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[T]he revision of opinion in the light of new informa-
tion ... is one of the most important human intellectual
activities. (p. 290)

– Ward Edwards

Edwards, W. (2009). Divide and conquer: how to
use likelihood and value judgments in decision
making (1973). In: A Science of Decision Making:
The Legacy of Ward Edwards (ed. J.W. Weiss and D.J.
Weiss), 287–300. Oxford: Oxford University Press.
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Foreword

Uncertainty affects nearly everything we do.
Virtually every decision we make involves
uncertainty of one kind or another. However,
uncertainty does not come naturally to people’s
minds. Whenever we can (and sometimes when we
can’t), we substitute an imagined certainty that we
find more comfortable and easier to plan against.

Statistics offers tools to deal with uncertainty,
principally through probability. There are many
models and methods in a statistician’s toolkit.
Which to use when, and how to create more when
necessary are the typical tasks facing users of
statistical methods. Every application of statistics
has to be sensitive to the institutional context in
which the problem arises. In the case of forensic
evidence, the institutional structure includes both
the organizations for which forensic scientists
work and the legal structures to which they
ultimately report.

The stakes are high in forensic work, as some-
one’s liberty and/or life is typically at stake. As a

xvii
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xviii Foreword

consequence, a careful consideration of the uncer-
tainties involved is morally imperative. Doing
responsible work under these circumstances
requires that sources of uncertainty be identified,
quantified, and reported, both truthfully and
effectively. The first task is to figure out what the
principal sources of uncertainty are. For example,
DNA analyses often report tiny probabilities that
someone other than the defendant would have the
same configuration of alleles as those found at a
crime scene. But this probability is premised on the
assumption that the crime scene and laboratory
work have been error-free. If the probability of
contamination from one of these sources is one
in a thousand, contamination is the dominant
source of uncertainty, and should be reported.

The second task is quantification. Depending on
the source of uncertainty, this can be daunting.
Records can be examined to find how often col-
lection and lab errors leading to contamination
have been discovered, for example, but one is left
wondering how many others there may have been
that were not discovered. Experiments can help,
particularly blind testing in which the technicians
do not know they are being tested. Our ability to
conduct such tests is in its infancy.

Finally, there is the question of how to report the
uncertainty in forensic analyses. The legal struc-
ture does not necessarily welcome uncertainty,
as it complicates the task of the finders-of-facts,
whether judges or juries. But it is incumbent
on forensic scientists to be both thoughtful and
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Foreword xix

truthful in conveying to the parties and to the
court the uncertainties that lurk behind their
findings. A shrill proclamation of infallibility does
not advance justice.

The legal context has other implications for
which statistical methods are most apt. A case
involves the innocence and guilt of a particular
defendant or group of defendants, faced with a
particular set of evidence. As such, methods that
rely for justification on long-run frequencies seem
beside the point. One has to do the best one can
in this specific instance. Therefore, subjective
probability, which focuses on the specifics of the
case without embedding it in a hypothetical
infinite string of superficially similar cases, is
more suited to forensic applications. What are
the practical implications of such a choice? It
permits forensic scientists to summarize their
opinions in a number, such as ‘The probability
of a correspondence between the latent print at
the crime scene and that of the defendant if the
defendant is not the source of the crime scene
print is 1%’. That’s all very well as a statement of
personal belief, but if anyone else is to take such
a statement seriously, it must be accompanied
by reasons. What assumptions were made in
the analysis? What considerations make those
assumptions plausible? If other plausible assump-
tions were made, what would their consequences
be? Subjective (or personal) probability is a way
of conveying one’s opinion in a precise manner,
but whether anyone else should pay attention to it
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xx Foreword

depends on the persuasiveness of the arguments
that go with it.

The book, Statistics and the Evaluation of Evidence
for Forensic Scientists aims to assist forensic sci-
entists and others to do this work well. That it is
now in its third edition reflects the success of the
previous editions, summarizing what had been
found. That a new edition is needed reflects the
new thinking and new work that has been done
in the last decade and a half. As more progress is
made, no doubt further editions will be needed.
This edition shows what has been accomplished,
and charts the way forward.

J. B. KADANEDecember 2019
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Preface to Third
Edition

In the Preface to the second edition of this book
reference was made to the comment in the first
edition that the role of statistics in forensic science
was continuing to increase and that this was
partly because of the debate continuing over DNA
profiling that looked as if it would carry on into the
foreseeable future. In 2004, the time of the second
edition, we wrote that ‘it now appears that the
increase is continuing and perhaps at a greater
rate than in 1995’ (the time of the first edition).
In 2020, we are confident that the increase is
still continuing and the need for a third edition is
pressing.

With the increase in the availability of data and
of computing power, the role of statistical and
probabilistic reasoning in the interpretation
and evaluation of evidence is even more important
than it was at the time of the second edition. The

xxi
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xxii Preface to Third Edition

courts are increasingly aware of the importance of
the proper assessment of evidence in which there
is random variation. Various general publications
testify to the need for a new edition of this book.
• Four reports published by the Royal Statistical

Society on the topic of Communicating and
Interpreting Statistical Evidence in the Administra-
tion of Criminal Justice (2010–2014) available
from https://rss.org.uk/news-publication/
publications/our-research/.

• Expert Evidence in Criminal Proceedings in
England and Wales. The Law Commission
of England and Wales, 2011, available from
https://s3-eu-west-2.amazonaws.com/lawcom-
prod-storage-11jsxou24uy7q/uploads/2015/
03/lc325_Expert_Evidence_Report.pdf

• A National Academy of Sciences report
Strengthening Forensic Science in the United
States: A Path Forward (Committee on Iden-
tifying the Needs of the Forensic Sciences
Community; Committee on Applied and The-
oretical Statistics, National Research Council,
2009); available from https://www.ncjrs.gov/
pdffiles1/nij/grants/228091.pdf.

• European Network for Forensic Science Insti-
tutes Guideline for Evaluative Reporting in
Forensic Science, 2015; available from http://
enfsi.eu/wp-content/uploads/2016/09/m1_
guideline.pdf.

• The President’s Council of Advisors on Science
and Technology Report on Forensic Science in
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Preface to Third Edition xxiii

Criminal Courts: ensuring Scientific Validity of
Feature-Comparison Methods, 2016; available
from https://obamawhitehouse.archives.gov/
sites/default/files/microsites/ostp/PCAST/
pcast_forensic_science_report_final.pdf.

• Statistics and probability for advocates: under-
standing the use of statistical evidence in courts
and tribunals; a report by the Inns of Court Col-
lege of Advocacy and the Royal Statistical Soci-
ety in 2017, available from https://rss.org.uk/
news-publication/publications/our-research/.

In addition there have been two major inter-
national research programmes within the last
few years. First, there was a programme on
Statistics and Applied Mathematics in Forensic
Science at the Statistics and Applied Mathemat-
ical Sciences Institute in North Carolina from
August 2015 to May 2016; https://www.samsi
.info/news-and-media/2015-16-program-on-
statistics-and-applied-mathematics-in-forensic-
science-forensics/. Second, there was a pro-
gramme on Probability and Statistics in Forensic
Science at the Isaac Newton Institute of the
University of Cambridge from July to December
2016; http://www.newton.ac.uk/event/fos.
There is also a Centre for Statistics and Applica-
tions in Forensic Evidence (https://forensicstats
.org/), a research programme of a consortium
of universities in the US which in their mission
statement states that it ‘brings together scientists,
statisticians, forensic practitioners, and other
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stakeholders to pursue the common goal of
building strong statistical foundations to apply
to forensic science’. The Royal Statistical Society
has established a section on statistics and the
law with a remit to ‘improve understanding and
use of statistics in the administration of justice’
(https://rss.org.uk/membership/rss-groups-and-
committees/sections/statistics-law/). Since 2009,
the University of Lausanne (www.formation
-continue-unil-epfl.ch/formation/statistics-evalu-
ation-forensic-evidence-cas) has provided exten-
sive on-line (e-learning) courses to train forensic
practitioners in the most up to date approaches
to the evaluation and interpretation of scientific
evidence. The aforementioned publications and
activities show the increasing interaction of
law, statistics, and forensic science to try and
implement societal changes in the way evidence is
evaluated and interpreted.

The book is a collaboration of two statisticians
and a forensic scientist. It aims to cover all material
relating to an understanding of the interpretation
and evaluation of evidence for trace evidence,
excluding DNA evidence for which there are many
specialist books. Pattern evidence and digital
evidence are not covered. There are occasional
mentions of fingerprint and shoeprint evidence
but not in detail. The presentation is at a level
that assumes only a modest mathematical and
statistical background. It will help if the reader is
comfortable with mathematical notation but it
will be possible to skim over the more technical
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parts without losing the importance of the inter-
pretative and evaluative message. Appendices,
including a detailed list of notation, will help
with understanding. The ideas are illustrated
with real and contemporaneous examples and
data. Over 50 court cases are mentioned. There
is coverage of the entire chain of reasoning with
evidence from pre-assessment to presentation
in court. In addition, there is consideration of
measures of performance of methods of evaluation
for determination of the suitability of a method for
use in a particular case. The book incorporates
into one volume, ideas previously discussed in
separate books by the authors such as those on
Bayesian networks and on Bayesian data analysis
from a decision theoretic point of view. There is a
comprehensive and extensive bibliography.

There has been a considerable restructuring
of the book since the second edition. There has
also been the introduction of new material on
decision making and performance assessment.
In addition, material on Bayesian networks have
been introduced as part of general discussions as
appropriate rather than as a separate chapter, as
was the case in the second edition.

Chapter 1 on uncertainty has been expanded
to include material on subjective probabilities
and exchangeability. Chapter 2 on variation
from the second edition has been moved to an
Appendix A. This Appendix A provides source
material on probability distributions for ease
of reference throughout the book. Illustrative
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material from the second edition has been dis-
tributed throughout the main body of the book.
A few new distributions, inverse gamma, inverse
chi-squared, Wishart, and inverse Wishart, have
been included to cater for additional Bayesian
material, with particular reference to the necessity
to deal with unknown variability in univariate
and multivariate Normal distributions.

The chapter on evaluation of evidence (Chapter
3 in the second edition, now Chapter 2) has been
considerably increased to allow for more detailed
discussion of the possible errors in interpretation
and the introduction of a section on coherent deci-
sion making. The historical chapter, now Chapter
3, is little changed from the second edition; this
edition is concerned with recent developments.
Chapter 4 covers the Bayesian inference and
incorporates material from Chapters 5 and 6 in
the second edition with additional material on
decision analysis and Bayesian networks.

It is with the following chapters that the greatest
changes have been made. In the second edition,
eighty pages were allowed for interpretation and
the discussion of transfer evidence. This material
is expanded to about 300 pages divided over two
chapters entitled ‘Evidence and propositions’ and
subdivided into theory (Chapter 5) and practice
(Chapter 6). Bayesian networks are incorporated
into these chapters. The material of Chapter 14
of the second edition is dispersed throughout
the book.
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Data analysis is covered in Chapter 7. The
material from Chapter 9 on discrete data, Chapter
10 on continuous data, and Chapter 11 on
multivariate analysis of the second edition is
brought together into this one chapter for greater
coherence. In the 15 years since the publication
of the second edition, there has been considerable
work on the assessment of performance of the
models developed for the evaluation of evidence.
This aspect of the topic is the subject of the final
chapter, Chapter 8. The material on fibres and on
DNA profiling from Chapters 12 and 13 of the
second edition are dispersed throughout the book.

Reference is made on occasion to probability
values of statistical distributions. We do not
mention packages each time this is done, leaving
the reader to use their favourite package. We have
chosen the statistical package R. This is a free
software environment for statistical computing
and graphics. It compiles and runs on a wide vari-
ety of UNIX platforms, Windows and MacOS. See
https://www.r-project.org/ for further details. We
make no mention of paper versions of statistical
distributions, such as in books of tables, assuming
that forensic scientists have access to computer
systems that can access appropriate statistical
software.

During the preparation of this book, several peo-
ple have died to whom we owe a debt of gratitude
for all that they have done for the subject and for
our own careers. We remember with thanks the
life and work of Annabel Bolck, Stephen Fienberg,



�

� �

�

xxviii Preface to Third Edition

David Lucy, Mike Redmayne, David Schum, and
Peter Tillers.

We are especially grateful to Alex Biedermann
for his suggestions and helpful advice to us all
throughout the preparation of this book. Others
who have helped and to whom we are very grateful
for their support and advice include:

Christophe Champod, Lorenzo Gaborini,
Paolo Garbolino, Tacha Hicks, Graham Jackson,
Agnieszka Martyna, Anders Nordgaard, Daniel
Ramos-Castro, Marjan Sjerps, Amy Wilson, and
Grzegorz Zadora.

Whilst we have received much advice, we accept
full responsibility for any errors of commission or
omission. The Leverhulme Trust, through grant
number EM2016-027, provided invaluable sup-
port for this work through the award of a research
fellowship to one of us (CGGA) who also thanks
the School of Mathematics of the University of
Edinburgh for its support. FT thanks the Swiss
National Science Foundation and the Fondation
pour l’Université de Lausanne for their constant
support of forensic research which has permitted
the development of many parts of the book. He
also thanks the School of Criminal Justice of the
University of Lausanne for its support. SB thanks
the University Ca’ Foscari of Venice for its support.

We thank Jay Kadane for agreeing to write a
foreword. He has been an inspiring contributor
to the subject over many years and we thank him
for his support. His foreword provides a summary
of the reasons why we wrote this book. We have
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tried to offer solutions with explanations on how
uncertainty in the evaluation and interpretation
of forensic scientific evidence may be managed
in the judicial process. We leave it to others to
determine by how much we have succeeded.

We also thank the staff at John Wiley and Sons
Ltd for their help and support in bringing this
project to fruition.

Last, but by no means least, we thank our fami-
lies for their support and encouragement.

C.G.G. AITKEN, F. TARONI AND S. BOZZA

Edinburgh, Lausanne and Venice
2020
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In the Preface to the first edition of this book, it was
commented that the role of statistics in forensic
science is continuing to increase and that this
was partly because of the debate continuing over
DNA profiling which looked as if it would carry
on into the foreseeable future. It now appears
that the increase is continuing and perhaps at a
greater rate than nine years ago. The debate over
DNA profiling continues unabated. We have left
the minutiae of this debate to others restricting
ourselves to an overview of that particular topic.
Instead, we elaborate on the many other areas in
forensic science in which statistics can play a role.

There has been a tremendous expansion in the
work in forensic statistics in the nine years since
the first edition of this book was published. This
is reflected in the increase in the size of the book.
There are about 500 pages now when there were

xxx
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only about 250 in 1995, and the bibliography has
increased from 10 pages to 20 pages. The number
of chapters has increased from 8 to 14. The title
remains the same yet there is more discussion
of interpretation, in addition to new material on
evaluation.

The first four chapters are on the same topics as
in the first edition though the order of Chapters 2
and 3 on evaluation and on variation has been
exchanged. The chapter on variation, the new
Chapter 2, has been expanded to include many
more probability distributions than mentioned
in the first edition. As the subject has expanded
so has the need for the use of more distributions.
These have to be introduced sooner than before
and hence the exchange of order with the chapter
on evaluation. Chapter 4 has an additional section
on the work of early twentieth-century forensic
scientists as it has gradually emerged how far
ahead of their time these scientists were in their
ideas. Three new chapters have then been intro-
duced before the chapter on transfer evidence.
Bayesian inference has an increasing role to play
in the evaluation of evidence yet its use is still
controversial and there have been some critical
comments in the courts of some of its perceived
uses in the legal process. Chapter 5 provides
a discussion of Bayesian inference, somewhat
separate from the main thrust of the book in
order to emphasise its particular relevance for
evidence evaluation and interpretation. Appro-
priate sampling procedures are becoming ever
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more important. With scarce resources, sampling
provides a means of achieving almost the same
inferences but with the expenditure of consider-
ably less resources. It is important, though, that
correct inferences are drawn from the results
obtained from a sample. In some jurisdictions
and some types of crime, such as that of drug
smuggling in the United States, the quantity of
illicit material associated with the crime is a factor
in the sentencing. Again, if only a sample has been
taken from the initial consignment, then correct
inferences about the quantities involved have to be
made. These are the topics of Chapter 6. Chapter 7
is a consequence of the expansion of the book to
consider interpretation. This includes a discussion
of work on case assessment and interpretation
done since the appearance of the first edition.
Chapter 7 also includes brief comments on various
evidence types for which statistical evaluation is
beginning to be developed. This is in contrast to
those areas such as glass, fibres, and DNA profiling
that are considerably more developed. Fibres and
DNA each have chapters of their own, Chapters 12
and 13. Glass evaluation provides many examples
throughout the book as it provides a context for
much of what is discussed and it was felt this was
better done at these places in the book rather than
gathered together in a separate chapter. Chapters
8, 9, and 10 on transfer evidence, discrete data,
and continuous data are updated versions of
chapters on the same topics in the first edition.
Correct analysis of multivariate data is essential
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in forensic science as such data become more
prevalent, for example, in the consideration of the
elemental composition of glass or the chemical
composition of drugs. Multivariate analysis is
discussed in Chapter 11 with a worked analysis of
a two-dimensional example. An appendix gives a
brief description of the underlying mathematics of
matrix algebra. Chapters 12 and 13 are the only
chapters in the book that are specific to particular
types of evidence, fibres and DNA profiling, respec-
tively. Chapter 13 is a completely new chapter
compared with the corresponding chapter in
the first edition, such are the advances made in
DNA profiling since the first edition appeared. It
is still only a brief introduction to the topic. Other
more specialised books, cited in Chapter 13, are
recommended for the serious student of DNA
profiling. The last chapter, 14, is an introduction
to Bayesian networks, an exciting new topic
for forensic science and evidence evaluation
in general, predicted in the Preface to the first
edition. A graphical representation, as provided
by a Bayesian network, of the different types and
pieces of evidence in a case aids considerably the
understanding and analysis of the totality of the
evidence. In addition to the bibliography and
indexes, a list of notation has been provided at the
end. It is hoped this will enable the reader to keep
track of the symbolism which is a necessary part
of ensuring clarity of exposition.

The role of Bayesian inference in forensic
science remains controversial. In order to try to
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understand why this may be so, we can do no
better than to quote from an eminent fibres expert
who wrote:

There may be different reasons for the obvious reluctance or
scepticism connected with the adoption of Bayesian theory
for presenting fibres evidence. These may include:

• a lack of awareness of the explanatory literature avail-
able;

• difficulty in understanding the proposals therein;

• an antagonistic mind-set generated by an approach
which is thought too complicated and too mathematical;

• not knowing how to apply Bayes Theorem in practical
casework;

• criticism that case scenarios dealt with in the literature
are over-simplified and not realistic.

(Grieve, 2001, p. 208)

We hope that this book goes some way towards
overcoming the reluctance and scepticism.

Reference is made on occasion to probability val-
ues of statistical distributions. Rather than make
reference to statistical packages and books of tables
each time this is done, details of several packages
are listed here instead:

MINITAB. See http://www.minitab.com and
Ryan et al. (2000).

R: This is a language and environment for statis-
tical computing and graphics which is available in
source code form as Free Software under the terms
of the Free Software Foundation’s GNU General
Public License. R can be considered as a different
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implementation of S. There are some important
differences, but much code written for S runs
unaltered under R. See http://www.r-project.org/
and Ihaka and Gentleman (1996).

S-PLUS: See http://www.mathsoft.com/splus
and Venables and Ripley (2002). See also http://
lib.stat.cmu.edu/S/ for software and extensions.1

In addition, for those who like paper a very
useful book of statistical tables is Lindley and Scott
(1995).

During the preparation of this book, two emi-
nent forensic scientists, Barry Gaudette and Mike
Grieve, died. Both did much to inspire our work in
evidence evaluation, for which we will always be
grateful.

Many people have helped in many ways in
the preparation of this book. In particular, we
acknowledge the assistance of Fred Anglada,
Marc Augsburger, Luc Besson, Alex Biedermann,
Christophe Champod, Pierre Esseiva, Paolo
Garbolino, David Lucy, Willy Mazzella, Phil Rose,
and Bruce Weir. Whilst we have received much
advice, we accept full responsibility for any errors
of commission and omission. The Leverhulme
Trust provided invaluable support of this work
through the award of a research fellowship to one
of us (CGGA). Dennis Lindley graciously agreed to
write a foreword. He has been an inspiration to us
throughout our careers and we thank him most

1Added in 2020: these websites no longer exist. S-Plus is owned
by TIBCO (https://www.tibco.com/).
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sincerely for the honour he has done us. We also
thank the staff at John Wiley and Sons, Ltd., Lucy
Bryan, Rob Calver, Siân Jones, Jane Shepherd, and
a very assiduous copy-editor, Richard Leigh, for
their help and support in bringing this project to
fruition.

Last, but by no means least, we thank our fami-
lies for their support and encouragement.

C.G.G. AITKEN AND F. TARONI

Edinburgh and Lausanne
2004
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In 1977 a paper by Dennis Lindley was pub-
lished in Biometrika with the simple title ‘A
problem in forensic science’. Using an example
based on the refractive indices of glass fragments,
Lindley described a method for the evaluation of
evidence that combined the two requirements of
the forensic scientist, those of comparison and
significance, into one statistic with a satisfactorily
intuitive interpretation. Not unnaturally the
method attracted considerable interest amongst
statisticians and forensic scientists interested in
seeking good ways of quantifying their evidence.
Since then, the methodology and underlying ideas
have been developed and extended in theory and
application into many areas. These ideas, often
with diverse terminology, have been scattered
throughout many journals in statistics and foren-
sic science and, with the advent of DNA profiling,

xxxvii
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in genetics. It is one of the aims of this book to
bring these scattered ideas together and, in so
doing, to provide a coherent approach to the
evaluation of evidence.

The evidence to be evaluated is of a particular
kind, known as transfer evidence, or sometimes
trace evidence. It is evidence that is transferred
between the scene of a crime and a criminal. It
takes the form of traces – traces of DNA, traces
of blood, of glass, of fibres, of cat hairs, and so
on. It is amenable to statistical analyses because
data are available to assist in the assessment of
variability. Assessments of other kinds of evidence,
for example, eyewitness evidence, is not discussed.

The approach described in this book is based on
the determination of a so-called likelihood ratio.
This is a ratio of two probabilities, the probability
of the evidence under two competing hypotheses.
These hypotheses may be that the defendant is
guilty and that he is innocent. Other hypotheses
may be more suitable in certain circumstances
and various of these are mentioned as appropriate
throughout the book.

There are broader connections between statis-
tics and matters forensic which could perhaps
be covered by the title ‘forensic statistics’ and
which are not covered here, except briefly. These
might include the determination of a probability
of guilt, both in the dicta ‘innocent until proven
guilty’ and ‘guilty beyond reasonable doubt’. Also,
the role of statistical experts as expert witnesses
presenting statistical assessments of data or as
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consultants preparing analyses for counsel is
not discussed, nor is the possible involvement
of statisticians as independent court assessors.
A brief review of books on these other areas in
the interface of statistics and the law is given in
Chapter 1. There have also been two conferences
on forensic statistics (Aitken 1991, Kaye 1993)
with a third to be held in Edinburgh in 1996.
These have included forensic science within their
programme but have extended beyond this. Papers
have also been presented and discussion sessions
held at other conferences, e.g. Aitken (1993) and
Fienberg and Finkelstein (1996).

The role of uncertainty in forensic science is
discussed in Chapter 1. The main theme of the
book is that the evaluation of evidence is best
achieved through consideration of the likelihood
ratio. The justification for this and the derivation
of the general result is given in Chapter 2. A
correct understanding of variation is required
in order to derive expressions for the likelihood
ratio and variation is the theme for Chapter 3
where statistical models are given for both discrete
and continuous data. A review of other ways
of evaluating evidence is given in Chapter 4.
However, no other appears, to the author at least,
to have the same appeal, both mathematically and
forensically as the likelihood ratio and the remain-
der of the book is concerned with applications
of the ratio to various forensic science problems.
In Chapter 5, transfer evidence is discussed with
particular emphasis on the importance of the
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direction of transfer, whether from the scene of the
crime to the criminal or vice versa. Chapters 6 and
7 discuss examples for discrete and continuous
data, respectively. The final chapter, Chapter 8, is
devoted to review of DNA profiling, though, given
the continuing amount of work on the subject,
it is of necessity brief and almost certainly not
completely up-to-date at the time of publication.

In keeping with the theme of the Series, Statis-
tics in Practice, the book is intended for forensic
scientists as well as statisticians. Forensic scientists
may find some of the technical details rather too
complicated. A complete understanding of these
is, to a large extent, unnecessary if all that is
required is an ability to implement the results.
Technical details in Chapters 7 and 8 have been
placed in Appendices to these Chapters so as not
to interrupt the flow of the text. Statisticians may,
in their turn, find some of the theory, for example,
in Chapter 1, rather elementary and, if this is the
case, then they should feel free to skip over this
and move on to the more technical parts of the
later chapters.

The role of statistics in forensic science is con-
tinuing to increase. This is partly because of the
debate continuing over DNA profiling that looks
as if it will carry on into the foreseeable future. The
increase is also because of increasing research by
forensic scientists into areas such as transfer and
persistence and because of increasing numbers
of data sets. Incorporation of subjective proba-
bilities will also increase, particularly through
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the role of Bayesian belief networks (Aitken and
Gammerman, 1989) and knowledge-based sys-
tems (Buckleton and Walsh, 1991, Evett, 1993b).

Ian Evett and Dennis Lindley have been at the
forefront of research in this area for many years.
They have given me invaluable help throughout
this time. Both made extremely helpful comments
on earlier versions of the book for which I am
grateful. I thank Hazel Easey for the assistance she
gave with the production of the results in Chapter
8. I am grateful to Ian Evett also for making
available the data in Table 7.3. Thanks are due to
The University of Edinburgh for granting leave of
absence and to my colleagues of the Department of
Mathematics and Statistics in particular for shoul-
dering the extra burdens such leave of absence by
others entails. I thank also Vic Barnett, the Editor
of the Series, and the staff of John Wiley and Sons
Ltd. for their help throughout the gestation period
of this book.

Last, but by no means least, I thank my family
for their support and encouragement.

C.G.G. AITKENEdinburgh, 1995
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1

Uncertainty in
Forensic Science

1.1 INTRODUCTION

The purpose of this book is to discuss the statistical
and probabilistic evaluation of scientific evidence
for forensic scientists. A formal definition of
evidence is given in Section 1.4. For the most part
the evidence to be evaluated will be the so-called
transfer or (physical) trace evidence, but the gen-
eral logic also applies to other types of evidence,
such as digital, pattern, or testimonial evidence.

There is a well-known principle in forensic sci-
ence known as Locard’s principle, which states that
every contact leaves a trace (Locard 1920).

[ . . . ] tantôt le malfaiteur a laissé sur les lieux les marques
de son passage, tantôt, par une action inverse, il a emporté
sur son corps ou sur ses vêtements, les indices de son séjour
ou de son geste. (p. 139)

1
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This is translated as (Inman and Rudin 2001)

[ . . . ] either the wrong-doer has left signs at the scene of the
crime, or, on the other hand, has taken away with him – on
his person (body) or clothes – indications of where he has
been or what he has done. (p. 93)

The principle was reiterated using different
words in Locard (1929). This has been translated
by the same author in 1930. Locard (1930) wrote

For the microscopic debris that covers our clothes and
bodies are the mute witnesses, sure and faithful, of all our
movements and of all our encounters. (p. 276)

Transfer evidence and Locard’s principle may be
illustrated as follows. Suppose a person gains entry
to a house by breaking a window and assaults the
man of the house, during which assault blood is
spilt by both victim and assailant. The criminal
may leave traces of their presence at the crime
scene in the form of bloodstains from the assault
and fibres from his clothing. This evidence is said
to be transferred from the criminal to the scene of
the crime. The criminal may also take traces of the
crime scene away with them. These could include
bloodstains from the assault victim, fibres of their
clothes, and fragments of glass from the broken
window. Such evidence is said to be transferred
to the criminal from the crime scene. A person of
interest1 (PoI) is soon identified, at a time at which
1In earlier editions the term suspect was used in this context. It is
now felt that the term person of interest is a more accurate descrip-
tion of the status of the person. The term suspect will still be used if
use of ‘person of interest’ would be clumsy. The term defendant will
only be used if the context is clearly that of a court.
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they will not have had the opportunity to change
their clothing. The forensic scientists examining
the PoI’s clothing find similarities amongst all the
different types of evidence: blood, fibres, and glass
fragments. They wish to evaluate this evidence. It is
hoped that this book will enable them so to do.

However, for evaluation, it is not only similarity
that is important but also the rarity of the char-
acteristics of interest. Hence, quantitative issues
relating to the distribution of these characteristics
will be discussed. However, there will also be
discussion of qualitative issues such as the choice
of a suitable population against which variability
in the measurements of the characteristics of
interest may be compared. Also, a brief history of
statistical aspects of the evaluation of evidence is
given in Chapter 3.

1.2 STATISTICS AND THE LAW

The book does not focus on the use of statistics and
probabilistic thinking for legal decision making,
other than by occasional reference. Also, neither
the role of statistical experts as expert witnesses
presenting statistical assessments of data nor their
role as consultants preparing analyses for counsel
is discussed. There is a distinction between these
two issues (Fienberg 1989, Tribe 1971). The
main focus of this book is on the assessment of
evidence for forensic scientists, in particular for
identification purposes. The process of addressing
the issue of whether or not a particular item
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came from a particular source is most prop-
erly termed individualization. ‘Criminalistics is
the science of individualization’ (at p. 236) as
defined by Kirk (1963) but established forensic
and judicial practices have led to it being termed
identification. The latter terminology will be used
throughout this book. An identification, however,
is more correctly defined as ‘the determination
of some set to which an object belongs or the
determination as to whether an object belongs to
a given set’ (Kingston 1965a). Further discussion
is given by Kwan (1977), Evett et al. (1998), and
Champod et al. (2016b). For a critical discussion
of individualisation as a decision, see Cole (2014),
Biedermann et al. (2008a), and Saks and Koehler
(2008). More details are given in Section 2.5.9.

For example, in a case involving a broken
window, similarities may be found between the
refractive indices of fragments of glass found on
the clothing of a PoI and the refractive indices of
fragments of glass from the broken window. The
assessment of this evidence, in consideration of
the association or otherwise of the PoI with the
scene of the crime, is part of the focus of this book.

For those interested in the issues of statistics and
the law beyond those of forensic science, in the
sense used in this book, there are several books
available and some of these are discussed briefly.

‘The evolving role of statistical assessments as
evidence in the courts’ is the title of a report, edited
by Fienberg (1989), by the Panel on Statistical
Assessments as Evidence in the Courts formed
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by the Committee on National Statistics and the
Committee on Research on Law Enforcement and
the Administration of Justice of the United States,
and funded by the National Science Foundation.
Through the use of case studies, the report reviews
the use of statistics in selected areas of litigation,
such as employment discrimination, antitrust
litigation, and environment law. One case study is
concerned with identification in a criminal case.
Such a matter is the concern of this book, and the
ideas relevant to this case study, which involves the
evidential worth of similarities amongst human
head hair samples, will be discussed in greater
detail later (Section 3.5.5). The report makes
various recommendations, relating to the role of
the expert witness, pretrial discovery, the provision
of statistical resources, the role of court-appointed
experts, the enhancement of the capability of the
fact-finder, and statistical education for lawyers.

Two books that take the form of textbooks
on statistics for lawyers are Vito and Latessa
(1989) and Finkelstein and Levin (2015). The
former focusses on the presentation of statistical
concepts commonly used in criminal justice
research. It provides criminological examples to
demonstrate the calculation of basic statistics. The
latter introduces rather more advanced statistical
techniques and again uses case studies to illustrate
the techniques.

Historically, the particular area of discrim-
ination litigation is covered by a set of papers
edited by Kaye and Aickin (1986). This starts
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by outlining the legal doctrines that underlie
discrimination litigation. In particular, there is
a fundamental issue relating to discrimination
in hiring. The definition of the relevant market
from which an employer hires has to be made very
clear. For example, consider the case of a man who
applies, but is rejected, for a secretarial position.
Is the relevant population the general population,
the representation of men amongst secretaries in
the local labour force, or the percentage of male
applicants? The choice of a suitable reference
population is also one with which the forensic
scientist has to be concerned. This is discussed
at several points in this book, see, for example,
Sections 5.5.3.4 and 6.1.

Another textbook, which comes in two volumes,
is Gastwirth (1998a,b). The book is concerned
with civil cases and ‘is designed to introduce statis-
tical concepts and their proper use to lawyers and
interested policy makers . . . ’ (volume 1, p. xvii).
Two areas are stressed, which are usually given
less emphasis in most statistical textbooks. The
first area is concerned with measures of relative
or comparative inequality. These are important
because many legal cases are concerned with
issues of fairness or equal treatment. The second
area is concerned with the combination of results
of several related statistical studies. This is impor-
tant because existing administrative records or
currently available studies often have to be used
to make legal decisions and public policy; it is not
possible to undertake further research. Gastwirth
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(2000) has also edited a collection of essays on
statistical science in the courtroom, some of which
are directly relevant for this current book and will
be referred to as appropriate.

A collection of papers on Statistics and Public
Policy has been edited by Fairley and Mosteller
(1977). One issue in the book, which relates to a
particularly infamous case, the Collins case, is dis-
cussed in detail later (Section 3.4). Other articles
concern policy issues and decision making.

Of further interest is a book (Kadane 2008)
explicitly entitled ‘Statistics and the Law’, which
considers the question ‘how can lawyers and
statisticians best collaborate in a court of law to
present statistics in the most clear and persuasive
manner?’. With the use of case studies that refer
to employment, jury behaviour, fraud, taxes, and
aspects of patents, there is clarification of what a
statistician and what a lawyer should know for a
fruitful collaboration.

Other recent publications on the interaction
between law and statistics are, for example, Dawid
et al. (2014), Kadane (2018a,b), Kaye (2017a,b),
and Gastwirth (2017).

The remit of this book is one that is not covered
by these others in great detail. The use of statistics
in forensic science in general is discussed in a
collection of essays edited by Aitken and Stoney
(1991). The remit of this book is to describe sta-
tistical procedures for the evaluation of evidence
for forensic scientists. This will be done primarily
through a Bayesian approach, the principle of
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which was described in Peirce (1878). It was
developed further in the work of I.J. Good and
A.M. Turing as code-breakers at Bletchley Park
during World War Two. A brief review of the
history was given in Good (1991). A history of
the Bayesian approach for a lay audience was
given in Bertsch McGrayne (2011). An essay
on the topic of probability and the weighing of
evidence was written by Good (1950). This also
referred to entropy (Shannon 1948), the expected
amount of information from an experiment,
and Good remarked that the expected weight of
evidence in favour of a hypothesis H and against
its complement H̄ is equal to the difference of
the entropies assuming H and H̄, respectively. A
brief discussion of a frequentist approach and the
problems associated with it is given in Section 3.6
(see also Taroni et al. 2016). A general review
of the Bayesian approach was given by Fienberg
(2006).

It is of interest to note that a high proportion of
situations involving the so-called objective presen-
tation of statistical evidence uses the frequentist
approach with tests of significance (Fienberg
and Schervish 1986).2 However, Fienberg
and Schervish go on to say that the major-
ity of examples cited for the use of the Bayesian

2There is a recent critical discussion on the use of tests of sig-
nificance. See, for example, Wasserstein et al. (2019), Amrhein
et al. (2019), Ioannidis (2019), Haaf et al. (2019), and Johnson
(2019). Note that such a discussion dates back to 1986 (Kaye
1986a) with a later update (Kaye 2017c).
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approach are in the area of identification evidence.
It is this area that is the main focus of this book,
and it is Bayesian analyses that will form the basis
for the evaluation of evidence as discussed here.
Examples of the applications of such analyses to
legal matters include Cullison (1969), Finkelstein
and Fairley (1970, 1971), Fairley (1973), Lempert
(1977), Lindley (1975, 1977b,c), Fienberg and
Kadane (1983), Lempert (1986), Redmayne
(1995, 1997), Friedman (1996), Redmayne
(2002), Anderson et al. (2005), Robertson et al.
(2016), and Adam (2016).

Another approach that will not be discussed
here is that of Shafer (1976, 1982). This concerns
so-called belief functions, see Section 3.1. The
theory of belief functions is a very sophisticated
theory for assessing uncertainty that endeavours
to answer criticisms of both the frequentist and
Bayesian approaches to inference. Belief functions
are non-additive in the sense that belief in an event
A [denoted Bel(A)] and belief in the opposite of A
[denoted Bel(Ā)] do not sum to 1. See also Shafer
(1978) for a historical discussion of non-additivity.
Further discussion is beyond the scope of this book.
Practical applications are few. One such, however,
is to the evaluation of evidence concerning the
refractive index of glass (Shafer 1982). More
recent developments of the role of belief functions
in law for burdens of proof and in forensic science
with a discussion of the island problem (Section
6.1.6.3) and parental identification are given in
Nance (2019) and Kerkvliet and Meester (2016).
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It is very tempting when assessing evidence to
try to determine a value for the probability of the
so-called probandum of interest (or the ultimate
issue) such as the true guilt of a PoI (as distinct
from a verdict of guilty, which may or may not be
correct), or a value for the odds in favour of guilt
and perhaps even to reach a decision regarding
the PoI’s guilt. However, this is the role of the
jury and/or judge. It is not the role of the forensic
scientist or statistical expert witness to give an
opinion on this (Evett 1983). It is permissible for
the scientist to say that the evidence is 1000 times
more likely, say, if the PoI is the offender than
if he is not the offender. It is not permissible to
interpret this to say that, because of the evidence,
it is 1000 times more likely that the PoI is the
offender than is not the offender. Some of the
difficulties associated with assessments of proba-
bilities are discussed by Tversky and Kahneman
(1974) and are further described in Section 2.5.
An appropriate representation of probabilities is
useful because it fits the analytic device most used
by lawyers, namely, the creation of a story. This is a
narration of events ‘abstracted from the evidence
and arranged in a sequence to persuade the
fact-finder that the story told is the most plausible
account of “what really happened” that can be
constructed from the evidence that has been or
will be presented’ (Anderson and Twining 1998,
p. 166). Also of relevance is Kadane and Schum
(1996), which provides a Bayesian analysis of
evidence in the Sacco–Vanzetti case (Sacco 1969)
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based on subjectively determined probabilities and
assumed relationships amongst evidential events.
A similar approach is presented in Section 2.9.

1.3 UNCERTAINTY IN SCIENTIFIC
EVIDENCE

Scientific evidence requires considerable care in
its interpretation (Evett 2009). Emphasis needs
to be put on the importance of asking the ques-
tion: what do the results mean in this particular
case? (Jackson 2000). Kirk and Kingston (1964)
emphasised:

Suppose that the fibres do match – what does it mean? Sup-
pose that there is a defined degree of similarity in the bullet
marking, or the handwriting, does it prove identity of ori-
gin, or does it merely give a sometimes controversial basis
for making a decision as to the identity of origin? (p. 439)

Scientists and jurists have to ‘[ . . . ] abandon the
idea of absolute certainty so that a fully objective
approach to the problem can be made. [ . . . ] If it
can be accepted that nothing is absolutely certain
then it becomes logical to determine the degree of
confidence that may be assigned to a particular
belief’ (Kirk and Kingston 1964, p. 435). On the
same line of reasoning, the authors (Kingston and
Kirk 1964) expressed themselves on uncertainty
and they emphasised:

A statistical analysis is used when uncertainty must exist.
If there were a way of arriving to a certain answer to a
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problem, statistical methods would not be used. But when
uncertainty does exist, and a statistical approach is possi-
ble, then this approach is the best one available since it offers
an index on the uncertainty based upon a precise and logical
line of reasoning. [ . . . ] It is undoubtedly true that seri-
ous errors have been made in applying incorrect statistical
methods to the evaluation of physical evidence, but such
misuse does not support the generalisation that statistics
cannot be properly used in criminalistics at all. (p. 516)

There are various kinds of problems concerned
with the random variation naturally associated
with scientific observations. There are problems
concerned with the definition of a suitable ref-
erence population against which concepts of
rarity or commonality may be assessed. There are
problems concerned with the choice of a measure
of the value of the evidence.

The effect of the random variation can be
assessed with the appropriate use of probabilistic
and statistical ideas. There is variability associ-
ated with scientific observations. Variability is a
phenomenon that occurs in many places. People
are of different sexes, determination of which is
made at conception. People are of different height,
weight, and intellectual ability, for example. The
variation in height and weight is dependent on a
person’s sex. In general, females tend to be lighter
and shorter than males. However, variation is
such that there can be tall, heavy females and
short, light males. At birth, it is uncertain how
tall or how heavy the baby will be as an adult.
However, at birth, it is usually known whether
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the baby is a boy or a girl. This knowledge affects
the uncertainty associated with the predictions of
adult height and weight.

People are of different blood groups. A person’s
blood group does not depend on the age or sex of
the person but does depend on the person’s eth-
nicity. The refractive index of glass varies within
and between windows. Observation of glass as to
whether it is window or bottle glass will affect the
uncertainty associated with the prediction of its
refractive index and that of other pieces of glass,
which may be thought to come from the same
origin.

It may be thought that, because there is vari-
ation in scientific observations, it is not possible
to make quantitative judgements regarding any
comparisons between two sets of observations.
The two sets are either different or they are not
and there is no more to be said. However, this is
not so. There are many phenomena that vary but
they vary in certain specific ways. It is possible
to represent these specific ways mathematically.
Various probability distributions to represent
variation are introduced in Appendix A. It is then
possible to assess differences quantitatively and to
provide a measure of uncertainty associated with
such assessments.

It is useful to recognise the distinction between
statistics and probability. Probability is a deductive
process that argues from the general to the partic-
ular. Consider a fair coin, i.e. one in which when
tossed the probability of a head landing uppermost
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equals the probability of a tail landing uppermost
equals 1/2. A fair coin is tossed 10 times. Proba-
bility theory enables a determination to be made
of the probability that there are three heads and
seven tails, say. The general concept of a fair coin is
used to determine something about the outcome of
the particular case in which it was tossed 10 times.

On the other hand, statistics is an inductive pro-
cess that argues from the particular to the general.
Consider a coin that is tossed ten times and there
are three heads and seven tails. Statistics enables
the question as to whether the coin is fair or not
to be addressed. The particular outcome of three
heads and seven tails in ten tosses is used to deter-
mine something about the general case of whether
the coin was fair or not.

Fundamental to both statistics and probability
is uncertainty. Given a fair coin, the number of
heads and tails in ten tosses is uncertain. The
probability associated with each outcome may
be determined but the actual outcome itself
cannot be predicted with certainty. Given the
outcome of a particular sequence of 10 tosses,
information is then available about the fairness
or otherwise of the coin. For example, if the
outcome were 10 heads and no tails, one may
believe that the coin is double-headed but it is
not certain that this is the case. There is still a
non-zero probability (1/1024) that 10 tosses of a
fair coin will result in 10 heads. Indeed this has
occurred in the first author’s own experience. A
class of some 130 students were asked to each
toss a coin 10 times. One student tossed 10
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consecutive heads from what it is safe to assume
was a fair coin. The probability of this happening is
1 − (1 − 1∕1024)130 ≃ 130∕1024 = 0.13. Prob-
ability is therefore the measure of choice for the
quantification of uncertainty. It is therefore impor-
tant to define probability carefully. This point is
clarified in Section 1.7. At present, it suffices to
mention a brief definition by de Finetti (1968).

[A probability is] subjective [and it] means the degree of
belief (as actually held by someone, on the ground of his
whole knowledge, experience, information) regarding the
truth of a sentence or event, E (a fully specified single event
or sentence, whose truth or falsity is, for whatever reason,
unknown to that person). (p. 45)

1.3.1 The Frequentist Method

Consider a consignment of compact disks (CDs),
containing N disks. The consignment is said to
be of size N. It is desired to make inferences about
the proportion 𝜃 (0 ≤ 𝜃 ≤ 1) of the consignment
which is pirated. It is not practical to inspect the
whole consignment so a sample of size n, where
n < N is inspected.

The frequentist method assumes that the pro-
portion 𝜃 of the consignment that is pirated is
unknown but fixed. The data, that is the number
of CDs in the sample that are pirated, are variable.
A so-called confidence interval is calculated. The
name confidence is used since no probability can be
attached to the uncertain event that the interval
contains 𝜃. These ideas are discussed further in
Chapter 4.
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The frequentist method derives its name from
the relative frequency definition of probability.
The probability that a particular event, A, say,
occurs is defined as the relative frequency of the
number of occurrences of event A compared with
the total number of occurrences of all possible
events, over a long run of observations, conducted
under identical conditions of all possible events.
The limitations of such a definition are presented
in Section 1.7.4.

For example, consider tossing a coin n times. It is
not known if the coin is fair. The outcomes of the n
tosses can be used as information from which the
probability of a head occurring on an individual
toss may be assigned. There are two possible
outcomes, heads (H) and tails (T). Let n(H) be the
number of H and n(T) be the number of T such that
n(H) + n(T) = n. Then the probability of tossing a
head on an individual toss of the coin is defined as
the limit as n → ∞ of the fraction n(H)∕n. The fre-
quentist approach relies on a belief in the long-run
repetition of trials3 under identical conditions.
This is an idealised situation, seldom, if ever,
realised in practice. More discussion on the inter-
pretation of such a result is given in Section 3.6.

The way in which statistics and probability may
be used to evaluate evidence is the theme of this
book. Care is required. Statisticians are familiar

3The use of the word trial here is a statistical one and is not to be
confused with the legal use. In a statistical use, a trial is a par-
ticular event, such as the toss of a coin. More details are in the
Appendix A.2.2.
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with variation, as are forensic scientists who
observe it in the course of their work. Lawyers,
however, prefer certainties. A defendant is found
guilty or not guilty (or also, in Scotland, not proven).
The scientist’s role is to testify to the worth of
the evidence, the role of the statistician and this
book is to provide the scientist with a quantitative
measure of this worth. It is shown that there
are few forms of evidence that are so definite
that statistical treatment is neither needed nor
desirable. It is up to other people (the judge and/or
the jury) to use this information as an aid to their
deliberations. It is for neither the statistician nor
the scientist to pass judgement (Kind 1994).

The use of these ideas in forensic science is
best introduced through the discussion of several
examples. These examples will provide a constant
theme throughout the book. Consideration in
detail of populations from which the criminal may
be thought to have come, to which reference is
made in the following text, are discussed in Section
6.1.1 where they are called relevant populations.
The value of evidence is measured by a statistic
known as the likelihood ratio and its logarithm.
These are introduced in Sections 2.3 and 2.4.

1.3.2 Stains of Body Fluids

Example 1.1. A crime is committed. A blood-
stain is found at the scene of the crime. All
innocent explanations for the presence of the stain
are eliminated. A PoI is found. Their DNA profile
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is established and found to correspond to that
of the crime stain. What is the evidential value of
this correspondence? This is a very common
situation yet the answer to the question provides
plenty of opportunity for discussion of the theme
of this book.

Certain other questions need to be addressed
before this particular one can be answered. Where
was the crime committed, for example? Does it
matter? Does the value of the evidence of the
bloodstain change depending on where the crime
was committed?

Apart from their DNA profile, what else is
known about the criminal? In particular, is there
any information, such as ethnicity, which may be
related to their DNA profile? What is the popula-
tion from which the criminal may be thought to
have come? Could they be another member of the
family of the PoI?

Questions such as these and their effect on the
interpretation and evaluation of evidence will be
discussed in greater detail. First, consider only
the evidence of the DNA profile in isolation and
one particular locus, LDLR. It is no longer used
in forensic genetics; it is used here for ease of
explanation. Assume the crime was committed
in Chicago and that there is eyewitness evidence
that the criminal was a Caucasian. Information
is available to the investigating officer about the
genotypic distribution for the LDLR locus in Cau-
casians in Chicago and is given in Table 1.1. The
information about the location of the crime and
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Table 1.1 Genotypic relative frequencies for locus
LDLR amongst Caucasians in Chicago based on a
sample of size 200.

Genotype AA BB AB

Relative frequency (%) 18.8 32.1 49.1

Source: From Johnson and Peterson (1999). Reprinted with
permissions of ASTM International.

the ethnicity of the criminal is relevant. Genotypic
population proportions vary across locations and
amongst ethnic groups. A PoI is arrested and
a swab is taken for a comparative genetic test.
For locus LDLR the genotype of the crime stain
and that of the PoI correspond. The investigating
officer knows a little about probability and works
out that the probability of two people chosen at
random and unrelated to the suspect having cor-
responding alleles, using the figures in Table 1.1
as estimates of population proportions, is

0.1882 + 0.3212 + 0.4912 = 0.379, (1.1)

(see Section 3.5.1). They are not too sure what
this result means. Is it high and is a high value
incriminating for the PoI? Is it low and is a low
value incriminating? In fact, a low value is more
incriminating than a high value.

They think a little more and remembers that,
not only do the genotypes correspond, but also
that they are both of type BB. The proportions of
genotypes AA and AB are not relevant. He works
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out the probability that two people chosen at
random both have genotype BB as

0.3212 = 0.103,

(see Section 3.5). He is still not too sure what this
means but feels that it is more representative of the
information available to him than the previous
probability, since it takes account of the actual
genotypes of the crime stain and the PoI.

The genotype of the crime stain for locus LDLR is
BB. The genotype of the PoI is also BB (if it were not
they would not be a PoI). What is the value of this
evidence? The discussion earlier suggests various
possible answers.

(1) The probability that two people chosen at ran-
dom have the same genotype for locus LDLR.
This is 0.379.

(2) The probability that two people chosen at ran-
dom have the same, pre-specified, genotype.
For genotype BB this is 0.103.

(3) The probability that one person, chosen at
random, has the same genotype as the crime
stain. If the crime stain is of group BB, this
probability is 0.321, from Table 1.1.

The relative merits of these answers will be dis-
cussed in Section 3.5 for (1) and (2) and Section
2.4.5 for (3).

The phrase at random is taken to include the
caveat that the people chosen are unrelated to
the PoI. In practice, the phrase at random is not
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considered in its scientific usage (a person chosen
accordingly to a randomising device). Note that,
as expressed by Balding and Steele (2015),

It is important to keep in mind that in any crime investi-
gation, random man is pure fiction: nobody was actually
chosen at random in any population, and so probabilities
calculated under an assumption of randomly sampled sus-
pects have no direct bearing on evidential weight in actual
cases. (p. 160)

A comment on randomness is also made by
Kingston and Kirk (1964) (see pp. 515–516). A
discussion about the extension of the concept of
‘random man’ to the one of ‘unrelated person’
to the PoI, when dealing with DNA evidence
evaluation, is discussed in Milot et al. (2020).

1.3.3 Glass Fragments

Section 1.3.2 discussed an example of the interpre-
tation of the evidence of DNA profiling. Consider
now an example concerning glass fragments
and the measurement of the refractive index of
these.

Example 1.2. As before, consider the investiga-
tion of a crime. A window has been broken during
the commission of the crime. A PoI is found with
fragments of glass on their clothing, similar in
refractive index to the broken window. Several
fragments are taken for investigation and their
refractive index measurements taken.
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Note that there is a difference here from Example
1.1, where it was assumed that the crime stain
had come from the criminal and been transferred
to the crime scene. In Example 1.2 glass is trans-
ferred from the crime scene to the criminal. Glass
on the PoI need not have come from the scene
of the crime; it may have come from elsewhere
and by perfectly innocent means. This is an asym-
metry associated with this kind of scenario. The
evidence is known as transfer evidence, as discussed
in Section 1.1, because evidence (e.g. blood or
glass fragments) has been transferred from the
criminal to the scene or vice versa. Transfer from
the criminal to the scene has to be considered
differently from evidence transferred from the
scene to the criminal. A full discussion of this is
given in Chapters 5 and 6.

Comparison in Example 1.2 has to be made
between the two sets of fragments on the basis of
their refractive index measurements. The eviden-
tial value of the outcome of this comparison has
to be assessed. Notice that it is assumed that none
of the fragments has any distinctive features and
comparison is based only on the refractive index
measurements.

Methods for evaluating such evidence were dis-
cussed in many papers in the late 1970s and early
1980s Evett (1977, 1978), Evett and Lambert
(1982, 1984, 1985), Grove (1981, 1984), Lind-
ley (1977c), Seheult (1978), and Shafer (1982).
These methods will be described as appropriate
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in Chapters 3 and 7. Knowledge-based computer
systems have been developed. See Curran and
Hicks (2009) and Curran (2009) for a review
of practices in the forensic evaluation of glass
and DNA evidence. As an aside, sophisticated
systems have been developed to deal with DNA,
notably DNA mixtures complexities (i.e. number
of donors, peaks heights). Examples are presented
and evaluated in Bright et al. (2016), Alladio et al.
(2018), and Bleka et al. (2019).

Evett (1977) gave an example of the sort of
problem that may be considered and developed a
procedure for evaluating the evidence that mim-
icked the interpretative thinking of the forensic
scientist of the time. The case is an imaginary one.
Five fragments from a suspect are to be compared
with 10 fragments from a window broken at
the scene of a crime. The values of the refractive
index measurements are given in Table 1.2. The
procedure developed by Evett is a two-stage one. It
is described here briefly. It is a rather arbitrary and
hybrid procedure. While it follows the thinking
of the forensic scientist, there are interpretative
problems, which are described here, in attempting
to provide due value to the evidence. An alterna-
tive approach that overcomes these problems is
described in Chapter 7.

The first stage is known as the comparison stage.
The two sets of measurements are compared.
The comparison takes the form of the calculation
of a statistic, D, say. This statistic provides a



Table 1.2 Refractive index measurements.

Measurements from the window 1.518 44 1.518 48 1.518 44 1.518 50 1.518 40
1.518 48 1.518 46 1.518 46 1.518 44 1.518 48

Measurements from the PoI 1.518 48 1.518 50 1.518 48 1.518 44 1.518 46



�

� �

�

Uncertainty in Scientific Evidence 25

measure of the difference, known as a standardised
difference, between the two sets of measurements
that takes account of the natural variation there
is in the refractive index measurements of glass
fragments from within the same window. If the
absolute value of D is less than (or equal to) some
pre-specified value, known as a threshold value,
then the two sets of fragments are deemed to be
similar and the second stage is implemented. If the
absolute value of D is greater than the threshold
value, then the two sets of fragments are deemed
to be dissimilar. The two sets of fragments are
then deemed to have come from different sources
and the second stage is not implemented. (Note
the use here of the word statistic, which in this
context can be thought of simply as a function of
the observations.) A classic example of such an
approach is the use of the Student t-test or the
modified Welch test for the comparison of means
(Welch 1937; Walsh et al. 1996; Curran et al.
2000).

The second stage is known as the significance
stage. This stage attempts to determine the signif-
icance of the finding from the first stage that the
two sets of fragments were similar. The significance
is determined by calculating the probability of the
result that the two sets of fragments were found to
be similar, under the assumption that the two sets
had come from different sources. If this probability
is very low then this assumption is deemed to be
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false. The fragments are then assumed to come
from the same source, an assumption that places
the PoI at the crime scene. This assumption says
nothing about how the fragments came to be
associated with the PoI. This may have occurred
in an innocent manner. See Section 5.3.2 for
further discussion of this point in the context of
activity level propositions.

The procedure can be criticised on two points.
First, in the comparison stage the threshold
provides a qualitative step that may provide very
different outcomes for two different pairs of obser-
vations. One pair of sets of fragments may provide
a value of D, which is just below the threshold,
whereas the other pair may provide a value of D
just above the threshold. The first pair will proceed
to the significance stage, the second stage will
not. Yet, the two pairs may have measurements,
which are close together. The difference in the
consequences is greater than the difference in
the measurements merits (such an approach is
called a fall-off-the-cliff effect; see Evett (1991) who
attributed this term to Ken Smalldon. Criticisms
have been developed in Robertson and Vignaux
(1995b). They wrote:

This sudden change in decision due to crossing a particular
line is likened to falling off a cliff, one moment you are safe,
the next dead. In fact, rather than a cliff we have merely a
steep slope. Other things being equal, the more similar the
samples the stronger the evidence that they had a common
origin, and the less similar the samples the stronger the evi-
dence that they came from different sources. (p. 118)
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A related problem is that of cut-off where a decision
is taken dependent on whether a statistic is above
or below a certain value (see Section 7.7.5).

A better approach, as suggested in the quotation
from Robertson and Vignaux (1995b) above and
that is described in Section 7.3, provides a mea-
sure of the value of the evidence that decreases as
the distance between the two sets of measurements
increases, subject, as explained later, to the rarity
or otherwise of the measurements.

The second criticism is that the result is dif-
ficult to interpret. Because of the effect of the
comparison stage, the result is not just simply
the probability of the evidence, assuming the two
sets of fragments came from different sources. A
reasonable interpretation, as will be explained
in Section 2.4, of the value of the evidence is
the effect that it has on the odds in favour of the
true guilt of the PoI. In the two-stage approach
this effect is difficult to measure. The first stage
discards certain sets of measurements, which may
have come from the same source and does not
discard other sets of measurements which may
have come from different sources. The second
stage calculates a probability, not of the evidence
but of that part of the evidence for which D was
not greater than the threshold value, assuming
the two sets came from different sources. It is nec-
essary, as is seen later, to compare this probability
with the probability of the same result, assuming
the two sets came from the same source. There
is also an implication in the determination of the
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probability in the significance stage that a small
probability for the evidence, assuming the two sets
came from different sources, means that there is a
large probability that the two sets came from the
same source. This implication is unfounded; see
Section 2.5.1.

A review of the two-stage approach and the
development of a Bayesian approach is provided
by Curran et al. (2000) and Curran and Hicks
(2009).

As with DNA profiling, there are problems asso-
ciated with the definition of a suitable population
from which probability distributions for refractive
measurements may be obtained; see, for example,
Walsh and Buckleton (1986).

These examples have been introduced to pro-
vide a framework within which the evaluation of
evidence may be considered. In order to evaluate
evidence, something about which there is much
uncertainty, it is necessary to establish a suitable
terminology and to have some method for the
assessment of uncertainty. First, some terminol-
ogy will be introduced followed by a method for
the measurement of uncertainty. This method is
probability. The role of uncertainty, as represented
by probability, in the assessment of the value
of scientific evidence will form the basis of the
rest of this chapter. A commentary on so-called
knowledge management, of which this is one part,
has been given by Evett (1993b, 2015).
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1.4 TERMINOLOGY

It is necessary to have clear definitions of certain
terms. First note that the term evidence is generally
used in the literature and in practice rather than
terms such as finding, outcome, or material. The
term evidence may be confusing. In some legal
contexts it can refer to a judicial qualification
of a finding. Forensic scientists are interested
in the probative value of an observation before
it qualifies as evidence in a trial. The European
Networks of Forensic Science Institutes (ENFSI)
Guideline for evaluative reporting (ENFSI 2015)
provides definitions of both terms (pp. 19–20).
Despite the risk of confusion, the term evidence will
be used for the material examined by the scientist
and for which the value is required.

The crime scene and suspect (associated with
a PoI) materials have fundamentally different
roles. The assignment of a probability for a cor-
respondence between two randomly chosen sets
of materials is not the important issue. One set of
materials, crime scene or suspect, can be assumed
to have a known source. It is then required to
assess the probability of the corresponding mate-
rial, suspect or crime scene, corresponding in
some sense, to the known set of materials, under
two competing hypotheses. Examples 1.1 and 1.2
serve to illustrate this.

Example 1.1. (continued) A crime is committed.
A bloodstain is found at the scene of the crime.
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All innocent explanations for the presence of
the stain are eliminated. A PoI is found. Their
DNA profile is found to match that of the crime
stain. The crime scene material is the crime stain.
The suspect material is a swab with saliva. The
finding to evaluate is the observed correspondence
between the DNA profiles of the crime scene and
suspect materials.

Example 1.2 (continued) As before, consider
the investigation of a crime. A window has been
broken during the commission of the crime.
Several fragments are taken for investigation and
measurements made of their refractive indices.
These fragments, as their origin is known, are
sometimes known as control fragments and the
corresponding measurements are known as
control measurements. A PoI is found. Fragments of
glass are found on their person and measurements
of the refractive indices of these fragments are
made. These fragments are sometimes known as
recovered fragments. Their origin is not known.
They may have come from the window broken
at the crime scene but need not necessarily have
done so.

The crime scene material is the fragments of
glass and the measurements of refractive index
of these at the scene of the crime. The suspect
material is the fragments of glass found on the PoI
and their refractive index measurements.

Evidence where the source is known will be
known as source evidence. These fragments of
glass will be known as source fragments and the
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corresponding measurements will be known as
source measurements, as their source is known.
An alternative term for this type of evidence was
bulk source evidence (Stoney 1991a) but this
terminology appears to have fallen into disuse.

A PoI is identified. Fragments of glass are
found on their person and measurements of the
refractive indices of these fragments are made.
Evidence such as this where the evidence has been
received and is in particulate form will be known
as transferred particle evidence. The fragments of
glass in this example will be known as transferred
particle fragments. Their origin is not known. They
have been received from somewhere by the PoI.
They are particles that have been transferred to
the PoI from somewhere. They may have come
from the window broken at the crime scene but
need not necessarily have done so.

There will also be occasion to refer to the loca-
tion at which, or the person on which, the evidence
was found. Material found at the scene of the crime
will be referred to as crime evidence. Material found
on the suspect’s clothing or in the suspect’s natural
environment, such as their home, will be referred
to as suspect evidence. Note that this does not mean
that the evidence itself is of a suspect nature!

Locard’s principle (see Section 1.1) is that every
contact leaves a trace. In the earlier examples
the contact is that of the criminal with the crime
scene. In Example 1.1, the trace is the bloodstain
at the crime scene. In Example 1.2, the trace is the
fragments of glass that would be removed from the
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crime scene by the criminal (and, later, hopefully,
be found on their clothing).

The evidence in both examples is transfer evi-
dence (see Section 1.1) or sometimes trace evidence.
Material has been transferred between the crim-
inal and the scene of the crime. In Example 1.1
blood has been transferred from the criminal to the
scene of the crime. In Example 1.2 fragments of
glass may have been transferred from the scene of
the crime to the criminal. Note that the direction
of transfer in these two examples is different. Also,
in the first example the blood at the crime scene
has been identified as coming from the criminal.
Transfer is known to have taken place. In the
second example it is not known that glass has
been transferred from the scene of the crime to
the criminal. The PoI has glass fragments on his
clothing but these need not necessarily have come
from the scene of the crime. Indeed if the PoI is
innocent and has no connection with the crime,
the fragments will not have come from the crime
scene.

