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Aims and Scope
Optimization has continued to expand in all directions at an astonishing rate. New
algorithmic and theoretical techniques are continually developing and the diffusion
into other disciplines is proceeding at a rapid pace, with a spot light on machine
learning, artificial intelligence, and quantum computing. Our knowledge of all as-
pects of the field has grown even more profound. At the same time, one of the
most striking trends in optimization is the constantly increasing emphasis on the
interdisciplinary nature of the field. Optimization has been a basic tool in areas
not limited to applied mathematics, engineering, medicine, economics, computer
science, operations research, and other sciences.

The series Springer Optimization and Its Applications (SOIA) aims to publish
state-of-the-art expository works (monographs, contributed volumes, textbooks,
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mization, continuous optimization, stochastic optimization, Bayesian optimization,
optimal control, discrete optimization, multi-objective optimization, and more. New
to the series portfolio include Works at the intersection of optimization and machine
learning, artificial intelligence, and quantum computing.

Volumes from this series are indexed by Web of Science, zbMATH, Mathematical
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Foreword

Optimization has pervaded all spheres of human endeavor. Although opti-
mization has been practiced in some form or other from the early prehistoric
era, this area has seen progressive growth during the last five decades. Mod-
ern society lives not only in an environment of intense competition but is also
constrained to plan its growth in a sustainable manner with due concern for
conservation of resources. Thus, it has become imperative to plan, design,
operate, and manage resources and assets in an optimal manner. Early ap-
proaches have been to optimize individual activities in a standalone manner;
however, the current trend is towards an integrated approach: integrating syn-
thesis and design, design and control, production planning, scheduling, and
control. The functioning of a system may be governed by multiple perfor-
mance objectives. Optimization of such systems will call for special strategies
for handling the multiple objectives to provide solutions closer to the systems
requirement. Uncertainty and variability are two issues which render opti-
mal decision-making difficult. Optimization under uncertainty would become
increasingly important if one is to get the best out of a system plagued by
uncertain components. These issues have thrown up a large number of chal-
lenging optimization problems which need to be resolved with a set of existing
and newly evolving optimization tools.

Optimization theory had evolved initially to provide generic solutions to
optimization problems in linear, nonlinear, unconstrained, and constrained do-
mains. These optimization problems were often called mathematical program-
ming problems with two distinctive classifications, namely linear and nonlinear
programming problems. Although the early generation of programming prob-
lems was based on continuous variables, various classes of assignment and
design problems required handling of both integer and continuous variables
leading to mixed integer linear and nonlinear programming problems (MILP
and MINLP). The quest to seek global optima has prompted researchers to
develop new optimization approaches which do not get stuck at a local opti-
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mum, a failing of many of the mathematical programming methods. Genetic
algorithms derived from biology and simulated annealing inspired by optimal-
ity of the annealing process are two such potent methods which have emerged
in recent years. The developments in computing technology have placed at the
disposal of the user a wide array of optimization codes with varying degrees of
rigor and sophistication. The challenges to the user are manyfold. How to set
up an optimization problem? What is the most suitable optimization method
to use? How to perform a sensitivity analysis? An intrepid user may also want
to extend the capabilities of an existing optimization method or integrate the
features of two or more optimization methods to come up with more efficient
optimization methodologies.

This book, appropriately titled Introduction to Applied Optimization, has
addressed all the issues stated above in an elegant manner. The book has
been structured to cover all key areas of optimization, namely deterministic
and stochastic optimization and single and multiobjective optimization. In
keeping with the application focus of the book, the reader is provided with
deep insights into key aspects of an optimization problem: problem formula-
tion, basic principles and structure of various optimization techniques, and
computational aspects.

The book begins with a historical perspective on the evolution of opti-
mization followed by the identification of key components of an optimization
problem and its mathematical formulation. Types of optimization problems
that can occur and the software codes available to solve these problems are
presented. The book then moves on to treat in the next two chapters two
major optimization methods, namely linear programming and nonlinear pro-
gramming. Simple introductory examples are used to illustrate graphically
the characteristics of the feasible region and location of optima. The simplex
method used for the solution of the LP problem is described in great detail.
The author has used an innovative example to develop the Karush–Kuhn–
Tucker conditions for NLP problems. The Lagrangian formulation has been
used to develop the relationships between primal-dual problems. The transi-
tion from the continuous to discrete optimization problem is made in Chapter
4. The distinctive character of the solution to the discrete optimization prob-
lem is demonstrated graphically with a suitable example. The efficacy of the
branch-and-bound method for the solution of MILP and MINLP problems is
brought out very clearly. Decomposition methods based on generalized Ben-
der’s decomposition (GBD) and outer approximation (OA) are projected as
efficient approaches for the solution of MILP and MINLP problems. Devel-
oping optimal solutions using simulated annealing and genetic algorithms are
also explained in great detail. The potential of combining simulated anneal-
ing and nonlinear programming (SA-NLP) to generate more efficient solutions
for MINLP problems is stressed with suitable examples. Chapter 5 deals with
strategies for optimization under uncertainty. The strategy of using the mean
value of a random variable for optimization is shown to be suboptimal. Us-
ing probabilistic information on the uncertain variable, various measures such
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as the value of stochastic solution (VSS) and the expected value of perfect
information (EVPI) are developed. The optimization problem with recourse
is analyzed. Two policies are considered, namely “here and now” and “wait
and see.” The development of chance-constrained programming and L-shaped
decomposition methods using probability information is shown. For simpli-
fication of optimization under uncertainty, the use of sampling techniques
for scanning the uncertain parameter space is advocated. Among the various
sampling methods analyzed, the Hammersley sequence sampling is shown to
be the most efficient. The stochastic annealing algorithm with an adaptive
choice of sample size is shown as an efficient method for handling stochastic
optimization problems.

Multiobjective optimization is treated in the next chapter. The process
of identification of a nondominated set from the set of feasible solutions is
presented. Three methods, namely weighting method, constraint method, and
goal programming method are discussed. STA-NLP framework is proposed as
an alternate approach to handle multiobjective optimization problems.

The book ends with a treatment of optimal control in Chapter 7. The first
part deals with well-known methods like calculus of variations, maximum
principle, and dynamic programming. The next part deals with stochastic dy-
namic optimization. Stochastic formulation of dynamic programming is done
using Ito’s lemma. The book concludes with a detailed study of the dynamic
optimization of batch distillation. The thorough treatment of the stochastic
distillation case should provide a revealing study for the reader interested in
solving dynamic optimization problems under uncertainty.

The material in the book has been carefully prepared to keep the theo-
retical development to a minimal level while focusing on the principles and
implementation aspects of various algorithms. Numerous examples have been
given to lend clarity to the presentations. Dr. Diwekar’s own vast research
experience in nonlinear optimization, optimization under uncertainty, process
synthesis, and dynamic optimization has helped in focusing the reader’s atten-
tion to critical issues associated with various classes of optimization problems.
She has used the hazardous waste blending problem on which she has done
considerable research as a complex enough process for testing the efficacy of
various optimization methods. This example is used very skillfully to demon-
strate the strengths and weaknesses of various optimization methods.

The book with its wide coverage of most of the well-established and emerg-
ing optimization methods will be a valuable addition to the optimization lit-
erature. The book will be a valuable guide and reference material to a wide
cross-section of the user community comprising students, faculty, researchers,
practitioners, designers, and planners.

Bombay, India K. P. Madhavan
20 November, 2002



Preface: Second Edition

I am happy to present the second edition of this book. In this second edition,
I have updated all the chapters and additional material has been added in
Chapters 3 and 7. New examples have also been added in various chapters.
The solution manual and case studies for this book are available online on the
Springer website with the book link.

This book would not have been possible without the constant support
from my husband Dr. Sanjay Joag and my sisters Dr. Anjali Diwekar and
Dr. Prajakta Sambarey. Thanks are due to my graduate students Francesco
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Preface: Third Edition
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Introduction

Since the fabric of the universe is most perfect, and is the work of a
most wise Creator, nothing whatsoever takes place in the universe in
which some form of maximum and minimum does not appear.

–Leonard Euler

Optimization is a part of life. The evolution process in nature reveals that it
follows optimization. For example, animals that live in colder climates have
smaller limbs than the animals living in hotter climates, to provide a mini-
mum surface- area-to-volume ratio. In our day-to-day lives we make decisions
that we believe can maximize or minimize our set of objectives, such as tak-
ing a shortcut to minimize the time required to reach a particular destination,
finding the best possible house that can satisfy maximum conditions within
cost constraints, or finding a lowest-priced item in the store. Most of these
decisions are based on our years of knowledge of the system without resort-
ing to any systematic mathematical theory. However, as the system becomes
more complicated involving more and more decisions to be made simultane-
ously and becoming constrained by various factors, some of which are new to
the system, it is difficult to take optimal decisions based on a heuristic and
previous knowledge. Furthermore, many times the stakes are high and there
are multiple stakeholders to be satisfied. Mathematical optimization theory
provides a better alternative for decision making in these situations provided
one can represent the decisions and the system mathematically.

With the advent of computers it is possible to exploit these theories to
their maximum extent. Beightler et al. (1967) described optimization as a
three-step decision-making process, where the first step is the knowledge of
the system, which in mathematical terms can be considered as modeling the
process. The second step involves finding a measure of system effectiveness, or
the objective function. The third step is based on the theory of optimization,
which is the main focus of this book.

© Springer Nature Switzerland AG 2020
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The theory of optimization has its roots in the isoperimetric problem faced
by Queen Dido in 1000 BC. She procured for the founding of Carthage the
largest area of land that could be surrounded by the hide of a bull. From the
hide she made a rope, which she arranged in a semicircle with the ends against
the sea. Queen Dido’s intuitive solution was correct. But it was many centuries
before a formal proof was presented, and the mathematical and systematic
solution to this problem proved to be a very difficult problem in the calculus
of variations. The calculus of variations essentially handles problems where
the decision variable is a vector. Figure 1.1 shows a rectangle, a square, and
a circle having the same perimeter but different areas. It can be seen that the
maximum area is covered by the circle.

Circle Area = 20.38
Perimeter = 8

Rectangle 
Area = 12 

Perimeter = 8
Square Area = 16

Perimeter = 8

Fig. 1.1. Isoperimetric objects

The calculus of variations, or the first systematic theory of optimization,
was born on June 4, 1694, when John Bernoulli posed the Brachistochrone
(Greek for “shortest time”) problem, and publicly challenged the mathemati-
cal world to solve it. The problem posed was, “What is a slide path down which
a frictionless object would slip in the least possible time?” Earlier attempts
to solve this problem were made by many well-known scientists including
Galileo who proposed the solution to be a circular arc, an incorrect solution,
and Leibnitz who presented ordinary differential equations without solving
them. Then John Bernoulli proved the optimal path to be a cycloid. From
that point, efforts continued in the area of the calculus of variations, leading
to the study of multiple integrals, differential equations, control theory, prob-
lem transformation, and so on. Although this research mainly involved theory
and analytical solutions, it formed the basis for numerical optimization devel-
oped during and after World War II. World War II made scientists aware of
numerical optimization and solutions to physics and engineering problems. In
1947 Dantzig proposed the simplex algorithm for linear programming prob-
lems. Necessary conditions were presented by Kuhn and Tucker in the early
1950s, which formed a focal point for nonlinear programming research. Now,
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numerical optimization techniques constitute a fundamental part of theoreti-
cal and practical science and engineering (Diwekar, 1995).

1.1 Problem Formulation: A Cautionary Note

Consider the following optimization problem.

Example 1.1: A chemical manufacturer produces a chemical from two raw
materials X1 and X2. Although X1 can be purchased at $5 per ton, X2 is
less expensive and can be obtained at $1 per ton. The manufacturer wants
to determine the amount of each raw material required to reduce the cost
per ton of product to a minimum. Formulate the problem as an optimization
problem.

Solution: Let x1 be the amount of X1 required to produce a ton of the
product and x2 be the amount of X2 consumed in the process. Then the
problem can be formulated as given below.

Minimize Z = 5x1 + x2 (1.1)

x1, x2

subject to

x1 ≥ 0;x2 ≥ 0

From the objective function given in Equation (1.1), it is apparent that to
minimize Z, the cost per ton of product produced, the manufacturer has to
purchase zero amounts of X1 and X2.

Example 1.1 involves manufacturing a chemical from reactants X1 and
X2 and we found that the optimal solution involves zero amounts of X1 and
X2. This is a mathematically correct solution. However, from the realistic
(thermodynamic) point of view, if reactant X1 is not present at all, then
there is no possibility of product formation. What did we do wrong? We forgot
to provide information about the minimum amount of reactants required to
form the product. As the problem formulation did not have insight about
the reaction chemistry requirement, our solution is mathematically right but
practically useless. This shows that correct problem formulation is the key
step in optimization.

1.2 Degrees of Freedom Analysis

The degrees of freedom analysis provides the number of decision variables
one can change to obtain the optimum design, and is crucial in optimization.
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Consider Case 1 in Table 1.1 given. One can see that there are two variables
and two equations, and hence there is no optimization problem because the
two sets of Equations D − 2 and D − 3 can be solved directly to obtain the
values of the decision variables x1 and x2. Equation D − 1 does not play any
role in finding the values of these variables. On the other hand, Case 2 has
two variables and one equality, and hence one degree of freedom. Case 3 has
two variables and two inequalities, leading to two degrees of freedom. In Cases
2 and 3, optimization can be used because the number corresponding to the
degrees of freedom is greater than zero.

Table 1.1. Degrees of freedom (DOF) analysis

Case 1 Case 2 Case 3 Equation

Min x2
1 + x2

2 Min x2
1 + x2

2 Min x2
1 + x2

2 D − 1
x1 − x2 = 4.0 x1 + x2 = 2.0 x1 − x2 ≤ 4.0 D − 2
x1 + x2 = 2.0 − x1 + x2 ≤ 2.0 D − 3

0 1 2 DOF

No Yes Yes Optimization

x1 = 3; x2 = −1 x1 = 1; x2 = 1 x1 = 0; x2 = 0 Solution

Is it possible to use optimization for a system when there are fewer vari-
ables than equations?

This is a typical situation in the parameter estimation problem presented
below.

Y = f(x, θ) (1.2)

Here, the quantity Y is a function of variables x and θ, where θ represents
m unknown parameters. In general, n experiments are performed to obtain
various values of Y by changing values of x. Each dataset needs to satisfy
the equation above, resulting in the n equations and n > m. In this case,
one still can use optimization techniques by combining all n equations into
an objective function containing the square of the errors for each equation.
The least square problem ensures that there are degrees of freedom available
to solve the optimization problem.

1.3 Objective Function, Constraints, and Feasible Region

Figure 1.2 plots the graph of the objective function Z versus a decision variable
x. Figure 1.2a shows a linear programming problem where the linear objective
function as well as its constraints (lines AB, BC, and CA) are linear. The
constraints shown in Figure 1.2a are inequality constraints indicating that the
solution should be above or on line AB, and below or on lines BC and CA. ABC
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Optimum

Feasible 
region

Objective Function

Constraints

A

Z

x

Objective Function

B

Z

x

C

B

Fig. 1.2. Linear and nonlinear programming problems

represents the feasible region of operation within which the solution should
lie. The constraints are binding the objective space, and hence the linear
objective is lying at the edge of the feasible region (constraint). Figure 1.2b
shows an unconstrained problem, hence the feasible region extends to infinity.
The minimum of the objective function lies at point B, where the tangent
to the curve is parallel to the x-axis, having a zero slope (the derivative of
the objective function with respect to the decision variable is zero). This is
one of the necessary conditions of optimality for a nonlinear programming
problem where the objective function and/or constraints are nonlinear. The
earlier theories involving calculus of variations use this condition of optimality
to reach preferably an analytical solution to the problem. However, for many
real-world problems, it is difficult to obtain an analytical solution and one has
to follow an iterative scheme. This is numerical optimization.

1.4 Numerical Optimization

A general optimization problem can be stated as follows.

Optimize Z = z(x) (1.3)

x

subject to
h(x) = 0 (1.4)

g(x) ≤ 0 (1.5)
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The goal of an optimization problem is to determine the decision variables
x that optimize the objective function Z, while ensuring that the model op-
erates within established limits enforced by the equality constraints h (Equa-
tion(1.4)) and inequality constraints g (Equation (1.5)).

Figure 1.3 illustrates schematically the iterative procedure employed in a
numerical optimization technique. As seen in the figure, the optimizer invokes
the model with a set of values of decision variables x. The model simulates
the phenomena and calculates the objective function and constraints. This
information is utilized by the optimizer to calculate a new set of decision
variables. This iterative sequence is continued until the optimization criteria
pertaining to the optimization algorithm are satisfied.

Optimizer

Decision
 Variables

Initial
Values Optimal

Design 

Objective Function
&

Constraints

MODEL

Fig. 1.3. Pictorial representation of the numerical optimization framework

There are a large number of software codes available for numerical op-
timization. Examples of these include solvers such as MINOS, CPLEX,
CONOPT, and NPSOL. Also, many mathematical libraries, such as NAG,
OSL, IMSL, and HARWELL have different optimization codes embedded
in them. Popular software packages such as EXCEL, MATLAB, and SAS
also have some optimization capabilities. There are algebraic modeling lan-
guages like AMPL, LINGO, AIMMS, GAMS, and ISIGHT specifically de-
signed for solving optimization problems and software products such as Omega
and Evolver have spreadsheet interfaces. However, a discussion of all the dif-
ferent accessible software is beyond the scope of this book. SIAM publica-
tions provides a comprehensive software guide by Moré and Wright (1993).
Furthermore, the Internet provides a great source of information. A group
of researchers at Argonne National Laboratory and Northwestern Univer-
sity launched a project known as the Network-Enabled Optimization System
(NEOS). Its associated Optimization Technology Center maintains a Web site
at: http://www.mcs.anl.gov/otc/

http://www.mcs.anl.gov/otc/
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which includes a library of freely available optimization software, a guide
to software selection, educational material, and a server that allows online
execution (Carter and Price, 2001). Also, the site: http://OpsResearch.com/
OR-Objects
includes data structures and algorithms for developing optimization applica-
tions.

Optimization algorithms mainly depend upon the type of optimization
problems described in the next section.

1.5 Types of Optimization Problems

Optimization problems can be divided into the following broad categories
depending on the type of decision variables, objective function(s), and con-
straints.

• Linear programming (LP): The objective function and constraints are lin-
ear. The decision variables involved are scalar and continuous.

• Nonlinear programming (NLP): The objective function and/or constraints
are nonlinear. The decision variables are scalar and continuous.

• Integer programming (IP): The decision variables are scalars and integers.
• Mixed integer linear programming (MILP): The objective function and

constraints are linear. The decision variables are scalar; some of them are
integers while others are continuous variables.

• Mixed integer nonlinear programming (MINLP): A nonlinear program-
ming problem involving integer as well as continuous decision variables.

• Discrete optimization: Problems involving discrete (integer) decision vari-
ables. This includes IP, MILP, and MINLPs.

• Optimal control: The decision variables are vectors.
• Stochastic programming or stochastic optimization: Also termed optimiza-

tion under uncertainty. In these problems, the objective function and/or
the constraints have uncertain (random) variables. Often involves the
above categories as subcategories.

• Multiobjective optimization: Problems involving more than one objective.
Often involves the above categories as subcategories.

1.6 Summary

Optimization involves several steps: (1) understanding the system, (2) finding
a measure of system effectiveness, and (3) degrees of freedom analysis and
applying a proper optimization algorithm to find the solution. Optimization
problems can be divided into various categories such as LP, NLP, MINLP,
and stochastic programming depending on the type of objective function,
constraints, and/or decision variables.

http://OpsResearch.com/OR-Objects
http://OpsResearch.com/OR-Objects
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In short, optimization is a systematic decision-making process. Consider
the following problem faced by Noah described in the Bible:

and God said unto Noah, make thee an ark of gopher wood; rooms
shalt thou make in this ark. The length of the ark shall be 300 cubits,
the breadth of it 50 cubits, and the height of it 30 cubits. With lower,
second, and third stories shalt thou make it. And of every living thing
of all flesh two of every sort shalt thou bring in the ark, to keep
them alive with thee, they shall be male and female. Thus did Noah,
according to all that God commanded him, so did he.

–Chapter 6, Genesis, Old Testament

Noah’s problem: Determine the minimum number of rooms that allows
a compatible assignment of the animals. What Noah faced is a mixed inte-
ger nonlinear programming problem. Consider adding the following lines to
Noah’s problem.

...and include the uncertainties associated with forecasting the con-
sumption of food. Also consider the variabilities in weights and nature
of the different animals in the assignment.

This is a mixed integer nonlinear programming problem under uncertainty
and represents a challenge even today.

Exercises

1.1 For the problems below, indicate the degrees of freedom and the problem
type (LP, NLP, IP, etc.)

(a)

max f(x, y) = 3x+ 4y

s.t. x+ 4y − z ≤ 10

y + z ≥ 6

x− y ≤ 3

(b)

min f(x, y) = 3 · x2 + 4 · sin(y · z)
s.t. x+ 4y ≤ 10

y + z = 6 + π

x− y ≤ 3

z ∈ {0, π/2, π}
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(c)

min 4.35 · x2 · y1 + 1.74 · x · z · y2 − 2.5 · k · y3
s.t. x− z + k ≤ 10

y1 + y2 ≤ 1

y2 ≤ y3

x ≤ 8

k ≤ 7

x, k ≥ 0

y1, y2, y3 ∈ {0, 1}

(d)

min σ2
RB

=

∫ 1

0

(RB −RB)
2dF

s.t. RB =

∫ 1

0

RB(θ, x, u)dF

CA =
CAi

1 + k0A · e−EA/RT · τ

CB =
CBi

+ k0A · e−EA/RT · τ · CA

1 + k0B · e−EB/RT · τ
−rA = k0A · e−EA/RT

−rB = k0B · e−EB/RT − k0A · e−EA/RT

Q = FρCp · (T − Ti) + V · (rAHRA + rBHRB)

τ = V/F

RB = rb · V

where θ denotes the control variables corresponding to the degrees of free-
dom, x are the state variables equal to the number of equality constraints,
and u represents associated uncertainties.

1.2 Indicate whether the problem below is an NLP or an LP. What methods
do you expect to be most effective for solving this problem?

max f(x, y, z,m) = x− 3y + 1.25z − 2 · log (m)

s.t. m · exp (y) ≥ 10

log (m)− x+ 4z ≥ 6

x− 3y ≤ 9
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2

Linear Programming

Linear programming (LP) problems involve linear objective function and lin-
ear constraints, as shown below in Example 2.1.

Example 2.1: Solvents are extensively used as process materials (e.g. ex-
tractive agents) or process fluids (e.g., CFC) in chemical process industries.
Cost is a main consideration in selecting solvents. A chemical manufacturer
is accustomed to a raw material X1 as the solvent in his plant. Suddenly,
he found out that he can effectively use a blend of X1 and X2 for the same
purpose. X1 can be purchased at $4 per ton, however X2 is an environmen-
tally toxic material which can be obtained from other manufacturers. With
the current environmental policy, this results in a credit of $1 per ton of X2

consumed. He buys the material a day in advance and stores it. The daily
availability of these two materials is restricted by two constraints: (1) The
combined storage (intermediate) capacity for X1 and X2 is 8 tons per day.
The daily availability for X1 is twice the required amount. X2 is generally
purchased as needed. (2) The maximum availability of X2 is 5 tons per day.
Safety conditions demand that the amount of X1 cannot exceed the amount
of X2 by more than 4 tons. The manufacturer wants to determine the amount
of each raw material required to reduce the cost of solvents to a minimum.
Formulate the problem as an optimization problem.

Solution: Let x1 be the amount of X1 and x2 be the amount of X2 re-
quired per day in the plant. Then, the problem can be formulated as a linear
programming problem as given below.

Minimize Z = 4x1 − x2 (2.1)

Electronic Supplementary Material: The online version of this chapter (https://
doi.org/10.1007/978-3-030-55404-0 2) contains supplementary material, which is
available to authorized users.
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x1, x2

subject to

2x1 + x2 ≤ 8 Storage Constraint (2.2)

x2 ≤ 5 Availability Constraint (2.3)

x1 − x2 ≤ 4 Safety Constraint (2.4)

x1 ≥ 0;x2 ≥ 0

As shown above, the problem is a two-variable LP problem, which can
be easily represented in a graphical form. Figure 2.1 shows constraints (2.2)
through (2.4), plotted as three lines by considering the three constraints as
equality constraints. Therefore, these lines represent the boundaries of the in-
equality constraints. In the figure, the inequality is represented by the points
on the other side of the hatched lines. The objective function lines are repre-
sented as dashed lines (isocost lines). It can be seen that the optimal solution
is at the point x1 = 0; x2 = 5, a point at the intersection of constraint
(2.3) and one of the isocost lines. All isocost lines intersect constraints either
once or twice. The LP optimum lies at a vertex of the feasible region, which
forms the basis of the simplex method. The simplex method is a numerical
optimization method for solving linear programming problems developed by
George Dantzig in 1947.

x1

-2 -1 0 1 2 3 4 5 6

x 2

-5

0

5

10
Optimum

Feasible region

-5

2x1 + x2 = 8

x1 - x2 = 4

Z=-5

Z=0

Isocost lines

A

B

CD

Fig. 2.1. Linear programming graphical representation, Exercise 2.1
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2.1 The Simplex Method

The graphical method shown earlier can be used for two-dimensional prob-
lems; however, real-life LPs consist of many variables, and to solve these linear
programming problems, one has to resort to a numerical optimization method
such as the simplex method.

The generalized form of an LP can be written as follows.

Optimize Z =

n∑
i=1

Cixi (2.5)

xi

subject to
n∑

i=1

ajixi ≤ bj (2.6)

j = 1, 2, . . . ,m

xj ε R

As stated in Chapter 1, a numerical optimization method involves an iter-
ative procedure. The simplex method involves moving from one extreme point
on the boundary (vertex) of the feasible region to another along the edges of
the boundary iteratively. This involves identifying the constraints (lines) on
which the solution will lie. In simplex, a slack variable is incorporated in every
constraint to make the constraint an equality. Now, the aim is to solve the
linear equations (equalities) for the decision variables x, and the slack vari-
ables s. The active constraints are then identified based on the fact that, for
these constraints, the corresponding slack variables are zero.

The simplex method is based on the Gauss elimination procedure of solving
linear equations. However, some complicating factors enter in this procedure:
(1) all variables are required to be nonnegative because this ensures that
the feasible solution can be obtained easily by a simple ratio test (Step 4
of the iterative procedure described below) and (2) we are optimizing the
linear objective function, so at each step we want to ensure that there is an
improvement in the value of the objective function (Step 3 of the iterative
procedure given below).

The simplex method uses the following steps iteratively.

1. Convert the LP into the standard LP form.
Standard LP
• All the constraints are equations with a nonnegative right-hand side.
• All variables are nonnegative.

– Convert all negative variables x to nonnegative variables using two
variables (e.g., x = x+−x−); this is equivalent to saying if x = −5,
then −5 = 5− 10, x+ = 5, and x− = 10.
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– Convert all inequalities into equalities by adding slack variables
(nonnegative) for less than or equal to constraints (≤) and by sub-
tracting surplus variables for greater than or equal to constraints
(≥).

• The objective function must be minimization or maximization.
• The standard LP involving m equations and n unknowns has m basic

variables and n − m nonbasic or zero variables. This is explained
below using Example 2.1.

Consider Example 2.1 in the standard LP form with slack variables, as
given below.
Standard LP:

Maximize − Z (2.7)

− Z + 4x1 − x2 = 0 (2.8)

2x1 + x2 + s1 = 8 (2.9)

x2 + s2 = 5 (2.10)

x1 − x2 + s3 = 4 (2.11)

x1 ≥ 0;x2 ≥ 0

s1 ≥ 0; s2 ≥ 0; s3 ≥ 0

The feasible region for this problem is represented by the region ABCD
in Figure 2.1. Table 2.1 shows all the vertices of this region and the corre-
sponding slack variables calculated using the constraints given by Equa-
tions (2.9)–(2.11) (note that the nonnegativity constraint on the variables
is not included).

Table 2.1. Feasible region in Figure 2.1 and slack variables

Point x1 x2 s1 s2 s3
A 0.0 0.0 8.0 5.0 4.0
B 4.0 0.0 0.0 5.0 0.0
C 1.5 5.0 0.0 0.0 7.5
D 0.0 5.0 3.0 0.0 9.0

It can be seen from Table 2.1 that at each extreme point of the feasible
region, there are n − m = 2 variables that are zero and m = 3
variables that are nonnegative. An extreme point of the linear program is
characterized by these m basic variables.
In simplex the feasible region shown in Table 2.1 gets transformed into a
tableau (Table 2.2).
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Table 2.2. Simplex tableau from Table 2.1

Row −Z x1 x2 s1 s2 s3 RHS Basic

0 1 4 −1 0 0 0 0 −Z = 0
1 0 2 1 1 0 0 8 s1 = 8
2 0 0 1 0 1 0 5 s2 = 5
3 0 1 −1 0 0 1 4 s3 = 4

2. Determine the starting feasible solution. A basic solution is obtained by
setting n − m variables equal to zero and solving for the values of the
remaining m variables.

3. Select an entering variable (in the list of nonbasic variables) using the
optimality (defined as better than the current solution) condition; that is,
choose the next operation so that it will improve the objective function.
Stop if there is no entering variable.
Optimality Condition:
• Entering variable: The nonbasic variable that would increase the ob-

jective function (for maximization). This corresponds to the nonbasic
variable having the most negative coefficient in the objective function
equation or the row zero of the simplex tableau.
In many implementations of simplex, instead of wasting the computa-
tion time in finding the most negative coefficient, any negative coeffi-
cient in the objective function equation is used.

4. Select a leaving variable using the feasibility condition.
Feasibility Condition:
• Leaving variable: The basic variable that is leaving the list of basic

variables and becoming nonbasic. The variable corresponding to the
smallest nonnegative ratio (the right-hand side of the constraint di-
vided by the constraint coefficient of the entering variable).

5. Determine the new basic solution by using the appropriate Gauss–Jordan
Row Operation.
Gauss–Jordan Row Operation:
• Pivot Column: Associated with the row operation.
• Pivot Row: Associated with the leaving variable.
• Pivot Element: Intersection of Pivot row and Pivot Column.

ROW OPERATION
• Pivot Row = Current Pivot Row ÷ Pivot Element.
• All other rows: New Row = Current Row—(its Pivot Column Coeffi-

cients × New Pivot Row).
6. Go to Step 2.

The following example illustrates the simplex method.

Example 2.2: Solve Example 2.1 using the simplex method.
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Solution:

• Convert the LP into the standard LP form. For simplicity, we are convert-
ing this minimization problem to a maximization problem with −Z as the
objective function. Furthermore, nonnegative slack variables s1, s2, and s3
are added to each constraint.
Standard LP:

Maximize − Z (2.12)

− Z + 4x1 − x2 = 0 (2.13)

2x1 + x2 + s1 = 8 Storage Constraint (2.14)

x2 + s2 = 5 Availability Constraint (2.15)

x1 − x2 + s3 = 4 Safety Constraint (2.16)

x1 ≥ 0;x2 ≥ 0

The standard LP is shown in Table 2.3 where x1 and x2 are nonbasic
or zero variables and s1, s2, and s3 are the basic variables. The starting
solution is x1 = 0; x2 = 0; s1 = 8; s2 = 5; s3 = 4 obtained from the RHS
column.

Table 2.3. Initial tableau for Example 2.2

Row −Z x1 x2 s1 s2 s3 RHS Basic Ratio

0 1 4 −1 0 0 0 0 −Z = 0 –
1 0 2 1 1 0 0 8 s1 = 8 8
2 0 0 1 0 1 0 5 s2 = 5 5
3 0 1 −1 0 0 1 4 s3 = 4 –

• Determine the entering and leaving variables.
Is the starting solution optimum? No, because Row 0 representing the
objective function equation contains nonbasic variables with negative co-
efficients. This can also be seen from Figure 2.2. In this figure, the current
basic solution is shown to be increasing in the direction of the arrow.
Entering Variable: The most negative coefficient in Row 0 is x2. Therefore,
the entering variable is x2. This variable must now increase in the direction
of the arrow. How far can this increase the objective function? Remember
that the solution has to be in the feasible region. Figure 2.2 shows that the
maximum increase in x2 in the feasible region is given by point D, which
is on constraint (2.3). This is also the intercept of this constraint with the
y-axis, representing x2. Algebraically, these intercepts are the ratios of the
right-hand side of the equations to the corresponding constraint coefficient
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of x2. We are interested only in the nonnegative ratios, as they represent
the direction of increase in x2. This concept is used to decide the leaving
variable.
Leaving Variable: The variable corresponding to the smallest nonnegative
ratio (5 here) is s2. Hence, the leaving variable is s2.
So, the Pivot Row is Row 2 and Pivot Column is x2.

• The two steps of the Gauss–Jordan Row Operation are given below.
The pivot element is underlined in Table 2.3 and is 1.
Row Operation:
Pivot: (0, 0, 1, 0, 1, 0, 5)
Row 0: (1, 4, -1, 0, 0, 0, 0) - (-1) (0, 0, 1, 0, 1, 0, 5) = (1, 4, 0, 0, 1, 0, 5)
Row 1: (0, 2, 1, 1, 0, 0, 8) - (1) (0, 0, 1, 0, 1, 0, 5) = (0, 2, 0, 1, -1, 0, 3)
Row 3: (0, 1, -1, 0, 0, 1, 4) - (-1) (0, 0, 1, 0, 1, 0, 5) = (0, 1, 0, 0, 1, 1, 9)
These steps result in the following table (Table 2.4).

Table 2.4. The simplex tableau, Example 2.2, iteration 2

Row −Z x1 x2 s1 s2 s3 RHS Basic Ratio

0 1 4 0 0 1 0 5 −Z = 5 –
1 0 2 0 1 −1 0 3 s1 = 3 –
2 0 0 1 0 1 0 5 x2 = 5 –
3 0 1 0 0 1 1 9 s3 = 9 –

There is no new entering variable because there are no nonbasic variables
with a negative coefficient in row 0. Therefore, we can assume that the
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solution is reached, which is given by (from the RHS of each row) x1 =
0; x2 = 5; s1 = 3; s2 = 0; s3 = 9; Z = −5.
Note that at an optimum, all basic variables (x2, s1, s3) have a zero
coefficient in Row 0.

2.2 Infeasible Solution

Now consider the same example, and change the right-hand side of Equation
(2.2) to −8 instead of 8. We know that constraint (2.2) represents the storage
capacity and physics tells us that the storage capacity cannot be negative.
However, let us see what we get mathematically.

Example 2.3: Constraint (2.2) is changed to reflect a negative storage ca-
pacity.

Solution: This results in the following LP.

Maximize − Z (2.17)

x1, x2

subject to

− Z + 4x1 − x2 = 0 (2.18)

2x1 + x2 ≤ − 8 Storage Constraint (2.19)

x2 ≤ 5 Availability Constraint (2.20)

x1 − x2 ≤ 4 Safety Constraint (2.21)

x1 ≥ 0;x2 ≥ 0

From Figure 2.3, it is seen that the solution is infeasible for this problem.
Writing in standard LP form for simplex results in the following.
Standard LP: :

Maximize − Z (2.22)

− Z + 4x1 − x2 = 0 (2.23)

−2x1 − x2 + s1 = 8 Storage Constraint (2.24)

x2 + s2 = 6 Availability Constraint (2.25)

x1 − x2 + s3 = 4 Safety Constraint (2.26)

x1 ≥ 0;x2 ≥ 0

Applying the simplex method results in Table 2.5 for the first step.
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Table 2.5. Initial simplex tableau, Example 2.3

Row −Z x1 x2 s1 s2 s3 RHS Basic Ratio

0 1 4 −1 0 0 0 0 −Z = 0 –
1 0 −2 −1 1 0 0 8 s1 = 8 –
2 0 0 1 0 1 0 5 s2 = 5 5
3 0 1 −1 0 0 1 4 s3 = 4 None

Standard LP:

Maximize − Z + 4x1 − x2 (2.27)

− 2x1 − x2 − s1 = 8 (2.28)

x2 + s2 = 5 (2.29)

x1 − x2 + s3 = 4 (2.30)

As can be seen, the entering variable with the most negative coefficient is
x2 and the leaving variable corresponding to the smallest nonnegative ratio is
s2.

Applying the Gauss–Jordan row operation results in Table 2.6.
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Table 2.6. The simplex tableau, Example 2.3, iteration 2

Row −Z x1 x2 s1 s2 s3 RHS Basic Ratio

0 1 4 0 0 1 0 5 −Z = 0 –
1 0 −2 0 −1 1 0 13 s1 = −13 –
2 0 0 1 0 1 0 5 x2 = 5 –
3 0 1 0 0 1 1 9 s3 = 9 –

The solution to this problem is the same as before: x1 = 0; x2 = 5.
However, this solution is not a feasible solution because the slack variable
(artificial variable defined to be always positive), s1, is negative.

2.3 Unbounded Solution

If constraints (2.19) and (2.20) are removed in the above example, the solution
is unbounded, as can be seen in Figure 2.4. This means there are points in
the feasible region with arbitrarily large objective function values (for maxi-
mization).
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Example 2.4: Constraints (2.19) and (2.20) removed.

Solution:

Minimize Z = 4x1 − x2 (2.31)

x1, x2

subject to

x1 − x2 ≤ 4 Safety Constraint (2.32)

x1 ≥ 0;x2 ≥ 0

The simplex tableau for this problem is shown in Table 2.7.

Table 2.7. The simplex tableau, Example 2.4

Row −Z x1 x2 s3 RHS Basic Ratio

0 1 4 −1 0 0 −Z = 0 –
1 0 1 −1 1 4 s3 = 4 None

The entering variable is x2 as it has the most negative coefficient in row 0.
However, there is no leaving variable corresponding to the binding constraint
(the smallest nonnegative ratio or intercept). That means x2 can take as high
a value as possible. This is also apparent in the graphical solution shown in
Figure 2.4.

The LP is unbounded when (for a maximization problem) a nonbasic vari-
able with a negative coefficient in row 0 has a nonpositive coefficient in each
constraint, as shown in the above table.

2.4 Multiple Solutions

In the following example, the cost of X1 is assumed to be negligible as com-
pared to the credit of X2. This LP has infinite solutions given by the isocost
line (x2 = 5) in Figure 2.5. The simplex method generally finds one solution
at a time. Special methods such as goal programming or multiobjective opti-
mization can be used to find these solutions. These methods are described in
Chapter 6.

Example 2.5: Assume that in Example 2.1, the cost of X1 is negligible.
Find the optimal solution.

Minimize Z = − x2 (2.33)
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x1, x2

subject to

2x1 + x2 ≤ 8 Storage Constraint (2.34)

x2 ≤ 5 Availability Constraint (2.35)

x1 − x2 ≤ 4 Safety Constraint (2.36)

x1 ≥ 0; x2 ≥ 0

Solution: The graphical solution to this problem is shown in Figure 2.5.
The simplex solution iteration summary is presented in Tables 2.8 and 2.9.
The simplex method found the first solution to the problem; that is, x1 = 0,

x2 = 5. Can simplex recognize that there are multiple solutions? Note that
in Example 2.2, we stated that in the final simplex tableau solution, all basic
variables have a zero coefficient in row 0. However, in the optimal tableau,
there is a nonbasic variable x1, which also has a zero coefficient.
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Let us see if we make x1 as an entering variable from the list of basic
variables (Table 2.10). From the ratio test, one can see that s1 would be the
leaving variable. This results in the simplex tableau presented in Table 2.11.

Table 2.8. Initial tableau for Example 2.5

Row −Z x1 x2 s1 s2 s3 RHS Basic Ratio

0 1 0 −1 0 0 0 0 −Z = 0 –
1 0 2 1 1 0 0 8 s1 = 8 8
2 0 0 1 0 1 0 5 s2 = 5 5
3 0 1 −1 0 0 1 4 s3 = 4 –

Table 2.9. The Simplex tableau, Example 2.5, iteration 2

Row −Z x1 x2 s1 s2 s3 RHS Basic Ratio

0 1 0 0 0 1 0 5 −Z = 5 –
1 0 2 0 1 −1 0 3 s1 = 3 –
2 0 0 1 0 1 0 5 x2 = 5 –
3 0 1 0 0 1 1 9 s3 = 9 –

Table 2.10. The simplex tableau, Example 2.5, iteration 3

Row −Z x1 x2 s1 s2 s3 RHS Basic Ratio

0 1 0 0 0 1 0 5 −Z = 5 –
1 0 2 0 1 −1 0 3 s1 = 3 1.5
2 0 0 1 0 1 0 5 x2 = 5 –
3 0 1 0 0 1 1 9 s3 = 9 9

Table 2.11. The simplex tableau, Example 2.5, iteration 4

Row −Z x1 x2 s1 s2 s3 RHS Basic Ratio

0 1 0 0 0 1 0 5 −Z = 5 –
1 0 1 0 0.5 −0.5 0 1.5 x1 = 1.5 –
2 0 0 1 0 1 0 5 x2 = 5 –
3 0 0 0 −0.5 1.5 1 7.5 s3 = 7.5 –

An alternate solution to the simplex is x = (1.5, 5.0). Remember that this
is also an optimum solution because there are only nonnegative coefficients
left in row 0.
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2.5 Degeneracy in LP

An LP is degenerate if, in a basic feasible solution, one of the basic variables
takes on a zero value. Degeneracy could result in the cycling of a solution for
the basic simplex method. If a sequence of pivots starting from some basic
feasible solution ends up at the exact same basic feasible solution, then we
refer to this as “cycling.” If the simplex method cycles, it can cycle forever.
The following example illustrates the degeneracy in LP.

Example 2.6: Consider the same example (Example 2.1), we have been
using in this chapter. If instead of starting the feasible solution at x=(0,0)
with x1 and x2 as nonbasic variables, if we start at point B, as shown in
Figure 2.6. with x2 and s1 as nonbasic variables. This results in the following
iteration summary presented in Tables 2.12, 2.13, and 2.14
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Table 2.12. Simplex tableau for Example 2.6, Iteration 1

Row −Z x1 x2 s1 s2 s3 RHS Basic

0 1 4 −1 0 0 0 0 −Z = −6
1 0 2 1 1 0 0 8 x1 = 4
2 0 0 1 0 1 0 5 s2 = 5
3 0 1 −1 0 0 1 4 s3 = 0

In iteration 1, the basic variable s3 has zero value, this is degenerate LP.
After iteration 2, the simplex tableau (Table 2.13 ) has no nonbasic variable
with -negative coefficient. However, one of the nonbasic variable s1 has zero
coefficient, so like the last example, we can choose this as an entering variable.
We can see that the leaving variable corresponds to constraint 3. However,
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constraint 3 has two basic variables x1 and s3. If we choose s3 as the leaving
variable, this results in Tableau given in Table 2.14. We can see that we have
reached the same solution as iteration 1. This is cycling.

Table 2.13. The simplex tableau, Example 2.6, iteration 2

Row −Z x1 x2 s1 s2 s3 RHS Basic Ratio

0 1 4 0 0 1 0 5 −Z = −1 –
1 0 2 0 1 −1 0 3 x1 = 1.5 –
2 0 0 1 0 1 0 5 x2 = 5 –
3 0 1 0 0 1 1 9 s3 = 7.5 9

Table 2.14. Simplex tableau for Example 2.6, Iteration 3

Row −Z x1 x2 s1 s2 s3 RHS Basic

0 1 4 −1 0 0 0 0 −Z = −6
1 0 2 1 1 0 0 8 x1 = 4
2 0 0 1 0 1 0 5 s2 = 5
3 0 1 −1 0 0 1 4 s3 = 0

If we chose the leaving variable as x1, then we reach the optimum.

2.6 Sensitivity Analysis

The sensitivity of the linear programming solution is expressed in terms of
shadow prices and opportunity (reduced) cost.

• Shadow Prices/Dual Prices/Simplex Multipliers: A shadow price is the rate
of change (increase in the case of maximization and decrease in the case of
minimization) of the optimal value of the objective function with respect
to a particular constraint. Shadow prices are also called dual prices from
the dual representations of LP problems used in the dual simplex method
described in the next section.
Figure 2.7 shows the shadow prices for various constraints in Example 2.1.
As shown in the figure, if one changes the right-hand side of constraints
(2.2) and (2.4) and uses the same basis, the optimal value is unchanged,
so the shadow prices for these constraints are zero. This shows that if the
management of the manufacturing company wants to increase their storage
capacity, this decision will not have any implications as far as the solvent
optimal cost is concerned. Similarly, if the company decides to relax the
constraint on excess component volume (constraint (2.3)), that will also
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not affect their solvent costs. However, if they can have access to more
chemical X2 per day (please see the LP formulation and corresponding
simplex iteration summary, (Table 2.15 and 2.16 given) then that reduces
the cost (objective function), as the shadow price for this constraint is 1.

Table 2.15. Initial tableau for the new LP

Row −Z x1 x2 s1 s2 s3 RHS Basic Ratio

0 1 4 −1 0 0 0 0 −Z = 0 –
1 0 2 1 1 0 0 8 s1 = 8 8
2 0 0 1 0 1 0 6 s2 = 6 6
3 0 1 −1 0 0 1 4 s3 = 4 –

Table 2.16. The simplex tableau, iteration 2

Row −Z x1 x2 s1 s2 s3 RHS Basic Ratio

0 1 4 0 0 1 0 6 −Z = 6 –
1 0 2 0 1 −1 0 2 s1 = 2 –
2 0 0 1 0 1 0 6 x2 = 6 –
3 0 1 0 0 1 1 10 s3 = 10 –

Standard LP:

Maximize − Z (2.37)

− Z + 4x1 − x2 = 0 (2.38)

2x1 + x2 + s1 = 8 Storage Constraint (2.39)

x2 + s2 = 6 Availability Constraint (2.40)

x1 − x2 + s3 = 4 Safety Constraint (2.41)

x1 ≥ 0;x2 ≥ 0

Table 2.16 demonstrates that the slack variables for the two constraints
with shadow prices of zero are positive (row 1 and 3). A less than or equal
to (≤) constraint will always have a nonnegative shadow price; a less than
or equal to (≤) constraint with positive slack variable (constraints 1 and
3) will have a zero shadow price; a greater than or equal to (≥) constraint
will always have a nonpositive shadow price; and an equality constraint
may have a positive, a negative, or a zero shadow price.
The shadow prices are important for the following reasons.
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– To identify which constraints might be the most beneficially changed,
and to initiate these changes as a fundamental means to improve the
solution

– To react appropriately when external circumstances create opportuni-
ties or threats to change the constraints

• Opportunity Cost/Reduced Cost: This is the rate of degradation of the
optimum per unit use of a nonbasic (zero) variable in the solution.
Figure 2.8 shows that the opportunity cost for the nonbasic variable x1

is 5. It can be seen that with the unit change in x1, the solution lies
on a different constraint (Equation (2.2)) changing the optimal objective
function value from −5 to 0.
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Fig. 2.8. Opportunity Cost

2.7 Other Methods

As a general rule, LP computational effort depends more on the number of
constraints than the number of variables. The dual simplex method uses the
dual representation of the original (primal) standard LP problem where the
number of constraints is changed to the number of variables and vice versa.
For large numbers of constraints, the dual simplex method is more efficient
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than the conventional simplex method. Table 2.17 shows the primal and dual
representation of a standard LP. In the table, μj are the dual prices, or simplex
multipliers. In nonlinear programming (Chapter 3) terminology, they are also
known as the Lagrange multipliers. Using the NLP notations in Chapter 3,
Example 3.8 shows the equivalence between the primal and dual representa-
tion shown in Table 2.17.

Table 2.17. The Primal and dual representation for an LP

Primal Dual
Maximize Z =

∑n
i=1 Cixi Minimize Zd =

∑m
j=1 bjμj

xi, i = 1, 2, . . . , n μj j = 1, 2, . . . ,m∑n
i=1 aijxi ≤ bj

∑m
j=1 aijμj ≥ Ci

j = 1, 2, . . . ,m i = 1, 2, . . . , n
xi ≥ 0 μj ≥ 0

The simplex method requires the initial basic solution to be feasible. The
Big M method and the two-phase simplex method circumvent the basic initial
feasibility requirement of the simplex method. For details of these methods,
please refer to Winston (1991).

Simplex methods move from boundary to boundary within the feasible re-
gion. On the other hand, interior-point methods visit points within the interior
of the feasible region, which is more in line with the nonlinear programming
techniques described in the next chapter. These methods are derived from the
nonlinear programming techniques developed and popularized in the 1960s
by Fiacco and McCormick, but their application to linear programming dates
back only to Karmarkar’s innovative analysis in 1984. The following example
provides the basic concepts behind the interior point method.

Example 2.6: Take Example 2.5 and eliminate constraints (2.34) and
(2.36). This converts the problem into a one-dimensional LP. Provide the
conceptual steps for the interior point method using this LP.

Minimize Z = − x2 (2.42)

x2

subject to

x2 ≤ 5 Availability Constraint (2.43)

Solution: Just as we did in the simplex method earlier, let us add a variable
s2 to constraint (2.43). This results in the following two-dimensional problem.

Maximize − Z = x2 + 0s2 (2.44)

x2, s2
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subject to

x2 + s2 = 5 (2.45)

This LP problem is shown in Figure 2.9. The constraint line represents
the feasible region. Now consider a feasible point A on this constraint as
a starting point. We need to take a step towards increasing the objective
function (maximization) in the x2 space, that is, the direction parallel to the
x-axis. However, because this will be going out of the feasible region, this
gradient is projected back to the feasible region at point B. As can be seen,
this point is closer to the optimum than A. This gradient projection step
is repeated until one reaches the optimum. Note that the step towards the
gradient should not be too large to overshoot the optimum or too small to
increase the number of iterations. It should also not get entrapped in the non-
optimum solution. Karmarkar’s interior point algorithm addresses these two
concerns.
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Fig. 2.9. The interior Point method conceptual diagram

Prior to 1987, all of the commercial codes for solving general linear pro-
grams made use of the simplex algorithm. This algorithm, invented in the late
1940s, has fascinated optimization researchers for many years because its per-
formance on practical problems is usually far better than the theoretical worst
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case. During the period of 1984–1995, the interior point methods were the sub-
ject of intense theoretical and practical investigation, with practical code first
appearing around 1989. These methods appear to be faster than the simplex
method on large problems, but the advent of a serious rival spurred signif-
icant improvements in simplex codes. Today, the relative merits of the two
approaches on any given problem depend strongly on the particular geomet-
ric or algebraic properties of the problem. In general, however, good interior
point codes continue to perform as well or better than good simplex codes
on larger problems when no prior information about the solution is available.
When such “warm start” information is available, simplex methods are able
to make much better use of it than the interior point methods (Wright, 1999).

2.8 Hazardous Waste Blending Problem as an LP

The Hanford site in southeastern Washington has produced nuclear materials
using various processes for nearly 50 years. Radioactive hazardous waste was
produced as byproducts of the processes. This waste will be retrieved and
separated into high-level and low-level portions. The high-level and low-level
wastes will be immobilized for future disposal.

The high-level waste will be converted into a glass form for disposal. The
glass must meet both processability and durability restrictions. The process-
ability conditions ensure that during processing, the glass melt has properties
such as viscosity, electrical conductivity, and liquidus temperature, which lie
within ranges known to be acceptable for the vitrification process. Durability
restrictions ensure that the resultant glass meets the quantitative criteria for
disposal in a repository. There are also bounds on the composition of the vari-
ous components in the glass. In the simplest case, waste and appropriate glass
forms (frit) are mixed and heated in a melter to form a glass that satisfies
the constraints. It is desirable to keep the amount of frit added to a minimum
for two reasons. First, this keeps the frit costs to a minimum. Second, the
amount of waste per glass log formed is to be maximized, which keeps the
waste disposal costs to a minimum. When there is only a single type of waste,
the problem of finding the minimum amount of frit is relatively easy (Narayan
et al., 1996).

Hanford has 177 tanks (50,000–1 million gallons) containing radioactive
waste. Because these wastes result from a variety of processes, these wastes
vary widely in composition, and the glasses produced from these wastes will
be limited by a variety of components. The minimum amount of frit would
be used if all the high-level wastes were combined to form a single feed to the
vitrification process. Because of the volume of waste involved and the time
span over which it will be processed, this is logistically impossible. However,
much of the same benefit can be obtained by forming blends from sets of
tanks. The problem is how to divide all the tanks into sets to be blended
together so that a minimal amount of frit is required.
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In this discrete blending problem, there are N different sources of waste
that have to form a discrete number of blends B, with the number of blends
being less than the number of sources or tanks. All the waste from any given
tank is required to go to a single blend, and each blend contains waste from
N/B sources. Blends of equal size (same number of wastes per blend) were
specified; alternatively, blends could be formulated to have approximately the
same waste masses. Figure 2.10 shows a set of four wastes that needs to be
partitioned into two parts to form two blends. If neither of these were specified
as constraints, all the waste would go to a single blend. In this chapter, we
look at the single-blend problem. Table 2.18 shows the chemical composition
of the high-level waste in three different tanks to be combined to form a single
blend. The table shows the waste mass expressed as a total of the first ten
chemicals, including the chemical termed as “other.” Frit added to the blend
consists of these ten chemicals. The waste mass is scaled down by dividing
it by 1000 so as to numerically simplify the solution process. The rest of the
chemicals are expressed as the fraction of the total.

Waste 1

Waste 2

Waste 3

Waste 4

Waste Blend 1

Waste Blend 2

Vitrify Waste 

Vitrify Waste

Add Frit

Add Frit 

Glass Formed

Glass Formed

Fig. 2.10. Conversion of waste to glass

In order to form glass, the blend must satisfy certain constraints. These
constraints are briefly described below.

1. Individual Component Bounds: There are upper (p
(i)
UL) and lower (p

(i)
LL)

limits on the fraction of each component p(i) in glass. Therefore,

p
(i)
LL ≤ p(i) ≤ p

(i)
UL (2.46)

These bounds are shown in Table 2.19.
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Table 2.18. Waste composition

Fractional composition of wastes

Component Comp. ID AY-102 AZ-101 AZ-102
Tank 1 Tank 2 Tank 3

SiO2 1 0.072 0.092 0.022

B2O3 2 0.026 0.000 0.006

Na2O 3 0.105 0.264 0.120

Li2O 4 0.000 0.000 0.000

CaO 5 0.061 0.012 0.010

MgO 6 0.040 0.000 0.003

Fe2O3 7 0.328 0.323 0.392

Al2O3 8 0.148 0.157 0.212

ZrO2 9 0.002 0.057 0.063

Other 10 0.217 0.096 0.173

Total – 1.000 1.000 1.000

Cr2O3 11 0.016 0.007 0.005

F 12 0.006 0.001 0.001

P2O5 13 0.042 0.001 0.021

SO3 14 0.001 0.018 0.009

Noble Metals 15 0.000 0.000 0.000

Waste Mass (kgs) 59,772 40,409 143,747

Table 2.19. Component bounds

Component Lower bound, p
(i)
LL Upper bound, p

(i)
UL

SiO2 0.42 0.57

B2O3 0.05 0.20

Na2O 0.05 0.20

Li2O 0.01 0.07

CaO 0.00 0.10

MgO 0.00 0.08

Fe2O3 0.02 0.15

Al2O3 0.00 0.15

ZrO2 0.00 0.13

Other 0.01 0.10

2. Crystallinity Constraints: The crystallinity constraints, or multiple com-
ponent constraints, specify the limits on the combined fractions of different
components. There are five such constraints.
(a) The ratio of the mass fraction of SiO2 to the mass fraction of Al2O3

should be greater than C1 (C1 = 3.0).
(b) The sum of the mass fraction of MgO and the mass fraction of CaO

should be less than C2 (C2 = 0.08).
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(c) The combined sum of the mass fractions of Fe2O3, Al2O3, ZrO2 and
Other should be less than C3 (C3 = 0.225).

(d) The sum of the mass fraction of Al2O3 and the mass fraction of ZrO2

should be less than C4 (C4 = 0.18).
(e) The combined sum of the mass fractions of MgO, CaO, and ZrO2

should be less than C5 (C5 = 0.18).
3. Solubility Constraints: These constraints limit the maximum value for the

mass fraction of one or a combination of components.
(a) The mass fraction of Cr2O3 should be less than 0.005.
(b) The mass fraction of F should be less than 0.017.
(c) The mass fraction of P2O5 should be less than 0.01.
(d) The mass fraction of SO2 should be less than 0.005.
(e) The combined mass fraction of Rh2O3, PdO, and Ru2O2 should be

less than 0.025.
4. Glass Property Constraints: Additional constraints govern the properties

of viscosity, electrical conductivity, and durability but are not considered
here.

Blending is most effective when the limiting constraint is one of the first
three types, and for the LP formulation these three types of constraints are
considered here.

Solution:

Hanford scientists have to decide the amount of each component to be added
in the blend to obtain the minimum amount of glass satisfying the first three
constraints. We define the decision variables first.

• wij = amount of component i (where i corresponds to the component ID)
in the tank j.

• W (i) = amount of component i in the waste blend.
• f (i) = mass of ith component in the frit.
• g(i) = mass of ith component in the glass.
• G = total mass of glass
• p(i) = fraction of ith component in the glass.

Definition of the above decision variables implies that

W (i) =
3∑

j=1

wij (2.47)

g(i) = W (i) + f (i) (2.48)

G =
n∑

i=1

g(i) (2.49)

p(i) = g(i)/G (2.50)
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Note that G is composed of a known component W (i) and an unknown
component f (i) representing degrees of freedom. Also, all these variables are
nonnegative because frit can only be added to comply with the constraint.
The objective is to minimize the total amount of waste to be vitrified. This
can be formulated as:

MinG ≡ Min

n∑
i=1

f (i) (2.51)

Subject to the following constraints.

1. Component bounds:
(a) 0.42 ≤ p(SiO2) ≤ 0.57
(b) 0.05 ≤ p(B2O3) ≤ 0.20
(c) 0.05 ≤ p(Na2O) ≤ 0.20
(d) 0.01 ≤ p(Li2O) ≤ 0.07
(e) 0.0 ≤ p(CaO) ≤ 0.10
(f) 0.0 ≤ p(MgO) ≤ 0.08
(g) 0.02 ≤ p(Fe2O3) ≤ 0.15
(h) 0.0 ≤ p(Al2O3) ≤ 0.15
(i) 0.0 ≤ p(ZrO2) ≤ 0.13
(j) 0.01 ≤ p(other) ≤ 0.10

2. Five glass crystallinity constraints:
(a) p(SiO2) > p(Al2O3) ∗ C1

(b) p(MgO) + p(CaO) < C2

(c) p(Fe2O3) + p(Al2O3) + p(ZrO2) + p(Other) < C3

(d) p(Al2O3) + p(ZrO2) < C4

(e) p(MgO) + p(CaO) + p(ZrO2) < C5

3. Solubility Constraints:
(a) p(Cr2O3) < 0.005
(b) p(F ) < 0.017
(c) p(P2O5) < 0.01
(d) p(SO3) < 0.005
(e) p(Rh2O3) + p(PdO) + p(Ru2O3) < 0.025

4. Nonnegativity Constraint:
(a) f (i) ≥ 0

Note that Equation (2.50) is a nonlinear equation, making the problem
an NLP. We can eliminate this constraint if we can write all four types of
constraint equations in terms of the mass of the component g(i) instead of the
fraction p(i).

The LP Formulation

Min

n∑
i=1

f (i) (2.52)
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W (i) =

3∑
j=1

wij (2.53)

g(i) = W (i) + f (i) (2.54)

G =

n∑
i=1

g(i) (2.55)

1. Component bounds:
(a) 0.42G ≤ g(SiO2) ≤ 0.57G
(b) 0.05G ≤ g(B2O3) ≤ 0.20G
(c) 0.05G ≤ g(Na2O) ≤ 0.20G
(d) 0.01G ≤ g(Li2O) ≤ 0.07G
(e) 0.0 ≤ g(CaO) ≤ 0.10G
(f) 0.0 ≤ g(MgO) ≤ 0.08G
(g) 0.02G ≤ g(Fe2O3) ≤ 0.15G
(h) 0.0 ≤ g(Al2O3) ≤ 0.15G
(i) 0.0 ≤ g(ZrO2) ≤ 0.13G
(j) 0.01G ≤ g(other) ≤ 0.10G

2. Five Glass crystallinity constraints:
(a) g(SiO2) > g(Al2O3) ∗ C1

(b) g(MgO) + g(CaO) < C2 ∗G
(c) g(Fe2O3) + g(Al2O3) + g(ZrO2) + g(Other) < C3 ∗G
(d) g(Al2O3) + g(ZrO2) < C4 ∗G
(e) g(MgO) + g(CaO) + g(ZrO2) < C5 ∗G

3. Solubility Constraints:
(a) g(Cr2O3) < 0.005G
(b) g(F ) < 0.017G
(c) g(P2O5) < 0.01G
(d) g(SO3) < 0.005G
(e) g(Rh2O3) + g(PdO) + g(Ru2O3) < 0.025G

4. Nonnegativity Constraint:
(a) f (i) ≥ 0

This problem is then solved using iterative solution procedures using
GAMS, and the solution to the LP is given in Table 2.20. The GAMS in-
put files for this problem and the solution can be found online on Springer
website with the book link. Thus, Hanford should add approximately 590 kgs
of frit to the blend of these three tanks. Although this appears to be a small
amount as compared to the total mass of the glass, when all the tanks are
considered, blending and optimization can reduce the amount of total glass
formed by more than half.
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Table 2.20. Composition for the optimal solution

Component Mass in the waste, W (i) Mass in frit f (i)

SiO2 11.2030 464.2909

B2O3 2.4111 110.1268

Na2O 34.1980 7.5120

Li2O 0.0000 8.3420

CaO 5.5436

MgO 2.8776

Fe2O3 89.0097

Al2O3 45.5518

ZrO2 11.4111

Other 41.7223

Total 243.9281 590.2718

2.9 Sustainable Mercury Management: An LP

Mercury has been recognized as a global threat to our ecosystem, and it is
fast becoming a major concern to environmentalists and policymakers. The
adverse effects of mercury are increasingly acknowledged. For humans, the
primary targets for the toxicity of mercury and mercury compounds are the
nervous system, kidney, and developing fetus. Other systems in the human
body that may be affected include respiratory, cardiovascular, gastrointestinal,
hematological, immune, and reproductive. Mercury is also known to adversely
affect mortality and reproduction rates in aquatic and terrestrial biota.

Mercury can cycle in the environment in all media as part of both natural
and anthropogenic activities. Figure 2.11 gives a pictorial representation of the
atmospheric mercury cycling. The majority of mercury is emitted in the air in
elemental or inorganic form, mainly by coal fired power plants, waste inciner-
ators, industrial and domestic utility boilers, and chlor-alkali plants. However,
most of the mercury in the air is deposited into various water bodies such as
lakes, rivers, and oceans through processes of dry and wet deposition. In addi-
tion, the water bodies are enriched in mercury due to direct additions, such as
industrial wastewater discharge, stormwater runoffs, agricultural runoffs, and
others. Once present in water, mercury is highly dangerous not only to the
aquatic communities but also to humans through direct and indirect effects.
Methylation of inorganic mercury leads to the formation of methyl mercury,
which accumulates up the aquatic food chains so that organisms in higher
trophic levels have higher mercury concentrations. The consumption of these
aquatic animals by humans, and wild animals further aids bioaccumulation
along the food chain leading to previously mentioned adverse effects. As a
result, contaminated fish consumption is the most predominant path of hu-
man exposure to mercury. This has resulted in fish consumption advisories at
various water bodies throughout the USA.
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Fig. 2.11. Environmental cycling of mercury

2.9.1 Mercury Management Approach

Owing to the complex issues in mercury cycling, it might be argued that a sus-
tainability based approach is essential. It points towards an approach with a
broader perspective, accounting for interacting systems over disparate spatial
and temporal scales. Sustainability also calls for a synergic approach to techno-
logical, regulatory, and social decision making. With this approach, successful
management of mercury pollution should consider management strategies at
various stages of the cycle. While doing so, it is essential to juxtapose the en-
vironmental, economic, and social objectives. The work presented by Diwekar
and Shastri (2010) is a step in this direction. Since the idea of sustainability
changes with the system being considered, different objectives, management
options, and tools are applied for different applications. The work presents
management strategies at two different stages of the mercury cycle. The case
study details are derived from the papers by Shastri and Diwekar (2008; 2009),
Diwekar and Shastri (2010) and Shastri et al. (2011). The input files and codes
for GAMS, AIMMS, and MATLAB for this case study can be found online
on the Springer website with the book link.

• Industrial sector (inter-industry) level management: Industries strive to
reduce their regulatory compliance cost to ensure profitability and eco-
nomic sustainability. This needs to be balanced with strict regulations
for an environmental cause. Therefore, at the industrial sector level, this
work analyzes the option of pollutant trading in water, and proposes a
decision-making framework to optimize economic and ecological objec-
tives. Through this case study, it also highlights the importance of correct
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modeling on optimal decisions. This problem is presented as an LP (this
chapter), an NLP(Chapter 3), a MILP, and an MINLP (Chapter 4).

• Ecosystem level management: Effective control of mercury bioaccumula-
tion in water bodies can further reduce the harmful effects and affect
regulatory decisions. This work investigates the idea of lake pH control
through time-dependent liming to reduce bioaccumulation. Optimal con-
trol theory has been used to derive the time-dependent liming decisions.
This problem is posed as an optimal control problem in Chapter 7.

Uncertainties, static as well as dynamic, increase as one moves from individual
industry level, where model and tools are well developed, to ecosystem level.
The stochastic versions of this problem are presented in Chapters 5 and 7 and
a multiobjective version in Chapter 6.

2.9.2 Watershed Based Trading

The primary reason for pollutant trading to be attractive is the flexibility it
offers to all stakeholders. The main stakeholders are polluters (industries),
and regulatory authority, which also represents the interests of the society.
Although the flexibility offered by trading is desirable, it also adds new di-
mensions to decision making for these stakeholders. It is, therefore, important
to understand individual perspective while designing a trading framework.

Following on the lines of air pollutant trading, trading principles have
also been sanctioned by USEPA for water pollution problems on a limited
basis since early 1980s. USEPA has since then formalized the concept into a
framework to guide the effective implementation of water pollutant trading
(US EPA, 2003). Trading is based on the fact that sources in a watershed can
face very different costs to control the emission of the same pollutant. Trading
programs allow facilities facing higher pollution control costs to meet their
regulatory obligations by purchasing environmentally equivalent (or superior)
pollution reductions from another source at a lower cost. Firms that have the
financial capability and infrastructure to perform pollutant reduction below
the required limit get credits for it. These credits can be sold to another firm
to gain monetary benefits or banked for future use if that is a possibility.

Pollutant dischargers are mainly classified as point and non-point sources.
Point sources are defined as those having direct and measurable emissions
(e.g., industries, municipal waste treatment plants), while non-point sources
are those with diffused emissions that are difficult to measure (e.g., agricul-
tural or stormwater runoffs). Among the various possibilities of carrying out
trading, the one between point sources is thought to be simpler and achiev-
able. This is owing to their measurable discharges in terms of quality and
quantity, and also due to the measurable assessment of pollution reduction
techniques.

Point sources are regulated under the National Pollution Discharge Elim-
ination System (NPDES) established under the Clean Water Act (CWA).
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Under NPDES, all facilities that discharge pollutants from any point source
into waters of the USA are required to obtain a permit, allowing them to
discharge only a certain amount of the pollutant. The permit provides two
levels of control: technology-based limits (based on the ability of the dis-
chargers in the same industrial category to treat the wastewater) and water
quality-based limits (if technology-based limits are not sufficient to provide
protection of the water body). The permits can be an individual (specific to
a company) permit or a general (applicable to a group of companies) per-
mit. The existence of general water quality-based permits in a watershed is
equivalent to the concept of Total Maximum Daily Load (TMDL) in the wa-
tershed. TMDL is established by the state for water bodies or watersheds
where technology-based requirements alone are not sufficient to attain water
quality goals. TMDL establishes the loading capacity of a defined watershed
area, identifies reductions or other remedial activities needed to achieve water
quality standards, identifies sources, and recommends waste load allocation
for point (and non-point) sources.

EPA has proposed two possible trading mechanisms for point sources.

• Trades can occur in the context of individual point source permits. In this
case, different point sources have individual (technology- or water quality-
based) pollutant permits, and there is no common water quality based
limit. Treatment cost differentials encourage trading between various point
sources.

• Trades can also occur through the development of TMDL or another equiv-
alent analytical framework. In this case, water quality-based limits, com-
mon to all the point sources in the watershed, are established. This pro-
vides a starting point to compare the costs of the baseline responsibilities
necessary to achieve water quality goals with alternative allocations. Par-
ties to the trade then negotiate within the loading capacity determined
under the TMDL so as to satisfy the common discharge objective.

