (1.21); it is a consequence of the contracted Bianchi identities (see
Appendix 2, Section A2.1). Equations (1.18)–(1.21) are the Friedmann equations.
The quantity

H(τ) ≡ a
′

a
= ȧ

a2
≡ Ha−1, (1.23)

is called the Hubble rate or the Hubble parameter, where H is the comoving Hubble
parameter. At present, the Universe is expanding, so that H0 > 0. We parameterize
it by

H0 = 100 h km s−1 Mpc
−1 � 3.241× 10−18 h s−1 � 0.3336× 10−3 h Mpc−1.

Observations show (Freedman et al., 2001) that h � 0.72± 0.1. Equation (1.22) is
easily solved in the case w = P/ρ = constant. Then one finds

ρ = ρ0(a0/a)
3(1+w), (1.24)

where ρ0 and a0 denote the value of the energy density and the scale factor at
present time, τ0. In this book cosmological quantities indexed by a “0” are evaluated
today, X0 = X(τ0). For nonrelativistic matter, Pm = 0, we therefore have ρm ∝
a−3 while for radiation (or any kind of massless particles) Pr = ρr/3 and hence
ρr ∝ a−4. A cosmological constant corresponds to P� = −ρ� and we obtain,
as expected, ρ� = constant. If the curvature K can be neglected and the energy
density is dominated by one component with w = constant, inserting Eq. (1.24)
into the Friedmann equations yields the solutions

a ∝ τ 2/3(1+w) ∝ t2/(1+3w) w = constant 
= −1, (1.25)

a ∝ τ 2/3 ∝ t2 w = 0, (dust), (1.26)

a ∝ τ 1/2 ∝ t w = 1/3, (radiation), (1.27)

a ∝ exp(Hτ) ∝ 1/|t | w = −1, (cosmol. const.). (1.28)

It is interesting to note that if w < −1, so-called phantom matter, we have
to choose τ < 0 to obtain an expanding universe and the scale factor diverges
in finite time, at τ = 0. This is the so-called big rip. Phantom matter has many
problems but it is discussed in connection with the supernova type 1a (SN1a) data,
which are compatible with an equation of state with w < −1 or with an ordinary
cosmological constant (Caldwell et al., 2003). For w < − 1

3 the time coordinate t
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has to be chosen as negative for the Universe to expand and spacetime cannot be
continued beyond t = 0. But t = 0 corresponds to a cosmic time, the proper time of
a static observer, τ = ∞; this is not a singularity. (The geodesics can be continued
until affine parameter∞.)

We also introduce the adiabatic sound speed cs determined by

c2
s =

P ′

ρ ′
= Ṗ
ρ̇

. (1.29)

From this definition and Eq. (1.22) it is easy to see that

ẇ = 3H(1+ w)(w − c2
s

)
. (1.30)

Hence w = constant if and only if w = c2
s or w = −1. Note that already in a

simple mixture of matter and radiation w 
= c2
s 
= constant (see Exercise 1.3).

Equation (1.18) implies that for a critical value of the energy density given by

ρ(τ) = ρc(τ ) = 3H 2

8πG
(1.31)

the curvature and the cosmological constant vanish. The value ρc is called the
critical density. The ratio�X = ρX/ρc is the “density parameter” of the component
X. It indicates the fraction that the component X contributes to the expansion of
the Universe. We shall make use especially of

�r ≡ �r(τ0) = ρr(τ0)

ρc(τ0)
, (1.32)

�m ≡ �m(τ0) = ρm(τ0)

ρc(τ0)
, (1.33)

�K ≡ �K(τ0) = −K
a2

0H
2
0

, (1.34)

�� ≡ ��(τ0) = �

3H 2
0

. (1.35)

1.2.2 The “Big Bang” and “Big Crunch” Singularities

We can absorb the cosmological constant into the energy density and pressure by
redefining

ρeff = ρ + �

8πG
, Peff = P − �

8πG
.
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Since� is a constant and ρeff+Peff = ρ+P , the conservation equation (1.22) still
holds. A first interesting consequence of the Friedmann equations is obtained when
subtracting Eq. (1.18) from (1.19). This yields

a′′

a
= −4πG

3
(ρeff + 3Peff). (1.36)

Hence if ρeff + 3Peff > 0, the Universe is decelerating. Furthermore, Eqs. (1.22)
and (1.36) then imply that in an expanding and decelerating universe

ρ ′eff

ρeff
< −2

a′

a
,

so that ρ decays faster than 1/a2. If the curvature is positive, K > 0, this implies
that at some time in the future, τmax, the density has dropped down to the value of
the curvature term,K/a2(τmax) = 8πGρeff(τmax). Then the Universe stops expand-
ing and recollapses. Furthermore, this is independent of curvature; as a′ decreases
the curve a(τ) is concave and thus cuts the a = 0 line at some finite time in the
past. This moment of time is called the “big bang.” The spatial metric vanishes
at this value of τ , which we usually choose to be τ = 0; and spacetime cannot
be continued to earlier times. This is not a coordinate singularity. From the Ricci
tensor given in Eqs. (A2.32) and (A2.33) one obtains the Riemann scalar

R = 6

[
a′′

a
+

(
a′

a

)2

+ K
a2

]
,

which also diverges if a → 0. Also the energy density, which grows faster than
1/a2 as a→ 0, diverges at the big bang.

If the curvature K is positive, the Universe contracts after τ = τmax and, since
the graph a(τ) is convex, reaches a = 0 at some finite time τc, the time of the
“big crunch.” The big crunch is also a physical singularity beyond which spacetime
cannot be continued.

It is important to note that this behavior of the scale factor can be implied only
if the so-called strong energy condition holds, ρeff + 3Peff > 0. This is illustrated
in Fig. 1.1.

1.2.3 Cosmological Distance Measures

It is notoriously difficult to measure distances in the Universe. The position of an
object in the sky gives us its angular coordinates, but how far away is the object
from us? This problem had plagued cosmology for centuries. It took until 1915–
1920 when Hubble discovered that the “spiral nebulae” are actually not situated
inside our own galaxy but much further away. This then led to the discovery of the
expansion of the Universe.
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Fig. 1.1 The kinematics of the scale factor in a Friedmann–Lemaı̂tre universe that
satisfies the strong energy condition, ρeff + 3Peff > 0.

For cosmologically distant objects, a third coordinate, which is today relatively
easy to obtain, is the redshift z experienced by the photons emitted from the object.
A given spectral line with intrinsic wavelength λ is redshifted due to the expansion
of the Universe. If it is emitted at some time τ , it reaches us today with wavelength
λ0 = λa0/a(τ) = (1+ z)λ. This leads to the definition of the cosmic redshift

z(τ )+ 1 = a0

a(τ)
. (1.37)

On the other hand, an object at physical distance d = a0r away from us, at redshift
z� 1, recedes with speed v = H0d. To the lowest order in z, we have τ0 − τ ≈ d
and a0 ≈ a(τ)+ a′(τ0 − τ), so that

1+ z ≈ 1+ a
′

a
(τ0 − τ) ≈ 1+H0d.

For objects that are sufficiently close, z � 1. We therefore have v ≈ z and hence
H0 = z/d . This is the method usually applied to measure the Hubble constant.

There are different ways to measure distances in cosmology, all of which give
the same result in a Minkowski universe but differ in an expanding universe. They
are, however, simply related, as we shall see.

One possibility is to define the distance dA to a certain object of given physical
size � seen at redshift z1 such that the angle subtended by the object is given by

ϑ = �/dA, dA = �/ϑ . (1.38)

This is the angular diameter distance; see Fig. 1.2.
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Fig. 1.2 The two ends of the object emit a flash simultaneously from A and B at
z1 which reaches us today. The angular diameter distance to A (or B) is defined
by dA = �/ϑ .

We now derive the expression

dA(z) = 1√|�K |H0(1+ z)
χ

(√
|�K |H0

∫ z

0

dz′

H(z′)

)
, (1.39)

for the angular diameter distance to redshift z. In a given cosmological model, this
allows us to express the angular diameter distance for a given redshift as a function
of the cosmological parameters.

To derive Eq. (1.39) we use the coordinates introduced in Eq. (1.9). Without loss
of generality we set r = 0 at our position. We consider an object of physical size
� at redshift z1 simultaneously emitting a flash at both of its ends, A and B. Hence
r = r1 = t0−t1 at the position of the flashes,A andB at redshift z1. If� denotes the
physical arc length betweenA andB we have� = a(t1)χ(r1)ϑ = a(t1)χ(t0−t1)ϑ ,
that is,

ϑ = �

a(t1)χ(t0 − t1) . (1.40)

According to Eq. (1.38) the angular diameter distance to t1 or z1 is therefore
given by

a(t1)χ(t0 − t1) ≡ dA(z1). (1.41)

To obtain an expression for dA(z) in terms of the cosmic density parameters and
the redshift, we have to calculate (t0 − t1)(z1).

Note that in the case K = 0 we can normalize the scale factor a as we want, and
it is convenient to choose a0 = 1, so that comoving scales become physical scales
today. However, for K 
= 0, we have already normalized a such that K = ±1 and
χ(r) = sin r or sinh r . In this case, we have no normalization constant left and a0

has the dimension of a length. The present spatial curvature of the Universe then is
±1/a2

0 .
The Friedmann equation Eq. (1.20) reads

ȧ2 = 8πG

3
a4ρ + 1

3
�a4 −Ka2, (1.42)
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where ȧ = da/dt . To be specific, we assume that ρ is a combination of dust, cold,
nonrelativistic “matter” of Pm = 0 and radiation of Pr = ρr/3.

Since ρr ∝ a−4 and ρm ∝ a−3, we can express the terms on the right-hand side
of Eq. (1.42) as

8πG

3
a4ρ = H 2

0

(
a4

0�r +�maa3
0

)
, (1.43)

1

3
�a4 = H 2

0��a
4, (1.44)

−Ka2 = H 2
0�Ka

2a2
0 . (1.45)

The Friedmann equation then implies

da

dt
= H0a

2
0

(
�r + a

a0
�m + a

4

a4
0

�� + a
2

a2
0

�K

)1/2

, (1.46)

so that

r(z1) = t0 − t1

= 1

H0a0

∫ z1

0

dz[
�r(z+ 1)4 +�m(z+ 1)3 +�� +�K(z+ 1)2

]1/2

= 1

a0

∫ z1

0

dz

H(z)
. (1.47)

Here we have used z+ 1 = a0/a so that da = −dza0/(1+ z)2.
In principle, we could of course also add other matter components such as, for

example, “quintessence” (Caldwell and Steinhardt, 1998), which would lead to a
somewhat different form of the integral (1.47), but for definiteness, we remain with
matter, radiation, and a cosmological constant.

From −K/H 2
0 a

2
0 = �K we obtain H0a0 = 1/

√|�K | for �K 
= 0. The expres-
sion for the angular diameter distance thus becomes

dA(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1√|�K |H0(z+1)
χ

(√|�K | ∫ z0 dz′

[�r(z′+1)4+�m(z′+1)3+��+�K(z′+1)2]1/2

)
if K 
= 0

1
H0(z+1)

∫ z
0

dz′

[�r(z′+1)4+�m(z′+1)3+��]1/2

if K = 0.
(1.48)

Using the Friedmann equation, this formula can also be written in the more general
form of Eq. (1.39).
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Fig. 1.3 The function χ(t0− t1) as a function of the redshift z for different values
of the cosmological parameters �K (left, with �� = 0) and �� (right, with
�K = 0), namely −0.8 (dotted), −0.3 (short-dashed), 0 (solid), 0.3 (dot-dashed),
0.8 (long-dashed).

Fig. 1.4 ϑH (z1) (in degrees) for different values of the cosmological parameters
�K and ��. The line styles are as in Fig. 1.3.

In general, the integral in Eq. (1.48) has to be solved numerically. It determines
the angle ϑ(�,z) = �/dA(z) under which an object of size � placed at redshift z
is seen (see Figs. 1.3 and 1.4).

If we are able to measure the redshifts and the angular extensions of a certain
class of objects at different redshifts, of which we know the intrinsic size �, com-
paring with Eq. (1.48) allows us, in principle, to determine the parameters�m,��,
�K , and H0.
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Observationally we know for certain that 10−5 < �r ≤ 10−4 as well as 0.1 ≤
�m<∼ 1, |��|<∼ 1, and |�K |<∼ 1.

If we are interested in small redshifts, z1<∼ 10, we may therefore safely neglect
�r . In this region, Eq. (1.48) is very sensitive to�� and provides an excellent mean
to constrain the cosmological constant.

At high redshift, z1>∼ 1000, neglecting radiation is no longer a good
approximation.

We shall later also need the opening angle of the horizon distance,

ϑH(z1) = t1

χ(t0 − t1), (1.49)

t1 = 1

H0a0

∫ ∞

z1

dz[
�r(z+ 1)4 +�m(z+ 1)3 +�� +�K(z+ 1)2

]1/2 .

(1.50)

(Clearly this integral diverges if�r = �m = 0. This is exactly what happens during
an inflationary period and leads there to the solution of the horizon problem; see
Section 1.5.)

Neglecting �r , for �� = 0 and small curvature, 0 < |�K | < �mz1 at high
enough redshift, z1 ≥ 10, one has t0 − t1 � 2

√|�K |/�m = 2/(H0a0
√
�m).

With χ(x) � x, which is valid for small curvature, this yields ϑ(�,z1) �√
�mH0a0�/(2a1) = 1

2

√
�mH0�/(z1 + 1) (see also Exercise 1.10).

Another important distance measure in cosmology is the luminosity distance. It
is defined as follows. Let L be the luminosity (energy emitted per second) of a
source at redshift z1 and F its flux (energy received per second per square cen-
timeter) arriving at the observer position. We define the luminosity distance to the
source by

dL(z1) ≡
(
L

4πF

)1/2

. (1.51)

We now want to show that dL(z1) = (1+ z1)
2dA(z1).

In a proper time interval of the emitter, dτ1 = a(t1) dt , the source emits the
energy La(t1) dt . This energy is redshifted by a factor of (1+ z1)

−1 = a(t1)/a(t0).
It is then distributed over a sphere with radius a(t0)χ(t0 − t1). So that the flux per
proper time of the observer dτ0 = a(t0) dt becomes

F = La2(t1)

4πa4(t0)χ2(t0 − t1),
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leading to

dL(z1) = a(t0)
2

a(t1)
χ(t0 − t1) = (1+ z1)

2dA(z1). (1.52)

The luminosity distance hence contains two additional factors (1+ z) compared to
the angular diameter distance. One of them is due to the “redshift” of proper time
and the other is due to the redshift of photon energy.

1.3 Recombination and Decoupling

We assume that, at sufficiently early times, reaction rates for particle interactions
are much faster than the expansion rate, so that the cosmic fluid is in thermal
equilibrium. During its expansion, the Universe then cools adiabatically. At early
times, it is dominated by a relativistic radiation background with

ρ = C/a4 = geff

2
aSBT

4. (1.53)

This behavior implies that T ∝ a−1. Here geff is the effective number of degrees
of freedom, which we define below and aSB is the Stefan–Boltzmann constant,
aSB = π2/15 in our units. For massless (or extremely relativistic) fermions and
bosons in thermal equilibrium at temperature T with Nb respectively Nf spin
degrees of freedom we have (remember that we use units such that h̄ = kB =
c = 1)

ρb = Nb4π
(2π)3

∫ ∞

0

p3 dp

exp(p/T )− 1
= NbT

4

2π2

∫ ∞

0

x3 dx

exp(x)− 1

= NbT
4

2π2
�(4)ζ(4) = NbT

4π2

30
, (1.54)

ρf = Nf 4π

(2π)3

∫ ∞

0

p3 dp

exp(p/T )+ 1
= NfT

4

2π2

∫ ∞

0

x3 dx

exp(x)+ 1

= NfT
4

2π2
�(4)ζ(4)

7

8
= 7

8

NfT
4π2

30
, (1.55)

where � denotes the Gamma-function and ζ is the Riemann zeta-function and we
make use of the integrals (Gradshteyn and Ryzhik, 2000)

Ib(α) =
∫ ∞

0

xα dx

exp(x)− 1
= �(α + 1)ζ(α + 1), (1.56)

If (α) =
∫ ∞

0

xα dx

exp(x)+ 1
=

[
1−

(
1

2

)α]
�(α + 1)ζ(α + 1). (1.57)
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Furthermore, ζ(2) = π2/6, ζ(4) = π4/90, and �(n) = (n − 1)! for n∈N; see
Abramowitz and Stegun (1970).

Hence ρ = ρb + ρf = geff
2 aSBT

4 for aSB = π2k4
B/(15 h̄3c2) = π2/15 and

geff = Nb+7/8Nf , if all the particles are at the same temperature T . If the temper-
atures are different, such as, for example, the neutrino temperature after electron–
positron annihilation, this has to be taken into account with a factor (Tν/Tγ )4

multiplying Nν in geff.
At temperatures below the electron mass, at T <me � 0.511 MeV, only neutri-

nos and photons are still relativistic. Very recently, T <∼ 0.06 eV at least some of
the neutrinos also become nonrelativistic so that the density parameter of relativistic
particles today is probably given only by the photon density,3

�rel = �γ = 8πG

3H 2
0

aSBT
4

0 = 2.49× 10−5h−2. (1.58)

Here we have set T0 = 2.725 K. The present CMB temperature is the most precisely
measured number in cosmology. Its value is (Fixsen, 2009)

T0 = 2.72548± 0.00057K. (1.59)

The pressure of relativistic particles is given by P = T ii /3 = ρ/3. The thermo-
dynamic relation dE = T dS − P dV therefore gives for the entropy density
s = dS/dV

s = dS

dV
= 1

T

(
dE

dV
+ P

)
= ρ + P

T
= 4ρ

3T
. (1.60)

Using the expression for the energy density (1.54) and (1.55) this gives for each
particle species X

sX =
⎧⎨⎩

2π2

45 NXT
3 for bosons,

7π2

180NXT
3 for fermions.

(1.61)

The particle density for relativistic particles is given by

nX = NX

2π2

∫
p2

exp(p/T )± 1
dp =

{
T 3NX

π2 ζ(3) for bosons,

T 3NX
π2 ζ(3)

3
4 for fermions.

(1.62)

3 At present only neutrino mass differences are known from oscillation experiments. The lowest neutrino mass
could still be zero, or at least lower than T0. From oscillation experiments, however, we know that the heaviest
neutrino mass is at least 0.05eV (see Olive et al., 2014).
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The particle and entropy densities both scale like T 3. Using ζ(3) � 1.202 057 we
obtain

sX �
{

3.6 · nX for bosons,
4.2 · nX for fermions.

(1.63)

The photons obey a Planck distribution (ε = ap = the photon energy),

f (ε) = 1

eε/T − 1
. (1.64)

At a temperature of about T ∼ 4000 K∼ 0.4 eV, the number density of photons
with energies above the hydrogen ionization energy (=�= 1 Ry= 13.6 eV) drops
below the baryon density of the Universe, and the protons begin to (re)combine to
neutral hydrogen. Even though electrons and protons were not combined to neutral
hydrogen before, this process is called “recombination” rather than “combination.”

Helium has already recombined earlier. The binding energy of the first electron
to the He nucleus is 4� = 54.4eV. Using the Saha equation derived in the next
section for the transition He+2 → He+, one finds that the recombination of the
first electron transition takes place at T2→1 � 1.4 × 104K. The binding energy of
the second electron to the He nucleus is 24.6 eV and, again using the Saha equation,
one finds that the transition He+ → He takes place at T1→0 � 0.5 × 104K (see
Exercise 1.5).

Before (re)combination photons and baryons are tightly coupled by Thomson
scattering of electrons. During recombination the free electron density drops
sharply and the mean free path of the photons grows larger than the Hubble scale.
At the temperature Tdec ∼ 3000 K (corresponding to the redshift zdec � 1100 and
the physical time τdec � adectdec � 105 yr) photons decouple from the electrons and
the Universe becomes transparent. We now want to study this process in somewhat
more detail.

1.3.1 The Physics of Recombination

From Eq. (1.63) with Nγ = 2 we obtain that the photon entropy is given by

sγ = 4π2

45
T 3 � 3.6nγ .

The conserved baryon number nB satisfies a3nB = constant; hence nB ∝ a−3 ∝ T 3.
The entropy per baryon is therefore a constant,

σ = sγ /nB =
4π2

45 T
3

0

�Bρc(τ0)/mp
= 1.4× 108 T

3
2.7

�Bh2
. (1.65)
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Here we have used (see Appendix 1)

ρc(τ0) = 1.88h2 × 10−29 g cm−3 = 8.1h2 × 10−11 (eV)4,

mp = 9.38× 108 eV, (proton mass),

T (τ0) = 2.3T2.7 × 10−4 eV, T2.7 = T (τ0)/2.7 K.

As we shall see in the next section, the baryon density is approximately �Bh2 �
2.2 × 10−2 so that σ � 1010. Correspondingly the ratio between the baryon and
photon density is

ηB = nB/nγ = 2.7× 10−8

(
�Bh

2

T 3
2.7

)
� 6× 10−10. (1.66)

As long as hydrogen is ionized, the timescale of interaction between photons
and electrons (Thomson scattering) and between electrons and protons (Rutherford
scattering) is much faster than expansion and we may therefore consider the latter
as adiabatic. At every moment, the electron, proton, and photon plasma is in thermal
equilibrium. As long as the temperature is above the ionization energy of neutral
hydrogen, T > 1 Ry = � = α2me/2 = 13.6 eV, all hydrogen atoms that form are
rapidly dissociated. Most electrons and protons are free and the neutral hydrogen
density is very low. At some sufficiently low temperature, however, there will no
longer be sufficiently many energetic photons around to disrupt neutral hydrogen
and the latter becomes more and more abundant. To determine the temperature at
which this transition, called “recombination,”4 happens, we apply the standard rules
of equilibrium statistical mechanics to the reaction

e− + p←→ H+ γ (13.6 eV). (1.67)

Supposing that pressure and temperature are fixed and only the number of free
electrons,Ne; free protons,Np; hydrogen atoms,NH ; and photons,Nγ , can change,
the second law of thermodynamics implies that the Gibbs potential G is constant,

0 = dG = μp dNp + μe dNe + μH dNH + μγ dNγ,
Here μX denotes the chemical potential of species X. The different dNX are not
independent. Particle number conservation implies

dNp + dNH = dNe + dNH = 0. (1.68)

As there is no conservation of photons, the chemical potential of photons vanishes,
μγ = 0. With this and Eq. (1.68) the Gibbs equation, dG = 0, implies

μe + μp − μH = 0. (1.69)

4 The expression “combination” would be more adequate, since this is the first time that neutral hydrogen forms,
but it is difficult to change historical misnamings. . . .
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In principle, this result is valid only in full thermal equilibrium. But Thomson
scattering between electrons and photons does not change the photon energy and
the Rydberg photons are not readily thermalized. They actually have time to ionize
another hydrogen atom before they lose energy. Therefore, neglecting recombina-
tion into excited states of the hydrogen atom is a bad approximation, but it leads
roughly to the right recombination temperature.

In this discussion, where we are more interested in the basic concepts
than in accuracy, we also neglect helium that has recombined earlier. We set
np + nH = nB , which induces an error of about 25%. For an accurate calculation
of the final ionization fraction, one would have to take into account both the
recombination of helium and the recombination into excited states of hydrogen.
We briefly discuss this in Section 1.3.3. Despite these complications, a discussion
of recombination into the ground state gives the correct orders of magnitude for the
recombination and decoupling redshifts which we now derive.

In thermal equilibrium, electrons, protons and hydrogen atoms obey a Maxwell–
Boltzmann distribution. Their number densities are given by (see Exercise 1.7)

ne = 2

(2π)3
(2πmeT )

3/2 exp

(
− me − μe

T

)
, (1.70)

np = 2

(2π)3
(2πmpT )

3/2 exp

(
− mp − μp

T

)
, (1.71)

nH = 4

(2π)3
(2πmHT )

3/2 exp

(
− mH − μH

T

)
. (1.72)

We now make use of the fact that the Universe is globally neutral, ne = np.
Furthermore, the binding energy of hydrogen � = α2me/2 (here α � 1/137 is the
fine structure constant) is given by � = me +mp −mH . With this we obtain

n2
e

nH
= nenp
nH

=
(
meT

2π

)3/2

e−�/T . (1.73)

Here we have neglected the small difference between the hydrogen and proton
mass in the second factor of Eqs. (1.71) and (1.72) but not in the exponen-
tial. This is the Saha equation. The corresponding equation for helium, setting
nHe+ = nHe2+ , yields the He2+ →He+ transition temperature and accordingly the
He+→He transition temperature (see Exercice 1.5).

We now define the ionization fraction xe by xe ≡ ne/(ne + nH). In Section 1.4,
we shall find that about 25% of all baryons in the Universe are bound in the form
of He4 so that np + nH = ne + nH = 0.75nB . Equation (1.73) then leads to
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x2
e

1− xe =
n2
e

nH (np + nH) =
1

0.75nB

(
meT

2π

)3/2

e−�/T . (1.74)

Inserting the entropy per baryon, σ = (4π2/45)T 3/nB, in this equation yields

x2
e

1− xe =
45σ

0.75× 4π2

( me
2πT

)3/2
e−�/T . (1.75)

At very high temperatures, T � �, the ionization fraction xe is close to 1. Recom-
bination happens roughly when σ exp(−�/T ) is of the order of unity. If σ ∼ 1
this corresponds to T ∼ �. The fact that the entropy per baryon is very large,
σ = 1.4 × 108(�Bh

2)−1 ∼ 1010, delays recombination significantly. Since there
are so many more photons than baryons in the Universe, even at a temperature
much below � = 13.6 eV there are still enough photons in the high-energy tail of
the Planck distribution to keep the Universe ionized.

To be more specific, we define the recombination temperature Trec as the tem-
perature when xe = 0.5 (as we shall see, the precise value is of little importance).
Equation (1.75) then leads to(

Trec

1 eV

)−3/2

e−�/Trec = 0.97× 10−16 �Bh
2. (1.76)

For �Bh2 � 0.022 we obtain

Trec = 3722 K = 0.321 eV, zrec = 1353.

The function xe(T ) is shown in Fig. 1.5. Clearly, this function grows very steeply
from xe ∼ 0 to xe ∼ 1 at T ∼ 3700 K and Trec depends only weakly on the value
chosen for xe(Trec).

Interestingly, at temperature Trec the baryon and photon densities are of the
same order, ργ (Trec) � ρB(Trec). This seems to be a complete coincidence. More
precisely, the ratio of these two densities is given by

ργ

ρB
= (π

2/15)T 4

nBmp
= π2T 4

0

15nB(t0)mp
(z+ 1)

� 2× 10−5
(
�Bh

2
)−1
(z+ 1). (1.77)

This ratio is equal to 1 at redshift zγb given by

(1+ zγb) = 103

(
�Bh

2

2× 10−2

)
� 103 ∼ 1+ zrec. (1.78)
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Fig. 1.5 The ionization fraction xe as a function of the temperature is obtained
via the Saha equation for �Bh2 = 0.022 (solid curve), for �Bh2 = 0.01 (dashed
curve), and for �Bh2 = 0.04 (dotted curve). Our definition of recombination,
xrec = 0.5, is indicated. Note that x decays from xe � 1 to � 0 between
T = 4000 and 3400 K. Below about xe ∼ 0.9 the shape of the true ionization
fraction significantly differs from this Saha-equation result and levels off at the
final ionization fraction computed in the text that follows.

1.3.2 Final Ionization and Photon Decoupling

We have determined the temperature at which electrons and protons recombine
to neutral hydrogen. The Saha equation predicts an exponentially falling fraction
of free electrons. But this is correct only as long as thermal equilibrium is estab-
lished. As the free electron fraction drops, the interaction rate between electrons
and protons decreases, and at some point the remaining free electrons and protons
are too sparse to find each other, thermal equilibrium is lost, and the number of free
electrons remains constant. But also the photon–electron interaction rate decreases.
Whenever an interaction rate � drops below the expansion rate of the Universe,

� < H,

one considers the corresponding reaction as “frozen.” It becomes negligible. The
temperature at which � = H is called the “freeze out” temperature of the reaction
with rate �.

When the recombination rate drops below the expansion rate, recombination
freezes out and the ionization fraction remains constant. When the scattering rate
of photons on electrons falls below the expansion rate of the Universe, photons
become free to propagate without further scattering. We want to calculate both the
final ionization fraction, xR, and the redshift, zdec, of the decoupling of photons.
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Let us first determine the temperature Tg at which the process of recombination
freezes out. The cross section of the reaction p+ + e− → H + γ is (see,
e.g., Rybicki and Lightman, 1979)

〈σRv〉 � 4.7× 10−24

(
T

1 eV

)−1/2

cm2. (1.79)

Here v is the thermal electron velocity and we have used the fact that 3T = mev2.
The reaction rate is therefore

�R = np〈σRv〉 = xe
(

0.75nB
nγ

)
nγ 〈σRv〉

� 2.1× 10−10 cm−1

(
T

1 eV

)7/4

exp(−�/2T )(�Bh2)1/2,

where we have inserted the Saha equation, assuming that the ionization fraction is
much smaller than 1, that is,

xe � (
√

45σ/0.75/2π)(me/2πT )
3/4 exp(−�/2T )� 1.

We have also used Eq. (1.66).
To determine the expansion rate H(T ), we neglect curvature or a possible

cosmological constant, which is certainly a good approximation for all redshifts
larger than, say, 5. We also assume that the Universe is matter dominated at freeze-
out, which induces an error of about 15% in H . The Friedmann equation (1.18)
then gives

H 2 � 8πG

3
ρ � 8πG

3
ρ0(a0/a)

3

= 8πG

3
�mρc(t0)(T /T0)

3,

so that

H � 3× 10−23 cm−1(�mh
2)1/2

(
T

1 eV

)3/2

. (1.80)

Equation (1.80) is a very useful formula, valid whenever the Universe is dominated
by nonrelativistic matter or dust, P � ρ, and curvature or a cosmological constant
are negligible.

The temperature Tg is defined by �R(Tg) = H(Tg), which finally leads to(
Tg

1 eV

)1/4

e−�/2Tg = 1.4× 10−13

(
�m

�B

)1/2

. (1.81)
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Fig. 1.6 The freeze-out temperatures of recombination, Tg (solid curve), and of
Thomson scattering, Tdec (dashed curve), as functions of �B/�m.

This result is independent of h. For �m � 6.4�B (the value inferred from observa-
tions; see Planck Coll. XIII, 2016), we obtain Tg � 0.24 eV and zg � 1010 (see
Fig. 1.6). Tg depends only weakly on the ratio �B/�m.

The final ionization fraction is given by

xR � xe(Tg) � 7.3× 10−6

(
Tg

1 eV

)−1

�1/2
m /(�Bh) � 3× 10−5�1/2

m /(�Bh).

(1.82)

A more detailed numerical analysis, taking into account the contribution of radia-
tion to the expansion rate and, especially, the recombination into excited states of
the hydrogen atoms and the presence of helium, gives xR ∼ 1.2×10−5�

1/2
m /(�Bh)

(Peebles, 1993; Mukhanov, 2005; Weinberg, 2008). We use this result to calculate
the optical depth τ to Thomson scattering of photons by free electrons up to a red-
shift z < zg in a recombined universe. The optical depth to z is the scattering prob-
ability of a photon integrated from z until today. With the Thomson cross section

σT = 8π

3
α2m−2

e � 6.65× 10−25 cm2, (1.83)
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one finds

τ(z) ≡
∫ t0

t (z)

σT neadt � 0.046xR(1+ z)3/2�B�−1/2
m h. (1.84)

With the residual ionization computed in Eq. (1.82) we obtain τ(z = 800) � 0.01.
As we shall see in Section 9.3, the Universe is reionized at low redshift z ∼ 7.5,
which increases the optical depth by about a factor of 6. This rescattering of
CMB photons is relevant for the evolution of fluctuations, as we shall discuss in
Section 9.3.

As long as the temperature is larger than Tg , the reaction p + e ←→ H + γ is
in thermal equilibrium. When the temperature drops below Tg , the recombination
process freezes out and the degree of ionization remains nearly constant.

Let us also note that in deriving the Saha equation (1.73), we used the fact that
the process of recombination is in thermal equilibrium, which we have verified only
now since freeze-out happens after recombination, Tg < Trec.

We finally calculate the redshift of the decoupling of photons. The process that
remains effective longest is elastic Thomson scattering. Its rate is given by

�T = σT ne = σT xe
(

0.75nB
nγ

)
nγ

� 2.6× 10−11 cm−1(�Bh
2)1/2

(
T

1 eV

)9/4

exp(−�/2T ). (1.85)

Comparing it to the expansion rate, we find Tdec, which is defined by H(Tdec) =
�T (Tdec). A rough estimate gives Tdec ∼ 0.26 eV (see Fig. 1.6), which corresponds
to zdec ∼ 1100. Again we have assumed xe � 1 in Eq. (1.85), which is justified
since Tdec ∼ 3000 K (see Fig. 1.5).

Even though after zdec photons decouple from electrons, the latter are still cou-
pled to photons. The scattering rate of electrons, given by �e = σT xenγ = σT xRnγ
at low redshifts, is sufficient to keep the remaining electrons and with them baryonic
matter in thermal equilibrium with the photons until about z ∼ 100. Therefore, even
after recombination the matter temperature is equal to the temperature of the CMB
and does not decay like 1/a2, as would be expected from a pure thermal gas of
massive particles (see Section 1.3.4). This is an example of two species, electrons
and photons, where the former is in thermal equilibrium with the latter but not
vice versa.

1.3.3 An Accurate Treatment of Recombination

So far, we have given an approximate treatment of the process of recombination and
photon decoupling. This yields the correct orders of magnitude, but to determine
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especially the anisotropies of the CMB and the polarization, in Chapters 4 and 5,
with good precision, this is not sufficient. For precise results it is necessary to
treat recombination of hydrogen into higher levels, especially 2S, but also Raman
scattering by which the electrons of a hydrogen atoms are scattered into a higher
energy level and then decay into a lower level by the emission of a photon of
different energy.

It is actually interesting to note that recombination into the ground state (1S) is
not efficient at all because the ionization cross section is very high for the resonant
Rydberg photons so that most of these just ionize another hydrogen atom before
being redshifted out of the resonance, leading to no net recombination. The same is
true for recombination into the 2P excited state. The Lyα photons from the 2P→1S
transition are quickly absorbed and excite another hydrogen atom, which is then
reionized via a 2P-ionization photon. The single most efficient channel is the cap-
ture of electrons into the 2S level, from which they can decay into the ground
state via the emission of two photons. By angular momentum conservation, the
emission of a single photon is not possible. The inverse process, excitation from 1S
to 2S, is a three-body process and therefore highly unlikely. Even though the rate
of the transition (e,p) → H(2S) → H(1S) is relatively low, it wins against direct
recombination into the ground state and subsequent cosmological redshifting of the
photon before the next ionization can take place. Since the binding energy of the
2S state is lower, this delays recombination somewhat. A semianalytic, dynamical
treatment including recombination into the 2S and 2P states can be found in Peebles
(1993), Mukhanov (2005), and Weinberg (2008).

For accurate results of helium and hydrogen recombination, as they are required
to accurately study the CMB anisotropies discussed in the next chapters, a
numerical computation is needed that takes into account many (up to 300)
excited states and their decay. The most popular publicly available code for this
is “RECFAST” (Seager et al., 1999). The latest work (Shaw and Chluba, 2011),
including even more details, has still found changes by up to 3% in the free
electron fraction throughout the recombination process from z ∼ 2200 (helium
recombination) to z � 800.

Interestingly, recombination also leads to lines and other distortions in the CMB
frequency spectrum that might be observable with a future satellite mission mea-
suring the CMB spectrum with high accuracy; see Rubino-Martin et al. (2006) and
Wong et al. (2006).

1.3.4 Propagation of Free Photons and the CMB

After tdec, photons cease any interaction with the cosmic fluid and propagate freely.
It is straightforward to estimate that the cross section for Rayleigh scattering with
hydrogen atoms is much too weak to be relevant (see Exercise 1.6).
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The free propagation of photons after decoupling is described with the Liouville
equation for the photon distribution function, which we now develop. Since photons
do not interact anymore, they simply move along geodesics. The Liouville equation
translates this to a differential equation for the 1-particle distribution function f of
the photons. The function f describes the particle density in the phase space P0,
the photon mass-shell, given by

P0 = {(x,p) ∈ TM | gμν(x)pμpν = 0}, f : P0 → R.

The distribution function f gives the number of particles per phase space volume
|g | d3x d3p at fixed time t . In some general geometry a specific space-like hyper-
surface� has to be chosen and one then has to show that f does not depend on this
choice [more details are found in Ehlers (1971) and Stewart (1971)]. In cosmology,
due to the symmetries present, we simply use the hypersurfaces of constant time,
� = �t .

We choose the coordinates (xμ,pi) on the seven-dimensional mass-shell
(0 ≤ μ ≤ 3 and 1 ≤ i ≤ 3). The energy p0 is then determined by the mass-
shell condition gμν(x)p

μpν = 0. Liouville’s equation now says that the 1-particle
distribution remains unchanged if we follow the geodesic motion of the particles,
that is,

0 = df
dt
= ẋμ∂μf + ṗi ∂f

∂pi
,

0 = pμ∂μf − �iμνpμpν
∂f

∂pi
≡ LXgf . (1.86)

A particle distribution obeying this equation is often also called a geodesic spray
(see Abraham and Marsden, 1982). If the particles are not free, but collisions are
so rare that an equilibrium description is not adequate, one uses the Boltzmann
equation,

LXgf = C[f ], (1.87)

where C[f ] is the so-called collision integral, which depends on the details of the
interactions.

It may be disturbing to some readers that we take over these concepts from
non-relativistic physics so smoothly to the relativistic case. In cosmology, this does
not cause any problems. But in general, it is true that the collision integral is
not always well defined and certain conditions have to be posed to the nature
of the spacetime and of the interaction. This problem has been studied in detail
by Ehlers (1971).

Since the photons are massless, |p|2= γijpipi = (p0)2. Here p0 is the
0-component of the momentum 4-vector in conformal time so that ε = ap0 is
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the physical photon energy. Isotropy of the distribution implies that f depends on
pi only via p ≡ |p| = p0, and so

∂f

∂pi
= ∂p

∂pi

∂f

∂p
= pi
p

∂f

∂p
. (1.88)

Furthermore, f depends on xi only through p = √
γijpipi . Spatial derivatives are

therefore given by

pi∂if = 1

2
piγlm,i

plpm

p

∂f

∂p
= 1

2
pjγ

ijγlm,i
plpm

p

∂f

∂p

= 1

2
γ ij

(
γli,m + γmi,l − γlm,i

) pjplpm
p

∂f

∂p

= �jlm
plpmpj

p

∂f

∂p
.

This leads to

pi∂if − �iμν
pμpνpi

p

∂f

∂p
= −(

�ij0 + �i0j
)pjppi
p

∂f

∂p
= −2p2 ȧ

a

∂f

∂p
,

where we have used the expressions in Appendix 2, Section A2.3 for �iμν and p =
p0. Inserting this result into (1.86) we obtain, with Eq. (1.88),

∂tf − 2p
ȧ

a

∂f

∂p
= 0, (1.89)

which is satisfied by an arbitrary function f = f (pa2) = f (aε). Hence the
distribution of free-streaming photons changes only by redshifting the physical
energy ε = ap0 or the physical momentum a|p| = ε. Therefore, setting T ∝ a−1

even after recombination, the blackbody shape of the photon distribution remains
unchanged. This radiation of free photons with a perfect blackbody spectrum is the
CMB. Its physics, especially its fluctuation and polarization, are the main topic of
this book.

The same result is also obtained for massive particles,

∂tf − 2p
ȧ

a

∂f

∂p
= 0, (1.90)

where p = |p|; hence the momentum is simply redshifted. Therefore, massive
particles that decouple when they are still relativistic keep their extremely rela-
tivistic Fermi–Dirac (or Bose–Einstein) distribution, f = (exp(ap/T )± 1)−1,
with a temperature that simply scales as T ∝ 1/a. This is especially impor-
tant for the cosmic neutrinos, which probably have masses in the range of a
0.1eV > mν >∼0.01 eV. But, as we shall see in the next section, they decouple at
T ∼ 1.4 MeV. We therefore expect them to be distributed according to an extremely
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relativistic Fermi–Dirac distribution, which is not a thermal distribution for non-
relativistic neutrinos. By the same argument, particles that decouple once they are
nonrelativistic keep their Maxwell Boltzmann distribution, f ∝ exp

[
(ap)2/(mT )

]
,

if we assume the temperature to scale as T ∝ a−2, which is also the scaling in
thermal equilibrium for massive particles [see discussion after Eq. (1.93)].

Note, however, that after decoupling the particles are no longer in thermal equi-
librium and the T in their distribution function is not a temperature in the ther-
modynamical sense but merely a parameter, representing a measure of the mean
kinetic energy.

The situation is different for the electron–proton–hydrogen plasma. As we have
seen, the free electrons still scatter with photons and keep the same temperature as
the latter. In other words: even though most photons are no longer interacting with
the electrons, the latter are still interacting with the photons. (To have one collision
with all the remaining electrons, only a fraction of about 10−14 of the photons have
to be involved!)

Soon after recombination, the baryon energy density exceeds the photon energy
density and one might expect that this would change the evolution of the temper-
ature. To investigate this we use the energy conservation equation of the baryon–
photon system. We neglect the tiny number of free electrons. The energy density
and pressure are then given by

ρ = nBmB + (3/2)nBT + π
2

15
T 4, (1.91)

p = nBT + π
2

45
T 4. (1.92)

The energy conservation equation, dρ/da = −3(ρ + p)/a, now gives

a

T

dT

da
= − 3nB + 4π2

15 T
3

(3/2)nB + 4π2

15 T
3
= − σ + 1

σ + 1/2
. (1.93)

Since σ � 1, the photons are so much more numerous than the baryons that the
latter have no influence on the temperature, which keeps evolving as 1/a. Note,
however, that in the absence of photons, the temperature of a monoatomic gas
would decrease like 1/a2 as mentioned earlier (just consider the limit σ → 0).

The blackbody spectrum of the CMB photons is extremely well verified
observationally (see Fig. 1.7 and Chapter 10). The limits on deviations are often
parameterized in terms of three parameters: the chemical potential μ, the Compton-
y parameter (which quantifies a well-defined change in the spectrum arising from
interactions with a nonrelativistic electron gas at a different temperature; we



28 The Homogeneous and Isotropic Universe

Fig. 1.7 The spectrum of the cosmic background radiation. Iν is the energy
flux per frequency. The data are from many different measurements that are all
compiled in Kogut et al. (2007). The points around the top are the measurements
from the FIRAS experiment on COBE (Fixsen et al., 1996). The line traces a
blackbody spectrum at a temperature of 2.728 K (the data are courtesy of Susan
Staggs).

shall discuss this in detail in Chapter 10), and Yff (describing a contamination by
free–free emission).

The present 95% confidence limits on these parameters are (Particle Data Group,
2006)

|μ| < 9× 10−5, |y| < 1.2× 10−5, |Yff| < 1.9× 10−5. (1.94)

These limits are mainly derived from the COBE satellite data, which had been taken
more than 25 years ago. It would be very interesting to have newer data and better
limits on these spectral distortions, as we will discuss in Chapter 10.

The CMB photons not only have a very thermal spectrum, but they are also
distributed very isotropically, apart from a dipole that is (most probably) mainly
due to our motion relative to the surface of last scattering.

Indeed, an observer moving with velocity v relative to a source in direction n
emitting a photon with proper momentum p = −εn sees this photon redshifted
with frequency

ε ′ = γ ε (1− nv) , (1.95)
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where γ = 1/
√

1− v2 is the relativistic γ -factor. For an isotropic emission of
photons coming from all directions n this leads to a dipole anisotropy to first order
in v. This dipole anisotropy, which is of the order of(

�T

T

)
dipole

� 1.2× 10−3,

had already been discovered in the 1970s (Conklin, 1969; Henry, 1971). Interpret-
ing it as due to our motion with respect to the last scattering surface implies a
velocity for the Solar System barycenter of v = 371 ± 0.5 km s−1 at 68% CL
(Particle Data Group, 2006).

In addition to the dipole, the COBE5 DMR experiment (differential microwave
radiometer) has found fluctuations of order√√√√〈(

�T

T

)2
〉
∼ (a few)× 10−5, (1.96)

on all angular scales θ ≥ 7◦ (Smoot et al., 1992). On smaller angular scales many
experiments found fluctuations (we shall describe the experimental results in more
detail later) all of which satisfy |�T /T | <∼ 10−4.

As we shall see in Chapter 2, the CMB fluctuations on large scales provide a
measure for the deviation of the geometry from the Friedmann–Lemaı̂tre one. The
geometry perturbations are thus small, and we may calculate their effects by linear
perturbation theory. On smaller scales,�T/T reflects the fluctuations in the energy
density in the baryon/radiation plasma prior to recombination. Their amplitude is
just about right to allow the formation of the presently observed nonlinear structures
(such as galaxies, clusters, etc.) by gravitational instability.

These findings strongly support our hypothesis that the large-scale structure
(i.e., the galaxy distribution) observed in the Universe has been formed by grav-
itational instability from small (∼ 10−4) initial fluctuations. As we shall see in
Chapters 2, 4, and 5, such initial fluctuations leave an interesting “fingerprint” on
the cosmic microwave background.

1.4 Nucleosynthesis

1.4.1 Expansion Dynamics at T ∼ a Few MeV

At high temperatures, T > 30 MeV, none of the light nuclei (deuterium, 2H,
helium-4, 4He, helium-3, 3He or lithium, 7Li) are stable. At these temperatures,
we expect the baryons to form a simple mixture of protons and neutrons in thermal

5 Cosmic Background Explorer, NASA satellite launched 1990.
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equilibrium with each other and with electrons, photons, and neutrinos. The highest
binding energy is the one of 4He, which is about 28 MeV. Nevertheless, 4He cannot
form at this temperature because the baryon density of the Universe is not high
enough for three- or even four-body interactions to occur in thermal equilibrium.
Therefore, before any nucleosynthesis can occur, the temperature has to drop below
the binding energy of deuterium, which is about 2.2 MeV. But even at this temper-
ature there are still far too many high-energy photons around for deuterium to be
stable. This is due to the very low baryon to photon ratio, ηB � 10−10. Just as
recombination is delayed from the naively expected temperature T = 13.7 eV to
about Trec ∼ 0.3 eV, nucleosynthesis does not happen at T ∼ 2.2 MeV but around
Tnuc ∼ 0.1 MeV. Most of the neutrons present at that temperature are converted
into 4He. Only small traces remain as deuterium or are burned into 3He and 7Li.

Let us study this in some more detail. At the time of recombination, the rela-
tivistic particle species are the photon and, probably, three types of neutrinos. As
we shall see in the next paragraph, the neutrino temperature is actually a factor of
(4/11)1/3 lower than the temperature of the photons. With Eqs. (1.54) and (1.55),
the energy density of these particles while they are relativistic is given by

ρrel(t) =
[
ργ (t)+ ρν(t)

] = [
1+ 3

7

8
(4/11)4/3

]
π2

15
T 4, (1.97)

� 10−33 g cm−3

(
T

T0

)4

, (1.98)

� ρc(t0)�relh
2(1+ z)4, where

�relh
2 � 4.4× 10−5 . (1.99)

Note that at temperatures below the highest neutrino mass, this is no longer the
energy density of relativistic particles; therefore �rel is not the density parameter
of relativistic particles today. Above the neutrino mass threshold and below the
electron mass threshold we have

ρrel

ρm
= �rel

�m
(1+ z) � 4.4× 10−5

(
1

�mh2

)
(1+ z), (1.100)

Since �mh2 � 0.14, the redshift zeq above which the Universe is dominated by
relativistic particles is about

zeq � 3.2× 103, Teq � 1 eV. (1.101)

At temperatures significantly above Teq, we can also neglect a possible contribution
from curvature or a cosmological constant to the expansion of the Universe, so
that for

z� zeq P = 1

3
ρ, a ∝ τ 1/2 ∝ t . (1.102)
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At these high temperatures the energy density of the Universe is given by

ρ = geff
π2

30
T 4 where geff = NB(T )+ 7

8
NF(T ). (1.103)

Here, NB and NF denote the number of bosonic and fermionic degrees of free-
dom of relativistic particles (i.e., particles with mass m < T ) that are in thermal
equilibrium at temperature T .

To discuss the physical processes at work at some temperature T , we need to
know the spectrum of relativistic particles and their interactions at this temperature.
Here, we shall study the Universe at 10 keV < T < 100 MeV, where the physics
is well known. The only relativistic particles present at these temperatures are
electrons, positrons, photons, and three types of neutrinos. (The muons have a
mass of mμ � 105.66 MeV.) Even if the individual neutrino masses are not very
well constrained, the oscillation experiments (Particle Data Group, 2004) imply
that their masses are below 1 eV if there is no degeneracy. As we shall see later,
also CMB data estimate masses below this value. Therefore, we may neglect the
neutrino masses in our treatment. The baryon number is well conserved at these
temperatures, so that we may set ηB equal to its present value, ηB = nB/nγ �
2.7 × 10−8�Bh

2 = constant. We neglect the small contribution from muon/anti-
muon pairs that decay exponentially ∝ exp(−mμ/T ) via the reaction

μ+ ν̄μ→ e + ν̄e.

Thermal equilibrium between photons and electron/positrons is maintained mainly
via the process e− + e+ ←→ 2γ (or 3γ . . . ). The conservation of the chemical
potential during this reaction implies

μe + μ̄e = 2μγ = 0. (1.104)

The last equals sign comes from the fact that photons can be generated and
destroyed, their number is not conserved, and hence their chemical potential
vanishes in thermal equilibrium. Here we use the notation e+ = ē and μē = μ̄e.
The difference in the density of electrons and positrons is therefore

ne − n̄e = 1

π2

∫
p2 dp

[
1

exp
(
E−μe
T

)+ 1
− 1

exp
(
E+μe
T

)+ 1

]
. (1.105)

At low temperatures this number is dictated by the neutrality of the Universe, and
ne− n̄e ∼ nB is much smaller than ne+ n̄e ∼ nγ . Therefore, the chemical potential
is much smaller than the electron mass, μe � me. At high temperatures, T � me,
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we may therefore expand the electron number density in the small parameter μe/T .
At first order this yields

ne − n̄e � 2μe
π2T

∫
p2 dp

exp (p/T )[
exp (p/T )+ 1

]2 =
2μeT 2

π2
ζ(2). (1.106)

With nγ = 2T 3ζ(3)/π2 this yields

ne − n̄e
nγ

� 1.4
μe

T
∼ nB
nγ
� 2.7× 10−8�Bh

2. (1.107)

We can therefore neglect the small chemical potential of the electrons and positrons.
The interaction e+ ē←→ ν+ ν̄ also implies that μν = −μ̄ν . But unfortunately, the
number nν − n̄ν that determines, together with ne − n̄e, the lepton number of the
Universe, is not known from observations. We suppose that the lepton number,
like the baryon number, is small and that we may also neglect the chemical poten-
tial of the neutrinos. Comparing our results with observations, we can check this
hypothesis later.

At T <∼ 100 MeV photons, electron/positrons, and neutrinos are still relativistic,
so that NB = 2 and NF = 4+ 6; hence

geff(T ∼ 100 MeV) = 43

4
= 10.75. (1.108)

The Hubble parameter is given by(
a′

a

)2

= H 2 = 1

4τ 2
= 8πG

3
ρ = 8π3G

90
geffT

4.

With the Planck mass, mP , defined by G = 1/m2
P = 1/(1.22 × 1019 GeV)2, we

find

H 2(T ) � 2.76geff(T )

(
T 2

mP

)2

, (1.109)

H � 0.21
√
geff

(
T

1 MeV

)2

s−1, (1.110)

τ = 1

2H
� 0.3geff(T )

−1/2
(mP
T 2

)
� 2.4 s

(
1 MeV

T

)2

g
−1/2
eff . (1.111)

Here we have used the formulas in Appendix 1 to convert MeV’s to seconds,
1 MeV = 1.5192 × 1021s−1. The temperature of T ∼ 100 MeV corresponds thus
to an age of τ ∼ 7 × 10−5 s, and T = 1 MeV corresponds to τ ∼ 0.7 s. The
relations (1.110) and (1.111) can be applied as long as the Universe is dominated
by relativistic particles.
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1.4.2 Neutrino Decoupling

Neutrinos are kept in thermal equilibrium via the exchange of a W -boson,
e + ν̄ ←→ e + ν̄ and ν + ē ←→ ν + ē, or a Z-boson, e + ē ←→ ν + ν̄.
At low energies, E � mZ,W ∼ 100 GeV, we can determine the cross sections
within the 4-fermion theory of weak interaction. Within this approximation, the
effective interaction Langrangian is given by

Lint = GF√
2
J †
μJ

μ + hermitean conjugate

= GF√
2

(
u∗eγμ

1

2
(1− γ 5)uν

) (
u∗νγ

μ 1

2
(1− γ 5)ue

)
+ h.c., (1.112)

where the coupling parameter, GF , is the Fermi constant, and γ μ are Dirac’s
gamma-matrices, γ5 = iγ 0γ 1γ 2γ 3.

GF = 1.166× 10−5 GeV−2 = (293 GeV)−2. (1.113)

The fermion V − A current Jμ is expressed in terms of the electron and neutrino
spinors ue,ν and the Dirac γ -matrices.

The cross section of theW - andZ-boson exchange processes are identical within
this approximation and they are given by

σF � G2
FE

2 ∼ G2
FT

2,

The involved particle density is nF (T ) = gF (T )ζ(3)T 3/π2 ∼ 1.3T 3, where we
have set gF (T ) = 3/4NF(T ) = 30/4 for the three types of left-handed neutrinos
and the e± s. Since the particles are relativistic, we can set v ∼ 1 so that we obtain
an interaction rate of

�F = 〈σFv〉nF � 1.3G2
FT

5.

Comparing this with the expansion rate H obtained in (1.109), we find

�F

H
� 0.24T 3mPG

2
F �

(
T

1.4 MeV

)3

. (1.114)

At temperatures below TF ∼ 1.4 MeV the mean number of interactions of a
neutrino within one Hubble time, H−1, becomes less than unity and the neutrinos
effectively decouple. The plasma becomes transparent to neutrinos that are no
longer in thermal equilibrium with electrons and positrons and hence photons and
baryons.
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As we have discussed in the previous section, even at temperatures far below
their massmν >∼ 0.05 eV, their particle distribution remains an extremely relativistic
Fermi–Dirac distribution with temperature

Tν = TF aF
a
,

since they are no longer in thermal equilibrium and their distribution is affected
solely by redshifting of the momenta.

As long as the photon/electron/baryon temperature also scales like 1/a, the neu-
trinos conserve the same temperature as the thermal plasma, but when the number
of degrees of freedom, geff, changes, the plasma temperature decays for a brief
period of time less rapidly than 1/a and therefore remains higher than the neutrino
temperature. This is exactly what happens at the electron–positron mass threshold,
T = me � 0.5 MeV. Below that temperature, only the process e+ ē→ 2γ remains
in equilibrium while 2γ → e + ē is exponentially suppressed. We calculate the
reheating of the photons gas by electron–positron annihilation, assuming that the
process takes place in thermal equilibrium and that the entropy remains unchanged.
This is well justified because the cross section of this process is very high. Denoting
the entropy inside a volume of size V a3 before and after electron–positron annihi-
lation by Si and Sf , we therefore have Si = Sf . With Eq. (1.60) this yields

Si = 2

3
aSBgeff,i(T a)

3
i V , Sf =

2

3
aSBgeff,f (T a)

3
f V .

The electron–positron degrees of freedom disappear in this process so that
geff,f = 2 while geff,i = 2+ 4( 7

8) = 11/2. From Si = Sf we therefore conclude

(T a)f = (T a)i
(

11

4

)1/3

.

The neutrino temperature is not affected by e± annihilation, so that (Tνa)f =
(Tνa)i = (T a)i . For the last equals sign we have used that the neutrino and pho-
ton temperatures are equal before e± annihilation. At temperatures T � me we
therefore have

T =
(

11

4

)1/3

Tν . (1.115)

Since there are no further annihilation processes, this relation remains valid until
today and the present Universe not only contains a thermal distribution of pho-
tons, but also a background of cosmic neutrinos that have an extremely relativistic
Fermi–Dirac distribution with temperature

Tν(τ0) = (4/11)1/3T0 = 1.95 K. (1.116)
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We set

g0 = 2+ 7

8
6

(
4

11

)4/3

� 3.36, and (1.117)

g0S = 2+ 7

8
6

(
4

11

)
� 3.91. (1.118)

These are respectively the effective degrees of freedom of the energy and entropy
densities as long as all the neutrinos are relativistic. Until then we therefore have

ρrel(T ) = π
2

30
g0T

4 � 8.1× 10−34 g cm−3

(
T

T0

)4

, (1.119)

s(T ) = 2π2

45
g0ST

3 � 3× 103 cm−3

(
T

T0

)3

. (1.120)

The neutrino cross section at low energies is extremely weak, and so far the neutrino
background has not been observed directly (see Exercise 1.9).

1.4.3 The Helium Abundance

The observed abundance of helium is universally about

nHe mHe

nH mH
≡ Y � 0.24. (1.121)

It is well known that this amount of helium cannot have been produced in stars. We
now want to investigate how much helium is produced in the primordial Universe.
At temperatures of a few MeV nuclei and baryons are non-relativistic and the
equilibrium distribution for a nucleus with atomic mass (i.e., number of protons
and neutrons) A and proton number Z is given by

nA = NA
(
mAT

2π

)3/2

exp

(
−mA − μA

T

)
. (1.122)

The proton density is given in Eq. (1.71). The neutron density is correspondingly

nn = 2

(
mBT

2π

)3/2

exp

(
−mn − μn

T

)
. (1.123)

Here, we neglect the small differenceQ = mn−mp = 1.293 MeV in the prefactor,
setting mn ∼ mp ∼ mB . The conservation of the chemical potentials in nuclear
reactions implies

μA = Zμp + (A− Z)μn,
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so that

exp

(
−mA − μA

T

)
= (
eμp/T

)Z (
eμn/T

)(A−Z)
e−mA/T ,

= 1

2A

(
2π

mBT

)3A/2

exp(BA/T )n
Z
pn
A−Z
n .

Here, BA = Zmp + (A− Z)mn −mA is the binding energy of the nucleus (A,Z).
In thermal equilibrium, the density of this ion is then given by

nA = NA
2A
A3/2

(
2π

mBT

)3(A−1)/2

nZpn
A−Z
n exp(BA/T ). (1.124)

Here we have again neglected the nucleon mass difference Q and the binding
energy BA in the prefactor by setting mA ∼ AmB , but not in the exponential.

We define the various mass abundances by

YA ≡ AnA
nB

= AnA

ηB nγ
,

Yp ≡ np
nB
= np

ηB nγ
,

Yn ≡ nn

nB
= nn

ηB nγ
.

Hence the thermal abundance of the nucleus (A,Z) is given by

YA = F(A)
(
T

mB

)3(A−1)/2

ηA−1
B YZp Y

A−Z
n eBA/T , (1.125)

where F(A) = NAA5/2ζ(3)A−1π−(A−1)/22(3A−5)/2. (1.126)

This equation shows nicely the influence of the radiation entropy on nucleosyn-
thesis. If we had ηB ∼ 1, the nucleus (A,Z) would become stable and relatively
abundant at T ∼ BA. At this temperature the formation of (A,Z) [controlled by the
factor exp(BA/T )] is sufficiently important to counterbalance photodissociation
(controlled by the factor ηA−1

B ). In equilibrium, the exponential exp(BA/T ) is then
of the order of η1−A

B ∼ 1 and the ratio YA then approaches the value YA ∼ YZp YA−Zn .
However, if ηB is very small, the equilibrium between production of (A,Z) and
photodissociation is delayed until exp(−BA/T ) ∼ ηA−1

B � 1, that is, to much
lower temperatures. Neglecting the numerical factor F(A), the temperature TA,
defined by YA(TA) ∼ Yp(TA)ZYn(TA)A−Z, is

TA ∼ BA

(A− 1)
[
ln(η−1

B )+ 3/2 ln(mB/TA)
] .
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For the deuteron with binding energy B2 = 2.22 MeV we find

T2 ∼ 0.085 MeV. (1.127)

The reaction rate �np of the process n+ p←→ 2H+ γ is given by

�np = 〈σnpv〉np � 1.8× 10−17(T /T0)
3ηB s−1 � 1012ηB

(
T

MeV

)3

s−1,

where we have used 〈σnpv〉 = constant = 4.55 × 10−20 cm3 s−1 at temperatures
1 keV ≤ T ≤ 10 MeV, and np = ηBnγ � 420ηB(T /T0)

3 cm−3. Using H � 0.4
(T /MeV)2 s−1, we conclude that this interaction remains in thermal equilibrium as
long as T >∼ 0.004 MeV. So the assumption of a thermal deuterium abundance is
justified. As already mentioned, three-body interactions are not in thermal equilib-
rium; their reaction rate contains an additional factor nB/nγ = ηB � 1.

Therefore, at temperature T2 only deuterium can form and subsequently virtually
all the neutrons present are burned into 4He. To determine the helium abundance,
we have to determine the neutron density at this temperature. Let us first determine
the temperature at which β and inverse β processes drop out of equilibrium,

ν + n←→ p + e, ē + n←→ p + ν̄, n→ p + e + ν̄.

On one hand, particle conservation imposes

μn − μp = μe − μν .
On the other hand, the neutrality of the Universe requires np= ne. Since me�mp,
Eqs. (1.70) and (1.71) imply μe�μp. Finally, setting μν ∼ 0, the chemical poten-
tials of the neutron and the proton are approximately equal, that is,
μn � μp. The ratio of their densities is thus simply given by the mass difference
Q = mn −mp,

nn

np
= Yn
Yp
= exp(−Q/T ).

This ratio remains constant as long as the reactions n←→ p are sufficiently rapid.
At the decoupling temperature of these reactions,

�(TD) = H(TD) � 3
T 2
D

mP
,

the ratio (nn/np) is hence given by(
nn

np

)
(TD) = exp(−Q/TD).
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Afterwards, the neutron density decays exponentially by β-decay, n→ p + e+ ν̄,

nn(τ ) = nn(τD) exp

(
−τ − τD

τn

)
for τ > τD, (1.128)

where τn � 886 s is the neutron lifetime.
We now want to determine the temperature TD. We can again use Fermi theory

to determine the different cross sections. For nucleons, the pure V − A current,
ψ∗γμ(1 − γ5)ψ , is replaced by ψ∗γμ(gV + gAγ5)ψ , which takes into account the
internal structure of the nucleons. In the Born approximation the cross section
becomes (see, e.g., Maggiore, 2005)

σ(ν + n→ p + e) = G
2
F

π
(g2
V + 3g2

A)veE
2
e .

The constants gV and gA are determined experimentally (e.g., by measuring the
neutron lifetime), gV � 1.00 and gA � 1.25. The interaction rate per neutron is
obtained by multiplying the preceding result with vνnν ,

�(ν + n→ p + e) = 〈σvν〉nν = 1

2π2

∫
p2
ν dpν

epν/Tν + 1
vνσ

(
1− 1

eEe/T + 1

)
.

The factor 1 − 1/[exp(Ee/T )+ 1] is the probability that the electron state with
energy Ee is free (it implements the Pauli principle). To simplify the integral we
first use energy conservation, Eν + En = Ep + Ee. Since all the energies involved
are of the order of MeV, we can set En − Ep ∼ mn − mp = Q = 1.293 MeV
and Ee = pν +Q. Furthermore, Ee = meγ = me/

√
1− v2

e , which implies ve =√
(pν +Q)2 −m2

e/Ee. Inserting these simplifications, we obtain finally

�(ν + n→ p + e) = G
2
F (g

2
V + 3g2

A)m
5
e

2π3

×
∫ ∞

0

eα(x+q)x2(x + q)
√
(x + q)2 − 1

(1+ eα(x+q))(1+ eβx) dx, (1.129)

where we have set x = pν/me, α = me/Tγ , β = me/Tν , and q = Q/me � 2.5. To
compute the other processes we note that the matrix element M(pν,pn,pp,pe) that
appears in the amplitude for ν+n←→ p+e is invariant under the transformations
(pν,pn,pp,pe) → (−pν,pn,pp, − pe), and (pν,pn,pp,pe) → (−pν,pn,pp,pe),
where pν , pn, pp and pe are the momenta of the neutrino, neutron, proton and
electron respectively,

M(pν,pn,pp,pe) =M(−pν,pn,pp,−pe),
M(pν,pn,pp,pe) =M(−pν,pn,pp,pe).
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This observation allows us immediately to determine the reaction rates of the other
processes. We simply have to take into account the different phase space con-
straints. With x = Ee/me (the other parameters as earlier), we obtain

�(e + p→ n+ ν) = G
2
F (g

2
V + 3g2

A)m
5
e

2π3

×
∫ ∞

q

eβ(x−q)x(x − q)2√x2 − 1 dx

(1+ eβ(x−q))(1+ eαx) , (1.130)

and

�(n→ p + e + ν̄) � G
2
F (g

2
V + 3g2

A)m
5
e

2π3

×
∫ q

1

eαxeβ(q−x)(x − q)2x√x2 − 1 dx

(1+ eβ(q−x))(1+ eαx) , (1.131)

�(n→ p + e + ν̄)|T�me � 1.6
G2
F

2π3
(g2
V + 3g2

A)m
5
e = τ−1

n (1.132)

τ−1
n = 1

886 s

for the β-decay of the neutron at low temperature.
The products τn� are functions of the temperature T . When T � Q, the kinetic

energy in the system e+ ν̄ is much higher than the electron mass. Hence x±q � x
at the positions that contribute most to the foregoing integrals and the reaction rates
go like

τn�(n→ p)

τn�(p→ n)

}
∝ T 5, for T � Q.

In the regime 0.1 MeV ≤ T ≤ 1 MeV, the product τn�(n→ p) is roughly propor-
tional to T 4.4. The same is true for τn�(p→ n). But the phase space for β-decay is
larger than for the reaction p→ n, so that τn�(n→ p) > τn�(p→ n). Once the
temperature drops below about 0.1 MeV, τn�(p → n) decays exponentially while
τn�(n → p) converges to 1 [see Fig. 1.8, where τn�(n → p), τn�(p → n), and
the expansion rate τnH are shown as functions of the temperature].

According to Fig. 1.8, the line τnH intersects the lines τn�(n→p) and
τn�(p → n) around T = 0.8 MeV. A more detailed analysis gives a decoupling
temperature of TD � 0.7 MeV, below which the three reactions are no longer in
thermal equilibrium.
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Fig. 1.8 The weak interaction rates, τn�(p→ n) and τn�(n→ p), are shown as
functions of the temperature. The expansion rate, τnH , is also indicated.

Another way to see this dropping out of the thermal equilibrium of weak interac-
tion is to compare the true neutron abundance, Yn, with the one obtained in thermal
equilibrium. A semianalytical calculation gives (see Bernstein et al., 1989) the
behavior plotted in Fig. 1.9.

At decoupling, the ratio of the neutron to proton density is(
nn

np

)
(TD) = exp(−Q/TD) � 1/6, (1.133)

so that

Yn = 1/7 and Yp = 6/7. (1.134)

Since T2, the temperature of deuterium formation, is lower than TD, in the inter-
val TD >T >T2, neutrons simply β-decay. At τ2 given by T2= T (τ2)= 0.085 MeV
their density is(

nn

np

)
(T2) = e−Q/TD exp(−τ2/τn) � 0.8/6 � 1/7, (1.135)

and therefore

Yn = 1/8 and Yp = 7/8. (1.136)
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Fig. 1.9 The true neutron abundance as a function of �m/T (solid line) is
compared with the equilibrium abundance (dotted line). Clearly, weak interaction
freezes out around T ∼ 0.6×�m ∼ 0.7 MeV.

For this we have used τ2 � 1.3 s (1/0.085)2 � 180 s. Once deuterium is formed,
helium-4 is very rapidly synthesized via the reactions

2H + 2H −→ n + 3He
3He + 2H −→ p + 4He

2H + 2H −→ p + 3H
3H + 2H −→ n + 4He

2H + 2H −→ γ + 4He

and essentially all deuterium is transformed in 4He. The helium abundance is
thus in good approximation, given by half the neutron abundance at temperature
T2 � 0.085 MeV. With this approximation we obtain a helium-4 abundance of

Y4He =
4(nn/2)

nn + np =
2(nn/np)

nn/np + 1
� 1

4
. (1.137)
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In this expression we have used the neutron abundance from Eq. (1.136). Consider-
ing that τ2 scales like

√
log ηB while TD depends strongly on the expansion rate H ,

which is proportional to
√
geff ∝

√
Nν(4/11)4/3 + 1, we conclude that the helium-4

abundance is very sensitive on the number of neutrino families, but does not change
very rapidly with ηB . Historically, the cosmological helium-4 abundance has been
the first experimental data to determine the number of (light) neutrino families
in the range Nν = 3.24 ± 1.2, when allowing for very generous error bars in the
measurements (Fields and Sarkar, 2006). Presently, the Z-boson decay width,
which has been measured very accurately with the LEP accelerator at CERN,
gives the tightest value (see Particle Data Group, 2006), Nν = 3.07 ± 0.12 at 95%
confidence.

1.4.4 Deuterium, Helium-3 and Lithium-7

Nucleosynthesis starts at T ∼ 0.1 MeV, corresponding to τ ∼ 130 s and terminates
after a few minutes. Apart from 4He very small amounts of all other elements up to
lithium-7 are formed (some deuterium, tritium, and helium-3 remain unprocessed).
All these elements except deuterium, helium-3, and lithium-7 decay radioactively
and their primordial abundance can no longer be observed today.

The amount of deuterium and helium-3 that is not burned into helium-4 is a
steep function of the baryon abundance in the Universe. The higher the baryon
density, the more efficient is the conversion of deuterium and helium-3 into helium-
4 (see Fig. 1.10). This can be used to determine the baryon density in the Universe
very accurately. Measuring the primordial deuterium abundance is an art by itself
on which we shall not dwell here. Most recent results are obtained by measuring
it from the absorption lines in hydrogen (Ly-α) clouds intervening in the line of
sight between us and quasars. Within generous error bars one obtains 2 × 10−5 <

Y2H/Yp < 2× 10−4. This gives 4.7× 10−10 < ηB < 6.5× 10−10 [for more details
see Olive et al. (2000), Burles et al. (2001), and Particle Data Group (2006)].

As one sees in Fig. 1.10, the lithium abundance is not a monotone function of
ηB . This is so since, depending on the value of ηB , two different processes lead
to lithium formation. If the baryon density is small, ηB < 3 × 10−10, lithium
abundance is determined by the competition between the production process 4He+
3H → 7Li+ γ and the destruction process 7Li+ p → 4He+ 4He. In this regime,
the abundance decays with growing ηB . For ηB > 3× 10−10, the dominant channel
goes over beryllium production 4He+3He → 7Be+γ , which is then converted into
lithium-7 via the reaction 7Be+ e→ 7Li+ γ . The destruction process is the same
as at low density. Since the conversion of beryllium into lithium increases with
increasing baryon density, lithium abundance grows with ηB , for ηB > 3 × 10−10.
The lithium abundance has a minimum around ηB � 3 × 10−10. Inference of the
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Fig. 1.10 The primordial element abundance as a function of the parameter
ηB = nB/nγ . The bands compatible with the observations of the different nuclei
are indicated. The horizontal band shows the range of ηB (or equivalently �Bh2)
compatible with the nucleosynthesis data while the narrow vertical range is
compatible with CMB anisotropies (see Chapter 9). It agrees very well with
deuterium and helium abundances from nucleosynthesis but not so well with the
lithium abundance. Figure from Tanabashi et al. (2019)

primordial lithium abundance is still a matter of considerable debate. It nevertheless
allows us to constrain 10−10 < ηB < 10−9.

Finally, in the regime 10−10<ηB < 10−9 the helium-4 abundance is well approx-
imated by the formula

Y4He = 0.23+ 0.011 ln(η10)+ 0.013(Nν − 3), (1.138)

where we have introduced η10 = ηB/10−10. All the present observations of light
elements taken together limit 4.7<η10 < 6.5, leading to 0.017 < �Bh2 < 0.024
[a constantly updated review can be found in Tanabashi et al. (2019)]. It is
remarkable that this value is in very good agreement with the result obtained from
measurements of the fluctuations in the CMB, which are based on completely
different physics (see Chapter 9).
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This value is much larger than the density of luminous baryons that make up
the stars and gas in the galaxies, and that lead only to �Lh2 � 0.004. Hence most
baryons in the Universe are not luminous. On the other hand, dynamical measure-
ments and, more accurately, the anisotropies in the CMB, require an energy density
of nonrelativistic matter today of about �mh2 � 0.13. We discuss constraints on
cosmological parameters from CMB data in detail in Chapter 9. To satisfy both
constraints, the matter density of the Universe has to be dominated to about 80%
by nonbaryonic, so-called dark matter (dark in this context means that this matter
does not interact with photons). So far, this dark matter has not been observed
directly, but many experiments are underway and are starting to reach promising
sensitivities. There are several candidates for dark matter particles. Most notably,
the lightest supersymmetric particle, but also the gravitino, axion, or primordial
black holes are viable candidates.

The good agreement of Nν and �Bh2 obtained from the study of primordial
nucleosynthesis with other experiments, confirms that the Universe has been
in a thermal state expanding adiabatically back to temperatures of the order of
T ∼ 1 MeV. For earlier times we have no experimental evidence. However, if the
Universe has been in a thermal state at a temperature of T ∼ 200 MeV, τ ∼ 0.1
s, it has then undergone a confinement transition leading from a quark gluon
plasma at higher temperatures to baryons (such as the proton and neutron) and
mesons (such as pions). If it has also been in thermal equilibrium at temperatures
of up to T ∼ 200 GeV, τ ∼ 0.001 s, it has then undergone the electroweak
transition giving masses to theW± and Z bosons. At even higher temperatures we
have no experimentally confirmed theory of fundamental interactions. Maybe, at
T ∼ a few TeV the Universe becomes supersymmetric. Maybe, at T ∼ 1016 GeV a
phase transition from a previous grand unified symmetry to the (supersymmetric)
standard model symmetries took place. At this or higher energies the Universe
may also have gone through (or emerged from) a superstring phase. To date such
questions remain entirely speculative. Their quantitative investigation, especially
possible observable signatures of a superstring phase, is an active field of research.

1.5 Inflation

1.5.1 Cosmological Problems

We first discuss the motivation for, and some consequences of a so-called inflation-
ary phase. We then exemplify the idea with a cosmology dominated by a scalar
field. It is, however, clear that this realization has to be regarded as a toy model
because the actual physical degrees of freedom relevant in the very early Universe,
where such a period has most probably to be situated (see Chapter 3), are not
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known. In that sense this section is on a different level from the previous ones.
We do not have any direct evidence that an inflationary phase has taken place in
our Universe. Such a period just addresses several otherwise mysterious initial
conditions of the observed Universe. The most significant observed “prediction”
of inflation is a nearly scale-invariant spectrum of initial fluctuations that we shall
discuss in Chapter 3. What is more serious is that we have no “direct” experimental
evidence of the existence of an “inflaton field.”

We include a possible cosmological constant into the energy density and the
pressure, so that Eqs. (1.20) and (1.21) reduce to

H2 = 8πG

3
a2ρ −K, (1.139)

Ḣ = −4πG

3
a2 (ρ + 3P) =

(
ä

a

)
−H2. (1.140)

If ρ + 3P > 0 at all times, the homogeneous and isotropic cosmological model
has several important problems.

First, as we have discussed in Section 1.2.2, there is the big bang singularity in
the finite past, t = 0. At this time a = 0 and the curvature diverges.

Furthermore, the causal horizon at (conformal) time t , that is, the distance a pho-
ton has traveled from t = τ = 0 until time t , is given by a(t)t = a(t) ∫ τ(t)0 a−1 dτ .
Since for ρ + 3P > 0, a grows slower than linear in τ , this integral converges, is

finite. As we have seen (in Eq. (1.25)), a(τ) ∝ τ 2
3(1+w) if w = P/ρ is constant.

For example, the size of the causal horizon at recombination is seen today under
the angle of about 1◦, if the Universe was radiation (w = 1/3) and matter (w = 0)
dominated up to recombination see Exercise 1.10. It is therefore very mysterious
that we see the same microwave background temperature on patches separated by
much more than 1◦, which had never been in causal contact before the microwave
photons had been emitted. This is the “horizon problem.”

Another problem is the following: the Friedmann equations, (1.139) and (1.140),
allow us to derive an evolution equation for �(t) ≡ 8πGρa4/3ȧ2 ≡ 1+K/H2,

d

dt
(�(t)− 1) = (�(t)− 1)

8πGa2

3

(
ρ + 3P

H

)
. (1.141)

This shows that, in an expanding universe with ρ + 3P > 0, � = 1 is an unstable
fixed point of evolution: if �(t) > 1, the derivative is positive and �(t) increases
while for �(t) < 1, the derivative is negative and �(t) decreases. For a present
value of 0.1 < �0 < 2 we need |�(ηnuc) − 1| ∼ (zeq/z

2
nuc)|�0 − 1| ≤ 10−15

at nucleosynthesis, or |�(tP ) − 1| ≤ 10−60 at the Planck time, τP =
√
h̄G/c5 �

5.4 × 10−44 s. Why is �(t) still of order unity so long after the only timescale in
the problem that is τP ?
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This “flatness problem” can also be formulated as an “entropy problem.” The
entropy inside the curvature radius is already of the order of SK ≥ 1088 at the
Planck time.

Another problem is the “monopole problem” or more generically the problem
of unwanted “relics.” Most particle physics models produce some stable “relics”
at very high temperatures, which are not observed in the present Universe. A very
rapid phase of expansion can help to dilute such relics.

To resolve these problems one introduces an “inflationary phase.” Inflation is
a phase during which the strong energy condition, ρ + 3P > 0, is violated and
expansion can therefore be much more rapid than linear in τ .

1.5.2 Scalar Field Inflation

We now study the most common solution of the aforementioned problems, namely
the introduction of a period in which the dynamics of the Universe is dominated by
a scalar field, φ which is usually called the “inflaton.” The scalar field Lagrangian
is given by

Lφ = −1

2
∂μφ ∂

μφ −W(φ). (1.142)

The sign of the kinetic term in the foregoing Lagrangian may differ from what you
are used to from quantum field theory. This comes from the fact that we use the
metric signature (−, + , + ,+) .

The field φ can, in principle, interact with other fields such as fermions, gauge
bosons, and so forth, but we assume that this interaction can be neglected during
inflation, and that energy and pressure are dominated by the contribution from the
inflaton. The energy–momentum tensor of φ is given by

Tμν = −2√−g
∂

∂gμν
(
√−gLφ),

where g = det(gμν). This yields

Tμν = ∂μφ ∂νφ + gμνLφ

= ∂μφ ∂νφ − 1

2
gμν ∂λφ ∂

λφ − gμνW(φ).

Here we have used that the derivatives of the determinant A of an arbitrary matrix
Aab with respect to the elements of its inverse,Aab, are given by ∂A/∂Aab = AAab.

For the energy density and pressure we thus obtain

ρφ = −T 0
0 =

1

2a2
φ̇2 + 1

2a2
(∇φ)2 +W(φ), (1.143)
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and

Pφ = 1

3
T ii =

1

2a2
φ̇2 − 1

6a2
(∇φ)2 −W(φ). (1.144)

We now assume that there exists some region of space within which we may
neglect the spatial derivatives of φ, at some initial time τi , and the temporal deriva-
tive is much smaller than the potential,

∇φ(x,τi)� φ̇(x,τi)� W(φ). (1.145)

Furthermore, we assume that the potential is positive,

W(φ(x,τi)) > 0. (1.146)

We then have

3H 2

8πG
= ρ = ρφ = 1

2a2
φ̇2 +W(φ) � W(φ), (1.147)

P = Pφ = 1

2a2
φ̇2 −W(φ) � −W(φ), (1.148)

so that Pφ � −ρφ and ρφ + 3Pφ � −2W(φ) < 0. (We have neglected a pos-
sible curvature term. Qualitatively nothing changes if we include it, since it soon
becomes subdominant.)

This is the basic idea of inflation: at some early time, in some sufficiently large
patch, the Universe is dominated by the potential of a slowly varying (slow rolling)
scalar field, and hence it is in an inflationary phase. During inflation this patch
expands rapidly and the causal horizon becomes very large and �(t) tends to 1, so
that the curvature term is soon negligible. As time goes on, the scalar field starts
evolving faster and inflation eventually comes to an end when the time derivative
φ′2 grows to the order of W . The scalar field then soon reaches the minimum of
the potential and starts to oscillate. We suppose that at large values of a−1φ̇, the
coupling of the inflaton to other fields becomes significant so that it decays into
a thermal mix of elementary particles, leading to a radiation-dominated universe.
There are many detailed realizations of this basic picture that can be found in the
literature; see, for example, Liddle and Lyth (2000). It is, however very difficult to
deduce them from a serious high-energy physics theory such as string theory.

Let us study slow roll inflation in somewhat more detail. When neglecting spatial
derivatives, the equation of motion of the scalar field becomes (W,φ ≡ dW/dφ)

φ̈ + 2

(
ȧ

a

)
φ̇ + a2W,φ = 0, (1.149)

φ′′ + 3

(
a′

a

)
φ′ +W,φ = 0, (1.150)
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in conformal time, Eq. (1.149), and in cosmic time, Eq. (1.150). During slow
rolling, the first term of this equation is negligible with respect to the two others,
so that

3

(
a′

a

)
φ′ � −W,φ . (1.151)

The slow roll conditions are therefore

1

2
φ′2 � W and |φ′′| � 3H |φ′|. (1.152)

WithH = a′/a, slow rolling also implies thatH ′ � H 2. Taking the time derivative
of Eq. (1.147) and replacing φ′ by (1.151) yields the slow roll conditions

ε1 ≡ −H
′

H 2
= H2 − Ḣ

H2
≈ m2

P

16π

(
W,φ

W

)2

� 3

2

φ′2

W
� 1. (1.153)

The second condition of Eq. (1.152) gives∣∣∣∣ φ′′3Hφ′

∣∣∣∣ � 1.

We now set

ε2 ≡ − m
2
P

24π

(
W,φφ

W

)
and require |ε2| � 1. (1.154)

Note that ε1 is always positive while ε2 can have either sign. With H 2 � 8πW/
(3m2

P ), and the derivative of φ′ = −W,φ/(3H), one finds that the inequalities
(1.153) and (1.154) are equivalent to the slow roll conditions (1.152). The parame-
ters ε1 and ε2 are the slow roll parameters. Inflation terminates when ε1 approaches
unity. In the literature one often uses the notation ε ≡ ε1 and δ ≡ −ε2/3.

Taking the derivative (w.r.t. t) of Eq. (1.153) in the last equals sign, one obtains

ε̇1 = 2ε1 (3ε2 + 2ε1)H,
ε̇1

Hε1
= 6ε2 + 4ε1 ≡ η. (1.155)

The last equation can also be used as a definition of ε2 (or, more consistently, η).
The advantage of this definition is its independence of the realization of slow roll
inflation by means of a scalar field. A more systematic procedure along these lines
is to define ε̃1 ≡ ε1 and ε̃2 = ( ˙̃ε1/ε̃1)H−1 = η, ε̃3 = ( ˙̃ε2/ε̃2)H−1, and so forth. Our
parameter ε2 is related to ε̃2 ≡ η via

ε2 = −2

3
ε1 + 1

6
η. (1.156)

While ε2 is usually of the same order of magnitude as ε1, we expect η to be
significantly smaller.
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As an example we consider power law expansion, a ∝ tq . In this case we have

H = q
t
, ε1 = 1+ 1

q
, ε2 = −2

3
ε1, ε̃2 = ε̃n = 0. (1.157)

During slow roll inflation, q ∼ −1, the parameters ε1 and ε2 are small. Also note
that ε2 = −(2/3)ε1 during power law expansion. The parameters ε̃i , i > 1 describe
the deviation from power law expansion. They have been used in the literature to
derive a systematic slow roll expansion to higher orders (Schwarz et al., 2001). In
this book we shall not go beyond the first order and we use the standard parameters
ε1 and ε2 to make contact with the standard literature.

There are two principally different possibilities for slow roll inflation.

(1) We first consider a potential that is simply ∝ φn, so that W,φφ/W ∼
(W,φ/W)

2 ∼ φ−2. The slow roll conditions then require φ � mP and inflation
stops when the inflaton becomes of order the Planck mass. These models
are termed large-field inflation. Setting W = (λ/n)m4

P (φ/mP )
n, during the

inflationary phase, Eq. (1.151) together with Eq. (1.147) implies√
24πλ

n
mP (φ/mP )

n/2 φ′ = −λm3
P

(
φ

mP

)n−1

. (1.158)

Dividing by φn−1, if n 
= 4 the left-hand side becomes the derivative of
(φ/mP )

2−n/2, which hence is a constant. If n = 4, the left-hand side is ∝ 1/φ,
that is, the derivative of log(φ/mP ). The general solution is therefore given by

φ(τ)(4−n)/2 = φ(4−n)/2i − 4− n
2

√
nλ/24πmP (τ − τi) if n 
= 4, (1.159)

φ(τ) = φi exp

(
−

√
λ

6π
mP (τ − τi)

)
if n = 4. (1.160)

Inserting now φ′ = −√λn/24πm2
P (φ/mP )

n/2−1 in the Friedmann equation,

(log(a))′ =
√

8πλ

3n
mP (φ/mP )

n/2,

we obtain

d log(a)

dφ
= −8π

n

φ

m2
P

,

with solution

a(τ) = ai exp

(
4π

nm2
P

(φ2
i − φ2)

)
. (1.161)

This case is illustrated in Fig. 1.11.



50 The Homogeneous and Isotropic Universe

Fig. 1.11 Large-field inflation for W = λm2
P φ

2/2. The bottom panel shows the
inflaton φ in units of mP rolling linearly in time. In the upper panel the evolution
of the slow roll parameter, ε1(t), is indicated. As long as φ > mP , ε1 = −2ε2
stays small. At φ ∼ mP , ε1 starts to grow and inflation stops.

(2) If the potential is more complicated and has a very flat regime in the vicinity
of its maximum φ = σ � mP , like, for example, the Coleman–Weinberg
potential (Kolb and Turner, 1990),

W(φ) = 1

2
σ 4 + φ4

[
ln

(
φ2

σ 2

)
− 1

2

]
,

we speak of small-field inflation. This potential passes through 0 at φ = σ . In
this case, the slow roll conditions are satisfied for field values |φ|<∼ σ , which
are much smaller than the Planck mass.

During a potential dominated phase where ρ ∼ −P ∼ W ∼ constant, the
solutions of the Friedmann equations are

a = a0 exp(τH) = 1

H |t | (−∞ < t < 0, −∞ < τ <∞), (1.162)

H 2 = 8πG

3
W = constant, (1.163)

H = aH = 1

|t | . (1.164)
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The limit τ →∞ corresponds to t → 0. The foregoing solution is a portion of de
Sitter spacetime.6

Denoting by indices i and f the beginning and the end of inflation, the number
of e-foldings of expansion during inflation is given by

N(φf,φi) = ln

(
a(τf )

a(τi)

)
.

Using

N(φf,φi) = ln af − ln ai =
∫ af

ai

da

a
,

we obtain

N(φf,φi) =
∫ af

ai

1

a
da =

∫ τf

τi

a′

a
dτ =

∫ τf

τi

H dτ . (1.165)

With Eq. (1.151) we can write

H dτ = H dτ
dφ
dφ = H dφ

φ′
= −3H 2 dφ

W,φ
.

The number of e-foldings is hence given by

N(φf,φi) = −3
∫ φf

φi

H 2

W,φ
dφ � − 8π

m2
P

∫ φf

φi

W

W,φ
dφ = −2

√
π

∫ φf

φi

1√
ε1

dφ

mP

∼ 8π

n

φ2
i

m2
P

. (1.166)

The last∼ sign is valid only for large-field inflation, whereW ∝ φn and we suppose

φf ∼ mP � φi .

The slow roll conditions imply

Ntot = N(φf,φi)� 1. (1.167)

For w = P/ρ = constant we have

|�(τ)− 1| = 3|K|
8πGa2ρ

∝ a1+3w.

During an inflationary phase, w = −1, |�(τ)−1| decreases like 1/a2. To reduce it
from a value of order unity down to ∼ 10−60 we therefore need about 30 ln(10) ∼
70 e-foldings of inflation.

6 de Sitter spacetime is the solution to the Einstein equationGμν = �gμν with � > 0. The solution with � < 0
is called anti-de Sitter; see Hawking and Ellis (1973).
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1.5.3 Preheating and Reheating

When inflation ends, φ decays rapidly and starts oscillating about its minimum.
The details of this process depend on the couplings of the inflaton to other degrees
of freedom, which eventually decay into the degrees of freedom of the standard
model. For this discussion we consider a simple toy model with Lφ = − 1

2∂μφ∂
μφ−

1
2m

2
φφ

2. At the end of inflation the inflaton oscillates as

φ = φ0(τ ) cos(mφτ)

with a slowly varying amplitude φ0(τ )�mP . The inflatons have vanishing momen-
tum and their number density is

nφ = ρφ

mφ
= 1

2mφ
((φ′)2 +m2

φφ
2) � 1

2
mφm

2
P . (1.168)

For example, for mφ = 1015 GeV this amounts to the huge number density of
nφ ∼ 1095 cm−3.

Independent of the detailed form of the potential, to lowest order, φ is a harmonic
oscillator with frequency m2

φ � W,φφ(φ0) (as long as the quadratic term in the
potential does not vanish). For a harmonic oscillator, when averaging over one
period we have

〈W 〉 = 1

2a2
〈φ̇2〉,

so that

〈pφ〉 =
〈

1

2a2
φ̇2 −W

〉
= 0, and hence 〈ρφ〉 ∝ a−3.

We assume that during these oscillations, the coupling of φ to other degrees of
freedom becomes relevant and the inflaton finally decays into a mix of elementary
particles. In a first approximation we can describe the coupling with the other
degrees of freedom by means of a term of dissipation of the form �φ̇ in the equation
of motion for φ,

φ′′ + 3Hφ′ + �φ′ = −W,φ(φ). (1.169)

As long as H � � (during inflation), particle production is negligible. When
H � �, reheating takes place and the inflaton energy is rapidly dissipated into
other particles that couple to the inflaton.

In order to discuss the decay of the inflaton in somewhat more detail, we consider
a toy model in which the interaction is dominated by the coupling of φ to a scalar
field χ with Lagrangian

Lχ = −1

2
∂μχ ∂

μχ − 1

2
m2
χχ

2. (1.170)
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The interaction between the inflaton φ and the matter field χ is supposed to be of
the form

Lint = −1

2
gφχ2, (1.171)

where g is a coupling constant with the dimension of mass. The full Lagrangian is
then given by

L = Lφ + Lint + Lχ . (1.172)

The decay rate of the φ particles in Born approximation is

�φ ∼ g2

mφ
.

However, inserting this into Eq. (1.169) is a good approximation only as long as the
mean number of χ particles already present in a given momentum mode k is small
so that we may neglect stimulated emission. The effective mass of χ -particles is

meff =
√
m2
χ + gφ(t) so that their momentum is

k =
(
m2
φ

4
−m2

eff

)1/2

.

Here we have taken into account that each inflaton decays into two χ -particles.
Now, φ(t) ∈ [−mP,mP ]. Hence, if m2

φ � m2
χ + gmP , the band of possible

momenta is given by k ∈ [k0 −�k,k0 +�k] with

k0 =
√
m2
φ

4
−m2

χ �
mφ

2
and �k � gmP

mφ
� k0.

Because �k � k0 this situation is called “narrow band preheating.” As we shall
see in the text that follows, this process leads to resonant amplification.

The number of χ -particles with momentum k is roughly given by the total num-
ber of χ -particles divided by the number of “elementary phase space volumes,”
(2π)3, in the allowed volume of phase space, 4πk2

0(2�k). This yields

Nk � 4π2nχ

gmφmP
� 2π2mPnχ

gnφ
.

For the second� sign we made use of Eq. (1.168). This occupation number exceeds
unity as soon as a fraction g/mP of φ-particles is converted into χ -particles. After
that moment, stimulated emission can no longer be neglected and Eq. (1.169)
becomes a bad approximation. Since g/mP typically is very small, this is usually
the case very soon. As we shall now see, when this happens, stimulated emission
leads to resonant production of χ -particles in certain k-bands.
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To calculate the generation of χ -particles in more detail we vary the Lagrangian
with respect to χ to obtain the χ -equation of motion,

χ ′′ + 3Hχ ′ − a−2∇2χ + (m2
χ + gφ0 cos(mφτ))χ = 0.

To study qualitatively the decay of the φ-particles into χ , we neglect expansion
by setting H = 0, a = 1 and φ0 = constant. Fourier transforming the above
equation, we then obtain for the mode χk

χ ′′k +
[
ω2
k + 2μ cos(mφτ)

]
χk = 0, μ = gφ0

2
, ω2

k = k2 +m2
χ .

This equation is known as the Mathieu equation. Its solutions are characterized by
resonance bands of widths �ω(n)k centered at the frequencies

ω
(n)
k = n

2
mφ .

The widths are of the order of

�ω
(n)
k

ω
(n)
k

�
(

2μ

ω
(n)2
k

)n
= �k

(n)

k(n)
�

(
4gmP
n2m2

φ

)n
∝

( g

n2

)n
.

For frequencies within these bands, χk is amplified exponentially fast (for more
details on the Mathieu equation and resonant amplification, see Arnold, 1978).
Since the width of the nth resonance is proportional to gn, it appears only at
nth order in perturbation theory. For small couplings only the first resonance
ω
(1)
k = mφ/2 with �ω(1)k = �k is relevant.
When we take into account the expansion of the Universe, the frequency ωk

becomes time dependent. A given frequency therefore spends only a finite time
in the resonance band and the energy transfer from φ into χ remains perfectly
finite. Nevertheless, this parametric resonance is much more efficient than the decay
obtained by some effective damping rate �.

After parametric resonance, χ is not yet in a thermal state. This period is there-
fore called “preheating.” After preheating, the coupling of χ to other degrees of
freedom leads to thermalization; this process is called reheating. The importance of
preheating lies in its efficiency in transferring energy. If the χ -field couples strongly
to the standard-model particles, reheating and thermalization can proceed much
faster over resonant decay than over the necessarily weak average coupling of the
inflaton to other particles.

If the condition m2
φ > m

2
χ + gφ(t) is not satisfied, �ω(1)k = �k is not small and

we have “broad-band” resonance. In this case, the effective mass of the χ -particles
can be larger than the mass of the φ-particles and only the coherent decay of several
inflatons can lead to χ -production. For a discussion of the main physical processes
in this case see Mukhanov (2005). One of the most interesting consequences of
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broad-band resonance is that it can lead to the production of particles that are
heavier than the inflaton.

Changing the coupling to Lint = − 1
2 g̃φ

2χ2 does not affect the generic behavior
of preheating. We can again obtain a Mathieu equation but with resonant frequency
ω(n) = nmφ and width �ω(n)/ω(n) = (2g̃φ2

0/ω
(n)2)n; see Exercise 1.11. Due to the

Pauli exclusion principle, couplings of the inflaton to fermions cannot give raise
to parametric resonance. The details of the reheating process and the temperature
at the end of reheating depend on the particle physics model describing the cou-
pling of φ and χ to other particles, especially to the standard model particles. The
reheating temperature can go from 1 TeV < T < 1013 GeV.

1.5.4 Resolution of the “Cosmological Problems”

At the end of the reheating process, τ = τrh, all the energy is supposed to be ther-
malized and the Universe is dominated by relativistic particles, satisfying P = ρ/3
such that

ρ ∝ a−4.

To determine the duration of inflation necessary in order to solve the horizon prob-
lem, we consider the entropy, SH , contained in a volume that corresponds to one
Hubble scale, H−1

i , at the beginning of inflation. Since expansion is adiabatic
after inflation, the entropy inside a given physical volume remains constant. The
requirement that the present Hubble scale, H−1

0 , be smaller than the size of the
causal horizon is therefore equivalent to SH > SH0 , where SH0 denotes the entropy
inside the volume H−3

0 . The entropy inside a causal volume, H−3
i (a/ai)

3, is given
by its value

SH � H−3
i

(
arh

ai

)3

T 3
rh,

after reheating. The Hubble parameter at the beginning of inflation is

H 2
i �

8π

3m2
P

W(φi),

so that

SH � H−3
i

(
af

ai

)3 (
arh

af

)3

T 3
rh �

m3
P

W
3/2
i

e3Ntot
ρf

Trh
.

For the last � sign we have assumed that the Universe was roughly matter domi-
nated from the end of inflation until the end of reheating, ρ ∝ a−3 and ρrh ∼ T 4

rh.
With ρf ∼ Wf , this yields
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SH � m3
PWf

TrhW
3/2
i

e3Ntot .

In order to solve the entropy problem, we require that this entropy is at least as
large at the entropy in the present Hubble horizon, SH > SH0 � T 3

0 H
−3
0 � 1088.

This now results in

Ntot ≥ Nmin = 88

3
ln(10)+ ln

(
T

1/3
rh W

1/2
i

mPW
1/3
f

)
. (1.173)

For example, in a model withW = 1
2m

2
φφ

2, we have large-field inflation that stops
roughly when φ = φf � mP so thatWf = 1

2(mφmP )
2 andWi = 1

2(mφφi)
2. Hence

Nmin = 88

3
ln(10)+ 1

3
ln

(
Trhmφ

m2
P

)
+ ln

(
φi

mP

)
.

If Ntot ≥ Nmin the horizon problem is also solved. Indeed, since the entropy inside
a comoving volume is conserved after inflation, the present volume of radius H−1

0

has grown out of a radius that was smaller than H−1
i at the beginning of inflation,

and therefore was already in causal contact before the beginning of inflation.
To solve the flatness problem we must enlarge the curvature scale to RK(τ0) ≥

H−1
0 . This is equivalent to SK(τ0) ≥ SH(τ0) � 1088. With

R3
K(τrh) = R3

K(τi)

(
af

ai

)3

= H−3
i

|�i − 1|3/2
(
af

ai

)3

,

this leads to

Ntot ≥ Nmin + 1

2
log |�i − 1|. (1.174)

Comparing Nmin with Eq. (1.166), we find that successful inflation with a simple
1
2m

2
φφ

2 potential requires φi >∼ a few times mP . After an inflationary period that is
sufficiently long, so that the conditions (1.173) and (1.174) are satisfied, both the
horizon and flatness problems are resolved. During such an inflationary phase also
all unwanted relics are diluted by a factor of exp(3Ntot).

Finally, it is important to note that we do not require a perfectly homogeneous
and isotropic universe, or even thermal equilibrium prior to inflation. We just need a
small “patch” in an otherwise arbitrary, chaotic, universe, within which the gradient
and kinetic energy are much smaller than the potential energy, so that the slow roll
conditions are satisfied. This patch then inflates to encompass the entire present
Hubble volume. This idea of “chaotic inflation” goes back to Linde (1989) and it is
of course much more satisfactory than a model in which the Universe has to start
out with homogeneous and isotropic spatial sections before inflation.
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When discussing inflation, one of the most mysterious problems of gravity
becomes apparent: while adding a constant to the potential W of the scalar field
does not affect any of the other interactions, it severely alters gravity. It modifies
cosmic expansion in the same way as adding a cosmological constant. What
determines the correct level of a potential? This question is equivalent to the
problem of the cosmological constant. Why is the present cosmological constant
so small, �/(8πG) � (2× 10−3 eV)4, much smaller than any fundamental energy
scale? The problem is even more serious when we remember that in quantum
field theory we use the freedom to add or subtract a constant from the potential
by absorbing the infinite zero-point energy into it. Furthermore, at each phase
transition this zero-point energy changes by a finite, calculable amount. Before
the discovery of the accelerated expansion of the Universe, which is most simply
interpreted as a cosmological constant, �/(8πG) � (2 × 10−3 eV)4 
= 0, it was
justifiable to assume that the freedom of the cosmological constant has to be used
in order to annihilate any vacuum energy contribution from quantum field theory,
so that the effective cosmological constant would vanish,�eff = �+8πGW0 = 0.
Present observations, however, indicate that this compensation takes place only
approximately, leaving a small but nonvanishing effective cosmological constant,
�eff 
= 0, which starts to dominate the expansion of the Universe just at present
time, when there are sufficiently developed intelligent beings in the Universe that
wonder about it. In all the cosmic past, this cosmological constant was completely
negligible, and in all the cosmic future, it will be the only relevant contribution
to expansion. Only at present it is comparable with the mean mass density of
the Universe. Apart from the bizarre value of �eff, we thus also have a strange
coincidence problem.

This is presently one of the deepest problems of physics. Ordinary quantum
field theory does not determine the vacuum energy of quantum fields, but only
changes that may happen depending on the external conditions. We may hope that
a quantum theory of gravity addresses the cosmological constant problem. The
cosmological constant may even represent our first observational data related to
quantum gravity.

Exercises

(The exercises marked with an asterisk are solved in Appendix 11 which is not
in this printed book but can be found online.)

1.1 Coordinates
Find the coordinate transformation leading from the coordinates used in
Eq. (1.9) to those of Eq. (1.10) and finally of Eq. (1.8).



58 The Homogeneous and Isotropic Universe

1.2 FL universes are conformally flat
Show that FL universes are conformally flat (also when the curvature does
not vanish) and find the coordinate transformation (τ,r)→ (σ,ρ) such that

−dτ 2 + a2(τ )γij dx
i dxj = A2(σ,ρ)ημν dX

μ dXν, (1.175)

with σ = X0 and ρ2 = ∑3
i=1(X

i)2.

1.3 Matter and radiation mixture
Consider an FL universe containing a mixture of nonrelativistic matter
(dust) and radiation with vanishing curvature. The respective densities and
pressures are ρm, ρr , and Pm = 0, Pr = ρr/3. We denote the ratio of
radiation to matter by R = ρr/ρm.

(a) Determine w and c2
s as functions of R. What is the time dependence

of R?
(b) For a given redshift zeq � 1 of matter and radiation equality determine

the scale factor as a function of conformal and of physical time;
normalize the scale factor to 1 at equality, aeq = 1.

(c) Determine teq and τeq as functions of zeq, and H0.

1.4 Cosmological constant∗

Investigate the dynamics of an FL universe with matter (P = 0) and a
cosmological constant �.

(1) Show for a sufficiently small cosmological constant and positive
curvature that the Universe recollapses in a “big crunch,” while for
a larger cosmological constant or nonpositive curvature, the Universe
expands forever.

(b) Show furthermore that for an even higher cosmological constant there
are solutions that have no big bang in the past, but issue from a previous
contracting phase. The transition from the contracting to an expanding
phase is called the “bounce.”

(c) Make a plot in the plane (�m,��) distinguishing the regimes deter-
mined earlier.

(d) For case (b), determine (numerically) the redshift of the bounce as a
function of �� for fixed �m = 0.1. Discuss.

1.5 Helium recombination
Write the Saha equation Eq. (1.73) for the two helium recombination
processes and use it to determine the helium recombination temperatures,
T2→1 and T1→0.
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Hint: As a simplifying assumption neglect the fact that helium uses up
some of the electrons and simply set ne � nB .

1.6 Rayleigh scattering
The Rayleigh scattering cross section for an atom is σRa � α2/λ4, where
α is the polarizability and λ the photon wavelength. For hydrogen atoms
α � 3.8×10−24cm3. Show that after recombination the Rayleigh scattering
rate of CMB photons on hydrogen atoms is much smaller than the
expansion rate H .

1.7 Distribution functions
Show that in the nonrelativistic limit,m� T both, the Fermi–Dirac and the
Bose–Einstein distributions reduce to a Maxwell–Boltzmann distribution
and the number and energy density are given by

n = 2

(2π)3
exp(−(m− μ)/T )(2πmT )3/2, ρ = mn, (1.176)

where μ is the chemical potential.

1.8 Liouville equation
Using that, in an FL universe the distribution function f depends only on
(conformal) time t and p = √

γijpipj , derive Eq. (1.88).

1.9 The neutrino background
Determine the neutrino cross section for the reaction e− + ν̄ → e− + ν̄
at energy Eν = Tν(t0). Compare it with the cross section of the neutrinos
detected in the super-Kamiokande experiment. Keeping the efficiency of
super-Kamiokande, how large a water tank would you need to detect
neutrinos from the cosmic background?

1.10 Angular diameter distance
Determine the angular diameter distance to the last scattering surface under
the assumptions K = � = 0. Under which angle do we presently see the
causal horizon of this time, a(trec)trec ? How does this result change if one
admits a cosmological constant so that �m = 0.3 and �� = 0.7?

1.11 Resonant amplification
Consider an inflaton coupled to a scalar field with Lχ = − 1

2 ∂μχ ∂
μχ − 1

2
m2
χχ

2 and Lint = − 1
2 g̃φ

2χ2. Consider the equation of motion of χ in the
classical background solution φ(t) = φ0 cos(mφτ). Neglect the cosmic
expansion. Show that the equation for each Fourier mode can be written as
a Mathieu equation and discuss the resonance frequencies and widths.
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Perturbation Theory

2.1 Introduction

In this chapter we develop in detail the theory of linear perturbations of a
Friedmann–Lemaı̂tre universe. This theory is of utmost importance, since we
assume that the observed structure in the Universe (galaxies, cluster voids, etc.)
have grown out of small initial fluctuations. Their entire evolution from the
generation of the fluctuations until the time when they become of order unity
can be studied within linear perturbation theory. This is especially relevant for the
fluctuations in the CMB which are still very small today. It is also one of the main
reasons why CMB anisotropies are so important for observational cosmology: they
can be calculated to very good accuracy within linear perturbation theory, which is
simple and lends itself to highly accurate and fast computations.

The idea that the large-scale structure of our Universe might have grown out of
small initial fluctuations via gravitational instability goes back to Newton [letter
to Bentley, 1692 (Newton, 1958)]. The first relativistic treatment of linear pertur-
bations in a Friedmann–Lemaı̂tre universe was given by Lifshitz (1946). There he
found that the gravitational potential cannot grow within linear perturbation theory
and he concluded that galaxies have not been formed by gravitational instability.

Today we know that in order to form structures it is sufficient that matter density
fluctuations can grow. Nevertheless, considerable initial fluctuations with ampli-
tudes of the order of 10−5 are needed in order to reproduce the cosmic structures
observed today. These are much larger than typical statistical fluctuations on scales
of galaxies and we have to suggest a mechanism to generate them. Furthermore, the
measurements of anisotropies in the CMB show that the amplitude of fluctuations
in the gravitational potential is constant over a wide range of scales, that is, the
fluctuation spectrum is scale independent.

As we shall see in Chapter 3, inflation generically produces such a spectrum of
nearly scale-invariant fluctuations.

60
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We begin this chapter by defining gauge-invariant perturbation variables. Then
we present the basic perturbation equations. As examples for the matter equa-
tions we shall consider perfect fluids and scalar fields. Then we discuss light-like
geodesics, which present a good approximation for CMB anisotropies on suffi-
ciently large scales and are important for discussing the effect of lensing. The
final section is devoted to the definition of the power spectrum and an elementary
discussion of statistical issues. Owing to their complexity and importance for the
goal of this book, we devote special chapters to the perturbed Boltzmann equation
for CMB anisotropies, Chapter 4, and for polarization, Chapter 5.

2.2 Gauge-Invariant Perturbation Variables

The observed Universe is not perfectly homogeneous and isotropic. Matter is
arranged in galaxies and clusters of galaxies and there are large voids in the
distribution of galaxies. Let us assume, however, that these inhomogeneities grew
out of small variations of the geometry and of the energy–momentum tensor, which
we shall treat in first-order perturbation theory. For this we define the perturbed
geometry by

gμν = ḡμν + εa2hμν, (2.1)

ḡμν being the unperturbed Friedmann metric defined in the previous chapter. We
conventionally set (absorbing the “smallness” parameter ε into hμν)

gμν = ḡμν + a2hμν, ḡ00 = −a2, ḡij = a2γij, |hμν | � 1,

T μν = T
μ

ν + θμν , T
0
0 = −ρ̄, T

i

j = P̄ δij, |θμν |/ρ̄ � 1.
(2.2)

2.2.1 Gauge Transformation, Gauge Invariance

The first fundamental problem we want to discuss is the choice of gauge in cosmo-
logical perturbation theory.

For linear perturbation theory to apply, the spacetime manifold M with metric
g and the energy–momentum tensor T of the real, observable Universe must be in
some sense close to an FL universe, that is, the manifold M with a Robertson–
Walker metric ḡ and a homogeneous and isotropic energy–momentum tensor T . It
is an interesting, nontrivial unsolved problem how to construct “the best” ḡ and T
from the physical fields g and T in practice. There are two main difficulties: first,
spatial averaging procedures depend on the choice of a hypersurface of constant
time and they do not commute with derivatives, so that averaged fields ḡ and T
will, in general, not satisfy Einstein’s equations. Second, averaging is in practice
impossible over superhorizon scales.
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Even though we cannot give a constructive prescription of how to define the
nearly homogeneous and isotropic spatial slices from the physical spacetime, or the
spatially averaged metric and energy–momentum tensor, we now assume that there
exists an averaging procedure that leads to an FL universe with spatially averaged
tensor fields S, such that the deviations are small,

|Tμν − T μν |
max{αβ}{|T αβ |}

� 1 and
|gμν − gμν |

max{αβ}{gαβ}
� 1,

and where ḡ and T satisfy Friedmann’s equations. The latter condition can be
achieved, for example by defining T via the Friedmann equations. Let us call such
an averaging procedure “admissible.” There may be many different admissible aver-
aging procedures (e.g., over different hypersurfaces) leading to slightly different
FL backgrounds. But since |g − ḡ | is small of order ε, the difference of the two
FL backgrounds must also be small of order ε and we can interpret it as part of the
perturbation.

We now consider a fixed admissible FL background (ḡ,T ) as chosen. Since the
theory is invariant under diffeomorphisms (coordinate transformations), the pertur-
bations are not unique. For an arbitrary diffeomorphism φ and its push forward φ∗,
the two metrics g and φ∗(g) describe the same geometry. Since we have chosen
the background metric ḡ we only allow diffeomorphisms that leave ḡ invariant,
that is, that deviate only in first order from the identity. Such an “infinitesimal”
diffeomorphism can be represented as the infinitesimal flow of a vector field X,
φ = φXε . Remember the definition of the flow: for the integral curve, γx(s), of X
with starting point x, that is, γx(s = 0) = x we have φXs (x) = γx(s). In terms of
the vector field X, to first order in ε, its push forward is then of the form

φ∗ = id + εLX +O(ε2),

where LX denotes the Lie derivative in directionX (see Appendix 2, Section A2.2).
The transformation g → φ∗(g) is equivalent to ḡ + εa2h→ ḡ + ε(a2h+ LXḡ)+
O(ε2). Under an “infinitesimal coordinate transformation” the metric perturbation
h therefore transforms as

h→ h+ a−2LXḡ . (2.3)

In the context of cosmological perturbation theory, infinitesimal coordinate trans-
formations are called “gauge transformations.” The perturbation of an arbitrary
tensor field S = S̄ + εS(1) obeys the gauge transformation law

S(1)→ S(1) + LXS̄. (2.4)

Since every vector field X generates a gauge transformation φ = φXε , we can
conclude that only perturbations of tensor fields with LXS = 0 for all vector
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fields X, that is, with vanishing (or constant) “background contribution,” are gauge
invariant. This result is called the “Stewart–Walker lemma” (Stewart and Walker,
1974).

The gauge dependence of perturbations has caused many controversies in the lit-
erature, since it is often difficult to extract the physical meaning of gauge-dependent
perturbations, especially on superhorizon scales. This problem is solved by gauge-
invariant perturbation theory, which we are going to use throughout this book. The
advantage of the gauge-invariant formalism is that the variables used have simple
geometric and physical meanings and are not plagued by gauge modes. Although
the derivation requires somewhat more work, the final system of perturbation
equations is usually simple and well suited for numerical treatment. We shall also
see that on subhorizon scales, the gauge-invariant matter perturbation variables
approach the usual, gauge-dependent ones. Since one of the gauge-invariant
geometrical perturbation variables corresponds to the Newtonian potential, the
Newtonian limit can be performed easily.

First we note that all relativistic equations are covariant and can therefore be
written in the form S = 0 for some tensor field S. The corresponding background
equation is S = 0; hence S(1) is gauge invariant. It is thus always possible to express
the corresponding perturbation equations in terms of gauge-invariant variables.

The principal sources of this chapter are the following reviews on gauge-
invariant cosmological perturbation theory: Bardeen (1980), Kodama and Sasaki
(1984), Mukhanov et al. (1992), Durrer (1994).

2.2.2 Harmonic Decomposition of Perturbation Variables

Since the {t = constant} hypersurfaces are homogeneous and isotropic, it is
reasonable to perform a harmonic analysis: a (spatial) tensor field on these hyper-
surfaces can be decomposed into components that transform irreducibly under
translations and rotations. All such components evolve independently. Decompo-
sition into irreducible components of the translation symmetry corresponds to a
harmonic analysis, that is, decomposition into eigenfunctions of the Laplacian.
For a scalar quantity f in the case K = 0 this is nothing else than its Fourier
decomposition:

f (x,t) = 1

(2π)3

∫
d3k f (k,t) eikx. (2.5)

(The exponentials Qk(x) = eikx are the unitary irreducible representations of the
Euclidean translation group.) For K = 1 such a decomposition also exists, but the
values k are the discrete eigenvalues of the Laplacian on the 3-sphere, k2 = �(�+2)
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and for K = −1, they are bounded from below, k2 > 1. Of course, the functions
Qk depend on the curvature K .

They form the complete orthogonal set of eigenfunctions of the Laplacian,

�Q
(S)
k = −k2Q

(S)
k . (2.6)

In addition, a tensorial variable (at fixed position x) can be decomposed into
irreducible components under the rotation group SO(3).

For a spatial vector field, this is its decomposition into a gradient and a curl,

Vi = ∇iϕ + Bi, (2.7)

where

Bi|i = 0, (2.8)

where we used X|i to denote the three-dimensional covariant derivative of X. Here
ϕ is the spin-0 and B is the spin-1 component of the vector field V.

For a spatial symmetric tensor field we have

Hij = HLγij +
(
∇i∇j − 1

3
�γij

)
HT + 1

2

(
H
(V )
i|j +H(V )j |i

)
+H(T )ij , (2.9)

where

H
(V )|i
i = H(T )ii = H(T )ji|j = 0. (2.10)

Here HL and HT are spin-0 components, H(V )i is the spin-1 component, and H(T )ij

is the spin-2 component of the tensor field H .
We shall not need higher tensors (or spinors). As a basis for vector and tensor

modes we use the vector- and tensor-type eigenfunctions of the Laplacian,

�Q
(V )
j = −k2Q

(V )
j and (2.11)

�Q
(T )
ji = −k2Q

(T )
ji , (2.12)

where Q(V )j is a transverse vector, Q(V )|jj = 0 and Q(T )ji is a symmetric transverse

traceless tensor, Q(T )jj = Q
(T )|i
j i = 0. Both Q(V )j and Q(T )ji have two degrees of

freedom. In the case of vanishing curvature we can use an orthonormal basis
e(1), e(2) in the plane normal to k and define helicity basis vectors,

e± = 1√
2
(e(1) ∓ ie(2)). (2.13)

In curved spaces the definition of the helicity basis is analogous, but somewhat
more involved. Since we shall never need the explicit form of this basis, we shall
not enter into this. Vector perturbations can be expanded in terms of this basis,
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while tensor perturbations are expanded either in terms of the standard tensor basis
given by

edij =
1

2

[
e(1)i e(1)j − e(2)i e(2)j

]
, (2.14)

e×ij =
1

2

[
e(1)i e(2)j + e(2)i e(1)j

]
, (2.15)

or also in terms of a helicity basis defined by

e
(+2)
ij = e+i e+j = edij + ie×ij, (2.16)

e
(−2)
ij = e−i e−j = edij − ie×ij . (2.17)

We can develop the vector and tensor basis functions as

Q
(V )
j = Q(1)e(1)j +Q(2)e(2)j , (2.18)

= Q(+)e(+)j +Q(−)e(−)j , (2.19)

Q
(T )
ji = Q(d)e(d)ij +Q(×)e(×)ij , (2.20)

= Q(+2)e
(+2)
ij +Q(−2)e

(−2)
ij . (2.21)

The components in the “helicity basis,” e(±) and e(±2)
ij simply transform with a

phase e±iϕ and e±2iϕ respectively under rotations around k with angle ϕ. Hence
vector perturbations are spin-1 fields while tensor perturbations are spin-2 fields.
The functions Q(+) and Q(+2) have spin up, m = +1 and m = +2 respectively
while Q(−) and Q(−2) have spin down. Scalar perturbations of course have spin 0.
We shall make use of this spin structure especially in Chapters 4 and 5.

As in Eqs. (2.7) and (2.9), we can construct scalar-type vectors and symmetric,
traceless tensors and vector-type symmetric tensors. To this goal we define

Q
(S)
j ≡ −k−1Q

(S)
|j , (2.22)

Q
(S)
ij ≡ k−2Q

(S)
|ij +

1

3
γijQ

(S) and (2.23)

Q
(V )
ij ≡ − 1

2k

(
Q
(V )
i|j +Q(V )j |i

)
. (2.24)

In the following we shall extensively use this decomposition and write down the
perturbation equations for a given mode k.

The decomposition of the k-mode of a vector field is then of the form

Bi = BQ(S)i + B(V )Q(V )i . (2.25)
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The decomposition of a tensor field is given by compare [Eq. (2.9)]

Hij = HLQ(S)γij +HTQ(S)ij +H(V )Q(V )ij +H(T )Q(T )ij . (2.26)

Here B, B(V ), HL, HT , H(V ), and H(T ) are functions of t and k.
This decomposition is very useful because scalar vector and tensor amplitudes of

each mode k evolve independently, obeying ordinary differential equations in time.

2.2.3 Metric Perturbations

Perturbations of the metric are of the form

gμν = ḡμν + a2hμν . (2.27)

We parameterize them as

hμν dx
μ dxν = −2Adt2 − 2Bi dt dx

i + 2Hij dx
i dxj, (2.28)

and we decompose the perturbation variables Bi and Hij according to (2.25) and
(2.26). In matrix form we have(

gμν
) = a2

( −(1+ 2A) −Bi
−Bi γij + 2Hij

)
. (2.29)

The perturbations of the inverse metric are then given by

gμν = ḡμν − a2hμν, where hμν = ḡμα ḡνβhαβ . (2.30)

Let us consider the behavior of hμν under gauge transformations. We set the vector
field defining the gauge transformation to

X = T ∂t + Li∂i . (2.31)

Using the definition of the Lie derivative, we obtain (for details see Exercises)

LXḡ = a2
[−2

(
HT + Ṫ )

dt2 + 2
(
L̇i − T,i

)
dt dxi

+ (
2HT γij + Li|j + Lj |i

)
dxi dxj

]
. (2.32)

Comparing this with (2.28) and using (2.4), we obtain

A→ A+HT + Ṫ ,
Bi → Bi − L̇i + T ,i,

Hij → Hij + 1

2

(
Li|j + Lj |i

)+HT γij .
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Using the decompositions (2.25) and (2.26) for Bi and Hij this implies the follow-
ing behavior of the perturbation variables under gauge transformations (we also
decompose the vector Li = LQ(S)i + L(V )Q(V )i ):

A→ A+HT + Ṫ , (2.33)

B → B − L̇− kT , (2.34)

B(V )→ B(V ) − L̇(V ), (2.35)

HL→ HL +HT + k
3
L, (2.36)

HT → HT − kL, (2.37)

H(V )→ H(V ) − kL(V ), (2.38)

H(T )→ H(T ). (2.39)

Two scalar and one vector variable can be set to zero by gauge transformations.
We shall use this in the text that follows to choose the longitudinal gauge for scalar
perturbations, B = HT = 0.

An interesting variable is also the “shear” on the t = constant hypersurfaces.
We first introduce the normal to this hypersurface, which is given by nμ dxμ =
−a(1+ A)dt , so that to first order

(nμ) = (−gμνa(1+ A)δ0
ν) = a−1(1− A,Bi). (2.40)

This vector field is normalized, nμnμ = −1, and its scalar product with any vector
field tangent to the t = constant hypersurfaces and hence of the form X = Xi∂i
vanishes. We now introduce its covariant derivative, setting

nμ;ν = 1

3
Pμνθ − aμnν + σμν + ωμν, (2.41)

where

Pμν = nμnν + gμν (2.42)

is the projection tensor onto the subspace of tangent space normal to n, θ ≡ nμ;μ is
called the “expansion,” aμ = nνnμ;ν is the acceleration, and σμν and ωμν are the
shear and vorticity of the vector field n respectively. They are defined as

σμν = 1

2
PλμP

ρ
ν (nλ;ρ + nρ;λ)−

1

3
Pμνθ and (2.43)

ωμν = 1

2
PλμP

ρ
ν (nλ;ρ − nρ;λ). (2.44)
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This split of the covariant derivative of a vector field onto expansion, accel-
eration, shear, and vorticity is standard and sometimes very convenient. For
example, Frobenius’ theorem from differential geometry [see, e.g., Wald (1984),
Appendix B] implies, that there exists a hypersurface that is normal to a given
vector field if and only if its vorticity vanishes. The direction of the theorem
which we use here, namely that the vorticity vanishes if n is (locally) orthogonal
to a hypersurface follows from a simple calculation (see Exercise 2.2). The other
direction is more involved. In three dimensions it boils down to the well known
result that each vector field with vanishing curl can (locally) be written as the
gradient of some function.