The term control evidence has been used to indi-
cate the material whose origin is known. Similarly,
the term recovered has been used to indicate the
material whose origin is unknown.

Alternatively, questioned has been used for
‘recovered’. See, for example, Brown and Cropp
(1987). Also Kind et al. (1979) used the word
crime for material known to be associated with
a crime and questioned for material thought to
be associated with a crime. All these terms are
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ambiguous. The need to distinguish the various
objects or persons associated with a crime was
pointed out by Stoney (1984).

Definitions given in the particular context of
fibre evidence are provided also by Champod and
Taroni (1999). The object or person on which
traces have been recovered is defined as the
receptor, and the object or person that could be
the source (or one of the sources) of the traces,
and which is the origin of the material defined as
known material, is defined as the known source.

Material will be referred to as control form where
appropriate and to recovered or transferred particle
form where appropriate. In the previous examples,
there are two possibilities for the origin of the
material which is taken to be known: the scene
of the crime and the PoI. One or other is taken
to be known, the other to be unknown. The two
sets of material are compared. Two probabilities
for what is assumed known are determined. One
depends on an assumption of common source.
The other depends on an assumption of different
sources. The two possibilities for the origin of
the material that is taken to be known are called
scene-anchored and suspect-anchored, where the
word ‘anchored’ refers to that which is assumed
known (Stoney 1991a). The distinction between
scene-anchoring and suspect-anchoring is impor-
tant when determining relevant probabilities
(Section 5.3.1.4); it is not so important in the
determination of likelihood ratios or Bayes’ factors
(see Section 2.3.2). Reference to form (source or



�

� �

�

34 Uncertainty in Forensic Science

receptor) is a reference to one of the two parts
of the evidence. Reference to anchoring (scene
or suspect) is a reference to a perspective for the
evaluation of the evidence.

It is sometimes useful to refer to material found
at the scene of a crime as the crime scene item and
to material found on or about a PoI as the suspect
item. This terminology reflects the site at which the
material was found. It does not indicate the kind
of material (bulk or transferred particle form) or
the perspective (scene – or suspect – anchored) by
which the evidence will be evaluated.

1.5 TYPES OF DATA

A generic name for observations that are made on
items of interest, such as bloodstains, refractive
indices of glass, etc. is data. There are different
types of data and some terminology is required to
differentiate amongst them. For example, consider
shoe types. The observations of interest are the
shoe types as observable on surveillance camera
recordings and those observable in possession of a
PoI. These shoe types are not quantifiable. There
is no numerical significance that may be attached
to these. The shoe type is a qualitative charac-
teristic. As such, it is an example of so-called
qualitative data, sometimes known as categorical
data. The observation of interest is a quality, the
shoe type, which has no numerical significance.
The different shoe types are sometime known as
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categories. The assignation of a shoe to a particular
category is called a classification. A shoe may be
said to be assigned to one of several categories (see
the discussion on the definition of identification in
Section 2.5.9). Other examples of categorical data
include types of firearms and makes of cars.

It is not possible to order shoe types and say
that one type is larger or smaller than another.
However, there are other qualitative data that do
have a natural ordering, such as the level of burns
on a body. There is not a numerical measure of
this but the level of burns may be classified as
first, second, third degree, for example. Qualitative
data that have no natural ordering are known as
nominal data. Qualitative data to which a natural
ordering may be attached are known as ordinal
data. An ordinal characteristic is one in which
there is an underlying order even though it is not
quantifiable. Pain is another such characteristic;
level of trauma may be ordered as none, slight,
mild, severe, or very severe. The simplest case of
nominal data arises when an observation may be
classified into one of only two possible categories.
For example, consider the magnetism of toner
present on printed documents. Some toners are
magnetic, whereas others are not. Such data are
known as binary. Alternatively, the variable of
interest, here magnetism, is known as dichoto-
mous; it is either present or absent (Biedermann
et al. 2016c).

Other types of data are known as quantitative
data. These may be either counts (known as dis-
crete data, since the counts take discrete, integer,
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values) or measurements (known as continuous
data, since the measurements may take any value
on a continuous interval).

A violent crime involving several people, vic-
tims and offenders, may result in much blood
being spilt and many stains from each of several
DNA profiles being identified. Then the numbers
of stains for each of the different profiles are
examples of discrete, quantitative data. Other
examples of discrete quantitative data are the
number of glass fragments found on a PoI, or the
number of gunshot residue particles on hands.

The refractive indices and elemental con-
centrations of glass fragments are examples of
continuous measurements. In practice, variables
are rarely truly continuous because of the limits
imposed by the sensitivity of the measuring
instruments. For example, refractive indices may
be measured only to a certain number of decimal
places.

Observations, or data, may thus be classified as
qualitative or quantitative. Qualitative data may be
classified further as nominal or ordinal, and quan-
titative data may be classified further as discrete or
continuous.

1.6 POPULATIONS

‘Who is “random man”?’ This is the title of a paper
by Buckleton et al. (1991). In order to evaluate
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evidence, it is necessary to have some idea of
the variability or distribution of the evidence
under consideration within some population. This
population will be called the relevant population
(and a more formal definition will be given later in
Section 6.1.1) because it is the population that is
deemed relevant to the evaluation of the evidence.
Variability is important because if the PoI did
not commit the crime and is, therefore, assumed
innocent it is necessary to be able to determine the
probability of associating the evidence with them
when they are innocent. Surveys of populations
are required in order to obtain this information.
Surveys for reference data are regularly published
in forensic science or legal medicine journals (e.g.
Forensic Science International, Science & Justice,
Journal of Forensic Sciences, International Journal of
Legal Medicine); they are widely available to the
scientific community.

Care has to be taken when deciding how to
choose the relevant population. Buckleton et al.
(1991) describe two situations and explain how
the relevant population is different for each.

The first situation is one in which there is
transfer from the criminal to the crime scene as
in Example 1.1 and discussed in greater detail in
Section 5.3.1.4. In this situation, the details of
any PoI are irrelevant under Hd, the proposition
that the PoI was not present at the scene of the
crime. Consider a bloodstain at the crime scene
that, from the background information I, it is
possible to assume is of blood from the criminal.
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If the PoI was not present, then clearly some
other person must have left the stain. There is
no reason to confine attention to any one group
of people. In particular, attention should not be
confined only to any group (e.g. ethnic group) to
which the PoI belongs. However, if there is some
information that might cause one to reconsider
the choice of population, then that choice may be
modified. Such information may come from an
eyewitness, for example, who is able to provide
information about the offender’s ethnicity. This
would then be part of the background information
I. Further comments on the role of background
information I may be found in Section 2.4.4. In
general, though, information about DNA profile
frequencies would be required from a survey,
which is representative of all possible offenders.
For evidence of DNA profiles, it is known that age
is not a factor affecting a person’s profile but that
ethnicity is. It is necessary to consider the racial
composition of the population of possible offenders
(not persons of interest). Normally, it is necessary
to study a general population since there will be no
information available to restrict the population of
possible criminals to any particular ethnic group
or groups.

The second situation considered by Buckleton
et al. (1991) is possible transfer from the crime
scene to the PoI or criminal and discussed further
in Section 5.3.2.4. The details of the PoI are now
relevant even assuming they were not present
at the crime scene. Consider the situation where
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there is a deceased victim who has been stabbed
numerous times. A PoI, with a history of violence,
has been apprehended with a heavy bloodstain on
their jacket that is not of their own blood. What is
the evidential value in itself, and not considering
possible DNA evidence, of the existence of such
a heavy bloodstain, not of the blood of the PoI?
The probability of such an event (the existence of
a heavy bloodstain) if the PoI did not commit the
crime needs to be considered.

The PoI may offer an alternative explanation.
The jury can then assign a probability to the
occurrence of the evidence, given that explana-
tion. The two propositions to be considered would
then be

Hp: the blood was transferred during the com-
mission of the crime;

Hd: the explanation of the PoI is true,

and the jury could assess the evidence of the
existence of transfer under these two propositions.
Evaluation of the evidence of the DNA profile
frequencies would be additional to this. The two
parts could then be combined using the technique
described in Section 5.3.2.

In the absence of an explanation from the PoI,
the forensic scientist could conduct a survey
of persons as similar as possible to the PoI in
whatever are the key features of their behaviour
or lifestyle. The survey would be conducted with
respect to the PoI since it is of interest to learn
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about the transfer of bloodstains for people with
their background. In a particular case, it may be
that a survey of people of a violent background is
needed. One example is that of Briggs (1978) in
which 122 suspects who were largely vagrants,
alcoholics, and violent sexual deviants were stud-
ied. The nature and lifestyle of the PoI determine
the type of population to survey. Buckleton et al.
(1991) reported also the work of Fong and Inami
(1986) in which clothing items from persons of
interest, predominantly in offences against the
person, were searched exhaustively for fibres that
were subsequently grouped and identified.

The idea of a relevant population is a very
important one and is discussed further in Section
6.1.1 following the development proposed by
Champod et al. (2004). Consider the example of
offender profiling, one which is not strictly speak-
ing forensic science but which is still pertinent
during an investigation. Consider the application
to rape cases. Suppose the profiler is asked to
comment on the offender’s lifestyle, such as age,
marital status, existence and number of previous
convictions, and so on, which the profiler may
be able to do. However, it is important to know
something about the distribution of these in some
general population. The question arises here, as
in Buckleton et al. (1991) described earlier, as to
what is the relevant population. In rape cases, it
may not necessarily be the entire male population
of the local community. It could be argued that it
might be the population of burglars, not so much
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because rapists are all burglars first but rather
burglars are a larger group of people who commit
crimes involving invasion of someone else’s living
space. Information from control groups is needed,
regarding both the distribution of observed traits
amongst the general non-offending population
and the distribution of similar offences amongst
those without the observed traits. Discussions on
relevant population have also been published in
legal journals, see, for example, Lempert (1991).

1.7 PROBABILITY

1.7.1 Introduction

The interpretation of scientific evidence may be
thought of as the assessment of a comparison. The
comparison is that between the recovered mate-
rial (denote this by Mr) and the control material
(denote this by Mc). Denote the combination by
M = (Mr,Mc). As a first example, consider the
bloodstains of Example 1.1. The crime stain is Mr,
the recovered evidential material (i.e. evidential
material whose source is unknown), and Mc is the
genotype of biological material (e.g. blood, saliva
swab) taken from the suspect under controlled
conditions (i.e. so-called control material whose
source is known). From Example 1.2, suppose
glass is broken during the commission of a crime.
Mc would be the fragments of glass (the control
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material) found at the crime scene, Mr would be
fragments of glass (the recovered material) found
on the clothing of a suspect, and M would be the
two sets of fragments.

Qualities, such as genotypes, or measurements,
such as the refractive indices of glass fragments,
are taken from M. Comparisons are made of the
measurements made on recovered and control
material. Denote these by Er and Ec, respectively,
and let E = (Er,Ec) denote the combined set.
Comparison of Er and Ec is to be made and the
assessment of this comparison has to be quanti-
fied. The totality of the evidence is denoted E𝑣 and
is such that E𝑣 = (M,E).

Statistics has developed as a subject in which
one of its main concerns is the quantification of
the assessments of comparisons. The performance
of a new treatment, drug, or fertiliser has to be
compared with that of an old treatment, drug, or
fertiliser, for example. Two sets of materials, con-
trol and recovered, are to be compared. It seems
natural that statistics and forensic science should
come together, and this has been happening over
the last 40 years after strong criticisms from some
outstanding quarters. Recall Kirk and Kingston
(1964). They remarked that

When we claim that criminalistics is a science, we must be
embarrassed, for no science is without some mathematical
background, however meagre. This lack must be a matter
of primary concern to the educator [ . . . ]. Most, if
not all, of the amateurish efforts of all of us to justify
our own evidence interpretations have been deficient in
mathematical exactness and philosophical understanding.
(pp. 435–436)
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They concluded by affirming that

It can be fairly stated that there is no form of evidence whose
interpretation is so definite that statistical treatment is not
needed or desirable. (p. 437)

As discussed in Section 1.2, there have been sev-
eral books describing the role of statistics in the law.
Until the first edition of this book, there had been
none concerned with statistics and the evaluation
of scientific evidence. Two factors may have been
responsible for this.

First, there was a lack of suitable data from
relevant populations. There was a consequential
lack of a baseline against which measures of
typicality of any characteristics of interest may be
determined. One exception are the reference data
that have been available for many years on allele
frequencies for DNA analysis amongst certain
populations. Not only has it been possible to say
that the DNA of a PoI corresponded4 to that of a
stain found at the scene of a crime, but also that
this profile is only present in, say, 0.01% of the
population. Now these have been superceded by
results of surveys of allele frequencies in various
populations. Announcements of population data
are published regularly in peer-reviewed journals
such as Forensic Science International: Genetics
and the International Journal of Legal Medicine.

4The term correspond is used here rather than the more com-
monly used match. The term ‘match’ suggests certainty or identity
which is not always the case with trace evidence. Use of the
term ‘correspond’ emphasises this and is a reminder to be care-
ful with interpretation. See Section 2.5.11 and Friedman (1996)
for further comment.
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Also, data collections exist for the refractive index
of glass fragments found at random on clothing
and for transfer and persistence parameters linked
to glass evidence; see, for example, Curran et al.
(2000), O’Sullivan et al. (2011), and Jackson
et al. (2013). Contributions towards characteris-
ing the rarity of different fibre types have also been
published since the late 1990s; for a review, see
Palmer (2016).

Secondly, the approach adopted by forensic
scientists in the assessment of their evidence has
been difficult to model. The approach has been one
of comparison and significance. Characteristics
of the control and recovered items are compared.
If the examining scientists believe them to be simi-
lar, the typicality, and hence the significance of the
similarity, of the characteristics is then assessed.
This approach is what has been modelled by the
two-stage approach of Evett (1977), described
briefly in Section 1.3.3 and in fuller detail in
Chapter 3. However, interpretation of the results
provided by this approach is difficult.

Then, in a classic paper, Lindley (1977c)
described an approach that was easy to justify,
to implement, and to interpret. It combined the
two parts of the two-stage approach into one
statistic and is discussed in detail in Section
7.4.3. The approach compares two probabili-
ties, the probability of the evidence, assuming
one proposition to be true (e.g. that a PoI is the
source of the evidence), and the probability of the
evidence, assuming another, mutually exclusive,
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proposition to be true (e.g. that the PoI is not the
source of the evidence). Note that some people use
the term hypothesis rather than proposition; the
authors will endeavour to use the term proposition
as they believe this reduces the risk of confusion of
their ideas with the ideas of hypothesis testing asso-
ciated with the alternative term. A proposition is
interpreted here as an assertion or statement that,
for example, a particular outcome has occurred or
a particular state of nature occurs.

This approach implies that it is not enough for a
prosecutor to show that there is a low probability
to observe the evidence if a PoI is innocent. It
should also be more probable to observe the evi-
dence if the PoI is truly guilty. Such an approach
has a good historical pedigree (Good, 1950, and
also Good, 1991, for a review) yet it had received
very little attention in the forensic science litera-
ture, even though it was clearly proposed at the
beginning of the twentieth century (Taroni et al.
1998; Champod et al. 1999), and earlier by Peirce
(1878). It is also capable of extension beyond the
particular type of example discussed by Lindley,
as will be seen by the discussion throughout this
book, for example, in Chapters 6 and 7.

However, in order to proceed it is necessary to
have some idea about how uncertainty can be
measured. This is best done through probability
(Lindley 1991, 1985, 2014). This central role for
probability in evidence evaluation is supported by
the ENFSI. In the ENFSI Guideline for evaluative
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reporting in forensic science,5 is reported, at
page 6 (under point 2.3), that:

Evaluation of forensic science findings in court uses prob-
ability as a measure of uncertainty. This is based upon the
findings, associated data and expert knowledge, case specific
propositions and conditioning information.

where the term ‘findings’ denotes ‘evidence’ in our
usage.

1.7.2 A Standard for Uncertainty

An excellent description of probability and its
role in forensic science has been given by Lindley
(1991). Lindley’s description starts with the idea
of a standard for uncertainty. He provides an anal-
ogy using the concept of balls in an urn. Initially,
the balls are of two different colours, black and
white. In all other respects, size, weight, texture,
etc., they are identical. In particular, if one were
to pick a ball from the urn, without looking at its
colour, it would not be possible to tell what colour
it was. The two colours of balls are in the urn in
proportions b and 𝑤 for black and white balls,
respectively, such that b +𝑤 = 1. For example, if
there were 10 balls in the urn of which 6 were
black and 4 were white, then b = 0.6, 𝑤 = 0.4,
and b +𝑤 = 0.6 + 0.4 = 1.
5The 2015 Guidelines for evaluative reporting can be found at
http://enfsi.eu/wp-content/uploads/2016/09/m1_guideline
.pdf.
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The urn is shaken up and the balls thoroughly
mixed. A ball is then drawn from the urn. Because
of the shaking and mixing, it is assumed that each
ball, regardless of colour, is equally likely to be
selected. Such a selection process, in which each
ball is equally likely to be selected, is known as a
random selection, and the chosen ball is said to
have been chosen at random.

The ball, chosen at random, can be either black,
an event that will be denoted B, or white, an event
that will be denoted W. There are no other possi-
bilities; one and only one of these two events has
to occur. The uncertainty of the event B, the draw-
ing of a black ball, is related to the proportion b of
black balls in the urn. If b is small (close to zero),
B is unlikely. If b is large (close to 1), B is likely. A
proportion b close to 1/2 implies that B and W are
about equally likely. The proportion b is referred to
as the probability of obtaining a black ball on a sin-
gle random drawing from the urn. In a similar way,
the proportion 𝑤 is referred to as the probability of
obtaining a white ball on a single random drawing
from the urn.

Notice that on this simple model probability is
represented by a proportion. As such it can vary
between 0 and 1. A value of b = 0 occurs if there
are no black balls in the urn, and it is, therefore,
impossible to draw a black ball from the urn. The
probability of obtaining a black ball on a single
random drawing from the urn is zero. A value of
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b = 1 occurs if all the balls in the urn are black.
It is certain that a ball drawn at random from the
urn will be black. The probability of obtaining a
black ball on a single random drawing from the
urn is one. All values between these extremes of 0
and 1 are possible (by considering very large urns
containing very large numbers of balls).

A ball has been drawn at random from the urn.
What is the probability that the selected ball is
black? The event B is the selection of a black ball.
Each ball has an equal chance of being selected.
The colours black and white of the balls are in the
proportions b and 𝑤, respectively. The proportion,
b, of black balls corresponds to the probability
that a ball, drawn in the manner described (i.e.
at random) from the urn is black. It is then said
that the probability a black ball is drawn from the
urn, when selection is made at random, is b. Some
notation is needed to denote the probability of an
event. The probability of B, the drawing of a black
ball, is denoted Pr(B) and similarly Pr(W) denotes
the probability of the drawing of a white ball. Then
it can be written that Pr(B) = b and Pr(W) = 𝑤.
Note that

Pr(B) + Pr(W) = b +𝑤 = 1.

This concept of balls in an urn can be used
as a reference for considering uncertain events.
The methodology has been described as follows
(Lindley 2006):



�

� �

�

Probability 49

Your6 probability of the uncertain event of rain tomorrow
is the fraction of [black] balls in an urn from which the
withdrawal of a [black] ball at random is an event of the
same uncertainty for you as that of the event of rain. [ . . . ]
You are invited to compare that event with the standard,
adjusting the number of [black] balls in the urn until you
have the same beliefs in the event and in the standard. Your
probability for the event is then the resulting fraction of
[black] balls. (p. 35)

Another example concerns a hypothetical sport-
ing event. Let R denote the uncertain event that
the England football team will win the next major
international football championship. Let B denote
the uncertain event that a black ball will be drawn
from the urn. A choice has to be made between R
and B, and this choice has to be ethically neutral.
If B is chosen and a black ball is drawn from the
urn then a prize is won. If R is chosen and England
do win the championship the same prize is won.
The proportion b of black balls in the urn is known
in advance. Obviously, if b = 0 then R is the better
choice, assuming, of course, that England do have
some non-zero probability of winning the champi-
onship. If b = 1 then B is the better choice. Some-
where in the interval [0,1], there is a value of b, b0
say, where the choice does not matter to You. You
are indifferent as to whether R or B is chosen. If B

6Note the use of the capitalised words ‘You’ and ‘Your’ in this quo-
tation. This is a rhetorical device to help readers keep in mind that
probabilities are their own degrees of belief based on the informa-
tion they have at the time they make the judgement.
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is chosen Pr(B) = b0. Then it said that Pr(R) = b0
also. In this way, the uncertainty in relation to any
event can be measured by a probability b0, where
b0 is the proportion of black balls, which leads to
indifference between the two choices, namely, the
choice of drawing a black ball from the urn and the
choice of the uncertain event in whose probability
one is interested.

Notice, though, that there is a difference
between these two probabilities. By counting,
the proportion of black balls in the urn can be
determined precisely. Probabilities of other events
such as the outcome of the toss of a coin or the
roll of a die are also relatively straightforward to
determine, based on assumed physical character-
istics such as fair coins and fair dice. Let H denote
the event that when a coin is tossed it lands head
uppermost. Then, for a fair coin, in which the
outcomes of a head H or a tail T at any one toss
are considered as equally likely, the probability the
coin comes down head uppermost is 1/2. Let F
denote the event that when a die is rolled it lands
4 uppermost. Then, for a fair die, in which the
outcomes 1,2, . . . ,6 at any one roll are equally
likely, the probability the die lands 4 uppermost
is 1/6.

Probabilities relating to the outcomes of sporting
events, such as football matches or championships
or horse races, or to the outcome of a civil or crim-
inal trial, are rather different in nature. It may be
difficult to decide on a particular value for b0. The
value may change as evidence accumulates such
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as the results of particular matches and the fitness
or otherwise of particular players, or the fitness of
horses, the identity of the jockey, the going of the
race track, etc. Also, different people may attach
different values to the probability of a particular
event.

These kinds of probability – as briefly specified
before in Section 1.3 – are sometimes known as
subjective or personal probabilities; see de Finetti
(1933), Savage (1954), Good (1959), DeGroot
(1970), and the more recent publication by
Kadane (2011). Another term is measure of belief
since the probability may be thought to provide
a measure of one’s belief in a particular event. A
philosophical discussion on the use of those terms
is given in Lucena-Molina (2016, 2017). Despite
these difficulties the arguments concerning prob-
ability still hold. Given an event R whose outcome
is uncertain, the probability that R occurs, Pr(R),
is defined as the proportion of black balls b0 in the
urn such that if one had to choose the outcome
B (the event that a black ball was chosen) where
Pr(B) = b0 and the outcome R then one would
be indifferent to which one was chosen. There
are difficulties but the point of importance is that
a standard for probability exists. An extended
comment on subjective probabilities is given in
Sections 1.7.5–1.7.7.

A use of probability as a measure of belief is
described in Section 1.7.5 where it is used to rep-
resent relevance. The differences and similarities in
the two kinds of probability discussed earlier and
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their ability to be combined have been referred to
as a duality (Hacking 1975).

It is helpful also to consider two quotes concern-
ing the relationship amongst probability, logic and
consistency, both from Ramsey (1931).

We find, therefore, that a precise account of the nature of
partial beliefs reveals that the laws of probability are laws
of consistency, an extension to partial beliefs of formal
logic, the logic of consistency. They do not depend for their
meaning on any degree of belief in a proposition being
uniquely determined as the rational one; they merely
distinguish those sets of beliefs which obey them as
consistent ones. (p. 182)

We do not regard it as belonging to formal logic to say what
should be a man’s expectation of drawing a white or black
ball from an urn; his original expectations may within the
limits of consistency be any he likes; all we have to point out
is that if he has certain expectations he is bound in consis-
tency to have certain others. This is simply bringing prob-
ability into line with ordinary formal logic, which does not
criticise premises but merely declares that certain conclu-
sions are the only ones consistent with them. (p. 189)

In brief, a person is entitled to their own mea-
sures of belief, but must be consistent with them.
Ramsey’s remarks relate to the appropriateness
of a set of probabilities held by a particular indi-
vidual. This appropriateness needs to be checked.
Probability values need to be expressed in an
operational way that will also make clear what
coherence means and what coherent conditions
are. De Finetti (1976) framed the operational
perspective as follows:
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However, it must be stated explicitly how these subjective
probabilities are defined, i.e. in order to give an operative
(and not an empty verbalistic) definition, it is necessary to
indicate a procedure, albeit idealised but not distorted, an
(effective or conceptual) experiment for its measurement.
(p. 212)

Therefore, one should keep in mind the distinction
between the definition and the assessment of prob-
ability. A description of de Finetti’s perspective has
been published by Dawid and Galavotti (2009).

One way in which these expressions can be
checked is to measure probabilities maintained
by an individual in terms of bets the individual is
willing to accept. An alternative to consideration
of balls in an urn is to consider two lotteries. An
individual probability can be determined using
a process known as elicitation. In this context,
elicitation is the comparison of two lotteries of
the same price. Consider a situation in which it
is of interest to determine a probability for rain
tomorrow. This example can be found in Winkler
(1996). There are two lotteries:

• Lottery A: Win £100 with probability 0.5 or win
nothing with probability 0.5.

• Lottery B: Win £100 if it rains tomorrow or win
nothing if it does not rain tomorrow.

In this situation, it is reasonable to assume
a person would choose that lottery which, in
their opinion, presents the greater probability of
winning the prize. If lottery B is preferred, then
this indicates that one considers the probability of
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rain tomorrow to be greater than 0.5. Similarly,
a choice of lottery A implies the probability of
rain tomorrow is less than 0.5. Additionally, in
a case in which one is indifferent between the
two lotteries, one’s probability for rain tomorrow
equates with the probability of winning the prize
in lottery A. Therefore, a procedure can be devised
in which the probability of winning lottery A is
adjusted so that the individual, whose probability
for a proposition of interest is to be elicited, is
indifferent with respect to lotteries A and B. In
a similar manner, the personal probability of an
individual for any event of interest can be elicited.

The possibility that subjective degrees of belief
may be represented in terms of betting rates in
lotteries or in the relative frequency of balls in
an urn is often put forward as support for an
argument that requires subjective degrees of belief
to satisfy the laws of probability. This requirement
is satisfied with the notion of coherence that has the
normative role of forcing people to be honest and
to make the best assessment of their own measure
of belief.

De Finetti (1931a) showed that coherence, a
simple economic behavioural criterion, implies
that a given individual should avoid a combination
of probability assignments that is guaranteed to
lead to loss. All that is needed to ensure such
avoidance is for uncertainty to be represented and
manipulated using the theory of probability. In this
context, the possibility of representing subjective
degrees of belief in terms of betting odds is often
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forwarded as part of a line of argument to require
that subjective degrees of belief should satisfy the
laws of probability. This line of argument takes
two parts. The first is that betting odds should
be coherent, in the sense that they should not be
open to a sure-loss contract. The second part is
that a set of betting odds is coherent if and only if
it satisfies the laws of probability. The Dutch Book
argument encompasses both parts: the proof that
betting odds are not open to a sure loss contract if
and only if they are probabilities is called the Dutch
book theorem. Thus, if an individual translates
their state of knowledge in such a manner that the
assigned probabilities, as a whole, do not respect
the laws of probability (standard probability
axioms), then their assignments are not coherent.
In this context, such incoherence is also called
logical imprudence. An example can be found in
Section 1.7.6.

1.7.3 Events

The outcome of the drawing of a ball from the
urn was called an event. If the ball was black,
the event was denoted B. If the ball was white, the
event was denoted W. It was not certain which of
the two events would happen: would the ball be
black, event B, or white, event W? The degree of
uncertainty of the event (B or W) was measured
by the proportion of balls of the appropriate colour
(B or W) in the urn and this proportion was called
the probability of the event (B or W). In general,
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for an event R, Pr(R) denotes the probability that
R occurs.

As underlined by Lindley (2014), events may
have happened (past events), may be relevant at
the present time (present events), or may happen
in the future (future events).

There are some things that you [ . . . ] know to be true, and
others that you know to be false; yet, despite this exten-
sive knowledge that you have, there remain many things
whose truth or falsity is not known to you. We say that
you are uncertain about them. You are uncertain, to vary-
ing degrees, about everything in the future; much of the past
is hidden from you; and there is a lot of the present about
which you do not have full information. (p. xi)

So, a person may be uncertain about each of
these three types of events. Such uncertainty can
be expressed by probability.

• Past event: A crime is committed and a blood-
stain with a particular DNA profile is found
at the crime scene. A PoI is found. The event
of interest is that the suspect is the source of
the stain at the crime scene. Though the PoI
either is or is not the source of the stain the
knowledge of it is incomplete and hence there is
uncertainty about this event. This uncertainty
can be expressed by probability.

• Present event: A PoI is identified. The event of
interest is that they have a particular DNA
profile (e.g. Y-STR haplotype). Again, before
the result of a DNA analysis is available, this
knowledge is incomplete.
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• Future event: The event of interest is that it will
rain tomorrow.

All of these events are uncertain and have proba-
bilities associated with them. Notice, in particular,
that even if an event has happened, its actual
outcome may be unknown so that knowledge
about it is incomplete. The probability the PoI is
the source of the stain at the crime scene requires
consideration of many factors, including the
possible location of the PoI at the crime scene and
the properties of transfer of blood from a person
to a site. With reference to the gene expression,
consideration has to be given to the proportion
of people in some population with that gene
expression. Probabilistic statements are common
with weather forecasting. Thus, it may be said, for
example, that the probability it will rain tomorrow
is 0.8 (though it may not always be obvious what
this means).

1.7.4 Classical and Frequentist
Definitions of Probability
and Their Limitations

The classical definition of probability defines it as
the ratio of the number of favourable cases to the
total number of possible cases, provided that all
cases are equally probable. There is an obvious
circularity to this definition. The statement does
not define probability, it only offers a way by which
it may be evaluated.
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The frequentist definition of probability is the
limit of the relative frequency of a target event
that has occurred in a large number of trials,
as the number of trials increases to infinity,
with the important and unrealistic assump-
tion that the trials are repeated under identical
conditions. This definition limits the range of
applications since if frequency is to be used as
a measure of probability, it must be possible to
repeat the underlying experiment a large number
of times under identical conditions. Consider a
scenario in which a coin is tossed. This definition
of probability is equivalent to the assessment of
the probability of a head (or tail) by imagining that
the act of tossing a coin is able to be repeated a
large number of times under identical conditions
(e.g. with the same force). The number of heads is
observed and the ratio of heads to the total number
of tosses is taken as an estimate of the probability of
a head for that coin. The frequentist definition
of probability is inconceivable operationally for
applications in forensic science. A well-known
challenge to the frequentist view in the context of
criminal law is given by Lindley (1991).

There is nothing wrong with the frequency interpretation
or chance. It has not been used in this treatment because
it is often useless. What is the chance that the defendant
is guilty? Are we to imagine a sequence of trials in which
the judgements, ‘guilty’ or ‘not guilty’, are made and the
frequency of the former found? It will not work because it
confuses the judgement of guilt, but, more importantly,
because it is impossible to conceive of a suitable sequence.
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Do we repeat the same trial with a different jury; or with
the same jury bur different lawyers; or do we take all
Scottish trials; or only Scottish trials for the same offence?
The whole idea of chance is preposterous in this context.
(p. 48)

The example makes clear that a definition
of probability based on the long-run relative
frequency of an event is inapplicable in many
situations arising in real life. There are implicit
assumptions that must apply in each of the classi-
cal and frequentist definitions. These assumptions
are, first, that according to our state of knowledge,
all cases are equally likely, and, second, that it is
theoretically possible to perform an experiment a
large number of times under identical conditions.
Use of these assumptions to assign a numerical
value to a probability implies a judgement that
these assumptions are satisfied. A definition of
probability that seeks to avoid subjectivity is
based on an acceptance of assumptions that
are inherently subjective. The frequentist view
presumes the possibility of the performance of
a long sequence of experiments under identical
conditions, with each experiment being physically
independent of all other experiments. These
assumptions are typically unachievable in many
different applied contexts such as history, law,
economics, medicine, and, especially, forensic
science. In these contexts, the events of inter-
est are usually not the result of repetitive or
replicable processes. On the contrary, they are
unique.
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This aspect has been explicitly underlined by
Kingston and Kirk (1964) in the area of forensic
science. The authors wrote:

There are many philosophically oriented fundamental
ideas of probability. Perhaps the most practical basic
approach to the subject lies in the concept of frequency,
in which statements of probability express the relative
frequencies of repeated events. [ . . . ] For practical use in
criminalistics, it is of little interest what might happen in
a long series of trials; the crime is committed only once. Of
what use, then, is the above frequency concept? The answer
to this lies in another way of looking at probability, which
is to consider it as a degree of belief. (p. 514)

Such complications do not arise with the sub-
jective interpretation of probability because that
interpretation does not consider probability as a
feature of the external world. Instead probability
is understood as a notion that describes the rela-
tionship between a person (e.g. You, the reader)
who makes a statement of uncertainty and the
real world to which that statement relates and in
which the person acts. With the subjective concept
of probability, it is therefore very reasonable to
assign a probability to events that are not repeat-
able, for example, as in a given judicial context.
An extended discussion on the limitations of the
classical and frequentist definitions of probability
can be found in Taroni et al. (2018b).

1.7.5 Subjective Definition
of Probability

In forensic science, it is often emphasised that
there is a real paucity of numerical data, so that the
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numerical evaluation of evidence (Section 2.3.1)
is sometimes very difficult. Examples of this diffi-
culty are the numerical assessments of parameters
such as transfer or persistence probabilities (see
Sections 6.2.3 and 6.2.4) or even the relevance of
a piece of evidence (see Section 6.3). The Bayesian
approach considers probabilities as measures of
belief (also called subjective probabilities) since
such probabilities may be thought of as measures
of one’s belief in the occurrence of a particular
event. The approach allows scientists to assign
their probabilities, not only by certified knowledge
and experience, but also by any data relevant for
the event of interest, such as knowledge of an
event that is often available in terms of a relative
frequency. This specific relationship between
relative frequency and probability is discussed in
Section 1.7.6. Note that frequency is a term that
relates to data and probability is a term that relates
to personal belief.

Jurists are also interested in probabilistic rea-
soning using subjective probabilities, notably
probabilities related to the credibility of witnesses
and the conclusions that might be drawn from
their testimony.

Any kind of uncertainty is assessed in the light
of the knowledge possessed at the time of the
assessment. This idea is not new. The Italian
mathematician Bruno de Finetti (de Finetti,
1931a) defined probability – the measure of
uncertainty – as a degree of belief, insisting that
probability is conditional on the status of informa-
tion of the subject who assesses it. So, if a given
person, S, say, is interested in the probability of
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an event, E, say, that person’s probability Pr(E)
should be written as Pr(E ∣ Is,t) where Is,t is the
information available to person S at time t.

Subjective probability may be found in many sci-
entific areas (Press and Tanur 2001). In physics,
for example, Schrödinger (1947) wrote

Since the knowledge may be different with different persons
or with the same person at different times, they may
anticipate the same event with more or less confidence and
thus different numerical probabilities may be attached to
the same event. (p. 53)

He then added that

Thus, whenever we speak loosely of the probability of an
event, it is always to be understood: probability with regard
to a certain given state of knowledge. (p. 54)

The same perspective is expressed by de Finetti
in his famous sentence ‘Probability does not exist’
(in things) (de Finetti 1975, p. x). Probability is not
something that can be known or not known, prob-
abilities are states of mind, not states of nature.
This aphorism can also be found in previous sta-
tistical and philosophical literature (i.e. de Morgan
1838; Jaynes 2003; Jevons 1913; Maxwell 1990).
For example, Jevons (1913) wrote

Probability belongs wholly to the mind. This is proved by
the fact that different minds may regard the very same event
at the same time with widely different degrees of probabil-
ity [ . . . ] Probability thus belongs to our mental condition,
to the light in which we regard events, the occurrence or
non-occurrence of which is certain in themselves. (p. 198)
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Probability is a fact about one’s state of mind,
not a fact about a phenomenon.

In summary, a person’s assessment of their
degree of belief (subjective probability) in the truth
of a given statement or in the occurrence of an
event (i) depends on information, (ii) may change
as the information changes, and (iii) may differ
from the assessment of others because different
individuals may have different information or
assessment criteria. In Savage’s words (Savage
1954)

Probabilistic views hold that probability measures the con-
fidence that a particular individual has in the truth of a
particular proposition, for example, the probability that it
will rain tomorrow. These views postulate that the individ-
ual concerned is in some way ‘reasonable’, but they do not
deny the possibility that two reasonable individuals faced
with the same information may have different degrees of
confidence in the truth of the same proposition. (p. 3)

The only constraint in the assessment – as noted
in Section 1.7.2 – is that it must be coherent.
Coherence may be understood through considera-
tion of subjective probability in terms of betting, for
example, on the outcome of a horse race. For the
probabilities on winning for each horse in a race
to be coherent, the sum of the probabilities over all
the horses must be 1. This property characterises
a ‘reasonable individual’. An example is presented
in Section 1.7.6.

For a historical and philosophical discussion
of subjective probabilities and a commentary on
the work of de Finetti and Savage in the middle
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of the twentieth century, see Lindley (1980),
Lad (1996), Taroni et al. (2001), Dawid (2004),
Dawid and Galavotti (2009), Galavotti (2016,
2017), and Zynda (2016).

Savage, like de Finetti, viewed a personal proba-
bility as a numerical measure of the confidence a
person has in the truth of a particular proposition.
This opinion is viewed with scepticism today and
was viewed with scepticism then (Savage 1967), as
illustrated by Savage (1954).

I personally consider it more probable that a Republican
president will be elected in 1996 than it will snow in
Chicago sometime in the month of May, 1994. But even
this late spring snow seems to me more probable than that
Adolf Hitler is still alive. Many, after careful consideration,
are convinced that such statements about probability to a
person mean precisely nothing or, at any rate, that they
mean nothing precisely. At the opposite extreme, others
hold the meaning to be so self-evident [ . . . ]. (p. 27)7

1.7.6 The Quantification of Probability
Through a Betting Scheme

The introduction of subjective probability through
a betting scheme is straightforward. The concept is
based on hypothetical bets (Scozzafava 1987):

The force of the argument does not depend on whether or
not one actually intends to bet, yet a method of evaluating
probabilities making one a sure loser if he had to gamble
(whether or not he really will act so) would be suspicious
and unreliable for any purposes whatsoever. (p. 685)

7Part of this sentence is also reported by Kadane and
Schum (1996, p. 160).
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Consider a proposition E that can only take one
of two values, namely, ‘true’ and ‘false’. There is a
lack of information on the actual value of E and
an operational system is needed for the quantifi-
cation of the uncertainty about E imparted by the
lack of information. A value p = Pr(E) is regarded
as an amount to be paid to bet on E with the condi-
tions that a unit amount will be paid if E is true and
nothing will be paid if E is false. In other words, p is
the amount to be paid to obtain an amount equal
to the value of E, that is associating the value 1
with ‘true’ and the value 0 with ‘false’. This idea
was expressed by de Finetti (1940) in the following
terms.

The probability of event E is, according to Mr NN, equal to
0.37, meaning that if the person was forced to accept bets
for and against event E, on the basis of the betting ratio p
which he can choose as he pleases, this person would choose
p = 0.37. (p. 113)8

Coherence, as briefly described in Section 1.7.2,
is defined by the requirement that the choice of
p does not make the player a certain loser or a
certain winner. Denote an event which is certain,
sometimes known as a universal set, as Ω and an
event which is impossible, sometimes known as
the empty set, as 𝜙 so that if E ≠ Ω and E ≠ 𝜙 the
two possible gains are

G1 = (−p + 1) if E occurs;
G2 = −p if E does not occur.

8English version of the paper reprinted in Monari and Cocchi
(1993).
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When E = Ω or E = 𝜙, there is no uncertainty in
the outcome of the corresponding bet and so the
coherence (in the absence of uncertainty) requires
the respective gains to be zero. The values of the
gains are therefore

G(Ω) = −p + 1 = 0 and G(𝜙) = −p = 0.

This happens when p = 1 for E = Ω and p = 0 for
E = 𝜙. Therefore if the subjective probability of E,
that represents our degree of belief on E, is defined
as an amount p = Pr(E), which makes a personal
bet on the event or proposition E coherent, then
the probability Pr(E) satisfies two conditions.

(1) 0 ≤ Pr(E) ≤ 1;

(2) Pr(𝜙) = 0,Pr(Ω) = 1.

Consider the case of n possible bets on events
E1, . . . ,En that partition Ω; i.e. E1, . . . ,En

are mutually exclusive and exhaustive (Scoz-
zafava 1987, p. 686). Let Pr(Ei), i = 1, . . . , n,
be the amount paid for a coherent bet on Ei.
These bets can be regarded as a single bet on
Ω with amount Pr(E1) + · · · + Pr(En). Another
condition may be specified from the requirement
of coherence, namely

(3) Pr(E1) + · · · + Pr(En) = 1.

These conditions are the axioms of probability. Fur-
ther details are given by de Finetti (1931b) and in
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Section 1.7.8. An example of a Dutch book is given
to examine if a given person assigns subjective
probabilities coherently. Consider a horse race
with three horses, A,B, and C. A bookmaker offers
probabilities of 1/4, 1/3, and 1/2, respectively, for
these horses to win. Note that these probabilities
add up to more than 1 and so violate condition
3. The corresponding odds are 3 to 1 against
winning, 2 to 1 against winning and ‘evens’.

The relationship between odds and probability
is described briefly here with fuller details given in
Chapter 2. An event with probability p of occurring
has odds O of happening where O = p∕(1 − p).
Conversely, an event that has odds of O to 1
of happening has a probability of O∕(O + 1) of
happening and an event that has odds of O to 1
of not happening has a probability of 1∕(O + 1) of
happening. Odds of ‘evens’ correspond to O = 1 or
p = 1∕2.

Suppose the odds offered by the bookmaker are
accepted by the person. Thus, their beliefs do not
satisfy the additivity law of probability (condition
3). If any single bet is acceptable, they can all be
accepted. This is equivalent to a bet on the certain
event that one of A,B, or C wins the race. The indi-
vidual should therefore expect to break even on
the outcome of the race; their winnings will equal
their initial stake. Of course, it does not make sense
to bet on the certain event as there should then
be nothing to win or lose. This assumes the odds
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are fixed to satisfy condition 3. However, in this
example, the odds do not satisfy condition 3 and
the person will not break even. Suppose the follow-
ing bets are placed: £3000 on A to win, £4000 on
B to win, and £6000 on C to win; i.e. £13 000 in
total. If A wins the bookmaker pays out £12 000,
the original £3000 bet and another £9000 in
accordance with the odds of 3 to 1 against. If
B wins, the bookmaker also pays out £12 000,
the original £4000 bet and another £8000 in
accordance with the odds of 2 to 1 against. If C
wins the bookmaker again pays out £12 000, the
original £6000 bet and another £6000 in accor-
dance with the odds of evens. Regardless of which
horse has won the race, the individual has paid
out £13 000 and receives £12 000 in winnings,
thus incurring a loss of £1000. This situation is
known as a Dutch book. The odds quoted did not
satisfy condition 3. Conversely, if the set of odds
determine probabilities that add up to less than 1,
then the bookmaker will lose money. It would be
incoherent for such odds to be set.

Judgements are required in all aspect of scien-
tific investigation. The elicitation of probability
distributions for uncertain quantities represents
a challenging work for scientists and decision-
makers. O’Hagan (2019) recently wrote:

Subjective expert judgments play a part in all areas of sci-
entific activity, and should be made with the care, rigour,
and honesty that science demands. (p. 80)

A discussion can be found in Section 1.7.7.
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1.7.7 Probabilities and Frequencies:
The Role of Exchangeability

It is not uncommon for subjective (or personal)
probabilities to be considered as a synonym for
arbitrariness. This is not so; the use of subjectivism
does not mean the use of acquired knowledge
that is often available for consideration of relative
frequencies is neglected. The main source of mis-
understanding is concerned with the relationship
between frequencies and beliefs. The two terms are,
unfortunately, often regarded as equivalent since
frequency data can be used to inform probabilities
(Lindley 1991) but they are not equivalent. Dawid
and Galavotti (2009, p. 100) quoted de Finetti’s
view:

every probability evaluation essentially depends on two
components: (1) the objective component, consisting of the
evidence of known data and facts; and (2) the subjective
component, consisting of the opinion concerning unknown
facts based on known evidence.

As emphasised more recently by D’Agostini
(2016)

It is a matter of fact that relative frequency and probability
are somehow connected within probability theory, without
the need for identifying the two concepts. (p. 13)

It is reasonable to use relative frequencies to
inform measures of belief and the relationship
takes the form of a mathematical theorem, de
Finetti’s Representation theorem. According to
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the theorem, the convergence of one’s personal
probability towards the value of observed frequen-
cies, as the number of observations increases,
is a logical consequence of Bayes’ theorem if a
condition called exchangeability is satisfied by the
degrees of belief prior to the observations (Dawid
2004).

As an illustration of the connection between
frequency and probability, consider again an
urn containing a certain number of balls, indis-
tinguishable except by their colour, which is
either white or black, and the number of balls
of each colour being known. The extraction of a
ball from this urn defines an experiment having
two and only two possible outcomes that are
generally denoted as success (say, the withdrawal
of a white ball) or failure (say, the withdrawal of
a black ball). Let W denote the event ‘a white
ball is extracted’. Under the circumstances that
balls are all indistinguishable from each other
except for the colour, the subjective probability to
extract a white ball can be assessed as the known
proportion 𝜃 of white balls, that is, Pr(W ∣ 𝜃) = 𝜃.
Assuming the urn contains a large number of
balls, so that the extraction of a few balls does
not alter its composition substantially, individual
draws (i.e. sampling9) will be considered as with

9Note that the use of the term ‘sample’ in this context is one of a
purely technical nature in statistics and has nothing to do with
the widespread but inappropriate use of the same term for desig-
nating physical trace material recovered or collected in a forensic
science context. In particular, the seizure (e.g. at crime scenes) and
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replacement and the probability of extracting a
white ball at subsequent withdrawals will still
be 𝜃, independently on previous observations. In
this way one realises a series of so-called Bernoulli
trials (Section A.2.1), where the outcome of each
trial has a constant probability independent from
previous outcomes.

Suppose now the observer does not know the
absolute value of balls present, nor the proportion
that are of each colour. De Finetti (1931a) showed
that every series of experiments having two and
only two possible outcomes that can be taken as
exchangeable (i.e. the probability assigned to the
outcomes of a sequence of trials is invariant to
permutation) can be represented as random with-
drawals from an urn of unknown composition. If
one can assess one’s uncertainty in such a way
that labelling of the trials is not relevant, then it
can be proved that as the number of observations
increases the relative frequencies of successes (i.e.
the relative frequency of white balls) tend to a
limiting value that is the proportion 𝜃 of white
balls. A subjective assessment about the outcome
of a sequence of Bernoulli trials is equivalent to
placing a prior distribution on 𝜃. According to
this, one only needs to model a prior distribution
Pr(𝜃) for the possible values that 𝜃 might take:
personal beliefs concerning the colour of the next

analysis of trace material has to deal with the material as it is, irre-
spective of its condition; there is no such thing as randomisation,
for example.
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ball extracted can be computed as

Pr(W) = ∫
𝜃

Pr(W ∣ 𝜃)Pr(𝜃) d𝜃

= ∫
𝜃

𝜃 Pr(𝜃) d𝜃. (1.2)

The introduction of a prior probability distribu-
tion modelling personal belief about 𝜃 may seem,
at first sight, in contradiction with statements
that probability is a single number. One can
have probabilities for events, or probabilities for
propositions, but not probabilities of probabilities,
otherwise one would have an infinite regression
(de Finetti 1976). Confusion may arise from the
fact that parameter 𝜃 is generally termed as ‘prob-
ability of success’. However, it is worth noting that,
although it is effectively a probability, it represents
a chance rather than a belief.

A set of observations x1, . . . , xn is said to be
exchangeable – for you, given a knowledge base –
if their joint distribution is invariant under permu-
tation. A formal definition is as follows (Bernardo
and Smith 2000):

The random quantities x1, . . . , xn, are said to be
judged exchangeable under a probability measure Pr if
the implied joint degree of belief distribution satisfies
Pr(x1, . . . , xn) = Pr(x𝜋(1), . . . , x𝜋(n)) for all permutations
𝜋 defined on the set {1, . . . , n}. (p. 169)

Practically, consider the following hypothetical
case example. A laboratory receives a consignment
of discrete items whose attributes may be relevant
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within the context of a criminal investigation.
The laboratory is requested to conduct analyses
in order to gather information that should allow
an inference to be drawn, for example about the
proportion of items in the consignment that are of
a certain kind (e.g. counterfeit products). The term
‘positive’ is used here to refer to the presence of an
item’s property that is of interest (e.g. counterfeit);
otherwise the result of the analysis is termed ‘neg-
ative’. This allows the introduction of a random
variable X that takes the value 1 (i.e. success) if
the analysed unit is positive and 0 (i.e. failure)
otherwise. This is a generic type of case that
applies well to many situations, such as surveys or,
more generally, sampling procedures conducted
to infer the proportion of individuals or items in a
population who share a given property or possess
certain characteristics (e.g. that of being counter-
feit). Suppose now that n = 10 units are analysed,
so that there are 2n = 1024 possible outcomes.
The forensic scientist should be able to assign a
probability to each of the 1024 possible outcomes.
At this point, if it was reasonable to assume that
only the observed values x1, x2, . . . , xn matter and
not the order in which they appear, the forensic
scientist would have a sensibly simplified task. In
fact, the total number of probability assignments
would reduce from 1024 to 11, since it is assumed
that all sequences are assigned the same prob-
ability if they have the same number of 1’s, (i.e.
successes). This is possible if it is thought that all
the items are indistinguishable in the sense that it
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does not matter which particular item produced a
success (e.g. a positive response) or a failure (e.g. a
negative response). Stated otherwise, this means
that one’s probability assignment is invariant
under changes in the order of successes and
failures. If the outcomes were permuted in any
way, assigned probabilities would be unchanged.
For a coin-tossing experiment, Lindley (2014) has
expressed this as follows:

One way of expressing this is to say that any one toss, with
its resulting outcome, may be exchanged for any other with
the same outcome, in the sense that the exchange will not
alter your belief, expressing the idea that the tosses were
done under conditions that you feel were identical. (p. 148)

The role of exchangeability in the reconciliation
of subjective probabilities and frequencies in foren-
sic science is developed in Taroni et al. (2018b). It
is possible to give relative frequency an explicit role
in probability assignments but this does not mean
that probabilities can only be given when relative
frequencies are available.

The existence of relative frequencies is not a
necessary condition for the assignment of prob-
abilities. Typically, relative frequencies are not
available in the case of single (not replicable)
events. Other methods of elicitation, such as scor-
ing rules, can be implemented to deal with such
situations. An extended discussion on elicitation
is given by O’Hagan et al. (2006).

The use of scores for the assessment of forecasts
is described in DeGroot and Fienberg (1983). The
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association of scores for the assessment of forecasts
and the use of scores for the assessment of the per-
formance of methods for evidence evaluation will
be made clear later in Section 8.4.3. A score is used
to evaluate and compare forecasters who present
their predictions of whether or not an event will
occur as a subjective probability of the occurrence
of that event. A common use for forecasts is that of
weather from one day to the next. Let x denote a
forecaster’s prediction of rain on the following day.
Let p be the forecaster’s actual subjective probabil-
ity of rain for that day. Let an arbitrary function
g1(x) be the forecaster’s score if rain occurs and let
another arbitrary function g2(x) be their score if
rain does not occur. With an assumption that the
forecaster wishes to maximise their score, assume
that g1(x) is an increasing function of x and g2(x) is
a decreasing function of x. For a prediction of x and
an actual subjective probability of p, the expected
score of the forecaster is

p g1(x) + (1 − p)g2(x). (1.3)

A proper scoring rule is one for which (1.3) is max-
imised when x = p. A strictly proper scoring rule is
one for which x = p is the only value of x that max-
imises (1.3).

One of the earliest scoring rules, proposed for
meteorological forecasts, is the quadratic scoring
rule (Brier 1950). This score has the property
that the forecaster will minimise their subjective
expected Brier score on any particular day with
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a stated prediction x of their actual subjective
probability p of rain on that day. The expected
Brier score is then

p (x − 1)2 + (1 − p) x2. (1.4)

This is minimised uniquely when x = p. The neg-
ative of the Brier score is a strictly proper scoring
rule with g1(x) = −(x − 1)2 and g2(x) = −x2

(minimisation of a function corresponds to
maximisation of the negative of the function).

The notion of exchangeability is illustrated with
the following example of selection without replace-
ment of items of a particular type, say, Q, from a
small population. As an example of what Q might
be, consider tablets in a consignment of drugs; the
tablets may be either illicit (Q) or licit. The descrip-
tor ‘small’ for the population size is used to indicate
that removal of a member from the population, as
in selection without replacement, effects the prob-
ability of possession of Q when the next member is
selected for removal.

Denote the population size by N. Of the items
in the population, R possess Q and (N − R) do
not and R is not known. A sample of size n(< N)
is taken. The probability the first item selected
from the population is of type Q is R∕N. If the first
member selected from the population possesses
Q, the probability the next member selected also
possesses Q is (R − 1)∕(N − 1). The population
size N is sufficiently small that (R − 1)∕(N − 1)
cannot be approximated meaningfully by R∕N.
Successive draws from the consignment are not
independent in that knowledge of the outcome
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of one draw affects the probability of a particular
outcome at the next draw.

Let X be the number of members of the sample of
size n that possess Q. The probability distribution
for X is the hypergeometric distribution (Section
4.3.2 and Appendix A.2.5) and

Pr(X = x) =

(
R
x

)(
N−R
n−x

)

(
N
n

) .

This distribution does not depend on the order in
which the n members are drawn from the popula-
tion, only on the number x which possess Q and the
number (n − x) which do not. The property that
the distribution is independent of the order is that
of exchangeability.

As R is not known, it is not possible to determine
Pr(X = x). However, it is possible given values for
n,N, and x to make inferences about R. A compar-
ison of the frequentist and Bayesian approaches to
this small consignment sampling problem is given
in Section 4.3.2 and Aitken (1999).

Probabilities based on frequencies may be
thought of as objective probabilities. They are
considered objective in the sense that there is a
well-defined set of circumstances for the long-
run repetition of the trials, such that the cor-
responding probabilities are well-defined and
that one’s personal or subjective views will not
alter the value of the probabilities. Each person
considering these circumstances will provide the
same values for the probabilities. The frequency
model relates to a relative frequency obtained in a
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long sequence of trials, assumed to be performed
in an identical manner, physically independent
of each other. Such a circumstance has certain
difficulties. This point of view does not allow a
statement of probability for any situation that does
not happen to be embedded, at least conceptually,
in a long sequence of events giving equally likely
outcomes. However, note the following words of
Lindley (2004):

Objectivity is merely subjectivity when nearly everyone
agrees. (p. 87)

1.7.8 Laws of Probability

There are several laws of probability that describe
the values that probability may take and how
probabilities may be combined as it has been
discussed already in Section 1.7.6. These laws are
given here, first for events that are not conditioned
on any other information and then for events
which are conditioned on other information.

The first law of probability, has already been sug-
gested implicitly.

First Law of Probability

Probability can take any value between 0 and 1,
inclusive, and only one of those values. Let R be
any event and let Pr(R) denote the probability that
R occurs. Then 0 ≤ Pr(R) ≤ 1. For an event that
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is known to be impossible, the probability is zero.
Thus if R is impossible, Pr(R) = 0. For an event that
is known to be certain, the probability is one. Thus,
if R is certain, Pr(R) = 1. This law is sometimes
known as the convexity rule (Lindley 1991).

Consider the hypothetical example of the balls
in the urn of which a proportion b are black and a
proportion𝑤white, with no other colours present,
such that b +𝑤 = 1. Proportions lie between 0
and 1; hence 0 ≤ b ≤ 1, 0 ≤ 𝑤 ≤ 1. For any
event R, 0 ≤ Pr(R) ≤ 1. Consider B, the drawing
of a black ball. If there are no black balls in the
urn, this event is impossible then b = 0. This law is
sometimes strengthened to say that a probability
can only be 0 when the associated event is known
to be impossible.

The first law concerns only one event. The
next two laws, sometimes known as the second
and third laws of probability, are concerned with
combinations of events. Events combine in two
ways. Let R and S be two events. One form of
combination is to consider the event ‘R and S’,
the event that occurs if and only if R and S both
occur, sometimes denoted RS. This is known as
the conjunction of R and S.

Consider the roll of a six-sided fair die. Let R
denote the throwing of an odd number. Let
S denote the throwing of a number greater than 3
(i.e. a 4, 5, or 6). Then the event ‘R and S’ denotes
the throwing of a 5.
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Secondly, consider rolling two six-sided fair die.
Let R denote the throwing of a six with the first
die. Let S denote the throwing of a six with the sec-
ond die. Then the event ‘R and S’ denotes the
throwing of a double 6.

The second form of combination is to consider
the event ‘R or S’, the event that occurs if R or S
(or both) occurs. This is known as the disjunction
of R and S.

Consider again the roll of a single six-sided fair
die. Let R, the throwing of an odd number (1, 3, or
5), and S, the throwing of a number greater than 3
(4, 5, or 6), be as before. Then ‘R or S’ denotes the
throwing of any number other than a 2 (which is
both even and less than 3).

Secondly, consider drawing a card from a
well-shuffled pack of 52 playing cards, such that
each card is equally likely to be drawn. Let R
denote the event that the card drawn is a spade.
Let S denote the event that the card drawn is a
club. Then the event ‘R or S’ is the event that the
card drawn is from a black suit.

Second Law of Probability

The second law of probability concerns the dis-
junction ‘R or S’ of two events. Events are called
mutually exclusive when the occurrence of one
excludes the occurrence of the other. For such
events, the conjunction ‘R and S’ is impossible.
Thus Pr(R and S) = 0.
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If R and S are mutually exclusive events, the
probability of their disjunction ‘R or S’ is equal to
the sum of the probabilities of R and S. Thus, for
mutually exclusive events,

Pr(R or S) = Pr(R) + Pr(S). (1.5)

Consider the drawing of a card from a well-
shuffled pack of cards with R defined as the
drawing of a spade and S the drawing of a club.
Then Pr(R) = 1∕4, Pr(S) = 1∕4, Pr(R and S) = 0
(a card may be a spade, a club, neither but not
both). Thus, the probability that the card is drawn
from a black suit, Pr(R or S) is 1/2, which equals
Pr(R) + Pr(S).

Consider the earlier example, the rolling of a
single six-sided fair die. Then the events R and S
are not mutually exclusive. In the discussion of
conjunction it was noted that the event ‘R and
S’ denoted the throwing of a 5, an event with
probability 1/6. The general law, when Pr(R and
S) ≠ 0, is

Pr(R or S) = Pr(R) + Pr(S) − Pr(R and S).

This rule can be easily verified in this case
where Pr(R) = 1∕2, Pr(S) = 1∕2, Pr(R and S) =
1∕6, Pr(R or S) = 5∕6.

Before discussing the third law of probability
for the conjunction of two events, it is neces-
sary to introduce the ideas of dependence and
independence.
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1.7.9 Dependent Events and
Background Information

Consider, one roll of a fair die with R, the throwing
of an odd number as before, and S, the throwing of
a number greater than 3, as before. Then, Pr(R) =
1∕2,Pr(S) = 1∕2,Pr(R) × Pr(S) = 1∕4 but Pr(R
and S) = Pr(throwing a 5) = 1∕6. Event R and S
are said to be dependent.

The third law of probability for dependent
events was first presented by Bayes (1763) (see
also Barnard 1958; Pearson and Kendall 1970;
Poincaré 1912). It is the general law for the
conjunction of events. Before the general state-
ment of the third law is made, some discussion of
dependence is helpful.

It is useful to consider that a probability assess-
ment depends on two things: the event R whose
probability is being considered and the informa-
tion I available when R is being considered. The
probability Pr(R ∣ I) is referred to as a conditional
probability, acknowledging that R is conditional
or dependent on I. Note the use of the vertical bar
∣. Events listed to the left of it are events whose
probability is of interest. Events listed to the right
are events whose outcomes are known and which
may affect the probability of the events listed to the
left of the bar, the vertical bar having the meaning
‘given’ or ‘conditional on’.
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Consider a defendant in a trial who may or may
not be truly guilty. Denote the event that they are
truly guilty by G. The uncertainty associated with
their true guilt, the probability that they are truly
guilty, may be denoted by Pr(G). It is a subjective
probability. The uncertainty will fluctuate during
the course of a trial. It will fluctuate as evidence
is presented. It depends on the evidence. Yet
neither the notation, Pr(G), nor the language, the
probability of true guilt, makes mention of this
dependence. The probability of true guilt at any
particular time depends on the knowledge (or
information) available at that time. Denote this
information by I. It is then possible to speak of
the probability of true guilt given, or conditional
on, the information I available at that time. This
is written as Pr(G ∣ I). If additional evidence E is
presented this then becomes, along with I, part of
what is known. What is taken as known is then
‘E and I’, the conjunction of E and I. The revised
probability of true guilt is Pr(G ∣ E and I). If the
information concerns individual S at time t as in
Section 1.7.5 the probability can be written as
Pr(G ∣ E, Is,t).

All probabilities should be thought of as condi-
tional probabilities. Personal experience informs
judgements made about events. For example,
judgement concerning the probability of rain
the following day is conditioned on personal
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experiences of rain following days with similar
weather patterns to the current one. Similarly,
judgement concerning the value of evidence or
the guilt of a PoI is conditional on many factors.
These include other evidence at the trial but may
also include a factor to account for the perceived
reliability of the evidence. There may be eyewit-
ness evidence that the PoI was seen at the scene
of the crime but this evidence may be felt to be
unreliable. Its value will then be lessened.