Various parameters that affect the economics of trading are trading ratio
(how many units of pollutant reduction a source must purchase to receive
credit for one unit of load reduction); transaction costs (expenses that trad-
ing participants occur only as a result of trading); the number of participants;
availability of cost data; and uncertainties related to continued industry par-
ticipation and data availability.

Once a TMDL has been established, each point source is assigned a par-
ticular load allocation and may need to reduce its discharge to satisfy the
allocation. It has two options to accomplish this:

• The point source can implement an end of pipe treatment method, which
entail certain capital and operating cost depending on the existing tech-
nology, the amount being treated and the level of reduction is achieved.
This cost typically differs for different point sources.
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• The point source can trade a particular amount of pollutant to another
point source in the watershed that is able to reduce its discharge more
than that specified by the regulation.

2.9.3 Trading Optimization Model Formulation

The formulation considers that TMDL regulation has already been developed
by the state in consultation with USEPA. This translates into a specific load
allocation for each point source.

Consider a set of point sources (PSi), i = 1, ..., N , disposing of the pol-
lutant containing wastewater to a common water body or watershed. The
various point source specific parameters are as follows. Di = Discharge quan-
tity of polluted water from PSi [volume/year].
ci = Current pollutant discharge concentration for PSi [mass/volume].
ai = Current pollutant discharge quantity for PSi [mass/year].
Li = Load allocation to PSi based on TMDL regulation [mass/year].
redi = Desired pollutant quantity reduction in discharge of PSi [mass/year].
Pi = Treatment cost incurred by PSi to reduce discharge when trading is not
permitted.
Here, the value of redi is given by

redi = Di.ci − Li = ai − Li (2.56)

Every PS has the option of trading or implementing a particular waste reduc-
tion technology. Let j = 1, ...,M be the set of reduction technologies available
to the point sources for implementation. The technology specific parameters
are as follows.
TCj= Total treatment plant cost [$/volume].
qj = Pollution reduction possible from the process [mass/volume].
The total plant cost TCj is the sum of the annualized capital cost and annual
operating and maintenance cost. The annualized capital cost, in turn, depends
on the total equipment and setup cost. Trading is possible between all point
sources. For simplicity, a single trading policy exists between all possible pairs
of point sources, and a single trading ratio and the transaction fee are appli-
cable to all the trades. Let r be the trading ratio, and F be the transaction
cost (in $/mass) to be paid by the point source trading its pollutants. The
objective of the model is to achieve the desired TMDL goal at the minimum
overall cost.

Let bij be the binary variables representing the point source-technology
correlation. The variable is 1 when PS i installs technology j, and 0 otherwise.
Let tik (mass/year) be the amount of pollutant traded by PS i with PS k;
i.e., PS i pays PS k to take care of its own pollution. All the parameters are
on an annual basis. The model is then formulated as follows.
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Objective:

Minimize

N∑
i=1

M∑
j=1

TCj .Di. bij (2.57)

Constraints:

tii = 0 ∀i = 1, ..., N (2.58)

redi ≤
M∑
j=1

qj .Di. bij +
N∑

k=1

tik − r
N∑

k=1

tki ∀i = 1, ..., N

(2.59)

Pi ≥
M∑
j=1

bij .TCj .Di + F
( N∑
k=1

tik −
N∑

k=1

tki
)

∀i = 1, ..., N

(2.60)

The objective function gives the sum of the technology implementation
cost for all point sources. Although each PS will also spend or gain from prac-
ticing trading, the expense for one PS in a watershed is earning for one or more
PS in the same watershed. As a result, for the complete watershed, trading
does not contribute to the cost objective. The first set of constraints eliminates
trading within the same PS. The second set of constraints ensures that all reg-
ulations are satisfied. The pollutant discharge reduction for all PS at the end
of technology implementation and/or trading must be at least equal to the
targeted reduction. Trading ratio r is usually set higher than 1, which requires
the buyer to purchase more units of reduction than they have to achieve with-
out trading, to include a margin of safety in the trading mechanism. This is
done to account for uncertainties in the level of control needed to attain water
quality standards, and to provide a buffer in case traded reductions are less
effective than expected. Consequently, the PS accepting additional discharge
reduction responsibility has to reduce the pollutant by an amount equal to
the actual quantity traded times the trading ratio. Accordingly, in (2.59), the
reduction achieved by industry i reflects the amount traded by industry k (tki)
modified by the trading ratio r. The last constraint ensures that the expenses
incurred by each PS with trading are not more than those without trading.
This is because the trading framework by USEPA mentions that no polluter
can be forced to trade. As a result, a polluter will participate in trading only
if there is a financial incentive for it. In the absence of this constraint, the
model solution might force some industries to spend more when trading is
practiced, if such a solution results in lower overall cost. This clearly is an
unlikely scenario that is avoided by this constraint.

The model given by (2.57)–(2.60) is a mixed integer linear programming
problem (MILP). The decision variables in the model are binary variables bij
and continuous variables tik. It should be noted that the reduction capability
of the treatment process j is considered to be fixed at qj . However, when
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the binary variables are fixed meaning the control technologies are already
implemented; the problem becomes an LP

The model formulated above is quite general, applicable to any watershed
and any pollutants. The next section discusses the application of the model
on a case study of mercury waste management in the Savannah River basin
in the state of Georgia, the USA.

2.9.4 Savannah River Watershed Details

This case study was performed in 2006.There were 206 advisories in Georgia
in 2004. Georgia issued 178 fish consumption advisories—relating to 40 differ-
ent rivers and 34 lakes and ponds. Near the Olin plant, in the Savannah River
Basin, there were 24 advisories, affecting five rivers and seven lakes and ponds.
TMDL was established for five contiguous segments of the Savannah River.
These segments are included in the list of impaired water bodies since the tis-
sue mercury concentration in certain fish species exceeds the Georgia Depart-
ment of Natural Resources (GDNR) Fish Consumption Guidelines. Although
the mid-line of the Savannah River serves as the east-west boundary between
the states of Georgia and South Carolina, the TMDL does not provide waste
load allocations to South Carolina NPDES facilities. This TMDL reflects an
assumption that the concentrations of mercury in the South Carolina portion
of Savannah River will meet the applicable Georgia water quality standards
at the South Carolina-Georgia border. In order to develop the TMDL, the
applicable water quality standard that gives the maximum safe concentration
of mercury in water must be determined. EPA determined the applicable wa-
ter quality standard for total mercury in the ambient water of the Savannah
River Basin to be 2.8 ng/l (parts per trillion). At this concentration, or be-
low, fish tissue residue concentrations of mercury will not exceed 0.4mg/kg,
which is protective of the general population from the consumption of fresh-
water fish. This interpretation of Georgia’s water quality standard is based
on site-specific data gathered for the Savannah River in 2000, specifically for
the purpose of this TMDL.

In all, there are 29 significant point sources discharging mercury in Sa-
vannah River watershed. These point sources represent a wide spectrum and
include 13 major municipal polluters, 12 major industrial polluters, two mi-
nor municipal polluters, and two minor industrial polluters. It should be noted
that there are more point sources in this region. However, mercury discharges
from those are negligible owing to their relatively low discharge volumes. One
option to implement the TMDL is to apply a common WQS of 2.8 ng/lit to
all point source discharges across the watershed. Therefore, under this op-
tion, the waste load allocation for each NPDES point source identified in this
TMDL would be the product of 2.8 ng/l and its permitted or design flow rate.
The sum of these individual waste load allocations is 0.001 kg/year, which is
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significantly less than the 0.33 kg/year cumulative waste load allocation pro-
vided to all NPDES facilities. The given current discharge concentrations for
the 29 point sources are assumed. The overall reduction needed to achieve
the TMDL criteria is about 44%. The targeted overall reduction for the PS
is, therefore, taken to be 40%, and the individual discharge concentrations
are adjusted accordingly. This was taken according to USEPA guidelines for
TMDL.

Table 2.21 gives various parameter values related to the point sources. The
table also gives the values of redi (targeted reduction) and Pi (treatment cost
without trading) for each PS at TMDL 32Kg/year, for which the model is
solved later.

Table 2.21. Point source data for the Savannah River basin

Industry
Total Volumetric
Discharge (MGD-

Million Gallons per Day)

Current Discharge
concentrations

(ng/lit)

Targeted
reduction
(g/year)

Treatment cost
without trading

($/year)

I1 46.1 4.65 0.1149 1.68× 107

I2 1.5 3.7 0.0017 328,500
I3 4.6 4.3 0.0092 1,679,000
I4 1.5 3.4 0.0011 328,500
I5 2.0 3.88 0.0028 730,000
I6 2.24 3.7 0.0026 490,560
I7 1.2 3.9 0.0017 438,000
I8 27.0 4.83 0.0740 1.48× 107

I9 4.5 4.0 0.0072 1,642,500
I10 1.0 3.1 0.00035 219,000
I11 1.0 3.06 0.00029 2f 000
I12 1.0 3.22 0.00052 219,000
I13 2.0 3.31 0.0013 438,000
I14 3.765 4.8 0.0101 2,061,337
I15 18.0 4.33 0.0369 6,570,000
I16 7.2 5.1 0.0224 3,942,000
I17 58.6 4.87 0.1639 3.21× 107

I18 23.0 4.52 0.0532 8,395,000
I19 1.152 5.05 0.0035 630,720
I20 0.362 4.14 0.00064 132,130
I21 108.0 4.58 0.2588 3.94× 107

I22 4.68 5.2 0.0152 2,562,300
I23 28.09 4.41 0.0607 1.02× 107

I24 1.921 3.9 0.0028 701,165
I25 0.544 4.5 0.0012 198,560
I26 0.5 3.95 0.0008 182,500
I27 0.003 3.72 3.62× 10−6 657
I28 1.246 4.1 0.0021 454,790
I29 0.054 3.4 4.14× 10−5 11,826
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Technology Details

Three treatment technologies are considered for this model, and they are
available to all point sources for implementation. These include coagulation
and filtration, activated carbon adsorption, and ion exchange process. The
capital requirement and reduction capability of any process are expected to be
(nonlinearly) related to the capacity of the treatment plant and the form and
concentration of the waste to be treated, among many other factors. For this
analysis, though, such complex relationships are ignored for simplicity, and
the treatment cost is only linearly related to the volume of the waste. Trading
in the presence of nonlinear cost models is discussed in Chapter 3 onwards.
Total plant cost data for the treatment methods are reported in USDOI as
a function of the waste volume. The total plant cost includes capital as well
as annual operating cost per unit volume of waste treated, and is calculated
using the following equations.

Annualized capital cost = [Total capital equipment cost +

Project related special cost]

× (capital recovery factor for 30 years

at 3.89% real annual interest based

on lagged impact on interest = 0.057) (2.61)

Total annual cost(TC) = Annualized capital cost+ Total annual

operations and maintenance cost (2.62)

Since waste volumes encountered in this case study are mostly greater than
1MGD, asymptotic values reported in USDOI are used. The treatment effi-
ciencies depend on waste composition and concentration. In general, though,
a more efficient treatment is likely to be more expensive. This criterion, along
with data given in the literature, is used to decide the treatment efficiencies.
Table 2.22 gives the technology data.

Table 2.22. Data for the various treatment technologies

Process
Mercury reduction
capability (ng/lit)

Capital requirement
($/1000 gallons)

Coagulation and Filtration (A) 2.0 1.00
Activated carbon adsorption (B) 3.0 1.5

Ion exchange (C) 1.0 0.6

Trading Details

Trading parameters needed for problem-solving are trading ratio and trading
transaction cost. For a point source-point source trading, as considered in this
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model, a study conducted for the USEPA for the trading of toxic pollutants
in Delaware River recommends a trading ratio between 1.1 and 1.25. For the
solution of this model, the ratio r is 1.1. It should be noted here that since
mercury trading in water has not been practiced yet, the transaction fee is
not easy to decide. However, an EPA document gives a hypothetical example
of water quality trading (USEPA, 1996) that considers the transaction fee in
the range of the per kg treatment cost of the pollutant. This is also observed
for SO2 trading, which is already practiced. The values of per unit marginal
abatement costs and trading transaction costs for SO2 trading are reported
in literature. For this work, using the average volumetric discharge and the
average desired discharge reduction for all point sources, the average treatment
cost is calculated. To calculate this cost, data for the three treatment processes
reported in Table 2.22 is used. This gives the treatment cost in “$/Kg of
mercury.” Based on this value, the transaction cost is fixed at $ 1.5 Million
per Kg. However, in the later formulations, the transaction costs are ignored
as their contribution to the solution is negligible.

In this chapter, we present the mercury management problem as an LP by
assuming that the technology selection is already made. In the next subsection,
we consider a smaller version of the problem as an LP.

2.9.5 LP Problem Details

Industry Details

Seven polluters are considered in the problem discharging the polluted water
to the water body. The considered industries represent a wide spectrum and
include one major municipal polluter, four major industrial polluters, and two
minor industrial polluters. For this work, the average reduction in discharge
concentration is assumed to be about 30%.

Table 2.23 gives the values of the various parameters related to the
industries. The total mercury reduction target for the seven industries is
47.2371× 10−5.

Technology Details

Since the treatment volume is significantly less than the 29 sources problem,
the technology linear model range is different. Table 2.24 gives the values for
these processes.

Results and Discussions

Table 2.25 shows the implemented technologies (fixed binary variables, bij).
This converts the problem to an LP . The results for trading volumes for this
LP are shown in Table 2.26.
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Table 2.23. Data for the industries

Industry Total volumetric
discharge (MGD)

Current discharge
concentrations
(ng/lit)

Mercury reduc-
tion require-
ment (Kg/year)
(×10−5)

Available annual
capital (Million
$)

I1 46.1 4.1 8.239 27.5
I2 58.6 4.0 9.664 50
I3 108.0 4.3 22.9853 65
I4 3.765 3.6 0.4160 5
I5 23.0 4.4 5.7187 15
I6 1.246 3.7 0.1538 7.5
I7 0.54 3.4 0.0597 6.5

Table 2.24. Data for the various treatment technologies

Process Mercury reduction capa-
bility (ng/lit)

Capital requirement
($/1000 gallons)

Coagulation and Filtration (A) 1.15 1.0
Activated carbon adsorption (B) 1.8 1.55

Ion exchange (C) 0.8 0.65

Table 2.25. Technology selection

Industry Technology
selected

I1 C
I2 A
I3 B
I4 C
I5 B
I6 C
I7 C

Table 2.26. The trading matrix in 10−5 Kg/year

Industry I1 I2 I3 I4 I5 I6 I7
I1 0 0 3.1 0 0 0 0
I2 0 0 0.4 0 0 0 0
I3 0 0 0 0 0 0 0
I4 0 0 0 0 0 0 0
I5 0 0 0 0 0 0 0
I6 0 0 0.0162 0 0 0 0
I7 0 0 0 0 0 0 0
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2.10 Summary

Linear programming problems involve linear objective function and linear
constraints. The LP optimum lies at a vertex of the feasible region, which
is the basis of the simplex method. LP can have 0 (infeasible), 1, or infinite
(multiple) solutions. LPs do not have multiple local minima. As a general
rule, LP computational effort depends on the number of constraints rather
than the number of variables. Many of the LP methods are derived from the
simplex method, and special classes of problems can be solved efficiently with
special LP methods. The interior point method is based on the transformation
of variables and using a search direction similar to nonlinear programming
methods discussed in the next chapter. This method is polynomially bounded,
but only large-scale problems where no prior information is available show
computational savings.

Exercises

2.1 Write the following problems in standard form and solve using the sim-
plex method. Verify your solutions graphically (where possible).

1.
max 6x1 + 4x2

3x1 + 2x2 ≤ 8

−4x1 + 9x2 ≤ 20

x1, x2 ≥ 0

2.
max 3x1 + 2x2

−2x1 + x2 ≤ 1

x1 + 3x2 ≥ 2

x1, x2 ≥ 0

3.
min 2x1 − 4x2

3x1 + x2 ≤ 1

−2x1 + x2 ≥ 3

x1, x2 ≥ 0
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4.
maxx1 + 5x2

x1 + 3x2 ≤ 5

2x1 + x2 = 4

x1 − 2x2 ≥ 1

x1, x2 ≥ 0

5.
min 3x1 + 4x2 − x3

x1 + 3x2 − x3 ≥ 1

2x1 + x2 + 0.5x3 ≥ 4

x1, x2 ≥ 0;x3 is unconstrained

6.
min 8x1 − 3x2 + 10x3

5x1 − 2x2 − 4x3 ≥ 3

3x1 + 6x2 + 8x3 ≥ 4

2x1 − 4x2 + 8x3 ≥ −4

−x2 + 5x3 ≥ 1

x1, x2, x3 ≥ 0

Also solve this problem using a dual formulation.

2.2 A refinery has two crude oil materials with which to create gasoline and
lube oil:

1. Crude A costs $28/bbl and 18,000 bbl are available.
2. Crude B costs $38/bbl and 32,000 bbl are available.

The yield and sale price per barrel of the products and the associated
markets are shown in Table 2.27.

Table 2.27. Yield and sale prices of products

Yield/bbl Sale price
Product Crude A Crude B per bbl Market (bbl)

gasoline 0.6 0.85 $60 20,000
lube oil 0.4 0.15 $130 12,000

How much crude A and B should be used to maximize the profit of
the company? Formulate and solve the problem using the simplex algo-
rithm. Verify your solution graphically. How would the optimal solution
be affected if
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1. The market for lube oil increased to 14,000.bbl.
2. The cost of crude A decreased to $20/bbl.

2.3 A manufacturer sells products A and B. The profit from A is $12/kg and
from B $7/kg. The available raw materials for the products are 100 kg
of C and 80 kg of D. To produce one kilogram of A the manufacturer
needs 0.5 kg of C and 0.5 kg of D. To produce one kilogram of B the
manufacturer needs 0.4 kg of C and 0.6 kg of D. The market for product
A is 60 kg and for B 120 kg. How much raw material should be used to
maximize the manufacturer’s profit? Formulate and solve the problem
using the simplex algorithm. Verify your solution graphically. How would
the optimal solution be affected if
1. The availability of C were increased to 120 kg.
2. The availability of D were increased to 100 kg.
3. The market for A were decreased to 40 kg.
4. The profit of A were $10/kg.

2.4 On the bank of a river there are three neighboring cities that are dis-
charging two kinds of pollutants A and B into the river. Now the state
government has set up a treatment plant that treats pollutants from City
1 for $15/ton which reduces pollutants A and B by the amount of 0.10
and 0.45 tons per ton of waste, respectively. It costs $10/ton to process
a ton of City 2 waste and consequentially reducing pollutants A and B
by 0.20 and 0.25 tons per ton of waste, respectively. Similarly City 3
waste is treated for $20 reducing A by 0.40 and B by 0.30 tons per ton
of waste. The state wishes to reduce the amount of pollutant A by at
least 30 and B by 40 tons. Formulate the LP that will minimize the cost
of reducing pollutants by desired amount.

2.5 Products I and II that are manufactured by a firm are sold at the rate of
$2 and $3, respectively. Both products have to be processed on machine
A and B. Product I requires 1min on A and 2min on B whereas Product
II requires 1min on each machine. Machine A is not available for more
than 6 h 40min/day, whereas machine B is not available for more than
10 h. Formulate the problem for profit maximization. Solve this problem
using the simplex method.

2.6 There are many drug manufacturers producing various combinations for
a similar ailment. Now a doctor wishes to prescribe a combination dosage
such that the cost is minimum so that it could be given to poor patients.
Drug A costs 50 cents, Drug B costs 20 cents, Drug C 30 cents, and
Drug D 80 cents per tablet, respectively. Daily requirements are 5mg of
Medicine 1, 6mg Medicine 2, 10mg Medicine 3, and 8mg Medicine 4.
The prescribed composition of each drug is given in Table 2.28. Write
the prescription that satisfies the medicinal requirements at minimum
cost.

2.7 A manufacturing firm has discontinued production of a certain profitable
product line. This created considerable excess production capacity. Man-
agement is considering devoting their excess capacity to one or more of
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Table 2.28. Prescribed composition of each drug

Drug Medicine 1 Medicine 2 Medicine 3 Medicine 4

A 4 3 2 2
B 2 2 2 4
C 1.5 0 4 1
D 5 0 4 5

three products 1, 2, and 3. The available capacity on the machines and
the number of machine-hours required for each unit of the respective
product are given in Table 2.29.

Table 2.29. Available machine capacities

Machine Available Productivity(hrs/unit)
time(hrs/week) Product 1 Product 2 Product 3

Milling 250 8 2 3
Lathe 150 4 3 0
Grinder 50 2 0 1

The unit profit would be $20, $6, and $8, respectively, for products 1, 2,
and 3. Find how much of each product the firm should produce in order
to maximize profit.

2.8 Four professors are each capable of teaching any of four different courses.
Class preparation time in hours for different topics varies from professor
to professor and is given in Table 2.30. Each professor is assigned only
one course. Find the assignment policy schedule so as to minimize the
total course preparation time for all the courses.

Table 2.30. Course preparation times in hours

Professor LP Queueing Dynamic Regression
theory programming analysis

1 2 10 9 7
2 15 4 14 8
3 13 14 16 11
4 3 15 13 8

2.9 The investment opportunities are available (Table 2.31) with their cash
flow and net present value (million dollars) for a firm. It at the start has
30 million dollars and estimates that at the end of 1 year it will have 15
million dollars. The firm can purchase any fraction of any investment,
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the cash flow, and net present value accordingly. The firm’s objective is
to maximize the NPV. Assumption is that any funds left over time at
time zero cannot be used at time one.

Table 2.31. Investment opportunities

Investment 1 Investment 2 Investment 3

Time 0 cash flow $11 $297$5
Time 1 cash flow $3 $34 $5

NPV $13 $39 $16

2.10 The engineering department for Alash Inc. has their computers dis-
tributed to their employees according to Table 2.32.

Table 2.32. Computer distribution

Computer (RAM) Designer Analysts 1 Analysts 2 Engineers

266MHz 64MB 10 7 7 14
200MHz 64MB 8 2 2 6
166MHz 32MB 18 2 2 34
133MHz 32MB 7 0 0 17
350MHz 128MB 0 0 0 0

The designer and analysts (grade 1) are responsible for generating engi-
neering designs, whereas the analysts (grade 2) and engineers are respon-
sible for generating repair item reports. Currently, all of the designers
and analysts (grade 1) utilize Autocad software on their computers for
generating the designs. The analysts (grade 2) and engineers utilize soft-
ware M (name changed for confidentiality reasons) on their computers.
Autocad software requires more Pentium and more RAM than software
M. With a computer with 266MHz Pentium and 64MB of RAM, it takes
a designer or analyst (grade 1) an average of 40man-hours to produce
one drawing. A difference in one MHz of Pentium changes the speed of
producing a drawing on Autocad 0.02 % and an increase of 32MB of
RAM allows the computer 0.15% faster. With a computer with 166MHz
and 32MB of RAM it takes an engineer an average of 20man-hours to
produce one repair item report. Find the distribution that will minimize
the cost to finish the required amount of work.
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3

Nonlinear Programming

In nonlinear programming1 (NLP) problems, either the objective function,
the constraints, or both the objective and the constraints are nonlinear, as
shown below in Example 3.1.

Example 3.1: Consider a simple isoperimetric problem described in Chap-
ter 1. Given the perimeter (16 cm) of a rectangle, construct the rectangle with
maximum area. To be consistent with the LP formulations of the inequalities
seen earlier, assume that the perimeter of 16 cm is an upper bound to the real
perimeter.

Solution: Let x1 and x2 be the two sides of this rectangle. Then the prob-
lem can be formulated as a nonlinear programming problem with the nonlinear
objective function and the linear inequality constraints given below.

Maximize Z = x1 × x2 (3.1)

x1, x2

subject to

2x1 + 2x2 ≤ 16 Perimeter Constraint (3.2)

x1 ≥ 0;x2 ≥ 0

Electronic Supplementary Material: The online version of this chapter
(https://doi.org/10.1007/978-3-030-55404-0 3) contains supplementary material,
which is available to authorized users.

1One section (constraint qualification) of this chapter is written by Dr. Yogendra
Shastri, Department of Bioengineering, University of Illinois at Chicago.
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Let us start plotting the constraints and the iso-objective (equal-area)
contours in Figure 3.1. As stated earlier in the figure, the three inequalities are
represented by the region on the other side of the hatched lines. The objective
function lines are represented as dashed contours. The optimal solution is at
x1 = 4 cm; x2 = 4 cm. Unlike LP, the NLP solution is not lying at the
vertex of the feasible region, which is the basis of the simplex method.
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Fig. 3.1. Nonlinear programming contour plot, Exercise 3.1

The above example demonstrates that NLP problems are different from
LP problems because

• An NLP solution need not be a corner point.
• An NLP solution need not be on the boundary (although in this example

it is on the boundary) of the feasible region.

It is obvious that one cannot use the simplex method described in Chap-
ter 2 for solving an NLP. For an NLP solution, it is necessary to look at the
relationship of the objective function to each decision variable.

Consider the previous example. Let us convert the problem into a one-
dimensional problem by assuming constraint (3.2) (isoperimetric constraint)
as an equality. One can eliminate x2 by substituting the value of x2 in terms
of x1 using constraint (3.2).
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Maximize Z = 8x1 − x2
1 (3.3)

x1

subject to

x1 ≥ 0 (3.4)

Figure 3.2 shows the graph of the objective function versus the single
decision variable x1.
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Fig. 3.2. Nonlinear programming graphical representation, Exercise 3.1

In Figure 3.2, the objective function has the highest value (maximum) at
x1 = 4. At this point in the figure, the x-axis is tangent to the objective
function curve, and the slope dZ/dx1 is zero. This is the first condition that
is used in deciding the extremum point of a function in an NLP setting.

Is this a minimum or a maximum?
Let us see what happens if we convert this maximization problem into a

minimization problem with −Z as the objective function.

Minimize − Z = − 8x1 + x2
1 (3.5)

x1

subject to

x1 ≥ 0 (3.6)
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Figure 3.3 shows that −Z has the lowest value at the same point, x1 = 4.
At this point in both figures, the x-axis is tangent to the objective function
curve, and slope dZ/dx1 is zero. It is obvious that for both the maximum and
minimum points, the necessary condition is the same. What differentiates a
minimum from a maximum is whether the slope is increasing or decreasing
around the extremum point. In Figure 3.2, the slope is decreasing as you move
away from x1 = 4, showing that the solution is a maximum. On the other
hand, in Figure 3.3 the slope is increasing, resulting in a minimum. Whether
the slope is increasing or decreasing (sign of the second derivative) provides a
sufficient condition for the optimal solution to an NLP.

-20

-15

-10

-5

0

5

-2 0 2 4 6 8 10

Z-

x
1

Optimum

Fig. 3.3. Nonlinear programming minimum, Exercise 3.1

Figures 3.2 and 3.3 have a single optimum. However, instead of the ideal
minimum shown in Figure 3.3, consider dealing with an objective function
like that shown in Figure 3.4. It is obvious that for this objective function,
there are two minima, one being better than the other.

This is another case in which an NLP differs from an LP, as

• In LP, a local optimum (the point is better than any “adjacent” point) is
a global (best of all the feasible points) optimum. With NLP, a solution
can be a local minimum.

• For some problems, one can obtain a global optimum. For example,
– Figure 3.2 shows a global maximum of a concave function.
– Figure 3.3 presents a global minimum of a convex function.
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What is the relation between the convexity or concavity of a function and
its optimum point?

The following section describes convex and concave functions and their
relation to the NLP solution.

Z-

x
1

Optimum

Fig. 3.4. Nonlinear programming multiple minima, Exercise 3.1

3.1 Convex and Concave Functions

A set of points S is a convex set if the line segment joining any two points in
the space S is wholly contained in S. In Figure 3.5a and b are convex sets,
but c is not a convex set.

)c()b()a(

Fig. 3.5. Examples of convex and nonconvex sets

Mathematically, S is a convex set if, for any two vectors x1 and x2 in S,
the vector x = λx1+(1−λ)x2 is also in S for any number λ between 0 and 1.
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Therefore, a function f(x) is said to be strictly convex if, for any two distinct
points x1 and x2, the following equation applies.

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2) (3.7)

Figure 3.6a describes Equation (3.7), which defines a convex function. This
convex function (Figure 3.6a) has a single minimum, whereas the nonconvex
function (Figure 3.6b) can have multiple minima.

)x(f

x
2

x
1

f(x )2 f(x )1

x
3

f(x )3

x3 = λ (x1) + (1-λ) x2

 λ
f 

x(
1

+ )
-1(
λ

x(f )
2)

Z-

 λ
f 

x(
1

-1( + )
λ

f )
x(

2)

f(x )1
f(x )2

x
3

x
2

x
1

f(x )3

(a)

(b)

Fig. 3.6. Convex and nonconvex functions and the necessary condition
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Conversely, a function f(x) is strictly concave if −f(x) is strictly convex.
As stated earlier, Figure 3.2 is a concave function and has a single maximum.

Therefore, to obtain a global optimum in NLP, the following conditions
apply.

• Maximization: The objective function should be concave and the solution
space should be a convex set (as was the case in Figure 3.2).

• Minimization: The objective function should be convex and the solution
space should be a convex set (Figure 3.3).

Note that every global optimum is a local optimum, but the converse is
not true. The set of all feasible solutions to a linear programming problem is
a convex set. Therefore, a linear programming optimum is a global optimum.

It is clear that the NLP solution depends on the objective function and
the solution space defined by the constraints. The following sections describe
the unconstrained and constrained NLP, and the necessary and sufficient con-
ditions for obtaining the optimum for these problems.

3.2 Unconstrained NLP

In the following NLP optimization problem, when constraints (Equations (3.9)
and (3.10)) are not present or eliminated, the results are an unconstrained
nonlinear programming problem.

Optimize Z = z(x) (3.8)

x

subject to
h(x) = 0 (3.9)

g(x) ≤ 0 (3.10)

The first-order optimality condition for an unconstrained NLP is given by
the following equation and requires the first derivative (Jacobian/gradient) of
the objective function with respect to each decision variable to be zero.

The first-order necessary condition for an unconstrained optimum at x∗ is

∇z(x∗) = 0 (3.11)

This condition is applicable for a maximum, and a minimum as well as
a saddle point. The second-order necessary condition applies to the Hessian
and differentiates between a maximum and a minimum. The second-order
necessary condition states that the Hessian H for a strong local minimum has
to be positive semidefinite and for a strong local maximum has to be negative
semidefinite. The extremum point is a saddle point if the Hessian is indefinite.
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Necessary Conditions:
For x∗ to be a strong local minimum, the Jacobian J must be zero and the

Hessian H must be positive semidefinite.
It should be noted that the first-order necessary condition merely iden-

tifies the extremum point without any indication about the nature of the
point. The second-order necessary condition, on the other hand, distinguishes
among a maximum, a minimum, and a saddle point, but is not sufficient to
ascertain the presence of a strong local minimum or maximum. For example,
Figure 3.6a shows a strong minimum, whereas point A in Figure 3.7 is a weak
local minimum. This is because at least one point in the neighborhood of A
has the same objective function value as A and the Hessian H at A is zero or
positive (positive semidefinite). In the same figure, one can see that the first
derivative vanishes at all extremum points, including the saddle point B in
the figure (Hessian indefinite).

The presence of a strong local maximum or minimum is determined by the
second-order sufficiency condition that applies to the Hessian. The sufficiency
condition requires the Hessian H for a strong local minimum to be positive
definite and for a strong local maximum to be negative definite. The extremum
point is again a saddle point if the Hessian is indefinite. These conditions are
explained in mathematical terms below.

Z-

(A) (B)

Fig. 3.7. Concept of local minimum and saddle point

Sufficiency Conditions:
x∗ is a strong local minimum, if the Jacobian J is zero and the Hessian H

is positive definite
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J = ∇z(x∗) = 0 (3.12)

H = ∇2z(x∗) (3.13)

where

• ∇z(x∗) = the column vector of first-order partial derivatives of z(x) eval-
uated at x∗.

• ∇2z(x∗) = the symmetric matrix of second-order partial derivatives of
z(x) evaluated at x∗, often called the Hessian matrix. The element in the
ith row and jth column is ∂2z/∂xi∂xj .

The matrix H is said to be positive definite if and only if

Q(x) = ∇xTH∇x > 0 |x = x∗

This is equivalent to saying that the eigenvalues for H are positive. Fol-
lowing linear algebra, the condition of H can be defined in terms of Q(x), as
given below.

• H is positive definite if for all x, Q(x) > 0.
• H is positive semidefinite if for all x, Q(x) ≥ 0.
• H is negative definite if for all x, Q(x) < 0.
• H is negative semidefinite if for all x, Q(x) ≤ 0.
• H is indefinite if for some x, Q(x) > 0

and for other x, Q(x) < 0.

To determine whetherH is positive definite, we evaluateQ(x) or eigenvalues of
H. In addition, we can also check the definiteness of H using the determinants
of the principal minors of H. The ith principal minor of any matrix A is the
matrix Ai constructed by the first i rows and columns.

• H is positive definite if for all principal minors Hi, det(Hi) > 0.
• H is positive semidefinite if for all principal minors Hi, det(Hi) ≥ 0.
• H is negative definite if for all principal minors Hi, det(Hi) are nonzero

and alternate in signs with starting det(H1) < 0.
• H is negative semidefinite if for all principal minors Hi, det(Hi) has alter-

nating signs with starting det(H1) ≤ 0.

For the necessary conditions for an unconstrained optimum at x∗, the suf-
ficiency conditions can help to check if the stationary point x∗ is a minimum,
a maximum, or a saddle point.

• Minimum if H is positive definite.
• Maximum if H is negative definite.
• Saddle point if H is indefinite.

For some special functions, the Hessian vanishes at the extremum point.
For such functions, second-order conditions are not sufficient to determine the
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nature of the point. Instead, higher-order conditions need to be examined. This
is true for single as well as multi-variable functions.

Consider the example of a single-variable function z(x) ∈ xk which has
the following relations at the extremum point x∗.

∇z(x∗) = 0 (3.14)

∇k−1z(x∗) = 0 (3.15)

∇kz(x∗) 	= 0 (3.16)

Then,

1. x∗ is a point of local minimum if k is even and

∇kz(x∗) > 0. (3.17)

2. x∗ is a point of local maximum if k is even and

∇kz(x∗) < 0. (3.18)

3. x∗ is neither a minimum nor a maximum if k is odd.

For multi-variable functions, analysis of higher-order derivatives deter-
mines the nature of the extremum point. For a function z, if matrix M of
the kth derivatives of z with respect to the dependent variables is nonzero at
extremum point x∗ (k > 2), then the extremum point is a saddle point if k is
odd. If k is even, then

1. x∗ is a point of local minimum if M is positive definite.
2. x∗ is a point of local minimum if M is negative definite.
3. x∗ is a saddle point if M is indefinite.

Example 3.2: For the given Hessian matrix, determine if the matrix is pos-
itive definite or not using (a) determinants of principal minors and (b) eigen-
values.

H =

⎡
⎣ 1 1 0
1 2 −1
0 −1 1

⎤
⎦

(a) Determinants of principal minors (Hi): For an n× n matrix A the deter-
minants can be calculated by the following equation.

|A| =

n∑
i=1

ai1(−1)i+1 |Si1|

where aij is an element of matrix A, and Si1 is a submatrix by deleting
row i and column 1 of A. Therefore,
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det(H1) = 1

det(H2) = 1× 2 − 1× 1 = 1

det(H3) = 1 · (2− 1) − 1 · (1− 0) + 0 · (−1 + 0) = 0

Because all determinants of principal minors of H are either positive or
zero, the Hessian matrix is positive semidefinite.

(b) Eigenvalues of H: For an n× n matrix A, the eigenvalues are given by:

det(A− ρI) = 0

Thus,

H − ρI =

⎡
⎣ 1− ρ 1 0

1 2− ρ −1
0 −1 1− ρ

⎤
⎦

det(H − ρI) = (1− ρ) [(2− ρ)(1− ρ)− 1]− 1 [(1− ρ)] = 0

After solving the above equation, we can get ρ = 0, 1, 3, which are positive
or zero. Therefore, the Hessian matrix is positive semidefinite.

Example 3.3: Consider the problem in Example 3.1. The problem has two
unknowns, x1 and x2, and one equality constraint resulting in a single degree
of freedom. We eliminate x2 by substituting it in terms of x1 using constraint
(3.2). The problem results in the unconstrained NLP shown below.

Maximize Z = 8x1 − x2
1 (3.19)

x1

Solution: Necessary condition:

∂Z

∂x1
= 8− 2x1 = 0 (3.20)

x1 = 4.0 (3.21)

x2 = 4.0 (3.22)

Z = 16 (3.23)

To know whether this is a minimum, maximum, or a saddle point, let us
look at the sufficiency condition.

Sufficiency condition check:

H =
∂2z

∂x1
2

= − 2 (3.24)

H < 0 (3.25)

H is negative definite, so the solution is a local and global maximum. There-
fore, the maximum area rectangle is a square.
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Example 3.4: Analyze the following four different functions for optimality.
f1 = x1

3 + x2
3, f2 = x1

4 + x2
4, f3 = −x1

4 − x2
4, and f4 = x1

4 − x2
4.

Solution: The first-order necessary condition suggests the origin as the
extremum point for all four functions. However, the Hessian vanishes at the
origin for all functions. Hence, higher-order derivatives must be analyzed to
determine the nature of the extremum point. The criteria mentioned for multi-
variable functions are used.

For f1, ∇3z(x∗) > 0, and k = 3. Because k is odd, the extremum point
(origin) is a saddle point.

For f2, f3, and f4, ∇4z(x∗) > 0, and k = 4. For these functions the matrix
M = ∇4z(x∗) is analyzed to determine the nature of the extremum point.

• For f2, M is positive definite and hence the origin is the minimum.
• For f3, M is negative definite and hence the origin is the maximum.
• For f4, M is indefinite and hence the origin is a saddle point.

3.3 Necessary and Sufficient Conditions and Constrained
NLP

The condition for NLP optimality can be explained easily by considering the
example of a ball rolling in a valley, as shown in Figure 3.8.

Consider the smooth valley shown in Figure 3.8. A ball rolling in this valley
will go to the lowest point in the valley due to the gradient (gravitational pull).
If our objective function is represented by the surface of the valley, then the
gravitational force is acting in the gradient direction shown by the arrow. At
the lowest point, the stationary point for the ball, there is no force acting on
this ball and hence, we have a zero gradient, ∇z(x∗) = 0. We know that if
we move the ball away from x∗ in any direction, it will roll back. This means
here the surface has a positive curvature (convex function, ∇2z(x∗) > 0). We
did not put any restriction on the ball traveling in this valley. Suppose only
certain parts of the valley are free for moving the ball and are marked by the
two fences shown in Figure 3.9. We know that the fences will constrain the
movement of the ball by not allowing it to cross their boundaries. This can be
represented by the two inequality constraints g1(x) ≤ 0 and g2(x) ≤ 0. Again,
the ball rolling in the valley within the fences will roll to the lowest allowable
point x∗, but at the boundary of the fence g1(x

∗) ≤ 0, making the constraint
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Δ
Z

x*
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Fig. 3.8. Unconstrained NLP minimization: ball rolling in a valley

active (g1(x
∗) ≤ 0). At this position we no longer have ∇z(x∗) = 0. Instead,

we see that the ball remains stationary because of a balance of “forces”: the
force of “gravity” (−∇z(x∗)) and the “normal force” exerted on the ball by
the fence (−∇g1(x

∗)). Also, in Figure 3.9, note that the constraint g2(x) ≤ 0 is
inactive and does not participate in this “force balance.” Again, when looking
at the movement of the ball around this stationary point, if we move the ball
from x∗ in any direction along the fence, it will roll back (similar to that of
the objective function) showing positive curvature.

Now if we want to curb the movement of the ball, we can introduce a
rail in the valley which will guide the movement of the ball, as shown in
Figure 3.10. Because the ball has to be on the rail all the time, this introduces
an equality constraint h(x) = 0 into the problem. The ball rolling on the rail
and within the fence will stop at the lowest point x∗. This point will also
be characterized by a balance of forces: the force of gravity (−∇z(x∗)), the
normal force exerted on the ball by the fence (−∇g1(x

∗)), and the normal
force exerted on the ball by the rail (−∇h(x∗)). However, we see that this
equality constraint is not allowing the ball to move around the direction of
the fence g1, but has a positive curvature in the direction of the rail (Hessian
positive semidefinite, indicating the second derivative is zero or positive). This
condition is sufficient for optimality.

To consider this force balance, let us define a new objective function by
combining all the constraints as the Lagrangian function. Now the decision
variables also include μ and λ.

L(x, μ, λ) = Z(x) + g(x)Tμ + h(x)Tλ (3.26)
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Fig. 3.9. Constrained NLP minimization with inequalities
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Fig. 3.10. Constrained NLP minimization with equalities and inequalities

We know that the forces in Figure 3.10 define the necessary conditions for
the stationary point (optimality). These optimality conditions are referred to
as the Kuhn–Tucker conditions or Karush–Kuhn–Tucker (KKT) conditions
and were developed independently by Karush (1939), and Kuhn and Tucker
(1951). Here, the vectors μ and λ act as weights for balancing the forces. The
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variables μ and λ are referred to as dual variables, Kuhn–Tucker multipliers,
or Lagrange multipliers. They also represent shadow prices of the constraints.

The first-order Kuhn–Tucker conditions necessary for optimality can be
written as follows.

1. Linear dependence of gradients (balance of forces in Figure 3.10):

∇L (x∗, μ∗, λ∗) = ∇Z(x∗) + ∇g(x∗)Tμ∗ + ∇h(x∗)Tλ∗ = 0 (3.27)

where ∗ refers to the optimum solution.
2. Feasibility of the NLP solution (within the fences and on the rail):

g(x∗) ≤ 0 (3.28)

h(x∗) = 0. (3.29)

3. Complementarity condition; either μ∗ = 0 or g(x∗) = 0 (either at the
fence boundary or not):

μ∗T g(x∗) = 0. (3.30)

4. Nonnegativity of inequality constraint multipliers (normal force from the
fence can only act in one direction):

μ∗ ≥ 0. (3.31)

It should be remembered that the direction of inequality is very important
here. For example, if in Figure 3.9 the fence is on the other side of the
valley, as shown in Figure 3.11, then the rolling ball will not be able to
reach the feasible solution from the point where it started rolling (point
A). It may shuttle between the two constraints (points A and B), or it may
reach the optimum (point C) if an infeasible path optimization method
is used. Note that point C is a completely different stationary point from
earlier because of the changed direction of the inequality constraint. The
nonnegativity requirement (for a minimization problem) above ensures
that the constraint direction is not violated and the solution is in the
feasible region.

The signs of the inequality constraints are very important for finding the
optimum solution, therefore we need to define a convention for representing
an NLP, as shown below.
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Fig. 3.11. Constrained NLP with inequality constraint

Minimize Z = z(x) (3.32)

x

subject to
h(x) = 0 (3.33)

g(x) ≤ 0 (3.34)

Any NLP can be converted to the above form so that the KKT conditions
in the form defined above are applicable. The first KKT condition represents
the linear dependence of gradients and is also referred to as the Kuhn–Tucker
error. The second condition requires that NLP satisfies all the constraints. The
third and fourth conditions relate to the fact that if the constraint is active
(gi = 0), then the corresponding multiplier (μi) is positive (right direction
of the constraint), or if the constraint is inactive, then the corresponding
multiplier is zero.

As seen above, only active inequalities and equalities need to be consid-
ered in the constrained NLP solution (Equation (3.27)). When an inequality
becomes active, it is equivalent to having an additional equality. Therefore,
let us first consider NLP problems with equality constraints.

NLP with Equalities

In this case, the necessary and sufficient conditions for a constrained local
minimum are given by the stationary point of a Lagrangian function formed
by augmenting the constraints to the objective function shown below.
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Minimize L = l(x, λj) = z(x) +
∑
j

λjhj(x) (3.35)

x, λj

where the above problem is an unconstrained NLP (necessary and sufficient
conditions are given by Equations (3.12) and (3.13)) with x and λj as decision
variables.

Necessary conditions:
∂L

∂x
= ∇z(x) +

∑
j

λj∇hj(x) = 0 (3.36)

∂L

∂λj
= hj(x) = 0 (3.37)

Note that Equation (3.37) is the same as Equation (3.29) in the KKT
conditions and is the equality constraint in the original NLP formulation. The
above equations (Equations (3.36) and (3.37)) constitute a set of simultaneous
equations with the number of equations equal to the number of unknowns. For
relatively simple problems, the values of x and λj can be obtained through
analytical solutions. The following example illustrates this in the context of
the isoperimetric problem described earlier. For more complicated problems
though, numerical methods must be used.

Example 3.5: Consider the problem in Example 3.1. Convert the perime-
ter constraint as an equality, as done in Example 3.3, and remove the other
inequality constraints from the problem (as we know that the inequality con-
straints are not active). Solve the problem using the KKT conditions.

Solution: Removing the inequalities from Example 3.1 results in an NLP
with the equality constraints given below.

Maximize Z = x1 × x2 (3.38)

x1, x2

subject to
x1 + x2 = 8 (3.39)

Converting the NLP into a minimization problem and formulating the
augmented Lagrangian function result in the following unconstrained NLP.

Minimize L = − x1 × x2 + λ(x1 + x2 − 8) (3.40)

x1, x2, λ

KKT Necessary condition:
∂L

∂x1
= − x2 + λ = 0 (3.41)

∂L

∂x2
= − x1 + λ = 0 (3.42)
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∂L

∂λ
= x1 + x2 − 8 = 0 (3.43)

Solving the above three equations for the three unknowns x1, x2, and λ
finds the following optimal solution.

x1 = 4.0 (3.44)

x2 = 4.0 (3.45)

λ = 4 (3.46)

Z = 16 (3.47)

Note that the Lagrange multiplier is positive here. However, because it is
the multiplier corresponding to the equality constraint, the sign of λ is not
important except for use in the sensitivity analysis.

Sufficiency condition check:

∂2L

∂x1
2

= 0 (3.48)

∂2L

∂x1x2
= −1 (3.49)

∂2L

∂x2λ
= 1 (3.50)

∂2L

∂x2x1
= −1 (3.51)

∂2L

∂x2
2

= 0 (3.52)

∂2L

∂x2λ
= 1 (3.53)

∂2L

∂λx1
= 1 (3.54)

∂2L

∂λx2
= 1 (3.55)

∂2L

∂λ2
= 0 (3.56)

H =

⎡
⎣ 0 −1 1
−1 0 1
1 1 0

⎤
⎦ (3.57)

det(H1) = 0

det(H2) = 0× 0 − − 1×−1 = − 1

det(H3) = 0(0− 1) + 1(o+ 1) + 1(−1 + 0) = −1

H is indefinite or negative semidefinite. The solution is a saddle point or a
local maximum. We are not sure at this point. Let us look at the eigenvalues
of H.
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H − ρI =

⎡
⎣−ρ −1 1
−1 −ρ 1
1 1 −ρ

⎤
⎦

det(H − ρI) = −(ρ)3 + 3ρ− 2 = 0 (3.58)

From Equation (3.58) the eigenvalues are ρ = −2, 1, 1. H is indefinite, so
the solution is a saddle point. This is a surprising result given that earlier when
we transformed the problem in one dimension (Example 3.3) we could find a
global maximum. This can be explained by looking carefully at the objective
function Z, in the two-dimensional space x1 and x2. This two-dimensional
function is a bilinear function (nonconvex) and has multiple solutions. This
is also obvious from the plots shown earlier in Figure 3.1. There is a contour
of solutions for Z = 16 but only one lies on the constraint. This figure shows
that there is a unique optimum that can be obtained for this problem due to
the equality constraint. Figure 3.12 shows the 3-d plot for this function with
axes x1, x2, and Z. The saddle can be seen in the figure. Therefore, when
we eliminated this constraint and transformed the two-dimensional problem
into a one-dimensional problem, we could show that the problem has a unique
(global) optimal solution.
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Fig. 3.12. 3-d plot for this function with axes x1,x2, and Z for Example 3.6

It should be remembered that the existence of a Lagrange multiplier value
in an NLP constrained optimization problem is not guaranteed. There are
problems where the Lagrange multiplier cannot take finite value. In general,
for an NLP with Lagrange multiplier, we can write one of the necessary con-
dition as:

∂L

∂x
= ∇z(x) +

∑
j

λj∇hj(x) = 0
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To calculate λ from this condition, we need to take the inverse of the

matrix
∂hj(x)

∂x . This requires the matrix to be of full rank. If the condition is
not satisfied, then we cannot calculate λ. This is illustrated in the following
example.

Example 3.6: Consider the problem of minimization of squared distance
with one equality constraint.

Minimize Z = x1
2 + (x2 − 1)2 (3.59)

x1, x2

subject to
− x1

2 + (x2 − 1)3 = 0 (3.60)

Solution: The Lagrangian function for this problem is given by

Minimize L = − x1
2 + (x2 − 1)2 + λ(−x1

2 + (x2 − 1)3) (3.61)

x1, x2, λ

KKT Necessary condition:

∂L

∂x1
= 2x1 2x1λ = 0 (3.62)

∂L

∂x2
= 2(x2 − 1) + 3λ(x2 − 1)2 = 0 (3.63)

∂L

∂λ
= (x2 − 1)3 − x1

2 = 0 (3.64)

We know x = (0, 1) is the optimal solution to this problem. If we calculate

the elements of the matrix
∂hj(x)

∂x as given below, the rank of the matrix at
(0,1) is zero. Therefore, no finite value for λ. This is also obvious from the
KKT conditions given above.

∂h

∂x1
|(0,1) = − 2x1 = 0 (3.65)

∂h

∂x2
|(0,1) = 3(x2 − 1)2 = 0 (3.66)

NLP with Inequalities

For NLP with inequalities, again the problem is formulated in terms of the
augmented Lagrangian function.

Minimize L = l(x, λj , μk)
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= z(x) +
∑
j

λjhj(x) +
∑
k

μkgk(x) (3.67)

x, λj , μk

Necessary conditions:

∂L

∂x
= ∇z(x∗) +

∑
j

λ∗
j∇hj(x

∗) +
∑
k

μk∇gk(x
∗) = 0 (3.68)

∂L

∂λj
= hj(x) = 0 (3.69)

∂L

∂μi
= gi(x) = 0 μi ≥ 0 (3.70)

As seen in Figure 3.10, the inequality constraints that are not active do
not contribute in the force balance, implying that the multipliers for those
constraints are zero. However, to solve the above equations, one needs to
find the constraints that are going to be active. For small-scale problems, the
following iterative steps are generally used.

Active constraint strategy

1. Assume no active inequalities and equate all the Lagrange multipliers
associated with these inequalities constraints to zero.

2. Solve the KKT conditions for the augmented Lagrangian function for all
the equalities. Find the solution x = x∗

inter.
3. If all the inequalities gk(x

∗
inter) ≤ 0 are satisfied and for all the active

inequalities (zero for the first iteration), μk ≥ 0, then the optimal solution
is reached, x∗ = x∗

inter.
4. If one or more μ is negative, remove that active inequality with the largest

constraint violation. Add this constraint to the active constraint list and
go to Step 1.

The following example shows how to use the active constraint strategy.

Example 3.7: Consider the problem in Example 3.5 above with all the
inequality constraints indicating the sides of the rectangle to be nonnegative.
Impose an additional constraint that one of the sides should be less than
or equal to 3 cm. Use the active constraint strategy to obtain the optimal
solution.

Solution: The problem statement for Example 3.6 results in the following
NLP.

Maximize Z = x1 × x2 (3.71)

x1, x2

subject to
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h(x) = x1 + x2 − 8 = 0 (3.72)

g1(x) = x1 − 3 ≤ 0 (3.73)

g2(x) = − x1 ≤ 0 (3.74)

g3(x) = − x2 ≤ 0 (3.75)

Converting the NLP into a minimization problem and formulating the
augmented Lagrangian function results in the following unconstrained NLP.

Minimize L = − x1 × x2 + λ(x1 + x2 − 8)

+ μ1(x1 − 3) + μ2(−x1) + μ3(−x2) (3.76)

x1, x2, λ, μ1, μ2, μ3

Active constraint strategy:

1. Assume no active constraints. KKT Necessary condition:

∂L

∂x1
= − x2 + λ + μ1 − μ2 = 0 (3.77)

∂L

∂x2
= − x1 + λ − μ3 = 0 (3.78)

∂L

∂λ
= x1 + x2 − 8 = 0 (3.79)

μ1 = 0;μ2 = 0;μ3 = 0 (3.80)

Solving the above equations for the three unknowns x1, x2, and λ results
in the following optimal solution.

x1 = 4.0 (3.81)

x2 = 4.0 (3.82)

λ = 4 (3.83)

h(x) = 0 (3.84)

g1(x) = 4− 3 > 0 Constraint violated (3.85)

g2(x) = − 4 ≤ 0 (3.86)

g3(x) = − 4 ≤ 0 (3.87)

2. The first inequality constraint is violated. This constraint is included in
the augmented Lagrange function as an active constraint, and now we are
solving the KKT conditions to obtain the optimal values of x1, x2, λ, and
μ1.
KKT Necessary condition:

∂L

∂x1
= − x2 + λ + μ1 − μ2 = 0 (3.88)

∂L

∂x2
= − x1 + λ − μ3 = 0 (3.89)
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∂L

∂λ
= x1 + x2 − 8 = 0 (3.90)

∂L

∂μ1
= x1 − 3 = 0 (3.91)

Solution:

μ2 = 0; μ3 = 0 (3.92)

x1 = 3 (3.93)

x2 = 5 (3.94)

λ = 3 (3.95)

μ1 = 2 (3.96)

h(x) = 0 (3.97)

g1(x) = 0 ≤ 0 (3.98)

g2(x) = − 3 ≤ 0 (3.99)

g3(x) = − 5 ≤ 0 (3.100)

3. Because all the constraints are satisfied and all the Lagrange multipliers
associated with the inequality constraints μ are nonnegative, the solution
is reached.

In the second step, instead of causing the first inequality constraint to
be active, if we make the constraint g3(x) to be active, it will result in the
following solution.

KKT necessary conditions:

∂L

∂x1
= − x2 + λ + μ1 − μ2 = 0 (3.101)

∂L

∂x2
= − x1 + λ − μ3 = 0 (3.102)

∂L

∂λ
= x1 + x2 − 8 = 0 (3.103)

∂L

∂μ3
= − x2 = 0 (3.104)

Solution:

μ1 = 0;μ2 = 0 (3.105)

x1 = 8 (3.106)

x2 = 0 (3.107)

λ = 0 (3.108)

μ3 = − 8 negative multiplier (3.109)

h(x) = 0 (3.110)

g1(x) = 8− 3 > 0 Constraint violated (3.111)
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g2(x) = − 3 ≤ 0 (3.112)

g3(x) = 0 ≤ 0 (3.113)

Because the constraint g1 is violated and the Lagrange multiplier is nega-
tive for constraint g3, constraint g1 is made active in the next iteration, and
g3 is made inactive, resulting in the optimal solution that is the same as the
one obtained earlier. However, this strategy took one additional iteration to
reach the optimum.

3.4 Constraint Qualification

Equation sets (3.36), (3.37), and (3.68)–(3.70) represent the necessary con-
ditions for a constrained NLP with equality and inequality constraints, re-
spectively. For these necessary conditions to be applicable, the problem must
satisfy certain conditions known as constraint qualifications.

The requirement of constraint qualification is due to the first-order ap-
proximations of the objective function and constraint functions used in the
necessary conditions, as well as while deciding the search direction and step
size in an iterative algorithm. Because a first-order Taylor series expansion of
the objective function and constraint functions is used, it is important that the
linear approximations capture the essential geometric features of the feasible
set near the current search point x. Constraint qualifications are assumptions
about the nature of the active constraints at x that ensure the similarity of the
actual constraints and their linear approximations in the neighborhood of x.
Here, the active constraint set includes all equality constraints and active in-
equality constraints (i.e., g(x) = 0). The constraint qualification that is most
often used states that the set of gradients of active constraints evaluated at x
be linearly independent. First- and second-order necessary optimality condi-
tions for a constrained NLP require that this condition be satisfied. However,
the second-order sufficiency condition does not require constraint qualifica-
tion. The condition that all active constraints be linear is another possible
constraint qualification. This is neither a stronger nor a weaker condition as
compared to the condition of linear independence. It must also be noted that
constraint qualifications are sufficient but not necessary conditions for the
linear approximations to be adequate.

3.5 Sensitivity Analysis

The sensitivity analysis information for an NLP is similar to that of an LP
except that for the NLP solution, the information reflects local values around
the optimum. The Lagrange multipliers in the augmented Lagrangian rep-
resentation are analogous to dual prices in LP. The augmented Lagrangian
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representation can be used to show that the primal representation of a stan-
dard LP is equivalent to the dual representation used in the dual simplex
method, as illustrated in the following example.

Example 3.8: Show that the primal and dual representation of a standard
LP given in Table 3.1 are equivalent.

Table 3.1. The primal and dual representation for an LP

Primal Dual

Maximize Z =
∑n

i=1 Cixi Minimize Zd =
∑m

j=1 bjμj

xi, i = 1, 2, . . . , n μj , j = 1, 2, . . . ,m∑n
i=1 aijxi ≤ bj

∑m
j=1 aijμj ≥ Ci

j = 1, 2, . . . ,m i = 1, 2, . . . , n
xi ≥ 0 μj ≥ 0;

Solution: Let us consider the primal representation and write it in the
standard NLP form given below.

Minimize − Z = −
n∑

i=1

Cixi (3.114)

x

subject to

gj(x) =

n∑
i=1

aijxi − bj ≤ 0 (3.115)

xi ≥ 0 i = 1, 2, . . . , n (3.116)

The augmented Lagrangian representation of this above problem results
in the following equation.

Minimize L = −
n∑

i=1

Cixi +

m∑
j=1

μj(

n∑
i=1

aijxi − bj)

xi, μj , υi −
n∑

i=1

υixi

(3.117)

where μj represents the Lagrange multiplier for the inequality constraint gj(x)
and υi is the Lagrange multiplier corresponding to the nonnegativity con-
straint xi ≥ 0.

The KKT conditions for the above minimization problem are given below.
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− Ci +

m∑
j=1

aijμj + υi = 0 i = 1, 2, . . . , n (3.118)

μj(

n∑
i=1

aijxi − bj) = 0 j = 1, 2, . . . ,m (3.119)

−υixi = 0 i = 1, 2, . . . , n (3.120)

xi ≥ 0 i = 1, 2, . . . , n (3.121)

υi ≥ 0 i = 1, 2, . . . , n (3.122)

μj ≥ 0 j = 1, 2, . . . ,m (3.123)

Getting the value of υi from Equation (3.118) and substituting in Equation
(3.122) results in:

− Ci +

m∑
j=1

aijμj ≥ 0 i = 1, 2, . . . , n (3.124)

m∑
j=1

aijμj ≥ Ci i = 1, 2, . . . , n (3.125)

Adding m rows of Equation (3.119), interchanging the sums, and rearrang-
ing leads to:

n∑
i=1

xi(
m∑
j=1

aijμj) =
m∑
j=1

bjμj (3.126)

Multiplying Equation (3.124) by xi, substituting the value of υixi from
Equation (3.120), and using it in Equation (3.126) results in:

n∑
i=1

Cixi =
m∑
j=1

μjbj (3.127)

The right-hand side of the above equation is the dual objective function
and Equation (3.125) represents the dual constraints given in Table 3.1.

The Lagrange multipliers for an NLP show change in the objective function
value per unit change in the right-hand side of the constraint. The reduced
gradients are analogous to reduced costs and show change in the objective
function value per unit change in the decision variable. However, this infor-
mation is only accurate for infinitesimal changes.

3.6 Numerical Methods

As seen in the last section, NLP involves an iterative scheme to solve the
problem. In Figure 3.8, the initial position of the ball reflects the initial values
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of the decision variables, and the ball should move in the direction of the
optimum.

It is obvious from Figure 3.8 that the ball should change its position to-
wards the gradient direction; this is the basis of steepest ascent and conjugate
gradient methods. However, these methods are slow to converge. If one looks
at our earlier procedure in the last section, what we are trying to solve is
the set of nonlinear equations resulting from the KKT conditions. In non-
linear equation-solving procedures, the Newton–Raphson method shows the
fastest convergence if one is away from the solution. Therefore, Newton meth-
ods which use the Newton–Raphson method as their basis are faster than the
gradient direction methods.

Newton–Raphson Method

Consider the following nonlinear equation.

f(x) = 0 (3.128)

The procedure involves stepping from the initial values of x = x0, to the
next step x1, and so on, using the derivative value. At any kth step, the next
step can be obtained by using the derivative as follows.

f ′(xk) =
∂f

∂x
=

f(xk+1)− f(xk)

xk+1 − xk
(3.129)

Because we want f(x) = 0, in the next step substitute f(xk+1) = 0 in the
above equation, resulting in the Newton–Raphson step.

xk+1 = xk − α
f(xk)

f ′(xk)
(3.130)

Here α shows the step size and for the conventional Newton–Raphson
method α = 1. Figure 3.13 shows the Newton–Raphson procedure for solving
the above nonlinear equation. One note of caution about the Newton–Raphson
method is that, depending on the starting point and the step length, Newton–
Raphson can diverge, as illustrated for point B.

In the optimization problem, the KKT condition states that the first
derivative of the Lagrangian function is zero (f(x) = ∇L = 0). Following
the Newton–Raphson method described above, it is necessary to have infor-
mation about the second derivative (or Hessian) to take the next step. Also,
these Newton methods demand the Hessian to be positive definite (for mini-
mization). The calculation of this Hessian is computationally expensive. The
frustration of Dr. Davidon, a physicist working at Argonne National Labora-
tory with the Newton methods for large-scale problems, was due to continuous
computer crashing before the Hessian calculation was complete. This led to
the first idea behind the quasi-Newton methods that are currently so popular.
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AB
xk

f( xk )

f( xk+1 )

f’( xk ) = Slope

Diverging

 Solution

Fig. 3.13. Schematic of the Newton–Raphson method

The quasi-Newton methods use approximate values of the Hessian obtained
from the gradient information and avoid the expensive second derivative cal-
culation. The Hessian can be calculated numerically using the two values of
gradients at two very close points. This is what Davidon used to obtain the
derivative from the last two optimization iterations. However, because the
steps are not as close as possible, this information is very approximate, and
must be updated at each iteration. Furthermore, the question of the starting
value of the Hessian needs to be addressed. In general, the starting value can
be taken as the identity matrix. Although Dr. Davidon proposed the first step
towards the quasi-Newton algorithms, his paper (written in the mid 1950s)
was not accepted for more than 30 years until it appeared in the first issue of
the SIAM Journal on Optimization(1991).

The most popular way of obtaining the value of the Hessian is to use the
BFGS update, named for its discoverers Broyden, Fletcher, Goldfarb, and
Shanno. The following procedure illustrates basic steps involved in the BFGS
updating.

BFGS Updating

Given that we want to solve the KKT condition as ∇L = 0 to obtain the
decision variables x.

1. Specify the initial values of the decision variables.
2. Find the partial derivatives and calculate the KKT conditions.
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3. Denote that the approximate Hessian at any step k is Bk. Initially assume
B1 to be the identity matrix (positive definite).

4. Use the approximate Hessian to calculate the Newton step.
5. Update the Hessian as follows.

• Let sk be the Newton step given by sk = xk+1 − xk and
bk = ∇Lk+1 − ∇Lk.

• Then the BFGS update for the Hessian is given by:

Bk+1 = Bk − Bksk(Bksk)
T

skTBksk
+

bkb
T
k

bk
T sk

. (3.131)

6. If the KKT conditions are not satisfied, then go to Step 4; else stop.

The BFGS updating guarantees a “direction matrix” that is positive defi-
nite and symmetric, which can be numerically “better” than a poorly behaved
Hessian.

Example 3.9: Demonstrate how the BFGS updating can be used to solve
the following simple minimization problem.

Minimize Z = x3/3 + x2 − 3x

x

Solution: The KKT condition results in the following nonlinear algebraic
equation.

∇L = x2 + 2x− 3 = 0

We can solve this equation analytically and obtain the values of x as
x = −3 where H will be negative definite and x = 1 where H is positive,
and hence the solution for the minimization problem. The quasi-Newton steps
leading to the same solution are shown in Table 3.2 using the BFGS updating.

Table 3.2. Newton steps in BFGS updating for Example 3.8

Iteration x ∇L Bk Hk

1 0.000 −3.000 1.000 2.000
2 3.000 12.000 5.000 8.000
3 0.600 −1.440 5.600 3.200
4 0.857 −0.551 3.457 3.714
5 1.016 0.0066 3.874 4.033
6 1.000 0.0002 4.016 3.999
7 1.000 0.0000 4.000 4.000
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Quasi-Newton Methods

Currently, the two major methods for NLP commonly used in various com-
mercial packages are: (1) the generalized reduced gradient (GRG) method and
(2) the sequential quadratic programming (SQP). These two are quasi-Newton
methods.

GAMS uses MINOS, a particular implementation of the GRG method.
The basic idea behind the reduced gradient methods is to solve a sequence of
subproblems with linearized constraints, where the subproblems are solved by
variable elimination. This is similar to two-level optimization (please refer to
the next chapter on mixed integer nonlinear programming). The outer prob-
lem takes the Newton step in the reduced space, and the inner subproblem is
the linearly constrained optimization problem. SQP, on the other hand, takes
the Newton step using the KKT conditions. It can be easily shown that the
Newton step (if the exact Hessian is known) results in a quadratic program-
ming problem (objective function quadratic, constraints linear) containing
the Newton direction vector as decision variables. For the quasi-Newton ap-
proximation, the BFGS update is generally used to obtain the Hessian. GRG
methods are best suited for problems involving a significant number of linear
constraints. On the other hand, SQP methods are useful for highly nonlinear
problems. Extension of the successful interior-point methods for LPs to NLP
is the subject of ongoing research.

3.7 Global Optimization and Interval Newton Method

As stated earlier, nonlinear programming methods can have multiple optima
as shown in Figure 3.4. The methods and algorithms that are used to reach
a global optimum are interval mathematical programming methods, dynamic
programming, probabilistic methods such as simulated annealing and evolu-
tionary algorithms. Dynamic programming is described in Chapter 7, prob-
abilistic methods are presented in Chapter 4. Here we present the interval
Newton method as an example of mathematical programming algorithms.

Interval Newton Method

The advantage of the interval Newton method as compared to other methods
described in Chapters 4 and 7 is that it is faster to converge and interval
methods avoid roundoff errors. In summary, the interval Newton method has
the following advantages.

1. Relatively faster convergence to the global optimum, without restarting
the search.

2. If the search space is large, then the interval Newton method is faster
than the traditional Newton method.
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3. It can avoid divergence without changing the individual step size (multi-
plication factor, a in Equation (3.129) as is normally used in the basic Newton
method.

The interval Newton method was derived first by Moore in 1966 in the
following manner. Originally Moore assumed that 0 ε f ′(Xk).

If Xk is an inclusion of zero, then an improved interval Xk+1 may be
computed by

xk = m(Xk) (3.132)

Xk+1 = (xk − f(xk)

f ′(Xk)
) ∩ Xk (3.133)

where m(Xk) is a point within the interval X, usually the midpoint.

3.8 What to Do When NLP Algorithm is Not
Converging

There is a number of reasons algorithms do not converge after specified iter-
ations. These are given below.

Optimality tolerance: The most common problem is the optimality toler-
ance. That is, the KKT condition (or Kuhn–Tucker error) tolerance is too
small.

Feasibility tolerance: For some methods, one has to specify feasibility tol-
erance. One can play with this tolerance value to obtain convergence.

Perturbation Size: Many algorithms use perturbation derivatives. The per-
turbation size should be small enough to calculate the derivatives but large
enough to circumvent numerical errors.

Scaling: The performance of most of the algorithms can be enhanced if
the scale of the variables, constraints, and objective function is within a few
orders of magnitude (absolute values) of each other.

Starting point: The solution to most of the NLP problems is greatly de-
pendent on the initial values of the decision variables. It is good practice to
solve the problem using multiple initializations.

3.9 Hazardous Waste Blending: An NLP

The nuclear waste blending problem presented in the LP chapter eliminated
constraints related to durability, viscosity, and electrical conductivity. These
constraints need to be included in the formulation to solve the blending prob-
lem. These constraints are nonlinear, making the blending problem an NLP
(linear objective function with nonlinear constraints). This NLP formulation
is presented below.

The NLP problem can be derived from the LP presented in Chapter 2.
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MinG ≡ Min
∑n

i=1 f
(i) (3.134)

wij ,W
(i), f (i), g(i), G, p(i)

where i (1–15) corresponds to the component ID and j (1–3) corresponds to
tank ID.