In the background FL universe, without perturbations, only the expansion,
θ = 3H/a = 3H , is nonzero. In the presence of scalar perturbations we obtain

θ = 3

a
H[1+KQ], K = −A+ 1

3
H−1kB +H−1ḢL, (2.45)

σ00 = σ0i = σi0 = 0, (2.46)

σij = ak
(
k−1ḢT − B

)
Qij = akσQij, (2.47)

ai = −kAQi, a0 = 0, (2.48)

ωμν = 0. (2.49)

Another interesting variable is the spatial curvature on the hypersurface of
constant time. It is easily calculated to first order and one finds

(δR)s = 4
k2 − 3K

a2

(
HL + 1

3
HT

)
= 4

k2 − 3K

a2
R. (2.50)

Since these variables depend only on the time coordinate, they transform only
with T under coordinate transformation. Inserting the transformation laws found
previously, Eqs. (2.33)–(2.37), we obtain

K→ K −
(
H− Ḣ

H + k2

3H

)
T , (2.51)

σ → σ + kT , (2.52)

R→ R+HT . (2.53)

For vector and tensor perturbations only the perturbation of the shear does not
vanish and we have

σ
(V )
ij = ak (

k−1Ḣ (V ) − B(V ))Q(V )ij = akσ (V )Q(V )ij , (2.54)

σ
(T )
ij = aḢ (T )Q(T )ij . (2.55)
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Since there are no vector-type gauge transformations of the constant time hypersur-
faces and no tensor-type gauge transformations at all, the quantities σ (V ) and H(T )

are gauge invariant.
One often chooses the gauge transformation kL = HT and kT = B − L̇, so

that the transformed variablesHT and B vanish. In this gauge (longitudinal gauge),
scalar perturbations of the metric are of the form (HT |long = B|long = 0)

h(S)μν dx
μdxν = −2� dt2 − 2�γij dx

idxj, (2.56)

where� and� are the so-called Bardeen potentials. In a generic gauge the Bardeen
potentials are given by

� = A−Hk−1σ − k−1σ̇, (2.57)

� = −HL − 1

3
HT +Hk−1σ = −R+Hk−1σ, (2.58)

where σ = k−1ḢT − B, is the scalar potential for the shear of the hypersurface of
constant time defined in Eq. (2.47). A short calculation using Eqs. (2.33), (2.52),
and (2.53) shows that � and � are indeed invariant under gauge transformations.

In an FL universe the Weyl tensor (see Appendix 2, Section A2.1) vanishes. It
therefore is a gauge-invariant perturbation. For scalar perturbations one finds

Eij ≡ Cμiνjuμuν = −C0
i0j = −

1

2

[
(� +�)|ij − 1

3
�(� +�)γij

]
. (2.59)

All other components of the Weyl tensor are also given by Eij ; see Appendix 3,
Section A3.1.

For vector perturbations it is convenient to set kL(V ) = H(V ) so that H(V )

vanishes and we have

h(V )μν dx
μ dxν = 2σ (V )Q(V )i dt dxi . (2.60)

We shall call this gauge the “vector gauge.”
The Weyl tensor from vector perturbation is given by

Eij = −C0
i0j =

−k
2
σ̇ (V )Q

(V )
ij , (2.61)

Bij ≡ 1

2
εiν
ρσCρσ

jαuνuα = εilmC0
j lm,

= 1

2
σ (V )εilm

[
Q
(V )
l|jm −Q(V )m|j l −

k2

2
γjlQ

(V )
m + k

2

2
γjmQ

(V )
l

]
. (2.62)

Note that from their definition Eij and Bij are symmetric and since u = (u0,0) to
lowest order, only C0

i0j and C0
ilm respectively contribute. The tensors Eij and Bij ,



70 Perturbation Theory

constructed as given earlier from the Weyl tensor for an arbitrary 4-velocity field
uμ, are normal to uμ and they determine the Weyl tensor fully (see Appendix 3).

Clearly there are no tensorial (spin-2) gauge transformations and hence H(T )ij

is gauge invariant. The expression for the B-part of the Weyl tensor from tensor
perturbation is

Bij = −Ḣ (T )εilm
[
Q
(T )
jl|m −Q(T )jm|l

]
. (2.63)

2.2.4 Perturbations of the Energy–Momentum Tensor

Let T μν = T
μ

ν + θμν be the full energy–momentum tensor. We define its energy
density ρ and its energy flux 4-vector u as the time-like eigenvalue and eigenvector
of T μν :

T μν u
ν = −ρuμ, u2 = −1. (2.64)

We then parameterize their perturbations by

ρ = ρ̄ (1+ δ) , u = u0∂t + ui∂i . (2.65)

The component u0 is fixed by the normalization condition,

u0 = 1

a
(1− A). (2.66)

We further set

ui = 1

a
vi = 1

a

(
vQ(S)i + v(V )Q(V )i) . (2.67)

Pμν ≡ uμuν+δμν is the projection tensor onto the subspace of tangent space normal
to u. We define the stress tensor

τμν = Pμα P νβ T αβ . (2.68)

With this we can write

T μν = ρuμuν + τμν . (2.69)

In the unperturbed case we have τ 0
μ = τμ0 = 0 and τ ij = P̄ δij . Including first-order

perturbations, the components τ0μ are determined by the perturbation variables that
we have already introduced. We obtain

τ 0
0 = 0, and τ

j

0 = −P̄ vj, τ 0
j = P̄ (vj − Bj). (2.70)

But τ ij contains in general new perturbations. We define

τ ij = P̄
[
(1+ πL) δij + ij

]
, with  ii = 0. (2.71)
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From our definitions we can determine the perturbations of the energy–momentum
tensor. A short calculation gives

T 0
0 = −ρ̄(1+ δ), (2.72)

T 0
j = (ρ̄ + P̄ )(vj − Bj), (2.73)

T j 0 = −(ρ̄ + P̄ )vj, (2.74)

T ij = P̄
[
(1+ πL)δij + ij

]
. (2.75)

The traceless part of the stress tensor, ij , is called the anisotropic stress tensor. We
decompose it as

 ij =  Q(S) ij + (V )Q(V ) ij + (T )Q(T ) ij . (2.76)

We now study the gauge transformation properties of these perturbation vari-
ables. First we note that ρ is a scalar and LXρ̄ = ˙̄ρT = −3(1 + w)Hρ̄T . Here
we made use of Eq. (1.22). The same is true for P̄ (1 + πL), which is one-third of

the trace of τμν . With Eq. (1.29), we obtain LXP̄ = ˙̄PT = −3 c
2
s

w
(1+w)HP̄ T . The

background contribution to the anisotropic stress tensor,  μν = τμν − 1
3τ
α
α δ
μ
ν , van-

ishes; hence  μν is gauge invariant (the Stewart–Walker lemma). For perfect fluids
 μν = 0. For the velocity we use LXū = [X,ū] = (−T ȧa−2− a−1Ṫ )∂t − a−1L̇i∂i .
Inserting our decomposition into scalar, vector, and tensor perturbation variables
for a fixed mode k, we obtain finally the following transformation behavior:

δ→ δ − 3(1+ w)HT , (2.77)

πL→ πL − 3
c2
s

w
(1+ w)HT , (2.78)

v→ v − L̇, (2.79)

 →  , (2.80)

v(V )→ v(V ) − L̇(V ), (2.81)

 (V )→  (V ), (2.82)

 (T )→  (T ). (2.83)

Apart from the anisotropic stress perturbations, there is only one gauge-invariant
variable that can be obtained from the energy–momentum tensor alone, namely

� = πL − c
2
s

w
δ. (2.84)

One can show (see Appendix 5) that � is proportional to the divergence of the
entropy flux of the perturbations. Adiabatic perturbations are characterized by
� = 0.
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Gauge-invariant density and velocity perturbations can be found by combining
δ, v and v(V )i with metric perturbations. We shall use

V ≡ v − 1

k
ḢT = vlong, (2.85)

Ds ≡ δ + 3(1+ w)H(k−2ḢT − k−1B) ≡ δlong, (2.86)

D ≡ δlong + 3(1+ w)H
k
V = δ + 3(1+ w)H

k
(v − B)

= Ds + 3(1+ w)H
k
V , (2.87)

Dg ≡ δ + 3(1+ w)
(
HL + 1

3
HT

)
= δlong − 3(1+ w)�

= Ds − 3(1+ w)�, (2.88)

V (V ) ≡ v(V ) − 1

k
Ḣ (V ) = v(vec), (2.89)

� ≡ v(V ) − B(V ) = v(vec) + σ (V ), (2.90)

�− V (V ) = σ (V ). (2.91)

Here vlong, δlong, and v(vec) are the velocity (and density) perturbations in the longi-
tudinal and vector gauge respectively, and σ (V ) is the metric perturbation in vector
gauge and the shear of the t = constant hypersurfaces [see Eqs. (2.54) and (2.60)].

These variables can be interpreted nicely in terms of gradients of the energy
density and the shear and vorticity of the velocity field (Ellis and Bruni, 1989). Here
we just calculate the covariant derivative of the velocity field uμ and decompose it
like the normal field nμ. In a nonperturbed FL universe these two vector fields
coincide. With our definition of variables, a short calculation using uμ;ν = uμ,ν −
�βμνuβ gives

uμ;ν = 1

3
P (f )μν θ

(f ) − a(f )μ uν + σ (f )μν + ω(f )μν , (2.92)

where the projection, P (f ); expansion, θ(f ); acceleration, a(f ); shear, σ (f ); and
vorticity, ω(f ), are defined as in Eqs. (2.42)–(2.44); just the normal field nμ is
replaced by uμ, the energy flux of the fluid. We indicate this by the superscript (f ).
For scalar perturbations one finds
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θ(f ) = 3

a
H[1+K(f )Q], K(f ) = −A+H−1

(
ḢL + k

3
v

)
, (2.93)

σ
(f )

00 = σ (f )0i = σ (f )i0 = 0, (2.94)

σ
(f )

ij = ak(k−1ḢT − v)Qij = akσ (f )Qij, (2.95)

a
(f )

i = −A(f )Qi,A(f ) = kA−H(v − B)− (v̇ − Ḃ), (2.96)

a
(f )

0 = 0,

ωμν = 0. (2.97)

Contrary to nμ, the vector field uμ is defined independently of the coordinate
system. Therefore, and since a(f )μ and σ (f )μν vanish in the background FL universe,
the variablesA(f ) and σ (f ) = V are gauge invariant. For V we have already noticed
this before. Furthermore, it is easy to check that

A(f ) = k� −HV + V̇ ,
which is a gauge-invariant variable called the “peculiar acceleration.”

For vector perturbations we obtain

σ
(f )

00 = σ (f )0i = σ (f )i0 = 0, (2.98)

σ
(f )

ij = ak (
k−1Ḣ (V ) − v(V ))Q(V )ij = −akV (V )Qij, (2.99)

ω
(f )

i0 = ω(f )0i = 0, (2.100)

ω
(f )

ij = a
2

(
v(V ) − B(V )) [

Q
(V )
i|j −Q(V )j |i

]
= a

2
�

[
Q
(V )
i|j −Q(V )j |i

]
, (2.101)

a
(f )

i = (
�̇+H�

)
Q
(V )
i . (2.102)

Note that the energy flux of scalar perturbations is hypersurface orthogonal,
ω(S) = 0, while vector perturbations do have nonvanishing curl if v(V ) 
= B(V ).
A coordinate system with v = B is called “comoving.”

Tensor perturbations do not admit a perturbed energy flux so that for them the
foregoing perturbation variables vanish.

We now want to show that on scales much smaller than the Hubble scale, k �
H ∼ t−1, the metric perturbations are much smaller than δ and v and we can thus
neglect the difference between different gauges and/or gauge-invariant variables.
This is especially important when comparing experimental results with gauge-
invariant calculations. Let us neglect spatial curvature in the following order of
magnitude argument. Then, the perturbations of the Einstein tensor are a com-
bination of the second derivatives of the metric perturbations, H times the first
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derivatives, and H2 or Ḣ times metric perturbations. The first-order perturbations
of Einstein’s equations therefore generically yield the following order of magnitude
estimate 8πGδTμν = δGμν :

O
(
δTμν

a2ρ

)
O

(
8πGa2ρ

)︸ ︷︷ ︸
O(ȧ/a)2=O(1/t2)

= O
(

1

t2
h+ k

t
h+ k2h

)
, (2.103)

O
(
δTμν

a2ρ

)
= O

(
h+ kth+ (kt)2h) . (2.104)

For kt � 1 this gives O(δ,v) = O
(
δTμν/a

2ρ
) � O(h). Therefore, on sub-

horizon scales the differences between δ, δlong, Dg , and D are negligible, as are
the differences between v and V or v(V ), V (V ) and �(V ). For measurements of
density and velocity perturbations that are made on deeply subhorizon scales, we
may therefore use any of the gauge-invariant perturbation variables to compare with
measurements. The issue is more subtle when fluctuations are measured at scales
close to the horizon. Then, a detailed study of what is exactly measured reveals the
gauge invariant quantity we have to consider. We shall come back to this issue for
measurements of density fluctuations in Chapter 8.

2.3 The Perturbation Equations

We do not derive the first-order perturbations of Einstein’s equations. By ele-
mentary algebraic methods, this is quite lengthy and cumbersome. However, we
recommend that the student simply determines δGμν in longitudinal (vector) gauge
using some algebraic package such as Maple or Mathematica and then writes down
the resulting Einstein equations using gauge-invariant variables. Since we know
that these variables do not depend on the coordinates chosen, the equations obtained
in this way are valid in any gauge. Here, we just present the resulting equations in
gauge-invariant form. A rapid derivation by hand is possible using the 3 + 1
formalism of general relativity and working with Cartan’s formalism for the
Riemann curvature (see Durrer and Straumann, 1988). In order to simplify the
notation, we suppress the overbar on background quantities whenever this does not
lead to confusion.

2.3.1 Einstein’s Equations

2.3.1.1 The Constraints

The Einstein equationsG0μ = 8πGT0μ lead to two scalar and one vector constraint
equations,
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4πGa2ρD = −(k2 − 3K)� (00)
4πGa2(ρ + P)V = k

(
H� + �̇)

(0i)

}
(scalar), (2.105)

8πGa2(ρ + P)� = 1

2

(
2K − k2

)
σ (V ) (0i) (vector). (2.106)

2.3.1.2 The Dynamical Equations

The Einstein equations Gij = 8πGTij provide two scalar, one vector, and one
tensor perturbation equations,
scalar:

k2 (�−�) = 8πGa2P (S) (i 
= j), (2.107)

�̈+ 2H�̇+H�̇ +
[

2Ḣ+H2 − k
2

3

]
�

= 4πGa2ρ

[
1

3
D + c2

sDs + w�
]

(ii), (2.108)

vector:

k
(
σ̇ (V ) + 2Hσ (V )

) = 8πGa2P (V ), (2.109)

tensor:

Ḧ (T ) + 2HḢ (T ) + (
2K + k2

)
H(T ) = 8πGa2P (T ). (2.110)

The second dynamical scalar equation is somewhat cumbersome and not often
used, since we may use one of the conservation equations given in the text that
follows instead. For the derivation of the perturbed Einstein equation the following
relations are useful. They can be derived from the Friedmann equations (1.20)–
(1.22); a possible cosmological constant is included in ρ and P .

4πGa2ρ(1+ w) = H2 − Ḣ+K, (2.111)

Ḣ = −1+ 3w

2

(
H2 +K)

, (2.112)

4πGa2ρ(1+ w)3c2
s =

Ḧ
H − Ḣ−H2 −K, (2.113)

c2
s =

Ḧ
H − Ḣ−H2 −K
3[H2 − Ḣ+K]

. (2.114)

For the calculations that follow we shall also make use of

ẇ = 3(w − c2
s )(1+ w)H. (2.115)
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Note that for perfect fluids, where  ij ≡ 0, we have � = �. As we shall see
in the text that follows behavior, for perfect fluids with � =  = 0, the behavior
of scalar perturbations is given by �, which describes a damped wave propagating
with speed c2

s .
Tensor perturbations are given by H(T ), which for perfect fluids also obeys a

damped wave equation propagating with the speed of light. On small scales (over
short time periods) when t−2<∼ 2K+k2, the damping term can be neglected andHij
represents propagating gravitational waves. For vanishing curvature or k2 � K ,
small scales are just the sub-Hubble scales, kt >∼ 1. For K < 0, waves oscillate
with a somewhat smaller frequency, ω = √

2K + k2 < k, while for K > 0 the
frequency is somewhat higher than k.

Vector perturbations of a perfect fluid are determined by the σ (V ) equation,
Eq. (2.109), which implies σ (V ) ∝ 1/a2. Hence vector perturbations do not oscil-
late; they simply decay.

2.3.2 Energy–Momentum Conservation

The conservation equations, T μν;ν = 0, lead to the following perturbation equations:

Ḋg + 3
(
c2
s − w

)
HDg + (1+ w)kV + 3wH� = 0

V̇ +H
(
1− 3c2

s

)
V = k (

� + 3c2
s�

)+ c2
s k

1+wDg

+ wk
1+w

[
� − 2

3

(
1− 3K

k2

)
 

]
⎫⎪⎪⎬⎪⎪⎭ (scalar), (2.116)

�̇+ (
1− 3c2

s

)
H� = − w

2(1+ w)
(
k − 2K

k

)
 (V ) (vector). (2.117)

It is sometimes also useful to express the scalar conservation equations in terms of
the variable pair (D,V ). Using D = Dg + 3(1+ w) [Hk−1V +�]

in (2.116) one
obtains after some algebra and making use of the (0i) constraint equation (2.105)

Ḋ − 3wHD = −
(

1− 3K

k2

)
[(1+ w)kV + 2Hw ] , (2.118)

V̇ +HV = k
[
� + c2

s

1+ wD +
w

1+ w� −
2

3

(
1− 3K

k2

)
w

1+ w 
]

.

(2.119)

Replacing � in Eq. (2.119) via the (00) and (ij) Einstein equations, (2.105) and
(2.107), and replacing V via Eq. (2.118), we can derive a second-order equation
for D. A lengthy but straightforward calculation gives
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D̈ + (1+ 3c2
s − 6w)HḊ +

[ (
9

2
w2 − 12w + 9c2

s

)
H2 + 9

2
w2K

+ (k2 − 3K)c2
s − 4πGρa2

]
D = −(k2 − 3K)w� − 2

(
1− 3K

k2

)
Hw ̇

+ 2
[
(3w2 + 3c2

s − 2w)H2

+ w(3w + 2)K + k
2 − 3K

3
w

] (
1− 3K

k2

)
 .

(2.120)

The conservation equations can, of course, also be obtained from the Einstein
equations because they are equivalent to the contracted Bianchi identities (see
Appendix 2, Section A2.1). For scalar perturbations we have four independent
equations and six variables. For vector perturbations we have two equations and
three variables, while for tensor perturbations we have one equation and two
variables. To close the system we must add some matter equations. The simplest
prescription is to set � =  ij = 0. This matter equation, which describes adiabatic
perturbations of a perfect fluid, gives us exactly two additional equations for scalar
perturbations and one each for vector and tensor perturbations. In this simple case,
the tensor equation simply describes free gravitational waves propagating in an
FL background. If c2

s 
= 0 also the scalar equation (2.120) is a wave equation. It
describes what we shall call “acoustic oscillations” of the fluid where the fluid
pressure counter-acts gravitational collapse. The vector perturbation equation,
however, is of first order.  (V ) = 0 implies σ (V ) ∝ 1/a2 and � ∝ a−1+3c2

s . Hence
vector perturbations of the metric simply decay if there are no anisotropic stresses
to source them.

Another simple example is a universe with matter content given by a scalar
field. We shall discuss this case in the next chapter. More complicated are several
interacting particle species, some of which have to be described by a Boltzmann
equation. This is the actual universe at late times, z<∼ 107.

2.3.3 Mixtures of Several Fluids

Here we only consider fluid components that are noninteracting, so that their
energy–momentum tensor is separately conserved; that is, Eqs. (2.116) and (2.117)
hold for each α component separately. The Einstein equations, however, determine
the metric perturbations induced by the full perturbations,

ρDg =
∑
α

ραDgα, (2.121)
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(ρ + P)V =
∑
α

(ρα + Pα)Vα, (2.122)

P =
∑
α

Pα α, (2.123)

P� = PπL − c2
s δρ =

∑
α

Pα�α +
∑
α

(c2
α − c2

s )δρα

=
∑
α

Pα�α + P�rel. (2.124)

In order to see that �rel is gauge invariant we use Eq. (1.29):

c2
s =

Ṗ

ρ̇
=

∑
β

(1+ wβ)ρβc2
β

(1+ w)ρ .

Also using
∑
β(1+ wβ)ρβ = (1+ w)ρ we find

P�rel =
∑
α

(c2
α − c2

s )δρα =
∑
αβ

(1+ wβ)ρβ(1+ wα)ρα
ρ + P (c2

α − c2
β)

δα

1+ wα

= 1

2

∑
αβ

(1+ wβ)(1+ wα)ρβρα
ρ + P (c2

α − c2
β)

[
δα

1+ wα −
δβ

1+ wβ

]

= 1

2

∑
αβ

(1+ wβ)(1+ wα)ρβρα
ρ + P (c2

α − c2
β)

[
Dgα

1+ wα −
Dgβ

1+ wβ

]
= 1

2

∑
αβ

(1+ wβ)ρβ(1+ wα)ρα
ρ + P (c2

α − c2
β)Sαβ, (2.125)

where we define

Sαβ =
[
Dgα

1+ wα −
Dgβ

1+ wβ

]
. (2.126)

For the third equals sign in Eq. (2.125) we have used the fact that the expression
[(1+ wβ)(1+ wα)ρβρα/(ρ + P)](c2

α − c2
β) is antisymmetric in α and β and we

therefore may also antisymmetrize the remaining factor.
The individual components of the gauge-invariant velocity and density perturba-

tions are defined via their energy–momentum tensors. Note that

Vα = vα − k−1ḢT , and (2.127)

Dgα = δα + 3(1+ wα)R, (2.128)

Dα = δα + 3(1+ wα)Hk−1(vα − B), (2.129)

= Dgα + 3(1+ wα)
[
Hk−1Vα +�

]
. (2.130)
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It is easy to check that the conservation equations (2.116) are also valid for a
mixture of conserved components, so that we have

Ḋgα + 3
(
c2
α − wα

)
HDgα = −(1+ wα)kVα − 3wαH�α, (2.131)

V̇α +H
(
1− 3c2

α

)
Vα = k

(
� + 3c2

α�
)+ c2

αk

1+ wαDgα

+ wαk

1+ wα

[
�α − 2

3

(
1− 3K

k2

)
 α

]
. (2.132)

However, if we rewrite the conservation equations in terms of the variables (Dα,Vα)
new terms appear, since we have to use the Einstein equations in the derivation.
A somewhat tedious but straightforward calculation, replacing Dgα with the help
of Eq. (2.130) and then eliminating �̇ with the Einstein equation (0i), gives

Ḋα − 3wαHDα = 9

2
(H2 +K)k−1(1+ w)(1+ wα)[V − Vα]

−
(

1− 3K

k2

)
[(1+ wα)kVα + 2Hw α] , (2.133)

V̇α +HVα = k
[
� + c2

α

1+ wαDα +
wα

1+ wα �α

−2

3

(
1− 3K

k2

)
wα

1+ wα α
]

. (2.134)

It is sometimes more useful to describe mixed systems in terms of variables related
to differences of individual components. With Sαβ given in Eq. (2.126) and defining

Vαβ = Vα − Vβ, (2.135)

�αβ = wα

1+ wα �α −
wβ

1+ wβ �β, (2.136)

 αβ = wα

1+ wα α −
wβ

1+ wβ β, (2.137)

one can derive the following system of equations from Eqs. (2.131) and (2.132):

Ṡαβ = −kVαβ − 3H�αβ, (2.138)

V̇αβ +HVαβ − 3

2
H(c2

α + c2
β)Vαβ −

3

2
H(c2

α − c2
β)

∑
γ

ργ + Pγ
ρ + P

(
Vαγ + Vβγ

)
= k

[
c2
α − c2

β

1+ w D +
c2
α + c2

β

2
Sαβ +

c2
α − c2

β

2

∑
γ

ργ + Pγ
ρ + P

(
Sαγ + Sβγ

)
+ �αβ − 3

2

(
1− 3K

k2

)
 αβ

]
. (2.139)

We present a detailed derivation of these equations in Appendix 6.
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We shall use these equations when we discuss mixtures of cold dark matter and
radiation. More details on mixed systems that also include interactions can be found
in Kodama and Sasaki (1984). In Exercise 2.4, we discuss a simple example of a
mixed system. Interacting mixed systems are not very relevant for us, since we shall
describe them with a Boltzmann equation approach that we develop in Chapter 4.

2.3.4 The Bardeen Equation

The systems of equations that we have presented here are, of course, not closed. To
close them one needs to add evolution equations for the matter variables, such as
 (T ) for tensor perturbations, a relation between  (V ) and �(V ) for vector pertur-
bations, and expressions for � and  =  (S) for scalar perturbations.

For scalar perturbations we can actually derive an evolution equation for �,
where � and  enter only as source terms. Replacing D and Ds in (2.108) by
use of (2.87) and (2.105) and replacing � by  and � via Eq. (2.107) leads to

�̈+ 3H(1+ c2
s )�̇+

[
3(c2

s − w)H2 − (2+ 3w + 3c2
s )K + c2

s k
2
]
�

= 8πGa2P

k2

[
H ̇+ [2Ḣ+ 3H2(1− c2

s /w)] −
1

3
k2 + k

2

2
�

]
. (2.140)

This is the Bardeen equation. To derive it we also made use of (2.112) to
replace Ḣ.

This equation is especially useful in terms of another gauge-invariant variable
that we now introduce: the scalar curvature on the comoving hypersurface. The
comoving hypersurface is defined by having the normal n on the constant time
hypersurface equal to the particle 4-velocity u. Using (nν) = a−1(1 − A,Bj) and
(uν) = a−1(1−A,vj ) this implies v = B. From the definitions of σ and V we thus
have V = −σco in this coordinate system. In comoving gauge we therefore have
[see Eqs. (2.86)–(2.88)]

Ds = δco − 3(1+ w)k−1HV, (2.141)

D = δco, (2.142)

Dg = δco + 3(1+ w)Rco = D − 3(1+ w)[k−1HV +�], (2.143)

so that

−Rco = 1

3(1+ w) [D −Dg ] = k−1HV +�. (2.144)

Here the index “co” indicates comoving coordinates. Using the (0i) Einstein
equation, Eq. (2.105), we obtain
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−Rco = 2

3(1+ w)
[
� +H−1�̇

]+� ≡ ζ . (2.145)

We are especially interested in the evolution of the curvature perturbation variable
ζ in situations in which we can neglect anisotropic stresses. Then the right-hand
side of Eq. (2.140) simply becomes 4πGa2P� and � = �. The definition (2.145)
together with the Bardeen equation then yields in the spatially flat case, K = 0,

ζ̇ = H
H2 − Ḣ

[
3w

2
H2� − c2

s k
2�

]
(2.146)

= wH
w + 1

� − 2c2
s k

2

3(w + 1)H�. (2.147)

For adiabatic perturbations, � = 0, the curvature perturbation ζ is therefore con-
served on super-Hubble scales, k/H� 1 at early times when curvature is certainly
negligible. This will be very useful when we want to specify initial conditions in
Chapter 3.

Also note that for constant w and constant Bardeen potential � =�, the
curvature perturbation ζ differs from the Bardeen potential only by a multiplicative
constant.

2.3.5 A Special Case

Here we want to discuss the scalar perturbation equations for a simple, but impor-
tant, special case. We consider adiabatic perturbations of a perfect fluid. In this
case there are no anisotropic stresses, = 0. Furthermore, the pressure fluctuation
δP = πLP is related to the density fluctuation δρ by δP = c2

s δρ, hence � = 0.
Equation (2.140) then becomes simply a second-order equation for the Bardeen
potential � = �, which is in this case the only dynamical degree of freedom,

�̈ + 3H(1+ c2
s )�̇ +

[
(1+ 3c2

s )(H2 −K)− (1+ 3w)(H2 +K)+ c2
s k

2
]
� = 0.
(2.148)

This is a damped wave equation. When we may neglect curvature, and if
w = constant so that c2

s = w, the time-dependent mass term m2(t) = −(1 + 3c2
s )

× (H2 −K)+ (1+ 3w)(H2 +K) vanishes. Equation (2.148) then reduces to

�̈ + 6
1+ w
(1+ 3w)t

�̇ + wk2� = 0, (2.149)

where we have used that

a ∝ t2/(1+3w) = tq and H = 2

1+ 3w

1

t
= q
t
q = 2

1+ 3w
.
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Equation (2.149) has an exact solution of the form

� = 1

a

(
Ajq(

√
wkt)+ Byq(

√
wkt)

)
, (2.150)

where jq and yq denote the spherical Bessel functions of order q. Using jq(x) ∝ xq
and yq(x) ∝ x−q−1 for x � 1, we find that the A-mode is constant while the
B-mode decays like 1/(a2t) on super-Hubble scales. If both modes are generated
with similar amplitudes, the B-mode is therefore negligible after a few expansion
times. On sub-Hubble scales,

√
wkt � 1, the solution oscillates with frequency√

wk and decay like 1/(at). The only exception is the case of cosmic dust (CDM)
with w = 0. In this case the oscillatory term drops and the solution is of the form

� = A+ B

(kt)5
. (2.151)

For later use we collect the main results in the following equation: for power law
expansion a ∝ tq we find

� =
{

constant for
√
wkt � 1

A

a
√
wkt

sin(
√
wkt − q

2π) for
√
wkt � 1, w 
= 0.

(2.152)

We now consider a universe that starts out in a radiation-dominated era with
a spectrum (see Section 2.6) 〈|�|2〉k3 = A�(k/H0)

ns−1 and that becomes matter
dominated at some time teq. Late in the matter-dominated era the spectrum of � is
therefore approximately given by (see Fig. 2.1)

〈|�|2〉k3 = A�(k/H0)
ns−1

{
1 for kteq < 1

(kteq)
−4 cos2(kteq) for kteq > 1.

(2.153)

As we shall see in Chapter 3, inflation generically leads to a spectrum that is close
to scale invariant1 ns � 1. A formal definition of the spectrum, interpreting �, or
more precisely the amplitude A as a random variable, is given in Section 2.6. Here
we may just consider it as the square of the Fourier transform of � and ignore the
expectation value 〈· · ·〉.

Another interesting case (especially when discussing inflation) is the scalar field.
There, as we shall see in Chapter 3,  = 0, but in general � 
= 0 since δp/δρ 
=
ṗ/ρ̇. Nevertheless, since this case again has only one dynamical degree of freedom,
we can express the perturbation equations in terms of one single second-order

1 The reason for the definition of n, such that 〈|�|2〉k3 ∝ kn−1, is purely historical and not very logical, but as
always, it is difficult to change conventions without leading to confusion. For compatibility with the literature
we therefore keep this convention.
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Fig. 2.1 The approximate form of the power spectrum 〈|�|2〉k3 for a scale-
invariant initial spectrum, n = 1, is plotted.

equation for �. In Chapter 3 we shall find the following equation for a perturbed
scalar field cosmology:

�̈ + 3H(1+ c2
s )�̇ + [(1+ 3c2

s )(H2 −K)− (1+ 3w)(H2 +K)+ k2]� = 0.
(2.154)

The only difference between the perfect fluid and scalar field perturbation equation
is that the latter is missing the factor c2

s in front of the oscillatory k2 term. It is
useful to define also the variable (Mukhanov et al., 1992)

u = a[4πG(H2 − Ḣ+K)]−1/2�, (2.155)

which satisfies the equation

ü+ (k2 − θ̈/θ)u = 0, (2.156)

where

θ = 3H
2a

√
H2 − Ḣ+K

. (2.157)

A second-order linear differential equation of the form (2.154) can always be trans-
formed into one of the form of Eq. (2.156) by a suitable transformation of variables.
We show this in Exercise 2.6.
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In terms of the curvature variable

ζ ≡ 2(H−1�̇ +�)
3(1+ w) +�, (2.158)

Eq. (2.147) is equivalent to

ζ̇ = 2

3(1+ w)H
{[
(2+ 3w + 3c2

s )K − c2
s k

2
]
� + 1+ 3w

2

K

H �̇
}

. (2.159)

If K is negligible, this implies again that ζ is conserved on super-Hubble scales,
k/H� 1.

The evolution of ζ is closely related to the canonical variable v defined by

v = −a
√
H2 − Ḣ√

4πGcsH
ζ, (2.160)

if K = 0. It satisfies the equation

v̈ + (c2
s k

2 − z̈/z)v = 0, (2.161)

for

z = a
√
H2 − Ḣ
csH

. (2.162)

The significance of the canonical variable v that has been introduced in Mukhanov
et al. (1992) will be discussed in Chapter 3.

2.4 Simple Examples

We first discuss two simple applications that are important to understand the CMB
anisotropy spectrum.

2.4.1 The Pure Dust Fluid

We assume the dust to have w = c2
s = p = 0 and  = � = 0. We first consider

the case K = 0,� = 0. Equation (2.148) then reduces to

�̈ + 6

t
�̇ = 0, (2.163)

with the general solution,

� = �0 +�1
1

t5
, (2.164)

with arbitrary constants �0 and �1. Since the perturbations are supposed to be
small initially, they cannot diverge for t → 0, and we have therefore to choose
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the decaying mode, �1 = 0. Another way to argue is as follows: if the mode �1

has to be small already at some early initial time tin, it will be much smaller
later and may hence be neglected at late times. But also the �0 mode is only
constant and not growing. This fact led Lifshitz, who was the first to analyze
relativistic cosmological perturbations, to the conclusions that linear perturbations
do not grow in an FL universe and cosmic structure cannot have evolved by grav-
itational instability (Lifshitz, 1946). However, the important point to note here is
that, even if the gravitational potential remains constant, matter density fluctuations
do grow on subhorizon scales and therefore inhomogeneities can evolve on scales
that are smaller than the Hubble scale. To see this we consider the conservation
equations (2.116), (2.107), and the Poisson equation (2.105). For the pure dust case,
w = c2

s =  = � = 0, they reduce to

Ḋg = −kV (energy conservation), (2.165)

V̇ +HV = k� (gravitational acceleration), (2.166)

− 2k2

3H2
� = (

Dg + 3
(
� +Hk−1V

))
(Poisson), (2.167)

where we have used the relation

D = Dg + 3(1+ w) (�+Hk−1V
)

. (2.168)

The Friedmann equation for dust gives H = 2/t . Setting kt = x and a prime =
d/dx, the system (2.165)–(2.167) becomes

D′g = −V, (2.169)

V ′ + 2

x
V = �, (2.170)

6

x2

(
Dg + 3

(
� + 2

x
V

))
= −�. (2.171)

We use (2.171) to eliminate � and (2.169) to eliminate Dg , leading to

(
18+ x2

)
V ′′ +

(
72

x
+ 4x

)
V ′ −

(
72

x2
+ 4

)
V = 0. (2.172)

The general solution of Eq. (2.172) is

V = V0x + V1

x4
. (2.173)
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The V1 mode is the decaying mode (corresponding to �1), which we neglect. The
perturbation variables are then given by

V = V0x, (2.174)

Dg = −15V0 − 1

2
V0x

2, (2.175)

V0 = �0/3. (2.176)

We distinguish two regimes.
(1) Superhorizon, x � 1, where we have

V = 1

3
�0x, (2.177)

Dg = −5�0, (2.178)

� = �0. (2.179)

Note that even though V is growing, it always remains much smaller than � or
Dg on superhorizon scales. Hence the largest fluctuations are of order �, which is
constant.
(2) Subhorizon, x � 1, where the solution is dominated by the terms

V = 1

3
�0x, (2.180)

Dg = −1

6
�0x

2, (2.181)

� = �0 = constant. (2.182)

Note that for dust

D = Dg + 3� + 6

x
V = −1

6
�0x

2.

In the variable D the constant term has disappeared and we have D � � on
superhorizon scales, x � 1.

On subhorizon scales, the density fluctuations grow like the scale factor,

D � Dg � Ds ∝ x2 ∝ a, x � 1. (2.183)

Presently, the Universe seems to be dominated by a cosmological constant. Let
us therefore also briefly discuss dust perturbations for � 
= 0. The case K 
= 0
is equivalent. In a �CDM universe the growth of density fluctuations is slowed
down at late time due to the rapid expansion. More precisely, Eq. (2.120) for dust
perturbations in a �CDM universe, or in a dust universe with curvature becomes

D̈ +HḊ = 4πGa2ρD = 3

2
H2�m(a)D. (2.184)
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Here, the wave number k no longer enters and the differental equation can be
written as an equation in y = ln a. Denoting the derivative w.r.t. y by a prime
we find

D′′ +
(

1− 1

2
�m(a)

)
D′ = 3

2
�m(a)D. (2.185)

For �m ≡ 1 we find again a growing mode D ∝ a while for �m = 0 the “growing
mode” is constant. For a redshift-dependent�m from a�CDM or an open universe
(�(a) < 1) one obtains a numerical solution that can be approximated as

D(a) ≡ D1(a) � a�0.56
m (a). (2.186)

Normalizing a(t0) = a0 = 1, this is the growing mode solution normalized to
today.

Despite growing solutions for the density contrast, Lifshitz’ conclusion (Lifshitz,
1946) that pure gravitational instability cannot be the cause of structure formation
has some truth. If we start from tiny thermal fluctuations of the order of 10−35,
they can grow to only about 10−30 due to this mild, power law instability during
the matter-dominated regime. Or, to put it differently, if we want to form structure
by gravitational instability, we need initial fluctuations of the order of at least 10−5,
much larger than thermal fluctuations. One possibility for creating such fluctuations
is quantum particle production in the classical gravitational field during inflation.
The rapid expansion of the Universe during inflation quickly expands microscopic
scales at which quantum fluctuations are important to cosmological scales where
these fluctuations are then “frozen in” as classical perturbations in the energy den-
sity and the geometry. We will discuss the induced spectrum of fluctuations in
Chapter 3.

2.4.2 The Pure Radiation Fluid, K = 0,� = 0

In this limit we set w = c2
s = 1

3 and = � = 0 so that � = �. We conclude from
ρ ∝ a−4 that a ∝ t . For radiation, the general solution (2.150) becomes

�(x) = 1

x

[
Aj1(x)+ By1(x)

]
, (2.187)

where we have set x = kt/√3 = cskt and used the fact that a ∝ x. On superhori-
zon scales, x � 1, we have (see Appendix 4, Section A4.3)

�(x) � A
3
+ B
x3

. (2.188)

We assume that the perturbations have been initialized at some early time xin � 1
and that at this time the two modes have been comparable. If this is the case then
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B � A and we may neglect the B-mode at later times, so that (see Abramowitz
and Stegun, 1970)

�(x) = A
x
j1(x) = A

(
sin(x)

x3
− cos(x)

x2

)
. (2.189)

To determine the density and velocity perturbations, we use the energy conservation
and Poisson equations for radiation, with a prime denoting d/dx these become, for
radiation,

D′g = −
4√
3
V, (2.190)

−2x2� = Dg + 4� + 4√
3x
V . (2.191)

Inserting the solution (2.189) for �, we obtain

Dg = 2A

[
cos(x)− 2

x
sin(x)

]
, (2.192)

V = −
√

3

4
D′g, (2.193)

� = −
Dg + 4√

3x
V

4+ 2x2
. (2.194)

In the superhorizon regime, x � 1, we obtain

� = A
3
, Dg = −2A

(
1+ 1

6
x2

)
, V = A

2
√

3
x. (2.195)

On subhorizon scales, x � 1, we find oscillating solutions with constant ampli-
tude and with frequency k/

√
3:

V =
√

3A

2
sin(x), (2.196)

Dg = 2A cos(x), � = −A cos(x)/x2. (2.197)

The radiation fluid cannot simply “collapse” under gravity. As in acoustic waves,
the restoring force provided by the pressure leads to oscillations with constant
amplitude. These are called the “acoustic oscillations” of the radiation fluid. As
we shall see in the next section, they are responsible for the acoustic peaks in the
CMB fluctuation spectrum.
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Also for radiation perturbations

D = −2A

3
x2 � �

is small on superhorizon scales, x � 1.
The perturbation amplitude is given by the largest gauge-invariant perturbation

variable. We conclude therefore that perturbations outside the Hubble horizon are
frozen to first order. Once they enter the horizon they start to collapse, but pressure
resists the gravitational force and the radiation fluid fluctuations oscillate at con-
stant amplitude. The perturbations of the gravitational potential oscillate and decay
like 1/a2 inside the horizon.

2.4.3 The Mixed Dust and Radiation Fluid for K = 0,� = 0

We now consider a mixed matter (also called “dust” since we neglect its pressure)
and radiation fluid with comparable perturbation amplitudes in the fluid variables.
At early times we are in the radiation-dominated era, and radiation perturbations
will not be affected at all by the subdominant gravitational potential from matter
fluctuations. As before, the radiation variables and the gravitational potential per-
form acoustic oscillations,

� = A
x
j1(x) = A

[
sin(x)

x3
− cos(x)

x2

]
, (2.198)

Dgr = 2A

[
cos(x)− 2

x
sin(x)

]
, (2.199)

Vr =
√

3A

2

[(
1− 2

x2

)
sin(x)+ 2

x
cos(x)

]
. (2.200)

In the radiation era the matter equations become (x = kt√
3
)

D′gm +
√

3Vm = 0, (2.201)

(aVm)
′ = a

√
3� = a

√
3A

x
j1(x). (2.202)

Noting that a/x is constant in the radiation era, these equations can be solved
simply by integration, leading to

Vm = −
√

3A

x
j0(x)+ V1/x = −

√
3A

sin(x)

x2
+ V1/x, (2.203)

Dgm = −3A

[
sin(x)

x
+ Ci(x)− ln(x)+ z0

]
−
√

3V1 ln(x). (2.204)
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Here Ci is the integral cosine function defined by Ci(x) = ∫ x
0

1−cos(z)
z

dz (see
Abramowitz and Stegun, 1970). The condition that V be small at very early times,
x � 1, requires V1 =

√
3A. The constant z0 is an arbitrary integration constant.

With this the foregoing solutions become

Vm =
√

3A

x

[
1− sin(x)

x

]
, (2.205)

Dgm = −3A

[
sin(x)

x
+ Ci(x)+ z0

]
. (2.206)

On large scales, x � 1, we obtain the behavior

� = A
3
, (2.207)

Dgr = −2A, (2.208)

Vr = A

2
√

3
x, (2.209)

Vm = A

2
√

3
x, (2.210)

Dgm = −3A(1+ z0). (2.211)

The most natural condition to fix the constant z0 is the requirement that at very
early times perturbations are adiabatic, �tot = πL − (c2

s /w)δ = 0. We use πL =
δPr/Pr = δρr/ρr and

c2
s /w =

4

R + 3
, where R ≡ ρr

ρm + ρr .

Here we have used the fact that P = Pr = ρr/3 and ρr ∝ a−4, while ρm ∝ a−3.
For the entropy production we then obtain

�tot = 4
1− R
R + 3

(
3

4
δr − δm

)
, (2.212)

so that �tot = 0 implies δm = 3
4δr . According to the definition of Dg , Eq. (2.87)

this is equivalent to Dgm = (3/4)Dgr . To achieve this we have to set z0 = − 1
2 so

that

Dgm = −3

2
A. (2.213)

With this choice, perturbations are adiabatic on super-Hubble scales. But since
Dgm and Dgr evolve differently on sub-Hubble scales, there clearly �tot 
= 0. We
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shall use the notion “adiabatic” in the sense that the initial conditions are such that
�tot(tin) = 0 for some early initial time tin such that ktin � 1.

On sub-Hubble scales, x � 1, the radiation perturbations oscillate as in the
ordinary radiation universe, but the matter perturbations grow logarithmically,
Dgm � −3ACi(x) � −3A ln(x) for x � 1. This severe suppression of growth
of matter perturbations during the radiation-dominated era is called the “Mészáros
effect” (Mészáros, 1974). Physically, the reason for this suppression is that matter
self-gravity ∝ 4πGρm is too weak during the radiation-dominated regime to
overcome damping, which (in the same units) is ∝ H2 ∝ Gρr . Neglecting self-
gravity in the matter equation would yieldDgm = constant, which is nearly correct.

We now go over to the matter-dominated regime. There, the matter perturbations
are not affected by radiation and behave as given in Eqs. (2.174)–(2.176),

� = �0, (2.214)

Vm = 1√
3
�0x, (2.215)

Dgm = −5�0

(
1+ 1

10
x2

)
. (2.216)

Keeping in mind that x= kt/√3, these solutions correspond exactly to
Eqs. (2.174)–(2.176). We now assume that the Bardeen potentials are those
from the dominant matter perturbations, �=� =�0. The radiation perturbation
equations then reduce to

D′gr = −
4√
3
Vr, (2.217)

D′′gr +Dgr = −8�0, (2.218)

with the general solution

Dgr = B sin(x)+ C cos(x)− 8�0,

Vr = −
√

3

4
(B cos(x)− C sin(x)) .

Requiring that these solutions be connected smoothly to the radiation dominated
solutions fixes the constants B and C. Therefore, on large scales, x � 1, V has
to grow like x, which implies B ≡ 0. The constant C is then determined by the
condition that the perturbations be adiabatic for x � 1. This implies

Dgr � C − 8�0 = 4

3
Dgm = −20

3
�0 so that C = 4

3
�0. (2.219)
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This leads to the following solution for the radiation perturbations in the matter
dominated era:

Dgr = 4�0

(
1

3
cos(x)− 2

)
, (2.220)

Vr = 1√
3
�0 sin(x). (2.221)

These are the exact solutions for decoupled but adiabatic matter and radiation
fluctuations in the matter-dominated era. To connect them to the solutions in the
radiation-dominated era, we require that Dgm be continuous at the transition, x =
xeq = kteq/

√
3. This implies

�0 = A
⎧⎨⎩

3
10 for xeq � 1

6 ln(xeq)

x2
eq

for xeq � 1.
(2.222)

This approximation is of course relatively crude, since the radiation to matter tran-
sition is very gradual and not as abrupt as it is implemented here. It is also easy
to see that we would not obtain exactly the same condition when requiring �
to be continuous at the transition. The main difference is that we do not obtain
the logarithmic growth of the potential in the radiation-dominated era from the
continuity of �. But this is clearly a failure, since the log growth of Dgm leads to a
larger gravitational potential in the matter era. For xeq � 1 both approximations are
bad and should be taken simply as order of magnitude estimates. More details on
the coupled matter radiation system are found in Section 3.5. In Fig. 2.2 the exact
solutions are plotted.

Instead of requiring adiabatic initial conditions one sometimes also requires
� = � = 0 on super-Hubble scales. This is the so-called isocurvature initial
condition. We shall discuss it in Section 3.5.

2.5 Light-Like Geodesics and CMB Anisotropies

After decoupling, t > tdec, photons follow to a good approximation light-like
geodesics. The temperature shift of a Planck distribution of photons is equal to
the energy shift of any given photon. The relative energy shift, red or blue shift, is
independent of the photon energy (gravity is “achromatic”).

The unperturbed photon trajectory follows

(xμ(t)) ≡
(
t,

∫ t0

t

n(t ′) dt ′ + x0

)
,
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Fig. 2.2 The time evolution for |Dgm|2 (long-dashed), |Dgr |2 (dotted), |Vm|2
(dashed), and |Vr |2 (solid) is indicated as a function of t/teq. The wave number
in the top panel is k1 � 1/teq, while in the bottom panel k2 � 1/teq. Note that
for a large wave number Dgm immediately starts growing and rapidly becomes
much larger than Dgr , while for the small wave number (top panel) Dgm stays of
the same order as Dgr until horizon entry, which is roughly at t/teq ∼ 10. After
horizon entry Dgm starts growing while Dgr starts oscillating.

where x0 is the photon position at time t0 and n is the (parallel transported) photon
direction. We determine the components of the photon momentum with respect to
a geodesic basis (ei)3i=1 on the constant time hypersurfaces. We choose

ei =
{

∂

∂xi
, if K = 0,

εi, with γ (εi,εj ) = δij if K 
= 0.
(2.223)

In other words, the vector fields εi form an orthonormal basis for the spatial
metric γij .

Our metric is of the form

ds̃2 = a2ds2 , with (2.224)

ds2 = (
γμν + hμν

)
dxμ dxν, γ00 = −1, γi0 = 0, γij = γji, (2.225)

as before.
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We make use of the fact that light-like geodesics are conformally invariant. More
precisely, ds2 and ds̃2 have the same light-like geodesics; only the corresponding
affine parameters are different. Let us denote the two affine parameters by λ and λ̃
respectively, and the tangent vectors to the unperturbed geodesic by

n = dx
dλ
, ñ = dx

dλ̃
, n2 = ñ2 = 0. (2.226)

For the unperturbed geodesic n0 = 1 and n2 = 1. The photon 4-momentum pμ is
then given by pμ = ωnμ, where ω is the constant energy of the photon moving in
the flat background metric.We define ω in this way such that all the perturbations
are in the photon 4-velocity vector n. We have seen that in expanding space the
photon momentum is redshifted. Actually, the components behave like ñi ∝ 1/a2

so that ñ2 = a2 ∑
i(ñ

i)2 ∝ 1/a2; hence we have to choose λ̃ = a2λ. As always
for light-like geodesics, λ̃ and λ are determined only up to a multiplicative constant
that we have fixed by the conditions n2 = 1 and λ̃ = a2λ.

Let us now introduce perturbations. We set nμ = n̄μ + δnμ. The geodesic
equation for the perturbed metric,

ds2 = (γμν + hμν) dxμ dxν, (2.227)

yields, to first order,

d

dλ
δnμ = −δ�μαβnαnβ . (2.228)

For the energy shift, we have to determine δn0. Since g0μ = −δ0μ + first order, we
obtain δ�0

αβ = − 1
2(hα0|β + hβ0|α − ḣαβ), so that

d

dλ
δn0 = hα0|βnβnα − 1

2
ḣαβn

αnβ . (2.229)

Integrating this equation we use hα0|βnβnα = d
dλ
(hα0n

α), so that the change of n0

between some initial time ti and some final time tf is given by

δn0|fi =
[
h00 + h0jn

j
]f
i
− 1

2

∫ f

i

ḣμνn
μnνdλ . (2.230)

The energy of a photon with 4-momentum p̃μ as seen by an observer moving with
4-velocity ũ is given by E = −(ũ·̃p̃). Hence, the ratio of the energy of a photon
measured by some observer at tf to the energy emitted at ti is

Ef

Ei
= (ñ·̃ũ)f
(ñ·̃ũ)i =

ai

af

(n · u)f
(n · u)i , (2.231)
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where here ·̃ denotes the scalar product in an expanding universe, containing the
factor a2, and ũ is the emitter and receiver 4-velocity in an expanding universe,
ũ = a−1u, while uf and ui are the 4-velocities of the observer and emitter respec-
tively in the nonexpanding conformally related geometry given by

u = (1− A)∂t + viei = aũ . (2.232)

Together with ñ = a−2n this implies the result (2.231). The ratio ai/af = Ti/Tf is
the usual (unperturbed) redshift that relates n and ñ.

Before continuing with the fully gauge-independent treatment, let us derive
a useful formula for scalar perturbations in longitudinal gauge. In this gauge
h00 = −2� and ḣμνnμnν = −2(�̇ + �̇). The first-order geodesic perturbations
then are

δn0
∣∣f
i
= − 2�|fi +

∫ f

i

(�̇ + �̇) dλ, (2.233)

δnj
∣∣f
i
= 2nj�

∣∣f
i
−

∫ f

i

∂j (� +�) dλ. (2.234)

Using also vi = V i we obtain

Ef

Ei
= 1

1+ z̄
(

1− δz

1+ z̄
)

(2.235)

δz

1+ z̄ =
[
V
(b)
j n

j +�
]f
i
−

∫ f

i

(�̇ + �̇) dλ . (2.236)

Here V(b) is the velocity of baryons (the emitters and observers of radiation).
Expression (2.236) is valid only in longitudinal gauge. The redshift perturbation is
not gauge invariant. For example, in the constant redshift time slicing, the redshift
perturbation vanishes by definition.

Let us now continue with the generic analysis valid in an arbitrary gauge. An
observer measuring a temperature T0 receives photons that were emitted at the time
tdec of decoupling of matter and radiation, at the fixed temperature Tdec. In first-
order perturbation theory, we find the following relation between the unperturbed
temperatures Tf , Ti , the true temperatures T0 = Tf + δTf , Tdec = Ti + δTi , and the
photon density perturbation:

ai

af
= Tf
Ti
= T0

Tdec

(
1− δTf

Tf
+ δTi
Ti

)
= T0

Tdec

(
1− 1

4
δγ |fi

)
, (2.237)

where δr is the intrinsic density perturbation in the radiation and we have used
ργ ∝ T 4 in the last equality. Inserting Eq. (2.237) and Eq. (2.230) into Eq. (2.231),
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and using Eq. (2.28) for the definition of hμν , as well as Eqs. (2.57), (2.58), (2.88),
and (2.85), one finds, after integration by parts, the following result for scalar
perturbations:

Ef

Ei
= T0

Tdec

{
1−

[
1

4
D(r)g + V (b)j nj +� +�

]f
i

+
∫ f

i

(�̇ + �̇) dλ
}

. (2.238)

Here D(r)g denotes the density perturbation in the radiation fluid.
Evaluating Eq. (2.238) at final time t0 (today) and initial time tdec, we obtain the

temperature difference of photons coming from different directions n1 and n2

�T

T
≡ �T (n1)

T
− �T (n2)

T
≡ Ef
Ei
(n1)− Ef

Ei
(n2). (2.239)

Direction-independent contributions to Ef /Ei do not enter in this difference.
The largest contribution to �T/T is the dipole term, V (b)j (t0)n

j , which simply
describes our motion with respect to the emission surface. Its amplitude is about
1.2 × 10−3 and it has been measured so accurately that even the yearly variation
due to the motion of the Earth around the Sun has been detected.

For the higher multipoles (polynomials in nj of degree 2 and higher) we can set

�T (n)
T

=
[

1

4
D(r)g + V (b)j nj +� +�

]
(tdec,xdec)+

∫ t0

tdec

(�̇ + �̇)(t,x(t)) dt,
(2.240)

where x(t) is the unperturbed photon position at time t for an observer at x0, and
xdec = x(tdec) (if K = 0 we simply have x(t) = x0 − (t0 − t)n). The first term in
Eq. (2.240) is the one we have discussed in the previous section. It describes the
intrinsic inhomogeneities of the radiation density on the surface of last scattering,
due to acoustic oscillations prior to decoupling; see Eq. (2.199). Depending on the
initial conditions, it can also contribute significantly on superhorizon scales. This is
especially important in the case of adiabatic initial conditions. As we have seen in
Eq. (2.219), in a dust + radiation universe with � = 1, adiabatic initial conditions
implyD(r)g (k,t) = − 20

3 �(k,t) and V (b) = V (r) � D(r)g when kt � 1. With� = �
the square bracket of Eq. (2.240) therefore gives for adiabatic perturbations(

�T (n)
T

)(OSW)

adiabatic

= 1

3
�(tdec,xdec),

on superhorizon scales. The contribution to �T/T from the last scattering surface
on very large scales is called the “ordinary Sachs–Wolfe effect” (OSW). It was
derived for the first time by Sachs and Wolfe (1967). For isocurvature perturbations,
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the initial conditions require D(r)g (k,t) → 0 for t → 0 so that the contribution of
D(r)g to the ordinary Sachs–Wolfe effect can be neglected,(

�T (n)
T

)(OSW)

isocurvature

= 2�(tdec,xdec).

The second term in (2.240) describes the relative motion of emitter and observer.
This is the Doppler contribution to the CMB anisotropies. It appears on the same
angular scales as the acoustic term; we call the sum of the acoustic and Doppler
contributions acoustic peaks.

The integral in Eq. (2.240) accounts for the red or blue shifts caused by the
time dependence of the gravitational potential along the path of the photon, and
represents the so-called integrated Sachs–Wolfe (ISW) effect. In a � = 1, pure
dust universe, as we have seen, the Bardeen potentials are constant and there is no
integrated Sachs–Wolfe effect; the blue shift that the photons acquire by falling into
a gravitational potential is exactly cancelled by the redshift induced by climbing
out of it. This is no longer true in a universe with substantial radiation contribution,
curvature, or a cosmological constant. The sum of the ordinary Sachs–Wolfe term
and the integral is the full Sachs–Wolfe contribution.

For vector perturbations δ(r) and A vanish and Eq. (2.231) leads to(
Ef

Ei

)(V )
= ai

af

[
1− V (b)j nj

∣∣∣f
i
+

∫ f

i

σ̇jn
j dλ

]
. (2.241)

We obtain a Doppler term and a gravitational contribution. For tensor perturba-
tions, that is, gravitational waves, only the gravitational part remains:(

Ef

Ei

)(T )
= ai

af

[
1−

∫ f

i

Ḣljn
lnjdλ

]
. (2.242)

Equations (2.238), (2.241), and (2.242) are the manifestly gauge-invariant results
for the energy shift of photons due to scalar, vector, and tensor perturbations.
Disregarding again the dipole contribution due to our proper motion, Eqs. (2.241)
and (2.242) imply the vector and tensor temperature fluctuations(

�T (n)
T

)(V )
= V (b)j (tdec,xdec)n

j +
∫ f

i

σ̇j (t,x(t))nj dλ, (2.243)(
�T (n)
T

)(T )
= −

∫ f

i

Ḣlj (t,x(t))nlnj dλ. (2.244)

Note that for models where initial fluctuations have been laid down in the very early
universe, vector perturbations are irrelevant, as we have already pointed out. In
this sense Eq. (2.243) is here mainly for completeness. However, in models where
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perturbations are sourced by some inherently inhomogeneous component [e.g.,
topological defects; see Durrer et al. (2002)] vector perturbations can be important.

2.6 Power Spectra

2.6.1 Generics

The quantities that we can determine from a given model are usually not the pre-
cise values of perturbation variables as �(k,t), but only expectation values like
〈�(k,t) ·�∗(k′,t)〉. In different realizations, for example, of the same inflationary
model, the “phases” θ(k,t) given by �(k,t) = exp(iθ(k))|�(k,t)| are different.
They are random variables. If we assume that the random process that generates
the fluctuations � is stochastically homogeneous and isotropic, these phases have
a vanishing 2-point correlator for different values of k and |�| depends only on the
modulus k.

The quantity that we can calculate for a given model and which then has to be
compared with observations is the power spectrum, defined below. Power spectra
are the “harmonic transforms” of the 2-point correlation functions.2 If the perturba-
tions of the model under consideration are Gaussian, a relatively generic prediction
from inflationary models as we shall see, then the 2-point functions and therefore
the power spectra contain all the statistical information of the model.

For inflationary models, the “randomness” is fully characterized by the initial
conditions after inflation. Within linear perturbation theory, there exists a trans-
fer function, TX(k,t), that determines the solution at late time from the initial
conditions. In the simplest models, for example, single-field inflation which is a
good fit to present data, adiabatic scalar perturbations have only one degree of
freedom, and within linear perturbation theory, every variable X is determined
via a deterministic transfer function by the initial condition for the curvature
perturbation ζ ,

X(k,t) = TX(k,t)ζ(k,tin) (2.245)

Naively one might think that two initial conditions are needed because the linear
perturbation equations are of second order, but after inflation only the growing
mode that satisfies ζ = constant on superhorizon scales is relevant. As TX is
deterministic, with ζ also X is a Gaussian random variable. This is no longer true
when nonlinearities become relevant since products of Gaussian variables are not
Gaussian.

2 The “harmonic transform” in usual flat space is simply the Fourier transform. In curved space it is the
expansion in terms of eigenfunctions of the Laplacian on that space, for example, on the sphere it corresponds
to the expansion in terms of spherical harmonics.
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Eq. (2.245) is easily generalized into a sum if several scalar modes are excited
initially, for example, isocurvature modes; see Chapter 3. The situation is very dif-
ferent if perturbations are seeded by some inherently inhomogeneous and random
component (such as, e.g., cosmic strings). Then the variables inherit the statistics
of the typically non-Gaussian seeds and cannot be related in a simple way to
initial conditions but need to be computed with a Green’s function method; see
Section 2.7.

There is one additional problem to consider: one can never “measure” expecta-
tion values. We have only one Universe, that is, one realization of the stochastic
process that generates the fluctuations at our disposal for observations. The best
we can do when we want to determine the mean square fluctuation on a given
scale λ is to average over many disjoint patches of size λ, assuming that this spatial
averaging corresponds to an ensemble averaging; a type of ergodic hypothesis. This
works well as long as the scale λ is much smaller than the Hubble horizon, the size
of the observable Universe. For λ ∼ O(H−1

0 ) we can no longer average over many
independent volumes and the value measured could be quite far from the ensemble
average. This problem is known under the name “cosmic variance” and we shall
come back to it in Chapter 9, where we shall quantify cosmic variance. More details
about the formal aspects of power spectra can be found in Appendix 7.

For an arbitrary scalar variable X in position space, we define the power
spectrum in Fourier space by〈

X (k,t0)X∗
(
k′,t0

)〉 = (2π)3δ(k− k′)PX(k). (2.246)

In flat space, K = 0, the function X(k) is the ordinary Fourier transform of X(x).
If K 
= 0 the situation is more complicated. Then X(k) represents an expansion of
X(x) in terms of eigenfunctions of the Laplacian and in the case K > 0 the Dirac
δ-function has to be replaced by a discrete Kronecker δ.

The 〈 〉 indicates a statistical average, ensemble average, over “random initial
conditions” in a given model. We assume that no point in space is preferred, in
other words that X(x) and any other stochastic field that we consider has the
same distribution in every point x. Such random fields are called “statistically
homogeneous” (or stationary). We further assume that the distribution of X(x) has
no preferred direction. This means that the random field X is statistically isotropic.
These properties imply that the Fourier transform of the 2-point function is diago-
nal; that is, they explain the factor δ(k− k′) in Eq. (2.246) (see Exercise 2.5).

A related and physically more intuitive quantity is the so-called dimensionless
power spectrum defined by

�X(k) = 1

2π2
k3PX(k) = 4π

(2π)3
k3PX(k). (2.247)
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Contrary to PX, this quantity has the same dimension as X. It also relates very
simply to the correlation function. Suppressing the time variable we have

ξ(x,y) = 〈X(x)X(y)〉 =
∫
d3kd3k′

(2π)6
ei(k·x−k′·y) 〈X (k)X∗ (

k′
)〉

= 1

4π

∫
d3k

k3
ei(k·(x−y)�X(k) = 1

2

∫ 1

−1
dμ

∫ ∞

0

dk

k
eiμkr�X(k)

=
∫ ∞

0

dk

k
j0(kr)�X(k) = ξ(r). (2.248)

Here r = |x − y| and having requested statistical homogeneity and isotropy for
the power spectrum implies it therefore also for the correlation function (and vice
versa). Here j0 is the spherical Bessel function; see Appendix 4, Section A4.3.
If �X = constant, that is, is independent of k, we call the spectrum of X “scale
invariant.” In this case, the integral (2.248) is independent of r . However, it diverges
logarithmically for k → 0. This infrared divergence is not physical, since modes
with k < H0 are not observable. Therefore, once we compute directly observ-
able quantities (like an angular correlation function), this divergence is no longer
present.

2.6.2 The Matter Power Spectrum

Let us first consider the power spectrum of dark matter, PD(k), which is defined by〈
Dgm (k,t0)D∗gm

(
k′,t0

)〉 = PD(k)(2π)3δ(k− k′). (2.249)

PD(k) is usually compared with the observed power spectrum of the galaxy distri-
bution. This is clearly problematic, as it is by no means evident what the relation
between these two spectra should be. This problem is known under the name of
“bias” and it is very often simply assumed that the dark matter and galaxy power
spectra differ only by a multiplicative factor. The hope is also that on sufficiently
large scales, since the evolution of both galaxies and dark matter is governed by
gravity, their power spectra should not differ much. This hope seems to be reason-
ably well justified. In Tegmark et al. (2004) it is found that the observed galaxy
power spectrum and the matter power spectrum inferred from the observation of
CMB anisotropies differ only by about 10% on very large scales. In Chapter 8,
where we discuss the matter distribution and its fluctuations in more detail, we shall
assume bias to be linear and scale independent, so that Pg(k,z) = b2(z)PD(k,z).

The power spectrum of velocity perturbations satisfies the relation〈
Vj (k,t0) V ∗i

(
k′,t0

)〉 = Q(S)j (k)Q(S)∗i (k′)PV (k)(2π)3δ(k− k′), (2.250)

PV (k) � H 2
0�

1.2
m PD(k)k

−2. (2.251)
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For � we have used that |kV (t0)| = Ḋ(m)g (t0) ∼ H0�
0.6
m Dg on subhorizon scales

(see, e.g., Peebles, 1993); more precisely, one introduces the growth function,

f (z) = H−1(z)Ḋ(m)g (z)/D(m)g (z).

In a matter-dominated universe f (z) � �0.6
m (z). This will be relevant for our

discussion in Section 8.2

2.6.3 The CMB Power Spectrum

2.6.3.1 Definition

The spectrum that we are most interested in and that can be both measured and
calculated to the best accuracy is the CMB anisotropy power spectrum. It is defined
as follows: �T/T is a function of position x, time t , and photon direction n.
Here, x = x0 and now, t = t0, �T/T is a function on the sphere, n ∈ S

2.
We develop it in terms of spherical harmonics, Y�ms. We will often suppress the
arguments t0 and x0 in the following calculations. Since our fields are statistically
homogeneous, averages over an ensemble of realizations (expectation values) are
independent of position. Furthermore, we assume that the process generating the
initial perturbations is statistically isotropic. This means that the distribution of
�T/T (n) is the same for all directions n. As for the Fourier transforms of random
fields in space, this implies that the harmonic transform of �T/T is diagonal. In
other words, the off-diagonal correlators of the expansion coefficients a�m vanish
and we have

�T

T
(x0,n,t0) =

∑
�,m

a�m(x0)Y�m(n),
〈
a�m · a∗�′m′

〉 = δ��′δmm′C�. (2.252)

The C�s are the CMB power spectrum.
The 2-point correlation function, C(μ), μ = n · n′, is related to the C�s by

C(μ) ≡
〈
�T

T
(n)
�T

T
(n′)

〉
n·n′=μ

=
∑

�,�′,m,m′

〈
a�m · a∗�′m′

〉
Y�m(n)Y ∗�′m′(n

′)

=
∑
�

C�

�∑
m=−�

Y�m(n)Y ∗�m(n
′)︸ ︷︷ ︸

2�+1
4π P�(n·n′)

= 1

4π

∑
�

(2�+ 1)C�P�(μ), (2.253)
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where we have used the addition theorem of spherical harmonics for the last
equality; the P�s are the Legendre polynomials (see Appendix 4, Sections A4.2.3
and A4.1).

Clearly the alms from scalar, vector, and tensor perturbations are uncorrelated,〈
a
(S)
�m a

(V )

�′m′

〉
=

〈
a
(S)
�m a

(T )

�′m′

〉
=

〈
a
(V )
�m a

(T )

�′m′

〉
= 0. (2.254)

Since vector perturbations decay, their contributions, the C(V )� , are negligible in
models in which initial perturbations have been laid down very early, for exam-
ple, after an inflationary period. Tensor perturbations are constant on superhorizon
scales and perform damped oscillations once they enter the horizon.

2.6.3.2 Scalar Perturbations: The Sachs–Wolfe Term

Let us first discuss in somewhat more detail scalar perturbations. We specialize to
the caseK = 0 for simplicity. We suppose the initial perturbations to be given by a
spectrum of the form

〈
�(k)�∗(k′)

〉
k3 = (2π)

6

4π
��(k)δ(k− k′) = (2π)

6

4π
A�(kt0)

ns−1δ(k− k′).

(2.255)

We multiply by the constant tns−1
0 , the actual comoving size of the horizon, in order

to keep A� dimensionless for all values of ns . The number ns is called the scalar
spectral index. A� then represents the amplitude of metric perturbations at horizon
scale today, k = 1/t0. More generally one sets

��(k) = A�
(
k

k∗

)ns−1

, (2.256)

with an arbitrary “pivot scale” k∗. If ns 
= 1, the amplitude A� of course depends
on the chosen pivot scale. In the scale invariant case, ns = 1, the amplitude A� is
independent of the pivot scale.

As we have seen in the previous section, the dominant contribution on superhori-
zon scales (neglecting the integrated Sachs–Wolfe effect

∫
�̇+ �̇ ) is the ordinary

Sachs–Wolfe effect, OSW, which for adiabatic perturbations is given by

�T

T
(x0,n,t0) � 1

3
�(xdec,tdec). (2.257)

Since xdec = x0 + n(t0 − tdec), the Fourier transform of (2.257) gives

�T

T
(k,n,t0) = 1

3
�(k,tdec) · eikn(t0−tdec). (2.258)
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Using the decomposition (see Appendix 4, Section A4.3)

eikn(t0−tdec) =
∞∑
�=0

(2�+ 1)i�j�(k(t0 − tdec))P�(k̂ · n), (2.259)

where j� are the spherical Bessel functions, we obtain (k = |k|,k̂ = k/k)〈
�T

T
(x0,n,t0)

�T

T
(x0,n′,t0)

〉
(2.260)

= 1

(2π)6

∫
d3k d3k′ eix0·(k−k′)

〈
�T

T
(k,n,t0)

(
�T

T

)∗
(k′,n′,t0)

〉
� 1

(2π)69

∫
d3kd3k′eix0·(k−k′) 〈�(k)�∗(k′)〉 ∞∑

�,�′=0

(2�+ 1)(2�′ + 1)i�−�
′

· j�(k(t0 − tdec))j�′(k
′(t0 − tdec))P�(k̂ · n) · P�′(k̂′ · n′)

= 1

(2π)39

∫
d3kP�(k)

∞∑
�,�′=0

(2�+ 1)(2�′ + 1)i�−�
′

× j�(k(t0 − tdec))j�′(k(t0 − tdec))P�(k̂ · n) · P�′(k̂ · n′). (2.261)

In the first equals sign we have used the unitarity of the Fourier transformation.
Inserting P�(k̂n) = 4π

2�+1

∑
m Y

∗
�m(k̂)Y�m(n) and P�′(k̂n′) = 4π

2�′+1

∑
m′ Y

∗
�′m′(k̂)

Y�′m′(n′), integration over the directions d�k̂ gives δ��′δmm′
∑
m Y

∗
�m(n)Y�m(n

′).
Using also

∑
m Y

∗
�m(n)Y�m(n

′) = 2�+1
4π P�(μ), where μ = n · n′, we find〈

�T

T
(x0,n,t0)

�T

T
(x0,n′,t0)

〉
nn′=μ

�
∑
�

2�+ 1

4π
P�(μ)

2

π

∫
dk

k

1

9
P�(k)k

3j 2
� (k(t0 − tdec)). (2.262)

Comparing this equation with Eq. (2.253) we obtain for adiabatic perturbations
on scales 2 ≤ �� χ(t0 − tdec)/tdec ∼ 100:

C
(SW)
� � C(OSW)

� � 2

9π

∫ ∞

0

dk

k
P�(k)k

3j 2
� (k (t0 − tdec)) . (2.263)

The function j 2
� (k(t0 − tdec)) peaks roughly at k (t0 − tdec) � kt0 � �. If� is a pure

power law on large scales, ktdec<∼ 1 as in Eq. (2.255), and we set k(t0− tdec) ∼ kt0,
the integral (2.263) can be performed analytically. For the ansatz (2.255), using the
integral (A4.150) one finds

C
(SW)
� = 2π2A�

9

�(3− ns)�(�− 1
2 + ns

2 )

23−ns�2(2− ns
2 )�(�+ 5

2 − ns
2 )

for − 3 < ns < 3 . (2.264)
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Of special interest is the scale-invariant or Harrison–Zel’dovich (HZ) spectrum,
ns = 1. We shall see in Chapter 3 that inflationary initial conditions naturally
generate a nearly scale invariant spectrum of scalar fluctuations. An HZ spectrum
leads to

�(�+ 1)C(SW)
� = 2πA�

9
�

〈(
�T

T
(ϑ�)

)2
〉
, ϑ� ≡ π/�. (2.265)

This is precisely (within the accuracy of the experiment) the behavior observed
by the DMR (differential microwave radiometer) experiment aboard the satellite
COBE (Smoot et al., 1992) and much more precisely with the Planck satellite
experiment (Planck Coll. VI, 2018), which measured a scalar spectral index
ns = 0.9652± 0.0042 (see Table 9.1).

As we shall see in Chapter 3, inflationary models predict very generically an
HZ spectrum (up to small corrections). The DMR discovery has therefore been
regarded as a great success, if not a proof, of inflation. There are, however, other
models such as topological defects (see Section 2.7, or for more details Durrer
et al., 2002), or certain string cosmology models (Durrer et al., 1999) that also
predict scale-invariant, that is, Harrison–Zel’dovich spectra of fluctuations. These
generically lead to isocurvature perturbations which are severely constrained by
present data. In the case of string cosmology, the isocurvature perturbations can
be transformed into adiabatic ones during reheating; see Enqvist and Sloth (2002).
After that, they can be distinguished from standard inflationary models by their
significant non-Gaussianity and by the absence of tensor modes. Models with topo-
logical defects are outside the class investigated here, since their perturbations are
induced by “seeds” that evolve nonlinearly in time. They are not simply laid down
as initial conditions for the fluid perturbations but typically affect the perturbations
of a given wavelength until it crosses the Hubble scale. We investigate such models
only briefly in Section 2.7.

2.6.3.3 Scalar Perturbations: The Integrated Sachs–Wolfe Term

For isocurvature perturbations, the main contribution on large scales comes from
the integrated Sachs–Wolfe effect (ISW) and (2.263) is replaced by

C
(ISW)
� � 8

π

∫
dk

k
k3

〈∣∣∣∣∫ t0

tdec

�̇(k,t)j�(k(t0 − t)) dt
∣∣∣∣2

〉
. (2.266)

Inside the horizon � is roughly constant (matter dominated). Using the ansatz
(2.255) for � inside the horizon and setting the integral in (2.266) ∼ 2�(k,t =
1/k)j 2

� (kt0), we obtain again (2.264), but with AS/9 replaced by 4AS . For a fixed
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Fig. 2.3 Examples of COBE normalized adiabatic (solid line) and isocurvature
(dashed line) CMB anisotropy spectra, �(� + 1)C�/(2π) in units of (μK)2 are
shown on the top panel. In the bottom panel the ratio of the isocurvature to
adiabatic temperature fluctuations is plotted.

amplitude AS of perturbations, the Sachs–Wolfe temperature anisotropies coming
from isocurvature perturbations are therefore about six times larger than those
coming from adiabatic perturbations (see Fig. 2.3).

But also adiabatic perturbations from inflation generate an integrated Sachs–
Wolfe term if the Bardeen potentials are not constant in time. This is the case, for
example, at early times, right after decoupling, when the Universe is not yet fully
matter dominated but also at late times, when a cosmological constant or some other
form of dark energy becomes relevant. The early integrated Sachs–Wolfe term is
well measured (see, e.g., Cabass et al., 2015) and contributes to the first acoustic
peak. The late ISW effect is relevant only on very large scales. A promising way to
measure it is to correlate CMB fluctuations with density fluctuations at late times.
This allows us to isolate it from the much larger ordinary SW term that originates
from the last scattering surface and is not correlated with density fluctuations in the
late Universe. Let us calculate the expected signal.

The Bardeen potential is determined by the Einstein equation (2.105). Neglecting
curvature this is

� = −4πG

k2
a2ρD = −3H 2

0�m(1+ z)
2k2

D. (2.267)
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For the second equals sign we have assumed that ρ comes from pressureless matter
with density parameter �m, so that ρ ∝ a−3. We have set a0 = 1. As we have
seen in the examples treated in Section 2.4, in a purely matter-dominated universe
D ∝ a = (1 + z)−1 and therefore a2ρD = constant, so that there is no integrated
Sachs–Wolfe effect. This is different at relatively early times, t ∼ tdec, where the
radiation content cannot be neglected, and also at very late times if either curvature
or a cosmological constant or some other dark energy component becomes relevant.

The late ISW effect leads to a correlation between matter density fluctuations
and the CMB temperature fluctuations on large scales. This is already evident
from Eq. (2.267); �(k,t) and D(k,t) are perfectly correlated since they differ by
a deterministic multiplicative function. However, most of the CMB anisotropies
actually measure � (and D) at tdec, a time at which we can by no means measure
the matter power spectrum directly. This is different for the late ISW effect which
measures � at late times, z<∼ 1. At these times we can also observe the galaxy
distribution and infer from it the matter distribution.

Let us estimate the C�’s from the correlation of the matter fluctuations at
some fixed redshift z with the CMB. The density fluctuation at z in a direction
n from us is

D(x0,n,z) = D(x0 − n(t (z)− t0),t (z)).
Here x0 is our position, t0 denotes today and t (z) is the conformal time at redshift z.
Expressed in terms of the Fourier transform D(k,t (z)) we obtain

D(x0,n,z) = 1

(2π)3

∫
d3k e−ik·(x0−n(t (z)−t0))D(k,t (z))

= − 2

3H 2
0�m(1+ z)(2π)3

∫
d3k k2e−ik·(x0−n(t (z)−t0))�(k,t (z)).

(2.268)

We want to correlate these density fluctuations with the ISW effect,〈
D(x0,n′,z)

(
�T

T

)
ISW

(x0,n)
〉
= 1

4π

∑
�

(2�+ 1)C(xISW)
� (z)P�(n · n′). (2.269)

For the second term we insert the Fourier representation of the integrated term on
the right-hand side of Eq. (2.240), setting � = �,(

�T

T

)
ISW

(x0,n) = 2

(2π)3

∫
d3k

∫ t0

tdec

dt e−ik·(x0−n(t−t0))�̇(k,t).

We now set

�(k,t) = g(t,k)�in(k). (2.270)
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We shall consider matter perturbations only and tin>∼tdec. In this case the evolution
of � no longer depends on k; see Eq. (2.140) with w = c2

s = P = 0, and we
can approximate g(t,k) = g(t). Later we shall also introduce a growth function f
defined by f = d logD/d log a. One easily checks using Eq. (2.105), Eqs. (2.118),
and (2.119) that in a universe where perturbations are due to pressureless matter
only, these growth functions are related by

ġ(t)

g(t)
= H(t) (f (t)− 1) . (2.271)

In a pure matter universe (where not only the perturbations but also the background
is dominated by pressureless matter only) we have f ≡ g ≡ 1. Therefore during
matter domination ġ = 0. Once dark energy becomes relevant, perturbations grow
slower than the scale factor and the Bardeen potential starts decaying, ġ < 0.

In Fig. 2.4 we plot g(z) and ġ(z) for a universe with (��,�m) = (0.7,0.3).
We make use of �̇ = ġ�in and 〈�in(k)�∗in(k

′)〉 = (2π)3δ(k − k′)P�(k) =
(2π)6δ(k−k′)A�(k/H0)

ns−1k−3/4π ; see Eqs. (2.255) and (2.256), where we have
chosen the pivot scale H0. Furthermore, we rewrite eikn(t0−t) in terms of spherical
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Fig. 2.4 The growth function g (solid) and its derivative, −ġ/H0 (dashed) are
shown as functions of the scale factor a = (1+ z)−1 in a universe with �� = 0.7
and �m = 0.3. Note that only for z<∼ 2, a>∼0.3, the growth function g starts to
deviate significantly from 1.
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Bessel functions and Legendre polynomials [see Eq. (A4.146)]. Applying the addi-
tion theorem for spherical harmonics, Eq. (A4.45), the integration over directions
of k yields

C
(xISW)
� (z) = −8g(t (z))

3π�mH 2
0 (1+ z)

∫
dk k4P�(k)j�(k(t0 − t (z)))

×
∫ t0

tin

dt ġ(t)j�(k(t0 − t)). (2.272)

Equation (2.272) is still exact. For a given initial power spectrum k3P�(k) ∝
(k/H0)

ns−1, the transfer function g(t) is determined by the cosmological param-
eters �m and ��. If �m = 1 and �� = 0, g = constant and the effect vanishes.

To perform the integration over k we now use Limber’s approximation (A4.152),
which is not very accurate at low � but provides the right order of magnitude.
It yields∫
dk k4P�(k)j�(k(t0 − t (z)))j�(k(t0 − t)) � π

2

δ(r − r(z))
r2

(
k2P�(k)

)∣∣
k=(�+1/2)/r ,

(2.273)

where we have introduced the comoving distance r = t0 − t and r(z) = t0 − t (z).
Converting the integral over t to an integral over r then simply yields

C
(xISW)
� (z) � −8π2g(t (z))ġ(t (z))

3�mr(z)2H 3
0 (1+ z)

A�

(
�+ 1/2

r(z)H0

)ns−2

. (2.274)

For ns � 1 we therefore have �2C
(xISW)
� (z) ∝ �, but of course our result (2.274)

is valid only at sufficiently low � when perturbations are largely superhorizon at
decoupling, that is, �<∼ 60. Note also that, since ġ < 0, together with the minus
sign in front, the density–ISW correlation spectrum is positive.

Measurements of these correlations need large-scale CMB anisotropies and den-
sity fluctuations in a relatively narrow redshift interval. Of course the result over a
broader redshift interval is easily obtained by integrating Eq. (2.274) over redshift.

So far, several tentative detections at the 3σ level have been reported; see for
example, Pietrobon et al. (2006) or, more recently Shajib and Wright (2016).

2.6.3.4 Scalar Perturbations: The Acoustic Peaks

On smaller scales, �>∼ 100, the contribution to �T/T is dominated by acoustic
oscillations, the first two terms in Eq. (2.240). Instead of (2.266) we then obtain

C
(AC)
� � 2

π

∫ ∞

0

dk

k
k3

〈∣∣∣∣1

4
Dγ (k,tdec)j�(kt0)+ V (b)(k,tdec)j

′
�(kt0)

∣∣∣∣2
〉

. (2.275)
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To remove the SW contribution fromD(r)g we have simply replaced it byDγ , which
is much smaller than � on superhorizon scales and therefore does not contribute to
the SW terms. On subhorizon scales Dγ � D(γ )g and Vγ are oscillating like sine or
cosine waves depending on the initial conditions. Correspondingly the C(AC)� will
show peaks and minima. For adiabatic initial conditionsD(γ )g and thereforeDγ also
oscillates like a cosine. Its minima and maxima are at kntdec/

√
3 = nπ . Odd values

of n correspond to maxima, “contraction peaks,” while even numbers are minima,
“expansion peaks.”

These are the “acoustic peaks” of the CMB anisotropies. Sometimes they are
misleadingly called “Doppler peaks” referring to an old misconception that the
peaks are due to the velocity term in Eq. (2.275). Actually the contrary is true. At
maxima and minima of the density contrast, the velocity (being proportional to the
derivative of the density) nearly vanishes. We shall therefore consistently call the
CMB peak structure “acoustic peaks.”

The angle θn, which subtends the scale λn = π/kn at the last scattering sur-
face, is determined by the angular diameter distance to the last scattering surface,
dA(tdec), via the relation θn = λn/dA(tdec). Expanding the temperature anisotropies
in spherical harmonics, the angular scale θn corresponds (roughly) to the harmonic
number

�n � π/θn = πdA(tdec)/λn = dA(tdec)kn = n
√

3πdA(tdec)/tdec. (2.276)

For a flat, matter-dominated universe dA(tdec) � t0 leading to �n � 180n (see
Ex. 2.8). This crude approximation deviates by about 15% from the precise
numerical value, which depends, with dA, strongly not only on curvature but
also on the Hubble parameter and on the cosmological constant. Furthermore, the
peak positions depend on the sound speed of the radiation–baryon plasma, which
we have simply set to cs = 1/

√
3 in this approximation. We shall discuss this

parameter dependence of the peak positions in detail in Chapter 9. Note, however,
that the position of the first peak differs significantly for the isocurvature mode,
for which D(r)g oscillates like a sine. For generic initial conditions, we would
expect a mixture of the sine and cosine modes that leads to a displacement of the
first peak. The observed CMB anisotropies are consistent with a purely adiabatic
mode and require, at least, that the adiabatic mode dominates (Bucher et al., 2001;
Trotta, 2006).

For a flat universe, � = 1, the nth peak therefore is placed at

�n � knt0 ∼= nπ
√

3
t0

tdec
. (2.277)

For a flat matter dominated universe we have t0
tdec
∼ √

zdec ∼ 33.2, which yields
�1 ∼ 180. Here we have used zdec ∼ 1100 (see Section 1.3). This approximation
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is not very good, since the Universe is not very well matter dominated at tdec.
A somewhat more accurate estimate (Exercise 2.8) gives �1 ∼ 220, in good agree-
ment with the numerical value. Subsequent peaks are then given by �n = n�1.

Our discussion is valid only in flat space. In curved space the exponentials
exp(ik(t0 − tdec)) have to be replaced with the harmonics of the curved spaces.
For the positions of the peaks, this corresponds to replacing knt0 by knχ(t0), hence
replacing t0 by the comoving angular diameter distance to the last scattering sur-
face. Instead of Eq. (2.277) we then obtain the following approximate relation for
the peak positions:

�n ∼ nπ
√

3
χ(t0)

tdec
. (2.278)

For values of � close to unity this scales like 1/
√
� (see Section 1.2).

On very small scales the acoustic peaks are damped by the photon diffusion that
takes place during the recombination process. This effect will be discussed with the
Boltzmann equation approach in Chapter 4.

2.6.3.5 Tensor Perturbations

For gravitational waves (which are tensor fluctuations), a formula analogous to
(2.264) can be derived (see Appendix 8),

C
(T )
� = 2

π

∫
dk k2

∣∣∣∣∫ t0

tdec

dt Ḣ (t,k)
j�(k(t0 − t))
(k(t0 − t))2

∣∣∣∣2
(�+ 2)!

(�− 2)!
. (2.279)

To a very crude approximation we may assume Ḣ (T ) = 0 on superhorizon scales
and

∫
dt Ḣ (T )j�(k(t0 − t)) ∼ H(T )(t = 1/k)j�(kt0). For a pure power law,

k3�H(k) = At(kt0)nt , (2.280)

one obtains

C
(T )
� � 4π

(�+ 2)!

(�− 2)!
At

∫
dx

x
xnt
j 2
� (x)

x4

= (�+ 2)!

(�− 2)!
At
π2�(6− nt)�(�− 2+ nt

2 )

25−nt �2( 7−nt
2 )�(�+ 4− nt

2 )
. (2.281)

For a scale-invariant spectrum (nt = 0) this results in

�(�+ 1)C(T )� � 16π

15

�(�+ 1)

(�+ 3)(�− 2)
At . (2.282)

The singularity at � = 2 in this crude approximation is not real, but there is some
enhancement of �(�+ 1)C(T )� at � ∼ 2 (see Fig. 2.5).
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Fig. 2.5 Adiabatic scalar and tensor CMB anisotropy spectra are plotted, �(� +
1)C�/(2π) in units of (μK)2 as functions of � in log-scale (top panels), where
the Sachs–Wolfe plateau is clearly visible and in linear scale (bottom panels),
which shows the equal spacing of the acoustic peaks. The solid line shows
the temperature spectrum, the dashed line is the polarization, and the dotted
line shows the temperature–polarization cross correlation. We shall discuss the
polarization of CMB radiation in Chapter 5. The temperature–polarization cross
correlation can become negative, and the deep spikes in the dotted curves in the
left-hand panels are actually sign changes (we show |CTP� | in this log-plot). The
left-hand side shows scalar fluctuation spectra, while the right-hand side shows
tensor spectra. The observational data are well fitted by a purely scalar spectrum.
A comparison of data and a model scalar spectrum are shown in Figs. 9.5 and 9.6.

Since tensor perturbations decay on subhorizon scales, �>∼ 60, they are not very
sensitive to cosmological parameters.

Again, inflationary models (and topological defects) predict a scale-invariant
spectrum of tensor fluctuations (nt ∼ 0).

Comparing the tensor and scalar result for scale-invariant perturbations we
obtain for large scales, � < 50,

C
(T )
�

C
(S)
�

� 72

15

At

A�
≡ r . (2.283)



112 Perturbation Theory

Present CMB anisotropy data favor a roughly scale-invariant spectrum with
amplitude

�(�+ 1)C� � 7.6× 10−10 for �<∼ 50.

If the perturbations are purely scalar, this requires A� � 1.1 × 10−9; if they were
purely tensorial (which we know they are not), we would need At � 2.2 × 10−10.
In general, observations require

2π

9
A�(1+ r) � 7.6× 10−10. (2.284)

On very small angular scales, �>∼ 800, fluctuations are damped by collisional
damping (Silk damping). This effect has to be discussed with the Boltzmann equa-
tion for photons, which is presented in detail in Chapter 4.

2.7 Sources

So far we have assumed that small initial perturbations were generated early in the
Universe during an inflationary phase and then evolved under linear perturbation
theory. For a given spectrum of, for example, scalar initial fluctuations P�(k), the
spectrum at some later time is then determined by a transfer function, P�(k,t) =
g2(k,t)P�(k). This transfer function depends only on the background cosmology,
that is, on the cosmological parameters.

There is, however, yet another possibility: an intrinsically inhomogeneous and
anisotropic matter distribution, which makes up only a small perturbation, and
which interacts with the cosmological matter and radiation only gravitationally.
We consider the energy–momentum tensor of this component as a first-order per-
turbation. Within linear perturbation theory, it then evolves with the equations of
motion determined by the background geometry.

Such a component is termed a source or “seed.” The source’s energy–momentum
tensor seeds first-order perturbations in the geometry, which in turn affect the evo-
lution of matter and radiation, generating fluctuations in the matter density and in
the CMB.

2.7.1 Topological Defects

Topological defects that can form during symmetry breaking phase transitions are
physically well-motivated seeds. If the vacuum manifold (i.e., the manifold of
minima of the Higgs field or order parameter) that is responsible for the symmetry
breaking is topologically nontrivial, regions where the field cannot relax to the
minimum generically occur. The simplest examples are cosmic strings that form,
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T<<Tc

T >Tc

Fig. 2.6 The effective potential of a complex Higgs field for two values of the
temperature, T > Tc and T < Tc, is shown. The circle at the bottom is the
vacuum manifold S of the low-temperature phase.

for example, when a U(1) symmetry is broken. Below a critical temperature Tc,
the temperature-dependent effective potential V (φ,T ) of the complex Higgs field
φ changes from a form with a single minimum at φ = 0 to a Mexican hat shape
with an entire circle S of minima; see Fig. 2.6.

When the temperature drops below Tc, the field at a given position x assumes
some value in the new vacuum manifold S . The field values at positions that are
further apart than the Hubble horizon are uncorrelated. Therefore the configuration
φ(s) = φ(x(s)) along some large closed curve x(s) in a plane of physical space
may well make one (or several) full turns in S . If this happens, in order to remain
continuous, φ has to leave the vacuum manifold and assume a value with higher
potential energy somewhere in the interior of this curve. Continuing this argument
in the third dimension, one obtains a line of higher energy. These lines, which are
either closed or infinite, are cosmic strings; see Fig. 2.7.

As the Universe expands, the Higgs field straightens out. Strings that intersect
exchange partners and can thereby chop off loops from the network of long strings.
In this way the long string network loses energy by shortening the total length
of strings. The strings from a broken gauge symmetry interact with other matter
components only gravitationally. They shed energy only into a background of grav-
itational waves that they produce. This process is slow but sufficiently effective to
lead to a mean energy density in cosmic strings that scales like the background
energy density ρS ∝ 1/τ 2. If M � Tc is the energy scale of the phase transition,
we expect ρS � M2/τ 2 so that

ρS

ρ
� 4πGM2 = 4π

(
M

mP

)2

≡ ε. (2.285)
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Fig. 2.7 A cosmic string in space is shown with the corresponding configuration
of the complex Higgs field, indicated as arrows.

The amplitude of the induced perturbations will be of the order of ε. Recalling
that the gravitational potential responsible for the CMB anisotropies is roughly
10−5, we infer that the symmetry breaking scale cannot be much smaller than
M ∼ 10−3mP ∼ 1016 GeV, if such a component is to play a role for CMB
anisotropies. Interestingly, this is a grand unified (GUT) scale where some drastic
changes of physical interactions, for example, a phase transition, are expected to
occur from the running of the coupling constants of gauge interactions. If cosmic
strings were generated, for example, at the electroweak transition (which is not the
case in the standard model), they would have far too low energy to play a role for
structure formation or CMB anisotropies.

Another type of topological defects, called monopoles, occur at symmetry break-
ing phase transitions if the vacuum manifold of the broken phase, S , has the topol-
ogy of a sphere. More generically, monopoles form if the second homotopy group,
π2(S) is nontrivial. Monopoles are points of higher potential energy. If the broken
symmetry is gauged, such massive monopoles cease to interact soon after the phase
transition. Their energy density then scales like ordinary matter ρ ∝ a−3 and soon
dominates over the radiation density of the Universe. Therefore, local monopoles
are ruled out by observations.

However, if the symmetry is not gauged, the gradients of the scalar field cannot
be compensated by the presence of a gauge field. In this case, long-range interac-
tions lead to very efficient annihilation of monopole–anti-monopole pairs and the
remaining energy density has the correct scaling, ρM ∝ 1/τ 2.
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This is true not just for a symmetry breaking Higgs field: an arbitrary, unordered
multicomponent scalar field with a potential minimum at some scale M 
= 0
evolves in an expanding universe such that ρS/ρ � GM2 = constant. The field
orders on the Hubble scale, so that its gradient and kinetic energy are of the order
M2/τ 2. These findings have been confirmed by numerical simulations and they
become very accurate for fields with three or more components (Durrer et al.,
2002). For fields with only two components (global strings) this scaling law seems
to obtain logarithmic corrections. One-component, or real scalar fields, do not
scale at all. They generically lead to domain walls that soon come to dominate the
energy density of the Universe and are therefore ruled out. (Their vacuum manifold
consists of isolated points, so that they have negligible gradient and kinetic energy.
Their energy is dominated by potential energy.)

2.7.2 Causal Scaling Seeds

If the initial conditions of the scalar field are uncorrelated on scales larger than
the Hubble scale, correlations evolve causally and will always vanish on scales
larger than the Hubble scale during noninflationary expansion. The correlation
functions of arbitrary components of the energy–momentum tensor are therefore
functions with compact support. An important mathematical theorem (Reed and
Simon, 1980) states that the Fourier transform of a function with compact support is
analytic. On scales that are much smaller than the Hubble scale, the field has already
had sufficient time to order and will therefore not contribute much. The only scale
in the problem is the Hubble scale H � 1/t . We therefore expect the power spectra
to depend on scale only via the dimensionless variable y ≡ kt . Seeds that have this
behavior are called “causal scaling seeds.” They are most interesting since, as we
shall see in the text that follows, they generically predict a scale-invariant spectrum
of CMB fluctuations like inflation that we shall study in the next chapter.

We now consider an arbitrary seed energy–momentum tensor that may or may
not come from a scalar field or even from cosmic strings, but that has the afore-
mentioned properties of scaling and of causality and therefore analyticity. Let us
parameterize the correlations of its energy–momentum tensor, "μν in the form

"μν(k,t) = M2θμν(k,t), (2.286)

〈θμν(k,t)θ∗ρλ(k′,t)〉 = (2π)3Cμνρλ(k,t)δ(k− k′). (2.287)

The correlators Cμνρλ are analytic functions of k. Scaling requires that they depend
only on tk and on t , where the t dependence is a simple power law with the power
required for dimensional reasons and the dependence on tk is analytic. We also
require Cμνρλ → 0 for kt → ∞. The dimension of θμν(x) is 1/(length)2 so that
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θμν(k) has the dimension of a length. Hence Cμνρλ must have the dimension of an
inverse length and therefore be of the form t−1× (an analytical function of tk). For
example,

C0000 = 1

t
F1(kt), or (2.288)

C0i0j = 1

t

[
t2kikjF2(kt)+ (kt)2δijF3(kt)

]
, (2.289)

where the functions Fn(y) are analytic in y2 with the asymptotic behavior

lim
y→∞Fn(y) = 0.

It can be shown that if the energy–momentum of the source is conserved, the
correlators (2.287) can all be expressed in terms of five free functions with this
asymptotic behavior.

In a given specific model, numerical simulations are usually employed to deter-
mine these functions; see Durrer et al. (2002).

Let us now show that, on large scales, the CMB anisotropy spectrum from causal
scaling seeds is always scale invariant. Since the Laplacians of the Bardeen poten-
tials are of the form

k2�, k2� ∼ εθ,
where θ denotes some components of θμν , their power spectrum must be of the
form 〈

(� +�)(k,t)(� +�)∗(k′,t)〉 = ε2(2π)3δ(k− k′)
F (y2)

k4t
, (2.290)

≡ (2π)3δ(k− k′)P (k,t), (2.291)

where again F is an analytic function of y2 that tends to 0 for large y. We have
written the power spectrum for�+�, since this is the quantity that determines the
large-scale CMB anisotropy spectrum.

�T

T
(x0,n) = (� +�)(x(tdec),tdec)+

∫ t0

tdec

∂t (� +�)(x(t),t) dt; (2.292)

see Eq. (2.240). The Fourier transform of this equation yields

�T

T
(k,n) = eik·n(t0−tdec)(� +�)(k,tdec)+

∫ t0

tdec

eik·n(t0−t) ∂t (� +�)(k,t) dt .

(2.293)

We have ∂t
[
eik·n(t0−t)(� +�)] = eik·n(t0−t)[−ikn(� +�)+ ∂t (� +�)]. As long

as kt < 1, the second term in this expression dominates and we may therefore
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approximate the derivative in Eq. (2.293) of � + � by the time derivative of
the total integrand. Since � + � decays rapidly inside the horizon, it suffices to
integrate until t = 1/k. The integral can now be performed and the value at the
lower boundary simply cancels the “ordinary Sachs–Wolfe” term. We obtain

�T

T
(k,n) � eik·n(t0−1/k)(� +�)(k,1/k), (2.294)

and 〈
�T

T
(k,n)

�T ∗

T
(k′,n′)

〉
� eik·(n−n′)(t0−1/k) ε

2

k3
F(1)(2π)3δ(k− k′). (2.295)

Expanding eik·n(t0−1/k) and e−ik·n
′(t0−1/k) in Legendre polynomials and spherical

Bessel functions, along the same steps as in Section 2.6, we arrive at

C� � ε2F(1)
2

π

∫ ∞

0

dk

k
j 2
� (kt0) =

ε2F(1)

π

1

�(�+ 1)
. (2.296)

We have approximated kt0 − 1 ∼ kt0 in the argument of the spherical Bessel
function and used the integral (A4.150). As promised, we obtain a scale-invariant
spectrum, �(�+ 1)C� = constant. The numerical value obtained in this way is not
accurate, but the scaling is correct. Note that the main ingredient for the scaling
was that the power spectrum of � + � does not contain any other dimensionful
parameter other than t and k and that it decays inside the horizon. For dimensional
reasons, the spectrum P then is such that P(k,t = 1/k) ∝ 1/k3, and the CMB
anisotropies become scale invariant.

We expect F(1) to be of order unity, so that ε determines the amplitude of the
fluctuations.

In the next subsection, we explain how to go beyond such a rough approximation
and calculate the CMB anisotropies and polarization from scaling causal seeds in
more detail.

2.7.3 Calculating CMB Anisotropies from Sources

The linear perturbation equations in the presence of sources take the form
(in k-space)

DX(k,t) = εS(k,t), (2.297)

where D is a first-order linear differential operator in time and X is a long vector
containing as its components all the perturbation variables, for example, Dm, Vm;
all the temperature fluctuation variables, M(m)

� ; and the polarizations, E (m)� , B(m)� ,
which we shall discuss in detail in Chapters 4 and 5. For the discussion here the
detailed definition of these variables is not relevant. We just need to know that
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they generically satisfy a linear differential equation of the form (2.297) where the
source vector S consists of linear combinations of the source energy momentum
tensor. For purely scalar perturbations, S can be described by two functions, for
example, the Bardeen potentials generated by the source. It describes the gravita-
tional interaction of the source with the cosmic fluid, and ε = 4πGM2 determines
the gravitational coupling strength of the source.

In principle, one can simulate the source, Fourier transform it, and insert the ran-
dom variable S(k,t) in Eq. (2.297). Averaging over directions in k-space one can
then obtain the correlation matrix Pnm(k,t)(2π)3δ(k − k′) = 〈Xn(k)X∗m(k′)〉. For
this one needs as input S(k,t) depending on four variables, the three-dimensional
k-vector and time. This way has proved to be very tedious, requiring a huge (3+1)-
dimensional numerical simulation with a dynamical range of several hundred only
to determine the C�s for �<∼ 100. The following observation allows one to reduce
the numerical complexity of the problem considerably.

To solve Eq. (2.297), we use the Green function method. If G(k,t,t ′) is the Green
function for the operator D with initial condition G(t1,t1) = 0 and DG(t,t1) =
δ(t − t1), the general solution of Eq. (2.297) is

X(k,t0) = ε
∫ t0

tin

dt G(k,t0,t)S(k,t)+X0(k,t0), (2.298)

where tin denotes the time at which the source first appears, for example, the
phase transition, and X0(k,t0) is an arbitrary homogeneous solution of Eq. (2.297).
A specific example of a Green function is given in Exercise 2.9.

If perturbations are a mixture of two components, one coming from inflation
and one from topological defects, X0 denotes the component from inflation. These
two components can be considered as uncorrelated and the resulting perturbation
spectra can just be added. We shall discuss the computation of the perturbation
spectra from inflation in detail in Chapters 3, 4, and 5. Here we concentrate on
the part induced by the sources. We therefore neglect X0, so that we obtain for the
correlation matrix,

〈Xi(k,t0)X∗j (k′,t0)〉 = ε2
∫ t0

tin

dt ′ dt Gim(k,t0,t)G∗nj (k′,t0,t ′)

× 〈Sm(k,t)S∗n(k′,t ′)〉. (2.299)

To calculate it, we need to determine the unequal time correlators of the source,〈
Si(k,t)S∗j (k′,t ′)

〉 = (2π)3tpFij (√t t ′k,r)δ(k− k′). (2.300)

Here we have introduced the ratio r = t/t ′. The details of the correlation functions
Fij have to be determined case by case, via numerical simulations. But they are
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Fig. 2.8 The source correlation function F(r,z) for vector perturbations from
numerical simulations for a 4-component scalar field (texture) in panel (a) and for
the semianalytical result for the largeN limit, panel (b). From Durrer et al. (2002)

much easier to obtain on a large dynamical range than the full random variable S .
The source just consists of linear combinations of the energy–momentum tensor of
the seed, which is determined by five functions, Fn(r,y), n ∈ {1,2,3,4,5} where
now y = √t t ′k. These functions are analytic in k and therefore in y2. They go to
zero for either y →∞ or r →∞, r → 0; furthermore, Fn(r,y) = F ∗n (1/r,y). We
now only have to determine the amplitudes of the functions at r ∼ 1, y ∼ 0−1 and
their behavior around these values. This is numerically very feasible and has been
performed with good accuracy. The source functions for vector perturbations of a
self-ordering scalar field are shown in Fig. 2.8; see also Lizarraga et al. (2016) for
cosmic string simulations.

2.7.4 Decoherence

From its definition (2.300) it is clear that the source correlation function F(t,t ′,k)
can be interpreted as a positive symmetric operator. For a given function V (t)
setting (FV )(t) = ∫

dt ′F(t,t ′)V (t ′), we find (suppressing the argument k and
vector indices for simplicity)

〈V,FV 〉 ≡
∫
dt dt ′ V ∗(t)F(t,t ′)V (t ′) ≥ 0.

Discretizing it in time, F becomes a positive semidefinite hermitian matrix, which
we can diagonalize. Let us denote its nonnegative eigenvalues by λ2

1, . . . ,λ
2
n, and
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D = diag(λ2
1, . . . ,λ

2
n) so that F = UDU ∗ for some unitary matrix U . For sim-

plicity, we suppress the vector structure of X and present the argument for a simple
scalar quantity X and F(t,t ′,k). According to Eqs. (2.299) and (2.300), the power
spectrum of X is given by

PX =
∫
dt dt ′ G(t0,t)G∗(t0,t ′)F(t,t ′).

Discretizing this integral and diagonalizing the source function F(t,t ′) we obtain

PX =
∑
ijm

(�t)2G(t0,tj )G∗(t0,ti)UjmU ∗imλ2
m =

∑
m

λ2
m

∣∣∣∣∫ dt G(t0,t)Um(t)
∣∣∣∣2

,

(2.301)

where we define Um(tj ) ≡ Ujm and interpolate for values between the time steps.
The last equality sign shows that the spectrum PX is the sum of the spectra with
deterministic source terms λmUm(t).

In this way, the problem of a stochastic source term is reduced to the problem of
many deterministic source terms. In practice, one orders the eigenvalues according
to size, λ1 > λ2 · · · , and sums the contributions of about the 20–100 largest eigen-
values to achieve an accuracy of about 1%, which is also typically the accuracy of
the source term from numerical simulations.

With this procedure in mind, let us discuss the acoustic peak structure of the
CMB generated by sources. The acoustic peaks from inflationary perturbations
reflect the maxima and minima in the radiation/baryon density at the moment of
decoupling. The radiation density perturbation oscillates like a cosine wave, since
it starts at maximum amplitude, D(kt) � A cos(cskt). In the case of sourced per-
turbations, however, sources generate perturbations at different moments in time,
so that D � ∑

n Dn(kt) =
∑
n An cos(cskt − δn), with different phases δn that are

determined by the time at which the perturbation Dn is generated. At the time of
decoupling, tdec, many different wavelengths can have their maximum or minimum
in one of the contributions Dn(ktdec). Instead of a distinct peak structure we there-
fore rather expect a broad hump in the acoustic peak region of the CMB spectrum.
This phenomenon, which is rather generic for seeds, is called “decoherence.” It was
first pointed out by Albrecht et al. (1996). If only very few eigenvalues dominate,
that is, if the aforementioned sum contains only a few terms, decoherence is not
very effective and a peak structure can still be seen.

2.7.5 Results

In addition to decoherence, an important characteristic of scaling seeds is that
they typically generate vector perturbations with an amplitude comparable to that
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of scalar perturbations; see Durrer et al. (2002) and Bevis et al. (2007). Tensor
perturbations are usually somewhat smaller, C(T )2 /C

(S)

2 ∼ 1
4 . Sources are probably

the only way to obtain significant vector perturbations in the CMB. Scaling seeds
always generate vector perturbations at the horizon scale while vector perturba-
tions that are generated early in the Universe simply decay and leave no traces in
the CMB.

Furthermore, the amplitude of the Sachs–Wolfe part of CMB anisotropies is
roughly 2� as compared to�/3 for adiabatic inflationary perturbations. Therefore,
we expect the acoustic peak structure, or the acoustic hump, to be not much higher
than the Sachs–Wolfe plateau.

These are the main results for CMB anisotropies seeded by topological defects.
They have a scale-invariant Sachs–Wolfe plateau that determines the normalization
and that contains important contributions from all, scalar, tensor and especially vec-
tor perturbations. This is followed by a very low acoustic hump or peak structure.
Since the perturbations are rather of isocurvature than of adiabatic nature (even
though this classification does not strictly apply for sources), this “hump” is around
� ∼ 300–500 in a flat universe. This wide range stems from the uncertainty of
the scale at which perturbations are induced. This may be the horizon scale, as for
global defects, or somewhat less, as for cosmic strings.

In Fig. 2.9 we show the scalar, vector, and tensor CMB spectra from a
4-component global scalar field (cosmic texture). The contributions from the largest
eigenvalues as well as their sum (bold solid line) are shown. Even though single
eigenvalue contributions do show acoustic oscillations, these are washed out in
the sum. Similar results have recently been obtained for cosmic strings (Lizarraga
et al., 2016).

From these results it is clear that topological defects or similar sources cannot
generate the observed CMB anisotropy spectrum. However, they might make up
a small contribution in models in which inflation ends with a symmetry breaking
phase transition that leads to cosmic strings. It has been argued that the formation
of cosmic strings is quite generic for GUTs and can actually be used to constrain
them with the CMB (Rocher and Sakellariadou, 2005).

Another question of interest is the following: as the entire class of scaling causal
seeds allows for five nearly free functions of two variables, is it possible to “man-
ufacture” these functions such that they reproduce the observed CMB anisotropies
and polarization or can this be excluded? It has been argued that the small hump at
low � ∼= 100 that is generated in the E-polarization spectrum from inflation during
decoupling (see Chapter 5) cannot be reproduced by causal seeds (Spergel and
Zaldarriaga, 1997). At decoupling, scales corresponding to �<∼ 100 are still super-
Hubble and causal seeds have no power on these scales. This question has been
studied by “manufacturing” a model with causal scaling seeds that consists in very
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C
C

T
V

C
S

Fig. 2.9 The scalar, vector, and tensor contributions for the texture model of
structure formation are shown. The dashed lines show the contributions from the
first few single eigenfunctions while the solid line represents the sum (over 100
eigenfunctions). Note that the single contributions to the scalar and tensor spectra
do show oscillations that are, however, washed out in the sum (vector perturbations
do not obey a wave equation and thus do not show oscillations). Data courtesy of
N. Bevis and M. Kunz (see Bevis et al., 2004)

rapid spherical explosions and avoids decoherence. It has been shown numerically
that this model fails to reproduce the first polarization peak as long as the explosion
remain subliminal, that is, do not violate causality (Scodeller et al., 2009).

2.8 Final Remarks

In this chapter we have developed the basics of cosmological perturbation theory.
Perturbation theory is an important tool especially to calculate CMB anisotropies



Exercises 123

and polarization, since these are very small and can be determined reliably within
linear cosmological perturbation theory. Here we have discussed the Einstein equa-
tions and the propagation of light-like geodesics. Linear perturbations of the some-
what more involved Boltzmann equation, which is more adequate to study CMB
anisotropies and polarization, will be developed in Chapters 4 and 5. To determine
the evolution of the matter density fluctuations at late times, linear perturbation the-
ory has to be complemented with the theory of weakly nonlinear Newtonian gravity
and withN -body simulations. Finally, to understand the formation of galaxies non-
gravitational highly nonlinear physics, such as heating and cooling mechanisms,
dissipation, and nuclear reactions have to be taken into account. These topics go
beyond the scope of this book.

Exercises

(The exercises marked with an asterisk are solved in Appendix 11 which is not
in this printed book but can be found online.)

2.1 Gauge transformations∗

Using the general formulae of Appendix 2, Section A2.2 derive Eq. (2.32),

LXḡ = a2[−2(HT + Ṫ )dt2 + 2(L̇i − T,i)dt dxi

+ (
2HT γij + Li|j + Lj |i

)
dxidxj ]. (2.302)

2.2 Normals to hypersurfaces
We consider the normal nμ to some hypersurface of the form t = constant
for a suitably chosen time coordinate t . Then the corresponding 1-form is
of the form nμ dxμ = f dt . The function f = ±

√
−g00 is determined by

the normalization condition. Show that in this case the vorticity

ωμν = 1

2
PλμP

ρ
ν (nλ;ρ − nρ;λ), (2.303)

vanishes. Here Pρν is the projection tensor defined in Eq. (2.42).

Hint: If you are familiar with forms, you find from Wald (1984) that a
vector field is hypersurface orthogonal if and only if the corresponding 1-
form α = nμ dxμ satisfies α ∧ dα = 0. Show that for a form given by
α = f (x) dt this is always the case. Here f is an arbitrary function on the
spacetime manifold.

2.3 Synchronous and comoving gauge∗

Show that in synchronous gauge (i.e., the gauge with A = B = 0) in a
K = 0 pure dust universe the growing mode is also comoving, i.e., v = 0
for the growing mode.
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2.4 Adiabaticity∗

Consider a mixture of two noninteracting fluids with sound speeds c1, c2,
and enthalpies w1, w2. Determine � from the single fluid perturbation
variables �α, Dgα, Vα,  α, α = 1,2. If the intrinsic perturbations of
each fluid are adiabatic, �α = 0, what is the condition that the total
perturbation be adiabatic, � = 0? Derive an evolution equation for � under
the condition �α = 0.

2.5 Power spectrum

1) For a spatial, statistically homogeneous, and isotropic random variable
X(x) with vanishing mean the 2-point correlation function ξX can only
depend on the distance, r = |x− y|,

ξ(r) = 〈X(x)X(y)〉 r = |x− y|.

Homogeneity requires that ξ does not depend on the position of the
first point, x, and isotropy means that ξ is independent of the direction
of x − y. Hence ξ depends only on the distance r . Show that this fact
implies that the 2-point correlator in Fourier space is proportional to
δ(k− k′), that is, of the form of Eq. (2.246).

2) Consider a normalized, spherically symmetric smoothing function (or
window function) WR(|x|) that smoothes out fluctuations on scales
smaller than R (e.g., a Gaussian or a top hat). We denote its Fourier
transform by ŴR(k). The smoothed field is defined by

XR(y) =
∫
d3xWR(y− x)X(x). (2.304)

Show that

XR(y) = 1

(2π)3

∫
d3kŴR(k)X(k)

and

〈X2
R〉 =

∫ ∞

0

dk

k
Ŵ 2
R(k)�X(k). (2.305)

For this reason, �X(k) is a good measure for the amplitude of fluctua-
tions of X smoothed over the scale λ/2 = π/k.
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2.6 Variable transformation
We consider an ordinary linear second-order differential equation for φ,
which is of the form

φ̈ + f (t)φ̇ + ω2(t)φ(t) = 0. (2.306)

Show that the variable ψ ≡ h(t)φ, with h(t) = exp
(

1
2

∫ t
f (t ′) dt ′

)
,

satisfies the equation

ψ̈ + ω̃2(t)ψ(t) = 0, (2.307)

where

ω̃2 = ω2 + ḧ/h.

Use these findings to derive Eq. (2.156).

Hint: Use

d

dt
[ρ(1+ w)]−1/2 = 3

2
H(1+ c2

s )[ρ(1+ w)]−1/2.

To derive this equation make use of Eq. (2.115) and the energy conservation
equation. Finally, use Eq. (2.111).

This shows that a linear second-order differential equation can always
be brought into the form of the equation for a harmonic oscillator with a
time-dependent frequency. This is useful to know, not only because we can
quantize this system easily, but also since we know that an instability sets
in, when ω̃2 < 0. By studying the time dependence of the frequency, we
can therefore infer the qualitative behavior of the solution.

2.7 Perturbations in universes with nonflat spatial section
Consider a universe filled with dust, c2

s = w = 0. In this case, the Bardeen
equation reduces to

�̈ + 3H�̇ − 2K� = 0. (2.308)

Solve this equation for both cases, K > 0 and K < 0, and discuss the
results. What happens for K < 0 at late times? How do perturbations
evolve during a collapsing universe?

2.8 Acoustic peaks
Consider a universe with matter and radiation but no curvature or cos-
mological constant. Solve the Friedmann equation exactly and determine
t0/tdec given that zdec � 1100. Insert a realistic value for �r and keep h in
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the expression. Use the result to approximate the positions of the acoustic
peaks in this Universe. Discuss qualitatively the change in the peak position
in the following cases:

(a) addition of a cosmological constant (at fixed �r and for vanishing
curvature).

(b) addition of curvature (at fixed �r and � = 0).

2.9 The Green function
Show that for

DX = Ẍ + αẊ + βX
the Green function with initial condition G(t,t) = 0 and Ġ(t,t) = 1 is
given by

G(t1,t) = D1(t1)D2(t)−D1(t)D2(t1)

Ḋ1(t)D2(t)−D1(t)Ḋ2(t)
,

where D1 and D2 are two linearly independent solutions of the homoge-
neous equation DX = 0. Show that G is independent of the choice of D1

and D2. Ġ(t1,t) = ∂
∂t1
G(t1,t).

Consider the case α = 0 and β = c2
s k

2 = constant. Introduce a source
of the form S1(t) = A1δ(t − t1). Discuss decoherence by adding the signal
of several sources of this kind.
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Initial Conditions

So far we have only studied the evolution of perturbations assuming that the initial
conditions are fixed and given once and for all. Now we want to study how classical
perturbations are generated out of quantum fluctuations during a simple inflationary
phase. The fact that inflation generates a nearly scale-invariant spectrum of scalar
perturbations in good agreement with the observations of the cosmic microwave
background is to be considered as its greatest success. The solutions of the flatness
and entropy problems with an inflationary phase are actually “post-dictions” while
the scale-invariant spectrum of scalar perturbations was first predicted in Mukhanov
and Chibishov (1982) [see Mukhanov et al. (1992) for a review] long before its
discovery by the COBE satellite by Smoot et al. (1992). It represents therefore
a real prediction of inflation. There are also other models for structure formation
that predict a scale-invariant spectrum of fluctuations but that disagree with the
detailed observed spectrum of CMB fluctuations such as topological defects
(Durrer et al., 2002).

In this chapter we first study perturbations in an FL universe filled with a scalar
field. Next we discuss the generation of fluctuations during inflation. We especially
determine the spectral index of scalar and tensor perturbations and the ratio of their
amplitudes in the slow roll approximation. This will lead us to the well-known
consistency relation for slow roll inflation. We study in detail the simple case of
one scalar field, the “inflaton.”

We then go beyond Gaussian fluctuations and study how nonlinearities in the
evolution of the scalar field(s) induce non-Gaussianities, in particular an nonvan-
ishing 3-point function and bispectrum.

Finally, we investigate more general initial conditions that are relevant if more
than one scalar field plays a role during inflation, so-called mixed adiabatic and
isocurvature fluctuations.

As we have discussed in Chapter 1, an inflationary phase supresses curvature
and in order for curvature to be of order unity or smaller today, it must have
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been very small in the early Universe. In this chapter, which deals mainly with
the early Universe, we therefore neglect curvature; K = 0. Note, however, that
homogeneity and isotropy are not a simple consequence of inflation. We still have
to assume a sufficiently large patch where inhomogeneities can be neglected and
that then inflates to become the entire visible Universe. Inflation does not predict a
homogeneous and isotropic Universe, but it renders it causally possible. A different
point of view on this has been presented recently (Creminelli et al., 2019).

3.1 Scalar Field Perturbations

We consider here the special case of an FL universe filled with self-interacting
minimally coupled scalar field matter. The action is given by

S = 1

16πG

∫
d4x

√
|g |R −

∫
d4x

√
|g |

(
1

2
∂μϕ ∂

μϕ +W(ϕ)
)
, (3.1)

where ϕ denotes the scalar field and W is its potential. The energy–momentum
tensor is obtained by varying the scalar-field action w.r.t. the metric gμν ,

Tμν = ∂μϕ∂νϕ −
[

1

2
∂λϕ ∂

λϕ +W
]
gμν . (3.2)

The energy density ρ and the energy flux u are defined as the timelike eigenvalue
and eigenvector of T μν ,

T μνu
ν = −ρuμ. (3.3)

For the homogeneous and isotropic FL background we obtain (see also Chapter 1)

ρ = 1

2a2
ϕ̇2 +W, (uμ) = 1

a
(1,�0). (3.4)

The pressure is given by

T ij = Pδij, P = 1

2a2
ϕ̇2 −W . (3.5)

We want to derive the linear perturbation equations for the evolution of scalar
field and metric perturbations. We define the scalar field perturbation modes,

ϕ = ϕ̄ + δϕQ(S). (3.6)

Let us determine the first-order perturbations in the energy momentum tensor of
the scalar field. With the definition (3.2) we obtain

δTμν = ∂μϕ̄ ∂ν δϕ + ∂ν ϕ̄∂μ δϕ + a−2 ¯̇ϕ δϕ̇ḡμν

+
[

1

2a2
( ˙̄ϕ)2 − W̄

]
δgμν − ˙̄ϕ2gμνA− W̄ ′δϕḡμν . (3.7)
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Here A denotes the perturbation of g00, g00 = −a2(1+ 2A); we consider a generic
gauge as given in Eq. (2.29). Inserting Eq. (3.7) for a fixed Fourier modeQ(S) in the
definition (3.3) of the energy density and energy flux, and setting ρ = ρ̄ + δρQ(S)
and

(uμ) = 1

a

(
1− AQ(S),vQ(S)i

)
, (3.8)

we find

δρ = 1

a2
˙̄ϕ δϕ̇ − 1

a2
˙̄ϕ2A+W,ϕδϕ, (3.9)

and

−v = k˙̄ϕ
(
δϕ + ˙̄ϕk−1B

)
. (3.10)

The stress tensor, Tij = ϕ,iϕ,j −
[

1
2∂λϕ∂

λϕ +W ]
gij , yields

PπL = 1

a2
˙̄ϕδϕ̇ − 1

a2
˙̄ϕ2A−W,ϕδϕ and  = 0. (3.11)

We now define a gauge-invariant scalar field perturbation that corresponds to the
value of δϕ in longitudinal gauge.

δϕ(gi) = δϕ + ˙̄ϕk−1(B − k−1ḢT ) = δϕ − ˙̄ϕk−1σ = δϕ(long). (3.12)

The second and third expressions give δϕ(gi) in a generic gauge. Under a gauge
transformation the scalar field perturbation simply changes by δϕ → δϕ + ¯̇ϕT .
Since σ → σ + kT , it is clear that the combination δϕ(gi) is gauge invariant. On
the other hand, in longitudinal gauge B = HT = 0, so that δϕ(gi) = δϕ(long). This
variable is very simply related to the other gauge-invariant scalar variables. Short
calculations using Eq. (1.149) give

−V = kδϕ(gi)/ ˙̄ϕ, (3.13)

Dg = −(1+ w)
[
4� + 2Hk−1V − k−1V̇

]
, (3.14)

Ds = −(1+ w)
[
� + 2Hk−1V − k−1V̇

]
, (3.15)

D = −(1+ w) [� −Hk−1V − k−1V̇
]
, (3.16)

� = 2W,ϕ ¯̇ϕ
P ρ̇

[
ρDs − ρ̇k−1V

] = −W,ϕ ˙̄ϕ
kP

[
V + 1

H V̇ −
k

H�
]
, (3.17)

 = 0. (3.18)
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Note that � 
= 0. However, this single scalar field is not in a (nearly) thermal
state and hence � cannot be interpreted as the divergence of an entropy flux; see
Appendix 5. Here �, like all other perturbation variables, is entirely fixed by δϕ(gi)

and �. The last equation implies that the two Bardeen potentials are equal for
scalar field perturbations, � = �. Using this we can write the perturbed Einstein
equations fully in terms of the Bardeen potential � and V . We actually only
need (2.105). Since we need them mainly to discuss inflation where curvature is
negligible, we write them down here only for the case K = 0:

k2� = 4πGϕ̇2
[
� −Hk−1V − k−1V̇

]
, (3.19)

�̇ +H� = 4πGϕ̇2k−1V, (3.20)

where we have used a2ρ(1+ w) = ϕ̇2. To simplify the notation, we have dropped
the overbar on the background quantities. With the help of Eqs. (2.106) and (2.108)
one can easily generalize these equations to the case with curvature. Using (3.20)
to eliminate V and V̇ from Eq. (3.19) leads to the following second-order equation
for the Bardeen potential:

�̈ + 2(H− ϕ̈/ϕ̇)�̇ + (2Ḣ− 2Hϕ̈/ϕ̇ + k2)� = 0. (3.21)

Here we have also used the fact that 4πGϕ̇2 = 4πGa2ρ(1 + w) = H2 − Ḣ.
Inserting the definition c2

s = Ṗ /ρ̇ = − 1
3H(2

ϕ̈

ϕ̇
+ H), we can also write (3.21) in

the form

�̈ + 3H(1+ c2
s )�̇ + (2Ḣ+ (1+ 3c2

s )H2 + k2)� = 0. (3.22)

This equation differs from the � equation for a perfect fluid only in the term
proportional to k2 that is not multiplied with the adiabatic sound speed c2

s . Indeed
the scalar field is not in a thermal state with fixed entropy, � 
= 0, but rather in a
fully coherent state so that field fluctuations propagate with the speed of light and
not with some adiabatic sound speed. On large scales, |kt | � 1 this difference is
not relevant, but on sub-Hubble scales it does play a certain role.1

During slow roll inflation we can express the background variables in terms of H
and the slow roll parameters ε1 and ε2 defined in Chapter 1. With the definition
(1.155) we obtain

1 Often, the terms “Hubble scale” and “horizon scale” are used interchangeably. For inflation, however, they
can differ by many orders of magnitude. During inflation the (comoving) Hubble scale, H−1 � |t | = −t is
decreasing and much smaller than the comoving horizon scale,

∫ t
ti
dt � −ti � H � −t . The scale relevant

for the behavior of perturbations is, however, always the Hubble scale, since H enters into the perturbation
equations. The horizon is a global quantity, an integral; it does not determine whether perturbations are
oscillating or whether they behave like a power law. It just happens that in a decelerating universe the two
scales are often of the same order. In this chapter we shall be careful not to mix them up. We shall use the
terms “Hubble scale” for the Hubble scale and “Hubble exit” for a scale growing larger than the Hubble scale
during inflation.
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ϕ̈

Hϕ̇ = 1− ε1 + 1

2H
ε̇1

ε1
= 1+ 3ε2 + ε1, (3.23)

so that

2(Ḣ−Hϕ̈/ϕ̇) = −2H2(3ε2 + 2ε1). (3.24)

Inserting these results in Eq. (3.21) we find

�̈ − 2(3ε2 + ε1)H�̇ −
[
2H2(3ε2 + 2ε1)− k2

]
� = 0. (3.25)

Hence on small scales, (3ε2 + 2ε1)H2 � k2, and � oscillates, while on super-
Hubble scales, k/H � 1, it varies slowly as long as the slow roll parameters are
small. During the transition from inflation to the radiation-dominated era, where
the slow roll parameters reach order unity, the Bardeen potential can, however,
vary substantially. It is therefore not very well suited to determine the amplitude of
perturbations which have been induced during inflation in the radiation-dominated
era. We now show that, on super-Hubble scales, the curvature variable ζ remains
constant also during the transition from inflation to the radiation-dominated era. To
study the evolution of super-Hubble perturbations from inflation into the radiation
era, we shall therefore use the variable ζ .