The value of scientific evidence will be condi-
tioned on the background data relevant to the
type of evidence being assessed. Evidence con-
cerning frequencies of different DNA profiles will
be conditioned on information regarding ethnicity
of the people concerned for the values of these
frequencies. Evidence concerning distributions
of the refractive indices of glass fragments will be
conditioned on information regarding the type
of glass from which the fragments have come
(e.g. building window, car headlights etc.). The
existence of such conditioning events will not
always be stated explicitly. However, they should
not be forgotten. As stated above, all probabilities
may be thought of as conditional probabilities. The
first two laws of probability can be stated in the
new notation, for events R, S and information I as:

First law of probability for dependent events

0 ≤ Pr(R ∣ I) ≤ 1. (1.6)

If I is known, Pr(I ∣ I) = 1 and Pr(not I ∣ I) = 0.
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Second law of probability for dependent
events

Pr(R or S ∣ I) = Pr(R ∣ I) + Pr(S ∣ I)
− Pr(R and S ∣ I). (1.7)

Events R and S are said to be dependent if the
knowledge that R has occurred affects the proba-
bility that S will occur, and vice versa. For example,
let R be the outcome of a draw of a card from a
well-shuffled pack of 52 playing cards. This card is
not replaced in the pack so there are now only 51
cards in the pack. Let S be the draw of a card from
this reduced pack of cards. Let R be the event ‘an
Ace is drawn’. Thus Pr(R) = 4/52 = 1/13. (Note
here the conditioning information I that the pack
is well-shuffled, with its implication that each of
the 52 cards is equally likely to be drawn has been
omitted for simplicity of notation; explicit mention
of I will be omitted in many cases but its existence
should never be forgotten.) Let S be the event ‘an
Ace is drawn’ also. Then Pr(S ∣ R) is the probability
that an Ace was drawn at the second draw, given
that an Ace was drawn at the first draw (and given
everything else that is known, in particular that
the first card was not replaced). There are 51 cards
at the time of the second draw of which 3 are Aces.
(Remember that an Ace was drawn the first time
which is the information contained in R.) Thus
Pr(S ∣ R) = 3∕51. It is now possible to formulate
the third law of probability for dependent events.
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Third law of probability for dependent
events

Pr(R and S ∣ I) = Pr(R ∣ I) × Pr(S ∣ R and I).
(1.8)

Thus in the example of the drawing of the Aces
from the pack, the probability of drawing two
Aces is

Pr(R and S ∣ I) = Pr(R ∣ I) × Pr(S ∣ R and I)

= 4
52

× 3
51

.

Example 1.3. A study of the brains of 120 road
accident fatalities given in Pittella and Gusmäo
(2003, Table 2), reproduced in Lucy (2005)
observed the numbers of diffuse vascular injuries
(DVI) and diffuse axonal injuries (DAI) with the
results presented in Table 1.3.

Denote the presence of DVI by R and the
presence of DAI by S. Then various probabilities

Table 1.3 Presence and absence of diffuse vascular
injuries (DVI) and diffuse axonal injuries (DAI) in 120
road accident fatalities.

DAI

DVI Present Absent Total

Present 14 0 14
Absent 82 24 106
Total 96 24 120

Source: From Pittella and Gusmäo (2003). ©ASTM Interna-
tional. Reprinted with permissions of ASTM International.
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for the incidences of the two types of injuries in
the population of road accident fatalities can be
estimated from this sample of 120 fatalities. Thus
Pr(R) is estimated by 14/120, the total number of
DVI divided by the total number of fatalities. Simi-
larly Pr(S) is estimated by 96/120, the number of
DAI divided by the total number of fatalities.

The third law of probability for dependent
events (1.8) can be verified using Table 1.3. For
example,

14
120

= Pr(R and S) = Pr(R) × Pr(S ∣ R)

= 14
120

× 14
14

.

Alternatively

14
120

= Pr(R and S) = Pr(S) × Pr(R ∣ S)

= 14
96

× 96
120

.

Thus, for dependent events, R and S, the third
law of probability, (1.8) may be written as

Pr(R and S) = Pr(S ∣ R) × Pr(R)
= Pr(R ∣ S) × Pr(S), (1.9)

where the conditioning on I has been omitted.

1.7.9.1 Independence

If two events R and S are such that, given back-
ground information I,

Pr(R ∣ I) = Pr(R ∣ S, I)
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they are said to be independent. Uncertainty about
R is independent of the knowledge of S. From (1.9)
it can be seen that

Pr(RS ∣ I) = Pr(R ∣ I) × Pr(S ∣ I).

Independent events are exchangeable. It is not
necessarily the case that exchangeable events
are independent. See Taroni et al. (2018b) for a
discussion. Also, two events which are mutually
exclusive cannot be independent. As an example of
independence, consider the rolling of two six-sided
fair dice, A and B say. The outcome of the throw
of A does not affect the outcome of the throw of B.
If A lands 6 uppermost, this result does not alter
the probability that B will land 6 uppermost. The
same argument applies if one die is rolled two or
more times. Outcomes of earlier throws do not
affect the outcomes of later throws. Similarly, with
the drawing of two cards from a pack of 52 cards,
if the first card drawn is replaced in the pack, and
the pack shuffled, before the second draw, the
outcomes of the two draws are independent. The
probability of drawing two aces is 4/52 × 4/52.
This can be compared with the probability 4/52 ×
3/51 if the first card drawn was not replaced.

Third law of probability for independent
events

The third law, assuming R and S independent, and
conditional on I is

Pr(R and S ∣ I) = Pr(R ∣ I) × Pr(S ∣ I). (1.10)
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Notice that the event I appears as a condition-
ing event in all the probability expressions. The
laws are the same as before but with this simple
extension.

Consider Table 1.3 again. If DVI and DAI were
independent then the probability of both occurring
in a road accident fatality would be the product
of the probability of each happening separately.
Thus

Pr(R and S) = Pr(R) × Pr(S) = 14
120

× 96
120

= 0.094,

However, it is not the case that 9.4% of road
accident fatalities have both injuries. An exami-
nation of Table 1.3 illustrates that this is not so.
From Table 1.3 it can be seen that 14/120 = 0.12
or 12% of fatalities have both injuries. In such a
situation where Pr(R and S) ≠ Pr(R) × Pr(S) it
can be said that DVI and DAI are not independent.

As another example of the use of the ideas
of independence, consider a diallelic system in
genetics in which the alleles are denoted A and a,
with Pr(A) = p,Pr(a) = q;Pr(A) + Pr(a) = p + q =
1. This gives rise to three genotypes that, assum-
ing Hardy–Weinberg equilibrium to hold, are
expected to have the following probabilities

• p2 (homozygotes for allele A),

• 2pq (heterozygotes),

• q2 (homozygotes for allele a).
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The genotype probabilities are calculated by
simply multiplying the two allele probabilities
together on the assumption that the allele inher-
ited from one’s father is independent of the allele
inherited from one’s mother. The factor 2 arises in
the heterozygous case because two cases must be
considered, that in which allele A was contributed
by the mother and allele a by the father, and
vice versa. Both of these cases have probability pq
because of the assumption of independence (see
Table 1.4). Note that p2 + 2pq + q2 = (p + q)2 = 1.
The particular locus under consideration is said to
be in Hardy–Weinberg equilibrium when the two
parental alleles are considered as independent.

This law may be generalised to more than two
events. Consider n events S1, S2, . . . , Sn. If they are
mutually independent then

Pr(S1 and S2 and . . . and Sn) =

Pr(S1) × Pr(S2) × · · · × Pr(Sn) =
n∏

i=1

Pr(Si).

Table 1.4 Genotype probabilities, assuming
Hardy–Weinberg equilibrium, for a diallelic
system with allele probabilities p and q.

Allele from mother Allele from father

A (p) a (q)

A (p) p2 pq
a (q) pq q2
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1.7.10 Law of Total Probability

Events S1, S2, . . . , Sn are said to be mutually exclu-
sive and exhaustive if one of them has to be true and
only one of them can be true; they exhaust the
possibilities and the occurrence of one excludes
the possibility of any other. Alternatively, they
are called a partition. The event (S1 or . . . or Sn)
formed from the conjunction of the individual
events S1, . . . , Sn is certain to happen since the
events are exhaustive and exclusive. Thus, it has
probability 1 and

Pr(S1 or . . . or Sn) = Pr(S1) + · · · + Pr(Sn) = 1,
(1.11)

a generalisation of the second law of probability,
(1.7), for exclusive events. Consider as an example
allelic distributions at a locus, e.g. locus TPOX.
There are five alleles, 8,9,10,11, and 12, and
these are mutually exclusive and exhaustive.

Consider n = 2 for events S1 and S2. Let R be any
other event. The events ‘R and S1’ and ‘R and S2’
are exclusive. They cannot both occur. The event
“‘R and S1’ or ‘R and S2’ ” is simply R. For example,
let S1 be male, S2 be female, R be left-handed. Then

• ‘R and S1’ denotes a left-handed male,

• ‘R and S2’ denotes a left-handed female.

The event ‘ “R and S1” or “R and S2” ’ is the event
that a person is a left-handed male or a left-handed
female, which implies the person is left-handed (R).
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Thus,

Pr(R) = Pr(R and S1) + Pr(R and S2)
= Pr(R ∣ S1)Pr(S1) + Pr(R ∣ S2)Pr(S2).

The argument extends to any number of mutually
exclusive and exhaustive events to give the law of
total probability.

Law of Total Probability

If S1, S2, . . . , Sn are n mutually exclusive and
exhaustive events,

Pr(R) = Pr(R ∣ S1)Pr(S1) + · · · + Pr(R ∣ Sn)Pr(Sn).
(1.12)

This is sometimes known as the extension of the
conversation (Lindley 1991)

An example for blood types and paternity cases
is given by Lindley (1991). Consider two possible
groups, S1 (Rh−) and S2 (Rh+) for the father,
so here n = 2. Assume the relative frequencies
of the two groups are p and (1 − p), respectively.
The child is Rh− (event R) and the mother is
also Rh− (event M). The probability of interest
is the probability a Rh− mother will have a Rh−
child, in symbols Pr(R ∣ M). This probability is not
easily derived directly but the derivation is fairly
straightforward if the law of total probability is
invoked to include the father.

Pr(R ∣ M) = Pr(R ∣ M and S1)Pr(S1 ∣ M)
+ Pr(R ∣ M and S2)Pr(S2 ∣ M).

(1.13)
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This is a generalisation of the law to include
information M. If both parents are Rh−, event
(M and S1), then the child is Rh− with proba-
bility 1, so Pr(R ∣ M and S1) = 1. If the father
is Rh+ (the mother is still Rh−), event S2, then
Pr(R ∣ M and S2) = 1∕2. Assume that parents
mate at random with respect to the Rhesus quality.
Then Pr(S1 ∣ M) = p, the relative frequency of Rh−
in the population, independent of M. Similarly,
Pr(S2 ∣ M) = 1 − p, the relative frequency of Rh+
in the population. These probabilities can now be
inserted in (1.13) to obtain

Pr(R ∣ M) = 1(p) + 1
2
(1 − p) = (1 + p)∕2,

for the probability that a Rh− mother will have a
Rh− child. This result is not intuitively obvious,
unless one considers the approach based on the
law of total probability.

An example using DNA profiles is given in Evett
and Weir (1998). According to the 1991 census,
the New Zealand (NZ) population consists of
83.47% Caucasians, 12.19% Maoris, and 4.34%
Pacific Islanders; denote the event that a person
chosen at random from the 1991 NZ population
is Caucasian, Maori, or Pacific Islander as Ca, Ma,
and Pa, respectively. The probabilities of finding
the same YNH24 genotype g (event G) in a crime
sample for a Caucasian, Maori, or Pacific Islander
are 0.012, 0.045, and 0.039, respectively. These
values are the assessments for the following three
conditional probabilities: Pr(G ∣ Ca), Pr(G ∣ Ma),
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Pr(G ∣ Pa). Then the probability of finding the
YNH24 genotype, G, in a person taken at random
from the whole population of New Zealand is

Pr(G) = Pr(G ∣ Ca)Pr(Ca) + Pr(G ∣ Ma)Pr(Ma)
+Pr(G ∣ Pa)Pr(Pa)

= 0.012 × 0.8347 + 0.045 × 0.1219

+0.039 × 0.0434

= 0.017.

A further extension of this law to consider
probabilities for combinations of genetic marker
systems in a racially heterogeneous population
has been given by Walsh and Buckleton (1988).
Let C and D be two genetic marker systems with
realisations C and C̄, D, and D̄. Let S1 and S2 be two
mutually exclusive and exhaustive subpopulations
such that a person from the population belongs
to one and only one of S1 and S2. Let Pr(S1) and
Pr(S2) be the probabilities that a person chosen at
random from the population belongs to S1 and to
S2, respectively. Then Pr(S1) + Pr(S2) = 1. Within
each subpopulation C and D are independent
so that the probability an individual chosen at
random from one of these subpopulations is of
type CD is simply the product of the individual
probabilities. Thus

Pr(CD ∣ S1) = Pr(C ∣ S1) × Pr(D ∣ S1),
Pr(CD ∣ S2) = Pr(C ∣ S2) × Pr(D ∣ S2).
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However, such a so-called conditional independence
result does not imply unconditional independence
(i.e. that Pr(CD) = Pr(C) × Pr(D)). The probability
that an individual chosen at random from the pop-
ulation is CD, without regard to his subpopulation
membership, may be written as follows

Pr(CD) = Pr(CDS1) + Pr(CDS2)
= Pr(CD ∣ S1) × Pr(S1)
+Pr(CD ∣ S2) × Pr(S2)

= Pr(C ∣ S1) × Pr(D ∣ S1) × Pr(S1)
+Pr(C ∣ S2) × Pr(D ∣ S2) × Pr(S2).

This is not necessarily equal to Pr(C) × Pr(D) as
is illustrated in the following example. Let Pr(C ∣
S1)=𝛾1,Pr(C ∣S2) = 𝛾2,Pr(D ∣ S1) = 𝛿1,Pr(D ∣S2) =
𝛿2,Pr(S1) = 𝜃, and Pr(S2) = 1 − 𝜃. Then

Pr(CD) = 𝛾1𝛿1𝜃 + 𝛾2𝛿2(1 − 𝜃),
Pr(C) = 𝛾1𝜃 + 𝛾2(1 − 𝜃),
Pr(D) = 𝛿1𝜃 + 𝛿2(1 − 𝜃).

The product of Pr(C) and Pr(D) is not necessarily
equal to Pr(CD). Suppose, for example that 𝜃 =
0.40, 𝛾1 = 0.10, 𝛾2 = 0.20, 𝛿1 = 0.15, and 𝛿2 =
0.05. Then

Pr(CD) = 𝛾1𝛿1𝜃 + 𝛾2𝛿2(1 − 𝜃)
= 0.10 × 0.15 × 0.4 + 0.20 × 0.05 × 0.6

= 0.0120.
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Pr(C) = 𝛾1𝜃 + 𝛾2(1 − 𝜃) = 0.04 + 0.12 = 0.16.

Pr(D) = 𝛿1𝜃 + 𝛿2(1 − 𝜃) = 0.06 + 0.03 = 0.09.

Pr(C) × Pr(D) = 0.0144 ≠ 0.0120 = Pr(CD).

1.7.11 Updating of Probabilities

Notice that the probability of true guilt is a sub-
jective probability, as mentioned before (Section
1.7.4). Its value will change as evidence accu-
mulates. Also, different people will have different
values for it. The following examples, adapted
from similar ones in DeGroot (1970), illustrate
how probabilities may change with increasing
information. The examples have several parts and
each part has to be considered in turn without
information from a later part.

Example 1.4.

(a) Consider four events S1, S2, S3, and S4. Event
S1 is that the area of Lithuania is no more than
50 000 km2, S2 is the event that the area of
Lithuania is greater than 50 000 km2 but no
more than 75 000 km2, S3 is the event that
the area of Lithuania is greater than 75 000
km2 but no more than 100 000 km2, and S4 is
the event that the area of Lithuania is greater
than 100 000 km2. Assign probabilities to
each of these four events. Remember that
these are four mutually exclusive events and
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that the four probabilities should add up to 1.
Which do you consider the most probable and
what probability do you assign to it? Which
do you consider the least probable and what
probability do you assign to it?

(b) Now, consider the information that Lithuania
is the 25th largest country in Europe (exclud-
ing Russia). Use this information to reconsider
your probabilities in part (a).

(c) Consider the information that Estonia, which
is the 30th largest country in Europe, has an
area of 45 000 km2, and use it to reconsider
your probabilities from the previous part.

(d) Consider the information that Austria, which
is the 21st largest country in Europe has an
area of 84 000 km2, and use it to reconsider
your probabilities from the previous part.

The area of Lithuania is given at the end of the
chapter.

Example 1.5.

(a) Imagine you are on a jury. The trial is about to
begin but no evidence has been led. Consider
the two events: Hp the defendant is truly guilty;
and Hd, the defendant is innocent. What are
your probabilities for these two events?

(b) The defendant is a tall Caucasian male. An
eyewitness says he saw a tall Caucasian male
running from the scene of the crime. What are
your probabilities now for Hp and Hd?
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(c) A bloodstain at the scene of the crime was
identified as coming from the criminal. A
partial DNA profile has been obtained, with
proportion 2% in the local Caucasian popula-
tion. What are your probabilities now for Hp

and Hd?

(d) A window was broken during the commission
of the crime. Fragments of glass were found on
the defendant’s clothing of a similar refractive
index to that of the crime window. What are
your probabilities now for Hp and Hd?

(e) The defendant works as a demolition worker
near to the crime scene. Windows on the
demolition site have refractive indices sim-
ilar to the crime window. What are your
probabilities now for Hp and Hd?

This example is designed to mimic the presenta-
tion of evidence in a court case. Part (a) asks for
a prior probability of guilt before the presentation
of any evidence. It may be considered as a ques-
tion concerning the understanding of the dictum
‘innocent until proven guilty’. See Section 2.7 for
further discussion of this with particular reference
to the logical problem created if a prior probability
of zero is assigned to the event that the suspect is
guilty.

Part (b) involves two parts. First, the value of
the similarity in physical characteristics between
the defendant and the person running from the
scene of the crime, assuming the eyewitness
is reliable, has to be assessed. Secondly, the
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assumption that the eyewitness is reliable has to
be assessed.

In part (c) it is necessary to check that the defen-
dant has the same profile. It is not stated that he
has but if he has not he should never have been a
defendant. Secondly, is the local Caucasian popu-
lation the relevant population? The evaluation of
evidence of the form in (c) is discussed in Chapter 5.

The evaluation of refractive index measure-
ments mentioned in (d) is discussed in Chapter 7.
Variation both within and between windows has
to be considered. Finally, how information about
the defendant’s lifestyle may be considered is
discussed in Chapter 6.

It should be noted that the questions asked
initially in Example 1.5 are questions that should
be addressed by the judge and/or jury. The forensic
scientist is concerned with the evaluation of
their evidence, not with probabilities of guilt or
innocence. These probabilities are the concern
of the jury. The jury combines the evidence of
the scientist with all other evidence and uses its
judgement to reach a verdict. The theme of this
book is the evaluation of evidence. Discussion of
issues relating to guilt or otherwise of PoIs will not
be very detailed.

As a tail piece to this chapter, the area of Lithua-
nia is 65 301 km2.
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2

The Evaluation of
Evidence

The evaluation of evidence is not to be confused
with the interpretation of evidence. The two terms
evaluation and interpretation are sometimes consid-
ered as synonyms but it is helpful to think of them
as different from each other. ‘Evaluation’ concen-
trates on the derivation of a value for the evidence,
in a way to be described in this chapter. ‘Interpreta-
tion’ refers to the meaning attached to such a value
in the case as a whole.

2.1 ODDS

2.1.1 Complementary Events

There is a measure of uncertainty, known as odds
(also known as betting quotients), which will be
familiar to people who know about gambling.
Bookmakers quote odds in sporting events such

101
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as horse races or football matches. It has been
mentioned briefly in Section 1.7.6. For example,
a particular horse may be given odds of ‘6 to 1
against’ it winning a race or a particular football
team may be quoted at odds of ‘3 to 2 on’ to
win a match or, equivalently, ‘3 to 2 in favour’
of winning the match. Odds are equivalent to
probability. The aforementioned phrases can be
related directly to probability statements about
the probability of the horse winning its race or the
football team winning its match.

First, an event, known as the negation, or com-
plement, of another event has to be introduced
and given some notation. Let R be an event. Then
the negation or complement of R is the event that
is true when R is false and false when R is true. It is
denoted R̄ and read as ‘R-bar’. The events R and R̄
are known as complementary events.

The union of two or more events is known as a
disjunction. Let Ei, i = 1, . . . ,6 be the event that
denotes the throw of an i in a six-sided die. Then
the disjunction of E1,E3, and E5 is the throw of
an odd number. The occurrence of two or more
events simultaneously is known as a conjunction.
Thus the conjunction of the event ‘throw an odd
number in a six-sided die’ and ‘throw a number
less than 4’ is the event that a one or three is
thrown. For human characteristics, consider the
events a person is blue-eyed and a person has
red hair. The conjunction of these two events are
people with blue eyes and red hair. The disjunction
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of these two events are people with blue eyes or
with red hair or with both. Note the use of the
word ‘and’ for conjunction and ‘or’ for disjunction.

Often in this book comparison will be made
of the probability of the evidence under two
competing propositions, that put forward by the
prosecutor and that put forward by the defence.
The proposition put forward by the prosecution
will be denoted Hp. The proposition put forward by
the defence will be denoted by Hd. The subscripts p
and d denote prosecution and defence, respectively.
The letter H denotes hypothesis and the letter has
stuck despite the more common usage now of
the term proposition. Note that, from now on, the
term proposition is used in preference to the word
hypothesis to designate the form of words deemed
to be relevant for the scenario under study. Also,
and for the sake of simplicity, apostrophes (‘ ’) will
be omitted when describing verbally the content
of a proposition, except when a proposition is part
of a sentence.

Propositions may be complementary in the same
way as events are said to be complementary. One
and only one can be true. They are mutually exclu-
sive. The propositions need not be exhaustive; they
need not be chosen to cover all possible explana-
tions for the evidence, no matter how outlandish.
The two propositions may denote complementary
events, such as (truly) Guilty and (truly) Not guilty.
However, there will be occasions on which the
events denoted are not complementary, such as
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‘Person of interest1 A and one unknown person were
present at the crime scene’ and ‘Two unknown people
were present at the crime scene’. There are many
other events not covered by these two propositions,
such as the naming of the two individuals at the
crime scene or the consideration of less than, or
more than, two people at the crime scene.

2.1.2 Examples
(1) A coin is tossed. Let R be the event it lands

heads. Then R̄ is the event that it lands tails. If
the coin is fair, Pr(R) = 1∕2,Pr(R̄) = 1∕2.

(2) A six-sided die is rolled. Let R be the event that
a six is face uppermost. Then R̄ is the event
that a 1, 2, 3, 4, or 5 is rolled. If the die is fair,
Pr(R) = 1∕6,Pr(R̄) = 5∕6.

(3) A pill is checked to see if it is licit or illicit. Let R
be the event that it is illicit. Then R̄ is the event
that it is licit.

(4) A person is charged with a crime. Let G be
the event that he is truly guilty, not just found
guilty by a jury. Then Ḡ is the event that he is
truly not guilty.

Notice that the event ‘R or R̄’, formed from the
disjunction of R and its complement R̄, is certain.
Thus it has probability 1. Also, since R and R̄ are

1Note the use of the phrase ‘person of interest’ (PoI); recall again
(see Section 1.1) that this phrase is used instead of the word ‘sus-
pect’ as it is felt to represent more accurately the status of the
person concerned in an investigation.
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mutually exclusive,

1 = Pr(R or R̄) = Pr(R) + Pr(R̄)

and hence
Pr(R̄) = 1 − Pr(R). (2.1)

In general, for complementary events R and R̄,

Pr(R) + Pr(R̄) = 1. (2.2)

It is now possible to define odds.

2.1.3 Definition of Odds

If an event R has probability Pr(R)of occurring, the
odds against R are

Pr(R̄)∕Pr(R).

From (2.1), the odds against R are

1 − Pr(R)
Pr(R)

. (2.3)

The odds in favour of R are

Pr(R)
1 − Pr(R)

.

Given a probability for an event, it is possible to
derive the odds against the event.

Given a value for the odds against an event, it is
possible to determine the probability of that event
occurring. Thus, if the horse has odds of 6 to 1
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against it winning the race and R is the event that
it wins the race, then

1 − Pr(R)
Pr(R)

= 6,

where ‘6 to 1’ is taken as the ratio 6/1 and written
as 6. Then

1 − Pr(R) = 6 × Pr(R)
1 = {6 × Pr(R)} + Pr(R)
= 7 × Pr(R).

Thus Pr(R) = 1∕7.
The phrases ‘odds on’ and ‘odds in favour of’ are

equivalent and are used as the reciprocal of ‘odds
against’. Consider the football team that is ‘3 to 2
on’ to win its match. The phrase ‘3 to 2’ is taken
as the ratio 3/2 as this is odds on. The relationship
between odds and probability is written as

Pr(R)
1 − Pr(R)

= 3
2
.

Thus

2 × Pr(R) = 3{1 − Pr(R)}
5 × Pr(R) = 3

Pr(R) = 3∕5.

The general result may be derived as follows. Let O
denote the odds against the occurrence of an event
R. Then

O = 1 − Pr(R)
Pr(R)

,
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O × Pr(R) = 1 − Pr(R),
(O + 1) × Pr(R) = 1,

Pr(R) = 1
O + 1

.

This can be verified directly for the horse whose
odds were 6 to 1 against it winning (with O=6).
For the football team with odds of 3 to 2 on this
can be taken as 2 to 3 against (O=2/3) and the
result follows. Odds equal to 1 are known as evens.

The concept of odds is an important one in
the evaluation of evidence. Evidence is evaluated
for its effect on the probability of a certain sup-
position about a PoI (before they come to trial)
or defendant (whilst a trial is in progress). This
supposition may be that the PoI was present at the
crime scene, a source proposition (see Chapter 5).
It is this supposition that will be most discussed
in this book. Initially, however, the discussion
will be in terms of the effect of evidence on the
probabilities of the guilt (Hp) and the innocence
(Hd) of a suspect. These are two complementary
events. The ratio of the probabilities of these
two events, Pr(Hp)∕Pr(Hd), is the odds against
innocence or the odds in favour of guilt. Notice,
also, that the events are that the suspect is truly
guilty or truly innocent, not that he is judged
to be guilty or innocent. The same principles
concerning odds also apply for conditional
probabilities. Given background information
I, the ratio Pr(Hp ∣ I)∕Pr(Hd ∣ I) is the odds in



�

� �

�

108 The Evaluation of Evidence

favour of guilt, given I. Much of this book will be
concerned with the effect on the odds in favour
of a supposition about the PoI of the evidence E
under consideration.

There are occasions when the prosecution and
defence proposition are not complementary. In
such instances it is not possible to determine
Pr(Hp) or Pr(Hd) from the odds, only the effect
the statistic known as the likelihood ratio (LR,
Section 2.3) has on the odds. Note that in this
context the term ‘odds’ is a misnomer as the term
strictly applies to the ratio of the probability of
complementary events.

2.2 BAYES’ THEOREM

Bayes’ theorem is an important part of the pro-
cess of the consideration of the odds. In fact,
the theorem permits the revision based on new
information of a measure of uncertainty about the
truth or otherwise of an outcome or issue (such
as a hypothesis or proposition). This perspective
is common to numerate scientific fields where
data are combined with prior or background
information to give posterior probabilities for a
particular outcome or issues. An essential feature
of Bayesian inference is that it permits the move
from prior (initial or pre-test) to posterior (final or
post-test) probabilities on the basis of data.
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2.2.1 Statement of the Theorem

Consider the last two parts of the third law of prob-
ability as given in (1.9), namely, that for events R
and S,

Pr(S ∣ R) × Pr(R) = Pr(R ∣ S) × Pr(S).

If Pr(R) ≠ 0, it is possible to divide by Pr(R) and
obtain the Bayes’ theorem for two events, R and S,

Pr(S ∣ R) = Pr(R ∣ S) × Pr(S)
Pr(R)

(2.4)

assuming Pr(R) ≠ 0.

2.2.2 Examples

An important example of such reasoning is found
in medical diagnosis. Consider the following
example where a doctor in a clinic is interested
in the proposition ‘This patient has disease S’.
By regarding the patient as a random member
of a large collection (population) of patients pre-
senting themselves in the clinic (for a discussion
on the population characteristics relevant to a
case, see Section 1.7.11), the doctor associates a
probability with the proposition of interest: this
probability is the prior (or pre-test) probability
the patient has S. Note that such a probability is
always conditioned on background information
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about the patient (i.e. age, gender, medical
history...).

It is the probability Pr(S) that a person has the
disease S, before any test results or new observa-
tions are taken. Suppose the doctor then carries
out a test (e.g. a blood test) that gives a positive
result; call this event R. After that, the doctor is
now interested in assessing the new probability
that the patient has disease S. This new value is the
posterior or post-test probability Pr(S ∣ R) because
it refers to a new situation, as expressed by (2.4).

The probability of a positive blood test can be
expanded using the extension of the conversation
(Section 1.7.14). A positive blood test result could
be considered under two competing situations:
first, the patient has disease S (event S), and sec-
ond, the patient does not have disease S (event S̄).
So Pr(R) becomes

Pr(R ∣ S) × Pr(S) + Pr(R ∣ S̄) × Pr(S̄),

and the posterior probability

Pr(S ∣ R) = Pr(R ∣ S) × Pr(S)
Pr(R ∣ S) × Pr(S) + Pr(R ∣ S̄) × Pr(S̄)

.

(2.5)
A numerical verification of this result, though

not in the context of a disease, is available from
Table 2.5. Let R denote Female (F), S denote a
plain arch in a fingerprint (PA). Then Pr(R ∣ S) =
57∕185,Pr(S) = 185∕207,Pr(R) = 62∕207, and

Pr(R ∣ S) × Pr(S)
Pr(R)

=
57

185
× 185

207
62

207

= 57
62

= Pr(S ∣ R).
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The importance of Bayes’ theorem is that it
links Pr(S) with Pr(S ∣ R). The uncertainty about
S as given by Pr(S) on the right-hand side of (2.4)
is updated by the knowledge about R to give the
uncertainty about S as given by Pr(S ∣ R) on the
left-hand side of (2.4). Note that the connection
between Pr(S) and Pr(S ∣ R) involves both Pr(R ∣ S)
and Pr(R).

Reconsider the previous simple example where
a doctor is interested in the probability the patient
has disease S given the positive blood result R.
For the quantitative assessment of conditional
probabilities involving test results, it is important
that in an earlier stage (that is before consideration
of a particular patient), the blood test used by the
doctor is evaluated using two groups of patients
with and without the disease. The groups are
classified using a reference test (a so-called gold
standard) to obtain a two-by-two table, Table 2.1,
known as a contingency table. There are n patients
in total. The number of patients in each category
is identified by the subscripts. The sums of pairs
of numbers in rows or columns in the body of
the table are the values in the margins (bottom
row and right-hand column). Thus, for example,
nRS + nRS̄ = nR, the number of patients with a
positive blood test. In medical terminology it is
common to refer to the sensitivity and specificity
of a test. Sensitivity is the probability of a positive
result in the blood test given that the patient has
disease S. It is estimated by the ratio of nRS to nS,
the proportion of positive patients in the diseased
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Table 2.1 Two-by-two contingency table for
frequencies for the tabulation of patients with or
without a disease (S or S̄) and a blood test positive or
negative (R or R̄).

S S̄ Total

R nRS nRS̄ nR
R̄ nR̄S nR̄S̄ nR̄

Total nS nS̄ n

group. Specificity is the probability of a negative
result in the blood test given that the patient does
not have the disease. It is estimated by the ratio
of nR̄S̄ to nS̄, the proportion of negative patients in
the non-diseased group. Sensitivity and specificity
provide a measure of the quality of a test, with
high values implying high quality. Note that
values in Table 2.1 refer to a sample of patients
and implicitly assume that the parameters of
interest (the proportions called sensitivity and
specificity) are directly observable from the sample.
However, the proportions in a relevant population
are unknown. The connection between the sam-
ple proportion and the population proportion is
presented in Section 4.2.

Thus, in (2.5) Pr(S) represents the prior prob-
ability that the patient has disease S (in medical
terms, this probability is also called prevalence),
Pr(S̄) equals 1 − Pr(S). Pr(R ∣ S) is the sensitivity
of the test. Pr(R̄ ∣ S̄) is the specificity of the test.
Pr(R ∣ S̄), which is 1 − Pr(R̄ ∣ S̄), is known as the



�

� �

�

Bayes’ Theorem 113

false positive rate and is estimated by the ratio of
nRS̄ to nS̄. The false negative rate is Pr(R̄ ∣ S) and is
estimated by the ratio of nR̄S to nS.

Table 2.1 can also be presented using proba-
bilities instead of frequencies (see, for example,
Leonard (2000)).

In Table 2.2, Pr(S) is the prior probability or
prevalence of the disease in the relevant popula-
tion and Pr(S,R) = Pr(R ∣ S) × Pr(S) is assessed
using the sensitivity of the test. Pr(S, R̄) may then
be calculated by subtraction, Pr(S) − Pr(S,R). An
analogous procedure is adopted for the column S̄.

The distinction between Pr(S ∣ R) and Pr(R ∣ S)
is very important and needs to be recognised.
In Pr(S ∣ R), R is known or given, S is uncertain. In
the medical example, the result of the blood
test is known, the disease status is unknown.
In Pr(R ∣ S), S is known or given, R is uncertain.
In the medical example, the disease status is
known, the result of the blood test is uncertain.

Table 2.2 Two-by-two contingency table for
probabilities for the tabulation of patients with or
without a disease (S or S̄) and a blood test positive or
negative (R or R̄).

S S̄ Total

R Pr(S,R) Pr(S̄,R) Pr(R)
R̄ Pr(S, R̄) Pr(S̄, R̄) Pr(R̄)

Total Pr(S) Pr(S̄) 1
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Further examples will emphasise the difference
between these two conditional probabilities.

Example 2.1. Consider the previous medical
diagnosis description illustrated through artificial
data presented in Table 2.3, where 100 patients
with S and 100 patients without S are chosen. The
prior probability Pr(S) or prevalence of the disease
in the relevant population is known to be 0.1.

A medical blood test detects certain symptoms of
a disease or condition. Unfortunately, the test may
not always register the symptoms when they are
present, or it may register them when they
are absent. Therefore there is the need of numbers
to describe the accuracy of the test; these are the
sensitivity and the specificity of the performed test.
The sensitivity is the probability that a person with
the disease is correctly diagnosed. The specificity
is the probability that a disease-free individual is
correctly diagnosed. Letting S be the event that a
person has the disease and R stand for the event

Table 2.3 Two-by-two contingency table for artificial
frequencies for the tabulation of patients with or
without a disease (S or S̄) given a blood test positive or
negative (R or R̄).

S S̄ Total

R 95 1 96
R̄ 5 99 104

Total 100 100 200
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that the test indicates a positive result. Pr(R ∣ S)
and Pr(R̄ ∣ S̄) stand for the sensitivity and the
specificity of the test, respectively.

The sensitivity of the test is estimated by the pro-
portion 95∕100, the specificity of the test is esti-
mated by the proportion 99∕100; Pr(R ∣ S) = 0.95
and Pr(R̄ ∣ S̄) = 0.99.

The posterior probability, Pr(S ∣ R), a given
member of the relevant population has the disease
given the observation of the symptoms becomes

Pr(S ∣ R) = Pr(R ∣ S) × Pr(S)
Pr(R ∣ S) × Pr(S) + Pr(R ∣ S̄) × Pr(S̄)

= 0.95 × 0.1
0.95 × 0.1 + (1 − 0.99) × 0.9

= 0.913.

If the blood test is positive the probability of having
the disease increases from a prior probability of
0.1 to a posterior probability greater than 0.91.
Section 4.2.3 develops the same example by
considering the connection between the sample
proportion and the population proportion.

Example 2.2. First, let S be the event ‘I have
two arms and two legs’ and let R be the event
‘I am a monkey’. Then Pr(S ∣ R) = 1,2 whereas
Pr(R ∣ S) ≠ 1. The first probability is equivalent to
saying that ‘If I am a monkey then I have two arms

2It is sensible to set this probability to 1, omitting cases in which
malformations are considered.
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and two legs’. The second probability is equivalent
to saying that ‘If I have two arms and two legs,
I need not be a monkey’. Similarly, in the previous
medical example, a patient is more interested in
the probability of not having the disease, given
that the test has a positive result, than in the
probability of a positive test given that they do not
have the disease. The latter probability is the false
positive rate, Pr(R ∣ S̄), the former is a posterior
probability, Pr(S̄ ∣ R). For a discussion on this very
important point, see Thompson and Schumann
(1987) and Saks and Koehler (1991).

Example 2.3. This example is from Lindley
(1991). Consider the following two statements.

(1) The death rate last month amongst men is
twice that amongst women.

(2) In the deaths registered last month, there were
twice as many men as women.

Let M denote male, F denote female, so that M and
F are complementary events and the relationship
can be written as (M ≡ F̄,F ≡ M̄). Let D denote the
event of death. Then statements (1) and (2) may be
written as

(1) Pr(D ∣ M) = 2 Pr(D ∣ F),
(2) Pr(M ∣ D) = 2 Pr(F ∣ D).

Notice also that Pr(M ∣ D) + Pr(F ∣ D) = 1 since M
and F are complementary events. Equation (2.2)
generalises to include a conditioning event (D in
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Table 2.4 Hypothetical results for deaths amongst a
population.

Male Female Total

Dead 2 1 3
Alive 98 99 197

Total 100 100 200

this case). Thus from statement (2),

1 − Pr(F ∣ D) = 2 Pr(F ∣ D)

and
Pr(F ∣ D) = 1∕3, Pr(M ∣ D) = 2∕3.

It is not possible to make any similar inferences
from statement (1) since in that statement it is the
conditioning event that alters, not the uncertain
event. Table 2.4 illustrates the point numerically.

There are 100 males of whom 2 died, and
100 females of whom 1 died. Thus Pr(D ∣ M) =
0.02,Pr(D ∣ F) = 0.01, satisfying (1). There were
3 deaths in total, of whom 2 were male and 1
female, satisfying the previous statement (2).

Example 2.4. Consider the problem of determin-
ing which of three sub-populations (Ψ1,Ψ2,Ψ3)
an individual belongs to, based on observations
of genotypes at several loci and knowledge of
genotype relative frequencies in each of the
sub-populations (Shoemaker et al., 1999).
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The context may be that of a bloodstain found
at a crime scene and the question is to determine
which of three populations, e.g. Caucasian, Maori,
or Western Polynesian, the contributor of the stain
belongs (assuming that attention can be restricted
to these three sub-populations).

The relevant New Zealand census reported that
the population in the country had the following
composition: 81.9% Caucasian, 13.7% Maori,
and 4.4% Western Polynesian. The probability of
the observed genotypes (a DNA forensic profile)
X of the individual can be calculated. For this
example, suppose the three probabilities Pr(X ∣
Ψ1), Pr(X ∣ Ψ2), Pr(X ∣ Ψ3) have been assigned
as 3.96 × 10−9,1.18 × 10−8,1.91 × 10−7, respec-
tively. The prior probabilities Pr(Ψi) for the three
sub-populations are 0.819, 0.137, and 0.044.
Then

Pr(Ψ1 ∣ X) =
Pr(X ∣ Ψ1) ⋅ Pr(Ψ1)

Pr(X ∣ Ψ1) ⋅ Pr(Ψ1) + Pr(X ∣ Ψ2)
⋅Pr(Ψ2) + Pr(X ∣ Ψ3) ⋅ Pr(Ψ3)

= 3.96 × 10−9 × 0.819
3.96 × 10−9 × 0.819 + 1.18 × 10−8

×0.137 + 1.91 × 10−7 × 0.044

= 0.245,

where ⋅ in the first line denotes multiplication.
Note that the probability of the stain being a
Caucasian has dropped from a prior probability of
0.819 to a posterior probability of 0.245. This is
because of the relative rarity of the profile of X in
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the Caucasian population. It can be checked that

Pr(Ψ2 ∣ X) = 0.121, Pr(Ψ3 ∣ X) = 0.634.

Thus, for the Western Polynesian sub-popula-
tion, the prior probability has increased from
0.044 to 0.634. This is because the profile X is
comparatively common in the Western Polyne-
sian sub-population. Note the three probabilities
Pr(Ψ1 ∣ X) + Pr(Ψ2 ∣ X) + Pr(Ψ3 ∣ X) = 1.000 as
they should since the three events (Ψ1 ∣ X), (Ψ2 ∣
X), and (Ψ3 ∣ X) are complementary.

Example 2.5. Another example to illustrate the
difference between the two probability statements
Pr(S ∣ R) and Pr(R ∣ S) has been provided by
Darroch (1987). Consider a town in which a
rape has been committed. There are 10 000 men
of suitable age in the town of whom 200 work
underground at a mine. Evidence is found at the
crime scene from which it is determined that the
criminal is one of the 200 mineworkers. Such
evidence may be traces of minerals that could only
have come from the mine. A PoI is identified and
traces of minerals, similar to those found at the
crime scene are found on some of their clothing.
How might this evidence be assessed?

Denote the evidence by E: the event that ‘min-
eral traces have been found on clothing of the
PoI which is similar to mineral traces found at
the crime scene’. Denote the proposition that the
PoI is guilty by Hp and the proposition that they
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are innocent by Hd (these are complementary
propositions: one and only one is true).

A proposition may be thought of in a similar
way to an event, if subjective probabilities are
considered. Events may be measurements of
characteristics of interest, such as concentrations
of certain minerals within the traces. There
may be a well-specified model representing the
randomness in such measurements. However,
the guilt or innocence of the suspect is something
about which there is no well-specified model
but about which it is perfectly reasonable for an
individual to represent with a probability their
state of uncertainty about the truth or otherwise
of the propositions, as discussed in Section 1.7.5.3

Assume that all people working underground
at the mine will have mineral traces similar to
those found at the crime scene on some of their
clothing. This assumption is open to question
but the point about conditional probabilities
will still be valid. The probability of finding the
evidence on an innocent person may then be
determined as follows. There are 9999 innocent
men in the town of whom 199 work under-
ground at the mine. These 199 men will, as a
result of their work, have this evidence on their
clothing, under the aforementioned assumption.

3Miles (2007) refers to the following Savage’s quote to illustrate
the link between probability and propositions: ‘Personalistic views
hold that probability measures the confidence that a particular
individual has in the truth of a particular proposition, for example,
the proposition that it will rain tomorrow.’
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Thus Pr(E ∣ Hd) = 199∕9999 ≃ 200∕10 000 =
0.02, a small number. Does this imply that
a man who is found to have the evidence on
him is innocent with probability 0.02? Not at
all. There are 200 men in the town with the
evidence (E) on them of whom 199 are inno-
cent (Hd). Thus Pr(Hd ∣ E) = 199∕200 = 0.995.
The equation of Pr(E ∣ Hd) with the probability
Pr(Hd ∣ E) is known as the fallacy of the trans-
posed conditional (Diaconis and Freedman, 1981)
and is discussed in more detail later in Sections
2.5.1 and 2.7.1. It has been suggested that this
fallacy is about cognitive illusions; see Tversky
and Kahneman (1974) and Piattelli-Palmarini
(1994) for a general discussion on the phe-
nomenon.

A version of Bayes’ theorem for continuous data
is introduced in Section 7.3.

2.3 THE ODDS FORM OF BAYES’
THEOREM

2.3.1 Likelihood Ratio

Replace S by S̄ in (2.4) and the equivalent version
of Bayes’ theorem is

Pr(S̄ ∣ R) = Pr(R ∣ S̄)Pr(S̄)
Pr(R)

(2.6)

(Pr(R) ≠ 0).
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The first equation (2.4) divided by the second
(2.6) gives the odds form of Bayes’ theorem

Pr(S ∣ R)
Pr(S̄ ∣ R)

= Pr(R ∣ S)
Pr(R ∣ S̄)

× Pr(S)
Pr(S̄)

. (2.7)

The left-hand side is the odds in favour of S, given
R has occurred. The right-hand side is the product
of two terms,

Pr(R ∣ S)
Pr(R ∣ S̄)

and
Pr(S)
Pr(S̄)

.

The latter of these is the odds in favour of S, with-
out any information about R. The former is a ratio
of probabilities but it is not in the form of odds.
The conditioning events, S and S̄, are different
in the numerator and denominator, whereas the
event R, the probability of which is of interest, is
the same.

In the odds form of Bayes’ theorem, given here,
the odds in favour of S are changed on receipt
of information R by multiplication by the ratio
{Pr(R ∣ S)∕Pr(R ∣ S̄)}. This ratio is important
in the evaluation of evidence and is given the
name likelihood ratio or Bayes’ factor. Note that a
likelihood ratio and a Bayes’ factor (BF) are not
necessarily equivalent, as in this case where they
are taken as synonymous. A discussion about
this topic will be provided in Section 2.3.2 and in
Section 7.9.

Consider again two events, R and S, and their
complements. A likelihood ratio in this context
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is the ratio of two probabilities, the probability of
R when S is true and the probability of R when
S is false. Thus, to consider the effect of R on the
odds in favour of S, i.e. to change Pr(S)∕Pr(S̄) to
Pr(S ∣ R)∕Pr(S̄ ∣ R), the former is multiplied by the
likelihood ratio. The odds Pr(S)∕Pr(S̄) are known
as the prior odds in favour of S; i.e. odds prior
to receipt of R. The odds Pr(S ∣ R)∕Pr(S̄ ∣ R) are
known as the posterior odds in favour of S; i.e. odds
posterior to receipt of R4 With similar terminology,
Pr(S) is known as the prior probability of S and
Pr(S ∣ R) is known as the posterior probability of S.
Notice that to calculate the change in the odds
on S, it is probabilities of R that are needed. The
difference between Pr(R ∣ S) and Pr(S ∣ R), as
explained in Section 2.5.1), is vital. Consider two
examples.

(1) Pr(R ∣ S)∕Pr(R ∣ S̄) = 3; the event R is three
times more likely if S is true than if S is false.
The prior odds in favour of S are multiplied by
a factor of 3.

(2) Pr(R ∣ S)∕Pr(R ∣ S̄) = 1∕3; the event R is three
times more likely if S is false than if S is true.
The prior odds in favour of S are reduced by a
factor of 3.

When considering the effect of R on S, it is nec-
essary to consider both the probability of R when S

4The word odds is sometimes used loosely in reference to the ratio
of the probabilities of two mutually exclusive events whose proba-
bilities sum to something different from 1.
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is true and the probability of R when S is false. It is a
frequent mistake (the fallacy of the transposed con-
ditional, Section 2.5.1) to consider that an event R
that is unlikely if S̄ is true thus provides evidence
in favour of S. For this to be so, it is required addi-
tionally that R is not so unlikely when S is true. The
likelihood ratio is then greater than 1 and the pos-
terior odds are greater than the prior odds.

Notice that the likelihood ratio is a ratio of
probabilities. It is greater than zero (except when
Pr(R ∣ S) = 0 in which case it is zero also) but
has no theoretical upper limit. Probabilities take
values between 0 and 1, inclusive; the likelihood
ratio takes values between 0 and ∞. It is not an
odds, however. Odds are the ratio of the proba-
bilities of two complementary events, perhaps
conditioned on some other event. The likelihood
ratio is the ratio of the probability of the same event
conditioned upon two exclusive events, though
they need not necessarily be complementary.
Thus, Pr(R ∣ S)∕Pr(R ∣ S̄) is a likelihood ratio;
Pr(S ∣ R)∕Pr(S̄ ∣ R) is an odds statistic.

Kingston and Kirk (1964) developed an example
for the likelihood ratio.

Now consider a problem of evaluating the significance
of several properties in two pieces of glass. Suppose that
the probability of two fragments from different sources
having this coincidence of properties is .005, and that the
probability of such coincidence when they are from the
same source is .999. What do these figures mean? They
are simply guides for making a decision about the origin of
the fragments.5 (p. 514)

5Examples of applications will be found in Chapters 6 and 7.
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Notice that (2.7) also holds if S and S̄ are propo-
sitions rather than events. Propositions may be
complementary, such as presence (Hp) or absence
(Hd) of a PoI from a crime scene, but need not
necessarily be so (see, for example, Section 6.1.4.2
where more than two propositions are compared).
In general, the two propositions to be compared
will be known as competing propositions. The
odds Pr(S)∕Pr(S̄) in such circumstances should
be explicitly stated as odds in favour of S, relative
to S̄. In the special case in which the propositions
are mutually exclusive and exhaustive, they are
complementary. The odds may then be stated as
the odds in favour of S, where the relationship to
the complementary proposition is implicit.

2.3.2 Bayes’ Factor and Likelihood
Ratio

The terms ‘likelihood ratio’ (LR) and ‘Bayes’
factor’ (BF) have been introduced in Section
2.3.1. In forensic science applications they are
often treated as synonymous, though after the
seminal work of Lindley (1977c), the former has
more common usage in forensic science, both
in theory and in practice. In order to clarify the
distinction between a likelihood ratio and a Bayes’
factor, a formal definition of the Bayes’ factor is
first provided. The Bayes’ factor is the primary
element in Bayesian methodology for comparing
competing propositions. It is defined as the change
produced by new evidence (data) in the odds when
going from the prior to the posterior distribution
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in favour of one proposition to another. Note that
this is not to say that a Bayes’ factor depends only
upon available data, as will be clarified in Sections
2.3.2.1 and 2.3.2.2. An example will be provided
in Section 2.3.2.1 to show that the likelihood
ratio is the special case of the Bayes’ factor when
the competing propositions are parametrised
by a single parameter (i.e. a simple hypothesis).
There may, however, be cases where composite
hypotheses are compared, as in the scenario that
will be illustrated in Section 2.3.2.2. In such a
case, the Bayes’ factor is the ratio of two marginal
likelihoods under competing propositions and
it appears it no longer depends solely on the
data. Note that in what follows, the reference
to background information I will be omitted to
simplify the notation. A more formal development
for continuous parameters will be developed in
Section 7.9. Examples dealing with biological
findings are presented in Section 6.1.4.2. Several
examples of derivations of likelihood ratios are
provided in Chapter 7 both for evaluative and
discriminative purposes.

2.3.2.1 Derivation of the Bayes’ Factor:
Simple Versus Simple Propositions

For the purpose of illustration, consider the
following simplified scenario taken from Taroni
et al. (2014c) involving questioned documents.
In general, the propositions involved are of the
following form:
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H1: Mr X is the author of the questioned docu-
ment;

H2: Mr Y is the author of the questioned docu-
ment.

Imagine one discrete observation, say, z, of a
given handwritten characteristic is available
for comparison, where Pr(z ∣ Hi), i = 1,2, is the
probability of the observation under the compet-
ing propositions. Note that, for ease of notation,
H1 = 𝜃1 will be taken to mean that Mr X is the
author of the questioned document (H1 holds),
whilst H2 = 𝜃2 will be taken to mean that Mr Y is
the author of the questioned document (H2 holds).

Following the definition given earlier, the Bayes’
factor is the ratio between the posterior odds and
the prior odds:

BF =
Pr(H1 ∣ z)∕Pr(H2 ∣ z)

Pr(H1)∕Pr(H2)
. (2.8)

The posterior probability for H1 is given by

Pr(H1 ∣ z) =
Pr(z ∣ 𝜃1)Pr(𝜃1)

Pr(z ∣ 𝜃1)Pr(𝜃1) + Pr(z ∣ 𝜃2)Pr(𝜃2)
.

The posterior probability for H2 is given by

Pr(H2 ∣ z) =
Pr(z ∣ 𝜃2)Pr(𝜃2)

Pr(z ∣ 𝜃1)Pr(𝜃1) + Pr(z ∣ 𝜃2)Pr(𝜃2)
.

Thus, the posterior odds becomes

Pr(H1 ∣ z)
Pr(H2 ∣ z)

=
Pr(z ∣ 𝜃1)Pr(𝜃1)
Pr(z ∣ 𝜃2)Pr(𝜃2)

.
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Given that the BF is the ratio between posterior
odds to prior odds, one can reduce (2.8) to

BF =
Pr(H1 ∣ z)
Pr(H2 ∣ z)

Pr(H2)
Pr(H1)

=
Pr(z ∣ 𝜃1)
Pr(z ∣ 𝜃2)

Pr(𝜃1)
Pr(𝜃2)

Pr(𝜃2)
Pr(𝜃1)

=
Pr(z ∣ 𝜃1)
Pr(z ∣ 𝜃2)

,

which is the likelihood ratio.

2.3.2.2 Derivation of the Bayes’ Factor:
Simple Versus Composite Propositions

Imagine an alternative scenario involving again
questioned documents where the competing
propositions are as follows:

H1: Mr X is the author of the questioned docu-
ment;

H2: Mr Y or Mr T is the author of the questioned
document.

The second proposition, i.e. the defence proposi-
tion, may be thought of as a composite proposition;
there is more than one possible alternative to the
first proposition. Under the latter proposition,
H2, someone else is the author of the document.
The term ‘someone else’ refers to a limited set of
authors as the potential source. As in the previous
section, H1 = 𝜃1 will be taken to mean that Mr X is
the author of the questioned document (H1 holds),
whilst H2 = {𝜃2, 𝜃3} will be taken to mean that
either Mr Y (𝜃2) or Mr T (𝜃3) is the author of the
questioned document (H2 holds).
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Following the same line of reasoning as in the
previous section, the posterior probability for H1 is

Pr(H1 ∣ z) =
Pr(z ∣ 𝜃1)Pr(𝜃1)

Pr(z ∣ 𝜃1)Pr(𝜃1) + Pr(z ∣ 𝜃2)Pr(𝜃2)
+Pr(z ∣ 𝜃3)Pr(𝜃3)

.

Analogously,

Pr(H2 ∣ z) =
Pr(z ∣ 𝜃2)Pr(𝜃2) + Pr(z ∣ 𝜃3)Pr(𝜃3)
Pr(z ∣ 𝜃1)Pr(𝜃1) + Pr(z ∣ 𝜃2)Pr(𝜃2)

+Pr(z ∣ 𝜃3)Pr(𝜃3)

.

The posterior odds becomes

Pr(H1 ∣ z)
Pr(H2 ∣ z)

=
Pr(z ∣ 𝜃1)Pr(𝜃1)∑

i=2,3 Pr(z ∣ 𝜃i)Pr(𝜃i)
.

Given that the prior odds are

Pr(H1)
Pr(H2)

=
Pr(𝜃1)∑

i=2,3 Pr(𝜃i)
,

the BF becomes

BF =
Pr(z ∣ 𝜃1)Pr(𝜃1)∑

i=2,3 Pr(z ∣ 𝜃i)Pr(𝜃i)

∑
i=2,3 Pr(𝜃i)
Pr(𝜃1)

=
Pr(z ∣ 𝜃1)

∑
i=2,3 Pr(𝜃i)∑

i=2,3 Pr(z ∣ 𝜃i)Pr(𝜃i)
.

It can be observed that the Bayes’ factor is also a
function of the prior inputs and does not simplify
to a likelihood ratio. Its interpretation is, however,
unchanged.

There is further discussion on this topic in
Section 6.1.4 where the composite proposition is
split into multiple propositions.
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2.3.3 Three-Way Tables

This hypothetical example is based on fingerprint
data from thumbs, rounded for ease of understand-
ing, extracted from Champod et al. (2016b). The
data are presented in a three-way table with binary
characteristics:

• The gender of the person to whom the print
belongs: F= female, M =male.

• The hand from which the print was taken:
LT= left thumb, RT= right thumb.

• The type of feature: PA= plain arch, TA= tented
arch.

Table 2.5 gives the frequency counts extracted
from Tables A2 and A3 of Champod et al. (2016b),
with the counts edited for ease of arithmetic and
reported in tens of thousands.

From Table 2.5, the following probabilities,
among others, may be derived.

Pr(F) = Pr(Female) = 62∕207 = 0.30.
Pr(PA) = Pr(Plain arch) = 185∕207 = 0.89.

Pr(F) × Pr(PA) = 62
207

× 185
207

= 0.268.

However,

Pr(F and PA) = Pr(Female and Plain arch)
= 57∕207 = 0.275.

Thus

Pr(F and PA) ≠ Pr(F) × Pr(PA).
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Table 2.5 Frequency of fingerprint characteristics by
gender and handedness extracted and edited from
Champod et al. (2016b). Reprinted with permissions of
CRC Press LLC.

Type of arch Gender Total

Female Male
F M

Left thumb (LT)

Plain arch (PA) 23 45 68
Tented arch (TA) 2 7 9

Total 25 52 77

Right thumb (RT)

Plain arch (PA) 34 83 117
Tented arch (TA) 3 10 13

Total 37 93 130

Combined
Plain arch (PA) 57 128 185
Tented arch (TA) 5 17 22

Total 62 145 207

Data are in 10 000s; for example, the entry 22 represents
220 000 prints.

The gender of the print and the characteristic are
not independent.

As well as the aforementioned joint probability,
conditional probabilities can also be determined.
Sixty-two people are female (F). Of these, 57
have a plain arch (PA) Thus, Pr(PA ∣ F) × Pr(F) =
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(57∕62) × (62∕207) = 57∕207 = Pr(F and PA),
which provides verification of the third law of
probability (1.8). Similarly, Pr(F ∣ LT) = 25∕77 =
0.325. Equation (2.4) may be verified by noting
that Pr(LT) = 77∕207 and so,

Pr(F ∣ LT) = Pr(LT ∣ F) × Pr(F)
Pr(LT)

=
(25∕62) × (62∕207)

77∕207
= 25∕77.

Now, consider only people with a plain arch.

Pr(F ∣ PA) = 57∕185
= 0.308.

Pr(LT ∣ PA and F)) = 23∕(23 + 34)
= 0.404,

and
Pr(F and LT ∣ PA) = Pr(F ∣ PA and LT)

× Pr(LT ∣ PA) = (23∕68) × 68∕185

= 23∕185

from (1.8).
The odds version of Bayes’ theorem,

Pr(F ∣ PA)
Pr(M ∣ PA)

= Pr(PA ∣ F) × Pr(F)
Pr(PA ∣ M) × Pr(M)

= Pr(PA ∣ F)
Pr(PA ∣ M)

× Pr(F)
Pr(M)

,
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which is of particular relevance to the evaluation
of evidence, may also be verified. From Table 2.5
Pr(F) = 62∕207, Pr(M) = 145∕207. For a print
with a plain arch, Pr(PA ∣ F) = 57∕62, Pr(PA ∣
M) = 128∕145. Thus

Pr(PA ∣ F)
Pr(PA ∣ M)

× Pr(F)
Pr(M)

=
(57∕62) × (62∕207)

(128∕145) × (145∕207)
= 57∕128

=
57∕185

128∕185
= Pr(F ∣ PA)

Pr(M ∣ PA)
.

(2.9)

The odds form of Bayes’ theorem has been veri-
fied numerically.

Consider this example as an identification prob-
lem. Before any information about a fingermark,
say, is available, the pool of people of interest is
known to contain 62 females and 145 males.
The odds in favour of the criminal being female
are 62:145 (62/145). It is then discovered that
there is a plain arch in a fingermark determined
to have come from the criminal. The odds are now
changed, using the procedure in the example,
from being 62 : 145 in favour of female to 57 :
128 in favour of female. The effect or value of
the evidence has been to multiply the prior odds
by a factor of 1.04. The value of the evidence
is 1.04. The probability the criminal is female
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is 57/185=0.308. The prior probability the
criminal was female was 62/207=0.300.

2.3.4 Logarithm of the Likelihood
Ratio

Odds and the likelihood ratio take values between
0 and ∞. Logarithms of these statistics take values
on (−∞,∞). Also, the odds form of Bayes’ theorem
involves a multiplicative relationship. If logarithms
are taken, the relationship becomes an additive
one:

log
{

Pr(S ∣ R)
Pr(S̄ ∣ R)

}
= log

{
Pr(R ∣ S)
Pr(R ∣ S̄)

}

+ log
{

Pr(S)
Pr(S̄)

}
. (2.10)

The idea of evaluating evidence by adding it to
the logarithm of the prior odds is very much
in keeping with the intuitive idea of weighing
evidence in the scales of justice. The logarithm of
the likelihood ratio has been given the name the
weight of evidence (Good, 1950), and see also Peirce
(1878). Peirce defines probability as the ratio of
‘favourable cases to all the cases’. He defined the
chance of an event the ratio of ‘favourable cases
to unfavourable cases’, what is now known as
odds. He argued that the chance of an event has
‘an intimate connection with our belief in it’. Any
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‘quantity which varies with the chance might,
therefore, it would seem serve as a thermometer
for the proper intensity of belief’. He then argued
that the quantity that serves as a thermometer
in this way is the ‘logarithm of the chance’. He
mentioned another consideration to support the
choice of a logarithm. ‘It is that our belief ought to
be proportional to the weight of evidence’. Finally,
Peirce (1878) wrote:

The rule for the combination of independent concurrent
arguments takes a very simple form when expressed in
terms of the intensity of belief, measured in the proposed
way [with logarithms]. It is this: Take the sum of all the
feelings of belief which would be produced separately by all
the arguments pro, subtract from that the similar sum for
arguments con and the remainder is the feeling of belief we
ought to have on the whole. (p. 294)

A likelihood ratio with a value greater than 1,
which leads to an increase in the odds in favour
of S, has a positive weight. A likelihood ratio with
a value less than 1, which leads to a decrease in
the odds in favour of S, has a negative weight. A
positive weight may be thought to tip the scales
of justice one way, a negative weight may be
thought to tip the scales of justice the other way.
A likelihood ratio with a value equal to 1 leaves
the odds in favour of S and the scales unchanged.
The evidence is logically relevant only when the
probability of finding that evidence given the truth
of some proposition at issue in the case differs
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from the probability of finding the same evidence
given the falsity of the proposition at issue; i.e.
the log-likelihood ratio is not zero (Kaye, 1986b).
The logarithm of the likelihood ratio (sometimes
called relevance ratio or weight) provides an
equivalent measure of relevance. This method is
advantageous, because it equates the relevance
of evidence offered by both the prosecution and
the defendant (Lempert, 1977). The log-likelihood
ratio also has qualities of symmetry and additivity
that other measures lack (Edwards, 1986). Lyon
and Koehler (1996) believe the simplicity and
intuitive appeal of the relevance ratio make it a
good candidate for heuristic use by judges. The
mathematical symmetry between the weight of
evidence for the prosecution proposition and the
weight of evidence for the defendant’s proposi-
tion can be maintained by inverting the weight
of evidence when considering the defendant’s
proposition.

A verbal scale based on logarithms (Aitken and
Taroni, 1998) and several other verbal scales are
discussed in Section 2.4.6.