Subject to the following constraints:

1. Definition of decision variables:

W (i) =

3∑
j=1

wij (3.135)

g(i) = W (i) + f (i) (3.136)

G =

n∑
i=1

g(i) (3.137)

p(i) = g(i)/G (3.138)

2. Component bounds:
(a) 0.42 ≤ p(SiO2) ≤ 0.57
(b) 0.05 ≤ p(B2O3) ≤ 0.20
(c) 0.05 ≤ p(Na2O) ≤ 0.20
(d) 0.01 ≤ p(Li2O) ≤ 0.07
(e) 0.0 ≤ p(CaO) ≤ 0.10
(f) 0.0 ≤ p(MgO) ≤ 0.08
(g) 0.02 ≤ p(Fe2O3) ≤ 0.15
(h) 0.0 ≤ p(Al2O3) ≤ 0.15
(i) 0.0 ≤ p(ZrO2) ≤ 0.13
(j) 0.01 ≤ p(other) ≤ 0.10

3. Five glass crystallinity constraints:
(a) p(SiO2) > p(Al2O3) ∗ C1

(b) p(MgO) + p(CaO) < C2

(c) p(Fe2O3) + p(Al2O3) + p(ZrO2) + p(Other) < C3

(d) p(Al2O3) + p(ZrO2) < C4

(e) p(MgO) + p(CaO) + p(ZrO2) < C5

4. Solubility Constraints:
(a) p(Cr2O3) < 0.005
(b) p(F ) < 0.017
(c) p(P2O5) < 0.01
(d) p(SO3) < 0.005
(e) p(Rh2O3) + P (PdO) + P (Ru2O3) < 0.025

5. Viscosity constraints:
(a)

∑n
i=1 μ

i
a ∗ p(i) +

∑n
j=1

∑n
i=1 μ

ij
b ∗ p(i) ∗ p(j) > log (μmin)

(b)
∑n

i=1 μ
i
a ∗ p(i) +

∑n
j=1

∑n
i=1 μ

ij
b ∗ p(i) ∗ p(j) < log (μmax)

6. Conductivity Constraints:
(a)

∑n
i=1 k

i
a ∗ p(i) +

∑n
j=1

∑n
i=1 k

ij
b ∗ p(i) ∗ p(j) > log (kmin)

(b)
∑n

i=1 k
i
a ∗ p(i) +

∑n
j=1

∑n
i=1 k

ij
b ∗ p(i) ∗ p(j) < log (kmax)
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7. Dissolution rate for boron by PCT test (DissPCTbor):∑n
i=1 Dpia ∗ pi +

∑n
j=1

∑n
i=1 Dpijb ∗ p(i) ∗ p(j) < log (DPCT

max )
8. Dissolution rate for boron by MCC test (DissMCCbor):∑n

i=1 Dmi
a ∗ pi +

∑n
j=1

∑n
i=1 Dmij

b ∗ p(i) ∗ p(j) < log (DMCC
max )

9. Nonnegativity Constraint:
(a) f (i) ≤ 0

where μ, k and Dp, Dm are the property constants. The GAMS file and data
for this problem are presented online on Springer website with the book link.
When solved using the iterative solution procedure, the solution to the NLP
is given in Table 3.3. Thus Hanford should add 590 kgs of frit to the blend
of these three tanks. Note that the objective function (amount of frit) is the
same as that of the LP solution although the decision variable values are
different. Looking at the limiting constraints, it is obvious that in the NLP
formulation, the nonlinear constraints are not active, essentially resulting in
the same solution as LP (Please see the GAMS output files on the attached
CD).

Table 3.3. Composition for the optimal solution

Component Mass in the waste, W (i) Mass in frit f (i)

SiO2 11.2030 355.3436

B2O3 2.4111 51.9439

Na2O 34.1980 127.4987

Li2O 0.0000 14.7568

CaO 5.5436 30.1039

MgO 2.8776 10.6249

Fe2O3 89.0097

Al2O3 45.5518

ZrO2 11.4111

Other 41.7223

Total 243.9281 590.2718

Let us see what happens if we tighten some of the nonlinear constraints.
This strategy does not have any effect on the LP solution as these constraints
are not present in the LP formulation. To achieve this, we have changed some
of the parameters in the conductivity constraints and tightened the viscosity,
conductivity, and dissolution of boron by PCT. This formulation is presented
in Appendix A and the GAMS files are available on the attached CD. With
this formulation, the LP solution remains the same, but the NLP solution
changes to the solution given in Table 3.4.

The frit mass requirement for this alternative formulation, where some of
the nonlinear constraints are active, is increased from 590 kg to 737 kg. The
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Table 3.4. The optimal solution for alternative formulation

Component Mass in the waste, W (i) Mass in frit f (i)

SiO2 11.2030 424.6195

B2O3 2.4111 116.2736

Na2O 34.1980 75.7986

Li2O 0.0000 16.9259

CaO 5.5436 69.9114

MgO 2.8776

Fe2O3 89.0097

Al2O3 45.5518 25.7268

ZrO2 11.4111 7.3591

Other 41.7223

Total 243.9281 736.6449

reason that the frit mass is increased from the LP solution is that the problem
is more constrained than the LP problem.

3.10 Sustainable Mercury Management: An NLP

The basic optimization model assuming that all information is deterministi-
cally known is presented in the previous chapter as a MILP. However, the
technology cost, which was assumed to be linear, is an approximation. There-
fore, the generalized form of the model without a functional form is presented
below.

Objective:

Minimize

N∑
i=1

M∑
j=1

fj(φj , Di). bij (3.139)

Constraints:

tii = 0 ∀i = 1, ..., N (3.140)

redi ≤
M∑
j=1

qj .Di. bij +
N∑

k=1

tik − r
N∑

k=1

tki ∀i = 1, ..., N

(3.141)

Pi ≥
M∑
j=1

bij .fj(φ,Di) + F
( N∑
k=1

tik −
N∑

k=1

tki
)

∀i = 1, ..., N

(3.142)

The meanings of various symbols and explanation of the constraints can
be found in Section 2.9.3. The difference in the formulation presented above
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is in the representation of technology cost functions. The cost function for
technology j is represented here as fj(φj , Di). Here, φj is the set of design
parameters of technology j. Thus, the cost of technology implementation is
considered to be a function (linear or nonlinear) of the design parameters φj

(specific to technology j) and treated volume Di (specific to industry i).
For a linear model considered in the last chapter, the cost function is

given as:
fj(φj , Di) = TCj .Di (3.143)

Here, TCj represents cost per unit volume for technology j [$/volume]. With
linear cost functions, a mixed integer linear programming (MILP) problem is
formulated.

As mentioned in the introduction though, the assumption of linear cost
models might not be reasonable in many situations. Hence the formulation
must be modified to include nonlinear models. For a nonlinear model, the cost
function fj is a nonlinear function of design parameters φj and volume Di.
The details of this nonlinear model for the three technologies are presented
in Appendix B. This leads to the formulation of a mixed integer nonlinear
programming (MINLP) problem. Apart from the modifications in the cost
function, the rest of the optimization model is the same for linear and nonlin-
ear model formulation. When the binary variables bij are assumed fixed, this
formulation results in an NLP.

3.11 Summary

Nonlinear programming problems involve either the objective function or the
constraints, or both the objective function and the constraints are nonlinear.
Unlike LP, an NLP optimum need not lie at a vertex of the feasible region.
NLP can have multiple local optima. The NLP local optimum is a global
minimum if the feasible region and the objective function are convex, and is
a global maximum if the feasible region is convex and the objective function
is concave. Karush–Kuhn–Tucker conditions provide necessary conditions for
an NLP solution and are used in numerical methods to solve the problem
iteratively. Currently, the two most popular methods, reduced gradient meth-
ods and successive quadratic programming methods, are based on the idea
of quasi-Newton direction proposed by Davidon in 1950. SQP is suitable for
highly nonlinear problems, and GRG is best suited when there are a large
number of linear constraints present. Interior-point methods for NLP are the
current area of algorithmic research in nonlinear programming.
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Exercises

3.1 Determine if the point provided is an optimal point. Also, where possi-
ble, determine if the point is: (1) local or global and (2) a minimum or
maximum.
1.

3x2
1 + 2x1 + 2x2 + 7,x = (2, 1)

2.
0.1x2

1 + x2
2 + x1x2 + x1 − 10,x = (4, 1)

3.
(x1 − 2)2 + x2

2,x = (1, 1)

4.
x1x2 − x2

1 − (x2 − 3)2,x = (2, 4)

5.
x3
1 + 2x2

1 + x2
2 + 3x2 − 5,x = (0,−1.5)

6.
3x1 − x3

1 − (x2 − 2)3 + 12x2 + 3,x = (1, 4)

3.2 Given the following functions, find if the function is convex, concave, or
a saddle point.

2− x2
1 + 2x1 + 2x2 − x2

2

x2
1 − x2

2

−x2
1 − x2

2

x2
1 + x2

2

3.3 Given the following optimization problem,

Minimize f(x) = x1
2 + x2

2

subject to
2x1 + x2 − 2 ≤ 0

x2 − x1 ≥ 0

x2 ≤ 2

Plot the contours for f(x) for f(x) = 0, 0.5, 1, 2, 3, 4, and the feasible
region. From inspection, what is the optimal solution?
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3.4 Solve the following quadratic programming (quadratic objective function
and linear constraints) problem using an active constraint strategy. Plot
the gradients of the objective and active constraints at the optimum,
and verify geometrically the Kuhn–Tucker conditions. Determine also
whether the optimal solution is unique.

Minimize f(x) = 0.5(x1
2 + x2

2) − 3x1 − x2

subject to
x1 + 0.5x2 − 2 ≤ 0

x2 − x1 ≤ 0

−x2 ≤ 0

3.5 For the following problems: (1) solve the problem using the active con-
straint method, (2) perform two iterations of the Newton–Raphson
method, and (3) perform two iterations of the BFGS quasi-Newton
method. Use the starting point provided.
1.

min 2x2
1 + x2

2 − 6x1 − 2x1x2, x0 = (1, 1)

2.
min 20x2

1 + 10x2
2 − 5x1 − 2x2, x0 = (3, 1)

3.
minx2

1 + x2
2 − 4x1 − 2x2, x0 = (1, 1),

x1 + x2 ≥ 4

x1, x2 ≥ 0

Validate graphically.
4.

minx2
1 + x2

2 − 4x1 − 4x2, x0 = (1, 1),

x1 + 2x2 − 4 ≤ 0

3− x1 ≤ 0

x1, x2 ≥ 0

Validate graphically.
3.6 Design a beer mug to hold as much beer as possible. The height and

radius of the mug should be no more than 20 cm. The mug must have a
radius of at least 5 cm. The surface area of the sides of the mug must not
exceed 900 cm2 (we are ignoring the surface area related to the bottom
of the mug). The ratio of the height to radius should be between 2.4 and
3.4. Formulate and solve this optimal design problem.
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3.7 Design a circular tank, closed at both ends, with a volume of 200 m3.
The cost is proportional to the surface area of material, which is priced
at $400/m2. The tank is contained within a shed with a sloping roof,
thus the height of the tank h is limited by h ≤ 12 − d/2, where d is
the tank diameter. Formulate the minimum cost problem and solve the
design problem.

3.8 Consider three cylindrical objects of equal height but with different radii,
(r1 = 1 cm, r2 = 2 cm, r3 = 5 cm) as shown in Figure 3.14. What is
the box with the smallest perimeter that will contain these three cylin-
ders? Formulate and analyze this nonlinear programming problem. Using
GAMS find a solution. Turn the box by a right angle and check the so-
lution.

r1 = 1

r2 = 2

r3 = 5

Fig. 3.14. Three cylinders in a box

3.9 The following reaction is taking place in a batch reactor, A → R → S,
where R is the desired product and A is the reactant, with an initial
concentration CA0 = 10 moles/volume. The rate equations for this
reaction are provided below. Draw the graph of concentrations of A, R,
and S (CA, CR, and CS) with respect to time t, when time changes
in increments of 0.04 h. Solve the problem to obtain (1) maximum con-
centration of R, (2) maximum yield of R, (3) maximum profit, where
profit = 100 × concentration of product R - 10 × concentration of raw
material, (4) maximum profit, where profit = value of product less cost
of removing impurities A and S. Product value is the same as given for
(3) but the cost of removing A is 1 unit, whereas the cost of removing
S is 25 units (5) maximum profit, where profit = product value—raw
material cost (same as (3))—labor cost (25 units per unit time).
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CAt = CA0 exp (−k1t)

CRt = CA0k1[
exp (−k1t)

k2 − k1
− exp (−k2t)

k2 − k1
]

CSt = CA0[1 +
exp (−k1t)

k2 − k1
− exp (−k2t)

k2 − k1
]

where k1 = 10 per hour, k2 = 0.1 per hour
Now include the temperature (T ) effects on the reaction in terms of
the reaction constants k1 and k2 given below and resolve the above five
optimization problems.

k1(T ) = 19531.2 exp (−2258.0/T )

k2(T ) = 382700. exp (−4517.0/T )

3.10 Use the interval Newton method and find the solution of the three hump-
back camel function given below.

f(x1, x2) = 2x2
1 − 1.05x4

1 + 1/6x6
1 − x1x2 + x2

2 = 0
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4

Discrete Optimization

Discrete optimization problems involve discrete decision variables as shown
below in Example 4.1.

Example 4.1: Consider the isoperimetric problem solved in Chapter 3 to
be an NLP. This problem is stated in terms of a rectangle. Suppose we have
a choice among a rectangle, a hexagon, and an ellipse, as shown in Figure 4.1.

Fig. 4.1. Isoperimetric problem discrete decisions, Exercise 4.1

Draw the feasible space when the perimeter is fixed at 16 cm and the
objective is to maximize the area.

Solution: The decision space in this case is represented by the points cor-
responding to different shapes and sizes as shown in Figure 4.2.

Electronic Supplementary Material The online version of this chap-
ter (https://doi.org/10.1007/978-3-030-55404-0 4) contains supplementary mate-
rial, which is available to authorized users.
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Discrete optimization problems can be classified as integer programming
(IP) problems, mixed integer linear programming (MILP), and mixed integer
nonlinear programming (MINLP) problems. Now let us look at the decision
variables associated with this isoperimetric problem. We need to decide which
shape and what dimensions to choose. As seen earlier, the dimensions of a
particular figure represent continuous decisions in a real domain, whereas se-
lecting a shape is a discrete decision. This is an MINLP as it contains both
continuous (e.g., length) and discrete decision variables (e.g., shape), and the

16

32

Various Shapes

s
mc .qs ,aer

A

Feasible Region

Fig. 4.2. Feasible space for discrete isoperimetric problem

objective function (area) is nonlinear. For representing discrete decisions as-
sociated with each shape, one can assign an integer for each shape or a binary
variable having values of 0 and 1 (1 corresponding to yes and 0 to no). The
binary variable representation is used in traditional mathematical program-
ming algorithms for solving problems involving discrete decision variables.
However, probabilistic methods such as simulated annealing and genetic algo-
rithms which are based on analogies to a physical process such as the annealing
of metals or to a natural process such as genetic evolution, may prefer to use
different integers assigned to different decisions.

Representation of the discrete decision space plays an important role in
selecting a particular algorithm to solve the discrete optimization problem.
The following section presents the two different representations commonly
used in discrete optimization.

4.1 Tree and Network Representation

Discrete decisions can be represented using a tree representation or a network
representation. Network representation avoids duplication and each node cor-



4.1 Tree and Network Representation 97

responds to a unique decision. This representation is useful when one is using
methods like discrete dynamic programming (Chapter 7 describes dynamic
programming for continuous path optimization). Another advantage of the
network representation is that an IP problem that can be represented ap-
propriately using the network framework can be solved as an LP (see Chap-
ter 2). Examples of network models include transportation of supply to satisfy
a demand, flow of wealth, assigning jobs to machines, and project manage-
ment. The tree representation shows clear paths to final decisions; however, it
involves duplication. The tree representation is suitable when the discrete
decisions are represented separately, as in the branch-and-bound method.
This method is more popular for IP than the discrete dynamic program-
ming method in the mathematical programming literature due to its easy
implementation and generalizability. The following example from Hendry and
Hughes (1972) illustrates the two representations.

Example 4.2: Given a mixture of four chemicals A, B, C, D for which
different technologies are used to separate the mixture of pure components.
The cost of each technology is given in Table 4.1. Formulate the problem as
an optimization problem with tree and network representations.

Table 4.1. Cost of separators in 1000 $/year

Separator Cost

A/BCD 50
AB/CD 170
ABC/D 110
A/BC 40
AB/C 69
B/CD 228
BC/D 40
A/B 144
B/C 50
C/D 329

Solution: Figure 4.3 shows the decision tree for this problem. In this repre-
sentation, we have multiple representations of some of the separation options.
For example, the binary separators A/B, B/C, C/D appear twice in the termi-
nal nodes. We can avoid this duplication by using the network representation
shown in Figure 4.4. In this representation, we have combined the branches
that lead to the same binary separators. The network representation has 10
nodes, and the tree representation has 13 nodes. The optimization problem
is to find the path that will separate the mixture into pure components for a
minimum cost. From the two representations, it is very clear that the decisions
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involved here are all discrete decisions. This is a pure integer programming
problem. The mathematical programming method commonly used to solve
this problem is the branch-and-bound method. This method is described in
the next section.
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Fig. 4.3. Tree representation, Example 4.2

4.2 Branch-and-Bound for IP

Having developed the representation, the question is how to search for the
optimum. One can go through the complete enumeration, but that would
involve evaluating each node of the tree. The intelligent way is to reduce the
search space by implicit enumeration and evaluate as few nodes as possible.
Consider the above example of separation sequencing. The objective is to
minimize the cost of separation. If one looks at the nodes for each branch,
there are an initial node, intermediate nodes, and a terminal node. Each node
is the sum of the costs of all earlier nodes in that branch. Because this cost
increases monotonically as we progress through the initial, intermediate, and
final nodes, we can define the upper bound and lower bounds for each branch.

• The cost accumulated at any intermediate node is a lower bound to the cost
of any successor nodes, as the successor node is bound to incur additional
cost.
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• For a terminal node, the total cost provides an upper bound to the original
problem because a terminal node represents a solution that may or may
not be optimal.

The above two heuristics allow us to prune the tree for cost minimization.
If the cost at the current node is greater than or equal to the upper bound
defined earlier (either from one of the prior branches or known to us from
experience), then we do not need to go further in that branch. These are the
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Fig. 4.4. Network representation, Example 4.2

two common ways to prune the tree based on the order in which the nodes
are enumerated:

• Depth-first: Here, we successively perform one branching on the most re-
cently created node. When no nodes can be expanded, we backtrack to a
node whose successor nodes have not been examined.

• Breadth-first: Here, we select the node with the lowest cost and expand
all its successor nodes.

The following example illustrates these two strategies for the problem spec-
ified in Example 4.2.

Example 4.3: Find the lowest cost separation sequence for the problem
specified in Example 4.2 using the depth-first and breadth-first branch-and-
bound strategies.

Solution: Consider the tree representation shown in Figure 4.5 for this
problem.
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First, let us examine the depth-first strategy, as shown in Figure 4.6 and
enumerated below.

• Branch from Root Node to Node 1: Sequence Cost = 50.
• Branch from Node 1 to Node 2: Sequence Cost = 50 + 228 = 278.
• Branch from Node 2 to Node 3: Sequence Cost = 278 + 329 = 607.

– Because Node 3 is terminal, current upper bound = 607.
– Current best sequence is (1, 2, 3).
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Fig. 4.5. Tree representation and cost diagram, Example 4.3

• Backtrack to Node 2.
• Backtrack to Node 1.
• Branch from Node 1 to Node 4: Sequence Cost = 50 + 40 = 90 < 607.
• Branch from Node 4 to Node 5: Sequence Cost = 90 + 50 = 140 < 607.

– Because Node 5 is terminal and 140 < 607, current upper bound =
140.

– Current best sequence is (1, 4, 5).
• Backtrack to Node 4.
• Backtrack to Node 1.
• Backtrack to Root Node.
• Branch from Root Node to Node 6: Sequence Cost = 170.

– Because 170 > 140, prune Node 6.
– Current best sequence is still (1, 4, 5).
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• Backtrack to Root Node.
• Branch from Root Node to Node 9: Sequence Cost = 110.

– Branch from Node 9 to Node 10: Sequence Cost = 110 + 40 = 150.
– Branch from Node 9 to Node 12: Sequence Cost = 110 + 69 = 179.
– Because 150 > 140, prune Node 10.
– Because 179 > 140, prune Node 12.
– Current best sequence is still (1, 4, 5).
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Fig. 4.6. Depth-first strategy enumeration, Example 4.2

• Backtrack to Root Node.
• Because all the branches from the Root Node have been examined, stop.
• Optimal Sequence (1, 4, 5), Minimum Cost = 140.

Note that with the depth-first strategy, we examined 9 nodes out of 13 that
we have in the tree. If the separator costs had been a function of continuous
decision variables, then we would have had to solve either an LP or an NLP
at each node, depending on the problem type. This is the principle behind the
depth-first branch-and-bound strategy.

The breadth-first strategy enumeration is shown in Figure 4.7. The steps
are elaborated below.

• Branch from Root Node to:
– Node 1: Sequence Cost = 50.
– Node 6: Sequence Cost = 170.
– Node 9: Sequence Cost = 110.
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• Select Node 1 because it has the lowest cost.
• Branch Node 1 to:

– Node 2: Sequence Cost = 50 + 228 = 278.
– Node 4: Sequence Cost = 50 + 40 = 90.

• Select Node 4 because it has the lowest cost among 6, 9, 2, 4.
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Fig. 4.7. Breadth-first strategy enumeration, Example 4.2

• Branch Node 4 to:
– Node 5: Sequence Cost = 90 + 50 = 140.

• Because Node 5 is terminal, current best upper bound = 140 with the
current best sequence (1, 4, 5).

• Select Node 9 because it has the lowest cost among 6, 9, 2, 5.
• Branch Node 9 to:

– Node 10: Sequence Cost = 110 + 40 = 150.
– Node 12: Sequence Cost = 110 + 69 = 179.

• From all the available nodes 6, 2, 5, 10, and 12, Node 5 has the lowest
cost, so stop.

• Optimal Sequence (1, 4, 5), Minimum Cost = 140.

Note that with the breadth-first strategy, we only had to examine 8 nodes
out of 13 nodes in the tree, one node less than the depth-first strategy.
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In general, the breadth-first strategy requires the examination of fewer
nodes and no backtracking. However, depth-first requires less storage of nodes
because the maximum number of nodes to be stored at any point is the number
of levels in the tree. For this reason, the depth-first strategy is commonly used.
Also, this strategy has a tendency to find the optimal solution earlier than
the breadth-first strategy. For example, in Example 4.3, we had reached the
optimal solution in the first few steps using the depth-first strategy (seventh
step, with five nodes examined).

4.3 Numerical Methods for IP, MILP, and MINLP

In Example 4.3, we could carry out the branch-and-bound for IP using graph-
ical representation. However, for large-scale problems, it is impossible to solve
the problem using the graphical way of enumerating the branch-and-bound
steps. We need an algebraic representation of the graphical problem above for
a numerical procedure. The following example presents the algebraic repre-
sentation of the problem in Example 4.3.

Example 4.4: Provide the algebraic representation of the problem specified
in Example 4.2 for the numerical branch-and-bound procedure.

Solution: Consider the tree representation for this problem to be as shown
in Figure 4.8. As stated earlier, the decision variables associated with each
node can be represented by binary variables yi, for mathematical programming
techniques. The figure also shows the binary variable associated with each
node, representing the logic that if the node were present in the sequence,
the binary variable associated with that node would be equal to one, else
it would be zero. Ci denotes the cost of each node, and yi represent the
binary variable associated with each node. They are numbered (as subscripts)
according to the nodes shown in the figure (e.g., y9 corresponds to Node
9). Let us translate the tree structure into logical constraints. The objective
function is the minimization of total costs, the cost of each node present in
the final sequence. Because we do not know which node will be selected, we
can write the objective function in terms of the cost of each node multiplied
by the binary variable. Given that node not appearing in the sequence, the
corresponding binary variable y will go to zero.

Min z =

13∑
i=1

Ciyi

yi
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subject to:
At the Root Node we can only select one of the three nodes.

y1 + y6 + y9 = 1

Node 2 or Node 4 will exist if Node 1 is considered.

y2 + y4 = y1
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Fig. 4.8. Binary variable assignment, Example 4.2

Node 3 will exist if Node 2 is considered.

y3 = y2

Node 5 will exist if Node 4 is considered.

y5 = y4

Node 7 will exist if Node 6 is present and Node 8 will exist only if Node 7
is considered.

y7 = y6

y8 = y7
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Node 10 or Node 12 will exist if Node 9 is considered.

y10 + y12 = y9

Node 11 will exist if Node 10 is present and Node 13 will exist if Node 12
is considered.

y11 = y10

y13 = y12

It is obvious from the above example that once the discrete variables are
assigned, it is possible to write logical constraints. Typical examples are:

1. Multiple Choice Constraints:
• Select only one item: ∑

i

yi = 1

• Select at most one item: ∑
i

yi ≤ 1

• Select at least one item: ∑
i

yi ≥ 1

2. Implication Constraints:

• If item k is selected, item j must be selected, but not necessarily vice
versa:

yk − yj ≤ 0

• If binary variable y is zero, an associated continuous variable x must
be zero:

x − Uy ≤ 0

x ≥ 0

where U is an upper limit to x.

3. Either-or constraints:

• Either constraint g1(x) ≤ 0 or constraint g2(x) ≤ 0 must hold:

g1(x) − Uy ≤ 0

g2(x) − U(1− y) ≤ 0

where U is a large value.
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As can be seen above, the IP problem can be represented by the following
generalized form.

Optimize Z = z(y) =
∑
i

ciyi = CT y (4.1)

yi

where yi ε 0, 1.
subject to

h(y) = AT y +B = 0 (4.2)

g(y) = DT y + E ≤ 0 (4.3)

As can be seen from the above example and the generalized representa-
tion, an IP problem tends to be linear. One way to solve these problems is
to relax the constraint on the binary variables by making them continuous
variables and then solving the LP. Figure 4.9 shows the feasible region of a
two-dimensional problem where the IP is converted to an LP. What happened
to the feasible region that consisted of discrete points? It became a contin-
uous region, and the size of the feasible region increased. We have seen in
the hazardous waste problem in earlier chapters that the solution to a less-
constrained problem is as good as or better than the constrained solution. If
the relaxed solution to an LP is a pure integer set, then the solution of the IP
is reached. If the LP solution is not the IP solution, then the LP solution pro-
vides a lower bound to the (less constrained) IP solution for a minimization
problem. The advantage of getting a lower bound to a branch a priori is that
if the current upper bound is lower than the lower bound of the respective
branch, then one does not have to enumerate that branch at all. Normally,
the relaxed LP solution is used as a starting point for the branch-and-bound
method.

Feasible Region

y2

y1

Fig. 4.9. Feasible region for IP and relaxed LP
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As in the branch-and-bound algorithm, the cutting plane algorithm also
starts with a relaxed LP solution. However, rather than using branching and
bounding, it finds the solution by successively adding specially constructed
cuts (constraints) to the problem. The added cuts do not eliminate any of
the feasible integer points but must pass through at least one feasible or
one infeasible integer point. Figure 4.10 shows the basic concepts behind the
cutting plane method. In the figure (a) shows the relaxed LP solution, (b) the
solution after one cut, and (c) the final cut and the integer solution.

y2

y1

y2

y1

Cut -1

y2

y1

Cut -1

(a) (b)

(c)

Cut-2

Optimum

Fig. 4.10. The cutting plane method conceptual iterations

The idea behind the cutting plane method is that if the LP relaxation
problem solution is an integer, then we are done. If not, then a valid inequality
is found that separates the fractional solution or cuts it off. With the inclusion
of this cutting plane, the former solution is forbidden; that is, it is tabu and will
not be encountered within subsequent steps of the search. The cutting plane
method was first proposed by Gomory in 1958. Therefore, the cut proposed
by this method is called the Gomory cut. This is briefly described below.
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Gomory cut: We know that the solution to the integer program in the
cutting plane method starts with a relaxed LP solution. If the solution is not
an integer solution, then we start adding cuts. For example, consider a general
constraint at this solution given by aiyi = a0, with yi as integers, then we
can derive the Gomory cut for this constraint as follows.

• Divide both sides of the constraint by aj , as shown below.

yj +
∑
i�=j

ai
aj

yi =
ao
aj

(4.4)

yj +
∑
i�=j

ai,jyi = a0,j (4.5)

where ai,j = ai

aj
.

• If �  denotes rounding, then we can write the following expression from
Equation 4.5.

yj +
∑
i�=j

�ai,jyi ≤ �a0,j (4.6)

• Subtracting Equation 4.5 from Equation 4.6 results in

∑
i�=j

(�ai,j − ai,j)yi ≤ �a0,j − a0,j (4.7)

• Let fij = ai,j − �ai,j, Equation 4.7 becomes

−
∑
i�=j

fijyi ≤ − f0j (4.8)

This is the Gomory cut for the constraint aiyi = a0, with yi.

In the following example, we revisit Example 2.1 from Chapter 2 solution
and how we can find a cut to forbid the earlier solution.

Example 4.5: Start the problem at the solution of Example 2.1 and derive
a Gomory cut to cut out the previous solution.

Solution: In Example 2.2, we reached the solution x = (0.5) with the
following final Simplex tableau. This is also shown in Figure 4.11.

From Table 4.2, we can write the three constraints as follows.

2x1 + s1 − s2 = 3 (4.9)

x2 + s2 = 5 (4.10)

x1 + s2 + s3 = 9 (4.11)
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Table 4.2. The final simplex tableau, Example 2.2

Row −Z x1 x2 s1 s2 s3 RHS Basic Ratio

0 1 4 0 0 1 0 5 −Z = 5 –
1 0 2 0 1 −1 0 3 s1 = 3 –
2 0 0 1 0 1 0 5 x2 = 5 –
3 0 1 0 0 1 1 9 s3 = 9 –

Consider the constraint given by Equation 4.9 for deriving the Gomory
cut. By dividing both sides of constraint by 2, and then rounding results in
the following inequality.

x1 + 0s1 − 0s2 ≤ 1 (4.12)

Subtracting Equation 4.9 after dividing by 2 from Equation 4.12, we get
the following constraint (Gomory cut).

s1 − s2 ≤ 1 (4.13)

Substituting Equation 4.13 in Equation 4.9 results in the following equa-
tion. This Gomory cut shown in Figure 4.11 is cutting the previous solution.

x1 ≥ 1 (4.14)

x1

-2 -1 1 2 3 4 5 6

x 2

0

5

10 Optimum
Feasible region

-5

B

0
A

CD

Gomory Cut

Fig. 4.11. Gomory Cut

The two disadvantages of the cutting plane method are for some problems
a large number of cuts are needed to find the solution, and if the rounding is
not done properly, the cuts can reduce the feasible region.
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This same concept of forbidding the previous solutions is used in the tabu
search. The basic concept of tabu search, as described by Glover (1986), is a
meta-heuristics superimposed on another heuristic. The overall approach is to
avoid entrainment in cycles by forbidding or penalizing moves that take the
solution, in the next iteration, to points in the solution space previously visited
(hence “tabu”). The tabu search begins by marching to a local minimum.
To avoid retracing the steps used, the method records the moves in one or
more tabu lists. At initialization, the goal is to make a coarse examination of
the solution space, known as “diversification,” but as candidate locations are
identified the search is more focused to produce local optimal solutions in a
process of “intensification.”

MILP Problems

The mixed integer linear programming problems are of the form given below.

Optimize Z = z(x, y) = aT y + CTx (4.15)

x, yi

where yi ε 0, 1 and x is a set of continuous variables. Note that the IP part in
the objective function is again linear.
subject to

g(x, y) = −By + ATx ≤ 0 (4.16)

Branch-and-bound is a commonly used technique for solving MILP prob-
lems, where at each node, instead of looking at the fixed costs as we have seen
in Example 4.3, an LP is solved.

MINLP Problems

What happens when you have a mixed integer nonlinear programming prob-
lem? The following is the generalized representation of an MINLP problem.

Optimize Z = z(x, y) = aT y + f(x) (4.17)

x, yi

where yi ε 0, 1 and x is a set of continuous variables. The first term represents
a linear function involving the binary variables y and the second term is a
nonlinear function in x. This formulation avoids nonconvexities and bilinear
terms in the objective function.

Similarly, for the constraints the following formulation is used.
subject to

h(x) = 0 (4.18)

g(x, y) = −BT y + g(x) ≤ 0 (4.19)

Branch-and-bound for MINLP is a direct extension of the linear case
(MILP). This method starts by relaxing the integrality requirements of the
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0–1 variables, which leads to a continuous NLP optimization problem. It then
continues by performing the tree enumeration where a subset of 0–1 variables
is successively fixed at each node and an NLP problem is solved at each node.

The major disadvantage of the branch-and-bound method is that it may
require the solution of a relatively large number of huge NLP problems, mak-
ing this method computationally expensive. The relaxed NLP can lead to
singularities and convergence problems. On the other hand, if the MINLP has
a tight NLP relaxation, the number of nodes enumerated may be modest. In
the limiting case where the NLP relaxation exhibits 0–1 solutions for the bi-
nary variable (convex hull representation), only one single NLP problem needs
to be solved. A convex hull is a smallest convex set containing all the points.

The alternatives to branch-and-bound for MINLP are the generalized Ben-
der’s decomposition (GBD) and outer-approximation (OA) algorithms. These
algorithms consist of solving an NLP subproblem (with all 0–1 variables) and
an MILP master problem at each major iteration, as shown in Figure 4.12.
The NLP subproblem has the role of optimizing the continuous variables, and
the MILP master problem provides the 0–1 variables at each iteration. The
master problem represents the linearized representation of the NLP and hence
provides the lower bound to the MINLP. The following paragraph explains the
linearization procedure and why the master problem provides a lower bound.

Consider the nonlinear objective function shown in Figure 4.13. As can be
seen, this is a convex function and the problem is to locate the minimum of
this function, as given below.

Minimize Z = z(x1) = − 8x1 + x1
2 (4.20)

x1

x1 ≥ 0 (4.21)

The linearization of this problem at the point in Figure 4.13 resulted in a
tangent at that point (point k). It is obvious that the line provides a boundary
to the function and hence is represented by an inequality where the objective
function has to lie on the other side of the hashed line in Figure 4.13. So the
linearized optimization problem can be represented as shown below.

Weak LP representation:

Minimize Z = z(x1) = α (4.22)

x1

Using the Taylor series expansion:

α ≥ − 8x1
k + (x1

k)2 + (−8 + 2x1
k) (x1 − x1

k) (4.23)

x1 ≥ 0 (4.24)
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Fig. 4.12. Main steps in GBD and OA algorithms

As can be seen in the figure, the optimum solution lies lower than the
original NLP. This linearization is a weak representation of the original func-
tion. To represent the NLP, we need to add linearization at several points,
as shown in Figure 4.14, leading to the same optimum solution. This LP rep-
resentation will have several binding constraints such as the one represented
above (Equation (4.23)), one for each line.

In GBD-OA algorithms (Figure 4.12), the MILP problem is a linearized
representation of the MINLP calculated at the previous NLP solution points
(with fixed binary variables). The linearization is based on the above principle.
As can be seen above, the MILP solution would provide a lower bound to
the MINLP. At each iteration, the binary variables are calculated by the
MILP master problem. For these fixed binary variables, the NLP is solved
and linearizations are obtained. If the NLP solution (upper bound) crosses
or is equal to the lower bound predicted by the MILP, then stop, else the
iteration continues and a new linearized representation is added to the MILP.
In GBD, the Lagrangian, or the dual representation of the problem is used
for linearization, whereas in OA the linearizations are carried out, keeping the
original (primal) representation of the problem.

Let us first look at the GBD linearization for the following generalized
representation of the MINLP.

MINLP:
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Fig. 4.13. NLP linearization, step 1

Minimize Z = z(x, y) = aT y + f(x) (4.25)

x, yi

where yi ε 0, 1 and x is a set of continuous variables.
subject to

h(x) = 0 (4.26)

g(x, y) = g(x) −BT y ≤ 0 (4.27)

Lagrangian or dual representation of the above MINLP:

Minimize L = l(x, y, λj , μi)

x, y, λj , μi = aT y + f(x) +
∑
j

λjhj(x)

+
∑
i

μi(gi(x) − BT y) (4.28)

where λj and μi are Lagrangian constraint multipliers.
For the kth iteration of the master problem, which results in the binary

variables solution y = yk, the GBD linearization can be obtained as follows.
MILP at the kth GBD iteration:

Minimize α (4.29)

α, y
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Fig. 4.14. NLP linearization

subject to

α ≥ aT y + f(xk) +
∑
i

μk
i (gi(x

k) − BT y) (4.30)

On the other hand, OA uses the original representation for linearization.
OA in its original form could not handle equality constraints. A variant of
OA called outer-approximation/Equality Relaxation (OA/ER) was proposed
later to handle equalities. If we eliminate the equality constraint in the MINLP
formulation, then OA linearization results in the following.

MILP for OA:

Minimize Z = α (4.31)

α, x, yi

subject to

α ≥ aT y + f(xk) + ∇f(xk)(x− xk) (4.32)

g(x, y) = −BT y + g(xk) + ∇g(xk)T (x− xk) ≤ 0 (4.33)

Both GBD and OA master problems accumulate new constraints as the
iterations proceed. However, GBD accumulates one additional constraint,
whereas OA accumulates a set of linear constraints per iteration. The master
problem of OA is richer in information than the GBD, so it requires fewer
iterations than the GBD. It should be noted that the GBD master problem
only predicts discrete variables, and is an IP. OA, on the other hand, is an
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MILP problem and may require more computational efforts to solve the mas-
ter problem as compared to the GBD. The following two MINLP examples
(one simple and one complex) demonstrate the GBD and OA algorithms.

Example 4.6: Consider the problem of minimization of a curve similar to
the shown in Figure 4.13 but in two dimensions x1 and x2. We will also
introduce an integer variable y, which becomes 1 when x2 > 0; otherwise, it
is zero. x2 also has an upper bound U = 100. We can formulate this problem
as follows.

Minimize Z = z(x1) = − 8x2 + x1
2 (4.34)

x1

x2 ≤ x1 (4.35)

x2 − Uy ≤ 0 (4.36)

x1 ≥ 0 x2 ≥ 0 (4.37)

Solution: Let us start the value of integer variable y = 0.

• First NLP problem:
Using Lagrangian formulation, the NLP results in

Minimize L

L = −8x2 + x1
2 + μ1(z2 − 100y) + μ2(x2 − x1) + μ3(−x1) + μ4(−x1)

(4.38)

This NLP results in the following solution.

x1 = 0

x2 = 0

μ1 = 8

μ2 = 0

μ3 = 0

μ4 = 0

Zup = 0

• First MILP problem using GBD:

Minimize α (4.39)

α ≥ 8(0− 100y) (4.40)

This results in y = 1, Zlower = −800.
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• First MILP problem using OA:

Minimize α (4.41)

α ≥ 8(x2) (4.42)

x2 ≤ x1 (4.43)

x2 − Uy ≤ 0 (4.44)

x1 ≥ 0 x2 ≥ 0 (4.45)

This results in y = 1, x2 = 100, x1 = 100, Zlower = −800.
• Second NLP at y = 1. Again, using the same Lagrangian formulation given

in Equation 4.38, the NLP results in the following solution.

x1 = 4

x2 = 4

μ1 = 0

μ2 = 8

μ3 = 0

μ4 = 0

Zup = − 16

• Second MILP using GBD:

Minimize α (4.46)

α ≥ − 16 (4.47)

α ≥ 8(0− 100y) (4.48)

This results in y = 1, Zlower = −16.
• Second MILP problem using OA:

Minimize α (4.49)

α ≥ − 16− 8(x2 − 4) + 8(x1 − 4) (4.50)

α ≥ 8(x2) (4.51)

x2 ≤ x1 (4.52)

x2 − Uy ≤ 0 (4.53)

x1 ≥ 0 x2 ≥ 0 (4.54)

This results in y = 1, x2 = 4, x1 = 4, Zlower = −16. Since zup = zlower,
the solution is reached.
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Example 4.7: Consider the three objects shown in Figure 4.15. Each object
shows the maximum area that is allowed to be covered by that kind of figure.
It is given that the length of the square is equal to the radius of each circular
object and is limited by an upper bound of 4 cm. Formulate the problem as
an MINLP to find the object that will provide the maximum area. Use OA
and GBD algorithms to solve this problem.

Fig. 4.15. Maximum area problem, Example 4.5

Solution: Let us first define the decision variables.

Ai area corresponding to object i
x maximum allowable length or radius for each object
yi binary variable corresponding to object i; if yi is 1, object i is selected,

else yi is zero.

MINLP formulation
In order to avoid nonconvexity, the following formulation is used.

Maximize Z = z(A, x, y) = A1 + A2 + A3 (4.55)

Ai, x, yi

or

Minimize Z = z(A, x, y) = −A1 − A2 − A3 (4.56)

x, yi

subject to

A1 ≤ x2 (4.57)

A2 ≤ πx2 (4.58)

A3 ≤ π/2 x2 (4.59)

0 ≤ x ≤ 4 (4.60)

If binary variable yi disappears, corresponding Ai vanishes.

Ai ≤ Uyi i = 1, 2, 3. (4.61)
3∑

i=1

yi = 1 (4.62)

U is an arbitrary large number. We assume U = 100.
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Outer-Approximation (OA)

Let us start the first iteration with y0 = (1, 0, 0).

• First NLP subproblem:

Minimize Z = z(A, x, y0) = −A1 − A2 − A3 (4.63)

A, x

subject to

A1 ≤ x2 (4.64)

A2 ≤ πx2 (4.65)

A3 ≤ (π/2) x2 (4.66)

0 ≤ x ≤ 4 (4.67)

A1 ≤ U (4.68)

A2 ≤ 0 (4.69)

A3 ≤ 0 (4.70)

NLP solution: A2 = A3 = 0, x = 4, and A1 = 16, Z = − 16.
• First MILP master problem using linearization:

Minimize Z = z(A, x, y) = α (4.71)

α,Ai, x, yi

subject to

α ≥ −A1 −A2 −A3 (4.72)

A1 ≤ (4)2 + 2(4)(x− 4) (4.73)

A2 ≤ π(4)2 + 2(4)π(x− 4) (4.74)

A3 ≤ (π/2)(4)2 + 2(4)(π/2)(x− 4) (4.75)

0 ≤ x ≤ 4 (4.76)

where constraints (4.73)–(4.75) represent linearizations at x = 4, and A =
(16, 0, 0).

Ai ≤ Uyi i = 1, 2, 3. (4.77)
3∑

i=1

yi = 1 (4.78)

MILP solution: y1 = (0, 1, 0), A1 = A3 = 0, x = 4, and Z =
α = − 16π.
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• Second NLP iteration:

Minimize Z = z(A, x, y1) = −A1 − A2 − A3 (4.79)

Ai, x

subject to

A1 ≤ x2 (4.80)

A2 ≤ πx2 (4.81)

A3 ≤ π/2x2 (4.82)

A1 ≤ 0 (4.83)

A2 ≤ U (4.84)

A3 ≤ 0 (4.85)

NLP solution: A1 = A3 = 0, x = 4, and A2 = 16π, Z = − 16π.
• Because ZNLP ≤ ZMILP , the solution is reached in two NLP and one

MILP iterations.

Remember that the branch-and-bound solution for this problem will take
three NLP iterations.

Generalized Bender’s Decomposition (GBD)

Initial binary variables with y0 = (1, 0, 0).

• Lagrangian or dual representation of the MINLP:

Minimize L = −A1 − A2 − A3 + μ1(A1 − x2)

Ai, μi, μ1i, μ0, x, yi + μ2(A2 − πx2)

+ μ3(A3 − (π/2)x2) +
3∑

i=1

μ1i(Ai − Uyi)

+ μ0(x− 4) + μ00(−x) (4.86)

• First NLP solution from the KKT conditions:
Considering only active inequality constraints (corresponding to μ1, μ0,
μ12, μ13 as μ00, μ2, μ3, μ11 are equal to zero).

∇L = 0 (4.87)

∂L

∂A1
= − 1 + μ1 = 0 (4.88)

∂L

∂A2
= − 1 + μ2 + μ12 = 0 (4.89)

∂L

∂A3
= − 1 + μ3 + μ13 = 0 (4.90)
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∂L

∂x
= − 2xμ1 + μ0 = 0 (4.91)

∂L

∂μ1
= A1 − x2 = 0 (4.92)

∂L

∂μ0
= x− 4 = 0 (4.93)

∂L

∂μ12
= A2 = 0 because y2 = 0 (4.94)

∂L

∂μ13
= A3 = 0 because y3 = 0 (4.95)

Nonactive constraints:

μ00 = 0 (4.96)

μ2 = 0 (4.97)

μ3 = 0 (4.98)

μ11 = 0 (4.99)

NLP Solution: μ0 = 8, μ1 = μ12 = μ13 = 1, Z = − 16
• MILP master problem:

Minimize Z = z(y) = α (4.100)

yi

subject to

α ≥ − 16− Uy2 − Uy3 (4.101)
3∑

i=1

yi = 1 (4.102)

MILP solution: y1 = (0, 1, 0), Z = − 116
• Table 4.3 shows solution steps and the MILP and NLP iteration summary

for the GBD algorithm.

Table 4.3. GBD solution summary

Iteration ZNLP ZMILP y x

0 – – (1,0,0) –
1 −16 −116 (0,1,0) 4
2 −16π −16π (0,1,0) 4

Because the binary variables obtained in two consecutive iterations are the
same, the solution is reached in two NLP iterations. The following was the
final MILP master problem.
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Second MILP master iteration:

Minimize Z = z(y) = α (4.103)

yi

subject to

α ≥ − 16− Uy2 − Uy3 (4.104)

α ≥ − 16π − Uy1 − Uy3 (4.105)
3∑

i=1

yi = 1 (4.106)

The MINLP algorithms described above are designed for open equation
systems where the information is transparent for problem solving. Further-
more, they encounter difficulties when functions do not satisfy convexity con-
ditions, for systems having large combinatorial explosion, or when the solution
space is discontinuous. Probabilistic methods such as simulated annealing and
genetic algorithms provide an alternative to mathematical programming tech-
niques such as the branch-and-bound, GBD, and OAs.

4.4 Probabilistic Methods

Simulated annealing (SA) and genetic algorithms (GA) are combinatorial
methods based on ideas from the physical world. These are probabilistic com-
binatorial methods. Table 4.4 illustrates the key features of these algorithms
and highlights marked differences and similarities between the two approaches.
The following paragraphs describe the details of the two algorithms.

Simulated Annealing:

Simulated annealing is a heuristic combinatorial optimization method based
on ideas from statistical mechanics (Kirkpatrick et al., 1983). The analogy is
to the behavior of physical systems in the presence of a heat bath: in phys-
ical annealing, all atomic particles arrange themselves in a lattice formation
that minimizes the amount of energy in the substance, provided the initial
temperature is sufficiently high and the cooling is carried out slowly. At each
temperature T , the system is allowed to reach thermal equilibrium, which is
characterized by the probability (Pr) of being in a state with energy E given
by the Boltzmann distribution:

Pr(Energy state = E) =
1

Z(t)
exp (− E

KbT
) (4.107)

where Kb is Boltzmann’s constant (1.3806 × 1023 J/K) and 1/Z(t) is a
normalization factor (Collins et al., 1988). See Figure 4.16.
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Table 4.4. SA and GA comparison: theory and practice

Simulated annealing Genetic algorithms

In Theory

Analogous Physical
Phenomena

Statistical mechanics Biological evolution and nat-
ural selection

Nature of Algorithm Probabilistic Probabilistic

Objective Function Minimize the energy Maximize the fitness of a gen-
eration

Mode of Operation Works on a single solution
string at any time

Works on a population of so-
lution strings at any time

Initialization Random or heuristic set of de-
cision variables

Random population gener-
ated initially

Change in Decision
Variables for Subse-
quent Iteration

Random perturbation Crossover, mutation, and im-
migration

Stopping Criteria Low temperature No improve-
ment for consecutive itera-
tions

Desired average fitness No
improvement for consecutive
generations

Key Algorithm Pa-
rameters

Temperature, Decrement fac-
tor, No. of moves at each tem-
perature

No. of solution strings in
a population, Percentage of
reproduction, crossover, and
mutation

In Practice

Type of Optimiza-
tion Problems That
Can Be Solved

Large-scale, discrete, combi-
natorial, black-box, and non-
convex problems

Large-scale, discrete, combi-
natorial, black-box, and non-
convex problems

Global Optimization Asymptotically converges to
global optima if move se-
quences are Markov chains

No proof for optimal conver-
gence

Optimization of
Nonconvex Objec-
tive Function

Yes and does not require ob-
jective function gradient in-
formation

Yes and does not require ob-
jective function gradient in-
formation

Avoidance of Local
Optima

Yes. By accepting moves by
Metropolis criterion

Yes. By crossover and muta-
tion techniques

Some Applications Heat exchanger networks
(Chauduri et al., 1997),
Multidatabase systems
(Subramanian and Subrama-
nian, 1998), DNA structure
(Guarnieri and Mezei, 1996)

Molecular design (Tayal and
Diwekar, 2001), Aircraft
design (Dunn, 1997), Internet
(Joseph and Kinsner, 1997),
Virology and AIDS (Shapiro
and Wu, 1997), Truss design
(Vazquez-Espi et al., 1997),
Market simulation (Price,
1997)
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In SA, the objective function (usually cost) becomes the energy of the
system. The goal is to minimize the cost (energy). Simulating the behavior
of the system then becomes a question of generating a random perturbation
that displaces a “particle” (moving the system to another configuration). If
the configuration that results from the move has a lower energy state, the
move is accepted. However, if the move is to a higher energy state, the move
is accepted according to the Metropolis criteria (accepted with probability
= exp (−ΔE/KbT ); VanLaarhoven and Aarts, 1987).

This implies that at high temperatures, a large percentage of uphill moves
is accepted. However, as the temperature gets colder, a small percentage of
uphill moves is accepted. After the system has evolved to thermal equilibrium
at a given temperature, the temperature is lowered and the annealing process
continues until the system reaches a temperature that represents “freezing.”
Thus, SA combines both iterative improvements in local areas and random
jumping to help ensure that the system does not get stuck in a local optimum.
The general SA is as follows (VanLaarhoven and Aarts, 1987).

1. Get an initial solution configuration S.
2. Get an initial temperature, T = Tinitial.
3. While not yet frozen (T > Tfroze) perform the following.

Initial Configuration:
high energy state

Final Configuration:
low energy state

Independent Variable

C
os

t

Independent Variable

Temp. High

Yes

Probable
Yes

Probable
Maybe

C
os

t

Temp. Low

Yes

Probable
Maybe

Probable
No

Probability =exp (-ΔCost/kT )

Fig. 4.16. Simulated annealing, basic concepts
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(a) Perform the following loop K times until equilibrium is reached (K
is the number of the moves per temperature level and is a function of
moves accepted at that temperature level).
• Generate a move S′ by perturbing S.
• Let Δ = Cost(S′) − Cost(S).
• If Δ ≤ 0 (accept downhill move for minimization), then set

S = S′ (accept the move), else, if Δ > 0, it is an uphill move,
accept the move with probability exp (−Δ/T ).

• Update number of accepts and rejects.
• Determine K and return to Step (a).

(b) No significant change in last C steps. Go to Step (4).
(c) Decrease T and go to Step (3).

4. Optimum solution is reached.

A major difficulty in the application of simulated annealing is defining
the analogues to the entities in physical annealing. Specifically, it is neces-
sary to specify the following: the configuration space, the cost function, the
move generator (a method of randomly jumping from one configuration to
another), the initial and final temperatures, the temperature decrement, and
the equilibrium detection method. All of the above are dependent on problem
structure. The initial and final temperatures, in combination with the tem-
perature decrement scheme and equilibrium detection method, are generally
referred to as the cooling schedule. Collins et al. (1988) have produced a very
comprehensive bibliography on all aspects of SA including cooling schedule,
physical analogies, solution techniques for specific problem classes, and so on.
What follows is a brief summary of recommendations for developing a rep-
resentation for the objective function, configuration space, cooling schedule,
and move generator.

Objective Function
The objective function is a performance measure that the designer wishes to
optimize. Because the analogy of the objective or cost function in annealing is
energy, the problem should be defined so that the objective is to be minimized.
That is, a maximization problem should be multiplied by −1 to transform it
into a minimization problem.

Initial Temperature
If the initial annealing temperature is too low, the search space is limited and
the search becomes trapped in a local region. If the initial temperature is too
high, the algorithm spends a lot of time “boiling around” and wasting CPU
time. The idea is to initially have a high percentage of moves that are accepted.
Therefore, to determine the initial temperature, the following criteria should
be satisfied (Kirkpatrick et al., 1983).

1. Take an initial temperature Tinitial > 0.
2. Perform N sample moves according to the annealing schedule.
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3. If the acceptable moves are < 80% of the total sampled, (Nsucc/N < 0.8)
then set Tinit = 2Tinit and go back to step 2.

4. If the acceptable moves are > 80% of the total sampled, (Nsucc/N > 0.8)
then the initial temperature for the SA is Tinit.

Final Temperature and Algorithm Termination
The annealing process can be terminated when one of the following conditions
holds.

1. The temperature reaches the freezing temperature, T = Tfreeze.
2. A specified number of moves have been made.
3. No significant changes have been made in the last C consecutive tem-

perature decrements (C usually is fairly small, that is 5–20 temperature
decrements).

Equilibrium Detection and Temperature Decrement
If the temperature decrement is too big, the algorithm quickly quenches and
could get stuck in a local minimum with not enough thermal energy to climb
out. On the other hand, if the temperature decrement is very small, much
CPU time is required. Some rules (annealing schedule) for setting the new
temperature at each level are:

1. Tnew = αTold where 0.8 ≤ α ≤ 0.994.
2. Tnew = Told(1 + (1+ γ)Told/3σ)

−1. This annealing schedule was devel-
oped by VanLaarhoven and Aarts and is based on the idea of maintaining
quasi-equilibrium at each temperature (VanLaarhoven and Aarts, 1987).
σ is the standard deviation of the cost at the annealing temperature Told,
and γ is the parameter that governs the speed of annealing (usually very
small).

3. Tnew = Told exp (average (Δcost)× Told/σ
2)

This schedule was developed by Huang and is based upon the idea of
controlling the average change in cost at each time step instead of taking
a fixed change in the log T as in schedule 1. This allows one to take more
moves in the region of lower variability, so that one takes many small steps
at the cooler temperature when σ is low (Huang et al., 1986).

Note that the number of moves at a particular temperature N should be
set in consideration of the annealing schedule. For example, many implementa-
tions chose a fairly large N (on the order of 100–1000) with large temperature
decrements (α = 0.9).

SA needs to reach quasi-equilibrium at each state or it is not truly anneal-
ing. It is difficult to detect equilibrium, but there are some crude methods,
such as:

1. Set N = number of states visited at each temperature.
2. Set a ratio of the number of accepted moves over the number of rejected

moves.
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Configuration Space
As with other discrete optimization methods, representation is one of the crit-
ical issues for successful implementation of SA and GA. In general, assigning
integer values to the decision variable space instead of binary representation
is better for SA and GA.

Move Generator
A move generator produces a “neighbor” solution (S′ from S) from a given
solution. The creation of a move generator is difficult because a move needs
to be “random” yet results in a configuration that is in the vicinity of the
previous configuration.

Genetic Algorithms

Genetic algorithms are search algorithms based on the mechanics of natural
selection and natural genetics. Based on the idea of survival of the fittest,
they combine the fittest string structures with a structured yet randomized
information exchange to form a search algorithm with some of the innovative
flair of human search (Goldberg, 1989). Genetic Algorithms were first devel-
oped by John Holland and his colleagues at the University of Michigan in
the 1960s and 1970s, and the first full, systematic treatment was contained
in Holland’s book Adaptation in Natural and Artificial Systems published in
1975. The consistent growth in interest since then has increased markedly
during the last 15 years. Applications include diverse areas, such as biological
and medical science, finance, computer science, engineering and operations
research, machine learning, and social science.

A GA is a search procedure modeled on the mechanics of natural selection
rather than a simulated reasoning process. Domain knowledge is embedded in
the abstract representation of a candidate solution, termed an organism, and
organisms are grouped into sets called populations. Successive populations are
called generations. A general GA creates an initial generation (a population
or a discrete set of decision variables) G(0), and for each generation G(t),
generates a new one G(t+ 1).
The general genetic algorithm is described below.

At t = 0,

• Generate initial population, G(t).
• Evaluate G(t).
• While termination criteria are not satisfied, do

t = t+ 1,

• Select G(t).
• Recombine G(t).
• Evaluate G(t).

until solution is found.
In most applications, an organism consists of a single chromosome. A chro-

mosome, also called a solution string of length n, is a vector of the form
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y1, y2, . . . , yn where each yi is an allele, or a gene representing a set of deci-
sion variable values.

Initial Population
The initial population G(0) can be chosen heuristically or randomly. The
populations of the generation G(t+1) are chosen from G(t) by a randomized
selection procedure, which is composed of four operators: (1) reproduction, (2)
crossover, (3) mutation, and (4) immigration. Figure 4.17 shows GA strategies
for developing the next generation using crossover, mutation, and immigration
techniques.

Reproduction
Reproduction is a process in which individual strings are copied according
to their objective function or fitness (f). Objective function f can be some
measure of profit or goodness that we want to maximize. Alternatively, the
objective function can represent process cost or the effluent pollutant level that
we want to minimize. In the process of reproduction, only solution strings with
high fitness values are reproduced in the next generation. This means that the
solution strings that are fitter, and which have shown better performance, will
have a higher chance of contributing to the next generation.

Start

INITIAL
GENETIC

POOL

NEW
GENETIC

POOL

FITTER
SOLUTIONS

FITTER
SOLUTIONS

UNFIT
SOLUTIONS NEW

SOLUTIONS

SOLUTIONS

Optimum
? No

Yes

Stop

Evaluate Fitness of the population (objective)

Reproduction

Crossover
& Mutation

Immigration

Waste

Model

Fig. 4.17. Schematic diagram of a GA with different strategies for developing the
next generation using crossover, mutation, and immigration techniques
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Crossover
The crossover operator randomly exchanges parts of the genes of two parent
solution strings of generation G(t) to generate two child solution strings of
generation G(t + 1). Crossover serves two complementary search functions.
First, crossover can provide new information about the hyperplanes already
represented earlier in the population, and by evaluating new solution strings,
GA gathers further knowledge about these hyperplanes. Second, crossover
introduces representatives of new hyperplanes into the population. If this new
hyperplane is a high-performance area of the search space, the evaluation of
new population will lead to further exploration in this subspace.

Figure 4.18 shows three variants of crossover: one-point crossover, two-
point crossover, and single-gene crossover. In a simple one-point crossover, a
random cut is made and genes are switched across this point. A two-point
crossover operator randomly selects two crossover points, and then exchanges
genes in between. However, in a single-gene crossover, a single gene is ex-
changed between chromosomes of two parents at a random position.

One point Crossover

Two point Crossover

One Gene Crossover

Mutation

Fig. 4.18. Crossover and mutation techniques in genetic algorithms

Mutation
Mutation is a secondary search operator, and it increases the variability of
the population. As shown in Figure 4.18, GA randomly selects a gene of the
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chromosome or solution string, and then changes the value of this gene in
its permissible range. A low level of mutation serves to prevent any given bit
position from remaining fixed indefinitely (forever converged) to a single value
in the entire population. A high level of mutation yields essentially a random
search.

Immigration
Immigration is a relatively new concept in GA and is based on immigration
occurring between different societies in nature. In such scenarios, the fitness of
immigrants from one society and their impact on the overall fitness of the new
society to which they migrated becomes of crucial importance. It is analogous
to the migration of intelligent individuals from rural areas to metropolitan in
search of better prospects, and how they integrate and proliferate in the new
society (being fitter) and effect the enrichment (fitness) of this new society.
Thus immigration is the process of adding new, fitter individuals who will
replace some existing members in the current genetic pool. Two criteria for
selecting immigrants are that they should be fit and they should be quite
different from the native population. Usually, immigration occurs between
different populations, but can be incorporated in a single population as well
(Ahuja and Orlin, 1997). Immigration offers an alternative to mutation and is
usually employed when there is a danger of premature or local convergence.

Stopping Criteria
Termination criteria of the GA may be triggered by finding an acceptable
approximated solution, by fixing the total number of generations to be evalu-
ated, or by some other special criterion depending on the different approaches
employed.

Key GA Parameters
The key GA parameters, which are common to all strategies explained above,
are the population size in each generation (NPOP), the percentage of the
population undergoing reproduction (R), crossover (C), mutation (M), and
number of generations (NGEN). These can be crucial for customizing the GAs
and can affect computational time significantly. These parameters govern the
implementation of the algorithm to real-life optimization problems, and must
be determined a priori before the procedure is applied to any given problem.

As stated earlier, SA and GA provide alternatives to the traditional math-
ematical programming techniques. There are a number of new probabilistic
methods that appeared in the literature, like the particle swarm optimization
and ant colony optimization. All these methods are based on natural phenom-
ena. These methods were originally developed for discrete optimization where
continuous variables or constraints were not present. There are various ways
of dealing with this problem. For example, one can use explicit penalties for
constraint violation (Painton and Diwekar, 1994), infeasible path optimiza-
tion, or a coupled simulated annealing-nonlinear programming (SA-NLP) or
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GA-NLP approach where the problem is divided into two levels, similar to
the MINLP algorithms described above. The outer level is SA (GA), which
decides the discrete variables. The inner level is NLP for continuous variables
and can be used to obtain a feasible solution to the outer SA (GA). This
approach is demonstrated in the following nuclear waste problem.

4.5 Hazardous Waste Blending: A Combinatorial
Problem

Chapter 2 described the nuclear waste blend problem as an LP for single blend
when some constraints were eliminated. Subsequently, it was converted to an
NLP in Chapter 3 when all constraints were added. This chapter presents the
nuclear waste problem as a discrete optimization problem.

The objective in this phase is to select the combination of blends so that the
total amount of frit used is minimized. The number of possible combinations
is given by the formula:

N !

B!(T !)B
(4.108)

where N represents the total number of tanks of waste, B is the number of
blends, and T is the number of tanks in each blend.

The formula indicates the complexity of the problem. To put this in per-
spective, if there are 6 tanks that have to be combined to form 2 blends by
combining 3 tanks each, there are 10 possible combinations. If the number of
individual waste tanks is 24 and 4 blends are to be formed by combining any
6 tanks, the number of possible combinations is 96,197,645,544. If the number
of wastes is further quadrupled to 96 while maintaining the ratio of blends
to the number of wastes in a blend at 2/3, the number of possible combina-
tions is approximately 8.875 × 1075. Clearly, any approach that is required
to examine every possible combination to guarantee the optimum will very
quickly be overwhelmed by the number of possible choices. Furthermore, note
that a change in the ratio of the blends available to the number of wastes
combining to form a blend affects the number of possible combinations. Fig-
ure 4.19 shows this variation when the number of wastes is 128. On the x-axis,
the number of blends formed increases from left to right and the number of
wastes in a blend decreases from left to right. The y-axis represents the log of
possible combinations. Notice that the number of combinations first increases
and then decreases and is skewed somewhat to the right.
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Fig. 4.19. Combinatorial complexity versus number of blends

For the purposes of this study, we have selected 21 tanks to be parti-
tioned into three blends. The information about chemical composition and
the amount of waste in each tank was obtained from Narayan et al. (1996)
and is presented in Appendix A. The GAMS and other input files for this
problem and the solutions can be online on Springer website with the book
link. From the above formula, for a problem with 21 wastes to be partitioned
into three blends, there are 66, 512, 160 possible combinations to examine.
Clearly examining all possible combinations is a very onerous task and nearly
impossible for larger problems. We, therefore, have to resort to either a heuris-
tic approach or use combinatorial optimization methods such as mathematical
programming techniques (GBD or OA) or simulated annealing.

In a heuristic approach to solving the discrete blending problem, we first
determined the limiting constraint for a total blend of all tanks being consid-
ered (21, in this case). Then we tried to formulate blends such that all blends
would have the same limiting constraint. If this can be achieved, the frit re-
quired would be the same as for the total blend. This approach, however, was
very difficult to implement; rather, we formulated blends to try to ensure that
all blends were near the limiting value for the limiting constraint. Using this
approach, the best solution obtained was 11,736 kg of frit with the following
tank configurations in each blend.
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Blend 1 Tanks = [5 8 11 12 14 15 17]
Blend 2 Tanks = [4 6 7 13 18 19 20]
Blend 3 Tanks = [1 2 3 9 10 16 21]

4.5.1 The OA-based MINLP Approach

One possible approach for solving the above problem is using a MINLP with
OA-based approach. GAMS uses this technique to solve MINLP problems.

The GAMS-based MINLP solution was very dependent on the starting
conditions for the calculation. The conditions specified were the initial distri-
bution of each tank among the blends (for the relaxed initial optimization)
and the frit composition of each of the blends. The best MINLP solution was
found to be 12,342 kg of frit with the following blend composition.

Blend 1 Tanks = [4 8 9 12 13 19 21]
Blend 2 Tanks = [1 2 7 14 15 17 18]
Blend 3 Tanks = [3 5 6 10 11 16 20]

The GAMS-based MINLP model failed to find the global optimal solution
because the problem is highly nonconvex with the presence of several bilinear
constraints.

For the particular problem on hand, we also developed a branch-and-bound
procedure. Because this procedure was specific to the three-blend problem
and also computationally intensive, it was used to check the global optimality
of the simulated annealing solution procedure. Hence, it is presented as a
separate section.

4.5.2 The Two-Stage Approach with SA-NLP

The optimal waste blending problem that we have addressed here is the dis-
crete blending problem, where the amount of frit required to meet the vari-
ous constraints is minimized by blending optimal configurations of tanks and
blends. We have used a 2-loop solution procedure based on simulated anneal-
ing and nonlinear programming. In the inner loop, nonlinear programming is
used to ensure constraint satisfaction by adding frit. In the outer loop, the
best combination of blends is sought using simulated annealing so that the
total amount of frit used is minimized. Figure 4.20 shows the schematic of
this procedure used for solving the discrete blend problem.
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Fig. 4.20. Optimum discrete blending problem: solution procedure

We have used the inner loop NLP to solve each single- blend problem for
both the two-stage approach and the branch-and-bound approach. The inner
loop returns the minimum amount of frit required to satisfy all constraints
given in Chapter 3. We have used two different procedures for the outer loop:
(1) the simulated annealing procedure and (2) the branch-and-bound algo-
rithm. Due to the problem characteristics, the solution from the inner loop
cannot be guaranteed to be globally optimal. However, we are using the same
NLP inner loop for the two-stage and the branch-and-bound approaches to
find the discrete decision variables, that is, the configuration of each blend.
The branch-and-bound method provides a guaranteed global optimum for the
search of the discrete variables.

Simulated Annealing:

A major difficulty in the application of simulated annealing is defining the
analogue to the entities in physical annealing. Specifically, it is necessary to
specify the following: the objective function, the configuration space and the
move generator, and the annealing schedule. All of the above are dependent
on the problem structure. So for the discrete blending problem, we use the
following specifications.

Objective



134 4 Discrete Optimization

The objective for simulated annealing is identical to the objective given
in Equation (3.134), which is to minimize the total mass of frit used over a
given combination of blends.

Configuration Space and the Move Generator
Consider the problem where we have the 21 wastes shown in Appendix A

(indexed by 1,2,...,21) and we wish to form three blends with these wastes.
Our objective is to find the best combination of blends.
Suppose an initial state is such that: Blend 1 = [1, 2, 3, 4, 5, 6, 7];

Blend 2 = [8, 9, 10, 11, 12, 13, 14];
Blend 3 = [15, 16, 17, 18, 19, 20, 21].

A neighbor to this state can be defined as the state that can be reached by
the application of a single operator. For a problem with three blends, we can
devise three simple operators:

1. Swap (1,2)—where we swap elements between Blend 1 and Blend 2 (1/3
probability).

2. Swap (2,3)—where we swap elements between Blend 2 and Blend 3 (1/3
probability).

3. Swap (1,3)—where we swap elements between Blend 1 and Blend 3 (1/3
probability).

We need two more operators to decide which two elements from the two
blends are to be swapped. For these studies, we have kept an equiprobable
chance for one of the seven elements to be chosen from each of the two blends.

Temperatures Schedule

• Initial Temperature: If the initial temperature is too low, the search space
is limited and the search becomes trapped in a local region. If the tem-
perature is too high, the algorithm spends a lot of time jumping around,
wasting CPU time. A rule of thumb for this is to select an initial temper-
ature where a high percentage of moves is accepted. We have chosen 1000
as the initial temperature.

• Final Temperature: The final temperature is chosen so that the algorithm
terminates after 10 successive temperature decrements with no change in
the optimal state.

• Temperature Decrement: We have used the following simple rule with the
value of α to be 0.95.

Tnew = αTold
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Solution:
The simulated annealing procedure provided a solution of 11,028 kg of frit
(Table 4.5 provides the frit composition in each blend), which we were able to
later confirm to be the global optimum using a branch-and-bound procedure.
The composition of the blends was as follows.