As for the case of fluids [see Eqs. (2.156)–(2.158)] we introduce the variable u
given by

u = a[4πG(H2 − Ḣ)]−1/2�, (3.26)

which now satisfies the equation

ü+ (k2 − θ̈/θ)u = 0, (3.27)

where

θ = 3H
2a

√
H2 − Ḣ

. (3.28)

The difference to the fluid equations is just the factor c2
s in front of k2, which for

the scalar fields is replaced by 1 as already noted earlier. The curvature variable ζ
in a scalar field background is given by (2.145)

ζ ≡ 2(H−1�̇ +�)
3(1+ w) +�. (3.29)

Note that we need w > −1 so that ζ is well defined. In a pure de Sitter space, we
cannot work with the ζ -variable. This becomes even more evident when expressing
Eq. (3.29) in terms of the slow roll parameter ε1. From (1.153) and

(1+ w) = ϕ̇2

1
2 ϕ̇

2 + a2W
=

2
3ε1

1
3ε1 + 1

� 2

3
ε1, (3.30)
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we obtain

ζ � H−1�̇ +�
ε1

+�. (3.31)

For ζ to be well defined we therefore need ε1 
= 0 (or the perturbations have to
decay obeying �̇ = −H�). From Eq. (3.25), using Eq. (1.155), one finds

ζ̇ = − 2k2

3(1+ w)H� = −
(1+ 1

3ε1)k
2

ε1H
� � −k2

ε1H
�. (3.32)

As in the case of fluids, this implies that the curvature perturbation ζ is conserved
on super-Hubble scales, k/H � 1. Using Eqs. (3.20) and (3.13) and φ̇2 = a2ρ

(1+ w), we can express ζ also as

ζ = H
ϕ̇
δϕ(gi) +�. (3.33)

As we have seen in Chapter 2, Eqs. (2.161)–(2.163), the evolution of ζ is closely
related to the one of v defined by

v = a
√
H2 − Ḣ√
4πGH

ζ = a δϕ(gi) + aϕ̇H �. (3.34)

The variable v satisfies the equation of motion

v̈ + (k2 − z̈/z)v = 0, (3.35)

with

z = a
√
H2 − Ḣ√
4πGH

= a
√

3(1+ w)
8πG

= a
√
a2(ρ + P)

H = aϕ̇H . (3.36)

Comparing Eqs. (3.33) and (3.34), this implies

v = zζ . (3.37)

Also note that z is related to the slow roll parameter ε1 by

ε1 = −dH/dτ
H 2

= H2 − Ḣ
H2

= 4πG
z2

a2
. (3.38)

The equation of motion (3.35) can be obtained from the Fourier decomposition of
the action

S = −1

2

∫
d4x

(
∂μv ∂

μv +m2(t)v2
)
, (3.39)

where m2 = −(z̈/z). This is the action of a simple free scalar field in Minkowski
space with a time-dependent mass term. For a constant or slowly varying w we
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have z ∝ a and during inflation z̈/z > 0; hence m2(t) < 0, which represents
an instability and leads to the amplification of vacuum fluctuations (or particle
creation). During ordinary expansion, z̈/z < 0 and the vacuum state is stable.

In Section 3.3 we will study quantum fluctuations of the variable v.
Remark: Note that also Eq. (3.27) can be written as a Euler–Lagrange equa-

tion for a canonical scalar field Lagrangian with time-dependent mass term
m2
θ =−(θ̈/θ) for the variable u defined in Eq. (3.26). The problem there is,

however, that we cannot “switch off” gravity for this variable, which diverges
in the limit H,Ḣ→ 0. Hence u does not have well-defined initial conditions when
k2 � |θ̈/θ |. Even though the perturbation equations take the form of canonical
equations in this variable, it is therefore not the correct variable to quantize. In the
next section we shall also see that the usual scalar field action leads to a quadratic
action for ζ or v but not for u.

3.2 Perturbations of the Scalar Field Action in Unimodular Gauge

As we now show, the preceding action (3.39) can also be obtained by perturbing
the original action of the system to second order,

S =
∫
dx4

√
|g |

(
R

16πG
− 1

2
∂μϕ∂

μϕ −W
)

. (3.40)

A long and cumbersome calculation, removing several total derivatives (Mukhanov
et al., 1992) shows that to second order, the perturbation of this action is given
by (3.39). A much more elegant recent derivation of this result is given in
Maldacena (2003). Here we present some elements of this paper. The first relevant
point is the choice of the so-called unimodular gauge where, δϕ = 0. From (3.12)
is follows that in this gauge

δϕ(gi) = − ˙̄ϕk−1σ . (3.41)

We use the 3+ 1 formalism of General Relativity; see, for example, Padmanabhan
(2010), with the general metric ansatz

ds2 = −N2 + hij (dxi +Nidt)(dxj +Njdt), (3.42)

whereN is the lapse function andNi is the shift vector. In these variables the scalar
field action (3.40) becomes (up to a total derivative)

S =
∫
dx4
√
h

(
NR(3) +N−1(EijE

ij − E2)

16πG

+ 1

2

(
N−1(ϕ̇ −Ni∂iϕ)2 −Nhij∂iϕ∂jϕ

)−NW)
. (3.43)
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where we have introduced

Eij = 1

2

(
ḣij −∇iNj − ∇jNi

)
. (3.44)

In these expressions, spatial indices are lowered and raised with hij and its inverse,
hij ; h is the determinant of hij ; R(3) is the scalar curvature of hij ; and ∇i denotes
covariant derivatives w.r.t. hij . The constraint equations determineN andNi , which
are not dynamical variables. The dynamics can be described by a Hamiltonian for
hij and its conjugate momenta. See Padmanabhan (2010) for details. For a scalar
field in unimodular gauge, δϕ = 0, the constraint equations become (see Ex. 3.3)

R(3) −N−2(EijE
ij − E2) = 8πG

(
V + 1

2N2
ϕ̇2

)
(3.45)

∇i
(
N−1(Eij − δijE)

) = 0. (3.46)

Let us first study scalar perturbations and choose as a second gauge condition
HT = 0 to all orders. The spatial metric is then of the form

hij = a2 exp(2ζ )δij . (3.47)

Here ζ is just a name but we shall see that in first-order perturbation theory, this is
exactly our gauge invariant variable ζ . To first order

N = a(1+ δN), Ni = ∂iψ . (3.48)

The constraint equations (3.45) and (3.46) then yield

δN = ζ̇

H, ψ = − ζH + ϕ̇2

2H2
ζ̇ . (3.49)

To find the quadratic action we can now simply insert these solutions and the ansatz
(3.47) in the action and expand up to second order in ζ . After a little algebra we
find (derive the details in Ex. 3.3)

S(2)s = 1

2

∫
d4xa2 ϕ̇

2

H2

(
ζ̇ 2 − ∂iζ ∂iζ

)
. (3.50)

(Note that the factor a−2 to from raising one index μ of derivatives has already
been included in the prefactor,

√
g → √

ga−2 = a2.) It is interesting to see that
in the absence of rolling, ϕ̇ = 0 and hence ε1 = 0; the second-order scalar action
vanishes. The canoncially normalized field corresponding to this action is

v = aϕ̇H ζ = zζ, (3.51)

as we have found earlier in Eq. (3.37). Rewriting (3.50) in terms of the variable v
yields (3.39).
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To study tensor perturbations we simply set δN = Ni = 0 and make the ansatz

hij = exp(2Hij ), with ∂iHij = Hii = 0. (3.52)

Here, the exponential of a matrix is defined, as usual, via its series expansion.
Inserting this in the action (3.43) we obtain after some algebra

S
(2)
T = 1

16πG

∫
d4xa2

(
Ḣij Ḣij − (∂kHij )2

)
. (3.53)

The canonically normalized variable, which we shall use later, is therefore hij ,
given by (see Ex. 3.4)

hij = a√
8πG

Hij, h
i
i = 0, ∂ihij = 0. (3.54)

3.3 Generation of Perturbations during Inflation

So far we have simply assumed some initial fluctuation amplitude As , without
investigating where it came from or what the k-dependence of As might be. In
this section we discuss the most common idea about the generation of cosmolog-
ical perturbations, namely their production from the quantum vacuum fluctuations
during an inflationary phase.

The basic idea is simple: a time-dependent gravitational field generically leads to
particle production, analogously to the electron–positron production in a classical,
time-dependent electromagnetic field in quantum electrodynamics.

3.3.1 Scalar Perturbations

The main result of this section is the following: during inflation, the produced
particles induce a perturbed gravitational potential with a (nearly) scale-invariant
spectrum (see Section 2.6),

k3〈|ζ(k,t)|2〉 ∝ kns−1 with ns � 1. (3.55)

The quantity �ζ(k) ∝ k3〈|ζ(k,t)|2〉 is the squared amplitude of the curvature
perturbation at comoving scale λ = π/k. To make sure that this quantity is small
on a broad range of scales, so that neither black holes are formed on small scales
nor large deviations from homogeneity and isotropy on large scales appear, we must
require ns � 1. These arguments were put forward for the first time by Harrison and
Zel’dovich (Harrison, 1970; Zel’dovich, 1972) (still before the advent of inflation),
leading to the name “Harrison–Zel’dovich spectrum” for a scale-invariant pertur-
bation spectrum as discussed in Chapter 2.
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To derive the foregoing result we consider a scalar field background with energy
density that is dominated by the potential term; hence the slow roll parameters, ε1

and ε2 are small. Over a reasonably short period of time we can approximate them
as constants leading to nearly power law expansion

a ∝ |t |q with q = −1− ε1 +O(ε2
1). (3.56)

We want to determine the Bardeen potential during the subsequent radiation and
matter-dominated era. For this we use the fact that the curvature perturbation ζ
remains constant on super-Hubble scales. Hence if we calculate its amplitude at
Hubble crossing, k/H = 1, during inflation it will remain constant until it reenters
the Hubble horizon in the radiation or matter-dominated era.

3.3.1.1 Quantization

To determine the initial conditions and the evolution of v we now quantize the
variable v in the action (3.50) or equivalently (3.39)

S(2)s = −1

2

∫
dx4

[
(∂μv)

2 +m2(t)v2
] = ∫

dx4 L, (3.57)

with canonical momentum π = ∂L/∂v̇ = v̇.
We now interpret v̂ and π̂ as operators on a Hilbert space that satisfy the standard

canonical commutation relations given by

[v̂(t,x),v̂(t,x′)] = [π̂(t,x),π̂(t,x′)] = 0, and (3.58)

[v̂(t,x),π̂(t,x′)] = iδ3(x− x′) (h̄ = 1). (3.59)

We now expand the operator v̂ in Fourier modes,

v̂(t,x) = 1

(2π)3/2

∫
d3k[vk(t)âke

ik·x + v∗k (t)â∗ke−ik·x]. (3.60)

The operators âk and their hermitean conjugates â∗k are the annihilation and cre-
ation operators. Since v̂ describes a real field, v∗k is the complex conjugate of vk.
Choosing the time-independent normalization

v∗k v̇k − vkv̇∗k = +i, (3.61)

Eqs. (3.58) and (3.59) require that the operators ak satisfy the usual commutation
relations

[âk,âk′] = [â∗k,â
∗
k′] = 0 and [âk,â

∗
k′] = δ3(k− k′). (3.62)

The time-dependent mode functions vk obey the classical equation of motion (3.35).
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At very early times, k � H, we can neglect the mass term, z̈/z, in Eq. (3.35)
and vk is the mode function of a free massless scalar field. We assume that initially
v̂ is in the vacuum state so that

vk(t) = 1√
2k

exp(−ikt) for k � H. (3.63)

Note that we work (as is usual in quantum field theory) in the Heisenberg picture;
the state, which we assume to be the vacuum state at very early times and that we
denote by |0〉, does not evolve but the field operator does.

At late times, k � H, we may neglect k2 in Eq. (3.35) and the growing mode
solution behaves like vk ∝ z, so that ζk = vk/z remains constant, as expected.

We want to calculate the power spectrum of ζ̂ = v̂/z,

ζ̂ (t,x) = 1

(2π)3/2

∫
d3k[ζk(t)âke

ik·x + ζ ∗k(t)â∗ke−ik·x]

= 1

(2π)3/2

∫
d3k[ζ̂ke

ik·x + ζ̂ ∗k e−ik·x], (3.64)

defined by

〈0| ζ̂kζ̂
∗
k′ |0〉 ≡ Pζ (k)δ3(k− k′). (3.65)

With ζk = vk/z and using the properties of the vacuum, 〈X| ak |0〉 = 〈0| a∗k |X〉 = 0,
for an arbitrary state |X〉 as well as the commutation relations (3.62) one obtains
(see Exercise 3.2)

Pζ (k) = |vk(t)|
2

z2
. (3.66)

3.3.1.2 Perturbation Spectrum from Power Law Inflation

As a first simple example we consider power law inflation, a ∝ |t |q , q <∼ − 1. In
this case Ḣ ∝ H2, so that z ∝ a The evolution equation (3.35) for v then reduces
to (we suppress the index k again)

v̈ +
(
k2 − q(q − 1)

t2

)
v = 0. (3.67)

The solutions to this equation are of the form (k|t |)1/2H(m)μ (kt), where μ = 1
2 − q

and H(m)μ is the Hankel function of the mth kind (m = 1 or 2) and of order μ. The
initial condition (3.63) requires that solely H(2)μ appears. Fixing the constants we
obtain

v = − i
√
π exp(iqπ/2)

2
√
k

(k|t |)1/2H(2)μ (k|t |).
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At late times, k/H ∼ k|t | � 1, we have H(2)μ (k|t |) � (i/π)�(μ)(k|t |/2)−μ.
Inserting this in the preceding equation we obtain

v � C(μ)eiα(k|t |)1/2−μk−1/2, k|t | � 1, (3.68)

with C(μ) = (2μ−1/π1/2)�(μ). The phase eiα is uninteresting, as it disappears in
the power spectrum. The power spectrum of ζ = v/z is thus given by

Pζ (k,t) =
∣∣∣∣vz

∣∣∣∣2

= C(μ)2 (k|t |)
1−2μ

z2k
� 4πC(μ)2

ε1m
2
P

(k|t |)1−2μ

a2k
, k|t | � 1,

(3.69)

where we have used Eq. (3.38) in the last equals sign. Recalling that 1− 2μ = 2q,
we see that Pζ is time independent on super-Hubble scales, as expected. We now
replace |t | by H = −q/|t | and multiply the spectrum by k3, which yields2

k3Pζ (k) = 2πH 2

ε1m
2
P

(
k

H

)3−2μ

(3.70)

�ζ = k3

2π2
Pζ (k) = H 2

πε1m
2
P

(
k

H

)3−2μ

, (3.71)

where we have used H = H/a and C(μ)2 � 1/2. The latter approximation is
obtained by setting q = −1 and μ = 3/2 in the expression for C(μ) and H above.
The amplitude of a given mode k at Hubble exit is given by

�ζ(k)
∣∣
k=H =

k3

2π2
Pζ (k)

∣∣∣∣
k=H

= H 2

πε1m
2
P

. (3.72)

The scalar spectral index ns is defined by

ns − 1 = d log
(
�ζ

)
d log(k)

. (3.73)

From Eq. (3.71), using ε1 = 1 − Ḣ/H2 [see Eq. (1.153)] we obtain [see also
Eq. (3.56)]

ns − 1 = 3− 2μ = 2+ 2q = − 2ε1

1− ε1
� −2ε1. (3.74)

While the equals signs are exact for power law inflation, the last approximate sign
is valid only to first order in ε1.

In Exercise 3.1 you show that power law inflation with a scalar field requires an
exponential potentialW = W0 exp(−αϕ/mP ). The slow roll parameters are readily

2 Remember that the conformal time is negative during inflation, t < 0.
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calculated, ε1 = α2/16π = −(3/2)ε2. We therefore can also write with the same
accuracy as earlier

ns − 1 = −6(ε1 + ε2)

1− ε1
� −6(ε1 + ε2) = −2ε1 − η. (3.75)

For the last equals sign we made use of (1.155). We shall see in the next paragraph
that this is the general result for slow roll inflation.

3.3.1.3 Slow Roll Inflation

We now want to derive Eqs. (3.75) and (3.71) when expansion no longer follows
a power law exactly, but the slow roll parameters ε1 and ε2 are small. Let us first
calculate the mass term, z̈/z in this case. From Eq. (3.36) we have z = ϕ̇a/H.
Taking the derivative of this using Eq. (3.24) we obtain

ż

z
= (1+ 2ε1 + 3ε2)H, (3.76)

leading to

z̈

z
=

(
ż

z

)2

+
(
ż

z

)•
= (1+ 2ε1 + 3ε2)Ḣ+ (2ε̇1 + 3ε̇2)H+ (1+ 2ε1 + 3ε2)

2H2. (3.77)

As we saw in Eq. (1.155), the derivatives ε̇1 and ε̇2 are second order and can be
neglected. Neglecting also all the other second-order terms we obtain

z̈

z
= (2+ 9ε1 + 9ε2)

1

t2
. (3.78)

Here we have used H2 = q2/t2 = (1+ ε1)
2/t2 � (1+ 2ε1)/t

2 and Ḣ = −q/t2 �
(1+ ε1)/t

2. Neglecting the time dependence of ε1 and ε2 (which is second order),
the v equation (3.35) is therefore again a Bessel equation with μ2− 1/4 = 2+9ε1+
9ε2, hence

μ = 3

2
(1+ 2ε1 + 2ε2) . (3.79)

Inserting this in the power spectrum for ζ given in Eq. (3.71) we find

�ζ(k) = k3

2π2
Pζ (k) = H 2

πε1m
2
P

(
k

H

)−6(ε1+ε2)
, k/H� 1. (3.80)

The spectral index is therefore

ns − 1 = −6(ε1 + ε2) = −2ε1 − η, (3.81)

which corresponds exactly to the expression (3.75) for power law inflation.



140 Initial Conditions

From the curvature spectrum it is now easy to determine the spectrum for the
Bardeen potential � in the matter-dominated era, for example, at recombination.
As we have seen in Eq. (2.153), during power law expansion the growing mode
of the Bardeen potential is constant on super-Hubble scales. In a matter-dominated
universe, w = 0, the Bardeen potential is even constant on all scales. The rela-
tion (3.29) then yields

��(k) = 9

25
�ζ(k) = 9H 2

25πε1m
2
P

(
k

H

)−6(ε1+ε2)
, k/H� 1. (3.82)

The amplitude A� and the spectral index n of the Sachs–Wolfe contribution to the
CMB power spectrum given in Eq. (2.256) are thus determined by the energy scale
of inflation, H , and the slow roll parameters ε1 and ε2. The amplitude of �ζ is
called the amplitude of scalar perturbations and �ζ is usually parameterized as

�ζ = As
(
k

k∗

)ns−1

(3.83)

and the amplitude As depends on the “pivot scale” k∗ (except for ns = 1).
It is possible to develop the slow roll approximation further, to second and third

order, which has been done in the literature (Hoffman and Turner, 2001; Schwarz
et al., 2001; Martin and Schwarz, 2003). But also at first order in slow roll, it is
possible to constrain inflationary models severely by using present CMB data. We
shall discuss this in detail in Chapter 9.

3.3.2 Vector Perturbations

In simple models of inflation where the only degrees of freedom are one or several
scalar fields and the metric, only scalar and tensor but no vector perturbations are
generated. But even in more complicated inflationary models where vector pertur-
bations are generated, these decay during the subsequent evolution after inflation.
Indeed, in a perfect fluid background the anisotropic stress vanishes,  ij = 0. The
evolution of vector perturbations given by Eq. (2.117) then implies for the fluid
vorticity �

� ∝ a3c2
s−1. (3.84)

For a radiation–matter fluid, ṗ/ρ̇ = c2
s ≤ 1/3, this leads to a nongrowing vorticity.

The dynamical Einstein equation (2.109) for a perfect fluid yields

σ (V ) ∝ a−2, (3.85)



3.3 Generation of Perturbations during Inflation 141

and the constraint (2.106) reads (at early times, so that we can neglect curvature)

� ∝ (kt)2σ (V ). (3.86)

Therefore, even if they are created in the very early Universe on super-Hubble
scales during an inflationary period, vector perturbations of the metric, which are
given by σ (V ), will decay and soon become entirely negligible. Furthermore, even if
the vorticity remains constant in a radiation-dominated universe, it will be so small
on relevant scales at formation (ktin � 1) that we may safely neglect it.

Vector perturbations are irrelevant if they have been created at some early time,
for example, during inflation. This result changes completely when considering
“active perturbations” such as topological defects where vector perturbations con-
tribute significantly to the CMB anisotropies on large scales; see Durrer et al.
(2002). It is interesting to note that, in a background without anisotropic stresses,
vector perturbations do not satisfy a wave equation and therefore will not oscillate.
Vorticity simply decays with time; see Eq. (3.85).

3.3.3 Tensor Perturbations

The situation is different for tensor perturbations. Again we consider the perfect
fluid case,  (T )ij = 0. Equation (2.110) implies, if K is negligible,

Ḧij + 2HḢij + k2Hij = 0. (3.87)

If the background has a power law evolution or is slowly rolling, a ∝ |t |q with
q = −1−ε1, H = q/t , this equation can be solved in terms of Bessel functions (see
Abramowitz and Stegun 1970, Eq. 9.1.52). For q < 1/2, the less decaying mode
solution to Eq. (3.87) is Hij = eij x1/2−qY1/2−q(x), where Yν denotes the Bessel
function of order ν, x = |kt |, and eij is a transverse traceless polarization tensor.
(Remember that t < 0 during inflation, hence |t | is decreasing.). This leads to

Hij = constant for x � 1, (3.88)

Hij = 1

a
for x >∼ 1. (3.89)

One may also quantize the tensor fluctuations, which represent gravitons. Doing
this, one obtains (up to small corrections) a scale-invariant spectrum of tensor
fluctuations from inflation. For tensor perturbations the canonical variable is simply
given by

hij = eijh = mPa

2
√

8π
Hij . (3.90)
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Here eij is a normalized transverse traceless polarization tensor, eii = kieij = 0
and eij eij = 2. In terms of h the quadratic action (3.53) takes the canonical form
ḣ2/2+ · · · . The evolution equation for h is obtained by inserting the ansatz (3.90)
in Eq. (3.87),

ḧ+ (k2 +m2(t))h = 0, (3.91)

with m2(t) = − ä
a
= −(Ḣ+H2) = −(2− ε1)H2

= −(2− ε1)
1+ 2ε1

t2
� −2+ 3ε1

t2
. (3.92)

As can be inferred from the action (3.53), the variable h is canonically normalized
and can therefore be quantized with the usual commutation relation.

During inflation the mass termm2(t) in Eq. (3.91) is negative, leading to particle
creation. As for scalar perturbations, the vacuum initial conditions are given on
scales that are far inside the Hubble scale, k2 � |m2|, where expansion can be
neglected and we may set

hin = 1√
2k

exp(−ikt) for k|t | � 1.

The solution of Eq. (3.91) with this initial condition can be expressed in terms of a
Hankel function (up to an uninteresting phase),

h =
√
π

2
√
k
(k|t |)1/2H(2)ν (kt),

where ν2 − 1/4 = 2 + 3ε1 so that ν = 3/2 + ε1. On super-Hubble scales, k|t | � 1,

we obtain H(2)ν (kt) �
√

2
π
(k|t |)−ν . This results in the tensor power spectrum

k3PH = 4k3|HijH ij | = 8
8πk3|h|2
a2m2

P

� 32π
H 2

m2
P

(
k

H

)−2ε1

, k/H� 1. (3.93)

The factor 4 after the first equals sign is due to our definition of tensor perturbations,
as 2Hij and the additional factor 2 after the second equals sign is due to the fact
that there are two tensor modes. The prefactor after the � sign is then obtained
by setting ν = 3/2 and q = −1. In the exponent, however, we keep the slow roll
parameter ε1 
= 0.

From Eq. (3.93) we derive the tensor spectral index nt defined by

nt =
d log

(
k3PH

)
d log(k)

= −2ε1. (3.94)
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After inflation, Hij is constant on super-Hubble scales. The gravity wave
spectrum is therefore determined by the amplitude of the fluctuations at Hubble
crossing,

�H = k3

2π2
PH = At (kt0)nt , k/H� 1, with (3.95)

At = 16

π

H 2

m2
P

∣∣∣∣
k=H0

� 128

3m4
P

W

∣∣∣∣
k=H0

, (3.96)

where W is the inflaton potential. Note that here, as in Eq. (3.72), H |k=H = k/a
indicates the value of the Hubble parameterH at “Hubble exit,” that is, during infla-
tion when 1/k becomes larger than the comoving Hubble scale 1/H, corresponding
to a = a1 in Fig. 3.1. This is much larger than the value of H = H/a at reentry,
long after inflation, when again k = H. At this second Hubble crossing time the
Hubble parameter H = k/a2 is much smaller, since a2 � a1 is much larger; see
Fig. 3.1.

The parameterAt introduced in Eq. (3.95) is the amplitude of the tensor spectrum
at the present Hubble scale t0 � 1/H0 = 1/H0, if we normalize the scale factor
such that a0 = 1. Like for scalar perturbations, we could have chosen some arbi-
trary other pivot scale k∗. But for definiteness and because of its relevance for CMB
anisotropies we choose the present Hubble scale. Equation (3.96) relates the tensor

Fig. 3.1 We sketch the behavior of the Hubble scale H−1 = aH−1 and some
wavelength λ = a/k during and after inflation as functions of the scale factor. At
a = a1 during inflation, the scale λ exits the Hubble scale and after inflation, at
a = a2, it reenters. At a = af inflation ends.
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amplitude to the value of the inflaton potential at the moment when the comoving
Hubble scale during inflation equals the present Hubble scale:

W∗ ≡ W |H=H0
= 3m4

P

128
At . (3.97)

Measuring the amplitude of tensor perturbations therefore allows us to determine
the energy scale of inflation. If we simply require that tensor fluctuations do
not generate more than a third of the observed CMB anisotropies, according to
Eq. (2.284), the present observational limits require At <∼ 10−10, so that

W 1/4
∗ <∼ 0.001×mP � 1016 GeV. (3.98)

On the other hand, this energy scale must be larger than the reheating temperature
after inflation. This limits the number of e-folds N∗ of inflationary expansion after
Hubble exit of the present Hubble scale H−1

0 . This is roughly the same number of
e-folds it takes after inflation until the present.

Let us briefly derive this statement. We denote the Hubble parameter during
inflation, which is nearly constant, by Hi and neglect its slight time dependence.
We consider a comoving wave number k that exits the Hubble scale at the value a1

of the scale factor during inflation, when its wavelength is λ = λ1 = a1/k = H−1
i .

It reenters after inflation at a = a2, when its wavelength is λ = λ2 = a2/k =
H−1

2 . The value of the scale factor at the end of inflation is denoted by af ; see
Fig. 3.1. The number of e-folds of inflation after a1 is N1 = ln(af /a1), while the
number of e-folds of expansion after inflation until λ reenters the Hubble scale is
N2 = ln(a2/af ). In the radiation era after inflation H ∝ 1/τ ∝ 1/a2. If the scale
reenters during the radiation era we therefore obtain (a2/af )

2 = Hi/H2 = Hia2/k.
On the other hand,Hi = 1/λ1 = k/a1, so thatHia2/k = a2/a1. Inserting this above
yields a2

2/a
2
f = a2/a1 or, equivalently, a2/af = af /a1, which implies N1 = N2.

For a scale that enters only during the matter era we have to correct this result,
since after matter and radiation equality the scale factor behaves as a ∝ τ 2/3 so
that H ∝ 1/τ ∝ 1/a3/2. Denoting the redshift of matter–radiation equality by zeq,
this leads to a correction factor

√
zeq/z2, where z2 < zeq is the redshift at reentry.

The number of e-folds of inflationary expansion after horizon exit, N1, is therefore
related to the number of e-folds of expansion from the end of inflation until reentry,
N2, by

N1 �
{
N2 if k reenters in the radiation era, z2 > zeq

N2 − 1
2 ln(zeq/z2) if k reenters in the matter era, z2 < zeq.

Neglecting the correction term 1
2 ln(zeq/z2) which is never more than a few and

denoting the reheating temperature by TR, we therefore obtain the following limit
for the number of e-folds of inflation after exit of the present Hubble scale,
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N∗ = ln

(
TR

T0

)
≤ ln

(
W

1/4
∗
T0

)
≤ ln

(
2× 1016

2.4× 10−13

)
� 66. (3.99)

Note that this is a conservative estimate and the reheating temperature is most
probably significantly lower.

3.3.3.1 The Consistency Relation

We have obtained the following results for the scalar and tensor power spectra
induced during slow roll inflation:

ns − 1 = −6(ε1 + ε2) = −2ε1 − η, (3.100)

nt = −2ε1, (3.101)

�H

�ζ
= 16ε1 = −8nt, k/H� 1. (3.102)

Up to the usually small correction −η = −ε̇1/ε1/H, we obtain the same spectral
index for scalar and tensor fluctuations. Using the relation (2.144) between ζ and
� = � in the radiation- and in the matter-dominated era, we find that on large
scales, where �̇ = 0, ζ and � differ only by a constant factor,

�� = 4

9
�ζ, k/H� 1, (radiation-dominated era), (3.103)

�� = 9

25
�ζ, k/H� 1, (matter-dominated era). (3.104)

From�ζ =As(k/H0)
ns−1 for scalar perturbations and�H = At(k/H0)

nt for tensor
perturbations on super-Hubble scales, the relation (3.102) implies

At

As
� 16ε1 = −8nt . (3.105)

Equation (3.102) or equivalently (3.105) is often also called the consistency relation
of slow roll inflation. It is not surprising to find a relation, since As, At, ns , and nt
are determined by the amplitudeHi/mP and the two slow roll parameters ε1 and ε2.
But the precise form of this relation is specific to slow roll inflation. It is one of the
major goals of forthcoming CMB observations to measure tensor perturbations in
order to test this relation, which holds for both slow roll and power law inflation
(which is also slow roll for q � −1) , but might be violated if inflation involved
several scalar fields, occurred in several stages, or did not happen at all.
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3.4 Non-Gaussianities from Inflation

It is well known that free quantum fields obey Gaussian statistics that are entirely
described by the 2-point function or equivalently the power spectrum. All higher
order moments are determined by Wick’s theorem (see Appendix 7). This breaks
down once interactions are considered and the equations of motion become non-
linear. In quantum field theory, “small” interactions are treated using Feynman
path integrals and in statistical mechanics small deviations from Gaussianity can
be handled using the Feynman–Kac formula (see, e.g., Øksendal, 2007).

In inflationary cosmology, even if the potential W is of the form ϕ2, so that
the scalar field is essentially free, it is still subject to gravity, which is a nonlinear
interaction and therefore will induce non-Gaussianities. In this section we discuss
non-Gaussianities from inflation. A quadratic action only leads to free Gaussian
fields. To determine the non-Gaussianities one has to compute the action to higher
order and then compute, for example, 〈ζ̂ (k1)ζ̂ (k2)ζ̂ (k3)〉 within the interacting
quantum field theory. This is usually done using perturbation theory and the path
integral. Denoting the interaction Hamiltonian by H(3), standard quantum field
theory gives to lowest order in H(3) the following expression for the expectation
value of an operator O [see, e.g., Weinberg (1995)]

〈O(t)〉 =
〈
0

∣∣∣∣(1+ i
∫ t

−∞
dt ′H(3)(t ′)

)
O

(
1− i

∫ t

−∞
dt ′H(3)(t ′)

)∣∣∣∣ 0

〉
. (3.106)

Here 1 ± i ∫ t−∞ dt ′H(3)(t ′) is just the first term of the exponential that describes
the unitary evolution of the vacuum state (or the operator). From this expression it
is clear that setting O = ζ̂ (k1)ζ̂ (k2)ζ̂ (k3) after multiplication with H(3), which is
also third order in ζ , we obtain terms that are of sixth order in the free Gaussian
field ζ , which we then can compute using Wick’s theorem and that do not vanish.
The detailed general calculation is lengthy and we just present the results and refer
to the original literature (Acquaviva et al., 2003; Creminelli, 2003; Maldacena,
2003; Weinberg, 2005). For the scalar part of the third order of the action (3.43)
one finds

S(3) =
∫
d4xa4

[
eζ

(
1+ ζ̇

H

) (−2∂2ζ − (∂ζ )2)+ ε1e
3ζ ζ̇ 2

(
1− ζ̇

H

)

+ e3ζ

(
1

2
(∂i∂jψ∂

i∂jψ − (∂2ψ)2)

(
1− ζ̇

H

)
− 2∂iψ∂

iζ ∂2ψ

) ]
. (3.107)

Here indices are raised and lowered with the Minkowski metric and ∂2 = ∂μ∂μ. The
variableψ is defined in (3.49). This action can be simplified further; see Maldacena
(2003). For the 3-point function one then finds to lowest order
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〈ζ̂ (k1)ζ̂ (k2)ζ̂ (k3)〉 = (2π)3δ(k1 + k2 + k3)

(
4πH 2

ε1m
2
P

)2
1

 3
i=1(2ki)

3

×
[
(3ε1 + 6ε2)

∑
i

k3
i + ε1

∑
i 
=j
kik

2
j + ε1

8

kt

∑
i>j

k2
i k

2
j

]
(3.108)

= (2π)3δ(k1 + k2 + k3)B(k1,k2,k3). (3.109)

Here kt = k1 + k2 + k3 is the sum of the moduli ki = |ki | and the Dirac-delta is a
consequence of statistical homogeneity. It implies that the three vectors (k1,k2,k3)

form a closed triangle. The derivation of this formula is somewhat involved and we
do not represent it here. We refer the reader to the papers cited earlier. Here we only
want to make some remarks and give a derivation for a simple but important special
case. First of all, as expected, for reasons of isotropy, the bispectrum B(k1,k2,k3)

depends only on the moduli of the ki . Furthermore, for similar values of the ki ∼ k
it behaves as B(k,k,k) ∼ εP (k)2 ∝ k−6, where here ε denotes the larger of ε1 and
ε2. Hence w.r.t. to the naively expected result of the order of the square of the power
spectrum, there is an extra suppression by a slow roll parameter. This makes the
non-Gaussianities from inflation very difficult to detect observationally, especially
since the later nonlinear gravitational evolution tends to lead to a bispectrum of
order P(k)2 with no slow-roll suppression.

We now show that for q = k3 → 0 one obtains

lim
q�k
B(q,k1,k2) = −(ns − 1+O(q2/k2))P (q)P (k), k1 � k2 � k. (3.110)

This is a consequence of the so-called consistency relation that quantifies the fol-
lowing fact: consider a small density perturbation with wave number k on top
of a much larger one with wave number q � k. The effect of the large-scale
perturbation on the smaller one will then simply make it evolve as it would in a
universe with density ρ = ρ̄(1 + δq). This idea can be formalized in so-called
consistency relations, which show that the presence of a long mode, let us call it
ζL, can be absorbed by a coordinate transformation on the short modes, which we
shall specify in the text that follows; see Eq. (3.126). Denoting the transformed
coordinates by x̃n = xn + δxn we then have

〈ζ(x1)ζ(x2)|ζL〉 = 〈ζ(x̃1)ζ(x̃2)〉. (3.111)

Averaging over ζL this yields

〈ζL(x)ζ(x1)ζ(x2)〉 = 〈ζL(x)〈ζ(x1)ζ(x2)|ζL〉〉 = 〈ζL(x)〈ζ(x̃1)ζ(x̃2)〉〉. (3.112)
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To first order, the coordinate transformation gives

〈ζ(x̃1)ζ(x̃2)〉 = 〈ζ(x1)ζ(x2)〉 +
2∑
n=1

δxμn ∂nμ〈ζ(x1)ζ(x2)〉. (3.113)

Here ∂nμ≡ ∂/∂xμn . The first term is simply the 2-point function and since
〈ζL(x)〉= 0 it gives no contribution to (3.112). We therefore obtain for the 3-point
function with one long mode

〈ζL(x)ζ(x1)ζ(x2)〉 =
〈
ζL(x)

2∑
n=1

δxμn ∂nμ〈ζ(x1)ζ(x2)〉
〉

. (3.114)

As we shall show in the text that follows [see Eq. (3.126)] the presence of a long
mode corresponds to a rescaling of the spatial coordinates

δxin = ζL(x+)xin, δtn = 0. (3.115)

Here x+ is in principle arbitrary but it should be in the vicinity of x1 and x2, so we
set it as x+ = (x1 + x2)/2. We then have

〈ζL(x)ζ(x1)ζ(x2)〉 =
〈
ζL(x)ζL(x+)

2∑
n=1

δxin∂i〈ζ(x1)ζ(x2)〉
〉

. (3.116)

We now use that

〈ζ(x1)ζ(x2)〉 = ξ(|x1 − x2|,t) = ξ(|x−|,t) (3.117)

depends only on the absolute value of the difference, x1 − x2 = x−. This implies

(δxi1∂1i + δxi2∂2i〈ζ(x1)ζ(x2)〉 = ζLxj−∂−j ξ(x−,t) (3.118)

Let us write this in Fourier space using that ξ is the Fourier transform of the power
spectrum, Pζ

ξ(|x1 − x2|,t) = 1

(2π)3

∫
d3ke−ikx−Pζ (k) (3.119)

x
j
−∂j ξ(|x−|,t) =

−i
(2π)3

∫
d3kkx−e−ikx−Pζ (k) (3.120)

= 1

(2π)3

∫
d3kkj

(
∂kj e

−ikx−
)
Pζ (k) (3.121)

= −1

(2π)3

∫
d3ke−ikx−∂kj

(
kjPζ (k)

)
(3.122)

= −(ns − 1)

(2π)3

∫
d3ke−ikx−Pζ (k). (3.123)
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For the last equals sign we used ∂ki k
i = 3 and

ki∂kiPζ (x) = k∂kPζ (k) = (−3+ ns − 1)Pζ (k).

Putting everything together and Fourier transforming also 〈ζL(x)ζL(x+)〉 we find

B(q,k,k) = −(ns − 1)P (q)P (k), q � k. (3.124)

This limit is often called the “squeezed limit” since the triangle (k1,k2,k3) is nearly
squeezed into a line, or the local limit since the points x1 and x2 are very close. It
is easy to check that the general formula (3.108) reduces to (3.124) in the limit
q = k1 � k2,k3 � k.

Of course such a non-Gaussianity is very small and can certainly not be measured
within the near future. However, it also means that when measuring a primordial
non-Gaussianity with squeezed bispectrum, finding |B(q,k,k)|>∼P(q)P (k) rules
out single-field inflation on which this result is based.

Note that, other than single-field inflation, no ingredients have been used here;
hence this result is valid for all single-field inflationary models beyond slow roll.
It is also easily generalized beyond the 3-point function to a result for an arbitrary
squeezed (n + 1)-point function in terms of the n-point function and the power
spectrum at low wave number; see Maldacena (2003) and Creminelli et al. (2012).

To understand the coordinate transformation (3.115), let us go back to the metric
(3.47) and consider the case where ζ = ζL+ ζS is the superposition of a long wave
mode ζL and a short mode ζS ,

hijdx
idxj = a2 exp(2(ζL + ζS))δij dxidxj . (3.125)

In a region where ζL is roughly constant we can remove the long mode by setting

x̃i = xi + ζLxi . (3.126)

Up to first order in ζL this implies

hijdx
idxj = a2 exp(2ζS)δij dx̃

idx̃j . (3.127)

The constraint equations then determine N and Ni in the coordinates x̃i entirely
in terms of ζS , and ζL has disappeared from the metric. As we have seen earlier,
this coordinate transformation, however, leads to a nontrivial bispectrum as given
in Eq. (3.124). In a region much smaller than the size of the long wavelength, this
invariance is the relativistic analog to the fact that adding a constant to the gravi-
tational potential does not change the physics. Generalizations to other coordinate
transformations are discussed in Creminelli et al. (2012).
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3.5 Mixture of Dust and Radiation Revisited

In this section we want to study the perturbation of a mixture of dust and radi-
ation in more detail. We shall find that the system has two regular perturbation
modes that we can identify with the adiabatic and an iso-curvature mode. We deter-
mine the solutions on super-Hubble scales for both modes explicitly and discuss
the implications for CMB anisotropies, especially for the positions of the acoustic
peaks.

After inflation and reheating the Universe is radiation dominated. Only very
much later, at redshift z < 104, do dark matter and baryons start dominating. It may
also be that a scalar field (called early quintessence) plays a certain subdominant
role, but we neglect this possibility here. Curvature and a cosmological constant are
certainly negligible at early times and we thus consider a mixture of radiation and
matter only. As in Section 2.4.3 we define

R = ρr
ρ
= ρr

ρr + ρm, a = ρm
ρr
= 1− R

R
. (3.128)

The scale factor is normalized to unity at equality, teq, defined by ρm(teq) =
ρr(teq) = ρ(teq)/2. Also note that by definition 0 ≤ R ≤ 1 and R � 1 during the
radiation era, while R � 0 in the matter era. With wr = c2

r = 1
3 and wm = c2

m = 0
we obtain the following useful relations (see also Section 2.4.3 and Exercise 1.3):

ρm

ρ
= 1− R, (3.129)

w = ρr/3
ρ

= 1

3
R, (3.130)

c2
s =

ρ̇r/3

ρ̇
=

4
3R

4R + 3(1− R) =
4R

3(R + 3)
. (3.131)

Integrating the Friedmann equation,

H2 =
(
ȧ

a

)2

= 4πG

3
ρeq

(
a−1 + a−2

)
, (3.132)

we obtain the scale factor

a(t) =
(
t

t1

)2

+ 2

(
t

t1

)
where t1 ≡

√
3

πGρeq
. (3.133)

The normalization a(teq) = 1 yields teq = (
√

2 − 1)t1. In terms of t1, Eq. (3.132)
leads to the following useful expression for the Hubble parameter:

H2 = 4(1+ a)
t21a

2
. (3.134)
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The radiation/matter mixture has no anisotropic stresses and no intrinsic entropy
perturbations. Equation (2.125) then leads to

� = �rel = (ρr + Pr)ρm
3w(w + 1)ρ2

Srm = 4(1− R)
3+ R Srm. (3.135)

Here we assume that both radiation and matter are themselves in thermal
equilibrium.

The perturbation equations (2.138) and (2.139) for dust and radiation become,
with S ≡ Srm,

Ṡ = −kVrm, (3.136)

kV̇rm + 4R

3+ RHkVrm = k2

3+ RD +
k2(1− R)

3+ R S. (3.137)

This is equivalent to the second-order equation

S̈ + 4R

R + 3
HṠ = − k2

3+ R [(1− R)S +D] . (3.138)

In addition, we have the second-order equation (2.120) for D. Using our expres-
sions for w, c2

s , and � and  = K = 0 we obtain

D̈ + 3− R − 2R2

R + 3
HḊ − 9+ 3R + 5R2 − R3

2(R + 3)
H2D + 4R

3(R + 3)
k2D

= −4R(1− R)
3(R + 3)

k2S. (3.139)

We now want to transform this equation into a differential equation w.r.t. the vari-
able R. For this we need Ṙ = −ȧR2 = HR(R − 1) and

R̈ = Ḣ(R2 − R)+H(2R − 1)Ṙ = 3

2
H2(R − 1)2R.

For the second equals sign we made use of Ḣ = −(1+3w)H2/2 [see Eq. (2.112)].
A lengthy but straightforward calculation gives

d2D

dR2
+

[
1

2R
− 1

R + 3

]
dD

dR
− 9+ 3R + 5R2 − R3

2R2(1− R)2(R + 3)
D

= −4

3R(1− R)(R + 3)

(
k

H

)2 [
1

1− RD + S
]

. (3.140)
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We also transform Eq. (3.138),

d2S

dR2
+

[
3

2R
− 1

1− R −
1

R + 3

]
dS

dR

= − 1

R2(1− R)2(R + 3)

(
k

H

)2

[D + (1− R)S] . (3.141)

Equation (3.140) can be simplified by writing it as a differential equation for the
variable � ≡ D(1− R)R−3/2,

d2�

dR2
+

[
7

2R
− 1

R + 3
+ 2

1− R
]
d�

dR

= − 4

3R(R + 3)

(
k

H

)2 [
1

(1− R)2�+ R
−3/2S

]
. (3.142)

We want to study possible initial conditions after a generic inflationary
phase and subsequent reheating (rh). We are interested in cosmological scales,
k−1a0 ∼ O(Mpc). But from H−1

0 a0 = H−1
0 � 3000h−1 Mpc and our expressions

for H and a one finds that H−1(a = 0.1)a0 ∼ O (Mpc). For the last estimate we
have used zeq = a0 � 3300 (see Appendix 1). The reheating temperature of the
Universe is typically of the order Trh ∼ 1010GeV, so that with Teq ∼ 1 eV, we
obtain arh ∼ 10−19 � 0.1. Therefore, to study the initial conditions it is sufficient
to consider the limit of very long wave perturbations, k/H → 0. In this limit we
may neglect the right-hand sides of Eqs. (3.141) and (3.142) and the equations
decouple completely. They can then easily be solved by quadrature, leading to

� = A1R
−5/2

[
1− 25

9
R + 5

3
R2 − 5

3
R3

]
+ A2, (3.143)

= A1X(R)+ A2, (3.144)

S = B1

[
3R−1/2 − 2 log

(
1+√R
1−√R

)]
+ B2. (3.145)

We now transform � back into D and write the solutions in terms of the scale
factor. If we just multiply the modes proportional to A1 and A2 by the factor
R3/2/(1− R), both modes of D are singular. We would like to split the solution D
into two modes D = AUR + BUS , where US = R3/2/(1 − R) is decaying at late
time, R→ 0, and we define UR = R3/2/(1−R)X+ bUS with a constant b chosen
such that UR stays regular at early times, R→ 1. This can be achieved by choosing
b = 16

9 . In terms of the scale factor, using

a = 1− R
R

and R = 1

a + 1
,
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we get

D = AUR + BUS, with (3.146)

UR = 5

3(1+ a) +
(1+ a)2 − 25

9 (1+ a)+ 16
9 (1+ a)−1/2

a
, (3.147)

US = (1+ a)
−1/2

a
, (3.148)

S = C1

[
2 log

(√
a + 1+ 1√
a + 1− 1

)
− 3
√
a + 1

]
+ C2, (3.149)

= C1VS + C2. (3.150)

Developing UR we obtain

UR(a) � 10

9
a2, if a � 1 and UR(a) � a, if a � 1. (3.151)

The singular modes behave like US � 1/a and VS � 2 log(4/a) at early times,
a� 1. In the most generic case, right after reheating, at a = arh � 1, all the modes
may have comparable amplitudes so that |2 log(arh/4)C1| ∼ |C2| � |Aa2

rh| ∼
|B/arh|. Hence C1�C2 and B�A. Therefore the US and VS modes cannot be
relevant at late times. We neglect them in what follows, setting B = C1 = 0. On
super-Hubble scales we hence end up with two possible modes, namely A 
= 0,
C2 = 0 and A = 0, C2 
= 0. The first is called the “adiabatic mode” and the second
the “entropy mode.” We shall also be interested in a linear combination of these
modes, the so-called isocurvature mode in the text that follows.

3.5.1 Adiabatic Initial Conditions

Let us first consider the adiabatic mode, given by the initial condition

D = A
[

5

3(1+ a) +
(1+ a)2 − 25

9 (1+ a)+ 16
9 (1+ a)−1/2

a

]
, S = 0

(3.152)

on super-Hubble scales, k/H � 1. Here A = A(k) is a function of the wave
number that determines the spectrum. On sub-Hubble scales, radiation perturba-
tions oscillate while matter perturbations that exert no pressure do not; therefore,
adiabaticity, S = 0, cannot be maintained. The term “adiabatic perturbations” is,
however, used for perturbations that have adiabatic initial conditions, that is, that
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Fig. 3.2 The Bardeen potential (in units of A) for adiabatic perturbations of a
mixed radiation and matter fluid on super-Hubble scales as a function of the scale
factor normalized to equality, a(teq) = 1.

satisfy S = 0 at early times, when k/H� 0. From the constraint Einstein equation
we have � = −(3/2)(H/k)2D. With (3.134) this yields

� = −6(1+ a)
(kt1)2a2

D. (3.153)

This function is nearly constant in time; see Fig. 3.2. With Eq. (3.151) we find the
following asymptotic behavior in the radiation- and matter-dominated eras:

� = −6
A

(kt1)2
×

{
10
9 , if a � 1

1, if a � 1.
(3.154)

On super-Hubble scales we therefore have � � constant ≡ �0, where �0

denotes the value of the Bardeen potential in the late matter-dominated era. (In
the �-dominated era the Bardeen potential starts to decay.) If the spectral index is
defined as usual, |�|2k3 ∝ kn−1, we therefore have

|A|2 ∝ kn, and |D|2 ∝ kn ×
{
a4, if a � 1

a2, if a � 1.

Let us now evolve forward to the matter-dominated era, R � 1 and a � 1,
but no longer require k/H � 1. Neglecting the terms that are subdominant in the
matter era, Eq. (3.140) reduces to

d2D

da2
+ 3

2a

dD

da
− 3

2a2
D = (kt1)

2

9a2
[D + S]. (3.155)
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We first consider modes that enter the Hubble scale only in the matter-dominated
era. For them kt1 � 1 and we may always neglect the r.h.s. of Eq. (3.155). The
growing mode solutions then also remain D � Aa and � � �0 on sub-Hubble
scales.

Energy–momentum conservation for radiation (2.116) now becomes

D(r)
′

g = −4

3
Vr, (3.156)

V ′r = 2�0 + 1

4
D(r)g , (3.157)

where here a prime denotes a derivative w.r.t. x ≡ kt . Now �0 acts like a constant
source term. The general solution of this system is

D(r)g = A cos

(
x√
3

)
− 4√

3
B sin

(
x√
3

)
+ 8�0

[
cos

(
x√
3

)
− 1

]
, (3.158)

Vr = B cos

(
x√
3

)
+
√

3

4
A sin

(
x√
3

)
+ 2
√

3�0 sin

(
x√
3

)
. (3.159)

In Exercise 2.4 we show that adiabaticity requires Vr = Vm. But in the matter-
dominated era Vm ∝ t ∝ x so that

lim
x→0

Vr

x
= lim
x→0

Vm

x
= V0 <∞. (3.160)

Therefore, we have to set B = 0 and V0 = A/4+2�0. Using in addition�0 = 3V0

[see (2.182)] we obtain

D(r)g = 4

3
�0 cos

(
x√
3

)
− 8�0, (3.161)

Vr = 1√
3
�0 sin

(
x√
3

)
, (3.162)

Dgm = −�0

(
5+ 1

6
x2

)
, (3.163)

Vm = 1

3
�0x. (3.164)

Here, we have neglected the influence of the radiation perturbations on the matter
variable and simply used the pure dust solutions (2.176) and (2.175) for Dgm and
Vm. On super-Hubble scales, x � 1, we have

D(r)g � −20

3
�0 and Vr � 1

3
x�0. (3.165)
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This characterizes adiabatic initial conditions. Up to a constant, the density fluctu-
ations oscillate like a cosine. At x = 0, |D(r)g | has a minimum. The first maximum

follows at x=√3π . This gives rise to the acoustic peak structure discussed in
Section 2.6.

3.5.2 Isocurvature Initial Conditions

Let us now turn to the “entropy perturbations.” We first recall that the curvature
perturbation in the comoving gauge, ζ , is constant for adiabatic perturbations on
super-Hubble scales. We want to calculate it for the entropy perturbation mode.
From Eq. (2.147) with vanishing curvature we obtain

ζ̇ = w

w + 1
H� − 2c2

s

3(w + 1)
k2H−1�. (3.166)

Inserting ζ̇ = Ṙ dζ/dR = −R(1−R)H dζ/dR, 1+w = (3+R)/3, and c2
s = 4R/

[3(3+ R)], we obtain

dζ

dR
= − 4

(R + 3)2
S + 8

3(R + 3)2(1− R)
(
k

H

)2

�, (3.167)

= − 4

(R + 3)2
S − 4

(R + 3)2(1− R)D, (3.168)

where we have used the (00) Einstein equation in (2.105) for the second identity.
For entropy perturbations one has S = C = constant and D = 0 on large scales,
k � H, so that Eq. (3.168) can be integrated to

ζ(R) = (1− R)
(3+ R)C, (k/H)� 1. (3.169)

Here we have performed the definite integral from 1 to R in order not to add
a constant to the result, because such a constant simply represents an adiabatic
contribution. This mode therefore satisfies ζ → 0 and � → 0 for R → 1, that
is, in the radiation-dominated era on super-Hubble scales. Equations (2.144) and
(2.145) imply

Dg = D − 3(1+ w)ζ . (3.170)

For the isocurvature mode, ζ → 0 for R→ 1, 0 = D = RDr+(1−R)Dm implies
that Dr → 0 and hence also D(r)g � Dr → 0 for R → 1. Instead of the typical
cosine oscillations of the adiabatic mode, we therefore obtain sine oscillations in
D(r)g when the scale 1/k enters the Hubble horizon.
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As we have seen in Chapter 2, the CMB anisotropies contain a term

�T

T
(k,t0,n) = · · · + 1

4
D(γ )g (k,tdec) e

ikn(t0−tdec) + · · · . (3.171)

On scales where this term dominates, the peaks in D(γ )g translate into peaks in the
angular power spectrum of CMB anisotropies.

Since D(γ )g oscillates like a sine for isocurvature perturbations, we find a first
peak in D(γ )g ∝ sin(cskt) at

x
(0)
i = k(0)i tdec = 1

cs

π

2
, λ

(0)
i = π

k
(0)
i

= 2cstdec,

ϑ
(0)
i � 2cstdec

χ (t0 − tdec)
� 2cstdec

t0
. (3.172)

Here ϑ(0)i is the angle under which the comoving scale λ(0)i at comoving distance
t0 − tdec is seen; see Eqs. (1.38)–(1.48). Equation (3.172) shows clearly that ϑ(0)i
strongly depends on the cosmological parameters, especially on curvature. The last
� sign in Eq. (3/172) is true only if K � 0.

The position of the acoustic peaks in the CMB anisotropy spectrum therefore
presents an excellent means to determine the spatial curvature of the Universe. As
we discussed in Chapter 2, when we expand the temperature fluctuations in terms of
spherical harmonics, a fluctuation on angular scale ϑ shows up around the harmonic
� ∼ π/ϑ . As an indication, we note that for � = K = 0, the harmonic of the first
isocurvature peak is

�
(0)
i ∼ π/ϑ(0)i ∼ 110.

In the adiabatic case the corresponding “first peak” would actually be at k(0)a = 0,
but we have not discussed it because it is not visible at all. Since k = 0 is of course
a super-Hubble scale at recombination, our discussion of the peak structure does
not apply at this scale. This is also nearly true for the “first” peak of the isocur-
vature mode. Furthermore, D(γ )g is negative for small x so that these “first” peaks
are under-densities or “expansion peaks,” and due to the gravitational attraction
of the baryons (which we have neglected in this simple argument) they are less
pronounced than the peaks due to over-densities, called “compression peaks.”

These “second” peaks are usually called the first acoustic peaks. They are the
first compression peaks. We shall also adopt the convention of calling them “first
peak” for consistency with the literature. They correspond to wavelengths and
angular scales
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λ
(1)
i = 2

3cstdec,

ϑ
(1)
i � (2/3)cs tdec

χ(t0−tdec)
,

�
(1)
i ∼ 330

⎫⎪⎪⎬⎪⎪⎭ (isocurvature), (3.173)

λ(1)a = cstdec,

ϑ(1)a � cs tdec
χ(t0−tdec)

,

�(1)a ∼ 220

⎫⎪⎬⎪⎭ (adiabatic). (3.174)

Here the indicated harmonic is the one obtained in the case � = K = 0, for a
typical baryon density inferred from nucleosynthesis.

It is interesting to note that the distance between consecutive peaks is the same
for adiabatic and isocurvature initial conditions. It is given by

�ki = k(1)i − k(0)i = π/(cstdec) = �ka, �ϑ = cstdec

χ (t0 − tdec)
, �� ∼ 200.

(3.175)

Again, the numerical value indicated for �� corresponds to a universe with
� = K = 0. The result is strongly dependent, especially on K . This is the reason
why the measurement of the peak position (or better of the interpeak distance)
allows an accurate determination of curvature.

From our analysis we can draw the following important conclusions. For scales
where the D(γ )g term dominates, the CMB anisotropies show a series of acoustic
oscillations with spacing �k. The position of the first significant peaks is at k =
k
(1)
a/i , depending on the initial condition; however, the spacing�k is independent of

initial conditions.
The angle �ϑ onto which the scale �k is projected in the sky is determined

entirely by the matter content and the geometry of the Universe. According to our
findings in Chapter 1 , ϑ will be larger if �K < 0 (positive curvature) and smaller
if �K > 0 (see Fig. 1.4).

In our analysis we have neglected the presence of baryons, in order to obtain
simple analytical results. Baryons have two effects: they lead to (ρ−3p)rad+bar > 0,
and therefore to an enhancement of the compression peaks (the first, third, etc.
acoustic peak). In addition, the presence of baryons decreases the sound speed cs
of the baryon–photon plasma by about 10%, thereby increasing �k and �� and
decreasing �ϑ .

Another point that we have neglected is the fact that the Universe becomes matter
dominated at teq, only shortly before decoupling: tdec � 2.4teq for �m ∼ 0.3.
As we have seen, the gravitational potential on sub-Hubble scales is decaying in
the radiation-dominated era. If the radiation-dominated era is not very long before
decoupling, the gravitational potential is still decaying slightly and free-streaming
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photons fall into a deeper gravitational potential than they have to climb out of.
This effect, called the “early integrated Sachs–Wolfe effect,” adds to the photon
temperature fluctuations at scales that are only slightly larger than the position
of the first acoustic peak for adiabatic perturbations. It therefore “boosts” this
peak and, at the same time, moves it to slightly larger scales (larger angles, lower
spherical harmonics). Since teq ∝ h−1, the first acoustic peak is higher if h is
smaller.

A small Hubble parameter therefore increases the amplitude of the first acoustic
peak. A similar effect is observed if a cosmological constant or negative curvature
is present, since teq is retarded in those cases. We shall discuss this dependence of
the acoustic peak structure on cosmological parameters in detail in Chapter 9.

3.5.3 Mixed Adiabatic and isocurvature Perturbation

In general, inflation (from more than one scalar field) can lead to a mixture of
adiabatic and isocurvature perturbations. At early time, k/H � 1 and R → 1,
such a mixture is given by [see Eqs. (3.146) and (3.150)]

D = AUR and S = C. (3.176)

Here the “constants”A andC are random variables for each wave number k. One
usually assumes them to be Gaussian, so that all the expectation values are deter-
mined by 〈A(k)A∗(k′)〉, 〈C(k)C∗(k′)〉, and 〈A(k)C∗(k′)〉. Statistical homogeneity
and isotropy require

〈A(k)A∗(k′)〉 = δ(k− k′)Pa(k), (3.177)

〈C(k)C∗(k′)〉 = δ(k− k′)Pi(k), (3.178)

〈A(k)C∗(k′)〉 = δ(k− k′)Pai(k). (3.179)

Clearly, Pia(k) = P ∗ia(k). Furthermore, Schwarz’ inequality requires∣∣〈A(k)C∗(k′)〉∣∣2 ≤ 〈A(k)A∗(k′)〉〈C(k)C∗(k′)〉. (3.180)

Hence the Hermitean 2× 2 matrix (Pmn) is positive semidefinite. One calls A and
C completely (anti-)correlated if

〈A(k)C∗(k′)〉 = ±
√
〈A(k)A∗(k′)〉〈C(k)C∗(k′)〉.

To define such generic initial conditions one has, in principle, to specify four real
functions, namely Pa(k), Pi(k), Re(Pai(k)), and Im(Pai(k)), which satisfy the
inequality (3.180). The present data are fully compatible with purely adiabatic
perturbations, C= 0. Nevertheless, a considerable iso-curvature contribution



160 Initial Conditions

of a few % is still possible. (The precise percentage depends strongly on the
definition of the ratio of isocurvature to adiabatic perturbations, e.g., on the scale
at which it is defined, and whether it is the ratio of the CMB anisotropies or of
some other perturbation variables.) It is interesting to note that the isocurvature
contribution cannot be severely limited by CMB anisotropy data alone. The
foregoing constraint comes mainly from the dark matter spectrum, to which
isocurvature modes contribute very little on large scales. More details can be found
in the literature (Trotta et al., 2001/3; Moodley et al., 2004). Another possibility
for constraining the isocurvature mode are CMB polarization measurements with
sufficient accuracy (Bucher et al., 2001).

In reality, the situation is even more complicated. The real Universe contains
not only photons and dark matter, but also neutrinos and baryons (and maybe
quintessence). It has been found (Bucher et al., 2000) that a mixture of photons,
dark matter, baryons, and neutrinos allows five different modes that grow or stay
constant, that is, that are “regular” in the sense that they do not grow very large
into the past. These are the adiabatic mode and the dark matter isocurvature mode
that we have just discussed, a similar baryon isocurvature mode (where only the
baryon density is perturbed), and two neutrino modes (where only the neutrino
density or velocity is perturbed). The acoustic peaks from the most generic initial
conditions that allow for arbitrary correlations between the different modes are
very unpredictable. For example, in a flat universe with a vanishing cosmological
constant and fixed cosmic parameters we can obtain a first peak position in the
range of 150 ≤ �(1) ≤ 350. However, combining CMB data and galaxy catalogs
(LSS data) allows us to constrain the total contribution from all nonadiabatic modes
to less than about 5%. This number will certainly still improve in the future, when
even more accurate polarization data are available.

In the remainder of this book, we only discuss adiabatic perturbations, which
are by far the most studied and that are in very good agreement with present
data. However, one should keep in mind that all the results, especially those con-
cerning the estimation of cosmological parameters, are not valid if we allow for
more generic initial conditions (Bucher et al., 2001; Trotta et al., 2001/3; Moodley
et al., 2004).

Exercises

(The exercise marked with an asterisk is solved in Appendix 11 which is not in
this printed book but can be found online.)

3.1 Power law expansion∗

Consider an FL universe filled with a (minimally coupled) scalar field with
vanishing spatial curvature, K = 0. Show that the universe expands like a
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power law, a ∝ tq , so that H = q/t only if the scalar field potential is of
the form

W(ϕ) = W0 exp

(
α
ϕ

MP

)
,MP ≡ 1√

8πG
. (3.181)

(MP is the reduced Planck mass.)
Determine α(q) and w(q) = P/ρ. Determine also p(q) such that a ∝ τp
and α(p). For which values of α do you obtain an inflationary universe?

Hint: Using the second Friedmann equation, show that power law
expansion implies w = P/ρ = constant and therefore both the quantities
W and ϕ̇ are power laws. Determine the corrsponding powers. Now solve
for ϕ explicitely and insert the solutions into the expression (3.181) forW .

3.2 The scalar power spectrum
Using the canonical commutation relations for the generation and annihila-
tion operators (3.62) show that the definition of the power spectrum(3.65)
implies

Pζ (k) = | vk(t) |
2

z2
.

3.3 The second-order action for scalar perturbations
Derive the constraint equations (3.45) and (3.46) by varying the action
(3.43) w.r.t. N and Nj . Now derive Eq. (3.50) from (3.43), inserting the
constraints in the form (3.49). Why do the second-order terms for N and
Nj not appear?

3.4 A canonical variable for tensor perturbations
Consider a spatially flat FL universe with pure tensor perturbations,

ds2 = a2
[−dt2 + exp(2Hij ) dx

i dxj
]

. (3.182)

Consider only the gravitational part of the action (3.43) and show that up
to second order in Hij the perturbed action is given by

S
(2)
T = 1

2

∫
d4x

[
ḣij ḣ

ij − hij,lhij,l + ä
a
hijh

ij

]
. (3.183)

Indices in hij are raised and lowered with the flat metric δij and

hij = mp√
8π
aHij .

Hint: Derive first (3.53) for Hij and then transform to hij .
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You can now Fourier transform hij and set hij (k,t)= eij (k,+)h+(k,t)+
eij (k,×)h×(k,t), where eij (k,+) and eij (k,×) denote the two polar-
izations of the gravity wave that satisfy eii (k,λ) = kieij (k,λ) = 0 and
eij (k,λ)eij (k,λ′) = δλλ′ .

Calculate eij (k,λ) for k along the z direction. Show that h satisfies
Eq. (3.91) for each of the two polarizations λ.

3.5 A mixture of matter and radiation
Consider a mixture of a relativistic fluid, Pr = (1/3)ρr , and a nonrela-
tivistic fluid, with energy density ρm and pressure Pm = 0 in a Friedmann
universe with negligible curvature and cosmological constant. Assume that
the fluids are noninteracting. As in Eq. (3.133),

R = ρr
ρ
= ρr

ρr + ρm . (3.184)

(1) Show that

a = ρm
ρr
= R−1 − 1 = 1− R

R

is the scale factor normalized to a(teq) = 1, where teq is defined by
ρr(teq) = ρm(teq) ≡ ρeq.

(2) Show that

a(t) =
(
t

t1

)2

+ 2

(
t

t1

)
where t1 ≡

√
3

πGρeq
. (3.185)

(3) Also derive the following useful relations that we have used throughout
this chapter:

H2 = 4(1+ a)
t21a

2
,

w = R
3
,

c2
s =

4R

3(R + 3)
.

Using τ0 = 2/H0, zeq = 2300h2, and zdec = 1090 calculate t0, t1, teq,
and tdec in our flat model. Keep the explicit dependence on the Hubble
parameter, h, in the expressions.
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CMB Anisotropies

4.1 Introduction to Kinetic Theory

As we saw in Chapter 1, and as we know from statistical mechanics, the distribution
function of photons in thermal equilibrium at temperature T is given by

f (ω) = 1

eω/T − 1
, (4.1)

where ω = a|p̃| is the physical photon energy. The comoving photon energy and
momentum are denoted by p̃0 and p̃ and we have p̃ = |p̃| = p̃0 = a−1ω. We shall
denote the physical momenta by pμ; hence pμ = ap̃μ. As long as interactions
are sufficiently frequent to keep photons in thermal equilibrium, this distribution is
maintained. Once the interaction rate drops below the Hubble rate, the distribution
is affected only by redshifting photon momenta; this follows from Eq. (1.89) and
was discussed in Chapter 1. As we saw there, if we define T (a) = TDaD/a after
decoupling, where a(tD) ≡ aD is the scale factor at decoupling, the distribution
retains its form as a Planck spectrum (4.1) even after decoupling. Of course, after
decoupling T (a) is no longer a temperature in the thermodynamical sense but
merely a parameter of the distribution function. This point is especially interesting
for neutrinos: even if they may have masses of the order of mν ∼ 0.1 eV � T0,
their distribution is an extremely relativistic Fermi–Dirac distribution, since this is
what it was at decoupling and it has changed since only by redshifting of neutrino
momenta.

4.1.1 Generalities

We first present a brief introduction to relativistic kinetic theory. More details can
be found in Ehlers (1971) and Stewart (1971).

163
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In the context of general relativity on a spacetime M, for a particle species with
massm we define the mass-shell, mass-bundle, or 1-particle phase space as the part
of tangent space given by

Pm ≡ {(x,p) ∈ TM | gμν(x)pμpν = −m2}. (4.2)

This is a seven-dimensional subspace of the tangent space TM. A (three-
dimensional) “fiber” of the mass-bundle at a fixed event x ∈M is defined by

Pm(x) ≡ {p ∈ TxM | gμν(x)pμpν = −m2}. (4.3)

Here TxM is the tangent space of M at point x ∈ M. The 1-particle distribution
function is defined on Pm,

f : Pm→ R : (x,p) �→ f (x,p). (4.4)

The distribution function is nonnegative and represents the phase-space density of
particles with respect to the invariant measure dμM = 2δ(p2 + m2)|g | d4p d4x.
Here g is the determinant of the metric and p2 = gμνp̃

μp̃ν . The factor 2 is a
convention that we adopt here for convenience. We have chosen the coordinate
basis ∂μ = ∂/∂xμ in tangent space, so that p = p̃μ∂μ. We integrate over p0 to
get rid of the Dirac-δ. This yields the measure dμm on phase space in terms of the
phase space coordinates (p̃i,xμ),

dμm = |g(x)|
|p̃0(x,p̃)| d

4x d3p̃ =
√
|g(x)|dπm d4x, where (4.5)

dπm =
√|g(x)|
|p̃0(x,p̃)| d

3p̃. (4.6)

Here p̃ = (p̃1,p̃2,p̃3) and x = (x0,x1,x2,x3); p̃0 = g0μp̃
μ is determined as a func-

tion of (x,p̃) via the mass-shell condition, p2 = −m2. The measure
√|g(x)| d4x is

the usual invariant measure on M. Therefore densities on spacetime are obtained
by integrating over the momenta with the measure dπm. For example, the particle
flux density 4-vector is given by

nμ(x) =
∫
Pm(x)

√|g(x)|
|p̃0(x,p̃)|

p̃μ

p̃0
f (x,p̃) d3p̃. (4.7)

More importantly, the energy–momentum tensor is given by

T μν(x) =
∫
Pm(x)

√|g(x)|
|p̃0(x,p̃)| p̃

μp̃νf (x,p̃) d3p̃. (4.8)

If the particles are noninteracting, they move along geodesics,

ẍμ + �μναẋνẋα = 0. (4.9)
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Here the dot denotes the derivative with respect to proper time s defined by the
condition gμν(x)ẋ

μẋν = ẋ2 = −1. In the case of massless (light-like) particles, the
arc length cannot be defined. In this case the dot can be the derivative with respect to
some arbitrary affine parameter. The geodesic equation (4.9) for massless particles,
ẋ2 = 0, is invariant under affine reparameterizations, s → As+B, where A and B
are constants.

Equation (4.9) is obtained as the Euler–Lagrange equation of the Lagrangian

L(x,ẋ) = m
2
gμν(x)ẋ

μẋν .

For massive particles m denotes the mass; for massless particles it is an arbitrary
nonvanishing constant normally set to 1. The canonical momentum is then given by

p̃μ = ∂L
∂ẋμ

= mẋμ and p̃μ = mẋμ.

From the geodesic equation (4.9) we therefore have

m ˙̃pμ = −�μναp̃αp̃ν .

If there are no collisions, that is, no interactions other than gravity, the distribu-
tion function remains constant in a “comoving” volume element of phase space.
Therefore

d

ds
f ≡

[
ẋμ∂μ + ˙̃pi ∂

∂p̃i

]
f = 0, (4.10)

↔
[
p̃μ∂μ − �iμνp̃μp̃ν

∂

∂p̃i

]
f = 0. (4.11)

This is the Liouville equation for collisionless particles. If collisions cannot be
neglected, we have to replace the right-hand side by a collision term. Since col-
lisions involve more than one particle, in principle the collision term depends on
the 2- or even 3- and 4-particle distribution functions. To continue, one then has
to derive an equation of motion for the 2-particle distribution function and so
forth. This leads to the well known BBGKY (Bogoliubov–Born–Green–Kirkwood–
Yvon) hierarchy of equations. Often, if the particles are sufficiently diluted, the 2-
particle distribution function can be approximated by the product of the 1-particle
distribution functions,

f2(x,y,px,py) � f (x,px)f (y,py). (4.12)

This corresponds to the assumption that the particle positions in phase space
are uncorrelated and is called “molecular chaos.” In this case, the collision term
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becomes an integral over the momentum of the colliding particle and we obtain the
Boltzmann equation, [

p̃μ∂μ − �iμνp̃μp̃ν
∂

∂p̃i

]
f = C[f ]. (4.13)

The collision integral C[f ] depends on the details of the interactions. We will
calculate it for Thomson scattering of electrons and photons.

What we have discussed so far remains valid in the context of general rela-
tivity under some conditions on the number of collisions within a small volume
that have to be satisfied in order for a coordinate-independent collision integral to
exist (Ehlers, 1971).

In the kinetic approach it is often very useful to use a tetrad basis of vector
fields, eμ(x) = eνμ∂ν , with g(eμ,eν) = gαβe

α
μe
β
ν = ημν . Here ημν denotes the flat

Minkowski metric. With respect to such an orthonormal basis, p = pμeμ, we have
|p0| = |p0| =

√
m2 − p2, where p2 = ∑3

i=1(p
i)2 and dπm = d3p/|p0|, as in flat

Minkowski spacetime. This can also be written as

ημνp
μpν = gμνp̃

μp̃ν .

4.1.2 Liouville’s Equation in an FL Universe

We now want to discuss the Liouville equation in an FL universe. We choose the
tetrad basis (orthonormal basis of four vector fields)

e0 = a−1∂t and ei = a−1εi, (4.14)

where (εi) is an orthonormal basis of vector fields for the metric of the 3-space of
constant curvature γij . If K = 0 we can choose εi = ∂i . But also if K 
= 0 we can
always choose vector fields (εi) that form an orthonormal basis, that is, a basis that
satisfies (see Exercise 4.1)

γ (εi,εj ) = δij . (4.15)

The expression for the energy–momentum tensor (with respect to the usual coor-
dinate basis ∂μ) in a Friedmann universe becomes

T μν(x) = a4
√
γ (x)

∫
Pm(x)

1

|p̃0| p̃
μp̃νf (x,p̃) d3p̃, (4.16)

where γ is the determinant of the three-dimensional metric (γij ) and we have used
|g | = a8γ .
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The Liouville equation in a Friedmann universe in terms of the coordinates
(xμ,p̃i) is given by

p̃μ∂μf |p̃ − �iμνp̃μp̃ν
∂f

∂p̃i
= 0. (4.17)

Here we write ∂μf |p̃ in order to indicate that the components p̃i are fixed when the
derivative w.r.t. xμ is taken. Next we transform Eq. (4.17) into an equation for f
with respect to the new coordinates (xμ,pi), that is, we consider f as a function of
(xμ,pi). Since the FL universe is isotropic, f depends on the momentum only via1

p = √
δijpipj =

√
a2γij p̃i p̃j = ap̃. The derivative of the distribution function

with respect to t or x depends on the momentum variable, which we keep constant
when performing this derivative. We denote by ∂μf |p the derivative w.r.t. xμ while
keeping constant the momentum components pi w.r.t. the orthonormal basis ei
while ∂μf |p̃ is the derivative w.r.t. xμ keeping constant the momentum components
p̃i w.r.t. the coordinate basis ∂i . We then have

∂0f |p̃ = ∂0f |p + (∂0p
j)|p̃ ∂f

∂pj
= ∂0f |p +Hp∂f

∂p
, (4.18)

∂if |p̃ = ∂if |p + (∂ip)|p̃ ∂f
∂p
= ∂if |p + a2 p̃

kp̃j γkj,i

2p

∂f

∂p
,

p̃i∂if |p̃ = p̃i∂if |p + a2 p̃
kp̃j p̃iγkj,i

2p

∂f

∂p
, (4.19)

∂f

∂p̃i
= ∂p

∂p̃i

∂f

∂p
= a2 γimp̃

m

p

∂f

∂p
. (4.20)

With Eq. (4.20) the terms with spatial Christoffel symbols in Eq. (4.17) become

�ijmp̃
mp̃j

∂f

∂p̃i
= a2�ijmγik

p̃mp̃j p̃k

p

∂f

∂p
= a2 1

2
γmj,k

p̃mp̃j p̃k

p

∂f

∂p
. (4.21)

In the last equals sign we have used the fact that p̃mp̃j p̃k is symmetrical in the
indices m,k,j and therefore only the symmetrical part of the term �ijmγik =
1/2(γkj,m + γkm,j − γjm,k) contributes. With the help of Eq. (4.19) the terms
−�ijkp̃j p̃k (∂f /∂p̃i) and p̃i(∂ip)|p̃(∂f /∂p) in Eq. (4.17) cancel and we obtain

p̃μ∂μf |p +Hp̃0p
∂f

∂p
− 2�i0j p̃

0p̃j
∂f

∂p̃i
= 0. (4.22)

1 Here we use p to denote the absolute value of the physical momentum while before we used it to denote the
4-vector p. Since these are very different objects we hope that there is no danger of confusion.
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Inserting the Christoffel symbols of the FL universe (see Appendix 2, Section A2.3)
�i0j = �ij0 = Hδij , we find

p̃μ∂μf |p −Hp̃0p
∂f

∂p
= 0. (4.23)

In an unperturbed FL universe we assume the distribution function to be homo-
geneous and isotropic, hence to depend on xj and on pi only via p. When using
the coordinates pi in momentum space we therefore expect f not to depend on
the spatial coordinates xi anymore. Therefore, the Liouville equation simplifies
further to

∂0f −Hp∂f
∂p
= 0. (4.24)

Or, setting v = ap so that ∂0f |v = ∂0f |p − Hp(∂f /∂p) and interpreting f as a
function of (t,v), we obtain simply

∂0f (t,v) = 0. (4.25)

The Liouville equation in an FL universe therefore just requires that the distri-
bution function of collisionless particles changes in time only by redshifting of
the physical momentum p and therefore is simply a function of the redshift cor-
rected momentum v = ap. Once this redshift correction is accounted for, it has no
additional time dependence and is simply given by the initial condition. Note that
this is true for spatially flat and spatially curved universes. We shall use the same
letter f for f (t,p) and f (v).

4.2 The Liouville Equation in a Perturbed FL Universe

Let us consider small (first-order) deviations from an FL universe. This implies a
small perturbation not only of the distribution function, but also of its domain of
definition, the mass-shell (4.2), is modified due to the perturbations of the metric.
We will keep track of this by modifying the tetrad fields (eμ).

4.2.1 Scalar Perturbations

We derive the linear perturbation of Liouville’s equation in longitudinal gauge. The
perturbed metric is given by

ds2 = −a2(1+ 2�) dt2 + a2(1− 2�)γij dx
i dxj . (4.26)

The perturbed distribution function is f = f̄ (v) + F (S)(xμ,v,θ,φ), where (θ,φ)
define the direction of the momentum p. Liouville’s equation now becomes, to first
order, in the perturbations
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p̃μ∂μf − �̄iμνp̃μp̃ν
∂f

∂p̃i
− δ�iμνp̃μp̃ν

∂f̄

∂p̃i
= 0, (4.27)

where the perturbations of the Christoffel symbols are given in Appendix 3,
Eqs. (A3.2)–(A3.5). We have denoted background quantities by an over-bar. For
simplicity, and also since this is the most relevant case, we restrict ourselves here
to K = 0. The curved cases, K 
= 0 are treated in Appendix 9. However, in order
to connect these results in a more straightforward manner to the K 
= 0 case, we
do not yet make a Fourier decomposition of �, � and F (S). We again use a tetrad
basis, which is now given by

e0 = a−1(1−�)∂t and ei = a−1(1+�)∂i . (4.28)

We want to transform Eq. (4.27) to the coordinates (xμ,pi) with pμeμ = p̃μ∂μ so
that

p0 = a(1+�)p̃0 and pi = a(1−�)p̃i . (4.29)

For the transformation we use the derivatives

∂0p
i |p̃ =

[
H(1−�)− �̇]

ap̃i, so that

∂0f |p̃ = ∂0f |p + [H(1−�)− �̇]ap̃i
∂f

∂pi
,

∂0f |p̃ = ∂0f |p + [H− �̇]p
∂f

∂p
, (4.30)

p̃j ∂jf |p̃ = p̃j ∂jf |p − p̃j ∂j�p∂f̄
∂p

. (4.31)

As in the previous section, we indicate the momentum variable kept constant. With
the help of the Liouville equation for f̄ , we then find

p̃μ∂μF
(S)

∣∣
p
−Hp̃0p

∂F (S)

∂p

= a−1v
df̄

dv
[pi∂i�+ p0�̇]+ a−1δ�iμνp

μpν
∂f̄

∂pi
. (4.32)

Inserting the perturbation of the Christoffel symbols (Eqs. (A3.2)–(A3.5) of
Appendix 3), the right-hand side becomes

a−1v
df̄

dv

[
−p0�̇+ (p̃

0)2

p̃2
pk∂k�

]
,

where p̃2 = ∑
k(p̃

k)2 and we have used pi(∂f̄ /∂pi) = v(df̄ /dv).
We now rewrite the Liouville equation in terms of a new variable defined by

F =F (S)+�v(df̄ /dv). In most of the literature (Hu and Sugiayma, 1995;
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Hu et al., 1995, 1998; Hu and White, 1997a, 1997b) the variable F (S) is used
directly. Note, however, that F and F (S) differ only by an isotropic (direction-
independent) term. Hence, once we determine the CMB anisotropies this difference
will only be present in the unmeasurable monopole term. The advantage of the
variable F will become clear later.

Setting p̃j = p̃nj with 1 = δijninj we have to lowest order, p̃ = p/a = v/a2.
Defining also

q = a2p̃0 = aω = a
√
p2 +m2 =

√
v2 + a2m2, (4.33)

we can rewrite the Liouville equation for the function F(t,x,v,n) in the form

q∂0F + vni∂jF = ni∂i
[
q2� + v2�

] df̄
dv

. (4.34)

Here vj = apj are the redshift corrected physical momentum components and F
is understood as a function of the variables xμ and vj ≡ vnj . Since F and �, �
are already perturbations, we can use the background relations between p and v as
well as q.

This is the Liouville equation for collisionless (massive) particles. If the right-
hand side vanishes, it simply describes the free streaming of particles with momen-
tum (pμ)= (q,vni)/a. If the particles are nonrelativistic, only the first term on
the right-hand side contributes which simply describes the change of momenta by
gravitational acceleration in the potential �. If the particles are relativistic, the
accelerating potential is � + �, which in the Newtonian case gives twice the
Newtonian potential, as we also have it for light deflection; see Eq. (2.234). We
shall see that the equation can be simplified in the massless case where q = v,
which is relevant for the study of photons.

4.2.2 Vector Perturbations

Next we consider vector perturbations. For simplicity, here we do not use the vector
gauge, but we set Bi = 0 so that

ds2 = a2
(−dt2 + (γij + 2Hij ) dx

i dxj
)
, 2Hij = Hi|j +Hj |i . (4.35)

We use this gauge instead of the vector gauge, because it has a simpler perturbed
orthonormal basis. The vector fields

e0 = a−1∂t and ei = a−1
(
δ
j

i −Hji
)
∂j, (4.36)

are orthonormal. If we used a gauge with Bi 
= 0 (nonvanishing “shift vector”) this
would lead to a mixing of time and space directions in the orthonormal basis and
would complicate the calculations.
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In the chosen basis the components of p = p̃μ∂μ = pμeμ are related by

p̃0 = a−1p0,

p̃i = a−1pj(δj
i −Hj i),

p0 = ap̃0,

pi = ap̃j (δj i +Hj i).
The indices of Hij are raised and lowered with the trivial metric δij . In the
gauge chosen in Eq. (4.35), the only nonvanishing perturbations of the Christoffel
symbols are

δ�ij0 = Ḣ ij, δ�ijm = Hij |m +Him|j −Hjm|i, (4.37)

where in the spatially flat case, | is simply the ordinary partial derivative. Again, we
want to write the Liouville equation p̃μ∂μf−�iαβp̃αp̃β(∂f /∂p̃i) for f as a function
of (xμ,pi). The difference from the scalar case comes from the different basis and
hence the difference in the relation between pμ and p̃μ and from the different
Christoffel symbols. A short calculation gives for f = f̄ (v)+ F (V )(t,x,v,n)

p̃i∂if |p̃ = a−1pi
[
∂if |p + ∂ipj |p̃ ∂f

∂pj

]
= a−1pi

[
∂iF

(V )|p + pkHjk|i
∂f̄

∂pj

]

= a−1pi
[
∂iF

(V )|p + p
jpk

p
H
j

k|i
∂f̄

∂p

]
,

�ijkp̃
j p̃k

∂f

∂p̃i
= a−1p

ipj

p
pkH ik|j

∂f̄

∂p
.

Here we have used that the background contribution to f , f̄ , depends on momen-
tum only via p so that ∂f̄ /∂pj = (pj/p)(∂f̄ /∂p). The other terms of the Liouville
equation are

∂0f |p̃ = ∂0f |p + ∂0p
i |p̃ ∂f
∂pi

∂0p
i = Hap̃j (δij +Hj i)+ ap̃j Ḣ ij = Hpi + ap̃j Ḣ ij

p̃0∂0f |p̃ = a−1

[
p0∂0f |p + p0Hpi ∂f

∂pi
+ Ḣij p

ipj

p

∂f̄

∂p

]
.

Furthermore,

2�i0j p̃
j p̃0 ∂f

∂p̃i
= 2Hp0pi

∂f

∂pi
+ 2Ḣij

pipj

p

∂f̄

∂p
.
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Together these results yield

p̃μ∂μf |p̃ − �iμνp̃μp̃ν
∂f

∂p̃i

= a−1

[
p0∂0f |p + pi∂if |p −Hp0pi

∂f

∂pi
− p0Ḣ im

pmpi

p

∂f

∂p

]
. (4.38)

Using the zeroth-order Liouville equation, and transforming to the redshift cor-
rected momentum variable v = ap, all this finally leads to the following Liouville
equation for F (V )(t,x,v,n):

q∂0F
(V ) + vni∂iF (V ) = qvninj Ḣij df̄

dv
. (4.39)

where for B = 0, σ (V )�m = aḢ (V )�m as defined in Chapter 2, Eq. (2.54).
The right-hand side of this equation has no Newtonian analog. For nonrelativistic

particles it simply implies free streaming, ∂0F
(V ) + ωi∂iF (V ) = 0, where ωi =

vi/(am) is the velocity. In the presence of a vector-type gravitational field, “frame
dragging” a new gravitational term, the right-hand side of (4.39), has to be added
that describes the evolution of the particle momenta due to frame dragging. Note
that it was useful to choose the redshift-corrected momentum v and the directions
ni as our momentum variables. Otherwise the Liouville equation would be signifi-
cantly more complicated.

4.2.3 Tensor Perturbations

For tensor perturbations the perturbed metric is given by

ds2 = a2
(−dt2 + (γij + 2Hij ) dx

i dxj
)
, H ii = Hji|j = 0. (4.40)

As before, we define the perturbation of the distribution function by

f = f̄ (v)+ F (T )(t,x,v,n).

The situation is exactly the same as for vector perturbations and we find the same
Liouville equation,

q∂0F
(T ) + vni∂iF (T ) = qvninj Ḣij df̄

dv
. (4.41)

This describes the evolution of the distribution function in the field of a gravitational
wave Hij . The equation is identical to (4.39) but of course now Hij and F (T ) are
spin-2 perturbations.
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4.3 The Energy–Momentum Tensor

From the perturbed distribution function and metric, we can determine the per-
turbed energy–momentum tensor. We start from the general expression

T μν(x) =
∫
Pm(x)

√|g(x)|
|p̃0(x,p̃)| p̃

μp̃νf (x,p̃) d3p̃. (4.42)

Observe that the components p̃μ are the momentum components w.r.t. the coordi-
nate basis ∂μ. We now use

p̃0 = a−2(1−�)q,
p̃0 = −(1+�)q,
p̃i = a−2vnj (δj

i −Hj i),
p̃i = vnj (δj i +Hj i).

Here we consider scalar, vector, and tensor perturbations together so that
Hij = −�δij + H(V )ij + H(T )ij , where we have chosen longitudinal gauge for the
scalar perturbations. In the following subsections we then isolate the contributions
for the scalar, vector, and tensor perturbations of the energy–momentum tensor. We
note that to first order det g = −a8(1 + 2� − 6�). To transform the integration
d3p̃ in Eq. (4.42) into an integration w.r.t. d3p we use

det

(
dp̃

dp

)
= a−3 det

(
δm
j −Hmj

) = a−3[1+ 3�]. (4.43)

With this we find that the metric perturbations in T 0
0 and T 0

j cancel and we obtain
the following expressions for the energy–momentum tensor:

T 0
0 = −

∫
Pm(x)

p0p2f (x,p) dp d�n = −1

a4

∫
qv2f dv d�n, (4.44)

T0
j = T j 0 = −

∫
Pm(x)

njp3f (x,p) dp d�n = −1

a4

∫
njv3f dv d�n, (4.45)

T ij = (δi� −Hi�)(δjk +Hjk) 1

a4

∫
n�nk

v4

q
f dv d�n,

= T̄ ij + 1

a4

∫
ninj

v4

q
F dv d�n = P̄ δij + δT ij . (4.46)

To find the last expression we use the fact that the background stress tensor is
diagonal,

∫
n�nkf̄ d�n = 4π

3 δ
�kf̄ , and that to first order

(δik −Hik)(δkj +Hjk ) = δij,
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since Hkm = Hkm = Hkm is symmetric. In Eq. (4.45) we have neglected the term
proportional to H�m since in the direction integral

∫
njf only the perturbation of

the distribution function contributes, so that this term would be second order. The
surface element d�n denotes the integral over the sphere of momentum directions,
pi = pni .

Before turning to the different modes, let us split the stress tensor into a trace
and a traceless part,

T ij = Pδij + P̄ ij with (4.47)

P = 1

3
T ii = P̄ + 1

3a4

∫
v4

q
F dv d�n and (4.48)

P̄ ij = T ij − Pδij = 1

a4

∫
v4

q

(
ninj − 1

3
δij

)
F dv d�n. (4.49)

Here we have used the fact that

P̄ = 1

3
T̄ i i = 4π

3a4

∫
v4

q
f̄ dv.

4.3.1 Scalar Perturbations

We now use the foregoing general expressions to determine the variables defined
in Chapter 2 that specify scalar perturbations of the energy–momentum tensor.
We consider a Fourier mode F (S)(t,k,n)eik·x. As before, we denote background
quantities with an overbar.

• Density:
Equation (4.44) implies

ρ(t,k) = ρ̄(t)+ δρ(long)(t,k) = 4π

a4

∫
qv2f̄ (v) dv

+ 1

a4

∫
qv2F (S)(t,k,n) dv d�n. (4.50)

Hence

Ds = δρ
(long)

ρ̄
= 1

ρ̄a4

∫
qv2F (S) dv d�n. (4.51)

To determine the integral of F = F (S) +�v(df̄ /dv) we use

1

a4

∫
qv3 df̄

dv
dv d�n = −4π

a4

∫ (
3qv2 + v

4

q

)
f̄ dv = −3(ρ̄ + P̄ ).
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For the first equals sign we have integrated by parts and used

dq

dv
= d

dv

√
a2m2 + v2 = v

q
.

There is no boundary term since f decays rapidly for large momenta. With this we
obtain

1

ρ̄a4

∫
qv2F dv d�n = Ds − 3(1+ w)� = Dg . (4.52)

• Velocity:
The gauge-invariant velocity perturbation is given by T 0

i in longitudinal gauge.
Hence

T
0(S)
i = 1

a4

∫
niv

3F (S) dv d�n = 1

a4

∫
niv

3F dv d�n = (ρ̄ + P̄ )Vi . (4.53)

Taking the divergence on both sides we obtain, with Vj ≡ −i(kj /k)V ,

kV = i

a4(ρ̄ + P̄ )
∫
nikiv

3F dv d�n,

V = i

a4(ρ̄ + P̄ )
∫
μv3F dv d�n, (4.54)

where we have introduced the direction cosine between n and k, μ = niki/k =
nik̂i .

• Entropy perturbation:
To determine the variable � we first write

πL = δP
P̄
= 1

3P̄ a4

∫
v4

q
F (S) dv d�n,

and therefore

1

3P̄ a4

∫
v4

q
F dv d�n = πL +� 4π

3P̄ a4

∫
v5

q

df̄

dv
dv. (4.55)

We use the background identity ˙̄ρ = −3Hρ̄(1 + w) = −3H (1+w)
w
P̄ to replace P̄

in the second term. After integration by parts we find

�
4π

3P̄ a4

∫
v5

q

df̄

dv
dv = �H(1+ w)

w ¯̇ρ
4π

a4

∫ (
5v4

q
− v

6

q3

)
f̄ dv.

On the other hand, using q̇ = Hm2a2/q = H q2−v2

q
, we obtain

˙̄P = −H 4π

3a4

∫ (
5v4

q
− v

6

q3

)
f̄ dv.
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With ˙̄P/ ˙̄ρ = c2
s , these two equations together yield

1

3P̄ a4

∫
v4

q
F dv d�n = π(long)

L − 3(1+ w)c
2
s

w
�. (4.56)

Furthermore,

c2
s

P̄ a4

∫
qv2F dv d�n = c

2
s

w
Dg = c

2
s

w
δ(long) − 3(1+ w)c

2
s

w
�.

Combining this with Eq. (4.56) results in

1

P̄ a4

∫ (
v4

3q
− c2

s qv
2

)
F dv d�n = π(long)

L − c
2
s

w
δ(long) = �. (4.57)

• Anisotropic stress:
The scalar anisotropic stress tensor is simply given by Eq. (4.49). It is related to its
potential  via  ij =

(−k−2kikj + 1
3δij

)
 , so that  ij |ij = 2

3k
2 . In Eq. (4.49)

this leads to

 = 3

2a4P̄

∫
v4

q

(
−(n · k)2/k2 + 1

3

)
F dv d�n (4.58)

= 3

2a4P̄

∫
v4

q

(
1

3
− μ2

)
F dv d�n. (4.59)

4.3.2 Vector Perturbations

Vector perturbations are given by divergence-free vector fields. For a fixed Fourier
component k, we expand them in the basis functions Q(V )j , which have two inde-

pendent modes. Let us choose two basis vectors e(1) and e(2) so that (e(1), e(2), k̂)
form a right-handed orthonormal basis. The k-Fourier mode of an arbitrary vector
perturbation is then of the form Aj = (A(1)e(1)j + A(2)e(2)j ) eikx. We can also write
it in terms of the helicity basis [see Eq. (2.13)]

e(±) = 1√
2

(
e(1) ∓ ie(2)) , (4.60)

Aj =
(
A(+)e(+)j + A(−)e(−)j

)
eikx,

where A(±) = 1√
2

(
A(1) ± iA(2)).

We write the vector perturbations of the distribution function for a given Fourier
mode k in this form

F (V )(t,x,n,v) = [
F (V+)(t,k,n,v)e(+) · n+ F (V−)(t,k,n,v)e(−) · n]

eik·x.

(4.61)
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The functions F (V+) and F (V−) no longer depend on e(±). Therefore, if the
process that generated the fluctuations is isotropic, the components F (V ±) depend
on the direction n only via μ = k̂ · n. With respect to spherical coordinates
chosen such that k points in the z-direction, the components of n are n =
(
√

1− μ2 cosϕ,
√

1− μ2 sinϕ, μ). With e(1) = (1,0,0) and e(2) = (0,1,0) we
obtain

e(±) · n = n∓ =
√

1− μ2

2
e∓iϕ . (4.62)

The sign difference comes from the fact that e(±) · e(±) = 0 while e(±) · e(∓) = 1;
hence for n = n+e(+)+n−e(−)+μk̂ we have n+ = n · e(−) and n− = n · e(+). With
this

F (V )(t,x,n,v) =
√

1− μ2

2

[
F (V+)(t,k,μ,v)e−iϕ + F (V−)(t,k,μ,v)eiϕ]eik·x.

(4.63)

• Vorticity:
We now write the vorticity vector perturbation of the energy–momentum tensor in
the helicity basis, �i(t,k) = �(+)(t,k)e(+)i +�(−)(t,k)e(−)i .

�j(t,k) = −1

ρ̄ + P̄ T
(V )j

0 ,

�(±)(t,k) = 1

(ρ̄ + P̄ )a4

∫
e∓ · nv3F (V )(t,k,n,v) dv d�n

= π

(ρ̄ + P̄ )a4

∫
v3F (V±)(t,k,μ,v)(1− μ2) dv dμ. (4.64)

For the last equals sign we used that
∫ 2π

0 (e
∓ · n)e±iϕdϕ = 0.

In the chosen gauge, Bi = 0, we obtain T i0 = (ρ̄+P̄ )�i ; hence the first moment,∫
niF (V ), gives rise to the vorticity �i and not to the shear V (V )i (for details see

Section 2.2.4).

• Anisotropic stress:
We introduce the helicity decomposition of the vector potential for anisotropic
stresses,

 
(V )
j =

(
 (V+)e(+)j + (V−)e(−)j

)
eikx. (4.65)

The anisotropic stress tensor is defined by  (V )ij = −1
2k

(
 (V )i |j +  (V )j

|i)
. But

 (V )ij is also given by the integral of the distribution function over momentum
space,
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 (V )ij = 1

a4P̄

∫
v4

q

(
ninj − 1

3
δij

)
F (V ) dv d�n. (4.66)

Taking the divergence of both expressions we obtain

 (V )ij |i = k
2

(
 (V+)e(+)j + (V−)e(−)j

)
eikx

= ik

a4P̄

∫
v4

q

(
njμ− 1

3
k̂j

)
F (V ) dv d�n. (4.67)

We multiply this vector with e∓ to isolate the modes  ±. We also make use of the
helicity decomposition of the distribution function, Eq. (4.61):

 (V±) = 2i

a4P̄

∫
v4

q
n±μF (V ) dv d�n

= 2πi

a4P̄

∫
v4

q
μ(1− μ2)F (V±)(t,k,μ,v) dv dμ. (4.68)

For the second equals sign we made use of the decomposition n = n+e(+) +
n−e(−) + μk̂ =

√
1− μ2e−iϕe(+) +

√
1− μ2eiϕe(−) + μk̂ introduced earlier.

4.3.3 Tensor Perturbations

For tensor perturbations only the anisotropic stresses survive. The ansatz for a
tensor-type Fourier mode of the distribution function is

F (T )(t,x,n,v) =
[
F (T×)(t,k,n,v)Q(T×)ij + F (T d)(t,k,n,v)Q(T d)ij

]
ninj,

where

Q
(T×)
ij = e

ik·x
√

2

[
e
(1)
i e

(2)
j + e(2)i e(1)j

]
and Q

(T d)
ij = e

ik·x
√

2

[
e
(1)
i e

(1)
j − e(2)i e(2)j

]
.

These tensors form a basis of the symmetric traceless tensors normal to k. Usually,
when discussing gravity waves, the second mode function is denoted Q(T+)ij . Here

we use Q(T d)ij in order not to confuse this basis with the helicity basis, which we
shall use later also for tensor perturbations. The superscript d indicates that this
tensor is nonzero only on the diagonal with principal axes (eigenvectors) e(1) and
e(2), while Q(T×)ij is purely off-diagonal. Its principal axes are rotated by 45◦ with
respect to e(1) and e(2).

 (T )ij = 1

a4P̄

∫
v4

q

(
ninj − 1

3
δij

)
F (T ) dv d�n. (4.69)
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With the decomposition of the distribution function and (T )ij =  (T×)(t,k)Q(T×)ij +
 (T d)(t,k)Q(T d)ij , we obtain for both modes

 (T •) = π

2a4P̄

∫
v4

q
F (T •)(t,k,v,μ)(1− μ2)2 dv dμ. (4.70)

As for vector perturbations, we assume that the process generating the perturbation
is isotropic, so that F (T •) depends on the direction n only via μ = n · k̂.

In the massless case, which is most relevant for us, the energy–momentum tensor
simplifies considerably. This is the subject of the next section.

4.4 The Ultrarelativistic Limit, the Liouville Equation for Massless Particles

The Liouville equation and the expressions for the perturbations of the energy–
momentum tensor derived in the previous section are actually more important for
massive collisionless particles, for example, massive neutrinos, than for massless
particles. In the massless (or ultrarelativistic) case we have q = v and the equations
simplify significantly. Before discussing the different modes, let us introduce the
“longitudinal temperature fluctuation” for a thermal bath of massless particles.
“Longitudinal” indicates that we consider perturbations in longitudinal gauge. We
integrate the perturbed distribution function over energy so that only the depen-
dence on momentum directions, n, remains,

4π

a4

∫
v3f dv ≡ ρ̄ (1+ 4�L(n)) . (4.71)

We call the variable �L(n) the longitudinal temperature fluctuation in direction n.
�L(n) depends also on (t,x), which we suppress here for brevity. This definition
is motivated by the following consideration: for a Planck distribution of photons
that has a slightly direction-dependent temperature but is otherwise unperturbed
(especially, it has a perfect blackbody spectrum, fB(p,T ) = (exp(p/T ) + 1)−1),
the perturbed distribution function can be expanded to first order as

f (p,n) = fB(p,T (n)) = fB(p,T̄ )− δT
T̄
p∂pfB(p,T̄ ). (4.72)

Observe that fB is purely a function of p/T so that ∂T fB = −(p/T )∂pfB . The
energy density of this photon distribution is given by

ργ = 1

a4

∫
v3f (v,n) dv d�n = ρ̄γ − 1

a4

∫
δT

T̄
v4∂vfB(v,T̄ ) dv d�n

= ρ̄γ
(

1+ 4

4π

∫
δT

T̄
d�n

)
= ρ̄γ

(
1+ 1

π

∫
�L(n) d�n

)
. (4.73)
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For the third equals sign we have performed an integration by parts to evaluate
the integral over v and the last equals sign motivates our defintion of �L as the
temperature perturbation. We shall see that the Liouville equation for photons leads
to a perturbation that can be described entirely by a direction-dependent tempera-
ture fluctuation. Of course f and also �L = δT /T̄ also depend on position and
time, arguments that we suppress here for brevity. The fact that the perturbation
of the photon distribution can be described in such a simple way is not surprising.
It is an expression of the “a-chromaticity” of gravity that is a consequence of the
equivalence principle: the deflection and redshift of a photon in a gravitational field
are independent of its energy.

4.4.1 Scalar Perturbations

For massless particles, v = q, the Liouville equation (4.34) reduces to

∂0F + ni∂iF = nj
[
�,j +�,j

]
v
df̄

dv
. (4.74)

We define the energy integrated fluctuation

M(S)(t,x,n) = π

a4ρ̄

∫
v3F dv. (4.75)

In terms of the temperature fluctuation �L(n) defined in Eq. (4.71) we get

M(S)(n) = �(S)L (n)−�. (4.76)

Up to a (irrelevant) monopole contribution, the momentum integrated distribution
function M(S) is simply the temperature perturbation in longitudinal gauge. It is
not surprising that the monopole terms of M(S)(n) and�L(n) do not agree because
they are gauge dependent. Also the dipole terms might differ because they too are
gauge dependent. (In a gauge with nonvanishing shear, the dipole contributions to
�L and M actually do differ.)

Integrating the Liouville equation (4.74) over momenta and performing an inte-
gration by parts on the right-hand side, we obtain the evolution equation for M(S),

∂tM(S) + ni∂iM(S) = −nj [
�,j +�,j

]
. (4.77)

This equation can be solved formally for any given source term �+�. One easily
checks that the solution with initial condition M(S)(tin,x,n) is

M(S)(t,x,n) =M(S) (tin,x− n(t − tin),n)

−
∫ t

tin

dt ′ ni∂i(� +�)(t ′,x− n(t − t ′)). (4.78)
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Using

d

dt ′
(� +�)(t ′,x− n(t − t ′)) = ∂t ′(� +�)(t ′,x− n(t − t ′))

+ ni∂i(� +�)(t ′,x− n(t − t ′)),
we can replace the second term on the right-hand side to obtain

M(S)(t,x,n) =M(S) (tin,x− n(t − tin),n)
+ (� +�)(tin,x− n(t − tin))

+
∫
dt ′ ∂t ′(� +�)(t ′,x− n(t − t ′))+monopole. (4.79)

By “monopole” we denote an uninteresting n-independent contribution that does
not affect the CMB anisotropy spectrum. The Bardeen potentials � and �, how-
ever, are given via Einstein’s equation in terms of the perturbations of the energy–
momentum tensor that contain contributions from the photons, which are in turn the
integrals over directions of M given below. Therefore, even though it might look
like it, Eqs. (4.78) and (4.79) are not really a solution of the Liouville equation. The
term on the right-hand side also depends on M(S).

Let us compare Eq. (4.79) with the result from the integration of lightlike
geodesics after decoupling in Eqs. (2.238) and (2.240). Here we have solved the
Liouville equation, which also does not take into account the scattering of photons
and is therefore equivalent to our approach in Chapter 2. They both correspond
to the “sudden decoupling” approximation, where we assume that photons behave
like a perfect fluid before decoupling and are entirely free after decoupling. This is
a relatively good approximation for all scales that are much larger than the duration
of the process of recombination, which we shall estimate in the next section. The
comparison with Eqs. (2.238) and (2.240) yields

M(S) (tdec,x− n(t − tdec),n) =
(

1

4
Dg + n · V(b)

)
(tdec,x− n(t − tdec)), (4.80)

and

M(S)(t,x,n) ≡ �T
T
(t,x,n). (4.81)

In other words, the temperature fluctuation defined via the energy shift of photons
moving along geodesics corresponds to M(S) while the temperature fluctuation
defined via the energy density fluctuation in longitudinal gauge corresponds to
�
(S)
L =M(S) +�. In addition to the energy shift, the latter includes a contribution

from the perturbation of the volume element,
√| det(gij )| d3x = a3(1 − 3�) d3x.

The distinction is not very important because it is a monopole that does not show
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up in the angular power spectrum. However, the corresponding evolution equations
are of course different. The variable�(S)L is used, for example, in Hu and Sugiayma
(1995), Hu et al. (1995, 1998), and Seljak and Zaldarriaga (1996), while the vari-
able M(S) is used, for example, in Durrer and Straumann (1988), Durrer (1990,
1994), Durrer et al. (2002), Doran (2005), and Bashinsky (2006).

The initial condition in the sudden decoupling approximation is a distribution
function that contains only a monopole and a dipole. Higher multipoles do not
build up in a perfect fluid. In the next section we shall take into account the process
of decoupling by studying the Boltzmann equation.

The scalar perturbations of the energy–momentum tensor of the radiation fluid
for a given Fourier mode k can be found by integrating the right-hand sides of
Eqs. (4.52), (4.54), (4.57), and (4.59) over energy, setting q = v,

Dg = 2
∫ 1

−1
M(S) (μ) dμ = 4M(S)

0 , (4.82)

V = 3i

2

∫ 1

−1
μM(S)(μ) dμ = 3M(S)

1 , (4.83)

� = 0, (4.84)

 = 3
∫ 1

−1

(
1− 3μ2

)
M(S)(μ) dμ = 12M(S)

2 . (4.85)

The general definition of M(S)
� will be given later, Eq. (4.116). We have assumed

that M(S)(n) depends on the direction n only via μ = k̂ ·n and have performed the
integration over ϕ, which simply gives a factor 2π . For isotropic perturbations there
is no other vector that could single out a direction and therefore this assumption
reflects statistical isotropy.

The exact equality w = c2
s = 1

3 does not allow for any entropy perturbation in a
pure radiation fluid.

4.4.2 Vector Perturbations

Vector perturbations of the distribution function are not gauge dependent. We have
directly M(V ) ≡ �

(V )
L . The Liouville equation for vector perturbations of the

radiation fluid is obtained by integrating Eq. (4.39) over energies,

M(V )(n) = π

a4ρ̄

∫
v3F (V )(n,v) dv,

M(V±)(μ) = π

a4ρ̄

∫
v3F (V±)(μ,v) dv, (4.86)

∂tM(V ) + ni∂iM(V ) = −ninj Ḣ (V )ij . (4.87)
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The formal solution to this equation is

M(V )(t,x,n) =M(V )(tin,x− n(t − tin),n)

−
∫ t

tin

dt ′ ninja(t ′)−1σ
(V±)
ij (t ′,x− n(t − t ′)). (4.88)

When setting M(V )(tin) = �i(tin)ni , this corresponds exactly to Eq. (2.243); see
Exercise 4.2.

After Fourier transforming M(V ) and σ (V )ij we can expand them in the helicity
basis,

Ḣ
(V )
j = Ḣ (V+)e(+)j + Ḣ (V−)e(−)j = σ (V+)e(+)j + σ (V−)e(−)j ,

so that

Ḣ
(V )
ij ≡ −1

2k

(
Ḣ
(V )
i|j + Ḣ (V )j |i

)
= −i

2

(
Ḣ (V+)

[
e
(+)
i k̂j + e(+)j k̂i

]+ Ḣ (V−)[e(−)i k̂j + e(−)j k̂i])
ninj Ḣ

(V )
ij = −i√

2
μ

√
1− μ2

(
Ḣ (V+)eiϕ + Ḣ (V−)e−iϕ) . (4.89)

In the last equality we have introduced the representation of n in the helicity basis,
Eq. (4.62). The ϕ dependence on the left- and right-hand sides of Eq. (4.87) shows
that M(V±) couples only to σ (V±) and both helicity components satisfy the equation

∂tM(V±) + ikμM(V±) = −iμσ (V±). (4.90)

From Eqs. (4.64) and (4.68) we obtain the vector perturbations of the energy–
momentum tensor in terms of M(V ),

�(±) = 3

4

∫ 1

−1
(1− μ2)M(V±)(μ) dμ, (4.91)

 (V±) = 6i
∫ 1

−1
(1− μ2)μM(V±)(μ) dμ. (4.92)

4.4.3 Tensor Perturbations

For tensor fluctuations, the perturbed Liouville equation becomes

∂tM(T ) + ni∂iM(T ) = −ninj Ḣ (T )ij . (4.93)
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For a given source term H(T )ij this is solved by

M(T )(t,x,n) =M(T )(tin,x− n(t − tin),n)−
∫ t

tin

dt ′ ninj Ḣ (T )ij (t
′,x− n(t − t ′)).

(4.94)

We decompose also H(T ) and M(T ) in the basis Q(T •)ij defined in Eq. (2.20) (the
bullet stands for the two modes d and ×),

H
(T )
ij = H(T×)Q(T×)ij +H(T d)Q(T d)ij , (4.95)

M(T •)(μ) = π

a4ρ̄

∫
dv v3F (T •)(μ,v), (4.96)

∂tM(T •) + ikμM(T •) = −Ḣ (T •). (4.97)

The tensor anisotropic stresses are

 (T •) = 3

2

∫ 1

−1
(1− μ2)2M(T •)(n)d�. (4.98)

4.4.4 The Liouville Equation in Terms of the Weyl Tensor

(This section is not required for the continuation of the book and can be left out in
a first reading.)

We know that the motion of photons in a gravitational field is conformally invari-
ant. Therefore, the evolution of the photon distribution, once the redshift is taken
out by using the conformally invariant momentum variable v, should depend only
on the Weyl tensor. To find the Liouville equation in terms of the Weyl tensor,
we first consider only scalar and tensor perturbations and assume that the vector
perturbations vanish. Adding together the scalar and tensor parts of the Liouville
equation M =M(S) +M(T ) Liouville’s equation becomes

(∂t + nj∂j )M = −ni∂i(� +�)− njniḢ (T )ij ≡ SG. (4.99)

SG is the sum of the gravitational source terms for scalar and tensor perturbations.
Now we apply the Laplacian on both sides. Using the expressions (A3.21) and
(A3.57)–(A3.59) for the Weyl tensor, one finds that this corresponds to

(∂t + ni∂i)�M = �SG ≡ −3ni ∂jEij − nknjεki� ∂�Bij , (4.100)

where εki� is the totally antisymmetric tensor in three dimensions, and Eij and Bij
are the electric and magnetic parts of the Weyl tensor. We shall sometimes use SG to
denote the gravitational source term on the right-hand side of Liouville’s equation.
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As before, for a given source term �SG this equation is simply solved by integra-
tion. With our variable M the Liouville equation can be directly written in terms
of the Weyl tensor, while this is not possible with the variable�L. The variable M
manifests the conformal invariance of photon propagation. It remains zero if the
Weyl curvature vanishes and therefore photon trajectories are not modified.

If we want to include also vector perturbations, a subtlety occurs. With the help
of (A3.43)–(A3.45) one finds

−3ni∂jE(V )ij − nknjεki�∂�B(V )ij = 3

4
nj�σ̇j + 1

4
ninj�σi|j, (4.101)

which does not correspond to the right-hand side of Eq. (4.87). However, if we
transform M(V ) by the addition of a simple dipole term that does not show up in
the CMB multipoles for � ≥ 2 to

M(V 2) ≡M(V ) + 3

4
nj Ḣj, (4.102)

one finds easily that

(∂t + ni∂i)�M(V 2) = −3ni∂jE(V )ij − nknjεki�∂�B(V )ij . (4.103)

Hence with this redefinition, the variable

M ≡M(S) +M(V 2) +M(T )

satisfies the Liouville equation

(∂t + ni∂i)�M = −3ni ∂jEij − nknjεki� ∂�Bij . (4.104)

It may be interesting to note that in a generic gauge this variable can be written as

�M = �M +�R+ 3

2
ni ∂jσij . (4.105)

The first term,M , is the momentum integration of the perturbation of the distribu-
tion function, F , while the second term is the perturbation of the spatial curvature
given in Eq. (2.50). Only scalar perturbations contribute to it. The last term is
related to the shear to which both scalar and vector perturbations contribute. Note
that for scalar perturbation in longitudinal gauge the shear term vanishes while the
vector part of the shear is gauge invariant. By construction, this variable is perfectly
gauge invariant.

The right-hand side of Eq. (4.104) is written entirely in terms of tensor fields with
vanishing background contribution and it is therefore manifestly gauge invariant. It
would be interesting to attempt the same for the left-hand side, the variable �M.
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4.4.5 The Liouville Equation in Fourier Space

A Fourier mode of M(t,x,n) is given by

M(t,k,n) ≡
∫
d3x e−ik·xM(t,x,n), and its inverse is

M(t,x,n) = 1

(2π)3

∫
d3k eik·xM(t,k,n).

We have seen that the Liouville equation for a Fourier mode is given by

(∂t + ikμ)M(t,k,n) = SG(t,k,μ), (4.106)

where, as before, μ = k̂ · n is the cosine between the unit vectors k̂ = k/k and n.
The general solution to this equation for a given source term SG can be written as

M(t,k,n) = e−ikμ(t−tin)M(tin,k,n)+
∫ t

tin

dt ′e−ikμ(t−t
′)SG(t

′,k,n). (4.107)

The function SG can be decomposed into scalar, vector, and tensor perturbations.
As already mentioned, the source term usually depends on M via Einstein’s

equations and Eq. (4.107) is not really a solution but simply corresponds to rewrit-
ing Eq. (4.106) as an integral equation. But as we shall see, this has serious advan-
tages, especially for numerical computations.

From Eq. (4.107) using the decomposition (see Appendix 4, Section A4.2)

eik·n(t−tin) =
∞∑
�=0

(2�+ 1)i�j�(k(t − tin))P�(μ),

one finds the CMB power spectrum, exactly as in Chapter 2, Eqs. (2.263)–(2.275)
and (2.281). Before we do this, we want to include Thomson scattering, which is
the relevant scattering process just before recombination. We will then derive the
power spectrum taking into account this scattering process.

4.5 The Boltzmann Equation

At early times, long before recombination, scattering of photons with free elec-
trons is very frequent. During recombination, however, the number density of free
electrons, that is, of electrons not bound to an atom, drops drastically and soon the
mean free path of photons is much larger than the Hubble scale so that, effectively,
photons do not scatter any more. In the previous treatment we assumed this process
of decoupling to be instantaneous; now we want to reconsider it in more detail.

The only scattering process that is relevant briefly before decoupling, that is, at
temperatures of a few electron volts and less, is elastic Thomson scattering, where
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the photon energy is conserved and only its direction is modified. The Thomson
scattering rate is

�T = σT ne,

where σT = 6.6524× 10−25 cm2 is the Thomson scattering cross section and ne is
the number density of free electrons.

Before decoupling, in a matter dominated universe, we find

�T � 7× 10−30 cm−1�bh
2(1+ z)3 while

H � 10−28 cm−1h(1+ z)3/2

�T /H � 0.07�bh(z+ 1)3/2.

Hence before recombination, which corresponds to redshifts z> 1100, say,
Thomson scattering is much faster than expansion. During recombination, the
free electron density drops and eventually the Thomson scattering rate drops
below the expansion rate. To take scattering into account we add a so-called
collision integral to the right-hand side of the Liouville equation, which leads us
to the Boltzmann equation. To learn more about the Boltzmann equation and the
approximations going into it see, for example, Lifshitz and Pitajewski (1983) or
Diu et al. (1989). The collision integral C[f ] takes into account that the 1-particle
distribution function can change due to collisions that scatter a particle into, f+, or
out of, f−, a volume element d3x d3p in phase space,[

p̃μ∂μ − �iαβp̃αp̃β
∂

∂p̃i

]
f = C[f ] = df+

dt
− df−
dt

. (4.108)

Here f+ and f− denote the distribution of photons scattered into and out of the
beam of photons at position x at time t with momentum p respectively.

In the baryon rest frame, which we denote by a prime, the photons scattered into
the beam in direction n per unit of time are given by

df ′+
dt ′
(n) = σT ne

4π

∫
f ′(p′,n′)ω(n,n′) d�′,

where ω(n,n′) denotes the normalized angular dependence of Thomson scattering
after averaging over photon polarizations (Jackson, 1975):

dσ

d�
= σT

4π
ω(n,n′) = 3σT

16π

[
1+ (n · n′)2] , (4.109)

= σT
4π

[
1+ 3

4
nijn

′
ij

]
with nij = ninj − 1

3
δij .
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Here we have averaged over incoming polarizations and summed over final polar-
izations of the photons; see Jackson (1975). In this chapter we neglect the polariza-
tion dependence of Thomson scattering, which we discuss fully in Chapter 5.

In the baryon rest frame that moves with 4-velocity uμ, the photon energy is

p′ = −p̃μuμ = p(1− nivi).
At first order, aberration does not contribute. Since Thomson scattering is energy
independent, we may integrate f+ over photon energies p′ = v′/a to obtain again
an equation for M. With v′3 dv′ = (1− 4nivi)v3 dv and Eq. (4.71), we obtain

4π

a4

∫
v′3
df ′+
dt ′
dv′ = ρ̄γ σT ne

[
1− 4niv

i + 1

π

∫
�(n′)ω(n,n′) d�′

]
. (4.110)

Here ρ̄γ is the background photon density. The term 4n · v is a Doppler term from
the velocity of the electrons with respect to the longitudinal rest frame. The factor
of 4 comes from the fact that we have to transform p′3 dp′ = p3(1 + 4n · v) dp
from the electron rest frame into the “laboratory” frame.

The distribution of photons scattered out of the beam per unit time is simply the
scattering rate multiplied by the distribution function,

df−
dt ′

= σT nef ′(p′,n).

Integrating also this term over photon energies we obtain the collision term that
enters the energy integrated Boltzmann equation for M in the baryon rest frame,

C ′[M] = π

a4ρ̄γ

∫
v3 dv

(
df+
dt ′

− df−
dt ′

)
= σT ne

[
1

4
δ(long)
γ −�(n)− niV (b)i + 3nij

16π

∫
�(n′)n′ij d�

′
]

. (4.111)

Here δ(long)
γ is the density perturbation in longitudinal gauge. To replace � in the

collision term with M we use the relation Eq. (4.76) and δ(long)
γ = D

(γ )
g + 4�

together with the fact that � and M differ only by a monopole term that does not
contribute to the angular integral in Eq. (4.111). We introduce also

Mij = 3

8π

∫
nijM(n) d�

and observe that to lowest order C = (dt ′/dt)C ′ = aC ′. With all this the Boltz-
mann equation becomes(
∂t + ni∂i

)
M = SG(n)+ aσT ne

[
1

4
D(γ )g −M− niV (b)i + 1

2
nijM

ij

]
, (4.112)
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where SG is the gravitational term defined in Eq. (4.100). Note that the perturbation
of the electron density, ne = n̄e + δne, does not contribute to first order, since the
isotropic background photon distribution f̄ annihilates the collision term.

For the Fourier transform of M we obtain the equation

(∂t + ikμ+ aσT ne)M(k,n) = SG(k,n)

+ aσT ne
[

1

4
D(γ )g (k)− niV (b)i (k)+

1

2
nijM

ij (k,n)
]

. (4.113)

This can be converted to the integral equation

M(t,k,n) = e−ikμ(t−tin)−κ(tin,t)M(tin,k,n)

+
∫ t

tin

dt ′ eikμ(t
′−t)−κ(t ′,t)

[
SG(k,n)+ κ̇

(
1

4
D(γ )g (k)

− niV (b)i (k)+
1

2
nijM

ij (k,n)
)]

. (4.114)

Here κ(t1,t2) =
∫ t2
t1
aσT ne dt is the optical depth and κ̇(t1,t2) = ∂t2κ(t1,t2) =

aσT ne(t2) is independent of the initial value t1.
We now decompose Eq. (4.114) into its scalar, vector, and tensor contributions.