Example 2.6. Consider two propositions regard-
ing a coin.

• S: the coin is double-headed; if S is true, the prob-
ability of tossing a head equals 1, the probability
of tossing a tail equals 0.

• S̄: the coin has one head and one tail and is fair: if
S̄ is true the probability of tossing a head equals
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the probability of tossing a tail and both equal
1/2.

Notice that these are not complementary proposi-
tions; the coin may be biased.

The coin is tossed 10 times and the outcome of
any one toss is assumed independent of the oth-
ers. The result R is 10 heads. Then Pr(R ∣ S) = 1,
Pr(R ∣ S̄) = (1

2
)10. The likelihood ratio is

Pr(R ∣ S)
Pr(R̄ ∣ S̄)

= 1
(1∕2)10

= 210 = 1024.

The evidence is 1024 times more likely if the
coin is double-headed. The weight of the evidence
is 10 log(2). Each toss that yields a head con-
tributes a weight log(2) to the hypothesis S that
the coin is double-headed. Suppose, however,
that the outcome of one toss is a tail (T). Then
Pr(T ∣ S) = 0, Pr(T ∣ S̄) = 1∕2. The likelihood
ratio Pr(T ∣ S)∕Pr(T ∣ S̄) = 0 and the posterior
odds in favour of S relative to S̄ equals 0. This
is to be expected. A double-headed coin cannot
produce a tail. If a tail is the outcome of a toss then
the coin cannot be double-headed.

A brief history of the use of the weight of evi-
dence is given by Good (1991). Units of measure-
ment are associated with it. When the base of the
logarithms is 10, Turing suggested that the unit
should be called a ban and one tenth of this would
be called a deciban, abbreviated to db, and thought
equivalent to the minimum value of evidence
which it is possible to detect in an investigation.
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2.4 THE VALUE OF EVIDENCE

2.4.1 Evaluation of Forensic Evidence

Consider the odds form of Bayes’ theorem in the
forensic context of assessing the value of some
evidence. The initial discussion is in the context of
the guilt or otherwise of the PoI. This may be the
case, for example, in the context of Example 1.1, if
all innocent explanations for the bloodstain have
been eliminated. Later, greater emphasis will be
placed on propositions that the PoI was, or was
not, present at the scene of the crime. At present,
replace event S by a proposition Hp, that the PoI
(or defendant if the case has come to trial) is
truly guilty. Event S̄ is replaced by proposition Hd,
that the PoI is truly innocent. Event R is replaced
by event E𝑣, the evidence under consideration.
This may be written as (E,M) = (Ec,Es,Mc,Ms),
the type of evidence and observations of it as
described in Section 1.7.1. The odds form of Bayes’
theorem then enables the prior odds (i.e. prior
to the presentation of E𝑣) in favour of guilt to be
updated to posterior odds given E𝑣, the evidence
under consideration. This is done by multiplying
the prior odds by the likelihood ratio that, in this
context, is the ratio of the probabilities of the
evidence assuming guilt and assuming innocence
of the PoI. With this notation, the odds form of
Bayes’ theorem may be written as

Pr(Hp ∣ E𝑣)
Pr(Hd ∣ E𝑣)

=
Pr(E𝑣 ∣ Hp)
Pr(E𝑣 ∣ Hd)

×
Pr(Hp)
Pr(Hd)

.
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Explicit mention of the background information I
is omitted in general from probability statements
for ease of notation. With the inclusion of I the odds
form of Bayes’ theorem is

Pr(Hp ∣ E𝑣, I)
Pr(Hd ∣ E𝑣, I)

=
Pr(E𝑣 ∣ Hp, I)
Pr(E𝑣 ∣ Hd, I)

×
Pr(Hp ∣ I)
Pr(Hd ∣ I)

.

Notice the important point that in the evaluation
of the evidence E𝑣 it is two probabilities that are
necessary: the probability of the evidence if the PoI
is guilty and given the background information
and the probability of the evidence if the PoI is
innocent and given the background information.
Background information is sometimes known as
the framework of circumstances or the conditioning
information. As noticed in the ENFSI Guideline for
evaluative reporting in forensic science (ENFSI,
2015), the background information is

[...] the relevant case information that helps the foren-
sic practitioner recognise the pertinent issues, select
the appropriate propositions and carry out the case
pre-assessment.6 It shall always be regarded as provisional
and the examiner shall be ready to re-evaluate findings
if the conditioning information changes. Examples of
relevant information that could change include the nature
of the alleged activities, time interval between incident
and the collection of traces (and reference items) and the
suspect’s/victim’s account of their activities. (p. 21)

More details on the role of background informa-
tion are presented in Section 2.4.4.

6See Sections 5.5.1 and 5.5.2 for details on case and evidence
pre-assessment, respectively.
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Note that it is not sufficient to consider only the
probability of the evidence if the PoI is innocent
and to declare that a small value of this is indica-
tive of guilt. The probability of the evidence if the
PoI is guilty has also to be considered.

Similarly, it is not sufficient to consider only the
probability of the evidence if the PoI is guilty and
to declare that a high value of this is indicative of
guilt. The probability of the evidence if the PoI is
innocent has also to be considered. An example of
this is the treatment of the evidence of a bite mark
in the Biggar murder in 1967–1968 (Harvey
et al., 1968), an early example of odontology in
forensic science. In that murder a bite mark was
found on the breast of the victim, a young girl,
which had certain characteristic marks, indicative
of the conformation of the teeth of the person who
had bitten her. A 17-year old boy, who was already
a PoI, was found with this conformation. Such
evidence would help towards the calculation of
Pr(E𝑣 ∣ Hp, I). However, there was no information
available about the incidence of this conformation
among the general public. Examination was
made of 90 boys aged 16–18. This enabled an
estimate – albeit an intuitive one – of Pr(E𝑣 ∣ Hd, I)
to be obtained and to show that the particular
conformation found on the breast of the victim
was not at all common.

Consider the likelihood ratio Pr(E𝑣 ∣ Hp)∕Pr(E𝑣 ∣
Hd) further where explicit mention of I has again
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been omitted. This equals

Pr(E ∣ Hp,M)
Pr(E ∣ Hd,M)

×
Pr(M ∣ Hp)
Pr(M ∣ Hd)

.

The second ratio in this expression, Pr(M ∣ Hp)∕
Pr(M ∣ Hd), concerns the type and quantity of
evidential material found at the crime scene and
on the suspect. It may be written as

Pr(Mc ∣ Mr,Hp)
Pr(Mc ∣ Mr,Hd)

×
Pr(Mr ∣ Hp)
Pr(Mr ∣ Hd)

.

The value of the second ratio in this expression
may be taken to be 1. The type and quantity of
material at the crime scene is independent of
whether the PoI is the criminal or someone else is.
The value of the first ratio, which concerns the
evidential material found on the PoI given the evi-
dential material found at the crime scene and
the guilt or otherwise of the PoI, is a matter for
subjective judgement and it is not proposed to
consider its determination further here. Instead,
consideration will be concentrated on

Pr(E ∣ Hp,M)
Pr(E ∣ Hd,M)

.

In particular, M will be subsumed into I and omit-
ted, for ease of notation. Then,

Pr(M ∣ Hp)
Pr(M ∣ Hd)

×
Pr(Hp)
Pr(Hd)
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which equals
Pr(Hp ∣ M)
Pr(Hd ∣ M)

will be written as

Pr(Hp)
Pr(Hd)

.

Thus
Pr(Hp ∣ E𝑣)
Pr(Hd ∣ E𝑣)

=
Pr(Hp ∣ E,M)
Pr(Hd ∣ E,M)

will be written as

Pr(Hp ∣ E)
Pr(Hd ∣ E)

and
Pr(E𝑣 ∣ Hp)
Pr(E𝑣 ∣ Hd)

×
Pr(Hp)
Pr(Hd)

will be written as

Pr(E ∣ Hp)
Pr(E ∣ Hd)

×
Pr(Hp)
Pr(Hd)

.

The full result is then

Pr(Hp ∣ E)
Pr(Hd ∣ E)

=
Pr(E ∣ Hp)
Pr(E ∣ Hd)

×
Pr(Hp)
Pr(Hd)

, (2.11)

or if I is included

Pr(Hp ∣ E, I)
Pr(Hd ∣ E, I)

=
Pr(E ∣ Hp, I)
Pr(E ∣ Hd, I)

×
Pr(Hp ∣ I)
Pr(Hd ∣ I)

. (2.12)
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The likelihood ratio is the ratio

Pr(Hp ∣ E, I)∕Pr(Hd ∣ E, I)
Pr(Hp ∣ I)∕Pr(Hd ∣ I)

(2.13)

of posterior odds to prior odds. It is the factor that
converts the prior odds in favour of guilt to the
posterior odds in favour of guilt or more generally,
it is the factor that converts the prior odds in
favour of a proposition put forward by a given
party, say, the prosecutor, to the posterior odds
in favour of the same proposition. The represen-
tation in (2.12) also emphasises the dependence
of the prior odds on background information.
Previous evidence may be included here also, see,
for example, Section 5.3.2.5.

It is often the case that another representation
may be appropriate. Sometimes it may not be pos-
sible to consider the effect of the evidence on the
guilt or innocence of the PoI. However, it may be
possible to consider the effect of the evidence on
the possibility that a given action has been com-
mitted by the PoI at the crime scene. For example,
a blood stain at the crime scene may have the same
DNA profile as that of the PoI. This, considered in
isolation, would not necessarily be evidence to sug-
gest that the PoI was guilty, only that they were at
the crime scene. Consider the following two com-
plementary propositions:

Hp: the PoI was at the crime scene;

Hd: the PoI was not at the crime scene.
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The odds form of Bayes’ theorem is then

Pr(Hp ∣ E, I)
Pr(Hd ∣ E, I)

=
Pr(E ∣ Hp, I)
Pr(E ∣ Hd, I)

×
Pr(Hp ∣ I)
Pr(Hd ∣ I)

, (2.14)

identical to (2.12) but with different definitions
for Hp and Hd. The likelihood ratio converts the
prior odds in favour of Hp into the posterior odds
in favour of Hp.

The likelihood ratio may be thought of as the
value of the evidence. Evaluation of evidence, the
theme of this book, will be taken to mean the
determination of a value for the likelihood ratio.
This value will be denoted V.

Definition. Consider two competing proposi-
tions, Hp and Hd, and background information I.
The value V of the evidence E is given by

V =
Pr(E ∣ Hp, I)
Pr(E ∣ Hd, I)

, (2.15)

the likelihood ratio that converts prior odds
Pr(Hp ∣ I)∕Pr(Hd ∣ I) in favour of Hp relative to Hd

into posterior odds Pr(Hp ∣ E, I)∕Pr(Hd ∣ E, I) in
favour of Hp relative to Hd.

An illustration of the effect of evidence with a
value V of 1000 on the odds in favour of Hp, relative
to Hd, is given in Table 2.6.

This is not a new idea. Consider the following
quotes from Kaye (1979):



�

� �

�

The Value of Evidence 145

Table 2.6 Effect on prior odds in favour of Hp relative
to Hd of evidence E with value V of 1 000.

Prior odds V Posterior odds
Pr(Hp)∕Pr(Hd) Pr(Hp ∣ E)∕Pr(Hd ∣ E)

1/10 000 1 000 1/10
1/100 1 000 10
1 (evens) 1 000 1 000
100 1 000 100 000

Reference to background information I is omitted.

That approach does not ask the jurors to produce any
number, let alone one that can qualify as a probability. It
merely shows them how a ‘true’ prior probability would
be altered, if one were in fact available. It thus supplies
the jurors with as precise and accurate an illustration
of the probative force of the quantitative data as the
mathematical theory of probability can provide. Such a
chart, it can be maintained, should have pedagogical value
for the juror who evaluates the entire package of evidence
solely by intuitive methods, and who does not himself
attempt to assign a probability to the ‘soft’ evidence.

[A] more fundamental response is that there appears to be
no reason in principle why a juror could not generate a prior
probability that could be described in terms of the objec-
tive, relative-frequency sort of probability. One could char-
acterise the juror ’s prior probability as an estimate of the
proportion of cases in which a defendant confronted with
the same pattern of non-quantitative evidence as exists in
the case at bar would in fact turn out to have stabbed the
deceased.

This practical difficulty does not undercut the conceptual
point. (pp. 52–53)
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This comment was reiterated by Kaye (1982) by
affirming:

[one] could merely display posterior distributions for a
wide range of possible priors, for the purpose of showing
the probative force of the measured value of X. This
procedure would not require the court or jury to settle on
any particular prior distribution. (p. 779)

This idea was supported by Fienberg (1982)
followed by Berry and Geisser (1986).

Care has to be taken with the interpretation
of the likelihood ratio if the propositions Hp and
Hd are not exhaustive. Consider the following
example taken from Royall (1997, p. 8). Evi-
dence E that supports Hp over Hd in the sense
that the likelihood ratio Pr(E ∣ Hp)∕Pr(E ∣ Hd)
is greater than 1 can be such that the proba-
bilities of both propositions are reduced; Pr(Hp ∣
E) < Pr(Hp) and Pr(Hd ∣ E) < Pr(Hd). Suppose
there is a third proposition Hc and that a pri-
ori Pr(Hp) = Pr(Hd) = Pr(Hc) = 1

3
so that the

three propositions are mutually exclusive and
exhaustive; propositions Hp and Hd are exclu-
sive but not exhaustive. Suppose also that
there is evidence E that takes a value x, such
that Pr(Hp ∣ x) = 1

6
,Pr(Hd ∣ x) = 1

12
and Pr(Hc ∣

x) = 3
4

. The effect of E is reduce the probability of
Hp and of Hd whilst increasing the probability
of Hc. Evidence E also doubles the probability of
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Hp relative to Hd; i.e. Pr(Hp ∣ E = x) < Pr(Hp) and
Pr(Hd ∣ E = x) < Pr(Hd), yet

Pr(Hp ∣ E = x)
Pr(Hd ∣ E = x)

= 2
Pr(Hp)
Pr(Hd)

.

The evidence does not support Hp taken alone – it
supports Hp over Hd. This caveat should be made
clear in the interpretation of evidence.

Similar arguments hold for other values of
the likelihood ratio when the two propositions
are not exhaustive. In particular, it is possible to
have evidence E with a likelihood ratio of 1 and
Pr(Hp ∣ E) > Pr(Hp). This inequality does not mean
that E is probative for Hp since Pr(Hd ∣ E) > Pr(Hd)
also and

Pr(Hp ∣ E)
Pr(Hd ∣ E)

=
Pr(Hp)
Pr(Hd)

.

For further discussion see Fenton et al. (2014)
and Biedermann et al. (2014).

A further property of the likelihood ratio is
the ease with which the posterior odds may be
updated with new evidence. The posterior odds
for one piece of evidence become the prior odds
for the next piece of evidence. Given two pieces of
evidence, E1 and E2,

Pr(Hp ∣ E1,E2)
Pr(Hd ∣ E1,E2)

=
Pr(E2 ∣ Hp,E1)
Pr(E2 ∣ Hd,E1)

×
Pr(Hp ∣ E1)
Pr(Hd ∣ E1)

.

(2.16)
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An application of the above argument can be
illustrated from R v. Adams, D.J. (1997) and Dawid
(2002).

Adams was arrested for rape. The evidence
E linking him to the crime was, first, a match
between his DNA and that of semen obtained
from the victim and, second, the fact that he lived
locally. A conditional match probability of 1 in
200 million for the DNA was reported (see Section
6.1.5 for a comment on such a statistic). The
defence challenged this and suggested a figure
of 1 in 20 million or even 1 in 2 million could
be more appropriate. There was other (prior)
information:

• Identification (I1): The victim gave a description
of her attacker, which was hard to reconcile with
the defendant and did not pick out the defendant
in an identity parade.

• Alibi (I2): A former girlfriend of Adams gave an
alibi, which was not challenged.

At the trial, with the consent of the prosecution,
the defence and the Court, the jury was given
instruction in the correct way to combine all
the evidence. A prior probability of guilt was
introduced, followed by what were claimed to be
plausible likelihood ratios for I1 and I2. The DNA
evidence (E) was then introduced to provide a final
posterior probability of guilt. Of course, the figures
which follow could be challenged or the jury could
substitute their own figures.
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Consider two propositions:

Hp: Adams is guilty;

Hd: Adams is not guilty.

The prior probability of guilt was assessed as
follows: there were thought to be approximately
150 000 males between 18 and 60 in the area
who, in the absence of other evidence, may
have committed the crime. Another 50 000
were added to this to allow for the possibility
that the attacker may have come from outside
the area (i.e. a probability of 0.25 for the pos-
sibility that the attacker came from outside the
area was thought appropriate). Thus Pr(Hp) =
1∕200 000, Pr(Hp)∕Pr(Hd) = 1∕199 999 ≃ 1∕
200 000. The other two pieces of evidence, that of
identification (I1) and alibi (I2), were assessed as
follows:

• Identification evidence: I1 was assigned a prob-
ability Pr(I1 ∣ Hp) = 0.1, if he were guilty
and a probability Pr(I1 ∣ Hd) = 0.9 if he were
innocent. Note that these two probabilities
sum to 1 but they need not necessarily do so
(see the alibi evidence in the following text.)
These assignations provided a likelihood ratio
Pr(I1 ∣ Hp)∕Pr(I1 ∣ Hd) = 1∕9 (or a likelihood
ratio Pr(I1 ∣ Hd)∕Pr(I1 ∣ Hp) = 9 in favour of the
defence).

• Alibi evidence: I2 was assigned a probabil-
ity Pr(I2 ∣ Hp) = 0.25, if he were guilty and
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a probability Pr(I2 ∣ Hd) = 0.50, if he were
innocent. These assignations provided a likeli-
hood ratio Pr(I2 ∣ Hp)∕Pr(I2 ∣ Hd) = 1∕2 (or a
likelihood ratio Pr(I2 ∣ Hd)∕Pr(I2 ∣ Hp) = 2 in
favour of the defence).

These two items of evidence were assumed to be
independent. Thus, placing Hd in the numerator
and Hp in the denominator,

Pr(I1, I2 ∣ Hd)
Pr(I1, I2 ∣ Hp)

=
Pr(I1 ∣ Hd)
Pr(I1 ∣ Hp)

×
Pr(I2 ∣ Hd)
Pr(I2 ∣ Hp)

= 18

which is an overall likelihood ratio of 18 in favour
of the defence. This likelihood ratio can then be
combined with the prior odds Pr(Hd)∕Pr(Hp) of
200 000, to give odds before consideration of the
DNA evidence of

Pr(Hd ∣ I1, I2)
Pr(Hp ∣ I1, I2)

=
Pr(I1 ∣ Hd)
Pr(I1 ∣ Hp)

×
Pr(I2 ∣ Hd)
Pr(I2 ∣ Hp)

×
Pr(Hd)
Pr(Hp)

which equals 3.6 million in favour of the defence
or against the prosecution.

Now the DNA evidence E (with a likelihood
ratio of 200 million to 2 million in favour of the
prosecution) is included through multiplication
with the odds of 1 in 3.6 million, from considera-
tion of I1 and I2. The DNA evidence E is assumed



�

� �

�

The Value of Evidence 151

independent of I1 and I2.

V =
Pr(Hp ∣ E, I1, I2)
Pr(Hd ∣ E, I1, I2)

=
Pr(E, I1, I2 ∣ Hp)
Pr(E, I1, I2 ∣ Hd)

×
Pr(Hp)
Pr(Hd)

=
Pr(E ∣ Hp)
Pr(E ∣ Hd)

×
Pr(I1 ∣ Hp)
Pr(I1 ∣ Hd)

×
Pr(I2 ∣ Hp)
Pr(I2 ∣ Hd)

×
Pr(Hp)
Pr(Hd)

,

where Pr(E ∣ Hp)∕Pr(E ∣ Hd) may be taken to 200
million (the prosecution’s suggestion) or 2 million
(the lower of the suggestions of the defence). These
results give posterior odds from 56 to 1 (200/3.6)
in favour of guilt to 1.8 to 1 in favour of innocence.
These odds in turn give a posterior probability
of guilt of 0.98 (56/57) or 0.36 (1 − 1.8/2.8)
depending on the conditional match probability
previously considered. The defence argued from
these figures that guilt was not proved ‘beyond
reasonable doubt’.

The jury returned a verdict of guilty. The
Appeal Court rejected the attempt to introduce
probabilistic reasoning into court saying that ‘it
trespasses on an area peculiarly and exclusively
within the province of the jury’, and ‘to introduce
Bayes’ theorem, or any similar method, into a
criminal trial plunges the jury into inappropriate
and unnecessary realms of theory and complexity
deflecting them from their proper task’. (This is
reminiscent of comments made in the appeal for
the Collins’ case, Section 3.4.) The task of the
jury was said to be to ‘evaluate evidence and
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reach a conclusion not by means of a formula,
mathematical or otherwise, but by the joint
application of their individual common sense
and knowledge of the world to the evidence
before them’. This fails to recognise that so-called
common sense usually fares very badly when it
comes to manipulating probabilities.

The appeal was granted on the basis that the
trial judge had not adequately dealt with the
question of what the jury should do if they did not
want to use Bayes’ theorem. A retrial was ordered.
Attempts were made to describe the Bayesian
approach to the integration of all the evidence.
Once again the jury convicted, once again the
case went to appeal and once again the Bayesian
approach was rejected as inappropriate to the
courtroom, and the appeal was dismissed.

Note that Dennis Adams had a full brother
whose DNA was not investigated. The probability
that the brother had the same DNA profile as the
defendant was calculated as 1 in 220. This was
claimed to weaken the impact of the DNA evidence
against Dennis Adams. This point was dismissed
on the grounds that there was no evidence as to
the brother’s actual DNA profile, nor any sugges-
tion that he might have committed the offence.
However, there was also no other evidence against
Dennis Adams except the DNA evidence and that
he lived locally.

Consider the case of R v. Lashley (2000)
discussed by Redmayne (2002). Lashley was
convicted of the robbery of a Liverpool post office.
The only evidence against him was a DNA match,
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which left him as a suspect along with 7–10
other males in the United Kingdom. There was
no evidence linking him to the Liverpool area. His
conviction was quashed on appeal.

However, the case of R v. Smith (2000), with the
same judges on the same day as Lashley (2000),
was treated differently. He was convicted of the
robbery of a post office in Barley, Hertfordshire.
The principal evidence against him was a corre-
sponding DNA profile (with conditional match
probability 1 in 1.25 million), which (as in R v.
Adams, D.J. (1997)) left him as a suspect along
with 43 other males in the United Kingdom. His
appeal was quashed because the DNA evidence
‘did not stand alone because there was also quite
clearly evidence of this man having been arrested
some shortish distance away’.

Smith was arrested at a place called Potton,
which is 13 miles from Barley. A circle centred
on Barley with Potton on its border encloses
several cities and, at a rough estimate, some
80 000 men of appropriate age who live at least
as close to Barley as Smith. This figure could be
used to provide prior odds of 1 in 80 000 against
Smith’s guilt. This may be combined with the DNA
evidence to produce a probability of guilt of 0.94.
If it is thought at least 16 times as bad to convict
an innocent person as to acquit a guilty person,
then Smith would not be convicted.

Also, Smith came from a large family – his father
had 13 brothers and sisters. The Court of Appeal
did not pursue this. As in R v. Adams, D.J. (1997),
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there was no evidence to implicate the relatives,
but, apart from the DNA (and geography) neither
was there evidence to implicate Smith. If it is
assumed that all members of the population of
potential suspects are equally likely to have com-
mitted the crime, then any relatives among the
population are, prior to the DNA test, as likely to be
guilty as anyone else. Relatives are far more likely
to match than other members of the population
and so should not be ignored (Lempert, 1991,
1993; Balding, 2000; Redmayne, 2002). See also
Section 6.1.4 for a discussion on relatives and
multiple propositions.

2.4.2 Justification of the Use of the
Likelihood Ratio

The odds form of Bayes’ theorem presents a
compelling intuitive argument for the use of
the likelihood ratio as a measure of the value of the
evidence, or – as expressed by Good (1985) – a
measure to quantify ‘the factor in favour of H
provided by E’ (p. 252).

A mathematical argument exists also to justify
its use. A simple proof is given in Good (1989),
reiterated in Good (1991) and repeated here for
convenience.7

It is desired to measure the value V of evidence
E in favour of guilt Hp. There will be dependence
on background information I but this will not be
stated explicitly. It is assumed that this value V is a
7Note that a theorem showing that the likelihood ratio measure
can be axiomatised has been presented by Crupi et al. (2013).
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function only of the probability of E given that the
PoI is guilty, Hp, and of the probability of E given
that the PoI is innocent, Hd.

Let x = Pr(E ∣ Hp) and y = Pr(E ∣ Hd). The
assumption above states that

V = f (x, y)

for some function f .
Consider another piece of evidence T, which is

irrelevant to (independent of) E and Hp (and hence
Hd) and which is such that Pr(T) = 𝜃. Then

Pr(E, T ∣ Hp) = Pr(E ∣ Hp)Pr(T ∣ Hp)

by the independence of E and T

= Pr(E ∣ Hp)Pr(T)

by the independence of T and Hp

= 𝜃x.
Similarly,

Pr(E, T ∣ Hd) = 𝜃y.

The value of the combined evidence (E, T) is equal
to the value of E, since T has been assumed irrele-
vant. The value of (E, T) is f (𝜃x, 𝜃y) and the value
of E = V = f (x, y). Thus

f (𝜃x, 𝜃y) = f (x, y)

for all 𝜃 in the interval [0,1] of possible values of
Pr(T).

The relationship between x and y within the
function f may take one of four forms depending
on the four mathematical operators +,×,− and /.
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+ f (x, y) = f (x + y);
f (𝜃x, 𝜃y) = f (𝜃x + 𝜃y) = f (𝜃(x + y)). This is not
equal to f (x + y) for all 𝜃 in the interval [0,1].
For example, try

f (x, y) = (x + y)2;

f (𝜃x, 𝜃y) = 𝜃2(x + y)2

= 𝜃2f (x, y).

× f (x, y) = f (x × y);
f (𝜃x, 𝜃y) = f (𝜃x × 𝜃y) = f (𝜃2(x × y)). This is not
equal to f (x × y) for all 𝜃 in the interval [0,1].

f (x, y) = (x × y)2;

f (𝜃x, 𝜃y) = 𝜃2(x × y)2

= 𝜃2f (x, y).

− f (x, y) = f (x − y);
f (𝜃x, 𝜃y) = f (𝜃x − 𝜃y) = f (𝜃(x − y)). This is not
equal to f (x − y) for all 𝜃 in the interval [0,1].

f (x, y) = (x − y)2;

f (𝜃x, 𝜃y) = 𝜃2(x − y)2

= 𝜃2f (x, y).

/ f (x, y) = f (x∕y);
f (𝜃x, 𝜃y) = f (𝜃x∕𝜃y) = f (x∕y). This is equal to
f (x, y) for all 𝜃 in the interval [0,1].

f (x, y) = (x∕y)2;

f (𝜃x, 𝜃, y) = (𝜃x∕𝜃y)2

= f (x, y).
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It follows that f is a function of x∕y alone and
hence that V is a function of

Pr(E ∣ Hp)∕Pr(E ∣ Hd),

namely, the likelihood ratio.
Arguments for the use of the likelihood ratio

as a measure for the value of evidence can be
found in Evett (1998), Champod et al. (2016a),
Gittelson et al. (2018), Ostrum (2019) and in
the Guidelines principles developed under the
programme ‘Probability and Statistics in Forensic
Science’ (2017).8 Recently, the UK Forensic
Science Regulator’s recommendations regarding
image comparison evidence clearly expressed the
way to proceed, even for digital evidence (Tully
and Stockdale, 2019):

What is the probability that those observations would have
been made if the first proposition were true? What is the
probability that those observations would have been made
if the second proposition were true? It is the ratio of those
two probabilities that is central to the evaluation. (p. 4)

It is not unusual for likelihood ratios to be pre-
sented by experts in US courts; examples are People
v. Collins (2015), People v. Belle (2015), People v.
Carter (2016), People v. Bullard-Daniel (2016), Ghe-
brezghi v. State (2018), Commonwealth v. McClellan
(2018), and United States v. Williams (2019).

8Report available at: www.newton.ac.uk/files/preprints/ni16061
.pdf.
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2.4.3 Single Value for the Likelihood
Ratio

The use of the likelihood ratio or Bayes’ factor as
a metric to assess the probative value of forensic
findings is largely supported by operational stan-
dards and recommendations in different forensic
disciplines, see, for example, the standards pre-
sented by the Association of Forensic Science
Providers (2009) and the ENFSI (2015) guideline
for evaluative reporting. It must be recognised that
the assessment of a value for the likelihood ratio
can be subjected to many sources of uncertainty,
including the quality of the data obtained from
analyses conducted by forensic scientists, the
choice of control sample and recovered items that
may be taken by different investigators or analysed
by different analysts or laboratories. The evalua-
tion of scientific evidence in court often requires a
combination of data on the occurrence of target
features, together with a personal knowledge of
circumstances from a particular case. Clearly, any
probability judgement referring to a particular
case, even when thought of in frequency format,
has a component based on personal knowledge
(Taroni et al., 2016, 2018b). Other sources
of uncertainty include the elicitation of prior
probabilities conditional on available knowledge
(see Section 2.3.2 where the possible influence of
prior inputs on the value of the evidence is men-
tioned), or even the implementation of numerical
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procedures to overcome computational difficulties
(Section 7.6.2.4).

There has been some debate as to whether a
likelihood ratio value should be accompanied
by an interval to take into account the various
sources of uncertainty. There is a school of thought
that recommends that a report on the value of the
likelihood ratio should include a measure of its
precision, for example, through the provision of
a numeric range of values for what it is believed
to be the probability of the evidence under the
competing propositions and therefore a numerical
range of values for the likelihood ratio. However,
the value of the evidence and the strength of
one’s belief in the value are different concepts and
should not be combined in an interval or result
in a change in the value of the evidence, such
as is done, for example, with the provision of a
lower bound of some arbitrarily chosen level. In
practice, for a criminal investigation, there is one
set of background data characterising members
of a given relevant population, one set of control
data, and one set of recovered data. Therefore,
for the evaluation of evidence with a particular
statistical model, there is one single value V for
the associated likelihood ratio. Again, it is to
be hoped that any different control sample and
recovered items are sufficiently representative
of the populations from which they have been
selected so that the likelihood ratios will differ
little in value. If asked about the trustworthiness
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of their reported values, a scientist can answer by
describing the amount of data and the available
expert’s knowledge used in the evaluative process.

An appreciation of the robustness of particular
assigned probabilities and, by extension, likelihood
ratios, is affected by the quality of the data and the
model on which the analysis was conducted. Such
explanations should help illustrate the extent to
which a particular reported value is data-based.
In this way, all the knowledge that informed the
stated value of the evidence is made available
to the court. It can then be explained that the
reported value remains the best quantification
possible given (i) the available evidence, (ii) the
chosen model, and (iii) the background data.
The probability assignments and, consequently,
the value of a likelihood ratio, determines the
best representation of one’s state of uncertainty at
a given moment in time. This aspect should not
be confused with the quantification of misleading
evidence, that is the assessment of the discrimi-
native capacity of a particular examination and
evaluation procedure with respect to a particular
proposition of interest. This argument about
misleading evidence, which is extensively treated
in Chapter 8, should however not distract from
the given case assessment. See also Section 7.6.3.

A report of a single value does not mean there
is no uncertainty, it simply means there is no
uncertainty about how to deal with the evidence.
If more evidence or data were available, and a
new model adopted, then a new analysis may be
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conducted which may result in a change in the
value. However, these different values should not
be combined in an interval. Moreover, it is unclear
how the values of different pieces of evidence that
are in the form of intervals could be combined in a
meaningful way (Bozza et al., 2018).

An extended argument in support of the use
a single value likelihood ratio can be found in
Taroni et al. (2016). Other scientists agreed with
this point of view or reiterated it, see for example,
Ommen et al. (2016), Berger and Slooten (2016),
Biedermann et al. (2016b), Taylor et al. (2016c),
and Dawid (2017), sometimes by addressing some
practical difficulties (Nordgaard, 2016). Criticisms
have been raised and addressed by Sjerps et al.
(2016), Morrison and Enzinger (2016), Curran
(2016), and van den Hout and Alberink (2016).

2.4.4 Role of Background Information

From (2.15) it can be seen that the value of the
evidence depends on the background information
I as well as the propositions Hp and Hd. The back-
ground information is personal to each individual.
It may be thought, therefore, that the value of the
evidence is different for each individual, the poste-
rior odds are then different for each individual and
hence there is little point in evaluating evidence.
That this is not the case when one individual is a
forensic scientist and another is a fact-finder was
pointed out by Aitken and Nordgaard (2017).
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Denote two participants in the judicial process
as A and B and denote the background informa-
tion available to each as Ia and Ib, respectively,
with the overall background information available
to them as I = Ia ∪ Ib. The odds form of Bayes
theorem (2.14) may then be written as

Pr(Hp ∣ E, Ia ∪ Ib)
Pr(Hd ∣ E, Ia ∪ Ib)

=
Pr(E ∣ Hp, Ia ∪ Ib)
Pr(E ∣ Hd, Ia ∪ Ib)

×
Pr(Hp ∣ Ia ∪ Ib)
Pr(Hd ∣ Ia ∪ Ib)

.

Partition Ia ∪ Ib into Ia\b, Ib\a and Iab where Ia\b is
background information that A has but not B, Ib\a
is background information that B has but not A
and Iab is the background information common to
A and B. Thus the elements of the set {Ia\b, Ib\a, Iab}
are mutually exclusive and their union is I.

Assume now that A is a fact-finder whose back-
ground information is formally independent of the
scientific evidence E and has no effect on the prob-
ability of E and that B is a forensic scientist whose
background information is formally independent
of the propositions Hp and Hd and has no effect on
the probability of Hp or Hd. Then

Pr(Hp ∣ E, Ia\b, Ib\a, Iab)
Pr(Hd ∣ E, Ia\b, Ib\a, Iab)

=
Pr(E ∣ Hp, Ia\b, Ib\a, Iab)
Pr(E ∣ Hd, Ia\b, Ib\a, Iab)

×
Pr(Hp ∣ Ia\b, Ib\a, Iab)
Pr(Hd ∣ Ia\b, Ib\a, Iab)

⇒
Pr(Hp ∣ E, Ia, Ib)
Pr(Hd ∣ E, Ia, Ib)

=
Pr(E ∣ Hp, Ib)
Pr(E ∣ Hd, Ib)

×
Pr(Hp ∣ Ia)
Pr(Hd ∣ Ia)
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⇒
Pr(Hp ∣ E, I)
Pr(Hd ∣ E, I)

=
Pr(E ∣ Hp, Ib)
Pr(E ∣ Hd, Ib)

×
Pr(Hp ∣ Ia)
Pr(Hd ∣ Ia)

.

(2.17)

The reformulation in (2.17) is justified by
the assumptions earlier as to the identities of
A and B. Thus Pr(E ∣ Hp, Ia\b, Ib\a, Iab) may be
written as Pr(E ∣ Hp, Ib) as E is independent
of Ia\b and dependent only on Ib\a ∪ Iab = Ib.
Similarly, Pr(E ∣ Hd, Ia\b, Ib\a, Iab) = Pr(E ∣ Hd, Ib),
Pr(Hp ∣ Ia\b, Ib\a, Iab) = Pr(Hp ∣ Ia) and Pr(Hd ∣
Ia\b, Ib\a, Iab) = Pr(Hd ∣ Ia).

The independence argument used for Ia and Ib is
formal as participants A and B have information Iab

in common. The fair administration of the criminal
justice system relies on this common information
being treated appropriately.

2.4.5 Summary of Competing
Propositions

Initially, when determining the value of evidence,
the two competing propositions were taken to be
that the PoI is guilty and that the PoI is innocent.
However, these are not the only possible proposi-
tions as discussed in Chapters 5 and 6.

Care has to be taken in a statistical discussion
about the evaluation of evidence as to the purpose
of the analysis. Misunderstandings can arise. For
example, it has been said that ‘the statistician’s
objective is a final, composite probability of guilt’
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(Kind, 1994). This may be an intermediate objec-
tive of a statistician on a jury. A statistician in such
a position would then have to make a decision
as to whether to find the defendant guilty or not
guilty. Determination of the guilt, or otherwise,
of a defendant is the duty of a judge and / or
jury. The objective of a statistician advising a
scientist on the value of the scientist’s evidence is
rather different. That objective is an assessment
of the value of the evidence under (at least) two
competing propositions. The evidence that is
being assessed will often be transfer evidence. The
propositions may be guilt or innocence. However,
in many cases they will be something else, e.g.
the DNA at the crime scene is from the PoI. An
illustration of the effect of evidence on the odds in
favour of a proposition Hp relative to a proposition
Hd has been given in Table 2.6.

However, it has to be emphasised that the deter-
mination of the prior odds is also a vital part of the
equation. That determination is part of the duty of
the judge and / or jury.

Several suggestions for competing propositions,
including those of guilt and innocence, are given
in the following text and extended in Section 5.2.

(1) Hp: the PoI is guilty;
Hd: the PoI is innocent.

(2) Hp: the PoI stabbed the victim at the crime
scene;
Hd: another man stabbed the victim at the
crime scene.
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(3) Hp: the crime sample came from a Cau-
casian;
Hd: the crime sample came from an Afro-
Caribbean.

(4) Hp: the alleged father is the true father of the
child;
Hd: the alleged father is not the true father of
the child.

(5) Hp: the two crime samples came from the PoI
and one other man;
Hd: the two crime samples came from two
other men.

(6) Hp: the PoI was the person who left the crime
stain;
Hd: the PoI was not the person who left the
crime stain.

(7) Hp: paint on the injured party’s vehicle orig-
inated from the vehicle of the PoI;
Hd: paint on the injured party’s vehicle orig-
inated from a random vehicle.

In general, the two propositions can be referred
to as the prosecutor’s and defence propositions,
respectively. The prosecutor’s proposition is the
one to be used for the determination of the prob-
ability in the numerator, the defence proposition
is the one to be used for the determination of the
probability in the denominator.

At a particular moment in a trial, the context is
restricted to (at least) two competing propositions.
Consider a rape case in which the victim reported
to police that she had been raped by a former
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boyfriend. A T-shirt belonging to the boyfriend is
examined and foreign fibres are collected from it.
The propositions offered may include

Hp: the PoI is the offender;

Hd1: the PoI is not the offender and has not seen
the victim during the past three weeks;

Hd2: the PoI is not the offender but on the night
of the alleged rape he was seen dancing with
the victim.

The evidence includes the attributes of the
foreign fibres found on the boyfriend’s T-shirt and
the attributes of fibres taken from the victim’s
garments. The value of this evidence will change
as the propositions offered by the prosecution
and defence change. Background information,
I, has also to be taken into account when defin-
ing propositions. Examples are presented in
Chapters 5 and 6.

Example 2.7. The following discussion is simplis-
tic in the context of DNA profiling and is provided
to illustrate simply the use of the likelihood ratio for
the evaluation of evidence. More realistic examples
for DNA profiling are given in Section 6.1.5.

A crime has been committed. A bloodstain
is found at the scene of the crime. All innocent
sources of the stain are eliminated and the crim-
inal is determined as the source of the relevant
stain. The purpose of the investigation is to deter-
mine the identity of the criminal; it is at present
unknown. For the LDLR locus, the bloodstain is
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of genotype Γ with a relative frequency 𝛾 in the
relevant population. A PoI has been identified
with the same genotype for locus LDLR as the
crime stain. These two facts, the genotype of the
crime stain (Er) and the genotype of the PoI (Ec)
together form the observations for the evidence
E = (Er,Ec). Notice again that locus LDLR is no
longer used in forensic genetics; it is used here for
ease of explanation.

The likelihood ratio can be evaluated as follows.
If the PoI is guilty (Hp), the genetical correspon-
dence between the two genotypes is certain
and Pr(E ∣ Hp) = 1. If the PoI is innocent (Hd),
the genetical correspondence is coincidental.
The criminal is known to be the source of the
crime stain and hence is of genotype Γ. The
probability that the PoI would also have group Γ is
𝛾 , the occurrence of Γ in the relevant population.
Thus, Pr(E ∣ Hd) = 𝛾 .

The likelihood ratio is Pr(E ∣ Hp)∕Pr(E ∣ Hd) =
1∕𝛾 . The odds in favour of G are multiplied by 1∕𝛾 .

Consider the following numerical illustration
of this for the LDLR locus. The three possible
genotypes and their frequencies (𝛾 equals the
percentage figures of Table 1.1 divided by 100)
for a Caucasian Chicago population (Johnson
and Peterson, 1999) were given in Table 1.1. The
effect (1∕𝛾) on the odds in favour of Hp is given in
Table 2.7 for each genotype.

Verbal interpretations may be given to these
figures. For example, if the crime stain were of
genotype AA, it could be said that ‘the evidence
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Table 2.7 Value of the evidence for each genotype,
given genotypic relative frequencies for locus LDLR
amongst Caucasians in Chicago based on a sample of
size 200.

Genotype (Γ) AA BB AB

Value (1∕𝛾) 5.32 3.12 2.04

Source: From Johnson and Peterson (1999), Table 1.1.
Reprinted with permissions of ASTM International.

of the genotype of the crime stain matching the
genotype of the PoI is about five times as likely
if the PoI is guilty than if they are innocent’. If
the crime stain were of type AB, it could be said
that ‘the evidence . . . is twice as likely if the PoI is
guilty than if they are innocent’.

Further discussion of these issues is given in
Chapter 5.

2.4.6 Qualitative Scale for the Value
of the Evidence

The quantitative value of evidence has been given
a qualitative interpretation; examples are Jeffreys
(1983), Evett (1987a, 1990), Evett et al. (2000d),
Nordgaard et al. (2012a), Marquis et al. (2016).
Three examples are presented here, one for poste-
rior odds and two for the likelihood ratio.

Consider two competing propositions Hp and
Hd and a value V for a piece of evidence. The
European Network of Forensic Science Institutes
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guideline (ENFSI, 2015) provides – just for illus-
trative purposes – an example of a qualitative scale
(see Table 2.8).

Note that this type of scale applies also to recip-
rocal values for V < 1 in support of the defence
proposition. Also, weak support for the first propo-
sition does not mean strong support for the
alternative.

From a historical point of view, a verbal scale
for a numerical ratio of probabilities in the context
of hypothesis testing was discussed by Jeffreys
(1983) (first edition in 1939). A ratio, denoted
as K by Jeffreys, is that of the probability of the
null hypothesis given evidence and background
information to the probability of the alterna-
tive hypothesis given evidence and background
information. Jeffreys takes the prior probabilities
of the two hypotheses to be equal so that the
posterior odds equals the likelihood ratio. The
verbal summary is then phrased in the form of
support provided by the evidence against the null
hypothesis. Jeffreys (1983) commented that K
need not be known with much accuracy. If K > 1
the null hypothesis is supported. Jeffreys further
commented that interest is with the values of
K < 1 when the null hypothesis may be rejected.
A logarithmic scale with so-called grades and the
associated verbal descriptors proposed by Jeffreys
is given in Table 2.9.

Interestingly, Fienberg (1989) provided a
quote from a nineteenth-century jurist, Jeremy
Bentham, which appeared to anticipate the



Table 2.8 Qualitative scale for reporting the value V of the support of the evidence for Hp
against Hd (Source: Based on ENFSI, 2015).

1 < V ≤ 2 No support
2 < V ≤ 10 Weak support for the first proposition relative to the

alternative
10 < V ≤ 100 Moderate support for the first proposition relative to the

alternative
100 < V ≤ 1 000 Moderately strong support for the first proposition relative

to the alternative
1 000 < V ≤ 10 000 Strong support for the first proposition relative to the

alternative
10 000 < V ≤ 1 000 000 Very strong support for the first proposition relative to the

alternative
1 000 000 < V Extremely strong support for the first proposition relative

to the alternative
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Table 2.9 Verbal scale of support K for a null
hypothesis NH proposed by Jeffreys (1983) where K is
the ratio of the probability of the null hypothesis given
evidence and background information to the
probability of the alternative hypothesis given evidence
and background information.

Grade Value of K Verbal descriptor

0 K > 1 Null hypothesis NH
supported

1 1 > K > 10−1∕2 Evidence against NH
but not worth more
than a bare mention

2 10−1∕2 > K > 10−1 Evidence against NH
substantial

3 10−1 > K > 10−3∕2 Evidence against NH
strong

4 10−3∕2 > K > 10−2 Evidence against NH
very strong

5 10−2 > K Evidence against NH
decisive

Source: From Jeffreys, H. (1983). Reprinted with permissions
of Oxford University Press.

Jeffreys scale, though perhaps in application to
the strength of the belief in the proposition of guilt
rather than in the strength of the evidence.

The scale being understood to be composed of ten degrees
- in the language applied by the French philosophers
to thermometers, a decigrade scale - a man says, My
persuasion is at 10 or 9 etc. affirmative, or at least 10 etc.
negative . . . Bentham (1827) quoted in Fienberg (1989,
p. 212)

More recently, an alternative approach is to use
an ordinal scale for the likelihood ratio. In forensic
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science such a procedure was introduced by Evett
(1991) for ease of communication. A similar
scale was then proposed by others; examples
are presented in Nordgaard et al. (2012a) and
in Nordgaard and Rasmusson (2012a) with a
neutral response for the likelihood ratio V close
to 1 and then a four-point scale for V > 1 with
its reciprocal for V < 1. The example is given in
Table 2.10.

In 2015, as illustrated in Table 2.8, a six-point
verbal scale was proposed for values of the like-
lihood ratio greater than 1, with corresponding

Table 2.10 Verbal scale of support for a likelihood
ratio V proposed by Nordgaard et al. (2012b) and
Nordgaard and Rasmusson (2012a).

Scale Interval of likelihood ratio Degree of support
V

+4 106 ≤ V Extremely strong
support

+3 6 000 ≤ V < 106 Strong support
+2 100 ≤ V < 6 000 Support
+1 6 ≤ V < 100 Support to some

extent
0 1∕6 ≤ V < 6 Support neither . . .

nor
−1 1∕100 ≤ V < 1∕6 Support to some

extent
−2 1∕6 000 < V ≤ 1∕100 Support
−3 1∕106 < V ≤ 1∕6 000 Strong support
−4 V ≤ 1∕106 Extremely strong

support
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reciprocals for values of the likelihood ratio
less than 1, and with six adjectives for sup-
port of weak, moderate, moderately strong,
strong, very strong, and extremely strong and
corresponding numerical ranges for the log-
arithm to base 10 of the likelihood ratio of
{0.3 − 1,1 − 2,2 − 3,3 − 4,4 − 6, > 6}.

Another example of the use of a verbal scale
can be found in People v. Carter (2016) where it is
said that the Office of the Chief Medical Examiner
(OCME) interprets likelihood ratios as follows: a
likelihood ratio of 1.00 is inconclusive; a likelihood
ratio in the range of 1.1 to 10 provides limited
support for the proposition that the defendant was
a contributor; a likelihood ratio in the range of 10
to 100 provides moderate support; a likelihood
ratio in the range of 100 to 1000 provides strong
support; and a likelihood ratio greater than 1000
provides very strong support of one scenario over
the other (p. 2).

For the scientist interested in a qualitative
interpretation for the likelihood ratio, one of
the scales in Tables 2.8 and 2.10 may be used.
Alternatively, the scientist may use a scale of their
own devising. Whichever scale is used, it has to be
made clear in advance to the fact-finder the scale
that is being used.

For DNA in which there can be very large like-
lihood ratios when considering source level
propositions, the verbal scale could appear as
inadequate. However, it has become accepted
practice since Evett et al. (2000d) to use the
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phrase extremely strong support for likelihood ratios
of one million or more. Note that a comment
on extremely high values obtained with DNA
evidence is presented in Evett et al. (2000b),
Hopwood et al. (2012) and in Section 6.1.5.

Scales based on logarithms (Kass and Raftery,
1995) provide a conversion from the logarithm of
prior odds to a logarithm of posterior odds. The use
of logarithms transforms the relationship between
prior and posterior odds and the likelihood ratio
into an additive one. The first suggestion of the
use of logarithms to assess the weight of evidence
appears to be Peirce (1878) and a useful discus-
sion of this is given in Schum (1994). Thus, from
(2.10) with a change of notation

log{Pr(Hp|E)∕Pr(Hd|E)}
= log{Pr(E|Hp)∕Pr(E|Hd)}
+ log{Pr(Hp)∕Pr(Hd)}.

Logarithms provide a good way of comprehend-
ing the magnitude of large numbers.

An alternative presentation is

log{Pr(Hp ∣ E)} − log{Pr(Hd ∣ E)}
= {log Pr(E ∣ Hp) + log Pr(Hp}
− {log Pr(E ∣ Hd) + log Pr(Hd)}

which illustrates the analogy with the scales
of justice. Terms involving Hp go in one tray,
terms involving Hd go in the other tray, with the
arguments pro and con of Peirce (1878).
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Consider logarithms to base 10. A relative
frequency of 1 in 10 million has a logarithm of
−7, a relative frequency of 1 in 1 million has a
logarithm of −6. The corresponding reciprocals
have logarithms of 7 and 6. These numbers, 7 and
6, are much more meaningful to the statistical
layman and the difference between them is much
more comprehensible. This is because logarithms
are also used to measure effects in other areas
with which many people are familiar. The Richter
scale for measuring the strength of earthquakes
is a logarithmic scale. Sound is measured in
decibels, another logarithmic scale. The pH
scale for measuring acidity is also a logarithmic
scale.

As an illustration, consider a case in which
the likelihood ratio is 500 million in favour of
the prosecution’s proposition. Prior odds in favour
of innocence of 1 million to 1 will be converted to
posterior odds of 500 to 1 in favour of guilt.

In the verbal scale proposed by Aitken and
Taroni (1998), analogous to a medical context
(Calman, 1996; Calman and Royston, 1997),
odds in favour of innocence of 1 million to 1 would
relate to a city of 1 million and one people in which
there was one guilty person. A person is selected
at random from this city. The probability they are
the guilty person is approximately 1 in 1 million.

Consider now posterior odds of 500 to 1 in
favour of guilt. Imagine a large street with 501
inhabitants. All except one are guilty. A person is
selected at random from the street. The probability
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he is guilty is 500/501 and the odds are 500 to 1
in favour of guilt.

Different people will have different prior odds
and thus different posterior odds. Tables can be
provided, such as Table 2.6, to show how the prior
odds are converted to posterior odds. Also, from
Aitken and Taroni (1998), Table 2.11 converts
log prior odds to log posterior odds.

As an example as to how the table may be used
consider a case in which the prior odds against the
defendant are 1 million to 1, 10 million to 1 or 100
million to 1 with logarithms of −6,−7,−8, respec-
tively. A likelihood ratio of 100 million (with log LR
of 8) is obtained. The posterior odds in favour of the
guilt of the defendant are then 100 to 1, 10 to 1 or
evens (log posterior odds of 2, 1 or 0, respectively).

A final note of the use of verbal qualifiers refers
to a potential misunderstanding of their meaning.
Notice what is not said in the verbal interpretation.
Consider, for the sake of illustration, a blood of
profile AB for locus LDLR again. It is not claimed
that the evidence is such that the PoI is twice as
likely to be guilty as they would have been if the
evidence had not been presented. It is the evidence
that is twice as likely, not the proposition of guilt.
The largest value for 𝛾 in Table 2.7 is 5.32, a value
that would be said to provide weak support using
the scale in Table 2.8.

There is no general agreement amongst jurists
concerning the association of verbal and numeric
scales. Until there is such an agreement, the verbal



Table 2.11 The values of the logarithm of the posterior odds in favour of an issue determined from
the values of the logarithm of the prior odds in favour of guilt (log (Prior odds)) and the logarithm of
the likelihood ratio.

Verbal Log Logarithm of the likelihood ratio

description (prior
odds)

−2 −1 0 1 2 3 4 5 6 7 8 9 10
Individual 0 −2 −1 0 1 2 3 4 5 6 7 8 9 10
Family −1 −3 −2 −1 0 1 2 3 4 5 6 7 8 9
Street −2 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
Village −3 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
Small town −4 −6 −5 −4 −3 2 −1 0 1 2 3 4 5 6
Large town −5 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5
City −6 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4
Province / country −7 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3
Large country −8 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2
Continent −9 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1
World −10 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

The values in the body of the table are obtained by adding the appropriate row and column values. Logarithms
are taken to base 10. The verbal description is taken from Calman and Royston (1997). Source: Based on Calman
and Royston (1997).
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description for a numeric value will have to remain
a matter of personal judgement.

This consideration of support for a proposition is
illustrated in the following case from 1998.

We note and we follow and accept unreservedly Dr Evett’s
evidence to us and his strictures to us that we cannot look
at one hypothesis, we must look at two and we must test
each against the other ... what is the probability of the evi-
dence if the Respondent’s hypothesis is correct? what is the
probability of the evidence if the Appellant’s hypothesis is
correct?

Dr Evett tells us (and we follow it) that if the answer to
the first question is greater than the answer to the second
question, then the Respondent’s hypothesis is supported by
the evidence.

(Johannes Pruijsen vs. H.M. Customs & Excise.)

Statements concerning the probability of guilt
require knowledge of the prior odds in favour of
guilt, something that is not part of the scientist’s
knowledge.

A similar interpretation is given in Royall (1997)

[ . . . ] a likelihood ratio of k corresponds to evidence strong
enough to cause a k-fold increase in a prior probability ratio,
regardless of whether a prior ratio is actually available in a
specific problem or not. (p. 13)

Note that this is a measure of the value of the
evidence. The implications for a particular value of
evidence will vary according to the context.

Finally, note that whilst it is permissible to
interpret a numerical value verbally, it is not
meaningful to interpret a verbal scale numerically.
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Also, there are still several aspects of the use
of verbal scales to be considered. First, there is
the nature of the assistance that a verbal scale
might offer to the fact-finder (judge or jury).
Comments are presented in Martire et al. (2014)
and Martire and Watkins (2015) who collected
evidence supporting the proposition that the
verbal formulations of uncertainty are a less effec-
tive form of communication than the equivalent
numerical formulations. The second is whether
the numerical value of a likelihood ratio is a
sufficient summary of the value of the evidence.
In that respect, Meester and Sjerps (2004) noted
that one should be careful when using expression
like ‘the evidence is more likely under Hp than
under Hd’ if the propositions were suggested by
the data. They (Meester et al., 2006) supported
that ‘in that case, they only become meaningful in
combination with prior probabilities for the propo-
sition considered’ (p. 245). Thirdly, it should be
noticed that the choice of a verbal scale is initially
subjective but not arbitrary. However, if the scale is
to have credibility and be acceptable to the courts,
then a particular choice has to be agreed amongst
the scientists across all forensic disciplines covered
by a given laboratory. So, as mentioned in the
ENFSI (2015) guideline, given that the purpose of
such a scale is to assist the court in relation to the
value of the findings, ‘it is incorrect to use different
scales for different types of evidence (e.g. DNA
and glass).’ (p. 18). Fourthly, it has been pointed
out that the perceived strength of several types of
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statements on evidence evaluation relative to one
another is modified relative to persons. Thompson
et al. (2018) questioned if particular statements
convey the intended meaning and are interpreted
in a justifiable and appropriate way. Finally, the
limitations of the use of verbal scales need to be
recognised. For example, verbal qualifiers cannot
be coherently combined with other evidence. A
discussion of the disadvantages of verbal scales is
to be found in Marquis et al. (2016) and in Berger
and Stoel (2018).

Marquis et al. (2016) conclude by affirming:

Finally, we are of the opinion that if experts were able to
coherently articulate numbers, and if the recipients of infor-
mation could properly handle such numbers, then verbal
qualifiers could be abandoned completely. (p. 364)

Discussions on perception problems relate to
verbal statements can be found in Martire et al.
(2013), Mullen et al. (2014), and Arscott et al.
(2017).

2.5 ERRORS IN INTERPRETATION

A large part of the controversy over scientific
evidence is due to the way in which the evi-
dence has been classically presented. At trial,
it is already a complex operation to ensure that
judge and jury members understand the scientific
evidence; additional difficulties are added when
the forensic scientist gives the court an evaluation
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to illustrate the convincing force of the results (see,
for example, the misunderstanding in R v. Adams,
D.J.(1997). Kirk and Kingston (1964) described
the problem by affirming that

The first problem centres on the idea of certainty. The wit-
ness is often very certain that he is right. Where this degree
of certainty exists in fact, there is no need for statistics.
However, if an opposing and presumably equivalent witness
is equally certain of a different interpretation, we are con-
fronted with a serious impasse. One or the other or both
must be wrong to some extent. Here, obviously, the first
remedy is for each to abandon the idea of absolute certainty.
[...] If it can be accepted that nothing is absolutely certain,
then it becomes logical to determine the degree of confidence
that may be assigned to a particular belief. It is here that
statistics offer the most valuable approach. (p. 435)

The assessment of the value of the analytical
results is associated with probabilities as measures
of uncertainty. Hence experts’ statements are
associated with uncertainty. It is important to
ensure that this uncertainty is measured accu-
rately and represented correctly to avoid the
so-called fallacies or pitfalls of intuition (Saks
and Koehler, 1991; Fienberg and Kaye, 1991;
Eggleston, 1991; Kaye, 2015). Kirk and Kingston
(1964) affirmed that ‘The development of a firm
statistical foundation could provide a court of
appeals for the disagreeing witnesses.’ (p. 437).

Psychological researches have demonstrated
that intuition is a bad substitute for the laws of
probability in evaluating uncertainty (Bar-Hillel
and Falk, 1982; Tversky and Kahneman, 1982;
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Koehler, 1992; Piattelli-Palmarini, 1994; Kah-
neman, 2011), and the presentation of scientific
argument at trial can create confusion (Zeisel and
Kaye, 1997). Victims of this confusion are both
jurists and experts (Koehler, 1993b; Reinstein,
1996).

More recent research focuses on the relationship
between the ability to make correct probabilistic
evaluations and individuals’ culture and school-
ing; see, for example, Fontanari et al. (2014),
Girotto and Pighin (2015), Pighin et al. (2017).

Statistical reasoning will support the forensic
scientists and members of the jury in reaching
conclusions. Since the beginning of the twentieth
century, some scientists and jurists were plainly
conscious of the lack of intuition in dealing with
the calculation of chances. The French math-
ematician Henri Poincaré gave a remarkable
example of these limits in his course taught during
1895 under the title ‘The problem of the three
caskets’ (Poincaré, 1896), also known as the
‘Monty Hall problem’. Around 100 years later, the
same problem creates large controversies (Selvin,
1975; Engel and Ventoulias, 1991; Morgan et al.,
1991; Falk, 1992).

Consider three boxes A, B, and C, within one of
which there is a prize. There is a competitor, K,
and a compère, L. The compère knows the identity
of the box which contains the prize. The prior
probability Pr(i) that a particular box contains the
prize is 1/3 for i = A,B,C. K has to choose a box.
If the chosen box contains the prize, K keeps the
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prize. The choice is made in two stages. K chooses
a box but it is not opened. L then opens one of
the two other boxes and shows K that it is empty
(remember L knows which box contains the prize).
K is then allowed to remain with the first choice of
box or to change to the other unopened box. What
should K do in order to maximise the probability
of winning the prize?

Suppose, without loss of generality, that
the competitor initially chooses C. The com-
père, L, opens one of A or B, which is empty.
Assume, again without loss of generality, that
A is opened. If the prize is in C, then Pr(L opens
A) = Pr(L opens B) = 1∕2. If the prize is in B,
then Pr(L opens A) = 1. If the prize is in A, then
Pr(L opens A) = 0.

The probability of interest is Pr(true box is C ∣
L opens A and K chooses C). Denote this as Pr(C ∣
LA,KC). As KC is common to what follows, it will
be omitted for ease of notation. Let LB and LC

denote the events that the compère opens B and C,
respectively. The probability of interest Pr(C ∣ LA)
may then be written as

Pr(LA ∣ C)Pr(C)
Pr(LA ∣ A)Pr(A) + Pr(LA ∣ B)Pr(B)

+Pr(LA ∣ C)Pr(C)

(2x)

which is equal to

1
2
× 1

3

0 + (1 × 1
3
) + (1

2
× 1

3
)
= 1

3
.
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The prior probabilities for the box that contained
the prize were Pr(A) = Pr(B) = Pr(C) = 1∕3. The
competitor chose C. The compère then opened
A and showed that it did not contain the prize.
The calculations earlier (2x) show that the pos-
terior probability that C contains the prize is still
1∕3. However, A has been eliminated. Thus, the
posterior probability that B contains the prize is
2/3. The odds are 2 to 1 in favour of B containing
the prize. The competitor should thus change his
choice of box.

The solution is therefore that changing will let
one win twice as often as keeping the original
choice; such a solution seems counter-intuitive.
Note logically that in two out of three scenarios,
you win by changing your selection after one of
the doors is revealed. This is because there is a
greater probability one chooses a box without the
prize in their first choice and so the compère is
guaranteed to reveal one of the other boxes that
has no prize. By subsequently changing your first
choice, you double your probability of winning the
prize. Another interesting discussion about this
and other probabilistic conundrums can be found
in D’Agostini (2010).

More subtle forms of pitfalls of intuition have
been described in the analysis of court reports and
scientists’ statements as evidence. As specified by
Kingston (1966)

[i]t must be realised that probability, and consequently
probability theory does have a place in court. It is difficult
to imagine that any reasonable assessment of circumstan-
tial evidence can be made without the elementary principles
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of probability theory being used, whether this use is made
explicit or not. Generally the basic probabilistic ideas
remain unexpressed, and serve only as mental pathways
guiding the jurors’ thought processes to their conclusions.
But every so often these ideas are made explicit and are
cast into mathematical terms. When this occurs, it is
essential that the manipulation and interpretation of these
mathematical terms be correct. Unfortunately, in many
reported instances where probability figures have been
expressed in criminal trials, or discussed in connection
with such proceedings, gross errors have been made.
(p. 93)

As an example of the pitfalls of intuition, case
reports on DNA evidence were studied and submit-
ted to practitioners (forensic scientists, lawyers,
advocates) and students to investigate their under-
standing of measures of uncertainty (Taroni and
Aitken, 1998b,c). Results suggested improve-
ments for the presentation of scientific evidence
and for the education of future lawyers and foren-
sic scientists. Examples of these fallacies abound
in literature since 1990 and are presented in the
following sections 2.5.1–2.5.8 (see also Goodman
1992; the historical criminal case R v. Deen,
The Times, January 10, 1994; Matthews 1994;
Dickson 1994; Balding and Donnelly 1994).