Table 4.5. Frit composition in optimal solution

Mass in Frit f (i)

Component Blend 1 Blend 2 Blend 3

SiO2 293.78 680.950 4550.6

B2O3 31.350 2.186 1212.4

Na2O 38.683 375.06 1130.3

Li2O 43.890 64.709 302.97

CaO 0.000 11.466 344.20

MgO 0.000 66.866 485.78

Fe2O3 0.000 0.000 502.11

Al2O3 0.000 0.000 640.96

ZrO2 0.000 0.000 0.000

Other 0.000 0.000 250.07

Blend 1
Tanks = [20 3 9 4 8 6 5]

Blend 2
Tanks = [21 12 11 10 19 16 1]

Blend 3
Tanks = [17 15 14 2 18 13 7]

4.5.3 A Branch-and-Bound Procedure

In order to find a guaranteed optimal solution among all possible combina-
tions of wastes, each combination must be examined. Consider the example
in Figure 2.10. There is a set of four wastes that has to be partitioned into
two blends of two wastes each. Clearly we have three possible combinations:

[1, 2][3, 4], [1, 3][2, 4], [1, 4][2, 3]

Notice that we are indifferent to the ordering within a blend and also the
ordering of blends within a possible combination. That is,

[1, 2][3, 4] ≡ [4, 3][2, 1]

This reduces the number of combinations we need to examine. For each
of the three possible blend combinations, the amount of frit required for each
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blend must be found by the NLP. Thus, the enumerative procedure, like sim-
ulated annealing, is composed of two procedures. The outer loop is an enu-
merative procedure that supplies the inner loop with the wastes which might
be combined to form a blend. In the inner loop, the NLP informs the outer
loop about the amount of frit necessary to form glass. Although this method
finds a guaranteed global optimal solution, unfortunately the number of pos-
sible combinations we need to examine grows exponentially with the number
of wastes available, as given in Equation (4.108).

Objective
The objective is to minimize the total amount of frit as given by Equation

(3.134).

Bounds
As mentioned before, the test problem with 21 wastes to be partitioned into

three blends has 66,512,160 possible combinations to examine. The number
of combinations that must be explicitly examined to verify optimality can be
reduced by using a branch-and-bound method. The initial configuration is
used as the starting upper bound. In the case of the test problem, the lower
bound can be obtained in the following manner.

1. Fix the wastes for the first blend and calculate the amount of frit.
2. Relax the requirement that the remaining wastes must form two blends

and assume that they form a single blend. In other words, we remove
the binary variables yij for the two remaining blends. Now calculate the
amount of frit required for this relaxation.

3. The total of the frit for the first blend and the relaxation is now a valid
lower bound of the original problem.

If the lower bound is greater than the current best upper bound, then any
combination where the composition of one of the blends is the same as that of
the first blend cannot be optimal. All these combinations can be eliminated
and can be considered as implicitly examined. This bounding method was suf-
ficiently strong enough for us to solve the test problem to optimality. However,
it still took about 3 days of computation (on a DEC-ALPHA 400 machine), as
compared to an average of 45min of CPU time using the two-stage annealing
approach.

Solution Procedure
Figure 4.21 is a flowchart of the branch-and-bound procedure for a problem

in which three blends are to be formed. An initial solution using any method
serves as the initial upper bound. Within a loop which essentially enumerates
every possible combination, the procedure first fixes the composition of the
first blend. The amount of frit needed for this blend is then determined. By
assuming that the remaining two blends form a single blend, the amount of frit
for the composite blend is then determined. If the total amount of frit needed
for this configuration of blends is greater than the current best solution or the
upper bound, then we need not examine any combination of blends where one
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of the blends is identical to the first blend. But if this is not so, we examine
all the possible combinations of the remaining two blends to determine which
particular configuration requires the smallest amount of frit. The upper bound
is updated if the best configuration found during enumeration is better than
the upper bound. This continues until all possible combinations are either
explicitly or implicitly examined. The better the lower bound estimates the
eventual solution, the lower the amount of explicit enumeration that will have
to be performed.

The branch-and-bound procedure can be implemented using different
strategies. We implemented the procedure using a depth-first strategy be-
cause of its minimal memory requirements. The depth-first strategy is also
relatively easy to implement as a recursive function. Any branch-and-bound
method starts off with a start node. With reference to our problem, the start
node is the assignment of waste 1 to the first blend, as shown in Figure 4.22.
Because we are indifferent to the ordering of wastes within a blend and the
ordering between blends, it is apparent that this assignment is a valid start-
ing point. In the nodes succeeding the starting node, different wastes that can
be combined with waste 1 to form the first blend are considered. As can be
seen in Figure 4.22, there are five nodes that succeed the starting node. If
we choose to expand the nodes in the order they are generated, the strategy
is called breadth-first. If, on the other hand, we choose to expand the most
recently generated nodes first, the strategy is called depth-first. We see that
the depth-first algorithm pushes along one path until it reaches the maximum
depth, then it begins to consider alternative paths of the same or less depth
that differ only in the last step, then those that differ in the last two steps,
and so on. As a result of this property, the number of nodes that have to be
retained in memory is very small as compared to the breadth-first algorithm
wherein the number of nodes residing in the computer’s memory can grow
exponentially with the size of the problem. In Figure 4.22, the dotted arrows
indicate the direction in which the search proceeds.

Before going to the third level, a lower bound is computed and compared
to the current best solution. If the lower bound is greater than the current
best solution, then that part of the tree can be pruned and considered im-
plicitly examined. The search is complete when all branches of the tree are
either explicitly or implicitly examined. The better the lower bound is as an
estimate of the final solution, the fewer the number of branches that have to
be explicitly examined.

Optimal solution
The branch-and-bound procedure found the optimal solution to be

11,028 kg of frit, which is identical to the solution found by simulated an-
nealing. This confirms that the two-stage SA-NLP approach provided the
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global optimum with respect to the configuration decisions. As before, the
composition of the blends that required the minimum amount of frit was
found to be

solution

Yes

No

Yes

No

Yes

Terminate

No

Fig. 4.21. The branch-and-bound procedure

Blend 1
Tanks = [20 3 9 4 8 6 5]

Blend 2
Tanks = [21 12 11 10 19 16 1]
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Fig. 4.22. Branch-and-bound using a depth-first strategy

Blend 3
Tanks = [17 15 14 2 18 13 7]

Comparison
The purpose of this case study was to develop a method that would help

to determine which combination of wastes would minimize the amount of frit
needed to convert the waste into glass. The benefit of reducing the amount
of frit used is in reduced material costs and the reduced bulk of the glass
formed, which in turn reduces the disposal costs. The search space grows ex-
ponentially with an increase in parameters defining the problem, making it
almost impossible to find optimal solutions for realistically sized problems. We
compared different combinatorial optimization techniques such as the GAMS-
based MINLP algorithm, branch-and-bound, and the simulated annealing and
heuristics approach to find the optimal solution. We have found that a two-
stage approach combining simulated annealing and NLP algorithms is a com-
putationally effective means of obtaining the global optimal or near global
optimal solutions with reasonable amounts of computational effort. Both the
heuristic approach and the GAMS-based MINLP result in local minima. The
branch-and-bound procedure leads to a global optimum but requires a signifi-
cantly longer computational time than the coupled simulated annealing-NLP
approach.
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4.6 Sustainable Mercury Management: A Combinatorial
Problem

In Chapter 2, the generalized representation of the trading problem as a MILP
is presented. Chapter 3 introduced the nonlinear cost function in the problem,
making it an MINLP. Optimal solutions to the Savannah River watershed
trading case study as a MILP and an MINLP are presented here.

For the sake of clarity, we are presenting the MILP and MINLP problem
again here. The symbols are the same as described in Chapters 2 and 3.

The MILP Formulation:

Objective:

Minimize
N∑
i=1

M∑
j=1

TCj .Di. bij (4.109)

Constraints:

tii = 0 ∀i = 1, ..., N (4.110)

redi ≤
M∑
j=1

qj .Di. bij +
N∑

k=1

tik − r
N∑

k=1

tki ∀i = 1, ..., N

(4.111)

Pi ≥
M∑
j=1

bij .TCj .Di + F
( N∑
k=1

tik −
N∑

k=1

tki
)

∀i = 1, ..., N

(4.112)

The MINLP Formulation:

Objective:

Minimize

N∑
i=1

M∑
j=1

fj(φj , Di). bij (4.113)

Constraints:

tii = 0 ∀i = 1, ..., N (4.114)

redi ≤
M∑
j=1

qj .Di. bij +

N∑
k=1

tik − r

N∑
k=1

tki ∀i = 1, ..., N

(4.115)

Pi ≥
M∑
j=1

bij .fj(φ,Di) + F
( N∑
k=1

tik −
N∑

k=1

tki
)

∀i = 1, ..., N

(4.116)
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The MILP and MINLP formulations above were solved for two options in
the absence of trading and in the presence of trading. In the subsequent text,
analysis when trading is not permitted is referred to as “technology option,”
while the analysis when trading is permitted is referred to as “trading option.”

Tables 4.6 and 4.7 present the results of the MILP and MINLP problems
for the considered TMDL range (26Kg/year–36Kg/year). The annual saving
is computed as the difference between the total cost for technology option
and total cost for trading options for a particular model under consideration.
It is observed that approximate linear models underestimate the annual sav-
ings. The differences between linear deterministic and nonlinear deterministic
model results are significant enough, and hence should not be ignored.

Table 4.6. Savannah River watershed trading: Solution for the MILP

Technology distribution
Cost Total Technology trading

TMDL Technology Trading Savings technology A B C A B C

26 188676712.5 154886655 36328632.5 0.083596104 13 13 3 15 7 0
27 187545212.5 148762155.8 40767762.5 0.082022565 13 12 4 14 6 0
28 178906903.5 142569967.3 37831337.5 0.070365225 13 10 6 15 4 1
29 178807623.5 136426688.8 43389557.5 0.062216495 14 9 6 14 3 1
30 154900123.5 129972247.8 25252671 0.042307902 16 7 6 18 4 1
31 146486873.5 124098923.3 22388990.5 0.045518446 17 6 6 18 0 2
32 145940395.5 118746216.5 27195164.5 0.060451949 14 6 9 12 0 1
33 140325783 113408420 26917728 0.076697728 16 4 9 11 1 0
34 128883617 108165925 20717692 0.099988353 14 3 12 9 0 0
35 128153617 102874264.5 25295084 0.115957863 12 3 14 11 0 2
36 126009461 97662812.75 28354295 0.142758527 13 1 13 8 0 3

TMDL for this analysis is 32Kg/year, and the total mercury reduction
target for all point sources is 0.892 g/year. From Table 4.6, it can be seen
that the implementation of trading leads to about an 18% reduction in the
compliance cost (technology implementation and/or trading), which amounts
to around 27 Million $ annually. This supports the expected result that trad-
ing will reduce the overall expenditure. However, while satisfying TMDL, the
total mercury discharge for the trading option is higher by about 19%. The
technology only solution results in the implementation of technology A by 14
polluters, technology B by six polluters, and technology C by nine polluters.
In comparison, when trading is permitted, 12 industries implement technology
A, one industry implements technology C, while technology B is not imple-
mented at all. Sixteen polluters trade all their reduction quantity to some
other industries, while five polluters implement technology and also trade
some portion of their discharge. Nine industries accept trades and thereby
take care of excess discharge from other industries. The total quantity of mer-
cury traded is 0.06 g/year, which is about 7% of the desired reduction. The
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Table 4.7. Savannah River watershed trading: solution for the MINLP

Technology distribution
Cost Total Technology trading

TMDL Technology Trading Savings technology A B C A B C

26 167039837.7 115869556.7 51170281 0.151420021 7 19 3 5 3 1
27 164912119.7 111537713.5 53374406.18 0.1747659 7 18 4 4 3 2
28 154214576.5 106252350 47962226.52 0.165929784 8 15 6 5 2 0
29 154214576.5 101182339.9 53032236.6 0.175127431 8 15 6 4 2 1
30 139494653.5 103716924.3 35777729.19 0.122540613 10 13 6 5 2 0
31 132221260.2 98486954.01 33734306.19 0.094301779 11 12 6 7 1 0
32 130452235.1 93673310.48 36778924.57 0.115512261 9 12 8 6 1 1
33 124052801.1 89358434.86 34694366.27 0.147545346 11 10 8 5 1 0
34 113365337.7 85502031.54 27863306.14 0.121150689 10 8 11 7 0 0
35 112201768.6 80878225.72 31323542.85 0.144482586 9 7 13 6 0 1
36 108602898.9 75473166.8 33129732.1 0.150590739 10 5 12 5 0 0

results show a trend towards avoiding expensive technology options, and sat-
isfying part of the pollutant reduction through trading. Also observed is a
significant preference towards one technology (technology A) after trading is
permitted.

The tables also show the number of times each technology is implemented
over the complete TMDL range (summation over all TMDL values). It can be
seen that there are definite implications on technology selection. With linear
technology models, various small industries (industries with small volumetric
discharge rates) implement technologies along with large industries (industries
with large volumetric discharge rates). However, when nonlinear technology
models are used, large industries implement most of the technologies, and
smaller industries satisfy the regulations by trading with these large industries.
The tables also show that nonlinear deterministic model involves considerably
higher amount of trading (particularly at smaller TMDL values) since the
smaller industries prefer to trade rather than implement technologies. The
distribution of technology selection is observed to be similar for both models.
For both models, coagulation and filtration is the technology most commonly
implemented, followed by granular activated carbon process and ion exchange
process, respectively.

4.7 Summary

Discrete optimization involves integer programming (IP), mixed integer linear
programming (MILP), and mixed integer nonlinear programming (MINLP)
problems. The commonly used solution method for solving IP and MILP prob-
lems is the branch-and-bound method. It uses the relaxed LP as a starting
point and a lower bound for the branch-and-bound method. The branch-and-
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bound approach to MINLP can encounter problems of singularities and in-
feasibilities, and can be computationally expensive. GBD and OA algorithms
tend to be more efficient than branch-and-bound, and are commonly employed
to solve MINLPs. However, these algorithms are designed for open equation
systems and encounter difficulties when functions do not satisfy convexity
conditions, for systems having a large combinatorial explosion, or when the
solution space is discontinuous. Probabilistic methods such as simulated an-
nealing and genetic algorithms provide an alternative to these algorithms.
However, to obtain the best results, coupled SA-NLP or GA-NLP approaches
need to be used.

Exercises

4.1 Two plants manufacture soybean oil. Plant A has six truckloads ready for
shipment. Plant B has twelve truckloads ready for shipment. The products
will be delivered to three warehouses: warehouse 1 needs seven truckloads;
warehouse 2 needs five truckloads; and warehouse 3 needs six truckloads.
Shipping a truckload of soybean oil from plant A to warehouses 1, 2,
and 3 costs $25, $21, and $27, respectively, and shipping a truckload of
soybean oil from plant B to warehouses 1, 2, and 3 costs $23, $24, and
$22, respectively. The cost can be reduced by shipping more than one
truckload to the same warehouse, and the discounted cost is given by

Cn =
C

n
1
3

(4.117)

where C is the cost for only one truckload used for shipping to a warehouse
and n is the number of truckloads from a plant to the same warehouse.
A total of 18 truckloads are available at points of origin for delivery.
Determine how many truckloads to ship from each plant to each warehouse
to meet the needs of each warehouse at the lowest cost.

4.2 There are eight cities in Alloy Valley County. The county administration
is planning to build fire stations. The planning target is to build the
minimum number of fire stations needed to ensure that at least one fire
station is within 18min (driving time) of each city. The times (in minutes)
required to drive between the cities in Alloy Valley County are shown in
Table 4.8. Determine the minimum number of fire stations and also where
they should be located.

4.3 This is a cellular network design problem. The potential customers in the
planning region were grouped into small clusters based on their geograph-
ical locations. Table 4.9 shows the 20 clusters in the planning region. Each
cluster was characterized by the computed coordinate, the farthest dis-
tance in the cluster from the centroid, and peak traffic demand. Table 4.10
shows the specifications and costs of four types of base stations available
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for planning. The capacity and coverage requirements for the setup of
radio networks are:

– Each cluster must be served by at least one base station.

Table 4.8. Driving times (minutes) between cities in Alloy Valley County

City 1 2 3 4 5 6 7 8

1 0 18 13 16 9 29 20 25

2 18 0 25 35 22 10 15 19

3 13 25 0 15 30 25 18 20

4 16 35 15 0 15 20 25 28

5 9 22 30 15 0 17 14 29

6 29 10 25 20 17 0 25 10

7 20 15 18 25 14 25 0 15

8 25 19 20 28 29 10 15 0

– The total peak traffic of all clusters served by each base station must
be within the capacity limit.

– The farthest point in a cluster must be within the coverage radius of
the base station serving that cluster.

The planner wants to find the optimal base station planning method that
minimizes the total cost.
Note: The coordinate of the centroid of the cluster is based on a V and
H coordinate system which is commonly used in the telephone network.
The distance in miles between two points is given by√

[(v1 − v2)2 + (h1 − h2)2]/10

4.4 And God said to Noah,

I have determined to make an end of all flesh, for the earth is filled
with violence because of them; now I am going to destroy them
along with the earth. Make yourself an ark of cypress wood; make
rooms in the ark, and cover it inside and out with pitch. This
is how you are to make it: the length of the ark three hundred
cubits, its width fifty cubits, and its height thirty cubits. Make a
roof for the ark, and finish it to a cubit above; and put the door
of the ark in its side; make it with lower, second, and third decks.
For my part, I am going to bring a flood of waters on the earth,
to destroy from under heaven all flesh in which is the breath of
life; everything that is on the earth shall die. But I will establish
my covenant with you; and you shall come into the ark, you, your
sons, your wife, and your sons’ wives with you. And of every living
thing, of all flesh, you shall bring two of every kind into the ark;
they shall be male and female—(Genesis 6:13–19, New Revised
Standard Version).
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Suppose eight humans will be on the ark: Noah, his wife, their sons Shem,
Ham, and Japheth, and each of the sons’ wives. We put them into one
room, which should be at least 320 square feet for their basic life, and allow

Table 4.9. 20 Planning clusters

V H Farthest point (mile) Peak traffic (Mbps)

7121 8962 1.61 206.983886

7119 8952 1.33 151.1853099

7115 8951 1.49 60.76715757

7117 8961 1.56 291.965782

7129 8948 3.06 166.9175212

7117 8959 1.36 107.1509535

7119 8953 1.36 138.2899501

7119 8948 1.41 60.92519017

7122 8958 1.36 141.4339383

7118 8942 1.61 92.51767376

7116 8953 1.42 243.6052474

7127 8959 1.44 174.8569325

7116 8955 1.32 107.1905736

7121 8952 1.61 62.1673109

7128 8941 3.03 102.1435541

7121 8953 1.61 45.99242408

7116 8960 1.47 222.5078821

7128 8956 1.45 95.57552618

7126 8961 1.51 42.55302978

7120 8956 1.50 154.7507397

Table 4.10. Available four types of base stations

Base Capacity (Mbps) Coverage Radius Cost ($)

Type 1 65 18 1,500,000

Type 2 130 5 2,000,000

Type 3 260 5 2,500,000

Type 4 520 5 3,000,000

them free roaming space (about 80 square feet for each deck) aboard all
three decks. If we bring one pair of every living thing as ordered by God,
the herbivores take a space of 625 square feet, and the carnivores take 319
square feet. Height is not a constraint because 45 feet for three decks is an
average of 15 feet per deck but all of our tallest creatures are on the top
deck. Assume that all these animals require a circular space, and use the
insights derived from Exercise 3.8, Chapter 3. Formulate the problem as
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an MINLP for maximizing species and species variety so as to minimize
the risk that a species may die (one cubit = 1.5 feet) (Katcoff J., and F.
Wu, All Creatures Great and Small: An Optimization of Space on Noah’s
Ark, Course presentation, Carnegie Mellon University, 19–703, (1999)).

4.5 Consider the following small mixed integer nonlinear programming
(MINLP) problem:

Minimize z = −y + 2x1 + x2

Subject to
x1 − 2. exp (−x2) = 0

−x1 + x2 + y ≤ 0

0.5 ≤ x1 ≤ 1.4

yε[0, 1]

Solve the two NLPs by fixing y = 0 and y = 1. Locate the optimum.
For the above problem
– Eliminate x2 and write down the iterative solution procedure using

OA. Write down iterative solution procedure using GBD.
– Now instead of eliminating x2, eliminate x1. Assume y = 0 as a start-

ing point. Find the solution using OA.
4.6 Given a mixture of four components A, B, C, D for which two separation

technologies (given in Table 4.11) are to be considered.

Table 4.11. Cost of separators in $/year

Separator Cost

A/BCD 50,000
AB/CD 56,000
ABC/D 21,000
A/BC 40,000
AB/C 31,000
B/CD 38,000
BC/D 18,000
A/B 35,000
B/C 44,000
C/D 21,000

1. Determine the tree and network representation for all the alternative
sequences.

2. Find the optimal sequence with the depth-first strategy.
3. Find the optimal sequence with the breadth-first strategy.
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4. Heuristics has provided a good upper bound for this problem. The
cost of the separation should not exceed $91,000. Use the depth-first
strategy to find the solution.

5. Compare the solution obtained by using the lower bound with the
solution obtained without the lower bound information.

4.7 As a student in your senior year, you realize the cost of textbooks varies
depending on where you buy them. With the help of Internet price com-
parison engines, you have been able to create a table (Table 4.12) for the
books you need next term.

Table 4.12. Costs of books

Idiots guide Engineering for History of

Store to optimization mathematicians liechtenstein

Campus Store $17.95 $75.75 $45.15

Nile.com $15.50 $71.65 $47.20

buyyourbookhere.com $16.25 $73.00 $41.50

Anotherbookstore.net $15.99 $69.99 $42.99

dasBuch.li $25.00 $90.00 $28.75

Although the prices are sometimes lower for the online bookstores, you
realize that shipping and handling costs are not included in the price for
the books. Table 4.13 provides the relevant information about these costs.

Table 4.13. Costs for shipping and handling

Store Shipping and handling

Campus store $0.00

Nile.com $4.95 + $1.00
– for each additional book

buyyourbookhere.com $4.00 for 1-2 books,
add $1.00 for each set of 3 more

Anotherbookstore.net $7.99 for 1-2 books,
$10.99 for 3-7

dasBuch.li $17.25 + $5.75
for each additional book

(a) If the local sales tax is 6.25%, what is the optimal place for purchasing
all your required books from one store only? There are no taxes paid
on Internet purchases.

(b) If you can buy from multiple stores, what books should you buy at
which store?

(c) Three years after you graduate, a friend ends up taking the same
classes. However, as all three books have new editions, she has to
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buy all new books. The prices remain the same, but the sales tax has
increased by 0.5%. Have either optimal solutions changed in 3 years?

4.8 The following simple cost function is derived from the Brayton cycle ex-
ample (Painton and Diwekar, 1994) to illustrate the use of simulated an-
nealing and genetic algorithms.

Min Cost =

N1∑
i=1

[
(N1 − 3)2 + (N2(i)− 3)2 + (N3(i)− 3)2

]

where N1 is allowed to vary from one to five and both N i
2 and N i

3 can
take any value from one to five.
1. How many total combinations are involved in the total enumeration?
2. Set up the problem using simulated annealing and genetic algorithms.
3. For simulated annealing, assume the initial temperature to be 50,

the number of moves at each temperature to be 100, and the freez-
ing temperature to be 0.01. Use the temperature decrement formula
Tnew = αTold where α is 0.95.

4. Use the binary string representation for genetic algorithms and solve
the problem.

5. Compare the solution obtained by the binary representation above
with the solution obtained using the natural representation consisting
of the vector N = (N1, N2(i), i = 1, 2, . . . , 5 , N3(i) i = 1, 2, . . . , 5).
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5

Optimization Under Uncertainty

Change is certain, future is uncertain.

–Bertrand Russell

In previous chapters, we looked at various optimization problems. Depending
on the decision variables, objectives, and constraints, the problems were clas-
sified as LP, NLP, IP, MILP, or MINLP. However, as stated above, the future
cannot be perfectly forecast but instead should be considered random or un-
certain. Optimization under uncertainty refers to this branch of optimization
where there are uncertainties involved in the data or the model, and is popu-
larly known as stochastic programming or stochastic optimization problems.
In this terminology, stochastic refers to the randomness, and programming
refers to the mathematical programming techniques such as LP, NLP, IP,
MILP, and MINLP. In the discrete optimization chapter, we came across
probabilistic techniques such as simulated annealing and genetic algorithms;
these techniques are sometimes referred to as stochastic optimization tech-
niques because of the probabilistic nature of the method. In general, however,
stochastic programming and stochastic optimization involve optimal decision-
making under uncertainty. For example, consider the LP example stated in
Chapter 2 where, instead of having a fixed maximum supply of chemical X2,
the supply can be uncertain, as shown in the following stochastic programming
(optimization) problem.
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Example 5.1: Consider Example 2.1 from Chapter 2. In this example, the
chemical manufacturer was using chemicals X1 and X2 to obtain minimum
cost solvents. This problem had constraints due to storage capacity, safety
requirements, and availability of materials. We formulated the problem as the
following LP.

Minimize Z = 4x1 − x2 (5.1)

x1, x2

subject to

2x1 + x2 ≤ 8 Storage Constraint (5.2)

x2 ≤ 5 Availability Constraint (5.3)

x1 − x2 ≤ 4 Safety Constraint (5.4)

x1 ≥ 0; x2 ≥ 0

Let us include the uncertainties associated with the supply of X2. A distri-
bution of supply for a particular week is shown in Table 5.1. Find the optimum
value of raw materials the manufacturer needs to buy to reduce the average
cost to a minimum. How is the feasible region of operation changing with
uncertainty?

Table 5.1. Weekly supply

i Day Supply, ui

1 Monday 5
2 Tuesday 7
3 Wednesday 6
4 Thursday 9
5 Friday 10
6 Saturday 8
7 Sunday 4

Solution: Given that the supply of X2 that is 5 tons per day is uncertain,
the availability constraint is going to change. Our first attempt to solve this
problem was to find the average supply (i.e., uavg = 7 in this case) and change
the problem formulation accordingly. This formulation is given below.

Minimize Z = 4x1 − x2 (5.5)

x1, x2

subject to

2x1 + x2 ≤ 8 Storage Constraint (5.6)
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x2 ≤ 7 Availability Constraint (5.7)

x1 − x2 ≤ 4 Safety Constraint (5.8)

x1 ≥ 0; x2 ≥ 0

Obviously the optimal solution for this case is x1 = 0 and x2 = 7. Let
us see whether this represents an optimal solution to the problem. Consider
the distribution of supply for a typical week given earlier. The manufacturer
can only buy an amount of chemical X2 equal to the supply u if the supply is
less than 7 tons, otherwise his decision to buy 7 tons of chemical X2 remains
unchanged. This results in the following cost function.

Costp(u) = 4x1 − x2 if x2 ≤ u

= 4x1 − u if x2 ≥ u

Table 5.2 shows the cost function calculation for three sets of decision
variables, one of them being the average value x = (0, 7). It is obvious that
x = (0, 8) is a better solution than the other two, showing that the optimal
solution obtained by taking an average of the input uncertain variable is not
necessarily an optimum.

Table 5.2. Evaluating cost under uncertainty

Costp
i Day Supply, ui x = (0, 5) x = (0, 7) x = (0, 8)

1 Monday 5 −5 −5 −5
2 Tuesday 7 −5 −7 −7
3 Wednesday 6 −5 −6 −6
4 Thursday 9 −5 −7 −8
5 Friday 10 −5 −7 −8
6 Saturday 8 −5 −7 −8
7 Sunday 4 −4 −4 −4

Costavg =
∑

i Costp/7.0 −4.86 −6.14 −6.57

The other alternative is for the manufacturer to change his decisions ac-
cording to the supply. If the manufacturer knows the supply curve for each
week a priori (Table 5.1), then he can change the decisions x1 and x2 on a
daily basis. This can be achieved by using the following formulation in terms
of the uncertain variable ui for each day i.

Minimize Zi = 4x1 − x2 (5.9)

x1, x2

subject to
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2x1 + x2 ≤ 8 Storage Constraint (5.10)

x2 ≤ ui Availability Constraint (5.11)

x1 − x2 ≤ 4 Safety Constraint (5.12)

x1 ≥ 0; x2 ≥ 0
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Fig. 5.1. Change in feasible region as the uncertain variable changes

The feasible region of operation is changing with the change in the uncer-
tain variable as shown in Figure 5.1.

Table 5.3 shows the optimal decision variables for each day with the daily
average minimum cost equal to $−7.0.
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Table 5.3. Weekly decisions

i Day ui x = (x1, x2) Cost $, Zi

1 Monday 5 (0,5) −5
2 Tuesday 7 (0,7) −7
3 Wednesday 6 (0,6) −6
4 Thursday 9 (0,9) −9
5 Friday 10 (0,10) −10
6 Saturday 8 (0,8) −8
7 Sunday 4 (0,4) −4

Total Minimum Cost $−49

Average Minimum Cost $−7.0

However, as stated in the problem statement, the supply scenario given in
Table 5.1 is a likely scenario for a particular week, but the manufacturer may
not exactly know the daily situation. The information available from Table 5.1
can be translated into probabilistic information as shown in Table 5.4. In this
case, the manufacturer would like to find the amount of each chemical on
average, given the supply distribution in Table 5.4, to minimize the average
daily cost.

Table 5.4. Weekly supply uncertainty distribution

j Supply, u Probability

1 4 1/7
2 5 1/7
3 6 1/7
4 7 1/7
5 8 1/7
6 9 1/7
7 10 1/7

Let us choose x1 and x2 to be the average amount of each chemical ordered
or purchased by the manufacturer per week. This is the action the manufac-
turer is taking without knowing the exact daily supply data. If the supply on
a specific date uj is less than this average purchase x2, then the manufacturer
can only buy the supply amount. This is reflected in the following formulation.
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Minimize Z = Costavg(u) (5.13)

x1, x2

Costavg(u) =

∫ 1

0

Costp(u) dp =
∑
j

pjCostp(j) (5.14)

Costp(u) = 4x1 − x2 if x2 ≤ u

= 4x1 − u if x2 ≥ u

subject to

2x1 + x2 ≤ 8 (5.15)

x1 − x2 ≤ 4 (5.16)

x1 ≥ 0; x2 ≥ 0

where p reflects the probability distribution of the uncertain variable u.
We can see that the problem is no longer an LP because the cost function is

nonlinear and non-smooth as shown in Figure 5.2. There are special methods
required to solve this problem which are described later. At this stage, we can
evaluate this function using different decision variables and find the optimum
cost by inspection. Table 5.5 presents the results of this exercise. The solution
is −6.57.
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Fig. 5.2. Cost function under uncertainty
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Table 5.5. Evaluating cost under uncertainty

u Probability, pi Costp
x = (0, 5) x = (0, 7) x = (0, 8)

4 1/7 −4 −4 −4
5 1/7 −5 −5 −5
6 1/7 −5 −6 −6
7 1/7 −5 −7 −7
8 1/7 −5 −7 −8
9 1/7 −5 −7 −8
10 1/7 −5 −7 −8

Costavg =
∑

i piCostp −4.86 −6.14 −6.57

The difference between taking the average value of the uncertain variable
as the solution as compared to using stochastic analysis (propagating the un-
certainties through the model and finding the effect on the objective function
as shown in Table 5.5) is defined as the value of stochastic solution, VSS. The
VSS for this problem reflects a cost savings of $6.57− 6.14 = 0.43 per day.

We see that the average cost for both of the formulations (Tables 5.3 and
5.5) is similar, but in one case, the manufacturer had the perfect information
and could change the decisions as the supply changed (Table 5.3). However,
in the second case the manufacturer has to take action before he has the
perfect information. The value of getting more accurate information about
the uncertainty in this case is zero.

In general, the difference between the solution obtained when perfect infor-
mation is available and the optimum solution obtained considering uncertain-
ties is the expected value of perfect information, EVPI. The EVPI measures
the maximum amount a decision-maker would be ready to pay in return for
complete accurate information. For this problem the cost savings by having
perfect information is EV PI = $7.0 − 6.57 = 0.43. As can be expected, this
value is always greater than or equal to zero. The next example shows this
clearly.

5.1 Types of Problems and Generalized Representation

The need for including uncertainty in complex decision models arose early in
the history of mathematical programming. The first model forms, involving
action followed by observation and reaction (or recourse), appear in Beale
(1955) and Dantzig (1955). In the above problem, there was action (decisions
x = (0, 8)), followed by observation (Costavg = $−6.57) but the problem did
not have any recourse action. A commonly used example of a recourse problem
is the news vendor or the newsboy problem described below. This problem has
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a rich history that has been traced back to the economist (Edgeworth, 1888),
who applied a variance to a bank cash-flow problem. However, it was not until
the 1950s that this problem, as did many other OR/MS models seeded by the
war effort, became a topic of serious and extensive study by academicians
(Petruzzi and Dada, 1999).

Example 5.2: The simplest form of a stochastic program may be the news
vendor (also known as the newsboy) problem. In the news vendor problem,
the vendor must determine how many papers (x) to buy now at the cost of c
cents for a demand which is uncertain. The selling price is sp cents per paper.
For a specific problem, whose weekly demand is shown below, the cost of each
paper is c = 20 cents and the selling price is sp = 25 cents. Solve the problem,
if the news vendor knows the demand uncertainties (Table 5.6) but does not
know the demand curve for the coming week (Table 5.7) a priori. Assume no
salvage value s = 0, so that any papers bought in excess of demand are simply
discarded with no return.

Table 5.6. Weekly demand uncertainties

j Demand, dj Probability, pj
1 50 5/7
2 100 1/7
3 140 1/7

Table 5.7. Weekly demand

i Day Demand,(u) di
1 Monday 50
2 Tuesday 50
3 Wednesday 50
4 Thursday 50
5 Friday 50
6 Saturday 100
7 Sunday 140

Solution: In this problem, we want to find how many papers the vendor
must buy (x) to maximize the profit. We know that any excess papers bought
are just thrown away. Let r be the effective sales and w be the excess that
are going to be thrown away. As stated earlier, this problem falls under the
category of stochastic programming with recourse where there is action (x),
followed by observation (profit), and reaction (or recourse) (r and w). Again
the deterministic way to solve this problem is to find the average demand and
find the optimal supply x corresponding to this demand. Because the average
demand from Table 5.6 is 70 papers, x = 70 should be the solution. Let us see
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if this represents the optimal solution for the problem. Table 5.8 shows the
observation (profit function) for this action.

Table 5.8. Supply and profit

i Day Supply, xi Profit, cents

1 Monday 70 −150
2 Tuesday 70 −150
3 Wednesday 70 −150
4 Thursday 70 −150
5 Friday 70 −150
6 Saturday 70 350
7 Sunday 70 350

Average weekly – −50

From Table 5.8, it is obvious that if we take the average demand as the
solution, then the news vendor will have a loss of 50 cents per week. This
probably is not the optimal solution. Can we do better? For that we need to
propagate the uncertainty in the demand to see the effect of uncertainty on
the objective function and then find the optimum value of x. This formulation
is shown below.

Maximize Z = Profitavg(u)

x

subject to

Profitavg(u) =

∫ 1

0

[−cx+ Sales(r, w, p(u))]dp

=
∑
j

pj Sales(r, w, dj)− cx

Sales(r, w, dj) = sp rj + swj

where

rj = min (x, dj)

= x, if x ≤ dj

= dj , if x ≥ dj

wj = max (x− dj , 0)

= 0, if xi ≤ di

= xi − di, if xi ≥ di

The above information can be transformed for daily profit as follows.
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Profit = −cx+ 5/7sp d1 + 1/7sp x+ 1/7sp x,

if d1 ≤ x ≤ d2 (5.17)

or

Profit = −cx+ 5/7sp d1 + 1/7sp d2 + 1/7sp x,

if d2 ≤ x ≤ d3 (5.18)

Notice that the problem represents two equations for the objective func-
tion, Equations (5.17) and (5.18), making the objective function a discontin-
uous function and is no longer an LP. Special methods such as the L-shaped
decomposition or stochastic decomposition (Higle and Sen, 1991) are required
to solve this problem. However, because the problem is simple, we can solve
this problem as two separate LPs. The two possible solutions to the above
LPs are x = d1 = 50 and x = d2 = 100, respectively. This provides the
news vendor with an optimum profit of 1750 cents per week from Equation
(5.17) and with a loss of 2750 cents per week from Equation (5.18). Obviously
Equation (5.17) provides the global optimum for this problem. Earlier when
we took the average value of the demand (i.e., x = 70) as the solution, we
obtained a loss of 50 cents per week, therefore, the value of stochastic solution,
VSS, is 1750− (−50) = 1800 cents.

Now consider the case where the vendor knows the exact demand (Ta-
ble 5.7) a priori. This is the perfect information problem where we want to
find the solution xi for each day i. Let us formulate the problem in terms of
xi.

Maximize Profiti = −cxi + Sales(r, w, di)

xi

subject to

Sales(r, w, di) = sp ri + swi

ri = min(xi, di)

= xi, if xi ≤ di

= di, if xi ≥ di

wi = max(xi − di, 0)

= 0, if xi ≤ di

= xi − di, if xi ≥ di

Here we need to solve each problem (for each i) separately, leading to the
following decisions shown in Table 5.9.
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Table 5.9. Supply and profit

i Day Supply, xi Profit, cents

1 Monday 50 250
2 Tuesday 50 250
3 Wednesday 50 250
4 Thursday 50 250
5 Friday 50 250
6 Saturday 100 500
7 Sunday 140 700

Average Weekly – 2450

One can see that the difference between the two values, (1) when the
news vendor has the perfect information and (2) when he does not have the
perfect information but can represent it using probabilistic functions, is the
expected value of perfect information, EVPI. EVPI is 700 cents per week for
this problem.

The literature on optimization under uncertainties very often divides the
problems into categories such as “wait and see,” “here and now,” and “chance
constrained optimization” (Vajda, 1972; Nemhauser et al., 1989) . In wait and
see we wait until an observation is made on the random elements, and then
solve the deterministic problem. The first formulation, described in terms of
the problem under perfect information in Examples 5.1 and 5.2, falls under
this category. This is similar to the wait and see problem of Madansky (1960),
originally called “Stochastic Programming” by Tintner (1955), and is not in
a sense one of decision analysis. In decision-making, the decisions have to
be made here and now about the activity levels. The here and now problem
involves optimization over some probabilistic measure, usually the expected
value. By this definition, chance constrained optimization problems can be in-
cluded in this particular category of optimization under uncertainty. Chance
constrained optimization involves constraints that are not expected to be al-
ways satisfied; only in a proportion of cases, or with given probabilities. These
various categories require different methods for obtaining their solutions.

It should be noted that many problems have both here and now, and wait
and see problems embedded in them. The trick is to divide the decisions into
these two categories and use a coupled approach.

Here and Now Problems

Stochastic optimization gives us the ability to optimize systems in the face of
uncertainties. The here and now problems require that the objective function
and constraints be expressed in terms of some probabilistic representation
(e.g., expected value, variance, fractiles, most likely values). For example, in
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chance constrained programming, the objective function is expressed in terms
of expected value, and the constraints are expressed in terms of fractiles (prob-
ability of constraint violation), and in Taguchi’s offline quality control method
(Taguchi, 1986; Diwekar and Rubin, 1991), the objective is to minimize vari-
ance. These problems can be classified as here and now problems.

The here and now problem, where the decision variables and uncertain
parameters are separated, can then be viewed as

Optimize J = P1(j(x, u)) (5.19)

x

subject to
P2(h(x, u)) = 0 (5.20)

P3(g(x, u) ≥ 0) ≥ α (5.21)

where u is the vector of uncertain parameters and P represents the cumulative
distribution functional such as the expected value, mode, variance, or fractiles.
Figures 5.3 and 5.4 show the expected value, mode, variance, and fractiles for
a probabilistic distribution function.
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Fig. 5.3. Different probabilistic performance measures (PDF)

Unlike the deterministic optimization problem, in stochastic optimization
one has to consider the probabilistic functional of the objective function and
constraints. The generalized treatment of such problems is to use probabilistic
or stochastic models instead of the deterministic model inside the optimization
loop.
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Figure 5.5a represents the generalized solution procedure, where the de-
terministic model is replaced by an iterative stochastic model with a sampling
loop representing the discretized uncertainty space. The uncertainty space is
represented in terms of the moments such as the mean, or the standard devi-
ation of the output over the sample space of Nsamp as given by the following
equations (Equations (5.22) and (5.23)).

E(z(x, u)) =

Nsamp∑
k=1

z(x, uk)

Nsamp
(5.22)

σ2(z(x, u)) =

Nsamp∑
k=1

(z(x, uk) − z̄)2

Nsamp
(5.23)

where z̄ is the average value of z. E is the expected value and σ2 is the
variance.

In chance constrained formulation, the uncertainty surface is translated
into input moments, resulting in an equivalent deterministic optimization
problem. This is discussed in the Section 5.2.

Wait and See

In contrast to here and now problems, which yield optimal solutions that
achieve a given level of confidence, wait and see problems involve a category
of formulations that shows the effect of uncertainty on optimum design. A
wait and see problem involves deterministic optimal decisions at each scenario
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Fig. 5.5. Pictorial representation of the stochastic programming framework. (a)
Here and now. (b) Wait and see

or random sample, equivalent to solving several deterministic optimization
problems. The generalized representation of this problem is given below.

Optimize Z = z(x, u∗) (5.24)
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x

subject to
h(x, u∗) = 0 (5.25)

g(x, u∗) ≤ 0 (5.26)

where u∗ is the vector of values of uncertain variables corresponding to each
scenario or sample.

This optimization procedure is repeated for each sample of uncertain vari-
ables u and a probabilistic representation of the outcome is obtained.

Figure 5.5b represents the generalized solution procedure, where the de-
terministic problem forms the inner loop, and the stochastic modeling forms
the outer loop. The difference between the two solutions obtained using the
two frameworks is the expected value of perfect information. The concept of
EVPI was first developed in the context of decision analysis and can be found
in classical references such as Raiffa and Schlaifer (1961). From Figures 5.5
it is clear that by simply interchanging the position of the uncertainty analy-
sis framework and the optimization framework, one can solve many problems
in the stochastic optimization and stochastic programming domain (Diwekar,
1995). Recourse problems with multiple stages involve decisions that are taken
before the uncertainty realization (here and now) and recourse actions which
can be taken when information is disclosed (wait and see). These problems can
be solved using decomposition methods such as the L-shaped decomposition
method described in Section 5.3.

As can be seen from the above description, both here and now and wait and
see problems require the representation of uncertainties in the probabilistic
space and then the propagation of these uncertainties through the model
to obtain the probabilistic representation of the output. This is the major
difference between stochastic and deterministic optimization problems. Is it
possible to propagate the uncertainty using moments (such as mean, variance)
thereby obtaining a deterministic representation of the problem? This is the
basis of the chance constrained programming method, developed very early
in the history of optimization under uncertainty, principally by Charnes and
Cooper (1959).

5.2 Chance Constrained Programming Method

In the chance constrained programing (CCP) method, some of the constraints
likely need not hold as we had assumed in earlier problems. Chance con-
strained problems can be represented as follows.

Optimize J = P1(j(x, u)) = E(z(x, u)) (5.27)

x
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subject to
P (g(x) ≤ u) ≤ α (5.28)

In the above formulation, Equation (5.28) is the chance constraint. In the
chance constraint formulation, this constraint (or constraints) is (are) con-
verted into a deterministic equivalent under the assumption that the distribu-
tion of the uncertain variables u is a stable distribution. Stable distributions
are such that the convolution of two distribution functions F (x − m1/υ1)
and F (x − m2/υ2) is of the form F (x − dmu/v), where mi and υi are two
parameters of the distribution. Normal, Cauchy, uniform, and chi-square are
all stable distributions that allow the conversion of probabilistic constraints
into deterministic ones. The deterministic constraints are in terms of moments
of the uncertain variable u (input uncertainties). For example, if constraint
g in Equation (5.28) has a cumulative probability distribution F , then the
deterministic equivalent of this constraint is given below.

The deterministic equivalent of the chance constraint (5.28) is

g(x) ≤ F−1(α) (5.29)

where F−1 is the inverse of the cumulative distribution function F .
The major restrictions in applying the CCP formulation include that the

uncertainty distributions should be stable distribution functions, the uncertain
variables should appear in the linear terms in the chance constraint, and that
the problem needs to satisfy the general convexity conditions. The advantage
of the method is that one can apply the deterministic optimization techniques
to solve the problem. The following example illustrates this method.

Example 5.3: In Example 5.1, the formulation for the here and now prob-
lem, we have allowed the manufacturer to buy more x2 than the supplier can
provide by not penalizing him. However, let us assume that the manufacturer
is ready to get more x2 from a different supplier once in a while as long as the
probability of buying from another supplier is lesser than or equal to 42.714%
(3/7). Formulate this problem as a chance constraint programming problem
and obtain the solution using conventional deterministic optimization meth-
ods.

Solution: The problem description results in the following formulation
where constraint (5.32) is the chance constraint.

Minimize Z = 4x1 − x2 (5.30)

x1, x2

subject to

2x1 + x2 ≤ 8 (5.31)
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P (−x2 + u ≤ 0) ≤ 3

7
(5.32)

x1 − x2 ≤ 4 (5.33)

x1 ≥ 0; x2 ≥ 0

Earlier, Table 5.4 provided the probability distribution function for the
variable u. Figure 5.6 shows the probability density function (PDF), and cu-
mulative distribution function (CDF) F for the variable u. F−1 for the prob-
ability 3/7 corresponds to u = 6. Therefore, the deterministic equivalent of
this problem results in the following problem.

Minimize Z = 4x1 − x2 (5.34)

x1, x2

subject to

2x1 + x2 ≤ 8 (5.35)

x2 ≥ 6 (5.36)

x1 − x2 ≤ 4 (5.37)

x1 ≥ 0; x2 ≥ 0

The solution to this problem is x = (0, 6), with the average cost equal to
$-5.57 per day as shown in Table 5.10.

Table 5.10. Evaluating cost under uncertainty

u Probability, pi Costp(0, 6)

4 1/7 −4
5 1/7 −5
6 1/7 −6
7 1/7 −6
8 1/7 −6
9 1/7 −6
10 1/7 −6

Costavg =
∑

i piCostp −5.57
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Fig. 5.6. Probability distribution functions for the uncertain variable

5.3 L-shaped Decomposition Method

In the stochastic programming problems with recourse, there is action (x),
followed by observation, and then recourse r. In these problems, the objective
function has the action term, and the recourse function is dependent on the
uncertainties and recourse decisions. As seen earlier, the recourse function can
be a discontinuous nonlinear function in x and r space. A general approach
behind the L-shaped method is to use a decomposition strategy where the
master problem decides x and the subproblems are solved for the recourse
function (Figure 5.7). The method is essentially a Dantzig–Wolfe decomposi-
tion (Dantzig and Wolfe, 1960) (inner linearization) of the dual or Bender’s
decomposition of the primal. This method is due to Van Slyke and Wets
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(1969), and also considers feasibility questions of particular relevance in these
recourse problems. Consider the generalized representation of the recourse
problem shown below, where the first term depends only on x, and R is the
recourse function.

Subproblem

Master 
Problem

Feasible 
Solution

Upper 
Bound

Add
Feasibility 

Cut

Decision 
Variables,  x

Feasibility
Optimization

Lower 
Bound

STOP

Upper Bound < Lower Bound

Recourse 
Variables

Fig. 5.7. L-shaped method decomposition strategy

Minimize Z = f(x) +R(x, r, u) (5.38)

x

subject to
h(x, r) = 0 (5.39)

g(x, u, r) ≤ 0 (5.40)

Figure 5.7 shows the decomposition scheme used in the L-shaped method.
In the figure, the master problem is the linearized representation of the nonlin-
ear objective function (containing the recourse function) and constraints. The
master problem provides the values of the action variables x (x∗) and obtains
the lower bound of the objective function. In general, the multistage recourse
problems involve equality constraints relating the action variables x to the re-
course variables r as in the generalized representation. These constraints are
included as inequalities (feasibility cuts) in terms of the dual representation
(including Lagrange multipliers λ) obtained by solving the following feasibil-
ity problem for each constraint. The feasibility cut addition is continued until
no constraint is violated (completely feasible solution). It should be noted
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that this is a very time-consuming iterative loop of the L-shaped algorithm,
and variants of the L-shaped method provide improvements to this loop. The
master problem then provides the values of the action variables x, and the
lower bound to the objective function. At each outer iteration, for these fixed
x, the subproblem is solved for r, and linearizations of the objective and re-
course function (optimality cuts) are obtained along with the values of r. If
the subproblem solution (upper bound) crosses or is equal to the lower bound
predicted by the master problem, then the procedure stops, else iterations
continue.

Feasibility Optimization

Minimize Constraints V iolations(x∗, r) (5.41)

r, λ

The following example uses the news vendor problem described earlier
to show the convergence of the L-shaped method. As indicated earlier, the
inner loop of the L-shaped method consists of determining whether a first
stage decision is also second stage feasible, and so on. This step is extremely
computationally intensive and may involve several iterations per constraint
for successive candidate first stage solutions. In some cases though (such as
this news vendor problem) this step can be simplified. A first case is when the
second stage is always feasible. The stochastic program is then said to have a
complete recourse.

Example 5.4: Solve the here and now problem for the news vendor pre-
sented in Example 5.2 using the L-shaped method.

Solution: The formulation of the here and now problem is given below.
News Vendor Problem (Example 5.2) Formulation:

Maximize − Z = Profitavg(u) (5.42)

x

Profitavg(u) =

∫ 1

0

[−cx + Salesp(r, w, p(u))]dp

=
∑
j

pjSales(r, w, dj) − cx (5.43)

Sales(r, w, dj) = sprj + swj (5.44)

rj = min (x, dj)

= x, if x ≤ dj

= dj , if x ≥ dj (5.45)

wj = max (x− dj , 0) (5.46)
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where Salesp represents the recourse function R given below. We are mini-
mizing Z and maximizing −Z.

R = sp x

if 0 ≤ x ≤ d1 (5.47)

or

R = 5/7sp d1 + 1/7sp x+ 1/7sp x

if d1 ≤ x ≤ d2 (5.48)

or

R = 5/7sp d1 + 1/7sp d2 + 1/7sp x

if d2 ≤ x ≤ d3 (5.49)

As can be seen from the above formulation, this problem does not have
any equality terms and is considered a problem with complete recourse. To
obtain the optimal solution, we need to consider the outer loop iterations (no
feasibility cut) given in Figure 5.7 for the L-shaped method. From Table 5.6,
we know that the uncertain parameter u can take values 50, 100, 140, with
probabilities 5/7, 1/7, and 1/7, respectively. Figure 5.8 shows the terms in
the recourse function Salesp(50) and Salesp(100). Each of these functions
is polyhedral. The sequence of iterations for the L-shaped method is given
below.

1. Assume x = 100 and assume the lower bound to be −∞. The recourse
function that is calculated by the subproblem is calculated using Equa-
tions (5.43)–(5.46) and is equal to Profit = −393. To express this in the
minimization term, Zup = 393.

2. The linear cut (Equation (5.51)) for the recourse function derived from
Equation (5.48) is added to the master problem, given below.

Maximize − Zlo = − 20x + R (5.50)

x

R ≤ 25(
5

7
× 50 +

2

7
× x) linear cut at x = 100 (5.51)

The solution to the above problem is x = 0 and Zlo = − 892.86. The
recourse function calculated again using the Equations (5.43)–(5.46) is
equal to Zup = 0. The solution is not optimal as the upper bound (0) is
greater than the lower bound (−892.86).
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Fig. 5.8. Recourse function term as a function of the decision variable

3. Add a new cut, Equation (5.54), and solve the following problem.

Maximize Zlo = − 20x + R (5.52)

x

R ≤ 25(
5

7
× 50 +

2

7
× x) linear cut at x = 100 (5.53)

R ≤ 25x linear cut at x = 0 from Equation (5.47) (5.54)

The solution to the above problem is x = 50 and Zlo = −250. The recourse
function at x = 50 is equal to Zup = −250, and is the optimum. So the
average profit per day is 250 cents with a total weekly profit of $1750, as
found before.
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The two main algorithms commonly used for stochastic linear program-
ming with fixed recourse are the L-shaped and the stochastic decomposition
methods. The L-shaped method is used when the uncertainties are described
by discrete distribution. On the other hand, the stochastic decomposition
method uses sampling when random variables are represented by continu-
ous distribution functions. The chance constrained method, described earlier,
uses moments to represent and propagate uncertainty in the stochastic model.
Other methods use the discretized representation of uncertainty (samples or
scenarios). The next section describes the uncertainty analysis and sampling
for obtaining the probabilistic information necessary to solve the problems
involving optimization under uncertainties.

5.4 Uncertainty Analysis and Sampling

The probabilistic or stochastic modeling (Figure 5.9) iterative procedure in-
volves:

Stochastic
Modeler

MODEL

Uncertain
Variable Sample

Output
Functions

Uncertainty
Distributions

Probability 
Distribution of 
Outputs

Fig. 5.9. The stochastic modeling framework

1. Specifying the uncertainties in key input parameters in terms of probabil-
ity distributions.

2. Sampling the distribution of the specified parameter in an iterative fash-
ion.

3. Propagating the effects of uncertainties through the model and applying
statistical techniques to analyze the results.
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5.4.1 Specifying Uncertainty Using Probability Distributions

To accommodate the diverse nature of uncertainty, different distributions can
be used. Some of the representative distributions are shown in Figure 5.10.
The type of distribution chosen for an uncertain variable reflects the amount
of information that is available. For example, the uniform and log-uniform
distributions represent an equal likelihood of a value lying anywhere within
a specified range, on either a linear or logarithmic scale, respectively. Fur-
thermore, a normal (Gaussian) distribution reflects a symmetric but varying
probability of a parameter value being above or below the mean value. In
contrast, log-normal and some triangular distributions are skewed such that
there is a higher probability of values lying on one side of the median than
the other. A beta distribution provides a wide range of shapes and is a very
flexible means of representing variability over a fixed range. Modified forms of
these distributions, uniform* and log-uniform*, allow several intervals of the
range to be distinguished. Finally, in some special cases, user-specified distri-
butions can be used to represent any arbitrary characterization of uncertainty,
including chance distribution (i.e., fixed probabilities of discrete values).
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5.4.2 Sampling Techniques in Stochastic Modeling

Once probability distributions are assigned to the uncertain parameters, the
next step is to perform a sampling operation from the multi-variable uncertain
parameter domain. Alternatively, one can use analytical methods to obtain
the effect of uncertainties on the output. These methods tend to be applicable
to special kinds of uncertainty distributions and optimization surfaces only.
The sampling approach provides wider applicability and is discussed below.

Crude Monte Carlo Technique

One of the most widely used techniques for sampling from a probability dis-
tribution is the Monte Carlo sampling technique, which is based on a pseudo-
random generator used to approximate a uniform distribution (i.e., having
equal probability in the range from 0 to 1). The specific values for each input
variable are selected by inverse transformation over the cumulative probabil-
ity distribution. A Monte Carlo sampling technique also has the important
property that the successive points in the sample are independent. The fol-
lowing example illustrates how the Monte Carlo techniques can be used in
probabilistic analysis to obtain the value of an output variable.

Example 5.5: Let us consider the problem of finding a maximum area cir-
cle inscribed in a square with a given area (100 square cm) as shown in Fig-
ure 5.11. We know that if one chooses any random point in the square, then
the probability of that point being in the interior of a particular circle is
given by

Pr =
Area of the Circle

Area of the Square

We want to find the radius r of a circle that will maximize the area of the
circle. The problem can be easily posed as a stochastic optimization problem
where the objective is to maximize a probabilistic function, that is, the area
that can be calculated using the Monte Carlo method.

(a) Represent this problem in probabilistic terms.
(b) Find the area of the circle using the Monte Carlo method.
(c) Find the effect of sampling on the output.

Solution: We know that if one chooses any random point in this figure,
then the probability of that point being in the interior of the circle given by
Pr leads to the following equation.

Area of the Circle = Pr × Area of the Square

The optimization problem then can be represented by

Maximize Z = Pr(r)Asquare (5.55)

r
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Fig. 5.11. Maximize area of a circle, sampling representation

Now, we can solve this problem using the Monte Carlo method for calcu-
lation of the probabilistic term Pr. The estimation of the area of the circle
is based on the assumption that the points in the square are equally likely to
occur (uniform distribution) for both sides, as shown in Figure 5.12 for the
side from 0 to 10. Thus, if out of a random sample of Nsamp points in the
square, m are found to fall within the circle equation, then Pr = m/Nsamp.
A sample point (x∗, y∗) falls within the circle if

(x∗ − xc)
2 + (y∗ − yc)

2 ≤ r2

The problem can be written in terms of the Nsamp as follows.

Maximize Z = Pr(r)Asquare (5.56)

r, Yi

subject to

r2 − (xi − xc)
2 − (yi − yc)

2 − UYi ≤ 0.0

i = 1, 2, . . . , Nsamp (5.57)

(xi − xc)
2 − (yi − yc)

2 − r2 − U(1− Yi) ≤ 0.0

i = 1, 2, . . . , Nsamp (5.58)∑Nsamp

i=1 Yi

Nsamp
= Pr (5.59)
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xi = (10− 0)× u1 i = 1, 2, . . . , Nsamp (5.60)

yi = (10− 0)× u2 i = 1, 2, . . . , Nsamp (5.61)

where Yi represents the binary decision of whether the point is inside the circle
of radius r. If Yi is 1, then the point is inside the circle; else, it is 0. U is a very
large number. The first two constraints (Equations (5.57) and (5.58)) ensure
this fact. Obviously, this is a mixed integer nonlinear programming problem
with uncertainty (u1 and u2 are two random variables between 0 and 1). The
solution is iterative where at each optimization iteration j, with the decision
variable rj , the area of the circle is calculated using the Monte Carlo method.
Figure 5.11 shows two such iterations in terms of the two concentric circles.
Figure 5.12 also shows how the samples are generated using the CDF of the
uniform distribution functions for a particular circle.

It is obvious from Figure 5.11 that the solution to this problem is the
larger circle with the radius r = 5. However, the number of samples Nsamp

to obtain the probability function Pr plays an important role in the iterative
procedure. Figure 5.13 plots the area calculated using a different number of
samples for r = 5. It can be seen that as the number of samples increases, the
area of the circle approaches the exact area.

Importance Sampling

Crude Monte Carlo methods can result in large error bounds (confidence in-
tervals) and variance. Variance reduction techniques are statistical procedures
designed to reduce the variance in the Monte Carlo estimates (James and Vari-
ance, 1985). Importance sampling, Latin hypercube sampling (LHS; McKay
et al. 1979; Iman and Shortencarier 1984 ; Iman and Helton 1988 ), descriptive
sampling (Saliby, 1990), and Hammersley sequence sampling (Kalagnanam
and Diwekar, 1997) are examples of variance reduction techniques. In im-
portance Monte Carlo sampling, the goal is to replace a sample using the
distribution of u with one that uses an alternative distribution that places
more weight in the areas of importance. Dantzig and Infanger (1991) used
such an approximate distribution function for the L-shaped method to accel-
erate the crude Monte Carlo method. Obviously such a distribution function is
problem-dependent and is difficult to find. The following two sampling meth-
ods provide a generalized approach to improve the computational efficiency
of sampling.
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Fig. 5.12. Samples generated from the CDF of the uniform distribution

Latin Hypercube Sampling

The main advantage of the Monte Carlo method lies in the fact that the
results from any Monte Carlo simulation can be treated using classical statis-
tical methods; thus, results can be presented in the form of histograms, and
methods of statistical estimation and inference are applicable. Nevertheless,
in most applications, the actual relationship between successive points in a
sample has no physical significance; hence the randomness/independence for
approximating a uniform distribution is not critical (Knuth, 1973). Moreover,
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Fig. 5.13. Area Calculated Using the stochastic modeling versus number of samples

the error of approximating a distribution by a finite sample depends on the
equidistribution properties of the sample used for U(0,1) rather than its ran-
domness. Once it is apparent that the uniformity properties are central to the
design of sampling techniques, constrained or stratified sampling techniques
become appealing (Morgan and Henrion, 1990) .

Latin hypercube sampling is one form of stratified sampling that can
yield more precise estimates of the distribution function. In Latin hypercube
sampling, the range of each uncertain parameter Xi is subdivided into non-
overlapping intervals of equal probability. Figure 5.14 shows the stratification
scheme (intervals of equal probabilities) for a normal random variable. One
value from each interval is selected at random with respect to the probability
distribution in the interval. The n values thus obtained for X1 are paired in
a random manner (i.e., equally likely combinations) with n values of X2. Fig-
ure 5.15 shows such a pairing for two uncertain variables with five samples.
These n values are then combined with n values of X3 to form n-triplets,
and so on until n k-tuplets are formed. In median Latin hypercube (MLHS),
this value is chosen as the midpoint of the interval. MLHS is similar to the
descriptive sampling described by Saliby (1990). The main drawback of this
stratification scheme is that it is uniform in one dimension (Figure 5.14) and
does not provide uniformity properties in k-dimensions (Figure 5.15).

Example 5.6: The two uncertain variables in the problem have a uniform
distribution with range 5–10 and a normal distribution with mean, μ=5 and
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standard deviation, σ = 1.618. Generate Monte Carlo Samples for the random
numbers given below. Compare it with Latin Hypercube Sampling generated
with the same random numbers.

Table 5.11. Random numbers for uncertain parameters

Random 1 Random 2

0.3370 0.0800
0.1678 0.6100
0.8419 0.5250
0.4372 0.9350
0.8127 0.6200

Solution: For Uniform and Normal distributions, the following equations
provide the PDF (f(x)) and CDF (F (x)) formulas.

Uniform distribution:

f(x) =
1

B −A
, A ≤ x ≤ B (5.62)

F (x) =
x+A

B −A
(5.63)

Normal distribution:

f(x) =
1√
2π

e
−(x−μ)2

2σ2 , − inf ≤ x ≤ inf (5.64)

F (x) =
1

2
[1 + erf(

x− μ

σ
√
2
)] (5.65)

erf−1(z) =
1

2

√
π(z +

π

12
z3 +

7π2

480
z5 + [

127π3

40320
z7 + · · ·) (5.66)

For Monte Carlo, we can directly use the random numbers shown in Table
5.11 as F (x), and using the inverse function we can find the sample as shown
in Table 5.12.

Table 5.12. Monte Carlo samples for uncertain parameters

Variable 1 Variable 2

6.6850 2.72659
5.8390 5.4519
9.2095 5.1015
7.186 7.4498
9.0635 5.4943
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For LHS, we need to first generate the values of F (x) by putting the
random numbers in each stratum. This involves scaling the random numbers
using the following formula.

Pm =
Rm

N
+

m− 1

N
(5.67)

where Rm is them-th random number, Rm is them-th scaled random number,
and N is the total number of samples.

Using these scaled random numbers, we can then find inverse of F (x) for
both variables. This is shown in Table 5.13

Table 5.13. LHS samples for uncertain parameters, first step

P (1) P (2) Variable 1 Variable 2

0.0674 0.0160 5.3370 1.5290
0.2336 0.3220 6.1680 4.2520
0.5684 0.5050 7.8420 5.0210
0.6874 0.7870 8.4370 6.2880
0.9625 0.9240 9.8130 7.3190

By randomizing the ranks of the variables, we can generate the final sample
for LHS, as shown in the last two columns of Table 5.14.

Table 5.14. LHS Samples for Uncertain Parameters, Second Step

m1 m2 Variable 1 Variable 2

5 1 9.8130 1.5290
3 3 7.8420 5.0210
2 4 6.1680 6.2880
1 2 5.3370 4.2520
4 5 8.4370 7.3190

Figure 5.16 shows the comparison of the two sampling techniques. Al-
though the number of samples is very small, the LHS covers the region more
uniformly than MCS.

Hammersley Sequence Sampling

Recently, an efficient sampling technique (Hammersley sequence sampling)
based on Hammersley points has been developed (Kalagnanam and Diwekar,
1997), which uses an optimal design scheme for placing the n points on a
k-dimensional hypercube. This scheme ensures that the sample set is more
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Fig. 5.16. Samples from the two sampling techniques for Example 5.6

representative of the population, showing uniformity properties in multi-
dimensions, unlike Monte Carlo, Latin hypercube, and its variant, the me-
dian Latin hypercube sampling techniques. Figure 5.17 graphs the samples
generated by different techniques on a unit square. This provides a qualita-
tive picture of the uniformity properties of the different techniques. It is clear
from Figure 5.17 that the Hammersley points have better uniformity proper-
ties compared to other techniques. The main reason for this is that the Ham-
mersley points are an optimal design for placing n points on a k-dimensional
hypercube. In contrast, other stratified techniques such as the Latin hyper-
cube are designed for uniformity along a single dimension and then randomly
paired for placement on a k-dimensional cube. Therefore, the likelihood of
such schemes providing good uniformity properties on high-dimensional cubes
is extremely small. One of the main advantages of Monte Carlo methods is
that the number of samples required to obtain a given accuracy of estimates
does not scale exponentially with the number of uncertain variables. HSS pre-
serves this property of Monte Carlo. For correlated samples, the approach
used, described by Kalagnanam and Diwekar (1997), uses rank correlations to
preserve the stratified design along each dimension. Although this approach
preserves the uniformity properties (see Figure 5.18) of the stratified schemes,
the optimal location of the Hammersley points are perturbed by imposing
the correlation structure. Appendix B summarizes the HSS designs. Although
the original HSS technique designs start at the same initial point, they can
be randomized by choosing the first prime number randomly. It has been re-
cently found that the uniformity property of HSS for higher dimensions (more
than 30 uncertain variables) gets distorted. HSS is generated based on prime
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numbers as bases. In order to break this distortion, leaps in prime numbers
can be introduced for higher dimensions. This leaped HSS circumvents the
distortion at higher dimension.

The paper by Kalagnanam and Diwekar (1997) provides a comparison
of the performance of the Hammersley sampling technique to that of the
Latin hypercube and Monte Carlo techniques. The comparison is performed
by propagating samples derived from each of the techniques for a set of n-input
variables (ui), through various nonlinear functions (U = f(u1, u2, ..., un)) and
measuring the number of samples required to converge to the mean and vari-
ance of the derived distribution for Y . Because there are no analytic ap-
proaches (for stratified designs) to calculate the number of samples required
for convergence, a large matrix of numerical tests was conducted. It was found
that the HSS technique is at least 3–100 times faster than LHS and Monte
Carlo techniques and hence is a preferred technique for uncertainty analysis
as well as optimization under uncertainty. For large-scale uncertainties two
variants of these techniques have been proposed. These are Latin Hypercube
Hammersley Sampling by Wang et al. (2004), and LHS-SOBOL recently pro-
posed by Dige and Diwekar (2018).

5.4.3 Sampling Accuracy and the Decomposition Methods

As stated earlier, the stochastic programming formulations often include some
approximations of the underlying probability distribution. The disadvantage
of sampling approaches that solve the γth approximation completely is that
some effort might be wasted on optimizing when approximation is not accu-
rate (Birge, 1977). For specific structures where the L-shaped method is ap-
plicable, two approaches avoid these problems by embedding sampling within
another algorithm without complete optimization. These two approaches are
the method of Dantzig and Glynn (1990) which uses importance sampling to
reduce variance in each cut based on a large sample, and the stochastic de-
composition method proposed by Higle and Sen which utilizes a single stream
to derive many cuts that eventually drop away as the iteration numbers in-
crease (Higle and Sen, 1991). These methods require convexity conditions and
dual-block angular structures, and are only applicable to continuous (decision
variables) optimization. The central limit theorem is used to provide bounds
for these methods.