4.5.1 Scalar Perturbation

We first consider scalar perturbations. Since the direction dependence enters the
evolution equation only via the cosine μ = k̂ · n, we assume consistently that
this is the only direction dependence of the Fourier transform M(S)(t,k,n), so
that M(t,k,n) = M(t,k,μ). It therefore makes sense to expand M in Legendre
polynomials,

M(S)(t,k,μ) =
∑
(2�+ 1)(−i)�M(S)

� (t,k)P�(μ). (4.115)

Using the orthogonality and normalization of Legendre polynomials, see
Appendix 4, Section A4.1, we obtain the expansion coefficients,

M(S)
� (t,k) =

i�

2

∫ 1

−1
dμM(S)(t,k,μ)P�(μ). (4.116)

Statistical homogeneity and isotropy imply that the coefficients M� for different
values of � and k are uncorrelated,〈

M(S)
� (t,k)M

(S)∗
�′ (t,k

′)
〉
= M(S)

� (t,k)(2π)
3 δ3(k− k′) δ��′, (4.117)

and thatM(S)
� depends only on the norm k = |k|.
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We want to relate the spectrum M
(S)
� (t,k) to the scalar CMB power spectrum

C
(S)
� . We use the definition given in Eq. (2.253),〈

�T

T
(t0,x0,n)

�T

T
(t0,x0,n′)

〉(S)
= 1

4π

∑
�

(2�+ 1)C(S)� P�(n · n′)

= 1

(2π)6

∫
d3k d3k′

∑
�1�2

(2�1 + 1)(2�2 + 1)(−i)�1−�2eix0·(k−k′)

×
〈
M(S)

�1
(t0,k)M(S)∗

�2
(t0,k′)

〉
P�1(μ)P�2(μ

′),

where μ = k̂ · n and μ′ = k̂′ · n′. With Eq. (4.117) we obtain

1

4π

∑
�

(2�+ 1)C(S)� P�(n · n′)

= 1

(2π)3
∑
�1

∫
d3k M

(S)
�1
(t0,k)(2�1 + 1)2P�1(μ)P�1(μ

′)

= 2

π

∑
�1

∫
d3k M

(S)
�1
(t0,k)

∑
m1m2

Y�1m1(n)Y
∗
�1m1
(k̂)Y ∗�1m2

(n′)Y�1m2(k̂)

= 2

π

∑
�1m1

∫
dk k2M

(S)
�1
(t0,k)Y�1m1(n)Y

∗
�1m1
(n′)

= 1

2π2

∑
�1

(∫
dk k2M

(S)
�1
(t0,k)

)
(2�1 + 1)P�1(n · n′).

In several steps in this derivation we have applied the addition theorem of spherical
harmonics derived in Appendix 4, Section A4.2.3. Comparing the first and the last
expressions in the series of equalities above, we infer

C
(S)
� = 2

π

∫
dk k2M

(S)
� (t0,k). (4.118)

To calculate the CMB power spectrum, we therefore have to determine the ran-
dom variables M�. We now derive a hierarchical set of equations for them, the
so-called Boltzmann hierarchy.

With Eqs. (4.82)–(4.85), Eq. (4.116), and the explicit expressions of the
Legendre polynomials for � ≤ 2 given in Appendix 4, Section A4.1, one finds
the relations of the scalar perturbations of the photon energy–momentum tensor to
the expansion coefficients M�(t,k), � ≤ 2,
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D(γ )g = 4M(S)
0 , (4.119)

V (S)γ = 3M(S)

1 , (4.120)

 (S)γ = 12M(S)

2 . (4.121)

Inserting Eq. (4.115) in the definition of Mij and choosing the coordinate system
such that k points in the z direction one can easily compute the integrals M33 =
−M(S)

2 andM11 = M22 =M(S)

2 /2 and all off-diagonal contributions vanish. With
n2

1 + n2
2 = 1− μ2 this yields

1

2
nijM

ij = −1

2
M(S)

2 P2(μ).

Also using the fact that for scalar perturbations V = ik̂V we obtain the scalar
Boltzmann equation

(∂t + ikμ)M(S)(k,n) = ikμ(�+�)

+ κ̇
[

1

4
D(γ )g (k)−M(S) − iμV (b)(k)− 1

2
M2(k)P2(μ)

]
.

(4.122)

With the recurrence relation (see Appendix 4, Section A4.1)

μP�(μ) = �+ 1

2�+ 1
P�+1(μ)+ �

2�+ 1
P�−1(μ),

and the ansatz (4.115), we can convert Eq. (4.122) into the following hierarchy of
equations:

Ṁ(S)
� + k �+ 1

2�+ 1
M(S)

�+1 − k
�

2�+ 1
M(S)

�−1 + κ̇M(S)
�

= δ�0κ̇M(S)

0 + 1

3
δ�1

[−k(�+�)+ κ̇V (b)]+ κ̇ 1

10
δ�2M(S)

2 . (4.123)

Here the source terms on the right-hand side contribute only for � = 0,1 and � = 2
respectively. In Eq. (4.123) each variable M(S)

� couples to its neighbors, M(S)
�−1 and

M(S)

�+1, via the left-hand side. The left-hand side of Eq. (4.122) and therefore also
the first three terms of Eq. (4.123) just describe the free streaming of photons after
decoupling.

If we want to determine the CMB power spectrum via the Boltzmann hierarchy,
Eq. (4.123), in order to calculate, for example, C1000 we have to know all the
other M(S)

� s that may influence M(S)
1000 via free streaming during a Hubble time,

which is certainly more than 1000. Furthermore, at the beginning, when coupling
is still relatively tight, we may simply take into account M(S)

0 and M(S)

1 given by
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the perfect fluid initial conditions and set all the other M(S)
� ’s to zero. They then

gradually build up mainly due to free streaming. But using the Boltzmann hierarchy
(4.123), we cannot calculate M(S)

1000 with any accuracy if we have not determined
all the M(S)

� ’s with � < 1000 with the same (or rather better) accuracy.
On the other hand, if we knew the source term, the right-hand side of Eq. (4.123),

we could simply write down the solution, Eq. (4.114). As the source term depends
only on the first three moments of the hierarchy, it can usually be obtained with a
precision of about 0.1% (see Seljak and Zaldarriaga, 1996) by solving the hierarchy
only up to � � 10. Inserting the corresponding moments into Eq. (4.114) one finds

M(S)(t0,k,μ) = e−ikμ(t0−tin)−κ(tin,t0)M(S)(tin,k,μ)

+
∫ t0

tin

dt eikμ(t−t0)−κ(t,t0) ×
[
ikμ(�+�)(k)+ κ̇

(
1

4
D(γ )g (k)

− iμV (b)(k)− 1

2
P2(μ)M(S)

2 (k,t)
)]

. (4.124)

If the only μ-dependent term was the exponential, we could use its representation
in terms of spherical Bessel functions, using Eq. (A4.146), to isolate M(S)

� . With
this in mind, we use

eikμ(t−t0)μf (t) = −ik−1 d

dt

(
eikμ(t−t0)

)
f (t)

to get rid of all the μ-dependence in the term in square brackets of Eq. (4.124).
Furthermore, we move the derivative d/dt onto the function f via integration by
parts. We want to choose the initial time tin long before decoupling and t0 denotes
today. Therefore, κ(tin,t0) is huge and we can completely neglect the term from
the initial condition. Since early times do not contribute, we can formally start the
integral at tin = 0. We can also neglect the boundary terms in the partial integrations
because terms from the upper boundary t ′ = t0 contribute only to the uninteresting
monopole and dipole terms.

Let us introduce the visibility function g , defined by

g(t) ≡ aσT nee−κ(t,t0) ≡ κ̇e−κ(t). (4.125)

This function is very small at early times, when the optical depth κ is very large.
During decoupling, κ becomes smaller but also the prefactor, aσT ne = κ̇ , then
becomes small. Therefore, g is strongly peaked during decoupling and small both
before and after; see Fig. 4.1. With the aforementioned integration by parts we
then find

M(S)(t0,k,μ) =
∫ t0

0
dt eikμ(t−t0)S(S)(t,k), (4.126)
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Fig. 4.1 The visibility function g (left) is plotted in units of H0 as a function of
redshift. For comparison we show also κ(z) (right).

with

S(S) = −e−κ(�̇+ �̇)+ g

(
�+� + k−1V̇ (b) + 1

4
D(γ )g + 1

4
M2

)
+ k−1ġV (b) − 3

4k2

d2

dt2

(
gM(S)

2

)
. (4.127)

Rewriting the exponential in terms of spherical Bessel functions and Legendre
polynomials and comparing the series with our ansatz (4.115), we find

M(S)
� (t0,k) =

∫ t0

0
dt j�(k(t0 − t))S(S)(t,k). (4.128)

Together with Eq. (4.118) this yields the scalar contributions to the CMB power
spectrum, once the scalar source term is given:

C
(S)
� = 4π

∫ ∞

0

dk

k
�R(k)

∣∣∣∣∫ t0

0
dtj�(k(t0 − t))TS(k,t)

∣∣∣∣2

. (4.129)

Here TS is the transfer function for the source term given in Eq. (4.127) and �R =
As(k/k∗)ns−1 is the primordial power spectrum.

In this chapter we still neglect the effect of polarization. As we shall see in the
next chapter, including it simply leads to a slight modification of the source term
S(S). Apart from the gravitational contribution �̇+�̇ that gives rise to the integrated
Sachs–Wolfe effect, all the terms are multiplied with the visibility function g or its
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derivatives, which are strongly peaked around the decoupling era; see Fig. 4.1. In
the limit when we neglect the angular dependence of Thomson scattering (the terms
containing M2) and approximate g by a delta function at decoupling, we recover
the tight coupling approximation discussed in the previous section and in Chapter 2.

For a numerical calculation of the CMB anisotropy power spectrum, this method
has become the method of choice: first, the source term is calculated via the Boltz-
mann hierarchy truncated at about � = 10. Then, theC�’s are computed via the line-
of-sight integral followed by integration over k as in Eq. (4.129). Free streaming
is now taken care of by the spherical Bessel functions, which can be computed
just once and then stored. This is especially useful if one wants to compute many
models as in the context of parameter estimation; see Chapter 9. Another advantage
is that the source term varies much more slowly than the Bessel functions both in
k and in time and it can therefore be sampled relatively sparsely and still lead to
good accuracy. Also, not all the C�’s have to be computed. It is usually sufficient
to calculate every tenth � and to interpolate smoothly between them. All these
numerical advantages have are used in the publicly available codes CMBfast (Sel-
jak and Zaldarriaga, 1996), CAMB (Lewis et al., 2000), CMBeasy (Doran, 2005),
and class (Lesgourgues, 2011; Blas et al., 2011). CMBfast is “the original” from
which the others are drawn. CAMB and class are presently the best maintained and
updated of these codes. While CMBfast and CAMB are written in Fortran, class
is written in C++, which makes it more modern and user friendly. The agreement
of CAMB and class for a standard �CDM cosmology is on the level of 0.1%.

The time integral of the source term in Eq. (4.128) will smear out and damp fluc-
tuations with wavelengths smaller than the width of the visibility function g . This
phenomenon, called “Silk damping,” will be discussed in more detail in Section 4.6.

But first we want to derive the Boltzmann hierarchy and its solution via line-of-
sight integration also for vector and tensor perturbations.

4.5.2 Vector Perturbations

For vector perturbations, the Boltzmann equation (4.113) becomes

Ṁ(V ) + ikμM(V ) = −ninja−1σ
(V )
ij + aσT ne

[
ni�

(b)
i −M(V ) + 1

2
nijMij

]
.

(4.130)

As before we decompose n into

n = μk̂+
√

1− μ2 (cosϕe1 + sinϕe2) = μk̂+ n(+)e(+) + n(−)e(−)

= μk̂+
√

1− μ2

2

(
e−iϕe(+) + eiϕe(−)

)
. (4.131)
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We split M(V ) and −ninjσ (V )ij into helicity modes as in Eqs. (4.86) and (4.89) and
develop M(V±) in Legendre polynomials:

M(V ) =
√

1− μ2

2

[
exp(iϕ)M(V+) + exp(−iϕ)M(V−)] , (4.132)

M(V+) =
∑
�

(−i)�(2�+ 1)M(V+)
� P�(μ), (4.133)

M(V−) =
∑
�

(−i)�(2�+ 1)M(V−)
� P�(μ), (4.134)

a−1ninjσ
(V )
ij = −i√

2
μ

√
1− μ2

(
σ (V+)eiϕ + σ (V−)e−iϕ) . (4.135)

For the expansion in Legendre polynomials we have used the fact that the coeffi-
cients M(V±) depend on n only via μ.

As for scalar perturbations, statistical homogeneity and isotropy require that the
random variables M(V±)

� (k) are uncorrelated for different values k and �. Further-
more, we want to consider parity invariant perturbations; hence also M(V+)

� (k) and
M(V−)

� (k) are uncorrelated and they have the same spectrum,〈
M(V+)

� (k)M(V+)∗
�′ (k′)

〉
=

〈
M(V−)

� (k)M(V−)∗
�′ (k′)

〉
= (2π)3 δ3(k− k′)δ��′M

(V )
� (k). (4.136)

To relate this spectrum to the vector C�’s we use, as for scalar perturbations,〈
�T

T
(t0,n)

�T

T
(t0,n′)

〉(V )
= 1

4π

∑
�

(2�+ 1)C(V )� P�(n · n′)

= 1

(2π)6

∫
d3k d3k′ 〈M(V )(k,n)M(V )∗(k′,n′)〉eix0(k−k′)

=
∑
�

(2�+ 1)2

(2π)3

∫
d3k P�(μ)P�(μ

′)
√
(1− μ2)(1− μ′2) cos(ϕ − ϕ′)M(V )

� (k),

(4.137)

where μ = k̂ · n and μ′ = k̂ · n′ and ϕ and ϕ′ are the angles defined in the
decomposition on n and n′ respectively according to Eq. (4.131). The first equals
sign is just the definition of the C(V )� ’s and after the second equals sign we have
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inserted the Fourier representation of �T /T . Using the decomposition (4.131)
one finds

n · n′ = μμ′ +
√
(1− μ2)(1− μ′2) cos(ϕ − ϕ′). (4.138)

We therefore have
√
(1− μ2)(1− μ′2) cos(ϕ − ϕ′) = n · n′ −μμ′. The term n · n′

is independent of k and can be taken out of the integral. The terms containing
additional factors μ and μ′ respectively can be absorbed with the help of the recur-
rence relations of Legendre polynomials and again using the addition theorem of
spherical harmonics. We finally arrive at

C
(V )
� = 2�(�+ 1)

π(2�+ 1)2

∫
dk k2

(
M
(V )

�+1 +M(V )

�−1

)
. (4.139)

The details of the derivation are developed in Exercise 4.4.
A short calculation shows that the vector perturbations of the energy–momentum

tensor are given in terms of the expansion coefficients M(V+)
� and M(V−)

� by

�± =M(V±)
0 +M(V±)

2 , (4.140)

 (V ±) = 24

5

[
M(V±)

1 +M(V±)
3

]
. (4.141)

To write the Boltzmann equation with the help of moments of M(V±) we still need
nijMij . A short calculation shows that only M13 = M31 and M23 = M32 do not
vanish. Using the basic properties of the Legendre polynomials (see Appendix 4,
Section A4.1) we obtain (k = ke3)

M±3 ≡ M13 ∓ iM23 = 3

8

∫ 1

−1
dμμ(1− μ2)M(V±)

= − 3i

10

(
M(V±)

1 +M(V±)
3

)
.

With the definitions (4.132)–(4.135) and (4.140) the Boltzmann equation can then
be written as

Ṁ(V±) + ikμM(V±) + κ̇M(V±) = iμσ (V±)

+ κ̇
[
�(±) − iμ 3

10

(
M(V±)

1 +M(V±)
3

)]
,

(4.142)
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where κ denotes the optical depth κ(t) = σT
∫ t0
t
ane dt

′. As in the case of scalar

perturbations this yields a Boltzmann hierarchy equation for the M(V ε)
� s,

Ṁ(V±)
� + k

2�+ 1

[
(�+ 1)M(V±)

�+1 − �M(V±)
�−1

]
= −κ̇M(V±)

�

+ δ�0κ̇�
(±) + δ�1

[−1

3
σ (V±) + κ̇ 1

10

(
M(V±)

1 +M(V±)
3

)]
. (4.143)

Also for vector perturbations, the most rapid way of solving the equations numeri-
cally is to solve the above hierarchy only for the lowest few multipoles in order to
determine the source term, the right-hand side of Eq. (4.143). For a given source
term Eq. (4.142) is then easily solved by line-of-sight integration:

M(V±)(t0,k,μ) =
∫ t0

0
dt eikμ(t−t0)−κ

[
− iμσ (V±)

+ κ̇
(
�(±) − iμ 3

10

(
M(V±)

1 +M(V±)
3

))]
. (4.144)

Absorbing the factors μ into time derivatives as in the scalar case, we find

M(V±)(t0,k,μ) =
∫ t0

0
dt eikμ(t−t0)

[
+ k−1e−κ σ̇ (V±) + g

(
�(±) − k−1σ (V±)

+ 3

10k

(
Ṁ(V±)

1 + Ṁ(V±)
3

))
+ ġ

3

10k

(
M(V±)

1 +M(V±)
3

)]
.

(4.145)

We have again used the visibility function g defined in Eq. (4.125). The expansion
of the exponential in terms of spherical Bessel functions and Legendre polynomials
reproduces the M(V±)

� ’s,

M(V ±)
� (t0,k) =

∫ t0

0
dt j�(kμ(t0 − t))

[
+ k−1e−κ σ̇ (V±) + g

(
�(±) − k−1σ (V±)

+ 3

10k

(
Ṁ(V±)

1 + Ṁ(V±)
3

))
+ ġ

3

10k

(
M(V±)

1 +M(V±)
3

)]
.

(4.146)

4.5.3 Tensor Perturbations

The Boltzmann equation (4.113) for tensor perturbations finally has the form

Ṁ(T ) + ikμM(T ) = −ninj Ḣ (T )ij + aσT ne
[

1

2
nijM

(T )
ij −M(T )

]
. (4.147)
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Since H(T )ij is entirely orthogonal to k, it is of the form H(T )ij = Ĥ (T )ab e
a
i e
b
j , where e1

and e2 denote the two polarization directions normal to k. Using the decomposition
Eq. (4.131) for n, the gravitational source term in Eq. (4.147) is seen to be the time
derivative of

ninjH
(T )
ij = (1− μ2)

[
Ĥ
(T )
11 cos2 ϕ + Ĥ (T )22 sin2 ϕ + 2Ĥ (T )12 cosϕ sinϕ

]
= (1− μ2)

[
Hd cos(2ϕ)+H× sin(2ϕ)

]
. (4.148)

For the last equals sign we have used that Ĥ (T )22 = −Ĥ (T )11 and we have introduced
the usual notation for the two polarizations of a gravity wave propagating in direc-
tion k̂, Hd ≡ Ĥ (T )11 and Ĥ (T )12 ≡ H×.

This motivates our ansatz for the tensor perturbations of the temperature
anisotropy,

M(T )(k,n) = (1− μ2)
[
M(T d)(k,μ) cos(2ϕ)

+ M(T×)(k,μ) sin(2ϕ)
]

. (4.149)

The coefficients M(T •) only depend on μ and can again be expanded in Legendre
polynomials,

M(T •) =
∑
�

(2�+ 1)(−i)�M(T •)
� (k)P�(μ). (4.150)

Here • denotes either d or ×. Statistical homogeneity and isotropy again imply
that expansion coefficients with different values of k or for different �’s are uncor-
related. Furthermore, also requiring invariance under parity implies that the two
polarizations are uncorrelated and have the same spectra,〈

M(T •)
� (k)M(T •) ∗

�′ (k′)
〉
= (2π)3δ3(k− k′)δ��′M

(T )
� (k). (4.151)

The relation of this tensor spectrum to the C�’s is obtained with the same reasoning
as for the scalar and vector modes:

1

4π

∑
�

(2�+ 1)C(T )� P�(n · n′)

= 1

(2π)6

∫
d3kd3k′〈M(T )(k,n)M(T )∗(k′,n′)〉e−x(k−k′)

= 1

(2π)3
∑
�

(2�+ 1)2
∫
d3kM

(T )
� (k)P�(μ)P�(μ

′)

× (1− μ2)(1− μ′2)[cos(2ϕ) cos(2ϕ′)+ sin(2ϕ) sin(2ϕ′)], (4.152)
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where μ = k̂ · n and μ′ = k̂ · n′. The angles ϕ and ϕ′ are those appearing in the
decomposition of n and n′ according to Eq. (4.131).

Again using Eq. (4.138) and cos(2ϕ) cos(2ϕ′) + sin(2ϕ) sin(2ϕ′) = cos(2(ϕ −
ϕ′)), the ϕ-dependence can be written as a function of n · n′ and μ and μ′. The
recurrence relations for the Legendre polynomials can then be applied to absorb
the factors μ and μ′, and with the addition theorem of spherical harmonics, we
arrive after a somewhat lengthy calculation at

C
(T )
� = 2

π

(�+ 2)!

(�− 2)!

∫
dk k2 �

(T )(k)

(2�+ 1)2
, with (4.153)

�(T )(k) = M
(T )

�−2

(2�− 1)2
+ 4(2�+ 1)2M(T )

�

[(2�− 1)(2�+ 3)]2
+ M

(T )

�+2

(2�+ 3)2
. (4.154)

The details of this result are developed in Exercise 4.5.
We also express the tensor anisotropic stress in terms of the expansion coeffi-

cients M(T •); we use that it is transverse to k:

 (T •)r = 3

2

∫ 1

−1
dμ (1− μ2)2M(T •) = 24

35
M(T •)

4 + 16

7
M(T •)

2 + 8

5
M(T •)

0 .

(4.155)

With the ansatz (4.149) we find that for tensor perturbations

nijMij = (1− μ2)

{
cos(2ϕ)

[
3

35
M(T d)

4 + 2

7
M(T d)

2 + 1

5
M(T d)

0

]
+ sin(2ϕ)

[
3

35
M(T×)

4 + 2

7
M(T×)

2 + 1

5
M(T×)

0

]}
. (4.156)

Inserting this in the Boltzmann equation we obtain

Ṁ(T •) + ikμM(T •) + κ̇M(T •) = −Ḣ• + κ̇
[

3

70
M(T •)

4 + 1

7
M(T •)

2 + 1

10
M(T •)

0

]
,

(4.157)

with the line-of-sight “solution”

M(T •)(t0,k,μ) =
∫ t0

0
dt eikμ(t−t0)−κ

[
− Ḣ•

+ κ̇

(
3

70
M(T •)

4 + 1

7
M(T •)

2 + 1

10
M(T •)

0

) ]
. (4.158)
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Of course for this to solve the equation, the first moments, M(T •)
0 to M(T •)

4 , which
also determine Ḣ•, have to be calculated via the Boltzmann hierarchy, which in this
case is

Ṁ(T •)
� + k

2�+ 1

[
(�+ 1)M(T •)

�+1 − �M(T •)
�−1

]
= −κ̇M(T •)

� + δ�0

[
−Ḣ• + κ̇

(
3

70
M(T •)

4 + 1

7
M(T •)

2 + 1

10
M(T •)

0

)]
.

(4.159)

The coefficients M(T •)
� are now given simply by

M(T •)
� (t0,k) =

∫ t0

0
dt j�(k(t0 − t))S(T )� , with (4.160)

S
(T )
� = e−κ

[
−Ḣ• + δ0�κ̇

(
3

70
M(T •)

4 + 1

7
M(T •)

2 + 1

10
M(T •)

0

)]
. (4.161)

Also here, the only modification that this solution will experience once we
include polarization is a change in the source term S(T ), to which contributions
from the polarization spectrum will have to be added (see Chapter 5).

The relations between the M(•)
� and the C�’s for vector and tensor perturba-

tions is not very straightforward, but rather somewhat “clumsy.” In Chapter 5 we
shall employ the much better adapted and more elegant “total angular momentum
method” to fix this shortcoming. For this we shall make use of spin weighted
spherical harmonics, which we have avoided in this chapter.

4.6 Silk Damping

In this section we want to discuss, in a more direct way, the damping on small scales
that appears when the coupling between photons and the baryon/electron gas is still
present but no longer perfect. We therefore do not want to describe the photon–
baryon system as a perfect fluid, but want to take into account the force provided
by Thomson scattering of electrons and photons. This leads to an additional force in
the baryon equation of motion [Eq. (2.119) for w = c2

s = 0], the photon drag force
due to Thomson scattering. For simplicity, and since this is the relevant case, we
consider only scalar perturbations in this section. For them the photon drag force is
given by

Fj = −ργ
π

∫
C[M]nj d�n, (4.162)

k̂ · F = −4iσT neaργ
3

(
3M1 − V (b)

)
. (4.163)
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For the second equals sign we have used Eq. (4.111) and integrated nC[M] =
nC ′[M]a over angles. From the expansion of M in Legendre polynomials we
know that

(−i)�M� = 1

2

∫
dμP�(μ)M(μ),

so that

M1 = i
2

∫
dμμM(μ) and

1

4
D(γ )g = 1

2

∫
dμM.

Adding the drag force to the baryon equation of motion yields (in Fourier space)

V̇
(b) +HV(b) = −ik� + ρ−1

b F. (4.164)

To discuss damping, we are only interested in small scales kt � 1 and therefore
shall neglect the expansion of the Universe in our treatment. It then makes sense to
model the time dependence of our variables with an exponential, V, M ∝ e−iωt .
Furthermore, we consider the epoch when there are still many collisions per Hubble
expansion. Denoting the collision time by tc = 1/κ̇ = 1/(aσT ne), this means
t � tc. For simplicity, we also neglect gravitational terms and the term nijMij

that is due to the direction dependence of Thomson scattering and is not important
as long as scattering is sufficiently abundant. With the ansatz of a harmonic time
dependence with frequency ω, we then obtain from Eqs. (4.122) and (4.164) with
k̂ · V = +iV (b),

−itc(ω − kμ)M = 1

4
D(γ )g − iμV (b) −M, (4.165)

tcωV
(b) = 4iργ

3ρb

[
3M1 − V (b)

]
. (4.166)

Therefore, integrating the Boltzmann equation (4.165) over μ yields

M1 = iω
4k
D(γ )g . (4.167)

Inserting this in Eq. (4.166) we find, with R ≡ 3ρb/4ργ ,

V (b) = 3iωD(γ )g

4k(1− itcωR) . (4.168)

Inserting this result for V (b) in Eq. (4.165) we obtain

M =
1+ 3μω/k

1−itcωR
1− itc(ω − kμ)

D
(γ )
g

4
. (4.169)
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Integrating this equation over μ yields a dispersion relation for ω(k) in the form

1 = 1

2

∫ 1

−1
dμ

1+ 3μω/k
1−itcωR

1− itc(ω − kμ)

= 3ω

itck2 + t2c k2ωR
+ 1

2

(
1

itck
+ 3ω

t2c k
3

1− itcω
1− itcωR

)
× [ln(1+ itc(k − ω))− ln(1− itc(ω + k))] . (4.170)

This equation cannot be solved analytically. If we expand it in tck and tcω we find
to lowest nonvanishing order

ω(k) = k
(

1√
3(R + 1)

− i ktc
6

R2 + 4
5(R + 1)

(R + 1)2

)
. (4.171)

The real part of ω(k) describes oscillations and Re(ω)/k is the group velocity
of the oscillations. The imaginary term is a damping term. Over a time interval
(−Im(ω))−1 = td = 6

k2tc

(R+1)2

R2+ 4
5 (R+1)

, the amplitude is reduced by one e-fold. This is

Silk damping (Silk, 1967), due to the imperfect coupling of electrons and photons.
It vanishes in the limit ktc → 0. It is interesting to note that one has to expand
Eq. (4.170) to third order in ωtc and ktc to find this relation (see Exercise 4.6). This
indicates that damping is effective only for tck relatively close to 1.

4.7 The Full System of Perturbation Equations

We end this chapter by writing down the full system of perturbation equations in a
“standard” universe containing dark matter, baryons, photons, massless neutrinos,
and a cosmological constant. The latter only influences the background evolution
and does not appear in the perturbation equations. Even though we know that
neutrinos are not truly massless, since their mass scale may be as low as 0.06 eV, it
is nearly irrelevant for CMB anisotropies. We thus neglect it here. In standard infla-
tionary models only scalar and tensor modes are generated; we therefore restrict
this recapitulation to them. The fluid equations for dark matter and baryons and
the Einstein equations have been derived in Chapter 2. The Boltzmann equation
for photons and the evolution equation for neutrinos, which is simply the Liouville
equation, have been derived in this chapter.

The evolution of cold dark matter perturbations,Dc and Vc, is determined by the
energy–momentum conservation equations

Ḋc = −kVc + 9

2

H2

k
(1+ w)(V − Vc), (4.172)

V̇c +HVc = k�. (4.173)
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For the evolution of baryons, we have also to take into account the photon drag
force leading to

Ḋb = −kVb + 9

2

H2

k
(1+ w)(V − Vc), (4.174)

V̇b +HVb = k� + 4κ̇ργ
3ρb

(3M1 − Vb). (4.175)

Here V is the total velocity perturbation,

(ρ + P)V = ρcVc + ρbVb + 4ργM1 + 3(ρν + Pν)N1, (4.176)

where N1 is the first moment of the perturbation of the energy-integrated neutrino
distribution function discussed in the text that follows.

For the low multipoles, � < 10, say, we have to solve the Boltzmann hierarchies

Ṁ(S)
� + k �+ 1

2�+ 1
M(S)

�+1 − k
�

2�+ 1
M(S)

�−1 =
1

3
δ�1

[−k(�+�)+ κ̇V (b)]
+ κ̇

[
1

2
δ�2M(S)

2 + (δ�0 − 1)M(S)
�

]
,

(4.177)

for scalar perturbations, and

Ṁ(T •)
� + k

2�+ 1

[
(�+ 1)M(T •)

�+1 − �M(T •)
�−1

]
= −κ̇M(T •)

�

+ δ�0

[
−Ḣ• + κ̇

(
3

35
M(T •)

4 + 2

7
M(T •)

2 + 1

5
M(T •)

0

)]
(4.178)

for tensor perturbations. The higher multipoles, �, can then be obtained via the
integrals given in Eqs. (4.128) and (4.160).

Neutrino perturbations have to be treated via the collisionless Boltzmann
equation. We neglect neutrino masses. Setting the collision term to zero and
denoting the neutrino perturbation of the distribution function integrated over
energies by N , we obtain, by exactly the same steps as explained in the previous
sections for photons,

Ṅ (S)
� + k

2�+ 1

[
(�+ 1)N (S)

�+1 − �N (S)

�−1

]
= −k

3
δ�1(�+�), (4.179)

for scalar perturbations, and

Ṅ (T •)
� + k

2�+ 1

[
(�+ 1)N (T •)

�+1 − �N (T •)
�−1

]
= −δ�0Ḣ• (4.180)

for tensor perturbations.



204 CMB Anisotropies

The scalar and tensor metric perturbations are determined by Einstein’s
equations,

−k2� = 4πGa2ρD, (4.181)

k2(�−�) = 4πGa2
(
Pγ 

(S)
γ + Pν (S)ν

)
, and (4.182)

Ḧ• + 2HḢ• + k2H• = 8πGa2
(
Pγ 

(T )
r• + Pν (T )ν•

)
. (4.183)

The scalar and tensor anisotropic stresses are given by

 (S)γ = 12M(S)

2 , (4.184)

 (S)ν = 12N (S)
2 , (4.185)

 (T )r• =
24

35
M(T )

4 + 16

7
M(T )

2 + 8

5
M(T )

0 , (4.186)

 (T )ν• =
24

35
N (T )

4 + 16

7
N (T )

2 + 8

5
N (T )

0 . (4.187)

The total density perturbation is

ρD = ρcDc + ρbDb + ργDγ + ρνDν, (4.188)

where

Dγ = D(γ )g + 4k−1HVγ + 4�,

= 4(M0 + 3k−1HM1 +�), (4.189)

Dν = Dgν + 4k−1HVν + 4�,

= 4(N0 + 3k−1HN1 +�). (4.190)

For a given background evolution, Eqs. (4.172)–(4.190) form a closed set of pertur-
bation equations that can be solved. One obtains a good approximation by truncat-
ing the hierarchies for the photons and neutrinos at about � = 10 and determining
the higher moments via the line-of-sight integrals. For photons these are given in
Eqs. (4.128) and (4.160). For neutrinos one obtains the same equations just setting
κ = g = 0.

The initial conditions are determined by inflation. In order not to miss any of
the physical processes that can influence perturbations once they enter the Hubble
horizon, we choose the initial time tin so that ktin � 1 for the modes under study.
Furthermore, we want to start deep in the radiation era, where we can use the
results of Section 2.4.3. Requiring that perturbations remain regular for t → 0
usually restricts us to the growing mode. Let us first consider scalar perturbations.
On superhorizon scales the growing mode behaves as M0 ∝ N0 ∝ constant.
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M1 ∝ N1 ∝ kt and � = � = constant. For the nonrelativistic, subdominant
species one can choose (for adiabatic perturbations) Vc = Vb = Vγ = 3M1. The
initial condition for Db and Dc is then determined by Eqs. (4.174) and (4.172)
with the condition that D → 0 for t → 0. Adiabaticity also requires N1 = M1.
For adiabatic scalar perturbations this leaves us with one initial condition, which is
usually given as the initial power spectrum for � determined during inflation,

k3

2π2
P� = �� = A�(k/k∗)ns−1. (4.191)

Here 2π2A�k
−3
∗ is the square of the perturbation amplitude of � at scale k∗ and ns

is the scalar spectral index. It is sufficient to start integration at z � 107 – 108.
For tensor perturbations we can simply set H• = constant and N� ∝ j�(kt). At

early times, the collision term suppresses the build up of higher moments in the
photon distribution and imposes

4

5
M(T )

0 = 2

7
M(T )

2 + 3

35
M(T )

4 .

A simple possibility is M(T )

0 = N (T )

0 , M(T )

2 = 14
5 M

(T )

0 and M(T )

4 = 0.
Of course one can also suggest some other initial conditions, for example, the

neutrino isocurvature velocity mode, where N1 dominates.
From purely theoretical grounds one can define an initial perturbation that just

induces a N (S)

13 
= 0 at some early time tin, while all other perturbation vari-
ables vanish. The system of equations presented here can then be solved given
this initial condition. Such a condition is purely iso-curvature, since the energy–
momentum perturbations vanish initially. But via Eq. (4.179), the perturbation will
be induced in the lower moments of the neutrino distribution function and finally in
the neutrino energy–momentum tensor. It then leads to perturbations of the gravita-
tional field, which in turn induce perturbations in the dark matter, the baryons, and
photons.

However, a physical mechanism leading to these kinds of initial perturbations
has not been proposed so far.

Exercises

(The exercises marked with an asterisk are solved in Appendix 11 which is not
in this printed book but can be found online.)

4.1 An orthonormal basis for a curved universe
We consider the usual coordinate basis ∂i with respect to which the metric
expressed in polar coordiates takes the following form:

dx2 = γij dxi dxj = dr2 + χ2(r)
(
dθ2 + sin2 θ dϕ

)
,
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with

χ(r) =

⎧⎪⎨⎪⎩
1√
K

sin(
√
Kr) for K > 0

r for K = 0
1√−K sinh(

√−Kr) for K < 0.

Find an orthonormal basis for this metric; that is, find vector fields ek =
ek
i∂i such that γij ekienj = δkn.

Hint: Start from polar coordinates.

4.2 The Liouville equation for vector perturbations
Perform an integration by parts to bring the Liouville equation (4.88) into
the form of Eq. (2.243). What is the form of M(V )(tin)? Why?

4.3 Vector perturbations of the CMB
Consider a vector perturbation spectrum of the form

〈σi(k)σ ∗j (k′)〉 = (δij − k̂i k̂j )AknV δ(k− k′). (4.192)

Using statistical isotropy (and symmetry under parity), explain why the
k-space structure of the power spectrum has to be of this form.

Using the solution Eq. (4.146) in k-space, calculate the vector-type
CMB anisotropies generated from σj . Which value of nV leads to a scale-
invariant spectrum? That is, for which nV do you obtain �(� + 1)C� �
constant for sufficiently large �’s?

4.4 The vector C�’s∗ Derive Eq. (4.139) from Eqs. (4.136) and (4.137).

Hint: use√
(1− μ2)(1− μ′2) cos(ϕ − ϕ′) = n · n′ − μμ′, (4.193)

where μ = k̂ · n and μ′ = k̂ · n′. Replace now terms μP�(μ) via the
recursion relations in terms of P�+1 and P�−1. Show, using the addition
theorem for spherical harmonics given in Appendix 4, Section A4.2.3 that∫

d�k̂ P�(μ)P�′(μ
′) = δ��′ 4π

2�+ 1
P�(n · n′), (4.194)

and use this relation to perform angular integrations. Using the recursion
relation for (n · n′)P�(n · n′) and finally collecting the terms that multiply
P�(n · n′) one obtains Eq. (4.137).
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4.5 The tensor C�’s
From Eqs. (4.149) and (4.152) derive Eq. (4.153).

Indication: Follow exactly the same lines as for Ex. 4.4. Only this time
the recursion formula has to be applied twice to reduce terms μ2P�(μ) and,
at the end, (n ·n′)2P�(n ·n′). The calculation is lengthy but straightforward.

4.6 Silk damping
Derive the dispersion relation (4.171) from the integral (4.170).

Hint: Use an algebraic program, such as Maple or Mathematica, to expand
(4.170) up to third order in tck and tcω.



5

CMB Polarization and the Total Angular
Momentum Approach

The Thomson scattering cross section depends on the polarization of the outgoing
photon. If its polarization vector lies in the scattering plane, the cross section is pro-
portional to cos2 β, where β denotes the scattering angle. If, however, the outgoing
photon is polarized normal to the scattering plane, no such reduction by a factor
cos2 β occurs [see Jackson (1975), Eq. (14.102), and note that for polarizations
in the scattering plane, the angle between the incoming and outgoing polarization
equals the scattering angle]. If photons come in isotropically from all directions,
this does not lead to any net polarization of the outgoing radiation. However, if, for
a fixed outgoing direction, the intensity of incoming photons from one direction
is different from the intensity of photons coming in at a right angle with respect
to the first direction, this anisotropy leads to a net polarization of the outgoing
photon beam. In Fig. 5.1 we show the extremal case with β = π/2. In this case,
the polarization in the scattering plane is entirely suppressed. It actually has to be,
since photons can only carry transverse polarization. As it is clear from the figure,
it is the quadrupole anisotropy in the reference frame of the scattering electron that
is responsible for polarization.

In this chapter we discuss the induced polarization in detail. We derive the equa-
tions that govern the generation and propagation of polarization and we discuss
their implications. This can be done by different methods, most of which are either
rather involved or incomplete. Here we employ the so-called total angular momen-
tum method that has been developed in Hu and White (1997b) and Hu et al. (1998),
based on previous work mainly by Seljak (1996b), Kamionkowski et al. (1997), and
Zaldarriaga and Seljak (1997). Even though the derivation of the results is quite
involved, it is straightforward, in the sense that there are no “unexpected turns” in
it. Nevertheless, readers who do not want to dwell on lengthy derivations may just
read the first section and then go directly to the results, which are given in the form
of integral solutions at the end of the chapter. Computationally, this is the most
difficult chapter of this book.

208
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Fig. 5.1 More incoming photons from the left than from the top (indicated
in the figure with longer polarization directions) lead to a net polarization of
the outgoing photon beam. In the situation shown in the figure, where the
scattering angle is π/2, the photons coming in from the left are scattered only
if polarized vertically, while the photons coming in from the top are scattered
only if polarized horizontally. In this way, an unpolarized photon distribution that
exhibits a quadrupole anisotropy with respect to the scattering electron generates
polarization on the surface of last scattering.

For our derivations we use spherical harmonics and spin weighted spherical
harmonics. Also the basics of representation theory of the rotation group will be
needed. All the notions on these topics that are employed here are presented in
Appendix 4, especially in Section A4.2. Some detailed derivations are also deferred
to that appendix or to the exercises.

5.1 The Stokes Parameters and the E-, B-Modes

We consider an electromagnetic wave propagating in direction n. We define the
polarization directions ε(1) and ε(2) such that

(
ε(1), ε(2), n

)
form a right-handed

orthonormal system. The electric field of the wave is of the form E = E1ε
(1) +

E2ε
(2). (The polarizations ε(1) and ε(2) are not to be confused with e(1) and e(2)

that were introduced in Chapter 4 to form an orthonormal system with the wave
vector k.) The polarization tensor of an electromagnetic wave is defined as

Pij = P̃abε(a)i ε
(b)
j , with P̃ab = E∗aEb. (5.1)
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P̃ab is a hermitian 2× 2 matrix and can therefore be written as

P̃ab = 1

2

[
Iσ

(0)
ab + Uσ(1)ab + V σ (2)ab +Qσ(3)ab

]
(5.2)

= 1

2

[
Iσ

(0)
ab + Pab

]
,

where σ (α) denote the Pauli matrices, and the four real functions, I (n),U(n), V (n),
andQ(n), are the Stokes parameters.

σ (0) =
(

1 0
0 1

)
, σ (1) =

(
0 1
1 0

)
,

σ (2) =
(

0 −i
i 0

)
, σ (3) =

(
1 0
0 −1

)
. (5.3)

In terms of the electric field, the Stokes parameters are

I = |E1|2 + |E2|2, Q = |E1|2 − |E2|2,
U = (E∗1E2 + E∗2E1) = 2Re(E∗1E2), V = 2Im(E∗1E2). (5.4)

I is simply the intensity of the electromagnetic wave. Q represents the amount
of linear polarization in directions ε(1) and ε(2); that is, Q is the difference
between the intensity of radiation polarized along ε(1) and the intensity polarized
in direction ε(2). The parameters Q and U describe the symmetric traceless part
of the polarization tensor while V multiplies the antisymmetric Pauli matrix σ (2).
This part describes a phase difference between E1 and E2 that results in circular
polarization. This is best seen by expressing Pab in terms of the helicity basis
ε(±) = (1/√2)

(
ε(1) ± iε(2)), where one finds that V is the difference between the

left- and right-handed circular polarized intensities (see, e.g., Jackson, 1975). As
we shall see in the text that follows, Thomson scattering does not introduce circular
polarization. We therefore expect the V -Stokes parameter of the CMB radiation to
vanish and we neglect it in the following. If V = 0, we have Pab = P∗ab = Pba .
Hence Pab is a real, symmetric, traceless matrix given by

Pab =
(
Q U

U −Q
)

. (5.5)

We often also use the quantities

P ≡ P++ = 2Pabε(+)a ε
(+)
b = Q+ iU, and (5.6)

P ∗ ≡ P−− = 2Pabε∗ (+)a ε
∗ (+)
b = 2Pabε(−)a ε

(−)
b = Q− iU . (5.7)
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Up to a factor of 2, these are the components of the polarization tensor expressed in
the helicity basis. One easily verifies that the off-diagonal terms vanish since they
are proportional to V , P+− = P−+ = Tr(P)+ iV = 0.

The intensity is proportional to the energy density of the CMB, ρ = 1
8π I ,

and therefore to our perturbation variable M = δT /T = 1
4δρ/ρ = 1

4δI/I .
Correspondingly we define the dimensionless Stokes parameters

Q ≡ Q

4I
and U ≡ U

4I
. (5.8)

Rotating the basis
(
ε(1),ε(2)

)
by an angle ψ around the direction n we obtain ε(1)

′ =
cosψε(1) + sinψε(2) and ε(2)

′ = cosψε(2) − sinψε(1) so that the coefficients with
respect to the rotated basis are E′1 = E1 cosψ + E2 sinψ and E′2 = E2 cosψ −
E1 sinψ . For the Stokes parameters this implies

I ′ = I, V ′ = V and

Q′ = Q cos 2ψ − U sin 2ψ, U ′ = U cos 2ψ +Q sin 2ψ, (5.9)

or more simply

Q′ ± iU ′ = e±2iψ (Q± iU). (5.10)

Hence Q ± iU transform like spin-2 variables with a magnetic quantum number
±2 under rotations around the n-axis. They depend not only on the direction n,
but also on the orientation of the polarization basis

(
ε(1),ε(2)

)
. For example, when

rotating the polarization basis by π/4 we turn U into −Q and Q into U . Hence U
measures the linear polarization in the basis

(
ε(1)

′
,ε(2)

′)
, which is rotated by −π/4

from the original basis.

The eigenvalues of P =
(
Q U

U −Q
)

are

λ1,2 = ±
√
Q2 + U 2

with eigenvectors(
x1

y1

)
= A

(
Q+

√
Q2 + U 2

U

)
, and

(
x2

y2

)
= A

(
Q−

√
Q2 + U 2

U

)
.

Here A 
= 0 is an arbitrary constant. The first eigenvector encloses the angle φ1

with the ε(1)-axis, which is given by

tan(2φ1) = 2 sinφ1 cosφ1

cos2 φ1 − sin2 φ1
= 2x1y1

x2
1 − y2

1

= U
Q

.
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The same equation is fulfilled for φ2 = φ1+π . A polarizer oriented in the directions
φ1,2 will detect a maximal signal, while when oriented at 90◦ to this polarization
direction the signal is minimal.

It is not very convenient to work with the basis dependent amplitudes Q and U .
The results will depend on the arbitrary choice of ε(1) and ε(2). For this reason,
we shall not work directly with the Stokes parameters, but we make use of the
spin weighted spherical harmonic functions sY�m(n). These are defined for each
integer s with |s| ≤ � and have the property that they transform under rotations
about n by an angle ψ like sY�m(n) → eisψ sY�m(n). The spin weighted spherical
harmonics transform like the components of a symmetric, traceless rank |s| tensor
field defined on the tangent space of the sphere in the canonical basis (eϑ ≡ ∂ϑ,
eϕ ≡ (1/sinϑ)∂ϕ). Note that (eϑ, eϕ) are not well defined at the north and south
poles. Setting

e± = 1√
2

(
eϑ ∓ ieϕ

)
,

sY�m(n) transforms like the + · · ·+ component of a rank s tensor, if s > 0 and like
the − · · ·− component of a rank |s| tensor, if s < 0. A traceless totally symmetric
tensor in two dimensions has only two independent components, namely T +···+ and
T −···−, which have helicities s and−s. All mixed components, T ···+−···, correspond
to a partial trace and hence vanish; see Appendix 4, Section A4.2.6 for details.

With respect to the helicity basis e(±), the dimensionless Stokes parameters Q±
iU can be expanded as

(Q± iU)(n) =
∞∑
�=2

�∑
m=−�

a
(±2)
�m ±2Y�m(n), (5.11)

=
∞∑
�=2

�∑
m=−�

(e�m ± ib�m) ±2Y�m(n). (5.12)

Here we have introduced

e�m = 1

2

(
a
(2)
�m + a(−2)

�m

)
, b�m = −i

2

(
a
(2)
�m − a(−2)

�m

)
. (5.13)

Under a “parity” transformation, n �→ −n, the basis vectors e(±) transform as
e(±) �→ e(∓). Hence helicities change sign, s �→ −s, and the coefficient a(2)�m turns
into (−1)�a(−2)

�−m and a(−2)
�m �→ (−1)�a(2)�−m (see Appendix 4, Section A4.2.6) so that

e�m �→ (−1)�e�−m while b�m �→ (−1)�+1b�−m.
The spin weighted spherical harmonics are defined in Appendix 4, Section

A4.2.6, where also other useful properties are derived. Note that the sum over �
starts only at � = 2. As is clear from their definition, the spin weighted spherical
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harmonics sY�m vanish for |s| > �. The coefficients a(±2)
�m represent a decomposition

of polarization into positive and negative helicity, while e�m and b�m provide a
decomposition into the components with parity (−1)� and (−1)�+1.

In Appendix 4, Section A4.2.6 we also define the spin raising and lowering
operators /∂ and /∂∗. They are similar to the quantum mechanical angular momentum
operatorsL+ andL− that raise and lower the magnetic quantum numberm, but they
raise and lower the helicity s. The operators /∂(∗) have the properties /∂ sY�m ∝ s+1Y�m

and /∂∗ sY�m ∝ s−1Y�m. Hence, when acting twice with /∂ respectively /∂∗ on −2Y�m

respectively 2Y�m, we reproduce ordinary spherical harmonics. More precisely (see
Appendix 4, Section A4.2.6),

/∂2 ( −2Y�m) =
√
(�+ 2)!

(�− 2)!
Y�m, (5.14)

(/∂∗)2 ( 2Y�m) =
√
(�+ 2)!

(�− 2)!
Y�m. (5.15)

Applying this to Q± iU we find

(/∂∗)2(Q+ iU)(n) =
∞∑
�=2

�∑
m=−�

a
(2)
�m

√
(�+ 2)!

(�− 2)!
Y�m(n), (5.16)

/∂2(Q− iU)(n) =
∞∑
�=2

�∑
m=−�

a
(−2)
�m

√
(�+ 2)!

(�− 2)!
Y�m(n). (5.17)

With this, we can define the scalar quantities

E(n) =
∞∑
�=2

�∑
m=−�

e�m

√
(�+ 2)!

(�− 2)!
Y�m(n), (5.18)

B(n) =
∞∑
�=2

�∑
m=−�

b�m

√
(�+ 2)!

(�− 2)!
Y�m(n). (5.19)

Like temperature fluctuations, E and B are invariant under rotation. Since the sign
of b�mY�m(n) changes under parity, B has negative parity while E and M have
positive parity. At the end of Section 5.5 we shall show that E measures gradient
contributions while B measures curl contributions to the polarisation tensor.

Equations (5.16)–(5.19) imply

E(x,n) = 1

2

[
(/∂∗)2(Q+ iU)(x,n)+ /∂2(Q− iU)(x,n)] (5.20)

B(x,n) = −i
2

[
(/∂∗)2(Q+ iU)(x,n)− /∂2(Q− iU)(x,n)] . (5.21)
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In Appendix 4, Section A4.2.6 we show that the operators /∂ and /∂∗ are the
covariant derivatives on the sphere in the direction e± = (1/

√
2)(e1 ∓ ie2). The

quantities Q ± iU actually correspond to the +,+ and −,− components of
the polarization tensor Pab defined in Eq. (5.1). Noting also that P++ = P−− and
P−− = P++ (see Appendix 4, Section A4.2.6), we find that

(/∂∗)2(Q+ iU) = 2∇+∇+P−−, /∂2(Q− iU) = 2∇−∇−P++. (5.22)

Here we have used /∂ = − √
2∇− and /∂∗ = − √

2∇+, which is derived in
Appendix 4, Section A4.2.6. We also note that in two dimensions the curl of a
vector, rotV ≡ εij∇iVj , is a (pseudo-)scalar; hence the double curl of a tensor,
rot rotT ≡ εlmεij∇l∇iTjm, is a scalar. Here εij denotes the totally antisymmetric
tensor in two dimensions and we work in an orthonormal 2D basis, a dyad; hence
rising and lowering indices has no effect. More precisely in two dimensions

εlmεij = δliδmj − δlj δmi (in 2D)

so that (tr ≡ trace)

rot rotT ≡ εlmεij∇l∇iTjm = �tr T − ∇j∇mTjm = �tr T − div div T . (5.23)

A short calculation (see Appendix 4, Section A4.2.6) now shows that

E = ∇+∇+P−− + ∇−∇−P++ = ∇i∇jPij − εlmεij∇l∇iPjm
= 2div divP, (5.24)

iB = ∇+∇+P−− − ∇−∇−P++ = iεlm (∇i∇l +∇l∇i)Pim
= i (div rot+ rot div)P, (5.25)

so that

E = 2div divP and B = (div rot+ rot div)P . (5.26)

E measures “gradient-type” polarization while B measures curl-type polarization.
More precisely, if B = 0, the vector rotP is a pure curl while the vector divP is a
pure gradient. In full generality we can split the electric field tangent to the sphere
of directions n into a gradient part and a curl part, Ei = ∇if + εij∇jg . Since there
is no circular polarization, we can choose f and g real. Let us locally consider
a flat 2d sky with coordinates (x,y). In the case where f and g are functions of
r =

√
x2 + y2 only, if either f or g vanishes only E-polarization is generated.

On the other hand, if g(r) = ±f (r) only B-polarization is generated. These are
exactly the cases depicted in Fig. 5.2. A more general interpretation of E and B
modes is studied in Exercise 5.4.
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Fig. 5.2 E-polarization (left) andB-polarization (right) patterns are shown around
the photon direction indicated as the center. E-polarization can be either radial or
tangential, while B-polarization is clearly of curl type.

5.2 The Small-Scale Limit and the Physical Meaning of E and B
The polarization variables E and B are easier to interpret in the small-scale limit
or the so-called flat sky approximation. For �>∼ 100, which corresponds to angles
of less than about 2◦, we may neglect the curvature of the sphere of directions
and consider it as a plane normal to ez. In this approximation, the spherical
harmonics can be replaced by exponentials, the eigenfunctions of the Laplacian on
the plane:

Y�m(n)→ 1

2π
exp(i� · x), (5.27)

where x is a small vector in the plane normal to ez and � = �(cosϕ�, sinϕ�) is a
vector in the “Fourier plane.” In this approximation the magnetic quantum number
m is replaced by the continuous direction of the vector �. The orthogonality relation
now becomes

1

(2π)2

∫
d2x eix(�−�′) = δ2(�− �′).
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The temperature anisotropy is given by

�T

T
(x) =M(x) = 1

2π

∫
d2�M(�) eix·�, (5.28)

M(�) = 1

2π

∫
d2xM(x)e−ix·�. (5.29)

The spin weighted spherical harmonics s = 2 become

2Y�m =
√
(�− 2)!

(�+ 2)!
/∂2Y�m→ 1

2π
�−2 /∂2 eix·�, (5.30)

−2Y�m =
√
(�− 2)!

(�+ 2)!
/∂∗ 2Y�m→ 1

2π
�−2 /∂∗ 2 eix·�. (5.31)

Inserting this in Eq. (5.12) yields

(Q+ iU)(x) = 1

2π

∫
d2� (e(�)+ ib(�)) 1

�2
/∂2 eix·�, (5.32)

(Q− iU)(x) = 1

2π

∫
d2� (e(�)− ib(�)) 1

�2
/∂∗ 2 eix·�. (5.33)

We orient the coordinate system such that /∂ = −(∇ϑ + i∇ϕ) = −(∇x + i∇y) at ez
and /∂eix·� = −i(�x + i�y)eix·� = −i�eiϕ�eix·�. With this we obtain

/∂2eix·� = −�2e2iϕ�eix·�, (5.34)

/∂∗ 2eix·� = −�2e−2iϕ�eix·�. (5.35)

In the small-scale limit, the Stokes parameters are therefore given in terms of e(�)
and b(�) by

Q(x) = −1

2π

∫
d2� [e(�) cos(2ϕ�)− b(�) sin(2ϕ�)] e

ix·�, (5.36)

U(x) = −1

2π

∫
d2� [e(�) sin(2ϕ�)+ b(�) cos(2ϕ�)] e

ix·�. (5.37)

These relations were introduced by Seljak (1996b), where E- and B-polarizations
had been introduced for the first time. They can be inverted to
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e(�) = −1

2π

∫
d2x [Q(x) cos(2ϕ)+ U(x) sin(2ϕ)] e−ix·�, (5.38)

b(�) = −1

2π

∫
d2x [U(x) cos(2ϕ)−Q(x) sin(2ϕ)] e−ix·�. (5.39)

A short calculation (see Ex. 5.4) leads to the following relation of e,b and Q,U in
real space:

e(x) = −∇−2
[
(∂2
x − ∂2

y )Q(x)+ i2∂x∂yU(x)
]
, (5.40)

ib(x) = −∇−2
[
(∂2
x − ∂2

y )U(x)− i2∂x∂yQ(x)
]

. (5.41)

Hence e and b, which are the inverse Laplacians of combinations of second deriva-
tives of Q and U , are more closely related to the latter than E and B as they have no
additional factors of �. However, the relation between (e,b) and (Q,U) is nonlocal
due to the inverse Laplacians. We have to know U and Q globally to determine e
and b, while E = ∇2e and B = ∇2b are locally related to Q and U . Furthermore,
since Q-polarization turns into U -polarization and vice versa by a rotation of 45◦,
a pure E-polarization configuration turns into pure B, if we turn all the polarization
vectors by 45◦.

Vanishing polarization corresponds to B = E = 0. Positive values of E around a
zero indicate radial polarization patterns while negative values indicate tangential
polarization. A B-polarization pattern can then be obtained by simply rotating the
polarization vectors by 45◦. Hence the B-polarization patterns rotate around their
zeros; see Fig. 5.3.

Fig. 5.3 An E-polarization pattern (left) is compared with B-polarization (right).
The function E is indicated in grayscale, and the polarization directions are drawn.
E-polarization is tangential along the dark negative regions while it is radial from
the white positive regions. The B-polarization pattern is obtained by rotating the
polarization directions by 45◦.
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5.3 Polarization-dependent Thomson Scattering

5.3.1 The Scattering Matrix and Collision Term

We now want to determine the change of each of the components, M, Q+ iU , and
Q− iU by Thomson scattering. We consider incoming radiation from direction n′

that is then scattered into direction n with scattering angle β, n · n′ = cosβ. The
cross section for scattering off a nonrelativistic electron depends on the polarization
of the photon. For photons polarized in the scattering plane it is suppressed by a
factor cos2 β, while it is unsuppressed for photons polarized normal to the scattering
plane. The scattered electric field generated per unit of time in a plasma with
electron density ne is proportional to

√
neσT E, where σT is the scattering cross

section. In the rest frame of the electron we have (Jackson, 1975)

E
(c)
‖ =

√
nee

2

me
cosβE‖ =

√
3

8π
neσT cosβE‖, (5.42)

E
(c)
⊥ =

√
nee

2

me
E⊥ =

√
3

8π
neσT E⊥. (5.43)

We now choose the polarization basis such that ε(1)(n) lies in the scattering plane
and ε(2)(n) is normal to it. Using I = |E‖|2 + |E⊥|2, Q = |E‖|2 − |E2

⊥| and
U = Re(2E‖E∗⊥) we obtain

M(c) = 3

16π
neσT

[
(1+ cos2 β)M− sin2 βQ

]
, (5.44)

Q(c) = 3

16π
neσT

[
(1+ cos2 β)Q− sin2 βM

]
, (5.45)

U (c) = 3

8π
neσT cosβU . (5.46)

Defining the vector

V =
⎛⎝ M

Q+ iU
Q− iU

⎞⎠ , (5.47)

we can write the scattered amplitudes in terms of a scattering matrix, V (c) =
(neσT /4π)SV with

S = 3

4

⎛⎜⎝ cos2 β + 1 − 1
2 sin2 β − 1

2 sin2 β

− 1
2 sin2 β 1

2 (cosβ + 1)2 1
2 (cosβ − 1)2

− 1
2 sin2 β 1

2 (cosβ − 1)2 1
2 (cosβ + 1)2

⎞⎟⎠ . (5.48)
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This is the scattering matrix expressed in the polarization basis
(
ε(1)(n), ε(2)(n)

)
which is chosen such that ε(1)(n) lies in the scattering plane. In the expansion
(5.11), we express Q ± iU in the basis (eϑ , eϕ). To obtain the scattering matrix
with respect to this basis, we first rotate Q ± iU by an angle γ ′ around n′ to
turn the basis (eϑ(n′), eϕ(n′)) into

(
ε(1)(n′), ε(2)(n′)

)
; only then can we apply the

scattering matrix S on V . Finally, we rotate the polarizations
(
ε(1)(n), ε(2)(n)

)
back

into (eϑ(n), eϕ(n)) by the rotation with angle −γ around n.
The rotation with angle γ ′ around direction n′ multiplies Q(n′) ± iU(n′) by a

factor exp(±2iγ ′) and the rotation around n with angle −γ multiplies Q(c)(n) ±
iU (c)(n) by exp(∓2iγ ). The intensity perturbation is invariant under rotations. The
scattering matrix that multiplies V with Stokes parameters oriented in the fixed
polarization basis (eϑ, eϕ) is therefore simply R(−γ )SR(γ ′) where we define the
3× 3 matrix R(α) = diag

(
1,e2iα,e−2iα

)
.

Using the expressions for ±sY�m(ϑ,ϕ), �≤ 2 given in Appendix 4, Section A4.2.6,
straightforward comparison gives

R(−γ )SR(γ ′) = 1

2

√
4π

5
×⎛⎜⎜⎝

Y20(β,− γ ′)+ 2
√

5Y00(β,− γ ′) −
√

3
2Y2−2(β, − γ ′) −√6Y22(β,− γ ′)

−√6 2Y20(β, − γ ′)e−2iγ 3 2Y2−2(β, − γ ′)e−2iγ 3 2Y22(β,− γ ′)e−2iγ

−
√

3
2 −2Y20(β, − γ ′)e2iγ 3 −2Y2−2(β, − γ ′)e2iγ 3 −2Y22(β,− γ ′)e2iγ

⎞⎟⎟⎠ .

(5.49)

Note that the angle γ ′ that rotates
(
eϑ(n′), eϕ(n′)

)
into

(
ε(1)(n′), ε(2)(n′)

)
actually

corresponds to −ϕ in the spherical harmonics of (5.49). We now use the addition
theorem for spin weighted spherical harmonics; see Appendix 4, Section A4.2.6,
Eq. (A4.101):

sY2s′(β, − γ ′)e−isγ =
√

4π

5

∑
m

−s′Y ∗2m(n
′)sY2m(n).

Note that the Euler angles of the rotation R−1
1 R2 defined in Appendix 4,

Section A4.2.6 are (−γ ′,β,γ ). With this we can write the matrix R(−γ )SR(γ ′) =
4π
10P(n,n

′)+ diag(1,0,0), where the matrix P(n,n′) is given by (0Y�m ≡ Y�m):

P(n,n′) =
2∑

m=−2

Pm(n,n′),
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where

Pm(n,n′)

=

⎛⎜⎝ Y2m(n)Y ∗2m(n
′) −

√
3
2Y2m(n) 2Y

∗
2m(n

′) −
√

3
2Y2m(n) −2Y

∗
2m(n

′)

−√6 2Y2m(n)Y ∗2m(n
′) 3 2Y2m(n) 2Y

∗
2m(n

′) 3 2Y2m(n) −2Y
∗
2m(n

′)
−√6 −2Y2m(n)Y ∗2m(n

′) 3 −2Y2m(n) 2Y
∗
2m(n

′) 3 −2Y2m(n) −2Y
∗
2m(n

′)

⎞⎟⎠.

(5.50)

The three-component collision term for V in the electron rest frame is now obtained
by integrating over the incoming photon directions and subtracting the photons
scattered out of the beam, as in Eq. (4.111),

C[V]rest = aneσT
⎡⎣ 1

10

∫
d�n′

2∑
m=−2

Pm(n,n′)V(n′)− V(n)

+ 1

4π

∫
d�n′M(n′)

⎛⎝ 1
0
0

⎞⎠⎤⎦ . (5.51)

The Y00 term in Eq. (5.49) results in the second integral in Eq. (5.51), which pro-
vokes isotropization in the electron rest frame. The other terms of R(−γ )SR(γ ′)
lead to

∑2
m=−2 Pm(n,n

′).
As we shall see, the contributions to the scattering term coming from the spin

weighted spherical harmonics with |m| = 0, 1 and 2 correspond to the contributions
for scalar, vector, and tensor perturbations respectively. To transform the scattering
term from the electron (or baryon) rest frame to our coordinate frame, we simply
add the Doppler term n·V(b) as in Eq. (4.112). Also as there, we obtain an additional
factor a, since we calculate the scattering per conformal time interval. The collision
term per unit of conformal time in the coordinate frame then becomes

C[V] = aneσT
⎡⎣ 1

10

∫
d�n′

2∑
m=−2

Pm(n,n′)V(n′)− V(n)

+
[

1

4π

∫
d�n′M(n′)+ n · V(b)

] ⎛⎝ 1
0
0

⎞⎠⎤⎦ . (5.52)

5.4 Total Angular Momentum Decomposition

In the previous section we calculated the scattering term of the vector V at some
fixed position x as a function of the photon direction n. Now we also want to
consider the x dependence.
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In Chapter 4, we Fourier transformed the x dependence of the temperature
fluctuation M, and then decomposed M(t,k,n) into its scalar, vector, and tensor
contributions. We found that M(S) depends on n only via μ = k̂ · n, while M(V )

and M(T ) are of the form

M(V ) =
√

1− μ2
1

2

[
exp(iφ)M(V )

+ (μ)+ exp(−iφ)M(V )
− (μ)

]
, (5.53)

M(T ) = (1− μ2)
1

2

[
exp(i2φ)M(T )

+ (μ)+ exp(−2iφ)M(T )
− (μ)

]
. (5.54)

Here φ is the angle with respect to some fixed (but arbitrary) direction in the plane
normal to k. We then expanded the functions M(V ,T )

± in Legendre polynomials.
But, according to Appendix 4, Section A4.2,

Y�,±1(n) ∝ e±iφ
√

1− μ2P ′�(μ),

Y�,±2(n) ∝ e±2iφ(1− μ2)P ′′� (μ).

For a fixed wave vector k, we can therefore expand the n dependence of the vector
contribution to M in terms of spherical harmonics of order |m| = 1 and the tensor
contributions in terms of spherical harmonics of order |m| = 2. These are the
spherical harmonics of the photon direction n in the coordinate system with k ‖ ez.

For a fixed Fourier mode k we now introduce the basis functions

sG�m(x,n) = (−i)�
√

4π

2�+ 1
eik·xsY�m(n), (5.55)

where the spin weighted spherical harmonics are evaluated in a coordinate system
with k ‖ ez. According to our findings in Chapter 4, the temperature fluctuation can
now be expanded as

M(t,x,n) =
∫

d3k

(2π)3

∞∑
�=0

2∑
m=−2

M(m)
� (t,k) 0G�m(x,n). (5.56)

As we have seen, the m = 0 term represents scalar fluctuations while the |m| = 1
terms are of vector-type and the |m| = 2 terms are tensor fluctuations. The coef-
ficients M(±2)

� are easily related to the expansion coefficients M(T±)
� defined in

Eq. (4.149), and M(±1)
� are related to M(V±)

� given in Eqs. (4.133) and (4.134) (see
Exercise 5.1).

Next, we use that the polarization can be expanded in terms of spin weighted
spherical harmonics ±2Y�m [see Eqs. (5.11) and (5.12)]:
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Q± iU =
∫
d3k

(2π)3

∞∑
�=2

2∑
m=−2

±2A(m)� (t,k) ±2G�m(x,n), (5.57)

=
∫
d3k

(2π)3

∞∑
�=2

2∑
m=−2

(
E (m)� (t,k)± iB(m)� (t,k)

)
±2G�m(x,n). (5.58)

Here, as in Eqs. (5.11) and (5.12), the coefficients A are related to E and B by

±2A(m)� (t,k) = E (m)� (t,k)± iB(m)� (t,k).
As in the case of temperature fluctuations, m = 0 are scalar perturbations, while
|m| = 1 and |m| = 2 are vector and tensor perturbations respectively. The above
Q and U polarizations are defined with respect to some fixed coordinate system
in real space, while the Fourier coefficients E� and B� correspond to the Q and U
polarization with respect to the coordinate system where k points in the z-direction.
Therefore, the inverse Fourier transform of E and B respectively will in general not
simply give Q and U with respect to any fixed real space coordinate system.

The basis functions sG�m have three different types of indices. Let us briefly
recapitulate their meaning. As we have seen, m determines the tensor character
of the perturbations. The index � labels the expansion in an orthonormal set of
functions of μ = k̂ · n = cosϑ . Under rotations around the photon direction n
temperature fluctuations are tensorial quantities of rank s = 0 that gives them the
index 0, while the polarization variables, Q ± iU , are tensorial quantities of rank
|s| = 2 with helicity ±2.

It is important to note that when expanding in sG�m we express the spherical
harmonics Y�m with respect to a coordinate system that depends on k.

We now consider the situation in which the observer is placed at x = 0 and
the incoming photon is at a distance r from her, so that the photon position is
x = −rn, where n, as earlier, denotes the direction of propagation of the photon.
This situation will be relevant for the line-of-sight integration that we shall use to
solve the Boltzmann equation. We want to expand our basis functions sG�m(−rn,n)
for fixed k in their total angular momentum components. The functions sG�m have
“spin” � but the “orbital” angular momentum of the exponential is a sum,

eik·x = e−ikrμ =
∞∑
L=0

√
4π(2L+ 1)(−i)−LjL(kr)YL0(n),

where we have used Eq. (A4.146) and P�(μ) =
√

4π/(2�+ 1)Y�0(n). Hence

sG�m(−rn,n) = 4π
∞∑
L=0

√
2L+ 1

2�+ 1
i−L−�jL(kr)YL0(n) sY�m(n). (5.59)
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The spin weighted spherical harmonics are related to the matrix elements of the
representations of the rotation group by (see Appendix 4, Section A4.2)

sY�m(θ,φ) =
√

2�+ 1

4π
D
(�)
−sm(φ,θ,0). (5.60)

Here n = (sin θ cosφ, sin θ sinφ, cos θ) and (φ,θ,0) denote the Euler angles of
the rotation that first rotates around the y-axis with angle θ and then around the
z-axis with angle φ. This is a rotation that turns the z-axis into n. We also use the
relation of YL0 to D(L)00 . The product D(L)SMD

(�)
sm is the matrix element (S,M;s,m)

of the representation D(L) ⊗ D(�) in the basis YLM ⊗ Y�m. With the help of the
Clebsch–Gordan series (see Appendix 4, Section A4.2) this representation can be
decomposed as a sum of irreducible representations,

D(L) ⊗D(�) =
L+�∑

j=|L−�|
D(j).

The basis (YLM ⊗ Y�m)M=L,m=�M=−L,m=−� is transformed into the basis ((Yjr)
j

r=−j )
j=L+�
j=|L−�|

with the Clebsch–Gordan coefficients 〈L,�;M,m|j,r〉. Using the fact that Clebsch–
Gordan coefficients are nonvanishing only if r = M +m, we can write the matrix
elements

D
(L)

00 D
(�)
−sm =

j=L+�∑
j=|L−�|

〈L,�;0,m|j,m〉〈L,�;0, − s|j, − s〉D(j)−sm. (5.61)

(For more details see Appendix 4, Section A4.2.) Using Eq. (5.60) this yields

4π

√
2L+ 1

2�+ 1
YL0(n)sY�m(n)

= (2L+ 1)
j=L+�∑
j=|L−�|

〈L,�;0,m|j,m〉〈L,�;0, − s|j, − s〉
√

4π

(2j + 1)
sYjm(n) .

(5.62)

When inserting this in the sum, Eq. (5.59) we can exchange the sums over L and j .
Extending the sum over j from zero to infinity, we have to sum for each given j
over all Ls for which this j contributes in Eq. (5.62). These are simply the values
|j − �| ≤ L ≤ j + �. We define functions sf

(�m)
j that represent the sums over L,

sf
(�m)
j (x) ≡

j+�∑
L=|j−�|

(−i)L+�−j 2L+ 1

2j + 1
〈L,�;0,m|j,m〉〈L,�;0, − s|j, − s〉jL(x),

(5.63)
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we can then write the sum (5.59) as

sG�m(−rn,n) =
∞∑
j=0

(−i)j
√

4π(2j + 1) sf
(�m)
j (kr) sYjm(n). (5.64)

We are only really interested in the cases s = 0 and s = ±2. For these we define

α
(�m)
j ≡ 0f

(�m)
j , (5.65)

ε
(�m)
j ± iβ(�m)j ≡ ±2f

(�m)
j . (5.66)

We repeat Eq. (5.64) for the relevant cases s = 0 and |s| = 2:

0G�m(−rn,n) =
∞∑
j=0

√
4π(2j + 1) (−i)jα(�m)j (kr)Yjm(n), (5.67)

±2G�m(−rn,n) =
∞∑
j=0

√
4π(2j + 1) (−i)j

(
ε
(�m)
j (kr)± iβ(�m)j (kr)

)
±2Yjm(n).

(5.68)

This is the total angular momentum expansion of sG�m(−rn,n). We want to use it
to find the integral solution of the Boltzmann equation. For this we shall need the
functions α(�m)j , ε(�m)j and β(�m)j only for � and |m| ≤ 2, since the “source terms”
of the Boltzmann equation, which are the collision terms collected in C[V] in
Eq. (5.52) and the gravitational contributions that we have determined in Chapter 4,
all have � ≤ 2 and |m| ≤ 2.

Using the Clebsch–Gordan coefficients given in Appendix 4, Section A4.2 and
the recurrence relations of spherical Bessel functions presented in Appendix 4,
Section A4.3 one obtains

α
(00)
� (x) = j�(x), (5.69)

α
(10)
� (x) = j ′�(x), α

(1 ±1)
� (x) =

√
�(�+ 1)

2

j�(x)

x
, (5.70)

α
(20)
� (x) = 1

2
[3j ′′� (x)+ j�(x)], α

(2 ±1)
� (x) =

√
3�(�+ 1)

2

(
j�(x)

x

)′
, (5.71)

α
(2 ±2)
� (x) =

√
3(�+ 2)!

8(�− 2)!

j�(x)

x2
, (5.72)

ε
(20)
� (x) =

√
3(�+ 2)!

8(�− 2)!

j�(x)

x2
≡ α(2 ±2)

� (x), (5.73)
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ε
(2 ±1)
� (x) = 1

2

√
(�− 1)(�+ 2)

[
j�(x)

x2
+ j

′
�(x)

x

]
, (5.74)

ε
(2 ±2)
� (x) = 1

4

[
−j�(x)+ j ′′� (x)+ 2

j�(x)

x2
+ 4
j ′�(x)
x

]
, (5.75)

β
(20)
� (x) = 0, (5.76)

β
(2 ±1)
� (x) = ±1

2

√
(�− 1)(�+ 2)

j�(x)

x
, (5.77)

β
(2 ±2)
� (x) = ±1

2

[
j ′�(x)+ 2

j�(x)

x

]
. (5.78)

To (hopefully) avoid confusion we have used the letter � here as the total angular
momentum, since j is the name of the spherical Bessel functions.

The functions α(�m)j , ε(�m)j , and β(�m)j will be investigated in more detail when we
discuss the integral solution of the Boltzmann equation. They peak around x � j ,
like spherical Bessel functions, and then oscillate and decay like 1/x or faster.

From the definition of sY �m it follows that under the parity operation, n → −n,
eϑ(n) → eϑ(−n) = eϑ(n), eϕ(n) → eϕ(−n) = −eϕ(n) one finds sY �m(−n) =
(−1)�−sY �m(n). The first factor simply reflects the behavior of Y�m under parity,
while the transformation s → −s comes from the fact that eϕ changes sign under
parity, while eϑ does not. This, together with the parity of the spherical Bessel func-
tions, j�(−x) = (−1)�j�(x) explains that α(� −m)j (x) = α(�m)j (x) and ε(� −m)j (x) =
ε
(�m)
j (x) while β(� −m)j (x) = −β(�m)j (x). Furthermore, since E (m)� couples to the

sum sY �m + −sY �m it has parity (−1)�, while B(m)� , which couples to the difference

sY�m − −sY�m, has parity (−1)�+1. With Y�m, the M(m)
� have parity (−1)�.

5.5 The Spectra

To find the power spectra in terms of the random variables M(m)
� , E

(m)
� , and B(m)� in

Fourier space, we use the definition of the temperature perturbation spectrum given
in Chapter 2,

C
(M)
� = 〈|a�m|2〉, where (5.79)

M(x,n) =
∞∑
�=0

�∑
m=−�

a�m(x)Y�m(n). (5.80)

From this and the addition theorem of spherical harmonics,

Y�0(cosϑ = n · n′) =
√

4π

2�+ 1

∑
m

Y�0(n)Y ∗�m(n
′), (5.81)
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we have derived the expression for the correlation function,

〈M(t,x,n)M(t,x,n′)〉 = 1

4π

∞∑
�=0

(2�+ 1)P�(n · n′)C(M)
� , (5.82)

where we have used P�(n · n′) = √4π/(2�+ 1)Y�0(cosϑ = n · n′). In the same
way we now define the rotationally invariant spectra

C
(E)
� = 〈|e�m|2〉, (5.83)

C
(B)
� = 〈|b�m|2〉, (5.84)

C
(ME)
� = 〈a∗�me�m〉, (5.85)

with the expansion coefficients e�m and b�m defined in Eq. (5.13). The coefficients
b�m have parity (−1)�+1 while a�m and e�m have parity (−1)�. We shall always
assume that the random process that generates the initial fluctuations is invariant
under parity, so that expectation values with negative parity such as C(MB)

� and
C
(EB)
� vanish. But, in principle, this has to be tested experimentally. It is possible

that parity violating processes, such as weak interactions, lead to effects in the
CMB; see Caprini et al. (2004).

We now want to relate the spectra to the k-space expressions for the variables M,
E , and B. To do this we have to be careful about our use of spherical harmonics.
In Eq. (5.80) we employ them with respect to some arbitrary but fixed z direction,
let us call it e, while in the Fourier decomposition, Eq. (5.56), the spherical har-
monics are to be taken in the coordinate system where k̂ denotes the z direction.
To make this dependence clear, in this section we indicate the spherical harmonics
with respect to a given z-axis, e by Y�m(n;e). To relate Y�m(n;k̂) to Y�m(n;e) we
use the fact that a basis with k̂ in the z direction can be obtained from a basis with
e in the z direction by first rotating with the angle −φk around the z-axis, e and
then with −θk around the y-axis. Here, (θk,φk) are the polar angles of k in the
coordinate system with e in the z direction. We therefore rotate the basis with the
rotation given by the Euler angles (0,−θk,−φk). This is the inverse of the rotation
with Euler angles (φk,θk,0). Since the representation matrices are unitary,

D
(�)

mm′(0, − θk, − φk) = D∗ (�)m′m(φk,θk,0).

Furthermore using the fact that the basis vectors Y�m transform with the transpose
of the matrix with which the coefficients of vectors transform, we obtain [see also
Appendix 4, Section A4.2.3, Eqs. (A4.40) and (A4.44)]:

Y�m(n;k̂) =
∑
m′
Y�m′(n;e)D∗ (�)mm′ (θk,φk,0)

=
√

4π

2�+ 1

∑
m′
Y�m′(n;e) −mY ∗�m′(k̂;e). (5.86)
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Note how the magnetic quantum number m in the k-basis becomes the spin weight
in the e-basis. Equation (5.86) is a generalization of the addition theorem of spher-
ical harmonics (see also Appendix 4, Section A4.2).

Inserting this in the Fourier decomposition, Eq. (5.56) we can isolate the
coefficient a�m as the term proportional to Y�m(n;e). We use the orthogonality
of spherical harmonics, which implies

a�m(x) =
∫
d�nY

∗
�m(n;e)M(x,n).

Inserting M(x,n) from Eq. (5.56) and making use of the identity, Eq. (5.86) we
obtain finally

a�m(x) = (−i)� 4π

2�+ 1

2∑
s=−2

∫
d3k

(2π)3
M(s)

� (k) sY
∗
�m(k̂;e)e−ix·k. (5.87)

Because of statistical homogeneity, coefficients M(s)
� (k) with different values

of k are uncorrelated. We introduce the power spectrum of M(s)
� (k) which is of the

form 〈
M(s)

� (k)M
(s)∗
� (k′)

〉 ≡ (2π)3δ3(k− k′)M(s)
� (k). (5.88)

Because of statistical isotropy, M(s)
� (k) is a function of the modulus k = |k| only,

and the M(s)
� (k)s with different � or s are uncorrelated. With this and Eq. (5.87)

integration over angles leads to

(2�+ 1)2C� = (2�+ 1)2〈|a�m|2〉 = 2

π

2∑
s=−2

∫
dk k2M

(s)
� (k). (5.89)

Here s = 0 is the contribution from scalar perturbations while s = ±1 and s = ±2
are vector and tensor modes respectively.

We now address the polarization spectra. Here, the situation is somewhat more
complicated, since apart from the dependence of sY�m(n;k̂) on the chosen z-axis,
the spin weighted spherical harmonics also depend on the polarization basis normal
to n. In addition to the rotation from the k-basis into the e-basis outlined earlier,
we would also have to fix the polarization basis. To avoid this complication we
use the spin raising and lowering operator /∂ and its hermitian conjugate /∂∗. With
Eqs. (5.14) and (5.15) we can also relate E and B to the Fourier coefficients E (m)� (k)
and B(m)� (k). Equations (5.20) and (5.21) imply

E(x,n) =
∞∑
�=2

√
(�+ 2)!

(�− 2)!

�∑
m=−�

e�m(x)Y�m(n;e), (5.90)
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and

B(x,n) =
∞∑
�=2

√
(�+ 2)!

(�− 2)!

�∑
m=−�

b�m(x)Y�m(n;e). (5.91)

Here we have inserted the original expansion of Q± iU given in Eq. (5.12).
To relate E(x,n) and B(x,n) to their Fourier transforms, which can be obtained

from Eq. (5.58), we first rotate ±2G�m(x,n) into the e-basis, using

sY�m(n;k̂) =
√

4π

2�+ 1

∑
m′

sY�m′(n;e) −mY ∗�m′(k̂;e), (5.92)

which is derived exactly like for s = 0. But since we do not take notice of the
orientation of the polarization basis, the latter is still oriented in a k dependent
manner and sY�m′(n;e) still depends on k over the orientation of the polarization
basis. We now act with the operator /∂2 for s = −2 and (/∂∗)2 for s = 2 on sY�m′(n;e)
to obtain Y�m′(n;e). Using Eq. (5.86) we then find

E(x,n) =
∫

d3k

(2π)3
eik·x

∞∑
�=2

√
(�+ 2)!

(�− 2)!

2∑
m=−2

E (m)� (k)Y�m(n;k̂), (5.93)

B(x,n) =
∫

d3k

(2π)3
eik·x

∞∑
�=2

√
(�+ 2)!

(�− 2)!

2∑
m=−2

B(m)� (k)Y�m(n;k̂). (5.94)

This is exactly the same result as when acting directly with /∂ and /∂∗ on sY�m′(n;k̂),
which is not entirely obvious since in general the operators /∂ and /∂∗ are basis
dependent. However, as we have seen, Eqs. (5.14) and (5.15) are valid in every
basis. Since both sides of these equations have spin-0, they are independent of the
polarization basis.

Now that we have expressed polarization in terms of ordinary spherical harmon-
ics, we can proceed as for the temperature anisotropies. We rotate Y�m(n;k̂) into
spin weighted harmonics mY�m′(n;e), and obtain

(2�+ 1)2C(E)� ≡ (2�+ 1)2〈|e�m(x)|2〉

= 2

π

2∑
s=−2

∫
dk k2E

(s)
� (k), (5.95)

(2�+ 1)2C(B)� ≡ (2�+ 1)2〈|b�m(x)|2〉

= 2

π

2∑
s=−2

∫
dk k2B

(s)
� (k), (5.96)
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and

(2�+ 1)2C(ME)
� ≡ (2�+ 1)2〈a∗�me�m(x)〉

= 2

π

2∑
s=−2

∫
dk k2F

(s)
� (k), (5.97)

where we have introduced the power spectra〈
E (s)� (k)E

(s)∗
� (k′)

〉
≡ (2π)3δ3(k− k′)E(s)� (k), (5.98)〈

B(s)� (k)B
(s)∗
� (k′)

〉
≡ (2π)3δ3(k− k′)B(s)� (k), (5.99)〈

E (s)� (k)M
(s)∗
� (k′)

〉
≡ (2π)3δ3(k− k′)F (s)� (k). (5.100)

To relate these spectra to meaningful correlation functions, we correlate quantities
that are scalars under rotations around n and n′ respectively; hence quantities that
can be expanded in ordinary, s = 0 spherical harmonics. For this we use our
quantities E and B. The same derivation that led to Eq. (5.82) now yields〈

E(t,x,n)E(t,x,n′)
〉 = 1

4π

∞∑
�=0

(2�+ 2)!

(2�− 2)!
(2�+ 1)P�(n · n′)C(E)� , (5.101)

〈
B(t,x,n)B(t,x,n′)

〉 = 1

4π

∞∑
�=0

(2�+ 2)!

(2�− 2)!
(2�+ 1)P�(n · n′)C(B)� , (5.102)

〈
M(t,x,n)E(t,x,n′)

〉 = 1

4π

∞∑
�=0

√
(2�+ 2)!

(2�− 2)!
(2�+ 1)P�(n · n′)C(ME)

� . (5.103)

5.5.1 Correlation Functions in the Flat Sky Approximation

We finally want to derive expressions for the correlation functions in the small-scale
limit, that is, the flat sky approximation. For the temperature anisotropies we use
the fact that the correlation function is simply the Fourier transform of the power
spectrum. In the small-scale limit [see Section 5.2 for other useful relations], the
definition of the temperature anisotropy spectrum yields

〈M(�)M∗(�′)〉 = δ(�− �′)C(M)
� .

Hence

ξM(x) ≡ 〈M(y)M(y+ x)〉 = 1

(2π)2

∫
d2� ei�xC

(M)
�

= 1

(2π)2

∫
d� �C

(M)
�

∫ 2π

0
dφei�r cosφ = 1

2π

∫ ∞

0
� d� J0(r�)C�. (5.104)
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For the integral over the angle φ between x and � we have set r = |x| and used that∫ 2π

0
dφ eir� cosφ = 2πJ0(r�),

where Jn is the Bessel function of order n. To see this we can use the formula given
in Appendix 4, Section A4.3,

eiy cosφ =
∞∑

n=−∞
inJn(y) e

inφ = J0(y)+ 2
∞∑
n=1

inJn(y) cos(nφ). (5.105)

Integrating this expansion yields

1

2π

∫ 2π

0
dφ eiy cosφ e−inφ = inJn(y). (5.106)

Equivalently, starting from the correlation function we can derive the expression
for the power spectrum,

C� = 2π
∫ ∞

0
r dr J0(r�)ξ(r). (5.107)

To derive the correlation functions for polarization, we introduce the variable
P = Q+ iU and correspondingly P∗ = Q− iU . According to Eqs. (5.36)–(5.39),
their Fourier representations are

P = Q+ iU = −
∫
d2�

2π
[E(�)+ iB(�)] e2iφ ei�·x, (5.108)

P∗ = Q− iU = −
∫
d2�

2π
[E(�)− iB(�)] e−2iφ ei�·x, (5.109)

or, inversely

E(�)+ iB(�) = −
∫
d2x
2π

Pe−2iφ e−i�·x, (5.110)

E(�)− iB(�) = −
∫
d2x
2π

P∗e2iφ e−i�·x. (5.111)

We want to define correlation functions of P and P∗ in a coordinate independent
way. For two given points x 
= x′, r ≡ x − x′ we rotate the polarization basis
by the angle φr that r encloses with the x-axis. The new polarization basis r̂, and
the direction orthogonal to it, is uniquely defined by r. The rotated polarization is
given by

Pr (x) = e−2iφr P(x).
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With respect to this intrinsic basis we can now define the coordinate independent
correlation functions

ξ+(r) = 〈P∗r (x)Pr (x′)〉 = 〈P∗(x)P(x′)〉
= 〈Q(x)Q(x′)〉 + 〈U(x)U(x′)〉, (5.112)

ξ−(r) = 〈Pr (x)Pr (x′)〉 = 〈e−4iφrP(x)P(x′)〉
= 〈Qr (x)Qr (x′)〉 − 〈Ur (x)Ur (x′)〉 + i

(〈Qr (x)Ur (x′)〉 − 〈Ur (x)Qr (x′)〉) ,
(5.113)

ξ×(r) = 〈Pr (x)M(x′)〉 = 〈e−2iφrP(x)M(x′)〉
= 〈Qr (x)M(x′)〉 + i〈Ur (x)M(x′)〉. (5.114)

Under parity, r → −r, φr and with it the imaginary part of the terms eniφr change
sign. If we assume statistical parity invariance, they therefore have to vanish,

〈Ur (x)Qr (x′)〉 ≡ 〈Ur (x)M(x′)〉 ≡ 0.

This expresses the fact that B-polarization is uncorrelated with E-polarization and
the temperature anisotropies in terms of the correlation functions.

The calculation of the correlation function ξ+ now is exactly analogous to that
for the temperature anisotropy; one just has to replace C� by C(E)� + C(B)� ,

ξ+(r) = 〈P∗(x)P(x′)〉

= 1

2π

∫
� d�

[
C
(E)
� + C(B)�

]
J0(�r). (5.115)

For ξ− and ξ×, the situation is somewhat different because of the exponentials eimφr .
Inserting the Fourier transform of P(x) given in Eq. (5.108) in the expression for
ξ−, we find

ξ−(r) = 〈Pr (x)Pr (x′)〉

=
∫
d2�

2π

d2�′

2π
〈[E(�)+ iB(�)][E∗(�′)+ iB∗(�′)]〉 ei(�·x−�′·x′)ei(2φ�+2φ�′−4φr )

=
∫

d2�

(2π)2

[
C
(E)
� − C(B)�

]
eir� cos(φ�−φr )e4i(φ�−φr )

= 1

2π

∫ ∞

0
d� �J4(r�)

[
C
(E)
� − C(B)�

]
. (5.116)
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For the last equals sign we have used Eq. (5.106) and the fact that Bessel functions
with an even index are even. Similarly we obtain for the cross correlation function

ξ×(r) = 〈Pr (x)Mr (x′)〉

= −
∫
d2�

2π

d2�′

2π
〈[E(�)+ iB(�)]M∗(�′)〉ei(�·x−�′·x′)ei(2φ�−2φr )

= 1

2π

∫ ∞

0
d� �J2(r�)C

(ME)
� . (5.117)

As for the temperature anisotropy, the polarization power spectra and correlation
functions are related via two-dimensional Fourier transforms. Taking into account
the correct factors ei(φ�−φr ) coming from the definitions, Eqs. (5.113) and (5.114),
and the expression (5.108), we find

C
(E)
� + C(B)� = 2π

∫
r dr J0(�r)ξ+(r), (5.118)

C
(E)
� − C(B)� = 2π

∫
r dr J4(�r)ξ−(r), (5.119)

C
(EM)
� = 2π

∫
r dr J2(�r)ξ×(r). (5.120)

These small-scale expressions for the temperature and polarization power spectra
and for the correlation functions will be especially useful when we discuss lensing
in Chapter 7.

5.6 The Boltzmann Equation

In this section we write the Boltzmann equation for the mode functions M(m)
� , E

(m)
�

and B(m)� in Fourier space introduced in Section 5.5. First we note that the usual
free-streaming term is given by

iμk ≡ ik
√

4π

3
Y10(n). (5.121)

Furthermore, representing the sY�m as matrix elements of D(�) and using the
Clebsch Gordan decomposition of D(1) ⊗ D(�) one finds (see Appendix 4,
Section A4.2.6 and solve Exercise 5.2 for details),√

4π

3
Y10 · sY�m =

√[
(�+ 1)2 −m2

] [
(�+ 1)2 − s2

]
(�+ 1)2(2�+ 3)(2�+ 1)

sY�+1m

− ms

�(�+ 1)
sY�m +

√
(�2 −m2)(�2 − s2)

�2(2�+ 1)(2�− 1)
sY�−1m. (5.122)
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This determines the free streaming of the modes sG�m, which hence couple to

sG�+1,m and sG�−1,m. The E (m)� -mode, which is proportional to 2G�m + −2G�m,
couples to the E (m)�±1-modes and to the B(m)� -mode, which multiplies 2G�m − −2G�m.

Correspondingly, free streaming couples B(m)� to B(m)�±1 and E (m)� . Therefore, even if
B-modes are not generated by Thomson scattering, as we shall see in the text that
follows, they are generated by free streaming from the E-modes. Only the scalar
B- and E-modes, for which m = 0, are not coupled. Therefore, if B(0)� vanishes
initially it will remain zero. With Eq. (5.122), the left-hand side of the Boltzmann
equation turns into the mode equations

(∂t + n · ∇)
[
M(m)

� Y�m

]
=

⎡⎣Y�m∂t + ik
√ [
(�+ 1)2−m2

]
(2�+ 3)(2�+1)

Y�+1,m +ik
√

(�2 −m2)

(2�+1)(2�−1)
Y�−1,m

⎤⎦M(m)
� ,

(5.123)

(∂t + n · ∇)
[
(E (m)� ± iB(m)� ) ( ±2Y�m)

]
=

⎡⎣ ±2Y�m∂t + ik
√[
(�+ 1)2 −m2

] [
(�+ 1)2 − 4

]
(�+ 1)2(2�+ 3)(2�+ 1)

(
±2Y�+1,m

)

∓ ik 2m

�(�+ 1)
(±2Y�m) + ik

√
(�2 −m2)(�2 − 4)

�2(2�+ 1)(2�− 1)

(
±2Y�−1,m

)⎤⎦ (
E (m)� ± iB(m)�

)
.

(5.124)

To obtain the scattering term we integrate Pm(n,n′)V(n′) given in Eq. (5.50) over
the n′-sphere. For this we use the mode expansion

V(k,n′) =
⎛⎝ M

Q+ iU
Q− iU

⎞⎠

=

⎛⎜⎜⎝
∑∞
�=0

∑2
m=−2 M

(m)
� (k) 0G�m(n′)∑∞

�=2

∑2
m=−2

(
E (m)� (k)+ iB(m)� (k)

)
2G�m(x,n′)∑∞

�=2

∑2
m=−2

(
E (m)� (k)− iB(m)� (k)

)
−2G�m(x,n′)

⎞⎟⎟⎠ . (5.125)

Using the orthogonality relation
∫
d�n′ sY�m(n) sY�′m′(n) = δ��′ δmm′ we obtain

∫
d�n′ Pm(n,n′)V(n′) =

⎛⎜⎝ M(m)

2 (k) 0G2m(n)−
√

6E (m)2 (k) 0G2m(n)
−√6M(m)

2 (k) 2G2m(n)+ 6E (m)2 (k) 2G2m(n)
−√6M(m)

2 (k) −2G2m(n)+ 6E (m)2 (k) −2G2m(n)

⎞⎟⎠ .

(5.126)
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Hence, Thomson scattering does not depend on B-mode polarization. Finally, we
also need the gravitational scalar, vector, and tensor terms that enter the Boltzmann
equation for the temperature anisotropy. They do not directly couple to the polar-
ization because there is no zeroth-order polarization. We obtain exactly the same
terms as in Chapter 4, which we now write in terms of the basis functions Y�m.
We get

iμk(� +�) = ik
√

4π

3
(� +�)Y10 = −i

√
4π

3
Y10S

(0)
1 , (5.127)

− ik√
2
μ

[
(n · e+)σ+ + (n · e−)σ−

] = ik√4π

15

[
σ+Y21 + σ−Y2−1

]
= −

√
4π

5

[
Y21S

(1)
2 + Y2−1S

(−1)
2

]
, (5.128)

− (1− μ2)
[
Ḣd cos(2ϕ)+ Ḣ× sin(2ϕ)

]
= −1

2
(1− μ2)

[
(Ḣd − iḢ×)e2iϕ + (Ḣd + iḢ×)e−2iϕ

]
= −

√
4π

15

[
Ḣ2Y22 + Ḣ−2Y2−2

] = −√
4π

5

[
Y22S

(2)
2 + Y2−2S

(−2)
2

]
, (5.129)

where we have set H±2 =
√

2(Hd ± iH×). The source terms S(m)� are defined by
these equations. In addition, we must take into account the Doppler term, which
is of the form iμkV (b) = ik√4π/3

[
V
(0)
b Y10 + V (1)b Y1 1 + V (−1)

b Y1−1
]
. Here, V (0)b

denotes the scalar part of the baryon velocity field and V (±1)
b are the vector per-

turbations with helicity ±1. With all this and taking care of the normalization of
the mode function 0G�m, the Boltzmann equation for temperature anisotropies,
(∂t + n · ∇)M = S + κ̇C[M], turns into the mode equations

Ṁ(m)
� + k

[√
(�+ 1)2 −m2

(2�+ 3)
M(m)

�+1 −
√
�2 −m2

(2�− 1)
M(m)

�−1

]
= S(m)� + κ̇

[
P
(m)
� −M(m)

�

]
. (5.130)

with

S
(0)
� = δ�1k(� +�), (5.131)

S
(±1)
� = −δ�2 i√

3
kσ±, (5.132)

S
(±2)
� = δ�2 1√

3
Ḣ±2, (5.133)
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P
(0)
� = δ�0M(0)

0 + V (0)b δ�1 + δ�2
1

10

[
M(0)

2 −
√

6E (0)2

]
, (5.134)

P
(±1)
� = V (±1)

b δ�1 + δ�2 1

10

[
M(±1)

2 −
√

6E (±1)
2

]
, (5.135)

P
(±2)
� = δ�2 1

10

[
M(±2)

2 −
√

6E (±2)
2

]
. (5.136)

For the left-hand side of Eq. (5.130) we used Eq. (5.123) and have isolated terms
proportional to Y�m in the expansion (5.56) for fixed k. The terms P (m)� come from
the collision integral (5.126). Apart from the new E-polarization contribution they
agree with the result found in Chapter 4.

For the evolution of the polarizations, we only need to take into account free
streaming and the collision term. As mentioned earlier, the coupling of polariza-
tion to gravity is a second-order effect that is, to some extent, taken into account
when discussing lensing in Chapter 7. Isolating terms proportional to ±2Y�m in
Eq. (5.122), taking the sum and the difference, 2Y�m ±−2Y�m, leads to the left-hand
side of the Boltzmann equation for E- and B-mode polarization. The right-hand
side is obtained from (5.126). Putting it all together we find

Ė (m)� + k
[√

[(�+ 1)2 − 4][(�+ 1)2 −m2]

(2�+ 1)(2�+ 3)
E (m)�+1 −

2m

�(�+ 1)
B(m)�

−
√
(�2 − 4)(�2 −m2)

(2�+ 1)(2�+ 3)
E (m)�−1

]
= −κ̇

[
E (m)� +

√
6P (m)�

]
, (5.137)

Ḃ(m)� + k
[√

[(�+ 1)2 − 4][(�+ 1)2 −m2]

(2�+ 1)(2�+ 3)
B(m)�+1 +

2m

�(�+ 1)
E (m)�

−
√
(�2 − 4)(�2 −m2)

(2�+ 1)(2�+ 3)
B(m)�−1

]
= −κ̇B(m)� . (5.138)

Equations (5.130)–(5.138) represent the full Boltzmann hierarchy, which has to be
truncated at some value �max and can then be solved, using the relations given in
Section 4.7 that determine the gravitational source terms. As in Chapter 4, it is
numerically very costly to solve the hierarchy until some large value �max ∼ 2000,
which determines the fluctuations on angular scales larger than about 5 arc minutes.
One therefore solves it only up to � ∼ 10 and uses this result to determine the source
terms, which depend only on the multipoles � = 0, 1, and 2. The higher multipoles
are then again calculated with the help of an integral solution, which for a given
source term is obtained by simple quadrature. We now derive this integral solution.
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5.6.1 Integral Solution

To find the integral solution, we consider, as in Chapter 4, the sums of the harmonic
expansions. We define form = 0, 1, and 2 (scalar, vector, and tensor perturbations)

M(m)(t,n,k) =
∑
�

M(m)
� (t,k)(−i)�

√
4π

2�+ 1
Y�m, (5.139)

E (m)(t,n,k)+ iB(m)(t,n,k)

=
∑
�

(E (m)� (t,k)+ iB(m)� (t,k))(−i)�
√

4π

2�+ 1
2Y�m, (5.140)

E (m)(t,n,k)− iB(m)(t,n,k)

=
∑
�

(E (m)� (t,k)− iB(m)� (t,k))(−i)�
√

4π

2�+ 1
−2Y�m. (5.141)

For each of these variables, the Boltzmann equation is of the form

(∂t + iμk + κ̇)X = S, (5.142)

For X =M(m) the source term is

S(m)(t,n) =
2∑
�=0

(
S
(m)
� + κ̇P (m)�

)
(−i)�

√
4π

2�+ 1
Y�m, (5.143)

while for X = E (m) ± B(m)

S(m)(t,n) = −
√

6
κ̇

10

(
M(m)

2 −
√

6E(m)2

) √
4π

5
±2Y2m. (5.144)

The general solution to Eq. (5.142) with initial condition X(tin) is simply

X(t) = X(tin) e−ikμ(t−tin)−κ(t,tin) +
∫ t

tin

dt ′e−ikμ(t−t
′)−κ(t,t ′)S(t ′), (5.145)

where κ(t,t1)=
∫ t
t1
dt ′ κ̇(t ′) and eκ(t0,t

′)κ̇(t ′)= g(t ′) is the visibility function
defined in Chapter 4, which is strongly peaked at the last scattering surface, where
the collision terms induce the higher moments and polarization due to scattering.
At much earlier times the photons behave like a perfect fluid and at much later
times, collisions are very rare and all the evolution is determined by free streaming
including the gravitational part of the source term.

We are interested in the solution at t0 and choose the initial time early enough
so that we can neglect the initial value for all modes we are interested in. We then
obtain the integral solution
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M(m)(t0,n) =
2∑
�=0

(−i)�
√

4π

2�+ 1

∫ t0

tin

dt
(
S
(m)
� (t)+ κ̇P (m)� (t)

)
Y�me

−ikμ(t0−t)−κ(t0,t),

(5.146)

E (m)(t0,n)± iB(m)(t0,n)

= −
√

24π

5

∫ t0

tin

dt
κ̇

10

(
M(m)

2 −
√

6E (m)2

)
±2Y2m e

−ikμ(t0−t)−κ(t0,t). (5.147)

To expand this solution in spherical harmonics we use that

(−i)�
√

4π

2�+ 1
sY�m(n)e−ikμ(t0−t) = sG�m(−n(t0 − t),n).

Furthermore, the total angular momentum expansion of sG�m gives [see Eqs. (5.67)
and (5.68)]

0G�m(−nr,n) =
∑
L

(−i)L
√

4π(2L+ 1)α(�m)L (kr)YLm, (5.148)

as well as

±2G�m(−nr,n) =
∑
L

(−i)L
√

4π(2L+ 1)
(
ε
(�m)
L (kr)± iβ(�m)L (kr)

)
±2YLm(n).

(5.149)

Introducing Eq. (5.148) in Eq. (5.146) and making use of the explicit form of the
source term given in Eqs. (5.131)–(5.136) yields with x ≡ k(t0 − t)

M(0)(t0,n) =
∑
�

(−i)�
√

4π(2�+ 1)Y�m(n)
∫ t0

tin

dt e−κ(t0,t)

×
[
ik(� +�+ κ̇V (b))α(10)

� (x)+ κ̇
(
M(0)

0 α
(00)
� (x)

+ 1

10

[
M(0)

2 −
√

6E (0)2

]
α
(20)
� (x)

)]
, (5.150)

M(0)
� (t0)

2�+ 1
=

∫ t0

tin

dt e−κ(t0,t)
[
ik(� +�+ κ̇V (b))α(10)

� (x)

+ κ̇
(
M(0)

0 α
(00)
� (x)+ 1

10

[
M(0)

2 −
√

6E (0)2

]
α
(20)
� (x)

) ]
, (5.151)
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M(±1)(t0,n) =
∑
�

(−i)�
√

4π(2�+ 1)Y�m(n)
∫ t0

tin

dt e−κ(t0,t)

×
[
− ik√

3
σ±α

(2 ±1)
� (x)+ κ̇V (b)± α(1 ±1)

� (x)

+ κ̇

10

[
M(±1)

2 −
√

6E (±1)
2

]
α
(2 ±1)
� (x)

]
, (5.152)

M(±1)
� (t0)

2�+ 1
=

∫ t0

tin

dt e−κ(t0,t)
[
− ik√

3
σ±α

(2 ±1)
� (x)+ κ̇V (b)± α

(1 ±1)
� (x)

+ κ̇
10

[
M(±1)

2 −
√

6E (±1)
2

]
α
(2 ±1)
� (x)

]
, (5.153)

M(±2)(t0,n) =
∑
�

(−i)�
√

4π(2�+ 1)Y�m(n)
∫ t0

tin

dt e−κ(t0,t)

×
[

1√
3
kḢ±2 + κ̇

10

[
M(±2)

2 −
√

6E (±2)
2

]]
α
(2 ±2)
� (x), (5.154)

M(±2)
� (t0)

2�+ 1
=

∫ t0

tin

dt e−κ(t0,t)
[

1√
3
kḢ±2 + κ̇

10

[
M(±2)

2 −
√

6E (±2)
2

]]
α2 ±2
� (x).

(5.155)

Equivalently, introducing Eq. (5.149) in Eq. (5.147) we obtain

E (m)(t0,n)± iB(m)(t0,n)
= −

√
6

∑
�

(−i)�
√

4π(2�+ 1) ±2Y�m(n)

×
∫ t0

tin

dt e−κ(t0,t)
κ̇

10

(
M(m)

2 −
√

6E (m)2

) (
ε
(2m)
� (x)± iβ(2m)� (x)

)
, (5.156)

E (m)� (t0,n)± iB(m)� (t0,n)
2�+ 1

= −
√

6
∫ t0

tin

dt e−κ(t0,t)
κ̇

10
(M(m)

2 −
√

6E (m)2 )
(
ε
(2m)
� (x)± iβ(2m)� (x)

)
. (5.157)

Taking the sum and the difference of the last equation we obtain

E (m)� (t0,n)
2�+ 1

= −
√

6
∫ t0

tin

dt e−κ(t0,t)
κ̇

10
(M(m)

2 −
√

6E (m)2 )ε
(2m)
� (x), (5.158)

B(m)� (t0,n)
2�+ 1

= −
√

6
∫ t0

tin

dt e−κ(t0,t)
κ̇

10
(M(m)

2 −
√

6E (m)2 )β
(2m)
� (x). (5.159)
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Fig. 5.4 The functions �2|α(00)
� |2 (top), �2|α(10)

� |2 (middle), and �2|α(20)
� |2

(bottom) are shown as function of � for fixed x = 100. These are the kernels
relevant for the scalar temperature anisotropies. Their amplitude and shape deter-
mine how strongly the corresponding source terms influence the final anisotropy
spectrum.

The fact that the scalar B-mode, B(0)� , vanishes is now a consequence of
β(20) = 0.

To have some insight into the kernels α(ij)� , ε(ij)� and β(ij)� , we plot them in
Figs. 5.4–5.7 as functions of � for fixed x = k(t0− t) = 100. They are all peaked at
� � x. For temperature anisotropies this peak is strongest for the tensor kernel α(22).
The kernel that dominates scalar temperature anisotropies by a factor of nearly 10
is α(00), which comes from the free streaming of density fluctuations on the last
scattering surface and therefore is responsible for the acoustic peaks. The kernel
α(10) that multiplies the ordinary and integrated Sachs–Wolfe terms and the Doppler
term is significantly lower and somewhat less strongly peaked. Finally, the kernel
α(20) that couples to polarization has a narrow peak at � � x and a lower, broader
one around � � x/2. The decay of all kernels for � > x is very rapid.

The kernel α(21) that couples vector perturbations to polarization and to the
gravitational vector modes is smaller and less strongly peaked than α(11), which
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Fig. 5.5 The functions �2|α(11)
� |2 (top), �2|α(21)

� |2 (middle), and �2|α(22)
� |2 (bot-

tom) are shown as functions of � for fixed x = 100. These are the kernels relevant
for vector, α(11)

� and α(21)
� , and tensor, α(22)

� , temperature anisotropies.

couples to the vector-type Doppler term. Finally, tensor temperature anisotropies
have only one kernel, α(22), for their coupling to both the gravitational term and
polarization.

Considering the polarization kernels ε(ij)� and β(ij)� shown in Figs. 5.6 and 5.7,
it is interesting to note that the vector B-kernel, β(21)

� , is nearly eight times larger
than the tensor one. For E-polarization, the situation is reversed. Hence, vector
perturbations are very effective in generating B-polarization, while tensor pertur-
bations generate somewhat more E- than B-polarization. Summing up the relevant
contributions one finds for x = k(t0 − t)� 1,∑

� �
2|β(2m)� |2∑

� �
2|ε(2m)� |2

�
{

6 for m = ±1
8
13 for m = ±2.

(5.160)

The scalar polarization kernel, ε(20) = α(22), is the highest of all polarization
kernels. As we have already mentioned, however, scalar perturbations generate no
B-polarization at all.
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Fig. 5.6 The functions �2|ε(21)
� |2 (top) and �2|ε(22)

� |2 (bottom) are shown as
functions of � for fixed x = 100. These are the kernels relevant for E-polarization
of vector and tensor modes respectively. Since �2|ε(20)

� |2 = �2|α(22)
� |2 this kernel

for scalar E-polarization is not replotted. Note that the vector E-polarization
kernel is very small and the scalar kernel is still about a factor of 5 larger than
the tensor kernel.

Exercises

5.1 Relation to Chapter 4
Using the expressions for spherical harmonics from Appendix 4, Section
A4.2.3 and our definitions of M(T )±

� and M(V )±
� given in Eqs. (4.149) and

(4.133) and (4.134) in Chapter 4 show that

M(0)
� = (2�+ 1)M(S)

�

M(±1)
� = i

√
�(�+ 1)

[
M(V ±)

�+1 +M(V ±)
�−1

]
, (5.161)

M(±2)
� = . . .M(T ±). (5.162)

Hint: For Eq. (5.161) use the recurrence relation (A4.20) to relate the
Legendre functions P� 1 to Legendre polynomials.
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Fig. 5.7 The functions �2|β(21)
� |2 (top) and �2|β(22)

� |2 (bottom) are shown as
functions of � for fixed x = 100. These are the kernels relevant for B-polarization
of vector and tensor modes respectively. Note that the vector B-polarization kernel
is much larger than the tensor one. This is the opposite of what we find for
E-polarization.

5.2 Free streaming
Show Eq. (5.122) by using the representation of spherical harmonics as
matrix elements, sY�m =

√
(2�+ 1)/4πD(�)∗m−s , the Clebsch–Gordan series,

D(1) ⊗ D(�) = D(�−1) ⊕ D(�) ⊕ D(�+1), and the corresponding Clebsch–
Gordan coefficients for the basis transformation given in Table A4.1.

5.3 Tensors in two dimensions
Show that an arbitrary tensor field on the plane (flat 2d space) can be
written in terms of four functions, α, γ, ε, β; two scalars; and two pseudo-
scalars as follows:

Tab = αδab + γ εab +
(
∂a∂b − 1

2
δab�

)
ε + 1

2

(
εca∂

c∂b + εcb∂c∂a
)
β.

(5.163)
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Here εab is the totally antisymmetric tensor in two dimensions.

(1) Express the functions α to β in terms of the components of Tab.
(2) Show that α and ε are scalars (i.e., even under parity) while γ and β

are pseudo scalars (i.e., odd under parity).
(3) As the polarization Pab is symmetric and traceless, it is of the form(

∂a∂b − 1

2
δab�

)
ε + 1

2

(
εca∂

c∂b + εcb∂c∂a
)
β. (5.164)

Show that in the flat sky approximation �2ε = E and �2β = B.

Hint: Use Eqs. (5.24) and (5.25).

5.4 E- and B-polarization in real space
Using �x + i�y = �eiϕ� derive the following relation between e,b and Q,U
in real space:

e(x) = ∇−2(∂2
x − ∂2

y )Q(x)+∇−22∂x∂yU(x), (5.165)

b(x) = ∇−2(∂2
x − ∂2

y )U(x)−∇−22∂x∂yQ(x). (5.166)
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Non-Gaussianities

6.1 Introduction

In Chapter 3 we have seen that inflationary models introduce not only Gaus-
sian fluctuations that are fully described by the power spectrum, but also non-
Gaussianities that lead to a bispectrum (or trispectrum, i.e., reduced 4-point
function and higher N -point functions). Even though for single-field slow roll
inflation these deviations from Gaussianity are usually very small, this is not the
case for inflationary phases that deviate from slow roll [see, for example, Senatore
et al. (2010); Renaux-Petel (2013)] or inflationary models that involve several
scalar fields as discussed, for example, in Mazumdar and Wang (2012) and
Achucarro et al. (2014).

Under linear evolution, a Gaussian field or a collection of Gaussian fields
remains Gaussian. In other words, if ζ(k,tin) is Gaussian then, for a deterministic
transfer function TX(k,t), the variable X given by

X(k,t) = TX(k,t)ζ(k,tin) (6.1)

is also Gaussian. Therefore, within linear perturbation theory all variables remain
(nearly) Gaussian if ζ(k,tin is (nearly) Gaussian. However, gravitational clustering
is nonlinear, that is, the value of a given variable, for example, �(k,t) depends
not only on �(k,tin) but also on �(k1,tin)�(k2,tin) and higher powers. Therefore,
once we go beyond linear perturbation theory, perturbations become non-Gaussian
as the product of two Gaussian variables is non-Gaussian. In this chapter we give
a brief introduction to non-Gaussianities in Fourier space and on the sphere. The
prerequisite for this chapter is Appendix 7, of which we make full use here.

There are many ways to determine non-Gaussianity. Weak non-Gaussianities are
often characterized by higher order correlators, the reduced N -point correlation
functions, which are defined as the remainder after subtraction of the Gaussian
piece given by Wick’s theorem; see Appendix 7. But also other characteristics such

244
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as, for example, Minkowski functionals [see, for example, Schmalzing and Gorski
(1998)] can be used.

We shall mainly concentrate on the bispectrum, that is, the 3-point function in
Fourier space and on the sphere and mention further characteristics at the end of
the chapter.

6.2 The Bispectrum in Fourier Space

As already introduced in Chapter 3, the 3-point function in Fourier space is of
the form

〈X(k1)X(k2)X(k2)〉 = (2π)3δ(k1 + k2 + k3)BX(k1,k2,k3), (6.2)

where ki = |ki |. The function BX(k1,k2,k3) is called the bispectrum of the vari-
able X. The Dirac−δ is a consequence of statistical homogeneity. It implies that B
is well defined only if the ki can be connected into a closed triangle, for example,

|k1 − k2| ≤ k3 ≤ k1 + k2 (6.3)

It is easy to verify that if the triangle inequality holds for one combinations of
the ki’s it holds for all. The fact that B depends only on the norm of the ki is a
consequence of statistical isotropy.

If X is a dimensionless function in real space, its Fourier transform has dimen-
sion L3 so that B has dimension L6. One often defines the dimensionless “shape
function” SX(k1,k2,k3) by [see Liguori et al. (2010) and Lazanu et al. (2016)]

SX(k1,k2,k3) = α(k1k2k3)
2BX(k1,k2,k3) (6.4)

The normalization constant α is chosen such that SX(k,k,k)= 1, if S is scale
invariant. Otherwise this normalization can be chosen for some characteristic
scale kc. Another possibility is to replace the factor (k1k2k3)

2 by some f (kt ) where
kt = k1 + k2 + k3. Often S is separable or a sum of a small number of separable
terms, that is, terms of the form A1(k1)A2(k2)A3(k3) + 5 perms. We have to add
the five permutations of the first term. As we shall see in the next section, this
simplifies the calculation of the bispectrum on the sphere considerably. Note,
however, that even though SX is dimensionless, it still usually depends not only on
the shape of the triangle k1,k2,k3 but also on its size. Typically there are scales in
the bispectrum like, for example, keq, the equality scale that enters in the power
spectrum or some nonlinearity scale knl.

Scale invariant bispectra can be classified by the shape of the triangle for which
they are maximal. Let us describe some frequently obtained scale-invariant shapes.
We present the trivial or constant shape that gives the same weight to every triangle,
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Fig. 6.1 We show a squeezed triangle (left), an equilateral triangle (middle), and
a flattened triangle (right).

the squeezed or local shape, the equilateral shape, the orthogonal shape, and the
flattened shape. They are defined as

S(const)(k1,k2,k3) = 1 (6.5)

S(local)(k1,k2,k3) = 1

3

(
k2

1

k2k3
+ k2

2

k1k3
+ k2

3

k2k1

)
(6.6)

S(equi)(k1,k2,k3) = (k1 + k2 − k3)(k2 + k3 − k1)(k3 + k1 − k2)

k1k2k3
(6.7)

S(ortho)(k1,k2,k3) = −3k3
1 + 3(k2

1 − (k2 − k3)
2)(k3 + k2)

k1k2k3

+ 3k2
3 + k2(3k2 − 8k3)

k2k3
(6.8)

S(flat)(k1,k2,k3) = (k2
1 + k2

2 + k2
3)

3

27(k1 + k2 − k3)2(k2 + k3 − k1)2(k3 + k1 − k2)2
. (6.9)

Even though it is not evident at first sight, also S(ortho)(k1,k2,k3) is symmetric in
its three arguments. The triangles for which the local, equilateral, and flat shape
functions are maximal are shown in Fig. 6.1.

The normalization of the shape functions is chosen such that S(k,k,k)= 1. An
important point of many shape functions is that they all can be written as a sum of
several functions of the form X(k1)Y (k2)Z(k3). In the above examples all except
the flat shape are of this form. As we shall see in the next section, for shape func-
tions of separable type, the calculation of the CMB bispectrum is numerically quite
light. In the text that follows we shall discuss a so-called local non-Gaussianity and
we shall find that its bispectrum is maximized for the squeezed shape, which we
therefore also call the local shape.

In Fig. 6.2 we see that the local shape is maximal when x = k1/k3 → 0 or
y = k2/k3 → 0 (as we have fixed k3 to 1). The equilateral and the orthogonal
shapes are maximal when k1 � k2 � k3, which means x � y � 1 in our plot. But
the orthogonal shape is negative close to the diagonal while the equilateral shape
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Fig. 6.2 We show the squeezed shape function (top left), the equilateral shape
function (top right), the orthogonal shape function (bottom left), and the log of the
flattened shape function (bottom right) as functions of x = k1/k3 and y = k2/k3.

is positive definite. The flattened shape is maximal on the diagonal x + y � 1 and
even larger at the edges when x → 0 or y → 0. The exact values x,y ∈ {0,1}
and y = 1− x are removed in the plots, since our shapes diverge in some of these
points (see Fig. 6.2).

The aforementioned shapes are not the only possible ones. Furthermore, they are
not all orthogonal to each other in any sense. We can introduce a positive definite
scalar product,

〈S1,S2〉 =
∫
V

S1(k1,k2,k3)S2(k1,k2,k3)w(k1,k2,k3)dk1dk2dk3, (6.10)

where V is a suitably chosen region within which |k1 − k2| ≤ k3 ≤ k1 + k2 so
that the shape functions Si are well defined and w is some positive definite weight
function. Clearly for all choices the above defined local, equilateral, and flat shapes,
are not orthogonal to each other, since they are positive definite functions in their
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domain of definition, leading to positive integrals. However, the orthogonal shape
has been constructed to be orthogonal to the equilateral one w.r.t. a dimensionless
scalar product with weight (k1k2k3)

−1 defined in Senatore et al. (2010). The space
of shape functions is infinite dimensional. In this sense, the above defined functions
are simply examples that are relevant in the applications that we shall now discuss.

6.2.1 The Local Bispectrum

We consider a special but often encountered case, which we call a “local” non-
Gaussianity. Here we assume that at some given time, for example, after inflation,
the Bardeen potential is given by

�(x) = �G(x)+ fnl
(
�2
G(x)− 〈�2

G〉
)
, (6.11)

where we assume that �G is a Gaussian field with vanishing mean. The last term
ensures that the fluctuation � has vanishing mean. The non-Gaussianity comes
from the local square �2

G(x) and the subscript nl indicates nonlinear. Let us deter-
mine the bispectrum in this case.

The 3-point function is given by

ξ3(x1,x2,x3) = 〈�(x1)�(x2)�(x3)〉
= fnl [〈�G(x1)�G(x2)〉〈�G(x1)�G(x3)〉+ �]+O(f 2

nl)

= fnl [ξ2(r12)ξ2(r13)+ ξ2(r21)ξ2(r23)+ ξ2(r31)ξ2(r32)]+O(f 2
nl).
(6.12)

Here ξ2 is the 2-point function of the Gaussian variable �G and we have used
Wick’s theorem (A7.8). The symbol+ � indicates that the two cyclic permutations
have to be added. We neglect terms higher order in fnl since we assume � to be
small so that first-order perturbation theory is valid. As we know, this is a very
good approximation, since the amplitude of� measured in the CMB is of the order
of 10−5.

Fourier transforming Eq. (6.12) we find

B�(k1,k2,k3) = fnl
[
P�G(k1)P�G(k2)+ �

]
. (6.13)

Approximating P�G(k) ∝ k−3 we obtain exactly the local shape function S(local)

(k1,k2,k3) given in Eq. (6.6), as already anticipated. In the matter-dominated Uni-
verse, using ζ = (5/3)� we can convert this into a relation for ζ ,

ζ(x) = ζG(x)+ 3

5
fnl

(
ζ 2
G(x)− 〈ζ 2

G〉
)
, (6.14)
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which implies

B
(local)
ζ (k1,k2,k3) = 3

5
fnl

[
PζG(k1)PζG(k2)+ �

]
(6.15)

= 9(2π2As)
2fnl

5

S(local)(k1,k2,k3)

(k1k2k2)2
. (6.16)

The small non-Gaussianity that we have found for single-field slow roll inflationary
models, Eq. (3.108) is not of this form. However, we can write its shape function as

S(inf)(k1,k2,k3) = α
[−3(ns − 1)S(local) + ε(S(equi) + 2S(const) + 2T )

]
where (6.17)

T (k1,k2,k3) = 4(k2
1k

2
2 + k2

1k
2
3 + k2

2k
2
3)− kt (k3

1 + k3
2 + k3

3)

k1k2k3kt
(6.18)

(remember, kt = k1 + k2 + k3). The detailed form of S(inf) is not so relevant, but it
is important that S(equi), S(const) and T all remain finite when one of the ki → 0 as
one can check easily. If we go to this “squeezed” limit, k1 ∼ k2 = k � k3 = q,
S(local), which diverges when q → 0 dominates the other contributions and we find
[see also Eq. (3.124)]

Binf(k,k,q) � −(ns − 1)
[
PζG(k)PζG(q)+ �

]
. (6.19)

On the other hand, a local non-Gaussianity of ζ becomes

Bζ (k,k,q) � 3

5
fnl

[
PζG(k)PζG(q)+ �

]
. (6.20)

Hence in the squeezed limit the single-field inflationary bispectrum looks like a
local bispectrum with

f
(inf)
nl = −5

3
(ns − 1). (6.21)

With the presently measured ns − 1 ∼ −0.04, this number is much too small to be
measured in any near future CMB or large-scale structure experiment.