More recently, an extended series of guidance
texts for judges, lawyers, forensic scientists, and
expert witnesses have been published by the
Royal Statistical Society under the general theme
of ‘Communicating and interpreting statistical
evidence in the administration of criminal justice’.
The first guidance (entitled ‘Fundamentals of
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probability and statistical evidence in criminal
proceedings’) mentioned logical problems linked
to probabilistic reasoning and the confusion
between expressions for the likelihood ratio and
posterior odds and more generally amongst con-
ditional probabilities (Aitken et al., 2010). Such
confusions were also detected in other scientific
fields (see, for example, D’Agostini (2003), Crupi
et al. (2018)). Note that forensic literature also
emphasised problems generated by the misunder-
standing of probabilities and noted that (Berger
et al., 2011) ‘the judgement will be interpreted
as being in opposition to the principles of logical
interpretation of evidence’ (p. 43). An official
scientific report (US President’s Council of Advi-
sors on Science and Technology (PCAST, 2016)),
has been criticised for errors related to pitfalls of
intuition in the probabilistic domain. Evett et al.
(2017) wrote:

The most serious weakness in the PCAST report is their
flawed paradigm for forensic evaluation. Unfortunately, the
report contains more misconceptions, fallacies, confusions
and improper wording. (p. 18)

2.5.1 Fallacy of the Transposed
Conditional

Examples of this fallacy abound in judicial and
forensic literature. References to it in the courts
began with Bertillon’s testimony in the Dreyfus
case and include cases since 1990 R. v. Adams,D.J.
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(1997), R. v. Doheny and Adams,G. (1997), R.
v. Clark (2003), R. v. T. (2010), and Wilson v.
Maryland (2002) as presented in Dawid (2004)
and in Section 3.2.

Consider the following example, from Gaudette
and Keeping (1974). The authors conducted a
lengthy experiment to attempt to determine the
ability of scientists to distinguish between different
people on the basis of an interpretation of hair
samples. Multiple comparisons were made of hairs
from many different people. In one experiment,
nine hairs, selected to be mutually dissimilar, from
one source were compared, one by one, with a
single hair from another source. It was estimated,
from the results of many such comparisons, that
the probability that, in at least one of the nine
comparisons, the two hairs examined, from dif-
ferent sources would be indistinguishable would
be 1∕4500. The authors concluded that ‘it is
estimated that if one human scalp hair found at
the scene of a crime is indistinguishable from at
least one of a group of about nine dissimilar hairs
from a given source the probability that it could
have originated from another source is very small,
about 1 in 4500’ (Gaudette and Keeping, 1974,
p. 605).

Let R denote the event that ‘one human scalp
hair found at the scene of a crime is indistinguish-
able from at least one of a group of about nine
dissimilar hairs from a given source’. Let S denote
the event that ‘the nine dissimilar hairs come from
a different source than the single hair’. Then, the
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authors’ experiment gives a value for Pr(R ∣ S) but
the authors’ summarising statement gives a value
for Pr(S ∣ R).

Another example is the Dreyfus case, more
details of which are in Section 3.2 and the prob-
abilistic testimony offered by Alphonse Bertillon.
Bertillon failed with the same problem of intuition
(for a full description of the judicial case and
comments on experts’ conclusions, see Champod
et al. (1999)). According to Bertillon, Dreyfus was
the author of a so-called bordereau (document).
To increase the credibility of his allegations,
Bertillon submitted a probabilistic calculation.
If the individual probability for one coincidence
were set to 0.2, then the probability of observing
four coincidences would be 0.24 = 0.0016 and
generally for N coincidences, the probability
would be 0.2N. Considering the four coincidences
observed by Bertillon, the probability 0.0016
was considered so remote that it demonstrated
the forgery. Even if it is admitted that the value
p = 0.0016 provided by Bertillon was correct
(for a comment on this point, see Darboux et al.
(1908), Champod et al. (1999)), he claimed
(indirectly) that it was possible to deduce from p
that the probability that the questioned document
was a forgery was 1 − p. This latter probability
was sufficiently close to 1 that it constituted an
unequivocal demonstration with a reasonable
degree of scientific certainty that Dreyfus was the
author. Bertillon’s statement is fallacious because
he seemed to argue that p = Pr(Hd ∣ E), hence
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Pr(Hp ∣ E) = 1 − p, whereas p only represents
Pr(E ∣ Hd).

Other examples of the fallacy of the trans-
posed conditional are given by Thompson and
Schumann (1987) who gave it the name of the
prosecutor’s fallacy. It has also been called the
inversion fallacy (Kaye and Koehler, 1991; Kaye,
1993). For example:

There is a 10% chance that the defendant would have the
crime blood type if he were innocent. Thus there is a 90%
chance that he is guilty.

or

The blood test is highly relevant. The suspect has the same
blood type as the attacker. This blood type is found in only
1% of the population so there is only a 1% chance that
the blood found at the scene came from someone other
than the PoI. Since there is a 1% chance that someone
else committed the crime there is a 99% chance that
the suspect is guilty. (Thompson and Schumann, 1987,
p. 177).

In general, let E denote the evidence and Hd the
proposition that a suspect is innocent. A value is
determined for Pr(E ∣ Hd), the probability of the
evidence if the PoI is innocent.

The ENFSI Guideline for evaluative reporting
(ENFSI, 2015) simply describes the occurrence of
such a pitfall by saying:

In the legal context, a fallacious transposed conditional
statement is one that equates (or, confuses) the proba-
bility of particular findings given a proposition with the
probability of that proposition given these findings. (p. 27)



�

� �

�

190 The Evaluation of Evidence

Such a sentence reiterates what was listed as a
problem in a 2011 guest editorial (Association of
Forensic Science Providers, 2011) and in Berger
et al. (2011):

It is necessary for the scientist to consider the probability
of the observations given each of the stated propositions.
Not only it is not appropriate for the scientist to consider
the probability of the proposition given the observations,
there is a danger that in doing so the jury will be misled.
(p. 1)

The interpretation of the value calculated can
cause considerable confusion. Two special cases of
the fallacy of the transposed conditional in which
Pr(E ∣ Hd) is confused with

(a) the probability the PoI is not the source of the
evidence; known as the source probability error;

(b) the probability the PoI is not guilty; known as
the ultimate issue error;

are discussed by Koehler (1993a), Evett (1995),
Redmayne (1995, 1997).

2.5.2 Source Probability Error

A crime is committed. Trace evidence is found,
which is considered to have come from the crimi-
nal. Let Hd be the proposition that the PoI was not
the source of the evidence.

For instance, the evidence E may be that a DNA
match has been found between blood from a mur-
der victim and blood recovered from the clothing
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of a PoI. A scientist determines a value for Pr(E ∣
Hd) as 1 in 7 million. Consider the following pos-
sible statement of the value of the evidence (based
on Wike v. State (1992), transcript, pp. 147–148,
given in Koehler (1993a)).

With probability 1 in 7 million, it can be said that the blood
on the clothing of the suspect could be that of someone other
than the victim.

Other possibilities are, where the figures quoted are
for illustrative purposes only:

• . . . the probability that the DNA that was found
at the scene of the crime came from anyone else
other than the PoI is 1 in 7 million . . . ;

• . . . the probability of this DNA profile occurring
at random is 1 in 18 billion; thus the likelihood
that the DNA belongs to someone other than the
PoI is 1 in 18 billion . . . ;

• . . . the probability of finding the evidence on
an innocent person is 0.01% (1 in 10 000)
thus the likelihood that the suspect is guilty is
99.99% . . . ;

• . . . the trace evidence has the same DNA profile
as the PoI, thus the trace evidence has been left
by the PoI . . . ;

• After conducting DNA testing on the vaginal
swab samples taken from the victim and Ross’
[the PoI] blood samples, the DNA expert stated
that Ross was the source of the seminal fluid
(E. Ross v. State of Indiana, 1996).
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• The expert offered probability statistics on
whether the DNA sample found on the victim
came from someone other than defendant (State
of Vermont v. T. Streich, 1995).

None of the conclusions in these statements is jus-
tified by the value given by Pr(E ∣ Hd). All give a
mistaken probability for the source of the evidence.

Consider also situations involving the value for
the likelihood ratio that is mistakenly interpreted.
In People v. Carter (2016), at p. 2, it can be read:

At issue in this case is the OCME’s determination that the
DNA mixture found on the sweatshirt was 5640 times
more likely to have come from defendant and two other
unknown individuals rather than from three unknown
individuals.

It is of interest how the forensic scientist falls into
this logical trap after a sequence of questions asked
by prosecutors. Examples are the following:

Q And you are able to compile all four of those
probabilities and determine what is the like-
lihood of the DNA found in Billy Glover just
randomly occurring in some other DNA
sample?

A Yes.

Q What is the likelihood of that?

A The way that is done is to multiply each one
of those four numbers that I mentioned before
together, because each one is separate and
independent, and the final number comes out
as one in about 18 billion.
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Q So the likelihood that DNA belongs to someone
other than Billy Glover is one in 18 billion?

A That is correct.
(State v. Glover, 1992),

and

Q Whose blood was found to be on item 52?

A Mr Davis’s blood.
(State v. Davis, 1991).

The answer of the last expert does not repre-
sent an inference on the source, but a decision
since there is no probabilistic component to the
statement. More on how to make a decision is
presented in Section 2.8.

Source probability errors and numerical con-
version errors (Section 2.5.6) also occur when
experts or jurists try to summarise the likelihood
ratio expression. Here is an example (Vincent,
2010):

It was 800 billion times more likely that the sample orig-
inated from the accused rather than an unknown person.
In other words, it would appear to be necessary to search
well beyond this planet and conceivably this galaxy to find
a match. (p. 40)

The first sentence is an example of the source prob-
ability error. The second sentence is an example of
the numerical conversion error (see Section 2.5.6).

Kingston and Kirk (1964) were already aware of
such a pitfall of intuition. They wrote:
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As an example, consider the opinion that a particular
suspect left the partial fingerprint in evidence, the basis
being a coincidence of 12 elements with no observable
differences in the patterns of the evidential print and an
area of the print taken from the suspect. What logic leads
from the basis of the opinion? Even though the opinion
is considered by the courts as an acceptable one from the
given basis, there is some disagreement on the connecting
logic. (p. 520)

2.5.3 Ultimate Issue Error

The source probability error may be extended to
an error known as the ultimate issue error (Koehler,
1993a). This extends the hypothesis that the PoI
is the source of the evidence to the hypothesis that
the PoI is guilty. The case of People v. Collins (1968)
(Section 3.4) is a particular example of this. Con-
sider a case in which Pr(E ∣ Hd) is 1 in 5 million,
say, where, as before, Hd is the proposition that
the PoI was not the source of the evidence E.
The ultimate issue error would interpret this as
a probability of 1 in 5 million that the PoI was
innocent.

2.5.4 Defence Attorney’s Fallacy

As well as the fallacy of the transposed conditional,
there is also a defence attorney’s fallacy (Thompson
and Schumann, 1987). Consider the following
illustrative statement from a defence lawyer

The evidence for blood types has very little relevance for
this case. Only 1% of the population has the rare blood
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type found at the crime scene and in the suspect. However,
in a city, like this one in which the crime occurred,
with a population of 200 000 people who may have
committed the crime this blood type would be found in
approximately 2 000 people. The evidence merely shows
that the PoI is one of 2 000 people in the city who might
have committed the crime. The blood test evidence has
provided a probability of guilt of 1 in 2 000. Such a small
probability has little relevance for proving the suspect is
guilty. (p. 177)

Strictly speaking (from an inferential point of
view) the defence lawyer is correct. However,
before the evidence of the blood test was available,
the PoI had a probability of only 1 in 200 000
of being guilty (not accounting for any other
evidence which may have been presented). The
effect of the blood test evidence is to increase this
probability by a factor of 100. The evidence is 100
times more likely if the PoI is guilty than if they
are innocent, assuming a probability of 1 for the
numerator. This may be thought to show that
the blood test evidence is compelling in support
of a hypothesis of guilt. Of course this evidence is
unlikely to be sufficient on its own. for a verdict of
guilty to be returned. This is so because the prior
probability of guilt is so small that the resulting
posterior probability of guilt will be insufficient for
a verdict of guilty to be returned.

As discussed, there are practical difficulties
surrounding the use of probabilities to evaluate
evidence. It is not uncommon for a court to be
faced with two opposing arguments, say, the trans-
posed conditional on one side, and the defender’s
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line of reasoning on the other side. Mode (1963)
wrote:

Assume, for example, that the prosecuting attorney
has correctly computed the probability to be one in a
million that a man selected at random has all of certain
characteristics identified with the true criminal, whoever
he may be, and concludes that since the accused has these
characteristics he must be guilty. The defending lawyer
may disparage this evidence by stating that with (say)
forty million adult males in the United States and one in
a million having the characteristics named, there must be
forty men in the country eligible for suspicion. (p. 629)

Two other errors discussed by Koehler (1993a)
are the probability (another match) error and the
numerical conversion error.

2.5.5 Probability (Another Match)
Error

As in Example 1.1 (Section 1.3.2) a crime is
committed. Evidence E of a blood stain with profile
Γ is found at the scene and identified as belonging
to the criminal. A PoI is identified. Let Hd be the
proposition that the evidence E was not left by
the PoI. Suppose the occurrence of the profile of the
stain is 𝛾 amongst the relevant population (details
about such an estimate are given in Section 6.1.5)
and so Pr(E ∣ Hd) = 𝛾 . Then the probability that
a person selected at random from the population
does not match this profile is (1 − 𝛾). Let N be the
size of the population. Assume, for the purpose
of discussion, independence amongst members
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of the population with respect to E. Then the
probability of no matches with the crime stain
profile amongst the N members is (1 − 𝛾)N (a
generalisation to N events of the third law of
probability for independent events, (1.10)). The
complement of no matches is at least one match.
Hence, the probability of at least one match is
𝜃 = 1 − (1 − 𝛾)N. Two numerical examples are
given in Table 2.12. Let N =1 million and take
𝛾 as a value that has been estimated from some
larger population, assumed similar to the relevant
population with regard to profile random match
probabilities (see Section 6.1.5). As in Section
4.3.1, see Smith and Charrow (1975) and Finney
(1977) for comments about super-populations.

Thus it is possible for 𝛾 to be less than 1∕N.
The two probabilities for 𝜃 in Table 2.12 are
considerably larger than the corresponding values
for 𝛾 . The probability (another match) error arises
when the two probabilities, 𝛾 and 𝜃, are equated.
In other words, a small value of 𝛾 is taken to imply
a small value for the probability that at least one
other person has the same matching evidence.
The results in Table 2.12 illustrate why this impli-
cation is false. A random match probability (RMP)

Table 2.12 Probability 𝜃 of at least one match, given
a relative frequency of the trace evidence of 𝛾 , in a
population of size 1 million.

𝛾 : 1/1 million 1/10 million
𝜃: 0.632 0.095
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of 1/1 million (if it is assumed that the value is
derived correctly and that there is no possibility
of error, lying, or misinterpretation of the data),
means that there is 1 chance in 1 million that
a single randomly selected person would share
the observed characteristics. In other words,
assuming that the data and its interpretation are
infallible, we would expect to see this DNA profile
in approximately 1 out of every million people.
Notice that this is not identical to the probability
that there exists someone else who shares the
observed profile. Although it may be extremely
unlikely that a single randomly selected person
would share a DNA profile with another person,
it may be quite likely that others share this profile
(Koehler, 1996).

There is only 1 chance in 1 million that a ran-
dom person shares a DNA profile that is common
to one in every million people, but there is a 63.2%
chance that there is at least one other person in a
population of size 1 million people (see Table 2.12)
who share the profile.

Kingston (1965a) discussed this specific aspect
of the probabilistic reasoning. In connection with
his analysis, he referred to Galton’s 1892 book
on fingerprints. Galton reasoned correctly and
avoided the fallacy. Kingston wrote:

[...] the chance of lineations constructed by the imagina-
tion according to strictly natural forms, which should be
found to resemble those of a single finger print in all their
minutiae, is less than [...] 1 to about sixty-four thousand
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millions. The inference is, that as the number of the human
race is reckoned at about sixteen thousand millions, it is a
smaller chance than 1 to 4 that the print of a single finger
of any given person would be exactly like that of the same
finger of any other member of the human race. (p. 75)

2.5.6 Numerical Conversion Error

Let 𝛾 be the RMP (see details in Section 6.1.5)
of the crime stain as in Section 2.5.5. A match
between the crime stain and the profile of a PoI
has been made. Let n be the number of people who
would have to be tested before there is another
match. It may be thought that the significance of
the value of 𝛾 can be measured by equating 1∕𝛾
with n. A small value of 𝛾 implies a large value
of n. It is fairly straightforward to calculate n,
given 𝛾 and given some value for the probability
of another match occurring, Pr(M), say. The
numerical conversion error claims that n equals
1∕𝛾 but this is not so.

Suppose 𝛾 = 0.01. There is a probability of 0.01
that a randomly selected individual would match
the evidence E. The numerical conversion error
would claim that 100 people need to be tested
before there is another match but this is not the
case. The error is exposed by consideration of
Pr(M). Suppose, initially, that Pr(M) is taken to be
equal to 0.5. A value of n greater than the value
determined using a value of Pr(M) of 0.5 would
imply that a match is more likely to happen than
not if n people were tested.
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Let n be the number of people who are to be
tested before the probability of finding a match is
greater than 0.5. The probability that a randomly
selected individual does not match the evidence
is (1 − 𝛾). For n independent randomly selected
individuals, the probability none matches the evi-
dence is (1 − 𝛾)n. The probability there is at least
one match is thus 1 − (1 − 𝛾)n. Thus, for a match
to be more likely than not with n individuals,
1 − (1 − 𝛾)n has to be greater than 0.5 and so

(1 − 𝛾)n < 0.5.

This inequality may then be written as n log(1 −
𝛾) < log 0.5. Thus, n > log 0.5∕ log (1 − 𝛾) = 𝜓5,
say (remembering that here (1 − 𝛾) is less than 1
and so its logarithm is negative). A similar argu-
ment shows that if Pr(M) is taken to be greater
than 0.9 then n > log 0.1∕ log (1 − 𝛾) = 𝜓9, say.
Values of 𝜓 and n are given in Table 2.13 for
𝛾 =0.1, 0.01 and 0.001 and for values of Pr(M)
equal to 0.5 and 0.9.

It is also worth noting that if n′ = 1∕𝛾 people
were tested this does not make the probability of
a match certain. If n′ people are tested, the prob-
ability of at least one match is 𝜃′ = 1 − (1 − 𝛾)n′

;
see Table 2.14 for examples. Notice that as
𝛾(= 1∕n′) → 0, 𝜃′ → 1 − e−1 = 0.632 . . . . Notice
also that n5 < n′. Thus the numerical conversion
error, based on Pr(M) = 0.5, exaggerates the
number of people that need to be tested before a
match may be expected. For illustrative purposes,
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Table 2.13 Evidence occurs with RMP 𝛾 .

Pr(M) = 0.5 Pr(M) = 0.9

𝛾 𝜓5 n5 𝜓9 n9

0.1 6.6 7 21.9 22
0.01 69.0 69 229.1 230
0.001 692.8 693 2 301.4 2 302

Smallest number 𝜓 of people to be observed before a match
with the evidence occurs with a given probability, Pr(M) =
0.5,0.9; 𝜓5 = log 0.5∕ log (1 − 𝛾), 𝜓9 = log 0.1∕ log (1 − 𝛾),
n5 is the smallest integer greater than 𝜓5, n9 is the smallest
integer greater than 𝜓9.

Table 2.14 The probability, 𝜃′, of at least one match
with the evidence, which occurs with RMP 𝛾 , when
n′ = 1∕𝛾 people are tested.

𝛾 n′ 𝜃′

0.1 10 0.65
0.01 100 0.63
0.001 1 000 0.63

consider the following case: The RMP equates
1 in 209 100 000 and the expert said that he
has a database of blood samples from all over
the country and he asked the question ‘How
many people would we have to look at before
we saw another person like this ?’ The answer
given is 209 100 000 (Ross vs. State, 1992). This
exaggerates the probative strength of a match and
favours the prosecution.



�

� �

�

202 The Evaluation of Evidence

It is of interest to recall a recent example of such
a fallacy. In the 1 July 2016 judgement from the
Court of Appeal of Bergamo (Italy) in the Yara
Gambirasio case, at p. 96, one can read the DNA
expert’s statement on DNA evidence evaluation.

[ . . . ] a relative frequency of 2.33×10−27 is equivalent to
certainty on the source of the stain. Given a world popula-
tion of approximately 7 billion people, you have to imagine
130 millions of billions planets as Earth to find another
individual sharing the same genetic characteristics as [the
accused person].9

2.5.7 False Positive Fallacy

Consider the possibility of a misclassification
error for a scientific sample so that the sample is
classified as positive when in fact it is negative. An
example of this would be the misclassification as
a match, two DNA profiles from different sources
that did not match. Serious errors of interpretation
can occur through ignorance or underestimation
of the potential for a false positive. A low value for
the probability of a false positive does not imply
that the probability of a false match is low in every

9The original Italian text is the following: ‘[...] con una ricorrenza
statistica di 2.33 × 10−27, equivalente alla certezza. Stimata in
sette miliardi la popolazione mondiale, per trovare un altro indi-
viduo, oltre a [nome dell’imputato], con le stesse caratteristiche
genetiche sarebbero necessari centotrenta milioni di miliardi di
altri mondi uguali al nostro [...]’. Note that 130 millions of billions
planets similar to Earth in population size generate a figure of
9.1 × 10−26.



�

� �

�

Errors in Interpretation 203

case. A forensic scientist who thinks there is only
a probability of 0.01 of declaring, falsely, a match
between the samples in a case if they really do not
match may assume that there is, necessarily, a
probability of 0.99 that the reported match is a
true match.

Let M be the event that the PoI and the perpetra-
tor have matching DNA profiles and R be the report
of a match. The false positive probability is Pr(R ∣
M̄), the probability of reporting a match when the
samples do not have matching profiles. The prob-
ability Pr(M ∣ R) is the probability of a true match,
given that a true match has been reported. The fal-
lacy of the false positive is to equate Pr(M ∣ R) with
1 − Pr(R ∣ M̄).

The fallacy is a version of the prosecutor’s fal-
lacy. Further details are given in Sections 2.7 and
6.1.6.4, and in Thompson et al. (2003).

2.5.8 Expected Value Fallacy

Kaye (2011) – referring to State v. Wright (2011) –
considered a sex-related crime where it is assumed
that the evidence (DNA on the PoI) is a recovered
DNA mixture of two persons: the PoI (as the major
contributor) and the victim (as a minor contrib-
utor). The profile Γ of the minor contributor has
a conditional match probability 𝛾 = 1∕500 000.
The forensic scientist thought that the conditional
match probability was so small that only two peo-
ple in the state would contribute to this mixture,
the PoI and the victim.
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Kaye (2011) suggest that the forensic scientist
apparently reasoned as follows:

(1) The state population is about 1 000 000;

(2) About 500 000 are women;

(3) The expected number of women in the state
with the minor DNA profile is 1 (this value
is obtained by multiplying the conditional
match probability of 1∕500 000 by the female
population in the state of 500 000);

(4) No one but the victim could have contributed
the minor DNA profile.

The transition from point 3 to point 4 assumes
an expected value of 1 for the number of matching
profiles in the female population and so it is
impossible another matching profile exists in the
population. The acceptance of this transition has
been called by Kaye (2011), the expected value
fallacy:

The fallacy consists in treating the expected value of a ran-
dom variable as if it were the only plausible value. (p. 4)

At point 3, the reported quantity of 1 repre-
sents an expected value of a variable about the
number of women with the minor DNA profile
in a randomly generated population of 500 000
women.

There is a probability associated with the obser-
vation of 0,1,2, . . . women in a population. In
fact, imagine the generation of many populations,



�

� �

�

Errors in Interpretation 205

each of size 500 000, in some you can find
zero women sharing the given DNA profile, in
another you can find one or more. The probability
distribution associated with the corresponding
random variable X, parametrised by the mean 𝜆,
is the Poisson distribution (see Section 7.2.1 for
other examples in forensic science and Section
A.2.6 for a technical description of the Poisson
distribution):

Pr(X = x ∣ 𝜆) = 𝜆xe−𝜆

x!
, x = 0,1, . . . .

Given that 𝜆 equals 1 (the mean of the occur-
rence of a given DNA profile, in that case 𝛾 ×
the population size), the probability of observing
zero occurrences of such a DNA profile equals
e−1∕0! = 0.368. The probability to observe one
occurrence equals e−1∕1! = 0.368, also.

Given that a DNA profile identical to that of the
victim has been observed in the population, a sci-
entist is interested in the probability of observing
two or more women with that profile, given that
there is at least one woman with the profile. This
probability is one minus the probability of observ-
ing 0 or 1 women, or 1 − 0.368 − 0.368 = 0.264
divided by the probability at least one woman has
the profile. The forensic scientist erred in saying
that the DNA profile must be that of the victim.
The probability that such a profile came from
more than one woman given at least one woman
has the profile is 0.264∕(1 − 0.368) = 0.418.
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2.5.9 Uniqueness

Statements of identification (or ‘individualization’)
invoking notions such as ‘uniqueness’ or ‘indi-
viduality’ are regularly commented on in forensic
science literature since Kirk (1963) (e.g. Champod
(2000), Saks and Koehler (2008), Champod
(2009), Page et al. (2011), Mnookin (2008),
Margot (2011)). Such statements are used daily in
fields such as fingerprints, shoeprints, toolmarks,
firearms, earprints, and speaker recognition (e.g.
Simons (1997)). DNA evidence is not immune
from this tendency (Kaye (1997), Zeisel and Kaye
(1997), Robertson and Vignaux (1998), Balding
(1999), and Robertson et al. (2016)).

Kaye (2009a) clarified the terms identification,
individualization, and uniqueness and discussed
the relationships amongst them. The topic is
developed further in Kaye (2013). Cole (2009)
argued that trace evidence disciplines do not
need these concepts. He explored what defensible
conclusions might look like and how they might
be supported. He reaffirmed and extended his
perspective in Cole (2014).

In the late 1990s, the Federal Bureau of Inves-
tigation (FBI) announced that their experts would
be permitted to testify that DNA from blood,
semen, or other biological evidence recovered
at a scene of crime came from a specific person
(Holden, 1997). Note, however, that affirming
that material recovered at a scene of crime comes
from a particular person is an expression on a
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proposition and constitutes a so-called transposed
conditional statement (see Section 2.5.1). The
policy is based on particular statistical figures (e.g.
1 in 260 million) and has been reaffirmed repeat-
edly since then (Budowle et al. (2000); Moretti
and Budowle (2017)). For a critical discussion on
the pertinence of the statistics presented in these
policies, see, for example, Evett and Weir (1998),
Buckleton (2004), and Saks and Koehler (2008)
who wrote:

Although markers that rarely occur might be unique, it is
a fallacy to infer uniqueness from profile frequencies sim-
ply because they are smaller than the number of available
objects. (p. 204)

An often invoked, but flawed, underlying
argument in attempts to justify identification as
a concept is that a low, or very low, probability
for the event of encountering a given finding
in another person (or object) from the relevant
population entitles one to jump to the conclusion
that such an observation is actually impossible,
and hence to claim that a given state of nature
(e.g. common source or individualization) is
established. However, a sound expression of an
opinion about a proposition requires more than
a low probability for the evidence alone. Further
discussion on this topic is presented Section 2.8. It
should be observed that participants of the legal
process need to act upon their beliefs, and the
question of interest shifts from ‘what to believe?’
to ‘what (or how) to decide?’. These questions are
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related as is illustrated by an example presented in
Section 2.8.2.

A further problematic statement encountered
in the discussions of identification is that the
probability of observing another person, in the
entire world population, presenting the same ana-
lytical characteristics, is zero. Stated otherwise,
it is asserted that there is sufficient uniqueness
within the observed characteristics to eliminate
all other possible donors in the world, and that no
contrary evidence (e.g. a solid alibi) can change
the expert’s certainty. A similar example, this time
in ballistics, is the following statement ‘numerous
courts have prohibited experts from testifying
that bullets or cartridge casings were fired from
a specific firearm to the exclusion of all other
firearms in the world’ (People v. Genrich, 2019
at p. 58). However, the move from a probabil-
ity statement to one of certainty represents a
‘leap of faith’ (Stoney, 1991b) (p. 198), rather
than a logical consequence. Stoney (1991b) has
famously noted: ‘[ . . . ] are we really trying to
prove uniqueness? I would offer to you that it is a
ridiculous notion’ (p. 198). Assertions of certainty
in conclusions thus show a misunderstanding of
the role of forensic scientists and of the court in
scientific inference procedures, and on the role of
statistics in forensic science, see Robertson et al.
(2016). For further comments, see also Buckleton
(1999), Champod (1999), Taroni and Margot
(2000), Buckleton (2004), Stoney (2012), and
Biedermann et al. (2013). It is not the role of the
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expert to qualify the acceptable level of doubt
by supposing a relevant population that, often,
is set arbitrarily at its maximum to consider the
possibility that all persons, or all firearms, on
earth could be the origin of the trace. Participants
of the legal process other than scientists should
deal with the legal standard, which represents a
threshold regarding the issue of identification. In
this respect, a discussion on the role of identifica-
tion in a firearm’s cartridge case is presented in
U.S. v. Tibbs (2019) and U.S. v. Davis (2019) where
the court concluded by affirming:

Experts may not opine that certain cartridge cases were
fired by the same gun. (pp. 8–9)

2.5.10 Other Difficulties

The forensic scientist has to assess the value of the
evidence; this means that they have to evaluate
the strength of the link between, for example,
a recovered trace and a PoI. Therefore, it seems
important to point out that forensic evidence
evaluation has – by its nature – a close link to
statistical assessment (results are associated with
probabilities as measures of uncertainty). How-
ever, there is a potential for a misinterpretation of
the value of statistical evidence when, routinely,
such evidence supports a scientific argument in
the adversarial (or inquisitorial) system of the trial
process. In this section comments are made on the
meaning of some concluding statements given by
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DNA experts. Note that the probabilistic meaning
of these statements is presented assuming that the
relative frequency was derived correctly and that
there is no possibility of error or misinterpretation
of the data. Note also that what follows is part of
a survey made in the early 2000s and published
in Taroni et al. (2002). Nevertheless, the current
situation has not greatly changed (Taroni, 2018)
and so those remarks are still of topical interest.
More discussion on practical guidance for evi-
dence evaluation can be found in Puch-Solis et al.
(2013), Evett et al. (2016), and Gill (2019).

2.5.10.1 Relative Frequency of Occurrence

The use of the relative frequency, 𝛾 , is inappropri-
ate when describing a match between two samples
of DNA. A typical way of expressing the result, used
by several laboratories, is ‘The DNA profile in ques-
tion occurs in about one person in 100 000 of the
population’. There are four main objections to this
approach:

(1) If the population in question is considerably
greater in size than 1∕𝛾 (for example, 3 mil-
lion), then it might be reasonable for a Court to
consider that about 3 000 000 × 1∕100 000
people in the population would have the
same profile. The Court could then perhaps
use this DNA evidence to form prior odds
when evaluating the remaining evidence in
the case. If however the population is much
smaller in size than 1∕𝛾 (e.g. a laboratory
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reports 1 person in 2.5 × 109), it would
not be expected to find anyone else in the
population who possesses the profile, and it
seems impossible logically to combine DNA
evidence with the other evidence in the case
which may provide support for the defence
hypothesis, for example, convincing evidence
of an alibi.

(2) A more serious objection to ‘frequency of
occurrence’ occurs when the scientist is
considering the alternative hypothesis that
the DNA has originated from a close relative
of the PoI. It does not make any sense to say:
‘The DNA profile in question occurs in about
one brother in 400’, so the scientist has to find
a different way of expressing this result whilst
avoiding confusion for the court.

(3) In considering the numerator and denomina-
tor of the likelihood ratio two probabilities are
evaluated, the probability of the observation of
a match between the crime stain and the PoI,
given that the stain has come from the PoI, and
given that the stain has come from someone
else. Also, consideration of the proposition that
the stain has come from someone else is depen-
dent on the result that has been obtained from
the PoI. Quotation of a relative frequency may
be appropriate when considering a sample of
DNA from the scene of a crime with no persons
of interest, but is inappropriate when match-
ing DNA has been obtained from a PoI.
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(4) There is a range of cases, for example, missing
persons, paternity and, in particular, cases
where mixed or low quantity DNA profiles
have been obtained, where it is not possible to
use a relative frequency to express the value of
the DNA evidence. The simple reason is that
in general the numerator of the likelihood
ratio is less than 1, and hence the value of the
DNA evidence is not given by 1∕𝛾 .

Note that point (3) introduces the notion of the
random match probability (RMP) or more generally
conditional match probability (CMP) (Balding and
Nichols, 1994), which represents an acceptable
way of expressing the value of DNA evidence. It
can be used as an alternative to the likelihood
ratio in simple cases where corresponding profiles
have been obtained, an idea also supported by the
ENFSI (2015) guideline that commented:

When source level propositions are considered, and when
the likelihood ratio amounts to the reciprocal of a condi-
tional match probability - typically in a DNA case involving
a large unmixed stain - the forensic practitioner may choose
to report the conditional match probability instead of the
likelihood ratio. (p. 18)

For example, the scientist may set out their
interpretation as: ‘I have considered two proposi-
tions with respect to the matching DNA profiles:
Hp, the semen has come from the PoI, and Hd, the
semen has come from an unknown person who
is unrelated to the PoI. These findings are what
I would have expected if the first proposition is
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true. I have assessed the probability of obtaining
corresponding profiles as 1 in a million if the
second proposition is true.’

It is also possible to express such a probability
without explicitly stating the propositions: ‘The
genetic profiles of the semen traces are identical
to that of the PoI. The probability of an unrelated
person of European origin presenting by chance
the same genetic profile as the semen stain is about
1 in 1 billion.’ or ‘The DNA profile of the semen
matched that of the blood of the PoI. The chance of
a person chosen at random in the population who
is not related to the suspect sharing this profile is
less than 1 in 10 million.’

Details on the meaning, the calculation, and
the magnitude of a random match probability are
given in Section 6.1.5 and discussed further in
Kaye (1993) and Kaye (2009c).

2.5.10.2 ‘Could Have’ Approach

Several scientists have prefaced an estimate of a
relative frequency with phrases like: ‘The semen
stain could have come from Mister X, the PoI’.
‘Sample A could have come from the donor of
sample B’. ‘The semen stain may originate from
the PoI’. ‘Based on the results of the DNA analysis
it can be concluded that this semen can originate
from the PoI’. ‘According to the results of the
DNA analysis the bloodstain may originate from
the victim’. ‘According to the results of the DNA
analysis the bloodstain could originate from the
person in question.’
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It may be helpful to the investigator to spell out
what may seem obvious, namely, that if the DNA
from the crime stain matches the PoI, then the PoI
could be the source of the DNA. If this is followed
by a statement about the relative frequency of the
profile, it is not clear what message is given about
the strength of the evidence. A fruitful discussion
on this topic is presented in Evett and Weir (1998)
and Evett et al. (2000d).

A statement that the evidence ‘could have come
from the PoI’ and similar statements could be seen
as a transposed conditional as it is expressing a
view about the probability of the proposition. If
this type of explanation is considered necessary,
then it would be preferable to use a form of words
such as ‘The DNA profile from the bloodstain
matches that obtained from the PoI. Therefore
the PoI, or anyone else with the same DNA profile
could be the donor of the bloodstain.’ This could
be read as providing further explanation of the
matching profiles, rather than as a probability
statement about a proposition.

2.5.10.3 ‘Cannot Be Excluded’ Approach

Among the possible statements, a conclusion that
is frequently used is the following: ‘The defendant
cannot be excluded as the stain donor.’ In U.S. v.
Morrow (2005) it can be read

Utilising this analysis, the FBI will conclude that it is sci-
entifically reasonable to attribute the source of a given DNA
sample to an individual if the profile frequency of the osten-
sible source and the matching unknown sample is smaller
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than 1 in 280 million.10 If the frequency is higher than this
ratio, then the defendant will fall into one of the remain-
ing four categories of results, depending on the exact size of
the ratio [the occurrence in a given population], i.e. ‘poten-
tially the major contributor in a mixed sample’, ‘cannot be
excluded as a potential contributor of the sample’, ‘cannot
be excluded as a potential major or minor contributor in a
mixed sample’, and ‘excluded as a potential contributor of
the sample’. (p. 8)

Such a statement is close to the previous one
(‘could have’ approach) in its vagueness. But it
is also related to a statement typically used in
paternity cases where the concept of exclusion is
presented in a numerical form using a ‘probability
of exclusion’. For example, if the characteristic
is shared by 0.1% of the population, then the
probability of exclusion is 0.999. As clearly
explained by Robertson and Vignaux (1992), such
a probability tells the scientist what proportion of
the population the test would exclude, regardless
of who is the father (the donor) of the child (stain).
Therefore, this estimate is a measure of the efficacy
of the test, because it answers the question ‘how
likely is this test to exclude Mister X if he is not the
father (the donor of the stain)?’ However, the court
is interested in another question ‘how much more
likely is the evidence if Mister X is the father (the
donor) of the child (stain) than if some randomly
selected person were?’ The probability of exclusion
is not relevant in trying to answer this question.

10A comment on this uniqueness aspect has been presented in
Section 2.5.9.
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Care is required in choosing a form of words
which avoids ambiguity. A phrase such as ‘The
probability of finding another person who has the
same genetic profile is 1 in 1 million in the popula-
tion’ could be interpreted as: ‘If a DNA profile was
obtained from every member of the population,
then the probability of finding another person
with the same profile is 1 in 1 million’. Clearly if
the population is about 50 million, then there is a
very high probability of finding someone else with
the same profile. A similar example of ambigu-
ous wording is: ‘This genotype can be found in
4.07 × 10−10 people in the reference population’.

2.5.10.4 ‘Consistent with’ Approach

Other experts’ statements simply note a com-
patibility between the features observed on the
recovered and control materials. One can read
sentences like ‘Based upon the comparisons the
expert performed, they concluded that the hairs
found in the victim’s apartment were “consistent
with” the sample provided by the defendant’.11 or
‘A paediatrician who examined the girls testified
that both girls exhibited redness in their labia
and vulva regions, which was consistent with
sexual abuse.’12 or ‘fibers consistent with a black
sweat-shirt owned by the petitioner were found
on the victim’s bed sheets, matching blue fibres
were found on the victim’s pink nightgown and on

11People v. Linscott (1991).
12State v. Hollywood (1984).
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petitioner’s blue jeans, microscopically consistent
fibres were found on the pink nightgown and on
petitioner’s underwear’.13 Formerly in 1991, a
court of justice noticed that ‘We believe that the
simple use of the words “match”, “consistent”,
“could have originated”, misrepresented the
evidence’.14

The problem here is that one has to know
whether the scientific observations (the observed
features) are also compatible with alternative
propositions. Here are some examples: ‘An
inflamed and irritated vagina and outer vaginal
lips in a 4-year-old may be consistent with sexual
molestation but it is also consistent with infec-
tion,’15 or ‘Other evidence tending to disprove or
dispute guilt consists of testimony that the forensic
evidence would also be consistent with other
theories,’16 or ‘Mr Reisman sets forth two basic
propositions in rebuttal to Mr Kirshner, which
Defendants seek to exclude. The first proposition
is that the forensic evidence is consistent with
the scenario of someone opening the file using
a different program, copying and pasting the
contents into a new word document, and then
editing the document to look like the original
Hertzig Fax. Mr Reisman’s second proposition,
which is also necessary if the jury is going to
believe this all happened at some time other than

13Holmes v. South Carolina (2006).
14People v. Giangrande (1991).
15In re Michelle I. (1993).
16Swearingen v. State (2003).
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the middle of the night, is that system clocks were
sometimes unreliable, so that a timestamp of 4:41
a.m. might be inaccurate.’17

A detailed analysis of reports and oral testi-
monies expressing the ‘Consistent with’ approach
is made by Edmond (2013). A comment and a
solution is presented by Lyon and Koehler (1996).
The authors wrote:

A relevance ratio analysis, however, reveals that a condition
that is ‘consistent with’ abuse is relevant for proving that
the abuse occurred only when the condition occurs more
frequently among abused children than among non-abused
children. Typically, the ‘consistent with’ terminology is
merely an observation that at least some abused children
exhibit the condition. Thus, ‘consistent with’ testimony
informs a factfinder that the numerator of the relevance
ratio is nonzero, but says nothing about the denominator.
The numerator must be compared with the denominator,
however, for the relevance of the condition to be fully
understood. (at p. 51)

Note also that Lyon and Koehler (1996) affirmed
that ‘in [their] view, a relevance ratio analysis is
the most efficient way to think about evidentiary
relevance.’ (p. 47). They wrote:

Readers familiar with the literature on probabilistic rea-
soning in the law may recognise the relevance ratio as the
likelihood ratio term from Bayes’ theorem. Bayes’ theorem
provides a method for updating probabilistic beliefs in the
face of new evidence. It combines a likelihood ratio (which

17Robocast, Inc. v. Microsoft Corp. (2014).
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captures the diagnostic value of new evidence) with a prior
odds ratio (which captures one’s initial beliefs about the
hypothesis) to form a posterior odds ratio (post-evidentiary
belief about the hypothesis). (p. 48)18

This wording refers to what has been presented in
Section 2.3.

Further comment came from Evett et al. (2000d)
wrote:

The phrase ‘consistent with’, when used in the context of
‘the evidence is consistent with this shoe having left the
mark’ is a potential source of confusion. Also it is not bal-
anced, unless the other proposition is addressed. Perhaps it
might be equally true to say ‘the evidence is also consistent
with any other shoe of the same model and size having left
the mark’. At worst, the use of this phrase lays one open to
the criticism of partiality. At best, it does nothing to convey
an assessment of the weight of evidence in favour of one or
other of the stated propositions. (p. 237)

The term ‘consistent with’ can represent an ade-
quate way to express the evidence if the expression
is also associated to at least one alternative propo-
sition. An example is the following:

Based on Dr. Wolf’s testimony and the amended autopsy
report, the State stipulated that the credible forensic evi-
dence was ‘more consistent with the theory that Pena was
shot at the location where he was found,’ as opposed to some
other location.19

18The authors meant ‘odds’ here not ‘odds ratio’.
19Ex parte De La Cruz (2015).
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2.5.11 Empirical Evidence of Errors
in Interpretation

Scientific evidence is often presented in a numer-
ical way. Such an evaluation inevitably uses
probabilities as measures of uncertainty. Judges
are concerned that scientific evidence may over-
whelm or mislead the jury, especially when its
presentation by an expert may appear to give
the evidence greater probative value to a layman
than it would to another expert (see, for sake of
illustration the analysis presented by Koehler
(2014)). This concerns the legal community
when a decision rests on a resolution of the differ-
ences between opposing experts, with seemingly
conflicting testimony. The potential for basing a
decision on a misunderstanding is considerable
when the uncertainty of the scientific evidence
is not understood (see, for example, (Fienberg
et al., 1996); (Kaye and Koehler, 2003)). Statis-
tical forms of scientific evidence have probably
yielded the greatest confusion and concern for
the courts essentially in the application of DNA
(Kaye, 1993; National Research Council, 1996).
The confusion is not surprising; the courts still
have little expertise in genetics and statistics. This
is the major reason for the need to publish specific
guidelines for evidence evaluation as proposed by
the Royal Statistical Society (see Puch-Solis et al.
(2013)) and the Royal Societies of London and
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Edinburgh20 (Royal Society and Royal Society of
Edinburgh, 2017) and still supported by scien-
tists faced with practice and consultancy (Evett
et al., 2016). Koehler (2018) summarised the
current flawed situation and provided trial judges
with guidance on how they should think about
and evaluate the reliability of forensic science
evidence.

Scientists have also provided sources of misinter-
pretation in their reports and statements (Koehler,
1993a). Moreover, it has also been argued that the
presentation at trial of the evidential value in the
form of a likelihood ratio could be very prejudicial
in the decision-making process (Koehler, 1996).
Koehler noted that ‘(e)ven when likelihood ratios
are properly conveyed, there is little reason to
believe that jurors will understand what they
mean and how they should be used. Although
they have scientific merit, likelihood ratios – which
are the ratios of conditional probabilities – are not
easy to understand.’ Psychological research has
emphasised the fallacious way in which people
reason in managing uncertainty and probabili-
ties, especially with conditional probabilities (for
a review of these studies see Kaye and Koehler
(1991), Fienberg and Finkelstein (1996), Edmond
et al. (2017) and Martire and Kemp (2018)).

Empirical research has been carried out in the
last decade. Following from the results, methods of
improving the reporting of the evidence and the

20http://www.rss.org.uk/statsandlaw.
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trial presentation have been proposed in order to
assist with the questions

• Is the evidence correctly interpreted?

• Can the way in which the evidence is presented
at trial influence a verdict?

• Can the way in which the evidence is presented
at trial influence an update of a probability of
guilt?

• Can an interpretation of the value of the
evidence be misunderstood?

Cases have been studied where scientific evi-
dence has been presented in court, and, using
information gained from such studies, a series of
problems have been developed for, and given to,
law and forensic science students, to practitioners
(advocates and forensic scientists,) and to mock
jurors to investigate their understanding of uncer-
tainty. Problems associated with the presentation
of scientific evidence at trial were investigated
using the responses of students and practitioners.
Research studied the interpretation of numbers
related to the value of scientific evidence, numbers
that had been used by experts to explain the
value of the evidence. For example, the impact of
different ways of presentation and the value of
similarities between a DNA recovered trace and
a DNA control material on the verdict (guilty or
not guilty) and on the update of the probability
of guilt were studied. The results showed an
underestimate of the value as expressed by the
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posterior probabilities computed using Bayes’
theorem. The fact that these posterior assessments
were substantially below those computed from
Bayes’ theorem confirmed results of previous
studies (details in Taroni and Aitken (1998b),
Koehler (1996)). For a review of earlier studies,
see Fienberg and Finkelstein (1996). The results
also suggested that subjects did not treat different
methods of presentation of the evidence (percent-
age of exclusion, relative frequency, likelihood
ratio and posterior odds) similarly but that there
was an association between the assessment of the
posterior probabilities and the verdicts. Moreover,
subjects did not seem capable of distinguishing
between the magnitude of the difference in val-
ues between scenarios and the effect of error
rate, if reported (Koehler et al., 1995; Koehler,
2001a). Even if the results have to be treated with
caution, because of the limits of sample size and
geographical areas studied, they show a clear
problem in dealing with measures of uncertainty
(Koehler, 2001b). Studies are described in which
(Koehler, 2001b)

DNA match statistics that target the individual suspect
and that are presented as probabilities (i.e. ‘the probability
that the suspect would match the blood drops if he were
not their source is 0.1%’) are more persuasive than
mathematically equivalent presentations that target a
broader reference group and that are framed as frequencies
(i.e., ‘one in one thousand people in Houston would also
match the blood drops’). (p. 493)
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Other empirical research has approached
the problem of the possible pitfalls of intuition
related to the presentation of scientific evidence
in numerical ways. The available DNA data (as
collected in population studies) allow the scientist
to offer to the court a number that should quantify
the strength of the link generally established
between a PoI and a trace recovered on a victim
or on a crime scene. This number generally
represents the relative frequency of the matching
characteristic in some relevant population (or the
RMP, Section 6.1.5). The use of these numbers
may be thought prejudicial. Conclusions based
solely on the relative frequency of the matching
trait could have serious consequences as already
discussed in Sections 2.5.1–2.5.6 where the sci-
entists’ statements use subtle forms of reasoning.
Research has tried to measure the extent of the
misunderstanding of the meaning of the value
of the statistical evidence. Generally, the experts’
statements in criminal trials were presented to
participants in a survey. Experts gave different
explanations of the meaning of the statistical evi-
dence presented. Participants were asked to detect
which statements were correct and which ones
were erroneous. Where the expert’s explanation
was thought to be erroneous, participants were
asked to explain their reasons. A correct answer
was taken to be one in which the respondent says
the expert is correct when the expert is indeed
correct or the respondent says the expert is wrong
when indeed the expert is wrong (all details of
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cases and analyses can be found in Taroni and
Aitken (1998b–1999). The concern here is with
principles. For example, in E. Ross v. State of
Indiana (1996) (Section 2.5.2), R v. Michael Gordon
(1994), and R v. Deen (1993), the problem was
the fact that the expert gave an opinion on an
issue (the PoI is the source of some evidence,
or the PoI is the rapist). These are examples of
the transposed conditional. Participants in the
surveys were confused by the statements and
unfortunately accepted them. In R v. Montella
(1992), the expert presented the value of the
evidence as a likelihood ratio. This logical method
of assessing and presenting the evidence unfor-
tunately created considerable confusion in the
comprehension of the expert’s statement. There
were comments from members of all groups of
participants (students and practitioners) that they
believed the explanation to be wrong, confusing,
and too difficult to understand. The results were
supported by Koehler (2001b). The aim of this
book is to reduce, or even eliminate, the incidence
of these problems. In U.S. v. Jakobetz (1992), the
expert fell into a source probability error (Section
2.5.2). This equates the frequency of the trait
with the probability that someone other than the
defendant was the source of the trace evidence.
The case Ross v. State (1992) presents another sta-
tistical problem. This fallacy is an example of the
numerical conversion error (Section 2.5.6) because
it may be thought that the significance of the
value of the relative frequency can be measured
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by equating the reciprocal of the frequency with
the number of people who would have to be tested
before there is another match. Generally, results
showed that participants believed that experts
were right in their explanation of the evidence.
In this last situation, the participating members
of the Faculty of Advocates of Scotland correctly
identified the statistical meaning of the evidence
presented stating that ‘just because the odds (sic!)
are 1 to 209 100 000 it doesn’t mean that you
have to look at 209 100 000 people before finding
a match – the next sample could be the next
match’. From a research point of view, studies
with mock jurors and/or students have been
essentially focused on management of two distinct
pitfalls of intuition: the prosecutor’s fallacy and the
defence attorney’s fallacy (Sections 2.5.1 and 2.5.4,
Thompson and Schumann (1987), Thompson
(1989), Carracedo et al. (1996)). These studies
involved mock trial scripts rather than actual
trials.

Other research submitted real criminal cases,
where the statistical evidence had been explained,
to specialist groups such as students (who
represent future judges, lawyers and forensic
scientists) and as practitioners (forensic sci-
entists and advocates). Results in both kinds
of research showed that the great majority of
participants failed to detect the error in the argu-
ments exposed by experts at trial. The tendency
to draw erroneous conclusions from fallacious
descriptions of the meaning of the evidence is
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troubling. It demonstrates a lack of knowledge in
conditional probability, knowledge that is required
to assess correctly the value of the evidence and to
appreciate correctly the meaning of this value.

Consider fibres and glass evidence. As empirical
research (Champod and Taroni, 2017) has sup-
ported, risks of misconception exist when experts
use relative frequencies to support their analytical
results. In fact, the relative frequency is only one
of many parameters that should be considered in
a complete perspective of evidence evaluation (see
Chapter 5).

The use of the likelihood ratio constitutes, for
the expert, an interesting subject for reflection on
scientific proof, because the expert must search
and choose the relevant questions considering
the physical evidence from two opposite points of
view. Case surveys represent an attempt to study
the evaluation framework for different scenar-
ios involving fibres, blood, and glass fragments
(Taroni and Aitken, 1998c). These scenarios
were chosen deliberately in order to illustrate
the assessments and the evolution of the differ-
ent parameters in different situations. Subjects’
reactions to a situation in which more than one
foreign group of fibres was recovered at a scene
of crime and determined to have been left by the
offenders were studied. Only one of them (group of
fibres) was compatible with an article of clothing
associated with a PoI. Evaluation of the match
between recovered fibres and clothing from a PoI
must consider similar and dissimilar elements as
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already suggested for bloodstain evidence (Evett,
1987b). Therefore, it is important not only to
focus on the fibres that match the garments of
the PoI, but also to consider other groups of fibres
compatible with the facts, which potentially could
have been left by the offender, who is not the PoI;
see also Section 6.1.2 for a discussion.

Two scenarios with different values for the fibre
evidence were described to participants who were
asked for assessments (Evett, 1983; Buckleton and
Evett, 1989). It was found that subjects did not
change their assessment of the evidence according
to the difference between the scenarios. Subjects
did not take into account, in their assessment of
the value of the evidence, the number of groups
of fibres that were compatible with the issue in
question. These failings produced an overestimate
of the value of the evidence in the case where
there was more than one distinct group of fibres
(details of the likelihood ratio development are in
Sections 2.3 and 2.4). When two individuals (or
an individual and an object) have contact during
a criminal action, a reciprocal transfer of material
(e.g. fibres or glass) is involved. Where this hap-
pens, the two sets of recovered traces have to be
considered as dependent. If a transfer has occurred
in one direction, and the expert has recovered
traces characterising this transfer, then the expert
would expect to find trace evidence characterising
the transfer in the other direction. The presence
of one set of transfer evidence gives information
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about the probability of the presence of the other
set of transfer evidence (Inman and Rudin, 2001)
(details of such a situation are presented in Section
5.3.2.5). The ability of participants to distinguish
the scenario where the two sets of recovered traces
are dependent from the scenario where the two
sets of recovered traces are independent was inves-
tigated, with particular reference to the reaction
to new technical information about the presence
or the absence of cross-evidence involved in the
criminal contact. The absence of the expected
presence of some trace evidence which would
show a reciprocal exchange of material has to be
taken into account in the assessment of the value
of the recovered matching evidence. The results
obtained in the surveys supported previous results
and emphasised the subjects’ inability to take into
account technical information in the assessment
of the real value of a link detected between two
persons or objects (Taroni and Aitken, 1998b).
The assessment by the participants of the proba-
tive force of an entire aggregation of evidence was
also investigated. In one scenario, participants
were asked to make an aggregated judgement,
which concerned a large collection of evidence in
a criminal case involving glass evidence presented
by the experts for the prosecution and for the
defence. In a second scenario, for comparison
with the first, the participants made assessments
for two subsets of the evidence and these were
combined to provide an overall judgement. This
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required more assessments, but each one was
made with reference to a smaller and more specific
body of evidence. A comparison was made of the
assessments of posterior probabilities made by
the participants in each of the two scenarios. The
posterior probability of guilt made by participants
who received the entire body of evidence was
much smaller than that made by the participants
who updated their probability twice. The results
indicate that arguments tend to provide smaller
posterior probability assessments if the body of
evidence is not decomposed. Note also that, in
both scenarios, smaller values for the probability
of guilt were obtained than would have been if the
laws of probability had been followed.

In general, results have shown that methods of
assessment used by participants are insufficient to
obtain a correct value of the scientific evidence.
Dangers of underestimation and overestimation
of the real value of the evidence still remain.
Forensic scientists endeavour to give the court an
accurate evaluation to illustrate the true worth
of their results. Unfortunately, judging from the
results of surveys, the evaluations of the scientists
fail to consider all the parameters involved in the
scenarios proposed. Furthermore, comments on
the calculation of the posterior probabilities show
that these have been based upon ‘a subjective
decision’ instead of in accordance with the rules
of probability. As stated earlier, the studies were
designed to answer four questions
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• Is the evidence correctly interpreted?

• Can the way in which the evidence is presented
at trial influence a verdict?

• Can the way in which the evidence is presented
at trial influence an update of a new probability
of guilt?

• Can the explanation of the evidence be misun-
derstood?

The studies were pertinent as the National
Research Council of the United States had com-
mented that ‘there is a lack of research into how
jurors react to different ways of presenting statis-
tical information’ and that ‘no research has as yet
tested the reactions of triers of fact to the detailed
presentations of evidence on DNA profiling that
are encountered in the courtroom’ (National
Research Council, 1996). On the same line of
reasoning, see the PCAST Report (President’s
Council of Advisors on Science and Technology
(PCAST), 2016).

The answers to the questions were all unde-
sirable: the evidence may not be correctly
interpreted, the way in which the evidence is
presented at trial may influence a verdict, the
way in which the evidence is presented at trial
may influence an update of a new probability of
guilt and the explanation of the evidence may be
misunderstood. This book presents the view that
the likelihood ratio (in the Bayesian framework)
should be used by experts because it allows them
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to take into consideration the evidence under two
alternative propositions and it enables the consid-
eration of other relevant factors in the calculation
of the value of the evidence (as will be presented
in the following chapters). Jurists should also
appreciate the approach, because it clarifies the
roles of the expert and of the judge or members
of the jury: the latter take the decision on an
issue, the former compares the likelihoods of the
evidence under two proposed propositions.

It is important to realise that in the evaluation of
evidence the probability of the evidence has to be
considered under two propositions, separately. The
following quotes illustrate this point (Friedman,
1996):

The concept of a match is gratuitous.

The factfinder’s task is to assess the relative probability of
two hypotheses – that the samples came from a common
source, and that they did not.

The evidence is the two profiles revealed by the samples.21

21It is of interest to note the conclusions expressed by some judges
concerning the use of the term match. For example, in U.S. v. Davis
(2019) at p. 7 it can be read: ‘Concerns over the reliability of
this testimony expressed in the National Research Council (1996)
and President’s Council of Advisors on Science and Technology
(PCAST) (2016) reports and those reflected in a recent chorus of
federal decisions lead the court to impose certain restrictions on
the testimony of these toolmark examiners. The examiners may
not testify that the marks indicate a match or that cartridge cases
were fired by the same firearm. They may not testify that cartridge
cases have signature toolmarks identifying a single firearm.’ In the
same case, at p. 9, the judge wrote: ‘Experts may not opine that a
cartridge case is a match to other cartridge cases or firearms.’
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A factfinder can ask how likely it is that the evidence would
have arisen, given each of the competing hypotheses,
without asking whether the evidence satisfies an arbitrary
defined match standard. (p. 1826)

and

This concern might have some theoretical force, in the
context of DNA evidence, when a prosecutor presents
evidence that two samples do not match because the
disparity between the measurements is so great. Such a
conclusion tells the factfinder that the evidence would be
unlikely to arise given the hypothesis that the samples had
a common origin, but it does not combine easily with other
evidence because it does not tell the factfinder how likely
the evidence would arise given an alternative hypothesis.
(p. 1827)

2.6 MISINTERPRETATIONS

The aforementioned examples are appropriate
summaries of the evidence. However, misinter-
pretations still occur in which the evidence is
summarised as a comment about the truth or
otherwise of the prosecution’s proposition. Note
that the use of verbal scales about the truth or
otherwise of a proposition are accepted in many
scientific fields (e.g. medicine, weather forecast-
ing). Here, in contrast to forensic science, the
scientist plays a different role and uses a different
amount of information. Therefore, posterior scales
in these disciplines seem acceptable in a way they
are not in forensic science. An 11-point subjective
posterior scale of scientific uncertainty based
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on legally defined standards of proof has been
proposed (Weiss, 2003).

In a response to a survey conducted by Taroni
and Aitken (2000) on fibres evidence, the com-
ment was made that the strength of the evidence
was categorised in terms of the probability of the
prosecution’s proposition, that it was

• Beyond reasonable doubt,

• Most probable,

• Probable,

• Quite possible or

• Possible

that matching evidence associated with the defen-
dant comes from the same source as that found at
the crime scene. In this survey, laboratories gener-
ally commented on the truthfulness or otherwise of
the proposition proposed by the prosecution. This
was instead of the value of the evidence.

Also, in the context of human hair comparisons,
Gaudette (2000) gave a scale for the questioned
hairs originating or not from the same person as
the known sample. There is a match and the scale
interprets this as

Strong positive: Questioned hairs originated
from same person as the
known sample.

Normal positive: Questioned hairs are
consistent with the
known sample.
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Inconclusive: No conclusion can be given.
Normal negative: Questioned hairs are not

consistent with the
known sample.

Strong negative: Questioned hairs could not
have originated from the
known sample.

However, this is making a judgement about
the source of the hair without prior knowledge
of the background information of the case.
Similar problems have been discussed in the
context of shoeprint examinations (Champod
et al., 2000; Taroni and Margot, 2001; Katterwe,
2002a,b; Taroni and Buckleton, 2002; Cham-
pod and Jackson, 2002) and speaker recognition
(Champod and Evett, 2000) and are still under dis-
cussion in some areas, see, for example, Morrison
et al. (2016) where the authors also presented
the use of different frameworks for reporting the
conclusions of speaker identification analyses.

Finally, the difficulties associated with proba-
bilistic reasoning in the criminal justice system
are illustrated by this contradiction within the
same judgement. The court in R. v. France (2019)
ruled by affirming that the expert

. . . would not be permitted to testify as to whether an
assault was more likely to have caused the injury than
an accidental fall, nor would he be permitted to express
an opinion on the probabilities of one cause as opposed to
another. (p. 2)
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This is sound advice as discussed in Section
2.5.1. Unfortunately, one page later, the court
ruled that

[the expert] should avoid using language to say that the
injuries were ‘consistent with’ an assault, but rather
should use language such as the injuries could have been
caused this way, or it is possible they were caused this
way. (p. 3)

2.7 EXPLANATION OF
TRANSPOSED CONDITIONAL,
DEFENCE ATTORNEY’S AND
FALSE POSITIVE FALLACIES

Using the odds form of Bayes’ theorem (2.14)
insight into the fallacy of the transposed condi-
tional (or prosecutor’s fallacy), the false positive
fallacy and the defence attorney’s fallacy can be
gained.

2.7.1 Explanation of the Fallacy of the
Transposed Conditional

As before, a crime has been committed. A stain
of blood has been found at the scene, which has
been identified as coming from the criminal. A PoI
is identified and their blood group is the same as
that of the crime stain. Let E denote the evidence
that the blood group of the PoI is the same as that
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of the crime stain. Let Hp denote the proposition
that the PoI is guilty and its complement Hd denote
the proposition that the PoI is innocent.

Consider the following two statements:

• The blood group is found in only 1% of the pop-
ulation,

• There is a 99% chance that the suspect is guilty.

The second statement does not follow from
the first without an unwarranted assumption
about the prior odds in favour of guilt. The first
statement that the blood group is found in only
1% of the population is taken to mean that the
probability that a person selected at random from
the population has the same blood group as the
crime stain is 0.01. Thus Pr(E ∣ Hd) = 0.01. Also,
Pr(E ∣ Hp) = 1, assuming no false negatives. The
value of V is 100.