5.4.4 Implications of Sample Size in Stochastic Modeling

In almost all stochastic optimization problems, the major bottleneck is the
computational time involved in generating and evaluating probabilistic func-
tions of the objective function and constraints. For a given number of samples
(Nsamp) of a random variable (u), the estimate for the mean or expected
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value (ū) and the unbiased estimator for standard deviation (s) can be ob-
tained from classical statistics (Milton and Arnold, 1995). For example, the
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Fig. 5.17. Sample points (100) on a unit square using (a) Monte Carlo sampling,
(b) Random Latin hypercube sampling, (c) median Latin hypercube sampling, and
(d) Hammersley sequence sampling

error in the calculation of the expected value decreases as Nsamp increases
and is given by the central limit theorem:

εμ ∝ (Nsamp)
−0.5 (5.68)

The accuracy of the estimates for the actual mean (μ) and the actual stan-
dard deviation (σ) is particularly important to obtain realistic estimates of
any performance or economic parameter. However, as stated earlier and also
shown in Example 5.5, this accuracy is dependent on the number of samples.
The number of samples required for a given accuracy in a stochastic optimiza-
tion problem depends upon several factors, such as the type of uncertainty
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Fig. 5.18. Sample points (100) on a unit square with correlation of 0.9 using (a)
Monte Carlo, (b) random Latin hypercube, (c) median LHS, and (d) HSS

and the point values of the decision variables (Painton and Diwekar, 1995).
Especially for optimization problems, the number of samples required also
depends on the location of the trial point solution in the optimization space.
Figure 5.19 shows how the shape of the surface over a range of uncertain
parameter values changes because one is at a different iteration (different val-
ues of decision variables) in the optimization loop. Therefore, the selection of
the number of samples for the stochastic optimization procedure is a crucial
and challenging problem. A combinatorial optimization algorithm that auto-
matically selects the number of samples and provides the trade-off between
accuracy and efficiency is presented below.
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Fig. 5.19. Uncertainty space at different optimization iterations

5.5 Stochastic Annealing

The simulated annealing algorithm described in Chapter 4 is used for deter-
ministic optimization problems. The stochastic annealing algorithm (STA)1

is a variant of simulated annealing (Painton and Diwekar, 1995; Chaudhuri
and Diwekar, 1996, 1671), and is an algorithm designed to efficiently optimize
a probabilistic objective function. In the stochastic annealing algorithm, the
optimizer (Figure 5.5a) not only obtains the decision variables but also the
number of samples required for the stochastic model. Furthermore, it provides
the trade-off between accuracy and efficiency by selecting an increased num-
ber of samples as one approaches the optimum. In stochastic annealing, the
cooling schedule is used to decide the weight on the penalty term for impreci-
sion in the probabilistic objective function. The choice of a penalty term, on
the other hand, must depend on the error bandwidth of the function that is
optimized, and must incorporate the effect of the number of samples.

The new objective function in stochastic annealing, therefore, consists of a
probabilistic objective value P and the penalty function, which is represented
as follows.

MinZ(cost) = P (x, u) + b(t) εp (5.69)

In the above equation, the first term represents the real objective function
which is a probabilistic function in terms of the decision variables x and
uncertain variables u, and all other terms following the first term signify the
penalty function for error in the estimation.

The weighting function b(t) can be expressed in terms of the tempera-
ture levels. At high temperatures, the sample size can be small, because the
algorithm is exploring the functional topology or the configuration space to
identify regions of optima. As the system gets cooler, the algorithm searches

1By “stochastic annealing” we refer to the annealing of an uncertain or stochastic
function. It must be realized that the simulated annealing algorithm is a stochastic
algorithm inherently, because the moves are determined probabilistically. However,
for our purposes, we refer to the annealing of a deterministic objective function
simply as simulated annealing.
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for the global optimum; consequently it is necessary to take more samples to
get more accurate and realistic objectives/costs. Thus, b(t) increases as the
temperature decreases. Based on these observations, an exponential function
for b(t) can be devised as

b(t) =
bo
kt

(5.70)

where bo is small (e.g., 0.001), k is a constant which governs the rate of
increase, and t is the temperature level. Remember that as the temperature
level t increases the annealing temperature T decreases.

The stochastic annealing algorithm reduces the CPU time by balancing
the trade-off between computational efficiency and solution accuracy by the
introduction of a penalty function in the objective function. This is necessary,
because at high temperatures the algorithm is mainly exploring the solution
space and does not require precise estimates of any probabilistic function. The
algorithm must select a greater number of samples as the solution nears the
optimum. The weight of the penalty term, as mentioned before, is governed
by b(t), and is based on the annealing temperature.

The main steps in the stochastic annealing algorithm are given below.

1. Initialize variables: Tinitial, Tfreeze, accept and reject limits, initial con-
figuration S.

2. If (T > Tfreeze), then
(a) Perform the following loop (i=(i)..(viii)) N (number of moves at a

given temperature) times.
i. Generate a move S′ from the current configuration S as follows:

A. Select the number of samples, Nsamp by a random move.
if rand(0, 1) ≤ 0.5 , then

Nsamp = Nsamp + 5× rand(0, 1)

else
Nsamp = Nsamp − 5× rand(0, 1)

B. Select the decision variables (zero-one, integer, discrete, and
continuous variables).

ii. Generate Nsamp samples of the uncertain parameters.
iii. Perform the following loop (iii(A)..iii(B)) Nsamp times.

A. Run the model.
B. Calculate the objective function cost(S′).

iv. Evaluate the expected value E(cost(S′)) and s of the cost function.
v. Generate the weighting function b(t) = bo/k

t.
vi. Calculate the modified objective function:

Obj(S′) = E(Cost(S′)) + b(t)
1√

Nsamp

vii. Let Δ = Obj(S′)−Obj(S).
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viii. If Δ ≤ 0, then accept the move Set S = S′ else if (Δ ≥ 0), then
accept with a probability exp (−Δ/T ).

(b) Return to 2(a).
3. If T > Tfreeze, set T = αT and return to 2(a).
4. Stop.

Note that in the above stochastic annealing algorithm, the penalty term
is chosen according to the Monte Carlo simulations. For HSS sampling, re-
cently Chaudhuri and Diwekar (1671) and Diwekar (2003) proposed a fractal
dimension approach that resulted in the following error term for the stochas-
tic annealing algorithm when Hammersley sequence sampling is used for the
stochastic modeling loop in Figure 5.5a.

Obj(S′) = E(Cost(S′)) + b(t)
1

Nsamp
1.8

The following example illustrates the use of the stochastic annealing algo-
rithm.

Example 5.7: In earlier chapters we have seen the maximum area problem.
Now consider a different maximum area problem from the power sector. Com-
pressors are a crucial part of any power cycle such as the Brayton cycle or the
Stirling cycle where the heat energy is converted into power. Work done in the
compression of a gas can be calculated using the first law of thermodynamics.
From the pressure-volume diagram (Figure 5.20) it can be seen that the work
done on the gas when the gas changes its state from pressure P1, volume V1,
and temperature T1 to a state at P2, V2, T2, is essentially the area under the
curve given by the following equation.

W =

∫ P2, V2

P1, V1

d PV (5.71)

For isentropic compression, this results in

W = cpT2[(
P2

P1
)(γ − 1)/γ − 1] (5.72)

where W is the work done per unit mole of the gas and cp is the molar specific
heat at constant pressure. γ is the isentropic compression coefficient for ideal
gas. If the required pressure ratio is large it is not practical to carry out the
whole of the compression in a single cylinder because of the high temperatures
that would develop. Furthermore, mechanical construction, lubrication, and
the like will be difficult. In the operation of multistage compression, it not only
avoids operational difficulties, but multistage compression followed by cooling
results in an energy savings (more area, as shown in Figure 5.20). However,
the cost and mass increase. The savings also depend on the design parameters
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Fig. 5.20. Multistage compression cycle with interstage cooling, energy savings
(shaded area) as compared with single stage compression

such as the compression ratio P2/P1, the amount of cooling expressed in terms
of the temperature change across each heat exchanger Δ T , and so on.

The work required in the multistage compression/expansion is given by

WNstages
=

Nstages∑
i=1

cpT
i
2[(

P i
2

P i
1

)(γ − 1)/γ − 1)] (5.73)

with the following associated cost for each compression stage (ASPEN Tech-
nical Reference Manual, 1982),

C =

Nstages∑
i=1

(e(7.7077+0.68 log(Wi/745.6998)) + 340A0.68
i ) (5.74)

where the first term is the cost of the compressor given in terms of the work
done W in kWatts, and the second term is the cost of the heat exchanger
given in terms of the heat exchanger area A in square meters. The objective
is to minimize the expected value of the objective function representing the
energy savings, cost, and mass (here mass is assumed to be proportional to
the cost term shown in the above equation) trade-offs with the uncertainties
in parameters u1 and u2 of the objective function given by

J =
−u1WNstages

0.000001u2C2
(5.75)
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Note that this objective function is representative and may be replaced by
one with differing weights on the power-cost trade-offs. Here we are consider-
ing the design alternatives θ to be the number of stagesNstages, pressure ratios
PR, and the heat exchanger capacities in terms of ΔT . Table 5.15 shows the
values of the design variables for a maximum five-stage compression/cooling
system. Use stochastic annealing to solve this problem and compare the solu-
tion with the fixed sampling stochastic model used in the simulated annealing
framework.

Table 5.15. The decision and uncertain variables in the multistage compression
synthesis problem

Nstages Level i PRi ΔT i u1 & u2

1 1 1.1 20
2 2 2.2 40
3 3 3.3 60 N(0.9, 1.1)
4 4 4.4 80
5 5 5.5 100

Solution: For each stage, there are NPR possible pressure ratio levels, and
NΔt possible heat capacities. A given number of stages i will have NPR

i×NΔt
i

possible parameter combinations. Therefore, one stage will have 5 × 5 = 25
combinations of allowable parameters. Two stages will have 25× 25 = 625,
and so on. Therefore, allowing one, two, three, four, or five stages gives a state
space of 10.2 million combinations, as given below.

Ncomb =

5∑
i=1

NPR
i ×NΔt

i =

5∑
i=1

5i5i = 10.2 million (5.76)

With the application of the simulated annealing algorithm and the stochas-
tic annealing algorithm, it is necessary to define the analogues to the entities
in physical annealing. Specifically, it is necessary to specify the following: the
configuration space, the cost function, the move generator, the initial and fi-
nal temperature, the temperature decrement, and the equilibrium detection
method.

The cost function was defined according to the stochastic annealing crite-
rion with the expected value of the objective function and the penalty and is
given:

Obj = E(J) + b(t)
2σj

N
1/2
samp

(5.77)

If the initial temperature is too low, the search space is limited and the
search becomes trapped in a local region. If the initial temperature is too high,
the algorithm spends a lot of time “boiling around” and wasting CPU time.
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The initial temperature is chosen to accept more than 80% of moves using the
Metropolis criterion.

The final temperature was chosen so that the algorithm stopped after ten
successive temperature decrements with no change in the optimal configu-
ration. The temperature decrement was set such that the new temperature
Tnew = αTold, where α = 0.9. Equilibrium was assumed to be reached when
the accept/reject ratio, Nacc/NT is 1:10.

The creation of a move generator is difficult because a move needs to be
“random” yet results in a configuration that is in the vicinity of the previous
configuration. An optimal move generator was created such that each move
could result in one of the following permutations of the current configurations.

1. Add a random number of stages. Set the parameters of the added stages
to the random possible levels.

2. Delete a random number of stages.
3. Remain at the same number of stages, but “bump” one of the parameters

up or down by a random number of levels (not exceeding the maximum
allowed level). When the temperature gets small enough, however, limit
the move size to plus or minus one level from the current parameter level.

The above move possibilities were weighted 10:10:80. Because the objective
function involves a large number of flat surfaces, the move generator had to
be selected carefully.

The weighing function for the penalty term at each temperature level t
was selected using the following equation.

b(t) =
0.01

(0.9)t
(5.78)

This ensures that the penalty for inaccuracy in the prediction of the ex-
pected cost function increases as one approaches optimum and also that the
penalty does not outweigh the real objective function thereby defeating the
purpose of optimization.

Figure 5.21 shows the progress of stochastic annealing represented in terms
of the real objective function (expected cost) and the penalty function in terms
of the percentage of the expected cost. It can be seen that stochastic annealing
performs as expected where the penalty function increases as one approaches
near optimum, accepting a few uphill moves to avoid local optima. Figure 5.22
shows the number of samples chosen at each temperature. One can see that,
although the penalty function is more or less monotonic, the number of sam-
ples follows the pattern of the expected cost and not the penalty function.
This is because the number of samples is correlated to the variance of the
sample, which in turn is related to the expected functionals. Therefore, from
Figure 5.22, one can easily infer that the stochastic optimization algorithm
with the fixed samples at each optimization step may not be a right strategy
to follow to obtain the given accuracy. This is because the number of samples
needed to achieve a given accuracy also depends on the expected value of the
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objective function at that step. The performance of stochastic annealing was
compared with the performance of annealing with the fixed sampled stochas-
tic model. It was found that although both of the algorithms find the global
optimum value of the expected objective function equal to −2.79, correspond-
ing to the optimal configuration of Nstages = 1, PR = 5.5, and ΔT = 100,
stochastic annealing takes 70% less CPU time than annealing with a fixed
sample stochastic model. Also, stochastic annealing automatically chooses the
samples at each optimization stage, whereas the fixed sampling annealing may
need extensive experimentation to come up with the right number of average
samples for the given accuracy requirements.

5.6 Hazardous Waste Blending Under Uncertainty

The nuclear waste blend problem presented in the previous chapter involved
consideration of discrete as well as continuous decisions and the problem was
a difficult mixed integer nonlinear programming problem. However, the major
problem at Hanford as Deborah Illman (1993) writes:
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To make matters worse, wastes are often comingled on the site, unlike
most hazardous waste sites. Organic wastes has co-contaminants—
heavy metals, fission products, transuranics. And the mixed waste
burial trenches, used from 1944–1970, may contain a mind-boggling
potpourri including solid sodium, plutonium, pyrophorics, munitions,
and other wastes in close proximity to one another. But no one is sure,
because the records are poor.

This leads to a challenging problem of determining the optimal waste blend
configuration subject to the inherent uncertainties in the waste compositions
and in the glass physical property models. In this section, the two sources of
uncertainty are briefly described. The characterization of the uncertainties in
the model is presented in the next section.

Uncertainties in Waste Composition

The wastes in the tanks were formed as byproducts in different processes
used to produce radioactive materials. Consequently, with each of these tanks
a certain degree of variability is associated. Furthermore, over a period of 40–
50 years, physical and chemical transformations within a tank have resulted
in a nonuniform, nonhomogeneous mixture. Any experimental sample of the
waste withdrawn from the tank is not representative of the tank as a whole,
which contributes significantly to the uncertainty associated with the waste
composition. This is supplemented, to a lesser extent, by the uncertainties
associated with the analytical measurements in determining the waste com-
positions.
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Uncertainties in Glass Property Models

The glass property models are empirical equations fitted to the data (i.e., glass
property values against glass compositions). Predictions made with a fitted
property model are subjected to uncertainty in the fitted model coefficients.
The uncertainties result from the random errors in property values introduced
during the testing and measurements, as well as the minor lack-of-fit of the
empirical model relative to the actual one Hopkins et al. (1994). Uncertainties
in glass property models reduce the feasible range of the application of the
glass property models, thereby affecting the optimal waste loading.

Characterization of Uncertainties in the Model

This section outlines the methodology adopted to characterize the uncertain-
ties in the waste composition and the glass property models. Because this is
a preliminary study, several assumptions have been made to keep the prob-
lem manageable and to focus on the key objective, namely, to develop an
efficient method for solving this large-scale problem in computationally af-
fordable time, and to illustrate how uncertainties affect the optimal blend
configuration. Most of the assumptions pertain to uncertainties in the waste
composition. The assumptions and simplifications used in this work are listed
in the following section.

Characterization of Uncertainties in Waste Composition

As mentioned previously, the uncertainties in the waste composition arise
due to many sources. The assumptions used in this study regarding waste
composition uncertainties are as follows.

• For this study, “waste composition uncertainty” is a general term, cov-
ering all possible uncertainties in waste feed composition. These sources
include batch-to-batch (within a waste type), sampling within a batch,
and analytical uncertainties.

• The only estimate of this “lumped” uncertainty in the composition of
the waste feed for high-level vitrification was based on the information
available (i.e., analytical tank composition data).

• There is no bias in the composition estimates; the sample values are dis-
tributed about the true mean.

• The derived component mass fractions were assumed to follow normal
distributions.

• The uncertainties of the species in the waste were assumed to be relatively
independent of each other (i.e., uncorrelated).

• The relative standard deviation for each component in a particular waste
tank was taken to be representative of all the tanks in the study. This
assumption needs to be refined as subsequent data become available.
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The procedure employed in characterizing the waste composition uncer-
tainties is as follows.

• Based on the mean and the relative standard deviation (RSD) for each
component in the tank, normal probability distributions were developed
for the individual mass fractions. For a particular tank waste, the range
of uncertainty is shown in Table 5.16.

• The above distributions were sampled to develop Nsamp waste composition
input sets (mass fractions). A stratified sampling technique (Latin hyper-
cube sampling, Iman and Shortencarier, 1984), and the novel sampling
technique, Hammersley sequence sampling, Diwekar and Kalagnanam
(1997), were both used to generate the samples, and to observe the implica-
tion of different sampling techniques on the optimum blend configuration
and the computational time.

• Given the mass fractions and the total mass of the wastes, the mass frac-
tions were normalized to 1.0.

• The mean of the input waste mass for each component, based on Nsamp

samples of the component mass fractions, was then used in the model run.

Table 5.16. Mean mass, RSD, and the uncertainty associated with component
masses for a pre-treated high-level waste in a particular tank (B-110) at the Hanford
site

Components Mass Fraction Mass(kg) RSD Uncertainty(kg)

Al2O3 0.02002 25165.1 0.15 25165.1(1±3×0.15)

B2O3 0.000856 1075.9 0.13 1075.9(1±3×0.13)

CaO 0.011293 14195.3 0.07 14195.3(1±3×0.07)

Fe2O3 0.229344 288285.2 0.04 288285.2(1±3×0.04)

Li2O – – – –

MgO 0.002687 3377.6 0.04 3377.6(1±3×0.04)

Na2O 0.080439 101111.7 0.04 101111.7(1±3×0.04)

SiO2 0.175263 220305.4 0.04 220305.4(1±3×0.04)

ZrO2 0.000041 51.4 0.12 51.4(1±3×0.12)

Other oxides 0.480056 603429.9 0.056 603429.9(1±3×0.056)

Cr2O3 0.014986 18837.4 0.03 18837.4(1±3×0.03)

F – – – –

P2O5 0.248923 312895.9 0.04 312895.9(1±3×0.04)

SO3 – – – –

Noble Metals – – – –

Characterization of Uncertainty in Physical Property Models

The uncertainty in a predicted property value for a given glass composition
is defined as (Hopkins et al., 1994)
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Uncertprop = M [xTSx]0.5 (5.79)

where,
M = multiplier, which is usually the upper 95th percentile of a t-distribution
[t0.95(n− ft)], n is the number of data points used to fit the model, and ft is
the number of fitted parameters (coefficients) in the model.
x = glass composition vector expanded in the form of the model.
S = covariance matrix of the estimated parameters (coefficients) that is, bis
and bijs.

For nonlinear property models adopted in this study, the usual glass compo-
sition vector x is augmented by second-order terms. For example, if there are
two second-order terms, x2

1 and x2x4, the usual composition vector (x1, ..., x10)
becomes (x1, ..., x10, x

2
1, x2x4). The uncertainty expression (Equation (5.79))

corresponds to a statistical confidence statement on the property model pre-
diction, considered a prediction of the mean property value for a glass com-
position x.

The uncertainty defined in Equation (5.79) affects the glass property con-
straints by narrowing the feasible region determined by the glass property
models. The form of the glass property constraints using this approach is
given by

ln(minpropval) + Uncertprop ≤
n∑

i=1

bip
i +

n∑
i=1

∑
j≥i

bijp
(i)p(j)

n∑
i=1

bifg
i +

n∑
i=1

∑
j≥i

bijp
(i)p(j) ≤ ln(maxpropval)− Uncertprop (5.80)

where minpropval and maxpropval are the lower and upper bounds on the
glass property value. It is easily observed that if Uncertprop = 0, this con-
straint formulation reduces to the deterministic equation in Chapter 3, where
no uncertainties are associated with the glass property models.

5.6.1 The Stochastic Optimization Problem

The problem of determining the optimal blend configuration in the presence
of uncertainties in the waste composition as well as in the physical prop-
erty models is posed as a stochastic optimization problem. In the previous
section, it has been shown that stochastic annealing provides an automated
efficient framework for addressing such problems. The stochastic optimization
problem requires that the quantities for the waste composition must be repre-
sented in terms of their expected values. Thus Equations (3.136)–(3.138) are
represented as

g(i)e = E[w(i)] + f (i)
e (5.81)
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Ge =

n∑
i=1

g(i)e (5.82)

p(i)e =
g
(i)
e

Ge
(5.83)

where the subscript e signifies that the quantities are based on the expected
value, and E[w(i)] signifies the expected value of the waste mass of the ith
component in the waste.

Similarly, the individual component bounds, crystallinity constraints, sol-
ubility constraints, and the glass property constraints are formulated as

p
(i)
LL ≤ p(i)e ≤ p

(i)
UL (5.84)

where UL and LL represent upper and lower bounds, respectively.

ln(minpropval) + Uncertprop ≤
n∑

i=1

bip
i
e +

n∑
i=1

∑
j≥i

bijp
i
ep

j
e

n∑
i=1

bip
i
e +

n∑
i=1

∑
j≥i

bijp
i
ep

j
e ≤ ln(maxpropval)− Uncertprop (5.85)

The approach adopted for this waste blending problem is based on a
coupled stochastic annealing-nonlinear programming (STA-NLP) technique,
which is illustrated in Figure 5.23. The solution procedure incorporates a se-
quence of three loops nested within one another. The inner loop corresponds
to the sampling loop, which generates the samples for the mass fractions (or
masses) of the different components in the waste, and evaluates the mean of
the waste mass for each tank, which is then propagated through the model
that determines the glass property constraints. It must be noted that because
uncertainties in the glass property models were incorporated by reducing the
feasible region, as mentioned previously, a sampling exercise to account for
uncertainties in the property models is not necessary. The loop above the
sampling loop is the NLP optimization loop based on successive quadratic
programming, a widely used technique for solving large-scale nonlinear opti-
mization problems. The objective function for the NLP optimizer identifies
the minimum amount of frit for a given blend configuration based on the
expected value of the masses of the components in the waste blend.

Min

N∑
i=1

f (i)
e (NLP) (5.86)

subject to

Equality Constraints
Individual Component Bounds
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Crystallinity Constraints
Solubility Constraints

Glass Property Constraints

where f
(i)
e is the composition of ith component in the frit based on the ex-

pected value of the waste composition, and subject to the uncertainties in the
physical property models.

Finally, the outer loop in the sequence consists of the stochastic annealing
algorithm which predicts the sample size for the recursive sampling loop,
and generates the blend configuration such that the total amount of frit is
minimum over all the blends:

Stochastic 
Annealing

NLP
Optimization

Sampling

Optimal
Configuration

Model

Discrete Decisions
Feasible
 Solution

Probabilistic Objective
& Constraints

Continuous 
Decisions

Fig. 5.23. Schematic diagram of the three-stage stochastic annealing (STA-NLP)
algorithm

Min
B∑

j=1

N∑
i=1

fj
(i)
e (STA) (5.87)
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where fj
(i)
e is the mass of the ith component in the frit based on the ex-

pected values for the waste composition, and the uncertainties in the physical
property models for the jth waste blend. And N and B denote the total num-
ber of components and the given number of blends that need to be formed,
respectively.

The NLP problem is solved based on the expected value of the objective
function, which is obtained from the runs of the model for the different sam-
ples, at each configuration predicted by the stochastic annealing algorithm.
The termination of the entire procedure is governed by the stochastic anneal-
ing algorithm and is dependent on the “freezing” criterion mentioned in an
earlier paper (Chaudhuri and Diwekar, 1996).

5.6.2 Results and Discussion

In order to study the effect of the uncertainties in waste composition and in
the glass property models, the stochastic optimization problem of determin-
ing the optimal blend configuration was solved using two sampling techniques:
namely, Latin hypercube and Hammersley sequence sampling. As mentioned
previously, the presence of uncertainties in the waste composition makes this
problem highly computationally intensive. In fact, a fixed sample framework
for stochastic optimization using 200 samples and Hammersley sequence sam-
pling was unable to converge on an optimal solution in 5 days (total run
time was expected to be approximately 20 days), on a DEC-ALPHA 400 ma-
chine! This demanded the use of the coupled stochastic annealing-nonlinear
programming (STA-NLP) approach to identify an optimal solution in a rea-
sonable computational time.

The optimal design configuration identified by the coupled STA-NLP ap-
proach using Latin hypercube sampling and Hammersley sequence sampling
are presented in Tables 5.17 and 5.18, respectively. The minimum quantity of
frit required using both Latin hypercube and Hammersley sequence sampling
is 11,307 kg. Nevertheless, the STA-NLP approach involving Hammersley se-
quence sampling, for which the error bandwidth was characterized based on
a scaling relationship, was found to be computationally less intensive. For ex-
ample, the STA-NLP technique using HSS and an improved formulation of
the penalty term in the stochastic annealing algorithm, through accurate er-
ror bandwidth characterizations based on the scaling relationship, took 18 h,
as opposed to 4 days using Latin hypercube sampling. The data, formulation,
and computer code for this case study can be found online on the Springer
website with the book link.
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Table 5.17. The optimal waste blend configuration in the presence of uncertainties
in the waste composition and glass physical property models (stochastic case)

Blends Tank distribution

Blend-1 7,13,14,17,18,19,21

Blend-2 4,5,6,8,9,16,20

Blend-3 1,2,3,10,11,12,15

Mass in Frit f
(i)
e (kg)

Component Blend-1 Blend-2 Blend-3

SiO2 356.49 5489.1 923.19

B2O3 37.997 826.70 0.6956

Na2O 51.624 826.74 427.28

Li2O 51.784 756.86 46.428

CaO 0.000 25.355 5.7003

MgO 0.000 0.000 43.944

Fe2O3 0.000 395.51 0.000

Al2O3 0.000 1020.0 0.000

ZrO2 0.000 0.000 0.000

Other 0.000 21.784 0.000

The sampling exercise was performed using Latin hypercube sampling

Table 5.18. The optimal waste blend configuration in the presence of uncertainties
in the waste composition and glass physical property models (stochastic case)

Blends Tank distribution

Blend-1 7,13,14,17,18,19,21

Blend-2 4,5,6,8,9,16,20

Blend-3 1,2,3,10,11,12,15

Mass in Frit f
(i)
e (kg.)

Component Blend-1 Blend-2 Blend-3

SiO2 356.81 5489.3 947.63

B2O3 38.000 828.07 1.0557

Na2O 51.741 825.30 427.37

Li2O 51.817 756.83 55.064

CaO 0.000 25.279 2.1108

MgO 0.000 0.000 14.208

Fe2O3 0.000 394.64 0.000

Al2O3 0.000 1020.6 0.000

ZrO2 0.000 0.000 0.000

Other 0.000 21.590 0.000

The sampling exercise was performed using Hammersley sequence sampling
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It can be observed that the presence of uncertainties significantly affects
the optimal blend configuration, compared to a deterministic analysis (Chap-
ter 4). In fact, given the uncertainties in the waste composition and the phys-
ical property models, the optimal design configuration obtained by Narayan
et al. (1996) for the deterministic case (Chapter 4) estimates the total frit
requirement to be 12,022 kg. The value of stochastic solution is found to be
985 kg which is significant. This study re-emphasizes the need for character-
izing uncertainties in the model for the purpose of determining the optimal
design configuration.

5.7 Sustainable Mercury Management: A Stochastic
Optimization Problem

The previous two formulations presented in earlier chapters, for Savannah
River watershed trading assumed that data is known deterministically, with-
out any uncertainty. However, for the problem of pollutant trading, there are
various possible sources of uncertainty. At the TMDL development step, the
discharge from individual point sources, and fate and transportation of mer-
cury are variable. These will affect the final bioaccumulation results, and hence
the regulations and discharge allocations. Also uncertain are the efficiencies
of various mercury treatment technologies implemented by the industries, af-
fecting the actual reduction achieved.

In the first part of the case study in incorporating uncertainty in trad-
ing mechanism, the current discharge of mercury by each industry (ai) to
be uncertain, is normally distributed around a mean value. As explained be-
fore, once the TMDL has been developed, each industry is assigned a specific
load reduction target based on the current discharge levels. Since the cur-
rent discharge values are uncertain, load allocations and subsequent decisions
are affected by the uncertainty. However, these uncertainties appear in linear
constraints of the problem, and hence a chance constrained programming ap-
proach is implemented to solve this problem. The initial MILP formulation is
used for this part of the stochastic problem.

In the second step, instead of considering uncertainties in the load, techno-
logical uncertainties are considered along with nonlinear models for technol-
ogy. This problem is then formulated as a two-stage stochastic programming
problem and solved using a decomposition strategy.

5.7.1 The Chance Constrained Programming Formulation

The formulation is an extension of MILP formulation presented in earlier
chapters and given by Equations (5.88)–(5.91). In the stochastic version, the
parameter redi is uncertain. Since TMDL value is fixed, and redi is a linear
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function of TMDL and ai, redi, and ai have the same distribution. ai is con-
sidered to be normally distributed with standard deviation σi and value used
in the previous deterministic analysis as mean. This means that parameter
redi in (5.90) is also normally distributed.

Objective:

Minimize

N∑
i=1

M∑
j=1

TCj .Di. bij (5.88)

Constraints:

tii = 0 ∀i = 1, ..., N (5.89)

redi ≤
M∑
j=1

qj .Di. bij +

N∑
k=1

tik − r

N∑
k=1

tki ∀i = 1, ..., N

(5.90)

Pi ≥
M∑
j=1

bij .TCj .Di + F
( N∑
k=1

tik −
N∑

k=1

tki
)

∀i = 1, ..., N

(5.91)

The chance constrained formulation of (5.90) is, therefore, given as

M∑
j=1

qj .Di. bij +

N∑
k=1

tik − r

N∑
k=1

tki ≥ F−1
i (α) ∀i = 1, ..., N (5.92)

Here, Fi is the cumulative distribution function of uncertain variable redi
with mean red∗i and standard deviation σi. The variations in the aggregate
load will be a function of the variations in the individual loads. Also, the
actual required reductions redi for various point sources might not be corre-
lated. However, incorporating the constraint given by (5.92) for all the point
sources ensures that the worst-case scenario under the given constraint sat-
isfaction probability (α) is accounted for. This will guarantee that there are
no localized “hotspots” due to discharge uncertainties. The constraint repre-
sented by (5.92) is used in deterministic optimization techniques to solve the
chance constrained programming problem, the results of which are reported
in the next section.

Results and Discussions

The desired reduction redi has a constant standard deviation of 5% for all
the point sources, i.e., σi = 0.05(red∗i ). This simulates ±15% uncertainty in
discharge concentration. To analyze the effect of the degree of uncertainty
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on model solution, the chance constraint analysis is carried out for 16.67%
standard deviation, i.e., σi = 0.167(red∗i ), for various values of α. This sim-
ulates ±50% uncertainty in the current discharge concentrations. The results
indicate that increase in uncertainty increases the total cost. Table 5.19 com-
pares the solutions for the two cases of uncertainty (±15% and ±50%) for
90% constraint satisfaction (α = 0.9) at TMDL 32Kg/year. It can be seen
that cost increase is also accompanied by higher discharge reduction and ad-
ditional implementation of expensive technology (technology B). Simulations
were carried out for σi = 16.67%, and when point sources cannot implement
more than one technology. This restriction can possibly be due to financial con-
straints. The simulations showed that the problem is infeasible below TMDL
30Kg/year, even if trading is an option. These results show that the pres-
ence of uncertainty causes additional cost burden to ensure load reduction
satisfaction.

Table 5.19. Solution comparison for different levels of uncertainty

σi = 5% σi = 16.67%

Total cost (Million $) 138.15 181.08
Total mercury discharge reduction (Kg) 1.032 1.359
No. of Technology A implemented 14 12
No. of Technology B implemented 4 12
No. of Technology C implemented 1 0

5.7.2 A Two-stage Stochastic Programming Formulation

As stated earlier, the data related to many mercury treatment technologies
can be uncertain. This can either be due to uncertain performance charac-
teristics of the technology (e.g., conversion efficiency, catalyst life), or due to
relatively scarce data about a new treatment technology. This leads to con-
siderable uncertainties about technology performance and cost. Under these
circumstances, one has to work with the available data to arrive at optimal
decisions. This means formulating the problem as a stochastic optimization
(stochastic programming) problem. The idea proposed in this work is to ex-
tend the nonlinear deterministic model by considering uncertainties in non-
linear technology cost functions. The following sections discuss the problem
formulation and solution methodology.

The general two-stage stochastic programming problem for pollutant trad-
ing can be represented as

Objective:

Minimize E[f1(ζ) + f2(φ, u)] (5.93)

Constraints:

Environmental constraints (regulations)
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Technological constraints (technology models)

Trading constraints (5.94)

where, f1 is the cost function corresponding to trading decisions ζ. f2 repre-
sents the technology cost models, where f2 depends on design variables φ and
uncertain parameters u. E represents the expectation operator. The specific
mercury trading problem formulation is given as

Objective:

Minimize E
[ N∑
i=1

M∑
j=1

fj(φj , Di, uj) bij
]

(5.95)

Constraints:

tii = 0 ∀i = 1, ..., N (5.96)

redi ≤
M∑
j=1

qj .Di. bij +

N∑
k=1

tik − r

N∑
k=1

tki ∀i = 1, ..., N

(5.97)

Pi ≥
M∑
j=1

fj(φj , Di, uj).bij + F
( N∑
k=1

tik −
N∑

k=1

tki
)

∀i = 1, ..., N

(5.98)

where, all notations have their previously assigned meanings. The nonlinear
cost functions fj are now dependent on the uncertain parameter set uj in ad-
dition to design parameters φj and discharge volume Di. Since the cost related
to trading does not contribute to the objective function for the complete wa-
tershed, function f1 represented in the generalized formulation is eliminated.
The decision variables in the problem are bij representing the selection of a
technology j by industry i, tik representing the amount of pollutant traded
between industries i and k, and φj representing the design parameters for the
technology. Since cost models fj are nonlinear, this represents a stochastic
nonlinear programming problem. Such problems are known to be computa-
tionally very difficult to solve.

The literature discusses various approaches to solve stochastic program-
ming problems. One such approach is a decomposition strategy that reduces
computational requirements for problem solving. In short, the given stochas-
tic programming problem is decomposed into two or multiple stages. The first
stage problem, known as the master problem, uses a linear approximation of
the nonlinear recourse function to fix the first stage decision variables. The re-
course function is exactly evaluated as a subproblem, referred to as the second
stage problem.
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For the trading model, linear approximations of the nonlinear technology
models are given by TCj , which are used to formulate a linear deterministic
problem discussed earlier. Technology selection bij and trading amount tik
represent the first stage decision variables. The first stage problem is repre-
sented as

Objective:

Minimize θ (5.99)

Constraints:

tii = 0 ∀i = 1, ..., N (5.100)

redi ≤
M∑
j=1

qj .Di. bij +

N∑
k=1

tik − r

N∑
k=1

tki

∀i = 1, ..., N (5.101)

Pi ≥
M∑
j=1

TCj .Di. bij + F
( N∑
k=1

tik −
N∑

k=1

tki
)

∀i = 1, ..., N (5.102)

θ ≥
N∑
i=1

M∑
j=1

TCj .Di. bij (5.103)

g ≤ G.ζ + θ (5.104)

where, θ represents the first stage objective function. Constraints represented
by Equations (5.100)–(5.102) are explained earlier in the text (5.103) puts a
lower bound on the linear approximation of the nonlinear cost models, while
Equation (5.104) represents the optimality cut, which is introduced after the
solution of the second stage problem. This optimality cut includes the first
stage decision variables bij and tik represented collectively here as ζ.

The first stage decisions are passed on to the second stage, where the
recourse function is computed using nonlinear models. Here, the uncertain
variables are sampledNsamp times, and the second stage subproblem is solved
for each sample to calculate the expected value of the nonlinear recourse
function. The second stage problem is thus given as

Objective:

Minimize

Nsamp∑
n=1

N∑
i=1

M∑
j=1

Cj(n). bij (5.105)

Constraints:

Cj(n) = fj(n) (5.106)
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where, Cj(n) represents the exact cost computed using the nonlinear cost
models fj for a particular sample n of the uncertain parameter set uj . The
solution of the second stage problem results in a possible generation of an
optimality cut, which is included in the subsequent master problem solution
through the computation of G and g matrices.

These problem formulations (deterministic as well as stochastic) are quite
general, applicable to any watershed and any pollutant. The next section
discusses the application of the models on the case study of mercury waste
management in the Savannah River basin. This exercise allows one to compare
the results for the linear deterministic model with those for the nonlinear
deterministic and the nonlinear stochastic models. The comparison is useful
to assess the impact of nonlinearity and uncertainty on optimal decisions.

Results and Discussions

Figure 5.24 plots the annual saving due to trading implementation for the
considered TMDL range (26Kg/year–36Kg/year) for three different models:
linear deterministic, nonlinear deterministic, and nonlinear stochastic. The
annual saving is computed as the difference between the total cost for tech-
nology option and total cost for trading options for a particular model under
consideration. It is observed that approximate linear models underestimate
the annual savings. The differences between linear deterministic and nonlin-
ear deterministic model results are significant enough, and hence should not
be ignored. The inclusion of uncertainty in the analysis predicts even higher
savings for most TMDL values. It should be noted here that trends in savings
do not necessarily reflect the trends in overall cost. Thus, although the nonlin-
ear stochastic model leads to higher savings than the nonlinear deterministic
model, the total cost with trading for the nonlinear stochastic model is not
necessarily lower than the total cost with trading for nonlinear deterministic
model. This is because saving is calculated as the difference between the total
cost for the technology option and the total cost for the trading option for
the same model type (linear, nonlinear deterministic, or nonlinear stochastic).
Since the total cost for the technology option is different for different model
types, the variations in savings do not necessarily correspond with variations
in total cost for the trading option. These results highlight the importance of
considering model nonlinearity and uncertainty while assessing the benefits of
trading.
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Fig. 5.24. Effect of nonlinearity and uncertainty on annual saving due to trading

Figure 5.25 shows the implications of nonlinearity and uncertainty inclu-
sion on technology selection for the trading option. The figure shows the num-
ber of times each technology is implemented over the complete TMDL range
(summation over all TMDL values). It can be seen that there are definite
implications on technology selection. With linear technology models, various
small industries (industries with low volumetric discharge rates) implement
technologies along with large industries (industries with large volumetric dis-
charge rates). However, when nonlinear technology models are used, large
industries implement most of the technologies, and smaller industries satisfy
the regulations by trading with these large industries. The distribution of
technology selection is observed to be similar for both models. For both mod-
els, coagulation and filtration is the technology most commonly implemented,
followed by granular activated carbon process and ion exchange process, re-
spectively.

The inclusion of uncertainty in the model, however, has important im-
plications on the distribution of technology selection. It can be seen from
Figure 5.25 that in the presence of uncertainty, granular activated carbon
treatment is implemented most often. Since this treatment is most efficient
in terms of mercury removal capability, the total number of technology im-
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plementations correspondingly goes down. The trend is again similar to the
nonlinear deterministic case where most of the smaller industries prefer to
trade with larger industries instead of installing technologies. The amount
of mercury traded is much higher than the other two cases for most TMDL
values (TMDL greater than 28Kg/year). This is because most efficient tech-
nology is getting implemented more often, and hence there is a greater scope
for trading with other industries.
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Fig. 5.25. Effect of nonlinearity and uncertainty on technology implementation
decisions

5.8 Summary

The problems in optimization under uncertainty involve probabilistic objec-
tive functions and constraints. These problems can be categorized as (1) here
and now problems, and (2) wait and see problems. Many problems involve
both here and now, and wait and see decisions. The difference in the solu-
tion of these two formulations is the expected value of perfect information.
Recourse problems normally involve both here and now, and wait and see
decisions and hence are normally solved by decomposition strategies such as
the L-shaped method. The major bottleneck in solving stochastic optimiza-
tion (programming) problems is the propagation of uncertainties. In chance
constrained programming, the uncertainties are propagated as moments, re-
sulting in a deterministic equivalent problem. However, chance constrained
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programming methods are applicable to a limited number of problems. A
generalized approach to uncertainty propagation involves sampling methods
that are computationally intensive. New sampling techniques such as Ham-
mersley sequence sampling reduce the computational intensity of the sampling
approach. Sampling error bounds can be used to reduce the computational
intensity of the stochastic optimization procedure further. This strategy is
used in some of the decomposition methods and in the stochastic annealing
algorithm.

Exercises

5.1 In the news vendor problem, the vendor must determine how many papers
(x) to buy now at the cost of c cents for a demand which is uncertain. The
selling price is sp cents per paper. For a specific problem, whose weekly
demand is shown below, the cost of each paper is c = 20 cents and the
selling price is sp = 30 cents. Assume no salvage value s = 0, so that any
papers bought in excess of demand are simply discarded with no return.
Solve the problem (1) if the news vendor knows the demand curve a priori
(Table 5.20), and (2) if the vendor does not know the demand exactly and
has to find an average value of x to be bought everyday. (3) Find VSS
and EVPI for this problem.

Table 5.20. Weekly demand

I Day Demand,(u) di
1 Monday 50
2 Tuesday 60
3 Wednesday 60
4 Thursday 60
5 Friday 50
6 Saturday 100
7 Sunday 140

Solve (1), (2), and (3) for the following situations.
– Assume salvage value to be 5 cents s = 5.
– Assume c = 25, sp = 30, and s = 0.
– Assume c = 25, sp = 30, and s = 10.
– Compare the solutions and analyze the effect of uncertainties.

5.2 We want to evaluate the future value of an initial $10,000 investment
compounded over 30 years. The uncertainty in the percent return is sum-
marized in Table 5.21, which is obtained from the last 50 year data of
Standard and Poor’s 500 Indices. Find the expected future value and its
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confidence interval and compare with the value based on the average per-
centage return.

Table 5.21. Uncertainty in percent return

Year Return Year Return Year Return

1951 −10.50 1952 19.53 1953 26.67
1956 34.11 1957 −1.54 1958 7.06
1961 −6.56 1962 27.25 1963 12.40
1966 26.33 1967 1.40 1968 17.27
1971 25.77 1972 12.31 1973 1.06
1976 31.55 1977 −29.72 1978 −17.37
1981 0.10 1982 −11.36 1983 7.66
1986 9.06 1987 12.97 1988 18.89
1991 −2.97 1992 8.48 1993 38.06
1996 26.40 1997 45.02 1998 −6.62

Year Return Year Return

1954 31.01 1955 20.26
1959 4.46 1960 26.31
1964 2.03 1965 14.62
1969 14.76 1970 −9.73
1974 −11.50 1975 19.15
1979 15.63 1980 10.79
1984 20.09 1985 −13.09
1989 −11.81 1990 23.13
1994 −14.31 1995 2.62
1999 11.78 2000 16.46

5.3 There are five beef supply vendors (v) and two distribution centers (d).
We want to minimize costs associated with the production of three beef
products (p) and delivery of these beef products to distribution centers
while satisfying the demands of the distribution centers. The following
figure (Figure 5.26) shows a conceptual diagram of this problem, where
dashed arrows represent no shipment from that vendor to that distribution
center.
Where
costD(v, d, p) Cost of shipment from vendor to distribution center
xD(v, d, p) Product shipped from vendor to distribution center
yD(v, d, p) Binary variable for product shipped
prodP (v, p) Beef production of p at vendor v
costV (v) Cost driven by beef production
yP (v, p) Binary variable of beef product
yV (v) Binary variable of vendor
dcdemand(d, p) Demand of product at distribution center
The input variables are given in Table 5.22.
Find the minimum cost using the here and now and wait and see methods
when there is 25% uncertainty in dcdemand. Note that in this problem
uncertainties are present only in the constraints; not in the objective func-
tion.

5.4 Introduce uncertainty in your simulated annealing cost function (Chap-
ter 4, Exercises) as follows.

Min Cost =

N1∑
i=1

(N1 − 3)2 + (u1N2(i)− 3)2 + (u2N3(i)− 3)2
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Fig. 5.26. Supply chain distribution

Table 5.22. Input variables for Problem 5.3

dcdemand, lb costV
p\d 1 2 v cost
1 1,720,000 810,000 1 0.8067
2 11,190,000 480,000 2 0.8427
3 3,570,000 0 3 0.8151

4 0.8073
5 0.8048

costD(v,d,p), million $/lb/yr
p = 1 p = 2 p = 3
v\d 1 2 v\d 1 2 v\d 1 2
1 0.0431 0.0065 1 0.0255 0.0759 1 0.0127 0.0212
2 0.0363 0.0871 2 0.0647 0.0180 2 0.0840 0.0759
3 0.0434 0.0117 3 0.0295 0.0373 3 0.0607 0.0648
4 0.0222 0.0153 4 0.0585 0.0065 4 0.0198 0.0492
5 0.0095 0.0797 5 0.0121 0.0342 5 0.0440 0.0382

– Take uncertainties u1 and u2 as uniform distributions between 0 and
2 (mean 1). Plot the graphs of Cost versus u1 and u2 for two con-
figurations (N1 = 1, N2(1) = 2, N3(1) = 3 and N1 = 2, N2(1) =
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1, N2(2) = 2;N3(1) = 1, N2(2) = 3). Which configuration will require
more samples to evaluate the moments correctly?

– Modify the simulated annealing algorithm to become the stochastic
annealing algorithm and plot the graph of temperature versus average
expected cost.

Bibliography

ASPEN (1982), ASPEN Technical Reference Manual, Cambridge, MA.
Beale E.M. L. (1955), On minimizing a convex function subject to linear
inequalities, Journal of the Royal Statistical Society 17B, 173.

Birge J. R. (1997), Stochastic programming computation and applications,
INFORMS Journal on Computing, 9(2),111.

Birge J. R. and F. Louveaux (1997), Introduction to Stochastic Programming,
Springer Series in Operations Research, Springer, New York, NY.

Charnes A. and W. W. Cooper (1959), Chance-constrained programming,
Management Science 5, 73.

Chaudhuri P. (1996), Process synthesis under uncertainty, Ph.D. Thesis, De-
partment of Environmental Engineering, Carnegie Mellon University, Pitts-
burgh, PA.

Chaudhuri P. and U. M. Diwekar (1996), Synthesis under uncertainty: A
penalty function approach, AIChE Journal 42, 742.

Chaudhuri P. and U. Diwekar (1999), Synthesis approach to optimal waste
blend under uncertainty, AIChE Journal 45, 1671.

Dantzig G. B. (1955), Linear programming under uncertainty, Management
Science 1, 197.

Dantzig G. B. and P. Glynn (1990), Parallel processors for planning under
uncertainty, Annals of Operations Research 22, 1.

Dantzig G. B. and G. Infanger (1991), Large scale stochastic linear programs–
Importance sampling and bender decomposition, Computational and Ap-
plied Mathematics, Brezinski and U. Kulisch (ed.), 111.

Dantzig G. B. and P. Wolfe (1960), The decomposition principle for linear
programs, Operations Research 8, 101.

Dige N. and U. Diwekar (2018), Efficient sampling algorithm for large-scale
optimization under uncertainty problems, Computers and Chemical Engi-
neering, 115, 431.

Diwekar U. M. (1995), A process analysis approach to pollution prevention,
AIChE Symposium Series on Pollution Prevention Through Process and
Product Modifications, 90, 168.

Diwekar U. (2003), A novel sampling approach to combinatorial optimization
under uncertainty, Computational Optimization and Applications,24, 335.

Diwekar U. M. and J. R. Kalagnanam (1997), An efficient sampling technique
for optimization under uncertainty, AIChE Journal, 43, 440.



214 5 Optimization Under Uncertainty

Diwekar U. M. and E. S. Rubin (1994), Parameter design method using
Stochastic Optimization with ASPEN, Industrial Engineering Chemistry
Research, 33, 292.

Diwekar U. M. and E.S. Rubin (1991), Stochastic modeling of chemical Pro-
cesses, Computers and Chemical Engineering, 15, 105.

Diwekar U. and Y. Shastri, Green process design, green energy, and sustain-
ability: a systems analysis perspective, (2010),Computers and chemical En-
gineering, 34, 1348.

Edgeworth E. (1888), The mathematical theory of banking, J. Royal Statistical
Society, 51, 113.

Higle J. and S. Sen (1991), Stochastic decomposition: An algorithm for two
stage linear programs with recourse, Mathematics of Operations Research,
16, 650.

Hopkins, D. F., M. Hoza, and C. A. Lo Presti (1994), FY94 Optimal Waste
Loading Models Development, Report prepared for U.S. Department of En-
ergy under contract DE-AC06-76RLO 1830.

Illman D. L. (1993), Researchers take up environmental challenge at Hanford,
Chemical and Engineering News, 9, July 21.

Iman R. L. and W. J. Conover (1982), Small sample sensitivity analysis tech-
niques for computer models, with an application to risk assessment, Com-
munications in Statistics, A17, 1749.

Iman R. L. and J. C. Helton (1988), An investigation of uncertainty and
sensitivity analysis techniques for computer models, Risk Analysis, 8(1),
71.

Iman, R. L. and M. J. Shortencarier(1984), A FORTRAN77 Program and
User’s Guide for Generation of Latin Hypercube and Random Samples for
Use with Computer Models, NUREG/CR-3624, SAND83-2365, Sandia Na-
tional Laboratories, Albuquerque, N.M.

James B. A. P., Variance reduction techniques (1985), Journal of Operations
Research Society, 36(6), 525.

Luckacs E. (1960),Characteristic Functions, Charles Griffin, London.
Kalagnanam J. R. and U. M. Diwekar (1997), An efficient sampling technique
for off-line quality control, Technometrics, 39(3),308.

Knuth D. E. (1973), The Art of Computer Programming, Volume 1: Funda-
mental Algorithms, Addison-Wesley, Reading, MA.

Madansky A.(1960), Inequalities for stochastic linear programming problems,
Management Science, 6, 197.

McKay M. D., R. J. Beckman, and W. J. Conover (1979), A comparison of
three methods of selecting values of input variables in the analysis of output
from a computer code, Technometrics, 21(2) 239.

Milton J. S. and J. C. Arnold (1995), Introduction to Probability and Statistics
: Principles and Applications for Engineering and the Computing Sciences,
McGraw-Hill, New York.



Bibliography 215

Morgan G. and M. Henrion (1990), Uncertainty: A Guide to Dealing with Un-
certainty in Quantitative Risk and Policy Analysis, Cambridge University
Press, Cambridge, UK.

Narayan, V., U. Diwekar and M. Hoza (1996), Synthesizing optimal waste
blends, Industrial and Engineering Chemistry Research, 35, 3519.

Nemhauser, G. L., A. H. G. Ronnooy Kan, and M. J. Todd (1989), Opti-
mization: Handbooks in operations research and management science, Vol.
1. North-Holland Press, New York.

Niederreiter, H. (1992), Random Number Generation and Quasi-Monte Carlo
methods, SIAM, Philadelphia.

Painton, L. A. and U. M. Diwekar (1995), Stochastic annealing under uncer-
tainty, European Journal of Operations Research, 83, 489.

Petruzzi N. C. and M. Dada (1999), Pricing and the newsvendor problem: A
review with extensions, Operations Research, 47(2), 183.
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6

Multiobjective Optimization

Life is a compromise, often involving more than one objective. Even Noah at
the time of the great flood faced the same dilemma. Noah’s problem was to
build an ark to accommodate a maximum number of animals and to store the
maximum amount of food on the ark.

Noah had to satisfy at least two objectives (as stated above) while satis-
fying constraints: a multiobjective optimization problem (MOP). MOP is a
cousin of (and subset of) multiple criteria decision making (MCDM). MCDM
deals with problems in which alternatives are known and perspectives are
sought. The theory behind MOP has been around for almost 50 years. Kuhn
and Tucker actually dealt with it, in passing, in their seminal paper on con-
ditions of optimality (Kuhn and Tucker, 1951). MOP deals with problems in
which the alternatives are represented implicitly with decision variables and
constraints. Obviously, keeping in line with the focus of this book, we talk
about MOP in this chapter.

Multiobjective problems appear in virtually every field and in a wide va-
riety of contexts. The importance of multiobjective optimization can be seen
from the large number of applications presented in the literature. The prob-
lems solved vary from designing spacecraft (Sobol, 1992), aircraft control sys-
tems (Schy and Giesy, 1988), bridges (Ohkubo et al., 1998), vehicles (Starkey
et al., 1988), and highly accurate focusing systems (Eschenauer, 1988) to fore-

Electronic Supplementary Material: The online version of this chapter
(https://doi.org/10.1007/978-3-030-55404-0 6) contains supplementary material,
which is available to authorized users.

This chapter is based on his class notes from Jared Cohon, President,
Carnegie Mellon University.

© Springer Nature Switzerland AG 2020
U. M. Diwekar, Introduction to Applied Optimization, Springer
Optimization and Its Applications 22,
https://doi.org/10.1007/978-3-030-55404-0 6

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55404-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-55404-0_6
https://doi.org/10.1007/978-3-030-55404-0_6


218 6 Multiobjective Optimization

casting manpower supplies (Silverman etal., 1988), selecting portfolios (Tamiz
and Jones, 1996), blending sausages (Olson and Tchebycheff, 1993), planning
manufacturing systems (Kumar et al., 1991), and solving pollution control
and management problems (Collins et al., 1988).

An MOP problem is any decision problem that can be stated in the fol-
lowing format.1

Minimize (or Maximize) Set of objectives

subject to
Set of constraints

Therefore, a generalized MOP can be represented as follows.

Optimize Z̄ = (Z1, Z2, . . . , Zk)

subject to
h(x) = 0 (6.1)

g(x) ≤ 0 (6.2)

The objective function and constraints are mathematical functions of a
set of decision variables and parameters. The form (LP, NLP, MIP, etc.) of
the equations determines the particular type of the MOP, such as MOLP for
linear programming problems, MONLP for nonlinear programming, and so
on.

MOP can be thought of as a set of methodologies for generating a preferred
solution or range of efficient solutions to a decision problem (Cohon, 1978).
For example, consider the graduate school selection problem given below.

Example 6.1: Shivani wanted to select a graduate school on the basis of the
US News and World Report rankings for engineering schools. She selected the
seven schools given in Table 6.1 from the list of top schools published in US
News in 1998. The criteria she decided to base her decision on included con-
sideration of academic rank, recruiting, and research, as shown in Tables 6.2
and 6.3. What schools should she prefer given the different criteria at which
she is looking?

Solution: From Tables 6.2 and 6.3, it can be seen that a college is better
if the rank is lower for each of the criteria, except the doctoral student-to-
faculty ratio where the higher the ratio is, the better the college. In short,
Shivani wants to minimize rankings and maximize the ratio R. To have her
selection consistent with rankings, she converted the last criterion as 1/R to
be minimized. Also, every criterion is normalized as shown in Table 6.4.

1Note that because an MOP involves a set of (a vector) objectives, instead of a
single objective, it is also referred to as vector optimization. The difference between
optimal control problems described in the next chapter and MOP is that the vector
optimization in optimal control is in the decision domain where the decision variable
is a trajectory but in MOP the vector is in the objective space.
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Figure 6.1 shows the plot of the different normalized criteria (normalized
using the maximum value in each criteria column) versus the college for Shiv-
ani. From the graph and from Table 6.1, it is easier to see that MIT (School
1) is better than Georgia Tech (School 4) as the slopes of all the lines joining

Table 6.1. Schools of engineering

School Index

Massachusetts Institute of Technology 1
Stanford University 2

Carnegie Mellon University 3
Georgia Institute of Technology 4

University of Michigan- Ann Arbor 5
California Institute of Technology 6

Cornell University 7

Table 6.2. Different criteria

Criteria Index

Academic Rank 1
Engineering Recruiters 2
Student Selectivity 3
Research Activity 4

Doctoral Student-to-Faculty Ratio 5

Table 6.3. US News criteria and ranks

Criteria
Schools 1 2 3 4 5

1 1 1 11 1 3.21
2 1 8 31 7 4.71
3 8 12 4 6 3.36
4 8 2 20 2 2.72
5 5 3 31 3 3.18
6 3 7 1 26 3.88
7 7 10 6 13 2.87

Schools 1–4 for each criterion are positive. Similarly, MIT is also better than
the University of Michigan in all the criteria she considered, whereas other
schools such as Stanford, Cal. Tech., Cornell, and Carnegie Mellon are better
or worse than MIT in at least one criterion. At this stage, Shivani can look at
the five colleges shown in Figure 6.2 as the preferred set for further selection.
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Table 6.4. Normalized objectives

Criteria
Schools 1 2 3 4 5

1 0.1250 0.0833 0.3584 0.0385 0.8465
2 0.1250 0.6667 1.0000 0.2692 0.5769
3 1.0000 1.0000 0.1290 0.2308 0.8088
4 1.0000 0.1667 0.6452 0.0769 0.9990
5 0.6250 0.2500 1.0000 0.1154 0.8545
6 0.3750 0.5833 0.0322 1.0000 0.7004
7 0.8750 0.8333 0.1936 0.5000 0.9468
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Fig. 6.1. The idea of nondominance

6.1 Nondominated Set

The preferred set in the above example is also known as the nondominated
set, a most important concept in the MOP solution method. In fact, the solu-
tion to the MOP is not a single solution, but rather is the nondominated set,
also known as the Pareto set after the French–Italian economist and sociolo-
gist Vilfredo Pareto (1964; 1971). This set is a collection of alternatives that
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Fig. 6.2. The preferred set for further selection

represent potential compromise solutions among the objectives. This concept
is illustrated using the MOLP problem derived from the chemical manufac-
turer’s problem described in Chapter 2.

Example 6.2: Consider Example 2.1 from Chapter 2. In this example, the
chemical manufacturer was using chemicals X1 and X2 to obtain a minimum
cost solvent, given that there are constraints related to storage, safety, and
the availability of materials. Let us add another dimension to the problem:
the manufacturer not only wants to minimize the cost of solvents, but also
desires to reduce the environmental impacts from the solvents as given by the
following equation.

Environmental Impacts ∝ − 0.5x1 + x2

Furthermore, he found out that a minimum amount of solvent X1 is nec-
essary to increase the durability of the process equipment, a constraint given
below.

x1 ≥ 1

Find the nondominated set of alternatives for this problem.

Solution: This problem can be formulated as the following MOLP.
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Minimize Z1 = 4x1 − x2 (6.3)

Minimize Z2 = − 0.5x1 + x2 (6.4)

x1, x2

subject to

x1 ≥ 1 Durability Constraint (6.5)

2x1 + x2 ≤ 8 Storage Constraint (6.6)

x2 ≤ 5 Availability Constraint (6.7)

x1 − x2 ≤ 4 Safety Constraint (6.8)

x1 ≥ 0;x2 ≥ 0

Figure 6.3 defines the feasible set of decision variables x1 and x2. The
shaded region with extreme points ABCD provides the feasible region for this
problem in the decision space. Because we only have two objectives, we can
graph these extreme points (Table 6.5) in the objective space as shown in Fig-
ure 6.4. The shaded region in this figure represents the feasible objective value
combinations in the objective space, corresponding to the feasible solutions in
the feasible decision space.
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Fig. 6.3. Feasibility region in decision space

To understand the concept of a nondominated set, consider the points M1

and M2 in Figure 6.5. The solution corresponding to point A gives a lower
level of both objectives than the solution corresponding to the points M1 and
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Fig. 6.4. Feasible region in the objective space

Table 6.5. Decision variables and objective values for the extreme points

Extreme points x1 x2 Z1 Z2

A 1 0 4 -0.5
B 4 0 16 -2.0
C 1.5 5 1 4.25
D 1 5 -1 4.0

M2. Point A is said to dominate these points. Considering the point M2, all
points within the area indicated by the dashed lines are said to dominate M2

because they all yield lower levels of both objectives. Using similar logic, it is
possible to show that for all points inside the boundaries of the feasible region,
there is at least one point along the BAD boundary of the feasible region that
dominates each of the inside points. Also, for points on the boundary BAD,
there are no points that dominate them. Optimal trade-offs lie along BAD.
The collection of these points is the nondominated or the Pareto set. A Pareto
optimal is also known as an Edgeworth–Pareto optimal, an efficient solution,
a nondominated solution, a noninferior, or a functional efficient solution.

Mathematically, the nondominated solution can be defined if x̄ is a par-
ticular set of feasible values for the decision variables x. A solution x̄∗ is
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Fig. 6.5. Concept of nondominated set

nondominated if it is feasible and if there is no other feasible solution x̄ such
that

Zp(x̄) ≤ Zp(x̄∗) p = 1, 2, . . . , k

where p is the number of objectives, and with at least one of these inequalities
being a strict inequality (assuming all objectives are to be minimized).

It should be noted that each point along the nondominated set in objective
space (Figure 6.4) has an equivalent point in the decision space (Figure 6.3)
but the graphical interpretation of nondominance applies only in objective
space. The corresponding decision variables can be found by using the objec-
tive values. All the solutions in the nondominated set (an infinite number for
the case of continuous variable optimization such as MOLP) are candidates
for selection, and are selected depending on the decision-maker’s preference.
As you move along the nondominated set, you are essentially trading off one
objective for another. “Perfect is the enemy of good,” is the basis of all MOP
solution methods.

6.2 Solution Methods

There is a large array of analytical techniques for multiobjective optimiza-
tion problems. Cohon (1978) reviewed many of the methods. Zeleny et al.
(1982) provided a comprehensive treatment of the entire multicriteria en-
deavor. Hwang and Masud (1979) illustrated a large number of methods by
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solving numerical examples in detail. Stadler (1988) offered broad coverage of
the field with many examples from engineering and the sciences. Chankong
and Haimes (1983a) included a rigorous development of most multicriteria
techniques. Steuer (1986) provided an especially useful review of multicriteria
linear programming theories and algorithms. Miettinen (1999) gave a thor-
ough review of nonlinear multiobjective optimization theories and methods.
The large number of multiobjective optimization methods can be classified in
many ways according to different criteria. Hwang and Masud (1979), followed
by Buchanan (1986), Lieberman (1991), and Miettinen (1999), classified the
methods according to the participation of the decision-maker in the solution
process: no preference methods, a priori methods, interactive methods, and a
posteriori methods. Rosenthal (1985) suggested three classes of solution meth-
ods: partial generation of the Pareto set, explicit value function maximization,
and interactive implicit value function maximization. In Carmichael (1981),
methods were classified according to whether a composite single objective
function, a single objective function with constraints, or many single objec-
tive functions were the basis for the approach. Here we apply the classification
presented by Cohon (1985), but extend its content, as shown in Figure 6.6.

MPB NISE NBI
Value Function
Goal Programming

ISWT
GDF
STEM

Generating MethodsGenerating Methods Preference Based MethodsPreference Based Methods

MOP MethodsMOP Methods

A Priori Interactive

ConstraintWeighting

No Preference A Posteriori

Fig. 6.6. MOP methods classification

In general, the multiobjective optimization methods are divided into two
basic types: preference-based methods and generating methods. Preference-
based methods attempt to quantify the decision-maker’s preference, and with
this information, the solution that best satisfies the decision-maker’s prefer-
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ence is then identified. Generating methods have been developed to find the
exact Pareto set or an approximation of it, and one of the generated Pareto
optimal solutions is chosen for implementation. The two sets of methods im-
ply very different things for the respective roles of the decision-maker and the
analyst/designer. Preference-based methods require the decision-maker to ar-
ticulate his or her preferences in a formal structured way. The analyst becomes
a counselor, in effect. Generating techniques put the analyst/designer in the
role of information provider, and the decision-maker is expected to make the
necessary value judgments by selecting from among the Pareto optimal solu-
tions.

Preference-based methods and generating methods exhibit both strengths
and weaknesses. Even though preference-based techniques have advantages,
such as reducing the computational burden to generate many solution alterna-
tives to approximate the whole Pareto set, the demand of a decision-maker’s
time, knowledge, and experience, which provide consistent preference, is some-
times rather difficult. Furthermore, the decision-maker may not be able to
state her preference exactly or may simply not want to reveal her preferences
to the analysts. Many of the preference-based methods suffer from an informa-
tion inadequacy; they require the decision-maker to state preferences before
she knows what the choices are, thereby stripping the analysis of that which
is of most interest to her. It is sometimes difficult for decision-makers to give
consistent preference during the process of finding one best-compromise so-
lution. The more desirable scenario would be to present the decision-maker
with the set of Pareto optimal solutions determined independent of a priori or
interactive preferences. Then the decision-makers could consider their relative
preferences for the objectives and select the final solution with the benefit of
knowing their choices, which are represented by the Pareto set.

Generating methods provide a great deal of information, emphasizing the
Pareto optimal set or the range of choice available to decision-makers, and pro-
viding the trade-off information of one objective versus another. Generating
techniques also do not require explicit value judgments from decision-makers,
allowing them instead to express their values implicitly through their selection
of an alternative. There are, however, problems with generating techniques
that are not observed with most of the preference-based techniques. First, the
generating algorithms are often complex and difficult for decision-makers to
understand. Second, the number of Pareto optimal solutions is often too large
for the decision-maker to analyze effectively. Third, the computational cost of
the existing generating methods increases rapidly with the number of objec-
tives, and it is difficult to solve high-dimensional problems. Overall, selecting
an appropriate multiobjective optimization method itself is a problem with
multiple objectives, as a large variety of methods exists for these problems
and none can claim to be superior to the others in every aspect.

As described in Figure 6.6, generating techniques can be further divided
into two subclasses: no-preference methods and a posteriori methods. No-
preference methods, including compromise programming (Zeleny 1974), mul-
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tiobjective proximal bundle (MPB); (Miettinen, 1999), and feasibility-based
methods, such as the parameter space investigation (PSI) methods (Osyczka,
1984; Sobol and Statnikov, 1982); , focus on generating a feasible solution
(e.g., all the points in the feasible region ABCD in Figure 6.4) or all the
feasible solutions instead of the Pareto set (the best feasible solutions, e.g.,
the boundary BAD in Figure 6.4). In compromise programming and MPB, a
single solution is obtained and presented to the decision-maker. The decision-
maker may either accept or reject the solution, and it is unlikely that the
best-compromised solution can be obtained by these methods. In PSI methods
the continuous decision space is first uniformly discretized using the Monte
Carlo sampling technique; next a solution is checked with the constraints.
If one of the constraints is not satisfied, the solution is eliminated and the
objective values are finally calculated, but only for those feasible solutions.
Therefore, a “discretized approximation” of the feasible objective region, in-
stead of the Pareto set, is retained by the PSI method. The solutions of this
feasibility-based method cover the whole feasible objective region rather than
covering only the optimal solutions in the Pareto set. Because most of the
feasible solutions are not Pareto optimal, a relatively small number of the
nondominated (relatively better, but not necessary to be Pareto optimal) so-
lutions must be extracted from the whole feasible solution set to formulate
an approximate representation of the Pareto set for feasibility-based methods.
A large number of runs must be used to obtain maximum feasible solutions
to ensure that a certain number of nondominated solutions can be extracted
from them to ensure an accurate representation of the Pareto set. Therefore,
the computational efficiency is low for this feasibility-based method.

Steuer and Sun (1995) used multiobjective linear problems to test the PSI
method and they found that this method is difficult to apply to problems with
more than about ten decision variables even though it has the advantage of
being insensitive to the number of objectives. On the other hand, a posteriori
methods, such as weighting methods and constraint methods, can obtain each
point of the Pareto set. It is believed that these methods are more efficient than
the feasibility-based methods such as PSI as long as there are no numerical
difficulties for a particular application.

In this chapter, I present the most commonly used and generalized tech-
niques, namely (1) the weighting method and (2) the constraint method, and
the goal programming method as one of the preference-based techniques. For
other methods, please refer to Miettinen (1999).

6.2.1 Weighting Method

The weighting method is used to approximate the nondominated set through
the identification of extreme points along the nondominated surface. An ap-
proximation of the nondominated set is formed by “connecting” the extreme
points identified. The idea of the weighting methods (Gass and Saaty, 1955;
Zadeh, 1963) is to associate each objective function with a weighting coefficient
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and minimize the weighted sum of the objectives. In this way, the multiob-
jective optimization problem is transformed into a series of single objective
optimization problems. The problem takes the following form.

Optimize Zmult =

k∑
i=1

wiZi (6.9)

subject to
h(x) = 0 (6.10)

g(x) ≤ 0 (6.11)

Theory (Kuhn–Tucker conditions) tells us that as long as all the weights
are greater than zero then the optimal solution of the weighted problem is a
nondominated solution of the original MOP. The Pareto set can be derived
by solving the number of single-objective problems of the form shown above
by modifying the weighing factors wi.

To explain this method, we return to our two-objective example.

Example 6.3: Solve the MOLP described in Example 6.1 using the weight-
ing method.

Solution: The single-objective representation of the MOLP in Example 6.1
is given below.

Minimize Zmult = w1Z1 + w2Z2 (6.12)

x1, x2

subject to

wi ≥ 0 (6.13)

x1 ≥ 1 (6.14)

2x1 + x2 ≤ 8 (6.15)

x2 ≤ 5 (6.16)

x1 − x2 ≤ 4 (6.17)

w1 ≥ 0; w2 ≥ 0 x1 ≥ 0; x2 ≥ 0

where w1, w2 represent the weights on Z1 and Z2, respectively. The solution
to this single-objective problem would be the optimal solution for a decision-
maker whose preference for these objectives was represented accurately by
these weights. Rewriting this equation in the standard form of a line gives us:

Z2 = − w1

w2
Z1 +

1

w2
Zmult (6.18)

This objective can be graphed as a line in an objective space where the slope
of the line is −w1/w2, and the intercept is given by Z = Zmult/w2. Figure 6.7
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shows the objective space representation of our two-objective problem where
contours of the line are drawn for w1/w2 = 0.5 and Z is varied from 1.5 to
5.0.
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Fig. 6.7. The weighted objective function

The solution to minimization problem (6.12) can be found graphically by
pushing the line given by Equation (6.18) as far to the southwest boundary as
possible until the line touches the boundary of the feasible region. In this ex-
ample, that solution occurs at extreme point A. Mathematically, the problem
can be solved as a single-objective LP.