One can now introduce fnl parameters also for other shapes, not only the local
one. For this we write the bispectrum as

B
(shape)
ζ (k,k,k) = 9

5
f
(shape)
nl P 2

ζ (k) (6.22)

B
(shape)
ζ (k1,k1,k3) = 1

α(k1k2k3)2
S
(shape)
ζ (k1,k1,k3). (6.23)

The parameters f (local)
nl , f (equi)

nl , and f (ortho)
nl have been constrained with CMB

experiments (see Table 9.3).
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6.2.2 Nonlinearities

Contrary to General Relativity, when considering Newtonian gravity only, it is quite
simple to go to higher order in perturbation theory and one finds at second order
for the density perturbations of a pressureless fluid [see, for example, Bernardeau
et al. (2001)]

D(2)(k,t) = 1

(2π)3

∫
d3qF2 (q,k− q)D (q,t)D (k− q,t) , (6.24)

where

F2(q1,q2) = 5

7
+ 1

2

q1 · q2

q1q2

(
q1

q2
+ q2

q1

)
+ 2

7

(
q1 · q2

q1q2

)2

. (6.25)

To convert Eq. (6.24) into an equation for the gravitational potential we use the
Poisson equation,

�(k,t) = −4πGa2ρmD(k,t)/k2 = −3

2

�mH
2
0

k2
(1+ z)D(k,t). (6.26)

Here �m denotes the matter density parameter today and we have used ρm(t) =
ρm(t0)(1+ z)3. ReplacingD andD(2) by� and�(2) in Eq. (6.24) using Eq. (6.26),
we obtain

�(2)(k,t) = −2

3�mH 2
0 (1+ z)

1

(2π)3 k2

∫
d3qq2(k− q)2

× F2 (q,k− q)� (q,t) � (k− q,t) . (6.27)

Inserting this expression in the bispectrum for

�(tot) = � +�(2) (6.28)

we obtain at tree level1 (suppressing the time variable in � for clarity)

〈�(tot)(k1)�
(tot)(k2)�

(tot)(k3)〉 = 〈�(2)(k1)�(k2)�(k3)〉+ � (6.29)

= −2

3�mH 2
0 (1+ z)

1

(2π)3 k2
1

∫
d3qq2(k1 − q)2

× F2 (q,k1 − q) 〈�(q)�(k1 − q)�(k2)�(k3)〉+ � . (6.30)

Applying Wick’s theorem on the 4-point correlator of the Gaussian field �,
we obtain

1 This means when inserting only one �(tot) = �(1) +�(2) and two �(1) ≡ � that we assume to be Gaussian.
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〈�(tot)(k1)�
(tot)(k2)�

(tot)(k3)〉 = −4

3�mH 2
0 (1+ z)

(2π)3 δ(k1 + k2 + k3)

×
[
k2

2k
2
3

k2
1

F2 (k2,k3) P�(k2)P�(k3)+ �
]

. (6.31)

For the bispectrum this implies

B
(nl)
� (k1,k2,k3) = −4

3�mH 2
0 (1+ z)

[
k2

2k
2
3

k2
1

F2 (k2,k3) P�(k2)P�(k3)+ �
]

. (6.32)

Note that k2 · k3 = (k2
1 − k2

2 − k2
3)/2 so that the bispectrum truly only depends on

the moduli ki . More precisely,

F2 (k2,k3) ≡ F2(k2,k3;k1)

= 5

7
+ 1

4

k2
1 − k2

2 − k2
3

k2k3

(
k2

k3
+ k3

k2

)
+ 1

14

(k2
1 − k2

2 − k2
3)

2

k2
2k

2
3

. (6.33)

In this case, the term in brackets of Eq. (6.32) does not have dimension L6 but
only L4, since the prefactor is dimensionful. Let us study also the squeezed limit
for this bispectrum.

For k1 = q � k2 � k3 = k F2(k2,k2;q) → 3q2

14k2
+O(q4). (6.34)

Hence in the squeezed limit

B
(nl)
� (q,k,k) �

−2

7�mH 2
0 (1+ z)

k2P 2
�(k). (6.35)

Most importantly, nonlinearities are not enhanced in the squeezed limit, which
makes the prospect for detecting primordial non-Gaussianities of the local type
better.

6.3 The CMB Bispectrum

The bispectrum on the sphere is given by the 3-point correlator of the temperature
fluctuations,

�T

T
(n) =

∑
�m

a�mY�m(n). (6.36)

Like for the bispectrum in Fourier space, for perfectly Gaussian initial condition
the bispectrum vanishes to first order in perturbation theory. We want to study the
effects of a primordial non-Gaussianity and of nonlinear evolution on the bispec-
trum in the CMB.
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Spherical isotropy implies that the 3-point function

ξ3(n1,n2,n3) =
〈
�T

T
(n1)

�T

T
(n2)

�T

T
(n3)

〉
(6.37)

depends only on the direction cosines μij = ni · nj . Expanding this dependence in
Legendre polynomials we have

ξ3(n1,n2,n3) =
∑
�1�2�3

b
(2)
�1�2�3

P�1(μ12)P�2(μ23)P�3(μ31). (6.38)

On the other hand, using the expansion (6.36) we can determine the 3-point
function in terms of the expectation values of three expansion coefficients,

ξ3(n1,n2,n3) =
〈
�T

T
(n1)

�T

T
(n2)

�T

T
(n3)

〉
=

∑
�1�2�3
m1m2m3

〈a�1m1a�2m2a�3m3〉Y�1m1(n1)Y�2m2(n2)Y�3m3(n3). (6.39)

The product of three a�m’s forms an invariant tensor and is therefore proportional
to the Wigner 3J symbol; see Appendix 4, Section A4.2.5〈

a�1m1a�2m2a�3m3

〉 = G�1�2�3
m1m2m3

b�1�2�3 (6.40)

=
(
�1 �2 �3

m1 m2 m3

)
B�1�2�3 . (6.41)

Equation A4.66 gives the relation between b�1�2�3 and B�1�2�3 :

B�1�2�3 =
√∏3

i=1(2�i + 1)

4π

(
�1 �2 �3

0 0 0

)
b�1�2�3 . (6.42)

The quantity b�1�2�3 is called the reduced bispectrum. It is related to b(2)�1�2�3
via (see

Exercise 6.2)

b�1�2�3 =
∑
Li

Q
L1L2L3
�1�2�3

b
(2)
L1L2L3

where (6.43)

Q
L1L2L3
�1�2�3

= (4π)3
(
�1 �2 �3

0 0 0

)−1 ∑
mi ;Mi

(
�1 �2 �3

m1 m2 m3

)

×
3∏
i=1

(
�i Li L[i−1]

0 0 0

) (
�i Li L[i−1]

mi Mi M[i−1]

)
. (6.44)
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Here [i − 1] = i − 1 if i > 1 and [i − 1] = i − 1+ 3 = 3 for i = 1. The reduced
bispectrum b�1�2�3 contains all the relevant, (that is, coordinate independent) infor-
mation about the non-Gaussianity at order ζ 3.

Let us consider an inflationary model that generates some arbitrary primordial
bispectrum,

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ(k1 + k2 + k3)Bζ (k1,k2,k3). (6.45)

We want to determine the bispectrum b�1�2�3 induced in the CMB by this non-
Gaussianity within linear perturbation theory. For this we remember that in full
generality we can write

�T

T
(n) = 1

(2π)3

∫
d3kT (k,n)ζ(k),

a�m = 1

(2π)3

∫
d3kd�nT (k,n)Y ∗�m(n)ζ(k). (6.46)

Here T (k,n) is the linear transfer function for CMB anisotropies. Considering, for
example, expression (2.240), which neglects Silk damping, we find

T (k,n) =
[

1

4
TD + (̂k · n)TV + T� + T�

]
exp(ikn(t0 − tdec))

+
∫ t0

tdec

dt (Ṫ�(k,t)+ Ṫ�(k,t) exp(ikn(t0 − t)). (6.47)

Here TD is the transfer function of the radiation density fluctuation D(r)g , TV is the
transfer function of the velocity potential, and T� and T� are the transfer functions
of the Bardeen potentials, and all the transfer functions in the square bracket are to
be evaluated at k and t = tdec. In a matter dominated universe, the transfer functions
of the Bardeen potentials are simply 3/5. Of course a much more accurate transfer
function can be obtained from the numerical public codes class (Lesgourgues,
2011; Blas et al., 2011) or CAMB (Lewis et al., 2000), which include also Silk
damping and polarization. The equations that we derive here can also be derived for
the bispectrum of polarization and mixtures of polarization and temperature. The
only difference is that the transfer function has to be modified. Furthermore, since
B-polarization has the opposite parity of E-polarization and of temperature, only
an even number of a(B)�m can lead to a nonvanishing result. For simplicity, we present
the explicit derivations here only for the temperature anisotropy, a(M)

�m ≡ a�m.
Note that the transfer functions depend on k and n only via k and μ = k̂ · n.

This is simply a consequence of statistical isotropy. Writing the μ dependence of
the transfer function in terms of Legendre polynomials we can write
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T (k,n) =
∑
�

(−i)�(2�+ 1)T (k,�)P�(μ). (6.48)

The prefactor (−i)�(2� + 1) is a pure convention; we have chosen it to simplify
future formulae and to agree with the convention of Liguori et al. (2010). We use
this and the addition theorem of spherical harmonics to perform the n-integral in
Eq. (6.46) with the result

a�m = 4π(−i)�
∫

d3k

(2π)3
T (k,�)Y ∗�m(̂k)ζ(k). (6.49)

In terms of the transfer function T (k,�) the CMB power spectrum becomes

C� = 〈a�ma∗�m〉 =
2

π

∫
dk k2 |T (k,�)|2 Pζ (k). (6.50)

We now use Eq. (6.49) to determine the CMB bispectrum in terms of the one for ζ .
For the expectation value of three expansion coefficients we obtain

〈
a�1m1a�2m2a�3m3

〉 = (4π)3(−i)�1+�2+�3

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
T (k1,�1)T (k2,�2)

× T (k3,�3)Y
∗
�1m1
(̂k1)Y

∗
�2m2
(̂k2)Y

∗
�3m3
(̂k3)〈ζ(k1)ζ(k2)ζ(k3)〉

(6.51)

= (4π)3(−i)�1+�2+�3

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3

× T (k1,�1)T (k2,�2)T (k3,�3)Y
∗
�1m1
(̂k1)Y

∗
�2m2
(̂k2)Y

∗
�3m3
(̂k3)

× Bζ (k1,k2,k3)(2π)
3δ(k1 + k2 + k3).

To simplify this formula we use the fact that the Dirac delta is the Fourier transform
of (2π)−3. More precisely,

(2π)3δ(k1 + k2 + k3) =
∫
d3x exp (i(k1 + k2 + k3) · x).

Here x is just some dummy integration variable with units of length. Furthermore,
we use Eq. (2.259),

eikix =
∞∑
�=0

(2�+ 1)i�j�(kix)P�(k̂i · x̂) = 4π
∑
�m

i�j�(kix)Y�m(k̂i)Y ∗�m(̂x) ,

where x = |x| and x̂ = x/x. In the second sum � still goes from 0 to ∞ while for
each �, m goes from −� to �. The integral d�k̂i then simply yields δ� �i δmmi and
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the integral over the directions of x is a Gaunt integral [see Eq. (A4.66)] so that
we obtain〈
a�1m1a�2m2a�3m3

〉 = (
2

π

)3

Gm1m2m3
�1�1�3

∫ ∞

0
dxx2

×
∫ ∞

0
dk1

∫ ∞

0
dk2

∫ ∞

0
dk3

[
3∏
i=1

k2
i T (ki,�i)j�i (kix)

]
Bζ (k1,k2,k3).

(6.52)

In terms of the dimensionless shape function

Sζ (k1,k2,k3) = α (k1k2k3)
2Bζ (k1,k2,k3)

we can write the CMB bispectrum as

b�1�2�3 =
1

α

(
2

π

)3 ∫ ∞

0
dx x2

∫ ∞

0
dk1

∫ ∞

0
dk2

∫ ∞

0
dk3

×
[

3∏
i=1

T (ki,�i)j�i (kix)
]
Sζ (k1,k2,k3). (6.53)

This quantity is well defined when the �i’s satisfy the triangle inequality, |�1−�2| ≤
�3 ≤ �1 + �2, and when the sum �1 + �2 + �3 is even. Otherwise the Gaunt integral
that multiplies b�1�2�3 vanishes. To see that also the ki satisfy the triangle inequality
one has to perform the x-integration. Let us, without loss of generality, assume that
k3 is the largest of the three wave numbers, k3 ≥ k1 and k3 ≥ k2. If the triangle
inequality is violated, k3 > k1 + k2, one then can show that the x-integral of the
three spherical Bessel functions vanishes by using the first of the integrals 6.578 in
Gradshteyn and Ryzhik (2000) (Mathematica cannot perform this integral.).

6.3.1 Separable Shapes

In most of the applications so far, the shape function has been a sum of a few
separable terms of the form

Sζ (k1,k2,k3) ∝ X(k1)Y (k2)Z(k3)+ perms. , (6.54)

where we have in general to add all six permutations of the three wave numbers.
In this case, Eq. (6.53) reduces to the x-integral of three one-dimensional integrals.
Setting

X�(x) = 2

π

∫ ∞

0
dkT (k,�)j�(kx)X(k) (6.55)
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Y�(x) = 2

π

∫ ∞

0
dkT (k,�)j�(kx)Y (k) (6.56)

Z�(x) = 2

π

∫ ∞

0
dkT (k,�)j�(kx)Z(k), (6.57)

we have

b�1�2�3 =
1

α

∫ ∞

0
dxx2X�1(x)Y�2(x)Z�3(x) + perms. (6.58)

This is numerically a very tractable problem and is relevant for many cases of
interest.

6.3.2 Simple Examples

Here we study some examples in the low � regime where we consider adiabatic per-
turbations and concentrate on the Sachs–Wolfe contribution given in Eq. (2.257),
without loss of generality we set x0 = 0,

�T

T
(n) � 1

3
�(−(t0 − tdec)n) = 1

5
ζ(−(t0 − tdec)n) (6.59)

= 1

5

∫
d3k

(2π)3
exp(−ink(t0 − tdec))ζ(k); hence (6.60)

T (k,n) = 1

5
exp(−ink(t0 − tdec)) (6.61)

= 1

5

∑
�

(−i)�(2�+ 1)j�(k(t0 − tdec)P�(μ) and (6.62)

T (k,�) = 1

5
j�(k(t0 − tdec). (6.63)

For the last equals sign we make use of the definition (6.48).

The Constant Shape

Let us first consider a constant bispectrum, Sζ =constant. We can choose X(k) =
Y (k) = Z(k) = 1 so that

X�(x) = 2

5π

∫ ∞

0
dkj�(k(t0 − tdec)j�(kx) (6.64)

=
1
5z
�+1/2

√
x(t0 − tdec)

1

2�+ 1
where z = min

{
x

t0 − tdec
,
t0 − tdec

x

}
.
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The integral of x2X�1(x)X�2(x)X�3(x) over x now becomes elementary with the
result

b�1�2�3 =
Sζ

125α

(
1

�1 + �2 + �3
+ 1

�1 + �2 + �3 + 3

) 3∏
i=1

1

2�i + 1
. (6.65)

This result has been derived in Fergusson and Shellard (2009). Note the scaling of
b�1�2�3 ∝ �−4. This bispectrum is maximized at small �′s, while the ratio

b���

C2
�

(6.66)

remains roughly constant. But of course our result is valid only at low �<∼ 100.

The Local Shape

Next we consider the local shape with (6.6)

S(k1,k2,k3) = 1

3

(
k2

1

k2k3
+ k2

2

k1k3
+ k2

3

k2k1

)
. (6.67)

To calculate b�1�2�3 we need the two integrals (A4.149) and (A4.151), which yield

2

π

∫
dkk2j�(kx)j�(k(t0 − tdec) = δ(x − t0 + tdec)

(t0 − tdec)2
(6.68)∫

dk

k
j�(k(t0 − tdec))j�(k(t0 − tdec)) = 1

2

1

�(�+ 1)
(6.69)

From Eq. (6.15) we infer also that α = (9fnl/5)−1 so that finally

b�1�2�3 =
3fnl(2π2As)

2

4× 54

[
1

�1(�1 + 1)�2(�2 + 1)
+ �

]
. (6.70)

Also this bispectrum behaves like �−4. Each of the terms is maximized when two
�’s are small while the third is arbitrary, but it has to be chosen such that (�1,�2�3)

satisfy the triangle inequality; otherwise the prefactor Gm1m2m3
�1�2,�3

vanishes.

6.3.3 General Remarks and Nonseparable Shapes

The scaling �−4 ∝ C2
� is a direct consequence of the scaling k−6 ∝ P 2

ζ of the
scale-invariant bispectrum in Fourier space and is model and shape independent.
In Exercise 6.4 you will find the same scaling also for the equilateral shape. It also
holds for nonseparable shapes at low �’s as long as B(k1,k2,k3) is scale invariant.

To calculate the full bispectrum one has to use one of the public codes class or
CAMB to determine the full transfer functions T (k,�), which then are numerically
integrated to obtain X�(x), Y�(x), and Z�(x) for each term in the sum of separable
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shapes. The resulting product, x2X�1(x)Y�2(x)Z�3(x), is then integrated over x to
obtain the bispectrum. One is allowed to integrate over all values of the ki because
in principle, the integral over x takes care of the triangle inequality |k1−k2| ≤ k3 ≤
k1 + k2. However, depending on the form of X(k), the k-integral from 0 to infinity
may not exist and so for numerical integration one is advised to integrate only over
the tetrahedron that satisfies the triangle inequality in k-space.

For a nonseparable shape like T of the inflationary bispectrum [see Eq. (6.18)]
a full 4-dimensional integral dxdk1dk2dk3 has to be performed, which is numer-
ically quite challenging and is usually done employing Monte Carlo techniques.
Another possibility is to expand the k-dependence into separable functions on the
tetrahedron; see Liguori et al. (2010).

6.4 Beyond the Bispectrum

6.4.1 The 4-Point Function and Beyond

Non-Gaussian fluctuations are of course expected not only to have a nontrivial 3-
point function or bispectrum but we typically expect nonvanishing N -point func-
tions at all orders. For even N it is useful to subtract the Gaussian piece, which
leads to the “connected” 2n-point function2 defined by

ξ
(c)
2n (x1, · · · ,x2n) = ξ2n(x1, · · · ,x2n)− 1

2nn!

∑
σ∈S2n

n∏
i=1

ξ(xσ2i−1,xσ2i). (6.71)

The second term is simply the 2n-point function of a Gaussian field according to
Wick’s theorem see Appendix 7. The sum is over all permutations of the numbers
1, . . . 2n and the prefactor divides by the number of permutations leading to the
same pairs (just in different order).

In Fourier space, statistical homogeneity again gives rise to a Dirac delta. The
Fourier transform of the N -point function is

PN(k1, · · ·kN) = BN(k1, · · · ,kN−1) (2π)
3δ

(
N∑
i=1

ki

)
. (6.72)

But now, isotropy no longer determines all the possible angles between the ki once
their moduli are given. For an N -lateral figure the length of its sides determines the
shape completely only if N = 3. Therefore, in addition to the moduli |ki | we need
to know either N − 3 spatial angles (θ,φ) or the length of N − 3 diagonals and

2 Here we commit an abuse of language: the true “connected” part of an N -point function subtracts all possible
lower point functions, while here we subtract only those that appear in the Gaussian case. This is “nearly” the
connected part if our N -point function is nearly Gaussian.
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k1
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k3

k4
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k6

k7

K1

K2

K3

K4

Fig. 6.3 A multilateral figure for the case N = 7.

N − 3 single angles. This is due to the fact that an N -lateral figure can always be
decomposed into N − 2 triangles of which two have only one side in common with
one of the others whileN−4 have two sides in common; see Fig. 6.3. Each triangle
is determined by 3 data (of which at least one has to be a length); this means that
we need 2N − 3 data to determine the shape (and size) of all the triangles. In 3d
space they can be connected to each other at an arbitrary angle that requires another
N − 3 data so that in total we need 3N − 6 data to fully determine the shape (and
size) of an N -lateral figure in 3d space.

The most studied of theN -point correlations functions and spectra withN > 3 is
the 4-point function and the corresponding trispectrum. This is especially important
for the CMB, since the most significant nonlinearity in the CMB comes from
lensing by foreground structures, the topic of Chapter 7. There we shall see that
this nonlinearity does not generate a bispectrum but only a trispectrum. The CMB
trispectrum due to lensing has been measured in the Planck data; see Planck Coll.
VIII (2018).

The simplest “ansatz” leading to a primordial trispectrum is, like for the bispec-
trum, of the form

ζ = ζG + gnl
9

25
ζ 3
G, (6.73)

where we assume ζG to be Gaussian. In this case the bispectrum vanishes at tree
level (the expectation value of a product of five Gaussian variables vanishes), and
the trispectrum is simply given by

B4(k1,k2,k3,k4) = 54

25
gnl

[
Pζ (k1)Pζ (k2)Pζ (k3)+ �

]
, (6.74)
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Fig. 6.4 A possible parameterization of a quadrangle by the length of the sides of
the two triangles formed by its sides and one of the diagonals as well as the angle
θ that defines the inclination of the second triangle w.r.t. to the first.

where � indicates the three permutations where one of the ki 
= k4 is not included
in the product of spectra. The Planck analysis Planck Coll. XVII (2016) has derived
upper limits for gnl.

We can characterize a generic trispectrum B4(k1,k2,k3,k4) by six parameters.
A possibility are the four lengths ki , the length of the diagonal K , and the angle θ
between the two triangles (k1,k2,K) and (k3,k4, −K); see Fig. 6.4.

With this parameterization we can write

B4(k1, · · ·k4;K) =
∞∑
n=0

B
(n)

4 (k1,k2,k3,k4;K)Pn(cos θ). (6.75)

In the text that follows we shall also use the following form for the trispectrum of ζ :

〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉
= (2π)3

∫
d3Kδ(k1 + k2 +K)δ(k3 + k4 −K)B4(k1, · · ·k4;K). (6.76)

Of course there are also other parameterizations possible, for example, in terms
of the lengths ki and the lengths of the two diagonals K and the one connecting
the corners (1,2) and (3,4). We use the one given in Eq. (6.75) because it will
show us that the CMB trispectrum is sensitive only to the n = 0 component of the
primordial trispectrum B4(k1, · · ·k4;K), that is, to the flat, θ = 0, component.

Let us now discuss the CMB trispectrum. Rotation invariance requires that

the function
〈
T (n1)

T

T (n2)

T

T (n3)

T

T (n4)

T

〉
is an invariant function on (S2)4 According to

Eq. (A4.91) we can therefore represent it in the form〈
T (n1)

T

T (n2)

T

T (n3)

T

T (n4)

T

〉
=

∑
T �1�2�3�4|LY�1�2�3�4|L(n1,n2,n3,n4)
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where

T �1···�4|L =
∑
W�1···�4|L
m1...m4

〈a�1m1 · · · a�4m4〉. (6.77)

The previous sum is over all �i and L, while the sum in (6.77) is over themi ,−�i ≤
mi ≤ �i . The generalized Wigner symbols W�1�2�3�4|L

m1...m4
are defined in Appendix 4,

Section A4.2.5; see also Mitsou et al. (2019). For the case of four mi they are
given by

W�1···�4|L
m1...m4

=
∑
M

(−1)L+M
√

2L+ 1

(
�1 �2 L

m1 m2 −M
) (

�3 �4 L

m3 m4 M

)
. (6.78)

As the correlators 〈a�1m1 · · · a�4m4〉 are totally symmetric under permutations of
pairs (�i,mi) , this is also true for permutations of the �i in T �1···�4|L1 . Furthermore,
since Y�m(−n) = (−1)�Y�m(n), parity invariance requests that only even sums

�1+�2+�3+�4 can contribute. In addition, since the 3J symbol

(
�1 �2 L

m1 m2 −M
)

changes by a factor (−1)�1+�2+L under the exchange of, for example, the first
and second column, only terms where also �1 + �2 + L is even can contribute.
Since �1 + �2 + �3 + �4 is even it follows that in this case also �3 + �4 + L
is even. We also note that the generalized Wigner symbols above vanish unless
m1 +m2 +m2 +m4 = 0.

Using the transfer functions (6.48) for the a�m’s we can relate the trispectrum for
ζ to the CMB trispectrum via

〈a�1m1 · · · a�4m4〉c = (4π)4(−i)
∑
�i

∫
d3K

4∏
i=1

[
d3ki

(2π)3
T (ki,�i)Y ∗�imi (̂ki)

]
× (2π)3δ(k1 + k2 +K)δ(k3 + k4 −K)B4 c(k1, · · ·k4;K).

(6.79)

Here the index c indicates that we consider the connected (or irreducible) part of
the trispectra. This means we have subtracted the Gaussian contribution that is a
consequence of Wick’s theorem,

〈a�1m1 · · · a�4m4〉c=〈a�1m1 · · · a�4m4〉
− (−1)m1+m3C�1C�3δ�1�2δ�3�4δ−m1m2δ−m3m4− (−1)m1+m2C�1C�2

× [
δ�1�3δ�2�4δ−m1m3δ−m2m4 + δ�1�4δ�2�3δ−m1m4δ−m2m3

]
. (6.80)

Correspondingly we have subtracted the Gaussian part also from B4 to obtain B4 c.
Since the transformation (6.79) is linear, the connected part of B4 generates only
the connected part of the CMB trispectrum.
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Writing the two Dirac deltas in (6.79) as Fourier transforms w.r.t. two dummy
variables x1 and x2 and decomposing the exponentials as sums of products of
spherical Bessel functions and spherical harmonics like for Eq. (6.52), we obtain

〈a�1m1 · · · a�4m4〉c =
(

2

π

)5

(−i)
∑
�i

∫
d3K

∏
i

[
d3kiT (ki,�i)Y ∗�imi (̂ki)

]
× B4 c(k1, · · ·k4;K)

∑
�′iLL′

(i)
∑
�′i

∑
m′iMM ′

∫
d3x1d

3x2

×
[
j�′1(x1k1)Y�′1m

′
1
(̂k1)Y

∗
�′1m

′
1
(̂x1)

j�′2(x1k2)Y�′2m
′
2
(̂k2)Y

∗
�′2m

′
2
(̂x1)jL(x1K)Y

∗
LM(K̂)YLM(̂x1)

]
×

[
j�′3(x2k3)Y�′3m

′
3
(̂k3)Y

∗
�′3m

′
3
(̂x2)j�′4(x2k4)

Y�′4m
′
4
(̂k4)Y

∗
�′4m

′
4
(̂x2)jL′(x2K)Y

∗
L′M ′(K̂)YL′M ′ (̂x2)

]
. (6.81)

We can now perform the angular integration of x1 and x2 using (A4.66) for the
integration of three spherical harmonics. We may assume that the angle θ on which
the primordial trispectrum B4 depends [see Eq. (6.75)] is the polar angle of k4, θ4.
Then we can also perform the angular integrations of k1 to k3 and K, which just
yield δ�i�′i δmim′i and δLL′δMM ′ . Inserting also the definition of T �1···�4|L and using
Eq. (6.78) we find

T �1···�4|L = h�1�2Lh�3�4L√
2L+ 1

(
2

π

)5 ∫
K2dKx2

1dx1x
2
2dx2jL(Kx1)jL(Kx2)

×
[

4∏
i=1

dkik
2
i T (ki,�i)

]
j�1(k1x1)j�2(k2x1)j�3(k3x2)j�4(k4x4)

× 1

2�4 + 1

∑
m4

∫
d�4B4 c(k1,k2,k3,k4,K,θ4)Y�4m4 (̂k4)Y

∗
�4m4
(̂k4).

(6.82)

Here we have introduced

h�i�jL =
√
(2�i + 1)(2�j + 1)(2L+ 1)

4π

(
�i �j L

0 0 0

)
. (6.83)

Now the sum ∑
m4

Y�4m4 (̂k4)Y
∗
�4m4
(̂k4) = 2�4 + 1

4π
P�4(1) =

2�4 + 1

4π
.
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Therefore in the expansion of B4 c(k1,k2,k3,k4,K,θ4) in Legendre polynomials
(6.75), only the first term, n = 0, contributes a factor 4π ; all other terms vanish.
This shows that only the planar projection, n = 0, of the primordial trispectrum
contributes to the CMB trispectrum. If we want to probe the full 3D configuration of
the trispectrum, we need a 3D dataset. The CMB that provides data on a 2D sphere
cannot probe the 3D nature of the tri- and higher N -spectra. Interestingly, several
of the most common non-Gaussianities, for example, the local non-Gaussianity,
only induce a flat trispectrum. The �4-integral in (6.82) therefore just cancels the
factor (2�4 + 1)−1 and we obtain

T �1···�4|L = h�1�2Lh�3�4L√
2L+ 1

(
2

π

)5 ∫
K2dKx2

1dx1x
2
2dx2jL(Kx1)jL(Kx2)

×
[

3∏
i=1

dkik
2
i T (ki,�i)

]
j�1(k1x1)j�2(k2x1)j�3(k3x2)j�4(k4x4)

× B(0)4 c (k1,k2,k3,k4;K). (6.84)

Like for the bispectrum, one usually defines the reduced trispectrum as

t�1···�4|L =
√

2L+ 1

h�1�2Lh�3�4L

T �1···�4|L, (6.85)

in order to avoid the cumbersome prefactors.
Using the machinery developed in this section and in the appendix, the formulas

(6.77) and (6.84) can be generalized to arbitrary N -spectra. In a more elegant way,
one can immediately expand theN -point functions in terms of the rotation-invariant
functions Y�1···�N |L1···LN−3 defined in Appendix 4, Section A4.2.5. The expansion
coefficients are then exactly the N -spectra. More details about the trispectrum and
how to measure it can be found in Regan et al. (2010).

6.4.2 Minkowski Functionals

For a Gaussian field, the 1- and 2-point statistics contain the full information,
since all N -point statistics are determined by it. For a non-Gaussian field, mea-
suring the N -point functions might not always be the best way to characterize
its statistical properties. Imagine a CMB sky where the temperature fluctuations
are correlated along arbitrarily oriented line segments. The N -point functions may
still be isotropic. Such a lower dimensional arrangement, which certainly is non-
Gaussian, cannot be discovered by simply considering N -point functions. In this
and other cases different statistical tools that directly consider the map �T (n) on
the sphere may be more adapted and informative than N -point functions. Here we
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briefly discuss the Minkowski functionals. They have first been used for the COBE
data of CMB anisotropies by Schmalzing and Gorski (1998). Other interesting
statistics are, for example, the line correlation function; see Obreschkow et al.
(2013) or wavelets; see, for example, Vielva et al. (2004).

Definition 6.1 Minkowski functionals
Let K ⊂ R

d be an open subset with a smooth boundary ∂K and κ1, · · · κd−1 the
d − 1 principal curvatures of ∂K (i.e., the eigenvalues of the extrinsic curvature).
The polynomial

d−1∏
j=1

(x − κj ) =
d∑
j=1

xd−jMj (κ, · · · ,κd−1) (6.86)

defines d symmetrical multilinear functions in the κj . Each term in Mj has j − 1
different factors κi . The Minkowski functionals of K are defined as follows:

V0(K) =
∫
K

dv (6.87)

Vj (K) = �(j/2)

2πj/2
(
d
j

) ∫
∂K

dsMj (κ, · · · κd−1) for 1 ≤ j ≤ d. (6.88)

Here dv is the volume element on K and ds is the surface element on ∂K . Clearly,
Vj has dimension d − j . Note also that 2πj/2/�(j/2) is the surface of the j − 1
dimensional sphere. The factor

(
d
j

)
is the binomial coefficient.

We are interested in Minkowski functionals not on R
d but on the sphere S

2. The
main difference is that in Euclidean space Vd is simply the Euler characteristic
while in spaces with curvature this is not the case. But the Minkowski functionals
are still well defined. One can show that the “morphological properties” of a smooth
subset are determined by its Minkowski functionals [see Schneider (1993) for more
details about Minkowski functionals]. On the sphere we have

V0(K) =
∫
K

d�, V1(K) = 1

4

∫
∂K

ds, V2(K) = 1

2π

∫
∂K

κ(s)ds, (6.89)

where ds is the line element along ∂K and κ denotes the geodesic curvature of the
curve ∂K .

To characterize the temperature fluctuations in the sky one now considers the
Minkowski functionals of excursion sets defined by

K(ν) =
{

n ∈ S
2

∣∣∣∣�TT (n) > ν
}

. (6.90)

If fluctuations are very elongated, for example, we shall find that for sufficiently
large values of ν, the Minkowski functional V0(ν) ≡ V0(K(ν)) is much smaller
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than V1(ν)
2. The value of V2(ν) measures how strongly isotemperature lines are

curved. Considering an arbitrary scalar field u on the sphere, one finds that

Vj(ν) =
∫
S2
d�Aj(n) with (6.91)

A0(n) = "(u(n)− ν) (6.92)

A1(n) = 1

4
δ(u(n)− ν)

√
(∇u)2 (6.93)

A2(n) = 1

2π
δ(u(n)− ν)

∑2
ij=1(−1)j+i+1∇iu∇ju∇i∇ju

(∇u)2 . (6.94)

Here " denotes the Heaviside function. The expression for A0 is evident.
Equations 6.93 and (6.94) are derived in Exercise 6.7, which is solved in
Appendix 11 which is found online.

For a given sky map we can in principle measure the Vj(ν) for different thresh-
olds ν. For a Gaussian field their expectation values can be computed explicitly; see,
for example, Tomita (1986). For Gaussian temperature fluctuations with vanishing
mean one finds3

V0(ν) = 2π

(
1− erf

(
ν√
2σ

))
(6.95)

V1(ν) = π
√
τ

2
√
σ

exp

(
− ν

2

2σ

)
(6.96)

V2(ν) = 2τν√
πσ 3

exp

(
− ν

2

2σ

)
, (6.97)

where

σ =
〈(
�T

T

)2
〉
=

∑
�

(2�+ 1)C� and (6.98)

τ = 1

2

〈(
∇�T
T

)2
〉
= 1

2

∑
�

(2�+ 1)�(�+ 1)C�. (6.99)

The Planck temperature data has been analyzed using Minkowski functionals [see
Section 10 of Planck Coll. XVII (2016)] and it is entirely compatible with a purely
Gaussian field.

3 Here erf(x) = 2√
π

∫ x
o dy exp(−y2) is the Gaussian error function.
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Exercises

(The exercises marked with an asterisk are solved in Appendix 11 which is not
in this printed book but can be found online.)

6.1 Symmetries of the bispectrum∗

Assuming statistical homogeneity and isotropy, show that the bispec-
trum BX, defined as the Fourier transform of the 3-point function
〈X(x1)X(x2)X(x3)〉, is of the form (6.2), where B(k1,k2,k3) is symmetric
in its arguments.

6.2 The reduced CMB bispectrum∗

Show that the terms b(2)�1�2�3
are related to the reduced bispectrum b�1�2�3 via

b
(2)
�1�2�3

=
∑
L1L2L3

Q
L1L2L3
�1�2�3

bL1L2L3 (6.100)

where

Q
L1L2L3
�1�2�3

=
∑
mi ;Mi

(
�1 �2 �3

m1 m2 m3

) 3∏
i=1

√
2�i + 1

4π

×
(
�i Li L[i−1]

0 0 0

) (
�i Li L[i−1]

mi Mi M[i−1]

)
. (6.101)

Here [i − 1] = i − 1 for i = 2,3 and [i − 1] = 3 for i = 1.

Hint: Use the Clebsch–Gordan decomposition and the Wigner 3J sym-
bols given in Appendix 4, Section A4.2.3.

6.3 Integrals of spherical harmonics
Using the derivation in Section 6.3, show that for an arbitrary function F
such that the integral below exists we have∫

d3k1d
3k2d

3k3F(k1,k2,k3)

(
3∏
i=1

Y�imi (̂ki)

)
δ(k1 + k2 + k3)

= AG�1�2�3
m1m2m3

∫ ∞

0
x2dxdk1dk2dk3F(k1,k2,k3)

(
3∏
i=1

k2
i j�i (xki)

)
.

(6.102)

Determine the �i dependent prefactor A.

Hint: As earlier this chapter, use the Fourier representation of the
Dirac-delta and then write the exponential as a sum of products of spherical
Bessel functions and spherical harmonics.
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6.4 Equilateral bispectrum
Calculate the CMB bispectrum in the low � regime for the equilateral
shape,

S(equi)(k1,k2,k3) = (k1 + k2 − k3)(k2 + k3 − k1)(k3 + k1 − k2)

k1k2k3
.

(6.103)

6.5 The trispectrum
Verify in detail Eq. (6.84) starting from Eq. (6.79).

6.6 The local trispectrum
Compute B4 c and the CMB trispectrum t�1···�4|L for small �i in the local
case, where

ζ(x) = ζG(x)+ 3

5
fnl

(
ζ 2
G(x)− 〈ζ 2

G〉
)

. (6.104)

Here ζG(x) is assumed to be a Gaussian field. Small �i means that you may
use the transfer function

T (k,�) = 1

5
j�(k(to − tdec)).

6.7 The Minkowski functionals∗

Derive in detail Eqs. (6.93) and (6.94) from the definitions of V1(ν) and
V2(ν).
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Lensing and the CMB

In this chapter we discuss the most important second-order effect on CMB
anisotropies and polarization. Patches of higher or lower CMB temperature are
modified and polarization patterns are distorted when they propagate through an
inhomogeneous gravitational field. The content of this chapter is strongly inspired
by the excellent review by Lewis and Challinor (2006) on the subject.

7.1 An Introduction to Lensing

On their path from the last scattering surface into our antennas, the CMB pho-
tons are deflected by the perturbed gravitational field. If the CMB were perfectly
isotropic, the net effect of this deflection would vanish, since, by the conservation
of photon number, as many photons would be deflected out of a small solid angle
as into it. On the other hand, if there is no perturbation in the gravitational field,
the latter is perfectly isotropic and the effect also vanishes. Hence, gravitational
lensing of the CMB is a second-order effect and we have not discussed it within
linear perturbation theory.

To estimate the effect let us consider the CMB temperature in a point n in the sky,
T (n). If the direction n is deflected by a small angle α, we receive the temperature
T (n) from the direction n′ = n + α. Note that, since α is a vector normal to n,
also n′ is a unit vector to first order in α. To lowest order, this induces a change
δT = α · ∇nT (n); since the angular dependence of the temperature as well as α are
first-order quantities this effect is second order.

The deflection angle from a gravitational potential � of an isolated mass
distribution is roughly given by 4�m, where�m is the maximum of the gravitational
potential along the photon trajectory (see Exercise 7.1). The mean amplitude of
the cosmic gravitational potential is about

√
〈�2〉 � 2 × 10−5 so that we have

〈|α|〉 ∼ 10−4. The typical size of a primordial “potential well” is difficult to
estimate, since the potential is scale invariant, but let us approximate it by the

268
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horizon size at equality, which is roughly 300 Mpc (comoving). The distance
from the last scattering surface to us is about 14 000 Mpc, so that a light ray passes
through of the order of 50 such potential wells. Assuming the direction of deviation
to be random, this yields a total deviation of about

√
50|α| ∼ 7 × 10−4 � 2 arc

minutes. This corresponds to a deviation of order unity for a patch with an angular
size of 2 arc minutes, that is, for � ∼ 4000. In fact, primary CMB anisotropies
on these scales are severely damped by Silk damping so that lensing and other
secondary effects such as the Sunyaev–Zel’dovich (SZ) effect already dominate
on scales larger than � ∼ 3000. In the acoustic peak region, which corresponds
to about 1◦, we expect lensing to change the size of the patches by roughly half
a percent on average. Some patches are enlarged while others are reduced in size.
In the C� spectrum this leads to a broadening of the peak. The peak position is
somewhat less well defined.

Requiring better than 1% accuracy, we have to take into account lensing for
�>∼ 400.

7.1.1 The Deflection Angle

We first want to compute the deflection of a light ray in a perturbed FL universe.
We consider only scalar perturbations so that the metric is of the form

ds2 = a2(t)
(−(1+ 2�) dt2 + (1− 2�)γij dx

i dxj
)
, (7.1)

with [see Eqs. (1.9) and (1.12)]

γij dx
i dxj = dr2 + χ2(r)(dϑ2 + sin2 ϑ dϕ2). (7.2)

Since we are interested only in deflection, we may also consider the conformally
related metric

ds̃2 = −(1+ 4�W) dt
2 + γij dxi dxj, (7.3)

where

�W = 1

2
(� +�), (7.4)

is the Weyl potential. According to Eq. (A3.21) the Weyl tensor from scalar per-
turbations is given by (∇i∇j − 1

3γij�)�W . Without loss of generality we set the
observer position to x = 0 and we consider a photon with an unperturbed trajectory
radially toward the observer, (x̄μ) = (sn̄μ) = s(1,n), where n is the radially inward
photon direction fixed by two angles, ϑ0 and ϕ0, and s is an affine parameter. With
our choice for s we have dt/ds = dx0/ds = 1; hence s = t−t0 for the unperturbed
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trajectory. The perturbed photon velocity is given by (nμ) = (1+δn0(s),n+δn(s)).
The Christoffel symbols for ds̃2 to first order in �W are easily determined as

�̃0
00 = 2∂t�W, �̃0

0i = �̃0
i0 = 2∂i�W, �̃0

ij = 0,

�̃i00 = 2γ ij ∂j�W, �̃ij0 = 0, �̃ijm = �̄ijm,
where �̄ijm are the Christoffel symbols of the unperturbed three-dimensional
metric γij .

With this, the geodesic equation of motion, d
2xμ

ds2
+ �μαβ dx

α

ds
dxβ

ds
= 0, leads to the

following equations of motion for the perturbation of the photon 4-velocity δnμ:

d

ds
δn0 = −2∂t�W − 4ni∂i�W = −2

d

ds
�W − 2ni∂i�W, (7.5)

d

ds
δni = −2γ ij ∂j�W − 2δnjnm�̄ijm. (7.6)

Here s denotes the affine parameter along the photon trajectory and we made use
of (d/ds)�W = ∂t�W + ni∂i�W . For the rest of this section we set˙= d/ds.

The deflection is given by the ϑ- and ϕ-components of δn = εn + ϑ̇∂ϑ + ϕ̇∂ϕ .
In spherical coordinates (r,ϑ,ϕ) we have n = (−1,0,0) ≡ −∂r . The unperturbed
Christoffels in Eq. (7.6) are given by

�̄ϑrϑ = �̄ϕrϕ =
∂rχ

χ

and all other �̄jri = 0. With this we obtain the following equations of motion for ϑ̇
and ϕ̇:

ϑ̈ = −2

χ2
∂ϑ�W + 2

∂rχ

χ
ϑ̇, (7.7)

ϕ̈ = −2

χ2 sin2 ϑ
∂ϕ�W + 2

∂rχ

χ
ϕ̇, so that (7.8)

− d
ds

(
χ2ϑ̇

) = 2∂ϑ�W, (7.9)

− d
ds

(
χ2ϕ̇

) = 2

sin2 ϑ
∂ϕ�W . (7.10)

For the last two lines we have used the fact that to lowest order χ̇ = −∂rχ for
radial geodesics. Integrating these equations and using the fact that to lowest order
ds = dt we obtain at first order in the deflection angle

χ2(t0 − t)ϑ̇(t) = 2
∫ t

t0

dt ′ ∂ϑ�W(t ′,t0 − t ′,ϑ0,ϕ0), (7.11)

χ2(t0 − t)ϕ̇(t) = 2
∫ t

t0

dt ′

sin2 ϑ0
∂ϕ�W(t

′,t0 − t ′,ϑ0,ϕ0). (7.12)
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Here t0 is the time at which we receive the photon at x = 0 and the constant of
integration has been fixed by requiring χ2|t=t0 = 0. Integrating this equation once
more leads to

ϑ(t∗) = ϑ0 − 2
∫ t0

t∗
dt
χ(t − t∗)∂ϑ�W(t,t0 − t,ϑ0,ϕ0)

χ(t0 − t∗)χ(t0 − t) , (7.13)

ϕ(t∗) = ϕ0 − 2

sin2 ϑ0

∫ t0

t∗
dt
χ(t − t∗)∂ϕ�W(t,t0 − t,ϑ0,ϕ0)

χ(t0 − t∗)χ(t0 − t) . (7.14)

The easiest way to see that these are the integrals of Eqs. (7.11) and (7.12)
is to take the derivative of Eqs. (7.13) and (7.14) with respect to t∗ and use
χ ′(t − t∗)χ(t0 − t∗) − χ(t − t∗)χ ′(t0 − t∗) = χ(t0 − t) for all three functions χ
given in Eq. (1.12).

The deflection angle α = (ϑ − ϑ0, sinϑ0(ϕ − ϕ0)) is therefore given by

α = −2
∫ t0

t∗
dt

χ(t − t∗)
χ(t0 − t∗)χ(t0 − t)∇⊥�W(t,t0 − t,ϑ0,ϕ0), (7.15)

where ∇⊥ = (∂ϑ,(sinϑ)−1∂ϕ) is the gradient on the sphere and Eq. (7.15) gives
the components of the deflection angle α in this basis. The application relating the
observed direction (ϑ0,ϕ0) to the direction of emission (ϑ∗,ϕ∗),

(ϑ0,ϕ0)→ (ϑ∗,ϕ∗) = (ϑ0,ϕ0)+ α(ϑ0,ϕ0), (7.16)

is called the lens map. When investigating lensing of the CMB, we choose the time
of emission to be the decoupling time, t∗ = tdec.

Einstein’s equation relates �W to the energy–momentum tensor. Equations
(2.105) and (2.107) together with the definition (7.4) yield

(�+ 3K)�W = 4πGa2ρ
[
D + w(1+ 3K�−1) 

]
. (7.17)

Using the canonical basis e1 ≡ eϑ = ∂ϑ and e2 ≡ eϕ = (sinϑ)−1∂ϕ we introduce
the gradient of the lens map,

Aab(ϑ,ϕ) = δab − 2
∫ t0

t∗
dt
χ(t − t∗)∇a∇b�W(t,t0 − t,ϑ,ϕ)

χ(t0 − t∗)χ(t0 − t) , (7.18)

≡
(

1− κ − γ1 −γ2

−γ2 1− κ + γ1

)
. (7.19)

The matrix A describes the deformation of a bundle of light rays from direction
(ϑ,ϕ). Its trace, trA = 2(1− κ), is a measure for the amount of focusing while its
traceless part is often represented as the complex number γ = γ1 + iγ2 represents
the shear. As a double gradient of a scalar, Aab is symmetric. To first order in
perturbation theory, lensing from scalar perturbations does not induce rotation.
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The flux from a source ι(n′) becomes, after passing through the lensing potential,
ι(n) = det(A−1)ι(n′). With det(A−1) = [

(1− κ)2 − |γ |2]−1 � 1 + 2κ , we obtain
the magnification μ = det(A−1). To first order in the gravitational potential,

μ = 1+ 2κ . (7.20)

Focusing not only increases the number of photons that reach us from a source (or a
patch in the CMB sky), but it also enhances the solid angle under which we see this
patch exactly by the factor detA, so that the number of photons per unit solid angle
is conserved. Lensing conserves surface brightness. Photons are neither absorbed
nor created by lensing; they are just deflected and redshifted.

The shear is very important for the weak lensing of galaxy surveys, as it renders
spherical sources elliptical. For CMB lensing both the focusing κ and the shear γ
are relevant.

7.2 The Lensing Power Spectrum

Let us introduce the lensing potential

ψ(n) = −2
∫ t0

t∗
dt

χ(t − t∗)
χ(t0 − t∗)χ(t0 − t)�W(t,n(t0 − t)). (7.21)

This is a function on the sphere and the deflection angle is its gradient. The deflec-
tion potential seems to be divergent because χ(t0 − t) → 0 for t → t0. But this
divergence affects only the monopole term, which we may set to zero since it does
not affect the lens map, which is given by

Aab(ϑ,ϕ) = δab +∇a∇bψ (7.22)

κ = −1

2
��ψ (7.23)

γ1 = 1

2
(∇2

1 − ∇2
2 )ψ (7.24)

γ2 = −∇1∇2ψ . (7.25)

Here �� denotes the Laplacian on the sphere. Note that while κ is a scalar,
γ± = γ1 ± iγ2 is a spin-2 tensor on the sphere with s = ±2; see Exercise 7.2.

We consider the CMB as a single source at fixed t∗ = tdec. We expand the lensing
potential in spherical harmonics,

ψ(n) =
∑
�m

ψ�mY�m(n), (7.26)

〈ψ�mψ∗�′m′ 〉 ≡ δ��′δmm′Cψ� . (7.27)
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The expectation values Cψ� are the lensing power spectrum, and the Kronecker
deltas are a consequence of statistical isotropy like for the CMB temperature and
polarization spectra. The same manipulations as in Chapter 2, Eq. (2.253), now give
the lensing correlation function in terms of the power spectrum,

〈ψ(n)ψ(n′)〉 = 1

4π

∑
�

(2�+ 1)Cψ� P�(n · n′). (7.28)

We want to relate the lensing power spectrum to the primordial power spectrum
of the Weyl potential. For simplicity we restrict ourselves to the case K = 0, with
χ0(r) = r . In this case, the power spectrum of the Weyl potential is given by the
Fourier transform,

�W(t,x) = 1

(2π)3

∫
d3k �W(t,k) e−ik·x, (7.29)

〈�W(t,k)�∗W(t ′,k′)〉 = (2π)3T (k,t)T ∗(k,t ′)P�(k) δ(k− k′). (7.30)

Here we have introduced the primordial power spectrum P� and the transfer func-
tion T (k,t). For a fixed wave number k the transfer function is the solution of
the evolution equation for � with initial condition T (k,t) → 1 for kt → 0.
The transfer function for a matter/radiation universe, neglecting the cosmological
constant, is constant during the matter era and given by Eq. (2.222), settingA = 10

3 .
For simplicity, we neglect the difference between � and �W , which is given

by the anisotropic stresses and never contributes more than a few percent. This is
easily corrected for in a numerical treatment.

Inserting Eqs. (7.30) and (7.21) in Eq. (7.28) and expanding

eik·n(t0−t) = 4π
∑
�m

i�j�(k(t0 − t))Y�m(n)Y ∗�m(k̂),

we obtain

C
ψ

� =
8

π

∫ ∞

0
dk k2P�(k)

∣∣∣∣∫ t0

t∗
dt T (k,t)j�(k(t0 − t)) t − t∗

(t0 − t∗)(t0 − t)
∣∣∣∣2

. (7.31)

The relevant quantity for us is the spectrum of the deflection angle α(n) =
∇⊥ψ(n). The correlation function of ψ depends only on the angle between n
and n′. It is invariant under simultaneous infinitesimal variations n → n + ε

and n′ → n′ + ε so that 〈ψ(n)ψ(n′ + ε)〉= 〈ψ(n− ε)ψ(n′)〉. Therefore 〈∇⊥ψ(n)
∇⊥ψ(n′)〉 = −〈�ψ(n)ψ(n′)〉. Since �Y�m = −�(� + 1)Y�m, the power spectrum
of the deflection angle is simply given by �(� + 1)Cψ� . This power spectrum,
multiplied by the usual factor �(�+ 1)/2π , is shown in Fig. 7.1.
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Fig. 7.1 The lensing power spectrum for a �CDM concordance model. The solid
line is the linear approximation while in the dashed line nonlinear corrections are
included using an analytic approximation to the nonlinear matter power spectrum
called “halofit.”

7.2.1 The Limber Approximation

We can also consider the correlation for lensing potentials at different redshifts,
z and z′. Denoting the corresponding comoving distances by r(z) and r(z′), trans-
forming the integrals w.r.t. t to integrals w.r.t. r and exchanging the k and r integrals
we can write the analog of Eq. (7.31) for two different redshifts as

C
ψ

� (z,z
′) = 8

π

∫ r(z)

0

dr(r(z)− r)
r(z)r

∫ r(z′)

0

dr ′(r(z′)− r ′)
r(z′)r ′

×
∫ ∞

0
dkk2T (k,t0 − r)T (k,t0 − r ′)j�(kr)j�(kr ′)P�(k). (7.32)

Here we have dropped the complex-conjugation of the second transfer function,
since the transfer function of the Bardeen potential is in fact real. This equation can
be simplified using the so called Limber approximation; see Eq. (A4.152),

2

π

∫
dkk2f (k)j�(kr)j�(kr

′) � δ(r − r
′)

r2
f

(
�+ 1/2

r

)
. (7.33)

For a rather slowly varying function f (it is exact if f is constant) this is a very good
approximation for large enough values of �. Here �must be sufficiently large so that
f (k) has no significant peak at k > �/r . For the Bardeen potential, T 2(k,t)P�(k),
this turns out to be a very good approximation for �>∼20.
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Performing the integral over k in (7.32) with the Limber approximation we
obtain

C
ψ

� (z,z
′) � 4

∫ r∗

0
dr
(r(z)− r)(r(z′)− r)

r(z)r(z′)r4
T 2

(
�+ 1/2

r
,t0 − r

)
P�

(
�+ 1/2

r

)
,

(7.34)

where r∗ = min{r(z),r(z′)}.

7.3 Lensing of the CMB Temperature Anisotropies

We now want to determine how lensing affects the CMB. On small scales, the lens-
ing potential is nearly completely uncorrelated with the CMB anisotropies, since
most of the lensing potential comes from low redshifts. At �> 60 the correlation of
the lensing and CMB spectra is less than 10% of its maximum value and at �>∼ 600
it drops below 0.1%. Most of the lensing power was generated relatively recently,
at z<∼ 20, and it therefore does not correlate with the CMB anisotropies that were
generated at zdec � 1100. The lensing signal correlates significantly only with the
late integrated Sachs–Wolfe effect, which is relevant on very large scales. But the
latter has very little structure, so that lensing on large scales is negligible.

Since we are mostly interested in small scales, we approximate the sky by a flat
plane, as in Section 5.2. The temperature anisotropy is given by Eq. (5.28). The
correlation function between two points x and x′ in the sky,

〈M(x)M(x′)〉 = ξ(|x− x′|) = ξ(|r|), r = x− x′,

is related to the power spectrum by Eq. (5.107),

〈M(�)M∗(�′)〉 = δ2(�− �′)C(M)
�

C
(M)
� = 2π

∫ ∞

0
dr rJ0(r�)ξ(|r|).

The inverse relation is given in Eq. (5.104).
The same equations also relate the lensing potential correlation function to its

power spectrum, Cψ� .

7.3.1 Approximation for Small Deflection Angles

We now expand the lensed temperature fluctuation in the deflection angle α = ∇ψ ,

M̃(x) =M(x+∇ψ)
�M(x)+ ∇aψ(x)∇aM(x)+ 1

2
∇aψ(x)∇bψ(x)∇b∇aM(x)+ · · · .
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This is a good approximation only if the deflection angle is much smaller than the
scales of interest to us. If not, we cannot truncate this expansion at second order.

Using

∇aψ(x) = −i
2π

∫
d2� �aψ(�) e

−i�·x, and

∇aM(x) = −i
2π

∫
d2� �aM(�) e−i�·x,

we can obtain the Fourier components for M̃(�). For this we use that the Fourier
transform of a product is equal to the convolution of the Fourier transforms. For
example, for the functions ∇aψ and ∇aM we obtain

1

2π

∫
d2x ∇aψ(x)∇aM(x)eix·�

= −1

(2π)3

∫
d2x

∫
d2�1

∫
d2�2 (�1 · �2) e

ix·(�−�1−�2)ψ(�1)M(�2)

= −1

2π

∫
d2�2 ((�− �2) · �2) ψ(�− �2)M(�2)

= −1

2π
(�ψ % �M) (�).

Here % indicates convolution and for the second equals sign we have used that

1

(2π)2

∫
d2x eix·(�−�1−�2) = δ2(�− �1 − �2).

Using the above for the second term in the Fourier transform of M̃ and the equiv-
alent identity for the third term, we find

M̃(�) �M(�)−
∫
d2�′

2π
�′ · (�− �′)ψ(�− �′)M(�′)

− 1

2

∫
d2�1

2π

∫
d2�2

2π
�1 · (�1 + �2− �)�1 · �2M(�1)ψ(�2)ψ

∗(�− �1 − �2).

(7.35)

To work out the lensed power spectrum we neglect correlations of M with ψ and
use ψ∗(�) = ψ(−�). Up to first order in the lensing power spectrum Cψ� the lensed
temperature anisotropy spectrum becomes

C̃� � C� +
∫
d2�′

(2π)2
[
�′ · (�− �′)

]2
C
ψ

|�−�′|C�′ − C�
∫
d2�′

(2π)2
(�′ · �)2Cψ�′ . (7.36)



7.3 Lensing of the CMB Temperature Anisotropies 277

Integrating the second term over the angle gives

C̃� � (1− �2Rψ)C� +
∫
d2�′

(2π)2
[
�′ · (�− �′)

]2
C
ψ

|�−�′|C�′, (7.37)

where we have introduced the mean square of the deflection angle

Rψ ≡ 1

2
〈α2〉 = 1

4π

∫ ∞

0
d� �3C

ψ

� . (7.38)

The deflection power spectrum peaks at relatively large scales, � � 50 (see Fig. 7.1)
and the bulk of the contribution of the convolution integral in Eq. (7.37) comes from
� ∼ �′.

We first investigate the result for a scale-invariant CMB power spectrum, that is,
�2C� = constant. For such a scale-invariant spectrum the above integral becomes

C̃si
� � (1− �2Rψ)C� + �2C�

∫
d2�′

(2π)2

[
�′ · (�− �′)

]2

�′2
C
ψ

|�−�′|

= (1− �2Rψ)C� + �2C�

∫
d2�1

(2π)2
[(�1 − �) · �1]2

(�− �1)2
C
ψ

�1

= C�
[

1+ �2

4π

∫ ∞

�

d�1 �1C
ψ

�1

(
�2

1 − �2
)]

. (7.39)

For the last equals sign we have performed the angular integral that is derived
in Ex. 7.3.

The integral in Eq. (7.39) is, in general, small, of O(10−3), which is significantly
smaller than �2Rψ . Hence the two terms of Eq. (7.37) cancel to a large extent for
(nearly) scale-invariant spectra. Note also that the spectrum at a scale � is affected
by the lensing power from scales smaller than � only. If the lensing power vanished
above a certain value �0, a scale-invariant spectrum would not be modified by
lensing for �’s larger than �0. A large-scale lensing mode magnifies and demagnifies
small-scale fluctuations, which has no effect if the fluctuations are scale invarant.
The effect of CMB lensing is important because of the acoustic oscillations and
Silk damping on small scales that break scale invariance.

7.3.2 Arbitrary Deflection Angles

As we argued at the beginning of this chapter, for � > 3000, the deflection angle
is comparable to the angular separations that contribute mainly to C�. A gradient
expansion in the deflection angle is therefore no longer justified.

Let us first consider very small scales, �� 3000. On these scales the primordial
anisotropies are nearly completely wiped out by Silk damping and are very small.
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Even though the deflection angle is larger than the scale in consideration, we may
approximate M(x + α) ∼ M(x) + ∇ψ · ∇M. Setting the intrinsic C� = 0, we
obtain

C̃� �
∫
d2�′

(2π)2
C�′

[
�′ · (�− �′)

]2
C
ψ

|�−�′| � C
ψ

�

∫
d2�′

(2π)2
C�′

[
�′ · �]2

= �2C
ψ

�

∫ ∞

0

d�′

4π
�′3C�′ . (7.40)

On very small scales, where intrinsic anisotropies are negligible, the lensed
anisotropy power spectrum is given by the power of the deflection angle on this
scale multiplied with the integrated anisotropy power on all scales.

To determine the general formula for the lensed CMB anisotropy spectrum,
we consider the correlation function. As before, we set the lensed temperature
anisotropy equal to

M̃(x) =M(x+ α(x)),

where α = ∇ψ is the deflection angle. For r = x−x′, r = |r| the lensed correlation
function ξ̃ (r) is given by

ξ̃ (r) = 〈M̃(x)M̃(x′)〉 = 〈M(x+ α)M(x′ + α′)〉

=
∫
d2�

2π

∫
d2�′

2π

〈
e−i�·(x+α)ei�

′·(x′+α′)〉〈M(�)M(�′)
〉

=
∫

d2�

(2π)2
C�e

−i�r〈ei�·(α′−α)
〉
. (7.41)

Here we have used the fact that the CMB anisotropies and the deflection angle
are virtually uncorrelated and we can therefore write the expectation value of the
product

〈
e−i�·(x+α)ei�

′·(x′+α′)M(�)M(�′)
〉

as the product of the expectation values.
We assume that linear perturbations are Gaussian so that α is a Gaussian field.

Hence � · (α− α′) is a Gaussian random variable with mean 〈� · (α− α′)〉 = 0 and
variance 〈[� · (α − α′)]2〉. The expectation value of its exponential is given by (see
Exercise 7.4)

〈ei�·(α′−α)〉 = exp

(
−1

2

〈[
� · (α′ − α)

]2
〉)

.

To calculate the variance of � · (α − α′) = � · (α(x)− α(x+ r)) we define

Aij (r) = 〈αi(x)αj (x+ r)〉 = 〈∇ iψ(x)∇jψ(x+ r)〉 =
∫

d2�

(2π)2
�i�jC

ψ

� e
ir·�.

(7.42)
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By statistical homogeneity and isotropy, for fixed r = |r|, this symmetric matrix
depends on directions only via r. Therefore it is of the form

Aij (r) = 1

2
A0(r)δij − A2(r)

[
r̂i r̂j − 1

2
δij

]
. (7.43)

To determine the functions A0 and A2 we first take the trace of Aij . This yields

A0(r) =
∫ ∞

0

d� �3

(2π)2
C
ψ

�

∫ 2π

0
dφei�r cosφ =

∫ ∞

0

d� �3

2π
C
ψ

� J0(r�). (7.44)

For the last equals sign we made use of Eq. (5.106). We then contract Aij with
r̂ = r/r ,

Aij (r)r̂i r̂j = 1

2
(A0(r)− A2(r)) =

∫ ∞

0

d� �3

(2π)2
C
ψ

�

∫ 2π

0
dφ cos2 φei�r cosφ

=
∫ ∞

0

d� �3

(2π)2
C
ψ

�

∫ 2π

0
dφ

1

2
[1+ cos(2φ)]ei�r cosφ

= 1

2

∫ ∞

0

d� �3

2π
C
ψ

� (J0(r�)− J2(r�)). (7.45)

We have again used Eq. (5.106) for the last equality. Together with Eq. (7.44) this
determines A2(r),

A2(r) =
∫ ∞

0

d� �3

2π
C
ψ

� J2(r�). (7.46)

Inserting these results in the variance, we find (using that A2(0) = 0)

〈[� · (α′ − α)
]2〉 = 2�i�j

(〈αiαj 〉 − 〈α′iαj 〉)
= �2 [A0(0)− A0(r)+ A2(r) cos(2φ)] .

Inserting this in the correlation function for the lensed anisotropies yields

ξ̃ (r)=
∫

d2�

(2π)2
C� exp[−i�r cosφ] exp

[
−�

2

2
[A0(0)− A0(r)+A2(r) cos(2φ)]

]
.

(7.47)

This expression is exact. We now use it to determine the lensed anisotropy power
spectrum to first order in the lensing power spectrum. With the flat sky relation
(5.107),

C̃�′ = 1

4π

∫ ∞

0
r dr J0(r�

′)ξ̃ (r),

we can obtain the lensed power spectrum from the correlation function.
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To perform the φ–integration in Eq. (7.47) we use that Bessel functions of
imaginary arguments are related to the modified Bessel function (see Appendix 4,
Section A4.3),

exp(−y cosφ) = J0(iy)+ 2
∞∑
n=1

inJn(iy) cos(nφ)

= I0(y)+ 2
∞∑
n=1

(−1)nIn(y) cos(nφ), (7.48)

so that

1

2π

∫ 2π

0
dφ exp(−y cosφ) cos(nφ) = (−1)nIn(y). (7.49)

With this and Eq. (5.105), we can perform the angular integration of (7.47) with the
result

ξ̃ (r) =
∫
� d�

2π
C� exp

[
−�

2

2
[A0(0)− A0(r)]

]

×
(
I0(r�)+ 2

∞∑
n=1

In(�
2A2(r)/2)J2n(r�)

)
. (7.50)

Note that even though the modified Bessel functions grow exponentially
In(r)→ er/

√
2πr for large arguments, the combination exp[− �2

2 [A0(0)− A0(r)]]
In(�

2A2(r)/2) → 0 for large �, since A0(0) − A0(r) > A2(r) for all values of r
(see Fig. 7.2).

Since A2(0) = 0 and In(0) = δn0, the variance of the lensed CMB anisotropies
remains unchanged,

ξ̃ (0) =
∫
� d�

2π
C� = ξ(0). (7.51)

Weak lensing only alters photon directions and hence the spatial structure of the
correlation function. The power is redistributed by weak lensing but no power
is lost.

A simpler but also accurate expression for the correlation function can be
obtained if we approximate the exponential in Eq. (7.47):

exp

[
−�

2

2
[A0(0)− A0(r)+ A2(r) cos(2φ)]

]
� exp

[
−�

2

2
[A0(0)+ A0(r)]

] (
1− �

2

2
A2(r) cos(2φ)

)
.
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Fig. 7.2 The functions A0(0) − A0(r) (solid) and A2(r) (dashed) are shown as
functions of the separation angle r (in radians). The underlying cosmological
model is a typical concordance model.

Note that this is not an expansion in the deflection angle α. The longitudinal part of
the correlation function, 〈α · α′〉, is fully taken into account and we have expanded
only the traceless part A2. A change in the direction of α′ with respect to the
direction of α contributes to this part. But since the deflection angle has most power
on large scales � ∼ 50, this change is small for scales corresponding to �>∼ 1000.
As one sees in Fig. 7.2, the function A2(r) is much smaller than A0(0) − A0(r)

on all scales and it peaks at r ∼ 0.05, which corresponds to � ∼ π/r ∼ 60, after
which it decays like a power law.

Inserting this expansion in Eq. (7.47) we find

ξ̃ (r) �
∫

d2�

(2π)2
C� exp[−i�r cosφ] exp

[
−�

2

2
[A0(0)− A0(r)]

]
×

(
1− �

2

2
A2(r) cos(2φ)

)
=

∫ ∞

0

� d�

2π
C� exp

[
−�

2

2
[A0(0)− A0(r)]

](
J0(r�)+ �

2

2
A2(r)J2(r�)

)
.

(7.52)

Equation (7.52) is a very good approximation that can be used for all �’s for which
CMB lensing is relevant. The C̃�’s can be obtained from Eq. (7.52) with the help of
Eq. (5.107),
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C̃�′ =
∫ ∞

0
� d�C�

∫ ∞

0
rdr exp

[
−�

2

2
[A0(0)− A0(r)]

]
×

(
J0(r�

′)J0(r�)+ �
2

2
A2(r)J0(r�

′)J2(r�)

)
. (7.53)

Observing thatA(0)−A(r)<∼ 10−6, we may neglect the exponential for small �. The
integral over r of the first term in the parentheses then simply gives �−1 δ(�−�′) and
reproduces the unlensed spectrum. For larger values of � the exponential reduces
power and induces a broadening of the δ-function. For very large �’s the second
term also becomes relevant, but A2(r) < 10−7 for all values of r . Therefore, if
�2A2(r) becomes relevant, the damping exponent �2[A0(0)−A0(r)] is several times
bigger (see Fig. 7.2), so that this term never dominates.

In Fig. 7.3 the lensed CMB anisotropy power spectrum is shown. The large �
approximation given in Eq. (7.40) is also indicated as a dashed line.

C
T
C
T

C
T

K

Fig. 7.3 Top panel: the lensed CMB temperature anisotropy spectrum is shown
(solid). Underlaid is the unlensed spectrum (dotted). The large � approximation
for the lensed CMB spectrum is also indicated (dashed).
Bottom panel: the fractional difference between the lensed and unlensed CMB
spectrum.
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As anticipated, lensing is not relevant for large scales, �<∼ 100, where the CMB
anisotropy spectrum has nearly no structure. But it becomes very important for
� > 1000 and actually dominates the signal for � > 3000. In the analyses or
recent experiments like Planck (see Chapter 9), taking into account the full expo-
nential exp

[−�2 [A0(0)− A0(r)+ A2(r) cos(2φ)] /2
]

and not just its first-order
approximation is relevant to model the data sufficiently precisely. For this reason,
workers in the field have started to study lensing beyond leading order in more
generality (Pratten and Lews, 2016; Marozzi et al., 2017).

7.4 Lensing of the CMB Polarization

In this section we study how polarization is affected by lensing. We work again in
the flat sky approximation, which is sufficient for �>∼ 20. There are, in principle,
two contributions. First, like for temperature anisotropies, the direction n in which
a given photon is received has been deflected by the deflection angle α from the
direction in which it has been emitted, n′ = n+ α. Second, the polarization tensor
is parallel-transported along the perturbed photon geodesics. To lowest order this
means that the orientation of the polarization in the observed direction n and in
the lensed direction n′ is the same if it is determined w.r.t. a basis that is parallel-
transported from n to n′. Since the distance between n and n′ is already first order,
we may neglect the perturbation of the gravitational field along the geodesic from
n to n′. In the flat sky approximation, this simply means that we have to measure
polarization with respect to the same basis ε(1) and ε(2) in both points. With this,
the second effect is automatically taken care of, to first order.

We introduce, as in Chapter 5; see Eq. (5.6),

e± = 1√
2
(ε(1) ± iε(2)) and

P ≡ 2ei+ej+Pij = Q+ iU, so that P∗ ≡ 2e∗ i+ e∗ j+ Pij = 2ei−ej−Pij = Q− iU .

Expanding Q± iU in Fourier space and direction, we have; see Eq. (5.58)

Q± iU =
∫

d3k

(2π)3

∞∑
�=2

2∑
m=−2

×
(
E (m)� (t,k)± iB(m)� (t,k)

)
±2G�m(x,n), (7.54)

with

sG�m(x,n) = (−i)�
√

4π

2�+ 1
eik·xsY�m(n). (7.55)
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The spin-2 spherical harmonics are given by (see Appendix 4, Section A4.2.6)

±2Y�m(x) = 2
√
(�− 2)!/(�+ 2)!∇e±∇e±Y�m. As we have already seen in Chap-

ter 5, in the flat sky approximation they become

±2Y�m = ±2Y�(x) = 2

�2
ei±ej±∇i∇j ei�·x = −e±2iφei�·x. (7.56)

Here φ denotes the angle that � encloses with the x-axis. The relation of the polar-
ization field with its Fourier transforms E(�) and B(�) is given in Chapter 5 in
Eqs. (5.108)–(5.111).

7.4.1 The Lensed Polarization Power Spectrum

We again start by expanding the polarization tensor in the deflection angle up to
second order. This is a good approximation only when considering angular scales
that are much larger than the deflection angle, that is, up to about � ∼ 1000. We will
have to do better in a second approach, but this approximation helps us to develop
an intuition for the modifications of CMB polarization by lensing.

We shall see that even if, initially, perturbations are purely scalar and therefore
do not have B-modes, the lensed polarization will develop B-modes. This is the
most important effect from lensing: it generates B-modes from scalar perturbations
so that B-modes are no longer an unambiguous sign of gravitational waves.

7.4.2 Approximation for Small Deflection Angles

As for the temperature anisotropies, we Taylor expand the polarization tensor to
second order,

P̃ij (x) = Pij (x+∇ψ)

� Pij (x)+ ∇mψ∇mPij (x)+ 1

2
∇mψ∇nψ∇n∇mPij (x).

Since parallel-transporting in the flat sky just means keeping the polarization basis
e± constant, the same expansion is also valid for P = Q+ iU and P∗ = Q− iU .
Fourier transforming the above expression leads to the same convolution integrals
as we obtained for the lensed temperature anisotropies in Eq. (7.35). With the help
of Eqs. (5.108)–(5.111) we find(

Ẽ(�)± iB̃(�)
)
e2iφ� � (E(�)± iB(�)) e2iφ�

−
∫
d2�′

2π
�′ · (�− �′)ψ(�− �′)[E(�′)± iB(�′)]e2iφ′�
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− 1

2

∫
d2�1

2π

∫
d2�2

2π
�1 · (�1 + �2 − �)�1 · �2

× [E(�1)± iB(�1)]e
2iφ�1 × ψ(�2)ψ

∗(�− �1 − �2).
(7.57)

In the flat sky approximation, the E- and B-polarization spectra and the T –E cross
polarization spectrum are of the form

〈E(�)E∗(�′)〉 = δ2(�− �′)C(E)� , 〈B(�)B∗(�′)〉 = δ2(�− �′)C(B)� ,

〈E(�)M∗(�′)〉 = δ2(�− �′)C(EM)
� .

Multiplying Eq. (7.57) with its complex conjugate, with itself, or with the expres-
sion for lensed temperature anisotropies in �-space, Eq. (7.35), and keeping only
lowest-order expressions in Cψ� , we obtain

C̃
(E)
� + C̃(B)� = C(E)� + C(B)� +

∫
d2�′

(2π)2
[�′ · (�− �′)]2C

ψ

|�−�′|
[
C
(E)
�′ + C(B)�′

]
−

[
C
(E)
� + C(B)�

] ∫
d2�′

(2π)2
(�′ · �)2Cψ�′ , (7.58)

C̃
(E)
� − C̃(B)� = C(E)� − C(B)�

+
∫
d2�′

(2π)2
[�′ · (�− �′)]2e4i(φ��′−φ��)Cψ|�−�′|

[
C
(E)
�′ − C(B)�′

]
−

[
C
(E)
� − C(B)�

] ∫
d2�′

(2π)2
(�′ · �)2Cψ�′ , (7.59)

C̃
(EM)
� = C(EM)

� +
∫
d2�′

(2π)2
[�′ · (�− �′)]2e2i(φ��′−φ��)Cψ|�−�′|C

(EM)

�′

− C(EM)
�

∫
d2�′

(2π)2
(�′ · �)2Cψ�′ . (7.60)

For these results we have made use of the fact that B is uncorrelated with both E
and M. In the angular integration of Eqs. (7.59) and (7.60), only the real part con-
tributes. Also noting that the scalar product �′ · � = �′� cos(φ�′ − φ�) only depends
on the angle difference φ ≡ φ�′ − φ� the angular integral in (7.50) is of the form∫ 2π

0
dφ f (cosφ)e4iφ

=
∫ 2π

0
dφ f (cosφ)

[
cos(4φ)+ 4i sinφ cosφ(cos2 φ − sin2 φ)

]
=

∫ 2π

0
dφ f (cosφ) cos(4φ).
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The imaginary part of such an integral vanishes since
∫ 2π

0 f (cosφ) sinφ dφ =∫ π
−π f (cosφ) sinφ dφ = 0 for arbitrary functions of cosφ. Correspondingly we

have ∫ 2π

0
dφ f (cosφ)e2iφ =

∫ 2π

0
dφ f (cosφ)[cos(2φ)+ 2i sinφ cosφ]

=
∫ 2π

0
dφ f (cosφ) cos(2φ).

We may therefore replace e4iφ → cos(4φ) = cos2(2φ) − sin2(2φ) and e2iφ →
cos(2φ). With the definition (7.38) of the mean square deflection angle, Rψ =
(4π)−1

∫∞
0 d� �3C

ψ

� , we then find

C̃
(E)
� = (1− �2Rψ)C

(E)
� +

∫
d2�′

(2π)2
[�′ · (�− �′)]2C

ψ

|�−�′|

× [
C
(E)
�′ cos2 2(φ�′ − φ�)+ C(B)�′ sin2 2(φ�′ − φ�)

]
, (7.61)

C̃
(B)
� = (1− �2Rψ)C

(B)
� +

∫
d2�′

(2π)2
[�′ · (�− �′)]2C

ψ

|�−�′|

× [
C
(B)
�′ cos2 2(φ�′ − φ�)+ C(E)�′ sin2 2(φ�′ − φ�)

]
, (7.62)

C̃
(EM)
� = (1− �2Rψ)C

(EM)
�

+
∫
d2�′

(2π)2
[�′ · (�− �′)]2C

ψ

|�−�′|C
(EM)

�′ cos 2(φ�′ − φ�). (7.63)

As we see from Eq. (7.62), even if there is no unlensed B-mode, C(B) = 0, like for
purely scalar perturbations, the lensing deflection induces a nonzero B-spectrum,
C̃(B) 
= 0. On relatively large scales, �� �′, the lensed B-mode induced by a pure
primordial E-mode is roughly1

C̃
(B)
� ∼

∫
d2�′

(2π)2
�′4Cψ�′C

(E)
�′ sin2 2(φ�′ − φ�) =

∫
d�′

4π
�′5Cψ�′C

(E)
�′ . (7.64)

This is an �-independent constant. On large scales, the B-mode power spectrum
induced by lensing is white noise. The contribution to the power per logarithmic
interval, d log(�) = d�/�, is

dC̃
(B)
� = 1

2
�4C

ψ

�

�2C
(E)
�

2π
,

1 We integrate over �′ and so, in principle, the inequality �� �′ does not strictly make sense. What we mean, of
course, is that � is much smaller than those values of �′, which mainly contribute to the above integral. In the
same sense we shall use �� �′ below.
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Fig. 7.4 The B-mode power spectrum induced from a pure E-mode by lensing
is shown (thick solid curve). The lensed E-power spectrum (thin solid curve) is
also indicated. The thin straight line traces the white noise approximation (7.64),
which is excellent for � < 200.

half the product of the power of the deflection angle and the E-polarization; see
Fig. 7.4.

At very small scales, �� �′ we can approximate the lensed E- and B-spectra by

C̃
(E)
� � Cψ�

∫
d2�′

(2π)2
[�′ · �]2C

(E)
�′ cos2 2(φ�′ − φ�) = 1

2
�2C

ψ

� RE, (7.65)

C̃
(B)
� � Cψ�

∫
d2�′

(2π)2
[�′ · �]2C

(E)
�′ sin2 2(φ�′ − φ�) = 1

2
�2C

ψ

� RE

= C̃(E)� , (7.66)

where we have introduced the variance of the gradient of polarization,

RE = 1

4π

∫
d� �3C

(E)
� = 〈|∇Q|2〉 = 〈|∇U |2〉 ∼ 2× 107(μK)2

T 2
0

. (7.67)
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Fig. 7.5 The unlensed E–T -correlation and E-power spectra are compared with
the smoother lensed spectra (dashed).

The order of magnitude of this numerical value can be estimated from
Fig. 7.4 by noting that at its maximum, �∼ 1000, the E-polarization spectrum
is about �2C

(E)
� /(2π)∼ 40(μK)2/T 2

0 . The results (7.65) and (7.66) are valid for
a pure E-primordial spectrum, but are not significantly modified if primordial
B-modes are also present, since the latter usually contribute very little on small
scales.

The lensed and unlensed E-power spectrum and E–T -correlation spectrum are
compared in Fig. 7.5. The lensed E- and B-power spectra from purely scalar pri-
mordial perturbations are shown in Fig. 7.6.

7.4.3 Arbitrary Deflection Angles

We now derive an expression that is also valid for large �’s where the deflec-
tion angle is no longer smaller than the scale of interest. As for the temperature
anisotropies, we study the modification of the correlation function by lensing.

As in Chapter 5, we consider two points x and x′ and define the polarization basis
along r = x− x′. The rotated polarization is given by

Pr (x) = e−2iφrP(x).

The correlation functions of this rotated polarization are denoted ξ+ and ξ−, and
its correlation with the temperature anisotropy is ξ×. These functions are defined
in Eqs. (5.112)–(5.114). The calculation of the lensed correlation function ξ̃+ is
exactly analogous to that for the temperature anisotropy; one just has to replace C�
by C(E)� + C(B)� . Doing so we have
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Fig. 7.6 The lensed E- (solid) and the induced B- (long dashed) power spectra
are shown. The deflection angle spectrum (short dashed) and the unlensed E-
power spectrum (dotted) are also indicated. The bottom panel shows the relative
difference of the lensed and unlensed E-spectra.

ξ̃+(r) =
〈
P∗(x+ α)P(x′ + α′)

〉
= 1

2π

∫
� d�

[
C
(E)
� + C(B)�

]
e−(�

2/2)(A0(0)−A0(r))

×
(
I0(�

2A2(r)/2)J0(r�)+ 2
∞∑
n=1

In(�
2A2(r)/2)J2n(r�)

)
. (7.68)

The lensing of ξ− and ξ× is somewhat different because of the exponentials eimφr .
Inserting the Fourier transform of P(x) given in Eq. (5.108) in the expression for
ξ−, we find

ξ̃−(r) =
〈
P(x+ α)P(x′ + α′)e−i4φr

〉
=

∫
d2�

2π

d2�′

2π
〈[E(�)+ iB(�)][E∗(�′)+ iB∗(�′)]〉

× ei(�·x−�′·x′)ei(2φ�+2φ�′−4φr )〈ei(�·α−�′·α′)〉
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=
∫

d2�

(2π)2

[
C
(E)
� − C(B)�

]
eir� cosφe4iφ

× exp

(
−�

2

2
[A0(0)− A0(r)+ cos(2φ)A2(r)]

)
.

For the second equals sign we have used the expression for the E- and
B-polarization spectra and we have set φ = φ� − φr .

Of the factor e4iφ only the real part survives integration over φ, since the
imaginary part can be written in the form f (cosφ) sinφ. Furthermore, cos 4φ =
cos2 2φ − sin2 2φ = 2 cos2 2φ − 1 so that we arrive at

ξ̃−(r) =
∫

d2�

(2π)2

[
C
(E)
� − C(B)�

]
e−�

2(A0(0)−A0(r))/2eir� cosφ

× [
2 cos2 2φ − 1

]
exp

(
−�

2

2
cos(2φ)A2(r)

)
.

We now observe that

cos2 2φ exp (−β cos(2φ)) = d2

dβ2
exp (−β cos(2φ)) .

With this and Eq. (7.48) we obtain

ξ̃−(r) =
∫

d2�

(2π)2

[
C
(E)
� − C(B)�

]
e−�

2(A0(0)−A0(r))/2eir� cosφ

×
(

2I ′′0 (�
2A2(r)/2)− I0(�2A2(r)/2)+ 2

∞∑
n=1

(−1)n

× [2I ′′n (�
2A2(r)/2)− In(�2A2(r)/2)] cos(2nφ)

)
.

Here primes indicate the derivative with respect to the argument. Integration over
φ finally yields

ξ̃−(r) =
∫
� d�

2π

[
C
(E)
� − C(B)�

]
e−�

2(A0(0)−A0(r))/2

×
(

[2I ′′0 (�
2A2(r)/2)− I0(�2A2(r)/2)]J0(�r)

+ 2
∞∑
n=1

[2I ′′n (�
2A2(r)/2)− In(�2A2(r)/2)]J2n(�r)

)
, (7.69)

�
∫
� d�

2π

[
C
(E)
� − C(B)�

]
e−�

2(A0(0)−A0(r))/2

×
(
J4(�r)+ �

2

4
A2(r)[J2(�r)+ J6(�r)]

)
. (7.70)
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For the last line we have expanded the general expression to first order in A2(r).
To obtain an accuracy of better than cosmic variance one has to also include the
term ∝ A2(r)

2; see Challinor and Lewis (2005). This is indeed relevant for recent
experiments. A similar calculation gives the cross correlation function,

ξ̃×(r) =
∫
� d�

2π
C
(EM)
� e−�

2(A0(0)−A0(r))/2

×
(
I ′0(�

2A2(r)/2)J0(�r)+ 2
∞∑
n=1

(−1)nI ′n(�
2A2(r)/2)J2n(�r)

)
, (7.71)

�
∫
� d�

2π
C
(EM)
� e−�

2(A0(0)−A0(r))/2

(
J2(�r)+ �

2

4
A2(r)[J0(�r)+ J4(�r)]

)
.

(7.72)

Like for the temperature anisotropy, the polarization power spectra and correla-
tion functions are related via two-dimensional Fourier transforms. The relations
between polarization spectra and correlation functions are the same as those for the
unlensed quantities given in Chapter 5.

In Fig. 7.7 we show the lensed E- and B-mode spectra for a fixed spectral index
and a �CDM model. The B-mode spectra from tensors for r = 0.1 and r = 10−3

are also indicated.
Considering the B-polarization induced by lensing of E-polarization as the only

(Gaussian) noise in an all-sky polarization experiment, one finds that the primordial
tensor B-mode is detectable for r ≥ 10−3. If r < 10−3, a method must be found
to subtract the lensing contribution to the B-polarization spectrum. This is not
impossible. At small scales, � > 1000, the B-mode is nearly entirely due to lensing
and can therefore help to determine the spectrum of the lensing potential. Once we
know the latter, we can, in principle, invert our expressions for the lensed spectra to
obtain the “delensed” primordial spectra. The procedure can be applied iteratively.
In a first step, one may assume that the B-spectrum is purely due to lensing,
but neglect the effect of lensing in the E-spectrum. Determining the spectrum of
the lensing potential in this approximation, one can now calculate the first-order
delensed E-spectrum and from it the new lensed B-spectrum. The difference of
this and the measured B-spectrum is a first estimate for the primordial B-spectrum.
I suppose that this procedure converges rapidly, but this has not been shown in
detail. Present methods have measured the lensing signal with about 10% accuracy
on scales up to � ∼ 1000 directly from the reconstructed lens map; see Fig. 9.8.

The lensing potential comes dominantly from low redshift and may also be
determined or at least constrained by other observations, such as, for example, weak
lensing of galaxy surveys, especially on small scales. On large scales, where pertur-
bations are linear, we can obtain a first approximation to the lensing potential from
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Fig. 7.7 The 95% confidence regions for the polarization spectra from a compila-
tion of the CMB and large-scale structure data available in 2020. The optical depth
τ , the amplitude As , the matter density parameter �m, and the spectral index ns
are varied over their 95% confidence range. Varying also the other parameters of
the flat�CDM model does not enlarge the line thickness of the curves. The tensor
B-mode spectra from tensors for r = 0.1 and 10−3 are also indicated.

parameter estimation, neglecting lensing, which determines the Bardeen potentials
�, � and then via Eq. (7.21) the lensing potential.

All calculations done in this chapter approximate the sky as flat. This approxima-
tion is very good within patches of the size of the deflection angle and up to a few
degrees. But if we want to determine the modifications of the low C�’s by lensing,
sky curvature has to be taken into account. The result from such a curved sky
treatment for the correlation between two directions n1 and n2 is very similar to our
formulas (7.50), (7.68), (7.70), and (7.72). Only the sums over the modified Bessel
functions become double sums overm andm′ and the ordinary Bessel functions of r
are replaced by elementsD�mm′ of the representation matrix of the rotation that turns
n1 into n2. The detailed expressions can be found in Lewis and Challinor (2006).

7.5 Non-Gaussianity

There is also another method that may help to single out the lensing contribution
to the CMB power spectra. This is statistical in nature: we usually assume that pri-
mordial fluctuations are Gaussian. However, lensing, being a second-order effect, is
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not Gaussian. Furthermore, since correlations between the lensing potential ψ and
the CMB anisotropies and polarization can be neglected, to lowest order lensing
does not induce a bispectrum but only a trispectrum, a nonvanishing connected
4-point correlation function. This also offers a possibility to identify the lensing part
of the CMB anisotropies and polarization, which has been extensively used in the
Planck data analysis [Planck Coll. XV (2016)]. The connected 4-point correlation
function from lensing can be calculated and can be used to construct a “quadratic
estimator” for the lensing potential. However, care has to be applied, since all
forms of noise, foregrounds, instrumental noise, and so forth, are, in general, non-
Gaussian; see Okamoto and Hu (2003) for details.

7.6 Other Second-Order Effects

Lensing affects CMB anisotropies and polarization at second order. At �>∼ 3000,
lensing induces changes of order unity and more. Only for �<∼ 400, neglecting lens-
ing is accurate to better than half a percent. This naturally brings up the question:
are there other second-order effects that are similarly important? The answer to this
question is “probably not, at least not up to � ∼ 2000.”

Several second-order effects have been considered in the literature, but a sys-
tematic study of second-order CMB anisotropies and polarization is still lacking.
Here I briefly present the physical effects that have been studied so far, but we do
not enter into their calculation. We shall, however, discuss the Sunyaev–Zel’dovich
(SZ) effect in Chapter 10 in some detail.

• Lensing by clusters. So far we have discussed lensing mainly using the linear
lensing potential. However, CMB photons are also lensed by nonlinear structures
such as individual clusters. Statistically this effect can be taken into account by
using the nonlinear lensing potential on small scales.

• Ostriker–Vishniac effect. This is a second-order Doppler term that comes from
the fact that the optical depth is proportional to the electron density and the
Doppler term therefore has a second-order contribution of the form n · VbDb,
where Db is the baryon density fluctuation, Vb the baryon velocity, and n the
photon direction. It has been argued in Hu and White (1996) that this term is less
affected by Silk damping than the first-order Doppler term and may thus become
important on small scales, �� 1000. Calculations show, however, that the effect
is smaller than the lensing contribution for all �<∼ 3000; see Lewis and Challinor
(2006).

• SZ effect. Clusters contain a hot plasma with a temperature of several keVs.
As we shall see in Chapter 10, whenever CMB photons pass through a plasma
with hot electrons, their spectrum is modified in a well-defined way. This is
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the thermal SZ effect. It can be distinguished quite easily from primordial CMB
anisotropies by its spectral signature. In the Planck satellite experiment, this effect
has been routinely used to discover several hundred clusters; see Planck Coll.
XXIV (2016). However, clusters usually have a coherent peculiar velocity and
CMB photons that scatter off hot electrons of a cluster also acquire a Doppler
shift, the so-called kinetic SZ effect, which has exactly the same spectrum as ordi-
nary CMB anisotropies. The kinetic SZ effect is much smaller than the thermal
SZ effect, typically of the same order as the Vishniac effect.

• Rees–Sciama effect. The gravitational potential from linear perturbation theory
is constant in a CDM background and decaying in a late �CDM background.
However, once density perturbations become nonlinear, the gravitational poten-
tial also starts growing. This leads to a late integrated Sachs–Wolfe effect on very
small scales. Estimations show that this effect is probably subdominant on all
scales (Seljak, 1996a).

• Patchy reionization. As we shall discuss in Chapter 9, reionization is supposed to
be caused by the radiation of the first, probably very massive stars. It is reasonable
to expect that these stars have not formed everywhere at the same time and with
the same number density. Therefore, reionization was probably earlier in some
patches of the sky than in others, leading to more rescattering and therefore
damping of CMB anisotropies and regeneration of polarization in some places
than in others. It is not clear what and how strong the signature of this “patchy
reionization” is, but it probably is relevant only on very small scales where it may
be comparable with the kinetic SZ and Ostriker–Vishniac effects. A recent study
can be found in Feng and Holder (2019). While the signal is still out of reach in
present experiments, it should be measurable in the near future.

Exercises

(The exercises marked with an asterisk are solved in Appendix 11 which is not
in this printed book but can be found online.)

7.1 The deflection angle from a point mass∗
Consider a point massM with gravitational potential � =GM/r . Approx-
imate the Schwarzschild metric for this mass by

ds2 = −(1+ 2�) dt2 + (1− 2�) dx2.

Show that the light deflection in this metric to first order in � is given by
α = ϕe, where e is the normal to the original photon direction n in the
plane defined by n and the position of the mass, and
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ϕ = 4GM

d
, (7.73)

where d is the impact parameter of the photon trajectory (i.e., its closest
distance to the massM).

7.2 The lensing shear
Show that γ± = γ1±iγ2 [see Eq. (7.24) and Eq. (7.25)] is obtained from the
lensing potential by acting with the spin raising and spin lowering operator
on the lensing potetial,

γ+ = 1

2
(/∂∗)2ψ (7.74)

γ− = 1

2
/∂2ψ . (7.75)

7.3 Lensing of a scale-invariant power spectrum
In Section 7.3.1 we show that lensing of a scale-invariant spectrum by a
small deflection angle, |α| � π/�, can be approximated by

C̃� � (1− �2Rψ)C� + �2C�

∫
d2�1

(2π)2
[(�1 − �) · �1]2

(�− �1)2
C
ψ

�1
.

Bring the above integral into the form∫
d2�1

(2π)2
[(�1− �) · �1]2

(�− �1)2
C
ψ

�1
=

∫ ∞

0

�1 d�1

(2π)2
C
ψ

�1

∫ 2π

0
dφ

(�2
1− �1� cosφ)2

�2
1 +�2−2�1� cosφ

.

Using complex integration, show that the angular integral gives∫ 2π

0
dφ

(�2
1 − �1� cosφ)2

�2
1 + �2 − 2�1� cosφ

= π (
�2

1 + θ(�1 − �)(�2
1 − �2)

)
.

Here θ is the Heaviside function,

θ(x) =
{

1 if x ≥ 0
0 if x < 0.

This implies the result (7.39).

7.4 Expectation values of Gaussian variables
Show that for a Gaussian variable X with mean zero and variance σ we
have

〈eiX〉 = e−σ 2/2.
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Observations of Large-Scale Structure

8.1 Introduction

In addition to the CMB, the large-scale distribution of matter in the Universe [large-
scale structure (LSS)] is an interesting observable that is widely used to determine
not only the properties of our Universe but also to test the theory of gravitation,
General Relativity itself. In this chapter we discuss observations of LSS from a fully
relativistic point of view. We first make contact with the standard nonrelativistic
treatment and briefly discuss its merits and its shortcomings. Then we develop
a relativistic analysis that has much in common with our study of the CMB, the
main topic of this book. In the last section of this chapter we briefly also discuss
intensity mapping, a new, promising technique to observe LSS or, more generally,
the distribution of neutral hydrogen in the Universe.

LSS is more complicated than the CMB because we usually observe the distri-
bution of galaxies – discrete, highly over-dense, small regions in the sky – which
we approximate as points in this context. On the other hand, we calculate the
matter over density, and the relation between these two quantities is what we call
“bias.” Galaxies are a discrete biased tracer of the matter distribution. We have good
reasons to believe that on large scales bias is linear and scale independent, but we
expect it to depend on redshift. In this book we concentrate on these large scales,
since we treat the problem within linear perturbation theory, which is valid only on
sufficiently large scales and sufficiently high redshift. Furthermore, the relativistic
treatment, which is the novelty of this text, is relevant mainly on large scales.

In the past, observers usually surveyed a rather small region in the sky and
considered the observed galaxy number density in some volume element r2drd�

as proportional to the matter density ρ(t)δ(x,t). They then performed a discrete
Fourier transform on this dataset to infer the power spectrum. The details of this
procedure can be found, for example, in Peebles (1980). For small regions this is
actually sufficient (apart from redshift space distortions, which we discuss in the

296
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text that follows and that are today also included in the analysis). However, when
we go out to large redshifts and observe large patches in the sky, we have to take
into account that observations are made on the background lightcone and not in a
spatial volume. We also have to take into account that with the perturbed metric,
this background lightcone is also perturbed.

What we truly observe of a galaxy is its direction in the sky, −n (like in Section
2.5, n is the propagation direction of the incoming photon), and its redshift. The
measured over-density is therefore a quantity of the form�(n,z) and in this chapter
we want to compute it and to relate it to the matter density fluctuation δ(x,t) and
other perturbation variables.

Let N(n,z) be the number of galaxies in a small solid angle d� around n and in
a redshift bin [z,z+ dz]. We define the number count fluctuation as

�(n,z) = N(n,z)− N̄(z)
N̄(z)

. (8.1)

Here 4πfskyN̄(z) is the total number of galaxies observed in the redshift bin
[z,z+ dz] and fsky denotes the observed sky fraction. �(n,z) is a truly observable
quantity that vanishes in the Friedmann background universe and therefore its
expression within linear perturbation theory is gauge invariant (Stewart lemma).

We expand the angular dependence of � in terms of spherical harmonics,

�(n,z) =
∑
�,m

a�m(z)Y�m(n). (8.2)

The corresponding power spectra are

〈a�m(z)a∗�′m′(z′)〉 = C�(z,z′)δ��′δmm′ . (8.3)

Like for the CMB, the Kronecker deltas are a consequence of statistical isotropy,
but contrary to the CMB we have a density field at arbitrary redshift and differ-
ent redshifts are not uncorrelated. As we shall see in the text that follows, the
correlation of different redshifts is an excellent means to determine the lensing
convergence κ introduced in Eq. (7.19).

8.2 Redshift Space Distortion and Lensing

Before we derive the full relativistic expression for the number count fluctuation we
consider the quasi-Newtonian situation. In this section we also do not pay attention
to gauge issues and the result we derive here is actually not gauge invariant. The
only relativistic term we take into account in this section is the deflection of light
coming from our galaxies, that is, lensing. We consider objects (e.g., galaxies or a
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certain class of galaxies) with a density that is proportional to the matter density.
Neglecting first this proportionality factor (the bias), its fluctuation is given by

N(n,z) = ρ(n,z)V (n,z) = ρ̄V̄
(

1+ δz + δV
V

)
, (8.4)

where δz denotes the density fluctuation at fixed redshift. In addition to the naively
expected fluctuation of the observed number in a small volume V , we also have to
take into account the fluctuation of the volume element itself. For a given direction
at the observer, −n, and observed redshift z, the volume element is

V = r2(z)d�ndr = r2(z)
dr

dz
d�ndz. (8.5)

8.2.1 Redshift Space Distortion

In an unperturbed Friedmann universe, r is simply the comoving distance of the
emitter at redshift z, r(z) = ∫ z

0 H
−1(z′)dz′ and dr/dz = H−1(z) = a/H; see

Eq. (1.47). In a perturbed Universe, both r and z acquire perturbations. In a Newto-
nian setting only z is perturbed by the Doppler effect and we have z = z̄+ δz with
[see Eq. (2.236)]

δz

1+ z̄ = −V(z) · n = Vr . (8.6)

Here we neglect Sachs–Wolfe and integrated Sachs–Wolfe effects that are taken
into account in Eq. (2.236) and that we shall also consider in the next section.

In our derivative in Eq. (8.5) we have to insert dz = (1+ dδz/dz̄)dz̄ or

dr

dz
=

(
1− dδz

dz̄

)
dr

dz̄
= 1

(1+ z)H
(

1+ V · n+ d(V · n)/drH

)
. (8.7)

In the last term we have converted d/dz into d/dr . At small to intermediate scales,
the term V · n is usually neglected, as it is a factor H/k smaller than the last term,
which contains an additional derivative. Neglecting the subdominant middle term
in Eq. (8.7), this leads to a radial volume distortion of

δV

V
= δ

(
dr
dz

)
dr
dz

= d(V · n)/drH . (8.8)

Let us now consider a relatively small survey of galaxies positioned in a global
mean direction −n from the observer and at observed redshift z. To take into
account redshift space distortions (RSDs) we have to take into account the radial
volume distortion and replace the observed δg = bδ by

� = δN
N
= δg(x,z)+ δV

V
= bδ(x,z)−H−1n · ∇ (n · V(x,z)) , (8.9)
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where we have neglected the subdominant term of Eq. (8.7) and δg denotes the
galaxy density fluctuation that we assume to be linearly related to the matter density
fluctuation. We have inserted x = −rn and we have used that ∂r = −n · ∇. The
quantity b is a bias factor that depends on the chosen “tracer” and is in general
redshift dependent, but we assume it to be scale independent. We consider scalar
perturbations such that V = −∇Vs for a velocity potential Vs . Fourier transforming
Eq. (8.9) we find

�(k,z) = bδ(k,z)− μ2k2Vs(k,z)/H, (8.10)

where μ = k̂ · n is the direction cosine between the incoming photon and the wave
number k. We now use the Newtonian continuity equation in Fourier space,

δ̇ + k2Vs = 0. (8.11)

This corresponds to the first of Eqs. (2.116) or (2.118) for w = c2
s = 0, neglecting

�, , and gauge issues and setting Vs = V/k. We set δ(k,t) = D1(t)δ(k,t0), where
D1(t) is the deterministic linear growth factor that we normalize to 1 today. For pure
matter perturbations D1 does not depend on the wave number; see Eq. (2.186). We
also introduce the logarithmic growth rate, called the growth function,

f = Ḋ1

D1H
≡ d lnD1

d ln a
. (8.12)

We then obtain for the observed power spectrum of �

Pobs(k,z) = Pδ(k,z)
[
b + μ2f

]2
. (8.13)

This is the very interesting result first derived by Kaiser (1987). It shows that even
in a statistically isotropic universe the observed power spectrum is not isotropic
due to observational effects. Furthermore, isolating the term proportional to μ2 or
μ4 allows us to measure the growth function f which depends sensitively on the
expansion history of the Universe.

The term b2Pδ(k,z) exhibits the so-called Baryon Acoustic Oscillations “BAOs”
which are the acoustic oscillations of the baryon-photon fluid prior to decoupling
left over in the baryons. Since baryons make only a small contribution to the
total matter, the amplitude of BAOs is much smaller than the one of the acoustic
oscillations in the CMB, but they have unambiguously been detected in the data
and are routinely being used to measure a distance out to redshift z.

Let us denote the comoving wavelength of the nth BAO peak by λn. It is roughly
given by the peaks of cos(knrs), where rs is the comoving “drag scale.” The
computation of the drag scale is somewhat subtle. First of all, at zdec, when photons
decouple from baryons, the baryons still remain coupled until nearly z∼ 100,
which is why their temperature still equals roughly the photon temperature; see
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Section 1.3.2. Nevertheless, the baryon sound speed drops significantly during
this epoch so that the baryon sound horizon, which roughly corresponds to the
drag scale, grows only very little. An additional effect is the so-called velocity
overshoot that is due to the change in the evolution of perturbations at the equality
scale [see Montanari and Durrer (2012) for details]. Numerically one finds a
comoving drag scale of rs � 147 Mpc. In transversal directions the nth BAO peak
is seen under an angle θn(z) = λn/[(1+ z)dA(z)]. In radial directions they are seen
at a redshift difference �zn = λnH(z). In an angular average the physical distance
dV (z) that is estimated from these oscillations is given by

dV (z) =
(

d2
A(z)

(1+ z)H(z)
)1/3

. (8.14)

If we can measure the radial and transversal BAOs independently, by determining
�zn and θn in the angular power spectrum we can measure

F(z) ≡ �zn(z)

(1+ z)θn(z) = H(z)dA(z) = H(z)
∫ z

0

dz′

H(z′)
. (8.15)

This is the so-called Alcock–Paczynski test (Alcock and Paczynski, 1979), which
we can perform whenever we can see the same physical scale, here λn, radially
and transversally. Forecasts of how well this can be measured in the angular cor-
relation function with future surveys have been studied in the literature (Montanari
and Durrer, 2012; Lepori et al., 2016). At present, no experimental results on the
Alcock–Paczynski test with BAOs are yet available. Some attempts have been made
to use the test for stacked voids; see, for example, Mao et al. (2017).

One usually expands Eq. (8.13) in Legendre polynomials [see Appendix 4,
Section A4.1], which we denote by L� in this chapter (in order to avoid too
many P ’s),

Pobs(k,z) = Pδ(k)D2
1(z) [β0(z)L0(μ)+ β2(z)L2(μ)+ β4(z)L4(μ)] , (8.16)

with

β0 = b2 + 2bf

3
+ f

2

5
(8.17)

β2 = 4bf

3
+ 4f 2

7
(8.18)

β4 = 8f 2

35
. (8.19)

Pδ(k) is the linear density fluctuation spectrum today.
The products β0Pδ(k) and β2Pδ(k) have been determined by observations at

good accuracy, but β4Pδ(k) has not yet been positively detected. Only when we



8.2 Redshift Space Distortion and Lensing 301

are able to measure all three quantities will we be able to break the degeneracy
and isolate both b and f . In a �CDM or open universe f (z) � [�m(z)]0.55. For
�m(z = 0) ∼ 0.3 we find that at low redshift β4 ∼ 0.06 while β0 is of order unity or
larger. At higher redshift, z>∼ 2, we have f � 1 so that β4(z ≥ 2) � 8/35 � 0.23.
Unfortunately, presently there are no data available at these redshifts and as we
shall see in the text that follows contributions from lensing cannot be neglected at
z = 2 and larger; see, for example, Montanari and Durrer (2015).

By Fourier transforming the power spectrum we obtain the correlation function,

ξobs(d,z) = D2
1(z) [β0ξ0(d)L0(μ)− β2ξ2(d)L2(μ)+ β4ξ4(d)L4(μ)] , (8.20)

where here μ denotes the direction cosine between the outward normal −n and the
vector d connecting the correlated galaxies and

ξn(d) =
∫
k2dk

2π2
Pδ(k)jn(kd). (8.21)

The details of this are derived in Exercise 8.1. As we denote the comoving distance
out to redshift z by r(z), we here use d for the distance vector connecting the two
“pixels” that we correlate in ξ .

Before we go on we introduce an important quantity often used to characterize
the amplitude of observed fluctuations. It is the mean square of number count
fluctuations inside a ball of radius R, defined by

〈(�N/N̄)2〉R =
〈(∫

WR(y)bδ(y) d3y

)2
〉

(8.22)

=
∫
WR(y)WR(x)ξg(|y− x|) d3yd3x . (8.23)

Here WR is a window function of size R. The most common shapes for window
functions are a Gaussian or a “top hat.” The galaxy correlation function ξg is
proportional to the monopole of ξobs. Using the fact that the Fourier transform of a
convolution is the product of the Fourier transforms, we have∫

WR(x− y)δ(y) d3y =
∫

d3k

(2π)3
eik·xWR(k)δ(k), (8.24)

so that

〈(�N/N̄)2〉 =
∫

d3k

(2π)3
|WR(k)|2 b2Pδ(k) . (8.25)

If the bias is relatively close to unity, the average galaxy number fluctuations
inside a ball of radius R can therefore give the normalization of the matter power
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spectrum. One usually introduces the matter density fluctuation inside a ball of
radius R = 8 Mpc to characterize the amplitude of density fluctuations:

σ 2
8 =

∫
d3k

(2π)3
W 2

8Mpc(k)Pδ(k) . (8.26)

The mean galaxy number fluctuations inside a ball of radius R = 8 Mpc are related
to σ8 by the bias. While the monopole of the observed correlation function is mainly
sensitive to b2σ 2

8 , the quadrupole is also sensitive to bσ 2
8 f and the hexadecapole

measures σ 2
8 f

2. More precisely, the multipoles are measuring β�σ 2
8 .

8.2.2 Lensing

In the previous section we considered radial volume distortions; in this section we
consider transversal distortions due to lensing.

The observed transverse surface element is r2 sinϑodϑodϕo. The transverse
surface element at emission, that is, at the source, is r2 sinϑsdϑsdϕs . Inserting
ϑs = ϑo + δϑ , ϕs = ϕo + δϕ, the ratio is to first order in the perturbations

sinϑs
sinϑ0

∣∣∣∣ ∂(ϑs,ϕs)∂(ϑo,ϕo)

∣∣∣∣ = 1+ (cotϑo + ∂ϑ)δϑ + ∂ϕδϕ. (8.27)

Here we used that det(1I + εM) = 1 + εTrM to first order in ε, where Tr denotes
the trace. Inserting δϑ and δϕ from Eqs. (7.13) and (7.14), and using the definition
of the lensing potential (7.21) we find

sinϑs
sinϑo

∣∣∣∣ ∂(ϑs,ϕs)∂(ϑo,ϕo)

∣∣∣∣ = 1− (cotϑo ∂ϑ + ∂2
ϑ +

1

sin2 ϑo
∂2
ϕ)ψ(n,z) (8.28)

= 1−��ψ(n,z) = 1− 2κ(n,z). (8.29)

Here �� is the Laplacian on the 2-sphere w.r.t. the observed direction −n ≡
(ϑo,ϕo). The only difference w.r.t. the CMB calculation is that here the convergence
κ is to be taken at the source redshift z and not at the fixed CMB redshift z∗. Adding
also this transversal volume fluctuation (and again neglecting fluctuations in r) we
finally obtain

�obs(x,z) = bδz + δV
V
= bδ(x,z)−H−1n · ∇ (n · V(x,z))− 2κ(n,z), (8.30)

This is the correct result if we see all galaxies (of the type considered in a given
survey). But a telescope has a finite sensitivity and cannot see objects that emit light
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below a given flux limit F∗ depending on the telescope. This flux limit is usually
given in terms of a so-called apparent magnitude limit,

m∗ = −5

2
log10 F∗ + const., (8.31)

where the constant is traditionally defined such that the star Vega has apparent
magnitude zero. Note, the lower the magnitude of a galaxy the brighter it is. If
galaxies are too faint, they are not observed in the given survey. However, due
to the lensing magnification κ some galaxies that would be intrinsically too faint
are amplified above the flux limit and make it into our survey. Denoting the mean
number of galaxies with observed magnitude below m∗, flux higher than F∗, or
intrinsic luminosity above L∗(z) by n̄g(z,L∗), the observed number of galaxies
below this magnitude in a given direction −n at redshift z is corrected by

ng(z,L∗,n) = n̄g(z,L∗)+ ∂n̄(z,L)
∂ lnL

∣∣∣∣
L=L∗

δL

L
. (8.32)

Neglecting other relativistic effects apart from the focusing of light by lensing, we
have δL/L = μ− 1 = 2κ; see Eq. (7.20). Introducing the magnification bias

s(z,m∗) = 2

5

∂n̄(z,L)

∂ lnL

∣∣∣∣
L=L∗(z)

(8.33)

we obtain for the number counts

�obs(n,z) = bδz + δV
V
+ ∂n̄,L

∂ lnL

∣∣∣∣
L=L∗

δL

L

= bδ(r(z)n,z)−H−1n · ∇ (n · V(r(z)n,z))− (2− 5s)κ(n,z). (8.34)

The strange prefactor in the definition of s comes from the fact that it was originally
defined as a derivative w.r.t the apparent magnitude m∗.

This is the formula that includes RSD and the two effects of lensing. It was
considered for the first time by Matsubara (2000). The increase of the transversal
volume reduces the number count per volume element while focusing enhances
the number of galaxies that make it into a given survey. The two lensing terms
therefore have opposite signs (as n̄g(m) is monotonically growing with increasing
m, s is always positive) and, depending on the value of s one or the other term
may dominate. At low redshift we usually see most galaxies and s is small. At high
redshift, however, we see only the brightest objects and s can become quite large.
Depending on the survey, the prefactor (2−5s) can change sign at a given redshift.
To take the lensing effect correctly into account we therefore have to measure s(z)
for the given sample of galaxies. This can be done by choosing m∗ slightly higher
than the true limiting magnitude and counting ng(m∗ − dm) and ng(m∗ + dm).
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Fig. 8.1 We show the observed matter angular power spectrum for z = z′ = 1
(top panel), z = z′ = 2 (middle panel), and z = 1,z′ = 2 (bottom panel). The
solid line is the full result, the dotted line is the density term only, the dash-dotted
line shows the RSD and RSD-density correlation, and the dashed line shows all
terms containing κ . We have set b = 1 and s = 0 in these plots.
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In Eq. (8.34) the lensing term κ(n,z) = �ψ(n,z) does not simply depend on
x = −rn. Like the lensing potential ψ it is given as an integral along the line of
sight. Therefore, there is no simple, straightforward way to convert the expression
(8.34) into a power spectrum in Fourier space. It is much more natural to consider
it as a redshift-dependent correlation function or angular power spectrum:

�obs(n,z) =
∑
�m

a�m(z)Y�m(n) (8.35)

〈a�m(z)a∗�′m′(z′)〉 = C�(z,z′)δ��′δm,m′ (8.36)

〈�obs(n,z)�obs(n′,z′)〉 = 1

4π

∑
�

(2�+ 1)C�(z,z
′)L�(n · n′). (8.37)

In Fig. 8.1 we show the power spectra including density, RSD, and lensing for
z = z′ = 1 (top panel), z = z′ = 2 (middle panel), and z = 1,z′ = 2 (lower panel).
Interestingly, for both equal redshift correlations the RSD contributions are larger
than the density term. This is due to our choice of b = 1 in the plot. (Note also
that the “RSD contribution” contains both the RSD×density and the RSD×RSD
terms.) Furthermore, the lensing term is negligible in equal redshift correlations for
z ≤ 2. However, for z = 1 and z′ = 2 the lensing term largely dominates the result
and the density and RSD contributions are negligible. Of course, this extreme case
of an off-diagonal spectrum has a very low amplitude and it will be very difficult to
observe it.

From the angular power spectrum, which is well defined also for wide angle
surveys, the growth function f cannot be readily extracted. Therefore, it is also very
useful to measure the correlation function given in Eq. (8.20). For small angular
separation we can define a common direction n̄ and split the distance d = r(z)n−
r(z′)n′ into a radial and a transversal part, d = (r(z) − r(z′))n̄ + d⊥. For small
redshift differences, z = z̄+�z/2, z′ = z̄−�z/2; the correlation function can then
be understood as a function of d = |d|, μ = (r(z) − r(z′))/d and z̄ = (z + z′)/2.
As long as lensing can be neglected, the μ-dependence expressed in Legendre
polynomials is proportional1 to the terms β0, −β2, and β4.

8.3 The Fully Relativistic Angular Matter Power Spectrum

In this section we determine the fully relativistic matter power spectrum. The
derivation is now more involved as we take into account the full perturbed metric
and also perturbations of the radial distance. Even though the final formula is

1 When going from the power spectrum to the correlation function the terms that are not of the form 4n acquire
a minus sign due to the expansion of the exponential in Legendre polynomials and spherical Bessel functions;
see Eq. (2.259) and Exercise 8.1.
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significantly longer than Eq. (8.34), the new terms are suppressed by at least
one power of H/k w.r.t. the density, RSD, and lensing. For typical surveys with
redshifts up to z∼ 3 they can be safely neglected for �> 10. For single-tracer
surveys in a parity symmetric universe, terms with odd powers of k/H cannot
be correlated with terms containing even powers so that the power spectrum of
contribution with large-scale terms is suppressed at least by (H(z)/k)2. For � = 10
and redshift z>∼1, this gives a suppression factor of about �−2 = 0.01. Nevertheless,
we want to compute them here. First of all, as we shall see, at very low redshifts
some relativistic terms become relevant. Also, if ever we can go to significantly
higher redshifts, for example, z ∼ 20 or so, for example, with intensity mapping,
some terms become relevant. Furthermore, they show how galaxy number counts
are in principle sensitive not only to the density and velocity fields but also to
metric perturbations. Therefore, they can be used to test the consistency of LSS
with General Relativity. For this, we do not even need the large-scale relativistic
effects that we now determine; we can determine the lensing potential at arbitrary
redshift already with the dominant lensing term. Finally, the relativistic terms that
we compute below, when converted to a power spectrum, lead to an upturn on very
large scales, exactly like the effect of a primordial non-Gaussianity as described
in Dalal et al. (2008). Therefore, neglecting it might lead to a false “discovery” of
primordial non-Gaussianity.

8.3.1 Derivation of the Relativistic Number Counts

Let us present the fully relativistic derivation. We shall do the derivation in longitu-
dinal (Newtonian) gauge. Since all multipoles with � ≥ 2 vanish in the background
they are gauge invariant (Stewart’s lemma). The monopole and dipole, however, are
gauge dependent and we shall not consider them. For this reason we also disregard
terms at the observer that contribute only to the monopole or the dipole. We present
the derivation for vanishing spatial curvature so that χ(t) = r = t0 − t . The
expression for number counts in a spatially curved universe can be found in Di
Dio et al. (2016).

We first note that δz = δρ/ρ̄|z, that is, the density fluctuation at fixed redshift is
related to the density fluctuation at fixed time t by

δz = δρ
ρ̄
+ dρ̄
dz
δz = Ds − 3

δz

1+ z . (8.38)

HereDs is the matter density fluctuation in longitudinal gauge and δz is the redshift
perturbation in longitudinal gauge given in Eq. (2.236). Let us also determine the
relativistic volume perturbation. The three-dimensional (spatial) volume element
has to be defined w.r.t. an observer moving with 4-velocity uμ as
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dV = √−gεμναβuμdxνdxαdxβ

= √−g εμναβuμ∂x
ν

∂z

∂xα

∂ϑs

∂xβ

∂ϕs

∣∣∣∣ ∂(ϑs,ϕs)∂(ϑo,ϕo)

∣∣∣∣dzdϑodϕo
≡ v(z,ϑo,ϕo)dzd�o , (8.39)

where d�o = sinϑodϑodϕo, z is the source redshift, and we have introduced the
density v that defines the volume perturbation,

δV

V
= v − v̄

v̄
= δv
v̄

.

As previously, a suffix o denotes the observer position while a suffix s denotes the
source (galaxy) position. In addition to the Jacobian of the transformation from
the angles at the source to the angles at the observer, which we already had in

the previous section,
∣∣∣ ∂(ϑs,ϕs)∂(ϑo,ϕo)

∣∣∣, there are now terms coming from
√−g and the

perturbations of the radial distance. Equation (8.39) is still exact. To first order
the perturbed angles at the source, ϑs = ϑo + δϑ and ϕs = ϕo + δϕ, have been
determined in Eqs. (7.13) and (7.14). As in the previous section, at first order in the
perturbations, the Jacobian determinant is∣∣∣∣ ∂(ϑs,ϕs)∂(ϑo,ϕo)

∣∣∣∣ = 1+ ∂δϑ
∂ϑ

+ ∂δϕ
∂ϕ

. (8.40)

Using the first-order expression for the metric determinant,
√−g = a4(1+�−3�),

and the 4-velocity of the source, (uμ) = 1
a
(1−�,V i), we find to first order

v = a3(1+� − 3�)

[
dr

dz
r2 sinϑs

sinϑo

(
1+ ∂δϑ

∂ϑ
+ ∂δϕ
∂ϕ

)
(1−� + Vr)

]
. (8.41)

Here dr/dz is to be understood as the derivative of the comoving distance r with
respect to the redshift along the photon geodesic. At linear order we can write (the
distinction between the true z and the background z̄ is relevant only for background
quantities)

dr

dz
= dr̄
dz̄
+ dδr
dz̄

− dδz
dz̄

dr̄

dz̄
=

(
dr̄

dt
+ dδr
dλ

− dδz
dλ

dr̄

dz̄

)
dt

dz̄
, (8.42)

where we have used that for first-order quantities we can set dt = dλ when we
have to take the derivative along the photon geodesic. The last term of Eq. (8.42)
contains the redshift space distortion discussed in the previous section. To lowest
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order along a photon geodesic −dr̄/dz̄ = dt/dz̄ = −H−1 = −a/H. With this the
volume element becomes

v = a
4r̄2

H

[
1− 3�+

(
cotϑo + 1

∂ϑ

)
δϑ+ ∂δϕ

∂ϕ
− V · n+ 2δr

r
− dδr
dλ

+ a

H
dδz

dλ

]
.

(8.43)

From this we subtract the unperturbed part v̄(z) evaluated at the observed redshift,
z = z̄+ δz,

v̄(z) = v̄(z̄)+ dv̄
dz̄
δz.

With the unperturbed expression, a = 1/(z̄+ 1),

v̄(z̄) = r̄2

(1+ z̄)4H (8.44)

and we obtain

δv

v̄
(n,z) = v(z)− v̄(z)

v̄(z)

= −3�+
(

cotϑo + ∂

∂ϑ

)
δϑ + ∂δϕ

∂ϕ
− V · n+ 2δr

r
− dδr
dλ

+ 1

H(1+ z̄)
dδz

dλ
−

(
−4+ 2

r̄H + Ḣ
H2

)
δz

1+ z̄ . (8.45)

To compute the radial perturbation δr we have to integrate the photon geodesic
from the source to the observer. We use

dxμ

dλ
= nμ, (8.46)

where nμ denotes the photon 4-velocity. Neglecting perturbations at the observer
position that give raise to unobservable monopole and dipole terms, using Eqs. (7.5)
and (7.6) for vanishing curvature we find

δxi(ts) = −2
∫ rs

0
dr(� +�)ni −

∫ rs

0
dr(rs − r)

(
(� +�),i + (�̇ + �̇)ni

)
,

(8.47)

where we have used rs − r(λ) = λ and dr = −dλ to lowest order. From this we
obtain

δr ≡ δxinri =
∫ rs

0
dr(�+�). (8.48)
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We have also used that n = −nr , ni∂i + ∂t = d
dλ
= d

dt
and rs = t0 − ts to lowest

order. For the derivative of δr we obtain

dδr

dλ
= −(�+�). (8.49)

Inserting Eqs. (7.13) and (7.14) for the angular contribution to the volume we
find, as in the previous section,

(cotϑ + ∂ϑ)δϑ + ∂ϕδϕ = −
∫ rs

0
dr
(rs − r)
rrs

��(�+�)

= −
∫ rs

0
dr
(rs − r)r
rs

�⊥(�+�) = −2κ, (8.50)

where �� denotes the angular part of the Laplacian and �⊥ ≡ r−2��,

�� ≡
(

cotϑ∂ϑ + ∂2
ϑ +

1

sin2 ϑ
∂2
ϕ

)
. (8.51)

Adding all the contributions of Eq. (8.45) together we obtain

δv

v
= −2(� +�)− 4V · n+ 1

H

[
�̇+ ∂r� − d(V · n)

dλ

]

+
(
Ḣ
H2

+ 2

rsH

) (
� + V · n+

∫ rs

0
dr(�̇+ �̇)

)

− 3
∫ rs

0
dr(�̇+ �̇)+ 2

rs

∫ rs

0
dr(�+�)− 1

rs

∫ rs

0
dr
rs − r
r
��(�+�).

(8.52)

Adding this to the density perturbation in redshift space given in Eq. (8.38), we
obtain the number count fluctuations to first order first derived by Bonvin and
Durrer (2011),

�(n,z) = Ds − 2�+� + 1

H
[
�̇+ ∂r(V · n)

]
+

(
Ḣ
H2

+ 2

rsH

) (
� + V · n+

∫ rs

0
dr(�̇+ �̇)

)

+ 1

rs

∫ rs

0
dr

[
2− rs − r

r
��

]
(�+�). (8.53)
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Here we have also used the momentum conservation equation (2.119) for pressure-
less matter,

n · V̇+Hn · V− ∂r� = 0,

in order to remove the term V̇ in dV/dλ = V̇ + ni∂iV. The terms in the integrals
have always to be evaluated at the positions x = −rn,t = t0 − r , while the source
position is xs = −rsn,ts = t0 − rs and we set xo ≡ 0.

Equation (8.53) is the observable linear matter density fluctuation in angular and
redshift space. In Bonvin and Durrer (2011) it is also shown that this expression
is gauge invariant. Note that we did not use Einstein’s equation in this derivation,
which is therefore valid for all metric theories of gravity, that is, theories in which
photons and dark matter particles move along geodesics.

The term H−1∂r(V · n) is the well-known RSD, while the last term of Eq. (8.53)
is simply the convergence κ , that is, the trace of the Jacobian of the lens map, which
we have obtained in the previous section,

−2κ = −��ψ = −��
∫ rs

0
dr
rs − r
rsr

(�+�) . (8.54)

As already discussed, galaxies are biased tracers of the matter density fluctua-
tions. In relativistic perturbation theory there are different gauge-invaiant defini-
tions of the matter density fluctuation, and we have to decide which one might be
linearly related to the galaxy density. It is physically most sensible to assume that a
linear relation exists between the matter density and the galaxy density in comoving
gauge, that is, in the gauge where matter is at rest. The matter density in this gauge
is D, which is related to the density Ds in longitudinal gauge by [see Eq. (2.87)]

D = Ds − ρ̇
ρ
Vs = Ds + 3HVs, (8.55)

where Vs is the velocity potential introduced in the previous section, V = −∇Vs .
(Note that Vs in real space defined in this way has the dimension of a length. It is
related to the dimensionless V in Fourier space defined in Eq. (2.85) via V (k) =
kVs(k)). We assume that in comoving gauge the galaxy number density fluctuation
is proportional to the matter density fluctuation,

δg = bD, (8.56)

where b is a bias factor that generically depends on redshift. Bias can also be more
complicated, scale-dependent, nonlinear, stochastic etc., but we do not consider
these possibilities in our discussion.