The second statement is taken to mean that
the posterior probability in favour of guilt (pos-
terior to the presentation of E) is 0.99; i.e.
Pr(Hp ∣ E) = 0.99. Thus Pr(Hd ∣ E) = 0.01 since
Hp and Hd are complementary propositions. The
posterior odds are then 0.99/0.01 or 99, which
is approximately equal to 100. However, V also
equals 100. From (2.14), the prior odds are
approximately equal to 1:

Pr(Hp) ≃ Pr(Hd).

The second statement of the fallacy of the trans-
posed conditional follows from the first only if
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Pr(Hp) ≃ Pr(Hd). In other words, the PoI is just
as likely to be guilty as innocent. This is not in
accord with the dictum that a person is innocent
until proven guilty. The prosecutor’s conclusion,
therefore, does not follow from the first statement
unless this unwarranted assumption is made.

The use of prior odds of 1 was also advocated
for shoe print examination (Katterwe, 2003). A
population of N shoes is postulated as the one to
which the shoe that made the print at a crime
scene belongs. There is one shoe that may be
considered as the suspect shoe. In the absence of
any other information, the probability that this
shoe made the crime print is 1∕N. The probability
that another shoe from this population made the
print is (N − 1)∕N. The prior odds that the suspect
shoe made the print are 1∕(N − 1). The argument
advanced by Katterwe (2003), however, is that,
apart from the suspect shoe and in the absence of
any other information and with the assumption
that shoeprints are unique, there is a population of
only one shoe that could also have made the print.
The defence proposition is that only one other shoe
made the print. Therefore the relevant population
is of size two. This argument is analogous to the
probability of hitting a target, for example, in a
game of darts. A dart may hit the bulls-eye or it
may not. There are only two possibilities. In the
absence of other information, the probabilities of
‘hit’ or ‘miss’ are equal at 1/2 each. However, in
reality, there is always other information. For the
dart player, there is information about the area of



�

� �

�

Explanation of Fallacies 239

the bulls-eye compared with the area of the rest of
dart-board and wall on which the board hangs.
For shoe-print examination there is information
on the number of shoes in the world that could
have made the print. Similar arguments hold for
other evidence types, e.g. paternity, Section 6.3.4.

2.7.2 Explanation of the Defence
Attorney’s Fallacy

Assume the likelihood ratio is 100, as in the
discussion of the fallacy of the transposed condi-
tional. Consider a relevant population to contain
200 000 people. The defence says that there are
2 000 people with the same blood group as the
defendant. The probability the defendant is guilty
is 1∕2 000 and thus the evidence has very little
value in showing this particular person guilty.
As before Pr(E ∣ Hp) = 1,Pr(E ∣ Hd) = 0.01 and
V equals 100. Also, Pr(Hp ∣ E) = 1∕2 000 and so
Pr(Hd ∣ E) = 1 999∕2 000. The posterior odds in
favour of Hp are

1∕2 000
1 999∕2 000

= 1
1 999

≃ 1
2 000

.

The prior odds equals the ratio of the posterior odds
to V:

Pr(Hp)
Pr(Hd)

=
Pr(Hp ∣ E)
Pr(Hd ∣ E)

∕V ≃
( 1

2 000

)
∕100

= 1
200 000

.
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Thus, Pr(Hp) = 1∕200 001, Pr(Hp) = 200 000∕
200 001. The prior probability of guilt is
1∕200 001. The denominator is the size of
the relevant population (of innocent people)
plus one for the criminal. The implication is that
everybody is equally likely to be guilty. This does
seem in accord with the dictum of innocent until
proven guilty. Colloquially, it could be said that the
defendant is just as likely to be guilty as anyone
else. The defence attorney’s fallacy is not really
a fallacy. It is misleading, though, to claim that
the evidence has little relevance for proving the
suspect is guilty. Evidence that increases the odds
in favour of guilt from 1∕200 000 to 1∕2 000
is surely relevant. Using the scale presented in
Table 2.8, the likelihood ratio expresses a moderate
support to the proposition of guilt.

Notice that it is logically impossible to equate
the dictum innocent until proven guilty with a
prior probability of guilt of zero, Pr(Hp) = 0. If
Pr(Hp) = 0, then Pr(Hp ∣ E) = 0, from (2.11)
no matter how overwhelming the evidence, no
matter how large the value of V. The probability
of guilt may be exceedingly small, so long as it
is not zero. So long as the prior probability of
guilt is greater than zero, it will be possible, given
sufficiently strong evidence, to produce a posterior
probability of guilt sufficiently large to secure a
conviction. If the defendant is as likely to be as
guilty as anyone else; his prior probability of guilt
would then be the reciprocal of the size of the
population defined by ‘anyone else’. Comments on
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this point are presented in Robertson and Vignaux
(1994). Lindley (1985) presented this aspect as
Cromwell’s rule22 by stating:

A simple result that follows from Bayes’ theorem is that
it is inadvisable to attach probabilities of zero to uncertain
events, for if the prior probability is zero so is the poste-
rior, whatever be the data. This is immediate since the lat-
ter is proportional to the product of the likelihood with the
former, and a product is necessarily zero if one of its fac-
tors is. Consequently an uncertain event of zero probabil-
ity remains so whatever information is provided. In other
words, if a decision-maker thinks something cannot be true
and interprets this to mean it has zero probability, he will
never be influenced by any data, which is surely absurd.
(p. 104)

2.7.3 Explanation of the False Positive
Fallacy

It is important to have accurate information about
both the RMP (see Section 6.1.5 for details) and
the false positive probability (see Section 6.1.6.4
for details) when evaluating evidence. Ignorance
of, or an underestimation of the potential for, a
false positive can lead to serious errors of inter-
pretation, particularly when the other evidence
against the PoI is weak.

It is considered essential to have valid scientific
data for determination of a RMP but, paradoxi-
cally, it is thought unnecessary to have valid data

22This is called Cromwell’s rule because of his advice to the
Church of Scotland ‘I beseech you . . . think it possible you may
be mistaken’ (Cromwell, 1979).
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for determination of a false positive probability.
The explanation for this lies partly in the false
positive fallacy (Section 2.5.7). It is assumed,
mistakenly, that if the false positive probability is
low then the probability of a false match must
also be low in every case. For example, a forensic
scientist who thinks that there is only a 1%
chance of falsely declaring a match between
samples in a case if they really do not match,
might assume that there is, necessarily, a 99%
chance that the reported match (RM) is a true
match. This assumption is fallacious. The fallacy
arises from a mistaken equation of the conditional
probability of a match being reported when the
samples do not match (the false positive proba-
bility) with the probability that the samples do
not match when a match has been reported.
These two probabilities are not the same. The false
positive probability is the probability of a match
being reported under a specified condition (no
match). It does not depend on the probability of
the occurrence of that condition. By contrast,
the probability that the samples do not match
when a match has been reported depends on
both the probability of a match being reported
under the specified condition (no match), and on
the prior probability that condition will occur.
Consequently, the probability that a reported
match is a true match or a false match cannot
be determined from the false positive probability



�

� �

�

Explanation of Fallacies 243

alone. In formal terms, the fallacious assumption
is that Pr(M ∣ R) = 1 − Pr(R ∣ M̄), where M is
the event that the PoI and the perpetrator have
matching DNA profiles, M̄ is the event that they
do not have matching profiles, and Pr(R ∣ M̄) is
the false positive probability; i.e. the probability
of a match being reported given that the samples
do not have matching profiles. This assumption
is fallacious because it ignores the prior odds that
the PoI’s profile matches the sample profile. Let
the prior odds, Pr(M)∕Pr(M̄), equal 1∕k where k is
large. Then

Pr(M ∣ R)
Pr(M̄ ∣ R)

= Pr(R ∣ M)
Pr(R ∣ M̄)

× 1
k
.

Assume Pr(R ∣ M) = 1; i.e. there are no false neg-
atives. Then

Pr(M ∣ R) = 1∕{1 + k Pr(R ∣ M̄}

which can be much lower than 1 − Pr(R ∣ M̄)
when k is large.

For example, suppose that the prior odds the
PoI’s profile will match that of the recovered stain
are 1∕1 000 because the PoI is selected through
a large DNA dragnet and appears, initially, to be
an unlikely perpetrator. Suppose further that a
DNA match is reported and that the false positive
probability is 0.01. The probability that this
reported match is a true match is, therefore,
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1∕(1 + 1 000 × 0.01) = 0.0999. In other words,
the probability that this reported match is a true
match is not 0.99, as the false positive fallacy
would suggest; it is less than 0.1.

True matches are expected to be rare when a
database is searched. Therefore, the probability in
a particular case that a non-match will mistakenly
be reported as a match, even if low, may approach
or even surpass the probability that the suspect
truly matches. The false positive fallacy is similar
in form to the prosecutor’s fallacy (Thompson
and Schumann, 1987), but differs somewhat in
content (Thompson et al., 2003).

Victims of the false positive fallacy mistakenly
assume that Pr(M ∣ R) = 1 − Pr(R ∣ M̄). Victims
of the prosecutor’s fallacy mistakenly assume that
Pr(S ∣ M) = 1 − Pr(M ∣ S̄) where

• S is the proposition that the specimen came from
the PoI and

• S̄ is the proposition that the specimen did not
come from the PoI

(Thompson and Schumann, 1987). Both fallacies
arise from failure to take account of prior proba-
bilities (or odds) when evaluating new evidence;
both can lead to significant overestimation of the
posterior probability when the prior probability
is low. The prosecutor’s fallacy is an erroneous
way of estimating the probability that the PoI is
the source of a sample based on evidence of a
matching characteristic; the false positive fallacy
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is an erroneous way of estimating the probability
of a true match based on a reported match.

2.8 MAKING COHERENT
DECISIONS

Quantification of uncertainty represents a funda-
mental step in any forensic case and probabilities
represent the rational way to handle it, thus
helping to avoid pitfalls of intuition. However, this
rarely represents the end of the matter on which
a forensic scientist may be asked to work (Lindley,
1977a). There may be cases of interest where the
expert needs to make a choice among alternative
courses of action (e.g. processing or not a finger-
mark, pronouncing the exclusion of an individual
as the donor of a stain based on the inspection of
genetic characteristics). Further, a difficulty that
must be tackled is that consequences, unknown
at the time of decision-making, might arise from
alternative courses of action (e.g. a false exclu-
sion). Decision theory is a general framework
wherein both the management of uncertainty
with the use of probability and decision-making
can be formally analysed. Kingston and Kirk
(1964) were aware of this procedure. They
wrote:

A decision is made by utilising this probability [defined as
a belief], in conjunction with considerations as to the con-
sequences of the decision, as a guide. (p. 515)
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2.8.1 Elements of Statistical Decision
Theory

The Bayesian paradigm (see Section 2.2) can be
extended to encompass the wider perspective of
decision making. A decision problem exists when-
ever there are two or more possible decisions, and
there is uncertainty regarding the consequences
that may arise from each decision. The principal
issue is the selection of a decision. The basic
elements of a decision problem are given by the
following:

(1) A set of exhaustive and mutually exclusive
decisions (or courses of action23).

Decisions can be denoted d, whilst the set of
all decisions (the decision space) is denoted .

(2) A set of exhaustive and mutually exclusive
uncertain events (usually called states of
nature). States of nature are denoted 𝜃, whilst
the set of all possible states of nature (the
parameter space) is denoted Θ.

(3) A set of consequences, defined as the outcome
following the combination of decision d when
the actual state of nature is 𝜃. Consequences
are denoted c(d, 𝜃), or simply c, whilst the set
of all consequences is denoted .

See Lindley (1985) for a broad description of the
general structure of a decision problem.

23Berger (1985) noticed that ‘Decisions are more commonly
called actions in the literature’ (p. 3).
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The main purpose of a theory of decision mak-
ing is to conceive of a normative framework that
allows decision makers to assess the consequences
of alternative courses of action, compare them and
avoid irrational choices or behaviour. Principles
that should be followed by a decision maker who
aims to achieve coherent decision making can
be summarised as follows (see e.g. Bernardo and
Smith (2000), DeGroot (1970)):

(1) The uncertainty about states of nature 𝜃

should be expressed in terms of a probability
distribution describing their plausibility,
Pr(𝜃 ∣ I), where I denotes the relevant
information available at the time when the
probability assessment is made;

(2) The decision maker can express preferences
among possible consequences, say, c1 and c2,
meaning that they must be able to specify at
any point that one is preferred or whether
they are equivalent. This means that for any
pair of consequences (c1, c2) ∈ , it is assumed
a decision maker can always say whether they
are indifferent among them (c1 ∼ c2), whether
one is strictly preferred to another (e.g. c1 ≺ c2
means that c2 is strictly preferred to c1), or
whether one is not preferred to another (e.g.
c1 ⪯ c2 means that c1 is not preferred to c2,
that is either c1 ∼ c2 or c1 ≺ c2 holds).

(3) Preferences among consequences should be
measured by a utility function U(⋅), which
specifies, on some numerical scale, their
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desirability. In other words, if U(⋅) is a utility
function and c1 ⪯ c2, then U(c1) ≤ U(c2).
Note that the existence of such a function
is conditioned on the acceptance of a set
of conditions (axioms) characterising the
preference system (DeGroot, 1970).

(4) The desirability of alternative courses of action
is measured by their corresponding expected
utility, which is obtained by combining utilities
U(c(d, 𝜃)) associated with the consequences of
decisions c(d, 𝜃) and probabilities for states of
nature Pr(𝜃 ∣ I)

EU(d) =
∑
Θ

U(c(d, 𝜃))Pr(𝜃 ∣ I). (2.18)

A standard decision rule instructs one to
select the action that maximises the expected
utility. This decision is optimal because it can
be proved that it is the decision, which has
associated with it the highest probability of
obtaining the most favourable consequence
(Lindley, 1985).

It is often convenient to express preferences among
decision consequences c(d, 𝜃) in terms of a non-
negative loss function L(⋅) defined by

L(c(d, 𝜃)) = max
d∈ U(c(d, 𝜃)) − U(c(d, 𝜃)).

The loss L(c(d, 𝜃)) for a given consequence c(d, 𝜃)
is defined as the difference between the utility of
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the best consequence under the state of nature
at hand and the utility for the consequence of
interest. Stated otherwise, the loss measures the
penalty for choosing a non-optimal decision,
also called opportunity loss (Press, 1989): that
is, the difference between the utility of the best
consequence that could have been obtained and
the utility of the actual one. The loss L(c(d, 𝜃))
thus measures the undesirability of decision d
when 𝜃 turns out to be the true state of nature.
Therefore, the undesirability of alternative courses
of action will be measured by their corresponding
expected losses:

EL(d) =
∑
Θ

L(c(d, 𝜃))Pr(𝜃 ∣ I). (2.19)

The optimal decision, the one that maximises
the expected utility, may be thought of as the one
that minimises the expected loss (Savage, 1954).
Information I is often omitted to simplify notation,
though it is important to keep in mind that it
conditions all probability assignments.

2.8.2 Decision Analysis: An Example

Consider the following forensic example presented
in Bozza et al. (2014) regarding the chemotype
(the chemical characteristics of a substance) of
cannabis plants among seized materials. The two
propositions of interest are:
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H1: the seized plant is of drug type (popula-
tion 1);

H2: the seized plant is of fibre type (population 2).

In a Bayesian perspective, let 𝜋1 denote the prior
probability of proposition H1, 𝜋1 = Pr(H1), and let
𝜋2 denote the prior probability of proposition H2,
𝜋2 = Pr(H2). These two probabilities express the
uncertainty about whether the seized material is
of type ‘drug’ or ‘fibre’, respectively, given the cir-
cumstantial information I (omitted from notation
for simplicity). As noted in Section 2.1.3, the ratio
𝜋1∕𝜋2 of the prior probabilities of propositions H1
and H2 is called the prior odds of H1 to H2. The
prior odds indicate whether a priori proposition
H1 is more or less probable than proposition H2
(prior odds being larger or smaller than 1), or
whether the two propositions are almost equally
probable (prior odds close to 1). Following the
receipt of evidence E, the posterior probability of
proposition H1, Pr(H1 ∣ E), denoted 𝛼1 and the
posterior probability Pr(H2 ∣ E) of proposition H2,
denoted 𝛼2, can be computed according to Bayes’
theorem as shown in Section 2.2.2.

Note also that the Bayes’ factor is defined as
the ratio of the posterior odds, 𝛼1∕𝛼2, to the prior
odds, 𝜋1∕𝜋2. It measures the change produced by
the data in the odds when going from the prior
distribution to the posterior distribution.

In a Bayesian decision-theoretic perspective,
let  = {d1, d2} denote the decision space, where
d1(2) represents the decision of classifying the plant
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material available for examination in population
1(2). Decision d1(2) is correct if proposition H1(2)
is true. Conversely, decision d1(2) is not correct
if proposition H1(2) is not true. A loss function
suitable to describe such a two-action decision
problem is the ‘0 − lp’ loss function, for p = {1,2},
as in Table 2.15, where l1 = L(d1,H2) represents
the loss of classifying an item of population 2
(proposition H2 is true) as a member of popula-
tion 1 (decision d1 is taken), and l2 = L(d2,H1)
represents the loss of classifying an item of pop-
ulation 1 (proposition H1 is true) as a member
of population 2 (decision d2 is taken). The loss is
zero whenever a correct decision is taken, that
is, L(d1,H1) = L(d2,H2) = 0. Conversely, when-
ever an incorrect decision is taken, one incurs a
positive loss. The losses l1 and l2 may be equal,
whenever the incorrect decisions are considered
equally undesirable. Otherwise, the magnitude of
each loss will represent the undesirability of each
specific occurrence.

Table 2.15 The ‘0 − lp’ loss function,
for p = {1,2}.

H1 H2

d1 0 l1
d2 l2 0

Decisions d1 and d2 refer to the classification
of an observation on an unknown item into
population 1 (H1) and 2 (H2), respectively
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For each decision, one can now compute the
expected loss EL(⋅) (2.19) as follows:

EL(d1) = L(d1,H1)
⏟⏞⏟⏞⏟

0

Pr(H1 ∣ E)

+ L(d1,H2)
⏟⏞⏟⏞⏟

l1

Pr(H2 ∣ E) = l1𝛼2, (2.20)

EL(d2) = L(d2,H2)
⏟⏞⏟⏞⏟

0

Pr(H2 ∣ E)

+ L(d2,H1)
⏟⏞⏟⏞⏟

l2

Pr(H1 ∣ E) = l2𝛼1. (2.21)

The best decision after having observed E will
be the decision that minimises the expected loss
that is calculated using the probabilities on the
uncertain events or states of nature as presented
in Section 2.8.1.

The plant of unknown origin is classified in pop-
ulation 1 (drug type) if the expected loss of decision
d2 (2.21) is greater than the expected loss of deci-
sion d1 (2.20), that is if

EL(d2) = l2𝛼1 > l1𝛼2 = EL(d1). (2.22)

Otherwise, if the expected loss of decision d1 is
greater than the expected loss of decision d2,
the questioned plant is classified in population 2
(fibre type). Rearranging terms in (2.22) as
𝛼1∕𝛼2 > l1∕l2 and dividing both sides by the
prior odds in favour of H1, a threshold k for
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the interpretation of the Bayes’ factor can be
obtained, that is,

BF =
𝛼1

𝛼2
∕
𝜋1

𝜋2
>

l1

l2
∕
𝜋1

𝜋2
= k. (2.23)

The optimal decision criterion is to classify the
observation in population 1(2) whenever the
Bayes’ factor is greater (lower) than k. Note that
whenever it is reasonable to adopt a symmetric
loss function, and when equal a priori probabilities
for the states of nature are assumed, then the
decision criterion is to classify the available obser-
vation in population 1(2) whenever the Bayes’
factor is greater (less) than 1. An example of such
a procedure is also presented in Biedermann et al.
(2017).

A review of decision theory in the law and
forensic science can be found in Taroni et al.
(2020). Applications of statistical decision theory
to cases of disputed kinship can be found in
Taroni et al. (2005, 2007). Questions related to
individualization in forensic science are discussed
in Biedermann et al. (2008a, 2016a). Gittelson
et al. (2012b, 2013b, 2014, 2016b), addressed
the problems of fingermark selection, database
selection, genotype designation, and the use of
replicates, respectively. Applications of decision
theory using probabilistic graphical models, i.e.
Bayesian (decision) networks (influence dia-
grams), can be found in Sections 2.9.3 and 4.7.2
and in Gittelson (2013), Taroni et al. (2014a).
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The approach described in this Section can
be extended to continuous states of nature 𝜃 as
described in Section 4.7.

2.9 GRAPHICAL PROBABILISTIC
MODELS: BAYESIAN
NETWORKS

Methods of formal reasoning have been proposed
to assist forensic scientists and lawyers as they
seek to improve the understanding of the depen-
dencies which may exist between different aspects
of evidence and to deal with the formal analysis of
decision making. One very common diagrammatic
approach uses graphical probabilistic models and
in particular Bayesian networks (BNs). These
have been found to provide a valuable aid in the
representation of relationships amongst charac-
teristics of interest in situations of uncertainty,
unpredictability or imprecision.

The use of graphical models to represent and
analyse selected aspects of legal cases is not new.
Non-probabilistic charting methods developed by
Wigmore (1937) can be taken as a predecessor of
modern graphical methods such as BNs. Examples
of the use of such charts, which were developed
to provide formal support for the conclusions
reached based on many pieces of evidence, can
be found in Robertson and Vignaux (1993b),
Schum (1994), Anderson and Twining (1998),
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and Roberts and Aitken (2013). For an approach
called ‘route diagrams’, which formally includes
probability, see Friedman (1986a) and Friedman
(1986b).

Probabilistic networks have attracted the atten-
tion of researchers for reviewing the analyses of
complex and famous cases such as the Collins
case (Edwards, 1991) (see also Section 3.4) and
the Sacco and Vanzetti case (Kadane and Schum,
1996), with an emphasis on the credibility and
relevance of testimonial evidence. Aspects of the
Omar Raddad case (Levitt and Laskey, 2001),
the O.J. Simpson trial (Thagart, 2003), and the
Busetto case (Taroni et al., 2018b) have also
been analysed using graphical models. Rele-
vant analyses and discussions are presented in
Schum (1994, 1999). A discussion of the use of
Bayesian networks in international criminal trials
is presented in McDermott and Aitken (2017).

Among forensic scientists the interest in
Bayesian networks stems from the need for a
coherent approach to the evaluation of scientific
evidence (Evett et al., 2002a; Juchli et al., 2012;
Taroni et al., 2014a; Taylor et al., 2016c, 2017b,
2018a,c; Cereda et al., 2018; Sironi et al., 2018).

For illustrative purposes emphasis is placed here
on simple networks for the topics of one stain-one
offender (Section 2.9.2.3) and the potential
of error (e.g. false positives, Section 2.9.2.3).
The discussion will focus on determination of the
factors (nodes), relevance relationships (arcs), and
probabilities to be included.
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2.9.1 Elements of the Bayesian
Networks

The name ‘Bayesian networks’ is one of several
designations that are commonly encountered,
depending on the field of application. Typical vari-
ations of the name are ‘Bayes nets’, ‘Bayesian belief
networks’, ‘Bayesian expert systems’, ‘graphical
probabilistic networks’, ‘probabilistic network
models’, or ‘causal networks’, where there may be
nuances in the details of definition. For example,
the term ‘belief’ in ‘Bayesian belief networks’
emphasises that probabilistic assignments in a
given model reflect degrees of personal belief. In
turn, the notion of an expert system may refer to a
broader system of which a graphical probabilistic
model is only one element among others. In yet
other contexts, the notion of ‘causality’ is some-
times used. This stems from the fact that the arcs
connecting nodes in a Bayesian network can be
interpreted as causal relationships, even though
the definition of Bayesian networks does not
refer to causality and there is no requirement to
consider arcs representing assumed causal impact.

More formally, Bayesian networks are graphical
probabilistic models that combine probability
theory and graph theory. They provide a sophis-
ticated concept for dealing with uncertainty and
complexity that represent challenges that occur
throughout applied mathematics and engineering
(e.g. Jordan, 1999).
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Methodologically, the idea of a graphical model
is to combine simpler parts in order to ease the
approach to a broader inference problem. Prob-
ability theory ensures that the component parts
are combined suitably and that the system as a
whole is coherent, allowing sound inferences to be
made. As such, Bayesian networks help to specify
relevant probabilistic formulae without displaying
their full algebraic form, and make the required
probability calculations almost completely auto-
mated. The practical implementation of such
models can be supported by widely available
software solutions. They provide assistance in
the intellectually difficult task of organising and
arraying complex sets of evidence, and exhibiting
their dependencies and independencies in a visual
and intuitive way. In essence, the definition of a
Bayesian network covers the following elements:

• A finite collection of random variables that are
represented by nodes. Each of these nodes has a
finite set of mutually exclusive states. In the con-
text, these are also sometimes called ‘outcomes’.

• A set of directed edges that connect pairs of
nodes.

• The set of variables and the set of directed edges
are combined in such a way that a directed
acyclic graph is obtained, that is, a graph where
no loops are permitted.

• Node probability tables are associated with
each variable of a network. The probability
table of a variable A that receives entering edges
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from variables B1, ...,Bn contains conditional
probabilities Pr(A ∣ B1, ...,Bn), whereas a vari-
able A with no entering edges from other
variables contains unconditional probabilities
Pr(A). Note that the term ‘unconditional’
refers here only to the absence of an explicit
conditioning on other variables (nodes) in a
network. Strictly speaking, a probability of the
kind Pr(A) is also considered as conditional
because there is always contextual information,
habitually denoted by the letter I, which is used
when quantifying Pr(A) (see Section 1.7.5).
Thus, Pr(A) should be written as Pr(A ∣ I), but
the letter I is often omitted for ease of notation.
Note also that if there is an edge pointing from
node A to node B it is said that A is a parent of
B and B is a child of A. A node with no parent is
called a root node.

The nodes of a Bayesian network represent
propositional or evidential variables of interest.
These are, broadly speaking, statements or asser-
tions that such and such is the case. This may
be an outcome or a state of nature. It is assumed
that personal degrees of belief can be assigned to
these states. Propositions are basic intellectual
attributes formed by an individual during the
course of a reasoning task. A proposition can be
thought of as referring to states of affairs. Most
often, the actual state may not be known with
certainty. For example, there may be uncertainty
about the truth or otherwise of the proposition
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according to which a crime stain has been left
by the offender (i.e. whether or not a stain is
relevant). Within a Bayesian network, such a
proposition is conceptualised in terms of a node,
whose states represent the truth and the falsity of
that proposition, respectively. The degree of belief
maintained in each of these states is expressed
numerically, that is, in terms of probabilities.
These probabilities are organised to form the
node’s probability table.

The totality of the mutually exclusive states of a
variable is also referred to as the ‘domain’ of the
variable. The domain of a variable may take one of
different forms that will determine the variable’s
subtype. Examples include {red, green, blue} for
a labelled variable, {T, F} for a Boolean variable
(with ‘T’ and ‘F’ denoting ‘true’ and ‘false’, respec-
tively), {1,2,4,5,7,8} for an integer-numbered
variable, and {(−1;0],(0;10],(10;100]} for an
interval node. Note that the last node type is
usable for specifying the intervals over which
a continuous quantity can be considered in a
discrete form.

The arrows in a Bayesian network represent
relevance relationships that an expert mod-
eller assumes to hold within the context of an
inferential problem at hand. If a network is
properly constructed, then a directed edge from
a node A to a node B signifies that A has a direct
influence on B. The links between nodes are
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sometimes interpreted as ‘causal relationships’
but the definition of Bayesian networks does not
require that the links represent causal impact.
Generally, the links in a network are considered to
represent probabilistic relevance relationships.

A distinctive feature of Bayesian networks is
their incorporation of probability in terms of
tables, associated with each node. This allows
for interpreting the nature and the strengths of
the relationships between a network’s different
graphical components. Node tables can accom-
modate probabilities from a variety of different
sources. Among the most common sources are
personal probabilities from human experts and
(statistical) data from databases or literature.
Node probability tables can thus be considered as
a means of interfacing a model to data. Besides,
some Bayesian network programs support the
specification of node probability tables through
the use of mathematical expressions by exploiting
various variable subtypes as described earlier.

The combination of nodes and arrows form
paths and create what is known as a net. There-
fore, a net can be taken as a compact graphical
representation of an evolution of all possible
versions of a given case. Early examples of the use
of Bayesian networks in forensic science have been
given in Aitken and Gammerman (1989), Aitken
et al. (1996a,b), Dawid and Evett (1997), Dawid
et al. (2002), Evett et al. (2002a), Garbolino and
Taroni (2002), Aitken et al. (2003) and Mortera
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et al. (2003). These contributions highlighted the
following key advantages:

• the ability to structure inferential processes, per-
mitting the consideration of problems in a logi-
cal and sequential fashion;

• the requirement to evaluate all possible stories;

• the communication of the processes involved in
the inferential problems to others in a succinct
manner, illustrating the assumptions made at
each node;

• the ability to focus the discussion on probability
and underlying assumptions.

2.9.2 The Construction of Bayesian
Networks

When constructing Bayesian networks it is
important to keep in mind that they do not
represent the flow of information, but serve
as a direct representation of a part of the real
world (Jensen, 2001). This means experts use
Bayesian networks to articulate their personal
view of a real-world system both graphically and
numerically. The result of the modelling process
will mainly be influenced by the properties and
the experts’ individual views, perception, and,
ultimately, extent of understanding, of the domain
of interest. The problem is well posed in Dawid
et al. (2002) where the authors argued that
finding an appropriate representation of a case
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under examination is crucial for several reasons
(viability, computational routines, etc.), and that
the graphical construction is to some extent an
art-form, but one that can be guided by scientific
and logical considerations. The search for good
representations for specific problems therefore is
an important task for continuing research in this
area and was approached by Korb and Nicholson
(2011).

Thus, the appropriateness of a given Bayesian
network should be assessed with respect to the
context in which its construction took place. For
example, there may be situations in which the
knowledge about a problem domain is severely
limited. In addition, there may be processes taking
place that are incompletely understood and appar-
ently random (e.g. certain phenomena of transfer
of trace materials). Furthermore, the imperfect
domain knowledge may be impossible to improve,
or may only be improved at an unacceptably high
cost. Notwithstanding this, it is possible to view
Bayesian network construction as a continuous
and adaptive process. A Bayesian network can
be taken as an instant representation of a given
state of knowledge about a problem of interest. As
new knowledge becomes available, the qualitative
(net structure) and/or quantitative specifications
may be revised in order to account for the newly
acquired understanding of domain properties.

Concerning the recurrent question ‘Is there a
true model?’ Lindley (2000) argued that
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A model is merely your reflection of reality and, like prob-
ability, it describes neither you nor the world, but only a
relationship between you and that world. It is unsound to
refer to the true model. (p. 303)

It should also be observed that different models
can serve to represent questions surrounding the
same problem, because (i) the same problem can
be approached at different levels of detail and,
(ii) existing opinions about domain properties
may diverge, as noted, for example, by Garbolino
(2001):

[...] either you agree with me that E is relevant for H,
but our likelihoods are different, or you believe that E
is directly relevant for H, and I believe that it is only
indirectly relevant, or you believe that it is relevant and
I believe it is not. These disagreements explain why we
can offer different Bayesian networks models for the same
hypothesis. (p. 1506)

There are three basic types of connections
among nodes in a Bayesian network: serial,
diverging, and converging connections. These
are illustrated in Figure 2.1. There is a serial
connection associating three nodes A,B, and C
when there is an arrow from A to B, another
one from B to C and no arrow from A to C. A
serial connection is appropriate when we judge
that knowledge of the truth-state of A provides
relevant information about the occurrence of B
and knowledge of the truth-state of B provides in
turn relevant information about C but, when the
truth-state of B is known, then knowledge of the
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(a)

BA

(b)

A B

C

(c)

C

A

B

C

Figure 2.1 Basic connections in Bayesian networks:
(a) serial, (b) converging, and (c) diverging connection.

state of A does not provide relevant information
about C any more. A influences C through B but
only B directly influences C or, in other words, B
‘screens off’ C from A. If the value of B is known,
then A and C are probabilistically independent,
i.e. Pr(C ∣ A,B) = Pr(C ∣ B). A serial connection
among three nodes is the simplest example of
what is known as a Markov chain.

As an example, let A be the proposition ‘The PoI
is the offender’, B the proposition ‘The bloodstain
found on the crime scene comes from the PoI’, and
C ‘The PoI’s blood sample and the bloodstain from
the crime scene share the same DNA profile’. Then
A is relevant for B and B for C but, given B, the
cause of the presence of blood could be different
from A.

An example of a converging connection with
the three nodes A,B, and C applies when there is
an arrow from A pointing to C and another one
from B pointing to C, with no arrow between A
and B. It is said that A and B are probabilistically
independent unless either the value of C or the
value of any of the children of C is known. Another
way of expressing the same idea is to say that A and
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B are conditionally dependent given the value of
C. Thus Pr(AB) = Pr(A)Pr(B) but Pr(AB ∣ C) may
not be equal to Pr(A ∣ C)Pr(B ∣ C). Contrast this
with the discussion in Section 1.7.10 where there
are events which are conditionally independent
but not unconditionally independent.

For example, let A be ‘The PoI is the offender’ and
B ‘The bloodstain found on the scene of the crime
comes from the offender’. Knowledge that one of
these events occurred would not provide infor-
mation about the occurrence of the other, but if C
(‘The bloodstain found on the crime scene comes
from the PoI’) is true, then A and B become related.
Converging connections in Bayesian networks
are particularly important because they repre-
sent a very common pattern of reasoning called
conditional dependence or ‘explaining away’.

An example of a diverging connection with
three nodes A,B, and C holds when there are
two arrows originating from A and pointing to
B and C, and there is no arrow between B and
C. Here A separates B from C: if the value of
A is known, then B and C are probabilistically
independent, i.e. Pr(B ∣ A,C) = Pr(B ∣ A) and
Pr(C ∣ A,B) = Pr(C ∣ A). A diverging connection is
the graphical representation of what may be called
a spurious correlation. Nodes B and C are corre-
lated because they both depend on a third factor,
A. When A is fixed, the correlation vanishes. There
are many examples of such spurious correlations.
For example, a positive correlation may be shown
between the number of doctors in a town and the
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number of deaths in a town. As the number of
doctors (B) increases, so does the number of deaths
(C). This does not mean that doctors are bad for
one’s health. Rather it is the case that both factors
are correlated positively to the population of the
town (A). Another example can be considered by
interpreting node A as the proposition ‘the PoI
has assaulted the victim’, B as the proposition
‘the bloodstain on the clothes of the PoI comes
from the victim’, and C as the proposition ‘the
bloodstain on the victim comes from the PoI’.

2.9.2.1 d-Separation Properties

The criterion of d-separation, where d denotes
‘directional’, is a graphical criterion (Pearl, 1988)
that designates the blocking (or stopping) of the
flow of information (or of dependencies) between
variables that are connected through a path.
Consider this concept through the three basic
connections, serial, diverging, and converg-
ing (Figure 2.1) that are possible in Bayesian
networks:

• In serial and diverging connections, two nodes
are said to be d-separated if the middle variable
is instantiated (i.e. its state is changed from
unknown to known),

• In converging connections, two nodes are called
d-separated as long as the intermediate variable,
or one of its descendants, is not instantiated.
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Stated otherwise, if two variables in a network
are d-separated, then changes in the truth state
of one variable will have no impact on the truth
state of the other variable. If two variables are not
d-separated, they are called d-connected.

2.9.2.2 Chain Rule for the Bayesian
Network

Through the use of Bayes’ theorem, every joint
probability distribution can be decomposed into
a product of conditional probabilities. However,
the joint probability table grows exponentially
with the number of terms. This complexity can be
reduced when working with Bayesian networks
where it is supposed that a variable, given knowl-
edge of its parents, is independent of all other
variables. If the conditional relationships implied
by the structure of a Bayesian network hold for a
set of variables A1, ...,An, then the joint probability
distribution Pr(A1, ...,An) is given by the product
of all specified conditional probabilities

Pr(A1, ...,An) =
n∏

i=1

Pr(Ai ∣ par(Ai)),

where par(Ai) denotes the set of parental variables
of Ai.

Consider the chain rule in case of the three
basic connections that are possible in Bayesian
networks (Figure 2.1). For a path from A to C
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via B, as shown in Figure 2.1(i), Pr(A,B,C) =
Pr(A)Pr(B ∣ A)Pr(C ∣ A,B) can be reduced to
Pr(A,B,C) = Pr(A)Pr(B ∣ A)Pr(C ∣ B). For a div-
erging connection, the joint probability can be
written as Pr(C,A,B) = Pr(A)Pr(B ∣ A)Pr(C ∣ A),
whereas in a converging connection it would be
Pr(A,B,C) = Pr(A)Pr(B)Pr(C ∣ A,B).

2.9.2.3 Bayesian Network Examples

Consider two simple examples that illustrate
how Bayesian networks provide a method for
decomposing a joint probability distribution of
multiple variables into a set of local distributions
of a few variables within each set.

Example 2.8. Consider a proposition E, referring
to the correspondence between characteristics
of the recovered stain and a DNA profile of a PoI
(i.e. evidence), and the source-level proposition
H according to which the PoI (or, an unknown
person) is the donor of the recovered stain. The
relationship between these two propositions is
shown in Figure 2.2. Note that H is the name of
the root node in this network, whereas the states
underlying this node, Hp and Hd (not directly
shown in Figure 2.2), refer to whether the stain
comes from the PoI or an unknown person,
respectively.

The directed arrow from H to E indicates that
probabilities are available for Pr(E ∣ Hp) and
Pr(E ∣ Hd). It is desired to determine Pr(Hp ∣ E).
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H E

Figure 2.2 Simple two-node Bayesian network for a
proposition E, relating to a scientist’s observation (i.e.
evidence) of corresponding features between questioned
and known materials, and propositions H referring to
common source.

Given values for Pr(Hp),Pr(E ∣ Hp), and Pr(E ∣ Hd),
the posterior probability Pr(Hp ∣ E) is obtained
using Bayes’ theorem in the usual way:

Pr(Hp ∣ E) =
Pr(E ∣ Hp) × Pr(Hp)

Pr(E ∣ Hp) × Pr(Hp)+
Pr(E ∣ Hd) × Pr(Hd)

.

At this point, the purpose is solely to illustrate how
Bayesian networks support probabilistic compu-
tations in principle. Clearly, for simple situations
involving only two binary nodes, sophisticated
graphical models may not be necessary. However,
as soon as multiple nodes, with possibly complex
relevance relationships, need to be considered
Bayesian networks prove to be helpful. The next
example provides an illustration of the gradual
increase in complexity arising from the addition of
further nodes.

Example 2.9. This example concentrates on
evidence defined in terms of a reported match
(RM) that is the scientist’s assertion of a corre-
spondence observed between the DNA profile of a
bloodstain found on the clothing of a victim of a
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crime and the DNA profile of a PoI. This definition
seeks to provide a closer account of the nature
of the scientist’s report, which may be erroneous
(see Section 6.1.6.4). In other words, when a
scientist reports corresponding features, this does
not imply that there are in fact corresponding
features between the compared items. Thus,
a reported match is to be distinguished from
the event of a true match (M) between the two
compared profiles, an event that itself depends
on the proposition H according to which the PoI
(Hp), or an unknown person (Hd) is the source of
the bloodstain found on the victim’s clothing. The
relationship between the three nodes RM, M, and
H is as shown in Figure 2.3, and is an example of
a serial connection.

The arrows from H to M and from M to RM
show that probabilities need to be specified for
Pr(M ∣ Hp), Pr(M ∣ Hd), Pr(RM ∣ M), and Pr(RM ∣
M̄), where M̄ is the complement of M and denotes
‘no match’. Note also that the separation of the
node RM from the node for H by the node for M
shows that RM is conditionally independent of
H, given M. In an analogy to Example 2.7, given
values for Pr(M ∣ Hp), Pr(M ∣ Hd), Pr(RM ∣ M),

RMH M

Figure 2.3 Bayes’ network for a serial connection for
a RM in a DNA profile, where M denotes a match and H
a proposition.
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Pr(RM ∣ M̄) and Pr(Hp), it is possible to use Bayes’
theorem to determine Pr(Hp ∣ RM).

Pr(Hp ∣ RM) =
Pr(RM ∣ Hp) × Pr(Hp)
Pr(RM ∣ Hp) × Pr(Hp)
+Pr(RM ∣ Hd) × Pr(Hd)

,

where

Pr(RM ∣ Hp) = Pr(RM ∣ M,Hp) × Pr(M ∣ Hp)
+Pr(RM ∣ M̄,Hp) × Pr(M̄ ∣ Hp)

= Pr(RM ∣ M) × Pr(M|Hp)
+Pr(RM ∣ M̄) × Pr(M̄|Hp)

with a similar expression for Pr(RM ∣ Hd). More
details on this practical example are presented
in Sections 6.2.6 and 6.3.5. More elaborate
diagrams can be analysed in a similar manner
known as probability propagation, though the
procedures become more complicated. Specific
software packages are available that implement
efficient algorithms, called updating algorithms,
to compute target probabilities.

From the previous examples, the following two
intuitive principles can be inferred (Taroni et al.,
2004):

• The ‘cause’ produces the ‘effect’, i.e. know-
ing that the ‘cause’ happened, it can be foreseen
that the ‘effect’ will or might probably occur.
This is a predictive line of reasoning, along the
direction indicated by a network’s arcs.
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• The ‘effect’ does not produce the ‘cause’, but
knowing that the ‘effect’ occurred, it may be
inferred that the ‘cause’ probably occurred.
This is a line of reasoning against the causal
direction and one that is diagnostic in nature.

Various applications of Bayesian networks are
discussed in Sections 4.4.1, 4.4.2, 4.7.2, and 5.4.

2.9.3 Bayesian Decision Networks
(Influence Diagrams)

Bayesian networks can be extended to model
decision problems by adding nodes for decisions
and utilities. This extended modelling formalism
is known as that of Bayesian decision networks.
Historically, their development was preceded
by decision trees, a method introduced in the
1960s by Raiffa and Schlaifer (1961) to provide
a detailed description of decision problems in
terms of a graphical mapping of the various
decision paths and their outcomes, including
probabilities and expected values (i.e. utilities or
losses). Bayesian decision networks, also called
influence diagrams (Howard and Matheson,
1984; Shachter, 1986), are more compact repre-
sentations. They take the form of a directed acyclic
graph with three types of nodes: chance nodes,
decision nodes, and utility nodes. Simple examples
are presented in Taroni et al. (2005) and Taroni
et al. (2006).
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Chance nodes are represented by circles and are
the same as the nodes used in Bayesian networks.
Chance nodes have a finite set of exhaustive and
mutually exclusive states, representing events
or states of nature. In turn, decision nodes are
represented by square boxes. This type of node
has a finite set of feasible alternative decisions (or
actions). Utility nodes are the third type of node
and are represented by diamond boxes. Utility
nodes have no states but to each utility node is
associated a utility function over its parents: it
represents the expected utility given the states of
its parents.

When constructing Bayesian decision networks,
it should be noted that utility nodes have no chil-
dren and that if there is more than one decision
node, then there is a directed path consisting of
all decision nodes: this ensures that there is a
temporal sequence of decisions. Arrows point-
ing to decision nodes do not carry quantitative
information. They only indicate that the state of
the decision node’s parents is known prior to the
decision. Forensic applications of this property are
discussed in Gittelson et al. (2013a) and Gittelson
(2013).

It should also be observed that decision nodes
do not have probability tables associated with
them, because it is not meaningful to assign
probabilities to a variable under the control of
the decision-maker. Chance nodes have, as in
Bayesian networks, an associated conditional
probability table. However, in Bayesian decision
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networks, the arguments of the table can also be
decision nodes, not only chance nodes.

The logic of Bayesian decision networks can be
illustrated through the philosophical distinction
between inference and decision (Lindley, 2000).
This distinction asserts that inference and deci-
sion are closely related, notably, that the former
represents the starting point of the latter: singling
out and considering a particular proposition
(i.e. state of nature) as true is a decision that
depends on one’s strength of belief in the truth
of the proposition of interest. One’s decision also
depends on the losses (or utilities) that measure
the relative desirability of the consequences given
by the combination of choices and individual
propositions (that is, actual states of nature).

To clarify these notions, consider the example
of forensic individualization (Biedermann et al.,
2016a). Consider two discrete, mutually exclusive
and exhaustive propositions, such as ‘the recov-
ered trace comes from the person of interest (PoI)’
(Hp), and ‘the trace comes from an unknown
person’ (Hd). Note that the development can also
be made for situations with multiple propositions
(Biedermann et al., 2008a, 2016a). In turn, let the
available decisions be Dp and Dd, short for ‘the PoI
is the source of the trace’ and ‘an unknown person
is the source’, respectively. A Bayesian decision
network for this setting is shown in Figure 2.4.
The pair of propositions is represented by the
discrete chance node H, in the form of a circle, as
introduced earlier in Figure 2.2. It is also supposed
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E

H D

L

Figure 2.4 Bayesian decision network for analysing
the problem of deciding between competing discrete
propositions (node H), given evidence E, as an extension
of the Bayesian network described in Figure 2.2. The
node D represents the available decisions (the number
of states equals the number of competing propositions
assumed by the node H). The node L accounts for the
losses associated for each decision D given each state of
the node H.

that there is an item of evidence E that a decision
maker judges relevant for judging the truth state
of H. The two available decisions are represented
by the node D, in the form of a square. The two
nodes H and D share a common, diamond-shaped
child node L. This node contains the loss func-
tion L. Assume, for example, that erroneously
deciding Dp, i.e. concluding that the PoI is the
source of the crime stain when in fact an unknown
person is the source (i.e. Hd is the case) is ten times
more serious than erroneously concluding Dd,
i.e. concluding that an unknown person is the
source when in fact the PoI is the source (i.e. Hp is
true). Assume further that correct decisions, that
is choosing Dp when Hp holds and Dd when Hd

holds, incur a zero loss. This loss function, with l
representing the loss associated with a false
identification (i.e. choosing Dp when Hd is true),
is specified in Table 2.16, associated with the
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Table 2.16 Loss function for the Bayesian decision
network shown in Figure 2.4.

H: Hp Hd

D: Dp Dd Dp Dd

L: 0 l∕10 l 0

node L. In combination, the three nodes D,H,
and L represents the decision theoretic core of the
network.

Note that the network fragment H → E accounts
for Bayesian inference. Based on evidence on the
node E, a posterior distribution for H (over Hp,Hd)
is obtained, given by Bayes’ theorem: Pr(H ∣
E, I) = [Pr(E ∣ H, I)Pr(H ∣ I)]∕Pr(E ∣ I). The fact
that the node H is part of the network that
accounts for Bayesian inference (E ← H) as well as
part of the network that covers the decision theo-
retic aspect (i.e. H → L ← D), clarifies the idea that
the topics of inference and decision are related.

This connection is also highlighted in the expres-
sions of the expected decision losses EL(⋅). In par-
ticular, the probabilities obtained for the node H
enter calculations of the expected losses of the deci-
sions Dp and Dd that, in general, are given by:

EL(Dp) = L(Dp,Hp)Pr(Hp ∣ E, I)
+ L(Dp,Hd)Pr(Hd ∣ E, I)
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and
EL(Dd) = L(Dd,Hp)Pr(Hp ∣ E, I)

+ L(Dd,Hd)Pr(Hd ∣ E, I).

Thus, for a loss function as defined by Table 2.16
one has

EL(Dp) = L(Dp,Hd)Pr(Hd ∣ E, I) = l Pr(Hd ∣ E, I)
(2.24)

and

EL(Dd) = L(Dd,Hp)Pr(Hp ∣ E, I) = l
10

Pr(Hp ∣ E, I).
(2.25)

Modern software packages allow such com-
putations for the model shown in Figure 2.4,
and other more complex models, to be made in
effortless ways.

More generally, note that decision Dp (i.e. iden-
tifying the PoI as the source of the crime stain) is
the decision with the lower expected loss than Dd

(i.e. considering that an unknown person is the
source), and hence the optimal decision, when
from (2.22):

Pr(Hp ∣ E, I)
Pr(Hd ∣ E, I)

>
L(Dp,Hd)
L(Dd,Hp)

. (2.26)

This results shows that it is optimal to identify
the PoI as the source of the crime stain if and only
if the posterior odds are greater than the ratio of
the losses associated with two ways in which one’s
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decision may be erroneous (i.e. the loss of a false
identification compared with the loss of a false
non-identification).

Further examples of the use of Bayesian decision
networks in particular areas of application are
presented in Champod et al. (2016b) for identifi-
cation based on fingermarks and Gittelson et al.
(2014) for genotype designation in low-template
DNA profiles.
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3

Historical Review

3.1 EARLY HISTORY

The earliest use of probabilistic reasoning in legal
decision making, albeit in a somewhat rudimen-
tary form, appears to have been over 18 centuries
ago by Jewish scholars in Babylon and Israel
writing in the Talmud ((Zabell, 1976), in a review
of (Rabinovitch, 1973)).1 For example, if nine
stores in a town sold kosher meat and one sold
non-kosher meat then a piece of meat which is
found, at random, in the town is presumed to be
kosher and thus ritually permissible to eat since
it is assumed to have come from one of the shops
in the majority (Rabinovitch, 1969). However,
consider the following quote from the Talmud.

All that is stationary (fixed) is considered half and half. . . .
If nine shops sell ritually slaughtered meat and one sells
meat that is not ritually slaughtered and he bought in one of
them and does not know which one, it is prohibited because

1For readers interested in the history of probability in general,
refer to Franklin (2016).

279
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of the doubt; but if meat was found in the street, one goes
after the majority. (Kethuboth 15a, quoted in Rabinovitch
(1969), p. 438)

The reasoning seems to be as follows. If the
question arises at the source of the meat (i.e. in
the shops), the odds in favour of kosher meat
are not really 9 to 1. The other nine shops are
not considered – the piece of meat certainly did not
come from any of them. There are, hence, only two
possibilities: the meat is either kosher or it is not.
The odds in favour of it being kosher are evens.
However, if meat is found out with the shops (e.g.
in the street), the probability that it came from
any one of the 10 shops is equal for each of the
10 shops. Thus, the probability that it is kosher
is 0.9.

The works of Cicero (De Inventione and Rhetorica
ad Herennium) and Quintillian (Institutio Oratoria)
amongst others are cited by Garber and Zabell
(1979). Garber and Zabell also quote an example
from Jacob Bernoulli’s Ars Conjectandi (Bernoulli
(1713), Part 4, Chapter 2), which is of interest
given the examples in Section 1.7.11 of updating
probabilities given new evidence.

The discussion by Bernoulli is as follows. One
person, Titius, is found dead on the road. Another,
Maevius, is accused of committing the murder.
There are various pieces of evidence in support of
this accusation.

(1) It is well known that Maevius regarded Titius
with hatred. (This is evidence of motive: hatred
could have driven Maevius to kill.)
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(2) On interrogation, Maevius turned pale and
answered apprehensively. (This is evidence of
effect: the paleness and apprehension could
have come from his own knowledge of having
committed a crime.)

(3) A blood stained sword was found in Maevius’
house. (This is evidence of a weapon.)

(4) On the day Titius was slain, Maevius travelled
over the road. (This is evidence of opportunity.)

(5) A witness, Gaius, alleges that on the day
before the murder he had interceded in a
dispute between Titius and Maevius.

Later (Chapter 3 of Part 4 of Ars Conjectandi)
Bernoulli (1713) discussed how to calculate
numerically the value that should be afforded a
piece of evidence or proof.

The degree of certainty or the probability which this proof
generates can be computed from these cases by the method
discussed in the first part (i.e. the ratio of favourable to total
cases) just as the fate of the gamblers in games of chance are
accustomed to be investigated. (Garber and Zabell, 1979,
at p. 44)

Garber and Zabell (1979) then go on to say

What is new in the Ars Conjectandi is not its notation
of evidence – which is based on the rhetorical treatment
of circumstantial evidence – but its attempt to quantify
such evidence by means of the newly developed calculus of
chances. (p. 44)

Thus it is that over three hundred years ago,
consideration was being given to methods of
evaluating evidence numerically.
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A long discussion of Ars Conjectandi, Part 4, is
given by Shafer (1978). The distinction is drawn
between pure and mixed arguments. A pure
argument is one that proves a thing in certain cases
in such a way as to prove nothing positively in
other cases. A mixed argument, on the other hand,
is one that proves a thing in some cases in such a
way that they prove the contrary in the remaining
cases. Shafer discusses an example of this from
Part 4 of Ars Conjectandi.

A man is stabbed with a sword in the midst of
a rowdy mob. It is established by the testimony of
trustworthy men who were standing at a distance
that the crime was committed by a man in a black
cloak. It is found that one person, by the name
of Gracchus and three others in the crowd were
wearing cloaks of that colour. This is an argument
that the murder was committed by Gracchus but
it is a mixed argument. In one case it proves his
guilt, in three cases his innocence, according to
whether the murder was perpetrated by himself
or one of the other three. If one of those three
perpetrated the murder then Gracchus is supposed
innocent.

However, if at a subsequent hearing, Gracchus
went pale, this is a pure argument. If the change
in his palour arose from a guilty conscience it is
indicative of his guilt. If it arose otherwise it does
not prove his innocence; it could be that Gracchus
went pale for a different reason but that he is still
the murderer.
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Shafer (1978) draws an analogy between these
two kinds of argument and his mathematical
theory of evidence (Shafer, 1976) and belief
functions (see Section 1.2). In that theory a prob-
ability p is assigned to a proposition and a
probability q to its negation, or complement, such
that 0 ≤ p ≤ 1, 0 ≤ q ≤ 1, p + q ≤ 1. It is not nec-
essarily the case that p + q = 1, in contradiction
to (2.2). There are then three possibilities

• p > 0, q = 0 implies the presence of evidence in
favour of the proposition and the absence of evi-
dence against it;

• p > 0, q > 0 implies the presence of evidence on
both sides, for and against, the proposition;

• p > 0, q > 0, p + q = 1 (additivity) occurs only
when there is very strong evidence both for and
against the proposition.

Only probabilities that satisfy the additivity rule
(2.2) are considered in this book.

Socrates also discussed the use of probabilistic
ideas in law.

Men care nothing about truth but only about conviction
and this is based on probability

is a quote given by Sheynin (1974). Sheynin
also quotes Aristotle (Rhetorica, 1376a, p. 19) as
saying

If you have no witnesses . . . you will argue that the
judges must decide from what is probable . . . If you have
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witnesses, and the other man has not, you will argue that
probabilities cannot be put on their trial and that we could
do without the evidence of witnesses altogether if we need
do no more than balance the pleas advanced on either side.

Sheynin (1974) also mentions that probability in
law was discussed by Thomas Aquinas (Treatise
on Law, Question 105, Article 2, Great Books,
volume 20, p. 314) who provides a comment on
collaborative evidence.

In the business affairs of men, there is no such thing as
demonstrative and infallible proof and we must contend
with a certain conjectural probability . . . . Consequently,
although it is quite possible for two or three witnesses to
agree to a falsehood, yet it is neither easy nor probable that
they succeed in so doing; therefore their testimony is taken
as being true. (p. 108)

Jacob Bernoulli (1713) gave a probabilistic
analysis of the cumulative force of circumstantial
evidence. His nephew, Nicholas Bernoulli (1709),
applied the calculus of probabilities to problems
including the presumption of death, the value
of annuities, marine insurance, the veracity of
testimony, and the probability of innocence (see,
(Fienberg, 1989)).

Further comment on the combination of
evidence and the distinction between the roles
of fact-finder and witness was given by Locard
(1940) who proposed some inspired guidelines
for the interpretation of scientific evidence. These
guidelines remain pertinent to scientists and
lawyers even today.
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The physical certainty provided by scientific evidence rests
upon evidential values of different orders. These are mea-
surable and can be expressed numerically. Hence the expert
knows and argues that he knows the truth, but only within
the limits of the risks of error inherent to the technique. This
numbering of adverse probabilities should be explicitly indi-
cated by the expert. The expert is not the judge: he should
not be influenced by facts of a moral sort. His duty is to
ignore the trial. It is the judge’s duty to evaluate whether or
not a single negative evidence, against a sextillion of prob-
abilities, can prevent him from acting. And finally, it is the
duty of the judge to decide if the evidence is in that case,
proof of guilt. (pp. 286–287)

The application of probability to the verdicts by
juries in civil and criminal trials was discussed
by Poisson (1837) and there is also associated
work by Condorcet (1785), Cournot (1838), and
Laplace (1886). The models developed by Poisson
have been put in a modern setting by Gelfand and
Solomon (1973).

Two early examples of the use of statistics were
to query the authenticity of signatures on wills
(Mode, 1963). One of these, the Howland will
case from the 1860s has been discussed also by
Meier and Zabell (1980). This case is probably
the earliest instance in American law of the use
of probabilistic and statistical evidence. The
evidence was given by Professor Benjamin Peirce,
Professor of Mathematics at Harvard University,
and by his son Charles, then a member of staff
of the United States Coast Survey. The evidence
is related to the agreement of 30 downstrokes
in a contested signature with those of a genuine
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signature. It was argued that the probability of
this agreement if the contested signature were
genuine was extremely small; the probability
of observing two spontaneous signatures with
the number of overlaid strokes observed in those
two signatures was (1∕5)30. Hence the contested
signature was a forgery. Comments on this case
pointed out the now famous prosecutor’s fallacy
(Section 2.5.1). It has also been argued that
Charles Peirce (1878) – in a pre-Bayesian statisti-
cal model – considered only two hypotheses with
implicitly initial odds of 1, thereby excluding some
alternatives that might have had a prior probabil-
ity greater than zero (Good, 1983). Interestingly,
in the same article, Good (1983) comments

It might be better to call ‘ . . . hypothesis testing’ hypoth-
esis determination, as in a court of law where a judge or
jury ‘determines’ that an accused person is innocent or
guilty and where stating a numerical probability might
even be regarded as contempt of court.’ (p. 71)

More recent attempts to evaluate evidence are
reviewed here in greater detail.

3.2 THE DREYFUS CASE

This example concerns the trial of Dreyfus in
France at the end of the nineteenth century.
Dreyfus, an officer in the French Army assigned to
the War Ministry, was accused in 1894 of selling
military secrets to the German military attaché.
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Part of the evidence against Dreyfus centred on a
document called the bordereau, admitted to have
been written by him, and said by his enemies
to contain cipher messages. This assertion was
made because of the examination of the position
of words in the bordereau.

Quantification with the use of probabilities in
this case and others was suggested by Alphonse
Bertillon, a Paris police officer who founded a
police laboratory for the identification of criminals
(Bertillon, 1893, 1898). See, for the sake of
illustration, a quote from Bertillon (1898) on the
need for a quantification:

This writing, characterized by the set of unique features we
have enumerated, can only be encountered in one individual
among a hundred, among a thousand, among ten thousand
or among a million individuals. (p. 20)

In fact, after reconstructing the bordereau
and tracing on it with four millimetre interval
vertical lines, Bertillon showed that four pairs of
polysyllabic words (among 26 pairs) had the same
relative position with respect to the grid. Then,
with reference to probability theory, Bertillon
stated that the coincidences described could not
be attributed to normal handwriting. Therefore,
the bordereau was a forged document. Bertillon
submitted probability calculations to support
his conclusion. His statistical argument can be
expressed as follows: if the probability for one
coincidence equals 0.2, then the probability of
observing N coincidences is (0.2)N. Bertillon
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calculated that the four coincidences observed by
him had, then, a probability of 0.24, or 1/625, a
value that was so small as to demonstrate that the
bordereau was a forgery (Charpentier, 1993).

However, this value of 0.2 was chosen purely for
illustration and had no evidential foundation; for a
comment on this point, see Darboux et al. (1908).

Bertillon’s deposition included not only this
simple calculation but also an extensive argument
to identify Dreyfus as the author of the bordereau
on the basis of other measurements and a complex
construction of hypotheses. (For an extensive
description of the case, see literature quoted in
Taroni et al. (1998, p. 189)).

As noted in Section 2.5.1 and using a Bayesian
perspective, it is not difficult to see where
Bertillon’s logic had failed in his conclusion on the
forgery. It seems that Bertillon argued that Pr(Hd ∣
E, I) = p = 1∕625 = 0.0016 and hence that
Pr(Hp ∣ E, I) = 1 − p = 0.9984. However, p rep-
resents Pr(E ∣ Hd, I). This seems to be an early
example of the prosecutor’s fallacy.

The reliability of Bertillon’s approaches were
discussed at a retrial. Notably, Darboux, Appell,
and Poincaré, mathematicians and members of
the French Academy of Sciences, offered their
opinions. They commented that the probabilistic
assessment proposed by Bertillon had no sound
mathematical basis. In fact, the value of 0.0016
is the probability of observing 4 independent
coincidences out of 4 comparisons (with the
probability, 𝜃, of one coincidence being 0.2),
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whereas Darboux, Appell, and Poincaré are
quoted as determining the probability of observ-
ing 4 coincidences out of 26 comparisons to be
quite different, namely, 0.7, or 400 times greater
(0.7∕0.0016 = 437.5) (Moras, 1906; Darboux
et al., 1908).

It is not clear how this figure of 0.7 was derived.
The binomial expression

(
26
4

)
0.240.822 = 0.176,

and the probability of four or more coinci-
dences out of 26 comparisons is approximately
0.8. It is not possible to choose a value of 𝜃

for which
(

26
4

)
𝜃4(1 − 𝜃)22 = 0.7. The value

of 𝜃 for which the probability of four or more
coincidences, out of 26, is 0.7 is 𝜃 = 0.18. Further
comments on Bertillon’s calculations are given in
Section 3.3.

Another assertion by Dreyfus’ enemies was
that the letters of the alphabet did not occur in
the documents in the proportions in which they
were known to occur in average French prose. The
proportions observed had a very small probability
of occurring; see Tribe (1971). Though it was
pointed out to the lawyers that the most probable
proportion of letters was itself highly improbable,
this point was not properly understood. A simple
example from coin tossing will suffice to explain
what is meant by the phrase ‘the most probable
proportion of letters was itself highly improbable’.
Consider a fair coin, that is, one in which the prob-
abilities of a head and of a tail are equal at 1/2.
If the coin is tossed 10 000 times, the expected
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number of heads is 5 000 (see Section A.2.3 with
n = 10 000, 𝜃 = 1∕2) and this is also the most
probable outcome. However, the probability of
5 000 heads, as distinct from 4 999 or 5 001
or any other number, is ≃ 0.008 or 1 in 125,
which is a very low probability. The most probable
outcome is, itself, improbable. The situation, of
course, would be considerably enhanced given all
the possible choices of combinations of letters in
French prose in Dreyfus’ time. This idea may be
expressed in mathematical symbols as follows. If
Dreyfus were innocent (Hd) the positions of the
words (E) that he had used would be extremely
unlikely; Pr(E ∣ Hd) would be very small. The
prosecuting lawyers concluded that Dreyfus must
have deliberately chosen the letters he did as a
cipher and so must be a spy; Pr(Hd ∣ E) must be
very small. The lawyers did not see that any other
combination of letters would also be extremely
unlikely and that the particular combination
used by Dreyfus was of no great significance.
This is another example of the prosecutor’s
fallacy.