In this two-dimensional form it is possible to visualize that for decision
problems with strictly linear equations, the solution to the weighting problem
will always occur at the extreme points. Furthermore, as long as the ratio
w = w1/w2 is greater than zero, the solution for minimization would be on
the southwest boundary of the feasible region. Consider the two extremes
w = 0 and w = ∞, which produce solutions D and B, respectively, in Figure
6.7. All other nonnegative values of w will produce solutions between these
two points. The approximation of the nondominated surface would be just the
straight lines that connect these extreme points. In this case, lines AD and
AB form the nondominated surface.

.
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The steps involved in this method are given below.

1. Find the individual optima for each objective. These represent the “ends”
of the nondominated set.

Optimize Z1 (6.19)

Optimize Z2 (6.20)

Optimize . . .

Optimize Zk (6.21)

2. Choose the set of nonnegative weights and solve the weighted problem.

Optimize Zmult =

k∑
i=1

wiZi (6.22)

subject to
h(x) = 0 (6.23)

g(x) ≤ 0 (6.24)

Observe where this point is in objective space and repeat with new
weights chosen to move towards regions of the nondominated set that
you would like to explore (Figure 6.8). Repeat until the approximation is
good enough.

Note that:

• It is important to have comparable scales for the objectives. If not, then
the weighting process can be difficult as only the relative weights matter.

• It was claimed that you always get nondominated solutions from the
weighted problem as long as the weights are positive. There is an im-
portant exception: when wi = 0 for one or more i. In this case, you may
get a dominated solution. Consider the two-objective case shown in Fig-
ure 6.9, for w1 = 0, where A and B are alternate optima for Z2 but only A
is nondominated. So when applying the weighting method, if (in Step 1)
you obtain an alternate optimum (multiple solutions), be sure to resolve
that problem to get a nondominated one.

The noninferior set estimation (NISE) method (Cohon, 1978; Chankong and
Haimes, 1983a,b) is one of the most referred weighting methods. However,
there are several major disadvantages of using the weighting method.

1. Its inefficiency arising from the linear combination of objectives.
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2. Its difficulty to control the region of the nondominated surface on which
the decision-maker is heavily favored. For example, a small change in the
weighting coefficients may cause big changes in the objective vectors, and
dramatically differing weighting coefficients may produce nearly similar
objective vectors.

3. In addition, an evenly distributed set of weighting vectors does not nec-
essarily produce an evenly distributed representation of the Pareto set,
even if the problem is convex (Das and Dennis, 1997). This shows a lack
of robustness. Furthermore, all of the Pareto optimal points cannot be
found if the problem is nonconvex (Miettinen, 1999).

6.2.2 Constraint Method

The constraint methods (Haimes et al., 1971; Cohon, 1978; Zeleny et al., 1982)
belong to another type of posterior methods for generating the Pareto set. The
normal boundary intersection (NBI) method (Das and Dennis, 1998) and the
minimization of single-objective optimization problems (MINSOOP) method
(Fu and Diwekar, 2003) are examples of the constraint methods. The basic
strategy is also to transform the multiobjective optimization problem into a
series of single-objective optimization problems. The idea is to pick one of the
objectives to minimize (say Z1), whereas each of the others (Zi, i = 2, . . . , k) is
turned into an inequality constraint with parametric right-hand sides (εi, i =
1, 2, . . . , k). In the MINSOOP method the values of εi, i = 1, 2, . . . , k are
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generated using the Hammersley sequence sampling. The problem takes the
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following form.

Optimize Zmult = Zi (6.25)

subject to

For Minimization Zj ≤ εj j = 1, 2, . . . , k; j 	= i (6.26)

or
For Maximization Zj ≥ εj j = 1, 2, . . . , k; j 	= i (6.27)

h(x) = 0 (6.28)

g(x) ≤ 0 (6.29)

Again, theory tells us that the original solution of this constrained problem is
a nondominated solution of the MOP. Solving repeatedly for different values
of εi the Pareto set is generated.

Example 6.4: Solve the MOLP described in Example 6.1 using the con-
straint method.



6.2 Solution Methods 233

Solution: The single-objective representation of the MOLP in Example 6.1
is given below.

Minimize Z1 = 4x1 − x2 (6.30)

x1, x2

subject to

Z2 = − 0.5x1 + x2 ≤ ε2 (e.g., ε2 = 1.0) (6.31)

x1 ≥ 1 (6.32)

2x1 + x2 ≤ 8 (6.33)

x2 ≤ 5 (6.34)

x1 − x2 ≤ 4 (6.35)

x1 ≥ 0; x2 ≥ 0

It can be seen from Figure 6.10 that the new constraint (6.31) reduced the
feasible region. The above minimization problem gives the solution N1. Notice
that this pointN1 lies on the nondominated set of the original problem. To find
the other points on the nondominated surface, the right-hand side of constraint
(6.31) is changed and the problem is resolved. By connecting these points,
an approximation to the Pareto set is obtained. Table 6.6 shows the points
generated on the surface by changing the right-hand side of the constraint
values for this problem. The approximate Pareto surface generated by this
method is shown in Figure 6.11.

Table 6.6. RHS constraint values used to estimate the nondominated set

Point ε1 ε2 Z1 Z2

B ∞ – 16 −2
D – ∞ −1 4
N1 – 1 2.5 1
N2 – −1 8.0 −1

The steps of the constraint method are given below.

1. Solve k individual optimization problems to find the optimal solutions for
each of the individual objectives.

2. Compute the value of each of the k objectives for each of the individual
optimal solutions. In this way, the potential range of values for each of the
objectives is determined. The minimum possible value is the individual-
minimization solution.
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3. For each objective and its range of potential values, select a desired level
of resolution and divide the range into the number of intervals determined
by this level of resolution. These intervals will be used as the RHS values
for the constraints that will be formed for each objective.

4. Select a single objective to be optimized. Transform the remaining objec-
tives into constraints of the form:

For Minimization Zj ≤ εj j = 1, 2, . . . , j 	= i, k (6.36)

or
For Maximization Zj ≥ εj j = 1, 2, . . . , j 	= i, k (6.37)

and add these new k − 1 constraints to the original set of constraints,
where εj represents the RHS values that will be varied.

5. Solve the constrained problem setup in Step 4 for every combination of
RHS values determined in Step 3. These solutions form the approximation
for the nondominated surface.

There is a mapping between the weighting method and the constraint
method. For details, please see Chankong and Haimes (1983a,b).

The strength of the constraint method is its ability to have better con-
trol over the exploration of the nondominated set. However, in general, this
method has difficulty locating the extreme points.
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6.2.3 Goal Programming Method

In preference-based methods, the commonly used approaches are the value
function approach and goal programming. In the value function approach, the
decision-maker provides an exact representation of the value function which
shows her preferences globally. Then the value function problem is readily
solved using any single-objective optimization method described in earlier
chapters. In goal programming, the decision-maker decides a goal for each
objective and the optimization is used to minimize the total deviations from
goals. Goal programming is one of the oldest (Charnes and Cooper, 1961)
and most widely known methods in the preference-based category. The single-
objective optimization problem in goal programming then takes the following
form.

Minimize Total deviations from the goals

Minimize Zgoal =
k∑

i=1

|(Zi − Gi)| (6.38)
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subject to
Original constraints

h(x) = 0 (6.39)

g(x) ≤ 0 (6.40)

This formulation involves defining negative (δ−) and positive deviation
(δ+) from the goals (Gi) and solving the optimization problem for the orig-
inal decision variables, and also for deviation variables as shown below. The
advantage of using this formulation for MOLP is that the resultant goal pro-
gramming problem is an LP, as it does not include the nonlinear absolute value
function. Goal programming was originally developed for MOLP problems, as
can be evident from this formulation.

Minimize Zgoal =

k∑
i=1

δ+i + δ−i (6.41)

x, δ+i , δ
−
i

subject to
Zi −Gi = δ+i − δ−i i = 1, 2, . . . , k (6.42)

h(x) = 0 (6.43)

g(x) ≤ 0 (6.44)

δ+i ≥ 0; δ−i ≥ 0

The following two objective problem explains this concept:

Example 6.5: Solve the MOLP described in Example 6.1 using the goal
programming method. The goal is to reduce the cost to −5 and emission
function Z2 to −5.

Solution: The single-objective goal programming representation of the
MOLP in Example 6.1 is given below.

Minimize Zgoal =

2∑
i=1

δ+i + δ−i (6.45)

x1, x2

δ+1 , δ
+
2 , δ

−
1 , δ−2

subject to

Z1 − (−5) = δ+1 − δ−1 (6.46)

Z2 − (−5) = δ+2 − δ−2 (6.47)

x1 ≥ 1 (6.48)
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2x1 + x2 ≤ 8 (6.49)

x2 ≤ 5 (6.50)

x1 − x2 ≤ 4 (6.51)

x1 ≥ 0; x2 ≥ 0

δ+1 ≥ 0; δ−1 ≥ 0

δ+2 ≥ 0; δ−2 ≥ 0

The objective space for the above problem is shown in Figure 6.12 as the
decision space remained no longer two-dimensional. The figure also shows the
compromise solution obtained using the above formulation. The solution to
the above LP is found to be x = (−1.0, 4.0) where the deviational variables
are δ+ = (4.0, 9.0) and δ− = (0.0, 0.0). The goal was to reach Z = (−5,−5).

There are a number of variations of goal programming used in the litera-
ture. For example, depending on the decision-maker’s preference and priorities
one can assign different weights to the deviations to take the weighted aver-
age deviation as the objective function. Lexicographic ordering uses weights
different by an order of magnitude thus driving the high-priority objective to
its goal at the expense of other objectives. One-sided goal programming does
not care about either positive or negative deviations and sets the appropriate
priority weights to zero.

Goal programming is a popular method due to its age. Goal setting is also
an understandable concept. However, this is also a major drawback of this
method as it is not a trivial task to set goals. If the goals are not set properly,
the solution may not be in the Pareto set. Furthermore, this method is not
an appropriate method if it is desired to obtain a trade-off.

6.3 Hazardous Waste Blending and Value of Research

In the earlier chapters, we have looked at the nuclear waste blending problem
formulated as LP, NLP, and MINLP by progressively including more infor-
mation about the model and/or adding more decision variables. In the last
chapter, we considered uncertainties associated with the models as well as
data in terms of probabilistic distribution functions. Sources of uncertainty
have important technical implications and reflect significant aspects of the
decision-making process. In this chapter, the policy dimension of the problem
is added to the problem through progressive extensions to the objective func-
tions to include implications of uncertainty. The details of this case study can
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Fig. 6.12. The goal programming compromise solution and deviational variables

be found in Johnson and Diwekar (1999, 2001). This analysis also introduces
a new criterion called value of research and illustrates the usefulness of using
the multiobjective framework.

Previous efforts to address the blending problem (Narayan et al., 1996;
earlier chapters), for instance, have focused solely on the cost of vitrification
(i.e., minimization of frit, which is equivalent to minimizing glass volume and,
hence, disposal costs). Although these efforts have included a representation
of the different sources of uncertainty inherent in the blending problem, they
have not recognized reduction of this uncertainty as an important objective
in itself. Significant policy dimensions related to the vitrification process have
thus been ignored. The augmented framework described in the next section
facilitates a comparative analysis of the resulting trade-offs. Although the
case study illustrates the concepts on MOP, more emphasis is placed on the
implications of uncertainty and less on the accuracy of the Pareto surface.

For this illustrative analysis, we have chosen a subset of 12 tanks divided
evenly into three blends. Initial remediation efforts at the Hanford site focus
on a limited number of storage tanks; the criticality of a tank’s condition
(its position on a “watch list”) and the compatibility of its contents with the
demands of vitrification govern the selection process (Gephart and Lundgren,
1995).
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6.3.1 Variance as an Attribute: The Analysis of Uncertainty

Sources of uncertainty in the blending problem have important technical impli-
cations and reflect significant aspects of the policy-making process surround-
ing Hanford’s remediation efforts. Expansion of the objective from minimiza-
tion of frit to include different sources of variation represents an important
methodological development, one that capitalizes on the STA-NLP framework
to make stochastic optimization a more robust mathematical technique and a
more useful tool. This section illustrates the multiobjective STA-NLP frame-
work’s advantages through progressive extensions to the blending problem’s
objective function. The base analysis is presented first, and results accom-
pany the description of each extension. The following section discusses the
corresponding implications.

6.3.2 Base Objective: Minimization of Frit Mass

In Chapter 4, we have used the SA-NLP framework for the deterministic
analysis of 21 tanks. Similar deterministic analysis of this 12 tank blending
problem yields a basis for comparison.

Table 6.7 presents the frit requirements from these preliminary solution
schemes, based on the base case objective: minimization of frit mass.

Table 6.7. Frit requirements as determined by basic solution techniques

Solution method Required frit mass (kg)

Worst case (no blending) 13410
Best case (one blend of all tanks) 9839
Deterministic solution (SA-NLP) 11,161
Single objective stochastic solution (STA-NLP) 10,060

Note that the difference between the deterministic and stochastic solutions,
the value of the stochastic solution (VSS) is 1101 kg.

Figure 6.13 presents histograms (generated using LHS) of the frit mass
requirements and the corresponding proportion of constraint violations when
the individual waste mass fraction sample values are used with the tank-blend
configuration derived from their expected value.

6.3.3 Robustness: Minimizing Variance

It can be shown that the variance in objective (e.g., varfrit) is a measure of
the STA-NLP algorithm’s robustness and can be used as another objective
in the exercise. The magnitude of varfrit, for instance, directly affects the
probability that the NLP/glass property constraints are met when actual (i.e.,



240 6 Multiobjective Optimization

0

10

20

30

40

50

60

88
00

90
00

92
00

94
00

96
00

98
00

10
00

0
10

20
0

10
40

0
10

60
0

10
80

0
11

00
0

11
20

0
11

40
0

Fr
eq

u
en

cy

(a)

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fr
eq

u
en

cy

(b)

Fig. 6.13. Distribution of (a) frit masses and (b) constraint violations for the base
Case objective: minimize frit mass

sample) values of the waste component mass fractions are used in place of their
sample mean. Hence, there is a desire to keep this source of variation as low as
possible. Including variance as an attribute produces the following objective.

Minimize Z =

n∑
i=1

f (i) + w1varfrit (6.52)

Note that “frit mass” (
∑n

i=1 f
(i)) in Equation (6.52) is an expected value,

and that varfrit has been scaled so that both terms have the same order of
magnitude. The variance of frit mass is used instead of its standard deviation.
Although portfolio theory optimization frameworks employ the latter, quality
control models like the loss function—which, such as the blending problem,
are characterized by a nonlinear domain—feature variance. This approach is
derived from Taguchi’s robust design methodology (Kacker, 1985). The de-
crease in NLP constraint violations (produced by using the waste component
mass fraction sample values rather than their means, for which the constraints
are always met) can be examined as a function of increasing frit mass (Table
6.8).
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Table 6.8. The balance between expected value and variance minimization

w1 Frit Mass (kg)
√
varfrit(kg) Constraints violated

0.50 10,255 293 11
1.0 10,075 190 6
2.0 10,647 138 2
4.0 11,558 118 0

The optimization framework illustrated here and extended in the following
section, unlike formal multiattribute decision analysis, is qualitative in nature.
A specific meaning, for instance, cannot be attached to w1. The highly non-
convex, nonlinear, and discrete character of the blending problem precludes
the assessment of “weights” customary with multiobjective optimization algo-
rithms. The parsimonious choice of an additive objective function in Equation
(6.52), as well as the selection of units and scaling factors for its terms, deter-
mines the trade-offs produced by variation of w1. Attention therefore should
focus not on the w1 term, but on the relative changes in frit mass, its variance,
and the number of constraint violations that parametric adjustments of w1

produce. The scale of w1 values explored was selected iteratively in order to
observe the complete range of the criteria of interest, in this case, constraint
violations (which decreased from a maximum of 11% to 0; see Table 6.8). An
illustration clarifies this caveat. The decrease in NLP constraint violations
(produced by using waste component mass fraction sample values rather than
their means, for which the constraints are always met) can be examined as a
function of increasing frit mass (Table 6.8).

As shown in Table 6.8, an increase in expected frit mass of approximately
4% yields an 80% reduction in constraint violations, an important factor for
decision making at Hanford. Again, the corresponding increase in w1 (from
0.5 to 2.0) that produces this result does not have a meaningful interpreta-
tion. Nor is the trade-off between frit mass and its variance constant over the
range of w1. Instead, the value of this framework lies in its ability to explore
trade-offs in terms of relative changes between different factors relevant to the
blending problem (the compromise between increasing frit mass and decreas-
ing constraint violations). The following section builds on this flexibility.

6.3.4 Reducing Uncertainty: Minimizing the Time Devoted to
Research

We have known that better characterization of the Hanford tank wastes and
glass property models would result in lower frit requirements. The decrease
in frit mass that a reduction in uncertainty yields, however, must be weighed
against the opportunity costs of pursuing the objective. The extensions intro-
duced here facilitate this analysis: an examination of the trade-offs inherent in
allocating scarce resources to reduce uncertainty. Such extensions are general-
izable to similar situations, which are ubiquitous, especially in nuclear waste
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management where the long-lived nature of the waste creates large uncertain-
ties.

The analysis rests on a key assumption: that time spent on research in-
creases understanding, and therefore decreases variation in quantitative esti-
mates derived from this knowledge. Research activities introduce their own
costs and risks; hence, time spent learning and experimenting need to be
minimized. Reducing uncertainty is profitable, however the time required to
achieve a reduction tempers the benefit. An augmented objective captures
this trade-off:

Minimize processing and disposal costs

and time devoted to reducing uncertainty (6.53)

As before, processing and disposal costs are represented by the expected
frit mass and its associated variance. As illustrated below, the sampling vari-
ance of the tank waste component mass fractions and the uncertainty in the
empirical glass property models (through its effect on constraint width) serve
as proxies for resources devoted to reducing uncertainty. The expanded blend-
ing objective therefore attempts to minimize frit mass, but—beyond finding
an optimal tank-blend assignment—limits the extent to which improved waste
characterization and more accurate glass property models contribute to this
goal. Research efforts, for instance, could aim at easing the constraint bounds
via improvements in the glass property models’ prediction error; as the con-
straints govern frit requirements, less conservative limits in an optimization
framework translate into the need for a smaller safety margin and therefore less
frit. Proportional relaxation of the constraints, however, carries an increasing
penalty: the time and opportunity costs of related research activities.

To understand how the augmented blending objective captures this trade-
off in mathematical terms, note that the type of investigation relevant to
the problem will exhibit diminishing marginal returns as uncertainty declines
nonlinearly with time spent on research. For characterization of the tank waste
components, an exponential relationship between sampling variance and time
provides an adequate first-order functional approximation of this nonlinear
dependence:

uncertainty in waste composition <=> varsamp ∝ exp(−time)

or
time ∝ − ln(varsamp) (6.54)

A similar relationship holds for the constraint width term. Note, however,
that the width of the constraint bounds varies inversely with the prediction
error of the empirical glass property models.

time ∝ − ln(prediction error) ∝ − ln(Constraint width)−1

− ln(Constraint width)−1 = ln(Constraint width) (6.55)
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Once again, minimization of resources devoted to reducing uncertainty,
taken by itself, is captured in this model by seeking tank-blend combina-
tions with larger input sampling variances and prediction errors (i.e., narrower
constraint bounds). Excessive values, however, are simultaneously penalized
through their detrimental effect on the expected frit mass and its associated
sample variance. The optimum reflects a balance in this trade-off: a low frit
mass and varfrit, with moderate values of varsamp and the constraint widths.
Combining these arguments, the augmented blending objective (multiobjec-
tive) becomes

Minimize Zmult =
n∑

i=1

f (i) + w1varfrit − w2 ln (
∑

varsamp)

+w3 ln (
∑

constraint width) (6.56)

Table 6.9 presents results of a parametric analysis of changes in the weights
wi, similar to those presented earlier in Table 6.8. Table 6.10 presents a qual-
itative summary of these results, the implications of which are discussed in
the following section.

6.3.5 Discussion: The Implications of Uncertainty

The results from the previous section have implications for optimization un-
der uncertainty in general, and the blending problem in particular. The im-
portance of attending to matters of robustness, for instance, is apparent in
Table 6.9; as reduction in frit variance is emphasized (i.e., as w1 increases),
the proportion of constraint violations decreases to zero and the frit masses
become clustered more tightly around their mean. The expected frit mass,
however, is uniformly higher with fewer constraint violations, a compromise
that illustrates the balance between reducing the volume of immobilized waste
and increasing the probability that vitrification succeeds. The multiobjective
STA-NLP framework facilitates such an analysis.

Table 6.9. Parametric results of the trade-off in reducing sources of variation

w1 w2 w3 E[fritmass]
√
varfrit % const.

(varfrit) (varsamp) (c.width) (kg) (kg) violated

0 0 0 10,255 293 11
1 1 1 10,932 214 8
1 1 3 11,061 192 9
1 3 1 9931 478 5
1 3 3 9971 337 5
3 1 1 10,815 184 2
3 1 3 10,050 175 3
3 3 1 12,008 245 2
3 3 3 11,217 230 3
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Table 6.10. A qualitative summary of the trade-off in reducing sources of variation

Focus of E[frit mass] varfrit % constraint
research violations

Robustness/
minimization of frit Increases Decreases Decreases

variance

Minimize time for
tank characterization Increases Increases Increases

Minimize time for
improving property models No change Decreases Increases

Beyond providing a framework in which similar trade-offs may be assessed,
however, policy-makers desire answers to specific questions. Note that the
most important question concerning the blending problem is not minimiza-
tion of frit mass, per se; indeed, consideration of the entire context of Han-
ford’s remediation effort and the politics of radioactive waste disposal may
decrease the priority of reducing frit mass, especially on the order of the sav-
ings seen above (compare the values in Tables 6.8 and 6.9). Expanding the
problem scale by including a larger subset of tanks, however, would increase
the importance of lowering the frit mass; a greater number of tanks would
also take better advantage of blending, and result in more impressive reduc-
tions of frit. More important are questions concerning uncertainty. To what
extent is imperfect information acceptable, and where should scarce resources
be allocated to leverage the impact of this narrow part of Hanford’s waste
remediation effort on the whole of its strategy? Not all sources of uncertainty,
after all, are significant. In pursuing answers to such questions, multiobjective
optimization works more as an exploratory tool than as a means of provid-
ing a “one best” solution. The preceding analysis illustrates this capacity. An
examination of the constraints, for instance, reveals that the crystallinity re-
quirements are most consistently violated, with the P2O5 solubility limit and
the component bound on Al2O3 frequently exceeded as well (see also Hop-
kins et al. (1994)). Resources would be profitably allocated to reducing the
error in the corresponding glass property models ahead of additional waste
pretreatment efforts designed to mitigate the effects of these limiting com-
ponents. Perhaps more significant is the ability to determine what sources
of uncertainty need to be reduced and which, in contrast, may be tolerated.
The relationship, however, among the required frit mass, its variance, and
constraint violations is complicated. As described, the constraint width terms
enter the objective function as penalties; considered in isolation on their ef-
fects on frit mass, larger values are desired (i.e., the devotion of resources to
reducing uncertainty is minimized). The “benefit” of greater uncertainty in
the tank waste distributions and glass property models, however, is balanced
by its detrimental effect on the expected frit mass and its variance.
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Results from the preceding section illustrate this relationship. As the sam-
pling variance term increases (i.e., characterization of the tank wastes is less
complete), variation in frit mass increases and constraint violations become
more numerous. This effect is not surprising: a change in the variance of the
waste component sampling distributions leads to a proportionate shift in the
frit variance and a similar impact on both the average frit mass and extent
of constraint violations. Compared to these changes, however, the variance in
frit mass decreases and the percentage of constraint violations increases with
the constraint width uncertainty (compare parts (a) and (b) of Figures 6.14
and 6.15 which illustrate the effect of increasing w3); greater uncertainty in
the glass property models translates into narrower constraint bounds, and a
smaller range across which frit requirements may vary without consequence.
This impact on process robustness leads to the conclusion that improvements
in the glass property models should come before efforts to reduce uncertainty
in the tank waste composition. The presence of nonlinearities in the glass prop-
erty models (constraints)—which inflate the effects of variance—provides one
explanation for the pattern of these results.
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Fig. 6.14. Distribution of frit masses for the different objectives (a) w3 = 1.0, (b)
w3 = 3.0
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Fig. 6.15. Distribution of constraint violations for different objectives: (a) w3 = 1.0;
(b) w3 = 3.0

The case study illustrated the usefulness of multiobjective optimization
analysis. The data, formulation, and computer code for this case study can
be found online on Springer website with the book link. A new paradigm
called value of research is introduced to provide a policy dimension to the
traditional optimization problem. This new paradigm is based on a key as-
sumption: that time spent on research increases understanding, and therefore
decreases variation in quantitative estimates derived from this knowledge.
Research activities, however, introduce their own costs and risks; hence, time
spent learning and experimenting needs to be minimized. Although reducing
uncertainty is profitable, the time required to achieve a reduction tempers the
benefit. The qualitative nature of the value of research objective in contrast to
the quantitative benefits of environmental policy programs demands the mul-
tiobjective framework with generating methods such as the weighting method
used here.
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6.4 Sustainable Mercury Management: A Multiobjective
Optimization Problem

The discharge of mercury to the watershed, although below TMDL limit, is
still harmful to humans, and consequently associated with some health care
cost. From a social perspective, it is preferable to reduce the discharge as
much as possible to avoid any harmful health effects. The inclusion of health
care cost results in a multiobjective optimization problem and is discussed
below.

6.4.1 Health Care Cost

The bioaccumulative nature of mercury and its slow dynamics make the long
term effects of mercury exposure important. Hence, it is essential to account
for such effects while quantifying health care costs. Majority of mercury accu-
mulates in the food chain as methyl mercury. Therefore, quantification of the
health care costs based on methyl mercury concentration is most appropriate.
IRIS (Integrated Risk Information System) database reports methyl mercury
reference dose for chronic oral exposure (RfD), which is the highest dose of
methyl mercury without any harmful effects. However, since the TMDL for
the Savannah River is developed on the discharge of total mercury to the
watershed, not just methyl mercury, the model needs a quantifying measure
based on total mercury. IRIS database does not report the RfD value for mer-
cury (elemental). Given these considerations, this case study quantifies the
health care costs through LC50 (Lethal Concentration 50%) value for mer-
cury. LC50 is defined as the concentration of a toxic substance (mercury) at
which 50% of the population exposed to it dies within a certain time. LC50
value of a substance is often used to quantify its harmful exposure effects.

The health care cost is a function of the final overall mercury discharge.
This discharge value is used to calculate average mercury consumption by
humans. This value is then compared with the mercury consumption rate,
at which 50% of the human population will die (calculated using the LC50
value). The comparison gives an approximate estimate of the human mortality
rate due to the discharge of mercury in the watershed.

The presence of mercury in water is dangerous to humans primarily
through fish consumption. During the development of TMDL for Savannah
watershed, it has been established that a WQS of 2.8 ng/liter leads to safe
mercury concentration in fishes (Hgsafe). Assuming a linear relationship be-
tween WQS and average mercury concentration in fishes, knowing the actual
WQS after compliance (WQSfinal) gives the average fish tissue mercury con-
centration after compliance. Then, knowing the average fish consumption per
person per day in the watershed (Favg), the total mercury intake by an in-
dividual is computed. Hgsafe is given as 0.4mg/Kg, while Favg is 17.5 g per
person per day. Thus, mercury intake per person per day in grams is given as:
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Fish mercury intake =
WQSfinal

WQS
.Hgsafe.Favg.10

−6 (6.57)

This mercury intake rate is to be compared with the rate resulting in 50%
mortality. Since the LC50 value for humans is not available, this work assumes
that the value for the fish being consumed by humans in the watershed is close
to the value for humans. The most commonly consumed fish in Savannah wa-
tershed is largemouth bass. According to the Pesticide Action Network (PAN)
database, mercury LC50 value for largemouth bass is 50μg/liter. This value
is, therefore, used in this analysis. It is assumed that chronic exposure to mer-
cury is through the consumption of contaminated water by humans. If Wavg

is the average water consumption per person per day, then the consumption
rate leading to 50% mortality can be computed. For the Savannah River wa-
tershed, Wavg is 2 liters per person per day. The 50% leather consumption
rate per person per day in grams is given as:

Water mercury intake = LC50.Wavg.10
−6 (6.58)

Let P be the population in the watershed affected by mercury pollution,
and Chealth be the health care compensation per mortality. Then the total
health care cost for the watershed is given as:

Health Cost =

(
WQSfinal

WQS
.Hgsafe.Favg.

1

LC50.Wavg

)(
P

2

)
.Chealth (6.59)

For the Savannah River watershed case,
Population affected by the consumption = P = 10000, and
Compensation for the health cost = Chealth = $ 3 Million per person

The affected population in the watershed is based on the data reported
by the US Census Bureau. The compensation amount is estimated from
USEPA. Using various published studies to quantify mortality risk to humans
due to pollution, this technical report by the USEPA proposes $ 6.1 Million
as the value of statistical life (1999 Dollars). However, it is mentioned that
for slow bioaccumulative chemicals like mercury showing long term effects,
the perceived value is less. Hence, for this analysis, the compensation value
per human mortality is taken as $ 3 Million.

The data presented here helps in the quantification of health care costs
for the Savannah River watershed. There are various simplifying assumptions
due to the lack of sufficient data. It should, however, give an approximate
estimate that can later be refined with the availability of new information.
The next section presents model results for the Savannah River watershed.

6.4.2 The Multiobjective Optimization Formulation

The multiobjective optimization problem formulation using the weighting
method, with health care cost as a part of the objective, is given by (6.60)–
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(6.67). The objective function of MINLP formulation has been appended to
include the health care cost in (6.60). This health care cost is calculated as
a function of the mortality rate, as mentioned before. Accordingly, additional
equations are included in the problem to calculate the mortality rate. redfinali

is the final reduction achieved by point source i. All other symbols have their
previously assigned meanings.

Objective:

Minimize

N∑

i=1

M∑

j=1

fj(φj , Di). bij +Whealth.Mortality.Chealth (6.60)

Constraints:

tii = 0 ∀i = 1, ..., N (6.61)

redi ≤
M∑

j=1

qj .Di. bij +

N∑

k=1

tik − r

N∑

k=1

tki ∀i = 1, ..., N (6.62)

Pi ≥
M∑

j=1

bij .TCj .Di + F
( N∑

k=1

tik −
N∑

k=1

tki
)

∀i = 1, ..., N (6.63)

redfinal
i =

M∑

j=1

qj .Di. bij +

N∑

k=1

tik − r

N∑

k=1

tki ∀i = 1, ..., N (6.64)

WQSi =
(redi − redfinal

i )

Di
∀i = 1, ..., N (6.65)

WQSfinal =

∑N
i=1 WQSi.Di
∑N

i=1 Di

(6.66)

Mortality =

(
WQSfinal

WQS
.Hgsafe.Favg .

1

LC50.Wavg

)(
P

2

)

(6.67)

where Whealth is the weight given to the health care cost. Tables 6.11 and 6.12
present the solution of this multiobjective problem for different values of
weight for TMDL 32 using the MINLP solution technique presented in Chap-
ter 4. It can be seen that as the weight of the health care cost increased,
total trading decreases, and the solution approaches to technology, the only
solution at the highest value of the weight. Health care cost is minimum for
this weight. If one looks at the optimal technology distributions shown in Ta-
ble 6.12, the distribution changes significantly for large difference in weights.
As the weights increase, the most expensive technology (B) is preferred for
both technology only and trading options.
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Table 6.11. Savannah River watershed Trading: solution for the Multiobjective
MINLP

Cost Total Health care cost
Weight Technology Trading Saving trading Technology Trading

50 130452235.193673310.4836778924.570.115079227869496.32471034449.433
90 140261054 89699583.8 50561470.250.234616535 754686.413 1023061.677
100 140261054 89699583.8 50561470.250.234616535 754686.413 1023061.677
110 140261054 92058567.8648202486.190.199095074 754686.413 1001193.029
125 140508365.4 93392704.4 47115661.050.190978968752644.2849989746.5313
150 148064638.6113525743.334538895.250.095947367 701511.352 846255.7694
175 148064638.6116469511.931595126.670.076056035 701511.352 829416.9824
200 153621723.9127452952.626168771.210.073393855671650.1444770648.4206
250 162706049.6147612341.115093708.510.029483739628064.9002 677403.85
350 171659525.4169734139.71925385.7240.002873991596619.7411601391.8552
500 171659525.4171585412.8 74112.6215 5.18E-05 596619.7411 596690.702

Table 6.12. Savannah river watershed trading: solution technology distribution for
the multiobjective MINLP

Technology distribution
Technology Trading

Weight A B C A B C

50 9 12 8 6 1 1
90 8 13 8 3 2 0
100 8 13 8 3 2 0
110 8 13 8 3 2 0
125 7 14 8 3 2 0
150 5 16 8 4 3 0
175 5 16 8 5 3 0
200 4 17 8 3 5 0
250 2 19 8 3 9 0
350 0 28 1 0 24 0
500 0 28 1 0 27 0

6.5 Summary

Multiobjective optimization is also referred to as a vector optimization be-
cause it deals with a vector of objectives. Multiobjective programming can be
thought of as a set of methodologies for generating a preferred solution or a
range of optimum solutions to a decision problem. The form of equations de-
termines the particular type of MOP, such as MOLP for linear programming,
MONLP for nonlinear programming, and so on. In 1950, Kuhn-and-Tucker
presented the theory for MOP. Since then the field has grown tremendously
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and there are a large number of solution methods available to solve problems.
The idea of nondominance forms the basis for most of the methods. There are
generating methods where the complete nondominated solutions (the Pareto
set) or all feasible solutions are generated. The most widely used methods
among these categories are weighting methods and constraint methods. Goal
programming is one of the oldest and most commonly used preference-based
techniques. In problems involving uncertainties, the MOP framework, with a
new paradigm called value of research, can help in identifying crucial sources
of uncertainties.

Exercises

6.1 A dietitian is planning a menu that consists of three main foods: A, B, and
C. Each ounce of food A contains 3 units of fat, 1 unit of carbohydrates,
4 units of protein, 2 units of cholesterol, 1 unit of Vitamin B, and 6 units
of Vitamin D. Each ounce of food B contains 6 units of fat, 2 units of
carbohydrates, 8 units of protein, 3 units of cholesterol, 3 units of Vitamin
B, and 3 units of Vitamin D. Each ounce of food C contains 2 units of fat,
5 units of carbohydrates, 2 units of protein, 1 unit of cholesterol, 2 units
of Vitamin B, and 5 units of vitamin D. The dietitian wants the meal to
provide at least 36 units of carbohydrate, 48 units of protein, 18 units of
Vitamin B, and 30 units of Vitamin D. If the prices for foods A, B, and
C are 15, 25, and 20 cents per ounce, respectively, then how many ounces
of each food should be served to minimize the cost of the meal, minimize
the fat and cholesterol contained in the meal, and satisfy the dietitian’s
requirements?

6.2 Consider a refinery that produces three types of motor oil: Standard,
Extra, and Super. The selling prices are $9.00, $13.00, and $19.00 per
barrel, respectively. These oils can be made from three basic ingredients;
crude oil, paraffin, and filler. The costs of the ingredients are $19.00, $9.00,
and $11.00 per barrel, respectively. Company engineers have developed
the following specifications for each oil.

– Standard—60% paraffin, 40% filler
– Extra—at least 25% crude oil and no more than 45% paraffin
– Super—at least 50% crude oil and no more than 25% paraffin

The CO2 emissions of Standard, Extra, and Super oils are 13.0, 11.8, and
8.0 units per barrel. With a supply capacity of 110, 90, and 70 thousand
barrels per week for crude oil, paraffin, and filler, what should be blended
in order to maximize profits as well as satisfy the requirements of the EPA
to minimize the CO2 emissions from all the products of this industry?
Solve the problem using the goal programming approach, if the goals are
to have a profit greater than or equal to $5 per barrel and CO2 emissions
less than or equal to 10 units per barrel.



252 6 Multiobjective Optimization

6.3 Solve the following two-objective NLP problem using (a) a weighting
method and (b) a constraint method with 20 parameters (wi and εi)
[from Das and Dennis (1998).

min
x

[
Z1(x) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5

Z2(x) = 3x1 + 2x2 − x3

3 + 0.01× (x4 − x5)
3

]
(6.68)

subject to

x1 + 2x2 − x3 − 0.5x4 + x5 = 2 (6.69)

4x1 − 2x2 + 0.8x3 + 0.6x4 + 0.5x2
5 = 0 (6.70)

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 ≤ 10 (6.71)

6.4 There is an isothermal batch reactor in which the following series reaction
occurs.

A → k1 B → k2 S (6.72)

where A, B, and S are reactant, desired product, and side product, respec-
tively, and k1 and k2 are reaction constants. The differential equations for
each chemical are expressed as follows.

dCA

dt
= −k1 CA (6.73)

dCB

dt
= k1 CA − k2 CB (6.74)

dCS

dt
= k2 CB (6.75)

where C is the concentration in moles per liter and t is reaction time in
hours. In this reaction we want to maximize the yield and selectivity of
product B. Yield (ξ) and selectivity (y) are defined as follows.

Z1 = ξ =
CB

CA, initial
∼ Production rate (6.76)

Z2 = y =
CB

CB + CS
∼ Purity (6.77)

Formulate the two-dimensional multiobjective optimization problem and
solve this problem when k1 is 0.1/h, k2 is 0.01/h, CA, initial is 100 moles
per liter, and the reaction time is 50 h.

6.5 The Reynolds Manufacturing Company manufactures rings and bracelets.
The production of a ring requires 1 unit of cutting, 2 units of grinding, 2
units of polishing, 1 unit of packaging, and an initial capital investment
of $100 per ring. The units of workers exposure time to the hazards are
given by

tring =
200

(x+ 1000)
2
3

(6.78)
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where x is the number of rings produced per day. A bracelet requires
2 units of cutting, 2 units of grinding, 3 units of polishing, 2 units of
packaging, an initial investment of $90 per bracelet, and workers’ exposure
time to the hazards can be obtained by

tbracelet =
1000

(y + 8000)0.6
(6.79)

where y is the number of bracelets produced per day. The unit cost of cut-
ting is $2, grinding $3, polishing $3.5, and packaging $1. The selling price
of rings is given by the following equation according to the production
rate of the company.

Pring =
1500

(x+ 1000)
1
3

(6.80)

where x is the number of rings produced per day. While the selling price
of bracelets is given by

Pbracelet =
5000

(y + 9000)0.4
(6.81)

If the availability of units of cutting is limited to 6000, units of grinding
3800, units of polishing 4900, and units of packaging 3400 per day and a
positive daily profit of $8000 is needed to keep the company running, how
many rings and bracelets should be manufactured in order to maximize
profits and minimize workers’ exposure time to the hazards?
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7

Optimal Control and Dynamic Optimization

Optimal control problems involve vector decision variables. These problems
are one of the most mathematically challenging problems in optimization the-
ory.

Consider the historic isoperimetric problem in its original form below.

Example 7.1: Formulate the isoperimetric problem faced by Queen Dido.

Solution: Queen Dido’s problem was to find the maximum area that could
be covered by a rope (curve) whose length (perimeter) was fixed. This problem
is equivalent to tracking the path of the point “P” shown in Figure 7.1 so as
to maximize the area covered by the path, given that the path length is fixed.

The area of kinematics deals with geometry of motion. Suppose object P
is traveling in the x− y plane. Then the area covered by this object is given
by

A =

∫ X

0

y(x)dx (7.1)

where y represents the displacement and A is the area covered by the curve.
The perimeter of the curve can be expressed in terms of the following equa-
tions.
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Le =

∫ √
dy2 + dx2 (7.2)

Le =

∫ X

0

√
1 + (

dy

dx
)2dx (7.3)

We want to find the maximum area covered when the perimeter is fixed
at Le. The velocity of P is defined in terms of the path characteristics such as

x

y

P

Fig. 7.1. Isoperimetric problem as a path optimization problem

the length of the arc and a unit vector tangent to the path. By introducing
kinematic terms such as displacement and velocity, we can identify the decision
variable vector as the velocity vector ux, so the problem that needs to be solved
is then given by

Maximize A =

∫ X

0

y(x) dx (7.4)

ux

subject to
dy(x)

dx
= ux Kinematic Constraint (7.5)

Le =

∫ X

0

√
1 + (

dy

dx
)2 dx Perimeter Constraint (7.6)

As can be seen above, the problem involves path optimization where the
vector ux is the decision variable. The constraints constitute differential equa-
tions in terms of the path-dependent state variables. Surprisingly enough,
these types of problems gave rise to the first systematic theory of optimiza-
tion.
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Groningen,
January 1, 1697

AN ANNOUNCEMENT

I, Johann Bernoulli, greet the most clever mathematicians in the
world. Nothing is more attractive to intelligent people than an hon-
est, challenging problem whose possible solution will bestow fame and
remains as a lasting monument. Following the example set by Pas-
cal, Fermat, etc., I hope to earn the gratitude of the entire scientific
community by placing before the finest mathematicians of our time
a problem which will test their methods and the strength of their in-
tellect. If someone communicates to me the solution of the proposed
problem, I shall then publicly declare him worthy of praise.

Calculus of variations defines the first systematic theory of optimization
as a solution to the famous Brachistochrone (Greek for the “shortest time”)
problem presented by John Bernoulli to challenge the whole world (please see
the announcement above). In 1696 John Bernoulli challenged the mathemati-
cians to find the Brachistochrone, that is, the planar curve that would provide
the shortest transit time. The Brachistochrone problem is as follows. What
is the slide down which a frictionless object would slip in the least possible
time? Thus it was natural for Galileo in 1637 to propose that the solution is
a circular arc. In falling under gravity, an object accelerates quickly so that
a wire bent in the shape of the circular arc shown in Figure 7.2a would offer
a faster time of transit to a bead sliding down it under the action of gravity
than a straight line joining the two points. However, the correct solution to
this problem was a cycloid (Figure 7.2b) derived using various physical and
mathematical analogies. The satisfactory solution was, however, based on the
method of calculus of variations. The name of the method is derived from the
fact that it is based on the vanishing of the first variation of a functional. A
functional is defined as a quantity or function that depends upon the entire
course or path (path optimization) of one or more functions rather than on a
number of scalar variables.

These problems, also known as optimal control problems, are a subset
of problems called differential algebraic optimization problems (DAOPs), as
the underlying model for these problems is a dynamic model consisting of
differential and algebraic equations.

A differential algebraic optimization problem in general can be stated as
follows.

Optimize J = j(xT ) +

∫ T

0

k(xt, θt, xs) dt (7.7)

θt, xs



262 7 Optimal Control and Dynamic Optimization

x

y

(a) 

Wrong Solution

y

x

(b) 

Right Solution

Fig. 7.2. The Brachistochrone problem solutions. (a) Circular arc: Galileo’s solu-
tion. (b) Cycloid: Bernoulli’s solution

subject to
dxt

dt
= f(xt, θt, xs) (7.8)

h(xt, θt, xs) = 0 (7.9)

g(xt, θt, xs) ≤ 0 (7.10)

x0 = xinitial

θ(L) ≤ θt ≤ θ(U)

xs(L) ≤ xs ≤ xs(U)

where J is the objective function given by Equation (7.7), xt is the state vari-
able vector (nx×1 dimensional) at any time t, θt is the control vector, and xs

represents the scalar variables. It is obvious that the objective function can
only be calculated at the end of operation T . Equations (7.9) and (7.10) repre-
sent the equality (m1 constraints) and inequality constraints (m2 constraints,
including bounds on the state variables), respectively (constituting a total of
m constraints). θ(L) and xs(L) represent the lower bounds on the set of con-
trol variables θt and the scalar variable xs, respectively, and θ(U), xs(U) are
the corresponding upper bounds. In the absence of the scalar decision vari-
ables xs, a DAOP is equivalent to an optimal control problem and is the focus
of this chapter. As most of the solution methods to optimal control problems,
in their original form, did not consider bounds on the control variables (θ(L)
and θ(U)), initially we neglect the bounds on the control variables.

Calculus of variations had its origin in the belief that God had constructed
the universe to operate in the most efficient manner, and to understand the
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principles of the universe “something” needs to be minimized. For example, in
1957 Fermat invoked such a principle in declaring that light travels through a
medium along the path of least time of transit. Engineering efforts to design an
efficiently self-correcting electromechanical apparatus, relative to some target
object, gave rise to the discipline of optimal control. Systematic methods
to solve these problems involve the maximum principle due to Pontryagin
(Boltyanskii et al., 1956; Pontryagin, 1956, 1957), a Russian mathematician,
and Bellman’s principle of optimality (Bellman, 1957), leading to the dynamic
programming technique.

Calculus of variations considers the entire path of the function and opti-
mizes the integral by minimizing the functional by making the first derivative
vanish (first-order condition for nonlinear systems, Chapter 3), resulting in
second-order differential equations that can be difficult to solve. Other ap-
proaches keep the first-order differential system as is but transform

• The integral objective function into a Hamiltonian Ht, a nonlinear objec-
tive function for each time step that can be optimized using a (discretized)
variable θt for that step. This results in n NLP optimization problems
corresponding to n time steps. However, this maximum principle transfor-
mation needs to include additional variables and corresponding first-order
differential equations, referred to as adjoint variables and adjoint equa-
tions, respectively.

• The problem into an equivalent first-order system involving partial differ-
ential equations based on the principle of optimality. This results in the
Hamilton–Jacobi–Bellman equations that may not be easy to solve. How-
ever, this dynamic programming method provides the basis for stochastic
optimal control problems.

In short, the general mathematical techniques used to solve optimal control
problems include the calculus of variations, Pontryagin’s maximum principle,
and dynamic programming. Nonlinear programming optimization methods
can also be applied to optimal control problems provided that the complete
system of differential equations is transformed into nonlinear algebraic equa-
tions. The first three methods treat the decision variables as vectors, whereas
the NLP approach requires the variables to be transformed into scalars and
then the nonlinear programming techniques defined in Chapter 3 can be used.

7.1 Calculus of Variations

As seen earlier, the theory of optimization began with the calculus of varia-
tions, which is based on the theorem of minimum potential energy (because
energy is a path-dependent quantity), leading to the Euler equations and nat-
ural boundary conditions. A functional is defined as a quantity or function
that depends upon the entire course or path of one or more functions rather
than on a number of scalar variables. Application of the minimum-energy



264 7 Optimal Control and Dynamic Optimization

principle involves the definition of stationary values for a function, or a set
of functionals. In the above optimal control definition, the objective function
J is a functional that depends upon the entire path from time equal to zero
to time equal to T . Remember that we are neglecting the bounds θ(L) and
θ(U) on the control variables and are assuming that the scalar variables xs are
fixed. Also, at the first part of the derivation, the constraints are not included.
To obtain the extremum value of J , the total differential of Equation (7.7) is
equated to zero, as follows.

∫ T

0

dJ =

∫ T

0

[
∂J

∂θ
δθ +

∂J

∂θ′
δθ′

]
dt = 0 (7.11)

The left-hand side is called the first variation of the integral J . In order
to eliminate the variations with respect to δθ′, where θ′ = dθ/dt, the second
term of the above equation is integrated by parts.

∫ T

0

∂J

∂θ′
δθ′dt =

[
∂J

∂θ′

]T
0

[dθ]T0 −
∫ T

0

d( ∂J
∂θ′ )

dt
δθdt (7.12)

By substituting Equation (7.12) in Equation (7.11) and imposing the
boundary condition that dθ = 0 at t = 0 and t = T , the following
equation results.

∫ T

0

dJ =

∫ T

0

[
∂J

∂θ
−

d( ∂J
∂θ′ )

dt

]
δθdt (7.13)

The above integral must vanish for all admissible values of ∂θ, which re-
quires that the expression inside the brackets in Equation (7.13) be zero (the
first-order necessary condition for minimization and maximization of a non-
linear programming problem); that is,

∂J

∂θ
−

d( ∂J
∂θ′ )

dt
= 0 (7.14)

The above differential equation is known as the Euler differential equation,
corresponding to the functional given in Equation (7.7). This, together with
the boundary conditions, determines the function θ.

If the functional J is also constrained by equality constraints, then the
application of the calculus of variations leads to Euler-Lagrangian equations.
In the Euler-Lagrangian formulation, the objective function is augmented to
include constraints through the use of Lagrangian multipliers μi and λj , as
given below.

Optimize L = j(xT )

∫ T

0

k(xt, θt, xs) dt

θt, μi, λjj , λkk +
∑
i

μT
i (

dxi

dt
− f(xt, θt, xs)) +
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+

JJ∑
jj=1

λjjh(xt, θt, xs)

+

KK∑
kk=JJ+1

λkk(g(xt, θt, xs) (7.15)

By applying the first-order condition for optimization, that is, the first
derivative with respect to the control variable, and the Lagrange multipliers
(for equality constraints) should cause results in Euler-Lagrangian differential
equations to disappear.

∂L

∂θ
−

d( ∂L
∂θ′ )

dt
= 0 (7.16)

∂L

∂xi
−

d( ∂L
∂x′

i
)

dt
= 0 (7.17)

h(xt, θt, xs) = 0 (7.18)

gl(xt, θt, xs) = 0 λl ≥ 0 (7.19)

gm(xt, θt, xs) ≤ 0 λm = 0 (7.20)

The following example demonstrates the application of the calculus of
variations to the isoperimetric problem.

Example 7.2: Example 7.1 formulated the isoperimetric problem in terms
of the differential equations derived using kinematics. Solve this problem using
the calculus of variations.

Solution: Example 7.1 resulted in the following formulation. For simplicity,
we are replacing the displacement variable y by x1, the variable x by t, and
the velocity vector ux by ut.

Maximize A =

∫ T

0

x1(t) dt (7.21)

ut

subject to

dx1

dt
= ut x1(0) = 0.0 Kinematic Constraint (7.22)

Le =

∫ T

0

√
1 + (

dx1

dt
)2 dt Perimeter Constraint (7.23)

To include the perimeter constraint in the formulation, let us introduce a
new state variable x2 that relates to the perimeter constraint as follows.
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dx2

dt
=

√
1 + (

dx1

dt
)2 x2(0) = 0.0; x2(T ) = Le (7.24)

dx2

dt
=

√
1 + u2

t x2(0) = 0.0; x2(T ) = Le (7.25)

Now, the problem is reduced to solving the maximization problem given by
Equation (7.21) subject to the two constraints given by the differential equa-
tions (7.22) and (7.25). Combining these two constraints with the objective
function, the problem results in the following Euler-Lagrangian formulation.

Minimize

∫ T

0

L =

∫ T

0

(−x1(t) + μ1(
dx1

dt
− ut)

ut, μ1, μ2 + μ2(
dx2

dt
−
√

1 + u2
t ))dt (7.26)

where μ1 and μ2 are t-dependent Lagrange multipliers for the two constraints.
Introducing x′

1 = dx1/dt and x′
2 = dx2/dt results in

Minimize

∫ T

0

L =

∫ T

0

(−x1(t) + μ1(x
′
1 − ut)

ut, μ1, μ2 + μ2(x
′
2 −

√
1 + u2

t ))dt (7.27)

Application of the calculus of variations to the above problem results in
the following Euler-Lagrangian formulation.

Taking the partial derivative of the functional given in Equation (7.27)
with respect to x1 results in

∂L

∂x1
−

d( ∂L
∂x

′
1

)

dt
= 0 =⇒ dμ1

dt
= − 1 (7.28)

The partial derivative with respect to x2 and ut leads to the following equa-
tions.

∂L

∂x2
−

d( ∂L
∂x

′
2

)

dt
= 0 =⇒ dμ2

dt
= 0 (7.29)

∂L

∂ut
−

d( ∂L
∂u′

t
)

dt
= 0 =⇒ μ1 + μ2

ut√
(1 + u2

t )
= 0 (7.30)

Equations (7.28) and (7.29) integrate into

μ1 = −t + c1 (7.31)

μ2 = c2 (7.32)

where c1 and c2 are integration constants.
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Substituting in Equation (7.30) results in the following expression for the
ut.

0 = −t+ c1 +
c2ut√
1 + u2

t

(7.33)

This leads to

ut =
dx1

dt
= ± t− c1√

c22 − (t− c1)2
(7.34)

This in turn leads to

x1(t) = ±
√
c22 − (t− c1)2 (7.35)

The boundary condition of x1 (x1(0) = 0.0) leads to c2 = c1. This is the
equation for a semicircle with its center at c1 and a radius of c2 as shown in
Figure 7.3.

t

x

T

Fig. 7.3. Solution to the isoperimetric problem

x2(t) =

∫ t

0

c2√
c22 − (t− c1)2

dt (7.36)

x2(t) = c2 arcsin
t− c1
c2

+ c3 (7.37)

From the boundary conditions for x2, the values of the integration constant
can be determined as follows.

The boundary condition x2(0) = 0 leads to c3 = c2π/2, and x2(T ) =
Le = πc2 results in c1 = T/2 and c2 = T/2. This implies that the curve is the
semicircle with a radius equal to Le/π, the same solution as given by Queen
Dido.
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7.2 Maximum Principle

In the maximum principle formulation (the right-hand side of Equation
(7.38)), the objective function is represented as a linear function in terms
of the final values of x and the values of c, where c represents the vector
of constants. The maximum principle formulation for the above-mentioned
DAOP is given below.

Maximize J = j(xT ) +

∫ T

0

k(xt, θt, xs)dt = cTxT =
nx∑
i=1

cixi(T )

θt (7.38)

subject to
dxt

dt
= f(xt, θt, xs) (7.39)

h(xt, θt, xs) = 0 (7.40)

g(xt, θt, xs) ≤ 0 (7.41)

x0 = xinitial

where nx refers to the number of state variables xt in the problem (xt is an
nx×1-dimensional vector). By using the Lagrangian formulation for the above
problem, fixing scalar variables xs, and removing the bounds θ(L) and θ(U)
on the control variable vector θt, one obtains

Maximize J∗ = cTxT + λ1(h(xt, θt, xs)) + λ2(g(xt, θt, xs))

θt (7.42)

subject to
dxt

dt
= f(xt, θt, xs) (7.43)

x0 = xinitial

where
λ = [λ1, λ2]

Application of the maximum principle to the above problem involves the
addition of nx adjoint variables zt (one adjoint variable per state variable), nx
adjoint equations, and a Hamiltonian, which satisfies the following relations.

H(zt, xt, θt) = zTt f(xt, θt, xs) =
nx∑
i=1

zifi(xt, θt) (7.44)

dzi
dt

= −
n∑

j=1

zj
∂fj
∂xi

(7.45)
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zT = c (7.46)

The boundary conditions given above (Equation (7.46)) are often true, but
not always. When present, they play an important role in the final stages of the
solution. Therefore, it is important to keep track of the boundary conditions.
As stated earlier, we have one objective H for each time step. The optimal
decision vector θt can be obtained by extremizing the Hamiltonian given by
Equation (7.44) for each time step. θt can then be expressed as:

θt = H∗(xt, zt, λ) (7.47)

where H* denotes the function obtained by using the stationary condition
(dHt/dθt) for the Hamiltonian. It should be noted that this principle does
not apply in all situations. It applies only if the functions in the maximiza-
tion problem are convex. It is possible to derive the necessary condition for
optimality in the calculus of variations from the maximum principle when
the decision vector is not constrained. Conversely, by using the technique of
the calculus of variations, the weakened form of the maximum principle can
be derived. These derivations are presented in Fan (1966), and the interested
reader is referred to this book on the maximum principle for further details.

Example 7.3: Formulate the isoperimetric problem using the maximum
principle.

Solution: The isoperimetric problem formulated earlier (see Examples 7.1
and 7.2) written in terms of two state variables x1 and x2 is given below.

Maximize A =

∫ T

0

x1(t) dt (7.48)

ut

subject to
dx1

dt
= ut x1(0) = 0.0; (7.49)

dx2

dt
=

√
1 + u2

t x2(0) = 0.0; x2(T ) = Le (7.50)

Remember that in the maximum principle, we need to express the objective
function in terms of linear combinations of the final state variables x(T ) as
shown in Equation (7.38). To solve this problem, an additional state variable
x3(t) is introduced which is given by

x3(t) =

∫ t

0

x1(t) dt (7.51)

The problem can then be written as:
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Maximize x3(T ), (7.52)

ut

subject to the following differential equations for the three state variables.

dx1

dt
= ut x1(0) = 0.0; x1(T ) = 0.0 (7.53)

dx2

dt
=

√
1 + u2

t x2(0) = 0.0; x2(T ) = Le (7.54)

dx3

dt
= x1(t) (7.55)

The Hamiltonian function, which should be maximized, is

Ht = z1ut + z2

√
1 + u2

t + z3x1(t) (7.56)

And the adjoint equations are

dz1
dt

= − z3, (7.57)

dz2
dt

= 0, (7.58)

Note that we are not imposing any final boundary condition on the above
equations, as we know both boundary conditions for the variables x1 and x2.
However, for z3, the final boundary condition (derived from Equation (7.46))
is active and is given by

dz3
dt

= 0, z3(T ) = 1 =⇒ z3(t) = 1 (7.59)

From the above equations, we have

dz1
dt

= − 1 =⇒ z1(t) = − t+ c1 (7.60)

z2(t) = c2, (7.61)

The Hamiltonian function in Equation (7.56) can be written as:

Ht = z1ut + z2

√
1 + u2

t + x1(t) (7.62)

From the optimality condition ∂H/∂ut = 0, it follows that

ut =
dx1

dt
= ± t− c1√

c22 − (t− T )2
(7.63)

x1(t) = ±
√
c22 − (t− c1)2 (7.64)
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x2(t) = c2 arcsin
t− c2
c2

+ c3 (7.65)

It can be easily seen from Equations (7.63)–(7.65) and from Equations
(7.34)–(7.37) in Example 7.2 that the formulations lead to the same results,
where in the case of the calculus of variations the t-dependent Lagrange mul-
tipliers μi are equivalent to the adjoint variables zi in the maximum principle
formulation.

7.3 Dynamic Programming

Dynamic programming is based on Bellman’s principle of optimality, as de-
scribed below.

An optimal policy has the property that whatever the initial state and initial
decision are the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

In short, the principle of optimality states that the minimum or maximum
value (of a function) is a function of the initial state and the initial time.

In the calculus of variations, we locate a curve as a locus of points as
shown in Figure 7.4a, whereas dynamic programming considers a curve to
be an envelope of tangents (Figure 7.4b). In that sense, the two theories are
dual to each other. However, the duality and equivalence remain valid only
for deterministic processes.

(a) (b)

P P

Fig. 7.4. Calculus of variations and dynamic programming
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Dynamic programming is best suited for multistage processes, where these
processes can be decomposed into N stages as shown in Figure 7.4b. However,
application of the dynamic programming technique to a continuously oper-
ating system leads to nonlinear partial differential equations, the Hamilton–
Jacobi–Bellman (H-J-B) equation that can be tedious to solve. A brief deriva-
tion of the H-J-B equation is given below. For details, please refer to Bellman
(1957), Aris (1961) , and Kirk (1970).

The optimal control problem described earlier involves the process de-
scribed by the state equations:

dxt

dt
= f(xt, θt, xs) (7.66)

which are to be controlled so as to minimize the performance measure given
by J :

Optimize J = j(xT ) +

∫ T

0

k(xt, θt, xs) dt (7.67)

θt

Introducing a dummy variable of integration τ , where t ≤ τ ≤ T , the
performance measure in the interval [t, T ] is

Optimize j(xT ) +

∫ T

t

k(xτ , θτ , xs) dτ (7.68)

θτ

By subdividing into ns+ 1 intervals, we obtain

Optimize j(xT ) +
ns∑
j=1

∫ tj+�t

tj

k(xτ , θτ , xs) dτ . . .

θτ +

∫ T

tns+�t

k(xτ , θτ , xs) dτ (7.69)

The principle of optimality requires that Jopt(x(t), t) is equal to

Optimize Jopt(x(t+�t), t+�t) +

∫ t+�t

t

k(xτ , θτ , xs) dτ

θτ (7.70)

where Jopt(x(t+�t), t+�t) is the optimum objective for the time interval
t+� t ≤ τ ≤ T with the initial state x(t+�t).

Assuming that the second partial derivative of the function J exists and is
bounded, we can expand Jopt(x(t+�t), t+�t) as a Taylor series (neglecting
the higher derivatives) about the point (x(t), t) to obtain
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Jopt(x(t), t) = Optimize

∫ t+�t

t

k(xτ , θτ , xs) dτ + J(x(t), t)

θτ

+

[
∂J

∂t

]
� t +

[
∂J

∂x

]T
[x(t+�t) − x(t)]

(7.71)

For a small �t, the above equation reduces to

Jopt(x(t), t) = Optimize k(xt, θt) � t + J(x(t), t))

θt

+

[
∂J

∂t

]
� t +

[
∂J

∂x

]T
[dx(t)] (7.72)

Dividing Equation (7.72) by �t and substituting the value of dx/dt from
the differential equation (7.66) and further by virtue of the fact that the left-
hand side is not a function of θt, the following equation results.

0 = Optimize k(xt, θt) +

[
∂J

∂t

]
+

[
∂J

∂x

]T
[f(xt, θt, xs)]

θt (7.73)

Defining the Hamiltonian as a function of x(t), ∂J/∂x, t, the above equa-
tion results in what is referred to as the Hamilton–Jacobi–Bellman equation:

0 =

[
∂J

∂t

]
+ H

(
x(t),

∂J

∂x
, t

)
(7.74)

where

H = Optimize k(xT , θT ) +

[
∂J

∂x

]T
[f(xT , θT , xs)]

θT (7.75)

As can be seen, the dynamic programming optimality conditions lead to
the H-J-B equation, a first-order partial differential equation as compared to
the second-order differential equations of the calculus of variations, but it can
also be tedious to solve.

Although the mathematics of dynamic programming look different from
the calculus of variations or the maximum principle, in most cases it leads to
the same results, as can be seen from the following isoperimetric problem.

Example 7.4: Solve the isoperimetric problem using dynamic program-
ming.
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Solution: Once again the isoperimetric problem formulated earlier can be
written as follows.

Maximize A =

∫ T

0

x1(t) dt (7.76)

ut

subject to
dx1

dt
= ut x1(0) = 0.0; (7.77)

dx2

dt
=

√
1 + u2

t x2(0) = 0.0; x2(T ) = Le (7.78)

Introducing a new variable I(t) =
∫ T

t
x1(τ)dτ leads to

Maximize A =

∫ t

0

x1(t) dt + I(t) (7.79)

ut

The H-J-B equation derived for (7.79) is

∂I

∂t
+ Maximize x1(t) + ut

∂I

∂x1(t)
+

√
1 + u2

t

∂I

∂x2(t)
= 0

ut (7.80)

or

Maximize x1(t) + It + Ix1
ut + Ix2

√
1 + u2

t = 0

ut (7.81)

where

It =
∂I

∂t
; Ix1

=
∂I

∂x1(t)
; Ix2

=
∂I

∂x2(t)

H = Maximize Ix1
ut + Ix2

√
1 + u2

t

ut (7.82)

Maximizing with respect to ut leads to

Ix1
+

ut√
1 + u2

t

Ix2
= 0 (7.83)

Differentiating Equation (7.81) with respect to x1 and x2 leads to

dIx1

dt
= − 1 =⇒ Ix1

= − t+ c1 (7.84)
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dIx2

dt
= 0 =⇒ Ix2

= c2 (7.85)

Substituting the values in Equation (7.83) results in

ut =
dx1

dt
= ± t− c1√

c22 − (t− T )2
(7.86)

x1(t) = ±
√
c22 − (t− c1)2 (7.87)

x2(t) = c2 arcsin
t− c1
c2

+ c3 (7.88)

It can be seen from the earlier Examples 7.2 and 7.3 and the above equa-
tions that the formulation using the calculus of variations and the maximum
principle, dynamic programming, leads to the same results, where in the case
of the calculus of variations the t-dependent Lagrange multipliers μi are equiv-
alent to adjoint variables zi in the maximum principle formulation. These are
equivalent to the partial derivatives of the function with respect to the state
variables in dynamic programming, Ix1

and Ix2
. Thus it leads to the same

solution as before.

The advantage of dynamic programming over the other methods is that it
is possible to use dynamic programming when the constraints are stochastic, as
is discussed in the next section. However, dynamic programming formulation
leads to a solution of partial differential equations that can be tedious to solve.
Recently, a first version of the stochastic maximum principle was presented
using the analogy between dynamic programming and the maximum principle.
Interested readers are referred to Rico-Ramirez and Diwekar (2004). In the
last section of this chapter, we present a real-world case study where we show
that a problem solution can be simplified when one uses a combination of
these methods.

7.4 Stochastic Processes and Stochastic Optimal Control

A stochastic process is a variable that evolves over time in an uncertain way.
A stochastic process in which the time index t is a continuous variable is
called a continuous-time stochastic process. Otherwise, it is called a discrete-
time stochastic process. Similarly, according to the conceivable values for xt

(called the states), a stochastic process can be classified as being continuous
state or discrete state.

Stochastic processes do not have time derivatives in the conventional sense
and, as a result, they cannot always be manipulated using the ordinary rules
of calculus. This is because, in general, the solution to a stochastic differen-
tial equation is not a single value for the function, but rather is a probability
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distribution. As a result, the typical mathematical techniques used to solve op-
timal control problems namely calculus of variations, Pontryagin’s maximum
principle, and nonlinear programming algorithms cannot be directly applied.
To work with stochastic processes, one must make use of Ito’s lemma and the
dynamic programming formulation. This lemma, called the fundamental theo-
rem of stochastic calculus, allows us to differentiate and to integrate functions
of stochastic processes.

One of the simplest examples of a stochastic process is the random walk
process. The Wiener process, also called a Brownian motion, is a continuous
limit of the random walk and is a continuous-time stochastic process. The
Wiener process can be used as a building block to model an extremely broad
range of variables that vary continuously and stochastically through time.
For example, consider the price of a technology stock. It fluctuates randomly
but over a long time period has had a positive expected rate of growth that
compensated investors for risk in holding the stock. Can the stock price be
represented as a Wiener process? The following paragraphs establish that
stock prices can be represented as a Wiener process, as it has the following
important properties.

1. It satisfies the Markov property. The probability distribution for all future
values of the process depends only on its current value. Stock prices can
be modeled as Markov processes, on the grounds that public information
is quickly incorporated in the current price of the stock and past patterns
have no forecasting values.

2. It has independent increments. The probability distribution for the change
in the process over any time interval is independent of any other time
interval (nonoverlapping).

3. Changes in the process over any finite interval of time are normally dis-
tributed, with a variance that is linearly dependent on the length of time
interval dt.

From the example of the technology stock above, it is easier to show that
the variance of the change distribution can increase linearly. However, given
that stock prices can never fall below zero, price changes cannot be represented
as a normal distribution. However, it is reasonable to assume that changes in
the logarithm of prices are normally distributed. Thus, stock prices can be
represented by the logarithm of a Wiener process.

As stated earlier, stochastic processes do not have time derivatives in the
conventional sense and, as a result, they cannot be manipulated using the
ordinary rules of calculus as needed to solve the stochastic optimal control
problems. Ito provided a way around this by defining a particular kind of
uncertainty representation based on the Wiener process.

An Ito process is a stochastic process x(t) on which its increment dx is
represented by the equation:

dx = a(x, t)dt + b(x, t)dz (7.89)
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where dz is the increment of a Wiener process, and a(x, t) and b(x, t) are
known functions. By definition, E[(dz)] = 0 and (dz)2 = dt, where E is the
expectation operator and E[dz] is interpreted as the expected value of dz.

The simplest generalization of Equation (7.89) is the equation for Brown-
ian motion with drift given by

dx = αdt + σdz Brownian motion with drift (7.90)

where α is called the drift parameter and σ is the variance parameter. The
discretized form of Equation (7.90) is the following:

xt = xt−1 + αΔt + σεt
√
Δt (7.91)

where εt is normally distributed with a mean of 0 and a standard deviation of
1.0. Figure 7.5 shows the sample paths of Equation (7.90). For details, please
refer to Dixit and Pindyck (1994). Over any time interval Δt, the change in x,
denoted by Δx, is normally distributed and has an expected value variance:

Time
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Fig. 7.5. Sample paths for a Brownian motion with drift

E[Δt] = αΔt (7.92)

ν[Δt] = σ2Δt (7.93)

For calculation of α, the average value of the differences in x (E[xt−xt−1])
is computed. Then this value is divided by the time interval Δt to obtain α.
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However, for σ, the variance of the differences in x is found and divided by
the time interval Δt. Then the square root of this value is computed.