Furthermore, the comoving galaxy number density may increase due to the for-
mation of new galaxies (or decrease due to mergers), so that the physical number
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density of galaxies decays slower (or faster) than the mean matter density. We
model this as

Ṅ

N
= (1− be/3) ρ̇

ρ
, (8.57)

where be is called “evolution bias.” Therefore we have to replace Ds not simply by
bD − 3HVs but by

Dobs
s = bD − (3− be)HVs . (8.58)

In addition, in Eq. (8.38) we have used that dρ̄m/dz = −3ρ̄m/(1+z). If galaxies
are generated as modeled with the evolution bias be in Eq. (8.57), we have to
replace the term −3δz/(1 + z) by (−3 + be)δz/(1 + z). This adds a term −be in
the parentheses (Ḣ/H2 + 2/(rsH)) of Eq. (8.53).

Finally, we also want to take into account magnification bias. As in the previous
section, the number count fluctuations up to a limiting flux F∗ are given by

�g(n,z,m∗) = �g(n,z)+ ∂ ln n̄g(z,L)

∂ lnL

∣∣∣∣
L=L∗

δL

L̄
= �g(n,z)+ 5s

2

δL

L̄
, (8.59)

where s is as defined in Eq. (8.33). In a relativistic treatment we have to be more
careful in the determination of the luminosity perturbation. In terms of the fluctua-
tion of the luminosity distance it is given by δL/L̄ = −2δDL/D̄L. In Appendix 10
we calculate the perturbation of the luminosity distance. Inserting the result given
in Eq. (A10.27) and putting all the biasing effects together, we find the following
result first derived by Challinor and Lewis (2011):

�g(n,z,m∗) = bD − (3− be)HV + 1

H
[
�̇+ ∂r(V · n)

]
+

(
Ḣ
H2

+ 2− 5s

rsH
+ 5s − be

) (
� + V · n+

∫ rs

0
dr(�̇+ �̇)

)
− (2− 5s)�+� + 2− 5s

2rs

∫ rs

0
dr

[
2− rs − r

r
��

]
(�+�).

(8.60)

Like in Eq. (8.34), also in Eq. (8.60) s enters mainly in the combination 2 − 5s.
The first term is a transversal volume distortion. Focusing increases the angular
separation of two points at a given transverse distance and hence lets the volume
appear larger and the density smaller. On the other hand, focusing also enhances
the luminosity of sources and galaxies that otherwise would be too faint to make it
into our surveys, leading to an enhanced density. Depending on the sign of 2− 5s
one or the other effect wins. As we shall see in Section 8.5, for intensity maps the
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two effects exactly cancel. If we do not count individual sources but the intensity
coming from a certain area, the area “appears” larger due to focusing exactly by
the increase in the luminosity coming from it so that the surface brightness is
conserved. Therefore for intensity mapping we can simply set s = 2/5 and there is
no lensing effect at first order in perturbation theory. This is also the case for CMB
observations where lensing is a second-order effect, as we have seen in Chapter 7.

8.3.2 The Power Spectrum

Let us now compute the relativistic angular matter power spectrum for the case of
purely scalar adiabatic fluctuations. We assume that the initial fluctuations are given
in Fourier space by the initial curvature fluctuation ζ(k) defined in Eq. (2.145) that
has been generated during inflation with some power spectrum

k3〈ζ(k)ζ ∗(k′)〉 = (2π)3δ3(k− k′)Pζ (k). (8.61)

The star indicates complex conjugation.
In the simplest models of adiabatic perturbations all scalar perturbations at

later times are determined by the random variable ζ(k) via a deterministic transfer
function,

X(k,z) = TX(k,z)ζ(k), V(k,z) = ik̂TV (k,z)ζ(k). (8.62)

The first equation applies for scalar quantities while the second one applies for
(spatial) vectors; k̂ is the unit vector in direction k. Note that within first-order
perturbation theory, z in these perturbation variables can be related to t via the
background Friedmann model. In Fourier space therefore the vector V = ik̂V
and the potential V have the same dimension. [As already mentioned, the Fourier
transform of the velocity potential Vs(x) is not V (k) but k−1V (k).] The transfer
functions depend on the content of the Universe and on the theory of gravity. We
shall see in the next chapter that measuring CMB anisotropies and polarization, but
also the galaxy power spectrum under the assumption of simple initial conditions,
allows us to estimate cosmological parameters.

To determine the number count power spectrum C�(z,z′) and the angular corre-
lation function

ξ(θ,z,z′) = 1

4π

∑
�

(2�+ 1)C�(z,z
′)P�(cos θ), (8.63)

we make use of Eq. (2.259). A short calculation using Eq. (8.60) gives (see Bonvin
and Durrer, 2011)

C�(z,z
′) = 2

π

∫
dk

k
Pζ (k)F�(k,z)F�(k,z′), (8.64)
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where rs ≡ r(z) = t0 − t (z) is the comoving distance of the source and

F�(k,z) = j�(krs)
[
bTD − (3− be)H

k
TV + (2− 5s)T� + 1

H Ṫ�

+
(

1− Ḣ
H2

+ 2− 5s

rsH
+ 5s − be

)
T�

]

+ j ′�(krs)
(
Ḣ
H2
+ 2− 5s

rsH
+ 5s − be

)
TV + k

HTV j
′′
� (krs)

+ 2− 5s

2rs

∫ rs

0
j�(kr)

(
2+ rs − r

r
�(�+ 1)

)
(T� + T�)dr

+
(
Ḣ
H2

+ 2− 5s

rsH
+ 5s − be

) ∫ rs

0
j�(kr)(Ṫ� + Ṫ�)dr . (8.65)

The prime in the spherical Bessel functions denotes the derivative w.r.t. the argu-
ment. Let us briefly estimate the order of magnitude of the different terms in a stan-
dard �CDM cosmology. Neglecting anisotropic stresses and using the perturbed
Einstein equations, Eqs. (2.105) and (2.107) in �CDM, it is easy to express all the
transfer functions in terms of T� ,

T� = T� (8.66)

TD = − 2a

3�m

(
k

H0

)2

T� (8.67)

TV = 2a

3�m

k

H2
0

(
HT� + Ṫ�

)
. (8.68)

Here H0 = H0 is the present Hubble parameter and �m is the present matter
density parameter. On scales k � H0 the density term ∝ (k/H0)

2T� and the
RSD term ∝ (k/H)TV ∝ (k/H0)

2T� + · · · clearly dominate (the · · · denote
additional subdominant contributions). Furthermore, considering that for source
redshift of order unity and more, rs ∼ H−1

0 , so that a given angular scale � �
π/θ � krs � k/H0, we find that for sufficiently high redshifts, z>∼1; also the κ-
contribution to the lensing term is of the same order. However, the line of sight
integral of the lensing term smoothes overdensities and underdensities so that the
first two terms are dominant for correlations at equal redshifts, z = z′. The RSD
is the dominant radial volume distortion while the κ or magnification term is the
dominant transversal volume distortion.

When the redshift difference is substantial or when a wide redshift window is
used, the lensing term can be as large or even larger than the standard density
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and RSD terms (see Montanari and Durrer, 2015). The remaining gravitational
potential and Doppler terms are relevant only on very large scales and special
techniques such as multitracer methods are required to render them observable (see,
e.g., Alonso and Ferreira, 2015; Irsic et al., 2015).

All the terms multiplied by 2 − 5s appear also in the relativistic weak lensing
calculation, in the perturbation of the determinant of the magnification matrix given
in Eq. (7.19). The term (2/rs)

∫ rs
0 (�+�)dr is the Shapiro time delay coming from

the prolongation of the photon path when it passes through a potential well. In
addition to this there are the integrated Sachs–Wolfe term (ISW), the Doppler term,
and the value of the gravitational potential at the source; see also Appendix 10.

Contrary to the density fluctuation D(x,t), the observable number count fluctu-
ations �(n,z) also have contributions from vector and tensor fluctuations. We do
not derive these here. They can be found in the literature; for example, the power
spectrum C�(z,z′) from tensor fluctuations is derived in Bonvin and Durrer (2011)
while the one for vector perturbation is given in Durrer and Tansella (2016).

In Fig. 8.2 we show the large-scale relativistic corrections to the C�(z,z′) power
spectra. For z = z′ where z = 2 or 1, these never exceed a fraction of 10−3 of

Fig. 8.2 The large-scale relativistic corrections to the power spectrum from
the gravitational potential terms are shown for z = z′ = 0.1 (top, left panel),
z = z′ = 1 (top, right panel), z = z′ = 2 (bottom, left panel), and z = 1,z′ = 2
(bottom, right panel). The dashed lines show negative contributions (in log scale).
The contributions are always significantly less than 1% except at very low � in the
case 1 = z 
= z′ = 2.
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the total result. For low redshifts, z � 0.1, the relativistic contributions are much
larger, as we shall see when studying the correlation function. Here we have chosen
a delta function window, or perfect resolution, in redshift. Smoothing over a wider
redshift window can enhance the fractional contribution of the relativistic terms as
it reduces the density and RSD contributions. Also for z 
= z′ (see bottom right
panel of Fig. 8.2) the relativistic terms can make up to 20% on large scales.

At present, observers do not yet systematically measure the full angular power
spectrum of number counts. So far they mostly used the flat sky approximation
and determined the power spectrum from a small-angle patch of the sky or the
correlation function, which we discuss in the next section. Exceptions are recent
photometric surveys such as, for example, DES in Abbott et al. (2018). But also
in this analysis the large-scale relativistic contributions and, more relevant, also the
lensing term are neglected.

8.4 The Correlation Function

The observable angular-redshift power spectrum C�(z,z
′) is routinely calculated

with fast codes, as we have them for the CMB angular power spectrum. The
presently most popular CMB codes CAMB and class have been extended to
compute also these spectra see Challinor and Lewis (2011) and Di Dio et al.
(2013). This is very useful as these spectra contain all the observable information.
However, to compute only the C�’s is not really optimal for spectroscopic redshift
surveys. These surveys can observe tens of millions of galaxies with a redshift
resolution of about �z = 10−3 over a redshift interval z ∈ [0.5,2.5] that amounts
to about 2000 redshift bins. The full computation of all possible C�(z,z′) therefore
comprises more than a million spectra. As we shall see in the next chapter, when
using angular power spectra to estimate cosmological parameters we proceed via
the so-called Markov chain Monte Carlo technique, which requires the computation
of about 105 spectra per chain. For the number counts this would be equivalent to
1011 CMB spectra, which is simply forbidding even if highly parallelized.

Furthermore, with 1000 bins there are only about N ∼ 103 to 104 galaxies per
bin, which implies significant “shot noise,” that is, the fact that we have a finite
number N of galaxies to probe this function, which induces fluctuations of order√
N/N on all scales. C�(z,z′) is a function of three variables, which is much harder

to determine by observations than a simple power spectrum Pδ(k) or, including
RSD, β0Pδ(k) together with β2/β0 and β4/β0. Therefore, shot noise is usually the
limiting factor, especially for high �’s.

As we have seen in the previous section, beyond � ∼ 20 only three terms
are really important: the density, redshift space distortions, and the lensing term.
Furthermore, density and RSD generate only a monopole, quadrupole, (n = 2)



316 Observations of Large-Scale Structure

and hexadecapole (n = 4) in the correlation function. The lensing, however, also
generates higher (even) multipoles. As we have seen in Section 8.2, if RSD is the
dominating contribution to the quadrupole (n = 2) and hexadecapole (n = 4), their
measurements can be used to isolate the bias and the growth function.

We shall see in the text that follows, that for close redshifts, |z − z′| � 1, we
can define a fully relativistic correlation function that in the limit of small d and
small redshifts reduces to the one determined in Section 8.2. We first introduce the
angular correlation function as for the CMB in Eq. (2.253),

ξ(θ,z,z′) = 1

4π

∑
�

(2�+ 1)C�(z,z
′)L�(cos θ). (8.69)

Using the cosine law, the distance d between the two pixels that we correlate is
given by (r = r(z), r ′ = r(z′)):

d =
√
r2 + r ′ 2 − 2rr ′ cos θ . (8.70)

Note that the value r(z) depends on the cosmological parameters. Only for very
small z do we have r(z) = H−1

0 z [see Eq. (1.47)], and we can absorb the depen-
dence of r onH0 by measuring distances in units of h−1Mpc. For redshifts of order
unity and more, r(z) depends also on �m, �� (or whatever parameterizes dark
energy) and on the curvature �K (which is set to 0 in expression (8.70).

We introduce also

μ = r − r
′

d
= d‖
d

and d⊥ =
√
d2 − d2

‖ . (8.71)

Elementary geometry shows that μ is the cosine of the angle α in Fig. 8.3. The
definition of μ requires the measurement of θ , z, z′ and the choice of a cosmology
that determines r(z), r(z′) and via Eq. (8.70) also d. So far, observers have used
somewhat different definitions of μ, for example, the angle between the vector d
and the radial line dividing the angle θ or the one dividing d, but the results are
very similar for most choices [see Tansella et al. (2018) for a study of this].

Setting z̄ = (z + z′)/2 and �z = (z − z′)/2 we have �r = (r − r ′)/2 =
H(z̄)−1�z+O(�z2), hence �z = μdH(z̄)/2 and

z = z̄+ μdH(z̄)/2 (8.72)

z′ = z̄− μdH(z̄)/2 (8.73)

cos θ =
√
r2 + r ′ 2 − d2

2rr ′
=

(
2r̄2 − d2 + 1

2μ
2d2

2r̄2 − 1
2μ

2d2

)1/2

(8.74)

=
(

2r̄2 − d2
⊥ − 1

2d
2
‖

2r̄2 − 1
2d

2
‖

)1/2

≡ c(z̄,d,μ). (8.75)
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Fig. 8.3 The variable μ is the cosine of the angle α between the line of length d‖
that intersects the Thales circle over d and d itself.

With this we can now write the correlation function as a function of the separa-
tion d, the direction cosine μ, and the mean redshift z̄,

ξ(d,μ,z̄) = 1

4π

∑
�

(2�+ 1)C�(z,z
′)L� (c(z̄,d,μ)) , (8.76)

where c is given by Eq. (8.75) and z, z′ by Eqs. (8.72) and (8.73). This form is valid
only for |z − z′| � 1 at first order in |z − z′|. Alternatively, we may express cos θ
as a function of z, z′, and d using Eq. (8.74) to obtain ξ(d,z,z′), which is valid also
for large redshift differences |z− z′|.

It is important to always keep in mind that the step from the angular to the
distance correlation function requires the assumption of a cosmological model.
Contrary to ξ(θ,z,z′), the correlation function ξ(d,μ,z̄) or ξ(d,z,z′) is model
dependent. When using it to constrain cosmological parameters this has to be taken
into account. We shall discuss this in Section 9.8.

The advantage of the correlation function ξ(d,μ,z̄) w.r.t. the angular power
spectrum is that in the small scale, small redshift, small angle limit it reduces
to the nonrelativistic expression (8.20). We can therefore use it in this limit to
determine the growth function f and the bias b directly from its quadrupole and
hexadecapole. Of course, this information is also contained in the angular power
spectrum, but there it is mixed together with other parameters. Another advantage
of the correlation function is that within a sizable redshift bin [z̄ − �z,z̄ + �z]
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we can expect to find many galaxies with separation in a small bin around d and
around μ so that for many values of d and μ shot noise is not a serious problem.

In Fig. 8.4 we plot the correlation function as a function of d for fixed
μ = 0.95 at redshifts z̄ = 0.1, z̄ = 1, and z̄ = 2. The solid line includes
all the terms, the dashed line includes only the “standard terms,” density and
redshift space distortions, while the dotted line includes also the lensing term. The
difference between the full result and the density + RSD + lensing terms is nearly
invisible for z = 1 and z = 2, while for z = 0.1 the lensing term is negligible (the
dashed and the dotted lines nearly overlie) but the large scale relativistic corrections
are clearly visible. These are the terms that contain a factor 1/r(z) (especially the
Doppler term) that is much larger than H(z) at low redshift. These terms are then
suppressed only by a factor (d/r(z))2 � (dH(z))2 in the correlation function. For
small values of μ, the lensing is much less relevant as is clear from Fig. 8.5. The
pronounced feature at d � 100h−1Mpc is the BAO peak. Its position is quite stable
under nonlinearities but depends very sensitively on cosmological parameters. It
is therefore routinely used to estimate the distance out to a given redshift z, as
we shall discuss in Section 9.8. While the relativistic terms make the correlation
function at z = 0.1 more negative at large distance, the lensing terms contribute
positively, so that for z = 2 the correlation function even becomes positive again at
d � 380h−1Mpc.

In Fig. 8.5 the correlation function is shown at fixed d = 350h−1Mpc as a
function of μ. In the forward direction, μ ∼ 1, for redshifts z = 1 and 2 the lensing
term is very important, even dominant, while for μ < 0.6 it is nearly irrelevant. For
μ → 1, the lensing contribution is negative at z = 1 while it is positive at z = 2.
This is due to the fact that at low redshift, z<∼ 1.5, the negative cross term D · κ
dominates while at higher redshift the positive κ · κ term dominates. The sign on
the D · κ is given by −(2 − 5s); hence this term can become positive also if s is
very large. In our figures we have chosen s = 0. The significant difference of the
standard terms from the relativistic expression at very low redshift, z = 0.1, comes
from the Doppler term, (rsH)−1(2−5s)V ·n, which at d = 350h−1Mpc dominates
the signal.

In Fig. 8.6 we plot the multipoles of the correlation function with (left panels)
and without (right panels) the lensing and large-scale relativistic terms. The stan-
dard terms only generate n = 0, 2, and 4 multipoles, while lensing and other
relativistic terms also lead to higher multipoles. Especially at z = 2, the n = 6
multipole that comes from lensing is of the same order as the hexadecapole (n = 4).
At large scales, d > 200h−1Mpc, it is even dominant. Clearly, ignoring the lensing
term produces very significant errors in the multipoles that cannot be tolerated in
the analysis of future galaxy surveys.
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Fig. 8.4 The correlation function is shown at redshifts z̄ = 0.1 (top panel), z̄ = 1
(middle panel), and z̄ = 2 (bottom panel) as a function of d for μ = 0.95. The
solid lines are the full result, the dashed lines include only the standard terms, and
the dotted lines include also the lensing term.
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Fig. 8.5 The correlation function is shown at redshifts z̄ = 0.1 (top panel), z̄ = 1
(middle panel), and z̄ = 2 (bottom panel) as a function of μ for d = 350h−1Mpc.
The solid lines are the full result; the dashed lines include only the standard terms.
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Fig. 8.6 The correlation function multipoles n = 0 (solid), n = 2 (dashed), n = 4
(dotted), and n = 6 (dot-dashed) are shown at redshifts z̄ = 0.1 (top, left panel),
z̄ = 1 (middle left panel), and z̄ = 2 (bottom, left panel) as a function of d. For
comparison we plot the standard multipoles (density and RSD) in the right panels.
Note that on very large scales, for z = 0.1 and for z = 2 the multipole n = 6 is
comparable in amplitude to n = 4.

In the monopole and the quadrupole of the correlation function the BAO peak is
again very pronounced. Note that, when including relativistic effects, the monopole
becomes positive again at very large scales whereas it remains negative when only
the standard terms are considered. The same is true for the quadrupole at z = 2. It
is also interesting that at higher redshifts the hexadecapole that comes purely from
velocities (and lensing) is less suppressed w.r.t. the monopole than at low redshift.
This is due to the fact that velocities decay less rapidly with increasing redshift than
density perturbations, which dominate the monopole. The amplitude of the negative
quadrupole is even larger than the monopole at z = 1 and 2. This of course strongly
depends on the choice b = 1 for this plot, which is not very realistic.
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From Fig. 8.5 it is also evident that an expansion in multipoles, which is severely
affected by the lensing signal at redshifts z>∼1, is not ideal to extract the lensing
signal, which is very strongly peaked in the forward direction and contributes
similarly to most (even) multipoles.

We have mentioned in the beginning of this section that millions of power spectra
C�(z,z

′) are numerically too costly for parameter estimation via Markov chain
Monte Carlo techniques (MCMC; see next chapter). But when calculating the cor-
relation function via Eq. (8.69), we still need the angular power spectra and the
computational effort is not reduced. In Tansella et al. (2018) a new method has
been introduced that allows a fast direct computation of the correlation function
without the need of the power spectra. This method has been implemented in a
publicly available fast code “coffe”2 [see Tansella et al. (2018) for a description],
which allows the computation of the full correlation function in a redshift bin of
width 2�z = 0.1 in about 1 minute. For a survey with z ∈ [0.5,2.5] we would
need 20 such correlation functions. For the correlations of different bins of width
0.1 we could then compute the power spectrum (integrated over the bin widths).
Of course, the covariance matrix for the correlation function is not diagonal and
more difficult to compute than the covariance matrix for angular power spectra; see
Chapter 9. But still, an MCMC study along these lines results in a well-manageable
computational effort on a small cluster.

8.5 Intensity Mapping

Hydrogen is the most abundant element in the Universe, making up about 75% of
all baryons; see Section 1.4. After the recombination of hydrogen, the Universe is
neutral until about z ∼ 7, when it gets reionized by UV radiation from the first
stars, a process that we shall discuss in Section 9.3. Neutral hydrogen is denoted
by HI in astrophysics while ionized hydrogen or proton gas is denoted HII. After
reionization, at z<∼ 6, neutral hydrogen is found mainly in proto-galaxies, that is,
regions where baryons have clustered significantly to allow for cooling and for the
recombination of protons and electrons into neutral hydrogen.

A very distinctive line of neutral hydrogen is the 21 cm line from the hyperfine
transition of aligned proton and electron spins to proton and electron spins with
opposite orientation. The proton spin generates a magnetic dipole field to which the
electron is subjected. This leads to a contribution to the Hamiltonian of the form

�Hhf = γpe
2

memp

{
1

r3

[
3(Sp · r̂)(Se · r̂)− (Sp · Se)

]+ 8π

3
(Sp · Se)δ(r)

}
. (8.77)

2 The code can be found on https://github.com/JCGoran/coffe

https://github.com/JCGoran/coffe
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Here Sp,e denotes the (normalized) proton and electron spin respectively, mp,e
denotes their masses, and γp is a numerical factor relating the proton spin to its
magnetic moment. It is known experimentally to be γp = gp/2 = 2.7928; we
have set c = 1 as usual. In the ground state of the hydrogen atom, due to spherical
symmetry, only the second term contributes. It leads to a splitting between the state
with aligned proton and electron spins, F = 1, and anti-aligned proton and electron
spins, F = 0 (F is the total angular momentum of the hydrogen atom) given by

E10 = 2
8πγpe2

3memp
|ψ(0)|2 � 5.88× 10−6eV = hν10 = hc/λ10, (8.78)

ν10 = 1.420× 109 Hz, λ10 = 21.10 cm. (8.79)

Here ψ is the ground state wave function of the electron [see Park (1974) or any
other quantum mechanics book for more details on the hyperfine splitting].

Observing this 21 cm line during reionization, 10 > z > 6, will allow to separate
HI and HII regions and to study the evolution and clumpiness of the reionization
process. Observing the 21 cm line before or after reionization will allow us to study
baryon or matter density fluctuations in a way similar to galaxy number counts.
However, instead of counting sources of 21 cm emission (or absorption), we can
also just measure the intensity of the line coming from different directions at some
fixed redshift, without resolving individual sources. This is the 21 cm intensity
mapping technique that we discuss in this section. Experiments that plan to apply
21 cm intensity mapping in the near future are discussed in Furlanetto et al. (2006)
and, more recently in Kovetz et al. (2017). Observations at high redshift, z ∼ 20
to 100, would be especially exciting, as they open an entirely new window to the
early phases of cosmic structure formation before luminous structures form, the
so-called dark ages.

The HI density is proportional to the neutral hydrogen density, nbxHI, where nb
is the baryon density and xHI is the HI fraction of baryons. If xHI is assumed to be
independent of the fluctuation amplitude (which is probably a good approximation
before and after the reionization epoch), the HI density fluctuation is given by the
baryon density fluctuation,

δHI = δb. (8.80)

To emit a 21 cm photon, the hydrogen atom has to be in the excited state. It is
usually excited by low-energy CMB photons, by collisions, or by Lyman-α photons
over the “Wouthuysen–Field effect,” which we discuss in the text that follows.

To derive the first-order perturbation equation for HI intensity fluctuations, we
consider the brightness Iν of HI emission of a given cloud of hydrogen. Iν is the
power emitted per Hz, per steradian, and per cm2; it has units of erg/sec/Hz/sr/cm2.
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There exists exactly one blackbody temperature, called the brightness temperature
Tb, that has a given intensity Iν at frequency ν. The brightness temperature, Tb, is
given in terms of the brightness by

Iν = dρ

dνd�
= 2

(2π)2
T 3
b x

3

ex − 1
, (8.81)

where we have used (1.54) withNb = 2 and x = p/Tb = 2πν/Tb. Note that in our
units Planck’s constant h = 2π . In the Rayleigh–Jeans limit, x � 1, which is most
relevant for 21 cm photons, we can approximate ex − 1 � x and obtain

Iν = 2Tbν
2 or Tb = Iν

2ν2
. (8.82)

As the brightness scales like (1 + z)3 with redshift, this temperature scales as
Tb ∝ (1+ z), like the CMB temperature. The brightness temperature of a hydrogen
cloud is

Tb = TS(1− e−τν )+ TR(ν)e−τν . (8.83)

Here TS is the spin temperature defined by the ratio of excited hydrogen atoms in
the spin-1 state, n1, and the hydrogen atoms in the ground state with spin 0, n0, by

n1

n0
= g1

g0
e−E10/TS, (8.84)

where g1 = 3 and g0 = 1 denote the multiplicities of the corresponding spin
states. TR(ν) is the brightness temperature of an external radiation field incident
on the cloud (e.g., the CMB) at frequency ν and τν is the optical depth through
the cloud, τν =

∫
cloud ανd�, where αν is the absorption coefficient. In astrophysical

applications usually TS � E10 so that n1 � 3n0 and the absorption coefficient must
include a correction for stimulated emission. Hence

τν =
∫
d�σ01

(
1− e−E10/TS

)
φ(ν)n0 � σ01

hν

TS
(NHI/4)φ(ν). (8.85)

Here NHI is the column density of neutral hydrogen of the cloud and we used that
n0 � nHI/4, and φ(ν) is the line profile, φ(ν) = h(1 + z)|dλ/dz|/L, where λ is
the affine parameter along the photon geodesic; z is the redshift of the line and L is
the thickness of the cloud. The cross section σ01 for 21 cm absorption is given by

σ01 = 2A10

8πν2
, (8.86)
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where A10 is the spontaneous emission coefficient of the 21 cm line. Setting
NHI=LnHI=LnbxHI and putting it all together we obtain the following expression
for the brightness temperature [see Hall et al. (2012)]:

Tb = 3

32π

h3A10

E10
nbxHI(1+ z)

∣∣∣∣dλdz
∣∣∣∣+ TRe−τν, (8.87)

where again h = 2π is Planck’s constant. The study of linear perturbations of Tb,
assuming that xHI is constant and nb ∝ ρ, is presented in detail in Hall et al. (2012).
It leads exactly to Eq. (8.60) with s = 2/5. Here we do not repeat this derivation,
as the result is actually not very surprising. For a brightness temperature or an
intensity, the reduction of the density by the increased transverse area is exactly
compensated by the increase of the number of photons due to focusing. This is a
consequence of the photon number conservation, which also is the reason that there
are no lensing terms in the CMB at first order.

To measure the brightness temperature we can contrast lines of sight through a
hydrogen cloud that is irradiated only by the CMB, TR = Tγ , with lines of sight to
“clear CMB.” This yields

δTb = Tb − T0 = TS − Tγ (z)
1+ z

(
1− e−τν ) � TS − Tγ (z)

1+ z τν

=
[

1− Tγ (z)
TS

]
3

32π

h3A10

E21
nbxHI

∣∣∣∣dλdz
∣∣∣∣ . (8.88)

This expression is saturated for TS � Tγ but it can become arbitrarily negative
for small spin temperature, TS < Tγ . A negative δTb just means that we see the
line in absorption while for a TS > Tγ we see it in emission. To decide whether
we see the 21 cm line in emission or absorption, we have to determine the spin
temperature TS .

At early times, z ≥ 200, the free electrons remaining after recombination keep
the baryon fluid in thermal equilibrium with the CMB and we have TB = Tγ ,
where TB denotes the kinetic baryon temperature. Collisions also keep the spin
temperature at this value so that TS − Tγ = 0 and we cannot detect the 21 cm
line. At z ∼ 150, the heating by Thomson scattering of the remaining electrons
drops out of equilibrium; see Exercise 8.2. After that time, the baryon temperature
decays like (1 + z)2; see Eq. (1.93) for σ = 0. Initially the spin temperature is in
equilibrium with the kinetic baryon temperature due to collisions, TS = TB , and
we can (in principle) see the 21 cm line in absorption at redshifts 30 < z < 150.
However, if there is no additional cooling of the spin temperature, at z ∼ 30 also
collisions drop out of equilibrium and the spin temperature rises back to the CMB
temperature so that δTb → 0. However, when the first structures form, the so-called
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Wouthuysen–Field effect (Wouthuysen, 1952; Field, 1959) drives again TS → TB .
This effect simply takes into account that an electric dipole transitions can change
the total angular momentum by 1 or 0. Therefore, Lyman alpha photons can induce
a transition from 10S1/2 to 21P1/2 that can then decay into 11S1/2, and similarly with
the 10S1/2 to 21P3/2 transition of hydrogen. Here the first number is n, the principle
quantum number; the first index is F , the total angular momentum of the atom;
the letter indicates the orbital angular momentum of the electron; S means 0 while
P corresponds to 1 and the second index is J , the total angular momentum of the
electron. The Wouthuysen–Field effect couples the hydrogen kinetic temperature
and its spin temperature. The latter is expected to always remain somewhat higher
than the former, but by how much depends on the model; Furlanetto et al. (2006).

Recently, the detection of Tb at a redshift centered around z � 17 in absorption
was announced by Bowman et al. (2018). However, the effect seems to be at least
a factor of 2 larger than the most optimistic estimate with TS = TK . This very
difficult experiment, which “fishes” a ∼ −0.5 K signal out of a several thousand K
background, certainly needs confirmation. The theoretically expected value would
have been around −0.1 to −0.2 K.

After reionization, at z<∼ 6 inside structures (proto-galaxies and galaxies), the
density becomes again large enough so that the kinetic baryon temperature is much
higher than the CMB temperature and roughly equal to the spin temperature. In
these structures it will be possible to see Tb in emission and its value is independent
of the spin temperature [see Eq. (8.88)] in the limit TS � Tγ . To study the angular
fluctuations of Tb, we fix a “clear CMB” direction and simply study

�Tb = δTb(n)− δTb(n′) = δT̄b[�T (n)−�T (n′)], (8.89)

like for the CMB; see Eq. (2.239). In this expression, the somewhat ill-defined
“clear CMB” direction drops out and we may use (8.88) in the limit TS � Tγ . At
low redshift, z<∼ 6, we therefore expect fluctuations of the brightness temperature
given by Eq. (8.60), with s = 2/5 and its own bias b(z) and evolution bias be(z).

Summarizing this section, we have found that the 21 cm emission line is inter-
esting for at least three different reasons:

(1) It can pave a way to observe the baryon density and its fluctuation at 150 >
z > 50 when there are not yet any structures emitting photons in the Universe,
the so-called dark ages.

(2) It is sensitive to the neutral hydrogen fraction xHI which has fluctuations of
order unity during reionization. These in principle allow us to study in detail
the process of reionization at redshift 10 > z > 6.
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(3) At lower redshifts, z<∼ 6, neutral hydrogen is predominantly in structures where
also the spin temperature is much higher than the CMB temperature. At these
redshifts we can detect 21 cm radiation in emission and we expect it to be a
very useful additional trace of large-scale structure.

Since the frequency of the 21 cm is so well defined, all these observations have
exquisite redshift resolution.

Of course, the 21 cm line is not the only line that can be observed. It may also
be interesting to study other hydrogen lines, for example, the Lyman-α lines or
lines of heavier elements such as carbon that are generated in cosmic structures;
see Kovetz et al. (2017) for a recent review in which preliminary detections of
a rotational carbon-monoxide (CO) line, a CII fine-structure line, Lyman-α and
Hα lines, as well as low redshift 21 cm measurements are described. So far these
detections have been made by correlating intensity mapping measurements with
galaxy surveys, but clearly this is just the beginning...

Exercises

(The exercises marked with an asterisk are solved in Appendix 11 which is not
in this printed book but can be found online.)

8.1 From the power spectrum to the correlation function∗

Consider a power spectrum that depends not only on k but also on its
direction cosine w.r.t. a fixed direction n. Expanding this dependence in
Legendre polynomials,

P(k,μ) =
∑
n

Pn(k)Ln(μ), μ = n · k/k, (8.90)

show that the correlation function is given by

ξ(r,μ) =
∑
n

(i)nξn(r)Ln(μ), μ = n · r/r, (8.91)

where

ξn(r) =
∫
dkk2

2π2
Pn(k)jn(kr). (8.92)

Hint: Use the addition theorem of spherical harmonics.
Therefore, if both the correlation function and the power spectrum are

real, only even powers of μ are possible.



328 Observations of Large-Scale Structure

8.2 Decoupling of the baryon temperature from the CMB
Using the expression for the fraction of ionized electrons after
recombination,

xR = 1.2× 10−5�1/2
m /(�Bh)

discussed in Section 1.3.2, show that heating by Thomson scattering of
these electrons with CMB photons drops out of thermal equilibrium at zγ �
150. For this, use that the Thomson cooling (heating) rate is

� = xR
tγ

with tγ = me

8σT ργ
. (8.93)
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Cosmological Parameter Estimation

9.1 Introduction

In the previous chapters we calculated the CMB anisotropies and polarization.
Generically the resulting spectra show a series of acoustic oscillations that present
a snapshot of the CMB sky at the moment when photons decouple from electrons.
The details of these spectra depend on the one hand on the initial fluctuations and
on the other hand on the background cosmological parameters that determine the
evolution of fluctuations.

If we make no hypothesis on the initial fluctuations, a given observed spectrum
can be obtained by a nearly arbitrary choice of cosmological parameters. For a
given initial power spectrum Pm(k) of scalar (m = 0), vector (m = ±1), and
tensor (m = ±2) perturbations, under the assumption of statistical homogeneity
and isotropy, the resulting CMB power spectrum is generically of the form

C� =
2∑

m=−2

∫
dk T 2

m(�,k)Pm(k), (9.1)

where Tm is the CMB “transfer function” that depends on the cosmological
parameters. Therefore, for a nearly arbitrary transfer function Tm(�,k) and arbitrary
C�’s one can find initial power spectra Pm such that Eq. (9.1) holds. Since vector
perturbations decay, the vector transfer function T±1 is very small. If the initial
perturbations are sufficiently small for linear perturbation theory to hold, vector
perturbations will not show up in the CMB spectrum. We shall therefore neglect
them in our discussion.

“Sources” form an exception to this rule. A source is an inhomogeneous and
anisotropic component of the energy–momentum tensor that is too small to
contribute to the background, but that sources perturbations in all fluids. We
have discussed this case in Section 2.7. If sources are relevant, some parts of the
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perturbations are generated at late time by a stochastic source term. In this case,
vector perturbations can also be important.

We have to keep in mind that when determining cosmological parameters with
the CMB, we are not really “measuring” them directly, but we are “estimating”
them under certain, usually well-motivated but very restrictive assumptions on the
initial power spectrum. On the other hand, whenever we make a physical measure-
ment we are using prior knowledge, that is, that our apparatus obeys Maxwell’s
equation. However, the apparatus has usually been tested by some other measure-
ments, while only the CMB and very few other data sets contain experimental infor-
mation about the initial conditions of the fluctuations in the Universe. Therefore,
in the “ideal” world we would want to measure the cosmological parameters by
other means and then with the well-known transfer functions at hand, use the CMB
to determine the initial fluctuations, which help us to understand the physics of
inflation, the physics at very high energies, probably close to the Planck scale,
energies that are not available in any laboratory on Earth.

However, the real world is not ideal, and since CMB fluctuations are the most
accurate and theoretically the best understood cosmological data set, we use them
to determine the parameters both of the background cosmology and the initial
fluctuations. For this to work, we have to assume that the initial power spectrum
depends only on a few parameters, for example, scalar perturbations given by
k3Pζ = 2π2�ζ = 2π2As(k/H0)

ns−1 and tensor perturbations P±2 = 0. These
initial fluctuations are described by only two parameters, As and ns . The better the
data, the more parameters can be fitted. However, up to now, several attempts of
fitting models with more complicated initial power spectra to the data have shown
that adding more parameters does not significantly improve the fit. The “Occam’s
razor” argument (see Section 9.5.2) then tells us that we should stick to the
simpler model with only two parameters. Nevertheless, there are good physical
arguments that at some level we may expect, for example, tensor perturbations or
running of the spectral index ns . But present data are not sensitive to these small
effects.

Naively one might think that the knowledge of 2000 C�’s to percent accuracy
allows us to determine as many parameters with similar accuracy. But this
is not so, since the CMB power spectrum can usually be well fitted with a function
of only a few parameters. Also, it is sensitive only to a certain combination of
cosmological parameters. This leads to degeneracies that we shall discuss in
Section 9.6.

But before we enter the technical details of parameter estimation, we briefly
want to discuss the physics of their influence on the CMB spectrum. This helps
us to develop a good intuition for the parameters which can be estimated with the
CMB to high accuracy and those which cannot.
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9.2 The Physics of Parameter Dependence

9.2.1 The Acoustic Peaks

The first acoustic peak corresponds to the comoving wavelength λ1 = π/k1, which
has undergone exactly one compression since entering the horizon and whose fluc-
tuations are at a maximum at decoupling. As we have discussed in Chapter 2, this
scale is determined by k1ts(zdec) = π for adiabatic perturbations [k1ts(zdec) = 3π/2
for isocurvature perturbations]. Here ts is the sound horizon,

ts(t) =
∫ t

0
cs(t

′)dt ′.

Subsequent peaks are at knts(zdec)= nπ for adiabatic perturbations [and knts(zdec)=
(2n+ 1)π/2 for isocurvature perturbations]. The angle onto which these peaks are
projected in the sky is

θn = nθ1, θ1 � λ1a(zdec)

dA(zdec)
, �n � π/θn, (9.2)

where dA(z)/a(z) denotes the comoving angular diameter distance to an event at
time t (z) and �(θ) = π/θ is the harmonics, which corresponds roughly to the
angle θ . The redshift of decoupling, zdec, and also tdec depend mainly on the baryon
density of the Universe, while the angular diameter distance depends strongly on
curvature, but also on the cosmological constant and the dark matter density. Apart
from the CMB temperature T0, the angle θ1 is the best measured variable in cos-
mology. The most accurate measurement from the Planck satellite reports (Planck
Coll. VI, 2018)

θ1 = (1.04089± 0.00031)× 10−2. (9.3)

This angle is directly measured and not very model dependent. However, once we
translate it together with other measurements into a value, for example, for ��, the
result does depend on whether we assume a model with or without curvature. In
a universe containing radiation, matter, and a cosmological constant we have (see
Chapter 1)

ts(zdec) = 1

a0H0

∫ ∞

zdec

cs(z)dz[
�r(z+ 1)4 +�m(z+ 1)3 +�� +�K(z+ 1)2

]1/2
, (9.4)

dA(zdec)

a(zdec)
= χK

⎛⎝ 1

H0a0

∫ zdec

0

dz[
�r(z+ 1)4 +�m(z+ 1)3 +�� +�K(z+ 1)2

]1/2

⎞⎠,
(9.5)
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�n � πdA(zdec)

a(zdec)λn

=
nπχK

(
1

H0a0

∫ zdec
0

dz

[�r(z+1)4+�m(z+1)3+��+�K(z+1)2]
1/2

)
1

a0H0

∫∞
zdec

cs (z)dz

[�r(z+1)4+�m(z+1)3+��+�K(z+1)2]
1/2

. (9.6)

Here

χK(r) =

⎧⎪⎪⎨⎪⎪⎩
r if K = 0

1√
K

sin
(√
Kr

)
if K > 0

1√|K| sinh
(√|K|r) if K < 0,

(9.7)

and we have used

λn = nts(zdec).

It is evident, that, via χK , the position �n strongly depends on curvature. Since
curvature and the cosmological constant are irrelevant at high redshift, the denomi-
nator of Eq. (9.6) is nearly independent of them. It depends mainly on �r , �m, and
on the baryon density via the sound speed cs ,

c2
s =

1

3

4�γ (1+ z)
4�γ (1+ z)+ 3�b

, (9.8)

where h=H0/100 km s−1Mpc−1. Since �γh2, which is proportional to the present
photon energy density, hence to T 4

0 , is very well known, the sound speed pro-
vides a measure of �bh2. Note that �γh2 is much better known than �γ = 8π
GaSBT

4
0 /3H

2
0 . The latter contains the considerable uncertainty of the Hubble

constant.
In Fig. 9.1 we show the dependence of �1 on ��. Since we have to satisfy the

Friedmann constraint,

�� +�K +�m +�r = 1, (9.9)

we cannot simply vary ��. In Fig. 9.1 one also sees that when varying ��, the
resulting peak position strongly depends on what has been kept fixed during
the variation. We can fix �K and h but not �m: since increasing �� just increases
the dimensionless angular diameter distance, H0dA due to the decrease in �m,
while H0λ1 is not affected. The opposite is true if we let h and �m vary but keep
fixed �mh2 and �K . Then the peak position is reduced with growing ��. This
comes from the fact that H0λ1 now increases with increasing Hubble parameter
due to the decrease in �r . This effect more than compensates the increase in H0dA
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Fig. 9.1 We show the position of the first peak as a function of ��. In the solid
line we vary �K , leaving all other parameters fixed. The two other lines are
with �K = 0. For the dashed line we vary �� and �m at fixed h and �K , and for
the dotted line we vary �� and �m at fixed �mh2 and �K . The fixed parameters
take the values �K = 0, h = 0.7, �bh2 = 0.022, �m = 0.3. Therefore, all the
curves cross at �� = 0.70. Notice the strong dependence of �peak on curvature
(solid line).

due to the decrease in �m. Note that �rh2, like �γh2, is determined by the CMB
temperature T0 and therefore always remains fixed. (We neglect neutrino masses.)

As we have seen in Chapter 2, dark matter fluctuations grow only logarithmically
during the radiation-dominated era. Once the Universe becomes matter dominated,
they start growing like the scale factor. Therefore, the amplitude of the gravitational
potential, which is determined mainly by the dark matter density, depends on�mh2.
Especially, the ratio of the height of the first acoustic peak and the Sachs–Wolfe
plateau is sensitive to this parameter.

The baryon density also enters CMB physics via the asymmetry of even and
odd acoustic peaks. As we have said before, the first peak at scale �1 is a con-
traction peak, an over-density. Correspondingly, the second peak is an expansion
peak, an under-density. If the oscillating fluid consists solely of massless photons
it would undergo perfectly harmonic oscillations and the amplitudes of contraction
and expansion peaks would be equal. However, the massive baryons reinforce con-
traction via their self-gravity and their reaction to the gravitational potential of dark
matter. Correspondingly they reduce expansion (see Fig. 9.2).

On small scales, the fluctuation amplitudes decay due to Silk damping. Again
the strength of the damping depends on the baryon density, hence on �bh2. The
larger the baryon density, the smaller the collision time and hence the larger the
damping time scale td ∝ t−1

c . Therefore for larger�bh2 Silk damping already starts
at smaller multipoles.
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C C
Fig. 9.2 In the left-hand panel we show the asymmetry of even and odd peaks
and its dependence on �bh2. The temperature anisotropy spectrum is plotted for
�bh

2 = 0.02 (solid line), �bh2 = 0.03 (dotted), and �bh2 = 0.01 (dashed). On
the right-hand side �bh2 = 0.02 is fixed and three different values for the matter
density are chosen: �mh2 = 0.12 (solid), �mh2 = 0.2 (dashed), and �mh2 = 0.3
(dotted). Note that higher values of �mh2 also lead to a stronger peak asymmetry.
In addition, a smaller value of�mh2 boosts the height, especially of the first peak,
due to the stronger contribution from the early integrated Sachs–Wolfe effect. The
peaks are also somewhat shifted since dA depends on �m.

9.2.2 Neutrinos

As we saw in Chapter 1, neutrinos decouple when the Universe has a temperature
of about Tν ∼ 1.4 MeV, which corresponds to a redshift of zν ∼ 0.6 × 1010. After
that, weak interactions no longer can keep them in thermal equilibrium with the
other constituents, electrons, baryons, photons, and also cold dark matter. (If dark
matter interactions with neutrinos were stronger than weak interactions, we would
have detected dark matter in the laboratory long ago.)

After that, neutrinos propagate freely, described by the Liouville equation (see
Section 4.7). As long as their masses can be neglected, they build up anisotropic
stresses by free streaming and their energy density dilutes like that of radiation. As
soon as their masses become relevant, their pressure and anisotropic stresses decay
and they behave like dark matter. This changes their effects on CMB anisotropies
and thereby leads to a way of measuring their mass with the CMB. The significance
is not very high, since neutrino anisotropic stresses contribute only about 5% to
the CMB fluctuations and since massive neutrinos have a signature similar to that
of cold dark matter in the CMB. In Fig. 9.3 we compare the CMB spectrum for
three sorts of degenerate neutrinos, all with mass mν = 2 eV, with the spectrum of
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C C
Fig. 9.3 We show the CMB power spectrum for massless neutrinos and neutrinos
with mass mν = 2 eV (dashed lines). In the left-hand panel �cdmh2 = 0.12 is
fixed while on the right-hand side �mh2 = 0.144 is fixed. In all curves �tot = 1,
�bh

2 = 0.022, and h = 0.7. Keeping �mh2 fixed, adding neutrinos acts a bit
like a lower-matter density, since the neutrinos are not yet fully nonrelativistic at
decoupling.

massless neutrinos, once by fixing the total matter density and once by fixing the
cold dark matter density.

The neutrinos in the CMB also cannot be replaced simply by some relativistic
fluid. It is clear that they are free-streaming particles developing anisotropic stress
and beyond, and the higher multipoles in their distributions function are clearly
detected in present CMB data see Sellentin and Durrer (2015).

9.2.3 Gravitational Waves

The CMB anisotropies from gravitational waves are significant on scales that are
super-Hubble before decoupling, which corresponds to �<∼ 100. On smaller scales
they decay. If it is small, such a signal is difficult to disentangle from a slightly red
(ns < 1) spectrum of scalar fluctuations that simply has somewhat more power on
the Sachs–Wolfe plateau than a Harrison–Zel’dovich spectrum with ns = 1.

However, as we saw in Chapter 5, scalar perturbations do not generate B-mode
polarization. Therefore, the detection of B-mode polarization would be a finger-
print of gravitational waves from inflation. In Chapter 7 we have, however, seen
that second-order effects, especially lensing, also generate a B-mode signal from
scalar perturbations, and for a tensor to scalar ratio r < 0.01 these lensing B-modes
are larger than the ones from the inflationary gravitational wave background for
�≥ 10. So far, even though the lensingB-modes have been detected, the data are not
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sufficient to draw relevant conclusions. The most stringent upper limit on the tensor
to scalar ratio still comes from the superbly measured temperature anisotropies.

9.3 Reionization

Even though we have overwhelming evidence that the Universe recombined and
became neutral at a redshift of about zrec � 1400, no considerable fraction of
neutral hydrogen can be found in the intergalactic medium at low redshift, z ≤ 6.
At present the intergalactic gas is fully reionized.

This conclusion is drawn from the absence of the so-called Gunn–Peterson
trough in quasar spectra; see Gunn and Peterson (1965) and Fan et al. (2006b).
Quasars (or “quasi-stellar objects”) are very active galactic centers that are so
luminous that they can be observed up to redshifts close to z � 7.

Gunn and Peterson (1965) calculated that even a modest density of neutral hydro-
gen would lead to a significant absorption trough in the part of the quasar spectra
that is bluer than Lyman-α at emission and redder at absorption. These photons
have, at some moment during their propagation from the quasar to us, exactly
Lyman-α frequency and are then resonantly absorbed by neutral hydrogen. Insert-
ing numbers one finds (Peacock, 1999) that the neutral hydrogen density in the
intergalactic medium amounts to less than �Hh<∼ 10−8.

There are, however, so-called Lyman-α clouds, that is, clouds of neutral hydro-
gen that intervene the lines of sight of quasars and lead to a “forest” of absorption
lines in quasars, the Lyman-α forest; see Section 9.8.2. But even integrating the
total optical depth of the Lyman-α forest one infers a neutral hydrogen density of
only �Hh � 10−5. It is very unlikely that galaxy formation has been so efficient as
to sweep up 99.9% of all the hydrogen in the Universe. We are therefore led to the
conclusion that the present intergalactic hydrogen is ionized.

During the last decade or so, the Lyman-α and Lyman-β troughs have been found
in very high redshift quasars with z > 6; see Fan et al. (2006a, 2006b). This con-
firms that at these high redshifts, some neutral hydrogen has been present that has
been reionized later on, probably by UV light from the first burst or star formation.

Reionization was terminated at redshift zri � 6, but it is not clear when the
process started and whether it was very fast or slow. The unknown reionization his-
tory of the Universe affects CMB anisotropies and polarization. Once the Universe
is reionized, CMB photons can in principle scatter again with the free electrons.
Since the electron density is significantly lower than at decoupling, the scattering
probability or optical depth is rather low and the effect is probably on the level of
5–10%.

Rescattering of electrons leads to additional polarization on a scale that corre-
sponds to the sound horizon at reionization, λri � cs(zri)t (zri). In addition, due to
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the much larger free-streaming scale of electrons after reionization, there is some
additional Silk damping on scales up to λri.

Usually, reionization is parameterized simply by a reionization redshift zri or by
the optical depth τri to reionization,

τri(zri) = σT
∫ t0

t (zri)

a(t)ne(t) dt . (9.10)

Of course, the reionization history can be more complicated than this, for example,
it does make a difference whether reionization is instantaneous or slow. However,
present data are not sufficient to determine more than the optical depth.

9.4 CMB Data

So far, we have mainly discussed the theoretical aspects of the CMB. Of course
these are very interesting, mainly since we have high-quality data to compare with
our theoretical models. On the other hand, good quality CMB data are so valuable,
since, for a given cosmological model and specified initial fluctuations, we can
calculate the CMB anisotropies and polarization with high accuracy.

This interplay of theory and data, which makes physics so fascinating, acts in
its most beautiful way in CMB physics: observing the largest structures in the
Universe, the anisotropy patterns in the CMB, we learn not only a lot about the
parameters of the Universe but also about physics at the highest energies corre-
sponding to the smallest scales. The largest patterns in the cosmos turn out to be an
imprint of quantum physics!

In the previous chapters we learned how to calculate the CMB anisotropy and
polarization spectrum for a given model. A theoretical model does not predict the
CMB anisotropy or polarization amplitude in a given position (θ0,ϕ0) in the sky.
However, this is what an experiment measures.1

Let us assume that we are given a temperature fluctuation map �Ts(n) =
Ts(n) − T̄s from an experiment. Here T̄s is the mean temperature and the suffix s
stands for “signal” and by construction, 〈�Ts(n)〉 = 0. The correlation function
〈�Ts(n1)�Ts(n2)〉 is a measure for the mean temperature difference,

〈(Ts(n1)− Ts(n2))
2〉 = 2

(〈�T 2
s 〉 − 〈�Ts(n1)�Ts(n2)〉

)
. (9.11)

When we put brackets around observed quantities such as 〈�Ts(n1)�Ts(n2)〉,
we understand an averaging over directions n1 and n2 with fixed opening angle

1 The experiment actually measures voltage differences as a function of time. We shall not enter into the rather
involved process of how an optimal map T (θ,ϕ) is obtained from these time-ordered data streams [for an
introduction, see Dodelson (2003) and for more details see Planck Coll. VI (2015)].
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cos θ = n1 · n2. In this section we simply equate such averages to theoretical
ensemble averages. This is an implicit assumption of statistical isotropy. In the
next section we shall discuss additional limitations of this procedure that go under
the name “cosmic variance.”

The measured temperature Ts(n) is obtained from the true sky temperature by
convolution with a beam profile B(n,n′) centered at n,

Ts(n) =
∫
B(n,n′)T (n′)d�′. (9.12)

We can relate the correlation function of the measured temperature fluctuations
between two directions, n1 and n2, to the power spectrum by〈

�Ts(n1)�Ts(n2)

T̄ 2

〉
= 1

T̄ 2

∫
B(n1,n′1)B(n2,n′2)〈�T (n′1)�T (n′2)〉 d�′1 d�′2

=
∑

�,m,�′,m′
〈a�ma∗�′m′ 〉

×
∫
B(n1,n′1)B(n2,n′2)Y�m(n

′
1)Y

∗
�′m′(n

′
2) d�

′
1 d�

′
2

=
∑
�

2�+ 1

4π
C�W�(n1,n2), (9.13)

where we have inserted 〈a�ma∗�′m′ 〉 = C� δ��′ δmm′ . We then made use of the addi-
tion theorem for spherical harmonics, and we have defined the window function
W�(n1,n2),

W�(n1,n2) =
∫
B(n1,n′1)B(n2,n′2)P�(n

′
1 · n′2) d�′1 d�′2. (9.14)

Beam patterns are usually translation invariant so that B(n,n′) depends only on the
angle between n and n′. Expanding the beam pattern in Legendre polynomials,

B(n · n′) =
∑
�

2�+ 1

4π
B�P�(n · n′) (9.15)

Eq. (9.14) implies

W�(n1,n2) = B2
�P�(n1 · n2), (9.16)

and, not surprisingly, the window function depends only on cos θ = n1 · n2. Also
the mean temperature difference and 〈Ts(n1)Ts(n2)〉 depend only on θ . This simply
reflects statistical isotropy. Actually, since we determine the expectation value 〈•〉
by averaging over directions that include the same angle, we obtain a result that
depends only on this angle by construction.
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9.4.1 Example Window Functions

As an illustration we calculate the window function for two examples of beam
patterns. For this we observe that the beam is usually very narrow, a few degrees
or less, so that, for the beam pattern B(n,n′) we can approximate the sphere by a
plane orthogonal to n in the regime where the beam is nonvanishing. The planar
vectors xi then correspond to the angle between n and n′i . Setting n′i = ni+xi√

1+x2
i

,

n′1 · n′2 = (n1 · n2 + n1 · x2 + n2 · x1 + x1 · x2)/

√(
1+ x2

1

)(
1+ x2

2

)
� n1 · n2

(
1− 1

2

(
x2

1 + x2
2

))+ n1 · x2 + n2 · x1 + x1 · x2.

For the approximation we have used xi ≡ |xi | � 1 and we have included terms up
to order x2

i . The beam function B is negligibly small if this is not satisfied. Note
that even though the directions n′i are close to the directions ni , we cannot apply
the flat sky approximation since the ni themselves subtend arbitrary, maybe large,
angles. The generic expression for the window function then becomes

W�(n1 · n2) =
∫
B(n1,x1)B(n2,x2)P�(n′1 · n′2) dx2

1 dx
2
2 . (9.17)

We first simplify this formula for n1 = n2 = n. (In this case we could apply the
flat sky approximation.) Then, since x1 and x2 are normal to n, the scalar product
n′1 · n′2 becomes n′1 · n′2 � 1− 1

2(x
2
1 + x2

2)+ x1 · x2 � cos(|x1 − x2|). Furthermore,
for small values of |x1 − x2|/� and sufficiently large �, we can approximate (see
Appendix 4, Section A4.1)

P� (cos(|x1 − x2|))→ J0(�|x1 − x2|)
= 1

π

∫ π

0
dφ exp[−i�|x1 − x2| cosφ]

= 1

2π

∫ 2π

0
dφ exp[−i�|x1 − x2| cosφ], (9.18)

where we have used Eq. (A4.135) for the first equality. Let us define the planar
vector � as the vector with length � that points at an angle φ from x1 − x2 so that
exp[−i�|x1 − x2| cosφ] = exp[−i� · x] and

B̃(�) =
∫
B(x)e−i�x d2x, (9.19)

the two-dimensional Fourier transform of the beam pattern. Equation (9.17)
together with Eq. (9.18) then yields

W�(1) = 1

2π

∫ 2π

0
dφ |B̃(�)|2. (9.20)
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The window function for n1 = n2 is the angular average of the square of the Fourier
transformed beam pattern.

To find an expression for the window function for n2 
= n1, let us expand P�(n′1 ·
n′2) to second order in x1 and x2 also if n1 
= ±n2. Setting

n′1 · n′2 = n1 · n2 + ε
up to order x2

i we have

ε = −1

2
n1 · n2

(
x2

1 + x2
2

)+ n1 · x2 + n2 · x1 + x1 · x2,

so that

P�(n′1 · n′2) � P�(n1 · n2)+ εP ′�(n1 · n2)+ 1

2
ε2P ′′� (n1 · n2). (9.21)

This approximation is sufficient if P� does not vary too much in an interval ε, hence
if �ε < 1. Inserting it in Eq. (9.17) and keeping only terms up to second order in
xi , we find

W�(z) = P�(n1 · n2)+ 1

2

∫
d2x1 d

2x2 B(n1,x1)B(n2,x2)

× [−2z
(
x2

1 + x2
2

)
P ′�(z)+ ((n1 · x2)

2 + (n2 · x1)
2)P ′′� (z)

]
, (9.22)

with z = n1 · n2 = cos θ . We have assumed that the beam is spherically symmetric
around its center and we have dropped all terms that were linear in the vectors xi
and therefore integrate to zero. Decomposing the vectors xi into a component that
lies in the (n1,n2)-plane (ei) and a component orthogonal to it (m), xi = ei cosϕi+
m sinϕ, we find

n1x2 = sin θ cosϕ2, n2x1 = sin θ cosϕ1.

Inserting this above, integration over angles gives

W�(z) = P�(z)+ (2π)
2

4

∫ ∞

0
dx1 dx2 x1x2B(n1,x1)B(n2,x2)

× [−2z
(
x2

1 + x2
2

)
P ′�(z)+

(
x2

2 + x2
1

)
(1− z2)P ′′� (z)

]
. (9.23)

We now use the fact that (1−z2)P ′′� (z)−2zP ′�(z)=−�(�+1)P�(z) (see Appendix 4,
Section A4.1) and the normalization of the beam, 2π

∫∞
0 dx xB(x) = 1. Further-

more, we define the width of the beam

σ 2 ≡ π
∫ ∞

0
dx x3B(x). (9.24)
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With this, the window function simply becomes

W�(z) = P�(z)
(
1− σ 2�(�+ 1)

)
, for σ�� 1. (9.25)

This last condition is necessary to ensure that P�(z + ε) is well approximated by
Eq. (9.21) for all |ε|<∼ σ . A reasonable approximation for all values of � might
therefore be W�(z) = P�(z) exp(−σ 2�(� + 1)), which is (nearly) the result of the
Gaussian beam, as we see in the text that follows.

Gaussian Beam

For a Gaussian beam,

B(x) = 1

2πσ 2
exp

(
− x

2

2σ 2

)
, (9.26)

with Fourier transform

B(�) = exp (−�2σ 2/2); (9.27)

hence

W�(1) = e−�2σ 2
. (9.28)

For z 
= 0 and σ�� 1 we reproduce Eq. (9.25) and

W�(z) = P�(z) exp (−σ 2�(�+ 1)) (9.29)

is an excellent approximation to the numerical result for all values of z and � as
long as σ � 1. The only difference in W�(1) is that �(� + 1) becomes �2, which
comes from the fact that we have approximated the sphere by a plane normal to n.
This is an irrelevant difference for sufficiently large values of �.

Differencing Beam

The disadvantage of the Gaussian beam is the fact that we have to subtract the mean
temperature to relate it to the theoretical power spectrum of the CMB anisotropies.
We subtract two large numbers to obtain a small result. A notoriously dangerous
procedure to perform on noisy data. Therefore, instead of the Gaussian beam one
usually utilizes a beam pattern with mean zero,∫

d2xB(x) = 0.

Often one simply adds the signals coming from different directions with weights
that add up to 0. Let us analyze the simplest case of a single subtraction. We choose
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the line connecting the two beam centers to be the x-axis in the x = (x,y) plane
and define

B(x,y) = 1

2πσ 2

[
exp

[
−(x − x0)

2 + y2

2σ 2

]
− exp

[
−(x + x0)

2 + y2

2σ 2

]]
.

(9.30)

This is the difference of two Gaussian beams separated by a “throw” of 2x0.
A calculation similar to the one for the Gaussian beam leads to

W�(1) = e−σ 2�2
(1− P�(cos(2x0))) . (9.31)

In Fig. 9.4 we plot the window function for σ = 1◦ = π/180 for two different
values of the throw. As for the Gaussian beam, we cannot measure fluctuations
with �σ � 1. But, what is new for the differencing beam, we are also not sensitive
to fluctuations on scales much larger than the throw of the beam pattern, since on
these scales the beam averages to zero.

With the known window function, we can now relate the measured temperature
fluctuations to the theoretical C�’s. As always when doing an experiment, we want
to know the best estimate for C� and its error, or better, its probability distribution.

W

Fig. 9.4 We show the window function �2W�(1) for a differencing beam with
width σ = 1◦ for two different values of the throw, x0 = 4◦ (solid) and x0 = 1◦
(dashed). The peak at � � 70 is due to the beam size. If throw and beam size
differ, a second peak appears on the left for the larger value of the throw.
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Before exploring statistical methods to analyse CMB data, we discuss an error that
is always present in cosmological experiments.

9.4.2 Cosmic Variance

Only one CMB sky is at our disposition for observation. Therefore, when we
measure the mean fluctuation in large angular patches, not many statistically inde-
pendent patches are available in the sky and we expect relatively large statistical
fluctuations.

Let us calculate this fluctuation under the assumption that the initial fluctuations
are Gaussian. Then, the coefficients a�m are Gaussian variables and, in the optimal
case when our data cover all sky, we can determine 2�+1 statistically independent2

a�m’s for a given value of �. We want to determine the variance

σ� =
√
〈(Co� − C�)2〉

C2
�

.

Here Co� = (2� + 1)−1 ∑
m |a�m|2 is the “random” variable that we obtain when

averaging over the 2� + 1 measured a�m’s, and C� = 〈|a�m|2〉 is the statistical
expectation value. The square variance, σ 2 of 2�+1 independent Gaussian variables
is simply 1/(2� + 1). For the squares of these variables, we expect σ 2 to double,
by simple error propagation. This is exactly what we will find now with a more
thorough calculation,

〈(Co� − C�)2〉 =
1

(2�+ 1)2

〈(∑
m

[|a�m|2 − 〈|a�m|2〉])2〉

= 1

(2�+ 1)2
∑
m,m′

(〈|a�m|2|a�m′ |2〉 − 〈|a�m|2〉〈|a�m′ |2〉) .

The second term in the above sum is simply C2
� . For the first term we apply Wick’s

theorem, which states that for a set of Gaussian variables, the 2n-point correlation
function is given by the sum of all the possible 2-point correlation functions that
can be formed from it (see Appendix 7). Hence

〈|a�m|2|a�m′ |2〉 = 〈a�ma∗�ma�m′a∗�m′ 〉
= 〈a�ma∗�m〉〈a�m′a∗�m′ 〉+〈a�ma∗�m′ 〉〈a�m′a∗�m〉+〈a�ma�m′ 〉〈a∗�m′a∗�m〉
= C2

� + δm,m′C2
� + δm,−m′C2

� .

2 Even though the a�m are complex, the reality of �T/T requires that a�−m = a∗�m so that we have 2�+ 1 real
coefficients.
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For the last equals sign we have used the fact that a�m and a∗�m′ = a�,−m′ are
independent random variables if m 
= m′. Summation over m and m′ gives now

〈(Co� − C�)2〉 =
2

2�+ 1
C2
� so that

σ� =
√
〈(Co� − C�)2〉

C2
�

=
√

2

2�+ 1
.

This is the absolutely minimal error on the CMB temperature or polarization power
spectrum that can be achieved from one sky. It is a principle causality limit that can-
not be escaped. To it we have to add instrumental noise, foregrounds, atmospheric
noise, and so forth.

Even if there were a faraway civilization at a cosmological distance that would
undertake similar measurements and then send us their results, this would not really
help. By the time it takes for their information to arrive on Earth, the CMB sky has
grown by so much, that the region they have observed is now also inside our Hubble
horizon and we can observe it in our CMB experiments. On the other hand, if they
sent us the data long ago, the sky they could observe at this time is now also inside
our Hubble horizon. The problem is, of course, causality. If the Universe is not
inflating, we can by no means obtain any information about a region outside our
Hubble horizon that corresponds roughly to the CMB sky.

If we observe a fraction fsky < 1 of the sky, the error increases, since we now
cannot determine all the a�m’s, and 2� + 1 is replaced by (2� + 1)fsky. This is
roughly the number of independent a�m’s which can be measured in a fraction fsky

of the sky. The variance then increases to

σ� =
√

2

(2�+ 1)fsky
.

Finally, we note that in real full sky CMB experiments, the data close to the
galactic plane are strongly contaminated by foregrounds and it is safest not to use
them at all. One therefore usually cuts out a region of about 20◦ around the galactic
plane. In this cut sky, the spherical harmonics no longer form an orthonormal basis
of function and one has to conceive a new method to define such a basis. This can,
in principle, be done by applying a Cauchy–Schwartz orthogonalization procedure
on the old basis; see Gorski (1994).

In Figs. 9.5–9.8 we show the presently (April 2020) available CMB data in
terms of the temperature anisotropy, polarization, and cross correlation spectra.
There are some more data on temperature anisotropies available in small scales,
�> 2000, especially from the South Pole Telescope (SPT) but also from the
Atacama Cosmology Telescope (ACT) but on these scales CMB anisotropy are
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Fig. 9.5 The observed CMB anisotropy spectrum from Planck [figure from Planck
Coll. VI (2018)]. The vertical axis shows DT T� ≡ �(�+1)C�/(2π). The line draws
the best-fitting�CDM model. For � < 30 (dashed vertical line) the horizontal axis
is logarithmic while for � > 30 it is linear. The bottom inset shows the difference
between the data and the model.

dominated by “secondary effects” that we briefly mention at the end of this chapter
but that we do not discuss in detail.

9.5 Statistical Methods

To extract the optimal information from data one needs to apply the best statistical
methods. However, as a rule of thumb, results that strongly depend on the statistical
method applied are not to be trusted.

Some elementary statistical tools that are used in this chapter are presented in
Appendix 7.

9.5.1 Bayes’ Theorem and the Likelihood Function

To estimate cosmological parameters from CMB data one uses a simple result from
probability theory that goes under the name of Bayes’ theorem. In a probability
space, consider two sets A and B and their intersection A∩B. The probability that
a given event of which we know that it is in A is also in B is

P [A ∩ B]

P [A]
=: P [B|A]. (9.32)
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Fig. 9.6 The CMB temperature–polarization cross-correlation and the
E-polarization spectra obtained by Planck (figure from Planck Coll. VI (2018)).
The vertical axes show DTE� ≡ �(� + 1)CTE� /(2π) and CEE� . The line draws the
best-fitting �CDM model. For �< 30 (dashed vertical line) the horizontal axis is
logarithmic while for � > 30 it is linear. The bottom inset shows the difference
between the data and the model.

P [B|A] denotes the conditional probability of B given A. Exchanging A and B we
obtain the conditional probability of A given B. Hence

P [A ∩ B] = P [B|A]P [A] = P [A|B]P [B]. (9.33)
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Fig. 9.7 The measured BB polarization spectrum from different experiments.
The curve is the B-polarization spectrum from lensing expected from the best-
fit Planck �CDM model. For more details see Louis et al. (2017), from which
this figure is adapted

Fig. 9.8 The lensing power spectrum from the Planck experiment. The solid line
is the theoretical lensing spectrum for the best-fit Planck �CDM model. [Figure
from Planck Coll. VI (2018)]

The last equation that is here written for the probabilities of sets is, of course,
also true for the corresponding probability densities. What is the relevance of
this simple statement for parameter estimation? Let us fix a cosmological model
m that is described by a set of parameters (λ1, . . . ,λM) = λ. Our experiment
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has made a series of measurements and has come up with data (d1, . . . ,dN)

with errors (σ1, . . . ,σN), for example, the CMB temperature in different direc-
tions (n1, · · · ,nN). For the given model parameters λ we can calculate the
predicted outcome of the experiment in terms of expectation value and variance
(di(m,λ),σi(m,λ)) for each of the data points. Here we assume the situation, as it
is in cosmology, that the model is of a statistical nature and predicts expectation
values for the measurements di(m,λ) and their variances, σi(m,λ). For example, if
the di’s are coefficients a�m of the expansion of the temperature fluctuations, then
their expectation values vanish and the variances are the C�’s. However, if your
data are the C�’s then their variance is given by cosmic variance. It is sometimes
not clear whether the errors σi(m,λ) should be added to the data or to the model.
If we assume Gaussianity and independence of the data di they can be added in
quadrature.

If the distribution of the data points di is Gaussian (as we assume the CMB
temperature fluctuations to be), the probability of measuring di in model m with
parameter values λ taking into account the measurement uncertainty σi is given by
(see Appendix 7)

P [di |m,λ] = 1√
2π(σi(m,λ)2 + σ 2

i )

exp

(
− (di − di(m,λ))2

2(σi(m,λ)2 + σ 2
i )

)
. (9.34)

Note that the theoretical uncertainty, σi(m,λ) and the measurement error, σi , have
been added in quadrature. If the measurements di are independent, for example, if
the directions ni are much farther apart than the beam width and we neglect cor-
relations, or if the data are the a�m, the joint probability of measuring (d1, . . . ,dN)

with errors (σ1, . . . ,σN) is the product of the individual probabilities,

P [{di,σi}|m,λ] ≡ L({di,σi},m,λ) =
∏N

i=1

⎡⎢⎣ exp
(
− (di−di (m,λ))2

2(σi (m,λ)2+σ 2
i )

)
√

2π(σi(m,λ)2 + σ 2
i )

⎤⎥⎦ . (9.35)

In the more general case, when the measurements are not independent but Gaussian
with correlation function,

〈didj 〉 = Cij, (9.36)

Eq. (9.35) becomes

L({di,σi},m,λ) = 1√
det C(2π)N

exp

(
−diC

−1
ij dj

2

)
, (9.37)

(see Appendix 7). This expression is called the likelihood function. It gives us the
likelihood of the data {di,σi} given the model m with parameters λ. But since it
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is the data that we know and the model that we would like to know, we would
be more interested in the probability of a model (m,λ) given the data. And here,
Bayes’ theorem comes to our rescue. According to Eq. (9.33),

P [m,λ|{di,σi}] = P [{di,σi}|m,λ]
P [m,λ]

P [{di,σi}] . (9.38)

Here P [m,λ] is called “the prior” and the denominator is called “the evidence.”
The left-hand side is the “posterior distribution” or simply the “posterior.” Ide-
ally it can be used as “prior” for the next experiment. The evidence P [{di,σi}]
is unimportant for parameter estimation since it does not depend on the model
parameters; hence the ratio of the posteriors for two different sets of parameters,
P [m,λ(1)|{di,σi}]/P [m,λ(2)|{di,σi}] is independent of the evidence. Furthermore,
it can be eliminated, noting that when integrating over the entire space of model
parameters, the left-hand side must be normalized to 1,

P [{di,σi}] =
∫
dMλP [m,λ]L({di,σi},m,λ).

The prior P [m,λ] depends on our prior knowledge of the model space. For exam-
ple, if previous experiments have shown us that curvature is not large, it makes
sense to choose P [m,λ] = 0 for parameter values |�K | > 1

2 . But how shall we
choose P [m,λ] for |�K | < 1

2 ? We may opt for a “flat” prior, that is, the same
probability for all values of �K . But this is as much a special case as choosing a
flat prior for �3

K or exp(�K). This is the weakest point of Bayesian analysis: the
probability of model parameters (m,λ) for given data {di,σi} depends on our prior.

Things are not as hopeless as it might seem. First of all, physics often tells us
to some extent what the distribution of the prior should be. As a rule of thumb,
parameters that add to the data should have a flat prior while parameters that
multiply the data (scaling parameters) more naturally have a logarithmic prior, that
is, a flat prior in log(λ).

If the data have sufficiently small error bars, most priors are relatively flat in the
relevant interval and the resulting maximum likelihood is nearly independent of the
prior. However, if the data are weak and errors are large, the Bayesian posterior
P [m,λ|{di,σi}] (i.e., the likelihood of the model parameters given the data) may
well be strongly prior dependent. In this case, the data are simply not good enough
to determine the parameters of the model.

The model parameters with the highest probability to be correct are given by
the maximum of P [m,λ|{di,σi}]. If the data are sufficiently good to choose model
parameters, that is, if the prior P [m,λ] is sufficiently flat around the maximum of
P [m,λ|{di,σi}], then the latter is close to the maximum of the likelihood function,
L({di,σi},m,λ). When estimating parameters, we therefore can simply search for a
maximum of the likelihood function.
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9.5.2 Model Comparison

Sometimes, we would like to compare two models with different parameter sets
and decide which one of them is more probable given the data. We might want to
answer questions like: since we have not seen any tensor modes in the CMB data
yet, is it improbable that they are there at all or do we have to continue searching
for r? In this case the answer is well known: our present limit is about r <∼ 0.05 and
there are well-motivated models with r ∼ 10−3 to 10−2; hence we have to improve
our measurements. Clearly, this answer is given by physical modeling and not by
statistics. Another question is as follows: I have a dark energy model with a free
function f (e.g., the potential of a scalar field or the kinetic term in a k-essence
model) that I can choose such that my model fits the data better than �CDM.
Does that mean that I have ruled out �CDM and people should rather study my
model? Of course, having an entire free function that can be modeled with many
parameters, my model will contain many more parameters than simple �CDM.

When comparing models, at first we certainly want to look at the likelihood
functions and compare those. Models with a larger maximum likelihood fit the data
better. But on the other hand, if model m2 has many more parameters than model
m1, we are not surprised if m2 fits the data better than m1 and may still decide in
favor ofm1 with the argument thatm1 is “more physical” and more “predictive” or,
certainly, more economical. The latter criterion is often called “Occam’s razor”: we
should explain the data by the simplest possible model. Can these seemingly sub-
jective criteria be made objective? We shall now see that under certain assumptions
the answer is yes.

To be more specific let us consider two models that we want to compare;m1 with
parameters λ(1) = (λ(1)1 , . . . ,λ

(1)
M1
) and m2 with parameters λ(2) = (λ(2)1 , . . . ,λ

(2)
M2
).

We assume that the priors are fixed in both cases. (In Bayesian statistics the priors
are just part of the game and cannot be ignored!) Bayes’ theorem then gives us the
probability of some set of parameters for given data D by

P [λ(1)|D,m1] = P [D|m1,λ
(1)]P [λ(1)|m1]

P [D|m1]
, (9.39)

P [λ(2)|D,m2] = P [D|m2,λ
(2)]P [λ(2)|m2]

P [D|m2]
. (9.40)

Our present notation indicates that our parameter choice λ(1) or λ(2) assumes the
model m1 or m2 and, more importantly, that the evidence depends on the model
under consideration. The prior is now of the form of a probability for the parameters
λ(1) and λ(2) respectively, given the model m1 and m2 respectively. From Bayes’
theorem we also obtain

P [mi |D] ∝ P [D|mi]P [mi]. (9.41)
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Here, P [mi] is the total prior we assign to model mi while P [D|mi] is simply the
evidence from above. If we have no idea which model should be preferred, we
can simply set P [mi] = 1

2 . The probability of a model is then proportional to its
evidence, and more importantly, their ratio is equal to the ratio of the evidences.
But the evidence is given by the integral

P [D|mi] =
∫
P [D|mi,λ(i)]P [λ(i)|mi] dMiλ(i). (9.42)

For many problems the posterior P [λ(i)|D,mi]=P [D|mi,λ(i)]P [λ(i)|mi] is
strongly peaked around some best-fitting value λ̄(i) with widths σ (i)(D)=
(σ
(i)

1 , . . . ,σ
(i)
Mi
) (let us assume, for simplicity, that the parameters are uncorrelated).

We may then evaluate the integral (9.42) by multiplying the peak height with the
width,

�(i)(D) =  Mij=1σ
(i)
j .

The evidence can then be approximated by

P [D|mi] � P [D|mi,λ̄(i)]P [λ̄(i)|mi]�(i)(D). (9.43)

Furthermore, let us assume that the prior of model i has some (large) total width
�(i) and that λ̄(i) is nicely inside the prior distribution. Then, due to normalization,
P [λ̄(i)|mi] � 1/�(i) and the evidence for model mi becomes

P [D|mi] � P [D|mi,λ̄(i)]�
(i)(D)

�(i)
. (9.44)

Hence the first guess, the maximum of the likelihood, is multiplied by the so-called
Occam factor �(i)(D)/�(i), that is, the ratio of the parameter space “occupied by
the data” divided by the volume of parameter space allowed by the prior. Models
that are not predictive at all are penalized by a small Occam factor, and can in this
way lose against a model even if they allow for a parameter choice λ̄(i) with higher
likelihood. Of course if the prior is constraining, but does not have a significant
overlap with the posterior from the data, this will also disfavor a model; it will
render �(i)(D) very small. These situations are illustrated in the panels (a)–(c) of
Fig. 9.9. As becomes clear from this example, for models that do allow a good fit
to the data, the evidence strongly depends on the prior.

It is, however, important to note that the Occam factor enters the model probabil-
ity just as a power law, while the offset of the measured parameter from the model
prediction reduces the model probability exponentially.

A situation that is often encountered in cosmology are so-called nested models.
Two models are called “nested” if one of them is obtained by fixing one or sev-
eral parameters of the other model. For example, a model with vanishing tensor
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Fig. 9.9 Three 1-parameter models with their prior (solid) and posterior (dotted)
distributions shown. They all have a comparable maximum likelihood. In (a) the
prior distribution is much wider than the posterior. In models (b) and (c) the widths
are comparable, but model (c) does not provide a good fit. The evidence for model
(b) is by far the largest.

contribution is nested inside the more general models that allow for tensors, by
setting the tensor to scalar ratio r = 0. Other examples are models that do not
allow for curvature that are nested inside models with curvature. Let us concentrate
on these to illustrate the significance of the prior for model selection.

As we shall see, present data yield the constraints�K � −0.0106±0.0065 from
Planck data alone, or even �K � −0.0007 ± 0.0019 when including BAO data.
Does this mean that a universe with vanishing curvature is preferred? To discuss
this let us approximate the marginalized posterior distribution of the parameter �K
by a Gaussian with width σK = 0.002. Cosmologist A says that the Universe might
well have a curvature in the full range�K ∈ [−1,1], and therefore models allowing
for curvature are penalized by an Occam factor of 0.002; hence models without
curvature are strongly preferred.

Cosmologist B argues differently. She says that we know from inflation,
which is in good agreement with all other observations, that curvature must be
small, say�K ∈ [−0.005,0.005], and therefore there is no significant Occam factor,
and models with nonvanishing but small curvature are as plausible as vanishing
curvature.

This example makes it clear: for model selection the prior is crucial. It is of
course a very different statement to say that since curvature is small it has little
effect on all the other parameters and we therefore set it to zero in our analysis
(which somewhat speeds up the CMB codes). This is simply a practical statement
and does not address the problem of model selection.

If the posterior probability distribution is non-Gaussian, the foregoing approx-
imations no longer hold, and we have to resort to more complicated methods
to evaluate the posterior distribution and the model probabilities like MCMC;
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see Section 9.5.4. But the principal arguments of the foregoing discussion
remain valid. For more details and more advanced methods of model selection
see Kunz et al. (2006) and Trotta (2017).

9.5.3 Fisher Matrix and Parameter Estimation

9.5.3.1 Best-Fitting Parameters

We now fix some model m with parameters λ = (λ1, . . . ,λM). The best-fitting
parameters λ̄ correspond to the maximum of the likelihood function,

dL(λ)
dλ

∣∣∣∣
λ̄

= 0. (9.45)

They are most easily determined with a root-finder method applied to dL(λ)/dλ.
However, for a Gaussian distribution the likelihood function is an exponential.
Therefore, its logarithm is often better suited to a numerical root finder. As L is
nonnegative and the logarithm is a monotonic function, we can in full generality
maximize lnL. To do this one starts at some first guess value λ(0) and then approx-
imates the derivative d lnL/dλ to first order,

∂ lnL
∂λi

(λ̄) � ∂ lnL
∂λi

(λ(0))+ (λ̄j − λ(0)j )
∂2 lnL
∂λi∂λj

(λ(0)).

Setting ∂ lnL
∂λ
(λ̄) = 0, we obtain to first order

(λ̄j − λ(0)j ) � −
(
∂2 lnL
∂λj∂λi

)−1
∂ lnL
∂λi

(λ0) ≡ δλj . (9.46)

For the next step we can replace λ(0) by λ(1) = λ(0) + δλ and iterate the procedure
until it converges. In directions in which the likelihood function is very flat, we
make large steps while in directions along which it is steep, the steps are small.

However, this is not how it is usually done. There is a simplification that can be
made without a great loss of accuracy. For the CMB anisotropies and polarization,
we expect the likelihood function to be (nearly) Gaussian and hence of the form
(9.37) so that

∂ lnL
∂λi

= −1

2

∂

∂λi

[
ln(det C)+ dT C−1d

]
. (9.47)

For notational simplicity we now denote ∂/∂λi ≡ ∂i . With ln(det C) = Tr(ln(C))
and ∂iC−1 = −C−1(∂iC)C−1 we obtain

∂ lnL
∂λi

= 1

2

[
dT C−1(∂iC)C−1d − Tr

(
C−1(∂iC)

)]
. (9.48)
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For the second derivative we find after similar manipulations

∂2 lnL
∂λi∂λj

= −1

2

[
dT C−1(∂iC)C−1(∂jC)C−1d

+ dT C−1(∂jC)C−1(∂iC)C−1d − Tr
(
C−1(∂jC)C−1(∂iC)

)
− dT C−1(∂2

ijC)C−1d + Tr
(
C−1(∂2

ijC)
) ]

. (9.49)

The Fisher matrix is defined as the expectation value

−Fij ≡
〈
∂2 lnL
∂λi∂λj

〉
. (9.50)

To determine it we use 〈didj 〉 = Cij so that

〈dT C−1(∂iC)C−1(∂jC)C−1d〉 = 〈dmC−1
mn(∂iC)npC−1

pq (∂jC)qrC−1
rs ds〉

= C−1
mn(∂iC)npC−1

pq (∂jC)qrC−1
rs Csm

= Tr
(
(∂iC)C−1(∂jC)C−1

)
= Tr

(
(∂jC)C−1(∂iC)C−1

)
= Tr

(
C−1(∂jC)C−1(∂iC)

)
.

For the last two equals signs we use the fact that the trace is invariant under cyclic
permutations. Equivalently

〈dT C−1(∂2
ijC)C−1d〉 = Tr

(
C−1(∂2

ijC)
)

.

Inserting these results to calculate the expectation value of (9.49) we obtain

Fij = 1

2
Tr

(
C−1(∂jC)C−1(∂iC)

)
. (9.51)

We assume the Fisher matrix to be nonsingular. Otherwise not all the parameters
λi can be determined by the data, since then the Fisher matrix has a vanishing
eigenvalue for some eigenvector μ 
= 0. The covariance matrix and hence the
likelihood function are then independent of the linear combination μiλi , which
therefore cannot be estimated by the experiment. By definition, F is symmetric
and Fijλiλj = 1

2 Tr
(
(C−1(λj∂jC))2

)
> 0 for all λ 
= 0. The Fisher matrix is a

positive-definite symmetric matrix.
Instead of dividing by the true curvature of the likelihood function in Eq. (9.46)

to determine the next estimator for the parameters, one divides by the corresponding
element of the Fisher matrix,

λ
(1)
i = λ(0)i + 1

2
F−1
ij

[
dT C−1(∂jC)C−1d − Tr

(
C−1(∂jC)

)]
(λ(0)). (9.52)
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The advantage of this method is that for a given starting parameter the Fisher matrix
Fij (λ

(0)) is readily calculated from the covariance matrix alone, without having
to know the data. The Fisher matrix can also be used to forecast the precision
with which a given experimental setup (hence given covariance matrix) is able to
estimate parameters, if they are situated not too far from a first guess λ(0).

The above estimated parameters λ(1) depend quadratically on the data vector d.
For this reason they are called a “quadratic estimator.” The Fisher matrix actually is
a local Gaussian approximation to the distribution of the parameters in the vicinity
of the parameter values λ(0). Dividing by the true curvature of the likelihood func-
tion and not its expectation value would not have provided a quadratic estimator. It
can be shown that the estimator described here is actually an optimal quadratic
estimator in the sense of the Cramér-Rao bound [see, e.g., Kendall and Stuart
(1969)].

We can now take the values λ(1) as our first (or rather second) guess and repeat
the above procedure. In practice, relatively few iterations are needed to achieve
convergence. This is very important because we often search in a parameter space
of 10 or more dimensions. A modest grid of 10 points per side would already lead
to 1010 evaluations of the likelihood function. Each of these requires one run of a
fast CMB code that in an optimized code takes about a second. One evaluation of
the likelihood function then requires a computational time of roughly 1 s. Hence
1010 evaluations take in the optimal case 1010 s � 300 years – not a time span in
which we can comfortably wait for the output of a computation. Therefore, it is
imperative that we use an iterative procedure and not a grid to estimate parameters.

The method described so far still has several problems, some of which we briefly
want to address.

• What if we end up in a shallow local maximum of the likelihood function and are
stuck there?
To avoid this problem, one usually adds a small random fluctuation to the
obtained δλ, a “temperature,” so that one can leave a shallow local maximum.

• What if there are several local maxima, some of them quite steep and separated
by deep ridges?
To check this, one performs not only one but many iteration chains with dif-
ferent starting points. One can then compare the height of the different maxima.
A procedure along these lines is the Markov chain Monte Carlo method (MCMC)
discussed in the text that follows. It is presently the method of choice for CMB
analysis. A publicly available MCMC code and more details of the method can
be found in the paper by Lewis and Bridle (2002).

• What if the maximum is somewhere at the border of the parameter space?
The border of the parameter space is given by the prior. If the data are best fitted
by parameter values lying at the border of what is allowed by the prior, this
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hints that either the prior is wrong or the model is incorrect. This is one of the
most important drawbacks of the Fisher matrix technique. It provides relatively
rapidly the best-fitting model under consideration, but it works independently of
whether this model is actually a good fit to the data or not. For this an evaluation
of the likelihood function at the best-fitting parameter values has to be performed.
If the likelihood function is very small, this is either a sign that the model is wrong
or that the real errors are much smaller than those assumed.

9.5.3.2 Estimating Errors

So far we have only studied the problem of how to find the best fit. But we also
want error bars on the estimated parameters. A good first estimate for 1σ error bars
are the diagonal elements of the Fisher matrix at the maximum λ̄. To see this, we
use the expression (9.52) for the deviation δλ:

〈δλiδλj 〉 = 1

4
F−1
im F

−1
jn

〈[
dT C−1(∂mC)C−1d − Tr

(
C−1(∂mC)

)]
× [
dT C−1(∂nC)C−1d − Tr

(
C−1(∂nC)

)]〉
= 1

4
F−1
im F

−1
jn

[〈dkdldpdq〉C−1
kr (∂mC)rsC−1

sl C−1
pv (∂nC)vwC−1

wq

−Tr
(
C−1(∂mC)

)
Tr

(
C−1(∂nC)

)]
.

For the second term we made use of 〈dpdq〉 = Cpq . With this, the mixed terms
become equal to the pure trace term,

〈dT C−1(∂mC)C−1d〉Tr
(
C−1(∂nC)

) = Tr
(
C−1(∂mC)

)
Tr

(
C−1(∂nC)

)
.

For the first term we apply Wick’s theorem (see Appendix 7),

〈dkdldpdq〉 = CklCpq + CkpClq + CkqClp.

Inserting this above, the first term results again in Tr
(
C−1(∂mC)

)× Tr
(
C−1(∂nC)

)
while the second and third terms give rise to twice the Fisher matrix Fmn. We
therefore finally obtain

〈δλiδλj 〉 = F−1
im F

−1
jn Fmn = F−1

ij , (9.53)

where we have used the symmetry of the Fisher matrix for the last equals sign.
Therefore, the diagonal elements of the Fisher matrix usually give reasonable errors
for the parameters. Of course, these are the true 1σ errors only if the distribution
is Gaussian in the parameters λ, which usually it is not. But since the log of the
likelihood function peaks at λ̄ it will locally be of the form of a Gaussian,
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L(λ̄+ δλ) � L(λ̄) exp

(
−1

2
δλT F (λ̄) δ λ

)
,

for small enough δλ. The Fisher matrix defines an ellipse around λ̄ in the parameter
space via the equation,

δλT F (λ̄)δλ = 1. (9.54)

The principal directions of this error ellipse are parallel to the eigenvectors of F
and their half length is given by the square root of the eigenvalues of F−1.

According to Eq. (9.54), the total width of the error ellipse in a given direction
λi at the center λ̄ is 2/

√
Fii . Therefore, 1/

√
Fii is the error of the parameter λi if

all other parameters are known and are equal to λ̄. However, realistically, we do
not know the other parameters any better than λi . Therefore, the true error in λi is
given by the size of the projection of the error ellipse onto the i-axis; see Fig. 9.10.
These are the so-called marginalized errors, which we obtain when integrating over
all the other parameters.

We now show that the marginalized error of λi is given by
√
F−1
ii , that is, the

diagonal element of the inverse of the Fisher matrix. To find the value of δλi at the
boundary of the ellipse we solve the quadratic equation Eq. (9.54) for δλi ,

δλi = 1

Fii

⎛⎜⎜⎝−∑
j 
=i
Fjiδλj ±

√√√√√⎛⎝∑
j 
=i
Fjiδλj

⎞⎠2

− Fii
⎛⎝∑
jk 
=i

Fjkδλj δλk − 1

⎞⎠
⎞⎟⎟⎠ .

Fig. 9.10 The error ellipse is shown in a two-dimensional example. The widths

2/
√
F11 (dashed double arrow) and 2

√
F−1

11 (solid double arrow) are indicated.



358 Cosmological Parameter Estimation

This equation expresses δλi as a function of all the other parameters δλj . To deter-
mine the maximum of δλi , we set the gradient of this function to zero. From the
derivative w.r.t. λj we obtain

0 = 1

Fii

(
−Fji ±

Fji
∑
k 
=i Fkiδλk − Fii

∑
k 
=i Fjkδλk√· · ·

)
,

where the square root
√· · · is the same as in the previous equation. Multiplying by

∓√· · · = Fiiδλi +
∑
k 
=i Fkiδλk we find

0 = Fjiδλi +
∑
k 
=i
Fjkδλk. (9.55)

This equation must hold for all j 
= i. Inserting δλk = aF−1
ki and δλi = aF−1

ii

we obtain 0 = aδij which is certainly true since j 
= i. Since the Fisher matrix
is nonsingular the above solution is the only possibility. Inserting it in Eq. (9.54)

determines a = 1/
√
F−1
ii , so that we arrive at the important result

δλ
(marg)
i =

√
F−1
ii . (9.56)

These error ellipses are useful for forecasting if the errors are roughly Gaussian.
However, if the true error contours have a very different shape, for example,
“bananas” as in Fig. 9.19, lower left panel, the Fisher matrix approximation can
severely underestimate the parameter errors.

9.5.3.3 The Fisher Matrix for CMB Anisotropy Experiments and Forecasting

For a given cosmological model we can calculate theC�’s. We now consider them as
our model parameters λ� and want to determine their best-fitting values and errors.
We determine the Fisher matrix from the correlation matrix C�m,�′m′ = 〈a�ma∗�′m′ 〉.
(Take care not to mix up the CMB power spectrum C�’s with the correlation
function C’s.)

We have already seen in Eq. (9.13) that a finite beam size σ leads to a correlation
function of the form

C�m,�′m′ = δ� �′δmm′C�W� with, for example,

W� =

⎧⎪⎨⎪⎩
e−�

2σ 2
for a single beam,

e−�
2σ 2

[1− P�(cos(2x0))] for a differencing
beam with throw x0.

To this we have to add the correlation function of the noise. For simplicity we
assume isotropic noise of amplitude σn in each pixel and a pixel size�� in radians,
in other words, a noise correlation function of the form
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1

T 2
〈�T (n)(n)�T (n)(n′)〉 =

{
σ 2
n if n and n′ are in the same pixel

0 else,

= 1

4π

∑
�

(2�+ 1)C(n)� P�(n · n′). (9.57)

We have already taken into account that the noise is isotropic and therefore〈
a
(n)
�ma

∗ (n)
�′m′

〉
= δ� �′δmm′C(n)� . To isolate C(n)�1

we set μ = n · n′, multiply the above

equation with P�1(μ), and integrate over μ. Defining

f (μ) =
{
σ 2
n if 1− μ < �μ

0 else,

we have ∫ 1

−1
dμP�1(μ)f (μ) � �μσ 2

n

� �ϑ sin(�ϑ/2)σ 2
n, for �1 <

1

�μ
.

Here we have used the fact that P�(μ) � 1 for μ � 1 and �μ = −� cosϑ �
�ϑ sin(�ϑ/2). If �>∼ 1/�μ this approximation breaks down. But it is clear that
with an experiment of pixel size corresponding to n · n′ ≤ 1 − �μ we cannot
measure C�’s with � > 1/�μ. We are therefore not considering these values. In
other words, we are only determining the C�’s for values of � with � < �max �
1/(2�μ). Also multiplying the left-hand side of Eq. (9.57) with P�1 and using∫
P�P�1 = δ��1 2/(2�+ 1) we obtain

C
(n)
�1
= 2π�ϑ sin(�ϑ/2)σ 2

n = ��σ 2
n . (9.58)

It is reasonable to assume that the signal and the noise are uncorrelated so that we
can simply add their correlation functions and arrive at〈

a
(n)
�ma

∗ (n)
�′m′

〉
= δ� �′ δmm′

[
C�W� + w−1

]
, (9.59)

where we have introduced the widthw = (��σ 2
n )
−1. With this correlation function

at hand, we can now calculate the Fisher matrix. Denoting the derivative with
respect to C� by ∂�, Eq. (9.51) yields

F��′ = 1

2
Tr

(
C−1(∂�C)C−1(∂�′C)

)
= 1

2
C−1
�1m1,�2m2

(∂�C)�2m2,�3m3C−1
�3m3,�4m4

(∂�′C)�4m4,�1m1
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=
1
2δ�1�2δm1m2[
C�1W�1 + w−1

] δ�2�3 δm2m3W�2 δ�2�

δ�3�4δm3m4[
C�3W�3 + w−1

]δ�4�1δm4m1W�′ δ�4�
′

= δ��′ (2�+ 1)W 2
�

2[C�W� + w−1]2
= δ��′ (2�+ 1)

2[C� + (wW�)−1]2
. (9.60)

The factor 2�+ 1 comes from the summation over the m’s,∑
m1m2m3m4

δm1m2 δm2m3 δm3m4 δm4m1 =
∑
m1

δm1m1 = 2�1 + 1,

while the summation over the �’s requires �1 = �2 = � = �3 = �4 = �′ and
therefore leads to δ��′ .

Using the C�’s as our “parameters” has the big advantage that the Fisher matrix

is diagonal and the marginalized errors are simply given by 1/
√
F�� =

√
F−1
�� ,

δC� =
√

2

2�+ 1
[C� + (wW�)−1]. (9.61)

We recognize the first term as cosmic variance while the second term is the exper-
imental error. For a given window function, pixel size, and pixel noise, this gives
a good error estimate for the accuracy with which the C�’s can be determined in a
full sky experiment. If the experiment covers only a fraction fsky of the sky, a good
approximation for the error is again

δC� =
√

2

(2�+ 1)fsky
[C� + (wW�)−1]. (9.62)

Of course, the model parameters that we really want to estimate are not the
C�’s, but rather cosmological parameters like �mh2, ��, and the curvature. For
this we can now start the process over again, considering the C�’s as our “data”
with correlation matrix F−1

��′ and calculate the Fisher matrix of the cosmological
parameters, F̃ (λ). The only disadvantage here is that contrary to the a�m’s, the
C�’s do not obey a Gaussian distribution. But for high �’s the distribution is nearly
Gaussian due to the central limit theorem (see Appendix 7), and for low �’s the
error is relatively large due to cosmic variance, so that treating the distribution as
Gaussian does not usually induce large errors. Of course F̃ (λ) is by no means
diagonal and the errors in the cosmological parameters alone are not Gaussian
at all. If we want to estimate not only errors of the parameters, which can be
obtained from the inverse of the Fisher matrix F̃−1, but also the full marginalized
probability distribution, we have to use a more sophisticated method, like MCMC
discussed in the text that follows. The probability distributions evaluated with an
MCMC method for the Planck satellite experiment are shown in Fig. 9.11. This
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Fig. 9.11 The marginalized two-parameter distributions from the Planck exper-
iment for the minimal six-parameter �CDM model. As is the amplitude of
scalar metric perturbations at k0 = 0.05 Mpc−1, As = �ζ (k0), and τ is the
optical depth. The acoustic scale is cast as θMC . Differently shaded contours
include more and more of the data. Starting from polarization and BAO data only
for the largest contours, then TE-correlations and temperature anisotropies. The
smallest contours include the full Planck data. These parameter distributions have
been obtained with an MCMC routine using the Metropolis–Hastings algorithm
discussed in Section 9.5.4.1. Figure from Planck Coll. VI (2018)

figure shows the parameter distributions for the minimal �CDM model, which
is a flat cosmology with vanishing tensor perturbations and scalar perturbations
given by a primordial power spectrum of the form �ζ =As(k/k0)

ns−1. The sum
of the neutrino masses is assumed to be the minimal value required from neutrino
oscillation experiments (Tanabashi et al., 2019) which is about∑

mν = 0.06eV. (9.63)

The parameters of this so called base model are As and ns together with the baryon
density, �bh2; the cold dark matter density, �ch2; the optical depth due to reion-
ization, τri; and θMC , which is a parametric approximation to the angular scale of
the sound horizon at decoupling, θ∗ defined by

θ∗ = ts(z∗)
χK(z∗)

, (9.64)

where the redshift z∗ is defined by the optical depth to it reaching unity (neglecting
reionization),

1 = τ(z∗) =
∫ z∗

0

σT ne(z)

H(z)
dz

(1+ z)2 .
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Other important parameters such as the Hubble parameter, H0, or the cosmolog-
ical constant �� or �m= 1 − �� can then be derived from these basic parame-
ters. Another derived parameter is σ8, the over-density inside a sphere of radius
R = 8Mpc. This quantity is often used in the analysis for large-scale structure
(LSS) data; see Chapter 8. This simplest model with only six parameters fits the
CMB data well and it is this model with its best fit parameters that generated
the solid lines in Figs. 9.5–9.8.

In Fig. 9.12 we show an extension of this base model that includes also curvature.
Several other extensions have also been studied and have led to upper limits for the
additional parameters.

9.5.4 Markov Chain Monte Carlo Methods

If the posterior probability distribution of parameters is Gaussian, it is sufficient to
give its mean and its width in the direction of the principal axis, that is, the Fisher
matrix; this contains all the statistical information. However, even if the distribution
is Gaussian in the data, it is very often far from Gaussian in the cosmological
parameters of interest to us.

Given our model with parameters λ and the data D, we can evaluate the proba-
bility density P(λ) ≡ P [λ|D] up to a constant simply by Eq. (9.33),

P [λ|D] = P [D|λ]
P [λ]

P [D]
, (9.65)

where usually, the distribution of the data, D = (d1, . . . ,dN) is a Gaussian with
some covariance matrix C,

P [D|λ] = L(D,λ)dNd = 1√
(2π)N det C

exp

(
−diC

−1
ij dj

2

)
dNd. (9.66)

Therefore, once we have fixed a prior P [λ], we can evaluate the probability
P [λ|D] ≡ p(λ)dMλ of a given choice of parameters, λ = (λ1, . . . ,λM), up to a
constant, the evidence P [D]. Let us define this not normalized distribution by

P ∗(λ) ≡ P [λ|D]P [D] = P [D|λ]P [λ]. (9.67)

We would like to answer the following questions.

• What is the shape of the probability density p(λ) in the full parameter space, and
what are the densities of some arbitrary subset of parameters, μ = (λi1, . . . ,λiK ),
K < M marginalized over all the other parameters. We are especially interested
in the cases of K = 1 and 2, which are easy to visualize and that indicate how
strongly the parameters λi1 and λi2 are correlated; see Figs. 9.11 and 9.12.
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Fig. 9.12 The marginalized 2-parameter distribution from the Planck experiment
for a�CDM model including curvature. The parameter on the vertical axis is�K .
The parameters on the horizontal axis are from left to right the baryon density,
�bh

2; the cold dark matter density,�ch2; the scalar spectral index, ns ; the optical
depth τ ; the Hubble parameter, H0; and the matter density fluctuations inside
a ball of radius R = 8h−1Mpc, σ8. The largest contours are the Planck data
not including lensing, note the strong degeneracy of �K with H0. The smaller
contours include also CMB lensing and the smallest contours include also BAOs
from large-scale structure. Figure from Planck Coll. VI (2018)

• We would also like to compute the expectation value and variance of derived
parameters,

〈h〉 =
∫
h(λ)p(λ) dMλ,

and 〈
(h(λ)− 〈h〉)2〉 = ∫

(h(λ)− 〈h〉)2p(λ) dMλ;

in brief, integrals of the form
∫
f (λ)p(λ) dMλ.

If we had a representative (or fair) sampling of parameter space, S = (λ(1),λ(2), . . . ,
λ(R)), that is, a sampling in which the number of points λ ∈ S in a small volume V
of parameter space is proportional to

∫
V
p(λ) dMλ, we could approximate

〈f 〉 =
∫
f (λ)p(λ) dMλ � 1

R

R∑
i=1

f
(
λ(i)

)
.

Furthermore, marginalized probability densities at μ = (λi1, . . . ,λiK ) would be
proportional to the sum of all the points for which the parameters of interest are in
a given infinitesimal volume around μ, that is,

pK(μ) =
∫ (
 j 
=ir dλj

)
p(λ1, . . . ,λM) � 1

R

R∑
i=1

"Vμ
(
λ(i)

)
,

where Vμ is the volume in parameter space where the parameter values λi1 to λiK
are very close to the value μ while all other parameters are arbitrary, and "Vμ is
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the Heaviside function on this volume. In other words, the marginalized probability
distribution of the parameters μ would just be given by the projection of the full
probability distribution onto these parameters, especially the probability that the
parameter λ1 lies in some small interval I is proportional to the number of points
that have λ1 ∈ I and all other parameters are arbitrary.

The aforementioned problems can therefore be solved if we find a representative
sampling of our parameter space. There are several methods for finding such a
sampling that all have their advantages and disadvantages [see, e.g., Gamerman
(1997) and MacKay (2003)]. For high-dimensional problems, the Markov chain
Monte Carlo (MCMC) methods are especially useful. Of these, we concentrate here
on the Metropolis–Hastings algorithm that is dominantly in use for CMB analysis.
We shall mention also the Hamiltonian Monte Carlo method. Full proofs that these
algorithms really converge are found in the aforementioned monographs.

9.5.4.1 Metropolis–Hastings Algorithm

Let us start with some arbitrary point λ(1), and some “proposal density”Q
(
λ(2),λ(1)

)
for a new value λ(2) that depends on λ(1). We call λ(1) the “current point” and λ(2)

the “proposal.” For the moment, let Q be arbitrary but simple enough so that we
can easily (with little numerical investment) sample it. We shall soon be more
precise. To generate our sampling S we start at some arbitrary point λ(1). With
probabilityQ(λ,λ(1)) we now determine a proposal λ. To decide whether to accept
this point as the next element of our sampling (which now becomes a chain, since
it is ordered), we compute

r = P ∗(λ)Q
(
λ(1),λ

)
P ∗

(
λ(1)

)
Q

(
λ,λ(1)

) . (9.68)

If r ≥ 1, we accept λ as the next member of our chain, λ(2) = λ, if r < 1 we assign
λ(2) = λ with probability r and λ(2) = λ(1) with probability 1 − r . And so on, we
generate our Markov chain, S = (λ(1), . . . ,λ(R)).

If the proposal density Q is symmetric in its arguments, as, for example, a
Gaussian centered on the current point, the factor Q

(
λ(1),λ

)
/Q

(
λ,λ(1)

)
drops out

and we only have to calculate P ∗(λ)/P ∗
(
λ(1)

)
. We now concentrate on this case,

which is often simply called the “Metropolis algorithm.” The proposal density Q
is then only needed to suggest the next point, but is not involved in the decision
whether it is accepted or not.

It can be shown that for strictly positive Q, the distribution of the points in S
always tends to the posterior distribution P(λ) = P ∗(λ)/P [D] for R →∞. How
long will this take? Or in other words, how large do we have to choose R so that S
becomes a fair sample of P ? This is a difficult question, but it is relatively easy to
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find a lowest estimate for R. In order to have a reasonable acceptance rate r we do
not want to choose a too large step size ε = |λ− λ(i)|. Hence the proposal density
Q has to be sufficiently narrow. A reasonable step size is probably of the order of
the smallest widths σs of the 1-parameter distributions (of course, strictly speaking
we do not yet know these widths, but in practice we can make an educated guess
and revise it if necessary). Now, the distance the chain has to travel is at least equal
to the width of the largest 1-parameter distribution, σl . Since our chain performs
a random walk in parameter space, the number of steps it needs to travel a given
distance is Rmin ∝ (σl/σs)2. The proportionality factor will be roughly the inverse
of the mean acceptance probability, since, if the next point is not accepted, the chain
does not move forward at all.

To obtain a reasonably fair sample, one certainly has to cover the high-
probability part of the parameter volume several times and choose chain lengths
of a few times Rmin. This all works if our probability distribution has only one
high-probability region. If it has several, even though, usually a given chain will
rapidly find one of them, it is very hard to cross from one of these regions into
another. Therefore, instead of generating just one chain, one usually generates
several (tens of) chains. On the other hand, the first few (of order 20) points of a
chain do not sample the posterior distribution but depend mainly on the random
initial point λ(1). This “burn in phase” is usually discarded. Furthermore, the points
in the chain are not independent. As usual for Markov chains, each point depends
on its predecessor. This is not really a hindrance, as the mathematical theorem
shows, but nevertheless analysts often “thin out” their chains, that is, they use only
every tenth or so point for the posterior distribution.

Since the “burn in phase” of the chain is useless, it is not economical to use
many very short chains. On the other hand, since the probability distribution can
have several high-probability islands in parameter space that are separated by deep
canyons, it is not advisable to use only one very long chain. As so often, the
“golden middle” of many reasonably long chains is usually the best. However, if the
likelihood function turns out to have more than one maximum to which chains may
converge, care is required. The probability of a maximum is not simply proportional
to the number of chains that converge to it. This number can be large, not because
the maximum is large, but simply because its “basin of attraction” is large. In this
case, one has to analyze the shape of the likelihood function in more detail.

It is important to have a relatively good guess for the proposal densityQ to start
with. A simple possibility is a Gaussian with the correlation matrix given by the
inverse of the Fisher matrix.

In practice, to test whether the chains have converged one just adds 10% more
steps and investigates if the results change. To test whether the series of chains
represents a fair sampling one adds a couple more independent chains and checks
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the effect on the results. If the results are not affected, or only well within error
bars, one is usually confident that the procedure has converged. Often, one simply
compares the variance of the parameters obtained from the chain with the error bars
from the data.

In Figs. 9.11 and 9.12 we show the results obtained by this analysis method with
the best currently available CMB data (Planck data) for the simplest flat �CDM
model and including curvature. In addition to the cosmological parameters the
Planck analysis varies more than 30 other parameters that describe uncertainties
in the foreground and the experimental apparatus. To speed up the analysis, these
parameters are combined into directions that lead to a (nearly) diagonal Fisher
matrix, so-called orthogonal directions. Several other methods to speed up the
MCMC calculations are also employed; see Lewis (2013) for details.

There are several other Monte Carlo methods that some people begin use for
cosmological data sets, like the slice sampling (MacKay, 2003), but the principle
behind them is always the same: to obtain a Markov chain that produces a repre-
sentative sampling of an underlying probability distribution proportional to P ∗(λ),
we have to find a transition probability T (λ,λ′) that leaves P ∗ invariant, that is,

P ∗(λ) =
∫
T (λ,λ′)P ∗(λ′) dMλ′. (9.69)

Choosing, as in the Metropolis algorithm, T (λ,λ′) = V −1
tot P

∗(λ)/P ∗(λ′), is clearly
a transition probability that obeys Eq. (9.69). Here Vtot is the total volume of param-
eter space that has to be introduced in order for T to be correctly normalized.

9.5.5 Hamiltonian Monte Carlo

Finally, let us briefly mention a method that is at present not widely used in cosmol-
ogy (for a first attempt to study its usefulness for CMB data analysis, see Hajian,
2007). This method uses not only P ∗(λ), but also its gradient. Evaluating P ∗ with
reasonable accuracy requires one run of a fast CMB code. Evaluating the gradient
with respect toM parameters requires 2M , or for a stable numerical derivative, 3M
to 5M evaluations. As this is the costly part of CMB analysis, its usefulness has to
be checked in detail. However, as we explain now, the Hamiltonian Monte Carlo
might reduce the number of points needed for a representative sampling from Rmin

to order
√
Rmin. Therefore, if the chains have difficulties in converging, it might be

useful.
The basic idea is very simple. Let us write

P ∗(λ) = e−V (λ).
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Maximizing the probability is then equivalent to minimizing the potential V . There-
fore, it is useful to take the next step in the direction −∇V . But this is exactly
what Hamiltonian dynamics does. Therefore, we introduce momentum variables
π = (π1, . . . ,πM) and define the Hamiltonian

H(λ,π) = V (λ)+K(π),
where K is the kinetic energy, for example K = 1

2π
T π . We then define the non-

normalized probability

P ∗H(λ,π) = e−H(λ,π) = e−V (λ)e−K(π).
We now sample P ∗H in the following way. We first choose some initial value λ(1) and
draw a momentum π(1) from the Gaussian distribution e−K(π)/ZK . For the next,
dynamical proposal, the present momentum π(1) decides the displacement of λ and
the gradient of the present potential V (λ(1)) decides the change in the momentum,
via the canonical equations

λ̇ = π, and π̇ = −∇V (λ).
We then advance this system for some (fixed) number of steps to arrive at the
proposal (λ,π), which is then accepted or rejected according to the Metropolis
rule (9.68) for P ∗H (and some symmetricalQ that is no longer needed).3

The big advantage of this method is that the distance covered by the parameters
λ(i) is now proportional to the computer time per step and not only to its square
root.

From the representative sampling of P ∗H obtained in this way, we obtain a fair
sampling of P ∗(λ) by simply ignoring the momentum variables in the chains.

9.6 Degeneracies

To explain the problem of degeneracies, let us first consider parameters that obey
a Gaussian distribution with some Fisher matrix F(λ̄) at the maximum likelihood
parameters λ̄. Its inverse is the correlation matrix of the parameters, Cij = 〈(λi−λ̄i)
(λj − λ̄j )〉 = F−1

ij (λ̄). If one (or several) of the eigenvalues of the Fisher matrix
is (are) very small, the variance of the parameters in the corresponding direction
is very large. Hence this linear combination of parameters cannot be determined
accurately. In the limiting case, when the eigenvalue vanishes, the linear combina-
tion that defines the eigenvector with vanishing eigenvalue is not at all constrained
by the data.

3 If the simulation is perfect, the proposal is accepted every time since H = V +K is a constant of motion and
so r is always equal to 1. In practice, however, the inaccuracy in the numerical evaluation of the gradient will
lead to some rejections.
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Such directions are called degenerate or nearly degenerate directions. It is very
useful to identify them and to express the results of the experiment in terms of
quantities that are well determined and have small errors, that is, that are orthogonal
to the degenerate directions. Usually, degenerate directions have a simple physical
interpretation. They can be lifted either by improving the data (if they are only
nearly degenerate) or by considering complementary data. Here we discuss the
main examples.

9.6.1 Curvature

The most prominent example of a degeneracy of CMB anisotropies comes from
the fact that they are strongly dependent on �bh2, �mh2 and the angular size
of the sound horizon, θdec, or equivalently the angular diameter distance dA(zdec).
Considering a�CDM model, only three combinations of the parameters of interest,
�m, �b, ��, and h, are well determined by CMB anisotropies. This is especially
important for the determination of the curvature �K = 1−�� −�m. Changes in
the curvature that keep dA, �mh2 and �bh2 fixed have nearly no effect on CMB
anisotropies (see Fig. 9.13).

The main effect in the CMB that breaks this degeneracy is CMB lensing. The
reason for this is that the lensing kernel dominates at redshift zlens ∼ 3 � zdec and
therefore gives us access to the angular diameter distance at roughly zlens, which
breaks this degeneracy; see Fig. 9.14. Observing BAOs in a large-scale structure
(see Chapter 8) at a much better defined redshift breaks this degeneracy even better
and leads to a very precise determination of curvature when marginalized over all
the other parameters. Including BAOs, as described in Section 9.8, the error on the
curvature decreases by more than a factor 3,

�K =
{ −0.0106± 0.0065 CMB only

0.0007± 0.0019 CMB and BAO
(9.70)

Of course also fixing h breaks the curvature degeneracy. But as we shall see
in Section 9.9.1, direct measurements of the Hubble constant are not in good
agreement with the CMB results and it may therefore not be consistent to combine
these data.

9.6.2 Scalar Spectral Index, Tensor Component, and Related Degeneracies

The tensor contribution to the CMB anisotropies significantly adds to the C�’s only
for � <∼ 80. For �>∼ 80 it rapidly decays and can be neglected (see Fig. 2.5). But
a slight enhancement of power on large scales can also be produced by reducing
somewhat the spectral index ns . A slightly redder spectrum also has somewhat more
power on large scales; see Fig. 9.15.
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Fig. 9.13 In the upper panel lines of equal angular diameter distance are indicated.
The number R is the ratio of the angular diameter distance of the model to the
one of a concordance model with �� = 0.7, �m = 0.3, h = 0.7. The lines of
constant curvature are parallel to the diagonal, which is also drawn. In the lower
left-hand panel we show CMB anisotropy spectra with�K > 0 (dashed),�K < 0
(dotted), and �K = 0 (solid), which have identical angular diameter distance,
matter density, and baryon density. They correspond to the dots indicated in the
upper panel. The spectra overlay so precisely that we can hardly distinguish them
by eye. On the lower right-hand panel we show three spectra with curvature zero,
identical matter density and baryon density, but with different angular diameter
distances (the squares indicated in the upper panel on theK = 0 line). The spectra
are significantly different. Note that in these plots CMB lensing is neglected.

Another parameter that affects the power on large scales is the optical depth to
the last scattering surface, τ . Enhancing it leads to more damping on larger scales,
which in turn can be compensated by a tensor component.

This degeneracy is lifted by including the high-quality polarization data from
Planck. Reionization leads to the rescattering of photons at late times and induces a
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Fig. 9.14 The curvature degeneracy: the large contour is from CMB data without
a lensing analysis. When h is left free, the curvature is only very badly determined
(dashed contour lines). Including lensing (solid contour lines) this degeneracy is
very strongly broken and including BAOs it vanishes completely (dark region in
the lower right corner) and all parameters, �m,��, and h are determined with
high accuracy.

T
C

K

Fig. 9.15 A spectrum of purely scalar perturbations with ns = 0.96 (solid) is
compared to one with a tensor contribution of r = 0.3 (dotted). The cosmological
parameters of the two models are given by (h = 0.73,�bh2 = 0.0225,�mh2 =
0.135,τri = 0.1,ns = 0.96) for the purely scalar model and (h = 0.8,�bh2 =
0.023,�mh2 = 0.118,τ = 0.1,ns = 1.0,r = 0.3,nt = 0) for the model with
tensor contribution. Clearly, these two models cannot be distinguished from their
temperature anisotropies alone.
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small amount of polarization on large scales that would not be seen without reion-
isation. The polarization data from Planck provides the best estimate of the optical
depth: τri = 0.0544± 0.0073, obtained assuming a vanishing tensor component.

On the other hand, a significant tensor component can be (nearly) unambiguously
determined by a measurement of the B-mode of polarization. This is the next
“quantum leap” to be expected from CMB data: good B-polarization data that even
might allow the testing of the slow roll consistency condition (3.105),

At

As
= −8nt .

9.6.3 Initial Conditions

As we discussed in Chapter 3, simple inflationary models generate perturbations
with adiabatic initial conditions. In the simplest case, neglecting a possible tensor
component, the initial conditions are characterized by the two parameters (As, ns).
However, in principle, other initial conditions are also possible. We have discussed
the mixture of adiabatic and CDM isocurvature perturbations. Also allowing for
the two neutrino modes (the neutrino density and the neutrino velocity mode), one
obtains four essentially different modes. Together with arbitrary correlations this
gives a 4×4 symmetric, positive semidefinite matrix of initial conditions, hence 10
parameters. The spectral indices of each component allow for additional parameters
(see, however, Exercise 9.2).

Introducing these many additional parameters leads to serious additional degen-
eracies. In particular, the first peak of the acoustic oscillations for isocurvature
perturbations no longer determines the angular diameter distance to the last scatter-
ing surface, since it also depends strongly on the initial conditions.

However, isocurvature perturbations, while contributing to the Sachs–Wolfe
plateau, do not induce significant density fluctuations. But the normalization of
CMB fluctuations on large scales leads to about the right amplitude for density
fluctuations in the purely adiabatic case. Therefore, combining CMB fluctuations
with the galaxy power spectrum leads to stringent constraints for the isocurvature
contribution (Trotta et al., 2001/3). An analysis of the Planck data limits a possible
isocurvature fraction on large scale to 2% for the CDM isocurvature mode and to
7.4% and 6.8% for the neutrino density and neutrino velocity isocurvature modes
respectively; see Planck Coll. X (2018).

Very roughly, isocurvature modes have an effect similar to a tensor component:
they contribute to the CMB anisotropies but not to the galaxy power spectrum.
However, since they contribute to the CMB not only on very large scales, but also
on smaller scales where the data have smaller error bars, they are better constrained
than a tensor contribution.
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Finally, polarization information also helps to break the degeneracies from
isocurvature modes (see Bucher et al., 2001 and Planck Coll. X, 2018). This comes
first of all from the fact that the spacing between the acoustic peaks in �-space
depends only on the cosmological parameters and not on the initial conditions.

Similar limits as for iso-curvature perturbations can also be derived for topologi-
cal defects (see Section 2.7). For example, in Lizarraga et al. (2016) it is found that
cosmic strings from a U(1) Abelian Higgs model can contribute at most

f10 = C
string
10

Cadi
10

≤ 0.014, (9.71)

where the C�’s are marginalized over the six parameters of the base�CDM model.
This leads to a limit for the symmetry breaking scaleM of 4πGM2 = ε < 4×10−7.

Even when considering simple adiabatic perturbations, one can allow for addi-
tional features in the initial power spectrum that will influence the estimated cos-
mological parameters. As long as these are parameterized by a few numbers, we
can test good enough data against them, but as mentioned in the beginning of
this chapter, if we do not make any simplifying assumptions on the initial power
spectrum, we must know the cosmological parameters that then fix the transfer
function in order to determine the initial power spectrum. Without assumptions we
cannot determine them both.

One often allows for a so-called running of the spectral index. For this one fits
for a “running parameter” α = dns/d ln(k), which is assumed to be constant. An
initial spectrum, with running, is determined by three parameters. First one has to
fix some “pivot scale” k∗ that is arbitrary, but has to be a scale where the power
spectrum is well constrained by the data. One then sets

k�ζ (k) = A∗(k/k∗)ns−1+α ln(k/k∗). (9.72)

The resulting amplitude A∗ and spectral index ns , in general, depend on the pivot
scale. Only if α = 0 does ns not depend on k∗. If α = 0 and ns = 1 as well A∗ is
independent of k∗. For the pivot scale k∗ = 0.05h/Mpc the Planck experiment has
published the following results:

ns = 0.9641± 0.0044,
dns

d ln k
= −0.0045± 0.0067, (9.73)

hence perfectly compatible with no running but clearly deviating from an HZ
spectrum with ns = 1. If one allows also for a tensor contribution, the limits on
running become weaker by about a factor of 2.

One can of course allow for more complicated features like one or several kinks
in the power spectrum, that is, sudden changes of the spectral index. There are
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Table 9.1 Parameters for the basic, flat �CDM model and their marginalized
1σ (or rather 68% probability) errors from Planck alone (middle column) and
including BAO data (right column).

Value ±68%

Parameter Planck only Planck and BAO

�bh
2 0.02237± 0.00015 0.02242± 0.00014

�ch
2 0.1200± 0.0012 0.11933± 0.00091

100θMC 1.04092± 0.00031 1.04101± 0.00029
τri 0.0544± 0.0073 0.0561± 0.0071
ln(1010As) 3.043± 0.014 3.047± 0.014
ns 0.9649± 0.0042 0.9665± 0.0038

�mh
2 0.1430± 0.0011 0.14240± 0.00087

H0 [km/sec/Mpc] 67.36± 0.54 67.66± 0.42
�� 0.6847± 0.0073 0.6889± 0.0056
Age [Gyr] 13.797± 0.023 13.787± 0.020
σ8 0.8111± 0.0060 0.8102± 0.0060
S8 ≡ σ8(�m/0.3)0.5 0.832± 0.013 0.825± 0.011
zre 7.67± 0.73 7.82± 0.71
100θdec 1.04110± 0.00031 1.04119± 0.00029
zdec 1089.92± 0.25 1089.80± 0.21
rs [Mpc] 147.09± 0.26 147.21± 0.23

Above the horizontal line are the six base parameters while the parameters below the
horizontal line are derived. Even though the BAO data are not good enough to significantly
reduce the error bars, they are in good agreement with the CMB. Note the superb precision
of the acoustic scale θdec which is δθdec/θdec � 3×10−4. Data from Planck Coll. VI (2018)

inflationary models that predict such features, for example, models where inflation
is driven by several scalar fields (Adams et al., 1997; Achucarro et al., 2013).

A comparison of the cosmological parameters obtained by CMB data alone and
CMB in conjunction with BAO data is given in Table 9.1. At the present level
of accuracy, complementary data sets do not reduce the error bars considerably,
but it is important that they are consistent. However, when we extend the �CDM
base model, complementary observations often become important in order to break
degeneracies. Several examples are listed in Table 9.2.

In the w0-line of Table 9.2 the dark energy sector has been extended in the sim-
plest way by allowing an equation of state P = w0ρ. Even though the�CDM value
w0 = −1 is allowed, the errors are still substantial. To constrain dark energy, SNIa
data can help. Allowing for a simple phenomenological ansatz for the equation of
state, of the form

w = w0 + (1− a)wa, (9.74)
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Table 9.2 Several one-parameter extensions of the basic �CDM
model and their marginalized 2σ (or rather 95% probability) errors
from Planck alone (middle column) and including BAO data.