Darboux, Appell, and Poincaré also expressed a
more fundamental point: the nature of the infer-
ential process they used to reach the conclusion.
They stated that the case under consideration was
a classical problem of probability of the causes and
not a problem of probability of the effects (Darboux
et al., 1908). See Dawid et al. (2016) for recent
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debate of the distinction between causes of effects
and effects of causes.

The difference between the two statistical
concepts (and inferences) could be illustrated by
the following example; see again Darboux et al.
(1908):

If you draw a ball from an urn containing 90 white balls
and 10 black balls, the probability of drawing a black ball
is 1/10 and it corresponds to the probability of the effect.
Suppose now you are facing two identical urns. Urn 1 is
containing black and white balls in the proportion 90:10.
The second urn contains black and white balls in the pro-
portion 10:90. You choose an urn (at random, each urn is
equally likely to be chosen) and pick up a ball. It is white.
What is the probability that you have picked up a ball from
urn 1? In this example, the effect is known, but it is the
cause which is uncertain.2 (p. 502)

2Nous en avons dit assez pour faire comprendre la nécessité d’une
base de raisonnement plus solide. C’est ce que les fondateurs du
calcul des probabilités ont cherché pour les questions de ce genre,
mais nous ne pouvons l’expliquer sans entrer dans quelques
détails techniques. Ils ont distingué la probabilité des effets et la
probabilité des causes. Comme exemple de probabilité des effets,
on choisit d’ordinaire une urne contenant 90 boules blanches
et 10 boules noires. Si l’on tire au hasard une boule de cette
urne, quelle est la probabilité pour que cette boule soit noire? C’est
évidemment 1/10. Les problèmes de probabilité des causes sont
beaucoup plus compliqués, mais beaucoup plus intéressants. Sup-
posons par exemple deux urnes d’aspect extérieur identique; nous
savons que l’une contient 90 boules blanches et 10 boules noires,
et l’autre au contraire 90 boules noires et 10 boules blanches.
Nous tirons au hasard une boule de l’une des urnes, sans savoir
de laquelle, et nous constatons qu’elle est blanche. Quelle est la
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This is another example concerning urns
(Section 1.7.2). In order to infer something about
a possible cause from an observation of an effect,
two assessments are needed: the probabilities
a priori of the causes under examination (i.e.
forgery or not in the Dreyfus case), and the prob-
abilities of the observed effect for each possible
cause (the coincidences observed by Bertillon). A
more detailed description of this kind of reason-
ing applied in forensic science was proposed by
Poincaré and his colleagues; it will be presented
in Section 3.8. See also the comment by Poincaré
(1992):

An effect may be the product of either cause A or cause B.
The effect has already been observed; one wants to know
the probability that it is the result of cause A; this is the a
posteriori probability. But, I’m not able to calculate this if
an accepted convention does not permit me to calculate in
advance the a priori probability for the cause producing the
effect; I want to speak of the probability of this eventuality,
for one who has never before observed the result. (p. 229)

For further analyses of the questioned document
examination in the Dreyfus’ case, see Champod
et al. (1999) and Kaye (2007).

probabilité pour que ce soit dans la première urne que nous ayons
puisé? Dans ce nouveau problème, l’effet est connu, on a constaté
que la boule tirée était blanche; mais la cause est inconnue, on
ne sait pas dans quelle urne on a fait le tirage. Le probléme qui
nous occupe ici est de même nature: l’effet est connu, ce sont les
coincidences signalées sur le bordereau, et c’est la cause (forgerie
ou écriture naturelle) qu’il s’agit de déterminer. (Original report at
p. 337, reprinted in Darboux et al. (1908) at p. 502)
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3.3 STATISTICAL ARGUMENTS BY
EARLY TWENTIETH-CENTURY
FORENSIC SCIENTISTS

A review of the forensic science literature suggests
that, for the evaluation of forensic evidence, early
forensic scientists recognised that adequate data
and consideration of the case as a whole should
be used to reach a decision. Despite the problem
encountered by Bertillon during the Dreyfus case
(e.g. an early example of what is now known as
‘the prosecutor’s fallacy’, Section 2.5.1), Bertillon
can be thought of as the first Bayesian forensic
practitioner. In fact, after expressing the need of a
quantification of the observed features (Bertillon,
1898), he completed his reasoning by affirming
that the only way to accept an expert’s categorical
conclusions was to consider not only the statistical
evidence provided by the examination of the
document, but also other information pertaining
to the inquiry. He described how the number of
people who could be the author of the questioned
document size is reduced with the inquiry (i.e.
the testimonies and circumstances of the case).
This description introduces the general idea of
a relevant population, a concept expanded and
discussed by Lempert (1991), Robertson and
Vignaux (1993b), Champod et al. (2004), Kaye
(2004, 2008b), Hicks et al. (2015), Morrison et al.
(2016). An important contribution to the role of
scientific evidence is that of Fienberg et al. (1996).
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He and his co-authors note that (i) what is treated
as a relevant population may only be a conve-
niently available population and (ii) the event that
evidence associated with the crime came from the
defendant is not necessarily the same as the event
that the defendant committed the crime.

Therefore, the evidentiary value of the scientific
observations, even if not totally confirmatory
of guilt, could supply sufficient information to
allow a conviction when the case is considered
as a whole. Other examples of similar reasoning
were published by Balthazard (1911) and Souder
(1934) in the fields of fingermarks and typewritten
documents, respectively. A complete historical
summary of the relationship of forensic scientists
to Bayesian ideas and a demonstration that their
points of view were generally compatible with a
Bayesian framework is demonstrated in Taroni
et al. (1998).

Despite his argument in the Dreyfus case,
Bertillon wrote that experts must be prepared to
present evidence in a numerical form which was
more demanding than that generally required of
expert opinions. He proposed that reports should
be concluded in the following form (Bertillon,
1898):

This writing characterized by the set of unique features the
expert enumerated, can only be encountered in one indi-
vidual among a hundred, among a thousand, among ten
thousand or among a million individuals. (p. 20)
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Moreover, Bertillon argued that the only way
to accept a conclusion of the final issue (e.g. the
identification of a writer) was to consider not only
the statistical evidence provided by the examina-
tion of the document, but also other information
pertaining to the inquiry. Bertillon considered
the presentation of results without such informa-
tion as a methodological error. The value of the
comparison results, even if not absolute, could
supply sufficient information to allow a conviction
when the case is considered as a whole. The same
approach – more clearly expressed in a numerical
way – was proposed in 1934, for typewritten
documents, by William Souder (1934):

Suppose the report does not establish an extremely remote
possibility of recurrence (of characteristics or agreements
between the questioned and known writings). [ . . . ].
Suppose the final fraction for recurrence of the typed
characteristics had come out as only 1 in 100. Is such a
report of value? Yes, if the number of typewriters upon
which the document could have been written can be
limited to 100 or less, the report is vital. Similarly, in
handwriting we do not have to push the tests until we get
a fraction represented by unity divided by the population
of the world. Obviously the denominator can always
be reduced to those who can write and further to those
having the capacity to produce the work in question. In a
special case, it may be possible to prove that one of three
individuals must have produced the document. Our report,
even though it shows a mathematical probability of only 1
in 100, would then irresistibly establish the conclusion.
(pp. 683–684)
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The same idea that a final issue could only be
assessed if the case is considered as a whole is
often reiterated in judicial literature (Koehler,
1997a).

Forensic science alone cannot identify the probability that
O.J. Simpson - or any other criminal defendant - is or is not
the source of the recovered genetic evidence. Non-genetic
considerations must be factored into any equation that pur-
ports to identify the chance that someone is the source of
genetic sample. (p. 219)

The debate on the use of statistical thinking
in fingerprints/fingermarks has a long history,
beginning in 1900. The aim was to assess the
probabilistic value for a minute configuration on a
given surface size of a fingerprint. As described by
Champod (1996), the statistical model evolution
begun with E. R. Henry in 1900 with arguments
presented in his book on classification and uses
of fingerprints (Henry, 1913). A critical analy-
sis of the principal models proposed over a long
period of time for the quantitative assessment of
fingerprints is presented in Stoney and Thornton
(1986). A historical and critical description of
such an evolution is also presented in Champod
(1995) starting from controversies around the
Edmond Locard’s ‘tripartite rule’ and notably on
the qualitative aspect presented in Locard (1914).
The criterion is the following:

If a limited number of characteristic points are present, the
fingerprint cannot provide certainty for an identification,
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but only a presumption proportional to the number of
points available and their clarity.3 (p. 332)

This criterion implicitly supported the develop-
ment of quantitative models.

Another old example of the use of a proba-
bilistic inference for fingerprint identification is
the work of Balthazard, a French legal examiner.
Balthazard’s work influenced rules regarding stan-
dards for the establishment of an identification in a
fingerprint such as the rule for seventeen concor-
dant minutiae expressed in Italian jurisprudence
since 1954 (Balthazard, 1911).

Despite the weakness of Balthazard’s hypotheses
and assumptions used to perform his simple calcu-
lation that have been extensively challenged in the
scientific literature (see comments in (Champod
et al., 2016b)), it is important to note that part
of Balthazard’s text is in agreement with the
Bayesian framework (Balthazard, 1911).

In medico-legal work, the number of corresponding minu-
tiae can be lowered to eleven or twelve if you can be cer-
tain that the population of potential criminals is not the
entire world population but it is restricted to an inhabitant
of Europe, a French citizen, or an inhabitant of a city, or of
a village, etc. (p. 1864)

So, as years later Souder proposed for questioned
documents, here Balthazard stated that prior
assessment (based on inquiry information and a
reduction of the size of the suspect population)

3Translation reported in Champod (1995), p. 136.
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has to be associated with a statistical value of the
evidence to allow the decision-maker to judge on
an identification (a posterior assessment).

The model’s evolution continues to the explicit
interest on the Bayesian model and on a likelihood
ratio calculation as proposed by Stoney (1985).
Note that Lempert (1977) promoted the use of the
likelihood ratio for assessing the value of finger-
marks in his seminal paper. The same direction
has been followed and developed by Champod
(1996). More discussion around the use of the
Bayesian approach in fingermarks interpretation
can be read in Stoney and Thornton (1988) and
Kingston (1988) where the interest on the use
of other (non-fingerprint) evidence to define a
limited suspect population and then using this
population to define a prior probability is dis-
cussed. Interestingly, Kingston (1988) concluded
his comment suggesting the need to generalise the
use of such an approach by saying :

The model under discussion here [the Bayesian model] has
applications to a range of evidence types where individual-
ization is of concern. It is clearly necessary to examine more
closely the interpretation. and the presentation, of opinion
with respect to physical evidence types which lend them-
selves to conclusions that are far less certain than is the case
for fingerprints. (p. 11)

Unfortunately, over one hundred years later, the
discussion on fingerprint ‘identification’ and the
use of probabilistic models is still open. See, for
example, the discussions proposed by Taroni



�

� �

�

People v. Collins 299

and Margot (2000), Champod and Evett (2001),
Friedman et al. (2002), the recommendations of
the US National Institute of Science and Technol-
ogy report on Expert Working Group on Human
Factors in Latent Print Analysis (2012), Champod
et al. (2016b) and references therein, Neumann
and Stern (2016) and by Swofford et al. (2018).

3.4 PEOPLE v. COLLINS

The Dreyfus case is a rather straightforward abuse
of probabilistic ideas though the fallacy of which
it is an example still occurs. It is easy now to
expose the fallacy through consideration of the
odds form of Bayes’ theorem (see Section 2.3).
At the time, however, the difficulty of having
the correct reasoning accepted had serious and
unfortunate consequences for Dreyfus. A further
example of the fallacy occurred in a case that
has achieved a certain notoriety in the proba-
bilistic legal literature, namely, that of People v.
Collins (1968), (Kingston, 1965a,b; Fairley and
Mosteller, 1974, 1977; Koehler, 1997a). In this
case, probability values, for which there was no
objective justification, were quoted in court.

Briefly, the crime was as follows. An old lady,
Juanita Brooks, was pushed to the ground in an
alley-way in the San Pedro area of Los Angeles
by someone whom she neither saw nor heard.
According to Mrs. Brooks, a blond-haired woman
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wearing dark clothing grabbed her purse and ran
away. John Bass, who lived at the end of the alley,
heard the commotion and saw a blond-haired
woman wearing dark clothing run from the scene.
He also noticed that the woman had a ponytail
and that she entered a yellow car driven by a black
man who had a beard and a moustache.

A couple answering this description were
eventually arrested and brought to trial. The
prosecutor called as a witness an instructor of
mathematics at a state college in an attempt to
bolster the identifications. This witness testified
to the product rule for multiplying together the
probabilities of independent events (the third
law of probability (1.10)). If E1,E2, . . . ,En are
mutually independent pieces of evidence and Hd

denotes the hypothesis of innocence then the
extension of the third law to a set of n independent
events is

Pr(E1,E2, . . . ,En ∣ Hd) = Pr(E1 ∣ Hd)Pr(E2 ∣ Hd)
· · ·Pr(En ∣ Hd). (3.1)

In words, this states that, for mutually independent
events, the probability that they all happen is the
product of the probabilities of each individual event
happening.

The instructor of mathematics then applied
this rule to the characteristics as testified to by
the other witnesses. Values to be used for the
probabilities of the individual characteristics
were suggested by the prosecutor without any
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Table 3.1 Probabilities for various characteristics of
the couple observed in the case of People v. Collins.

Evidence Characteristic Probability

E1 Partly yellow automobile 1/10
E2 Man with moustache 1/4
E3 Girl with ponytail 1/10
E4 Girl with blonde hair 1/3
E5 Negro man with beard 1/10
E6 Interracial couple in car 1/1 000

justification, a procedure that would not now
go unchallenged. The jurors were invited to
choose their own values but, naturally, there
is no record of whether they did or not. The
individual probabilities suggested by the prose-
cutor are given in Table 3.1. Using the product
rule for independent characteristics, the pros-
ecutor calculated the probability that a couple
selected at random from a population would
exhibit all these characteristics as 1 in 12 million
(10 × 4 × 10 × 3 × 10 × 1 000 = 12 000 000).

The accused were found guilty. This verdict was
overturned on appeal for two statistical reasons.

(a) The statistical testimony lacked an adequate
foundation both in evidence and in statistical
theory.

(b) The testimony and the manner in which the
prosecution used it distracted the jury from its
proper function of weighing the evidence on
the issue of guilt.
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The first reason refers to the lack of justification
offered for the choice of probability values and the
assumption that the various characteristics were
independent. As an example of this latter point,
an assumption of independence implies that the
propensity of a man to have a moustache does not
affect his propensity to have a beard. Moreover,
the computation implicitly assumed that the
six reported characteristics were true and were
accurately reported. It made no allowance for the
possibility of disguise (e.g. dyed hair).

The second reason still has considerable force
today. When statistical evidence is presented, great
care has to be taken that the jury is not distracted
from its proper function of weighing the evidence
on the issue of guilt. Care has also to be taken to
avoid cognitive bias. This is a procedure by which
exposure of the expert to irrelevant information
can potentially cause bias in their report (Dror,
2018).

The fallacy of the transposed conditional is
also evident. The evidence is (E1,E2, . . . ,E6) and
Pr(E1,E2, . . . ,E6 ∣ Hd) is extremely small (1 in 12
million). The temptation for a juror to interpret
this figure as a probability of innocence is very
great.

Lest it be thought that matters have improved,
consider the case of R v. Clark (1999, 2000, and
2003). Sally Clark’s first child Christopher died
unexpectedly at the age of about three months
when Clark was the only other person in the
house. The death was initially treated as a case
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of Sudden Infant Death Syndrome (SIDS). Her
second child, Harry, was born the following year.
He died in similar circumstances. Sally Clark
was arrested and charged with murdering both
her children. At trial, a professor of paediatrics
quoted from a report (Fleming et al., 2000) that,
in a family like the Clarks, the probability that
two babies would both die of SIDS was around 1
in 73 million. This was based on a study which
estimated the probability of a single SIDS death
in such a family as 1 in 8 500, and then squared
this to obtain the probability of two deaths, a
mathematical operation that assumed the two
deaths were independent. In an open letter (dated
23 January 2002) to the Lord Chancellor, copied
to the President of the Law Society of England and
Wales, the Royal Statistical Society expressed its
concern at the statistical errors which can occur
in the courts, with particular reference to Clark.
To quote from the letter:

One focus of the public attention was the statistical evidence
given by a medical expert witness who drew on a published
study (Confidential Enquiry into Stillbirths and Deaths in
Infancy, Fleming et al. (2000)) to obtain an estimate (1 in
8 543) of the frequency of SIDS (or ‘cot death’) in families
having some of the characteristics of the defendant’s fam-
ily. The witness went on to square this estimate to obtain
a value of 1 in 73 million for the frequency of two cases of
SIDS in such a family.

[...] Some press reports at the time stated that this was the
chance that the deaths of Sally Clark’s two children were
accidental. This (mis)-interpretation is a serious error of
logic known as the prosecutor’s fallacy. (Royal Statistical
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Society News, March 2002, reproduced at http://www
.rss.org.uk/statsandlaw.)

An interesting discussion on the role of the
propositions is given in Dawid (2002) and Hill
(2004). Two propositions may be considered:

Hp: the mother did indeed murder two of her
babies;

Hd: the babies died of SIDS.

The Bayesian approach considers the relative
likelihoods of the evidence E of the two deaths
under the two propositions. This is the ratio of
Pr(two dead babies ∣ murdered) / Pr(two dead
babies ∣ SIDS deaths). Both probabilities in this
ratio are 1: the probability of two dead babies if
they have been murdered is 1 and the probability
of two dead babies if they have died of SIDS is
also 1. For these two propositions, the value
of the evidence of the deaths is not relevant.
However, the determination of the posterior odds
Pr(Hp ∣ E)∕Pr(Hd ∣ E) requires consideration of
the prior probabilities for Hp and Hd as well as the
likelihood ratio. First, consider Hd: the probability
of the two deaths by SIDS is taken to be 1 in
73 million (assuming the figure given in the trial
to be accurate). For the probability of death by
murder (Hp), Dawid (2002) cites Office of National
Statistics (ONS) data for 1997 in which there
were 642 093 live births and seven babies were
murdered in the first year of life. The probability of
being murdered is then estimated by Dawid (2002)
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to be 7∕642 093 = 1.1 × 10−5 or approximately
1 in 90 000. Assuming independence, as for the
analysis assuming SIDS deaths (not a particularly
reasonable assumption here either), and squaring
the probability for two murders, a probability is
obtained of 1.2 × 10−10 or about 1 in 8.4 billion
for the probability of two murders of babies in
the same family. The ratio Pr(Hp)∕Pr(Hd) of 1
in 8.4 billion to 1 in 73 million is 1/115. This
figure is the prior odds for Hp relative to Hd. As the
likelihood ratio has a value of 1, the posterior odds
for Hp relative to Hd are also 1 in 115. Thus, the
posterior probability that the babies died of SIDS
rather than being murdered is 115/116 or 0.99.

It is important that the propositions are specified
carefully. Dawid (2002) provided an alternative
analysis in which the propositions considered are
not so restricted as those above (see Section 5.2
and drew a distinction between proposition and
explanation). In the alternative analysis, let the
propositions be

Hp: The babies were murdered;

Hd: The babies were not murdered.

The evidence E is, as in the previous analysis,
that the babies died. Here it is further assumed
that if the babies were murdered then it was
Sally Clark that did the murders and if the babies
were not murdered then they died of SIDS. Thus
Pr(E ∣ Hp) = 1, as before. However, Hd does not
include the implication that the babies died. Thus,
Pr(E ∣ Hd) is the probability that the babies died,
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assuming they were not murdered. This is taken
to be the probability that they died of natural
causes, and more specifically SIDS. This is then 1
in 73 million (still using the figure provided in the
original trial). The likelihood ratio is then 1 divided
by 1 in 73 million, or 73 million, a figure that
provides very strong evidence in support of the
proposition that the babies were murdered by Sally
Clark. However, the change in propositions from
the initial analysis means that the prior odds also
change. In this (second) analysis, Pr(Hp) = 1∕8.4
billion using the ONS figures provided earlier. Thus
Pr(Hp)∕Pr(Hd) ≃ 1 / 8.4 billion. The combination
of the likelihood ratio and the prior odds gives the
same posterior odds as before: 73 million divided
by 8.4 billion or 1 in 115. These give a posterior
probability that the babies were not murdered of
115/116 as before.

The probability of other evidence has also to
be assessed under each of the two propositions.
The choice of probabilities for the other evidence
is subjective. However, the Bayesian approach
makes it very clear what features of the evidence
should be taken into account and what the effect
of the choices of probabilities is.

Note that the Court of Appeal heard new med-
ical evidence in January 2003 and Sally Clark’s
conviction was overturned. She died in 2007. A
commentary on this case is also given in Aitken
(2003).
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A similar American case where the prosecutor’s
fallacy is committed in a case concerning SIDS is
that of Wilson v. Maryland (2002).

Note that the prosecutor’s fallacy equates a
small probability of finding the evidence on an
innocent person with the probability that the
person is innocent. More details on such a pitfall
of intuition have been presented in Sections 2.5.1
and 2.7.1.

3.5 DISCRIMINATING POWER

3.5.1 Derivation

How good is a method at distinguishing between
two samples of material from different sources? If a
method fails to distinguish between two samples,
how strong is this as evidence that the samples
come from the same source? Questions like these
and the answers to them were of considerable
interest to forensic scientists in the late 1960s and
in the 1970s; see, for example, theoretical work in
Parker (1966, 1967), Jones (1972) and Smalldon
and Moffat (1973). Experimental attempts to
answer these questions are described in Tippett
et al. (1968) for fragments of paint, in Gaudette
and Keeping (1974) for human head hairs,
in Groom and Lawton (1987) for shoeprints,
in Massonnet and Stoecklein (1999) for paint,
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and in Adams (2003) for dental impressions.
Other examples are given, for example, by Buzzini
and Massonnet (2013, 2015) (textile fibres),
Muehlethaler et al. (2014) and Falardeau et al.
(2019) (paints), Morris et al. (2017) (cartridges),
Krol et al. (2014) (printer inks), and Weyermann
et al. (2012) (pen inks).

Two individuals are selected at random from
some population. The probability that they are
found to match with respect to some characteristic
(e.g. blood profile, paint fragments on clothing,
head hairs) is known as the probability of non-
discrimination or the probability of a match, PM.
The complementary probability, the probability
they are found not to match with respect to
this characteristic, is known as the probability
of discrimination (Jones, 1972) or discriminating
power, DP (Smalldon and Moffat, 1973). The
idea was first applied to problems concerning
ecological diversity (Simpson, 1949) and later
to blood group genetics (Fisher, 1951). See also
Jeffreys et al. (1987) for an application to DNA
profiles.

Consider a population and a locus in which
there are k genotypes, labelled 1, . . . , k, and in
which the j-th genotype has population proportion
pj, such that p1 + · · · + pk = 1 from the second law
of probability for mutually exclusive and exhaus-
tive events generalised to k events, see Section
1.5. Two people are selected at random from this
population such that their genotypes may be
assumed independent. What is the probability of a
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match of genotypes between the two people at this
locus?

Let the two people be called C and D. Let C1 and
D1 be the events that C and D, respectively, are of
genotype labelled 1. Then

Pr(C1) = Pr(D1) = p1,

and the joint probability of C1 and of D1 is given by

Pr(C1D1) = Pr(C1) × Pr(D1) = p2
1

by the third law of probability (1.10) applied to
independent events. Thus, the probability they are
both of genotype 1 is p2

1. In general, let Cj,Dj be the
events that C,D are of genotype j (j = 1, . . . , k).
The probability that the individuals selected at
random match on genotype j, is given by

Pr(CjDj) = Pr(Cj) × Pr(Dj) = p2
j .

The probability of a match on any genotype is
the disjunction of k mutually exclusive events, the
matches on genotypes 1, . . . , k, respectively. Let Q
be the probability PM of a match. Then

Q = Pr(C1D1 or C2D2 or . . . or CkDk)
= Pr(C1D1) + Pr(C2D2) + · · · + Pr(CkDk)
= p2

1 + p2
2 + · · · + p2

k , (3.2)

by the second and third laws of probability (1.5)
and (1.10); see also (1.1). The discriminating
power, or probability of discrimination, is 1 − Q.
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Example 3.1. Consider the frequencies from
Table 1.1 where k = 3. Then

Q = 0.1882 + 0.3212 + 0.4912 = 0.379.

The discriminating power DP = 1 − Q = 0.621.

3.5.2 Evaluation of Evidence
by Discriminating Power

The approach using discriminating power has
implications for the assessment of the value of
forensic evidence. If two samples of material (e.g.
two blood stains, two sets of paint fragments, two
groups of human head hairs) are found to be
indistinguishable, it is of interest to know if this
is forensically significant. If a system has a high
value of Q, it implies that a match between samples
of materials from two different sources under this
system is likely. For example, if there were only
one category, no discrimination would be possible.
In such a case, k = 1, p1 = 1 and Q = p2

1 = 1. It
is intuitively reasonable that a match under such
a system will not be very significant. Conversely,
if a system has a very low value of Q a match will
be forensically significant. Blood grouping data
from the Strathclyde region of Scotland for which
there is a discriminating power of 0.602 are given
by Gettinby (1984) and are used here for sake of
illustration. He interpreted this, in the context of
blood grouping, to mean that
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[...] in 100 cases where two blood samples come from
different people then, on average, 60 will be identifiable as
such. (p. 224)

Limits for Q may be determined (Jones, 1972).
First, note that p1 + · · · + pk = 1 and that 0 ≤ pj ≤
1 (j = 1, . . . , k) from the first law of probability
(1.6). Thus p2

j ≤ pj (j = 1, . . . , k) and so Q = p2
1 +

· · · + p2
k ≤ 1; i.e. Q can never be greater than 1

(and equal to 1 if and only if one of the pj’s is 1,
and hence the rest are 0, as illustrated above). A
value of Q equal to 1 implies that all members of
the population fall into the same category; the
discriminating power is zero.

Now, consider the lower bound. It is certainly
no less than zero. Suppose the characteristic of
interest (h0, say) of interest divides the system
into k classes of equal probability 1∕k so that
pj = p0j = 1∕k (j = 1, . . . , k). Then

Q = Q0 = p2
01 + p2

02 + · · · + p2
0k

= 1
k2

+ 1
k2

+ · · · + 1
k2

= 1
k
.

Consider another characteristic (h1 say), which
divides the system into k classes of unequal
probability such that

pj = p1j =
1
k
+ 𝜖j; j = 1, . . . , k.
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Since Σk
j=1pj = 1 it can be inferred that Σk

j=1𝜖j = 0.
Thus, for h1,

Q = Q1 = p2
11 + p2

12 + · · · + p2
1k

= Σk
j=1

(1
k
+ 𝜖j

)2

= Σk
j=1

(
1
k2

+
2𝜖j

k
+ 𝜖2

j

)

= 1
k
+ 2

k
Σk

j=1𝜖j + Σk
j=1𝜖

2
j

= 1
k
+ Σk

j=1𝜖
2
j since Σk

j=1𝜖 = 0

≥ Q0

since Σk
j=1𝜖

2
j is never negative (and equals zero

if and only if 𝜖1 = 𝜖2 = · · · = 𝜖k = 0; i.e. if and only
if p0j = p1j (j = 1, . . . , k)). Thus Q takes values
between 1∕k and 1 where k is the number of
categories in the system. The probability of a
match is minimised, and the discriminating power
is maximised when the class probabilities are
all equal. This is confirmation of a result that is
intuitively reasonable, namely, that if a choice
has to be made among several techniques as
to which to implement, then techniques with
greater variability (e.g. all categories are equally
likely) should be preferred over those with lesser
variability (e.g. only one category is possible so
there no variation).

As an example of the application of this result,
note that at the LDLR locus in Table 1.1 that
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k = 3 and 1∕k = 0.33. Thus, Q cannot be lower
than 0.33 for this locus and the discriminating
power cannot be greater than 0.67. Notice also
that the minimum value (1∕k) of Q decreases as
k increases. Discriminating power increases as
the number of categories into which an item can
be classified increases, a result that is intuitively
attractive.

The aforementioned calculations assume that
the total population size (N say) of interest is very
large and that for at least one pj, p2

j is much greater
than 1∕N. Failure of these assumptions can lead
to misleading results as described by Jones (1972)
with reference to the results of Tippett et al. (1968)
on paint fragments; see Examples 3.2 and 3.3.

The experiment described by Tippett et al.
(1968) compared two thousand samples of paint
fragments, pairwise. For various reasons, the
number of samples was reduced to 1969, all from
different sources. These were examined by various
tests and only two pairs of samples from different
sources were found to be indistinguishable. The
total number of pairs which can be picked out
at random is 1

2
× 1969 × 1968 = 1 937 496.

Two pairs of samples were found to agree with
each other. The probability of picking a pair of
fragments at random that are found to be indistin-
guishable is thus estimated empirically as 2/1 937
496=1/968 478.

This result is used as an estimate of the prob-
ability of a match (Q). The method by which it
was determined is extremely useful in situations
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such as the one described by Tippett et al. (1968)
in which frequency probabilities are unavailable
and, indeed, for which a classification system
has not been devised. The extremely low value
(1/968 748) of Q demonstrates the high evidential
value of the methods used by the authors. The
conclusion from this experiment is that these
methods are very good at differentiating between
paints from different sources. Low values of Q were
also obtained in work on head hairs (Gaudette
and Keeping, 1974) and footwear (Groom and
Lawton, 1987).

The equivalence of the theoretical and empirical
approaches to the determination of Q can be
verified numerically using the LDLR locus with
genotypic frequencies as given in Table 1.1.
Assume there is a sample of 1000 people with
genotypic frequencies in the proportions in
Table 1.1. All possible pairs of people in this sam-
ple are considered and their genotypes compared.
There are 1

2
(1000 × 999) = 499 500 (= P, say)

different pairings. Of these pairings there are the
following numbers of matches for

• genotype AA : 188 × 187∕2 = 175 78,

• genotype BB : 321 × 320∕2 = 51 360,

• genotype AB : 491 × 490∕2 = 120 295.

There are, thus, M = {(188 × 187) + (321 ×
320) + (491 × 490)}∕2 = 189 233 pairings of
people who have the same genotype. The probabil-
ity of a match, by this numerical method, is then
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M∕P = 189,233∕499,500 = 0.3788. The prob-
ability of a match is Q = p2

1 + p2
2 + p2

3 = 0.1882 +
0.3212 + 0.4912 = 0.3795. The approximate
equality of these two values is not a coincidence as
a study of the construction of the ratio M∕P shows.

The probability Q is sometimes called an average
probability (Aitken and Robertson, 1987). An
average probability provides a measure of the
effectiveness of a particular type of transfer evi-
dence at distinguishing between two randomly
selected individuals (Thompson and Williams,
1991). In the context of blood stains, it is so-called
because it is the average of the probabilities that
an innocent person will be found to have an allele,
which matches that of a crime stain. These proba-
bilities are of the type considered in Example 3.1.
For example, for locus TPOX in Table 3.2 if the
crime stain were of allele 8, the probability an
innocent suspect matches this is just the prob-
ability he has allele 8, namely, 0.554. A similar
argument gives probabilities of 0.093, 0.054,
0.259 and 0.040 for matches between crime
stain alleles and that of an innocent person of
alleles 9, 10, 11, and 12, respectively. The average
probability is the weighted average of these four
probabilities, where the weights are the corre-
sponding population proportions, namely 0.554,
0.093, 0.054, 0.259, and 0.040, respectively.
The average probability is then just Q, given by
(0.554 × 0.554) + (0.093 × 0.093) + (0.054 ×
0.054) + (0.259 × 0.259) + (0.040 × 0.040) =
0.3872.
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3.5.3 Finite Samples

The relationship between the general result for a
population, which is conceptually infinite in size,
and a sample of finite size is explained by Jones
(1972). Consider a test to distinguish between
k classes C1, . . . ,Ck. A sample of n individuals is
taken from the relevant population. The number
of individuals in each class is c1, c2, . . . , ck with
Σk

j=1cj = n. An estimate of the probability that a
randomly selected individual will be in class Cj is
p̂j = cj∕n, j = 1,2, . . . , k.

There are n(n − 1)∕2 possible pairings of indi-
viduals. For any particular class j, the number
of pairings of individuals within the class is
cj(cj − 1)∕2, j = 1,2, . . . , k. Thus, the overall
proportion of pairings which result in a match is

Q̂ = {Σk
j=1cj(cj − 1)}∕{n(n − 1)}.

Then

Q̂ = (Σk
j=1c2

j − Σk
j=1cj)∕{n(n − 1)}

= (Σk
j=1c2

j − n)∕(n2 − n) since Σk
j=1cj = n,

= {Σk
j=1(c

2
j ∕n2) − 1∕n}∕(1 − 1∕n)

= (Σk
j=1p̂2

j − 1∕n)∕(1 − 1∕n). (3.3)

When the class frequencies are known, the proba-
bility of a match PM is given by Q (3.2). Result (3.3)
gives an exact expression for the probability of a
match for any given sample for all values of n and
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{p̂j, j = 1, . . . , k}. As n increases towards the popu-
lation size, which is assumed to be so large that its
reciprocal can be ignored in the calculation, it is
to be expected that the observed sample probabil-
ity will converge to the population probability. For
n large it can be seen that Q̂ tends to

Σk
j=1p̂2

j ,

since 1∕n becomes vanishingly small. As p̂j tends
to pj so Σk

j=1p̂2
j will tend to Q. However, as well as n

being large, it is necessary for at least one of the p̂2
j

to be much greater than 1∕n in order that Σp̂2
j −

1∕n ≃ Σp2
j . This should be so for k not too close to

n or for n very much larger than k; i.e. the number,
n, of individuals should be much greater than the
number of categories k.

Two examples (Jones, 1972) are given in which
the probability of a match estimated by Q̂1 = Σp̂2

j
is not a good approximation to the probability of a
match estimated by Q̂ from (3.3). The true proba-
bility of a match Q = Σp2

j will not often be known
exactly, except in situations like blood grouping
systems where the sample sizes are extremely
large and the {pj} are known accurately.

Example 3.2. If n is small, then 1∕n is not very
small compared with 1. Consider four playing
cards, of which two are red (R1,R2: Category 1)
and two are black (B1,B2: Category 2). Thus, n =
4, c1 = c2 = 2, p1 = p̂1 = p2 = p̂2 = 1∕2 and Q =
Q̂1 = 1∕4 + 1∕4 = 1∕2. Note that 1∕n = 1∕4
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which is not very much less than 1. There are six
possible pairings of cards (R1R2,R1B1,R1B2,R2B1,

R2B2,B1B2) of which two result in a match
(R1R2,B1B2). Thus Q̂ = 1∕3 which may be veri-
fied from Q̂ = (Σp̂2

j − 1∕n)∕(1 − 1∕n) = (1∕2 − 1∕
4)∕(1 − 1∕4) = 1∕3. The failure of 1∕n to be very
small has led to a discrepancy between Q̂ and
Σk

j=1p̂2
j = 1

2

2
+ 1

2

2
= 1

2
.

Example 3.3. Consider the paper by Tippett et al.
(1968) in which 1969 sets of paint fragments
were considered (n=1969) and there are very
small values of p2

j . Two pairs were found to be
indistinguishable. Label these pairs as belonging
to classes 1 and 2. The other paint fragments may
be said to belong to 1965 different classes labelled
3, . . . ,1967, each with only one member so that
p̂1 = 2∕1969, p̂2 = 2∕1969, p̂3 = · · · = p̂1967 =
1∕1969. Then

Q̂1 =
( 2

1969

)2
+
( 2

1969

)2
+
( 1

1969

)2

+ · · · +
( 1

1969

)2

= 1973
19692

≃ 1
1965

,

whereas

Q̂ =
( 1973

19692
− 1

1969

)
∕
(

1 − 1
1969

)
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= 4
1969 × 1968

= 1
968 748

,

agreeing with the earlier result obtained by the
authors. Here the approximate result Q̂1 is very
inaccurate because no p̂2

j is very much greater
than 1∕n. In fact, the largest p̂2

j is (2∕1969)2,
which is smaller than 1∕n = 1∕1969.

The use of the discriminating power for assess-
ing the value of a comparative technique has been
discussed in detail by Evett (1990).

3.5.4 Combination of Independent
Systems

Consider Q from (3.2). This is the probability of
finding a match between two individuals selected
at random using a particular classification system.
Suppose now that there are p independent systems
with corresponding Q values Q1, . . . ,Qp. The
probability of finding a pair that matches on all p

tests is PMp =
p∏

l=1
Ql. The probability of being able

to distinguish between two individuals using these
p tests is therefore

DPp = 1 −
p∏

l=1

Ql.

Consider, for the sake of illustration, the fol-
lowing example for a comparison of the allelic
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frequencies between New Zealand (NZ) and Swiss
Caucasians, with frequency results for the TPOX
and TH01 loci. The calculations for the discrimi-
nating power for the combination of the TPOX and
TH01 systems are given later. The New Zealand
data are given in Harbison et al. (2002). The
Swiss data are given by courtesy of the Centre
Universitaire de Médecine Légale (The University
of Lausanne).

The allelic frequencies for the TPOX and TH01
systems for NZ and Swiss Caucasians are given in
Tables 3.2 and 3.3.

The probability that two blood samples match on
both criteria is

PM2 = QTPOX × QTH01

= 0.3872 × 0.2305 = 0.0892 (Swiss),

= 0.3780 × 0.2251 = 0.0851 (NZ).

Table 3.2 Allelic frequencies for TPOX locus for
Swiss and NZ Caucasians and the probability QTPOX of a
match.

Allele Frequency

Swiss NZ

8 0.554 0.529
9 0.093 0.082
10 0.054 0.063
11 0.259 0.294
12 0.040 0.032
QTPOX 0.3872 0.3780
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Table 3.3 Allelic frequencies for TH01 locus for
Swiss and NZ Caucasians and the probability QTH01 of a
match.

Allele Frequency

Swiss NZ

5 0.0 0.002
6 0.219 0.180
7 0.194 0.206
8 0.083 0.102
9 0.144 0.155
9.3 0.342 0.340
10 0.018 0.015

QTH01 0.2305 0.2251

The discriminating power is

DP2 = 0.9108 (Swiss),

= 0.9149 (NZ).

3.5.5 Correlated Attributes

Consider the hair example of Gaudette and
Keeping (1974) in more detail. A similar argu-
ment holds for the paint example of Tippett et al.
(1968). A series of 366 630 pairwise compar-
isons between hairs from different individuals
were made. Nine pairs of hairs were found to
be indistinguishable. These results were used
to provide an estimate of the probability that
a hair taken at random from one individual,
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A, say, would be indistinguishable from a hair
taken at random from another individual, B,
say, namely, 9/366 630 or 1/40 737. It was
then argued that if nine dissimilar hairs were
independently chosen to represent the hairs on
the scalp of individual B, the chance that a single
hair for A is distinguishable from all nine of B’s
may be taken as [1 − (1∕40 737)]9, which is
approximately 1−(1/4 500). The complementary
probability, the probability that a single hair from
A is indistinguishable from at least one of B’s hairs
is 1/4 500. This probability provides, in some
sense, a measure of the effectiveness of human
hair comparison in forensic hair investigations.

There are various criticisms, though, which can
be made regarding this approach, some details
of which are in Aitken and Robertson (1987).
Comments on the Gaudette–Keeping study are
also made in Fienberg (1989). Criticisms on
the methodology are presented in Barnett and
Ogle (1982) and Miller (1987), with rebuttals in
Gaudette (1982, 1999).

First note that the assumption of independence
of the nine hairs used in the calculation is not an
important one. The use of an inequality known
as the Bonferroni inequality gives an upper bound
for the probability investigated by the authors
of 1/4 526 (Gaudette, 1982). The Bonferroni
inequality states that the probability that at least
one of several events occurs is never greater than
the sum of the probabilities of the occurrences
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of the individual events. Denote the events by
R1,R2, . . . ,Rn, then the inequality states that

Pr(at least one of R1, . . . ,Rn occurs) ≤ Pr(R1)
+ · · · + Pr(Rn).

Gaudette and Keeping (1974) compared each of
nine hairs, known to be from one source with
one hair known to be from another source. The
events R1, . . . ,R9, where n = 9 correspond to
the inability to distinguish each of the nine hairs
from the single hair. The probability of interest
is the probability of at least one indistinguish-
able pair in these nine comparisons. This is the
probability that at least one of R1, . . . ,R9 occurs.
Using the Bonferroni inequality, it can be seen
that this probability is never greater than the
sum of the individual probabilities. From earlier,
these individual probabilities are all equal to
1∕40 737. The sum of the nine of them then
equals 9∕40 737, which is 1∕4 526. This is very
close to the figure of 1∕4 500 quoted from the
original experiment. Even if independence is not
assumed there is very little change in the probabil-
ity figure quoted as a measure of the value of the
evidence.

An important criticism, though, is the follow-
ing. One probability of interest to the court is the
probability that a hair found at a crime scene
belonged to a defendant. Other probabilities of
interest to the court, the relevance of which will
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be explained in more detail later in Section 5.3.1,
are the probability of the evidence of the similarity
of the hairs (crime and defendant) if they came
from the same origin and the probability of the
evidence of the similarity of the hairs if they came
from different origins. Gaudette and Keeping
(1974) provided an estimate of the probability
that hairs ‘selected at random’ from two individ-
uals are indistinguishable. This probability is an
average probability (Section 3.5.2). It can be used
as a broad guideline to indicate the effectiveness of
hair identification in general. However, the use of
the figure 1/4 500 as the value of the evidence in
a particular case could be very misleading.

The average probability is the probability
that two individuals chosen at random will be
indistinguishable with respect to the trait under
examination. However, in a particular investiga-
tion one sample is of known origin (in this case,
the sample of hair from the PoI, which is the
control sample), the other (the recovered sample)
is not. If the PoI is not the criminal, someone
else is and the correct probability of interest is
the probability that a person chosen at random
(which is how the criminal must be considered)
from some population will have hair that is similar
to that of the PoI – see Chapter 6 for a more
detailed discussion.

Fienberg (1989) also makes the point that,
‘even if we interpret 1/4 500 . . . as the probability
of a match given a comparison of a suspected
hair with a sample from a different individual we
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would still need the probability of a match given a
sample from the same individual as well as a priori
probabilities of “same” and “different”.’

3.6 SIGNIFICANCE PROBABILITIES

Procedures for the evaluation of evidence in foren-
sic science were changed dramatically by a paper
by Dennis Lindley in 1977 (Lindley, 1977c). Pre-
vious to the publication of that paper a common
procedure was a two-stage approach.

• Similarity: In a comparison of characteristics of
evidence found at a crime scene and in the envi-
ronment of a PoI, are the characteristics similar
or dissimilar?

• Rarity: If the characteristics are dissimilar then
the evidence is not considered any further, the
evidence associated with the PoI is deemed not
to be associated with the crime. If the character-
istics are similar then the evidence associated
with the PoI is deemed to be associated with
the crime. The strength of the evidence under
source level propositions (Section 5.3.1) is
measured by the rarity of the characteristic; the
more rare the characteristic, the stronger the
association.

This description of the two-stage approach begs the
questions of what is meant by similarity and what
is meant by rarity.
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In the 1960s and the 1970s attempts were made
to evaluate evidence using the principles of signifi-
cance tests and probabilities.

3.6.1 Calculation of Significance
Probabilities

During the course of a crime a window has been
broken. A PoI is apprehended soon afterwards
and a fragment of glass found on his clothing.
Denote this fragment by F. It is of interest to assess
the uncertainty relating to whether the fragment
came from the broken window. The assessment
will be discussed for the moment in the context
of an approach based on what are known as
significance probabilities. Later, in Sections 3.7 and
3.8, two other approaches to this assessment
problem, based on coincidence probabilities and
likelihood ratios, respectively, will be discussed.

Let 𝜃0 be the value of the parameter representing
the mean refractive index of the broken window.
This is assumed constant. In Section 3.7 this
assumption will be dropped and 𝜃0 will be replaced
by a set of sample measurements of the refractive
index from the broken window or by a distribution
on the parameter 𝜃 in Chapter 7.

Let x be the refractive index for F. This mea-
surement may be considered as an observation
of a random variable X, there being variation in
refractive index within a particular window. It is
assumed that if F came from a window of mean
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refractive index 𝜃 then X is such that

X ∼ N(𝜃, 𝜎2),

(Section A.3.2). The question at issue is whether F
came from the window at the crime scene (and, by
association, that the PoI was present at the crime
scene). If this is so then 𝜃 will be equal to 𝜃0.

An argument based on significance probabilities
is as follows. Suppose 𝜃 = 𝜃0. The further inference
that F came from the window at the crime scene
requires the assumption that the mean refractive
index is unique to that window; this is not a par-
ticularly statistical assumption and is something
that should perhaps be part of I, the background
information.

The supposition that 𝜃 = 𝜃0 will be referred to as
the null hypothesis and denoted H0. Other names
for such a hypothesis are working hypothesis or
status quo. This nomenclature is not particularly
appropriate here. It does not seem reasonable to
start the analysis with the hypothesis that the PoI
was at the scene of the crime. Nonetheless, this
line of reasoning is pursued as the statistical ideas
on which it is based are in very common usage.

Under the supposition that 𝜃 = 𝜃0, the deviation
(in absolute terms, independent of sign) of x, the
refractive index of F, from 𝜃0 would be expected to
be small − just what is meant by small depends on
𝜎, the standard deviation of X. The distribution of
X has been taken to be Normal. The deviation of an
observation x from the mean 𝜃 of the distribution is
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measured in terms of the probability of observing a
value for the random variable X as extreme as x.

If H0 is true,

X ∼ N(𝜃0, 𝜎
2).

Let Z = (X − 𝜃0)∕𝜎. Then

Z ∼ N(0,1).

Also, Pr(∣ X ∣> x ∣ 𝜃0, 𝜎) = Pr(∣ Z ∣> z).
The probability Pr(∣ X ∣> x ∣ 𝜃0, 𝜎) is the prob-

ability of what has been observed (x) or anything
more extreme if H0 (𝜃 = 𝜃0) is true (and hence,
as discussed above, that F came from the window
at the crime scene). The phrase ‘anything more
extreme’ is taken to mean anything more extreme
in relationship to an implicit alternative hypothesis
that if H0 is not true then 𝜃 ≠ 𝜃0. The distance of an
observation x from a mean 𝜃 is measured in terms
of the standard deviation 𝜎. For example, if 𝜃 =
1.518 458 and𝜎 = 4 × 10−5, a value of x of 1.518
538 is (1.518 538 − 1.518 458)∕4 × 10−5, or
2.0, standard deviations from the mean. A value
of the refractive index x that is more extreme than
1.518 538 is one which is more than 2 standard
deviations from the mean in either direction, i.e. a
value of x which is greater than 1.518 538 or less
than 1.518 378.

The probability of what is observed, or anything
more extreme, calculated assuming the null
hypothesis is true, is known as the significance
probability. It may be thought to provide a measure
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of compatibility of the data with the null hypoth-
esis. It is conventionally denoted P. A small value
of P casts doubt on the null hypothesis. In the
example discussed here, a small value would cast
doubt on the hypothesis that F came from the
window at the crime scene sufficient to enable a
decision to be taken to act as if the null hypothesis
were false. However, it is not clear what value to
take for ‘small’. See Wasserstein and Lazar (2016)
for a general statement by the American Statistical
Association on P-values and Taroni et al. (2016)
for a critical discussion on the (ab)use of P-values
in forensic science.

Certain values of P have been used to provide
values known as significance levels at which a
scientist decides to act as if the null hypothesis is
false.4 Typical values are 0.10, 0.05, and 0.01.
Thus, for example, a value x of the refractive index
for which P < 0.05 would be said to be significant
at the 5% level. If an approach to the evaluation of
evidence based on significance levels is taken then
the choice of what level of P to choose is obviously
of crucial importance. It is helpful when deciding
on a level for P to bear in mind the implications of
the decision. The significance probability P is the
probability of what is observed or anything more
extreme if the null hypothesis is true. Suppose a
significance level of 0.05 has been chosen. Then,
by chance alone, on 5% of occasions on which this

4For an examination of the origins of ‘statistical significance’, see
Shafer (2019).
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test is conducted, a decision will be made to act as
if the null hypothesis is false and a wrong decision
will have been made.

Consider the glass example again. On 5% of
occasions, using a significance level of 5%, in
which such a test was conducted and in which F
came from the window at the crime scene, it will
be decided to act as if F did not come from the
window. This decision will be wrong. Obviously
there will be many other factors that affect the
decision in any particular case. However, the
principle remains. The use of this type of analysis
gives rise to the probability of an error. It is a
well-known error and is given the name type 1
error or error of the first kind.

The probability of a type 1 error can be reduced
by reducing the significance level, e.g. to 0.01
or 0.001. However, this can only be done at the
expense of increasing the probability of another
type of error, known as a type 2 error or error of the
second kind. A type 2 error is the error of failing to
reject the null hypothesis when it is false. In the
example, it will be the error of deciding that F did
come from the window at the crime scene when
in fact it did not. In general, if other factors, such
as the number of fragments considered, remain
constant, it is not possible to choose a significance
level so as to decrease the probabilities of both
type 1 and type 2 errors simultaneously.

Assume F came from the window at the
scene of the crime. Then 𝜃 = 𝜃0. As a numerical
illustration, let 𝜃0 = 1.518 458 and𝜎 = 4 × 10−5.
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Table 3.4 Significance probabilities P for refractive
index x of glass for mean 𝜃0 =1.518 458 and standard
deviation 𝜎 = 4 × 10−5 and decisions assuming a
significance level of 5%.

x z = P = Pr Decide to
(x − 𝜃0)∕𝜎) (∣ X ∣> x)

= Pr(∣ Z ∣> z)
act as if F
did or did not
come from
the crime
window

1.518 500 1.05 0.29 Did
1.518 540 2.05 0.04 Did not
1.518 560 2.55 0.01 Did not

Illustrations of the calculations for the significance
probability are given in Table 3.4.

Determination of the probability of a type 2
error requires knowledge of the value of 𝜃 if F did
not come from the window at the crime scene.
Normally such knowledge is not available and
the probability cannot be determined. There
may, occasionally, be circumstances in which the
probability of a type 2 error can be determined.
For example, this could happen if the defence were
to identify another source for F. However, even if
a probability cannot be determined, one has to be
aware that such an error may be made.

Notice that the philosophy described here fits
uncomfortably with the legal philosophy that a
person is innocent until proven guilty. The null
hypothesis in the example is that F came from the
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window at the crime scene. Failure to reject this
hypothesis is an implicit acceptance that the PoI
was at the crime scene. Yet, it is the null hypothesis
that is being tested. It is the one that has to be
rejected or not. The calculation of the significance
probability P is based on the assumption that the
null hypothesis is true. Only if P is small (and it is
values of 0.05, 0.01, and 0.001, which have been
suggested as small) is it considered that the null
hypothesis may be false. Evidence is required to
show that the PoI has not been at the crime scene.
The principle that one is innocent until proven
guilty requires that evidence be produced to show
that the PoI has been at the crime scene, not the
opposite. The burden of proof has shifted from the
prosecution to defence.

This point is also made by Gaudette (1999) in the
context of hair examination. An analogy is made
with a fire alarm. A type 1 error corresponds to
the alarm not ringing when there is a fire. A type 2
error corresponds to the alarm ringing when there
is not a fire. With a fire alarm a type 1 error is more
serious error than a type 2 error. In forensic sci-
ence a type 2 error is more serious than a type 1
error as it results in the false incrimination of an
innocent person.

The interpretation of P has to be made carefully.
Consider a result from Table 3.4: 𝜃0 = 1.518 458,
𝜎 = 4 × 10−5, x = 1.518 560, and P = 0.01. This
may be written more explicitly in the notation of
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conditional probability as

Pr(∣ X ∣> x ∣ 𝜃 = 𝜃0, 𝜎) = 0.01. (3.4)

It is difficult to relate this to the matter at issue: was
the PoI at the crime scene? A small value would
seem indicative of the falsity of the null hypothe-
sis but it is not the probability that the null hypoth-
esis is true. It is incorrect to use the value for P as
the probability that the suspect was at the crime
scene. The transposed probability

Pr(𝜃 = 𝜃0 ∣ ∣ X ∣> x, 𝜎) (3.5)

would be much more useful but this is not what
has been calculated. The relationship between
(3.4) and (3.5) is similar to that between the
probability of the evidence given the PoI is guilty
and the probability the PoI is guilty given the evi-
dence. The interpretation of the first of the last two
probabilities as the second probability is the fallacy
of the transposed conditional (Section 2.5.1). It
is possible, however, to discuss the relationship
between the significance probability and the
probability that the PoI was at the crime scene,
through the use of likelihood ratios.

3.6.2 Relationship to Likelihood Ratio

The relationship between significance probabili-
ties and the likelihood ratio has been investigated
by many authors. Early references include Good
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(1956), Lindley (1957), and Edwards et al.
(1963). The discussion here in the context of the
refractive index of glass is based on Berger and
Sellke (1987).

Consider two competing and complementary
propositions:

Hp: the fragment of glass on the clothing of the
PoI came from the window at the crime scene;

Hd: the fragment of glass on the clothing of the
PoI did not come from the window at the crime
scene.

Let p denote the probability that Hp is true,
Pr(Hp), and (1 − p) the probability that Hd is
true, Pr(Hd). If Hp is true then 𝜃, the mean refrac-
tive index of the source of the fragment F on the
suspect’s clothing is 𝜃0. If Hd is true, then F is
assumed to come from a window whose mean
refractive index is not equal to 𝜃0.

Assume Hp is true. Denote the probability
density function of X, the refractive index of F, by
f (x ∣ 𝜃0,Hp). In this context, this is a Normal den-
sity function. More details on probability density
functions and on distributions are presented in
Chapter 7 and in Appendix A.

Assume Hd is true. Denote the probability
density function of X by f (x ∣ Hd). The mean 𝜃 of
the refractive index of the source of the fragment
on the suspect’s clothing may also be thought
of as a random variable which varies from win-
dow to window over some relevant population
of windows. As such it also has a probability
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density function; denote this by f (𝜃). If 𝜃 is known,
the probability density function of x is given by
f (x ∣ 𝜃). An extension of the law of total probability
(Section 1.7.10) to continuous data with integra-
tion replacing summation may be used to give the
expression

f (x ∣ Hd) = ∫ f (x ∣ 𝜃) f (𝜃)d𝜃.

The probability density function of X, indepen-
dent of Hp and Hd, is then

f (x) = p f (x ∣ 𝜃0,Hp) + (1 − p) f (x ∣ Hd).

Thus, the probability that Hp is true, given the
measurement x is

Pr(Hp ∣ x) = f (x ∣ 𝜃0,Hp) p∕f (x)

=
{

1 +
(1 − p) f (x)

p f (x ∣ 𝜃0,Hp)

}−1

, (3.6)

an expression similar to one used in paternity cases
(see Section 6.3.4).

The posterior odds in favour of Hp are then, using
a version of (2.14),

Pr(Hp ∣ x)
1 − Pr(Hp ∣ x)

=
p

1 − p

f (x ∣ 𝜃0,Hp)
f (x ∣ Hd)

where {p∕(1 − p)} is the prior odds in favour of Hp

and {f (x ∣ 𝜃0,Hp)∕f (x ∣ Hd)} is the likelihood ratio
V of (2.15).

As an illustration of the calculation of the
likelihood ratio, assume that if 𝜃 is not equal to
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𝜃0 it is a random variable, which has a Normal
distribution with mean 𝜃0 and variance 𝜏2, where,
typically, 𝜏2 ≫ 𝜎2, i.e, the variation in refractive
index between windows is much greater than
the variation in refractive index within windows.
Then

f (x ∣ Hd) = ∫ f (x ∣ 𝜃) f (𝜃) d𝜃

and so
(X ∣ Hd) ∼ N(𝜃0, 𝜎

2 + 𝜏2).

(See Section 7.4.1 for a fuller derivation of this
result.) With 𝜏2 ≫ 𝜎2, the distribution of (X ∣ Hd)
is approximately N(𝜃0, 𝜏

2). The likelihood ratio is,
thus,

V =
f (x ∣ 𝜃0,Hp)

f (x ∣ Hd)

=
(2𝜋𝜎2)−1∕2 exp{−(x − 𝜃0)2∕2𝜎2}
(2𝜋𝜏2)−1∕2 exp{−(x − 𝜃0)2∕2𝜏2}

.

Consider 𝜏 = 100𝜎. Let z2 = (x − 𝜃0)2∕𝜎2 be the
square of the standardised distance between the
observation x and the mean specified by the null
hypothesis, 𝜃0. Then

V = 100 exp
(
−z2

2
+ z2

2 × 104

)

≃ 100 exp(−z2∕2).

For example, consider x = 1.518 540, 𝜃0 =
1.518 458, 𝜎 = 4 × 10−5, 𝜏 = 4 × 10−3. Then
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z2 = 2.052 and P = 0.04, as before (see Table 3.4)
which, at the 5% level, would lead to rejection
of the hypothesis that the fragment of glass
came from the window at the scene of the crime.
However,

V = 100 exp(−2.052∕2)
= 12.2,

a value for V that, on the verbal scale in Table 2.8,
represents moderate evidence to support Hp

against Hd. Such an apparent contradiction
between the two approaches is not a new idea
and has been graced by the name of Lindley’s
paradox(see, for example, Good (1956), Lindley
(1957), Edwards et al. (1963), and Lindley (1980)
for a reference by Lindley to ‘Jeffreys’ paradox’.)

Suppose that several, n, say, fragments of glass
were found on the suspect’s clothing rather than
just one. Let x̄ denote the mean of these fragments.
Then,

(X̄ ∣ 𝜃) ∼ N(𝜃, 𝜎2∕n).

If Hd is true

X̄ ∼ N(𝜃0, 𝜏
2 + 𝜎2∕n).

The likelihood ratio is

V =
(2𝜋𝜎2∕n)−1∕2 exp{−n(x̄ − 𝜃0)2∕2𝜎2}

{2𝜋(𝜏2 + 𝜎2∕n)}−1∕2

exp[−(x̄ − 𝜃0)2∕{2(𝜏2 + 𝜎2∕n)}]
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≃
𝜏
√

n

𝜎
exp

[
−
(x̄ − 𝜃0)2

2

{ n
𝜎2

− 1
𝜏2

}]

≃ 100
√

n exp
{
−

n(x̄ − 𝜃0)2

2𝜎2

}
.

The square of the standardised distance, zn,
between x̄ and 𝜃0 is

z2
n = n (x̄ − 𝜃0)2∕𝜎2

and thus

V = 100
√

n exp(−z2
n∕2), (3.7)

a value that increases in direct proportion to the
square root of the sample size. Suppose zn = 2, a
value that is significant at the 5% level in a test
of the hypothesis 𝜃 = 𝜃0 against the alternative
hypothesis 𝜃 ≠ 𝜃0. The value of V for various
values of n is given in Table 3.5. In each case, a
result that is significant at the 5% level (and hence
suggests rejection of the null hypothesis that
𝜃 = 𝜃0) has a likelihood ratio that lends support to
the hypothesis that the fragments of glass found
on the suspect came from the window at the crime
scene.

3.6.3 Combination of Significance
Probabilities

Significance probabilities also combine in different
way from the probabilities of events. From the
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Table 3.5 Variation in the likelihood ratio V, as given
by (3.7), with sample size n, for a standardised distance
zn = 2, a result which is significant at the 5% level.

n 1 5 10 20
V 14 30 43 61

third law of probability (1.8), the product of two
probabilities, for dependent or independent events,
will never be greater than either of the individual
components of the product. Let A and B be the two
events. Then

Pr(AB) = Pr(A)Pr(B ∣ A) ≤ Pr(A)
= Pr(B)Pr(A ∣ B) ≤ Pr(B)

with equality in the first case if and only if Pr(B ∣
A) = 1 and in the second case if and only if
Pr(A ∣ B) = 1.Note also that Pr(AB) > Pr(A)Pr(B)
if Pr(B ∣ A) > Pr(B) or Pr(A ∣ B) > Pr(A).

However, it is possible, for characteristics that
are dependent, that the significance probability of
the joint observation may be greater than either
of the individual significance probabilities.

Suppose that as well as the refractive index of
the glass in the current example that the density
has also been measured. The suffices 1 and 2 are
introduced to denote refractive index and density,
respectively. Then x = (x1, x2)T is a vector that
denotes the measurements of the two character-
istics of the glass found on the PoI’s clothing and
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𝜽 = (𝜃1, 𝜃2)T is a vector that denotes the mean
values of refractive index and density of glass from
the window at the crime scene. More details on
vectors are given in Appendix B.

Let 𝜃1 =1.518 458 (the original 𝜃0 earlier), x1 =
1.518 540 and 𝜎1 = 4 × 10−5. Then, the signif-
icance probability (P1, say) for the refractive
index of F is 0.04 (see Table 3.4). Suppose 𝜃2 =
2.515 g cm−3 with standard deviation 𝜎2 = 3 ×
10−4g cm−3 and let x2 = 2.515 615g cm−3 be the
density measured on F. The standardised statistic,
z2 say, is then

z2 = (2.515 615 − 2.515)∕0.0003 = 2.05

and the significance probability (P2, say) for the
density measurement is also 0.04.

The product of P1 and P2 is 0.0016. However,
this is not the overall significance probability. The
correlation between the refractive index and the
density has to be considered.