Other examples of Ito processes are the geometric Brownian motion with
drift (Equation (7.94) given below) and the mean reverting process (Equation
(7.98), Figure 7.6).

dx = αxdt + σxdz geometric Brownian motion with drift (7.94)

In geometric Brownian motion, the percentage changes in x and Δx/x are
normally distributed (absolute changes are lognormally distributed). We can
write Equation (7.94) in the following form if we write F (x) = log x.

dF = (α − σ2

2
)dt + σdz (7.95)
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Fig. 7.6. Sample paths of a mean reverting process

Over the time interval t, the change in the logarithm of x is normally
distributed with mean (α − (σ2/2))t and variance σ2t. We can estimate
the parameters of this Ito process following this procedure. First we find the
variance of the changes in the logarithm of x, (lnxt−lnxt−1). When we divide
this value by Δt, we can obtain σ2. Once we know the value of σ, we can then
calculate the mean value of the changes in logarithm of x, (lnxt − lnxt−1),
which is equal to (α − (σ2/2))t. From that value, we can calculate α. It was
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shown that for the absolute value of x, Equations (7.96) (expected value) and
(7.97) (variance) hold true:

E[x(t)] = x0. exp (αt) (7.96)

ν[x(t)] = x0
2. exp (2αt(expσ2t − 1)) (7.97)

In mean reverting processes, the variable may fluctuate randomly in the
short run, but in the longer run it will be drawn back toward the marginal
value of the variable:

dx = η(xavg − x)dt + σdz mean reverting process (7.98)

where η is the speed of reversion and xavg is the nominal level to which x
reverts. The expected value of change in x depends on the difference between
x and xavg. If the current value of x is x0, then the expected value of x at any
future time and the variance of xt − xavg is given by the following equations.

E[x(t)] = xavg + (x0 − xavg) exp (−ηt) (7.99)

ν[xt − xavg] =
σ2

2η
(1 − exp (−2ηt)) (7.100)

From these equations, it could be observed that the expected value of xt

converges to xavg as t becomes large and the variance converges to σ2/2η. We
can write Equation (7.98) in the following form.

xt − xt−1 = ηxavgΔt− ηxt−1Δt+ σεt
√
Δt (7.101)

xt − xt−1 = C1 + C2xt−1 + et (7.102)

In order to estimate the parameters, we can run the regression with
the available discrete-time data (Equation (7.102)). In this equation, C1 =
ηxavgΔt, C2 = −ηΔt, and et = σεt

√
Δt. From the standard error of regres-

sion et, one can calculate the standard deviation σ.
In Equation (7.98), if the variance rate grows with x, we obtain the geo-

metric mean reverting process:

dx = η(xavg − x)dt + σxdz geometric mean reverting process (7.103)

The procedure for parameter estimation for this process is the following.
We can write Equation (7.103) in the following form.

xt − xt−1 = ηxavgΔt− ηxt−1Δt+ σxt−1εt
√
Δt (7.104)

If we divide both sides by xt−1, Equation (7.105) is Obtained.

xt − xt−1

xt−1
=

C1

xt−1
+ C2 + et (7.105)

In this equation, C1 = ηxavgΔt, C2 = −ηΔt, and et = σεt
√
Δt. By

running this regression using the available discrete-time data, we can find the
values of C1 and C2, which enable us to predict the parameters in Equation
(7.103). Again, from the standard error of regression, one can calculate the
standard deviation σ.



280 7 Optimal Control and Dynamic Optimization

7.4.1 Ito’s Lemma

Ito’s lemma is easier to understand as a Taylor series expansion. Suppose that
x(t) follows the process of Equation (7.89) and consider a function F that is
at least twice differentiable in x and once in t. We would like to find the
total differential of this function dF . The usual rules of calculus define this
differential in terms of first-order changes in x and t:

dF =
∂F

∂t
dt +

∂F

∂x
dx (7.106)

But suppose that we also include higher-order terms for changes in x:

dF =
∂F

∂t
dt +

∂F

∂x
dx +

1

2

∂2F

∂x2
(dx)

2
+

1

6

∂3F

∂x3
(dx)

3
+ . . . (7.107)

In ordinary calculus, these higher-order terms all vanish in the limit. For
an Ito process following Equation (7.89), it can be shown that the differential
dF is given in terms of first-order changes in t and second-order changes in x.
Hence, Ito’s lemma gives the differential dF as

dF =
∂F

∂t
dt +

∂F

∂x
dx +

1

2

∂2F

∂x2
(dx)

2
(7.108)

By substituting Equation (7.89) and (dz)2 = dt in Equation (7.108) and ne-
glecting terms containing (dt)2 and dtdz, an equivalent expression is obtained.

dF =

[
∂F

∂t
+ a(x, t)

∂F

∂x
+

1

2
b2(x, t)

∂2F

∂x2

]
dt+ b(x, t)

∂F

∂x
dz (7.109)

Compared to the chain rule for differentiation in ordinary calculus (Equa-
tions (7.106) and (7.108)) has one extra term that captures the effect of con-
vexity or concavity of F .

7.4.2 Dynamic Programming Optimality Conditions

We have seen that for the deterministic case when no uncertainty is present,
the principle of optimality states that the minimum value is a function of the
initial state and the initial time, resulting in the Hamilton–Jacobi–Bellman
equation. The H-J-B equation states that, for the optimal control problem:

Maximize J = j(xt) +

∫ T

0

k (x̄t, θt) dt (7.110)

θt
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subject to
dx̄t

dt
= f (x̄t, θt) (7.111)

The optimality conditions are given by

0 =
∂J

∂t
+ Maximize

[
k (x̄t, θt) +

∑
i

∂J

∂xi

dxi

dt

]
(7.112)

θt

0 =
∂J

∂t
+ Maximize

[
k (x̄t, θt) +

∑
i

∂J

∂xi
f (x̄t, θt)

]
(7.113)

θt

where i represents the state variables in the problem.
However, when uncertainty is present in the calculation, the H-J-B equa-

tions are modified to obtain the following objective function.

Maximize J = E

[
j(xt) +

∫ T

0

k (x̄t, θt) dt

]

θt

where E is the expectation operator. If the state variable i can be represented
as an Ito process given by Equation (7.114), then Merton and Samuelson
(1990) found that the optimality conditions are given by Equation (7.115).

dxi = fi (x̄t, θt) dt + gi (x̄t, θt) dz (7.114)

0 = Maximize

[
k (x̄t, θt) +

1

dt
E(dJ)

]
(7.115)

θt

Following Ito’s lemma Equation (7.115) results in

0 = k (x̄t, θ
∗
t ) +

∂J

∂t
+
∑
i

∂J

∂xi
fi (x̄t, θ

∗
t )

+
∑
i

gi
2

2

∂2J

(∂xi)
2 +

∑
i�=j

gigj
∂2J

∂xi ∂xj
(7.116)

where θ∗ represents the optimal solution to the maximization problem.
In Equation (7.114), σi is the variance parameter of the state variable xi.

Note that this definition implicitly restricts our analysis for the cases in which
the behavior of the state variables can be represented as an Ito process. Also,
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the extra terms in Equation (7.116) come from the fact that second-order
contributions of stochastic state variables are not negligible (see Equation
(7.108) and Ito’s lemma).

As stated earlier, the solution of a stochastic differential equation is not a
value for the function, but it is a probability distribution that varies with time.
This is a simplified form of stochastic differential equations. For the solution
of more complex stochastic differential equations, readers are referred to Dixit
and Pindyck (1994) .

Let us revisit the isoperimetric problem described earlier but with stochas-
ticity as described in Example 7.5.

Example 7.5: Assume that in the isoperimetric problem, the state variable
x1 that represents the vertical displacement is stochastic but the differential
perimeter or the total perimeter (x2(t) and L are not stochastic) is deter-
ministic. Assume that change in x1 is normally distributed with a variance
parameter σ = 0.5 and follows a Brownian motion. The perimeter is given to
be 16 cm. Solve this isoperimetric problem using stochastic dynamic program-
ming and show the effect of uncertainties on the solution.

Solution: Now the isoperimetric problem formulated earlier can be re-
written as follows.

Maximize A =

∫ T

0

x1(t) dt (7.117)

ut

subject to
dx1 = utdt + σ dz x1(0) = 0.0; (7.118)

where dz = ε
√
dt (ε is a random number generated from a normal distribution

with mean zero and standard deviation of one N(0,1)) and σ = 0.5.

dx2

dt
=

√
1 + u2

t x2(0) = 0.0; x2(T ) = L = 16.0 (7.119)

Similar to the deterministic case, introducing a new variable I(t) =∫ T

t
x1(τ)dτ leads to

Maximize A =

∫ t

0

x1(t) dt + I(t) (7.120)

ut

The optimality conditions for this problem derived from Equation (7.116)
are

∂I

∂t
+ Maximize x1(t) + ut

∂I

∂x1(t)
+
√
1 + u2

t

∂I

∂x2(t)
+

σ2

2

∂2I

∂x1(t)2
= 0

ut (7.121)
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or

Maximize x1(t) + It + Ix1
ut + Ix2

√
1 + u2

t + Ix2x2
σ2/2.0 = 0

ut (7.122)

From Equation (7.118) and using the definition of I it can be shown that

dIx2x2

dt
= 0.0 Ix2x2

(T ) = 0.0 =⇒ Ix2x2
= 0.0 (7.123)

Therefore, maximizing Equation (7.122) with respect to ut leads to

Ix1
+

ut√
1 + u2

t

Ix2
= 0 (7.124)

Differentiating Equation (7.122) with respect to x1 and x2 leads to

dIx1

dt
= − 1 =⇒ Ix1

= − t+ c1 (7.125)

dIx2

dt
= 0 =⇒ Ix2

= c2 (7.126)

Therefore, the velocity parameter ut follows the path given by

ut =
t− c1√

c2 − (t− c1)2
(7.127)

This suggests that the deterministic solution and the stochastic solution
are the same. However, stochasticity is embedded in the differential equation
for x1 given by Equation (7.118). This is also obvious when one simulates a
single instant of stochasticity by choosing a normal random process with a
mean of zero and variance σ represented by the parameter ε in the following
form of Equation (7.128).

dx1 = utdt + σ ε
√
dt x1(0) = 0.0; (7.128)

Figure 7.7 shows the deterministic and stochastic path of variable x1 nu-
merically integrated using the set of equations given above and from Exam-
ple 7.4.

It can be seen that although the stochastic solution follows a circular path,
the expected area obtained in the stochastic case (Figure 7.8) is smaller than
the area obtained in the deterministic case (Figure 7.9) for the same perimeter.



284 7 Optimal Control and Dynamic Optimization

t

0 2 4 6 8 10 12

x

-2

-1

0

1

2

3

4

5

6
Uncertain
Deterministic

Fig. 7.7. Deterministic and stochastic path of variable x1
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Fig. 7.8. Stochastic solution: x1, perimeter, and area
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Fig. 7.9. Deterministic solution: x1, perimeter, and area

7.4.3 Stochastic Maximum Principle

Rico-Ramirez and Diwekar (2004) derived stochastic maximum principle from
the dynamic programming optimality condition.

Consider the generalized form of stochastic optimal control problem given
below.

Maximize J = j(xt) +

∫ T

0

k (x̄t, θt) dt (7.129)

θt

subject to
dxi = fi (x̄t, θt) dt + gi (x̄t, θt) dz (7.130)

We can write the optimality condition for stochastic dynamic programming
given in Equation 7.116 in the form of two kinds of adjoint variables, namely,

zi =
∂J
∂xi

and ωij =
∂2J

∂xi∂xj
as follows.

0 = k (x̄t, θ
∗
t ) +

∂J

∂t
+
∑
i

zifi (x̄t, θ
∗
t ) +

∑
i

∑
j

gigj
2

ωij (7.131)

Then, the Hamiltonian and adjoint equations from the stochastic maxi-
mum principle derived by taking first- and second-order derivative of Equa-
tion 7.131 with respect to xk. For this derivation, we assume that the third-

order differential equations like ∂3J
∂xi∂xj∂xk

can be neglected, Ito’s lemma and
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chain rule are used for the calculation of derivatives, and uncertainties of each
state variable can be assumed to be independent of each other ( ∂gi

∂xj
)i�=j = 0).

H(ωt, zt, xt, θt) =

nx∑
i=1

zifi(xt, θt) +

nx∑
i=1

nx∑
j=1

gigj
2

ωij (7.132)

dzi
dt

= −
nx∑
j=1

zj
∂fj
∂xi

−
nx∑
j=1

ωji
gj
2

∂gi
∂xi

(7.133)

zT = c (7.134)

dωik

dt
= −

nx∑
j=1

(ωji
∂fj
∂xk

+ ωjk
∂fj
∂xi

+ zj
∂2fj

∂xi∂xj
)

− ∂gi
∂xi

∂gk
∂xk

ωik − [
nx∑
j=1

gj
2
ωii

∂2gi

(∂xi)
2 ]for i=k (7.135)

ωT = 0 (7.136)

Note that there are additional terms in equations for adjoints (zis) and
there are additional adjoints (ωs) because of uncertainties.

7.5 Reversal of Blending: Optimizing a Separation
Process

The hazardous waste case study presented in earlier chapters involved a blend-
ing process that essentially mixes several chemical components to form a min-
imum volume (glass) mixture. The reverse of this blending process is a separa-
tion process, where the chemicals are separated using a physical phenomenon
such as boiling. Distillation is the oldest separation process commonly used
to separate mixtures. Separation of alcohol from water to form desired spirits
such as whiskey, brandy, vodka, and the like is a popular example of this pro-
cess. The basic principle in this separation is that the two components (e.g.,
alcohol and water) boil at two different temperatures. Simple distillation, also
called differential distillation or Rayleigh distillation, is the most elementary
example of batch distillation. For a full treatment of the theory and principles
of batch distillation, please refer to Diwekar (1995).

In this section we present the deterministic and stochastic optimal con-
trol problems in batch distillation. The data, formulation, and computer code
for this case study can be found on the Springer website with the book link.
Although the deterministic optimal control problems in batch distillation ap-
peared as early as 1963, stochastic optimal control is a recent area of study
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that draws a parallel between the real option theory in finance and batch dis-
tillation optimal control with uncertainties (Rico-Ramirez and Morel, 2003;
Ulas and Diwekar, 2004).

As shown in Figure 7.10, in this process, the vapor is removed from the
still (reboiler) during each time interval and is condensed in the condenser.
This vapor is richer in the more volatile component (lower boiling) than the
liquid remaining in the still. Over time, the liquid remaining in the still be-
comes weaker in its concentration of the more volatile component, and the
distillate collected in the condenser gets progressively enriched in the more
volatile component. The purity of distillate in this process is governed by
the boiling point relations generally characterized by a thermodynamic term
called relative volatility, defined below.

xBBreboiler

Dx

condenser

Fig. 7.10. Schematic of a simple distillation operation

Relative volatility, α, of a binary mixture is defined in terms of the ratio of
the vapor composition of the more volatile (lower boiling) component (1), y1 or
xD to the vapor composition of the lower volatile (higher boiling) component
(2), y2 or (1 − xD), and the ratio of the liquid composition, x1 or xB , of
the more volatile component and the liquid composition of the lower volatile
component, x2 or (1− xB).

α =
α1

α2
=

y1/y2
(x1/x2)

=
xD/(1− xD)

xB/(1− xB)
(7.137)
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The relative volatility provides the equilibrium relationship between the
distillate composition xD and the liquid composition in the reboiler xB for
the simple distillation process. This is because in the distillation process, it
is assumed that the vapor formed within a short period is in thermodynamic
equilibrium with the liquid.

One can look at simple distillation as consisting of one equilibrium stage
where liquid and vapor are in contact with each other, and the transfer takes
place between the two phases, as shown in Figure 7.11a. If N such stages are
stacked one above the other, as shown in Figure 7.11b, and are allowed to
have successive vaporization and condensation, this multistage process results
in a substantially richer vapor and weaker liquid in terms of the more volatile
component in the condenser and the reboiler, respectively. This multistage
arrangement, shown in Figure 7.11b, is representative of a distillation column,
where the vapor from the reboiler rises to the top and the liquid from the
condenser is refluxed downward. The contact between the liquid and the vapor
phase is established through accessories such as packings or plates. However,
it is easier to express the operation of the column in terms of thermodynamic
equilibrium stages (in terms of the relative volatile relationships at each stage),
which represent the theoretical number of plates in the column, a concept used
to design a column. Figure 7.12 shows the schematic of the batch distillation
column, where the number of theoretical stages is numbered from top (1) to
bottom (N).

In general, as the amount of reflux, expressed in terms of reflux ratio R
(defined by the ratio of liquid flow refluxed to the product [distillate] rate
withdrawn), increases, the purity of the distillate increases. A similar effect
is observed as the number of stages (height) increases in the column. In sum-
mary, there is an implicit relation between the top composition xD and the
bottom composition xB , which is a function of the relative volatility α, reflux
ratio R, and number of stages N . The changes in the process can be modeled
using differential material balance equations.

xD = f(xB , R,N) (7.138)

Under the assumption of a constant boilup rate V and no holdup (no liquid
on plates except in the reboiler) conditions, an overall differential material
balance equation over a time dt may be written as

dx1

dt
=

dBt

dt
=

−V

Rt + 1
, x1(0) = B0 = F, (7.139)

where F is the initial feed at time t = 0; that is, x1(0) = F . F is also related
to the distillate (top product) D by F = B+D. Similarly, a material balance
for the key component 1 over the differential time dt is

dx2

dt
=

V

Rt + 1

(x
(1)
B − x

(1)
D )

Bt
, x2(0) = x

(1)
F (7.140)
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Fig. 7.11. Equilibrium stage processes: (a) single stage process, (b) multistage
process

In the above two equations

Bt = quantity of charge remaining in the reboiler or bottoms (function of
time), also represented as B (mol).
Dt = quantity of distillate or product (function of time), also represented
as D (mol).
F = initial charge or feed (mol).
Rt = control variable vector, reflux ratio (function of time).
t = batch time (hr).
x1 = a state variable representing the quantity of charge remaining in the
still, Bt (mol).
x2 = a state variable representing the composition of the key component

in the still at time t, x
(1)
B (mole fraction).

V = molar vapor boilup rate (mol h−1).
xB = the bottom or reboiler composition for the key component 1, also

represented as x
(1)
B (mole fraction).

x
(1)
D = the overhead or distillate composition for the key component 1, also

represented as xD (mole fraction).
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condenser

reboiler

xD
1

N

xB

dD/dt

Fig. 7.12. Schematic of a batch distillation column

x
(1)
F = the feed composition for the key component 1, also represented as

xF (mole fraction).

Diwekar and co-workers developed a short-cut model for the implicit rela-
tion (Equation (7.138)) between xD and xB . The additional variables for the
short-cut method are given below.

C1 = constant in the Hengestebeck–Geddes’ (HG) equation.
N = number of plates in the column (given).
n = number of components, for binary system n = 2.
Nmin = minimum number of plates.
Rmin = minimum reflux ratio.

Greek Symbols

αi = relative volatility of component i.
φ = constant in the Underwood equations.

Functional Relationship Between xD and xB

At each instant, there is a change in the still composition of the key component
1, resulting in changes in the still composition of all the other components cal-
culated by the differential material balance equations described earlier. The
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Hengestebeck–Geddes equation, given below, relates the distillate composi-
tions to the new bottom compositions in terms of a constant C1.

The Hengestebeck–Geddes equation:

x
(i)
D =

(
αi

α1

)C1 x
(k)
D

x
(k)
B

x
(i)
B , i = 1, 2, . . . , n(i 	= k) (7.141)

Summation of the distillate composition provides the relation for x
(1)
D .

x
(1)
D =

1
∑n

i=1

(
αi

α1

)C1 x
(i)
B

x
(1)
B

(7.142)

It can be proved that the constant C1 of the Hengestebeck–Geddes equa-
tion is equivalent to the minimum number of plates, Nmin, in the Fenske
equation.
The Fenske equation is

Nmin = C1 =
ln[

x
(i)
D

x
(k
D )

x
(k)
B

x
(i)
B

]

ln[αi]
(7.143)

At minimum reflux (Rmin), an infinite number of equilibrium stages are
required to achieve the given separation.
The Underwood equations for minimum reflux are

n∑
i=1

αix
(i)
B

αi − φ
= 0 (7.144)

Rmin + 1 =

n∑
i=1

αix
(i)
D

αi − φ
(7.145)

Design variables of the column such as the reflux ratio R and the number of
plates N are related to each other by Gilliland’s correlation (Gilliland, 1940)
through the values of Rmin and Nmin.
Gilliland’s correlation is

Y = 1 − exp

[
(1 + 54.4X)(X − 1)

(11 + 117.2X)
√
X

]
(7.146)

in which

X =
R − Rmin

R + 1
; Y =

N − Nmin

N + 1

From the above equations, it can be seen that the short-cut method has
only two differential equations (Equation (7.139) and (7.140)) and the rest of
the equations are algebraic.
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At any instant of time, there is a change in the still composition of the
key component (state variable, x1), the HG equation relates the distillate
composition to the new still composition in terms of the constant C1. This
constant C1 in the HG equation is equivalent to the minimum number of plates

Nmin in the Fenske equation. At this stage, R, C1, and x
(1)
D are the unknowns.

Summation of the distillate composition can be used to obtain x
(1)
D and the

Fenske–Underwood–Gilliland (FUG) equations to obtain C1. Obtaining the
unknown R, referred to as the optimal control variable, is the aim of this case
study.

The Maximum Distillate Problem

Where the amount of distillate, D, of a specified concentration for a specified
time is maximized.

Converse and Gross (1963) were the first to report the maximum distil-
late problem for binary batch distillation columns, which was solved using
the calculus of variations, Pontryagin’s maximum principle, and the dynamic
programming scheme.

The maximum distillate problem, described in the literature as early as
1963 (Converse and Gross, 1963), can be represented as follows.

Maximize J =

∫ T

0

dD

dt
dt =

∫ T

0

V

Rt + 1
dt, (7.147)

Rt

subject to the following purity constraint on the distillate

xDave =

∫ T

0
x
(1)
D

V
Rt + 1 dt∫ T

0
V

Rt + 1 dt
= x∗

D (7.148)

where x∗
D is the specified distillate purity.

Equations (7.139) and (7.140) and the FUG-based short-cut model of the
column, which provides correlations between the model parameters and the
state variables (Diwekar et al., 1987).

The calculus of variations and the maximum principle formulations for
this problem are presented first. This is followed by the dynamic program-
ming formulation, which is then extended further to the stochastic dynamic
programming formulation for uncertainty considerations.

7.5.1 Calculus of Variations Formulation

Now we formulate the maximum distillate problem using the calculus of vari-
ations. Because this problem contains equality constraints, we need to use the
Euler-Lagrangian formulation. First, all three equality constraints (the two
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differential equations for state variables and the purity constraint) are aug-
mented to the objective function to form a new objective function L given
by

Maximize L =

∫ T

0

V

Rt + 1

[
1− λ(x∗

D − x
(1)
D )

]
− μ1

[
dx1

dt
− −V

Rt + 1

]

x1, x2, Rt

−μ2

[
dx2

dt
− V

Rt + 1

(x
(1)
B − x

(1)
D )

x1

]
dt

(7.149)

where λ is a scalar Lagrange multiplier and μi, i = 1, 2 are the Lagrangian
multipliers as a function of time. Using dx/dt = x′:

Maximize L =

∫ T

0

V

Rt + 1
dt

[
1 − λ(x∗

D − x
(1)
D )

]

x1, x2, Rt

− μ1

[
x′
1 − −V

Rt + 1

]
− μ2

[
x′
2 − V

Rt + 1

(x
(1)
B − x

(1)
D )

x1

]

(7.150)

Application of the Euler differential equations leads to the following three
Euler-Lagrangian equations.

∂L

∂x1
−

d( ∂L
∂x1′

)

dt
= 0 =⇒ dμ1

dt
= μ2

[
V

Rt + 1

(x2 − x
(1)
D )

x1
2

]
(7.151)

∂L

∂x2
−

d( ∂L
∂x′

2
)

dt
= 0 =⇒

dμ2

dt
= − V

Rt + 1
λ

(
∂x

(1)
D

∂x2

)

Rt

− μ2
V

x1(Rt + 1)

[
1−

(
∂x

(1)
D

∂x2

)

Rt

]

(7.152)

∂L

∂Rt
−

d( ∂L
∂R′

t
)

dt
= 0 =⇒

Rt =

[
μ2

x1
(x2 − x

(1)
D )− μ1 − λ(x∗

D − x
(1)
D ) + 1

]

∂x
(1)
D

∂Rt

(
λ− μ2

x1

) − 1 (7.153)

7.5.2 Maximum Principle Formulation

Again, the maximum distillate problem can be written as
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Maximize J =

∫ T

0

dD

dt
dt =

∫ T

0

V

Rt + 1
dt (7.154)

Rt

subject to the following purity constraint on the distillate.

xDav =

∫ T

0
x
(1)
D

V
Rt + 1 dt∫ T

0
V

Rt + 1 dt
= x∗

D (7.155)

The constraint on the purity is removed by employing the method of La-
grange multipliers. By combining Equations (7.154) and (7.155):

Maximize L =

∫ T

0

V

Rt + 1

[
1 − λ(x∗

D − x
(1)
D )

]
dt (7.156)

Rt

where λ is a Lagrange multiplier. Now the objective function is to maximize
L, instead of J . To solve this problem, an additional state variable x3 is
introduced, which is given by

x3 =

∫ t

0

V

Rt + 1

[
1 − λ(x∗

D − x
(1)
D )

]
dt (7.157)

The problem can then be rewritten as

Maximize x3(T ) (7.158)

Rt

subject to the following differential equations for the three state variables and
the time-implicit model for the rest of the column.

dx1

dt
=

−V

Rt + 1
, x1(0) = B0 = F, (7.159)

dx2

dt
=

V

Rt + 1

(x2 − x
(1)
D )

x1
, x2(0) = x

(1)
F (7.160)

dx3

dt
=

V

Rt + 1

[
1 − λ(x∗

D − x
(1)
D )

]
dt (7.161)

The Hamiltonian function, which should be maximized, is

Ht = − z1
V

Rt + 1
+ z2

V (x2 − x
(1)
D )

(Rt + 1)x1
+ z3

V

Rt + 1

[
1 − λ(x∗

D − x
(1)
D )

]

(7.162)
and the adjoint equations are
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dz1
dt

= z2
V (x2 − x

(1)
D )

(Rt + 1)(x1)2
, z1(T ) = 0, (7.163)

dz2
dt

= −z2
V (1− ∂x

(1)
D

∂x2
)

(Rt + 1)x1
− z3λ

V

(Rt + 1)
(
∂x

(1)
D

∂x2
), z2(T ) = 0 (7.164)

and
dz3
dt

= 0, z3(T ) = 1 =⇒ z3(t) = 1 (7.165)

The Hamiltonian function in Equation (7.162) can be written as

Ht = − z1
V

Rt + 1
+ z2

V (x2 − x
(1)
D )

(Rt + 1)x1
+

V

Rt + 1

[
1 − λ(x∗

D − x
(1)
D )

]

(7.166)
and

dz2
dt

= −z2

V

(
1− ∂x

(1)
D

∂x2

)

(Rt + 1)x1
− λ

V

(Rt + 1)

(
∂x

(1)
D

∂x2

)
, z2(T ) = 0 (7.167)

From the optimality condition ∂H/∂Rt = 0, it follows that

Rt =

[
z2
x1
(x2 − x

(1)
D ) − z1 − λ(x∗

D − x
(1)
D ) + 1

]

∂x
(1)
D

∂Rt

(
λ − z2

x1

) − 1 (7.168)

It can be seen from Equation (7.153) in the calculus of variations formu-
lation and from Equation (7.168) that the two formulations lead to the same
results where, in the case of the calculus of variations, the time-dependent La-
grange multipliers μi are equivalent to the adjoint variables zi in the maximum
principle formulation.

We have examined the two methods to solve the maximum distillate prob-
lem in batch distillation. The two different methods gave the same results.
However, in the case of the calculus of variations the problem is in the form
of second-order differential equations that may be difficult to solve. However,
the maximum principle leads to a two-point boundary value problem. (We
know initial boundary conditions for the state variables xi but not the final
boundary conditions for the adjoint variables zi.) So to obtain the exact solu-
tion, one has to solve this problem iteratively using numerical methods. This
can be accomplished using several different methods including the shooting
method and the method of steepest ascent of the Hamiltonian. Although the
details of the methods are beyond the scope of this book, the typical compu-
tational intensity involved in solving these problems is illustrated using the
method of steepest ascent of Hamiltonian (Diwekar et al., 1987) given in the
next section.
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7.5.3 Method of Steepest Ascent of Hamiltonian

The solution procedure is described below using the maximum principle for-
mulation and the quasi-steady-state short-cut method to model the batch
distillation column.

The maximum principle formulation of the maximum distillate problem
involves the solution of the following equations.

State variable differential equations:

dx1

dt
=

−V

Rt + 1
, x1(0) = B0 = F, (7.169)

dx2

dt
=

V

Rt + 1

(x2 − x
(1)
D )

x1
t

, x2(0) = x
(1)
F (7.170)

The adjoint equations:

dz1
dt

= z2
V (x2 − x

(1)
D )

(Rt + 1)(x1)2
, z1(T ) = 0, (7.171)

dz2
dt

= −z2

V

(
1− ∂x

(1)
D

∂x2

)

(Rt + 1)x1
− λ

V

(Rt + 1)

(
∂x

(1)
D

∂x2

)
, z2(T ) = 0 (7.172)

Optimality conditions result in the following reflux ratio profile.

Rt =

[
z2
x1
(x2 − x

(1)
D ) − z1 − λ(x∗

D − x
(1)
D ) + 1

]

∂x
(1)
D

∂Rt

(
λ − z2

x1

) − 1 (7.173)

Basically, now the problem is reduced to finding out the solution of Equa-
tion (7.173) using Equations (7.169)–(7.172) and the short-cut method equa-
tions. The equations also involve the Lagrange multiplier λ, which is a constant
for a specific value of final time T . So the above equations must be solved for
different values of λ until the purity constraint given below is satisfied.

xDav =

∫ T

0
x
(1)
D

V
Rt + 1 dt∫ T

0
V

Rt + 1 dt
= x∗

D (7.174)

It can be seen that the solution of these equations involves a two-point
boundary value problem, where the initial values of the state variables x1 and
x2 and the final values of the adjoint variables z1 and z2 are known. We seek
the maximum value of H by choosing the decision vector Rt. The method of
the steepest ascent of the Hamiltonian accomplishes this by using an iterative
procedure to find Rt, the optimal decision vector. An initial estimate of Rt is
obtained, which is updated during each iteration. If the decision vector Rt is
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divided into r time intervals, then for the ith component of the decision vector,
the following rule is used for proceeding from the jth to j+1th approximation.

Ri(j + 1) = Ri(j) + k
∂H

∂Ri
, i = 1, 2, . . . , r (7.175)

where k is a suitable constant. The iterative method is used until there is
no further change in Rt. The value of k should be small enough so that no
instability will result, yet large enough for rapid convergence. It should be
noted that the sign of k is important, because ∂H/∂Rt → 0 at and near the
total reflux condition, which gives the minimum value of H (i.e., minimum
distillate). Also, one has to iterate on the Lagrange multiplier in the outer loop
so that the purity constraint is satisfied. Figure 7.13 describes this iterative
procedure.

Fig. 7.13. Flowchart for the iterative procedure

7.5.4 Combining Maximum Principle and NLP Techniques

The maximum principle formulation of batch distillation, as also dynamic pro-
gramming (described later) and the calculus of variations, is widely used in
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the batch distillation literature. However, solution of the two-point boundary
value problem and the additional adjoint equations with the iterative con-
straint satisfaction can be computationally very expensive. A new approach
to optimal control problems in batch distillation, proposed by Diwekar (1992),
combines the maximum principle and the NLP techniques. This approach is
illustrated in the context of the batch distillation case study.

The Maximum Distillate Problem Revisited

The maximum distillate problem in the original form (without considering the
Lagrangian formulation as shown earlier) can be written as

Maximize − x1(T ) (7.176)

Rt

subject to the following differential equations, and the time-implicit FUG
model. The Hamiltonian function, which should be maximized, is

Ht = − z1
V

Rt + 1
+ z2

V (x2 − x
(1)
D )

(Rt + 1)x1
(7.177)

The adjoint equations are

dz1
dt

= z2
V (x2 − x

(1)
D )

(Rt + 1)(x1)2
, z1(T ) = − 1, (7.178)

dz2
dt

= −z2

V

(
1− ∂x

(1)
D

∂x2

)

(Rt + 1)x1
, z2(T ) = 0 (7.179)

Combining the two adjoint variables z1 and z2 into one using zt = z2/z1
results in the following adjoint equation.

a
dzt
dt

= − zt

V

(
1− ∂x

(1)
D

∂x2

)

(Rt + 1)x1
− (zt)

2 V (x2 − x
(1)
D )

(Rt + 1)(x1)2
(7.180)

The optimality condition on the reflux policy dHt/dRt = 0 leads to

Rt =
Bt − zt(x

(1)
B − x

(1)
D )

zt(∂x
(1)
D /∂Rt)

− 1 (7.181)

It should be remembered that this solution (Equation (7.181)) is obtained
by maximizing the Hamiltonian (maximizing the distillate), which does not
incorporate the purity constraint. Hence, use of the final boundary condition
(zT = 0) provides the limiting solution corresponding to R = − ∞ with
the lowest overall purity. Because in this formulation the purity constraint is
imposed external to the Hamiltonian, the final boundary condition (zT = 0)
is no longer valid. We seek the initial value of zt (z0) that will satisfy the purity
constraint. The iteration variable z0 can also be interchanged with R0. As can
be seen, this method avoids the multiple iteration loops shown in Figure 7.13.
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7.5.5 Uncertainties in Batch Distillation

In order to model a system under uncertainty, a quantitative description of the
variations expected must be established. If we consider a mathematical formu-
lation of a dynamic process model as a set of differential algebraic equations
(for details, please refer to Naf (1994)):

g (x, ẋ, u, η, t) = 0 (7.182)

with the initial conditions
x (t = 0) = x0 (7.183)

where x are the state variables, u are the input variables, and η are the model
parameters, then qualitatively different sources of uncertainty may be located
as follows.

1. Uncertainty with respect to the model parameters η. These parameters are
a part of the deterministic model and not actually subject to randomness.
Theoretically, their value is an exact number. The uncertainty results from
the impossibility of modeling the physical behavior of the system exactly.

2. Uncertainty in the input variables u. This kind of uncertainty originates
from the random nature and unpredictability of certain process inputs
(e.g., feed composition uncertainty).

3. Uncertainty in the initial conditions x0 (initial charge of a batch, for in-
stance).

The representation of uncertainties for all three categories is usually in
terms of distribution functions. Although there are instances of all three
sources of uncertainties in batch distillation, in this work we focus on the
first category, the case of uncertainty with respect to the model parameters.
In general, optimal control problems are considered to be open loop con-
trol problems where the optimal reflux profile is generated a priori using a
model and then the controller is asked to follow this trajectory. This trajec-
tory would be optimal when the model is an exact replica of the physical
phenomena. However, very often this is not the case, and online updating of
the profile is necessary. This calls for use of simplified models such as the
short-cut model described earlier. The main uncertainty in this model is re-
lated to the assumption of constant relative volatility. Therefore, we focus
on handling uncertainty in this important thermodynamic parameter here. In
practice, this relative volatility parameter α varies with respect to the number
of plates in a column as well as with respect to time. We show later that this
behavior of the relative volatility can be captured by the geometric Brownian
motion representation. Note that with such a representation, we can not only
capture the uncertainty in this crucial parameter but also gain all the advan-
tages of using the short-cut model for faster optimal control calculations and
efficient online updating.
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7.5.6 Relative Volatility: An Ito Process

What is common between the technology stock price example given earlier and
the uncertainty in the relative volatility parameter in the batch distillation
models?
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Fig. 7.14. Relative volatility, ideal system as a function of time and number of
plate

1. Both have time-dependent variations. The technology stock fluctuates
around the mean randomly but over time has a positive expected rate of
growth. Relative volatility for an ideal system, however, fluctuates around
the geometric mean across the column height, but over a time period the
mean decreases (Figure 7.14 shows the relative volatility fluctuations for
a pentane–hexane system).

2. Similar to the stock prices, relative volatility can be modeled as a Markov
process because, at any time period, the value of relative volatility depends
only on the previous value. The changes for both are nonoverlapping.

3. Whether uncertainty in the relative volatility parameter can be repre-
sented by a Wiener process can be shown with some simple numerical ex-
periments where the data are generated from a rigorous simulation model
(proxy for experiments) for various thermodynamic systems.

In this section, we present the result of a simple numerical experiment
to show that the behavior of the relative volatility in a batch column can
indeed be represented as an Ito process. We take two examples, the first one
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is the relative volatility of an ideal system with the pentane–hexane mixture.
Figure 7.14 shows the behavior of the relative volatility with respect to time
and the plate number for this example. A rigorous simulation with a simulation
package MultiBatchDSTM (Diwekar, 1996) was performed in a batch column
to obtain the behavior of the relative volatility with respect to time. As we
know, the relative volatility is different for each plate of the column at each
point in time. This can be captured by a geometric Brownian motion. The
equation for geometric Brownian motion (special instance of an Ito process)
is

dα = αβdt+ ασdz (7.184)

where β and σ are constants.
Equation (7.184) establishes that the changes in relative volatility are log-

normally distributed with respect to time. In fact, by using Ito’s lemma, it
can be shown that Equation 7.184 implies that the change in the logarithm of
α is normally distributed (for a finite time interval t) with mean (β−1/2σ2) t
and variance σ2t, resulting in Equation (7.185) (Dixit and Pindyck, 1994).

d(lnα) =

(
β − 1

2
σ2

)
dt+ σdz (7.185)

In Equations (7.184) and (7.185), dz is defined as

dz = εt
√
dt

where εt is drawn from a normal distribution with a mean of zero and unit
standard deviation. By using the time series data for relative volatility, natural
logarithm of relative volatility for a fixed time interval can be used to obtain
the mean and variance of the underlying normal distribution. It has been
found that the data shown in Figure 7.14 fit well with this representation.
Then, α(t) can be calculated by using Equation (7.186) given below.

αt = (1 + β Δt) αt−1 + σ αt−1 εt
√
Δt (7.186)

Consider now a system of a non-ideal mixture, such as ethanol–water stud-
ied by Ulas and Diwekar (2004). This mixture results in a different relative
volatility profile from an ideal mixture as shown in Figure 7.15a. It was found
that this behavior can be best modeled with a geometric mean reverting pro-
cess rather than a geometric Brownian motion(Figure 7.15b). The equation
for the geometric mean reverting process is

dα = η(αavg − α)dt+ ασdz (7.187)

In this equation it is expected that the α value reverts to αavg, but the
variance rate grows with α. Here, η is the speed of reversion, and αavg is the
“normal” level of α, that is, the level that tends to revert. In order to predict
the constants in Equation (7.187), a regression analysis can be performed
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using the available discrete-time data similar to the ideal system presented
earlier. We can write this equation in the discrete form as follows.

αt = η αavg Δt + (1− η Δt) αt−1 + σ αt−1 εt
√
Δt (7.188)

If we compare the equations for geometric Brownian motion (Equation
(7.186)) and geometric mean reverting process (Equation (7.188)), we can see

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2

time (h)

re
la
tiv

e
vo

la
til
ity

plate 1

plate 2

plate 3

plate 4

plate 5

plate 6

plate 7

plate 8

plate 9

plate 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2

time(h)

re
la
ti
ve

vo
la
ti
lit
y

66% confidence
intervals

(a)

(b)

Fig. 7.15. Relative volatility as an Ito process: (a)relative volatility changes for a
non-ideal mixture, (b) Ito process representation



7.5 Reversal of Blending: Optimizing a Separation Process 303

that these equations differ from each other by the constant term η αavg Δt.
This constant term reflects the reversion trend. Using this equation, the sam-
ple paths for mean reverting process for a different set of random numbers
(εt in Equation (7.188)) are drawn from a unit normal distribution as shown
in Figure 7.15b. Figure 7.15a,b confirms that the relative volatility of this
mixture can be represented by the geometric mean reverting process.

7.5.7 Optimal Reflux Profile: Deterministic Case

For the deterministic case, the maximum distillate problem (Problem A) is
given by

Maximize L =

∫ T

0

V

Rt + 1

[
1 − λ(x∗

D − x
(1)
D )

]
dt

Rt (7.189)

subject to

dx1

dt
=

−V

Rt + 1
, x1(0) = B0 = F (7.190)

dx2

dt
=

V

Rt + 1

(x2 − x
(1)
D )

x1
, x2(0) = x

(1)
F (7.191)

As mentioned above, for the deterministic case, the optimality conditions
(Equation (7.116)) reduce to the H-J-B equation (Equation (7.112)). By ap-
plying such conditions to Problem A, we obtain

0 =
∂L

∂t
+ Maximize

V

Rt + 1

[
1− λ(x∗

D − x
(1)
D )

]

Rt − ∂L

∂x1

V

Rt + 1
+

∂L

∂x2

[
V (x2 − x

(1)
D )

(Rt + 1)x1

]

(7.192)

Then, simplifying

0 =

[
1− λ

(
x∗
D − x

(1)
D

)
− ∂L

∂x1
+

∂L

∂x2

(
x2 − x

(1)
D

x1

)][
− V

(Rt + 1)2

]

+

[
V

Rt + 1

] [
λ
∂x

(1)
D

∂Rt
− ∂L

∂x2

1

x1

∂x
(1)
D

∂Rt

]

(7.193)

So,
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Rt =

∂L
∂x2

(
x2 − x

(1)
D

x1

)
− ∂L

∂x1
− λ(x∗

D − x
(1)
D ) + 1

∂x
(1)
D

∂Rt

(
λ −

∂L
∂x2

x1

) − 1 (7.194)

Equation (7.194) is exactly the same result obtained by solving the maxi-
mum distillate problem using the maximum principle, and it is an equivalent
solution to the dynamic programming formulation as follows.

∂L

∂x1
= z1 (7.195)

∂L

∂x2
= z2 (7.196)

7.5.8 Case in Which Uncertainties Are Present

For this case, the stochastic optimal control problem (Problem B) is expressed
as:

Maximize L = E

[∫ T

0

V

RtU + 1

[
1 − λ(x∗

D − x
(1)
D )

]
dt

]

RtU

subject to

dx1 =
−V

RtU + 1
dt + x1 σ1 dz, x1(0) = B0 = F (7.197)

dx2 =
V

RtU + 1

(x2 − x
(1)
D )

x1
dt + x2 σ2 dz, x2(0) = x

(1)
F (7.198)

and the optimality conditions developed by Merton and Samuelson (1990) can
be stated as

∂L

∂t
+ Maximize

[
k (x̄t, RtU ) +

1

dt
E(dL) = 0

]
(7.199)

RtU

∂L

∂t
+ Maximize [k (x̄t, RtU ) +

∂L

∂x1
f1 (x̄t, RtU ) +

∂L

∂x2
f2 (x̄t, RtU )

RtU +
σ2
1

2
(x1)

2 ∂2L

(∂x1)
2 +

σ2
2

2
(x2)

2 ∂2L

(∂x2)
2

+ σ1σ2x1x2
∂2L

∂x1 ∂x2
] (7.200)
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Note that if we consider that the uncertainty terms in Equations (7.197)
and (7.198) are not correlated, the last term can be eliminated. Hence, by
substituting Equations (7.197)–(7.198) into Equation (7.200) we get

0 =
∂L

∂t
+ Maximize

V

RtU + 1

[
1− λ(x∗

D − x
(1)
D )

]
− V

RtU + 1

∂L

∂x1
+

RtU
V (x2 − x

(1)
D )

(RtU + 1)x1

∂L

∂x2
+

σ2
1

2
(x1)

2 ∂2L

(∂x1)
2 +

σ2
2

2
(x2)

2 ∂2L

(∂x2)
2

0 =

[
1− λ(x∗

D − x
(1)
D )− ∂L

∂x1
+

x2 − x
(1)
D

x1

∂L

∂x2

] [
− V

(RtU + 1)2

]

+

[
λ
∂x

(1)
D

∂RtU
− ∂x

(1)
D

∂RtU

1

x1

∂L

∂x2

] [
V

RtU + 1

]

+ σ1
∂σ1

∂RtU
(x1)

2 ∂2L

(∂x1)
2 + σ2

∂σ2

∂RtU
(x2)

2 ∂2L

(∂x2)
2 (7.201)

Simplifying, we get an implicit equation for RtU :

RtU =
∂L
∂x2

x2−x
(1)
D

x1
− ∂L

∂x1
− λ(x∗

D − x
(1)
D ) + 1

∂x
(1)
D

∂RtU

[
λ− 1

x1

∂L
∂x2

]

−

[
σ1

∂σ1

∂RtU
(x1)

2 ∂2L
(∂x1)

2 + σ2
∂σ2

∂RtU
(x2)

2 ∂2L
(∂x2)

2

] [
(RtU+1)2

V

]

∂x
(1)
D

∂RtU

[
λ− 1

x1

∂L
∂x2

] − 1

Note that if we assume σ1 = 0 (i.e., uncertainty exists only in x2 (x
(1)
B ),

but does not exist in x1 (B)), the equation reduces to

RtU =
∂L
∂x2

x2−x
(1)
D

x1
− ∂L

∂x1
− λ(x∗

D − x
(1)
D ) + 1

∂x
(1)
D

∂RtU

[
λ− 1

x1

∂L
∂x2

]

−

[
σ2

∂σ2

∂RtU
(x2)

2 ∂2L
(∂x2)

2

] [
(RtU+1)2

V

]

∂x
(1)
D

∂RtU

[
λ− 1

x1

∂L
∂x2

] − 1

(7.202)

Let us think of what we have accomplished for the uncertain case. By as-
suming that the state variables of the maximum distillate problem can be
represented by Equations (7.197) and (7.198), we have obtained an implicit
equation (Equation (7.202)) that allows the calculation of the optimal profile
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for the reflux ratio. However, we had explained before that this work focused
on optimal control problems in which the uncertainty in the calculation is in-
troduced by representing the behavior of the relative volatility as a geometric
Brownian motion. If so, then why are we assuming that the state variables are
the ones that present such an uncertain behavior? We answer this question
in the following section. By using Ito’s lemma, we show that the uncertainty
in the calculation of the relative volatility affects the calculation of one of the

state variables (x2, which is the same as x
(1)
B ), which can also be represented

as an Ito process.

7.5.9 State Variable and Relative Volatility: The Two Ito
Processes

Recall that, in the quasi-steady-state method of batch distillation optimal
control problems considered in this work, the integration of the state variables
leads to the calculation of the rest of the variables assumed to be in quasi-
steady-state (Diwekar, 1995). Also, recall that such variables in quasi-steady-
state are determined by applying short-cut method calculations.

Let us focus now on the expression for the dynamic behavior of the bottom
composition of the key component, Equation (7.198):

dx2 =
V

RtU + 1

(x2 − x
(1)
D )

x1
dt + x2 σ2 dz (7.203)

The question here is how to calculate the term corresponding to uncer-

tainty in α. To relate the relative volatility to the state variable x2 (x
(1)
B ), we

have to consider the HG equation, which relates the relative volatility to the

bottom composition x
(1)
B through the constant C1:

1 =
n∑

i=1

(
αi

α1

)C1 x
(1)
D

x
(1)
B

x
(i)
B (7.204)

Note that the equation contains the relative volatility to the power of C1.
Rearranging,

1 =
x
(1)
D

x
(1)
B

α−C1
1

n∑
i=1

αC1
i x

(i)
B (7.205)

Taking the derivatives of this expression implicitly with respect to x
(i)
B and

αC1
i ,

x
(i)
B dαC1

i + dx
(i)
B αC1

i = 0

dαC1
i

αC1
i

= −dx
(i)
B

x
(i)
B

(7.206)
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If we express the behavior of relative volatility by the general equation for
an Ito process:

dα = f1(α, t)dt+ f2(α, t)dz (7.207)

For the geometric Brownian motion and the geometric mean reverting
process, f2(α, t) is the same for both of these processes. Therefore we can
write Equation (7.207) in the following form.

dα = f1(α, t)dt+ σαdz (7.208)

Then, by using Ito’s lemma (Equation (7.108)):

dF =
∂F

∂t
dt +

∂F

∂x
dx +

1

2

∂2F

∂x2
(σ)2(x)2 dt

We can obtain an expression for the relative volatility to the power of C1,
αC1 ,

dαC1 =
∂αC1

∂α
dα+

1

2
σ2α2 ∂

2αC1

∂α2
dt (7.209)

Simplifying:

dαC1 = C1α
C1−1dα+

1

2
σ2αC1C1(C1 − 1)dt

dαC1

αC1
= C1

[
f1(α, t)

α
dt+ σdz

]
dt+

1

2
σ2C1(C1 − 1)dt (7.210)

= fnew(α, t)dt+ σnewdz (7.211)

where

fnew(α, t) = C1
f1(α, t)

α
+

1

2
σ2C1(C1 − 1)

and
σnew = C1σ

.
Substituting Equation (7.211) in Equation (7.206) implies that

dx2

x2
=

dx
(1)
B

x
(1)
B

= −fnew(α, t)dt+ σnewdz (7.212)

Note that Equation (7.212) establishes that the uncertain behavior for the
relative volatility results in a similar behavior for the dynamics of x2. That
is, if α is an Ito process, then x2 is represented by a similar Ito process. For
an ideal system, this process is shown to be a geometric Brownian motion,
whereas for a non-ideal system such as ethanol–water it is found to be a
geometric mean reverting process .
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7.5.10 Coupled Maximum Principle and NLP Approach for the
Uncertain Case

Although Ito’s lemma and dynamic programming helped us to provide an
analytical expression for the reflux ratio profile, these equations are cumber-
some and computationally inefficient to solve. One of the fastest and simplest
methods to solve optimal control problems in batch distillation with no uncer-
tainty is the coupled maximum principle and NLP approach described earlier.
Such an approach can also be used in this work for the solution of the optimal
control problem in the uncertain case, but in order to do that, the derivation
of the appropriate adjoint equations is required. In this section, we show the
maximum principle formulation that results from the analysis of the uncertain
case (similar to the formulation presented earlier for the deterministic case;
we are not considering the Lagrangian expression of the objective function).

The problem is expressed as

Maximize −x1(T ) (7.213)

RtU

subject to

dx1

dt
=

−V

Rt + 1
, x1(0) = B0 = F (7.214)

dx2 =
V

RtU + 1

(x2 − x
(1)
D )

x1
dt + x2 σ2 dz, x2(0) = x

(1)
F (7.215)

The Hamiltonian, which should be maximized, is

H =
V

RtU + 1

∂L

∂x1
+

V

RtU + 1

(
x2 − x

(1)
D

)

x1

∂L

∂x2
+

σ2
2

2
(x2)

2 ∂2L

(∂x2)
2 (7.216)

The adjoint equations are

dz1
dt

= z2
V
(
x2 − x

(1)
D

)

(RtU + 1)(x1)2
, z1(T ) = −1 (7.217)

dz2
dt

= −z2

V

(
1− ∂x

(1)
D

∂x2

)

(RtU + 1)x1
− σ2

2x2
∂2L

(∂x2)
2 , z2(T ) = 0 (7.218)

Recall that

∂L

∂x1
= z1
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∂L

∂x2
= z2

Also, if we define
∂2L

(∂x2)
2 = ωt

Then it can be shown that

dωt

dt
= −ωt

V

(
1− ∂x

(1)
D

∂x2

)

(RtU + 1)x1
+ z2

V

(
1− ∂2x

(1)
D

(∂x2)
2

)

(RtU + 1)x1

−ωt σ
2
2 − 2σ2

2x2
∂3L

(∂x2)
3 , ωT = 0

(7.219)

The optimality conditions on the reflux ratio results in

RtU =
− ∂L

∂x2

x2−x
(1)
D

x1
+ ∂L

∂x1

∂x
(1)
D

∂RtU

1
x1

∂L
∂x2

+

[
σ2

∂σ2

∂RtU
(x2)

2 ∂2L
(∂x2)

2

] [
(RtU+1)2

V

]

∂x
(1)
D

∂RtU

1
x1

∂L
∂x2

− 1 (7.220)

Now, if we define

ξ =

∂2L
(∂x2)

2

∂L
∂x1

=
ωt

z1
(7.221)

z =
∂L
∂x2

∂L
∂x1

=
z2
z1

(7.222)

and consider negligible third partial derivatives, then, without loss of infor-
mation, Equations (7.217), (7.218), (7.219), and (7.220) can be reformulated
as

dz

dt
= −z2

V
(
x2 − x

(1)
D

)

(RtU + 1)(x1)2
− z

V

(
1− ∂x

(1)
D

∂x2

)

(RtU + 1)x1
− σ2

2x2ξ, z2(T ) = 0 (7.223)

dξ

dt
= −ξ

V

(
1− ∂x

(1)
D

∂x2

)

(RtU + 1)x1
+ z

V
∂2x

(1)
D

(∂x2)
2

(RtU + 1)x1

−σ2
2 ξ − ξz

V
(
x2 − x

(1)
D

)

(RtU + 1)(x1)2
, ξT = 0
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(7.224)

RtU =
x1 − z(x2 − x

(1)
D )

∂x
(1)
D

∂RtU
z

+
x1

[
σ2

∂σ2

∂RtU
(x2)

2
ξ
] [

(RtU+1)2

V

]

∂x
(1)
D

∂RtU
z

− 1 (7.225)

This representation allowed us to use the coupled maximum principle–NLP
solution algorithm. In such an approach, the Lagrangian formulation of the
objective function is not used in the solution. Most important of all, the
algorithm avoids the solution of the two-point boundary value problem for
the pure maximum principle formulation, or the solution of partial differential
equations for the pure dynamic programming formulation. Note that Equation
(7.225) is obtained by maximizing the Hamiltonian (maximizing the distillate)
and does not incorporate the purity constraint. Hence, the use of the final
boundary condition (μT = 0, ξT = 0) provides the limiting solution resulting
in all the reboiler charge instantaneously going to the distillate pot (R = −∞)
with the lowest overall purity. Because in this approach the purity constraint
is imposed external to the Hamiltonian, the final boundary condition is no
longer valid. Instead, the final boundary condition is automatically imposed
when the purity constraint is satisfied. The algorithm involves the solution
of the NLP optimization problem for the scalar variable R0, the initial reflux
ratio, subject to

1. The dynamics of the state variables given by Equations (7.214) and
(7.215).

2. The adjoint equations (Equations (7.223) and (7.224)), and the initial
conditions for these adjoint equations, derived in terms of the decision
variable R0.

3. The optimality conditions for the control variable (reflux ratio, Equation
(7.225)).

Earlier, we established by numerical experiments that the uncertainties in
relative volatility can be represented as an Ito process. For the optimal control
problem, the system considered is 100 kmol of ethanol–water being processed
in a batch column with 1 atm pressure, 13 theoretical stages, 33 kmol/h vapor
rate, and the batch time of 2 h. For this problem, the purity constraint on
the distillate is specified as 90%. The optimal reflux profile (a) and optimal
distillate flow rates (b) for the stochastic case and the deterministic case
are shown in Figure 7.16. There is a significant difference between the two
profiles. These two profiles for the reflux ratio are given to a rigorous simulator
(MultiBatchDSTM , Diwekar, 1996) to compare the process performances.
The average purity is found to be almost the same at about 90% for both
of these cases. However, for the deterministic case the distillate amount is
69% lower than the stochastic case. This case study shows that representing
uncertainties in relative volatility with Ito processes can significantly improve
the system performance in terms of product yield.
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7.6 Sustainable Mercury Management: An Optimal
Control Problem

As explained in Chapter 2, the complicated cycling of mercury necessitates
mitigation strategies at various stages of the mercury cycle. The last four
chapters proposed mercury trading to achieve greater discharge reductions
at the reduced overall cost, thereby aiding ecological as well as economic
sustainability. This will reduce the amount of mercury that is released into
the earth’s atmosphere, and consequently, the quantity of mercury entering
various water bodies. However, the presence of mercury in water bodies cannot
be totally eliminated. This is not only because it is economically infeasible to
eliminate the anthropogenic mercury contribution to the atmosphere but also
because the atmosphere exhibits background mercury cycling independent of
the anthropogenic contribution that affects water body concentrations.

Fig. 7.16. Optimal profiles for deterministic and stochastic cases

Once present in water, even in small amounts, mercury is highly danger-
ous not only to the aquatic communities but also to humans through direct
and indirect effects. Methylation of inorganic mercury leads to the formation
of methyl mercury that accumulates up the aquatic food chains, so that or-
ganisms in higher trophic levels have higher mercury concentrations. Since
methyl mercury is selectively bioaccumulated, one mitigation option at the
ecosystem level is to restrict mercury methylation in water bodies. Although
the exact mechanism of mercury methylation is not well understood, the lit-
erature based on experimental studies show that acidic lakes (low pH lakes)
have high mercury bioaccumulation rates. Hence, controlling lake/river pH is
an option to mitigate harmful effects due to bioaccumulation.

This section explores the idea of lake liming to control water pH for bioac-
cumulation control. Since natural systems such as lakes and rivers are dynamic
in nature, static decisions will lead to suboptimal results, and time-dependent
liming is expected to result in more accurate pH control. This section is based
on the paper by Shastri and Diwekar (2008) and uses optimal control theory
to derive the time-dependent liming strategy.
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It is well known that natural systems are not very well understood and
consequently are associated with considerable uncertainties that need to be
incorporated for realistic analysis. Effective uncertainty modeling techniques
from real options theory are implemented for the same. The resulting stochas-
tic optimal control problem is solved using the stochastic maximum principle.

7.6.1 Mercury Bioaccumulation

Figure 7.17 presents the overall mercury cycling in water bodies such as lakes
and rivers. Mercury can exist in the water bodies in various forms, the im-
portant forms being: elemental mercury (Hg), inorganic mercury (Hg(II)),
organic methylmercury (CH3Hg), and complexes of these with dissolved or-
ganic carbon or suspended particulate matter. A number of pathways exist
by which mercury and its compounds can enter the freshwater environment:
Hg(II) and methylmercury from atmospheric deposition (wet and dry) can en-
ter the water bodies directly; Hg(II) and methylmercury can be transported
to the water bodies in runoff (bound to suspended soil/humus or attached to
dissolved organic carbon), or Hg(II) and methylmercury can leach into the
water body from groundwater flow in the upper soil layers. Mercury and its
compounds exist in different segments of the water body, such as the water
column, sediment (active and passive), and the biota (fish).

Once in the water bodies, mercury can exist in dissolved as well as particu-
late form and can undergo the following different yet simultaneous transforma-
tions: Elemental Hg can be oxidized to Hg(II) or volatilized to the atmosphere
(evasion); Hg(II) can be methylated in sediments and water column to form
methylmercury or can undergo reduction to form elemental Hg; methylmer-
cury can be alkylated to form dimethylmercury, and Hg(II) and methylmer-
cury can form organic and inorganic complexes with sediment and suspended
particulate matter. The concentration of each chemical form depends on the
extent of these various transformations and can be different for each water
body. Of the various chemical forms of mercury, methylmercury (MeHg) is
considered to be the most dangerous.

To summarize, mercury methylation to MeHg is a key step in the bioac-
cumulation of mercury in aquatic food chains. The concentration of MeHg in
water depends on the equilibrium between the methylation and demethylation
reactions, which occur in the water column as well as sediments. It has been
shown that a strong correlation between acidic conditions, i.e., low pH values,
and high mercury bioaccumulation in fish. Therefore, the liming of lakes and
rivers to control pH can control the harmful effects of mercury in water.

7.6.2 Mercury pH Control Model

The parameters of the model that are used in the dynamic model are
Distribution Coefficient (Dc), Internal Loading Rate (ILR), Dynamic Ratio
(Dr), Lake Water Retention Time (Rt), Sedimentation Rate (Sr), and Active
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Sediment Age (ASA). The control variable is Lime Input (u).
These parameters are computed from the various other lake-related basic pa-
rameters. The various state variables for the model are
y1: Lime in water
y2: Lime in active sediment
y3: Lime in passive sediment
y4:Lake/river pH

The set of ODEs for the complete lake liming problem are presented below.

Sediment

Water Column
HC)II(gH 3Hg

Hg(0)

Methylation

Demethylation
Oxidation and

Reduction

HC)II(gH 3Hg

Deposition and Runoff
Hg(0), Hg(II) and CH3Hg

Volatalization
Hg(0) and CH3Hg

Fig. 7.17. Mercury cycling in water

f1 =
dy1
dt

= u.Dc.(0.422 ∗ 0.712)

+ y2.ILR.Dr − (y1 − k(4))

Rt.52
− (y1 − k(4)).Sr (7.226)

f2 =
dy2
dt

= (y1 − k(4)).Sr + u.(1−Dc).(0.422 ∗ 0.712)− y2.ILR.Dr − y2
ASA

(7.227)

f3 =
dy3
dt

=
y2

ASA
(7.228)

f4 =
dy4
dt

=
−10[

1 + 10[k1.(
k4
y(1)

)4.(k2−20.
y(1)
k5

)]]2 .k3.10
[k1.(

k4
y(1)

)4.(k2−20.
y(1)
k5

)].
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[
k1.k

4
4.

(
−4

y(1)5
dy(1)

dt

)
k2 −

k1.20.k
4
4

k5

(
−3

y(1)4
dy(1)

dt

)]
(7.229)

where

• k1 = 0.62
• k2 = log10(5) + 10
• k3 = ln(10)
• k4 = 6825
• k5 = 12000

Further simplification of the equations can be made using symbols given be-
low.

• P1 = 10[k1.(
k4
y(1)

)4.(k2−20.
y(1)
k5

)]

• P2 = 1 + P1

7.6.3 Deterministic Optimal Control

For the formulation of the optimal control problem in this model, the objective
function is expressed in terms of pH. If ȳ represents the targeted pH value
(=7), then the time-dependent objective is therefore defined as:

J =

∫ T

0

(y4 − ȳ)2 dt (7.230)

Representing the objective function equation as:

F = (y4 − ȳ)2 (7.231)

The Hamiltonian is given by

H = F +

4∑
i=1

zifi (7.232)

Optimality Condition

The general optimality condition for any control variable u is given by

∂H

∂u
= 0 (7.233)

4∑
i=1

zi
∂fi
∂u

+
∂F

∂u
= 0 (7.234)

0 = z1.Dc.(0.422 ∗ 0.712) + z2.(1−Dc).(0.422 ∗ 0.712)
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(Dc.0.422 ∗ 0.712)

)]}
(7.235)

Adjoint Equations

The general adjoint equation is given as:

− dzi
dt

=
∂H

∂yi
i = 1, . . . , 4 (7.236)

The adjoint equations are accordingly given as:

− dz1
dt

=
∂F

∂y1
+

4∑
i=1

zi.
∂fi
∂y1

(7.237)
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(7.238)

− dz1
dt

= z1.
( −1

Rt.52
− Sr

)
+ z2.Sr + z4.

∂f4
∂y1

(7.239)

− dz2
dt

=
∂F

∂y2
+

4∑
i=1

zi.
∂fi
∂y2

(7.240)
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(7.241)

− z1
dt

= z1.ILR.Dr + z2.
(
− ILR.Dr − 1

ASA

)
+ z3.

1

ASA
+ z4.

∂f4
∂y2

(7.242)
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− dz3
dt

=
∂F

∂y3
+

4∑
i=1

zi.
∂fi
∂y3

(7.243)

− dz3
dt

= 0 (7.244)

− dz4
dt

=
∂F

∂y4
+

4∑
i=1

zi.
∂fi
∂y4

(7.245)

− dz4
dt

= 2.(y4 − ȳ) (7.246)

7.6.4 Stochastic Optimal Control

As stated earlier, there is uncertainty in predicting the natural pH of water.
Shastri and Diwekar (2008) have shown that this uncertainty can be captured
as a mean reverting Ito process. The time-dependent parameter, which rep-
resents the natural variation in pH, now becomes an additional state variable
in the model and hence the stochastic lake liming model is given as:

f1 =
dy1
dt

= u.Dc.(0.422 ∗ 0.712)

+ y2.ILR.Dr − (y1 − k(4))

Rt.52
− (y1 − k(4)).Sr (7.247)

f2 =
dy2
dt

= (y1 − k(4)).Sr + u.(1−Dc).(0.422 ∗ 0.712)− y2.ILR.Dr

− y2
ASA

(7.248)

f3 =
dy3
dt

=
y2

ASA
(7.249)

f4 =
dy4
dt

=
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+ y(5)

(7.250)

fito =
dy5
dt

= η( ¯dpH − y5) +
σ ε√
Δt

(7.251)

Here, ¯dpH is the mean value of fractional natural pH variation.
ȳ represents the targeted pH value. The time-dependent objective is, there-

fore, defined as:

J =

∫ T

0

(y4 − ȳ)2 dt (7.252)

Representing the objective function equation as:

F = (y4 − ȳ)2 (7.253)
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The Hamiltonian is given by

H = F +
5∑

i=1

zifi +
1

2
wσ2 (7.254)

Optimality Condition

The general optimality condition for any control variable u is given by

∂H

∂u
= 0 (7.255)

5∑
i=1

zi
∂fi
∂u

+
∂F

∂u
+

∂
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1

2
wσ2 = 0 (7.256)

0 = z1.Dc.(0.422 ∗ 0.712) + z2.(1−Dc).(0.422 ∗ 0.712)
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(7.257)

Adjoint Equations

The general adjoint equation is given as:

− dzi
dt

=
∂H

∂yi
i = 1, . . . , 5 (7.258)
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The adjoint equations are accordingly given as:

− dz1
dt

=
∂F

∂y1
+

5∑
i=1

zi.
∂fi
∂y1

(7.260)
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− dz4
dt

= 2.(y4 − ȳ) (7.269)

− dz5
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− dz5
dt

= 1 + η (7.271)
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dt
= −2 w η − z5 η (7.273)
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7.6.5 Results and Discussions

Lake A

The parameter values for lake A are
Initial lake pH = 6.15
Lake area = 1.26 km2

Lake mean depth = 8.5m
Lake maximum depth = 26.2m
Drainage area = 51.5 km2

Mean annual precipitation = 602mm/year
Active sediment age = 519.6 weeks
Internal loading rate = 0.001 (1/month)
Distribution coefficient = 0.5
Settling velocity = 0.074m/week
Additive constant = 2.375

The other parameters are computed using these basic parameters as per
the following relationships.

Lake volume = Lake area * Lake mean depth
Water discharge = 0.01*DrainageArea*Precipitation/600
Lake water retention time = Lake volume/(Water discharge*60*60*24*365/7)
(weeks)
Sedimentation rate = Settling velocity/Lake mean depth (1/week)
Dynamic ratio = Lake area0.5/Lake mean depth

It should be noted that the lake has a relatively low lime internal loading
rate and a high lime setting velocity. Due to these characteristics, the effect of
lime addition is not prolonged. Any lime addition results in a fast rise in the
lake pH. However, the effect of liming is not maintained for a longer duration
since the lime particles quickly settle in the sediment compartment, and the
re-suspension rate of lime from active sediment to the water compartment is
low.

In Figure 7.18, the top profile presents the result of the stochastic control
problem solution, indicating that the targeted lake pH is effectively achieved.
The lake pH rises very quickly within about 1 year and then fluctuates around
the targeted pH for the remaining time horizon. The control variable profile
for this result is shown in Figure 7.19. The liming rate is initially high to
raise the lake pH value to the targeted value as quickly as possible. After the
targeted range has been achieved, the lime addition rate settles at a nonzero
value for the remaining time horizon. The value fluctuates continuously to
account for the natural variations in the lake pH. The plots also show that
use of the stochastic optimal control (top plot) leads to better lake pH control
than deterministic control (middle plot). This emphasizes that taking liming
decisions while ignoring the natural pH variations will lead to suboptimal
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results, thereby highlighting the importance of uncertainty incorporation in
decision making.

7.7 Summary

An optimal control problem involves vector decision variables. These problems
are a subset of differential algebraic optimization problems. If the underlying
differential equations can be discretized into a set of algebraic equations, then
these problems can be solved using traditional NLP techniques. Otherwise, one
has to resort to either the calculus of variations, the maximum principle, or the
dynamic programming approach. The calculus of variations represents the first
systematic theory for optimization that was derived to solve optimal control
problems. The name optimal control comes from the solution method proposed
for control problems, popularly known as Pontryagin’s maximum principle.
Dynamic programming presents another alternative to solve these problems.
These different methods follow different paths to arrive at the same solution
(for convex problems). In the presence of uncertainties, stochastic calculus
enters in optimal control theory. Ito’s lemma and dynamic programming can
together provide a way to handle stochastic optimal control problems. Recent
advances provided the stochastic maximum principle as a better alternative
to dynamic programming for solution of these problems.
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Fig. 7.18. Basic pH control: Comparison between stochastic and deterministic con-
trol for Lake A
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Fig. 7.19. Basic pH control: Control variable (lime addition) profile for Lake A

Exercises

7.1 A performance equation for a simple process is given by

dx1

dt
= − ax1 + θt, x1(o) = α, 0 ≤ t ≤ T

The objective is to maximize the following index of performance.