Value ±95%

Parameter Planck only Planck and BAO

�K −0.01± 0.013 0.0007± 0.0037
r0.002 <0.101 0.106∑
mν[eV] <0.241 <0.12

Neff 2.89± 0.38 2.99± 0.34
w0 −1.57± 0.5 −1.04± 0.1
dns/d log k −0.005± 0.013 −0.004± 0.013

The tensor to scalar ratio, r0.002, is evaluated at the pivot scale
k = 0.002/Mpc. Data from Planck Coll. VI (2018).

one obtains the constraints (Planck Coll. VI, 2018)

w0 =
{ −0.961± 0.077 Planck, BAO, SNIa
−0.76± 0.20 Planck, BAO/RSD, weak lensing

(9.75)

wa =
{ −0.28+0.31

−0.27 Planck, BAO, SNIa

−0.72+0.62
−0.54 Planck, BAO/RSD, weak lensing

(9.76)

Here RSD refers to redshift space distortions observations shown in Fig. 9.18. A
discussion of RSD and weak lensing data is presented in Section 9.8. Even though
error-bars are large, SNIa data clearly help in constraining dark energy.

9.7 Non-Gaussianity

To check the CMB anisotropies and polarization for non-Gaussianities, the Planck
analysis team studied both the CMB bispectrum and trispectrum. Rather than deriv-
ing estimators for theseN -spectra, quadratic estimators for the different fnl’s them-
selves and for gnl have been derived. Also this is quite challenging, and different
methods have been used that go beyond the scope of this book. We just present an
example. One can define an inner product between bispectra of the form

〈bA,bB〉 =
∑
�i

bA�1�2�3
bB�1�2�3

h2
�1�2�3

C−1
�1
C−1
�2
C−1
�3
, (9.77)

where h2
�1�2�3

is given by Eq. (6.83),

h�1�2�3 =
√
(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

(
�1 �2 �3

0 0 0

)
. (9.78)
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Table 9.3 The bispectrum and trispectrum measurements
from Planck have been summarized by constraining three
shapes for the bispectrum that are parameterized by
f
(local)
nl , f (equil)

nl , f (ortho)
nl , and a purely local trispectrum

determined by the parameter gnl; see Chapter 6.

Variable T only T and P data

f
(local)
nl 2.5± 5.7 0.8± 5.0
f
(equil)
nl −16± 70 − 4± 43
f
(ortho)
nl −34± 33 −26± 21

gnl (−9± 7.7)× 104 —

Data from Planck Coll. XVII (2016). All values are compatible
with zero and hence non-Gaussianities have not been detected
by the Planck satellite

An estimator for fnl is then

f̂nl = 〈b
(obs),b(th)〉
〈b(th),b(th)〉 , (9.79)

where “obs” indicates the observed bispectrum while “th” is the theoretical one.
Apart from this relatively straightforward estimator several others can be used. But
already Eq. (9.79) is numerically quite intensive, as it requires a sum over three �’s
and already the estimation of b(obs)

�1�2�3
requires a sum of (2�1 + 1)(2�2 + 1)(2�3 + 1)

values a�m (We ignore the partial sky coverage here, which of course also has to be
taken into account.). The scalar product (9.77) can easily be generalized to include
also polarization and the temperature–polarization cross correlation. In the Planck
analysis several different estimators were used, also one derived from Minkowski
functionals; see Section 6.4.2. The finally published values for the fnl’s and gnl are
given in Table 9.3.

9.8 Large-Scale Structure Observations

As discussed in Section 8.2.1, observations of the baryon acoustic oscillation
(BAO) peak in the monopole of the correlation function or of the 3D power
spectrum of galaxy surveys determine the angle subtended by the comoving drag
scale rs , given by

θs(z) = (1+ z)rs
dV (z)

, dV (z) =
(

d2
A(z)

(1+ z)H(z)
)1/3

. (9.80)

Here dV is the 3D directional mean of the radial and the angular distance for a
correlation function that is averaged over directions. The factor (1 + z) is needed
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Fig. 9.16 The galaxy correlation function from the CMASS sample, which
contains 264,283 massive galaxies covering 3275 square degrees at a mean
redshift z = 0.57 and covering the redshift range 0.43 < z < 0.7. Figure from
Anderson et al. (2012), where more details can be found

since dV (z) is a physical distance while rs as given in Table 9.1 is comoving.
In Fig. 9.16 we show the reconstructed correlation function from the BOSS data
Release 9 (Anderson et al., 2012). The BAO feature is clearly visible in the data.
The “BAO data” used in the Planck analysis are summarized in Fig. 9.17. Clearly
LSS data are in excellent agreement with the Planck experiment, but its error
bars are still considerable. This is expected to improve drastically within the next
decade.

In the future, when the radial distance�z/[(1+z)H(z)] and the angular distance
θdA(z) can be measured independently with good accuracy, the BAOs in the LSS
can be used for an Alcock–Paczynski test as outline in Chapter 8.

Also the quadrupole of the LSS correlation function due to RSD has been mea-
sured and it has been used to determine β = f/b as discussed in Section 8.2.1.
More precisely, the quadrupole of the correlation function determines f σ8, where
f is the growth function and σ8 denotes the fluctuation amplitude inside a ball
of radius 8h−1Mpc . The present measurements of f (z)σ8(z) at different redshifts
from different experiments are summarized in Fig. 9.18.

9.8.1 Shear Measurements, Weak Lensing

So far we have considered galaxies as “points” in a survey and concentrated on the
fluctuations in their number. But galaxies are extended objects of a typical size of
arc minutes. They are easily resolved and we can measure their shape, which, for
elliptical galaxies, is elliptical.
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The deflection of light from a source behind a mass concentration can lead to
the formation of multiple images. This effect is called lensing, or more precisely,
“strong lensing.” If the impact parameter of the light ray connecting the source
to the observer is too large, or if the intervening mass is too small, no separate
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images are formed but the source is deformed by the intervening gravitational field.
For example, a spherical source behind a point mass deforms into an ellipse that
is squashed in the direction from its center to the lens (see Exercise 9.4). In this
case we speak of “weak lensing.” Such an alignment of the ellipticity of galaxies
behind massive clusters has been observed, and it can be used to estimate the cluster
mass (Schneider, 2007).

But weak lensing can also be considered in a statistical way, that is, by measuring
the correlation of the direction of galaxy ellipticities, to gain information about
the foreground matter distribution or more precisely the lensing potential. The
observations are difficult because the ellipticity of galaxies from lensing is typically
about 1% of their intrinsic ellipticity and is only detectable by a statistical analysis:
weak lensing leads to ellipticities are correlated only if the galaxies are close in
angular position even if they are very far apart in physical space, that is, at different
redshifts. In this way, the correlation of ellipticities from lensing can in principle be
separated from physical alignment (intrinsic alignment) of galaxies that may come
from the process of galaxy formation. These galaxy ellipticities measure the shear
γ = γ1 + iγ2 of the deformation matrix Aab; see Sections 7.1 and 7.2. For purely
scalar perturbations in a matter-dominated Universe this shear is closely related to
the matter power spectrum [see Section 7.2 and Schneider (2007) for more details].

Measuring the correlations of shapes of galaxies allows us to determine the
lensing power spectrum, which allows a precise measurement of

S8 ≡ σ8

√
�m

0.3
. (9.81)

The advantage of weak lensing observations over galaxy catalogs is that lensing
responds purely to the matter density, it does not distinguish luminous matter and
dark matter. The disadvantage is that observations of weak lensing are much more
difficult. One has to determine the correlation of the ellipticities of background
galaxies behind some foreground over density. These correlations are on the level
of a few percent of the actual ellipticities of the galaxies.

In Chapter 7, we have developed some of the beautiful theory of weak lensing.
Here we simply recall that, for linear scalar perturbations, lensing can be expressed
in terms of the gravitational potential � ∝ �mD ∝ �mσ8. What really enters
in weak lensing is the line-of-sight integral of the gravitational potential, which
reduces the sensitivity to �m to roughly

√
�mσ8. Constraints from weak lensing

lead to the typical “banana-shaped” contours in the �m–σ8 plane; see Fig. 9.19,
lower left panel. The best limit from Abbott et al. (2018) is

S8 = 0.783+0.021
−0.025. (9.82)
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Fig. 9.19 The �m–S8 constraints from the first year DES (Dark Energy Survey)
analysis of lensing and galaxy number counts. The lighter, larger contours are
for shear alone while the inner contours also include galaxy clustering (middle
contours) and the number count-shear cross correlations (innermost contours).
The results are is some tension with the Planck results, but these are still early
days and improvements in the shear analysis, especially a more thorough treatment
of intrinsic alignment, are expected in the near future. Figure from Abbott et al.
(2018)

The Planck value, given in Table 9.1, inferred from the best fit base-model is
S
(Planck)
8 = 0.832 ± 0.013, which is in some tension with the weak lensing result.

Even though this tension is interesting, the analysis is still not solid enough to claim
a breakdown of �CDM.

For the future, one plans to measure the lensing power spectrum with much
higher precision, for example, with the Euclid satellite to be launched in 2022
(see Amendola et al., 2018) or at the Rubin observatory (see Abate et al., 2012).
This very powerful tool, which can, in principle, measure the lensing power
spectrum as a function of redshift, is theoretically nearly as simple as the CMB.
If observational and systematic difficulties, especially intrinsic alignment, can be
overcome, this will provide a most valuable complementary tool for parameter
estimation; for a review of weak lensing see Schneider (2007). Comparing the
galaxy number count power spectrum with the lensing one can even perform tests
of General Relativity (Zhang et al., 2007; Dizgah and Durrer, 2016).

9.8.2 The Lyman-α Forest

The light from a high-redshift quasar, on its way from emission into our detector,
not only propagates through the reionized intergalactic medium, but also crosses
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Fig. 9.20 The Ly-α forest region in the Keck HIRES spectrum of the Quasar QSO
1422+ 231 at z = 3.61. From Songaila and Cowie (1996)

through clouds of hydrogen. These are regions where the matter density is relatively
high and baryons are relatively cool so that a fraction of them have recombined into
hydrogen. These hydrogen clouds are not considered as isolated “proto-galaxies,”
but simply as regions of relatively high density, where collisions that allow cooling
processes can occur. When quasar light passes through them, the Lyman-α (Ly-α)
photons are absorbed by the neutral hydrogen, leading to a ‘forest’ of absorption
lines in the quasar spectrum; see Fig. 9.20.

This Ly-α forest is related to the one-dimensional distribution of neutral hydro-
gen, which is in turn related to the matter distribution along the line of sight.
The depth of the lines is a measure of the hydrogen density. The observations are
usually presented in terms of the power spectrum of the transmitted flux fraction,
PF (k,z), as F(λ) = exp(−τ(λ)), where τ(λ) is the optical depth to Ly-α averaged
over the scale λ.
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To relate this to the matter density power spectrum PD(k,z), we have to make
assumptions about cooling and recombination; see, for example, McDonald et al.
(2005). With such a relation at hand (which is usually nonlinear and given by
hydrodynamical simulations), the correlations of the lines provide, in principle, a
measure of the matter power spectrum. If the underlying density fluctuations were
still linear, we could relate them to the initial fluctuation by the deterministic matter
transfer function TD(z) via D(x,z) = TD(z)Din(x). The transfer function depends
only on the background cosmology, that is, on the cosmological parameters. The
correlation between linear density fluctuations in some fixed direction n at redshifts
z1 and z2 is simply

〈D(z1)D(z2)〉 = 〈D (x0 − n(t0 − t (z1)),t (z1))D (x0 − n(t0 − t (z2)),t (z2))〉
= T (z1)T (z2)Cin(|t (z1)− t (z2)|), (9.83)

where Cin is the initial density correlation function, that is, the Fourier transform
of the initial power spectrum. Typically z1,z2 ∼ 2–3 and �z = |z1 − z2| < 0.01,
so that |t (z1) − t (z2)| � H−1(z)(�z/(z+ 1)). Here z is the mean redshift and we
have approximated |t (z1)−t (z2)| to first order in�z. These length scales are small,
hence the Ly-α forest explores the power spectrum at relatively small scales. For
example, for z = 2.5 we have H−1(z)/(z+ 1)

∣∣
z=2.5 � 2850h−1 Mpc so that we

find |t (z)− t (z+�z)|z=2.5 � 2.8h−1 Mpc for �z = 0.001.
On the other hand, at z ∼ 2–3 perturbations on these scales are already non-

linear, so that time evolution and correlation do not simply factorize as in Eq. (9.83).
To use the Ly-α forest for parameter estimation, we have to rely on N -body sim-
ulations. The main sensitivity of the Ly-α forest is therefore to the amplitude of
fluctuations on a small scale, which is sensitive to both σ8 and the spectral index
ns , as well as to a possible contribution of massive neutrinos.

If the theoretical difficulties can be overcome, the Ly-α forests of quasars provide
a very interesting data set. They are our most promising tool for estimating the
linear power spectrum on small scales at high redshift. In that sense they help
enormously to extend the “lever arm” of our knowledge on the primoridial power
spectrum. The length of this lever arm is crucial for a precise estimation of the scalar
spectral index ns or of a possible “running” of the spectral index, dn/d log k 
= 0.
An analysis of the Ly-α forest from quasars in the SDSS is presented in McDonald
et al. (2005) and Palanque-Delabrouille et al. (2015); there a neutrino mass limit of∑
mν < 0.14 eV when combined with CMB data. From the Ly-α forest alone one

obtains a much poorer mass limit of about
∑
mν < 1.1 eV. This analysis, however,

illustrates the potential of the method. With the BOSS survey, Ly-α forest data have
also been obtained on larger scales and led to a determination of the BAO scale, θs
at redshift z � 2.3, which is in reasonable agreement with the Planck value at this
redshift; see Bautista et al. (2017).
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9.8.3 Galaxy Clusters

Finally, we want to address briefly the relevance of galaxy clusters for cosmological
parameters. Rich clusters with masses M ∼ 1014.5 h−1M% are the largest bound
structures in the Universe (M% is the mass of the Sun). Clusters can vary from
small groups of tens of galaxies to more than 1000 galaxies. They represent over-
densities of more than unity and are thus nonlinear. For Gaussian fluctuations the
probability to measure an over- (or under-) density δρ = ρmD on a scale λ is

P(D,z) = 1√
2πσ(λ,z)

exp

(
− D2

2σ 2(λ,z)

)
. (9.84)

Here σ 2(λ,z) is the variance of the density fluctuations on the scale λ at redshift z.
Assuming that a relative over-density Dc is needed for an object to collapse, the
probability that an over-density on scale λ has collapsed into a cluster becomes

P(D > Dc|λ,z) = 1− erf

(
Dc√

2σ(λ,z)

)
, (9.85)

where erf(x) denotes the error function. This is the basic ingredient of the Press–
Schechter formalism (Press and Schechter, 1974).

The spherical collapse model (see, e.g., Peebles, 1993) requires Dc� 1.69.
Assigning the total mass M inside a sphere of radius λ to the collapsed object,
allows one to determine the number density of clusters of mass larger than M
for different redshifts. This quantity is very sensitive to �m, which determines
the growth function of linear density fluctuations and thereby σ(λ,z), which enters
exponentially in the cluster abundance. The study of the abundance of large clusters
was one of the first observations indicating �m ∼ 0.3 (see Bahcall and Cen, 1992).

Furthermore, clusters usually form at a fixed velocity dispersion. The kinetic
energy has to be smaller than the gravitational potential energy for a bound structure
to form. Therefore, the cluster density also constrains the velocity power spectrum,
PV ∝ �1.2

m σ
2
8 [see Eq. (2.251)]. Comparing observations with numerical simula-

tions gives (Böhringer et al., 2014 )

σ8

(
�m

0.3

)0.57

= 0.753± 0.03.

Comparing lensing observations from clusters that are sensitive to the total mass
to X-ray emission, which depends on the baryon density in clusters, one can esti-
mate the ratio �b/�m ∼ 0.1. Several assumptions go into this value. First of all,
X-ray emission is proportional to the line-of-sight integral of ρ2

b and assuming
〈ρ2
b〉 � 〈ρb〉2 is not trivial at all, since baryons are strongly clustered on small

scales. Furthermore, relating the baryon to mass ratio in clusters to�b/�m assumes
that this ratio in clusters is similar to its mean in the total Universe. We know,
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for example, that this is not so in the central parts of galaxies. However, clusters
seem to have a sufficiently low mean density, so that hydrodynamical processes that
affect baryons, but not dark matter, do not significantly modify the ratio �b/�m in
clusters.

Concluding, we state that clusters, being the largest bound structures in the
Universe, are an interesting tracer of the mass distribution that should not be
ignored. It is very reassuring that the cosmological parameters inferred from
clusters fit well with the results from CMB and other observations. However, since
clusters are nonlinear structures, with highly nonlinear physics determining their
X-ray emission and probably also their mass, we cannot expect to achieve
the degree of accuracy that we obtain from probes of linear and quasilinear
perturbations.

9.9 Complementary Observations

CMB and LSS observations are not the only cosmological observations at our
disposal. The main reason why they are so useful is that they are relatively easy
to calculate to good accuracy. On a wide range of scales, we do not expect any
complicated physics to obscure the relation between data and theory. Nevertheless,
it would be a waste not to also consider other available data and, especially in view
of the degeneracies, we need other data to confidently interpret the CMB. Here we
only briefly introduce the most important complementary observations.

9.9.1 The Hubble Parameter H(z)

A notoriously difficult quantity to measure is not only the function H(z), but more
basically the value of the present Hubble parameter, H0 = H(0). The main diffi-
culty lies in the measurement of cosmological distances. The history of astrophysics
and cosmology is marked by repeated underestimations of distances. E. Hubble
originally overestimated his parameter by a factor of about 7 (Hubble, 1929). Even
though it is relatively straightforward to measure the redshift of a cosmological
source, how can we find its distance? The main tools are standard candles or stan-
dard rulers. If we know the intrinsic size or luminosity of a distant source, we can
use this to determine its angular diameter or luminosity distance. To lowest order
in the redshift z, these are simply H−1

0 z. For redshift higher than z � 0.1, one has
to take into account the full expression for the distance as derived in Chapter 1.
The full function H(z) determines not only the present Hubble parameter but, via
the Friedmann constraint equation, also the matter content and the curvature of the
Universe.

A very promising method is to determine H(z) with the observation of super-
novae of type Ia. These are supernovae without hydrogen lines. They are extremely
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luminous and can be seen out to redshift of 2 and maybe more. The idea is that they
come from white dwarfs that accrete material, for example, from a companion star,
until they pass over the Chandrasekhar mass limit of about 1.4M% (Chandrasekhar,
1939). At this moment they become unstable and explode. Most probably this leads
to the formation of a neutron star. The intrinsic luminosity of this explosion is
quite constant and the mild variation is strongly correlated with the width of the
light curve. Correcting for this variation with a phenomenological formula, one
can obtain very small variations in the corrected intrinsic luminosity (about 0.1
magnitude). This allows an accurate measurement of the luminosity distance to
these explosions.

At present, luminosity distances to supernovae with redshifts up to 1.7 have been
determined. These are used not only to measure H0 but especially to determine
H(z)/H0, which can be obtained with much better accuracy. These measurements
have provided the first clear indication that the expansion of the Universe is cur-
rently dominated by a cosmological constant or some form of dark energy with
strong negative pressure leading to acceleration (see Chapter 1). For this discov-
ery S. Perlmutter, A. Riess, and B. Schmidt were awarded the Nobel Prize in
2011 (Riess et al., 1998; Schmidt et al., 1998; Perlmutter et al., 1999). Up to this
day more than 1000 SNIas have been observed. However, at present the CMB alone
gives tighter constraints on ��,�m and when combined with BAOs, adding SNIa
data does not lead to a significant improvement. Nevertheless, it is an important
cross-check, and if we could master the difficult systematics that plague SNIa data
at higher redshifts, they might help us in our aim to reveal the nature of dark energy.
Is it simply a cosmological constant with w = −1 or is it dynamical, for example,
a scalar field with a time-dependent equation of state, w(z)? Or is it even some
“phantom matter” with w < −1?

Unfortunately, the luminosity distance directly measures only the integral [see
Chapter 1, Eqs. (1.39) and (1.51)]

dL(z) = (1+ z)√|�k|H0
χK

(√
|�k|H0

∫ z

0

dz

(1+ z)H(z)
)

.

The equation of state parameter w, on the other hand, enters at the level of the
derivative H ′(z). To determine it, two derivatives from relatively noisy data have
to be taken, a very difficult task. It has also been shown that the dipole of the
luminosity distance which is, like the CMB dipole, due to our motion with respect
to the Friedmann background, allows a direct measure of H(z) so that only one
additional derivative is needed to arrive at the equation of state (Bonvin et al.,
2006b). On the other hand, to accurately determine the amplitude of the dipole,
many SNIas in a given redshift bin are needed. It remains to be seen whether this
approach will bear fruit.
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To measure the Hubble constant, one usually employs SNIa at low redshift,
z < 0.1 to avoid degeneracies with other cosmological parameters. The most recent
value measured with SNIa reports

H0 = (73.5± 1.4)km/s/Mpc (9.86)

A similar value has obtained from time delays in strongly lensed systems (Wong
et al., 2019) H0 = (74.2 ± 1.8)km/s/Mpc. Another analysis using “the tip of the
red giant branch” as the standard candle has obtainedH0 = (69.8± 1.9)km/s/Mpc.
See Riess (2019) for a review of the present situation. In particular the SNIa
result (9.86) exhibits a slightly more than 4σ tension with the Planck value of
H0 = (67.36 ± 0.54)km/s/Mpc. This is presently the strongest discrepancy in the
base �CDM model. It is not easy to accommodate it with, for example, massive
neutrinos or curvature, and so forth without spoiling anything else. The present
parameter values are already very tight.

There are already several hundreds of papers written about this discrepancy that
either solve it with some exotic physics or with unaccounted for systematics in one
or the other experiment. Here we do not contribute to this debate but advise the
reader to also study it from the point of view of an interesting sociological event in
the scientific community.

9.9.2 Nucleosynthesis

As we have seen in Chapter 1, by an analysis of what has happened during nucleo-
synthesis, that is, at T � 0.1 MeV and z � 2.3 × 109, we can calculate the
light element abundance as a function of the baryon density, �bh2; see Fig. 1.10.
Comparing with the observations of these abundances yields the nucleosynthesis
value of the baryon density. How to estimate the primordial abundance from the
present abundance of light elements is entirely nontrivial, an art that we do not
discuss here any further. An estimate from the most sensitive deuterium abundance
gives (Tanabashi et al., 2019)

0.021 ≤ �bh2 ≤ 0.024 (at 95% confidence) . (9.87)

The agreement of this result with the CMB estimate is most remarkable. Both
values are based on completely different physics. Such agreements give us con-
fidence in the standard cosmological model.

The abundance of helium generated during nucleosynthesis is sensitive to the
number of relativistic degrees of freedom at the time of nucleosynthesis, which
determines the expansion rate during nucleosynthesis. The photon and three types
of neutrinos (at their somewhat lower temperature) lead to a good fit to the observed
helium abundance. The nucleosynthesis constraint on the content of relativistic
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particles at the time of nucleosynthesis is usually formulated as a constraint on
the number Nν of light neutrino species. The data require (Tanabashi et al., 2019)

2.3 < Nν < 3.4 (at 95% confidence). (9.88)

In very good agreement with the value from the width of Z-decay obtained at
accelerators (Tanabashi et al., 2019),

Nν = 2.991± 0.007.

Even though the cosmological result is older, the accelerator result has become
much more accurate. It is also much more accurate than the CMB constraint given
in Table 9.2.

The only data that are in disagreement with the standard cosmological model
of nucleosynthesis is the Li7 abundance, which is more than a factor of 3 lower
than the predicted value. However, during early star formation lithium is mainly
destroyed and it is difficult to infer the primordial value from the observed one.
Nevertheless, the value of �bh2 inferred from the deuterium abundance is in an
about 5σ discrepancy with the value inferred from the lithium abundance. It is still
under debate whether this discrepancy is due to modeling of stellar evolution or
whether new physics is needed to resolve it. See Tanabashi et al. (2019) for a brief
overview of the situation.

Exercises

(Exercises marked with an asterisk are solved in Appendix 11 which is not in
this printed book but can be found online.)

9.1 Optical depth from reionization
Calculate the optical depth τri(zri) as a function of the reionization redshift,
zri, for a pure matter universe, �tot = �m = 1 and for a �-dominated
universe with �� = 0.7 and �m = 0.3. Express the result as a function of
�bh

2.

Hint: For the �-dominated case you may assume zri>∼ 6 and neglect the
influence of the cosmological constant for z > 2 and the contribution to τri

for z < 2. Estimate your error. Consider two cases.

(1) The universe ionized suddenly at redshift zri.
(2) Ionization started at redshift zri > 6 and was completed at z = 6. In

the reionization interval, 6 ≤ z ≤ zri, the free electron fraction, x, rises
linearly with the scale factor, 1− x = (z− 6)/(zri − 6).
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9.2 Isocurvature initial conditions*
Let us denote X1 = Dγ , X2 = Dm, X3 = Dν , and X4 = Vν . We
parameterize the initial conditions by

Cij = 〈Xi(k)X∗j (k′)〉 = Aij (k/H0)
nij δ(k− k′).

Show that Cij is positive semidefinite for all values of k if and only if the
matrix Aij is positive semidefinite and nii ≤ nij ≤ njj or njj ≤ nij ≤ nii
for all i,j with Aij 
= 0.

9.3 The shape parameter
Show that the comoving Hubble scale at equality H0teq ∝ (�mh)−1. How
does the matter power spectrum depend on this scale?

9.4 Weak lensing
Consider a point mass M at distance dL in front of a circular source with
radius rs at distance DS , the center of which passes the lens with impact
parameter b. Using the small angle and small deflection approximation
calculate the shape of the image. Show that the ellipticity is parallel to
the radial direction. Calculate the ellipticity for a source distance, dS = 30
Mpc; lens distance, dL = 25 Mpc; impact parameter b = 0.1 Mpc; source
radius rs = 0.03 Mpc; and massM = 1015M%.

Hint: Approximate the gravitational potential by � = GM/r . Calculate
the impact parameter of a point on the circular border of the source as
a function of dLS = dS − dL (neglect the expansion of the Universe).
Determine now the image position of this point.
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The Frequency Spectrum of the CMB

The observed frequency power spectrum of the CMB is perfectly approximated by
a Planck spectrum; see Fig. 1.7. In our units, h̄ = c = 1, it is given by

I (ω) = 4πf (ω) = 1

π2

ω3

eω/T − 1
. (10.1)

No deviation from this spectrum has been observed so far.
In this chapter we discuss physical processes that might lead to spectral distor-

tions. We first introduce the collisional processes relevant at temperatures T < me.
These are Compton scattering, double Compton scattering, and Bremsstrahlung.
We derive the Boltzmann equation for these processes and calculate the relevant
timescales. In Section 10.2 we analyze how the injection of high-energy photons,
for example, by the decay of a long-lived unstable particle or Silk damping modifies
the CMB spectrum. In the final section, we discuss what happens when the CMB
photons pass through a hot electron gas affected only by Compton scattering. We
shall see that this leads, in general, to a so-called Compton-y distortion of the
spectrum. We estimate the effect from the passage of CMB photons through a
cluster of galaxies and discuss observations.

10.1 Collisional Processes in the CMB

10.1.1 Generalities

At very high temperature many collisional processes keep the cosmic background
radiation in thermal equilibrium with itself and all other particles. As we saw
in Section 1.4, at T � 1.4 MeV weak interactions drop out of equilibrium and
neutrinos cease to interact. They are not heated by the decay of electron–positron
pairs, which takes place at T ∼ me � 500 keV. Below that temperature, but before
recombination, Compton scattering, e + γ → e + γ ; double Compton scattering,

388
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e + γ → e + 2γ ; and Bremsstrahlung, e + X → e + X + γ keep the CMB
thermalized. Here X denotes an atomic nucleus, usually a proton or a helium-4
nucleus.

As we shall see in the text that follows, at a redshift of about zμ � 107 also
Bremsstrahlung and double Compton drop out of equilibrium and only Compton
scattering is still active. This can still redistribute the CMB photons in energy, but
it does not change their number density. Therefore, energy injection after zμ leads
to a Bose–Einstein distribution with a nonvanishing chemical potential.

In this section we derive the equations that govern the evolution of the photon
distribution function in the temperature rangeme > T > Trec. We also calculate the
timescales for the aforementioned processes and the redshifts above which they are
faster than the expansion timescale, that is, above which they efficiently keep the
photon distribution in thermal and “chemical” equilibrium (by the latter we mean
that no chemical potential is developed).

10.1.2 Compton Scattering and the Kompaneets Equation

We want to derive a differential equation that describes the thermalization of pho-
tons when they interact with electrons that also have a thermal distribution but may
be at a different temperature Te 
= T . We consider a photon with initial energy ω
and final energy ω′ and a nonrelativistic electron with initial velocity v � 1 and
final velocity v′ � 1. Hence we must also require ω,ω′ � me. In the center of
the mass system, energy and momentum of the two particles remain unchanged
in a two-body interaction. This is a simple consequence of energy and momentum
conservation. However, in the laboratory frame, if initially the electron momentum
is much larger than the photon momentum, after the collision the photon will have
gained energy while the electron has lost and vice versa. Let us first study the
process in the frame in which the initial electron momentum vanishes, so that by
energy and momentum conservation

ωn = mev′ + ω′n′ and ω = 1

2
mev

′2 + ω′ = 1

2me
(ωn− ω′n′)2 + ω′, (10.2)

where n and n′ denote the photon direction before and after the collision. If we
neglect all terms of order ω/me, we find ω = ω′. This would imply no change
in the photon frequency. In this approximation we obtain nonrelativistic Thomson
scattering where only the direction of the photon but not its energy is affected. The
energy difference is of the order ω2/me, where ω is either ω or ω′. Taking this
difference into account to lowest order we may set ω2 = ω′2 = ωω′ in the term
proportional to 1/(2me). With this Eq. (10.2) yields
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ω

ω′
= 1+

(
ω

me

)
(1− cosϑ), (10.3)

where ϑ is the scattering angle, cosϑ = n · n′. To first order in ω/me this can be
written as

ω′ − ω
ω

≡ �ω
ω
= −

(
ω

me

)
(1− cosϑ). (10.4)

In a generic frame, denoting the photon and electron 4-momentum before and after
the scattering process by pγ = ω(1,n) and pe = (E,p) respectively p′γ = ω′(1,n′)
and p′e = (E′,p′), energy–momentum conservation implies

(p′e)
2 = m2

e = (pe + pγ − p′γ )2 = m2
e + 2pe(pγ − p′γ )− 2pγp

′
γ ,

which yields

0 = E(ω − ω′)− p · (ωn− ω′n′)− ωω′ + ωω′n · n′

= E(ω − ω′)− p · n′(ω − ω′)+ ω(ω − ω′)(1− n · n′)
+ ωpn′ − ω2(1− n · n′)− ωp · n.

Defining xe ≡ ω/Te, we obtain for the energy difference (Te
E
∼= p2

2m2
e
= v2

2 )

� ≡ ω
′ − ω
Te

= xep(n
′ − n)− x2

e Te(1− n · n′)
E − p · n′ + xeTe(1− n · n′) �

xep(n′ − n)
me

. (10.5)

For the � sign we have neglected terms of higher order in p/E � v � 1. The
energy transfer, ω′ − ω is of order ωv, that is, it is suppressed by a factor v.

To calculate how the photon distribution f (ω) changes by Compton scattering
we write the Boltzmann equation. Neglecting the expansion of the Universe and
perturbations we have (see Section 4.5)

∂f

∂t
(ω) = df+

dt
(ω)− df−

dt
(ω) ≡ C[f ](ω), (10.6)

where df+/dt denotes the phase space density of photons that are scattered into the
energy range [ω,ω + dω] per unit time and df−/dt denotes the density of photons
scattered out of this energy range. We assume that f is independent of direction and
position. Contrary to the situation in Section 4.5 we now consider a distribution of
electrons in momentum space, which we denote by fe(E). The collision integral
now becomes

C[f ](ω)

=
∫
d3p

∫
d�n′

dσ

d�

{
f (ω′)[1+ f (ω)]fe(E)− f (ω)[1+ f (ω′)]fe(E′)

}
.

(10.7)
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Here d3p denotes integration over electron momenta with E = √
m2
e + p2 � me+

p2/2me and d�n′ denotes integration over photon directions. The variables ω′ =
ω + Te� and E′ = E − Te� are eliminated via Eq. (10.5). The factors 1 + f
take into account the quantum effect of stimulated emission for photons that are
bosons. For the electrons we should, in principle, include a factor [1 − fe] due to
their fermionic nature, but we assume that the electron gas is sufficiently diluted,
fe � 1, so that we may neglect this quantum correction. The Compton scattering
cross section is given by Eq. (4.109)

dσ

d�
= 3

16π
σT

(
1+ (n · n′)2) .

Strictly speaking, this is the cross section in the electron rest frame and when
transforming it to the laboratory frame the photon directions and (n·n′)2 change due
to aberration. But as we shall argue, this effect can be neglected for nonrelativistic
electrons (as it is of order v2).

We now expand the integrand of Eq. (10.7) to second order in the small energy
transfer ω′ − ω = E − E′ ∼ O(ωv):

f (ω′) = f (ω)+� ∂f
∂xe

+ �
2

2

∂2f

∂x2
e

+ · · ·

fe(E
′) = fe(E)− Te�∂fe

∂E
+ T

2
e �

2

2

∂2fe

∂E2
+ · · ·

= fe(E)
[

1+�+ �
2

2
+ · · ·

]
.

For the last equality sign we have assumed that the electrons obey a Maxwell
distribution, fe(E) ∝ exp(−E/T ). Inserting this expansion in Eq. (10.7), we find

∂f

∂t
(ω) =

[
∂f

∂xe
+ f (1+ f )

]
I1 + 1

2

[
∂2f

∂x2
e

+ 2(1+ f ) ∂f
∂xe

+ f (1+ f )
]
I2,

(10.8)

with

I1 =
∫
d3p

∫
d�n′

dσ

d�
fe(E)�, (10.9)

I2 =
∫
d3p

∫
d�n′

dσ

d�
fe(E)�

2. (10.10)

We want to calculate these integrals up to order v2. The second integral is readily
performed. Since the lowest-order approximation to� is already of order v we can
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simply set�2 = (xe/me)2(p · (n′ − n))2. Inserting this in Eq. (10.10) and choosing
the p3-direction along n′ − n we obtain

I2 = x2
e

m2
e

∫
dσ

d�
d�

∫
d3pfe(E)p

2(n′ − n)2 cos2 θ

= 4πx2
e

3m2
e

∫
dσ

d�
(n′ − n)2 d�

∫ ∞

0
dp p4fe(E)

= Tenex
2
e

me

∫
dσ

d�
(n′ − n)2.

We have used the fact that to lowest order in v, f ′e = −(p/meTe)fe so that p4fe =
−meTep3f ′e = meTe[−(p3fe)

′ + 3p2fe]. The p-integral over the first term in the
square bracket does not contribute while the integral over the second term gives
3ne/(4π), where ne denotes the electron density. We still have to integrate over
scattering angles,∫

dσ

d�
(n′ − n)2d� = 3σT

16π

∫
d�(1+ cos2 ϑ)(2− 2 cosϑ)

= 3σT
4

∫ 1

−1
d(cosϑ)[1+ cos2 ϑ] = 2σT .

We finally obtain

I2 = 2neσT
Te

me
x2
e . (10.11)

Note that Te/me ∼ p2/(2m2
e) ∼ v2; hence the term is of the required order of

magnitude.
The calculation of I1 is trickier. To lowest order � ∝ p(n′ − n), so that the

integral over d3p vanishes. (Were this not the case, this term that is of order v
would by far dominate all other contributions and also I2.) We therefore have to
include the next order. Expanding � to the next order gives

� � xe

me
p · (n′ − n)

[
1+ p · n′

me

]
− x

2
e

me
Te(1− n · n′).

In addition, we have to take into account the fact that the photon density seen by
the electron (in its rest frame) is not 4πfω2 dω but 4πfω2 dω (1 − p · n/me)3 �
4πfω2 dω (1 − 3p · n/me), to lowest order in v � p/me. Therefore, the integral
that we really have to compute is not the one given in Eq. (10.9) but

I1 =
∫
d3p

∫
d�n′

dσ

d�
fe(E)(1− 3p · n/me)�, (10.12)
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with

(1− 3p · n/me)� = xe

me
p · (n′ − n)

[
1+ p · n′

me
− 3p · n

me

]
− x

2
e

me
Te(1− n · n′)+O(v3).

Of course this correction also applies to I2, but there it is subdominant and does
not enter up to order v2. To order v2, in principle, aberration also has to be taken
into account. We should replace n · n′ by the corresponding scalar product in the
electron rest frame, nR(n,v) · n′R(n

′,v) in dσ/d�. Here a subscript R denotes
the electron rest frame (see Exercise 10.2). However, the resulting expression will
always be symmetrical in n and n′. Since to lowest order it is multiplied with the
antisymmetrical factor p · (n′ − n), its angular integral vanishes.

Using as before that∫
d3p (p · n)2fe(E) = meTene,

∫
d3p fe = ne,

and ∫
d2p (p · n)(p · n′)fe(E) = (n · n′)4π

3

∫ ∞

0
dp p4fe = (n · n′)meTene,

we find ∫
d3p fe(1− 3p · n/me)� =

[
4
Tenexe

me
− x

2
e Tene

me

]
(1− n · n′).

The integral over photon directions gives∫
d�

dσ

d�
(1− n · n′) =

∫
d�

dσ

d�
= σT .

Putting this together we obtain

I1 = σT neTe
me

xe(4− xe).

Inserting the results for I1 and I2 in Eq. (10.8), we obtain the Kompaneets equation

me

Te

1

neσT

∂f

∂t
= 1

x2
e

∂

∂xe

[
x4
e

(
∂f

∂xe
+ f + f 2

)]
. (10.13)

Solving the time-dependent Kompaneets equation in order to study “Comptoniza-
tion” of a photon distribution on thermal electrons in full generality can only be
achieved numerically. However, there are important situations in which meaningful
analytical results can be obtained.
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First of all, as it should, the photon number density remains unchanged by evo-
lution under the Kompaneets equation,

dnγ

dt
∝

∫
dxe x

2
e

∂f

∂t
∝

∫
dxe

∂

∂xe

[
x4
e

(
∂f

∂xe
+ f + f 2

)]
= 0. (10.14)

Furthermore, a Bose–Einstein distribution with temperature Te, hence fBE =(
e(ω/Te+μ) − 1

)−1
, is the (unique) equilibrium solution of this equation, d

dt
fBE = 0.

Let us also write the equation in terms of the photon energy ω instead of xe = ω/Te,
me

neσT

∂f

∂t
= 1

ω2

∂

∂ω

[
ω4

(
Te
∂f

∂ω
+ f + f 2

)]
. (10.15)

We finally write the Kompaneets equation in the form

∂f

∂t
= 1

τK

1

x2
e

∂

∂xe

[
x4
e

(
∂f

∂xe
+ f + f 2

)]
, (10.16)

with

τK = me
Te

1

neσT
� 1028 s (1− YHe/2)

−1(�bh
2)−1 T

Te
(1+ z)−4, (10.17)

where we have used

ne = np = nB(1− YHe/2) = 3�bH 2
0 (1− YHe/2)

8πGmp
.

Furthermore, we have set T = T0(1+z)with present photon temperature T0 = 2.7 K
and mp is the proton mass.

In equilibrium, f = fBE = 1/(exe+μ − 1), it is easy to see that the electron
temperature is

Te = 1

4

∫
dω ω4f (f + 1)∫
dω ω3f

. (10.18)

This is the electron temperature whenever the electrons are in thermal equilibrium
with the photons, even if the photons are not in thermal equilibrium with the elec-
trons. The timescale for Compton scattering of the electrons is of the order

te � ne

nγ
tK � 10−10tK,

which is much shorter than all other timescales involved. Therefore, instead of
including a kinetic equation for the electrons, we shall always assume that they
are in thermal equilibrium with the photons and therefore follow a Boltzmann
distribution at temperature Te given by Eq. (10.18). Note that it needs only a fraction
of about 10−10 of all photons for one scattering event on each electron. This huge
mismatch, nγ � ne, leads to the somewhat unusual behavior, that electrons are
much more rapidly thermalized than photons.
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10.1.3 Thermal Bremsstrahlung

According to the Larmor formula (see Jackson, 1975) an accelerated electron emits
electromagnetic radiation. For nonrelativistic electrons, the energy emitted per unit
time is

dE
dt
= 2α

3
|a(t)|2, (10.19)

where a(t) denotes the acceleration and α is the fine structure constant; see
Appendix 1, Section A1.2. The radiation spectrum is obtained by Fourier trans-
forming a. If the period of acceleration is a short interval �t , over which the
velocity changes by an amount �v, one obtains (see Padmanabhan, 2000)

dE
dω

=
{

2
3π α(�v)

2, ω � (�t)−1

0, ω � (�t)−1.

We now consider an electron that passes by an ion X of charge Ze, with impact
parameter b and initial velocity v. We assume the change in the velocity to be small
so that we may take into account the component normal to the initial velocity only
and integrate the equation of motion, a � a⊥ = e⊥α/(mer2), along the unperturbed
path. With |e⊥| = b/

√
b2 + (vt)2, this gives the velocity change

�v = Zα
me

∫ ∞

−∞

b

[b2 + (vt)2]3/2
dt = 2Zα

mebv
.

The acceleration is important during a time interval of about �t = b/v around the
closest encounter at t = 0. Inserting this in the above expression for the radiated
energy spectrum we obtain

dE
dω

=
{

8Z2α3

3πm2
ev

2b2 , if ω � v/b

0, if ω � v/b.
(10.20)

We now want to determine the energy emitted by an ion density ni and an
electron density ne. The electron flux incident on one ion is simply nev and the
surface area with a given impact parameter b is 2πb db. Multiplying by the ion
density and integrating over the impact parameter, we obtain the energy emitted
per volume per unit time and per frequency,

dE(ω,v)
dV dt dω

= 16α3Z2

3m2
ev
nine

∫ bmax

bmin

db

b
= 16α3Z2

3m2
ev
nine log

(
bmax

bmin

)
. (10.21)

Here bmax is determined by the maximal impact parameter, which can still produce
photons with frequency ω, bmax = v/ω. The minimum impact parameter can be
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estimated in two ways. First we can take it as the smallest value for which the
straight line approximation that we have used to determine �v is still reasonable;
this is roughly when �v ∼ v. Inserting this in the above expression for �v yields

bmin ,1 = 2Zα

mev2
.

On the other hand, the uncertainty principle requires p = mev > h̄/b so that

bmin ,2 = h̄

mev
.

The correct value for bmin is whichever of the two values is larger.
In general, one casts the uncertainty of this logarithmic term in a so-called Gaunt

factor defined by

gff =
√

3

π
log

(
bmax

bmin

)
. (10.22)

The correct expression for the Gaunt factor has to be obtained by a quantum
mechanical treatment (see, e.g., Padmanabhan, 2000).

We now want to average Eq. (10.21) over electron velocities that follow a
Maxwell distribution, fe ∝ exp(−mev2/(2Te))

dE(ω,T )
dV dt dω

=
∫∞
vmin
dv dE(ω,v)

dV dt dω
v2 exp(−mev2/(2Te))∫∞

0 dv v2 exp(−mev2/(2Te))
. (10.23)

Here vmin is the minimal velocity that can generate a photon of energy ω, ω =
mev

2
min/2. Neglecting the weak velocity dependence of the Gaunt factor, the integral

in the numerator is elementary and the one in the denominator simply gives the
mean square velocity, 2Te/m, so that we arrive at

dE(ω,T )
dV dt dω

= 16α3Z2

3me

(
2π

3me

)1/2

T −1/2
e ninee

−ω/Te ḡff(T ,ω). (10.24)

The modification of this formula obtained from a correct quantum treatment of
Bremsstrahlung can be absorbed in the dimensionless Gaunt factor ḡff.

This emitted Bremsstrahlung changes the photon energy spectrum. Since,
according to Eq. (1.54),

dEγ
dV dω

= dργ
dω

= 1

π2
ω3f,
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we can translate Eq. (10.24) into an equation for the change of the photon distribu-
tion function. With σT = 8πα2/(3m2

e) we find[
df

dt

]
ff em

= σT ne
x3
e e
xe
Q ḡff, with (10.25)

Q = 2π

√
2π

3

α

T 3
e

√
me

Te

∑
i

Z2
i ni, (10.26)

where we now sum over the contributions from different ion species. The “em” in
the subscript in Eq. (10.25) stands for “emission.” We discuss free–free absorption
below. In the early Universe, we can approximate the ions by hydrogen and helium-
4 only so that

∑
i Z

2
i ni = nB . In the energy range of interest, we can approximate

the Gaunt factor by (Rybicki and Lightman, 1979)

ḡff �
{ √

3
π

ln
(

0.37 eπ/
√

3/xe

)
, xe ≤ 0.37

1, xe ≥ 0.37.
(10.27)

Of course, there is not only Bremsstrahlung emission but also absorption. We can
either calculate the latter directly or obtain it by the argument of detailed balance:
emission and absorption have to cancel exactly in equilibrium; that is, if the photon
distribution is a Planck distribution at temperature T = Te, f = 1/(exe − 1). With
this and using the fact that absorption is proportional to f , we obtain[

df

dt

]
ff ab

= −
[
df

dt

]
ff em

f (exe − 1).

The kinetic equation for Bremsstrahlung then becomes[
df

dt

]
ff

= σT ne
x3
e e
xe
Q ḡff

[
1− f (exe − 1)

]
. (10.28)

It is convenient to write this equation as[
df

dt

]
ff

= 1

τff

ḡff

x3
e e
xe

[
1− f (exe − 1)

]
, (10.29)

with

τ−1
ff = 2π

√
2π

3
ne σT nB

α

T 3
e

√
me

Te
(10.30)

τff � 2.3× 1023s (1− YHe/2)
−1(�bh

2)−2

[
Te

T

]7/2

(z+ 1)−5/2.

Here T = (1+ z)T0 is the CMB temperature.
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10.1.4 Double Compton Scattering

It actually turns out that in most cosmological circumstances double Compton
scattering is more efficient than Bremsstrahlung, even though the double Compton
process e + γ ′ ↔ e + γ1 + γ is second order. We shall see that it is most efficient
for very small energies of the second photon γ and therefore we neglect the small
energy transfer, assuming that the photons γ ′ and γ1 have the same frequency.
The angle integrated double Compton cross section then gives (Jauch and Rorlich,
1976)

dσ2γ

dω1 dω
= 4α

3π
σT

(
ω′

me

)2 1

ω
δ(ω1 − ω′). (10.31)

Here ω′ is the energy of the incoming photon, ω1 is the energy of the incoming
photon after the collision, and ω is the energy of the photon generated by the
collision.

To derive an equation for the distribution function f , we use the fact that the
number density of photons in the energy interval ω and ω + dω is given by

dn(ω) = 1

π2
f (ω)ω2 dω.

With Eq. (10.31) we then obtain for double Compton emission

ω2

π2

∂f (ω)

∂t
= ne

∫
dω1 dω

′ dσ2γ

dω1dω

ω′2

π2
f (ω′) (10.32)

∂f (ω)

∂t
= 4α

3π
σT ne

∫
dω′

(
ω′

me

)2
ω′2

ω3
f (ω′)[f (ω′)+ 1][f (ω)+ 1].

In the second equation we have multiplied by the factor [f (ω1)+ 1][f (ω)+ 1] =
[f (ω′)+ 1][f (ω)+ 1] to take into account stimulated emission.

To obtain the contribution from double Compton absorption, γ+γ1+e→ γ ′+e,
we can again use detailed balance and the fact that absorption is proportional to
f (ω)f (ω1)[f (ω′)+1]. The full equation for double Compton scattering then takes
the form[

∂f (ω)

∂t

]
2γ

= 4α

3π
σT ne

∫
dω′

(
ω′

me

)2
ω′2

ω3

{
f (ω′)[f (ω′)+ 1][f (ω)+ 1]

− exp

(
ω

Te

)
f (ω′)f (ω)[f (ω′)+ 1]

}
.
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With xe = ω/Te and x ′e = ω′/Te this yields[
∂f

∂t

]
2γ

= 4α

3π
σT ne

(
Te

me

)2 1

x3
e

[1− f (exe − 1)]I

= 1

τ2γ

1

x3
e

[1− f (exe − 1)]I, (10.33)

with

I =
∫
dx ′e (x

′
e)

4f (x ′e)[1+ f (x ′e)],

and

τ2γ = 3π

4α σT ne

(
me

Te

)2

� 7× 1039 s
1

(1− YHe/2)�bh2

(
T

Te

)2

(1+ z)−5.

(10.34)

Note that for a Planck distribution I is easily obtained by integration by parts,

IP =
∫
dx

x4ex

(ex − 1)2
= −

∫
dxx4∂x

1

ex − 1
= 4

∫
dx x3

ex − 1
= 4Ib(3) = 4π4

15
,

(10.35)

where we have used Eq. (1.56) for the last two equals signs.
Strictly speaking, Eq. (10.33) is valid only for xe < 1, since the double Compton

cross section assumes that the energy of the photon generated by the
collision is much smaller than the kinetic energy of the electron. But double
Compton scattering becomes very inefficient at high energy, so that we can simply
set

[
∂f (xe)/∂t

]
2γ = 0 for xe ≥ 1.

10.1.5 Timescales and Redshifts

In this section we follow Hu and Silk (1993).
Taking into account Compton scattering, double Compton scattering, and

Bremsstrahlung, the kinetic equation for the photon distribution becomes

∂f

∂t
=

[
∂f

∂t

]
K

+
[
∂f

∂t

]
ff

+
[
∂f

∂t

]
2γ

.

In this equation, cosmic expansion is not taken into account. Accounting also for
the dilution of photons due to expansion, we have to add a term −3Hf on the
right-hand side and we must take care to distinguish between cosmic time τ and
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conformal time t . Of course, the foregoing are derivatives with respect to cosmic
time so that the kinetic equation in the expanding Universe becomes

∂f

∂τ
= − 3

τexp
f +

[
∂f

∂t

]
K

+
[
∂f

∂t

]
ff

+
[
∂f

∂t

]
2γ

. (10.36)

Here τexp = 1/H is the expansion timescale, which can be approximated by

τexp(z) = 1/H(z) � 5× 1019 s (z+ zeq)
−1/2(1+ z)−3/2, (10.37)

where zeq = 2.4× 104�mh
2 is the redshift where the matter and radiation densities

are equal; see Exercise 10.1. Equation (10.37) holds in a matter/radiation universe,
that is, as long as the cosmological constant (or any other dark energy component)
and curvature are negligible.

Let us first compare the expansion time and the timescale for Compton scatter-
ing, τK . Since

[
∂f /∂t

]
K

is not simply proportional to τ−1
K f one has to compare

the term on the right-hand side of the Kompaneets equation (10.16) with 3f/τexp.
For Compton scattering to be efficient, one typically requires (Hu and Silk, 1993)
τK/4 ≤ τexp, which implies

z ≥ zK ∼ 104(�bh
2)−1/2. (10.38)

Here we have assumed zK � zeq. At redshifts below zK , Compton scattering drops
out of equilibrium and only Thomson scattering, which does not change the photon
energies, is relevant.

Also of interest is the redshift at which double Compton scattering becomes more
important than Bremsstrahlung (i.e., free–free). Considering the redshift depen-
dence of τff and τ2γ it is clear that at high redshift double Compton is more efficient.
For our estimates, we may replace the integral I in Eq. (10.33) by its value for a
Planck spectrum, I � IP � 26. Furthermore, both processes are most efficient at
small xe � 1, where Eqs. (10.29) and (10.33) with I � 26 yield

[
df /dt

]
2γ �

26/(τ2γ x
3
e ) and

[
df /dt

]
ff � ḡff(xe)/(τffx

3
e ). Equating these two terms, neglecting

the small temperature difference, Te � T , yields

zff,2γ ∼ 106
(
�bh

2ḡff(xe)
)2/5
, xe � 1. (10.39)

Above this redshift, double Compton scattering is more efficient than free–free.
We also determine the energy at which double Compton scattering or

Bremsstrahlung become as efficient as Compton scattering. For this we use the
fact that [

I−1
P τ2γ

x3
e

exe − 1

] [
∂f

∂t

]
2γ

∼ 1

exe − 1
− f and[

exe

ḡff
τff

x3
e

exe − 1

] [
∂f

∂t

]
ff

∼ 1

exe − 1
− f .
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Hence, within the timescale in square brackets, double Compton and
Bremsstrahlung respectively are able to establish a Planck spectrum. Equating this
timescale to the Compton timescale, τK/4, we obtain a redshift dependent energy
xc = ωc/Te, below which double Compton and Bremsstrahlung respectively are
efficient. Assuming xc � 1 we obtain

I−1
P τ2γ x

2
c,2γ = τK/4 (10.40)

so that with Eq. (10.35)

xc,2γ (z) = π2

√
15

(
τK

τ2γ

)1/2

� 3× 10−6
√
z+ 1, (10.41)

xc,ff(z) � 77 (z+ 1)−3/4(�bh
2)1/2. (10.42)

At energies below xc ≡
√
x2
c,2γ + x2

c,ff, photon number changing processes are

efficient and a Planck spectrum can be established, if z > zK so that Compton
scattering is still efficient. At energies above xc, photons settle into a Bose–Einstein
distribution, if z > zK .

Correspondingly, comparing double Compton scattering and Bremsstrahlung
with expansion, we find that at a given redshift z double Compton scattering or
Bremsstrahlung is still efficient only for photon energies with xe < xexp ,2γ (z) or
xe < xexp ,ff(z) respectively with

xexp ,2γ (z) = 4.3× 10−10 z7/4

(z+ zeq)1/4
(�bh

2)1/2(1− YHe/2)
1/2, (10.43)

xexp ,ff(z) = 1.1× 10−2 z1/2

(z+ zeq)1/4
�bh

2(1− YHe/2)
1/2. (10.44)

The energies below which photon number changing processes are still faster
than expansion and can lead to establishing a thermal equilibrium are given by

xe < xexp ≡
√
x2

exp ,2γ + x2
exp ,ff.

In Fig. 10.1 we plot zK , zff,2γ (xe) as well as xc(z) and xexp(z). When xc < 0.1,
say if z< 108, a Planck spectrum is established rapidly only for very small energies,
ω < 0.1× Te, while at larger energies we first obtain a Bose–Einstein distribution.
Nevertheless, if there is a short period of injection of photons at a redshift where
xexp(z)>∼ 1, a Planck spectrum will be established eventually for the relevant regime
of energies with xe <∼ 1. We may therefore say that such processes still are fully
thermalized if they happen sufficiently earlier than z ∼ 107. However, if energy
injection happens at z ≤ 107, the Planck spectrum cannot be established anymore
for energies with xe > xexp(z) ≤ 1.
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Fig. 10.1 The redshifts zK (dashed) and zff,2γ (xe) (dash-dotted) are plotted
together with the energies xc = ωc/Te (solid) and xexp = ωexp/Te (dotted).

It is also interesting to note that in the regime where Bremsstrahlung is more
efficient than double Compton scattering, z < zff,2γ � 2× 105, these processes are
very inefficient anyway and can thermalize the spectrum only for xe < xexp(2 ×
105) � 0.01; the bulk part of the spectrum remains Bose–Einstein. Therefore, it is
a good approximation to disregard Bremsstrahlung entirely in these considerations.

10.2 A Chemical Potential

Observational studies of the CMB spectrum have shown that it is very close to a
blackbody, that is, Planck spectrum; see Fig. 1.7. Up to this day, no deviations from
a blackbody have been detected. The experimental bound for the reduced chemical
potential comes mainly from the FIRAS experiment aboard the COBE satellite. It
limits μ to (Fixsen et al., 1996)

|μ| ≤ 9× 10−5 at 95% confidence. (10.45)

This seems very small, but as we shall see, a quite violent event is needed to
generate such a chemical potential. This comes from the fact that there are many
more photons in the Universe than baryons or (most probably) dark matter particles.
Therefore, producing about one photon per dark matter particle will not induce a
large chemical potential.

As we have seen in the previous section, if energy is injected into the CMB at
a redshift z1 > zK with xexp(z1) < 1, we expect a spectral distortion that leads to
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a chemical potential on energies with ω/Te ≡ xe > xc,2γ (z1). In this section we
want to estimate not only the chemical potential produced by a given energy input
δρ, but also the timescale at which this chemical potential is established. First we
assume that the energy input happens rapidly at some redshift z1. Furthermore, we
neglect the part of the integrals over photon energies in which the spectrum has
been able to relax to a Planck spectrum, that is, x < xexp(z1). We must therefore
assume z1<∼ zμ � 6× 106 (see Fig. 10.1).

This can happen, for example via a “long” lived, unstable particle that decays
at redshift z1. Some models of supersymmetry predict the existence of a “next-
to-lightest” supersymmetric particle that is rather long lived and decays quite late
into the lightest supersymmetric particle that then plays the role of dark matter.
But also the annihilation of a very light particle with mass m � T0(1 + z1) �
2.3 × 10−4(1 + z1) eV, when the temperature drops below its mass threshold, can
induce a chemical potential.

According to what we have learned in the previous section, since z1 > zK , at
xe > xc a Bose–Einstein distribution is established rapidly at some temperature Te
and with chemical potential μ. The temperature Te and the chemical potential μ are
determined by

ρ = 1

π2
T 4
e

∫
x3
e dxe

exe+μ − 1
= ργ + δρ = π

2

15
T 4(1+ ε), and (10.46)

n = 1

π2
T 3
e

∫
x2
e dxe

exe+μ − 1
= nγ + δn = 2ζ(3)

π2
T 3(1+ α). (10.47)

For the last equals signs we have introduced ε ≡ δρ/ργ and α ≡ δn/nγ . For ργ and
nγ we use the expressions for a Planck spectrum given in Eqs. (1.54) and (1.62).
For z1 � 107, photon number changing processes are no longer active and α ≡ 0.
But here we keep the expressions general. Experimentally we know that μ � 1.
Expanding the integrals in Eqs. (10.46) and (10.47) to first order in μ yields

ρ = T
4
e

π2
[Ib(3)− 3μIb(2)] = π

2

15
T 4(1+ ε) (10.48)

n = T
4
e

π2
[Ib(2)− 2μIb(1)] = 2ζ(3)

π2
T 3(1+ α). (10.49)

Here Ib(n) =
∫∞

0 dx xn

ex−1 = �(n + 1)ζ(n + 1) as defined in Eq. (1.55). Inserting
Ib(3) = π4/15, Ib(2) = 2ζ(3) and Ib(1) = π2/6, we can write these equations as

μ = 6ζ(3)

π2

[
1−

(
T

Te

)3

(1+ α)
]

and 1−
(
T

Te

)4

(1+ ε) = 90ζ(3)

π4
μ.
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Since |μ| � 1 and ζ(3) � 1.2, we must have |1−T/Te| � 1. We therefore expand
Te/T = 1+ δ with |δ| � 1 so that (Te/T )n � 1+nδ. Inserting this approximation
above, we can determine δ and μ in terms of ε and α. The above relations give (we
neglect the second-order terms ∝ δε and δα)

μ = 18ζ(3)

π2
(δ − α/3)

4δ − ε = 90ζ(3)

π4
μ,

so that

δ = ε − (540ζ(3)2/π6)α

4[1− 405ζ(3)2/π6]
� 0.64

δρ

ρ
− 0.52

δn

n
, (10.50)

μ = 3ζ(3)

2π2[1− 405ζ(3)2/π6]
(3ε − 4α) � 0.46

(
3
δρ

ργ
− 4
δn

nγ

)
. (10.51)

First of all, we note that when photon number changing processes are still very
rapid, the photon number will change so that δn/nγ = (3/4)(δρ/ργ ) and no
chemical potential is generated. The temperature is then modified by the injection
of energy to T → T (1+ δ) = Te = T (1+ ε/4), which is evident since in this case
ρ/ργ = (Te/T )4.

The situation is very different if z1 < zμ and photon number changing processes
are no longer active. Then δn = 0 and

μ � 1.4
δρ

ργ
. (10.52)

First of all, the chemical potential generated by such an energy injection is always
positive. This is good, since a distribution with a negative chemical potential is not
well defined for frequencies ω ≤ ωc = −Teμ. But since we know that double
Compton scattering is still active at very low frequencies, this is not a real problem,
as at these low frequencies a Planck spectrum would be established anyway.

Let us now estimate the chemical potential generated by the decay of a species
of nonrelativistic particles that contributes an energy density ρX/ρc 0=�X
(1 + z)3 before they decay. Here ρc 0 is the critical energy density today. Since
photons contribute the energy density ργ /ρc 0=�γ (1 + z)4, assuming that a
fraction f of the energy of these particles is heating up the CMB we have

μ = 1.4
δρ

ργ
= 1.4

f�X

�γ (1+ z1)
, (10.53)

where z1 denotes the redshift of the decay. This formula is of course valid only if
z1 < zμ ∼ 107, since an energy injection at higher redshift is still fully thermalized.
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Using �γ = 5 × 10−5 (see Appendix 1, Section A1.3), the limit on the chemical
potential can be translated into a limit for f�X,

f�X ≤ 3× 10−3

(
1+ z1

106

)
, z1 < 107. (10.54)

This might appear as a small number; nevertheless it is more than the entire mass
density in stars. If the decay product of the particle species X is supposed to be the
dark matter, we need �X � 0.3. The above bound then implies f < 0.01(z1/106);
hence only a small fraction of the energy may be injected into standard model
particles (other than neutrinos). If a particle decays at a redshift z1 � 107 partial
thermalization, especially at small frequencies, xe <∼ 1 can still be achieved. In this
case, the Boltzmann equation (10.36) with a source term describing the injection
has to be solved numerically and the resulting “chemical potential” depends on the
frequency.

For a particle species that decays into photons when the temperature goes below
its mass threshold we would expect δρ/ρ ∼0.1–1, so that it would produce a
chemical potential of order unity. This shows that no particle with mass m <

T0(1+ zμ) � 230 eV that interacts significantly with photons can exist. Of course
such a particle would also be produced in accelerators, so that this does not come
as a surprise.

Let us now study the situation in somewhat more detail also for low frequencies.
We know that at z > zK , at low frequency double Compton scattering is still active
and a Planck spectrum is established while at high frequencies a chemical potential
μ develops. In complete generality we may express the distribution function with a
frequency-dependent chemical potential μ̃(xe),

f (xe) = 1

exp[xe + μ̃(xe)]− 1
. (10.55)

Once the equilibrium is established we have (neglecting Bremsstrahlung which
never dominates)

0 =
[
∂f

∂t

]
K

+
[
∂f

∂t

]
2γ

(10.56)

= 1

τK

1

x2
e

∂

∂xe

[
x4
e

(
∂f

∂xe
+ f + f 2

)]
+ 1

τ2γ

1

x3
e

[1− f (exe − 1)]I, (10.57)

or, inserting our ansatz for f ,

d

dxe

[
x4
e

exp[xe + μ̃(xe)]
(exp[xe + μ̃(xe)]− 1)2

dμ̃

dxe

]
= τK

τ2γ
I
exe

xe

exp[μ̃(xe)]− 1

exp[xe + μ̃(xe)]− 1
. (10.58)
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If we neglect the chemical potential in I we may replace IτK/τ2γ by 4x2
c according

to Eq. (10.40). We want to solve this equation for small xe � 1 and to lowest order
in μ̃� xe. In this approximation Eq. (10.58) becomes

2xe
dμ̃

dxe
+ x2

e

d2μ̃

dx2
e

= 4
x2
c

x2
e

μ̃, (10.59)

which is solved by

μ̃(xe) = μ exp(−2xc/xe). (10.60)

The integration constant μ is determined by the asymptotic regime, xe � xc, where
we know that a Bose–Einstein distribution with chemical potential μ establishes
and we have chosen the boundary condition μ̃(0) = 0.

This shows how the chemical potential develops from very small energies,
xe � xc, where a Planck spectrum is established to high energies, xe � 2xc where
a Bose–Einstein spectrum with chemical potential μ is formed.

Let us also estimate the time it takes for the Bose–Einstein spectrum to decay
again due to double Compton scattering; that is, let us derive an evolution equation
for μ after energy injection. For this we take the time derivatives of Eqs. (10.48)
and (10.49),

ρ̇ =
(

4
Ṫe

Te
− 3Ib(2)μ̇

Ib(3)− 3μIb(2)

)
ρ (10.61)

ṅ =
(

3
Ṫe

Te
− 2Ib(1)μ̇

Ib(2)− 2μIb(1)

)
n. (10.62)

We neglect expansion here. We could introduce expansion-corrected temperatures,
Te → aTe; particle density, n → a3n; and energy density, ρ → a4ρ, but we shall
simply not consider expansion in what follows. Therefore, when there is no energy
injection ρ no longer changes, ρ̇ = 0, and we can solve the above equations for μ̇;

μ̇ = 4
ṅ

nB
, B = 9Ib(2)

Ib(3)− 3μIb(2)
− 8Ib(1)

Ib(2)− 2μIb(1)
� 2.14, (10.63)

where we have neglected μ in B. Inserting

f = 1

exp[xe + μe2xc/xe ]− 1
in ∂τn = T

3
e

π2

∫
dxex

2
e

[
∂τf

]
2γ (10.64)

we find to lowest order in μ

∂τn/n = −μ I

Ib(2)τ2γ
JBE (10.65)

JBE(xc) =
∫ 1

0

dx

x

ex exp[−2xc/x]

ex − 1
. (10.66)
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We perform the integral only until x = 1 because it is dominated at small x.
Note that for xc = 0 the integral actually diverges. In Exercise 10.3 we show that
for small xc � 1, JBE(xc) � (2xc)−1 up to logarithmic corrections. Using also
I = 4Ib(3) we find

4
∂τn

nB
= − 8Ib(3)

BIb(2)

1

xcτ2γ
μ = − μ

τμ
(10.67)

τμ = BIb(2)
8Ib(3)

xcτ2γ � 2.1× 1033s
(1+ z)−9/2

(1− YHe/2)�bh2
. (10.68)

Hence

∂τμ = − μ
τμ

. (10.69)

In the timescale τμ the chemical potential is significantly damped. For low redshift,
this timescale is much larger than the age of the Universe, τ0 ∼ 3 × 1017s, but at
high redshift, z > 107, this happens relatively fast. Let us consider a redshift z∗, in
the radiation-dominated era at which a chemical potential μ∗ is induced. We want
to determine the remaining chemical potential today, at z = 0. In the radiation-
dominated era, τ ∝ a2 ∝ 1/(1+ z)2 and we can integrate Eq. (10.69) to

μ(0) � μ∗ exp

[
−

(
z∗
zμ

)5/2
]
, zμ � 4× 105[(1− YHe/2)�bh2]−2/5.

(10.70)

Hence if z∗<∼ zμ, the chemical potential survives while if z∗ � zμ it is washed
out by subsequent double Compton scattering at low energy and upscattering of the
low energy photons by Compton scattering.

10.2.1 The Chemical Potential from Silk Damping

If there is continuous energy injections leading to a chemical potential and wash
out by double Compton scattering, the chemical potential evolves as

∂τμ = − μ
τμ
+ 1.4

Q

ρ
. (10.71)

HereQ is the energy injection rate and we have used Eq. (10.52). Using the method
of “variation of the constant” we obtain the solution to this equation from the
homogeneous solution (10.70),

μ(z) = 1.4
∫ τ(z)

0
dτ
Q

ρ
exp

[
−

(
z∗
zμ

)5/2
]

. (10.72)
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There is a process that injects energy into the photon–baryon plasma during cosmic
evolution: Silk damping; see Section 4.6. The energy in the small-scale fluctuations
that are removed by Silk damping is redistributed to the baryon-photon plasma
during this process. We now estimate the chemical potential induced by Silk
damping. According to Eq. (4.171), a k-mode of the photon–baryon plasma evolves
according to

D(k,t) = �0(k) cos(ωRt) exp

(
−

∫ t

0
dt ′ωI (t ′)

)
, (10.73)

with

ωR = csk = k√
3(R + 1)

ωI (t) = k
2tc

6

R2 + 4
5(R + 1)

(R + 1)2
, (10.74)

where t−1
c = neσT a is the Thomson scattering rate and R ≡ 3ρb/4ρr . The energy

density in a plane acoustic wave is given by ε � c2
s ρ〈D2〉, where ρ = ρb+ρr . Since

μ distortions are generated predominantly in the radiation-dominated era, we can
set R = 0 and c2

s = 1/3 so that

〈D2〉 � �
2
0(k)

2
exp[−(k/kD(t))2], (10.75)

where

k−2
D (t) =

4

15σT

∫ t

0

dt

nea
. (10.76)

The full energy injection rate from all the modes is

Q

ρ
� −c2

s

∫
d3k

(2π)3
∂τ 〈D2〉. (10.77)

In the radiation-dominated era 1/(nea) ∝ t2; hence k−2
D (t) ∝ t3, which implies

∂τ 〈D2〉 = a−1∂t〈D2〉 = − 3k2

atk2
D

〈D2〉, (10.78)

so that

Q

ρ
� 3c2

s

2atk2
D

∫
d3k

(2π)3
k2�2

0 exp[−(k/kD(t))2]. (10.79)

Let us determine �2
0(k). For this we consider very early times, when Silk damp-

ing is not yet relevant and D = �0 cos(cskt). In the radiation-dominated era
[Eq. (2.150)] with q = 1 and neglecting the decaying mode gives

� = A
a
j1(cskt) � A

acskt
cos(cskt), (10.80)
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where the � sign holds well inside the Hubble scale, cskt � 1. The Einstein 00
constraint equation (2.105) for a flat universe then gives

�0 = − 2k2

3H2

A

acskt
. (10.81)

In a radiation-dominated universe where a ∝ t and H = 1/t , this is a (in general
k-dependent) constant. To relate it to the amplitude of the primordial power spec-
trum we consider also the limit t → 0 of Eq. (10.80),

lim
t→0
� = Acskt

3a
,

which is again time independent. Introducing the primordial power spectrum of �
we obtain the relation

k3P� = A�(k/k∗)ns−1 =
(
Acskt

3a

)2

k3. (10.82)

Introducing this back in �0 we find

k3�2
0 = 36A�(k/k∗)ns−1. (10.83)

Now we can perform the k-integration in Eq. (10.79) with the result

Q

ρ
� 36

4π2at
A�(kD(t)/k∗)(ns−1)�

(
ns + 1

2

)
. (10.84)

The integration over dτ = adt can be approximated by an evaluation of the func-
tion at the decay redshift zμ and a multiplication by at (zμ) that leads to the result

μSilkdamping � 10−8

(
kD(zμ)

k∗

)ns−1

. (10.85)

Here we have also introduced A� = 2π2(9/25)As and As � 2.1× 10−9.
This result is nearly independent of the Silk damping scale, but let us neverthe-

less determine kD(t). The integral (10.76) is elementary and yields

k−2
D (t) =

4

45σT

t

nea
= 4

45σT

1

Hnea
. (10.86)

Inserting H = H0
√
�r(1+ z) and nea = (1− YHe�bh2)(1+ z)2 we obtain

kD(z) � 0.36× 10−4(1− YHe�bh2)1/2(1+ z)3/2Mpc−1. (10.87)

The detection of this chemical potential would not only be expected, but it would
also confirm that inflation has generated a nearly scale-invariant spectrum up to

kD(zμ) � 104Mpc−1. (10.88)
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This is presently the only known method to test the primordial power spectrum on
these very small scales. A measurement of the chemical potential of the CMB to the
precision of 10−8 would require a satellite experiment. Several such experiments
are presently under study; see Chluba et al. (2019) for a brief review.

10.3 The Sunyaev–Zel’dovich effect

Clusters of galaxies are permeated by a hot plasma of electrons and nuclei at a
temperature of several keV. This is much hotter than CMB photons at redshifts
z<∼ 1. Therefore, in the Kompaneets equation (10.15) the first term on the right-
hand side dominates.

Furthermore, the plasma is optically thin to Compton scattering so that we can
neglect multiple scattering. The change of the photon distribution when passing
through a cluster is then simply

δf = yω−2 ∂

∂ω

(
ω4 ∂f

∂ω

)
, (10.89)

where we have introduced the Compton-y parameter

y ≡ σT
∫
ne
Te

m
dr . (10.90)

The integral extends through the cluster, and the approximation holds, if the optical
depth τ = σT

∫
ne dr � 1. Inserting a blackbody spectrum, f ∝ (exp(ω/T )−1)−1,

we obtain with x ≡ ω/T 
= ω/Te
δf

f
= −y xex

ex − 1

[
4− x coth

(x
2

)]
�

{
−2y, if x � 1

yx2, if x � 1.
(10.91)

This is the frequency dependent Sunyaev–Zel’dovich (SZ) effect. With the help of

δT

T
= f
T

δf

f

(
df

dT

)−1

= e
x − 1

xex

δf

f
,

we can translate it in a frequency-dependent temperature shift

δT

T
= −y

[
4− x coth

(x
2

)]
�

{ −2y, if x � 1
yx, if x � 1.

(10.92)

When passing through a hot thermal plasma, the low-energy Rayleigh–Jeans
regime of the photons’ spectrum is depleted and the spectrum is enhanced at
high energies, in the Wien tail. Photons are on average up-scattered in energy.
The spectral change vanishes at x0 � 3.8 given by 0 = 4 − x0 coth (x0/2); see
Fig. 10.2. For a CMB temperature of T = 2.726 this corresponds to a frequency of
ν = 217 GHz.
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Fig. 10.2 The function δT /T given in Eq. (10.92) is shown for y = 10−4. Note
that it passes through zero roughly at x = ω/T � 3.8.

Numbers for a typical cluster are Te � 7 keV, ne ∼ 10−2 cm−3, and the diam-
eter is of the order of R � 300 kpc. Estimating the Compton-y parameter by
y ∼ yc = (σT Te/me)neR we obtain yc � 10−4. This is the order of magnitude
of the SZ effect in clusters. Of course the true value can deviate substantially and
depends on the details of the cluster (De Petris et al., 2002; LaRoque et al., 2006).
At present, SZ observers use the effect to generate cluster maps of the quantity
Tene integrated along the line of sight. Not surprisingly, one of the best studied
clusters so far is the Coma cluster, which is closest to us (De Petris et al., 2002;
Planck Coll. X, 2013). The SZ results for the Coma cluster are shown in Fig. 10.3.
In general, the situation is complicated because clusters are complicated objects
that may have different “electron populations,” one of them thermal and others not.
Also the electron density might be a complicated function of position, and so forth.
Here we are not entering into all of these interesting difficulties of cluster physics,
but we just mention some important points.

• The SZ effect in clusters can add to the CMB anisotropies on very small scales
and may, depending on the cluster number density which is not well known, even
dominate it above � ∼ 3000. Fortunately it can be distinguished from primordial
anisotropies due to its spectral signature; see Fig. 10.2.

• The motion of clusters induces in addition to the thermal SZ effect discussed
above a temperature shift due to the bulk motion of the cluster,

δT /T = vcσT
∫
ne dr = vcτe,
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Fig. 10.3 Left: The SZ distortion �j(x) = x3 δf measured in the Coma cluster
by different experiments is compared to the theoretical best fit with Te = 8.2 keV
and optical depth τe = 4.9 × 10−3 (middle solid curve). Other curves that add
possible other effects are also shown. From Colafrancesco (2007).
Right: Data points from or the y-profile of the Coma cluster. �T = −yTe are
plotted as function of the distance from the center. From Planck Coll. X (2013)

where vc is the bulk velocity in the direction of the line of sight and τe is the
optical depth of the cluster. This effect, which is spectrally identical to primordial
CMB anisotropies, is typically several times smaller than the thermal SZ effect.
It goes under the name “kinetic SZ effect.”

• The average effect from all clusters should contribute a mean Compton-y param-
eter in the Universe. Its amplitude strongly depends on the cluster distribution,
but is estimated to be of the order of ȳ ∼ 10−7. This number is within reach of
planned CMB spectrum experiments (Singal et al., 2002; Kogut et al., 2007).

• Clearly the SZ effect in clusters is very interesting for cluster physics and the
distribution of clusters in redshift. Together with X-ray observations that probe
the square of the electron density, it allows us, in principle, to gain detailed
information about the electron density and temperature distribution inside the
clusters. Furthermore, the SZ effect, which represents the “shadow” of the cluster
in the CMB, is independent of redshift and has led to the detection of many
new clusters with high redshift that are too faint to be seen in optical or X-ray
telescopes Planck Coll. XXII (2016).

• Using the specific frequency signature of the thermal SZ, the Planck team had
even produced sky maps and the full sky angular power spectrum of the SZ signal
in the CMB Planck Coll. XXII (2016).

The fact that the observed average Compton-y parameter is so small, y ≤ 10−5,
leads to a limit on early reionization. Let us derive this limit for a simple toy model.
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We assume that the Universe is reionized at some redshift zri. Then during the
ionization process, the electrons also gain some kinetic energy that we estimate
to be typically in the 10 eV range. This seems reasonable, if we do not want to
assume that the reionizing photons have exactly the reionization energy, 13.6 eV,
but some energy in this ballpark. The remaining energy is then simply absorbed by
the electron as kinetic energy. As the Universe evolves, since the electron momenta
are redshifted p ∝ 1/a, the temperature, which is a measure of the kinetic energy
of the electrons, is also redshifted, Te � p2/2m ∝ a−2. Already in Chapter 1 in our
discussion below Eq. (1.93) we have seen that the temperature of nonrelativistic
particles decays like 1/a2. Denoting the electron temperature at reionization by Tri

we find that reionization should induce a Compton-y parameter given by

y = σT Trine(t0)

me(zri + 1)2

∫ t0

tri

dt (z+ 1)5. (10.93)

We expect zri to lie in the matter-dominated phase of expansion and before the
cosmological constant becomes relevant. During matter domination the Friedmann
equation yields

dt = −dz
(1+ z)5/2

1

H0
√
�m
,

so that we obtain

y = σT Trine(t0)

meH0
√
�m(zri + 1)2

∫ zri

0
dz (z+ 1)5/2 = 2(1+ zri)

3/2σT Trine(t0)

7meH0
√
�m

� 5× 10−7 �bh
2√

�mh2
(1+ zri)

3/2

(
Tri

10 eV

)
. (10.94)

For �mh2= 0.13 and �bh2 ∼= 0.022 the limit y < 10−5 translates into the reion-
ization redshift

zri < 50

(
Tri

10 eV

)2/3

. (10.95)

This is a truly interesting number and it reduces by a factor (105y)2/3 if we lower
the limit on the y parameter. Already a y parameter y < 10−6 would require
a reionization redshift of zri < 10 × (Tri/10 eV)2/3. As discussed in Chapter 9
the CMB polarization spectrum favors zri ∼ 8. Reducing the assumed electron
temperature by a factor of 10 can help, but when y < 10−7 we have no simple
way out. Therefore, according to our understanding of the reionization process that
took place probably at 6.5 < zri � 8, this should have led to a global Compton-y
parameter of the order of y � 10−7–10−6.
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Exercises

(The exercise marked with an asterisk is solved in Appendix 11 which is not in
this printed book but can be found online.)

10.1 The Hubble parameter in a matter/radiation universe and the collision
times
Using the Friedmann equation show that in a spatially flat universe
containing only matter and radiation, the Hubble parameter is given by

H 2(z) = H 2
0�r(1+ z)3(z+ zeq + 2), (10.96)

H � 2× 10−20 s−1(2+ z+ zeq)
1/2(1+ z)3/2, (10.97)

where 1+ zeq = �m/�r � 2.4×104�mh
2 is the redshift where the matter

and radiation densities are equal. We use the relativistic density parameter
for photons and three species of massive neutrinos, �r = 4.19× 10−5 h−2

andH0 = 3.24×10−18 h s−1, given in Appendix 1, Sections A1.2 and A1.3.
Using ne = (1−YHe/2)nB also verify Eqs. (10.17), (10.30), and (10.34).

10.2 Aberration
For a given nonrelativistic electron velocity v and incoming and outgoing
photon directions n and n′ in the laboratory frame determine the scalar
product nR · n′R of the photon directions in the electron rest frame.

10.3 An integral∗

Show that

JBE(xc) =
∫ 1

0

dx

x

ex exp[−2xc/x]

ex − 1
= 1

2xc
− 1

2
log(xc)+ higher order,

(10.98)

where “higher order” denotes terms which remain finite when xc → 0.
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Final Remarks

The goal of this book has been to give you an overview of one of the most suc-
cessful and fascinating topics of cosmology, the physics of the cosmic microwave
background. Its success is best illustrated by the two Nobel Prizes the subject led to:
Penzias and Wilson (1978) for the discovery of the CMB and Mather and Smoot
(2006) for the detailed measurement of its spectrum and for the discovery of the
fluctuations.

I have concentrated on the theoretical side of the topic not only because this is
my expertise, but also because I believe that this subject is mature enough for a
textbook. On the experimental side, certainly there is much to tell and tremendous
progress has been made in the past 15 years, but I think, hope, that this is not the end
of it. There will be much more to come and therefore a book on CMB experiments
could be only a snapshot of the present situation. The theory of the CMB, on the
other hand, is in many of its aspects basically complete, so that I can hope that this
book may have some lasting value for students who want to learn about the topic
and also for researchers in the field who want to obtain a rather detailed overview.

I am afraid that despite a big effort there are still some misprints or errors
in the book. If you, dear reader, have spotted one, please let me know
(ruth.durrer@unige.ch) so that I can correct it in forthcoming editions.



Appendix 1

Fundamental Constants, Units and Relations

Here we summarize some useful relations between units and the values of physical con-
stants that are used throughout this book.

A1.1 Conversion Factors, Units

In a system of units where h̄ = c = kBoltzmann = 1, as is often used in this book, all units
can be expressed in terms of a unit of energy such as, for example, the GeV or a length
scale such as, for example, cm. We then have

1 GeV = 1.6022× 10−3 erg

= 1.1605× 1013 K

= 1.7827× 10−24 g

= 5.0677× 1013 cm−1

= 1.5192× 1024 s−1

The relation I always remember by heart for order of magnitude estimates is 1 = 200 MeV
fm. Here “fm” is 1 femtometer (or fermi); 1 fm = 10−15 m.

Other useful relations are

1 parsec (pc) = 3.2612 light years = 3.0856× 1018 cm

1 Mpc = 106 pc � 3× 1024cm � 1014 s

1 g cm−3 = 4.3102× 10−18 GeV4

(Astronomical unit) 1 AU = 1.4960× 1013 cm

1 (Gauss)2/8π = 1.9084× 10−40 GeV4

(Jansky) 1 Jy = 10−23 erg cm−2 s−1 Hz−1

= 2.4730× 10−48 GeV3

1 yr � π × 107 s

(Radian) 1 rad = (180/π) degrees = 57.296 degrees

(Steradian) 1 sr = 1 rad2 = 3.283× 103 degrees2

416
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A1.2 Constants

A1.2.1 Fundamental Constants

Planck’s constant h̄ = 1 = h/(2π)
= 1.0546× 10−27 cm2 g s−1

Speed of light c = 1 = 2.9979× 1010 cm s−1

Fine structure constant α ≡ e2

4π
= 1/137.036

Gravitational constant G = 6.673× 10−8 cm3g−1s−2

Planck mass mP = 1.2211× 1019 GeV
= 2.1768× 10−5 g

Planck length �P = 8.189× 10−20 GeV−1

= 1.616× 10−33 cm
Planck time τP = 8.189× 10−20 GeV−1

= 5.3904× 10−44 s
Electron mass me = 0.5110 MeV

Proton mass mp = 938.27 MeV
Neutron mass mn = 939.57 MeV

Rydberg 1 Ry = α2me/4π = 13.606 eV

Thomson cross section σT ≡ 8πα2/3m2
e = 6.65246× 10−25 cm2

Bohr radius a0 ≡ 1

αme
= 5.2918× 10−9 cm

Bohr magneton μ0 ≡ e

2me
= 5.7884× 10−18 GeV

Gauss

Avogadro’s number NA = 6.022× 1023

Stefan–Boltzmann constant aSB ≡ π2/15 = 0.658

= 7.566× 10−15 erg cm−3 K−4

A1.2.2 Important Constants

Solar mass M% = 1.989× 1033 g = 1.116× 1057 GeV

Solar radius R% = 6.9598× 1010 cm = 3.527× 1024 GeV−1

Luminosity of the Sun L% = 3.90× 1033erg s−1 = 1.6× 1012 GeV2

Mass of Earth M⊕ = 5.977× 1027 g

= 3.357× 1051 GeV

Solar magnitude m% = −26.85 (apparent)

M% = 4.72 (absolute)

Distance modulus m−M = 5 log(D/10 pc)

Hubble constant H0 = 100h km s−1 Mpc−1

= 2.1332h× 10−42GeV

where 0.65 < h < 0.75
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Hubble time, distance H−1
0 = 3.0856× 1017 h−1 s

= 9.7776× 109 h−1 yr

= 2997.9h−1 Mpc

= 9.2503× 1027h−1 cm

Critical density ρc = 3H 2
0 /8πG = 1.8791h2 × 10−29 g cm−3

= 8.0992h2 × 10−47 GeV4

= 1.0540h2 × 104 eV cm−3

= 11.2h2 (proton masses)/m3

= 0.277× 1012M%/Mpc3

CMB temperature T0 = 2.72548± 0.00057 K

= 2.35× 10−13 GeV

Neutrino temperature Tν = 1.945 K = (4/11)1/3T0

A1.3 Useful Relations

Photons
Number density nγ = 411 cm−3

Entropy density sγ = 1480 cm−3 = 3.602nγ

En ergy density ργ = 2.01× 10−51 GeV4

Density parameter �γ h2 = 2.48× 10−5

Neutrino (per species)

Number density nν = 112 cm−3

Entropy density sν = 470 cm−3 = 4.202nν
Energy density (massless) ρν = 4.565× 10−52 GeV4

Density parameter (massless) �νh2 = 5.63× 10−6

Density parameter (massive) �νh2 = mν/(94eV)

Relativistic entropy s0 = 2900 cm−3 = sγ + 3sν

Relativistic density parameter �γ 3νh
2 = 4.17× 10−5

Baryon density �Bh
2 = 3.639× 107ηB

= 0.02230± 0.00014

Baryons per photon nB/nγ = ηB = (6.0± 0.5)× 10−10

Age of the Universe (conformal time is for a0 = 1)

for T > Teq : τ = 2.42 s× (1 MeV/T )2/
√
geff

= 0.30118(mP /T
2)/
√
geff

t = 1.7× 1010s× (1 MeV/T )g−1/6
eff

= 0.489
mp

T0T
g
−1/6
eff

for T < Teq
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(neglecting � and K): τ = 2.057× 1017√
�mh2

(1+ z)−3/2 s

= 7.504× 1011√
�mh2

(T /1 eV)−3/2 s

t = 6.17× 1017√
�mh2

(1+ z)−1/2 s

= 9.46× 1015√
�mh2

(T /1 eV)−1/2 s

Matter density �mh2 = 0.142± 0.0015

Equivalence redshift zeq = 2.4× 104(�mh
2)

Equivalence temperature Teq = 5.6 eV(�mh
2)

Decoupling redshift zdec � 1090± 0.3

Decoupling temperature Tdec � 2974± 1 K = 0.26 eV

Decoupling time τdec � 2.65× 1013(0.14/�mh
2)1/2 s

tdec � 2.9× 1016(0.14/�mh
2)1/2 s

Recombination redshift zrec � 1360

Nucleosynthesis temperature Tnuc � 0.08 MeV = 9× 108 K

Time of nucleosynthesis τnuc � 206 s

tnuc � 1.35× 109 s

Age of the Universe τ0 = (1.3807± 0.03)× 1010 yr

t0 = (4.659± 0.08)× 1010 yr



Appendix 2

General Relativity

Throughout this book it is assumed that the reader is familiar with the basics of general
relativity as presented, for example, in Wald (1984). This appendix does not present an
introduction to general relativity but just fixes the notation used throughout this book.
Furthermore, we calculate the curvature tensor for an FL universe.

A2.1 Notation

We consider a four-dimensional pseudo-Riemannian spacetime given by a manifold M and
a metric g with signature (−, + , + ,+). For a given choice of coordinates (xμ)3μ=0 the
metric is given by the 10 components of a 4× 4 symmetric tensor,

g = ds2 = gμν dx
μ dxν . (A2.1)

Contra- and covariant tensor fields on a pseudo-Riemannian manifold are equivalent. Their
indices can be lowered and raised with the metric, for example,

gβνT
αν = T αβ = gαμTμβ . (A2.2)

Here gαμ is the inverse of the metric such that gαμgμβ = δαβ , and we adopt Einstein’s
summation convention: indices that appear as subscripts and superscripts are summed over.

The Christoffel symbols are defined by

�
μ
αβ =

1

2
gμν

[
∂αgνβ + ∂βgνα − ∂νgαβ

]
. (A2.3)

Here ∂μ indicates a partial derivative w.r.t. the coordinate xμ, this is sometimes also simply
denoted by a comma, ∂μf ≡ f,μ. Covariant derivatives are indicated by a semicolon, or
by the symbol ∇.

A geodesic γ (t) with X = γ̇ is a solution to the differential equation

∇XX = 0, Xμ∂μX
ν + �ναβXαXβ =

d2γ μ

ds2
+ �μαβ

dγ α

ds

dγ β

ds
= 0, (A2.4)

where the second equation expresses the first equation in components. The vector field
X = γ̇ is given by X = Xμ∂μ = d

ds
. We often conveniently identify a vector field with

420
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the partial derivative in its direction. A tensor field T of rank (p,q) is parallel transported
along the vector field X if

∇XT = 0, XμT
αi1 ···αip
βj1 ···βjq ;μ = 0. (A2.5)

Covariant derivatives of a tensor field are given by

T
αi1 ···αip
βj1 ···βjq ;μ = T

αi1 ···αip
βj1 ···βjq ,μ + �

αi1
μσ T

σ ···αip
βj1 ···βjq + · · · − �

σ
μβj1
T
αi1 ···αip
σ ···βjq − · · · . (A2.6)

The Riemann curvature tensor is defined by

Rαβμν = �ανβ,μ − �αμβ,ν + �ρβν�αμρ − �ρβμ�ανρ . (A2.7)

The tensor Rαβμν = gασR
σ
βμν is antisymmetric in the first (αβ) and second (μν) pair of

indices and symmetric in the exchange of the pairs, (αβ) ↔ (μν). The Bianchi identities
read

�(βμν)R
α
βμν = 0 1st Bianchi identity. (A2.8)

�(μνσ)R
α
βμν;σ = 0 2nd Bianchi identity. (A2.9)

Here �(βμν) denotes the sum over all cyclic permutations of these three indices.
The Ricci tensor and the Riemann scalar are given by

Rμν = Rαμαν, R = Rμμ = Rμνgμν . (A2.10)

With these sign conventions, the curvature of the sphere is positive, and changing the order
of covariant derivatives of a vector field X yields

∇μ∇νXα −∇ν∇μXα = RασμνXσ . (A2.11)

The Einstein tensor is defined as

Gμν = Rμν − 1

2
gμνR. (A2.12)

The second Bianchi identity and the symmetries of the Riemann tensor imply Gνμ;ν = 0.
The field equations of general relativity relate the curvature to the energy–momentum

tensor Tμν via Einstein’s equation,

Gμν = 8πGTμν, (A2.13)

where G denotes Newton’s constant, G = m−2
P . The second Bianchi identity ensures that

Tμν is covariantly conserved, T νμ;ν = 0. Equation (A2.13) can also be derived from an
action principle with

S = Sgrav + Smat.

Here Smat is the usual matter action and

Sgrav =
m2
P

16π

∫
d4x

√−gR (A2.14)
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is the Hilbert action. A somewhat tedious but standard calculation gives (see, e.g., Wald,
1984)

δSgrav = −
m2
P

16π

∫
d4x

√−gGμνδgμν . (A2.15)

The Einstein equation implies then that the energy–momentum tensor can be obtained by
varying the matter action w.r.t. the metric,

√−gT μν = 2
δSmat

δgμν
.

By construction, this energy–momentum tensor is always symmetric, but it does, in general,
not agree with the canonical energy–momentum tensor. Of course the conserved quantities
(if any!) are the same for both definitions.

The Weyl tensor specifies the degrees of freedom of the Riemann tensor that are not
determined by the Ricci tensor (or Einstein tensor). It is the traceless part of Rαβμν . In n
dimensions, n ≥ 3, it is given by

Cαβμν = Rαβμν − 2

n− 2

(
gα[μRν]β + gβ[μRν]α

)
− 2

(n− 1)(n− 2)
Rgα[μgν]β . (A2.16)

Here [μν] denotes antisymmetrization in the indices μ and ν. The Weyl tensor has the
same symmetries as the Riemann tensor but all its traces vanish. It describes the degrees of
freedom of the curvature (gravitational field) in source-free spacetime; hence it describes
gravitational waves.

An introduction to general relativity can be found, for example, in the books by
Straumann (2004) or Wald (1984).

A2.2 The Lie Derivative

For a vector field X with flow φXt the Lie derivative of a tensor field T of arbitrary rank is
defined by

LXT = lim
ε→0

1

ε

((
φXε

)∗
T − T

)
. (A2.17)

Here
(
φXε

)∗ denotes the pullback of the map φXt : M → M : p �→ γp(t), where γp
is the integral curve to X with starting point p. The existence and uniqueness of solu-
tions to ordinary differential equations tells us that for sufficiently small t , φXt is a local
diffeomorphism. If T (t) denotes the value of the tensor field T at the position γp(t) we
also have

LXT (p) = d

dt

∣∣∣∣
t=0
T (t). (A2.18)

Hence the Lie derivative in direction X vanishes if the tensor field T is conserved along
integral curves of X. Furthermore, for small t we have(

φXt

)∗
T = T + tLXT +O(t2). (A2.19)
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In coordinates the Lie derivative becomes (see, e.g., Wald, 1984)

LXT
αi1 ···αip
βj1 ···βjq = X

μT
αi1 ···αip
βj1 ···βjq ,μ −X

αi1 ,σ T
σ ···αip
βj1 ···βjq − · · ·

+Xσ,βj1T
αi1 ···αip
σ ···βjq + · · · . (A2.20)

For a vector field Y this reads

(LXY )
α = Xμ∂μYα − Yμ∂μXα ≡ [X,Y ]. (A2.21)

A2.3 Friedmann Metric and Curvature

The Friedmann metric is given by

ds2 = gμν dx
μ dxν = −dτ 2 + a2(τ )γij dx

i dxj = a2(t)[−dt2 + γij dxi dxj ]. (A2.22)

The Christoffel symbols with respect to cosmic or conformal time are

Cosmic time τ Conformal time t

�0
00 = 0

ȧ

a
, (A2.23)

�i00 = 0 0 , (A2.24)

�0
i0 = 0 0 , (A2.25)

�ij0 = a′
a
δij = Hδij

ȧ

a
δij = Hδij , (A2.26)

�0
ij = a′aγij

ȧ

a
γij , (A2.27)

�kij = (3)�kij = 1
2γ
km

(
γim,j + γjm,i − γij,m

)
(3)�kij , (A2.28)

where (3)�kij denotes the three-dimensional Christoffel symbols of the metric γ that depend
on the coordinate system chosen on the spatial slices. The overdot indicates a derivative
w.r.t. conformal time t while the prime indicates a derivative w.r.t. cosmic time τ .

The nonvanishing components of the Riemann and Ricci curvature tensors in cosmic
time τ are then given by

R0
i0j = a′′aγij, (A2.29)

Ri00j =
a′′

a
δij, (A2.30)

Rijkm = (3)Rijkm + (a′)2
(
δikγjm − δimγjk

)
, (A2.31)

R00 = −3
a′′

a
, (A2.32)

Rij =
[
a′′a + 2

(
a′2 +K

)]
γij, (A2.33)

R = 6

[
a′′

a
+H 2 + K

a2

]
, (A2.34)
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while in conformal time t we have

R0
i0j =

(
ȧ

a

)·
γij = Ḣγij , (A2.35)

Ri00j =
(
ȧ

a

)·
δij = Ḣδij, (A2.36)

Rijkm = (3)Rijkm +H2
(
δikγjm − δimγjk

)
, (A2.37)

R00 = −3

(
ȧ

a

)·
= −3Ḣ, (A2.38)

Rij =
[
Ḣ+ 2

(
H2 +K

)]
γij, (A2.39)

R = 6

a2

[
Ḣ+H2 +K

]
. (A2.40)

The curvature of the metric γij on the three-dimensional slices of constant time is given by

(3)Rijkm = K
(
δikγjm − δimγjk

)
, (A2.41)

(3)Rij = 2Kγij and (A2.42)
(3)R = 6K . (A2.43)
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Perturbations

In this appendix we present the intermediate results in the calculation of the perturbed
Einstein equations for a given “Fourier mode” k. We also determine the Weyl tensor. All
the results are for conformal time t .

A3.1 Scalar Perturbations

We work in the longitudinal gauge,

ds2 = a2
(
−(1+ 2�Q(S)) dt2 + (1− 2�Q(S))γij dx

i dxj
)

. (A3.1)

Here Q(S) is an eigenfunction of the spatial Laplacian with eigenvalue −k2 (see
Section 2.2.2).

A3.1.1 The Christoffel Symbols

δ�0
00 = �̇Q(S), δ�0

0j = −k�Q(S)j , (A3.2)

δ�
j

00 = −k�Q(S)j, δ�
j

i0 = −�̇δji Q(S), (A3.3)

δ�0
ij =

[−2H(� +�)− �̇]
Q(S)γij, (A3.4)

δ�
j
im = k�

[
δ
j
i Q

(S)
m + δjmQ(S)i − γimQ(S)j

]
. (A3.5)

A3.1.2 The Riemann Tensor

δR0
00j = δR0

0ij = 0, (A3.6)

δR0
i0j = −

[
2Ḣ(� +�)+H(�̇ + �̇)+ �̈− k

2

3
�

]
γijQ

(S) − k2�Q
(S)
ij , (A3.7)

δR0
ijm = −k

[
H� + �̇] (

γijQ
(S)
m − γimQ(S)j

)
, (A3.8)

δRi00j =
[
k2

3
� −H(�̇ + �̇)− �̈

]
δijQ

(S) − k2�Q
(S)i
j , (A3.9)
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δRi0jm = −k
[
�̇+H�

] (
δijQ

(S)
m − δimQ(S)j

)
, (A3.10)

δRij0m = k
[
H� + �̇] (

δimQ
(S)
j − γjmQ(S)i

)
, (A3.11)

δRijmn = −2

[
H2(� +�)+H�̇+ 1

3
k2�

] (
δimγjn − δinγjm

)
Q(S)

− k2�
(
δinQ

(S)
jm − δimQ(S)jn +Q(S)in γjm −Q(S)im γjn

)
. (A3.12)

A3.1.3 The Ricci and Einstein Tensors

The perturbation if the Ricci tensor is

δR00 =
[
3H(�̇ + �̇)− k2� + 3�̈

]
Q(S), (A3.13)

δR0j = −2k
[
H� + �̇]

Q
(S)
j , (A3.14)

δRij =
[
−2(Ḣ+ 2H2)(� +�)−H�̇ + k

2

3
� − �̈− 5H�̇

− 4

3
k2�

]
γijQ

(S) + k2(�−�)Q(S)ij . (A3.15)

The perturbation of the Riemann scalar then becomes

δR = − 2

a2

[
6(Ḣ+H2)� + 3H�̇ − k2� + 9H�̇+ 3�̈+ 2(k2 − 3K)�

]
Q(S).

(A3.16)

For the Einstein tensor we find

δG0
0 =

2

a2

[
3H2� + 3H�̇+ (k2 − 3K)�

]
Q(S), (A3.17)

δG0
j =

2

a2
k

[
H� + �̇]

Q
(S)
j , (A3.18)

δG
j

0 = −
2

a2
k

[
H� + �̇]

Q(S)j, (A3.19)

δGij =
2

a2

[
(2Ḣ+H2)� +H�̇ − k

2

3
� + �̈+ 2H�̇+

(
k2

3
−K

)
�

]
δijQ

(S)

+ k
2

a2
(�−�)Q(S)ij . (A3.20)

A3.1.4 The Weyl Tensor

The Weyl tensor from scalar perturbations only has an “electric” component, that is, all the
components are determined by

C0
i0j ≡ −Eij =

k2

2
(�+�)Q(S)ij . (A3.21)
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More precisely we have

C0i0j = a2Eij, (A3.22)

C0ijk = 0, (A3.23)

Cijk� = gikEj� + gj�Eik − gjkEi� − gi�Ejk . (A3.24)

A3.2 Vector Perturbations

We work in the vector gauge defined in Eq. (2.60),

ds2 = a2
(
−dt2 + 2σQ(V )i dtdxi + γij dxi dxi

)
, (A3.25)

where σ i = σQ(V )i is divergence-free andQ(V )ij = − 1
2k

(
Q
(V )
i|j +Q(V )j |i

)
.

A3.2.1 The Christoffel Symbols

δ�0
00 = 0, δ�0

0j = HσQ(V )j , (A3.26)

δ�
j

00 = [σ̇ +Hσ ]Q(V )j, δ�
j

i0 =
1

2
σ

(
Q
(V )j
|i −Q(V )i

|j)
, (A3.27)

δ�0
ij = kσQ(V )ij , δ�

j
im = −HσγimQ(V )j . (A3.28)

A3.2.2 The Riemann Tensor

δR0
00j = ḢσQ(V )j, δR0

0ij = 0, (A3.29)

δR0
i0j = k [σ̇ +Hσ ]Q(V )ij , (A3.30)

δR0
ijm = −kσ

(
Q
(V )
ij |m −Q(V )im|j

)
, (A3.31)

δRi00j = k [σ̇ +Hσ ]Q(V )ij , (A3.32)

δRi0jm =
[
K +H2

]
σ

(
δijQ

(V )
m − δimQ(V )j

)
+ kσ

[(
Q(V )im

)
|j
−

(
Q
(V )i
j

)
|m

]
, (A3.33)

δRij0m = −σ
[
H2

(
δimQ

(V )
j − γjmQ(V )i

)
+ ḢγjmQ(V )i

−1

2

(
Q
(V )|i
j −Q(V )i|j

)
|m

]
, (A3.34)

δRijmn = kHσ
(
δimQ

(V )
jn − δinQ(V )jm +Q(V )im γjn −Q(V )in γjm

)
. (A3.35)
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A3.2.3 The Ricci and Einstein Tensors

The perturbation if the Ricci tensor is

δR00 = 0, (A3.36)

δR0j =
[
K + 1

2
k2 + 2H2 + Ḣ

]
σQ

(V )
j , (A3.37)

δRij = k [σ̇ + 2Hσ ]Q(V )ij . (A3.38)

The vector perturbation of the Riemann scalar of course vanishes. For the Einstein tensor
we find

δG0
0 = 0, (A3.39)

δG0
j =

2K − k2

2a2
σQ

(V )
j , (A3.40)

δG
j

0 =
1

a2

[
2(H2 − Ḣ)+K + k

2

2

]
σQ(V )j, (A3.41)

δGij =
k

a2
[σ̇ + 2Hσ ]Q(V )ij . (A3.42)

A3.2.4 The Weyl Tensor

C0
i0j = −

k

2
σ̇ (V )Q

(V )
ij ≡ −E(V )ij , (A3.43)

Cijk� = gikE
(V )
j� + gj�E

(V )
ik − gjkE

(V )
i� − gi�E

(V )
jk , (A3.44)

C0
j lm ≡ εlmiB(V )i j

= 1

2
σ

[
Q
(V )
l|jm −Q(V )m|j l −

k2

2
γjlQ

(V )
m + k

2

2
γjmQ

(V )
l

]
. (A3.45)

All other components are determined by symmetry.

A3.3 Tensor Perturbations

The metric is given by

ds2 = a2
(
−dt2 + (

γij + 2HQ(T )ij
)
dxi dxi

)
, (A3.46)

where Hij = HQ(T )ij is symmetric, traceless, and divergence free. For tensor perturbations
all scalar- and vector-type quantities vanish and we shall not write them down here. The
non-vanishing tensor perturbations are given in Sections A3.3.1 to A3.3.3.

A3.3.1 The Christoffel Symbols

δ�i0j = ḢQ(T )ij , δ�0
ij = (2HH + Ḣ )Q(T )ij , (A3.47)

δ�ijm = H
(
Q
(T )i
j |m +Q(T )im|j −Q(T )|imj

)
. (A3.48)
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A3.3.2 The Riemann Tensor

δR0
i0j =

[
Ḧ +HḢ + 2ḢH

]
Q
(T )
ij , (A3.49)

δR0
ijm = −Ḣ

(
Q
(T )
ij |m −Q(T )im|j

)
, (A3.50)

δRi00j =
[
Ḧ +HḢ

]
Q
(T )i
j , (A3.51)

δRi0jm = Ḣ
(
Q
(T )i
m|j −Q(T )ij |m

)
, (A3.52)

δRij0m = −Ḣ
(
Q
(T )|i
jm −Q(T )im|j

)
, (A3.53)

δRijmn = 2H2H
(
δimQ

(T )
jn − δinQ(T )jm

)
+H

(
Q
(T )i
j |nm −Q(T )ij |mn +Q(T )in|jm −Q(T )im|jn +Q(T )jm |i |n −Q(T )jn |i |m

)
+HḢ

(
δimQ

(T )
jn − δinQ(T )jm −Q(T )in γjm +Q(T )im γjn

)
. (A3.54)

A3.3.3 The Ricci and Einstein Tensors

δRij =
[
Ḧ + 2HḢ + (2Ḣ+ 4H2 + k2 + 6K)H

]
Q
(T )
ij , (A3.55)

δGij = a−2
[
Ḧ + 2HḢ + (k2 + 2K)H

]
Q
(T )i
j . (A3.56)

A3.3.4 The Weyl Tensor

C0
i0j ≡ −E(T )ij = −1

2
(∂2
t − k2)HQ

(T )
ij , (A3.57)

Cijk� = gikE
(T )
j� + gj�E

(T )
ik − gjkE

(T )
i� − gi�E

(T )
jk , (A3.58)

C0
j lm ≡ εlmkB(T )kj = −Ḣ

[
Q
(T )
jl|m −Q(T )jm|l

]
. (A3.59)

All other components are determined by symmetry.



Appendix 4

Special Functions

A4.1 Legendre Polynomials and Legendre Functions

The Legendre polynomials form an orthonormal set of polynomials on the interval [−1,1].
The lowest-order polynomials are P0 = 1 and P1 = x. The higher-order polynomials
can then be obtained via the Gram–Schmidt orthogonalization procedure starting from the
monomial xn. They obey the normalization condition∫ 1

−1
dx P�(x)P�′(x) = 2

2�+ 1
δ��′ . (A4.1)

The Legendre polynomials can also be obtained via the recursion relation

(�+ 1)P�+1(x) = (2�+ 1)xP�(x)− �P�−1(x). (A4.2)

They obey the differential equation

(1− x2)P ′′� − 2xP ′� + �(�+ 1)P� = 0. (A4.3)

The Legendre polynomials can also be defined via Rodrigues’ formula:

P�(x) = 1

2��!

d�

dx�

(
x2 − 1

)�
. (A4.4)

The lowest-order Legendre polynomials are given by

P0 = 1, (A4.5)

P1 = x, (A4.6)

P2 = 1

2
(3x2 − 1), (A4.7)

P3 = 1

2
(5x3 − 3x), (A4.8)

P4 = 1

8
(35x4 − 30x2 + 3). (A4.9)

Clearly P�(−x) = (−1)�P�(x). Via induction, using Eq. (A4.2), one finds that

P�(1) = 1. (A4.10)

430
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The Legendre polynomials obey the limiting relation

lim
�→∞

P� (cos(θ/�)) = J0(θ). (A4.11)

Here J0 is the Bessel function of order zero (see Section A4.3).
The associated Legendre functions are defined by

P� m(x) = (1− x2)m/2
dmP�(x)

dxm
= (1− x2)m/2

1

2��!

d�+m

dx�+m
(
x2 − 1

)�
, (A4.12)

for 0 ≤ m ≤ �. [We use the notation of Abramowitz and Stegun (1970) with P� m =
(−1)mPm� .] The associated Legendre functions are nonvanishing for with −� ≤ m ≤ �.
Functions with the opposite sign of m are related via

P�−m = (−1)m
(�−m)!
(�+m)!P� m. (A4.13)

From the above definition and Eq. (A4.10) one obtains

P� m(1) = δm0. (A4.14)

The Legendre functions solve the differential equation

(1− x2)P ′′� m − 2xP ′� m +
[
�(�+ 1)− m2

1− x2

]
P� m = 0. (A4.15)

They are in principle defined for arbitrary complex degree � and orderm as (meromorphic)
functions of complex variables x. We shall need them only for integer m and nonnegative
integer �’s with |m| ≤ � and x ∈ [−1,1]. In this interval and with these values of order and
degree they are singularity free and analytic.

The Legendre functions satisfy the following (and several more) recurrence relations:

P� m+1 = 2mx√
1− x2

P� m − [�(�+ 1)−m(m+ 1)]P� m−1, (A4.16)

xP� m = �+m
2�+ 1

P�−1m + �−m+ 1

2�+ 1
P�+1m, (A4.17)

dP� m

dx
= 1

2
√

1− x2

[
P� m+1 − (�+m)(�−m+ 1)P� m−1

]
, (A4.18)

(x2 − 1)
dP� m

dx
= �xP� m + (m+ �)P�−1m, (A4.19)

P�+1m = P�−1m + (2�+ 1)
√

1− x2P�m−1. (A4.20)

The parity relation of the associated Legendre function is a simple consequence of their
definition,

P� m(−x) = (−1)�+mP� m(x). (A4.21)

Also of importance for us is the orthogonality relation∫ 1

−1
P� m(x)P�′ m(x) dx

=
∫ π

0
P� m(cosϑ)P�′ m(cosϑ) sinϑ dϑ = 2

2�+ 1

(�+m)!
(�−m)! δ� �′ . (A4.22)

The derivation of most of these results and more can be found in Arfken and Weber (2001).
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A4.2 Spherical Harmonics

A4.2.1 The Irreducible Representations of the Rotation Group

Here we briefly repeat some basics about the rotation group and its irreducible representa-
tions. Much more can be found in most quantum mechanics books, for example, Sakurai
(1993). Here we are interested only in ordinary (i.e., not projective) representations and
therefore integer values of the angular momentum. For a function � on the sphere we
define its transformation under rotations R ∈ SO(3) by

[U(R)�] (n) ≡ �
(
R−1n

)
∀ n ∈ S

2. (A4.23)

This is clearly a unitary representation of the rotation group on L2(S2), that is, the Hilbert
space of square integrable functions on the sphere.

The one-parameter subgroup of rotations around a given axis e is

R(e,α)n = cosαn+ [1− cosα] (e · n)e+ sinαe ∧ n. (A4.24)

Its generator is defined by

�(e)n = d

dα
R(e,α)n

∣∣∣∣
α=0

.

With Eq. (A4.24) we obtain

�(e)ij = ekI kij, where I kij = −εijk . (A4.25)

The generator of U(R(e,α)) is the angular momentum in direction e:

d

dα
U(R(e,α))

∣∣∣∣
α=0

≡ U∗(I j )ej = i

h̄
Ljej,

with

L = −ih̄x ∧ ∇. (A4.26)

In spherical coordinates (r,ϑ,ϕ) one finds

L = ih̄
(

sinϕ cotϑ∂ϕ + cosϕ∂ϑ
cosϕ cotϑ∂ϕ − sinϕ∂ϑ

−∂ϕ

)
. (A4.27)

One easily verifies that the matrices Ik and the operators Lk satisfy the commutation
relations [

Ij,Ik
] = εjklIl, (A4.28)[

Lj,Lk
] = ih̄εjklLl . (A4.29)

Introducing also L± = L1 ± iL2 and L2 = L2
1 + L2

2 + L2
3 one finds the commutation

relations [
L2,Lj

]
= 0 =

[
L2,L±

]
, (A4.30)[

L3,L±
] = ±h̄L±, and (A4.31)

L±L∓ = L2 − L2
3 ± h̄L3. (A4.32)
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Let us now consider a representation of the rotation group on some finite-dimensional
vector space V . Since L2 and L3 are commuting hermitian operators, we can find an
orthonormal basis of simultaneous eigenvectors of L2 and L3. We order them according
to their eigenvalue of L3, so that the eigenvalue of ψ1 is maximal. Let us call it h̄a.
Furthermore, h̄2b denotes the corresponding eigenvalue of L2. Hence L3ψ1 = h̄aψ1 and
L2ψ1 = h̄2bψ1. Equation (A4.31) gives L3L+ψ1 = h̄(a + 1)L+ψ1. Hence L+ψ1 is an
eigenvector of L3 with eigenvalue h̄(a + 1) or zero. Since h̄a is maximal, this implies
L+ψ1 = 0. With Eq. (A4.32) therefore 0 = (L2 − L2

3 − h̄L3)ψ1 = h̄2(b − a(a + 1))ψ1,
so that b = a(a + 1). Applying L− on ψ1 and using again Eq. (A4.31), we find that L−ψ1
is also an eigenvector of L3 with eigenvalue h̄(a − 1). Repeated application of L− shows
that (L−)mψ1 is an eigenvector of L3 with eigenvalue h̄(a − m). We finally arrive at the
eigenvector with the lowest eigenvalue h̄(a − n) of L3; let us call it

ψn+1 = (L−)nψ1/ ‖ (L−)nψ1 ‖ .

Necessarily, L−ψn+1 = 0 since it would otherwise have an even lower eigenvalue of L3.
From this we conclude

0 = L+(L−)n+1ψ1 = (L2 − L2
3 + h̄L3)(L−)nψ1 = h̄2(b − (a − n)2 + a − n)(L−)nψ1,

so that b = (a − n)2 + n − a. Together with the previous identity, b = a(a + 1), this
implies a = n/2. Therefore, a must be an integer or half-integer number, the represen-
tation with a = � is denoted by D(�) and has dimension n + 1 = 2� + 1. The induced
representation of the generators (the Lie algebra) defines the angular momentum, Lj =
ih̄D

(�)
∗ (Ij ). The vector space that carries D(�) is denoted by V(�). The vectors

(
(Ln−)ψ1/

‖(Ln−)ψ1‖
)2�
n=0 form an orthonormal basis of eigenvectors of L3 and L2, the so-called

canonical basis. The eigenvalues of L3 are h̄�, h̄(� − 1), . . . , − h̄�. The operator L2 is
constant on V(�) with eigenvalue h̄2�(�+1).D(0) is the trivial representation,D(0)(R) = 1I,
which is irreducible only on a one-dimensional space; and D(1) is the identical representa-
tion, D(1)(R) = R.

In the next section, when we realize these representations on L2(S2) we shall see
that only the representations D(�)∗ with integer � can be lifted to representations of the
rotation group. Half-integer �’s give projective representation with D(�)(R1)D

(�)(R2) =
±D(�)(R1R2) that are relevant in quantum mechanics where a state is defined only up to
a constant phase. The existence of particles with half-integer spin, fermions, is a purely
quantum mechanical phenomenon.

Acting with L±, we can pass from one basis vector to every other in V(�). Hence the
representation D(�) is irreducible, that is, V(�) contains no invariant subspaces. We have
obtained all irreducible representations of the rotation group in this way.

A4.2.2 The Clebsch–Gordan Decomposition

The tensor product, V(�) ⊗ V(�′) carries the tensor representation D(�) ⊗ D(�′). In general
this representation is not irreducible but can be decomposed into a sum of irreducible
representations. We show that

D(�) ⊗D(�′) =
�+�′∑

j=|�−�′|
D(j). (A4.33)

This sum is called the Clebsch–Gordan series.
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Without loss of generality, we assume � ≥ �′. The Leibnitz rule implies that the induced

representation on the generators is (D(�)⊗D(�′))∗ = (D(�)∗ ⊗ 1I)⊕ (1I⊗D(�′)∗ ). We denote
the canonical basis on V(�) by (ψ� m)�m=−�. L3 takes once the maximal value on the state
ψ� � ⊗ ψ�′ �′ , where we have L3(ψ� � ⊗ ψ�′ �′) = (L3ψ� �) ⊗ ψ�′ �′ + ψ� � ⊗ (L3ψ�′ �′) =
h̄(� + �′)ψ� � ⊗ ψ�′ �′ . Hence D(�) ⊗ D(�′) contains D(j) with j = � + �′ exactly once
and it does not contain any higher angular momentum. However, there are two states
with L3φ = h̄(� + �′ − 1)φ, namely the states ψ� �−1 ⊗ ψ�′ �′ and ψ� � ⊗ ψ�′ �′−1; hence
D(�) ⊗ D(�′) must also contain D(�+�′−1) (except if �′ = 0). Furthermore, there are three
states with L3φ = h̄(�+ �′ − 2)φ, namely the states ψ� �−2⊗ψ�′ �′ , ψ� �−1⊗ψ�′ �′−1, and
ψ� � ⊗ ψ�′ �′−2; hence D(�) ⊗D(�′) must in addition contain D(�+�′−2). This goes on until
the eigenvalue �+ �′ −m, with m = 2�′ is reached, which has an eigenspace of dimension
m + 1 and that also implies that the representation D(�−�′) is contained. For higher values
of m the dimension of the eigenspace is reduced by 1 at each step and is therefore just
sufficient to contain the eigenvectors of each of the representations D(j) already inferred.
This can also be concluded from the fact that (2� + 1)(2�′ + 1) = ∑�+�′

j=�−�′(2j + 1)
and therefore the dimension of the total space agrees with the sum of the dimensions
of all the irreducible representations already defined. This proves the Clebsch–Gordan
series.

The matrix that induces the change of basis from the tensor product basis to the canon-
ical basis on each of the irreducible pieces of V(�) ⊗ V(�′) defines the Clebsch–Gordan
coefficients in the following way. We have seen that

V(�) ⊗ V(�′) =W(�+�′) ⊕W(�+�′−1) ⊕ · · · ⊕W(|�−�′|),

where W(j) carries the representation D(j) of the rotation group. Let us denote the
canonical basis in W(j) by

(
φj m

)j
m=−j . The transformation from the basis (ψ� m ⊗

ψ�′ m′)
�,�′
m,m′=−�,−�′ to the basis

((
φj m

)j
m=−j

)�+�′
j=|�−�′| is of the form

φj mj =
∑
m,m′

〈�,�′;m,m′|j,mj 〉ψ� m ⊗ ψ�′ m′ . (A4.34)

The complex coefficients 〈�,�′;m,m′|j,mj 〉 are called Clebsch–Gordan coefficients. In
the literature they are often denoted by 〈�,�′;m,m′|j,mj 〉 ≡ 〈�,�′;m,m′|�,�′;j,mj 〉. We
shall not repeat the redundant numbers �,�′ in the second argument. The Clebsch–Gordan
coefficients present an orthogonal basis transformation. Using the general formula that
under such a basis transformation S, the matrixD(R) transforms into ST D(R)S we obtain
the corresponding transformation for the representations matrices,

D
(�)

mm′D
(�1)

m1m
′
1
=

∑
j mj m

′
j

〈�,�1;m,m1|j,mj 〉D(j)mjm′j 〈�,�1;m′,m′1|j,m′j 〉. (A4.35)

From the foregoing discussion it is clear that 〈�,�′;m,m′|j,mj 〉 
= 0 only ifmj = m+m′
and j ∈ {�+ �′,�+ �′ − 1, . . . ,|�− �′|}. The general formula for these coefficients is given
below (Abramowitz and Stegun, 1970). They can also be computed with Mathematica.
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Table A4.1 The nonvanishing Clebsch–Gordan coefficients for �2 = 1.

〈�,1;m,m2|j,m+m2〉
j m2 = 1 m2 = 0 m2 = −1

�+ 1
√
(�+m+1)(�+m+2)
(2�+1)(2�+2)

√
(�+m+1)(�−m+1)
(2�+1)(�+1)

√
(�−m+1)(�−m+2)
(2�+1)(2�+2)

� −
√
(�+m+1)(�−m)

2�(2�+1)
m√
�(�+1)

√
(�−m+1)(�+m)

2�(�+1)

�− 1
√
(�−m−1)(�−m)

2�(2�+1) −
√
(�+m)(�−m)
�(2�+1)

√
(�+m)(�+m−1)

2�(2�+1)

〈�1,�2;m1,m2|j,m1 +m2〉

=
√
(�1 + �2 − j)! (j + �1 − �2)! (j + �2 − �1)! (2j + 1)

(�1 + �2 + j + 1)!

×
∑
k

[
(−1)k

√
(�1 +m1)! (�1 −m1)! (�2 +m2)! (�2 −m2)!

k! (�1 + �2 − j − k)! (�1 −m1 − k)!

×
√
(j +m1 +m2)! (j −m1 −m2)!

(�2 +m2 − k)! (j − �2 +m1 + k)! (j − �1 −m2 + k)!
]

. (A4.36)

In the sum over k only the terms with a finite denominator contribute; hence k ≥ max
{0, �2 − j −m1, �1 − j +m2} and k ≤ min{�1 + �2 − j, �1 −m1, �2 +m2}.

In Chapter 5 we need the Clebsch–Gordan coefficients 〈�1,�2;m1,m2|j,m1 + m2〉 for
�2 ≤ 2. We therefore give the nonvanishing ones of these coefficients in Tables A4.1
and A4.2. Of course 〈�1,0;m1,0|�,m〉 = δ�1 � δm1 m.

A4.2.3 Spherical Harmonics of Spin-0

The spherical harmonics are functions on the sphere. For a unit vector n defined by its polar
angles (ϑ,ϕ) the spherical harmonics are given by

Y�m(n) = (−1)m

√
2�+ 1

4π

(�−m)!
(�+m)!e

imϕP�m(μ), μ = cosϑ . (A4.37)

From the properties and the orthogonality of the associated Legendre functions, Eqs. (A4.13)
and (A4.22), we conclude Y�−m = (−1)mY ∗�m and∫

Y�m(n)Y ∗�′m′(n)d�n = δ��′δmm′ . (A4.38)

Note also that under parity, n →−n, the spherical harmonics transform as

Y�m(−n) = (−1)�Y�m(n). (A4.39)

We now show that the spherical harmonics (Y�m)�m=−� carry the representation D(�).
From Eq. (A4.27) we know L3 = −ih̄∂ϕ . Therefore, the set of functions f�m that forms

a canonical basis for the representation D(�) must be of the form f�m = exp(imϕ)g�m(μ).
Furthermore, Eq. (A4.27) implies
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Table A4.2 The nonvanishing Clebsch–Gordan coefficients for �2 = 2.