J =
1

s

∫ T

0

[
(x1)

2 + (θt)
2
]
dt

Solve the above problem using the calculus of variations and the maximum
principle.

7.2 Solve Problem 7.1 above using the dynamic programming method and
compare the results.

7.3 A man is considering his lifetime plan of investment and expenditure. He
has an initial level of savings S and no income other than which he obtains
from investment at a fixed interest rate. His total capital x is therefore
governed by the equation

dx(t)

dt
= αx(t)− r(t)
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where α ≥ 0 and r denotes his rate of expenditure. His immediate
enjoyment due to expenditure is U(r), where U is his utility function. In
his case U(r) = r0.5. Future enjoyment at time t is counted less today,
at time 0, by incorporation of a discount term e−β t. Thus, he wishes to
maximize

J =

∫ T

0

e−β tU(r)dt

subject to the terminal constraint x(T ) = 0.
Solve this problem (find r(t)) using the maximum principle and dynamic
programming.

7.4 Zermelo’s problem. We consider the problem of navigating a boat across
a river, in which there is strong current, so as to get to a specified point
on the other side in minimum time. We assume that the magnitude of the
boat’s velocity with respect to water is a constant V . The downstream
current at any point depends only on the distance from the bank.
The equations of the boat’s motion are

dx

dt
= V cos θ + u(y)

dy

dt
= V sin θ

where x is the downstream position along the river, y is the distance from
the origin bank, u(y) is the downstream current, and θ is the heading
angle of the boat. The heading angle is the control, which may vary along
the path.
The problem is to minimize the time of crossing. Frame the problem as
an optimal control problem and solve it.

7.5 At what point is it optimal to pay a sunk cost I in return for a project
whose value is P , given that P evolves according to the following Geo-
metric Brownian motion

dP = αP dt + α P dz

where dz is the increment of a Wiener process? This equation implies
that the current value of the project is known but the future values are
lognormally distributed.
The value of the investment opportunity to be maximized is given by the
function F (P )
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Fig. 7.20. One-year historical prices of a technology stock
(http://www.finance.yahoo.com)

F (P ) = maxE[(PT − I) exp (−γt)]

where E denotes the expectation, T is the future time that the investment
is made, and γ is the discount rate.
• Find the deterministic solution.
• Find the stochastic solution for different values of α.
• Compare the two solutions.

7.6 Identify and model the following time-dependent uncertainties.

(a) Figure 7.20 shows the 1-year performance for a stock price.
(http://www.finance.yahoo.com)

(b) Tables 7.1 and 7.2 show relative volatility variations of two binary
systems distilled in a batch column (Ulas and Diwekar, 2004).

(c) Table 7.3 shows the data for insulin dynamics obtained from 4 pa-
tients. The subjects were studied while lying down during continuous
enteral nutrition (90Cal/h), and blood samples were taken at 10-min
intervals (Simon et al. (1987), Ulas and Diwekar, 2010) over a 24-h
time period.



324 7 Optimal Control and Dynamic Optimization

T
a
b
le

7
.1
.
R
el
a
ti
v
e
v
o
la
ti
li
ty

ch
a
n
g
e
fo
r
a
b
in
a
ry

sy
st
em

d
is
ti
ll
ed

in
a
b
a
tc
h
co
lu
m
n

T
im

e
R
el
a
ti
v
e
V
o
la
ti
li
ty

in
th
e
C
o
lu
m
n
,
α

0
3
.2
3
8
9
4
5

3
.2
3
8
7
5
2

3
.2
3
8
3
3
9

3
.2
3
7
5
4
7

3
.2
3
5
8
9
9
5

3
.2
3
2
2
9
3
7

3
.2
2
3
8
2
9

3
.2
0
2
9
8

3
.1
5
3
6
7
3

3
.0
5
8
1
1
5

0
.0
4

3
.2
3
8
8
8
7

3
.2
3
8
6
2

3
.2
3
8
0
9
9

3
.2
3
7
0
5
6

3
.2
3
4
8
8
8
9

3
.2
3
0
0
8
7
6

3
.2
1
8
6
0
5

3
.1
9
0
1
2
3

3
.1
2
5
9
2
8

3
.0
2
2
5
1

0
.0
8

3
.2
3
8
8
7
4

3
.2
3
8
5
8
3

3
.2
3
8
0
0
9

3
.2
3
6
8
2
3

3
.2
3
4
2
0
9
9

3
.2
2
7
9
7
2
3

3
.2
1
2
1
3
8

3
.1
7
3
2
1
9

3
.0
9
6
7
5
9

2
.9
9
9
4
7
5

0
.1
2

3
.2
3
8
8
6
4

3
.2
3
8
5
5
5

3
.2
3
7
9
3
7

3
.2
3
6
6
1
8

3
.2
3
3
5
8
6
5

3
.2
2
6
0
5
2
4

3
.2
0
6
7
2
3

3
.1
6
1
3
4
6

3
.0
8
0
7
2
9

2
.9
8
8
8
5
9

0
.1
6

3
.2
3
8
8
4
4

3
.2
3
8
4
9
6

3
.2
3
7
7
6
9

3
.2
3
6
1
2
4

3
.2
3
2
0
9
0
1

3
.2
2
1
7
0
9
9

3
.1
9
5
7
9
3

3
.1
4
0
9
1
6

3
.0
5
7
3
5
8

2
.9
7
4
4
2

0
.2

3
.2
3
8
8
2
2

3
.2
3
8
4
2
9

3
.2
3
7
5
7
3

3
.2
3
5
5
3
7

3
.2
3
0
3
8
0
7

3
.2
1
7
1
4
1
6

3
.1
8
5
6
0
4

3
.1
2
4
4
9
8

3
.0
4
0
7
4
7

2
.9
6
4
3
7

0
.2
4

3
.2
3
8
8
0
8

3
.2
3
8
3
8
8

3
.2
3
7
4
4
8

3
.2
3
5
1
7
1

3
.2
2
9
3
5
2
9

3
.2
1
4
5
4
0
5

3
.1
8
0
1
4
7

3
.1
1
6
4
3
6

3
.0
3
3
1
0
8

2
.9
5
9
7
6
7

0
.2
8

3
.2
3
8
7
5
6

3
.2
3
8
2
2
5

3
.2
3
6
9
7

3
.2
3
3
8
1
4

3
.2
2
5
7
3
6

3
.2
0
5
9
5
9
4

3
.1
6
3
7
2
6

3
.0
9
3
9
2
6

3
.0
1
2
9
0
5

2
.9
4
7
5
3
4

0
.3
2

3
.2
3
8
7
2

3
.2
3
8
1
1
5

3
.2
3
6
6
5
3

3
.2
3
2
9
4
7

3
.2
2
3
5
4
7
6

3
.2
0
1
0
8
6
4

3
.1
5
5
0
5
6

3
.0
8
2
9
5

3
.0
0
3
5
5
3

2
.9
4
1
8
2
2

0
.3
6

3
.2
3
8
6
7
6

3
.2
3
7
9
8
1

3
.2
3
6
2
7
6

3
.2
3
1
9
4
3

3
.2
2
1
0
8
8
7

3
.1
9
5
8
3
4
4

3
.1
4
6
1
2
1

3
.0
7
2
1
5
9

2
.9
9
4
5
9
6

2
.9
3
6
2
9

0
.4

3
.2
3
8
6
0
4

3
.2
3
7
7
6
8

3
.2
3
5
6
9
2

3
.2
3
0
4
2
5

3
.2
1
7
4
7
8
3

3
.1
8
8
4
4
2
6

3
.1
3
4
1
6
1

3
.0
5
8
3
3
4

2
.9
8
3
3
9
3

2
.9
2
9
3
1
9

0
.4
4

3
.2
3
8
5
1
2

3
.2
3
7
5
0
2

3
.2
3
4
9
8
3

3
.2
2
8
6
5
3

3
.2
1
3
3
8
4
1

3
.1
8
0
2
9
0
3

3
.1
2
1
7
3
4

3
.0
4
4
6
8
1

2
.9
7
2
6
9
9

2
.9
2
2
5
9

0
.4
8

3
.2
3
8
4

3
.2
3
7
1
7
9

3
.2
3
4
1
3
3

3
.2
2
6
5
7
9

3
.2
0
8
7
7
8

3
.1
7
1
5
4
0
7

3
.1
0
8
8
7
4

3
.0
3
1
1
8
4

2
.9
6
2
3
1
5

2
.9
1
5
9
6
9

0
.5
2

3
.2
3
8
2
6

3
.2
3
6
7
9
1

3
.2
3
3
1
3
8

3
.2
2
4
1
8
5

3
.2
0
3
5
8
6
9

3
.1
6
2
0
5
8
4

3
.0
9
5
5
8
8

3
.0
1
7
8
1
9

2
.9
5
2
2
3
2

2
.9
0
9
4
6

0
.5
6

3
.2
3
8
0
6
8

3
.2
3
6
2
6
4

3
.2
3
1
8
2
3

3
.2
2
1
1
0
1

3
.1
9
7
0
5
4
9

3
.1
5
0
5
4
9
1

3
.0
8
0
2
4

3
.0
0
3
0
5
9

2
.9
4
1
2
9
9

2
.9
0
2
3
1
1

0
.6

3
.2
3
7
8
3
7

3
.2
3
5
6
3
1

3
.2
3
0
2
5
7

3
.2
1
7
5
0
9

3
.1
8
9
6
5
4
4

3
.1
3
8
0
0
9

3
.0
6
4
3
4
7

2
.9
8
8
4
4
1

2
.9
3
0
6
7

2
.8
9
5
2
6
3

0
.6
4

3
.2
3
7
5
5
6

3
.2
3
4
8
7
7

3
.2
2
8
4
0
4

3
.2
1
3
3
1
5

3
.1
8
1
2
1
1
9

3
.1
2
4
3
7
6
2

3
.0
4
7
9
4
2

2
.9
7
3
9
1
1

2
.9
2
0
3
1
5

2
.8
8
8
3

0
.6
8

3
.2
3
7
2
1
6

3
.2
3
3
9
8
4

3
.2
2
6
2
3
1

3
.2
0
8
4
4
1

3
.1
7
1
7
1
1
4

3
.1
0
9
5
6
6
6

3
.0
3
1
0
6
5

2
.9
5
9
5
9
4

2
.9
1
0
2
0
7

2
.8
8
1
4
0
7

0
.7
2

3
.2
3
7
2
1
6

3
.2
3
3
9
8
4

3
.2
2
6
2
3
1

3
.2
0
8
4
4
1

3
.1
7
1
7
1
1
4

3
.1
0
9
5
6
6
6

3
.0
3
1
0
6
5

2
.9
5
9
5
9
4

2
.9
1
0
2
0
7

2
.8
8
1
4
0
7

0
.7
6

3
.2
3
6
7
2
7

3
.2
3
2
6
9
9

3
.2
2
3
1
6
7

3
.2
0
1
6
7
7

3
.1
5
8
9
3
5
2

3
.0
9
0
7
8
8
6

3
.0
1
0
8
8
2

2
.9
4
3
2
0
5

2
.8
9
8
7
7
1

2
.8
7
3
4
5
1

0
.8

3
.2
3
6
1
3
2

3
.2
3
1
1
1

3
.2
1
9
4
0
5

3
.1
9
3
5
9
1

3
.1
4
4
1
9
6
1

3
.0
7
0
3
3
4
9

2
.9
9
0
3
3
3

2
.9
2
7
2
0
2

2
.8
8
7
6
8
7

2
.8
6
5
5
8
3

0
.8
4

3
.2
3
5
3
9
8

3
.2
2
9
1
6
6

3
.2
1
4
7
6
7

3
.1
8
3
8
1

3
.1
2
7
2
0
9
6

3
.0
4
8
2
8
5
2

2
.9
6
9
5
3
8

2
.9
1
1
6
8
3

2
.8
7
6
9
7
3

2
.8
5
7
8
0
8

0
.8
8

3
.2
3
5
3
9
8

3
.2
2
9
1
6
6

3
.2
1
4
7
6
7

3
.1
8
3
8
1

3
.1
2
7
2
0
9
6

3
.0
4
8
2
8
5
2

2
.9
6
9
5
3
8

2
.9
1
1
6
8
3

2
.8
7
6
9
7
3

2
.8
5
7
8
0
8

0
.9
2

3
.2
3
4
4
6
5

3
.2
2
6
7
4
2

3
.2
0
9
0
5

3
.1
7
1
9
3
7

3
.1
0
7
7
0
5
8

3
.0
2
4
8
2
7
5

2
.9
4
8
8
7
2

2
.8
9
6
7
3
9

2
.8
6
6
6
3
6

2
.8
5
0
1
7

0
.9
6

3
.2
3
3
2
9
3

3
.2
2
3
6
6
1

3
.2
0
1
9
0
8

3
.1
5
7
6
5
9

3
.0
8
5
5
4
0
8

3
.0
0
0
2
3
0
5

2
.9
2
8
5
7
7

2
.8
8
2
4
7

2
.8
5
6
6
9
1

2
.8
4
2
5
9
8



7.7 Summary 325

T
a
b
le

7
.2
.
R
el
a
ti
v
e
v
o
la
ti
li
ty

ch
a
n
g
e
fo
r
a
b
in
a
ry

sy
st
em

d
is
ti
ll
ed

in
a
b
a
tc
h
co
lu
m
n

T
im

e
R
el
a
ti
v
e
V
o
la
ti
li
ty

in
th
e
C
o
lu
m
n
,
α

0
1
.0
5
2
2
7
6
2
1
.0
6
2
1
4
2
7
1
.0
7
4
5
5
7
2
1
.0
9
0
4
4
5
2
1
.1
1
1
1
9
6
8
1
.1
3
9
1
4
9
6
1
.1
7
8
6
3
8
1
1
.2
3
7
6
2
3
5
1
.3
3
4
5
3
3
9

1
.5
2
2
9
9
4

0
.0
8

1
.0
6
0
2
3
3

1
.0
7
3
2
7
1
4
1
.0
8
8
9
8
9
5
1
.1
0
9
0
6
4
4

1
.1
3
5
6
9
9

1
.1
7
2
5
0
8
9
1
.2
2
4
9
4
5
8
1
.3
0
3
1
4
6
9
1
.4
2
7
7
3
8
8
1
.6
4
4
4
4
5
7

0
.1
6

1
.0
6
8
1
0
7
7
1
.0
8
3
8
0
8
6
1
.1
0
2
7
8
5
7
1
.1
2
6
9
0
8
7
1
.1
5
8
6
7
0
5
1
.2
0
1
9
8
8
8
1
.2
6
1
7
9
3
5
1
.3
4
7
8
5
4
2
1
.4
7
8
2
7
3
7
1
.6
9
4
2
0
8
3

0
.2
4

1
.0
8
2
0
8
3
5
1
.1
0
1
8
3
1
2
1
.1
2
5
4
6
0
1
1
.1
5
4
8
3
7
9
1
.1
9
2
7
9
3
9
1
.2
4
2
0
6
3
4
1
.3
0
7
7
8
8
6
1
.3
9
9
1
9
6
6
1
.5
3
2
1
2
2
9
1
.7
4
8
0
4
1
7

0
.3
2

1
.0
9
1
0
1
5

1
.1
1
2
9
3
8
3

1
.1
3
8
9
9
9

1
.1
7
1
0
0
4
8
1
.2
1
0
6
9
7
5
1
.2
6
2
8
2
6
9
1
.3
3
0
7
5
2
5
1
.4
2
2
8
7
8
6

1
.5
5
8
2
9
1

1
.7
7
4
9
8
4
9

0
.4

1
.1
0
2
3
3
7
5
1
.1
2
6
8
9
1
5

1
.1
5
5
2
0
4

1
.1
8
9
6
2
6
9
1
.2
3
2
2
5
1
4
1
.2
8
5
6
2
0
8
1
.3
5
5
3
9
6
2
1
.4
4
9
9
2
8
2
1
.5
8
5
9
7
3
5

1
.8
0
6
4
8
4

0
.4
8

1
.1
1
3
4
9
7
5
1
.1
4
0
2
2
0
4
1
.1
7
0
8
6
7
1
1
.2
0
7
2
3
4
6
1
.2
5
1
1
7
7
8
1
.3
0
6
5
3
8
4
1
.3
7
7
7
1
3
3

1
.4
7
3
4
2
4

1
.6
1
1
9
2
4
9
1
.8
3
7
0
8
1
2

0
.5
6

1
.1
2
5
5
2
4
4
1
.1
5
4
8
7
9
1
1
.1
8
7
3
3
9
3
1
.2
2
5
3
3
1
9
1
.2
7
1
5
1
6
6
1
.3
2
7
5
4
6
7
1
.4
0
0
4
5
2
8
1
.4
9
8
2
1
8
3

1
.6
3
9
4
8
4

1
.8
7
2
0
0
0
6

0
.6
4

1
.1
3
6
7
0
3
6
1
.1
6
8
0
2
3
3
1
.2
0
2
8
2
0
5
1
.2
4
2
1
5
8
7
1
.2
8
9
1
1
1
8
1
.3
4
7
3
6
4
5
1
.4
2
1
1
5
8
8
1
.5
2
0
7
8
4
6
1
.6
6
6
0
6
8
5
1
.9
0
7
7
1
6
9

0
.7
2

1
.1
4
8
5
8
7
8
1
.1
8
2
5
6
5
2
1
.2
1
8
5
6
4
8
1
.2
5
9
9
2
5
5
1
.3
0
8
5
9
5
6
1
.3
6
7
7
5
4
1
1
.4
4
3
6
4
4
3
1
.5
4
6
0
0
1
2
1
.6
9
6
5
0
1
2
1
.9
5
1
5
8
8
6

0
.8

1
.1
5
3
8
5
0
2
1
.1
8
9
1
4
1
4
1
.2
2
6
2
0
3
9
1
.2
6
7
9
9
5
1
1
.3
1
7
4
8
9
8
1
.3
7
7
5
0
1
8
1
.4
5
4
2
0
2
9
1
.5
5
8
1
3
1
7
1
.7
1
1
7
2
6
9
1
.9
7
4
6
5
5
4

0
.8
8

1
.1
6
0
2
8
3
7
1
.1
9
6
6
9
1
6
1
.2
3
5
3
2
3
2
1
.2
7
8
0
4
6
7
1
.3
2
8
1
5
5
1
1
.3
8
9
3
6
6
1
1
.4
6
7
3
4
5
4
1
.5
7
3
3
4
7
6
1
.7
3
1
3
1
4
4
2
.0
0
5
4
9
9
6

0
.9
6

1
.1
7
2
1
5

1
.2
1
0
7
8
5
8
1
.2
5
1
1
0
0
7
1
.2
9
6
0
5
6
5
1
.3
4
8
1
7
1
7
1
.4
1
1
3
4
2
2
1
.4
9
2
2
9
2
8
1
.6
0
3
2
8
7
3
1
.7
7
1
5
0
1
2
2
.0
7
2
8
5
5
3

1
.0
4

1
.1
7
7
7
3
2
4
1
.2
1
8
1
1
6
5
1
.2
5
9
7
2
2
9
1
.3
0
5
3
9
2
1
1
.3
5
8
5
8
6
7
1
.4
2
3
1
8
9
7
1
.5
0
6
0
2
4
3
1
.6
2
0
2
9
0
3
1
.7
9
5
4
4
7
7
2
.1
1
5
6
8
7
7

1
.1
2

1
.1
8
2
8
4
4
7
1
.2
2
4
3
9
1
6
1
.2
6
7
5
8
4
4
1
.3
1
4
4
5
3
7
1
.3
6
8
5
7
2
5
1
.4
3
4
5
3
2
7
1
.5
1
9
4
6
8
6
1
.6
3
7
3
7
2
2
1
.8
2
0
3
2
5
4
2
.1
6
2
4
7
0
5

1
.2

1
.1
8
7
9
4
0
6
1
.2
3
0
2
2
3
6
1
.2
7
4
4
0
5
9
1
.3
2
2
7
9
1
3
1
.3
7
8
2
2
7
6
1
.4
4
5
6
0
0
4
1
.5
3
2
7
6
6
1

1
.6
5
4
7
0
6

1
.8
4
6
4
0
1
7
2
.2
1
4
0
5
1
2

1
.2
8

1
.1
9
2
5
0
7
8
1
.2
3
6
2
5
3
8
1
.2
8
1
1
3
6
4
1
.3
3
0
3
5
9
6
1
.3
8
7
1
8
2
3
1
.4
5
6
3
0
1
6
1
.5
4
5
9
6
5
1
1
.6
7
2
4
3
1
3
1
.8
7
4
1
4
9
7
2
.2
7
1
8
8
7
3

1
.3
6

1
.1
9
6
3
4
8
5
1
.2
4
1
5
7
9
3
1
.2
8
7
7
8
1
4
1
.3
3
7
8
7
9
9
1
.3
9
5
8
1
9
7
1
.4
6
6
6
9
1
6
1
.5
5
9
1
1
6
9
1
.6
9
0
6
5
2
5
1
.9
0
3
8
5
7
4
2
.3
3
7
1
3
8
3

1
.4
4

1
.2
0
0
1
6
5

1
.2
4
6
0
9
3
9
1
.2
9
3
5
4
1
8
1
.3
4
5
1
1
9
2
1
.4
0
4
4
4
0
8
1
.4
7
7
0
5
2
5
1
.5
7
2
3
6
4
8
1
.7
0
9
4
7
5
6
1
.9
3
6
0
3
4
2
2
.4
1
3
6
6
2
2

1
.5
2

1
.2
0
3
8
8
0
5
1
.2
5
0
8
5
1
9
1
.2
9
9
0
5
3
9
1
.3
5
1
7
3
0
9
1
.4
1
2
6
0
4
3
1
.4
8
7
3
2
3
8
1
.5
8
5
9
9
2
2
1
.7
2
9
5
3
8
3
1
.9
7
1
5
4
5
2
2
.5
0
4
8
2
3
9

1
.6

1
.2
0
6
2
2
2
9
1
.2
5
4
1
4
7
6
1
.3
0
3
1
6
0
9

1
.3
5
6
6
1
1

1
.4
1
8
5
5
2
3

1
.4
9
4
9
0
9

1
.5
9
6
3
5
1
8
1
.7
4
5
4
3
1
6
2
.0
0
1
0
4
1
4
2
.5
8
5
3
7
5
7

1
.6
8

1
.2
1
0
0
4
7
8
1
.2
5
8
9
8
1
8
1
.3
0
9
4
0
4
9
1
.3
6
4
4
6
4
4
1
.4
2
8
3
3
2
1

1
.5
0
7
5
6
3

1
.6
1
4
0
6
2
2
1
.7
7
3
7
1
1
3
2
.0
5
7
5
6
9
1
2
.7
6
0
2
6
4
9

1
.7
6

1
.2
1
3
0
3
0
4
1
.2
6
2
9
6
9
3
1
.3
1
4
3
7
0
9
1
.3
7
0
6
8
6
6
1
.4
3
6
3
3
7
7
1
.5
1
8
3
1
9
2
1
.6
2
9
8
0
7
2
1
.8
0
0
5
8
2
6
2
.1
1
7
0
0
0
6
2
.9
7
3
5
4
7
5

1
.8
4

1
.2
1
6
0
2
2
5
1
.2
6
6
9
7
9
7
1
.3
1
9
5
6
8
8
1
.3
7
7
3
4
7
2
1
.4
4
5
0
8
4
6
1
.5
3
0
5
3
3
7
1
.6
4
8
7
6
8
7
1
.8
3
5
6
3
6
2
2
.2
0
4
3
6
3
5
3
.3
6
0
5
6
5
8

1
.9
2

1
.2
1
8
9
5
3

1
.2
7
0
9
6
0
8
1
.3
2
4
7
9
9
3
1
.3
8
4
2
3
9
9
1
.4
5
4
5
0
6
5
1
.5
4
4
4
5
2
3
1
.6
7
2
2
3
1
9
1
.8
8
4
6
1
0
6
2
.3
5
2
8
5
3
3
4
.2
3
6
5
7
3
5



326 7 Optimal Control and Dynamic Optimization

Table 7.3. Insulin data for four patients

Patient 1 Patient 2 Patient 3 Patient 4
Time Insulin Time Insulin Time Insulin Time Insulin

4.25 9.73 6.34 11.2 6.32 10.4 4.23 11.2
14.8 11 19 12.2 12.6 11.7 12.7 10.5
25.5 10 27.4 14.4 21 12.3 27.5 12.3
36.1 11 29.6 17 31.6 12.3 44.4 13
42.5 12.8 38 20.2 40 11.5 59.2 15.3
46.7 14.2 44.4 23.7 48.4 10.9 63.5 17.9
59.5 15 59.2 24.8 59 10.7 72 20.2
70.1 13.1 67.6 21.6 69.5 10.9 86.8 21.7
76.5 12.1 71.8 19.2 73.7 11.7 101 22
85 11 78.2 15.4 82.2 11.7 110 20.2
93.5 12.3 86.6 12.2 86.4 10.9 116 18.4
99.9 13.9 101 10.1 94.8 9.94 120 16.6
106 15 112 7.73 94.8 9.16 131 14.3
114 16.5 118 6.93 101 9.94 146 17.4
121 18.1 131 9.86 111 9.42 150 19.2
123 19.4 139 12.8 122 8.9 163 20.7
127 20.5 148 15.7 132 9.42 182 21
131 21.5 160 17.3 137 10.9 196 20
134 23.1 171 18.9 141 11.7 213 20.7
140 24.2 186 19.2 143 12.8 230 21.5
140 25.2 198 16.8 143 13.8 262 17.1
142 26.3 213 14.4 151 14.1 249 20
144 27.1 219 12.5 158 14.9 268 14.6
155 28.4 228 9.33 168 14.3 273 12.5
161 29.4 238 11.4 174 13.6 285 11.2
170 30 245 13.8 177 12.8 298 14.8
180 30 249 15.2 181 11.7 307 19.2
182 28.9 262 15.4 185 10.9 313 24.1
185 27.8 266 13.3 189 10.4 317 28.4
191 26.8 270 11.7 193 9.42 324 32.8
197 26 277 9.86 200 8.63 330 37.6
202 25.2 281 7.46 208 8.11 336 40.2
206 24.2 289 9.06 219 7.32 349 38.2
210 23.6 296 12.2 225 8.11 351 34.8
216 22.8 300 14.4 234 8.63 360 30.2
223 23.4 302 16.2 242 9.16 364 24.8
225 24.2 308 18.4 246 10.2 372 21.2
227 25.2 312 20.5 253 10.4 376 18.9
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Table 7.3. (Continued)

Patient 1 Patient 2 Patient 3 Patient 4
Time Insulin Time Insulin Time Insulin Time Insulin

231 26 323 22.1 261 10.7 385 16.4
233 27.1 334 20.2 269 9.68 400 20
246 27.1 338 17.8 278 9.16 406 24.1
255 26 342 15.2 284 8.11 410 29.2
255 24.7 348 12.8 290 7.59 415 33
259 23.9 357 10.6 293 6.8 425 36.4
265 23.1 365 8.53 301 6.02 429 33.5
272 22.6 372 6.93 309 6.28 432 31
278 22.1 382 5.06 318 7.59 436 27.6
285 21.8 401 8 322 9.68 440 23.5
291 21.5 408 11.4 322 12 444 18.9
302 21.5 416 14.9 326 14.6 451 15.8
306 22.8 422 17.8 328 18 459 13.8
310 23.6 429 20 333 21.4 470 12.3
312 24.7 433 22.9 335 24.6 478 14.3
319 25.5 444 24 337 27.4 489 17.6
325 25 452 22.1 343 31.1 495 22
336 25.7 454 20 345 33.7 499 24.3
340 26 460 16.8 347 37.1 508 25.8
344 27.1 465 14.9 358 35.3 520 22.8
346 28.1 471 13 364 32.9 527 18.9
353 28.4 475 11.4 368 29.3 548 20.7
361 28.4 488 10.4 373 27.2 563 20.2
363 27.6 496 10.4 375 24.6 582 21.7
363 26.5 511 12 381 20.9 599 20.2
367 25.5 524 14.4 385 18.8 609 19.2
367 24.4 526 16.5 394 16.7 616 21.7
374 25.5 532 17.8 404 18.3 626 22.5
378 26.5 537 19.4 411 19.6 645 20
384 25.7 547 21.3 415 20.9 654 17.6
391 25 556 18.9 419 22.7 660 15.3
395 24.2 562 16 425 21.9 675 18.4
397 23.6 568 13 430 20.6 686 20.2
399 22.8 581 14.4 432 19.3 690 22.8
402 22.1 589 16.8 434 17.8 703 21.7
406 21 600 18.4 436 16.2 707 20.2
406 19.7 613 16.2 438 14.3 724 20.7
406 18.9 621 14.1 442 13 732 18.7
406 17.8 634 15.2 444 11.5 739 16.4
406 17.1 636 17 446 10.2 751 16.9
408 16 644 18.4 453 9.42 758 18.9
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Table 7.3. (Continued)

Patient 1 Patient 2 Patient 3 Patient 4
Time Insulin Time Insulin Time Insulin Time Insulin

408 15.2 647 20 459 7.85 764 21.2
414 14.2 651 21.3 468 9.68 772 22.8
412 13.1 657 18.9 472 11.5 792 23.5
416 12.6 659 17 472 13.3 806 23.5
421 12.1 663 15.2 474 14.9 828 22
425 11.3 670 13 480 17 828 20.2
431 10.5 674 15.7 480 19.1 834 18.2
440 10.2 680 18.1 482 21.9 844 15.8
448 11 685 20.2 484 25.3 849 14.1
455 11.5 689 23.2 489 29 864 14.1
463 12.6 689 26.6 491 31.9 874 16.9
467 13.4 695 28.5 495 35 880 18.9
472 14.2 697 30.6 497 38.4 883 21
478 15 699 33 499 41.3 887 23
480 16.3 712 31.4 503 39 902 22.5
482 17.3 716 30.1 510 36.3 912 20.7
487 18.1 716 28.8 510 35 925 19.4
487 19.4 718 25.8 512 32.9 933 16.9
491 20.5 723 22.9 512 31.9 940 16.4
495 21.5 725 21 516 28.7 950 19.4
495 22.6 729 18.9 520 24 955 22
499 23.4 729 17 522 18.5 961 24.8
499 24.7 742 16 529 13.6 963 27.1
510 24.4 752 16.8 537 10.2 972 28.4
512 23.6 761 15.7 550 12.8 982 29.7
516 22.6 771 14.1 558 14.1 999 28.4
518 21.5 778 12.5 565 16.2 1010 26.6
523 20.7 782 11.4 565 17.5 1010 24.6
523 19.7 795 11.4 569 20.6 1020 22.8
525 18.9 814 10.9 573 22.7 1030 22.3
525 18.1 828 11.7 575 25.1 1040 21.5
527 17.1 833 14.4 586 25.9 1050 20.2
529 16.3 837 17.3 592 24 1050 17.9
531 15.2 841 19.7 596 22.7 1060 16.1
536 14.4 845 21.8 596 20.6 1070 14.3
538 13.1 847 24.5 600 18.5 1080 14.3
542 12.3 847 26.9 605 16.7 1090 16.1
546 11.5 856 28.2 613 14.6 1100 18.7
550 11 864 28.8 628 13.3 1100 21.2
559 11.5 875 27.2 634 11.5 1110 24.1
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Table 7.3. (Continued)

Patient 1 Patient 2 Patient 3 Patient 4
Time Insulin Time Insulin Time Insulin Time Insulin

565 12.3 881 25.8 640 9.94 1110 26.6
565 13.4 890 25 649 8.9 1130 27.9
574 14.2 898 25.8 659 8.11 1140 26.6
578 15.5 907 26.9 672 8.37 1150 25.3
582 16.3 917 28.2 683 9.94 1150 24.1
584 17.1 928 28.8 689 12.3 1160 22.8
589 17.6 940 26.1 693 14.3 1180 25.3
597 17.8 955 23.2 697 15.9 1180 27.1
604 18.4 962 20 702 17.5 1190 28.7
606 17.1 970 18.1 706 19.1 1210 28.4
610 16 987 17.3 712 20.6 1220 28.9
614 14.7 1000 16.5 718 20.4 1230 27.1
616 13.6 1020 16.5 725 19.3 1230 24.6
621 12.6 1030 18.6 729 18 1240 23
631 11.8 1040 20.8 731 16.2 1240 21
642 11.8 1050 22.6 737 13.3 1250 18.4
652 11 1060 20.8 750 15.4 1260 21
661 11.5 1070 18.4 763 16.7 1260 23.3
667 12.6 1070 16.5 771 18.3 1260 25.6
674 13.6 1080 15.2 777 19.8 1270 27.9
682 13.9 1080 14.1 790 22.5 1270 29.2
691 14.4 1090 16.2 803 22.7 1280 29.2
695 15.7 1100 17.8 815 22.7 1280 27.4
699 17.1 1110 18.1 818 24.3 1290 25.1
701 18.6 1120 16.8 822 25.9 1290 22
704 19.7 1130 15.2 824 27.2 1300 20
706 20.7 1140 13.8 828 28.5 1300 20.5
706 22.3 1150 12.8 834 28.5 1320 19.2
708 23.9 1160 11.7 845 27.7 1330 20.7
712 25 1170 10.4 847 26.7 1330 22.8
712 26 1170 9.33 853 26.1 1330 24.6
714 27.6 1190 8.26 862 25.6 1340 26.9
714 28.9 1210 7.73 872 25.9 1350 26.6
716 30.2 1220 9.6 883 25.9 1360 24.6
721 31.8 1230 10.9 887 26.9 1370 25.1
723 32.8 1240 13 891 27.7 1390 23.5
725 34.2 1250 15.4 893 28.7 1400 22.8
731 35.7 1260 17.6 900 29.8 1400 20.7
738 35.2 1270 19.7 906 28.7 1410 19.2
742 34.4 1280 21.6 910 26.9 1420 17.6
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Table 7.3. (Continued)

Patient 1 Patient 2 Patient 3 Patient 4
Time Insulin Time Insulin Time Insulin Time Insulin

748 35.2 1290 19.4 917 24.6 1430 19.4
757 35.7 1290 17.8 921 22.5
763 35.5 1300 15.4 933 20.9
767 35 1310 13.8 942 18.8
767 33.9 1320 12 944 17.8
769 33.1 1330 10.4 950 15.4
774 32.3 1340 13 957 13.6
774 31.8 1350 15.2 959 12.3
776 30.7 1360 17.3 967 10.7
776 29.7 1360 19.4 974 10.7
780 28.6 1360 21.6 976 12
782 27.1 1380 21.6 980 13.3
784 25.5 1380 20 984 14.3
789 24.2 1390 18.4 988 15.4
789 23.1 1410 17.3 993 16.4
799 22.1 1410 19.4 1000 15.4
812 25.7 1420 21.3 1010 14.6
812 26.5 1430 23.7 1010 13.3
816 27.3 1430 25.8 1020 13.8
806 22.8 1030 14.3
808 23.6 1040 14.1
808 24.7 1040 12.5
816 28.1 1050 13.6
823 29.2 1060 15.1
829 28.4 1060 16.4
831 27.6 1070 18.5
833 27.1 1070 20.4
838 25.7 1080 21.9
838 25 1080 23.5
838 24.2 1080 25.1
840 23.4 1090 26.4
844 22.8 1090 25.6
848 22.6 1100 24.6
855 22.3 1100 23.8
861 23.1 1110 22.5
867 23.1 1120 20.6
869 22.1 1120 19.6
872 21 1130 17.5
872 20 1130 15.1
874 18.9 1140 13.6
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Table 7.3. (Continued)

Patient 1 Patient 2 Patient 3 Patient 4
Time Insulin Time Insulin Time Insulin Time Insulin

876 18.1 1140 12
878 17.3 1150 14.3
878 16 1160 16.7
878 15 1160 19.1
884 14.4 1160 21.7
891 14.2 1160 25.6
893 15 1170 31.1
901 16.5 1170 36.1
906 17.8 1180 38.2
910 19.2 1190 35.8
912 20.5 1190 34.2
916 21.5 1200 32.7
925 22.6 1200 31.4
933 21.8 1200 26.9
938 20.5 1210 23.8
940 19.4 1210 20.6
942 17.8 1220 17
944 16.5 1220 14.9
948 15.2 1230 13.3
952 13.9 1240 16.2
957 12.3 1250 18.8
961 11 1250 21.2
965 10.2 1260 23
969 9.47 1260 25.1
974 8.42 1270 26.4
984 7.63 1280 24.6
993 9.47 1290 22.7
1010 11 1290 20.6
1010 12.8 1300 18.5
1020 14.2 1300 16.2
1020 15.5 1310 14.3
1030 16.8 1320 13
1030 18.6 1330 11.2
1040 20.2 1330 9.42
1040 21.3 1350 8.37
1050 22.3 1360 9.42
1060 24.2 1370 10.9
1070 24.2 1370 12.5
1080 22.6 1380 14.6
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Table 7.3. (Continued)

Patient 1 Patient 2 Patient 3 Patient 4
Time Insulin Time Insulin Time Insulin Time Insulin

1080 21.3 1390 16.7
1080 20 1390 18.8
1090 21.5 1390 21.2
1100 22.6 1390 23.5
1100 23.6 1400 26.4
1110 25 1400 28.7
1110 26.3 1400 29.8
1110 28.1 1410 32.1
1120 29.7 1420 30.3
1130 31.3 1420 29
1130 29.2 1420 27.2
1140 27.8 1430 25.6
1140 26 1430 24.8
1150 24.7
1150 23.1
1150 21.8
1170 23.4
1180 25.2
1190 23.9
1200 23.6
1210 23.4
1220 24.4
1230 25.7
1230 27.6
1240 28.6
1240 30
1240 31
1240 32.3
1240 33.9
1240 36.3
1240 38.1
1250 39.4
1250 41
1250 42.6
1250 44.4
1250 46
1260 47.6
1270 48.4
1280 48.9
1280 47.3
1280 46
1290 44.4
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Table 7.3. (Continued)

Patient 1 Patient 2 Patient 3 Patient 4
Time Insulin Time Insulin Time Insulin Time Insulin

1300 41.5
1300 38.9
1310 36.3
1320 34.2
1330 32.3
1340 34.2
1340 35.5
1350 36.8
1360 35.2
1370 34.4
1370 32.8
1380 31
1380 30
1390 28.4
1400 26.8
1410 25.7
1410 24.4
1420 22.3
1420 20.5
1430 20.5
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Appendix A

Details of Glass Property Constraints

Notation

C1 Bound for Crystal 1 −3.0
C2 Bound for Crystal 2 −0.08
C3 Bound for Crystal 3 −0.225
C4 Bound for Crystal 4 −0.18
C5 Bound for Crystal 5 −0.18
kmin Lower limit for conductivity −18
kmax Upper limit for conductivity −50
μmin Lower limit for viscosity (PaS) −2.0
μmax Upper limit for viscosity (PaS) −10.0
DPCT

max Max release rate (product consistency test) (g per m2) −10.0
DMCC

max Max release rate (materials characterization center) (g per m2) −28.0
μi
a Linear coefficients of viscosity model

μij
b Cross term coefficients of viscosity model

kia Linear coefficients of electrical conductivity model
kijb Cross term coefficients of electrical conductivity model
Dpia Linear coefficients of durability (PCT) model (for Boron)
Dpijb Cross term coefficients of durability (PCT) model for Boron
Dmi

a Linear coefficients of durability (MCC) model (for Boron)
Dmij

b Cross term coefficients of durability (MCC) model (for Boron)
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1. Component Bounds:
(a) 0.42 ≤ p(SiO2) ≤ 0.57
(b) 0.05 ≤ p(B2O3) ≤ 0.20
(c) 0.05 ≤ p(Na2O) ≤ 0.20
(d) 0.01 ≤ p(Li2O) ≤ 0.07
(e) 0.0 ≤ p(CaO) ≤ 0.10
(f) 0.0 ≤ p(MgO) ≤ 0.08
(g) 0.02 ≤ p(Fe2O3) ≤ 0.15
(h) 0.0 ≤ p(Al2O3) ≤ 0.15
(i) 0.0 ≤ p(ZrO2) ≤ 0.13
(j) 0.01 ≤ p(other) ≤ 0.10

2. Five glass crystallinity constraints:
(a) p(SiO2) > p(Al2O3) ∗ C1

(b) p(MgO) + p(CaO) < C2

(c) p(Fe2O3) + p(Al2O3) + p(ZrO2) + p(
′Other′) < C3

(d) p(Al2O3) + p(ZrO2) < C4

(e) p(MgO) + p(CaO) + p(ZrO2) < C5

3. Solubility Constraints:
(a) p(Cr2O3) < 0.005
(b) p(F ) < 0.017
(c) p(P2O5) < 0.01
(d) p(SO3) < 0.005
(e) p(Rh2O3+PdO+Ru2O3) < 0.025

4. Viscosity Constraints:
(a)

∑n
i=1 μ

i
a ∗ p(i) +

∑n
j=1

∑n
i=1 μ

ij
b ∗ p(i) ∗ p(j) > log (μmin)

(b)
∑n

i=1 μ
i
a ∗ p(i) +

∑n
j=1

∑n
i=1 μ

ij
b ∗ p(i) ∗ p(j) < log (μmax)

5. Conductivity Constraints:
(a)

∑n
i=1 k

i
a ∗ p(i) +

∑n
j=1

∑n
i=1 k

ij
b ∗ p(i) ∗ p(j) > log (kmin)

(b)
∑n

i=1 k
i
a ∗ p(i) +

∑n
j=1

∑n
i=1 k

ij
b ∗ p(i) ∗ p(j) < log (kmax)

6. Dissolution rate for boron by PCT test (DissPCTbor):∑n
i=1 Dpia ∗ pi +

∑n
j=1

∑n
i=1 Dpijb ∗ p(i) ∗ p(j) < log (DPCT

max )
7. Dissolution rate for boron by MCC test (DissMCCbor):∑n

i=1 Dmi
a ∗ pi +

∑n
j=1

∑n
i=1 Dmij

b ∗ p(i) ∗ p(j) < log (DMCC
max )
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Waste Composition Data

Fractional Composition of Wastes
Comp. AY-102 AZ-101 AZ-102 SY-102 SY-101 SY-103 B-103
SiO2 0.072 0.092 0.022 0.020 0.000 0.019 0.011
B2O3 0.026 0.000 0.006 0.003 0.000 0.000 0.000
Na2O 0.105 0.264 0.120 0.154 0.300 0.230 0.100
Li2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CaO 0.061 0.012 0.010 0.030 0.007 0.006 0.000
MgO 0.040 0.000 0.003 0.012 0.000 0.001 0.000
Fe2O3 0.328 0.323 0.392 0.133 0.000 0.039 0.155
Al2O3 0.148 0.157 0.212 0.318 0.659 0.546 0.214
ZrO2 0.002 0.057 0.063 0.002 0.000 0.001 0.000
Other 0.217 0.096 0.173 0.328 0.034 0.159 0.520
Total 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Cr2O3 0.016 0.007 0.005 0.089 0.002 0.116 0.000
F 0.006 0.001 0.001 0.005 0.002 0.001 0.000
P2O5 0.042 0.001 0.021 0.088 0.013 0.005 0.037
SO3 0.001 0.018 0.009 0.027 0.005 0.002 0.007
NobMet 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mass 59772 40409 143747 359609 167510 185990 6170

Fractional Composition of Wastes w(i)/g(i)

Comp. BY-104 BY-110 C-103 C-105 C-106 C-108 C-109
SiO2 0.030 0.040 0.412 0.359 0.437 0.001 0.001
B2O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Na2O 0.082 0.089 0.006 0.012 0.014 0.010 0.007
Li2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CaO 0.141 0.046 0.041 0.044 0.046 0.000 0.737
MgO 0.000 0.000 0.028 0.026 0.031 0.000 0.000
Fe2O3 0.067 0.051 0.338 0.064 0.214 0.206 0.003
Al2O3 0.344 0.462 0.057 0.372 0.168 0.693 0.013
ZrO2 0.007 0.003 0.043 0.004 0.008 0.032 0.000
Other 0.330 0.309 0.075 0.119 0.082 0.058 0.238
Total 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Cr2O3 0.000 0.000 0.002 0.005 0.004 0.002 0.000
F 0.001 0.001 0.000 0.000 0.000 0.000 0.000
P2O50.016 0.022 0.013 0.012 0.031 0.047 0.003 0.000
SO3 0.002 0.003 0.000 0.002 0.000 0.000 0.000
NobMet 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mass 155473 103492 85211 207127 367165 46919 53271
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Fractional Composition of Wastes
C-111 C-112 S-102 SX-106 TX-105 TX-118 U-107

SiO2 0.002 0.001 0.000 0.033 0.010 0.060 0.008
B2O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Na2O 0.011 0.005 0.337 0.280 0.168 0.425 0.038
Li2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CaO 0.426 0.593 0.000 0.000 0.000 0.000 0.000
MgO 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe2O3 0.042 0.002 0.023 0.102 0.167 0.026 0.077
Al2O3 0.256 0.097 0.582 0.388 0.595 0.240 0.650
ZrO2 0.007 0.000 0.000 0.000 0.000 0.000 0.000
Other 0.256 0.302 0.058 0.197 0.060 0.250 0.228
Total 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Cr2O3 0.000 0.000 0.024 0.020 0.000 0.000 0.000
F 0.000 0.000 0.000 0.001 0.000 0.004 0.001
P2O5 0.012 0.005 0.006 0.038 0.002 0.159 0.020
SO3 0.000 0.000 0.000 0.003 0.001 0.009 0.001
NobMet 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mass 24485 65673 36537 45273 42200 412495 11504
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Nonlinear Models for the Mercury Treatment

A real-world case study of mercury trading presented starting, with the Linear
Programming . In Chapters 3, 4, and 5, we have used nonlinear models for
the cost of different technologies. Details of these models are presented here.
The parameters that are considered to be stochastic are identified. Chap-
ter 2 identified three technologies to treat water waste containing mercury,
namely: coagulation and filtration, granular activated carbon adsorption, and
ion exchange. However, the cost estimates through these models are only ap-
proximations. The following sections present the model details for the three
nonlinear process models.

Coagulation and Filtration

Industrial experience shows that filtration costs can be comparable to coagu-
lation. Since the cost models for the coagulation process could not be found,
the model incorporated the filtration costs in this work.

The input parameters required to compute the cost of microfiltration (MF)
are:

• Design product flow rate (gallons per day)
• Plant availability (%)
• Microfilters system equipment cost ($)
• Cost per MF membrane ($)
• MF modular system flow rate (gallons per minute)
• Number of membranes per microfilter
• Pump efficiency (%)
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• Motor efficiency (%)
• Design feed pressure (psi)
• Backflush pressure (psi)
• Backwash intervals (minutes)
• Backwash and backflush duration (minutes)

The operation and maintenance cost inputs are:

• Electricity rate ($/kwh)
• Chemical costs (sodium hypochlorite, $/L)
• Design dosage (mg/L)
• Specific gravity of sodium hypochlorite
• Solution concentration (%)
• Membrane life (year)
• Staff days/day
• Labor rate (salary and benefits, $/hr)
• Amortization time (year)
• Interest rate (%)

Process Flow Calculations

MF feed flow is the total feed flow to the microfiltration plant. It is calcu-
lated by:

MFF =
MFP

Y

where

• MFF = Microfiltration feed flow (L/sec)
• MFP = Microfiltration product flow (L/sec)
• Y = Recovery rate

MF reject flow (MFR (L/sec)) is the amount of water used for the backwash
and cleaning of the membranes. It is calculated by:

MFR =
BBD ∗BBF

BI

where

• BBD = backwash and backflush duration (sec)
• BBF = backwash flow rate (L/sec)
• BI = backwash interval (sec)

Recovery rate (R) is calculated by:

R =
MFP

MFF
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Feed pump brake horsepower (HP) is calculated by:

HP =
MFF ∗DFP ∗ 2.31

PP%.3960

where

• DFP = design feed pressure (psi)
• PP% = pump efficiency (%)
• 2.31 = conversion factor for feet of vertical head of water per lb/in2

• 3960 = another English-Metric conversion factor.

Feed pump kilowatt-hour (kWh) is calculated by:

kWh =
MFF ∗DFP ∗ 2.31 ∗ 0.00315

PP% ∗M% ∗ 1000

where

• M% = motor efficiency (%)
• 0.00315 = conversion factor for consumption of electrical energy

The building area in the square meter is estimated to be 1.23% of the design
product flow rate in cubic meters per day.

Capital Cost Estimation

Direct capital costs are the sum of microfilters, building, MF installation,
miscellaneous, plant interconnecting piping, engineering. These cost elements
are discussed below:

• Microfilters: The actual price for microfilters is obtained from membrane
manufacturers. The price will vary upon the type of microfilters and quan-
tities involved. The total microfilters cost is estimated as the cost per skid
unit times the number of units.

• Building: The building cost is estimated at $1076 per square meter times
the total building area in square meters.

• MF installation: The microfilter installation cost is estimated at $70,000
per unit for a large system (at 37.85 L/s flow rate).

• Miscellaneous: This cost includes any miscellaneous items needed to com-
plete the project. It is estimated 5% of the total microfilter cost.

• Plant interconnecting piping: This cost is estimated at 5% of the sum of
total microfilter and miscellaneous costs.

• Engineering: Engineering cost is estimated at 10% of the sum of total
microfilter and miscellaneous costs.
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Indirect Capital Cost

The indirect capital costs are the sum of:

• Interest during construction (6% of the total direct capital cost)
• Contingencies (20% of the total direct capital cost)
• A&E fees and project management (10% of the total direct capital cost)
• Working capital (4% of the total direct capital cost)

Operation and Maintenance Cost Estimation

Operation and maintenance costs include:

• Electricity
• Labor
• Chemicals (sodium hypochlorite)
• Membrane replacement
• Cleaning chemicals
• Repairs and replacement and miscellaneous

Total annual cost equals the capital recovery cost plus the total operation and
maintenance costs. These major O&M cost elements are discussed below:

• Electricity: Electricity cost is the total kilowatt-hour for the feed pump
and backflush pump times the electricity cost ($/kWh).

• Labor: This cost is estimated by the number of staff days times the going
rate per day.

• Chemicals: The cost of Sodium hypochlorite for disinfection is estimated
based on the correlated formula from the Microfiltration membrane quo-
tation data:

SHC ∗ (0.0025 ∗MFP− 333.33)

where SHC = sodium hypochlorite cost ($/L)
• Membrane replacement: The cost is estimated by:

Elements ∗ $/Element

Membrane life

• Cleaning chemicals: Sodium hypochlorite cost is estimated based on the
correlated formula from the Microfiltration membrane quotation data:

(0.00005 ∗MFP+ 66.67) ∗ SHC

• Repairs and replacement and misc.: The cost for repairs and replacements
assumed to be 0.5% of the total direct capital cost.

For the modeling of the stochastic cost model, uncertain parameters in
the coagulation and filtration model are cost per membrane, electricity rate,
sodium hypochlorite, and membrane life.
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Granular Activated Carbon Adsorption

The capital, as well as the operating costs, are based entirely on flow rate
and bed life. Costs are estimated using relationships derived from cost data in
the 1979 EPA report. It is apparent from this data that there is a change in
size versus cost relationship at 4000m3/day. Capital costs for GAC are fairly
constant with respect to capacity until a production level of 4000m3/day.
Above this level, there are different cost curves for a bed life of 3, 6, and
12 months. Regeneration costs are not included. The cost parameter used in
these equations, x, is the volumetric flow rate in m3/day. The composition of
the water is not considered. The cost equations are given below. Here, CC
represents the capital cost, and OM represents the operation and maintenance
cost.

• 3, 6, or l2 months of bed life, capacity ≤4000m3/day

CC = 9875 ∗ x(1−0.4596)

• 12 months of bed life:

OM≤4000 = 2631.18 ∗ x(1−0.4706)

CC>4000 = 1948.8 ∗ x(1−0.2569)

OM>4000 = 225.42 ∗ x(1−0.1692)

• 6 months of bed life:

OM≤4000 = 2089.46 ∗ x(1−0.4187)

CC>4000 = 150 ∗ x
OM>4000 = 235.91 ∗ x(1−0.15)

• 3 months of bed life:

OM≤4000 = 1563.45 ∗ x(1−0.3463)

CC>4000 = 200 ∗ x
OM>4000 = 515.91 ∗ x(1−0.203)

Ion Exchange

The model provides a cost estimation for an ion exchange unit based on avail-
able design parameters. Data required from the model calculations include:
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• Desired flow rate (L/sec)
• Equivalents/L of Cation > +1 in water (Equiv/L)
• Equivalents/L of Anion > −1 in water (Equiv/L)

Parameters with default values for the process are given below.

• Desired run cycle: 7 days
• Resin expansion coefficient: 200%
• Cost factor for pressure: 1
• Aspect ratio: 2 (height/diameter)
• Cost of NaCl: 0.02 $/Kg

Various resin parameters with default values are given below.

• Required service flow rate: Range 16–40L/(hr*L resin)
• Cation equivalents/L of Resin: 1.9 Equiv/L
• Anion equivalents/L of Resin: 1.4 Equiv/L
• Resin price: 6700 $/m3

• Volume NaCl/volume resin for regeneration: 483Kg/m3

• Regeneration fluid concentration: 10%

The various cost calculations are given below.

Resin Medium

The minimum resin volume(m3) is calculated by:

Min resin Volume(m3) =
Desired flow rate (L/s)

Service flow rate (L/hr*Lresin)

Time until resin exhaustion (days) is calculated by:

Time until resin exhaustion (days) =
MRV * (EQC + EQA)

FR * (ECR + EAR)

where

• MRV = minimum resin volume, m3

• EQC = Equivalents/L of Cation ¿ +l in water, Equiv/L
• EQA = Equivalents/L of Anion ¿ -1 in water, Equiv/L
• ERC = Cation Equivalents/L of Resin, Equiv/L
• EAR = Anion Equivalents/L of Resin, Equiv/L
• FR = Desired flow rate (L/s)

An ‘if’ statement is built-in for the resin volume required to meet exhaustion
time. It states that if time until resin exhaustion is greater than the desired
run cycle, then the resin volume required to meet exhaustion time is equal
to the minimum resin volume. Otherwise, the resin volume required to meet
exhaustion time is calculated by:
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RVET =
RC*FR*(EQC+EQA)

(ECR + EAR)

where

• RVET = resin volume required to meet exhaustion time, days
• RC = desired run cycle, days

Resin manufacturers recommend an expansion coefficient of two to provide
ample room for the resin to expand during upflow regeneration.

Total Vessel Volume (TVV) is calculated by:

TW = RVET * Resin expansion coefficient

Resin Cost (RC) is calculated by:

RC=MRV*RP

where RP = nominal resin price, $/m3

Vessel Cost

The fiber glass pressure vessel cost is calculated by the following formula:

Log($) = 3.44609 + 0.561757 ∗ Log(TVV)

Regeneration

NaCl is used resin regeneration. Amount of NaCl required is calculated by
the following equation:

NaCl required = ρNaCl * RVET

where ρNaCl = density of NaCl, kg/m3

The total chemical cost per year is calculated by:

NaClrequired ∗NaClcost ∗
365

DRC + I

where

• NaClcost= sodium chloride cost, §/kg
• DRC = desired run cycle, days
• 365 = days per year
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Storage tank cost is calculated by:

Tank Cost = 0.1427X3 − 5.6691X2 + 257.56X − 467.45

where X is the tank volume in m3. This formula is developed from the Snyder
cone bottom tank, HDLPE model tank prices.

Regeneration, and Backwashing Pump

Construction cost and O&M cost formulas for regeneration and backwashing
pump are developed from the 1979 EPA report.

Construction cost (CC):

CC = 36000 + 1254.21X − 0.1212X2

Operating and Maintenance cost (O&M):

O+M = 73.3X0.75 + 2200

where X is the filter area in m2.
Total construction costs include resin cost, resin operating tank cost, stor-

age tank cost, and regeneration and backwashing pump cost.
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Prékopa, 215
PSI method, 227

Q
quadratic programming, 84
quality control, 240
quasi-Newton, 81–84, 89, 91
Queen Dido, 2, 259, 267

R
Ragsdell, 10, 94
Raiffa, 165, 215
random, 7, 151, 164, 175–177, 179, 181,

182, 184, 185, 188, 192, 195, 214,
215, 299

cut, 128
elements, 161
jump, 123



356 Index

random (cont.)
move, 126
perturbation, 123
position, 128
search, 129

random walk, 276, 283
Ravindran, 10, 94, 255
Rawest, 255
recourse, 157, 158, 165, 168–172, 209,

214
reduced cost, 25, 28
Reeves, 149
Reklaitis, 10, 94
relaxed LP, 107
relaxed NLP, 111
Rico-Ramirez, 275, 285, 287, 334, 335
Rinooy Kan, 161, 215
robust, 239, 240
robust design, 231
robustness, 231, 239, 243–245
Romeo, 125, 149
Ronnooy Kan, 215
Rosenthal, 225, 255
Ross, 149
Rubin, 148, 162, 214
Russell, 151

S
SA, 121–126, 129, 130

cooling schedule, 124, 125, 133, 134,
149

equilibrium, 121, 123–125, 192
final temperature, 125, 134
freezing temperature, 123, 125, 148
initial temperature, 121, 123–125,

134, 148
move generator, 124, 126, 133, 134,

192
SA-NLP, 129, 132, 137, 143, 239
Saaty, 227, 254
saddle point, 62, 63, 65, 72
Saliby, 177, 179, 215
Samuelson, 281, 304, 334
Sangiovanni-Vincetelli, 125, 149
Saunders, 93
Savannah River, 43, 44, 140–142, 202,

207, 250
Schalaifer, 165
Schlaifer, 215

Schulz, 255

Schy, 217, 256

Sen, 160, 184, 214

sensitivity analysis, 25, 72, 78, 214

separation process, 286

separation sequencing, 98, 99

sequential quadratic programming, 84

Sethi, 335

shadow price, 25–27

Shanno, 82

Shastri, 38, 53, 55, 214, 215, 256, 311,
316, 335

Sherali, 93

Shetty, 93

shooting method, 295

Shortencarier, 177, 196, 214

Silverman, 218, 256

Simon, 323, 335

Simplex

method, 2, 24

tableau, 108

simplex, 29, 50, 53

basic solution, 15, 16, 29

basic variable, 14–16, 18, 22–25

dual, 25, 28, 79

entering, 15–17, 19, 21, 23

example, 15, 18, 21, 22, 29, 48–50

tableau, 17, 20, 21, 23, 25, 27, 109

feasible region, 14

leaving, 15–17, 19, 21, 23

method, 12, 13, 19, 21, 22, 29, 31, 48,
56

multipliers, 25, 29

non-basic variable, 21, 28

nonbasic variable, 14–17, 22, 28

nonnegative, 13

ratio, 13, 15–17, 19–21, 23, 25, 27, 109

software, 15, 30, 31

solution, 22, 23

tableau, 14, 15, 19, 22–25

Simulated Annealing, 256

simulated annealing, 96, 121, 123, 124,
129, 131–137, 139, 143, 147–149,
151, 187, 191, 211, 213

Singh, 218, 255

singularities, 111, 142

slack, 13, 14, 16, 20, 27

Sobol, 217, 227, 256



Index 357

software, 6
AIMMS, 6
AMPL, 6
CONOPT, 6
CPLEX, 6
EXCEL, 6
GAMS, 6, 36, 84, 87, 92, 131, 132, 139
HARWELL, 6
IMSL, 6
ISIGHT, 6
LINGO, 6
MATLAB, 6
MINOS, 6, 84
NAG, 6
NEOS, 6
NPSOL, 6
OSL, 6
SAS, 6

SQP, 84, 89
STA, 187, 198–200, 239, 243

cooling schedule, 187
equilibrium, 191
move generator, 191

stable distribution, 166
Stadler, 225, 256
Starkey, 217, 256
statistical mechanics, 121
Statnikov, 227, 256
Steuer, 218, 225, 227, 256
Stewart, 256
Stirling cycle, 189
stochastic annealing, 187–189, 191–193,

197–200, 210, 213, 215, 255
stochastic decomposition, 160, 173, 184,

214
stochastic dynamic programming, 282,

285, 292
stochastic maximum principle, 275, 285,

312, 320
stochastic optimal control, 275, 285
stochastic optimization, 7, 151, 162, 165,

175, 184–186, 192, 197, 200, 209,
210, 214

stochastic process, 275, 276
stochastic programming, 7, 151, 158,

161, 164, 165, 168, 169, 184, 202,
204, 213, 215, 253

stopping criteria
GA, 129

subproblem, 84, 111, 118, 170, 171

successive quadratic programming, 89,
198

sufficiency condition, 62, 63, 65, 72

sufficient condition, 58, 61, 66, 67, 70,
71

Sun, 227, 256

survival of fittest, 126

T

Tabu

diversification, 110

intensification, 110

tabu

list, 110

tabu search, 107, 110

Taguchi, 162, 215, 240, 255

Taha, 10, 53, 94, 149

Tamiz, 218, 256

Taniwaki, 217, 255

Taylor series, 111, 272, 280

Tchebycheff, 218, 255

termination criteria

GA, 126, 129

termination criterion

SA, 125

STA, 200

Tewari, 218, 255

Thadathil, 253

theory of optimization, 1, 2, 261, 263

Thompson, 335

Tintner, 161, 215

TMDL, 40, 41, 43, 44, 141, 142,
202–204, 207–209, 247, 249

Todd, 161, 215

trade-off, 190, 191, 238, 241–244

trading, 38–42, 44–47, 53, 140–142, 202,
204–209, 215, 224, 249, 250, 256,
355

trading, 38

tree representation, 96–103, 111, 137,
146

triangular distribution, 174

Troutman, 335

Tucker, 255

Turcotte, 255



358 Index

two-point boundary value problem, 295,
296, 298, 310

U
Ulas, 287, 301, 323, 335
unbounded

solution, 20
unconstrained NLP, 61, 65, 67, 71, 76
unconstrained optimum, 61, 63
Underwood equations, 290, 291
uniform distribution, 166, 174–179, 181,

212

V
Vajda, 161, 215
value of research, 237, 238, 246, 251, 255
value of stochastic solution, 157, 160,

202, 239
VanLaarhoven, 123, 125, 149, 256
Van Slyke, 169, 215
variability, 174, 194
variance reduction technique, 177, 214
Vecchi, 121, 124, 149
VSS, 157, 160, 210, 239

W
wait and see, 161, 163, 165, 209, 211
Walster, 93

Wang, 184, 215

watershed, 39–43, 140–142, 202, 247,
248, 250, 355

watershed, 247

Watts, 217, 256

weighting method, 227–231, 234, 246,
248, 251, 252

Westerberg, 10, 93

Wets, 169, 215

Whisman, 218, 256

Wiener process, 276, 277, 300, 322

Wilde, 1, 10, 93

Winston, 10, 29, 53, 94, 150

Wismer, 231, 254

Wright, 6, 10, 31, 53, 93, 94

wtaershed, 247

Y

Yu, 256

Z

Zadeh, 227, 256

Zeleny, 224, 226, 231, 256, 257

Zionts, 253, 257


	Foreword
	Preface: Second Edition
	Preface: Third Edition
	Acknowledgments for the First Edition
	Contents
	List of Figures
	List of Tables
	Author Biography
	1 Introduction
	1.1 Problem Formulation: A Cautionary Note
	1.2 Degrees of Freedom Analysis
	1.3 Objective Function, Constraints, and Feasible Region
	1.4 Numerical Optimization
	1.5 Types of Optimization Problems
	1.6 Summary
	Bibliography

	2 Linear Programming
	2.1 The Simplex Method
	2.2 Infeasible Solution
	2.3 Unbounded Solution
	2.4 Multiple Solutions
	2.5 Degeneracy in LP
	2.6 Sensitivity Analysis
	2.7 Other Methods
	2.8 Hazardous Waste Blending Problem as an LP
	2.9 Sustainable Mercury Management: An LP
	2.9.1 Mercury Management Approach
	2.9.2 Watershed Based Trading
	2.9.3 Trading Optimization Model Formulation
	2.9.4 Savannah River Watershed Details
	Technology Details
	Trading Details

	2.9.5  LP Problem Details
	Industry Details
	Technology Details
	Results and Discussions


	2.10 Summary
	Bibliography

	3 Nonlinear Programming
	3.1 Convex and Concave Functions
	3.2 Unconstrained NLP
	3.3 Necessary and Sufficient Conditions and Constrained NLP
	3.4 Constraint Qualification
	3.5 Sensitivity Analysis
	3.6 Numerical Methods
	3.7 Global Optimization and Interval Newton Method
	3.8 What to Do When NLP Algorithm is Not Converging
	3.9 Hazardous Waste Blending: An NLP
	3.10 Sustainable Mercury Management: An NLP
	3.11 Summary
	Bibliography

	4 Discrete Optimization
	4.1 Tree and Network Representation
	4.2 Branch-and-Bound for IP
	4.3 Numerical Methods for IP, MILP, and MINLP
	4.4 Probabilistic Methods
	4.5 Hazardous Waste Blending: A Combinatorial Problem
	4.5.1 The OA-based MINLP Approach
	4.5.2 The Two-Stage Approach with SA-NLP
	4.5.3 A Branch-and-Bound Procedure

	4.6 Sustainable Mercury Management: A Combinatorial Problem
	4.7 Summary
	Bibliography

	5 Optimization Under Uncertainty
	5.1 Types of Problems and Generalized Representation
	5.2 Chance Constrained Programming Method
	5.3 L-shaped Decomposition Method
	5.4 Uncertainty Analysis and Sampling
	5.4.1 Specifying Uncertainty Using Probability Distributions
	5.4.2 Sampling Techniques in Stochastic Modeling
	5.4.3 Sampling Accuracy and the Decomposition Methods
	5.4.4 Implications of Sample Size in Stochastic Modeling

	5.5  Stochastic Annealing
	5.6 Hazardous Waste Blending Under Uncertainty
	Characterization of Uncertainties in the Model
	5.6.1 The Stochastic Optimization Problem
	5.6.2 Results and Discussion

	5.7 Sustainable Mercury Management: A Stochastic Optimization Problem
	5.7.1 The Chance Constrained Programming Formulation
	Results and Discussions

	5.7.2 A Two-stage Stochastic Programming Formulation
	Results and Discussions


	5.8 Summary
	Bibliography

	6 Multiobjective Optimization
	6.1 Nondominated Set
	6.2 Solution Methods
	6.2.1 Weighting Method
	6.2.2 Constraint Method
	6.2.3 Goal Programming Method

	6.3 Hazardous Waste Blending and Value of Research
	6.3.1 Variance as an Attribute: The Analysis of Uncertainty
	6.3.2 Base Objective: Minimization of Frit Mass
	6.3.3 Robustness: Minimizing Variance
	6.3.4 Reducing Uncertainty: Minimizing the Time Devoted to Research
	6.3.5 Discussion: The Implications of Uncertainty

	6.4 Sustainable Mercury Management: A Multiobjective Optimization Problem
	6.4.1 Health Care Cost
	6.4.2 The Multiobjective Optimization Formulation

	6.5 Summary
	Bibliography

	7 Optimal Control and Dynamic Optimization
	7.1 Calculus of Variations
	7.2 Maximum Principle
	7.3 Dynamic Programming
	7.4 Stochastic Processes and Stochastic Optimal Control
	7.4.1 Ito's Lemma
	7.4.2 Dynamic Programming Optimality Conditions
	7.4.3 Stochastic Maximum Principle

	7.5 Reversal of Blending: Optimizing a Separation Process
	7.5.1 Calculus of Variations Formulation
	7.5.2 Maximum Principle Formulation
	7.5.3 Method of Steepest Ascent of Hamiltonian
	7.5.4 Combining Maximum Principle and NLP Techniques
	7.5.5 Uncertainties in Batch Distillation
	7.5.6 Relative Volatility: An Ito Process
	7.5.7 Optimal Reflux Profile: Deterministic Case
	7.5.8 Case in Which Uncertainties Are Present
	7.5.9 State Variable and Relative Volatility: The Two Ito Processes
	7.5.10 Coupled Maximum Principle and NLP Approach for the Uncertain Case

	7.6 Sustainable Mercury Management: An Optimal Control Problem
	7.6.1 Mercury Bioaccumulation
	7.6.2 Mercury pH Control Model
	7.6.3 Deterministic Optimal Control
	Optimality Condition
	Adjoint Equations

	7.6.4 Stochastic Optimal Control
	Optimality Condition
	Adjoint Equations

	7.6.5 Results and Discussions
	Lake A


	7.7 Summary
	Bibliography

	Appendix A
	Appendix B
	Index