〈�,2;m,m2|j,m+m2〉
j m2 = 2 m2 = 1

�+ 2
√
(�+m+1)(�+m+2)(�+m+3)(�+m+4)

(2�+1)(2�+2)(2�+3)(2�+4)

√
(�−m+1)(�+m+3)(�+m+2)(�+m+1)

(2�+1)(�+1)(2�+3)(�+2)

�+ 1 −
√
(�+m+1)(�+m+2)(�+m+3)(�−m)

2�(�+1)(�+2)(2�+1) −(�− 2m)
√

(�+m+2)(�+m+1)
2�(2�+1)(�+1)(�+2)

�

√
3(�+m+1)(�+m+2)(�−m−1)(�−m)

(2�−1)2�(�+1)(2�+3) (3− 2m)
√

3(�−m)(�+m+1)
�(2�−1)(2�+2)(2�+3)

�− 1 −
√
(�+m+1)(�−m−2)(�−m−1)(�−m)

2(�−1)�(�+1)(2�+1) (�+ 2m+ 1)
√

(�−m)(�−m−1)
�(�−1)(2�+1)(2�+2)

�− 2
√
(�−m−3)(�−m−2)(�−m−1)(�−m)

(2�−2)(2�−1)2�(2�+1) −
√
(�−m)(�−m−1)(�−m−2)(�+m)

(�−1)(2�−1)�(2�+1)

j m2 = 0 m2 = −1

�+ 2
√

3(�−m+2)(�−m+1)(�+m+2)(�+m+1)
(2�+1)(2�+2)(2�+3)(�+2)

√
(�−m+3)(�−m+2)(�−m+1)(�+m+1)

(2�+1)(�+1)(2�+3)(�+2)

�+ 1 m

√
3(�−m+1)(�+m+1)
�(2�+1)(�+1)(�+2) (�+ 2m)

√
(�−m+2)(�−m+1)

2�(2�+1)(�+1)(�+2)

�
3m2−�(�+1)√

(2�−1)�(2�+1)(�+1)
(2m− 1)

√
3(�−m+1)(�+m)

�(2�−1)(2�+2)(2�+3)

�− 1 −m
√

3(�−m)(�+m)
(�−1)�(2�+1)(�+1) −(�− 2m+ 1)

√
(�+m)(�+m−1)

�(�−1)(2�+1)(2�+2)

�− 2
√

3(�−m)(�−m−1)(�+m)(�+m−1)
(2�−2)(2�−1)(2�+1)� −

√
(�−m)(�+m)(�+m−1)(�+m−2)

(�−1)(2�−1)�(2�+1)

j m2 = −2

�+ 2
√
(�−m+1)(�−m+2)(�−m+3)(�−m+4)

(2�+1)(2�+2)(2�+3)(2�+4)

�+ 1
√
(�−m+1)(�−m+2)(�−m+3)(�+m)

�(2�+1)(�+1)(2�+4)

�

√
3(�−m+1)(�−m+2)(�+m−1)(�+m)

�(2�−1)(2�+2)(2�+3)

�− 1
√
(�−m+1)(�+m−2)(�+m−1)(�+m)

(�−1)�(2�+1)(2�+2)

�− 2
√
(�+m−3)(�+m−2)(�+m−1)(�+m)

(2�−2)(2�−1)2�(2�+4)
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L2 = L2
1 + L2

2 = L2
3 = −h̄2

[
1

sinϑ
∂ϑ sinϑ∂ϑ + 1

sin2 ϑ
∂2
ϕ

]
= −h̄2�,

where � denotes the Laplacian on the 2-sphere. For f�m = exp(imϕ)g�m(μ) we obtain

�f�m =
[
(1− μ2)

d2

dμ2
− 2μ

d

dμ
− m2

1− μ2

]
g�m(μ) exp(imϕ).

With L2 = h̄2�(� + 1) it follows that g�m(μ) satisfies the differential equation of the
associated Legendre function, Eq. (A4.15); hence g�m = c�mP�m(μ). The constants c�m are
chosen to normalize the functions f�m. Furthermore, since f�m and f�′m′ are eigenfunctions
with different eigenvalues for some hermitian operator (L3 if m 
= m′ and L2 if � 
= �′),
they are certainly orthogonal. Hence the functions f�m are proportional to the spherical
harmonics and obey the same normalization condition, that is, they are the spherical
harmonics Y�m.

We can relate the spherical harmonic Y�m(n) to the matrix element D(�)m0(R), where R is
a rotation that turns ez into n. To do this we observe that the spherical harmonics of order
� form an orthonormal basis for the (2�+ 1)-dimensional space of functions on the sphere
that transform with the representation D(�) under rotation. Let f be such a function and
(fm) be its coefficients in the basis Y�m. In other words,

f (n) =
∑
m

fmY�m(n).

Under a rotation, the vector (fm) transforms with D(�)m1m2 so that

f (R−1n) =
∑
m1

(∑
m2

D(�)m1m2
(R)fm2

)
Y�m1(n).

Considering the function with fm2 = δmm2 this yields

Y�m(R
−1n) =

∑
m1

D(�)m1m
(R)Y�m1(n). (A4.40)

Let us now consider n = ez. Using Y�m(ez) = δ0m
√
(2�+ 1)/4π we arrive at

Y�m(R
−1ez) =

√
2�+ 1

4π
D
(�)
0m(R). (A4.41)

If R is an (otherwise arbitrary) rotation that turns n into ez, so that R−1ez = n, we therefore
have

Y�m(n) =
√

2�+ 1

4π
D
(�)
0m(R). (A4.42)

Usually one chooses for R the rotation with Euler angles (0,−ϑ,−ϕ) for the unit vector n
with polar angles (ϑ,ϕ). We denote the representation matrix of the rotation by Euler angles
(α,β,γ ) by D(�)mn(α,β,γ ): first a rotation by angle γ around the z-axis, then a rotation by
angle β around the y-axis, and finally a rotation by angle α around the (new) z-axis. The
inverse of the rotation (α,β,γ ) is the rotation with Euler angles (−γ,−β,−α). Observing

that the representation D(�) is unitary we find D(�)0m(0, − ϑ, − ϕ) = D
(�)−1

0m (ϕ,ϑ,0) =
D
∗ (�)
m0 (ϕ,ϑ,0) so that we can also write
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Y�m(n) =
√

2�+ 1

4π
D
∗ (�)
m0 (ϕ,ϑ,0). (A4.43)

With this it is now easy to show the addition theorem of spherical harmonics. Consider two
directions n1 and n2 separated by an angle γ , cos γ = n1 · n2. We denote the rotation with
Euler angles (ϕ1, ϑ1,0), which rotates ez into n1 by R1. With Eqs. (A4.40) and (A4.43) we
have

Y�0(R
−1
1 n2) =

∑
m

D
(�)
m0(R1)Y� m(n2) =

√
4π

2�+ 1

∑
m

Y ∗�m(n1)Y�m(n2). (A4.44)

But since R−1
1 rotates n1 into ez, the polar angle ϑ of R−1

1 n2 is simply the angle between
n1 and n2, so that Y�0(R

−1
1 n2) =

√
(2�+ 1)/4πP�(n1 · n2). Inserting this above yields the

addition theorem for spherical harmonics,

2�+ 1

4π
P�(n1 · n2) =

�∑
m=−�

Y ∗�m(n1)Y�m(n2). (A4.45)

The lowest � spherical harmonics are given by

� = 0 Y00 = 1√
4π
, (A4.46)

� = 1

⎧⎪⎨⎪⎩
Y11 = −

√
3

8π sinϑ eiϕ,

Y10 =
√

3
4π cosϑ,

(A4.47)

� = 2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Y22 =

√
15

32π sin2 ϑ e2iϕ,

Y21 = −
√

15
8π sinϑ cosϑ eiϕ,

Y20 =
√

5
4π

(
3
2 cos2 ϑ − 1

2

)
,

(A4.48)

� = 3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y33 = −
√

35
64π sin3 ϑ e3iϕ,

Y32 =
√

105
32π sin2 ϑ cosϑ e2iϕ,

Y31 = −
√

21
16π sinϑ

(
5
2 cos2 ϑ − 1

2

)
eiϕ,

Y30 =
√

7
4π cosϑ

(
5
2 cos2 ϑ − 3

2

)
,

(A4.49)

Y�−m = (−1)mY ∗�m. (A4.50)

A4.2.4 Integrals of Spherical Harmonics (of Spin-0)

The Clebsch–Gordan coefficients also allow us to derive formulas for integrals of products
of spherical harmonics. Using

Y�3m3 =
∑
m1m2

〈�1,�2;m1,m2|�3,m3〉Y�2m2Y�1m1 (A4.51)
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and, especially its inverse,

Y�2m2Y�1m1 =
∑
�3m3

√
(2�2 + 1)(2�1 + 1)

4π(2�3 + 1)
〈�2,�1;0,0|�30〉

× 〈�2,�1;m2,m1|�3m3〉Y�3m3(n), (A4.52)

we can reduce integrals of three and more spherical harmonics to two spherical harmonics
that we know are orthonormal. One usually writes these not in terms of the Clebsch–Gordan
symbols but in the somewhat more symmetric Wigner 3J symbols, which are defined by

〈�1,�2;m1,m2|�3m3〉 = (−1)−�1+�2−m3
√

2�3 + 1

(
�1 �2 �3
m1 m2 −m3

)
. (A4.53)

Equation (A4.53) implies from the corresponding properties of the Clebsch–Gordan coef-
ficients that the Wigner 3J symbols vanish unless the �i satisfy the triangle inequality and
the mi add up to zero, that is,

|�1 − �2| ≤ �3 ≤ �1 + �2, m1 +m2 −m3 = 0. (A4.54)

Even though this is not evident at first sight, it is easy to check that the first of the above
relations is symmetric in the �i .

The transformation of the representation matrices, Eq. (A4.35), in terms of the Wigner 3J
symbols is

D
(�)

mm′D
(�1)

m1m
′
1
=

∑
LMM ′

(−1)M+M
′
(2L+ 1)

×
(
� �1 L
m m1 −M

)
D
(L)

MM ′

(
� �1 L
m′ m′1 −M ′

)
. (A4.55)

Some properties of the Wigner 3J symbols are(
�1 �2 �3
m1 m2 m3

)
=

(
�2 �3 �1
m2 m3 m1

)
=

(
�3 �1 �2
m3 m1 m2

)
(A4.56)(

�1 �2 �3
m1 m2 m3

)
= (−1)�1+�2+�3

(
�2 �1 �3
m2 m1 m3

)
(A4.57)(

�1 �2 �3
m1 m2 m3

)
= (−1)�1+�2+�3

(
�1 �2 �3
−m1 −m2 −m3

)
(A4.58)

(2�3 + 1)
∑
m1,m2

(
�1 �2 �3
m1 m2 m3

) (
�1 �2 �′3
m1 m2 m′3

)

=
{
δ�2,�

′
3
δm3,m

′
3

if �1 + �2 ≥ �3 ≥ |�1 − �2|
0 else.

(A4.59)

∑
�3m3

(2�3 + 1)

(
�1 �2 �3
m1 m2 m3

) (
�1 �2 �3
m′1 m′2 m3

)
= δm1,m

′
1
δm2m

′
2
. (A4.60)

∑
m1m2m3

[(
�1 �2 �3
m1 m2 m3

)]2

= 1, (A4.61)

if �1 + �2 ≥ �3 ≥ |�1 − �2|.
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Corresponding identities can be established for the Clebsch–Gordan coefficients. Note
also that Eq. (A4.58) implies that(

�1 �2 �3
0 0 0

)
= 0 unless �1 + �2 + �3 is even. (A4.62)

A useful special value is(
�1 �2 0
m1 m2 0

)
= δ�1�2δm1−m2(−1)�1−m1

√
1

2�1 + 1
. (A4.63)

For the integral of up to three spherical harmonics we obtain1∫
d�Y�m(n) =

√
4πδ�0δm0 (A4.64)∫

d�Y�1m1(n)Y�2m2(n) = (−1)m2δ�1�2δm1,−m2 (A4.65)∫
d�Y�1m1(n)Y�2m2(n)Y�3m3(n) =

√
(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

×
(
�1 �2 �3
0 0 0

) (
�1 �2 �3
m1 m2 m3

)
(A4.66)

≡ Gm1m2m3
�1�2�3

(A4.67)

=
∫
d�Y ∗�1m1

(n)Y ∗�2m2
(n)Y ∗�3m3

(n). (A4.68)

The integral (A4.66) is sometimes also called the “Gaunt integral” Gm1m2m3
�1�2�3

(not to be
confused with the Gaunt factor for Bremsstrahlung discussed in Chapter 10). For the last
equals sign we made use of the fact that Y ∗�m = (−1)mY ∗�−m and we used the property
(A4.58) of the Wigner 3J symbols. Another way to see this is to observe that the Gaunt
integrals are real, that is, they vanish when m1 +m2 +m3 
= 0.

Note also that Gm1m2m3
�1�2�3

is an invariant tensor carrying the representationD(�1)⊗D(�2)⊗
D(�3) under rotations. In other words,

Gm1m2m3
�1�2�3

=
∑

m′1m
′
2m

′
3

D
(�1)

m1m
′
1
(R)D

(�2)

m2m
′
2
(R)D

(�3)

m3m
′
3
(R)Gm

′
1m

′
2m

′
3

�1�2�3
(A4.69)

for an arbitrary rotation R. But the representations D(�) are irreducible. Therefore, an
arbitrary invariant tensor carrying this representation is in its mi dependence proportional

to Gm1m2m3
�1�2�3

or equivalently to

(
�1 �2 �3
m1 m2 m3

)
with a proportionality factor that depends

only on the �i .
For the Legendre polynomials Eq. (A4.66) implies

1

2

∫ 1

−1
dxP�1(x)P�2(x)P�3(x) =

(
�1 �2 �3
0 0 0

)2

. (A4.70)

1 In this book we adopt the phase convention Y�−m = (−1)mY ∗
�m

like, for example, Jackson (1975), Arfken and
Weber (2001) and also Mathematica. This is the origin of the factors (−1)m in the formulas.
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Integrals of four spherical harmonics can also be obtained from Eq. (A4.52) with the result∫
d�Y�1m1(n)Y�4m4(n)Y�3m3(n)Y�2m2(n)

=
∑
�′′,m′′

(−1)m
′′
√
(2�1 + 1)(2�4 + 1)(2�+ 1)(2�2 + 1)(2�′′ + 1)2

4π

(
�1 �4 �′′
0 0 0

)

×
(
�3 �2 �′′
0 0 0

) (
�1 �4 �′′
m1 m4 −m′′

) (
�3 �2 �′′
m3 m2 m′′

)
. (A4.71)

In full generality, from the integral of n spherical harmonics one can derive the integral of
n + 1 spherical harmonics by using Eq. (A4.52) to reduce it to a sum of products with n
factors.

A4.2.5 Invariant Functions on the Sphere

This section follows largely Mitsou et al. (2019). Here we study the properties of functions
on the sphere, depending on several variables, which are invariant under arbitrary common
rotations R ∈ SO(3) of all variables,

f (n1, · · ·nN) = f (Rn1, · · ·RnN). (A4.72)

The interest of this comes of course from our study of N -point functions of the CMB,
which have exactly this property. Let us expand f in spherical harmonics,

f (n1, · · ·nN) =
∑
�imi

f
m1···mN
�1···�N Y�1m1(n1) · · ·Y�NmN (nN). (A4.73)

Here the
∑
�imi

symbolically indicates the sum over all 0 ≤ �i < ∞ and −�i ≤ mi ≤ �i .
We shall show that the mi dependence of the coefficients fm1···mN

�1···�N is fully fixed by the
invariance property (A4.72), and we can re-write Eq. (A4.73) in terms of coefficients that
depend only on the �i and certain auxilary Li . First we use that

f
m1···mN
�1···�N =

∫ N∏
i=1

[
d�iY

∗
�imi
(ni )

]
f (n1, · · ·nN). (A4.74)

Now we act with an arbitrary rotation on f (n1, · · ·nN) and use the fact that it is invariant,

f
m1···mN
�1···�N =

∫ N∏
i=1

[
d�iY

∗
�imi
(ni )

]
f (Rn1, · · ·RnN) (A4.75)

=
∫ N∏
i=1

[
d�iY

∗
�imi
(R−1ni )

]
f (n1, · · ·nN) (A4.76)

=
∫ N∏
i=1

[
d�iD

(�i)

m′imi
(R)Y ∗

�im
′
i
(ni )

]
f (n1, · · ·nN) (A4.77)

=
N∏
i=1

[
D
(�i)

m′imi
(R)

]
f
m′1···m′N
�1···�N . (A4.78)
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Here we have used that D(�i)
mim

′
i

(R−1) = D(�i) ∗
m′imi

(R) and the sum over the m′i is understood.

We introduce the coefficients

I
�1···�N
m1···mN ;m′1···m′N

=
∫
SO(3)

dR

N∏
i=1

[
D
(�i)

m′imi
(R)

]
, (A4.79)

where dR is the normalized Haar measure (Wigner, 1959) of the rotation group. In terms
of the Euler angles,∫

dRF(R(α,β,γ )) = 1

8π2

∫ 2π

0
dα

∫ π

0
dβ sinβ

∫ 2π

0
dγF(α,β,γ ). (A4.80)

Since the Haar mesure is invariant under rotations, so are the coefficients I �1···�N
m1···mN ;m′1···m′N

.

Integrating Eq. (A4.78) over the rotation group we then have the relation

f
m1···mN
�1···�N = I �1···�N

m1···mN ;m′1···m′N
f
m′1···m′N
�1···�N . (A4.81)

Let us first evaluate this relation for the case N = 2. For this we use also that the matrix
elements of the representation matrices, D(�)

mm′ , form a complete orthonormal system of
functions on SO(3). Together with the relation

D
(�) ∗
m′m = (−1)m+m

′
D
(�)

−m′−m (A4.82)

we obtain for N = 2

I
�1�2
m1m2;m′1m′2

= (−1)m1+m′1
2�1 + 1

δ�1�2δ−m1m2δ−m′1m′2 . (A4.83)

Hence forN = 2 the only nonvanishing coefficients are of the form f−mm�� and Eq. (A4.81)
implies that they are independent of the value of m. Setting

f� = (−1)mf−mm� (A4.84)

and using the addition theorem we find

f (n1,n2) =
∑
�

f�P�(n1 · n2). (A4.85)

This is the well-known relation that we used intuitively for the CMB temperature 2-point
function. To go to arbitrary N , we use Eq. (A4.55) to reduce N on the right-hand side of
Eq. (A4.79) by 1 and proceed by induction. A lengthy but straightforward analysis yields
the following result:

I
�1···�N
m1···mN ;m′1···m′N

=
∑
Li

W
�1...�N |L1...LN−3
m1...mN W

�1...�N |L1...LN−3
m′1...m

′
N

, (A4.86)
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where we have introduced the generalized Wigner symbols

W
�1...�N |L1...LN−3
m1...mN ≡

∑
Mi

(
�1 �2 L1
m1 m2 −M1

)

×
[
N−4∏
k=1

(−1)Lk+Mk
√

2Lk + 1

(
Lk �k+2 Lk+1
Mk mk+2 −Mk+1

)]

× (−1)LN−3+MN−3
√

2LN−3 + 1

(
LN−3 �N−1 �N
MN−3 mN−1 mN

)
(A4.87)

for N ≥ 4,

W�1...�3
m1...m3

≡
(
�1 �2 �3
m1 m2 m3

)
for N = 3. (A4.88)

The sums over theMi’s run, as usual, from −Li to Li .
We now introduce the following invariant functions on (S2)N ,

Y�1...�N |L1...LN−3(n1, · · · ,nN) ≡ W�1...�N |L1...LN−3
m1...mN

N∏
k=1

Y�kmk (nk), (A4.89)

where also here the sum over the mi is understood. It is easy to check that the generalized
Wigner symbols transform inversely to the Y�m’s so that their product is invariant under
a global rotation. With the same sum convention as in Eq. (A4.89) we introduce also the
rotation invariant coefficients

f �1...�N |L1...LN−3 ≡ W�1...�N |L1...LN−3
m1...mN f

m1···mN
�1···�N . (A4.90)

So the invariant function can be written as

f (n1, · · · ,nN) =
∑
f �1...�N |L1...LN−3Y�1...�N |L1...LN−3(n1, · · · ,nN), (A4.91)

where the sum now is taken over all �i ≥ 0 and Li ≥ 0. Each coefficient and each function
is now manifestly invariant under rotation. It is an easy exercise to show that for N = 1
only � = 0 survives while for N = 2, we obtain Y�1,�2(n1,n2) ∝ δ�1�2P�(n1 · n2).
Due to the Wigner symbol factors, the triples (�1,�2,L1), (L1,�3,L2), (L2,�4,L3), . . . ,
(LN−3,�N−1,�N) have to satisfy the triangle relations. Graphically this is represented
in Fig. A4.1. For all the triangles appearing in this figure, the triangle relation must be
satisfied; otherwise the generalized Wigner symbol W�1...�N |L1...LN−3

m1...mN vanishes. Note also
that in (A4.87) all theMi’s appear with a positive and a negative sign so that the generalized
Wigner symbols also vanish if m1 + · · ·mN 
= 0.

A4.2.6 Spherical Harmonics of Spin s

We now consider tensor fields on the sphere2. We can express their components in terms of
the standard “real” orthonormal basis, e1 = eϑ = ∂ϑ , e2 = eϕ = 1

sinϑ ∂ϕ , or in terms of the
helicity basis

2 A more detailed treatment of spin weighted spherical harmonics can be found in Goldberg (1967) and
Newman and Penrose (1966).
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Fig. A4.1 The triangles that satisfy the triangle inequality for the generalized
Wigner symbols.

e+ = 1√
2
(e1 − ie2) , e− = 1√

2
(e1 + ie2) . (A4.92)

Here we identify, as is often done, a vector with the derivative in a given direction. A vector
is then defined by its action on functions: e1f = ∂ϑf and e2f = 1

sinϑ ∂ϕf . Note also that
the metric ds2 = dϑ2 + sin2 ϑ dϕ2 on the sphere has the components g−+ = g+− = 1,
and g++ = g−− = 0 in the helicity basis.

Under a rotation of the “real” basis, e1 → cos γ e1 − sin γ e2, e2 → cos γ e2 + sin γ e1,
the helicity basis transforms as e+ → e−iγ e+, e− → eiγ e−.

The components of a tensor field of rank r in the helicity basis transform under a
rotation by

T

s︷ ︸︸ ︷
+ · · ·+

r−s︷ ︸︸ ︷
− · · ·− → ei(2s−r)γ T

s︷ ︸︸ ︷
+ · · ·+

r−s︷ ︸︸ ︷
− · · ·−. (A4.93)

For example, the components of a vector transform as V + → eiγ V + and V − → e−iγ V −.
(The vector itself V = V +e+ + V −e− is invariant; hence the components transform
“contragradient” to the basis.) Components that transform with eisγ are called components
of spin |s| and of helicity s.

We are mainly interested in symmetric (real) rank-2 tensors like the polarization. These
have one spin-0 component T +− = T −+ = 1

2 tr T ≡ I ; one spin-2 component with positive
helicity, T ++ = 1

2 (T11 − T22) − iT12; and one spin-2 component with negative helicity,
T −− = 1

2 (T11 − T22)+ iT12 (see Exercise A4.1).
We can write a symmetric rank-2 tensor in these components as

T = 1

2

[
I1I+ T ++σ+ + T −−σ−

]
, (A4.94)

where σ± = σ 3 ± iσ 1 are given by the Pauli matrices,

σ 3 =
(

1 0
0 −1

)
, σ 1 =

(
0 1
1 0

)
.



A4.2 Spherical Harmonics 445

To expand a spin-s component of a tensor field on the sphere, one employs the spin
weighted spherical harmonics. These are spin-s components of tensor fields on the 2-
sphere. In the basis (eϑ,eϕ) they are given in terms of the irreducible representations of
the rotation group by

sY�m(ϑ,ϕ) ≡
√

2�+ 1

4π
D
∗ (�)
m−s(ϕ,ϑ,0), (A4.95)

= (−1)m

√
(2�+ 1)

4π

(�+m)! (�−m)!
(�+ s)! (�− s)! (sinϑ/2)2�eimϕ

×
∑
r

(
�− s
r

) (
�+ s

r + s −m
)
(−1)�−r−s(cotϑ/2)2r+s−m. (A4.96)

Here the sum over r goes over those values for which the binomial coefficients are nonva-

nishing; this means max{0,m− s} ≤ r ≤ min{�− s,�+ s}. (Remember
(

0
0

)
= 1.) The

spin weighted spherical harmonics are defined for |s| ≤ � and |m| ≤ �. For each fixed spin
s they form a complete set of orthonormal functions on the sphere, so that∫

d�n sY
∗
�m(n) sY�′m′(n) = δ��′δmm′, (A4.97)

and ∑
�m

sY
∗
�m(n) sY�m(n) = δ(ϕ − ϕ′)δ(cosϑ − cosϑ ′). (A4.98)

An initial rotation with angle ψ around the z-axis simply multiplies the matrix element
D
(�)
m−s by a factor e−isψ , so that

D
∗ (�)
m−s(ϕ,ϑ,ψ) =

√
4π

2�+ 1
sY�m(ϑ,ϕ)e

isψ . (A4.99)

Now let R1 be the rotation with Euler angles (ϕ1,ϑ1,0) that rotates ez into n1 and R2 the
rotation with Euler angles (ϕ2,ϑ2,0) that rotates ez into n2. Let (α,β,γ ) be the Euler angles
of the rotation R−1

1 R2, which first rotates n2 into ez and then ez into n1. We then have

D
(�)
m−s(α,β,γ ) =

∑
m′
D
(�)−1
mm′ (ϕ1,ϑ1,0)D

(�)

m′ −s(ϕ2,ϑ2,0)

=
∑
m′
D
∗ (�)
m′m(ϕ1,ϑ1,0)D

(�)

m′ −s(ϕ2,ϑ2,0)

= 4π

2�+ 1

∑
m′

sY
∗
�m′(n2) −mY�m′(n1). (A4.100)

Using Eq. (A4.99) we find√
4π

2�+ 1

∑
m′

sY�m′(ϑ2,ϕ2) −mY ∗�m′(ϑ1,ϕ1) = sY�m(β,α)e
−isγ . (A4.101)

This is the generalized addition theorem for spin weighted spherical harmonics.
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In analogy to L± as raising and lowering operators for the “magnetic quantum number”
m, we introduce the spin raising and lowering operators /∂ and /∂∗. They are defined by
μ = cosϑ ,

/∂ sY�m =
(
s ctgϑ − ∂ϑ − i

sinϑ
∂ϕ

)
sY�m (A4.102)

=
(

sμ√
1− μ2

+
√

1− μ2∂μ − i√
1− μ2

∂ϕ

)
sY�m (A4.103)

= −(1− μ2)
s
2

(
∂ϑ + i∂ϕ√

1− μ2

)
[(1− μ2)−s/2 sY�m],

/∂∗ sY�m =
(
−s ctgϑ − ∂ϑ + i

sinϑ
∂ϕ

)
sY�m (A4.104)

=
(

−sμ√
1− μ2

+
√

1− μ2∂μ + i√
1− μ2

∂ϕ

)
sY�m (A4.105)

= −(1− μ2)
−s
2

(
∂ϑ − i∂ϕ√

1− μ2

)
[(1− μ2)s/2 sY�m].

The interest of these operators is that they allow us to construct the spin weighted spher-
ical harmonics directly from the spin-0 harmonics and, inversely, we can use them to
build spin-0 quantities from spin weighted harmonics. One can actually show [e.g., by
using Eq. (A4.96)] that

/∂ ( sY�m) =
√
(�− s)(�+ s + 1) s+1Y�m, (A4.106)

/∂∗ ( sY�m) = −
√
(�+ s)(�− s + 1) s−1Y�m, (A4.107)

and therefore

/∂2 ( −2Y�m) =
√
(�+ 2)!

(�− 2)!
Y�m, (A4.108)

(/∂∗)2 ( 2Y�m) =
√
(�+ 2)!

(�− 2)!
Y�m. (A4.109)

On the other hand, the spin-2 spherical harmonics can be obtained from the ordinary
spherical harmonics by acting twice with the differential operators /∂ or /∂∗,

(/∂)2Y�m =
√
(�+ 2)!

(�− 2)!
2Y�m, (A4.110)

(/∂∗)2Y�m =
√
(�+ 2)!

(�− 2)!
−2Y�m. (A4.111)

To see that /∂ sf has spin s + 1 and /∂∗ sf has spin s − 1, for an arbitrary component sf with
spin weight s, we show that /∂ is proportional to a covariant derivative in direction g+−e−
and correspondingly /∂∗ ∝ g−+∇e+ . Since /∂∗ is the adjoint of−/∂ , it is sufficient if we show
the first identity. For s = 0, using e+ = 1√

2
(eϑ − ieϕ) = 1√

2
(∂ϑ − i 1

sinϑ ∂ϕ), we obtain
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/∂∗f = −√2e+f . For s 
= 0 tensor fields we have to compute the Christoffel symbols in
order to determine the covariant derivatives. In terms of the helicity basis, the canonical
metric on the 2-sphere takes the form ds2 = 2θ+θ−, where θ± denote the 1-forms dual to
the vector fields e± defined by θ+(e+) = θ−(e−) = 1 and θ−(e+) = θ+(e−) = 0. Hence

θ± = 1√
2
(dϑ ± i sinϑ dϕ) .

Therefore, the metric components are simply g++ = g−− = 0 and g−+ = g+− = 1. A
careful evaluation of the Christoffel symbols defined by ∇ekej = �ikjei in the helicity basis

gives3

�+−+ = �−+− = −�+++ = −�−−− = −
1√
2

cosϑ

sinϑ
= − 1√

2
ctgϑ . (A4.112)

All other Christoffel symbols vanish. With this we find for the covariant derivatives of the
spin-s components of a tensor

T +···+;+ = T +···+;− = e−(T +···+)− s√
2

ctgϑT +···+,

= 1√
2

(
∂ϑ + i

sinϑ
∂ϕ

)
(T +···+)− s√

2
ctgϑT +···+,

= 1√
2

[
∂ϑ − s ctgϑ + i

sinϑ
∂ϕ

]
T +···+

= −1√
2
/∂T +···+.

In the same way one obtains

T +···+;− = −1√
2
/∂∗T +···+.

In other words,

/∂ = −
√

2∇e− and /∂∗ = −
√

2∇e+ . (A4.113)

Since for an arbitrary rank-s tensor field the component T +···+ has helicity s and
T +···+;+ has helicity s + 1 while T +···+;− has helicity s − 1, this shows that /∂ and /∂∗ are
spin raising and lowering operators. Correspondingly one obtains −1√

2
/∂∗T −···− = T −···−;−

and −1√
2
/∂T −···− = T −···−;+, which have spin weight −s − 1 and −s + 1 respectively.

The spin-2 spherical harmonics are therefore just the doubly covariant derivatives of the
usual spherical harmonics,

−2Y�m = 2

√
(�− 2)!

(�+ 2)!
∇e+∇e+Y�m, (A4.114)

+2Y�m = 2

√
(�− 2)!

(�+ 2)!
∇e−∇e−Y�m. (A4.115)

3 These Christoffel symbols are most easily calculated using the Cartan formalism, which can be found in most
modern books on general relativity, for example, Straumann (2004).
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Finally, we want to interpret the spin-0 quantities /∂/∂T −− and /∂∗/∂∗T ++ of a symmetric
traceless spin-2 tensor T = T ++e+ ⊗ e+ + T −−e− ⊗ e−. In Exercise A4.2.2 we find that
for a vector with components V + and V −, the divergence and curl are given by

V +;− + V −;+ = V i;i = divV and V +;− − V −;+ = −iεijV i;j = −i rotV .

Here εij is the totally antisymmetric tensor in two dimensions,

εϑϑ = εϕϕ = 0, εϑϕ = −εϕϑ =
√

det g = sinϑ . (A4.116)

In our helicity basis this tensor is

ε++ = ε−− = 0, ε+− = −ε−+ = i. (A4.117)

One also finds

1

2

(
/∂∗2T ++ + /∂2T −−

)
= T ++;−− + T −−;++

= T ij ;ij = div(div(T )), (A4.118)

1

2

(
/∂∗2T ++ − /∂2T −−

)
= T ++;−− − T −−;++

= − i
2
εik

[
(T ij ;j );k + (T ij ;k);j

]
= − i

2
[rot(div(T ))+ div(rot(T ))] . (A4.119)

These results are verified most easily by just writing out both sides in components. Hence
the sum of the two scalars T ++;−− and T −−;++ gives the double divergence while their
difference gives the curl of the divergence of T . Note that in two dimensions the curl of a
vector is a (pseudo-)scalar. It is a three-dimensional (pseudo-)vector with a purely radial
component that as a field on the tangent space of the sphere has scalar character. The curl
of a 2-tensor is a (pseudo-)vector.

Exercises

A4.2.1 Tensor components in the helicity basis
Show that the components T ij of a 2-tensor on the sphere are related to the components
in the helicity basis e+ and e− via

T ±,± = 1

2

(
T 11 − T 22 ∓ i(T 12 + T 21)

)
,

T ±,∓ = 1

2

(
T 11 + T 22 ± i(T 12 − T 21

)
.

In particular, if T is symmetric T +− = T −+ = 1
2 tr T .

A4.2.2 Divergence and curl in the helicity basis Show that for a vector field on the
sphere given by

V = V +e+ + V −e− = V ϑ∂ϑ + V ϕ∂ϕ,
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we have

V +;− + V −;+ = V ϑ,ϑ + V ϕ,ϕ + ctgϑV ϑ = divV (A4.120)

V +;− − V −;+ = −i
(

1

sinϑ
V ϑ,ϕ − sinϑV ϕ,ϑ − 2 cosϑV ϕ

)
,

= −i
sinϑ

(
V ϑ,ϕ − (sin2 ϑV ϕ),ϑ

)
= −irotV . (A4.121)

Solution
We first calculate the Christoffel symbols with respect to the coordinate basis (ϑ,ϕ).
Using ds2 = dϑ2 + sin2 ϑ dϕ2 quickly gives

�ϑϕϕ = − cosϑ sinϑ, �
ϕ
ϕϑ = �ϕϑϕ = ctgϑ,

and zero for all other Christoffel symbols, so that

V ϑ;ϑ = V ϑ,ϑ, (A4.122)

V ϑ;ϕ = V ϑ,ϕ − cosϑ sinϑV ϕ, (A4.123)

V
ϕ

;ϕ = V ϕ,ϕ + ctgϑV ϑ, (A4.124)

V
ϕ

;ϑ = V ϕ,ϑ + ctgϑV ϕ . (A4.125)

so that

divV = V ϑ;ϑ + V ϕ;ϕ = V ϑ,ϑ + V ϕ,ϕ + ctgϑV ϑ, (A4.126)

rotV =
√

det g(V ϑ;ϕ − V ϕ;ϑ) = sinϑ

(
1

sin2 ϑ
V ϑ;ϕ − V ϕ;ϑ

)
= 1

sinϑ
V ϑ,ϕ − sinϑV ϕ,ϑ − 2 cosϑV ϕ . (A4.127)

On the other hand, we have

V +;− ± V −;+ = V +;+ ± V −;− = V +,+ ± V −,− + �+++V + ± �−−−V −. (A4.128)

Inserting V ± = 1√
2
(V ϑ ± i sinϑV ϕ) and V ·,± = 1√

2
(∂ϑ ∓ i

sinϑ ∂ϕ)V
· together with

�+++ = �−−− = 1√
2

ctg ϑ we find the above result.

A4.2.3 The Laplacian in the helicity basis
In the helicity basis the Laplacian on the sphere is given by

� = gab∇b∇a = g−+∇−∇+ + g+−∇+∇− = ∇−∇+ + ∇+∇− = 1

2

(
/∂/∂∗ + /∂∗/∂) .

Apply this formula to the spherical harmonics Y�m to show that�Y�m = −�(�+ 1)Y�m.
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A4.3 Bessel Functions

A4.3.1 Bessel Functions of Integer Order

The Bessel functions Jν(x) and Yν(x) are real solutions to the differential equation

x2 d
2f

dx2
+ x df

dx
+ (x2 − ν2)f = 0. (A4.129)

We only consider ν ∈ R; hence we may consider ν ≥ 0. Actually Jν and J−ν satisfy the
same differential equation but one defines another independent solution Yν that is related
to J−ν via

J−ν = cos(νπ)Jν − sin(νπ)Yν .

The Bessel functions Jν and Yν are also analytic in the order ν. For ν ≥ 0, Jν is regular at
x = 0, Jν(x) ∝ xν for |x| � ν. On the other hand, Yν diverges, Yν(x) ∝ x−ν for |x| � ν
and ν > 0, while Y0(x) ∝ ln(x). For large values of |x| both functions oscillate with
a period of approximately 2π and decay like 1/

√
x. We sometimes also use the Hankel

functions defined by

H(1)ν = Jν + iYν, H (2)ν = Jν − iYν . (A4.130)

All of these functions satisfy the recurrence relations

Fν−1 + Fν+1 = 2ν

x
Fν, (A4.131)

Fν−1 − Fν+1 = 2F ′ν, (A4.132)

Fν−1 − ν
x
Fν = F ′ν, (A4.133)

−Fν+1 + ν
x
Fν = F ′ν . (A4.134)

The Bessel functions are well defined in the complex plane (with suitably chosen cuts) even
for complex values ν. The Bessel functions Jn, n ∈ N can be represented as the integral

Jn(x) = (−i)
n

π

∫ π

0
eix cos θ cos(nθ) dθ . (A4.135)

Table A4.3 The spin-2 spherical harmonics with � = 2.

m 0Y2m ±2Y2m

2 1
4

√
15
2π sin2 ϑe2iϕ 1

8

√
5
π
(1− cosϑ)2e2iϕ

1
√

15
8π sinϑ cosϑeiϕ 1

4

√
5
π

sinϑ(1− cosϑ)eiϕ

0 1
2

√
5

4π (3 cos2 ϑ − 1) 3
4

√
5

6π sin2 ϑ

−1 −
√

15
8π cosϑ sinϑe−iϕ 1

4

√
5
π

sinϑ(1+ cosϑ)e−iϕ

−2 1
4

√
15
2π sin2 ϑe−2iϕ 1

8

√
5
π
(1+ cosϑ)2e−2iϕ
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With this one finds the useful expansion

eiy cosφ = J0(y)+ 2
∞∑
n=1

inJn(y) cos(nφ) =
∞∑

n=−∞
inJn(y)e

inφ . (A4.136)

We shall also employ the modified Bessel functions, which are defined by

Iν(x) = (−i)νJν(ix), (A4.137)

Kν(x) = iπ
2
(i)νH (1)ν (ix) = −

iπ

2
(−i)νH (2)ν (−ix). (A4.138)

A4.3.2 Spherical Bessel Functions

The spherical Bessel (Hankel) functions are Bessel (Hankel) functions of half-integer order,

jn(x) =
√
π

2x
Jn+1/2(x), (A4.139)

yn(x) =
√
π

2x
Yn+1/2(x), (A4.140)

h(1)n = jn + iyn, (A4.141)

h(2)n = jn − iyn. (A4.142)

They are solutions of the differential equation

x2 d
2f

dx2
+ 2x

df

dx
+ (x2 − n(n+ 1))f = 0. (A4.143)

The spherical Bessel/Hankel functions satisfy the recurrence relations

fn

x
= 1

2n+ 1
(fn−1 + fn+1) , (A4.144)

f ′n =
1

2n+ 1
(nfn−1 − (n+ 1)fn+1) . (A4.145)

Expressing the three-dimensional Laplace operator in polar coordinates, and observing
that the spherical part of the Laplacian applied to a spherical harmonic function gives
�ϑϕY�m = −�(�+1)Y�m, we find that j�(rk)Y�m(x̂) as well as y�(rk)Y�m(x̂) is a solution of(

�+ k2
)
f = 0

for arbitrary values of � and −� ≤ m ≤ �. Only the j�’s are regular at r = 0. On the other
hand, the exponential function, eix·k, for arbitrary k with modulus |k| = k also solves this
equation. Since the spherical harmonics form a complete system of functions on the sphere,
there must exist an expansion

eix·k = eikr x̂·k̂ =
∑
�m

c�mj�m(rk)Y�m(x̂).
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This represents the decomposition of the exponential into its contributions of orbital angular
momentum �. To determine the coefficients c�m, we choose the z-axis in the direction of k,
so that the function is independent of ϕ and only the terms with m = 0 contribute. Setting
μ = cosϑ this yields

eirkμ =
∑
�

c� 0j�(rk)Y� 0(μ) =
∑
�

c�j�(rk)P�(μ),

where we have set c� = 2�+1
4π c� 0 and made use of Eq. (A4.37). The coefficients c� are

now obtained by taking the nth derivative with respect to rk, multiplying with Pn, and
integrating overμ (for more details see Arfken and Weber, 2001). One finds c� = i�(2�+1)
so that

eik·nr =
∞∑
�=0

(2�+ 1)i�j�(kr)P�(μ). (A4.146)

Let us employ this representation to derive the so-called closure relation for spherical
Bessel function. For this we use∫

d3x exp (i(k1 − k2)x) = (2π)3δ(3)(k1 − k2). (A4.147)

Representing the exponentials as Bessel series as in Eq. (A4.146) and integrating over the
directions of x we find

(4π)2
∑
�m

∫ ∞

0
dx x2j�(k1x)j�(k2x)Y�m(̂k1)Y

∗
�m(̂k2) = (2π)3δ(3)(k1 − k2). (A4.148)

Now we multiply both sides with Y ∗�1m1
(̂k2) and integrate over directions of k2. The right-

hand side of (A4.148) then becomes (2π)3δ(k1 − k2)/k
2
2Y�m(̂k1) and the left-hand side

simply gets a δ��1δmm1 so that we obtain

2

π

∫ ∞

0
dx x2j�(k1x)j�(k2x) = δ(k1 − k2)

k2
1

. (A4.149)

This result is relevant for the calculation of the local bispectrum in Chapter 6.
Another important Bessel function integral that we use especially in Chapter 4 is

I (p,�) ≡ 2

π

∫ ∞

0
dx xpj2

� (x) =
∫ ∞

0
dx xp−1J 2

�+1/2(x)

=
�(1− p)�

(
�+ p+1

2

)
21−p�2(1− p/2)�

(
�+ 3−p

2

) . (A4.150)

Here � denotes the Gamma function, i.e., �(n) = (n−1)! for positive integers. The integral
converges for 1 > p > −2� − 1. Of special interest is the case p = −1 that occurs in the
calculation of the CMB spectrum for scale-invariant fluctuations,

I (−1,�) = 1

π �(�+ 1)
. (A4.151)
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Finally we shall use also the following approximate relation, the so-called Limber
approximation (Limber, 1959; Lo Verde and Afshordi, 2008), which states that for an
arbitrary slowly varying function we have

2

π

∫
dkk2f (k)j�(kr)j�(kr

′) � δ(r − r
′)

r2
f

(
�+ 1/2

r

)
. (A4.152)

Note that for f = constant this approximation is exact and reproduces Eq. (A4.149).
Approximation (A4.152) is especially useful when discussing lensing.



Appendix 5

Entropy Production and Heat Flux

Here we show that the perturbation variable � defined in Eq. (2.84) is related to the
divergence of the entropy flux. We consider a system that deviates slightly from thermal
equilibrium.

A5.1 Thermal Equilibrium

We first recollect some important relations in thermal equilibrium. We consider an arbitrary
mix of different (relativistic and nonrelativistic) particles that may or may not be conserved.
The only total thermodynamical quantities then are temperature T , entropy S, energy E,
pressure P , and volume V . We shall also use the densities s = dS/dV and ρ = dE/dV .
Certain conserved species may have a chemical potential, but we are not interested in this
“fine structure” here. The corresponding treatment for one conserved particle species can
be found in Straumann (1984), Appendix B.

We start with the Gibbs relation

T dS = dE + P dV, or T
dS

dV
= T s = ρ + P . (A5.1)

S and E are extensive quantities. Locally they are simply given by S = sV and E = ρV .
Inserting this in the Gibbs relation we obtain

T V ds + T s dV = V dρ + ρ dV + P dV hence T ds = dρ. (A5.2)

Defining the entropy 4-velocity field by Uμ, the entropy flux is then given by Sμ = sUμ =
T −1(ρ+P)Uμ. In thermal equilibrium the entropy velocity coincides with the energy flux
uμ = Uμ, so that T μνUμ = −ρUν . In thermal equilibrium we therefore have

Sμ = − 1

T
UνT

μν + P
T
Uμ. (A5.3)

In an FL background (Uμ) = (uμ) = a−1(1,0) with Uμ;μ = 3ȧ/a2, so that entropy
conservation becomes 0 = Sμ;μ = a−1ṡ + 3(ȧ/a2)s, which results in the well-known law
of adiabatic expansion, ṡ = −3(ȧ/a)s. Furthermore, with Eq. (A5.2) small variations of
the entropy flux at fixed velocity field Uμ are given by

dSμ = Uμ ds = 1

T
Uμ dρ = − 1

T
Uν dT

μν . (A5.4)
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A5.2 Small Departures from Thermal Equilibrium

We now proceed to the study of small deviations from equilibrium. There is some arbi-
trariness in fitting the actual state with an equilibrium state plus small deviations. Follow-
ing Israel and Stewart (1980), we approximate the actual state with the thermal equilibrium
at the same energy density ρ and entropy velocity field Uμ. We neglect all second-order
quantities, taking into account only first-order deviations from thermal equilibrium and/or
from the FL background. We specify the deviation of the energy–momentum tensor from
thermal equilibrium, δT μν , by the following ansatz:

T μν = (ρ + Peq)U
μUν + Peqg

μν + δT μν . (A5.5)

Here Peq is the pressure of the thermal equilibrium state with energy density ρ. Setting
ρ = ρ̄ + δρ we therefore have Peq = P̄ + δP with δP = c2

s δρ.
On the other hand, the energy flux 4-velocity uμ is defined by (2.64) as the timelike

eigenvector of the energy–momentum tensor and T μν can also be written in the form

T μν = (ρ + P)uμuν + P gμν + μν = ρuμuν + τμν, (A5.6)

where τ is the stress tensor normal to uμ given in Eq. (2.68),

τμν = P(uμuν + gμν)+ μν ,  λλ = 0. (A5.7)

The tensor  μν is orthogonal to uμ,  μνuν = 0. DefiningQμ by

uμ = Uμ +Qμ,
we can rewrite (A5.6) in the following manner:

T μν = (ρ + P)UμUν + P gμν + Uμqν + Uνqμ + μν
= (ρ + Peq)U

μUν + Peqg
μν + Uμqν + Uνqμ

+ (P − Peq)(U
μUν + gμν)+ μν , (A5.8)

where we have introduced

qμ = (ρ + p)Qμ . (A5.9)

 μν, δTμν, Q
μ, and therefore also qμ vanish in the background; they are of first order.

Since u2 = U2 = −1, we have to first order q · U = 0, q · u = 0.
Identifying δT μν by comparing Eq. (A5.8) with the definition given in Eq. (A5.5), we

obtain to first order

δT μν = Uμqν + Uνqμ + (P − Peq)(U
μUν + gμν)+ μν, (A5.10)

and

δT μνUμ = −qν − μνQμ = −qν,
since  μν and Qμ are both first order and normal to Uμ. With Eq. (A5.4) the perturbed
entropy flux Sμ = Sμeq + δSμ becomes

Sμ = sUμ − 1

T
δT μνUν = sUμ + 1

T
qμ. (A5.11)

This equation shows that qμ represents the heat flux.
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From P = P̄ (1+ πL) and Peq = P̄ (1+ c2
s

w
δ), δ = δρ/ρ̄ we find with Eq. (2.84)

P − Peq = P̄
(
πL − c

2
s

w
δ

)
= P̄ � . (A5.12)

Taking the divergence of Eq. (A5.11) we find

Sμ;μ = s,μUμ + sUμ;μ + T,μ
T 2
δT μνUν − 1

T
δT μν ;μUν − 1

T
δT μνU(ν;μ), (A5.13)

where (ν;μ) denotes symmetrization, U(ν;μ) = 1
2 (Uμ;ν + Uν;μ). In the last term we have

used the fact that δT μν is symmetric. To evaluate the fourth term on the right-hand side we
make use of energy–momentum conservation in the form

0 = UνT μν ;μ = Uν[(ρ + Peq)U
μUν + Peqg

μν];μ + UνδT μν ;μ.

Expanding the derivative of the square bracket leads to

(ρ + Peq)U
μ;μ + ρ,μUμ = δT μν ;μUν . (A5.14)

With Eq. (A5.1), the first term on the left-hand side of Eq. (A5.14) cancels the second term
on the right-hand side of Eq. (A5.13), and Eq. (A5.2) implies s,μ = T −1ρ,μ, so that the
second term of Eq. (A5.14) cancels the first term in Eq. (A5.13). The fourth term on the
right-hand side of Eq. (A5.13) therefore cancels the first two and we are left with

Sμ;μ = −T,μ
T 2
qμ − 1

T
δT μνU(ν;μ). (A5.15)

To evaluate δT μνU(ν;μ) we define the projector hμν onto the three-dimensional subspace
of tangent space normal to Uμ:

hμ
ν = UμUν + δμν,

and the acceleration

aμ = UνUμ;ν .
With this it is easy to show that

Uμ;ν = hμαhνβUα;β − aμUν .
Defining the expansion tensor θμν = θνμ = hμαhνβU(α;β), Eq. (A5.15) now becomes

Sμ;μ = − 1

T

(
T,μ

T
+ aμ

)
qμ − 1

T
δT μνθνμ. (A5.16)

The acceleration aμ is of first order, and to lowest order T,μ/T ∝ Uμ so that ( T ,μ
T
+aμ)qμ

vanishes to first order. Furthermore, δT μν is of first order. To determine the divergence of
the entropy flux to first order, it is therefore sufficient to determine θνμ to zeroth order. But
to zeroth order

h0
0 = h0

i = hi0 = 0 and h
j
i = δji .

Furthermore, (Uμ) = −a(1,0) so that

Ui;j = −ȧδij and U0;0 = U0;j = Ui;0 = 0.
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Inserting this in the definition of θμν , we obtain to lowest order

θij = ȧ

a2
gij and θ00 = θi0 = θ0j = 0. (A5.17)

With Eq. (A5.16) the divergence of the entropy flux then becomes to first order

Sμ;μ = 1

T
δT μνθνμ = 1

T
δT ij θij = 3

ȧ

a2

P − Peq

T
= 3

ȧ

a2

P̄

T
�. (A5.18)

For the last equals sign we have used Eq. (A5.12). This demonstrates that the entropy
production rate is proportional to �.

A5.3 Phenomenological Coefficients

Finally, for completeness, we want to introduce the heat conductivity coefficient as well as
bulk and shear viscosities. We now no longer assume the energy–momentum tensor to be
nearly homogeneous and isotropic, but we allow only for small departures from thermal
equilibrium that we take into account to first order only. It is then easy to check that
Eq. (A5.16) is still valid. We now define ημν by

δT μν = ημν + Uμqν + qμUν, η ≡ ημμ. (A5.19)

From Eq. (A5.10) we have Uμημν = 0; hence hμαhνβη
αβ = hμαηαν = ημν . Therefore ημν

“lies” in the hypersurface of tangent space normal to Uμ,

Sμ;μ = − 1

T 2
qμhνμ

(
T,ν + T aν

)− 1

T
ημνθμν . (A5.20)

Let us also introduce the traceless part of ημν ,

η̂μν = ημν − 1

3
η hμν .

With the shear tensor defined as the traceless part of θμν ,

σμν = θνμ − 1

3
θhνμ, θ = θμμ, (A5.21)

Equation (A5.16) can now be written as

Sμ;μ = − 1

T 2
qμhνμ

(
T,μ + T aμ

)− 1

T
η̂μνσμν − 1

3T
θη. (A5.22)

The three terms in Eq. (A5.22) are independent. The second law of thermodynamics,
Sμ;μ ≥ 0, requires that each of them be nonnegative. This is possible only if

qμ = −χhμν (
T,ν + T aν

)
, χ ≥ 0 (A5.23)

η̂μν = −2ζσμν, ζ ≥ 0 (A5.24)

η = −3ξθ, ξ ≥ 0. (A5.25)

The quantities ζ and ξ are called the shear and bulk viscosity respectively and χ is the heat
conductivity coefficient. For small deviations from thermal equilibrium, the second law of
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thermodynamics requires that δT μν be fully determined by these three coefficients and be
of the form

δT μν = −χ [
Uμhνλ

(
T,λ + T aλ

)+ Uνhμλ (
T,λ + T aλ

)]− 2ζσμν − ξθhμν . (A5.26)

Eq. (A5.23) is the relativistic generalization of Fourier’s law, q = −χ∇T . In terms of the
phenomenological coefficients χ, ζ , and ξ the entropy production is given by

Sμ;μ = 1

χT 2
qμqμ + 2ζ

T
σμνσμν + ξ

T
θ2 ≥ 0. (A5.27)

Each of these contributions is nonnegative because qμ is a spatial vector and σμν is a
spatial tensor. They are understood as entropy production due to heat flux, shear viscosity,
and bulk viscosity respectively. Only the third term, the bulk viscosity, contributes to first
order in deviations from homogeneity and isotropy, since in this case qμ and σμν are small.



Appendix 6

Mixtures

In this appendix we derive Eqs. (2.137) and (2.139). Let us first recall the definitions of the
difference variables,

Sαβ =
[
Dgα

1+ wα −
Dgβ

1+ wβ

]
, (A6.1)

Vαβ = Vα − Vβ, (A6.2)

�αβ = wα

1+ wα �α −
wβ

1+ wβ �β, (A6.3)

 αβ = wα

1+ wα α −
wβ

1+ wβ  β . (A6.4)

We now calculate the derivative of one of the terms in Sαβ .(
Ḋgα

1+ wα

)
= Ḋgα

1+ wα −
ẇα

1+ wα
Dgα

1+ wα
= (1+ wα)−1

[
Ḋgα + 3H(c2

α − wα)Dgα

]
= −kVα − 3H wα

1+ wα �α . (A6.5)

For the second equals sign we have used ẇα = −3H(c2
α − wα)(1 + wα) and for the last

equals sign we have inserted Eq. (2.131). With the definition (A6.1) we now simply obtain
Eq. (2.137):

Ṡαβ = −kVαβ − 3H�αβ . (A6.6)

To find a differential equation for Vαβ we first take the difference of Eq. (2.131) for the
component α with the same equation for component β. This leads to

V̇αβ +HVαβ − 3H(c2
αVα − c2

βVβ) = 3k(c2
α − c2

β)�+ kc2
α

Dgα

1+ wα
− kc2

β

Dgβ

1+ wβ + k�αβ −
2k

3

(
1− 3K

k2

)
 αβ .

(A6.7)
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We now write

Dgα

1+ wα =
Dg

1+ w +
Dgα

1+ wα −
Dg

1+ w
= Dg

1+ w +
∑
γ

ργ + Pγ
ρ + P

(
Dgα

1+ wα −
Dgγ

1+ wγ

)
,

= Dg

1+ w +
∑
γ

ργ + Pγ
ρ + P Sαγ . (A6.8)

Inserting this and kDg

1+w = kD
1+w − 3k�− 3HV in Eq. (A6.7) yields

V̇αβ +HVαβ − 3H
[
c2
α(Vα − V )− c2

β(Vβ − V )
]

=
k
(
c2
α − c2

β

)
1+ w D + k

∑
γ

ργ + Pγ
ρ + P

(
c2
αSαγ − c2

βSβγ

)
+ k�αβ − 2k

3

(
1− 3K

k2

)
 αβ .

(A6.9)

Note also that Vα − V = ∑
γ
ργ+Pγ
ρ+P (Vα − Vγ ) =

∑
γ
ργ+Pγ
ρ+P Vαγ . Furthermore, (ργ +

Pγ )Sαγ = 1
2 (ργ + Pγ )[Sαγ + Sβγ ] + 1

2 (ργ + Pγ )[Sαγ − Sβγ ]. Using Sαγ − Sβγ = Sαβ
this gives ∑

γ

(ργ + Pγ )Sαγ = 1

2

∑
γ

(ργ + Pγ )[Sαγ + Sβγ ]+ 1

2
(ρ + P)Sαβ .

The same identity holds with S.. replaced by V... Inserting this in Eq. (A6.9) we finally
obtain Eq. (2.138):

V̇αβ +HVαβ − 3

2
H

(
c2
α + c2

β

)
Vαβ − 3

2
H

(
c2
α − c2

β

) ∑
γ

ργ + Pγ
ρ + P

(
Vαγ + Vβγ

)

= k
⎡⎣c2

α − c2
β

1+ w D +
c2
α + c2

β

2
Sαβ +

c2
α − c2

β

2

∑
γ

ργ + Pγ
ρ + P

(
Sαγ + Sβγ

)
+�αβ − 2

3

(
1− 3K

k2

)
 αβ

]
. (A6.10)



Appendix 7

Statistical Utensils

A7.1 Gaussian Random Variables

A7.1.1 Introduction

A random variable is a real function X on a probability space (�,dμ). The set � is a
measurable space with normalized measure μ, that is,

∫
�
dμ = 1. The integral∫

�

X dμ = 〈X〉

is called the expectation value or simply the mean of X, while∫
�

(X − 〈X〉)2 dμ = 〈X2〉 − 〈X〉2

is called the variance of X and its (positive) square root is the standard deviation. If
〈X〉 = 0, we call X a fluctuation. We are mainly interested in fluctuations. We sometimes
call � the “space of realizations” or the “ensemble.” A random variable is strongly contin-
uous if the derivative of its probability distribution dμ/dX ≡ p is an integrable function1

on R. Then we can write

〈X〉 =
∫
�

X dμ =
∫
R

xp(x) dx. (A7.1)

The probability distribution satisfies the normalization condition∫
R

p(x) dx = 1.

The distribution function p(x), also called the probability density, fully determines the
random variable.

Definition 7.1 A random variable with probability distribution

p(x) = 1√
2πσ

e−(x−x0)
2/2σ 2

1 In the more general case, p is a distribution in the sense of Schwartz, that is, a functional on some space of
functions on R.
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is called a Gaussian random variable (normal distribution) with mean x0 and
variance σ 2.

The Gaussian distribution with mean 0 and variance 1 is called the standard
normal distribution.

The moments of a random variable with mean x0 are defined by

Vn ≡
∫ ∞

−∞
(x − x0)

np(x) dx. (A7.2)

The moments of a Gaussian random variable are given by

V0 = 1,Vn =
{

0 if n is odd
σn(n− 1)! ! if n > 0, is even, (A7.3)

where the double factorial of a number is defined by m! != m(m − 2)(m − 4) · · · . This
statement is evident for n odd. The proof of the even case is easiest done by induction and
is left as an exercise.

A7.1.2 The Central Limit Theorem

Let Xi be independent random variables with means xi and variances σi . Independence
means that 〈(Xi − xi)(Xj − xj )〉 = δij σ 2

i . Then the sums

Sn =
∑n
i=1Xi − xi√
n

∑n
i=1 σi

converge (weakly) to the standard normal distribution. A proof of this important theorem
can be found in most texts on probability theory.2

In physics it means that an experimental error that comes from many independent
sources is often close to Gaussian.

For the CMB its main relevance is that the observed C�’s, which are given by the average
Co� = 1

2�+1

∑�
−� |a�m|2 even though by themselves not Gaussian, tend to Gaussian vari-

ables with mean C� and variance C2
� /� for large �. As we have seen in Section 9.4.2, the

variance of the variable |a�m|2 is 2C2
� ; therefore the central limit theorem implies that

√
2√

(2�+ 1)C�

�∑
−�
(|a�m|2 − C�),

converges to the standard normal distribution. Hence Co� converges to a Gaussian distribu-
tion with mean C� and variance C2

� /� which becomes small with increasing �.

A7.1.3 A Collection of Gaussian Random Variables

A collection X1 · · ·XN of random variables is called Gaussian if their joint probability
density is given by

2 There is a technical condition that has to be fulfilled for the theorem to hold. It ensures that the series is not
dominated by one (or a small number) of variables. This is certainly fulfilled if the variables Xi are equally
distributed. But the central limit theorem applies in much more general cases.
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p(x) = 1√
(2π)N det(C)

exp

(
−1

2
xT C−1x

)
, x ∈ R

N, (A7.4)

where C is a real, positive-definite, symmetric N ×N matrix.
First we show that

〈XiXj 〉 ≡ 1√
(2π)N det(C)

∫
xixj exp

(
−1

2
xT C−1x

)
dxN = Cij . (A7.5)

To prove this, we use the fact that symmetric matrices can be diagonalized. In other words,
there exists an orthogonal matrix S, SST = 1 so that

ST C−1S = D =

⎛⎜⎜⎝
λ1 0 · · ·
0 λ2 0 · · ·

...
0 · · · 0 λN

⎞⎟⎟⎠ . (A7.6)

Since | det S| = 1, 1/ detC = detD = λ1λ2 · · · λN and for y = Sx we have dNx = dNy.
This yields

〈XiXj 〉 = STikSTjl

√
 Nn=1λn

(2π)N/2

∫
ykyl exp

(
−1

2

N∑
n=1

y2
nλn

)
dxN

= STik(λk)−1δklSlj = (ST D−1S)ij = Cij . (A7.7)

Here the sum over repeated indices is understood and we have made use of Eq. (A7.3) for
the case n = 1 if k 
= l and n = 2 if k = l. For obvious reasons, the matrix C is called the
correlation matrix.

It is easy to see that arbitrary linear combinations of a collection of Gaussian random
variables result again in a collection of Gaussian random variables, whereas powers of
Gaussian random variables are not Gaussian. Actually, the sum of the squares of n inde-
pendent Gaussian random variables with the same distribution results in a χ2-distributed
variable with n degrees of freedom.

A7.1.4 Wick’s Theorem

Wick’s theorem provides a general formula for the m-point correlator of a collection of
Gaussian variables. In this sense it is a generalization of Eq. (A7.3). It is clear that for m
odd the result vanishes. For even m = 2n we obtain the m-point correlator by summing all
the possible products of 2-point correlators made from the variables Xi1, . . . , Xim ,

〈Xi1 . . . Xi2n〉 =
∑

{j1,...j2n}={i1,...i2n}
Cj1 j2 · · ·Cj2n−1 j2n . (A7.8)

Here the sum is not over all permutations, but only over those that give rise to different
pairs. Since Cij = Cji we could also simply sum over all permutations of (i1, . . . ,i2n)
and divide by 2nn!, since for each collection into pairs, there are 2nn! permutations that
give rise to the same pairs. The factor 2n stems from the fact that in each of the pairs
we can interchange the factors and n! permutations simply interchange some of the pairs.
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For example, 2n = 4 admits 4! /222 = 3 different pairings, namely 〈X1X2〉〈X3X4〉,
〈X1X3〉〈X2X4〉, and 〈X1X4〉〈X3X2〉.

This theorem is extremely important not only in probability theory but also in quantum
field theory and statistical mechanics. It means that for a collection of Gaussian random
variables, all n-point correlators are determined by the 2-point correlator alone. Since its
proof is not easily found in texts on probability but more often in the infinite-dimensional
context of field theory where it is more complicated, we present it here for those who are
interested.

Proof We consider only the case of a diagonal covariance matrix C. The general case
can then be obtained by diagonalization of C in the same way as in Eq. (A7.7). We show
Eq. (A7.8) by induction. The case 2n = 2 is nothing other than Eq. (A7.7). For the step from
2n to 2n + 2 we use the fact that for an exponentially decaying function

∫∞
−∞ dx

df
dx
= 0;

hence

0 =
∫
dxN

d2

xjxk

(
xi1xi2 · · · xi2ne−

∑N
m=1 x

2
mλm/2

)
=

∫
dxN

⎛⎝ 2n∑
r 
=s=1

δir j δiskxi1 · · · x̌ir · · · x̌is · · · xi2n − λj δjkxi1 · · · xi2n

+ λjλkxjxkxi1 · · · xi2n −
∑
r

λj xj δkir xi1 · · · x̌ir · · · xi2n

−
∑
r

λkxkδjir xi1 · · · x̌ir · · · xi2n

⎞⎠ e−∑N
m=1 x

2
mλm/2.

Here a check over a variable xm means that this variable is omitted in the product. In the
above integral, all except the term proportional to λjλk are 2n- or (2n−2)-point correlators.
We can therefore express the (2n+ 2)-point correlator proportional to λjλk in terms of 2n-
and (2n − 2)-point correlators. Furthermore, we shall use the fact that λ−1

k δjk = 〈XjXk〉.
Dividing the above equation by λjλk therefore gives

〈XjXkXi1 · · ·Xi2n〉 = −
2n∑

r 
=s=1

〈XirXj 〉〈XisXk〉〈Xi1 · · · X̌ir · · · X̌is · · ·Xi2n〉

+ 〈XjXk〉〈Xi1 · · ·Xi2n〉
+

∑
r

〈XkXir 〉〈XjXi1 · · · X̌ir · · ·Xi2n〉

+
∑
r

〈XjXir 〉〈XkXi1 · · · X̌ir · · ·Xi2n〉.

Wick’s theorem for 2n implies that

〈XkXi1 · · · X̌ir · · ·Xi2n〉 =
∑
s

〈XkXis 〉〈Xi1 · · · X̌ir · · · X̌is · · ·Xi2n〉.
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Therefore, the last sum cancels with the double sum and we end up with

〈XjXkXi1 · · ·Xi2n〉 = 〈XjXk〉〈Xi1 · · ·Xi2n〉
+

∑
r

〈XkXir 〉〈XjXi1 · · · X̌ir · · ·Xi2n〉 . (A7.9)

But since the 2n-point correlators 〈Xi1 · · ·Xi2n〉 and 〈XjXi1 · · · X̌ir · · ·Xi2n〉 are the
sum of all possible products of 2-point correlators, this represents simply the sum of
all possible products of 2-point correlators ofXj ,Xk ,Xi1, . . . ,Xi2n ; hence Wick’s theorem
is proven.

A7.2 Random Fields

A random field is an application X : S → {random variables} : n �→ X(n) that assigns
to each point n in the space S a random variable X(n). Here the space S can be R

n, the
sphere, or some other space. We think mainly of S being the CMB sky, hence the sphere
on which our random fields are, for example, the temperature fluctuations �T (n) or the
polarization. Another example is three-dimensional-space (either R3, the 3-sphere, or the 3-
pseudo-sphere) where, for example, the density and velocity fluctuations are random fields
of interest to us.

Definition 7.2 A random field is called Gaussian if arbitrary (finite) collec-
tions X(n1), . . . ,X(nN) are Gaussian random variables according to (A7.4). The
correlator

〈X(n1)X(n2)〉 = C(n1,n2)

is called the correlation function or the 2-point function.

For Gaussian random fields, the n-point function is given by the sum of all possible different
products of 2-point functions.3

Formally one can write

〈X(n1)X(n2)〉 = 1√
det(2πC)

∫
δXX(n1)X(n2)

× exp

(
−1

2

∫
dn1dn2X(n1)C

−1(n1,n2)X(n2)

)
, (A7.10)

where here C is to be understood as an operator on (a certain space of) functions on S
given by

X→ X′ = CX,X′(n1) =
∫
dn2C(n1,n2)X(n2). (A7.11)

The integral δX is a functional integral over the infinite dimensional space of functions
on S. It is, however, not clear that the determinant of such an operator exists even if we

3 Physicists are often more familiar with quantum field theory. In (Euclidean) quantum field theory the 2-point
function is called the propagator and the theory is Gaussian if and only if it is trivial. Only in the absence of
interactions are all n-point functions determined by the propagators and the so-called connected part, which is
the n-point function subtracted by the Gaussian result, vanishes.
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require it to be positive definite. The situation becomes much simpler if we find a linear
transformation of our variables X that renders the operator C diagonal. Let us assume that
there is such a linear invertible transformation, of the form

Y (m) =
∫
dnL(m,n)Y (n) (A7.12)

such that C(m,m′) = Cmδ(m − m′). In terms of the variable Y the inverse of C is simply
C−1
m δ(m−m′) and

〈YmYm′ 〉 = δ(m−m′) 1√
2πCm

∫
dYmY

2
m exp(−Y 2

m/(2Cm), (A7.13)

like in the one-dimensional case. Since C is a symmetric positive operator, such a diagonal
basis always exists, but in general it might not be easy to find it.

However, symmetries can help in this case. If we decompose our random variables into
components that transform irreducibly under a symmetry group of the problem, different
components cannot be correlated with each other, in order not to break the symmetry. We
now show that this symmetry property allows us in cosmology to find the diagonal basis that
corresponds to a decomposition into irreducible components under the group of rotations
or translations.

A7.2.1 Statistical Homogeneity and Isotropy

A random field respects a symmetry group G of the space S if the correlation function is
invariant under transformations n �→ Rn for all R ∈ G. In other words,

C(Rn1,Rn2) = C(n1,n2).

For this it is not necessary that X(n) = X(Rn), but the transformed variable must have
identical statistical properties. In cosmology, we expect the CMB sky to be statistically
isotropic, that is, invariant under rotations. This means that the correlation function is a
function only of the scalar product μ = n1 · n2. Therefore, we can expand it in terms of
Legendre polynomials,

C(n1,n2) = C(μ) = 1

4π

∑
�

(2�+ 1)C�P�(μ). (A7.14)

We shall show now, that when expanding a statistically isotropic random variable on the
CMB sky in spherical harmonics,

X(n) =
∑
�m

a�mY�m(n), (A7.15)

the coefficients a�m satisfy

〈a�1m1a
∗
�2m2

〉 = δm1m2δ�1�2C�1 . (A7.16)

To see this we write the correlation function as∑
�m

C�Y�m(n1)Y
∗
�m(n2) =

∑
�m�′m′

〈a�ma∗�′m′ 〉Y�m(n1)Y
∗
�′m′(n2). (A7.17)
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For the left-hand side of this equation we have used the addition theorem for spherical
harmonics (see Appendix 4, Section A4.2.3) to replace the P�’s in Eq. (A7.14) and for
the right-hand side we simply used the expansion (A7.15). Multiplying this equation by
Y ∗�1m1

(n1)Y�2m2(n2) and integrating over n1 and n2 we obtain Eq. (A7.16).
Therefore, for statistically isotropic random fields, the expansion in terms of spherical

harmonics diagonalizes the correlation function. This is why it is so useful to determine
the a�m’s measured by an experiment. If the underlying fluctuations are Gaussian, these are
independent Gaussian variables.

Let us now turn to random fields on three-dimensional space. For simplicity we consider
Euclidean space. For a random field X(x) we expect its statistical properties to be inde-
pendent of translations and rotations. Therefore, the correlation function C(x1,x2) depends
only on the distance |x1−x2| ≡ r . We now show that for statistically homogeneous random
fields, the power spectrum is simply the Fourier transform of the correlation function.
Statistical isotropy implies that the latter depends only on the modulus of k. In Chapter 2
we have defined the power spectrum of a statistically homogeneous and isotropic random
field X by

〈X(k)X∗(k′)〉 = (2π)3δ(k− k′)PX(k). (A7.18)

We shall now see that 〈X(k)X∗(k′)〉 is indeed of this form and that

PX(k) = Ĉ(k). (A7.19)

We simply insert the definition

〈X(k)X∗(k′)〉 =
∫
d3x d3x′ 〈X(x)X(x′)〉ei(k·x−k′·x′)

=
∫
d3x d3x′ C(x− x′)ei(k·(x−x′)−(k′−k)·x′)

=
∫
d3z d3x′ C(z)ei(k·z−(k

′−k)·x′)

= (2π)3 δ(k− k′)Ĉ(k).

For the third equals sign we made the variable transform z = x− x′ and for the last equals
sign we used the fact that the integral of eik·x is a delta function. More precisely,∫

ei(k
′−k)·xd3x =

∫
e−i(k

′−k)·xd3x = (2π)3δ(k′ − k). (A7.20)

This proves the ansatz (A7.18) and Eq. (A7.19). This shows that for statistically homo-
geneous fields, the Fourier coefficients X(k) are independent random variables and are
therefore especially useful for statistical analysis and parameter estimation.



Appendix 8

Approximation for the Tensor C� Spectrum

In this appendix we derive in a self-consistent way the approximation (2.278) for the C�
power spectrum of tensor perturbations in an FL background with vanishing curvature,
K = 0. We start with the power spectrum of tensor perturbations of the metric,〈

H
(T )
ij (k,t)H

(T )∗
mn (k

′,t ′)
〉
= (2π)3Pijmn(k,t,t ′)δ3(k− k′).

H
(T )
ij (k,t) is symmetric, traceless, and transverse, and since its Fourier transform is real we

have H(T )∗ij (k,t) = H(T )ij (−k,t); hence Pijmn(k,t,t ′) = Pmnij (−k,t ′,t).
We define the projection tensor onto the plane normal to k,

Pij = δij − k−2kikj . (A8.1)

The most generic tensor Pijmn, which has the above properties, is isotropic,1 and is also
invariant under parity, Pijmn(k,t,t ′) = Pijmn(−k,t,t ′), is to be of the form2

Pijmn(k,t,t ′) = H(k,t,t ′)Mijmn(k) with (A8.2)

Mijmn(k) ≡ PimPjn + PinPjm − PijPmn
= [δimδjn + δinδjm − δij δmn + k−2(δij kmkn

+ δmnkikj − δimkj kn − δinkmkj − δjmkikn − δjnkmki)
+ k−4kikj kmkn]. (A8.3)

The Fourier transform on Eq. (2.243) gives(
�T (n,k)
T

)(T )
= −

∫ f

i

dt exp(ik · n(t0 − t)) ∂tHij (t,k)ninj . (A8.4)

1 This means that only k and invariant tensors like δij or εijm enter its construction. No external given vector or
tensor that is not invariant under rotations is allowed.

2 If we do not require parity invariance, an additional term proportional to Aij lm = k−1kq(Pjmεilq +
Pilεjmq + Pimεjlq + Pjlεimq) can be added. But this term changes sign under parity and can be shown to be
proportional to the difference of the amplitudes of the two polarization states (Caprini et al., 2004). When it is
present, parity violating terms (like corrolators between the temperature anisotropy and B-polarization
(see Caprini et al., 2004 and Chapter 5) appear. We neglect this possibility in this appendix.
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With this and Eq. (A8.2) we obtain〈
�T

T
(n,x)

�T

T
(n′,x)

〉
≡

(
1

2π

)6 ∫
d3k d3k′

〈
�T

T
(n,k)

�T

T
(n′,k′)

〉
exp(−ix(k− k′))

=
(

1

2π

)3 ∫
k2 dk d�k̂

∫ t0

tdec

dt

∫ t0

tdec

dt ′ exp(ik · n(t0 − t)) exp(−ik · n′(t0 − t ′))

× ∂2

∂t∂t ′
Pijlm(k,t,t ′)ninjn′ln

′
m. (A8.5)

Here d�k̂ denotes the integral over directions in k space and we made use of the δ-function
to get rid of the integral over d3k′.

We now introduce the form (A8.2) of Pijlm. We further assume that the perturbations
have been created at some early epoch, for example, during an inflationary phase, after
which they evolved deterministically. The function H(k,t,t ′) is thus a product of the form

H(k,t,t ′) = H(k,t) ·H ∗(k,t ′), (A8.6)

where H(k,t) is the growing mode solution of Eq. (2.109) with the correct initial
spectrum, 〈Hij (k,tin)H ∗ij (k′,tin)〉 = 4|H(k,tin)|2δ(k − k′) and 〈Ḣij (k,tin)Ḣ ∗ij (k′,tin)〉 =
4|Ḣ (k,tin)|2δ(k− k′). Introducing this form of Pijlm in Eq. (A8.5) yields〈
�T

T
(n)
�T

T
(n′)

〉
=

(
1

2π

)3 ∫
k2 dk d�k̂

[
2(n · n′)2 − 1+ μ′2 + μ2 − 4μμ′(n · n′)+ μ2μ′2

]
×

∫ t0

tdec

dt

∫ t0

tdec

dt ′ [Ḣ (k,t)Ḣ ∗(k,t ′) exp(ikμ(t0 − t)) exp(−ikμ′(t0 − t ′))], (A8.7)

whereμ = (n·k̂),μ′ = (n′ ·k̂) and Ḣ = ∂tH . To proceed, we use the identity (Abramowitz
and Stegun, 1970)

exp(ikμ(t0 − t)) =
∞∑
r=0

(2r + 1)irjr (k(t0 − t))Pr(μ). (A8.8)

Here jr denotes the spherical Bessel function of order r and Pr is the Legendre polynomial
of degree r .

Furthermore, we replace each factor of μ in Eq. (A8.7) by a derivative of the exponential
exp(ikμ(t0 − t)) with respect to k(t0 − t) and correspondingly with μ′. We then obtain〈

�T

T
(n)
�T

T
(n′)

〉
=

(
1

2π

)3 ∑
r,r ′
(2r + 1)(2r ′ + 1)i(r−r

′)
∫
k2 dk d�k̂ Pr(μ)Pr ′(μ

′)×
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×
[
2(n · n′)2

∫
dt dt ′ jr (k(t0 − t))jr ′(k(t0 − t ′))Ḣ (k,t)Ḣ ∗(k,t ′)

−
∫
dtdt ′[jr (k(t0 − t))jr ′(k(t0 − t ′))+ j ′′r (k(t0 − t))jr ′(k(t0 − t ′))

+ jr (k(t0 − t))j ′′r ′(k(t0 − t ′))− j ′′r (k(t0 − t))j ′′r ′(k(t0 − t ′))]Ḣ (k,t)Ḣ ∗(k,t ′)
− 4(n · n′)

∫
dt dt ′ j ′r (k(t0 − t))j ′r ′(k(t0 − t ′))Ḣ (k,t)Ḣ ∗(k,t ′)

]
. (A8.9)

The primes on the Bessel functions denote derivatives with respect to the argument of
the function. In the expression (A8.9) only the Legendre polynomials, Pr(μ) and Pr ′(μ′),
depend on the direction k̂. To perform the integration d�k̂, we use the addition theorem for
spherical harmonics (see Appendix 4, Section A4.2.3),

Pr(μ) = 4π

(2r + 1)

r∑
s=−r

Yrs(n)Y ∗rs(k̂). (A8.10)

The orthogonality of spherical harmonics (see Appendix 4, Section A4.2.3) then yields

(2r + 1)(2r ′ + 1)
∫
d�k̂ Pr(μ)Pr ′(μ

′)

= 16π2δrr ′
r∑

s=−r
Yrs(n)Y ∗rs(n

′)

= (2r + 1)4πδrr ′Pr(n · n′). (A8.11)

In Eq. (A8.9) the integration over d�k̂ leads to terms of the form (n · n′)Pr(n · n′) and
(n · n′)2Pr(n · n′). To reduce them, we use recursion relations for Legendre polynomials
like

xPr(x) = r + 1

2r + 1
Pr+1 + r

2r + 1
Pr−1. (A8.12)

Applying this and its iteration for x2Pr(x), we obtain〈
�T

T
(n)
�T

T

∗
(n′)

〉
= 1

2π2

∑
r

(2r + 1)
∫
k2dk

∫
dtdt ′Ḣ (k,t)Ḣ ∗(k,t ′)

×
{[

2(r + 1)(r + 2)

(2r + 1)(2r + 3)
Pr+2 + 1

(2r − 1)(2r + 3)
Pr + 2r(r − 1)

(2r − 1)(2r + 1)
Pr−2

]
× jr(k(t0 − t))jr (k(t0 − t ′))− Pr [jr(k(t0 − t))j ′′r (k(t0 − t ′))
+ jr (k(t0 − t ′))j ′′r (k(t0 − t))− j ′′r (k(t0 − t))j ′′r ′(k(t0 − t ′))]
−4

[
r + 1

2r + 1
Pr+1 + r

2r + 1
Pr−1

]
j ′r (k(t0 − t))j ′r (k(t0 − t ′))

}
, (A8.13)

where the argument, n · n′, of the Legendre polynomials has been suppressed. Also using
the relation

j ′r = −
r + 1

2r + 1
jr+1 + r

2r + 1
jr−1 (A8.14)
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for Bessel functions, and its iteration for j ′′, we can rewrite Eq. (A8.13) in terms of the
Bessel functions jr−2 to jr+2.

To proceed we use the definition of C�:〈
�T

T
(n) · �T

T
(n′)

〉
(n·n′)=cos θ

= 1

4π
�(2�+ 1)C�P�(cos θ). (A8.15)

If we expand

�T

T
(n) =

∑
�,m

a�mY�m(n) (A8.16)

and use the orthogonality of the spherical harmonics as well as the addition theorem,
Eq. (A8.10), we find

C� = 〈a�ma∗�m〉. (A8.17)

We thus have to determine the correlators

〈a�ma∗�′m′ 〉 =
∫
d�n

∫
d�n′

〈
�T

T

∗
(n)
�T

T
(n′)

〉
Y ∗�m(n)Y�′m′(n

′). (A8.18)

Inserting our result (A8.13), we obtain the somewhat lengthy expression

〈a�ma∗�′m′ 〉 =
2

π
δ��′ δmm

′
∫
dk k2

∫
dt dt ′ Ḣ (k,t)Ḣ ∗(k,t ′)

×
{
j�(k(t0 − t))j�(k(t0 − t ′))

×
(

1

(2�− 1)(2�+ 3)
+ 2(2�2 + 2�− 1)

(2�− 1)(2�+ 3)
+ (2�2 + 2�− 1)2

(2�− 1)2(2�+ 3)2

− 4�3

(2�− 1)2(2�+ 1)
− 4(�+ 1)3

(2�+ 1)(2�+ 3)2

)
− [
j�(k(t0 − t))j�+2(k(t0 − t ′))+ j�+2(k(t0 − t))j�(k(t0 − t ′))

] 1

2�+ 1

×
(

2(�+ 2)(�+ 1)(2�2 + 2�− 1)

(2�− 1)(2�+ 3)2
+ 2(�+ 1)(�+ 2)

(2�+ 3)
− 8(�+1)2(�+ 2)

(2�+ 3)2

)
− [
j�(k(t0 − t))j�−2(k(t0 − t ′))+ j�−2(k(t0 − t))j�(k(t0 − t ′))

]
× 1

2�+ 1

(
2�(�− 1)(2�2 + 2�− 1)

(2�− 1)2(2�+ 3)
+ 2�(�− 1)

(2�− 1)2
− 8�2(�− 1)

(2�− 1)2

)
+ j�+2(k(t0 − t))j�+2(k(t0 − t ′))

×
(

2(�+ 2)(�+ 1)

(2�+ 1)(2�+ 3)
− 4(�+ 1)(�+ 2)2

(2�+ 1)(2�+ 3)2
+ (�+ 1)2(�+ 2)2

(2�+ 1)2(2�+ 3)2

)
+ j�−2(k(t0 − t))j�−2(k(t0 − t ′))

×
(

2�(�− 1)

(2�− 1)(2�+ 1)
− 4�(�− 1)2

(2�− 1)2(2�+ 1)
+ �2(�− 1)2

(2�− 1)2(2�+ 1)2

)}
.

(A8.19)
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An analysis of the coefficient of each term reveals that this expression is equivalent to

C
(T )
� = 2

π

∫
dk k2

∣∣∣∣∫ t0

tdec

dt Ḣ (t,k)
j�(k(t0 − t))
(k(t0 − t))2

∣∣∣∣2
(�+ 2)!

(�− 2)!
. (A8.20)

To obtain this result we have used the identity

j�+2(k(t0 − t))
(2�+ 3)(2�+ 1)

+ 2j�(k(t0 − t))
(2�+ 3)(2�− 1)

+ j�−2(k(t0 − t))
(2�+ 1)(2�− 1)

= j�(k(t0 − t))
(k(t0 − t))2 . (A8.21)



Appendix 9

Boltzmann Equation in a Universe with Curvature

In this appendix we discuss the changes of the Boltzmann equation in the case of nonva-
nishing curvature K = H 2

0 (�0 − 1) 
= 0. We closely follow the treatment in Abbott and
Schaefer (1982) and Hu et al. (1998). We write the metric of the unperturbed FL universe as

ds2 = a2γμν dx
μ dxν, (A9.1)

with

γ00 = −1, (A9.2)

γ0i = 0, (A9.3)

γij dx
i dxj = 1

|K|
(
dχ2 + sin2

K(χ)(dθ
2 + sin2 θ dφ2)

)
. (A9.4)

Here we have set

sinK χ =
{

sinχ for K > 0
χ for K = 0
shχ for K < 0,

(A9.5)

where sh denotes the hyperbolic sine (correspondingly we shall denote the hyperbolic
cosine by ch).

A9.1 The Boltzmann Equation

We now derive the Boltzmann equation. The collision term is not affected by curvature
since it is purely local. If we use a “quasi-orthonormal” spatial basis, also the gravita-
tional source term coming from δ�iαβn

αnβγij n
j v2(df̄ /dv) is not modified. Here “quasi-

orthonormal” means that ninjγij = 1 and (pμ) = (p,pni). Again v = pa denotes the
redshift corrected photon energy, the only variable on which the background distribution
function f̄ depends. The only modification comes from the fact that on the left-hand side
we have to add a term due to the unperturbed three-dimensional Christoffel symbols,

(∂t + ni∂i)M→
(
∂t + ni∂i − �̄ij lnjnl

∂

∂ni

)
M. (A9.6)
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We now show that this simply corresponds to replacing the partial derivatives ∂i in the
second term by covariant derivatives w.r.t. the spatial background metric γij . To see this we
expand M in moments of ni ,

M(t,x,n) =
∑
Q(t,x)(m)i1··· imn

i1 · · · nim . (A9.7)

Here the sum goes from 1 to 3 for each of the indices il and the number m of indices goes
from zero to infinity. For uniqueness, we require thatQi1··· im be a traceless totally symmet-

ric tensor. Since γjlnjnl = 1, a trace in Q(m)i1··· im−2j l
contributes a term Q(m−2)

i1··· im−2
γjln

i1 · · ·
nim−2njnl = Q(m−2)

i1··· im−2
and can be absorbed inQ(m−2). With this ansatz we find(

ns∂s − �̄jrsnrns ∂
∂nj

)
M (A9.8)

=
∑
ns∂sQ(t,x)

(m)
i1··· imn

i1 · · · nim − �̄jrsQ(m)i1··· imnrns(δji1ni2 · · · nim
+ · · · + ni1 · · · nim−1δjim)

=
∑
ns

(
∂sQ(t,x)

(m)
i1··· imn

i1 · · · nim − �̄jrsQ(m)j ··· imnrni2 · · · nim

− · · · − �̄jrsQ(m)i1··· j nrni1 · · · nim−1
)

=
∑
ns

(
∂sQ(t,x)

(m)
i1··· imn

i1 · · · nim − �̄ji1sQ
(m)
j ··· imn

i1ni2 · · · nim

− · · · − �̄jimsQ
(m)
i1··· j n

i1 · · · nim
)

=
∑
nsQ(t,x)(m)i1··· im|sn

i1 · · · nim ≡ nsM|s . (A9.9)

Note that the last expression really is a definition. It tells us how we have to interpret a
covariant derivative for a function in momentum space. With this, the Boltzmann equation
in spaces with nonvanishing curvature becomes simply

∂tV + niV|i = C[V]+
(
G[hμν]
0
0

)
, (A9.10)

where C[V] denotes the collision term given in Eq. (5.52) and

V =
( M

E + iB
E − iB

)
. (A9.11)

The gravitational term is

G[hμν]

⎧⎨⎩
−ni(� +�)|i for scalar perturbations,
−σ (V )ij n

inj for vector perturbations,
−Ḣij ninj for tensor perturbations.

(A9.12)

A9.2 Line-of-Sight Integration

The homogeneous part of the Boltzmann equation (A9.10),

∂tV + niV|i = 0, (A9.13)
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simply represents free streaming. If the source term can be neglected, the temperature
fluctuations and the polarization are modified by photon free streaming, which in this case
means that the photons move along spatial geodesics of the unperturbed metric γij . Unlike
in flat space, n is not constant, but varies along a geodesic.

Let us denote by y(x,n(λ),λ) the (spatial) geodesic of the unperturbed metric γij that
arrives at x at time λ and then moves on in direction −n(λ), so that x = y(x,n,λ). In flat
space, y(x,n,λ)(t) = x−(t−λ)n. The general solution to Eq. (A9.13) with initial condition
V(tin,x,n) = V1(x,n) is then simply,

V(t,x,n) = V1(y(x,n(t − tin),t − tin),n(t − tin)). (A9.14)

To verify this we use that both y and n depend on time so that ∂tV(t,x,n) = −ni∂iV(t,x,n)+
ṅi ∂
∂ni

V(t,x,n). But since n moves along a geodesic, ṅi = �̄irsnrns , so that we end up with

∂tV(t,x,n)+ ni∂iV(t,x,n)− �̄irsnrns
∂

∂ni
V(t,x,n) = 0.

This corresponds to the expression after the arrow in Eq. (A9.6), which is equivalent to
Eq. (A9.13) according to our definition (A9.9). This observation allows us also to formally
solve (A9.10) with a line-of-sight integration as in the flat case: for an arbitrary source term,
S(t,x,n), on the right-hand side of Eq. (A9.13) the solution is given by

V(t,x,n) = V1(y(x,n,t),n)+
∫ t

tin

dt ′ S(t ′,y(x(t ′),n(t ′),t ′),n(t ′)). (A9.15)

Here x(t ′) is the geodesic that ends at x = x(t) at time t with velocity −n(t).
So far this is only a formal solution. In the case of the Boltzmann equation the source on

the right-hand side depends on the left-hand side. Furthermore, the geodesics y(x,n(t ′),t ′)
are not given explicitly. However, this is not a serious problem, since they are the solutions
to well-known ordinary differential equations.

A9.3 Mode Functions, Radial Functions

In flat space, we have expanded Eq. (A9.10) in terms of mode functions

sG�m(x,n) = (−i)�
√

4π

2�+ 1
sY�m(n) exp(ik · x), K = 0. (A9.16)

Here we have to replace the exponentials by eigenfunctions of the Laplacian in curved
space. The functionsQ(m)i1···i|m| with

(�K + k2)Q
(m)
i1···i|m| = 0, (A9.17)

where k2 > (|m|+1)|K| and k2 = (p(p+2)+|m|)K,p ∈ N, form a complete set of basis
functions for K < 0 and K > 0 respectively (see Vilenkin and Smorodinskii, 1964). Here,
like in Chapter 2,Q(m) is a totally symmetric traceless tensor with helicity m and rank |m|.
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For convenience we set

q =
√
p(p + 2)+ 1+ |m|, K > 0 (A9.18)

q =
√
k2

|K| − 1− |m|, K < 0, (A9.19)

and we shall use this dimensionless number to denominate the mode functions. The func-
tions p = 0 and p = 1 are not of interest for us. They represent a simple constant (p = 0)
and (p = 1) a pure dipole contribution that is gauge dependent. We therefore consider
q = 2,3, . . . for m = 0, K > 0.

As we have done for the exponential, we want to expand the functionQ(x) in its orbital
angular momentum. For a given mode functionQwe orient the coordinate system such that
the angular dependence is given by YL0 alone. (In flat space this corresponds to choosing
the z direction parallel to k.) We can then write

sG�m =
(

4π
∑
L

√
2L+ 1

2�+ 1
i�−Lφq L(χ)YL0(x̂)

)
sY�m. (A9.20)

Each angular momentum componentQ = φq L(χ)YL0(x̂) satisfies

�Q = γ rsQ|rs − γ rs�1
rsQ,1 + γ 11Q,11 = −|K|(q2 ∓ 1)Q,

where 1 denotes the χ direction and rs stand for the ϑ and ϕ directions. In q2 ∓ 1, the
minus sign is for K > 0 and the plus sign for K < 0. Denoting sinK = sin for K > 0 and
sinK = sh for K < 0, we have

�1
rs = −

sin′K(χ)
sinK(χ)

γrs,

and γ rsQ|rs = |K| sin−2
K (χ)�ϑ,ϕQ = −|K|L(L + 1) sin−2

K Q. With this we obtain the
following differential equation for φq L:

d2φq L

dχ2
+ 2

cosχ

sinχ

dφq L

dχ
+

(
q2 − 1− L(L+ 1)

sin2 χ

)
φq L = 0.

In this form, the equation is valid for K > 0. For K < 0 one has to replace sinχ by shχ
and cosχ by chχ as well as q2 − 1 by q2 + 1. The solutions to this equation, which are
regular at χ = 0, are

φq L(χ) ∝
⎧⎨⎩ −q−2(sinχ)L dL+1

d(cosχ)L+1 cos(qχ), for K > 0

−q−2(shχ)L dL+1

d(chχ)L+1 cos(qχ), for K < 0.
(A9.21)
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These functions can also be expressed in terms of associated Legendre functions; see
Abramowitz and Stegun (1970),

φq L(χ) ∝

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(sinχ)−1/2P� m(cosχ), with

� = −1/2− q, m = − 1
2 − L, for K > 0

(shχ)−1/2P� m(chχ),with

� = −1/2+ iq, m = − 1
2 − L, for K < 0.

(A9.22)

This is easily verified by deriving the differential equation for (sinχ)1/2φq L(χ) and com-
paring it with the one for associated Legendre functions given in Eq. (A4.15). The hyper-
spherical Bessel functions φq L satisfy the recurrence relations

d

dχ
φq L = 1

2L+ 1

[
L

√
q2 − L2φq L−1 − (L+ 1)

√
q2 − (L+ 1)2φq L+1

]
,

cotχφq L = 1

2L+ 1

[√
q2 − L2φq L−1 +

√
q2 − (L+ 1)2φq L+1

]
, (A9.23)

for K > 0. For negative curvature, the terms q2 − n2 have to be replaced by q2 + n2 and
cotχ by coth(χ). These relations define the hyperspherical Bessel functions in terms of the
first member

φq 0(χ) =
⎧⎨⎩

sin(qχ)
q sinχ for K > 0

sin(qχ)
qshχ for K < 0.

(A9.24)

The normalization is chosen such that limK→0 φq L(χ) = jL(kr).
We do not need all the details of the mode functions sG�m, but we have to calculate

ni[sG�m]|i (x,n) that enters the Boltzmann equation. To obtain the Boltzmann hierarchy we
have to express this derivative in terms of sG�+1m, sG�m, and sG�−1m. This is obtained
most easily if we consider n = −x̂ so that x = −√|K|χn. We then have

ni[sG�m]|i (−
√
|K|χn,n) = −

√
|K| d
dχ

[sG�m](−
√
|K|χn,n). (A9.25)

To calculate this derivative we expand sG�m(−
√|K|χn,n) in its total angular momentum.

sG�m(−
√
|K|χn,n) =

(
4π

∑
L

√
2L+ 1

2�+ 1
i�−Lφq L(χ)YL0(n)

)
sY�m(n)

=
∑
j

(−i)j
√

4π(2j + 1)sf
(�m)
j (χ)Yjm(n). (A9.26)

For � = 0, we immediately obtain

0f
(00)
j (χ,q) ≡ α(00)

j (χ) = φq j (χ). (A9.27)

The other coefficients can in principle be obtained with the help of the Clebsch–Gordan
series for the products YL0(n) sY�m(n) and the recurrence relations for the hyperspherical
Bessel functions φq L. This straightforward but cumbersome calculation has never appeared
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in print, and we do not want to break with this tradition here. It is much easier to use the
fact that 0Gmm are given by [see, e.g., Thorne (1980) and Maggiore (2007)].

0Gmm = ni1 · · · nimQ(m)i1···im,
and

±2G2m ∝ e±i1 e±i2Q
(m)
i1i2
,

for 0 ≤ |m| ≤ 2. With this it is relatively easy to derive relations between the hyperspherical
Bessel functions and the coefficients sf

(�m)
j (χ). Most importantly,

α
(11)
j (χ,q) =

√
j (j + 1)

2(q2 − 1)
sc(χ) φq j (χ),

α
(22)
j (χ,q) =

√
3

8

(j + 2)(j2 − 1)j

(q2 − 4)(q2 − 1)
sc2(χ) φq j (χ). (A9.28)

Similarly for

±2f
(2m)
j = ε(m)j ± iβ(m)j ,

one finds

ε
(0)
j (χ,q) =

√
3

8

(j + 2)(j2 − 1)j

(q2 − 4)(q2 − 1)
sc2(χ)φqj (χ),

ε
(1)
j (χ,q) =

1

2

√
(j − 1)(j + 2)

(q2 − 4)(q2 − 1)
scχ

[
cot(χ)φq j (χ)+ φ′qj (χ)

]
, (A9.29)

ε
(2)
j (χ,q) =

1

4

√
1

(q2 − 4)(q2 − 1)

[
φ′′q j (χ)

+ 4cot(χ)φ′q j (χ)−
(
q2 + 1− 2cot2χ

)
φq j (χ)

]
,

and

β
(0)
j (χ,q) = 0,

β
(1)
j (χ,q) =

1

2

√
(j − 1)(j + 2)q2

(q2 − 4)(q2 − 1)
sc(χ)φq j (χ), (A9.30)

β
(2)
j (χ,q) =

1

2

√
q2

(q2 − 4)(q2 − 1)

[
φ′q j (χ)+ 2cot(χ)φq j (χ)

]
,

for m > 0. For m < 0, β(−m)j = −β(m)j while ε(m)j = ε
(−m)
j and α(m)j = α

(−m)
j . The

formulas presented are for positive curvature. For negative curvature all terms of the form
q2−n2 have to be replaced by q2+n2, and the trigonometric functions have to be replaced
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by hyperbolic functions, for example, scχ ≡ 1/ sinχ becomes schχ ≡ 1/shχ . The overall
normalization of the modes is chosen such that

sf
(�m)
j (0,q) = 1

2j + 1
δj�. (A9.31)

From the recurrence relation for the hyperspherical Bessel functions we obtain the follow-
ing relation for the coefficients sf

(�m)
j defined so far:

d

dχ
[sf

(�m)
j ] = q

2j + 1

[
sθ
m
j sf

(�m)
j−1 − sθ

m
j+1 sf

(�m)
j+1

]
− i qms

j (j + 1)
sf
(�m)
j ,(A9.32)

where

sθ
m
j =

√[
(j2 −m2)(j2 − s2)

j2

] (
j2

q2
± 1

)
; (A9.33)

here the + sign is for negative curvature and the − sign is for K > 0.
Since the relation (A9.32) is independent of � it is valid for all �’s and can also be used

to define sf
(�m)
j+1 from sf

(�m)
j and sf

(�m)
j−1 .

With the expansion Eqs. (A9.26) and (A9.32) we can now write the derivative (A9.25)
as

ni[sG�m]|i = −
√|K|q
2�+ 1

[
sθ
m
� sG�−1m − sθ

m
�+1 sG�+1m

]+ i√|K|qms
�(�+ 1)

sG�m.(A9.34)

Like in flat space, we expand the CMB anisotropy and polarization as

M(t,x,n) =
∫∑ d3q

(2π)3
∑
�

2∑
m=−2

M(m)
� 0G�m, (A9.35)

(Q± iU)(t,x,n) =
∫∑ d3q

(2π)3
∑
�

2∑
m=−2

(E (m)� ± iB(m)� )±2G�m. (A9.36)

The symbol
∫∑

indicates that for positive curvature the integral over q has to be replaced
by a sum.

For the coefficients M(m)
� (t,q), E (m)� (t,q), and B(m)� (t,q) we now obtain the desired

Boltzmann hierarchy:

Ṁ(m)
� − q

√
|K|

[
0θ
m
� M

(m)
�−1 − 0θ

m
�+1M

(m)
�+1

]
= S(m)� + κ̇

[
P
(m)
� −M(m)

�

]
, (A9.37)
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with

S
(0)
� = −k(� +�)δ�1, (A9.38)

S
(±1)
� = −

√
3

3k

√
k2 − 2K σ± δ�2, (A9.39)

S
(±2)
� = 1√

3
Ḣ±2 δ�2, (A9.40)

P
(0)
� =M(0)

0 δ�0 + V (b)δ�1 +
1

10
[M(0)

2 −
√

6E(0)2 ]δ�2, (A9.41)

P
(±1)
� = V (±1)

b δ�1 + 1

10
[M(±1)

2 −
√

6E(±1)
2 ]δ�2, (A9.42)

P
(±2)
� = 1

10
[M(±2)

2 −
√

6E(±2)
2 ]δ�2. (A9.43)

As in Chapter 5, the superscript (m) indicates scalar perturbations form = 0, vector pertur-
bations for m = ±1, and tensor perturbations for m = ±2. For Eqs. (A9.38) and (A9.39)
we made use of

−ni[0G00]|i = k 0G10 and

ninjQ
(m)
i|j = ni[0G1m]|i =

√
3

3

√
k2 − 2K 0G2m,

for m = ±1.
The Boltzmann hierarchy for E- and B-polarization becomes

Ė (m)� = q
√
|K|

[
2θ
m
�

(2�− 1)
E (m)�−1 −

2m

�(�+ 1)
B
(m)
� − 2θ

m
�+1

(2�+ 3)
E (m)�+1

]
− κ̇

(
E (m)� +

√
6

10

[
M(m)

2 −
√

6E (m)2

]
δ�,2

)
, (A9.44)

Ḃ(m)� = q
√
|K|

[
2θ
m
�

(2�− 1)
B(m)�−1 +

2m

�(�+ 1)
E (m)� − 2θ

m
�+1

(2�+ 3)
B(m)�+1

]
− κ̇B(m)� . (A9.45)

A fast Boltzmann code (such as CMBfast) calculates only the lowest few (about 10)
modes with the Boltzmann hierarchy and then uses the results � = 0, 1, and 2 as input for
the integral solutions. These are obtained exactly like in the flat case (see Chapter 5) by
replacing the flat radial functions by the ones obtained for curved spaces.

M(m)
� (t0,q)

�+ 1
=

∫ t0

0
dt e−κ

2∑
j=0

[S(m)j + κ̇P (m)j ]α(jm)� (
√
|K|t,q), (A9.46)

E (m)� (t0,q)

�+ 1
=

∫ t0

0
dt e−κ k̇

√
6

10

[
M(m)

2 −
√

6E (m)2

]
ε
(m)
� (

√
|K|t,q), (A9.47)

B(m)� (t0,q)

�+ 1
=

∫ t0

0
dt e−κ k̇

√
6

10

[
M(m)

2 −
√

6E (m)2

]
β
(m)
� (

√
|K|t,q). (A9.48)
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A9.4 The Energy–Momentum Tensor

The perturbations of the photon energy–momentum tensor that enter the Einstein equations
are obtained from their definitions by integration over directions n,

D
(γ )
g = 4M(0)

0 , (A9.49)

V (m)γ =M(m)
1 , (A9.50)√

1− 3K

k2
 (0)γ = 12

5
M(0)

2 , (A9.51)√
1− 2K

k2
 (1)γ = 8

√
3

5
M(1)

2 , (A9.52)

 (2)γ = 8

5
M(2)

2 . (A9.53)

A9.5 Power Spectra

In the derivation of the power spectra the only change w.r.t. flat space is that for positive
curvature the integral over q has to be replaced by a sum. Note also that our variable q is
dimensionless and therefore so are our amplitudes X(m)� ,

(2�+ 1)2CXY� = 2

π

∫∑ dq

q

2∑
m=−2

q3P
(XY)
�m , (A9.54)

where X,Y are M, E , or B and the power spectra are defined like in the flat case,

〈M(m)
� (q)M(m)∗

� (q ′)〉 ≡ (2π)3δq,q ′M(m)� (q), (A9.55)

〈E (m)� (q)E (m)∗� (q ′)〉 ≡ (2π)3δq,q ′E(m)� (q), (A9.56)

〈B(m)� (q)B(m)∗� (q ′)〉 ≡ (2π)3δq,q ′B(m)� (q), (A9.57)

〈E (m)� (q)M(m)∗
� (q ′)〉 ≡ (2π)3δq,q ′F (m)� (q). (A9.58)

The formulas here are written for positive curvature. For negative curvature the Kronecker
delta becomes a Dirac delta-function like in flat space. Hence P (MM)

�m (q) = M
(m)
� (q),

P
(EE)
�m (q) = E

(m)
� (q), P (BB)�m (q) = B

(m)
� (q), and P (EM)

�m (q) = F
(m)
� (q). Due to their

different parity, M and B as well as E and B are uncorrelated.



Appendix 10

Perturbations of the Luminosity Distance

In this appendix we derive the linear perturbation of the luminosity distance in a perturbed
Friedmann Universe with vanishing curvature, K = 0. For this we first derive a general
equation for the so-called area distance, which in an FL spacetime is the same as the angular
diameter distance. We then express this distance in terms of the observed redshift z. We can
finally use the Etherington relation (see, e.g., Schneider et al., 1993)

dL(z) = (1+ z)2dA(z) (A10.1)

to obtain the luminosity distance.
Let us consider a faraway source from which many neighboring photons reach us. We

want to relate the angular size of the source to a distance measure. We parametrize the
photon 4-velocity vectors as n(λ,s), where λ is the affine parameter of the photon geodesic
and s parameterizes different geodesics at fixed λ in a direction on the source. We can
choose s such that the vector η = ∂s is normal to n. Since n = ∂λ [we choose coordinates
(λ,s,x,y) in a small patch] we have Lnη = [n,η] = [∂λ,∂s] = 0, and the normality
condition reads (n,η) = nμ · ημ = 0. Using

Lnη = [n,η] = ∇nη −∇ηn = 0

we find

∇2
nη = ∇n∇ηn− ∇η∇nn = R(n,η)n (A10.2)

in coordinates (
∇2
nη

)μ = Rμαβγ nβηγ nα . (A10.3)

This is the Sachs equation (see, e.g., Straumann, 2004; Schneider et al., 1993), which
determines the evolution of a small deviation vector η along a bundle of photon geodesics;
that is, it determines the deformation of an image along its path.

We now choose a basis at the observer that is given by the observer 4-velocity uo, the
photon 4-velocity n, and two spacelike normal unit vectors ea that satisfy

(n,ea) = (uo,ea) = 0 and (ea,eb) = δab. (A10.4)

We parallel transport these vectors backwards along the photon geodesic. This defines
uo(λ), ea(λ) with

∇nuo = ∇nea = 0. (A10.5)

482
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Note that (n,uo) 
= 0; hence our basis (n,e1,e2,uo), which we now have defined along the
photon geodesics, is not orthonormal. In our basis we have

ημ = ηaeμa + η0nμ (A10.6)

[since (n,η) = 0 η cannot have a component along uo]. Rewriting the Sachs equa-
tion (A10.3) with this ansatz and using Eq. (A10.5) we obtain

d2

dλ2
ηb = Rμαβγ nαnβeγa ebμηa = Rbaηa, (A10.7)

where

Rba = Rμαβγ nαnβeγa ebμ. (A10.8)

This is a linear differential equation. Since we want all the geodesics to converge at the
observer position we set η(λo) = η(0) = 0. For definiteness, we have chosen λo = 0, so
that the affine parameter of the photon before impact at the observer is negative. The first
derivative

dηa

dλ

∣∣∣∣
λ=0

= θa (A10.9)

defines the direction in which the photon enters at the observer. Hence ηb/θb is the angular
diameter distance in direction θb. In an isotropic universe like FL, this distance does not
depend on the chosen direction. The general solution of the Sachs equation is now of the
form

ηb = Dbaθa (A10.10)

and the generic area distance is defined by

d2
A = detDba . (A10.11)

A source covering a solid angle � then has a surface d2
A�, like in flat spacetime. The so

called Jacobi matrix Dba satisfies the differential equation

d2

dλ2
Dba = RbcDca . (A10.12)

Note that so far our treatment has been completely generic. It can be applied to arbitrary
spacetimes; however, special care is needed at caustics, when photon geodesics cross.

We want to compute detDba to first order in a spatially perturbed FL universe. We use,
like in Section 2.5, that photon geodesics are conformally invariant and we can disregard
expansion in a first step. We consider an observer at r = 0 and a radially incoming geodesic.
We set Dab = D(0)ab + D(1)ab . Note that the directional indices are raised and lowered with
δab, since the ea are normalized spacelike vectors normal to ∂r . To zeroth order we are in
Minkowski spacetime and

D(0)ab = −λδab = rδab, (A10.13)

where r denotes the (conformal) distance to the source. We want to compute

detDab = r2 det(δab + r−1D(1)ab ) = r2(1+ r−1D(1)aa ) (A10.14)



484 Perturbations of the Luminosity Distance

to first order for scalar perturbations. We shall transform the parameter λ first into confor-
mal time and then into the radial coordinate via the relation

dt

dλ
= n0(λ) = 1+ (�−�)|os −

∫ λo

λs

dλn·∇(� +�). (A10.15)

For the second equals sign we used Eq. (2.233) and perfomed an integration, �̇ + �̇ =
d/dλ(�+�)− n · ∇(� +�). With this, the first-order part of Eq. (A10.12) becomes

d2

dr2
D(1)ab =

dδn0

dr
δab + rR(1)ab (A10.16)

d

dr
D(1)ab = δn0δab +

∫ r

0
dr ′r ′R(1)ab (r

′) (A10.17)

D(1)ab =
∫ r

0
dr ′δn0(r ′)δab +

∫ r

0
dr ′(r − r ′)r ′R(1)ab (r ′) (A10.18)

=
[
−

∫ r

0
dr ′(�−�)+

∫ r

0
dr ′(r − r ′)∂r ′(�+�)

]
δab

+
∫ r

0
dr ′(r − r ′)r ′R(1)ab (r ′). (A10.19)

Here we have systematically neglected terms at the observer that contribute only a
monopole or a dipole term to the distance fluctuations. The monopole term is not
gauge invariant, as we can add a constant to the Bardeen potentials such that �(to,0) =
�(to,0) = 0. The dipole term that we shall obtain is determined by the local velocity, which
cannot be computed with linear perturbation theory. We have also used that n · ∇ = −∂r at
lowest order. For the two terms that would contain double integrals we have performed the
following integration by parts to reduce them to single integrals:∫ r

0
dr ′

∫ r ′

0
dr ′′f (r ′′) ≡

∫ r

0
dr ′(r − r ′)f (r ′).

Inserting the perturbed Riemann tensor in Minkowski spacetime obtained from Eqs. (A3.9)
and (A3.12) by setting H = 0, we obtain

Rab = −Ri00j e
i
ae
j
b − Rilmjnlnmeiaejb = −eiaejb∂i∂j (�+�)−

d2

dλ2
�. (A10.20)

Inserting also δn0 from Eq. (A10.15) yields

D(1)aa = 2
∫ r

0
dr ′(� −�)+ 2

∫ r

0
dr ′(r − r ′)∂r (� +�)− 2

∫ r

0
dr ′(r − r ′)r ′ d

2�

dr ′2

−
∫ r

0
dr ′(r − r ′)r ′eiaejb∂i∂j (�+�). (A10.21)

The third term of this equation can be converted via integration by parts into

−2
∫ r

0
dr ′(r − r ′)r ′ d

2�

dr ′2
= 4

∫ r

0
dr ′�− 2r�(r). (A10.22)
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To simplify the last term of Eq. (A10.21) we note that the transverse (angular) Laplacian is
given on the one hand by

∇2
⊥ =

(
∂i − ni(nj ∂j )

)2 = ∂i∂i − ninj ∂i∂j + 2

r
ni∂i = r−2��, (A10.23)

where �� denotes the Laplacian on the 2-sphere and ni∂i = −∂r . On the other hand, the
ea and ∂r form an orthonormal basis such that ∂i∂i = ∂2

r + eiaeja∂i∂j . Hence

∇2
⊥ = eiaeja∂i∂j −

2

r
∂r . (A10.24)

With this, the second and the last terms combine into an angular Laplacian. Inserting all
this in Eq. (A10.21) we obtain

detDab(r) = r2
[

1− 2�(r)+ 2

r

∫ r

0
dr ′(�+�)−

∫ r

0
dr ′
r − r ′
rr ′

��(�+�)
]

= r2

[
1+ 2

d
(1)
A (r)

r

]
. (A10.25)

The last of these terms corresponds to κ which we have found in the lens equation (7.19).
The first term comes from a change of size at the source due to the perturbed metric,
while the second term is the Shapiro time delay. On small angular scales (high multipoles)
only the last term, ∝ �(�+ 1)�, is relevant. The first two terms are large-scale relativistic
corrections to this expression.

Equation A10.25 is the expression for the determinant of the Jacobi map in perturbed
Minkowski spacetime. Now we want to go back to a perturbed FL spacetime. The differ-
ence there is that dA → a(r)dA = dA/(1 + z̄) = d̃A, where z̄ is the background redshift.
However, we can only measure the true redshift of the source, z = z̄+ δz. Also, measuring
z the corresponding background comoving distance r is

r(z̄) = r(z)− δzdr
dz

.

Using that dr/dz = [H(1+ z)]−1 we obtain the first-order relation

(1+ z)d̃A(z) = dA(r(z))[1− (1− 1/(Hr))δz/(1+ z)].

Dropping again observer terms, we obtain d̃A as function of the observed redshift,

d̃A(z) = d̄A(z)
{

1−
(

1− 1

Hr

) [
(v · n+�)(r)+

∫ r

0
dr ′(�̇+ �̇)

]
−�(r)

+
∫ r

0

dr ′

r

[
1− (r − r

′)
2r ′

��

]
(� +�)

}
, (A10.26)

where d̄A(z) is the background area (or angular diameter) distance.
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Since the Etherington relation dL = (1 + z)2dA is exact, when expressed in terms of
the observed redshift, we obtain exactly the same expression for the perturbation of the
luminosity distance (we drop the tilde in this final result),

δdL(z,n)

d̄L(z)
= −�(r)−

(
1− 1

Hr

) [
� + nv+

∫ r

0
dr ′(�̇ + �̇)

]
+

∫ r

0

dr ′

r

[
1− (r − r

′)
2r ′

��

]
(� +�). (A10.27)

The term on the second line is the Shapiro time delay minus the convergence κ . The
first integrated term is the integrated Sachs–Wolfe term, which appears also in the CMB
anisotropies. The nonintegrated terms are contributions from the gravitational potential at
the source and the Doppler term at the source. Corresponding terms at the observer have
been neglected, as they contribute just gauge-dependent monopole and dipole terms.

Comparing this result with Eq. (8.60), we see that it is exactly−δdL/d̄L which multiplies
the factor 5s in the expression for the number count perturbation.

In Bonvin et al. (2006a) and Sasaki (1987) it is also shown that the expression (A10.27)
is gauge invariant, as we expect for a measurable quantity.
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aberration, 414
acceleration, 67, 73
acoustic peaks, 97, 109, 331
acoustic term, 97
action, 132, 133
action, Hilbert, 422
angular momentum, 432
anisotropic stress tensor, 71
anisotropy, CMB

dipole, 29
quadrupole, 208

axion, 44

background geometry, 3
Bardeen equation, 80
Bardeen potentials, 69
baryon

abundance, 42
density, 42

Bayes’ theorem, 345
Bessel functions, 450–452

modified, 451
spherical, 225, 451

Bianchi identities, 6, 421
bias, 100, 296

evolution, 311
magnification bias, 303

big bang, 8
big crunch, 8
big rip, 6
binding energy of hydrogen, 18
bispectrum, 147, 245

CMB, 251
local, 248
from nonlinearities, 250

Boltzmann equation, 25, 166, 186, 187,
188, 232

central limit theorem, 462
chemical potential, 17, 27, 409

Christoffel symbols, 420, 425, 427, 428
Clebsch–Gordan coefficients, 223, 434–436
Clebsch–Gordan decomposition, 433
Clebsch–Gordan series, 433
CMB anisotropies, 92, 163–207
COBE satellite, 29
Coleman–Weinberg potential, 50
collision integral, 25
collision term, 218, 220
Coma cluster, 411
commutation relations, 136
comoving gauge, 80
Compton scattering, 389
Compton y parameter, 27, 410
conformal time, 3
correlation function, 348
cosmic microwave background, CMB, 27
cosmic string, 113
cosmic variance, 99
cosmological constant, 5, 6, 45
cosmological model, 350
cosmological parameters, 329–387
cosmological principle, 2
covariant derivative, 420, 421
critical density, 418
curvature, 3-space of constant, 3
curvature perturbation, 81

dark matter, 44
decoherence, 120
decoupling of photons, 14, 20, 23
deflection angle, 269
density

critical, 7
entropy, 15
parameter, 7, 418
particle, 15

deuterium, 40
abundance, 42
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distance
angular diameter, 9, 11, 109
luminosity, 13

distances, cosmological, 8
distribution, 461

Gaussian, 462
marginalized, 362
normal, 462
standard normal, 462

distribution function, 25, 163, 164, 461
DMR experiment, 29
domain walls, 115
Doppler term, 97

Einstein equations, 5, 74, 421
Einstein tensor, 5, 421, 426, 428, 429
energy condition, strong, 8, 46
energy conservation, 6
energy density, 5, 70
energy flux, 70
energy momentum tensor, 5, 422

perturbations of, 70
entropy per baryon, 16
entropy density, 418
entropy flux, 454
entropy perturbation, 3
entropy problem, 46
entropy production, 458
ergodic hypothesis, 99
error, marginalized, 357
Euler angles, 223
evidence, 349
expansion, 67
expectation value, 461

Fermi constant, 33
Fermi Dirac distribution, 163
Fisher matrix, 354, 360
flat sky approximation, 215, 229
flatness problem, 46
flux, 13
fractal, 2
freeze out (of a reaction), 20
Friedmann, 3
Friedmann equations, 5, 6
Friedmann metric, 423
Friedmann–Lemaı̂tre universe, 4
fundamental constants, 417

galaxy cluster, 410, 411
gauge invariance, 61, 63
gauge transformation, 61, 62, 71
Gaunt factor, 396
Gaunt integral, 440
geodesic, 420
Gibbs potential, 17
Gibbs relation, 454
gravitational waves, 335

gravitino, 44
growth function, 101, 316, 317, 376
Gunn Peterson trough, 336

Hankel functions, 450
harmonic analysis, 63
Harrison–Zel’dovich spectrum, 104, 135
heat conductivity, 457
heat flux, 455
helicity, 213
helium, 16

abundance, 35
helium-3 abundance, 42
helium-4 abundance, 41

Higgs field, 112
homogeneity, 2

statistical, 98, 245, 258
horizon, 45
horizon problem, 45
Hubble, 8
Hubble constant, 9, 417
Hubble parameter, 6

inflation, 44, 46, 130, 135
consistency relation, 145
e-foldings of, 51
energy scale of, 144
large field, 49
power law, 137
slow roll, 47, 131, 132, 139, 145
small field, 50
tensor perturbations, 141
vector perturbations, 140

inflaton, 46
intensity, 210
invariant measure, 164
ionization, final, 20, 22
ionization fraction, 18
isocurvature perturbations, 159
isotropy, 2

statistical, 98, 245

kinetic theory, 163
relativistic, 163

Kompaneets equation, 389, 393

Lagangian, scalar field, 46
large-scale structure (LSS), 296–328
Legendre functions, 431
Legendre polynomials, 221, 430
Lemaı̂tre, 4
lens map, 271
lensing, 268

power spectrum, 272
shear, 272

lensing of the CMB, 268–295
lensing of LSS, 302
Lie derivative, 62, 422
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likelihood, Bayesian, 349
likelihood function, 348
Liouville equation, 25, 165
lithium-7, abundance, 42
longitudinal gauge, 69
Lorentz invariance, 4
luminosity, 13
Lyman-α

clouds, 336
forest, 336, 379

magnitude, 303
Markov chain, 362
mass-bundle; see mass-shell
mass-shell, 164
Mathieu equation, 54
Maxwell–Boltzmann distribution, 18
Megaparsec, Mpc, 2
metric, 3
metric, pseudo-Riemannian, 420
Metropolis-Hastings algorithm, 364
Mészáros effect, 91
Minkowski functional, 263
monopole problem, 46
monopoles, 114
Monte Carlo, 366

Hamiltonian, 366
Markov chain, 362

N-point function, 258
connected, 258

neutrino, 15, 26, 33, 35, 42, 163
decoupling, 33

neutron
density, 35
lifetime, 38

noise, 358
non-Gaussianity, 244, 374
nucleosynthesis, 29
number count fluctuation, 297

Occam’s razor, 350

parallel transport, 421
parity, 212
Pauli matrices, 210
perfect fluid, 77
perturbation, 425

equations, 74
scalar, 425
tensor, 428
vector, 121, 427

phantom matter, 6
phase space; see mass-shell
phase transition, 112
pivot scale, 102, 140, 372, 374
Planck data, 259, 265
Planck distribution, 16

Planck mass, 32, 417
Planck satellite, 104, 360
polarization, 208–243
B-mode, 212, 225, 242, 335
circular, 210
curl type, 214
E-mode, 212, 225, 242
gradient type, 214
linear, 210

posterior, Bayesian, 349
posterior distribution, 349, 365
power spectrum, 98, 137, 225

CMB, 190
dark matter, 100
polarization, 227

preheating, 54
pressure, 5
primordial black holes, 44
prior, 349
probability distribution; see distribution

quantization, 136
quasar, 336

random variable, 461
Gaussian, 462
independent, 462

recombination, 14, 17, 19
redshift, 9

cosmic, 9
redshift space distortion (RSD), 297
reheating, 52, 54
reionization, 336, 412
resonance, 54
Ricci tensor, 421, 426, 428, 429
Riemann scalar, 421, 426
Riemann tensor, 421, 425, 427, 429
Robertson, 4
Rodrigues’ formula, 430
rotation group, 432

irreducible representations of, 432

Sachs equation, 482
Sachs–Wolfe effect, 96

integrated, 104
ordinary, 96

Saha equation, 18
sampling, 363
scalar field, 46, 128
scale factor, 3
scale invariance, 100, 102, 104, 135
scattering matrix, 218
scattering plane, 218
second-order action, 134
seeds, 112

causal scaling, 115
shear, 67, 72
shear, of the energy momentum tensor, 457



Index 501

shot noise, 315
sigma8, 376
Silk damping, 200–202, 407
Silk damping scale, 409
sources, 112
spatial curvature, 68
spectral index, 102, 138
spectrum; see power spectrum
spherical harmonics, 432, 435–443

addition theorem for, 438
spin weighted, 212, 443–449

addition theorem for, 445
spin raising/lowering operator, 446
squeezed limit, 149
standard deviation, 461
Stefan–Boltzmann constant, 14
Stewart–Walker Lemma, 63
Stokes parameters, 209
stress tensor, 70
Sunyaev–Zel’dovich effect, 410
supernova, 384
symmetry breaking, 112, 113

thermal equilibrium, 14, 163
Thomson cross section, 187
Thomson scattering, 16, 187, 208, 210

angular dependence of, 187

time, cosmic, 3
topological defects, 112
topology, 4
total angular momentum decomposition,

220
transfer function, 98, 253, 273, 329
trispectrum, 258

CMB, 260

unimodular gauge, 133
units, 416

vacuum manifold, 112
variance, 461
vector gauge, 69
viscosity

bulk, 457
shear, 457

vorticity, 67, 72

Walker, 4
weak interaction, 37
Weyl potential, 269
Weyl tensor, 69, 422, 426, 428, 429
Wick’s theorem, 463
Wigner 3J symbols, 439
Wigner symbol, generalized, 443