Let the correlation coefficient, 𝜌, say, between
refractive index and density be 0.93 (Dabbs and
Pearson, 1970). This value is used here to illus-
trate the line of reasoning. Assume that the joint
probability density function of refractive index and
density is bivariate Normal, Section A.3.9, with
mean 𝜃 and covariance matrix Σ. For bivariate
Normal data x it can be shown that the statistic U,
given by

U = (x − 𝜽)TΣ−1(x − 𝜽)
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has a chi-squared distribution with 2 degrees of
freedom:

U ∼ 𝜒2
2,

see Mardia et al. (1979, p. 39) and Section A.3.5.
Values of the 𝜒2 distribution may be found from
statistical software.

The overall significance probability for the two
characteristics can be determined by calculating
U and referring the answer to the 𝜒2 distribution.
The covariance matrix Σ is given by (A.29)

Σ =
(

𝜎2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

)

=
(

(4 × 10−5)2 1.116 × 10−8

1.116 × 10−8 (3 × 10−4)2

)

=
(

1.6 × 10−9 1.116 × 10−8

1.116 × 10−8 9 × 10−8

)
.

The deviation of the observation x from the
mean 𝜽 is (x − 𝜽)T = (8.2 × 10−5, 6.15 × 10−4).
Some rather tedious arithmetic gives the result
that (x − 𝜽)TΣ−1(x − 𝜽) equals 4.204, a result
that has a significance probability P = 0.1225.
Each individual characteristic is conventionally
significant at the 5% level yet together the result is
not significant at the 10% level.

Considerable care has to be taken in the interpre-
tation of significance probabilities. As a measure
of the value of the evidence their interpretation is
difficult.
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3.7 COINCIDENCE PROBABILITIES

3.7.1 Introduction

One of the criticisms that was levelled at the prob-
abilistic evidence in the Collins’ case (Section 3.4)
was the lack of justification for the relative fre-
quency figures that were quoted in court. The
works of Tippett et al. (1968) and Gaudette and
Keeping (1974) were early attempts to collect
data. The lack of data relating to the distribution
of measurements on a characteristic of interest
is a problem that still exists and is perceived
as a major one in forensic science. A detailed
discussion on this topic – related to the analysis
of the R. v. T. (2010) case – has been published by
Berger et al. (2011), Aitken (2012), Biedermann
et al. (2012b,c), Bodziak (2012a,b), Ligertwood
and Edmond (2012a,b), Nordgaard and Ras-
musson (2012a,b), Sjerps and Berger (2012),
Hamer (2012), Thompson (2012), and Berger
and Sjerps (2012).

If measurements of certain characteristics (such
as glass fragments and their refractive indices) of
evidence left at the scene of a crime are found to
be similar to evidence (measurements of the same
characteristics) found on a PoI, then the forensic
scientist wants to know

(a) how similar are they, and

(b) is this similarity one that exists between rare
characteristics or common characteristics?
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In certain cases, such data do exist, which can help
to answer these questions.

The most obvious example of this is DNA profil-
ing. There are various loci and the relative popula-
tion frequencies of the various categories for each
of the loci are well tabulated for different popula-
tions. Thus if a blood stain of a particular profile
is found at the scene of a crime there are several
possibilities:

(a) it came from the victim,

(b) it came from the criminal,

(c) it came from some third party.

If the first and third possibilities can be eliminated
and the profile is only found in x% of the popu-
lation, then the implication is that the criminal
belongs to that x% of the population; i.e. they
belong to a subset of the population with Nx∕100
members, where N is the total population size and
Nx∕100 is of necessity no less than 1.5

At its simplest this implies that, all other things
being equal, a person with this allele has probabil-
ity 100∕Nx of being the criminal. This is a conse-
quence of the defender attorney’s fallacy explained
in Section 2.5.4.

Another example in which data exist, though
not to the extent to which they do for DNA profil-
ing, is the refractive index of glass particles. Data
relating to the refractive index have been collected
over several years by different laboratories to be

5If Nx∕100 < 1 refer to Section 2.5.5.
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able to assess the relative frequency of glass frag-
ments found on different locations (e.g. clothing,
footwear, hair combings, and pocket). A full list up
to 2000 is provided by Curran et al. (2000).

From a statistical point of view, this approach
may lead to a biased sample since only glass
fragments that have been connected with crimes
will be collected. However, as an example of the
recognition of this problem, a survey of glass
found on footpaths has been conducted (Walsh
and Buckleton, 1986) to obtain data unrelated to
crimes.

An approach based on probabilities, known as
coincidence probabilities, with relation to the refrac-
tive index of glass was developed by Evett and Lam-
bert in a series of papers (Evett, 1977, 1978; Evett
and Lambert, 1982, 1984, 1985), using data from
Dabbs and Pearson (1970).

As in Section 3.6 two questions were asked.

(1) Are the control and recovered fragments simi-
lar in some sense?

(2) If they are similar are the characteristics rare
or common?

A very simple – and trivial – example of this
is the following. An eye-witness to a crime says
that they saw a person running from the scene
of the crime and that this person had two arms.
A PoI is found who also has two arms. The PoI is
certainly similar to the person running away from
the crime but the characteristic – two arms – is so



�

� �

�

Coincidence Probabilities 345

common as not to be worth mentioning. The ele-
mentary nature of the example may be extended
by noting that if the eyewitness said the criminal
was a tall man then any women or short men,
despite having two arms, would be eliminated. In
contrast, suppose that the eye-witness says that
the person running away had only one arm and
a PoI is found with only one arm. This similarity
is much stronger evidence that the PoI was at the
scene of the crime since the characteristic – one
arm – is rare.

A more complicated – and considerably less
trivial – application relates to the interpretation
of evidence on the refractive index of glass. The
coincidence method to be explained is capable of
development in this context because of the exis-
tence of data for the distribution of measurements
of the refractive index of glass. Development is
not possible in the examples mentioned earlier of
paint fragments and hair comparisons because
appropriate data do not exist. A crime is com-
mitted and fragments of glass from a window
are found at the scene of the crime; these are the
control fragments. A PoI is found and they have
fragments of glass on their person; these are the
recovered (or transferred-particle) fragments. The
interpretation of the data is treated in two stages
corresponding to the two questions asked earlier.
First, the refractive index measurements are
compared using a statistical criterion that takes
account of between and within-window variation.
Secondly, if the two sets of measurements are
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found to be similar, then the significance of the
result is assessed by referring to suitable data.

Various assumptions are needed for these two
stages to be applied. Those adopted here are the
following.

(a) The refractive index measurements on glass
fragments from a broken window have a
Normal probability distribution centred on a
mean value 𝜃 = 𝜃0 which is characteristic of
that window and with a variance 𝜎2.

(b) The mean 𝜃 varies from window to window
and in the population of windows 𝜃 has its own
probability distribution of, as yet, unspecified
form.

(c) The variance 𝜎2 is the same for all windows
and it is known.

(d) All the transferred particle fragments are
assumed to have come from the same source.
A criterion based on the range of the measure-
ments can be devised to check this, e.g. Evett
(1978).

(e) The transferred particle fragments are all win-
dow glass.

3.7.2 Comparison Stage

The comparison is made by considering the dif-
ference, suitably scaled, in the mean of the source
fragment measurements and the mean of the
recovered fragment measurements. The test
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statistic is
Z = X̄ − Ȳ

𝜎(n−1 + m−1)1∕2

where X̄ is the mean of m measurements on
control fragments and Ȳ is the mean of n mea-
surements on recovered fragments. It is assumed
that Z has a standard N(0,1) distribution. Thus
if ∣ Z ∣> 1.96 it is concluded that the recovered
fragments are not similar to the source fragments
and if ∣ Z ∣< 1.96 it is concluded that the recovered
fragments are similar to the control fragments.
The value 1.96 is chosen so that the probability of
a type 1 error (deciding wrongly that the recovered
fragments have a different origin from the control
fragments) is 0.05. Other possible values may be
chosen such as 1.64, 2.33, and 2.58, which have
type 1 error probabilities of 0.10, 0.02, and 0.01,
respectively.

This statistic and the associated test provide an
answer to question (1).

3.7.3 Significance Stage

If it is concluded that the recovered and control
fragments are not similar, the matter ends there. If
it is concluded that they are similar, then there are
two possibilities.

(a) The recovered and control fragments came
from the same source.

(b) The recovered and control fragments did not
come from the same source.
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For the assessment of significance the proba-
bility of a coincidence (known as a coincidence
probability) is estimated. This is defined as ‘the
probability that a set of n fragments taken at
random from some window selected at random
from the population of windows would be found
to be similar to a control window with mean
refractive index X̄’. It is denoted C(X̄).

Compare this definition of a probability of
coincidence with that given in Section 3.5. There
the recovered and control fragments were both
taken to be random samples from some under-
lying population and the probability estimated
was that of two random samples having similar
characteristics. Here the mean X̄ of a sample of
fragments from the control window is taken to
be fixed and the concern is with the estimation
of the probability, C(X̄), say, that one sample,
namely, the recovered fragments, will be found to
be similar to this control window. Any variability
in the value of X̄ is ignored; methods of evaluation
which account for this variability are discussed in
Chapter 7.

Note that there are two levels of variation
which have been considered. Further details of
how to consider these two levels is described in
Chapter 7. First there is the probability that a
window selected at random from a population
of windows will have a mean refractive index
in a certain interval, (u, u + du) say; denote this
probability by p(u). In practice for this method the
data used to estimate p(u) are represented as a
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histogram and the probability distribution is taken
as a discrete distribution over the categories form-
ing the histogram, e.g. {p(u1), . . . , p(uk)} where
there are k categories. Secondly, the probability
is required that n fragments selected at random
from a window of mean value u would prove to
be similar to fragments from a source window of
mean X̄; denote this probability by SX̄(u). It is then
possible to express C(X̄) as a function of p(u) and
SX̄(u), namely:

C(X̄) =
k∑

i=1

p(ui)SX̄(ui). (3.8)

The derivation of this is given in Evett (1977).
Let {x1, . . . , xm}, with mean x̄, denote the source

measurements of refractive index from fragments
from a window W broken at the scene of a crime;
with

X̄ ∼ N(𝑤, 𝜎2∕m),

where𝑤 is the mean refractive index of window W,
see Section A.3.2.

Let {y1, . . . , yn}, with mean ȳ, denote the trans-
ferred particle measurements of refractive index
from fragments T found on a suspect’s clothing. If
the fragments T have come from W then

Ȳ ∼ N(𝑤, 𝜎2∕n).

Since the two sets of measurements are indepen-
dent,

(X̄ − Ȳ) ∼ N(0, 𝜎2(1∕m + 1∕n)),
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and, hence,

X̄ − Ȳ
𝜎(1∕m + 1∕m)1∕2

∼ N(0,1).

Denote this statistic by Z. Thus, it can be said that
if the fragments T came from W and if the distri-
butional assumptions are correct, the probability
that Z has a value greater than 1.96 in absolute
terms; i.e.

∣ Z ∣> 1.96,

is 0.05 (Table A.5). Such a result may be thought
unlikely under the original assumption that the
fragments T have come from W. Hence the original
assumption may be questioned. It may be decided
to act as if the fragments T did not come from W.
Evett (1977) showed that with this decision rule at
the comparison stage, then the probability SX̄(u)
at the significance stage is given by

SX̄(u) = Φ{(X̄ − u)m1∕2∕𝜎 + 1.96(1 + m∕n)1∕2}
−Φ{(X̄ − u)m1∕2∕𝜎 − 1.96(1 + m∕n)1∕2},

(3.9)

(Section A.3.2) from which the coincidence prob-
ability C(X̄) may be evaluated in any particular
case. Some results of the application of this method
in comparison with others are given in Section
7.5.3.2 and Table 7.12.
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3.8 LIKELIHOOD RATIO

The likelihood ratio is discussed at considerable
length in later chapters. The likelihood ratio has
been introduced in Section 2.4.1 as the ratio
Pr(E ∣ Hp, I)∕Pr(E ∣ Hd, I) (2.15), which converts
prior odds in favour of the prosecution proposition
(Hp) into posterior odds in favour of the prosecu-
tion proposition, given evidence E. Background
information is denoted I.

From a historical point of view, remember
that, in the Dreyfus case discussed in Section 3.2,
Poincaré and his colleagues supported such an
approach and proposed the use of the likelihood
ratio. As Good (1979) points out the idea for the
use of the likelihood ratio to evaluate evidence
pre-dates the work of Poincaré and his colleagues.
In an earlier article C.S. Peirce (1878) introduced
the term ‘weight of evidence’ for the logarithm
of the likelihood ratio (Section 2.3.4). Also

an effect may be the product of either cause A or a cause B.
The effect has already been observed. One wants to know
the probability that it is the result of cause A; this is the
a posteriori probability. But I am not able to calculate in
advance the a priori probability for the cause producing the
effect. I want to speak of the probability of this eventuality,
for one who has never before observed the result. (Poincaré,
1992, p. 229)

However, as supported by Darboux et al. (1908),
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since it is absolutely impossible for us [the experts]
to know the a priori probability, we cannot say: this
coincidence proves that the ratio of the forgery’s probability
to the inverse probability is a real value. We can only say:
following the observation of this coincidence, this ratio
becomes X times greater than before the observation.
(p. 504)

For more information on this statistical argu-
ment and an example of application to shoe prints,
see Taroni et al. (1998).

Similarly, de Finetti (1930) expressed the same
view:

Il calcolo delle probabilità è la logica del probabile. Come
la logica formale insegna a dedurre la verità o la falsità di
certe conseguenze della verità o falsità di certe premesse,
così il calcolo delle probabilità insegna a dedurre la mag-
giore o minore verosimiglianza o probabilità di certe con-
seguenze dalla maggiore o minore verosimiglianza o proba-
bilità di certe premesse. (p. 259)

which can be translated as follows:

Probability calculus is the logic of the probable. As logic
teaches the deduction of the truth or falseness of certain
consequences from the truth or falseness of certain assump-
tions, so probability calculus teaches the deduction of the
major or minor likelihood, or probability, of certain conse-
quences from the major or minor likelihood, or probability,
of certain assumptions.

Olkin (1958) proposed an evaluation of the iden-
tification problem in terms of the likelihood ratio
statistic, which – he said – is the ratio of the prob-
ability of the characteristics under the assumption
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of the identity to the probability of the characteris-
tics under the assumption of non-identity.

There are also some comments on the use
of the likelihood ratio to assess the value of the
scientific evidence in forensic science journals
during the sixties as presented in Section 1.7.4.
Kirk and Kingston were the main authors giving
clear examples of this idea. For example, Kingston
and Kirk (1964) reported that ‘a general concept
of probabilities will be examined to see what
relationship it might bear to the interpretative
areas of criminalistics’ (p. 514). They presented
an example of the likelihood ratio calculation in
a glass fragments scenario. Kingston (1965b)
extended the use of the likelihood ratio by pre-
senting the use of the Bayesian approach and
showing its relationship with the Essen-Möller
formula6 for the probability of paternity. More on
the probability of paternity is presented in
Section 6.3.4.

An interesting and somewhat prophetic com-
ment was made by Parker and Holford (1968),
in which the comparison problem was treated
as in two stages (similarity and discrimination)
rather than in one, as an analysis using the likeli-
hood ratio does. The two-stage approach follows,
they said, the traditions of forensic scientists.

6Essen-Möller – by applying the Bayesian computation – adopted
the formula to compute the probability of paternity (a posterior
probability) which includes both the likelihood ratio called Pater-
nity Index and equal prior probability (in normal triplet cases).



�

� �

�

354 Historical Review

Interestingly, they then went on to make the
following remark (Parker and Holford, 1968):

We could therefore set up an index R whose numerator is
the likelihood that the crime hair comes from the suspect
and whose denominator is the likelihood that it comes from
the population at large. In ordinary language one would
then assert that it was R times more likely for the hair to
have come from the suspect than from someone drawn at
random from the population. But a statement of this nature
is of rather limited use to forensic scientists, by-passing as
it does the similarity question altogether. (p. 238)

There is one flaw in this piece and that is that
the authors have committed what is known as a
‘source probability error’ (see Section 2.5.2).

The authors may perhaps have committed
this fallacy, but incidentally – and strictly speak-
ing – their wording is technically correct because
the words ‘likelihood’ and ‘probability’ are not
synonyms: the probability of the evidence condi-
tional on H is sometimes defined as the likelihood
of H given E. Notationally

Pr(E|H) = L(H;E).

Hence the term ‘likelihood ratio is given to the
ratio Pr(E ∣ Hp)∕Pr(E ∣ Hd) Thus when Parker
and Holford (1968) say the numerator is the
likelihood ‘that the crime hair comes from’, this is
technically correct as it refers to the probability of
the evidence given the proposition.

Note that often the expressions ‘it is likely’
and ‘it is probable’ are used interchangeably. For
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example, it is often said as a verbal summary of
the likelihood ratio that evidence is X times more
likely if the prosecution proposition is true than if
the defence proposition is true. However, the same
cannot be said about likelihood and probability.
The likelihood of H, given E and the probability
of H conditional on E are different concepts. An
illustrative example is presented in Taroni et al.
(2014a):

As an illustration of the importance of the difference
between likelihoods and probabilities, consider the follow-
ing example. Mr Jones has been seen by an eyewitness
running away from the house where a crime has been
committed, at approximately the time of the crime. Let E7

be the proposition ‘Mr Jones was running away from the
scene of the crime at the time when it was committed’ and
H be the proposition ‘Mr Jones committed the crime’. It
is reasonable to believe that the likelihood Pr(E ∣ H, I) is
high, but it is not necessarily the case that Pr(H ∣ E, I) is
high as well. If Mr Jones actually committed the crime, it
is expected that he would want to hasten away from the
scene of the crime. The hypothesis of culpability provides
a good explanation for the evidence. However, the fact that
he was running away from the house does not, by itself,
make it very probable that he committed the crime. There
are many other possible explanations of that fact. (p. 9)

The distinction between the two terms is cru-
cial, because likelihood and probabilities do not
have the same properties. For example, the sum
of likelihoods can be greater than 1 (e.g. both

7Note that in the original text letters B and A were used instead
of E and H. The change has been made for notational consistency
with the remainder of the text here.
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numerator and denominator likelihoods can be
1), and the likelihood is fixing the evidence and
varying the hypotheses.

The confusion of the likelihood of hypothesis H,
given evidence E, with the probability of the same
hypothesis, conditional on the same evidence,
is the ‘fallacy of the transposed conditional’ (see
Section 2.5.1). A discussion is also presented in
Biedermann and Vuille (2018).

Parker and Holford (1968) give an opinion on
the source of the hair that is not within the remit of
the forensic scientist. The ratio to which the scien-
tist can testify is, in this context, ‘the evidence is R
times more likely if the hair had come from the sus-
pect than if it had come someone other from the
population’, where ‘likely’ is used as a synonym for
‘probable’. Thus whilst ‘likelihood’ and ‘probabil-
ity’ are not synonyms, ‘likely’ and ’probable’ are. It
will be explained later (see Chapters 5 to 7) how the
use of the likelihood ratio, which is all that Parker
and Holford’s index R is, has rather more than ‘lim-
ited use’ and how its use considers similarity in a
natural way.

The importance of the likelihood ratio for
evidence evaluation has been recognised by many
writers, e.g. Jeffrey (1975), Lempert (1977), and
Robertson and Vignaux (1992):

Bayesianism does not take the task of scientific method-
ology to be that of establishing the truth of scientific
hypotheses, but to be that of confirming or disconfirming
them to degrees which reflect the overall effect of the
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available evidence – positive, negative, or neutral, as the
case may be. (Jeffrey, 1975, p. 104),

[E]vidence is logically relevant only when the probability of
finding that evidence given the truth of some hypothesis at
issue in the case differs from the probability of finding the
same evidence given the falsity of the hypothesis at issue.
(Lempert, 1977, p. 1026)

and

Bayes’ rule8 tells us that we then take those prior odds and
multiply them by the likelihood ratio of the blood/DNA
evidence in order to arrive at the posterior odds in favour of
the defendant’s paternity. The Court then has to consider
whether those odds meet the required standard of proof.
Thus the expert should say ‘however likely you think
it is that the defendant is the father on the basis of the
other evidence, my evidence multiplies the odds X times’
(Robertson and Vignaux, 1992, p. 316).

8Bayes’ theorem.
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4

Bayesian
Inference

4.1 INTRODUCTION

Much of what will be discussed in this chapter
concerns Bayesian estimation of the values of
parameters characterising a probability dis-
tribution. A fundamental tenet of the Bayesian
paradigm states that uncertainty of the knowledge
of the value of a parameter is modelled with a
probability distribution.

It is possible to make statements about the
value of a parameter in the form of a probability
distribution known as a prior distribution that
summarises the available knowledge on the values
of the parameter before data become available.
Bayesian inference can incorporate subjective
information about a problem into the analysis.
One of the criticisms of the Bayesian approach to
evidence evaluation (and also to other areas of
statistical analysis) is the loss of objectivity that
results from the use of the analyst’s subjective

359
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information. A recurrent problem is the choice of
an appropriate prior distribution with a shape to
reflect appropriately an analyst’s beliefs. From a
practical point of view, there is often the tendency
to seek criteria for the determination of a so-called
ignorance (or objective) prior distribution, for
example, the uniform distribution, upon which
many observers might agree as that which has
minimal subjective information. In this way, an
expert can pursue the idea of not committing
themselves to a subjective choice that is likely to
be perceived as questionable. However, it might
be objected that the choice of a uniform prior
distribution, for example, could itself be subject
to criticism as a subjective choice and one that
does not necessarily reflect an absence of opinion
(Taroni et al., 2010). It must be added that there
are often practical circumstances where it is
difficult to accept the idea that a practitioner has
no idea about the possible values for a parameter
of interest, and that any value can therefore be
reasonably treated as equally likely as any other.
Forensic scientists often have access to consider-
able sources of information (such as literature and
past experience) that could be explored to propose
informed subjective distributions. The elicitation
of a prior distribution from available informa-
tion will be briefly addressed in this chapter
(Section 4.3.1 with reference to a proportion and
Section 4.5 with reference to a Normal mean), but
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readers can refer to e.g. O’Hagan et al. (2006) for
a wide treatment of this topic.

The discussion of the Bayesian inference in
Chapter 2 is to discrete events. This chapter
extends these ideas to continuous variables,
including the inference about a proportion
(Section 4.2), the problem of sampling (Sections
4.3 and 4.4), inference about a mean (Section
4.5), quantity estimation (Section 4.6), and deci-
sion analysis (Section 4.7). There will be further
reference to Bayesian ideas in Chapter 7 and an
example in paternity in Section 6.3.3. A general
introduction to Bayesian ideas is given in Berry
(1996), Antelman (1997), Taroni et al. (2010),
Lee (2012), and Bolstad and Curran (2017).

Denote the prior parameter of interest by 𝜃,
which may be vector-valued, and the prior dis-
tribution by f (𝜃). This distribution has itself one
or more parameters (known as prior parameters
or hyperparameters) by which it is characterised.
Data x are modelled by the likelihood. The like-
lihood involves x and 𝜃. It is proportional to a
probability density function (for continuous x)
and to a probability mass function (for discrete x).
Denote the likelihood by L(𝜃 ∣ x) to emphasise that
it is of interest as a function of 𝜃, conditional on the
value of x. A general description of the inversion
of probabilities, as given by Bayes’ theorem, is
presented in Section 2.2 for discrete events. The
continuous version of Bayes’ theorem enables



�

� �

�

362 Bayesian Inference

the combination of the likelihood L(𝜃 ∣ x) and the
prior f (𝜃) to form a posterior density function
f (𝜃 ∣ x) as

f (𝜃 ∣ x) = L(𝜃 ∣ x) f (𝜃)
f (x)

, (4.1)

where f (x) is the marginal probability density
function for x, unconditional on 𝜃. It can be
determined as

f (x) = ∫Θ
f (x ∣ 𝜃)f (𝜃)d𝜃.

Note that, whenever 𝜃 is discrete, the integral is
replaced by a sum over all 𝜃 ∈ Θ, the parameter
space. Bayes’ theorem allows a sequential update
of the posterior density as new data become
available. The posterior distribution of 𝜃 given data
x becomes the new prior distribution once new
information becomes available. Bayes’ theorem
describes the process of learning from experience
showing how beliefs about 𝜃 can be continually
modified.

In the Bayesian paradigm, the data are taken
as fixed and known. Uncertainty resides in the
parameters. A parameter 𝜃 is not considered as
fixed and unknown (as in the frequentist point
of view) but as a random variable. The available
information about 𝜃 and one’s uncertainty about
it is summarised in a probability density function
f (𝜃). Bayesians do not question the existence of
a fixed unknown constant. Examples of such
fixed constants include the speed of light and the
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Hubble constant. What Bayesians do is represent
and summarise all the information available on
𝜃, the estimate of the fixed constant, without
questioning the existence of the constant.

The (posterior) distribution on 𝜃 summarises
the available information and the distribution is
updated as more data are acquired. The distribu-
tion describes the uncertainty that is associated
with the data and the scientists’ knowledge. It is
assumed there is no physical variability associated
with the constant (Robert, 2013).

The data modify the prior distribution via the
likelihood to provide the posterior distribution.
The Bayesian inference about a parameter of
interest is therefore described as the modification
of prior uncertainty about its unknown value in
the light of evidence. There is a relation between
the prior distribution, which may arise from
elicitation, and posterior inference. One must be
aware that different prior opinions, or a different
model for the translation of the prior state of
knowledge may affect Bayesian estimates and
this may represent a source of concern. It may
be that a different prior distribution, close to the
original prior, could be equally acceptable, but
it could also be that different prior specifications
give rise to different posterior distributions (and
decisions as discussed in Section 4.7). There are
in fact instances where the amount of available
data is considerable, and the posterior distribution
depends more and more on the data and less
and less on prior specifications. In such cases the
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posterior distribution is said to be ‘dominated by
the likelihood’. No matter how different the prior
specifications might be, the corresponding poste-
rior distributions will tend to be close. However,
in many practical situations this is not the case.
Available data might be very poor, possibly char-
acterised by large variability, with the immediate
consequence that personal knowledge could be
relevant in determining the posterior distribution.
Practitioners should perform a sensitivity analysis
to explore the robustness of posterior inference to
different specifications of the prior distribution.
An example will be provided in Section 4.5.1.

The posterior distribution thus encapsulates
all the available knowledge about 𝜃. However, as
for many scientists in other disciplines, it is also
of interest to forensic scientists to summarise the
information in a posterior distribution by a single
number (a point value). A natural and regularly
used summary of the posterior distribution is the
posterior mean, though there are other ways to
summarise the posterior distribution (e.g. the pos-
terior median or the posterior mode). On the other
hand, once it is accepted that uncertainty about
a parameter may be represented by a probability
distribution, it is a straightforward matter to
determine a probability interval for the parameter.
In other words, to determine a range of values (the
so-called Bayesian credible interval or probability
interval) such that the probability that 𝜃 belongs
to that region is equal to a given amount 1 − 𝛼

(the so-called credible level or credible probability)
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with 0 < 𝛼 < 1. The interval is not uniquely
defined. Any interval such that the probability
that the parameter lies between the lower and the
upper bound is equal to the credible level (1 − 𝛼)
will result in a so-called 100(1 − 𝛼)% Bayesian
credible interval. The shortest credible interval for
𝜃 is known as the highest posterior density (HPD)
interval, and it is a subset C of the parameter set Θ
such that

∫C
f (𝜃 ∣ x)d𝜃 = 1 − 𝛼.

The term highest posterior density is used to reflect
that the interval chosen for a particular credible
level, say, 0.95, corresponding to 𝛼 = 0.05, is the
one for which the posterior probability density
function takes its highest values whilst ensuring
that the total probability within the interval is
0.95. The upper and the lower tails of the distri-
bution do not necessarily have equal tail areas,
as posterior distributions are not necessarily
symmetric. In some cases, the HPD region consists
of disjoint intervals (e.g. when the parameter
𝜃 is a proportion and the mass of the posterior
distribution is spread around values that are
either close to 0 or 1). Bayesian credible intervals
are sometimes called Bayesian confidence inter-
vals, but must not be confused with frequentist
confidence intervals. A 95% credible interval
allows the scientist to say that their degree of belief
that the parameter 𝜃 lies in the realised range of
values is equal to 0.95. Within the frequentist
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paradigm, such an assertion is not valid as there
is no probability distribution associated with the
parameter. It is in fact no accident that the word
probability is not used to describe a confidence
interval. A frequentist confidence interval derives
its validity as a method of inference on a long-run
frequency interpretation of probability. Random-
ness is associated not with the parameter 𝜃 but
to the lower and the upper bounds of the inter-
val (sometimes called ‘random’ interval before
observations become available). The probability
with which a particular 95% confidence interval
contains the parameter 𝜃 is not known. Suppose
the experiment that generated the 95% confidence
interval is repeated many times under identical
conditions (a theoretical stipulation which is
impossible to fulfil in practice), and on each of
these occasions a 95% confidence interval is
calculated. Then it can be said 95% of these (95%)
confidence intervals will contain the parameter
𝜃. This does not provide information concerning
the one 95% confidence interval, which has been
calculated. It is not known whether it does or it
does not contain the parameter, and it is not even
possible to determine the probability with which it
contains the true value. Discussions on confidence
intervals are not new in the judicial context (see
e.g. (Kaye, 1987b); (Kaye and Freedman, 2002)).

There is one last argument that needs to be
addressed. Consider again the issue of point
estimation. It may be observed that there is not



�

� �

�

Introduction 367

a specific typical number that can be taken as a
representative of the value of the parameter of
interest. Sometimes there may be more than one
typical number, as posterior distributions are not
necessarily unimodal. The question of interest
may be formulated as follows:

Should the estimate chosen be the value with the highest
probability (the mode), a value such that the odds are
one-to-one of the true parameter being above or below it
(the median), a middle value in a centre of gravity (the
mean), or something else? (Antelman, 1997, p. 356)

This issue can be resolved within the decision-
theoretic approach to the Bayesian statistical
inference. The practising decision maker is asked
to consider the expected loss of making a decision
about the unknown parameter. The optimal deci-
sion is the one that minimises the loss incurred
whenever a decision is taken. The core elements of
the decision theoretic approach useful to address
topics of statistical inference that are covered in
this chapter are introduced in Section 4.7, as well
as some standard loss functions that might be
used in practice (Section 4.7.1). An application to
the problem of sampling is given in Section 4.7.2.

In this chapter a detailed discussion of the
Bayesian inference and decision analysis in the
context of statistical models for univariate ran-
dom variables is presented. An extension of the
Bayesian inference to the multivariate case will be
addressed in Chapter 7.
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4.2 INFERENCE FOR A
PROPORTION

A common need in forensic practice is to inves-
tigate the proportion of individuals or items that
share a given target characteristic; for example,
the target characteristic may be the true pro-
portion of illicit drugs in a consignment. In
general statistical terminology, the proportion
is the parameter and, for general discussion, it
is denoted 𝜃. In such settings, experiments that
reveal the presence or absence of the target char-
acteristic can be seen as a sequence of Bernoulli
trials (Section A.2.2), where each trial gives rise
to one of two possible outcomes, conventionally
labelled as success and failure. A statistical model
for data that arise from a sequence of Bernoulli
trials is represented by the binomial distribution
Bin(n, 𝜃) (see Section A.2.3), so that

Pr(X = x ∣ n, 𝜃) =
(n

x

)
𝜃x(1 − 𝜃)n−x;

x = 0,1, . . . , n, (4.2)

where X is the random variable that represents
the number of successes in each trial, n is the
number of trials and 𝜃 the probability of success
in each trial, or equivalently the proportion of
successes in the population, and Pr(X = x ∣ n, 𝜃)
represents the probability of x successes. where n,
the number of trials, and 𝜃 are both parameters.
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However, it is only 𝜃 about which inference is
desired. The number n of trials is fixed in advance
of the data collection. Equation (4.2) may also
be viewed as a likelihood function for 𝜃 and
denoted L(𝜃 ∣ n, x). Within a Bayesian paradigm,
𝜃 has a probability distribution and it is desired
to determine this in order to make inferences
about 𝜃. The most common prior distribution
for 𝜃 is the beta distribution, denoted Be(𝛼, 𝛽), a
continuous distribution parameterised by 𝛼 and 𝛽,
with probability density function given by

f (𝜃 ∣ 𝛼, 𝛽) = 𝜃𝛼−1(1 − 𝜃)𝛽−1∕B(𝛼, 𝛽); 0 < 𝜃 < 1
(4.3)

(Section A.3.7). The beta distribution can take a
variety of shapes (see Figure A.5). Hence, it can
portray a variety of prior opinions reasonably
accurately. The posterior distribution of 𝜃 can be
obtained by an application of Bayes’ theorem (4.1)
and is given by

f (𝜃 ∣ 𝛼, 𝛽, x, n) = 𝜃𝛼+x−1(1 − 𝜃)(𝛽+n−x−1)

B(𝛼 + x, 𝛽 + n − x)
;

0 < 𝜃 < 1, (4.4)

denoted Be(𝛼 + x, 𝛽 + n − x). In the particular case
where x = n, the density function is given by

f (𝜃 ∣ 𝛼, 𝛽, n) = 𝜃𝛼+n−1(1 − 𝜃)𝛽−1∕B(𝛼 + n, 𝛽),
0 < 𝜃 < 1. (4.5)
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Similarly, when x = 0,

f (𝜃 ∣ 𝛼, 𝛽, n) = 𝜃𝛼−1(1 − 𝜃)𝛽+n−1∕B(𝛼, 𝛽 + n),
0 < 𝜃 < 1. (4.6)

Note from (4.4) that if 𝛼 and 𝛽 are small relative to
n, x, and n − x, then the choice of the parameters
for the prior distribution is not very important.
This is exemplified in Section 4.3.1 for the choice
of sample size when sampling from consignments
of discrete units such as tablets, compact disks,
or video tapes. An application to the detection of
nandrolone metabolites in urine is described in
Robinson et al. (2001).

The beta prior distribution and binomial dis-
tribution combine together to give a posterior
distribution, which is also a beta distribution,
where parameters 𝛼 and 𝛽 are simply updated
according to certain updating rules. The posterior
distribution is a beta distribution as in (4.4) with
updated parameters 𝛼′ and 𝛽′, where 𝛼′ = 𝛼 + x
and 𝛽′ = 𝛽 + n − x. See, e.g. Lee (2012) for fur-
ther details. Note that the posterior distribution
Be(𝛼′, 𝛽′) becomes a new prior distribution that
can be updated as new data become available.
The beta distribution is a so-called conjugate
prior distribution for the binomial distribution. A
conjugate family is a set of prior distributions such
that, for a particular probability distribution (e.g.
the binomial distribution) and for every prior dis-
tribution in the family (e.g. for any beta prior
distribution), the posterior distribution is also in
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the same family as the prior distribution. A list
of the more common conjugate families can be
found in Bernardo and Smith (2000).

In some inference problems, it may happen that
the information available prior to data collection
is very limited, or that it is desired to minimise
the impact of an expert’s prior beliefs. In such
situations, a so-called vague prior on which many
observers may agree can be chosen. For the case of
a beta distribution, this can be achieved by choos-
ing 𝛼 = 𝛽 = 1. This is a uniform prior for which
f (𝜃 ∣ 1,1) = 1 for 0 < 𝜃 < 1 from (4.3). This is
taken to represent prior ignorance of the value of
𝜃 as the function takes a constant value, 1, over
the range of possible values of 𝜃. One implication
of this is that any interval of values between 0 and
1 has the same probability as any other interval of
the same width.

An application to blood group frequencies is
given in Weir (1996), with reference to data
from Gunel and Wearden (1995). The parameter,
𝜃, of interest is the frequency of allele M in the
MN blood group system. From previous sam-
ples, Gunel and Wearden (1995) have a prior
Be(61,44) distribution (𝛼 = 61, 𝛽 = 44 in the
notation of (4.4)) for 𝜃. The frequency x = 201 of
the M allele in a sample of size n = 372 is taken
as the data for the likelihood, from Race et al.
(1949). Assuming Hardy–Weinberg equilibrium,
the posterior distribution is Be(61 + 201,44 +
171) = Be(262,215). The prior and posterior
density functions and the likelihood function are
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Figure 4.1 Prior density function f (𝜃 ∣ 𝛼, 𝛽) with 𝛼 =
61, 𝛽 = 44, Be(61,44) (dotted line), likelihood function
L(𝜃 ∣ n, x) with n = 372, x = 201, Be(201 + 1,372 −
201 + 1) (solid line), and posterior density function f (𝜃 ∣
𝛼, 𝛽, x, n), Be(61 + 201,44 + 372 − 201) (dashed line),
for a proportion. Source: Adapted from Weir (1996).

plotted in Figure 4.1. Note that the likelihood
function is scaled (standardised), so that the area
under the curve is 1. It can be shown that the
scaled likelihood is a beta density with parameters
𝛼 = x + 1 and 𝛽 = n − x + 1 (Taroni et al., 2010).
The posterior density function f (𝜃 ∣ 262,215)
is more narrow, less dispersed (standard devia-
tion is 0.023), than the prior density function
f (𝜃 ∣ 61,44) (standard deviation is 0.048), show-
ing that the posterior density function has more
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precise information about 𝜃. This is the effect of the
amount of information provided by the likelihood.
It can be easily observed that as the amount
of information increases, the posterior mean
(𝛼 + x)∕(𝛼 + 𝛽 + n) will depend more and more on
the sample size and less and less on the prior mean,
whilst the posterior variance will become smaller
and smaller (see the mean and the variance of a
beta distribution in Section A.3.7 with updated
parameters 𝛼′ = 𝛼 + x and 𝛽′ = 𝛽 + n − x).

There are instances where the observed out-
comes of an experiment may well be more than
two mutually exclusive outcomes. A statistical dis-
tribution for the number of observations that fall
into each category is the multinomial distribution
(Section A.2.4), whilst the conjugate prior distri-
bution is the Dirichlet distribution (Section A.3.8).
Consider the case of questioned printed docu-
ments, where control documents originating from
a known source (a printer) are available for com-
parison. The polymer resins contained in dry black
printer toner present on these documents can be
analysed by means of Fourier transform infrared
spectroscopy (FTIR), the results of which (so-called
IR data) may be classified in one of several mutu-
ally exclusive categories. A Dirichlet-multinomial
distribution (Section A.2.7) for the evaluation of
black toner analyses in forensic document exam-
ination has been proposed by Biedermann et al.
(2009b, 2011b).
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4.2.1 Interval Estimation

Inference about 𝜃, given the prior distribution
Be(𝛼, 𝛽) and the data (n, x) – under the assumption
that sampling may be taken as with replacement,
a reasonable assumption for large n – may be
made with reference to the posterior beta distri-
bution Be(𝛼′, 𝛽′) in (4.4), where 𝛼′ = 𝛼 + x and
𝛽′ = 𝛽 + n − x. Thus the shortest 100(1 − 𝛼)%
probability interval may be determined by deter-
mining the shortest interval in (0,1) within which
100(1 − 𝛼)% of the distribution lies. Now, if the
posterior density is roughly symmetric, the HPD
interval will also be approximately symmetric
and can be found simply by choosing equal tail
areas as

[q𝛼∕2, q1−𝛼∕2]

where q𝛼∕2 and q1−𝛼∕2 are the 100(𝛼∕2)% and
100(1 − 𝛼∕2)% points of a Beta distribution
Be(𝛼, 𝛽) so that

Pr{q𝛼∕2 ≤ 𝜃 ≤ q1−𝛼∕2} = 1 − 𝛼.

These quantities are usually referred to as quantiles
(Section A.3.1). Symmetry implies that intervals
(0, q𝛼∕2) and (q1−𝛼∕2,1) are of equal length (see
Figure 4.2a).

The required quantiles can be easily computed
by common statistical software (such as R). Note
that for parameter values sufficiently large, say,
𝛼 > 10 and 𝛽 > 10, the beta distribution can be
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Figure 4.2 100(1 − 𝛼)% probability interval for a
beta distributed random variable. (a) Be(8,8); (b)
Be(4,8).
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approximated by a Normal distribution (see, e.g.
Bolstad and Curran (2017)) with mean

𝜇 = 𝛼

𝛼 + 𝛽
,

and variance

𝜈 = 𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
.

It follows that

Pr
{
−z1−𝛼∕2 ≤ 𝜃 − 𝜇

𝜈1∕2
≤ z1−𝛼∕2

}
≈ 1 − 𝛼,

where z1−𝛼∕2 is the 100(1 − 𝛼∕2)% point of a
standard Normal distribution. The approximate
100(1 − 𝛼)% credible interval for the proportion
𝜃 is

[𝜇 ± z1−𝛼∕2𝜈
1∕2].

Consider a 95% credible interval. The 97.5%
point of a Normal distribution is 1.96, thus one
has approximately a 95% probability that the
proportion lies within 1.96 (posterior) standard
deviations of the (posterior) mean. Note that it is
legitimate to refer to this interval as a probability
interval.

However, in many occasions the beta posterior
distribution is asymmetric, therefore a symmetric
or equi-tailed interval will no longer be the best
choice as it will be possible to find intervals having
the same credible level but with smaller size. A
100(1 − 𝛼%) HPD interval can be calculated
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numerically (see, e.g. Taroni et al. (2010)). A
simple way consists in starting from a small
interval around the posterior mode (i.e. assuming
unimodality, the point where the posterior density
is high) and then progressively considering larger
intervals (i.e. with decreasing posterior density)
until the area underlying the posterior density
between the lower and the upper limit of such an
interval equals the desired credibility level (1 − 𝛼)
(see Figure 4.2b). As q𝛼∕2 and q1−𝛼∕2 denote the
100𝛼∕2% and 100(1 − 𝛼∕2)% quantiles and the
distribution is asymmetric, the intervals (0, q𝛼∕2)
and (q1−𝛼∕2,1) are not of equal length.

It is also possible to obtain a confidence interval
for the true proportion in a binomial model.
Denote the sample proportion by �̂� = p = x∕n.
The distribution of the sample proportion for
large n can be approximated by a Normal distri-
bution with mean equal to the population mean
𝜃 and variance equal to the population variance
𝜃(1 − 𝜃)∕n (Section A.3.2.1). It follows that

Pr
{
−z1−𝛼∕2 ≤ p − 𝜃

(𝜃(1 − 𝜃)∕n)1∕2
≤ z1−𝛼∕2

}

≈ 1 − 𝛼,

and the approximate 100(1 − 𝛼)% confidence
interval for 𝜃 is

[p ± z1−𝛼∕2(p(1 − p)∕n)1∕2]. (4.7)

Note that in (4.7) the sample standard deviation
(𝜃(1 − 𝜃)∕n)1∕2 is estimated by (p(1 − p)∕n)1∕2.
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Consider a 95% confidence level, so that the
quantile is again 1.96. One can be 95% confident
that the true proportion lies between 1.96 stan-
dard deviations of the sample mean. A credible
(probability) interval and the corresponding
confidence interval for a proportion 𝜃 might be
approximately identical.

Consider drug sampling. A sample of n tablets
from a large consignment is taken and x are
found to be illicit. An interval may be determined
for the true proportion of illicit tablets in the
consignment. As an example, consider n = 100
and x = 50, and a uniform prior distribution
with 𝛼 = 𝛽 = 1. The posterior distribution being
Be(𝛼′ = 51, 𝛽′ = 51), the 95% HPD interval
will be

[q0.025, q0.975] = [0.404,0.596],

where q0.025 and q0.975 are the 2.5% and 97.5%
points, respectively, of the beta posterior distribu-
tion that may be obtained from statistical software
such as R. Conversely, the approximate 95%
confidence interval will be

[0.5 ± 1.96 × (0.5 × 0.5∕100)2]
= [0.402,0.598].

However, the philosophies underlying their respec-
tive constructions are very different.

There is another approach to interval estima-
tion based on the likelihood function. Consider
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a large population of unrelated individuals in
which it is desired to determine the proportion 𝛾

of people of blood group Γ. A sample of size n is
taken. The sample is sufficiently small with respect
to the size of the population that the proportion
𝛾 is effectively unchanged by the removal of the
sample. The number X of people of blood group
Γ in a sample of size n is a random variable with
a binomial distribution, X ∼ Bin(n, 𝛾) (Section
A.2.3). Suppose a sample of size 30 is taken in
which it is observed that 6 are of group Γ. The
result in (4.7) can be reformulated as

[x∕n ± z1−𝛼∕2(x(n − x)∕n3)1∕2], (4.8)

and the corresponding 95% confidence interval is

6
30

± 1.96

√
6(30 − 6)

303
= 0.2 ± 1.96

√
0.2 × 0.8

30
= 0.2 ± 0.143

= [0.057,0.343].

This may be subject to the usual criticisms levelled
against confidence intervals.

Another approach known as the likelihood
approach considers as an interval estimate of 𝛾 ,
known as a likelihood interval all values of 𝛾 for
which the likelihood function L(𝛾 ∣ n, x) is greater
than some fraction of L(�̂� ∣ n, x), where �̂� is known
as the maximum likelihood estimate (that is, the
value 𝛾 at which the likelihood function attains
its maximum). Examples quoted by Royall (1997)



�

� �

�

380 Bayesian Inference

for the fraction are 1∕8 and 1∕32; the interval
estimate of 𝛾 corresponds to those values of 𝛾 for
which L(𝛾 ∣ n, x) > L(�̂� ∣ n, x)∕8 and for which
L(𝛾 ∣ n, x) > L(�̂� ∣ n, x)∕32, respectively. The values
8 and 32 are suggested by Royall (1997) as values
to define the interval estimates of parameters such
that for values of 𝛾 lying outside the intervals the
data provide ‘fairly strong’ or ‘strong’ evidence in
support of �̂� over 𝛾 . The use of such adjectives for
the support for �̂� is not to be confused with similar
adjectives given in Table 2.8 for likelihood ratio val-
ues. Consider the value 8, and values of 𝛾 for which
L(𝛾 ∣ n, x) > L(�̂� ∣ n, x)∕8. These form the likeli-
hood interval (𝛾1, 𝛾2) (see Figure 4.3). If 𝛾 lies in the
interval (𝛾1, 𝛾2) then there is no alternative value
of 𝛾 for which the observations (x, n) (such that �̂� =
x∕n) represent ‘fairly strong’ evidence in favour
of �̂� rather than 𝛾 . For a value of 𝛾 outside (𝛾1, 𝛾2)
there is at least one alternative value, namely, �̂�
that is better supported by a factor greater than 8.
The end-points of the horizontal line in Figure 4.3
are (𝛾1, 𝛾2) for the example x = 6, n = 30. For this
example, the maximum value of L(𝛾 ∣ n, x) is

L(0.2 ∣ 30,6) =
(30

6

)
0.260.824 = 0.180.

The end-points of the interval for ‘fairly
strong’ evidence are the values (𝛾1, 𝛾2) for which
L(𝛾1 ∣ 30,6) = L(𝛾2 ∣ 30,6) = L(0.2 ∣ 30,6)∕8 =
0.022. These points may be verified to be
𝛾1 = 0.081 and 𝛾2 = 0.372. There is, thus, ‘fairly
strong’ evidence from a sample of size 30 in which
there are 6 ‘successes’ that the true proportion
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Figure 4.3 Likelihood function L(𝛾 ∣ n, x) for the pro-
portion of people of blood group 𝛾 , from a sample of size
30 in which 6 were of group 𝛾 . A likelihood interval,
derived from the observed data, of fairly strong support
for the values of 𝛾 included within it is indicated with the
dashed line: (𝛾1 = 0.081, 𝛾2 = 0.372).

of successes in the population from which the
binomial sample was drawn is in the interval
(0.081,0.372). An interval determined by 32
(instead of 8) has a similar interpretation but with
‘strong’ replacing ‘fairly strong’.

4.2.2 Estimation with Zero
Occurrences in a Sample

In forensic science applications there are often
situations where zero occurrences of a charac-
teristic of interest are observed. For example, this
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may be so in DNA-related matters, but it also
may happen in relation to other types of scientific
evidence. Consider the following scenario.

The scientist found a match in several physical properties
between glass from a broken crime scene window and glass
fragments found in connection with a suspect. He then sur-
veyed 64 glass objects and found that none of these other
64 samples agreed with the glass found in his case. (Stoney,
1992, p. 383)

There is no match with the case sample in a
sample of 64 objects. Elicitation of the probability
of a match by the sample relative frequency alone
would give a value of zero and a likelihood ratio
of infinity. However, the sample is only of size 64.
Intuitively, this is insufficient to say that the glass
in the crime scene window was unique.

An upper bound on the probability for the
proportion of positive outcomes (e.g. charac-
teristics of glass, illicit tablets, pirated CDs) in a
population when there has been no observation
of a positive outcome in a sample of n members of
the population may be obtained using a Bayesian
model with a beta prior and a binomial likelihood.
Let 𝜃 denote the true, but unknown, proportion of
positive outcomes in the population from which
the sample has been taken. The prior distribu-
tion for 𝜃 is taken to be a beta distribution with
parameters 𝛼 = 𝛽 = 1 corresponding to a uniform
prior. The likelihood is a binomial likelihood with
n trials and the probability of a positive outcome is
𝜃. In this example, there are no positive outcomes.
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The posterior probability distribution for 𝜃 is then
a beta distribution with parameters x = 0, n
and 𝛼 = 𝛽 = 1 in (4.6). The probability density
function is

f (𝜃 ∣ 1,1, n) = 𝜃0(1 − 𝜃)n∕B(1,1 + n)
= (n + 1)(1 − 𝜃)n.

The probability that 𝜃 > 𝜃0 is

Pr(𝜃 > 𝜃0 ∣ 1,1, n) = ∫
1

𝜃0

(n + 1)(1 − 𝜃)nd𝜃

= [−(1 − 𝜃)n+1]1
𝜃0
= (1 − 𝜃0)n+1.

In the example from Stoney (1992), n = 64 and
Pr(𝜃 > 𝜃0) = (1 − 𝜃0)65.

A probabilistic upper bound 𝜃0 for 𝜃 may then be
determined by choosing a probability level 𝜖, say,
and solving the equation

𝜖 = Pr(𝜃 > 𝜃0) = (1 − 𝜃0)n+1. (4.9)

The solution can be easily obtained by a manipu-
lation of (4.9)

𝜖1∕(n+1) = (1 − 𝜃0),

so that
𝜃0 = 1 − 𝜖1∕(n+1).

Note that the solution, not surprisingly, depends
on the sample size n in the current survey. Let
n = 64. When 𝜖 = 0.05, 𝜃0 = 0.0450 and when
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𝜖 = 0.01, 𝜃0 = 0.0684. Thus, in the context of the
example from Stoney (1992), it can be said that

• there is a probability of 0.95 (𝜖 = 0.05) that the
true proportion of matches in the population
from which the crime scene window, the PoI’s
fragments and the 64 surveyed objects were
taken is less than 0.0450;

• there is a probability of 0.99 (𝜖 = 0.01) that the
true proportion of matches in the population
from which the crime scene window, the PoI’s
fragments and the 64 surveyed objects were
taken is less than 0.0684.

Solutions for an increasing sample size and two
values of 𝜖 (0.01,0.05) are displayed in Figure 4.4.

Note that in the special case of zero occur-
rences, the corresponding confidence interval is
approximately equal to the Bayesian probability
interval. The 100(1 − 𝜖)% confidence interval
is of the form [0, 𝜃0] where 𝜃0 is the maximum
𝜃 such that Pr(X = 0 ∣ n, 𝜃) > 𝜖 so Pr(X = 0 ∣
n, 𝜃) > 𝜖 = (1 − 𝜃)n+1. Thus the equation to solve
is (1 − 𝜃)n+1 = 𝜖, the same as (4.9).

Zero occurrences of an event are often observed
with sequence analyses of human mitochondrial
DNA (mtDNA); mtDNA is widely used to charac-
terise forensic biological specimens, particularly
when there is insufficient nuclear DNA in samples
for typing.

The sequences of an mtDNA region from a
recovered and control sample are compared. If
the sequences are unequivocally different, then
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Figure 4.4 Probabilistic upper bounds 𝜃0 for the pro-
portion 𝜃 of occurrences of an event in a population
when there have been no occurrences in a sample of size
n, for given values of 𝜖 = Pr(𝜃 > 𝜃0) and an increasing
sample size n, with a beta prior for which 𝛼 = 𝛽 = 1.

the sample can be excluded as originating from the
same source. If the sequences are the same, then
the recovered and control samples cannot be
excluded as potentially being from the same
source (note that no problems of nucleotide differ-
ences, mutations, or heteroplasmy are considered
in what follows).

When there is no difference between the two
samples, it is desirable to convey some informa-
tion about the value of the evidence. Presently,
the practice is to count the number of times a
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particular sequence (or haplotype) is observed
in a relevant database. Database allele frequency
estimates are subject to several sources of uncer-
tainty, both genetically and statistical. These
include sampling variation and violation of the
assumption of independence across loci. Ignoring
these sources of uncertainty in the assessment
of evidence might lead to an overestimation of
the value of evidence. Several methods have been
suggested for assessing sampling uncertainty,
including a modification of the product rule in
terms of a correction factor (Balding and Nichols,
1994; Balding and Steele, 2015) and so-called
bootstrap methods (Curran et al., 2002). A review
can be found in Buckleton et al. (2016c). A
measure of sampling error is provided for these
estimates, which is especially necessary when
estimates are based on samples of just a few hun-
dred profiles. This approach allows the scientist to
communicate the value of the mtDNA evidence
using the reciprocal of the relative frequency as a
likelihood ratio (Carracedo et al., 2000).

Analogously, the use of Y-chromosome STR
polymorphisms has become commonplace in
forensic laboratories, e.g. Willuweit and Roewer
(2007), Buckleton and Myers (2014), and Caliebe
and Krawczak (2018). Their applications include
the use in deficiency paternity testing cases (e.g.
where the father is not available for analysis and
inferences are made by reference to relatives)
and, especially, the discrimination of stains in
forensic investigations when a person of interest
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is male (e.g. a male–female mixture in sexual
assault cases). The counting method where the
number of observations may be declared in a
relevant database plays an important role in
the assessment of the evidence (Gusmão et al.,
2006; Scientific Working Group on DNA Analysis
Methods (SWGDAM), 2009; Buckleton et al.,
2011; Roewer and Geppert, 2012).

If there are no observations of a particular pro-
file, in either the literature or the current survey,
then a probabilistic upper bound on the profile may
be obtained as described in this Section for the glass
example of Stoney (1992).

Other relevant references for the estimation of
a proportion include Louis (1981) for confidence
intervals for a binomial parameter after observing
no successes, Kaye (1987b) for a note on the bur-
den of persuasion, Balding and Nichols (1994) and
Curran et al. (2002) for examples in DNA profil-
ing, and Taroni et al. (2010) for an example related
to the percentage of banknotes contaminated with
an illicit drug.

4.2.3 Uncertainty on Sensitivity
and Specificity

Consider the medical diagnosis scenario that was
described in Section 2.2.2, where the sample
proportion of patients with a disease whose blood
test was positive had been used to estimate the
sensitivity of the test, and the sample proportion
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of patients without such a disease whose blood
test was negative had been used to estimate the
specificity of the test. Sensitivity and specificity
provide a measure of the quality of a test, with
high values implying high quality. These values
could be used, e.g. to make decisions or to answer
specific questions about the condition of a specific
patient. For example, given values in Table 2.3,
it was possible to quantify the probability that a
person is affected by a given disease (S) given a
positive blood test (R).

However, such values are not observable in
practice, and the true values related to the pop-
ulation of all patients are effectively unknown.
The connection between the sample (observable)
and the population (unknown) proportion can
be made with reference to the beta-binomial
statistical model described in Section A.2.7.

First, consider sensitivity, Pr(R ∣ S). As it is
reasonable to assume that the outcome of a test
on a given patient with a given disease is not
informative about the likely outcome of such a test
on another patient having the same disease, such
an experiment can be modelled as a sequence of
Bernoulli trials, where each trial (medical test) has
only two possible outcomes: positive (with prob-
ability 𝜃), and negative (with probability 1 − 𝜃).
The number n of patients with a given disease S
whose test is positive can therefore be modelled by
a binomial distribution, with parameter n and 𝜃

(the probability that the test is positive given that
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the patient has the given disease). Parameter 𝜃 (i.e.
the sensitivity of the test) is clearly unknown, and
a beta prior distribution can be used to model prior
uncertainty. There are two possible approaches for
representing uncertainty about 𝜃. A uniform prior
distribution can be assumed, where all possible
values of 𝜃 between 0 and 1 are a priori equally
likely. This is equivalent to a Be(1,1) prior prob-
ability density. As an alternative, an informative
prior distribution incorporating knowledge from
sources other than the sample proportion can be
incorporated. Consider for illustrative purposes, a
uniform prior distribution Be(1,1), and values in
Table 2.3. The posterior distribution of the sensi-
tivity is still a beta distribution, with parameters
updated as in (4.4), where 𝛼 = 1 + 95 (where 95
is the number of patients, out of 100, who have
the disease and give a positive blood test) and
𝛽 = 1 + 5 (where 5 is the number of patients, out
of 100, who have the disease and give a negative
blood test). The posterior distribution (Figure 4.5)
has a mass concentrated on the value of the
sensitivity obtained empirically using the sample
proportion, with a spread reflecting the uncer-
tainty about such a value. A credible interval may
be reported as in Section 4.2.1. For example, there
is a probability equal to 0.95 that the sensitivity
takes values in the interval (0.89,0.98) the lower
and upper values that represent the quantiles of
order 0.025 and 0.975, respectively, of a Be(96,6)
distribution.
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Figure 4.5 Posterior distribution f (𝜃 ∣ 𝛼, 𝛽) of the sen-
sitivity Be(𝛼 = 96, 𝛽 = 6).

Second, the uncertainty about the specificity
of the test can be modelled analogously. Given
the population of patients not affected by such a
disease, it is possible to model such an experiment
as a Bernoulli trial, where each trial has only two
possible outcomes: negative (with probability 𝜙)
and positive (with probability 1 − 𝜙). Considering
again a uniform prior distribution, the poste-
rior distribution can be obtained as above with
𝛼 = 1 + 99 (where 99 is the number of patients
out of 100 who do not have the disease and give
a negative blood test) and 𝛽 = 1 + 1 (where 1
is the number of patients out of 100 who do
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not have the disease and give a positive blood
test) (values for the number of successes and
for the number of failures are again taken from
Table 2.3).

The question of how a positive test can be used
to update the probability that a patient testing
positive is actually diseased was addressed in
Example 2.1 of Section 2.2.2. Sensitivity and
specificity were assumed to be known. Now,
there is uncertainty about such values, as sample
values in Table 2.3 are used to infer the unknown
corresponding values in the entire population.
Uncertainty about the effective value of the
sensitivity and of the specificity of the test are
represented by a probability distribution, and this
implies that the posterior probability in (2.5) has
itself a distribution.

One way to obtain such a distribution is to
sample several pairs of values of the sensitivity
and specificity of the test from the respective
posterior distributions (in the specific case, from
Be(96,6) and Be(100,2)), and calculate for each
pair the probability that the person is affected by
the disease given that the medical test is positive
(Parmigiani, 2002). In this way, a sample of
values can be obtained and are represented in
Figure 4.6. From Figure 4.6 it can be observed
that the required probability could take a range of
values from 0.5 to 1, though values in the right
tail are more likely.
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Figure 4.6 Histogram of the frequency of 1000 sam-
pled values of the probability 𝜃 that a person with a pos-
itive medical test is affected by a given disease.

4.3 SAMPLING

Sampling issues represent a topic of ongoing
interest to the forensic community essentially
because of their crucial role in laboratory plan-
ning and working protocols. Forensic laboratories
are commonly asked to inspect consignments of
discrete units whose characteristics may be of
interest within a criminal investigation. Typical
examples include consignments such as bags or
electronic storage devices, that consist of indi-
vidual items such as pills or images. Each item
in such a consignment may, or may not, con-
tain something illegal (e.g. drugs, pornographic
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images). It is of interest to an investigating scientist
to determine the proportion of the consignment
that contains something illegal. This may be
done exactly (assuming no mistakes are made)
by examination of every unit in the consignment.
Such an examination can be extremely costly.
Considerable resources can be saved if informa-
tion, sufficient to satisfy the needs of investigators,
may be gained from examination of a sample
from the consignment. Uncertainty is introduced
when inference is made from the sample to the
population, because the whole population is not
inspected. However, this uncertainty may be
quantified probabilistically.

A general introduction to sampling techniques
is given in Cochran (1977). Ideas on sample
size determination are discussed in Smeeton
and Adcock (1997). A very good discussion of
various types of samples, such as random samples,
representative samples, and convenience samples,
is given in Evett and Weir (1998). A review of
statistical and legal aspects of the forensic study
of illicit drugs is given by Izenman (2001) This
includes a discussion of various sampling proce-
dures, various methods of choosing the sample
size, a strategy for the assessment of homogeneity,
and the relationship between quantity and the
possible standards of proof. Further comments on
sampling issues are given in Aitken et al. (1997),
Biedermann et al. (2008b), Bring and Aitken
(1997), Curran et al. (1998a), in various chapters
of Gastwirth (2000), such as Aitken (2000),
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Gastwirth et al. (2000), and Izenman (2000a,b,c)
and in Izenman (2003). A relevant case is that of
U.S. v. Shonubi (1992, 1995, 1997).

Only inferences from simple random samples are
discussed here. It may be that it is not possible to
take a simple random sample. If so, the following
comments are still of relevance. The comments are
made in the context of sampling for the estimation
of allelic frequencies in DNA profiles but are appli-
cable to other areas of forensic science, including
drug sampling which is the main example in this
section.

Of course, a real crime laboratory would not attempt . . . to
take a random, representative, stratified sample of individ-
uals to address the question of issue. In the vast majority of
cases, the laboratory will have one or more convenience
samples. Such a sample may be of laboratory staff mem-
bers, or from blood donor samples with the cooperation of a
local blood bank, or from samples from victims and suspects
examined in the course of casework.

. . . [In] the forensic context, we will generally be dealing,
not with random but with convenience samples. Does this
matter? The first response to that question is that every
case must be treated according to the circumstances within
which it has occurred, and the next response is that it is
always a matter of judgement. . . . In the last analysis, the
scientist must also convince a court of the reasonableness
of his or her inference within the circumstances as they are
presented as evidence. (Evett and Weir, 1998, pp. 44–45)

Several sampling procedures, including random
sampling, are discussed in Izenman (2001). First,
for single containers, examination by a chemist
of a random sample of a substance seized within
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a single bag or container has been accepted by
the courts to prove the identity of the remainder
of the substance in the container. For multiple
containers, without homogeneity, a rule is that
at least one sample from each container should
be conclusively tested for the presence of an illicit
drug. Another procedure is that of composite sam-
pling. In this procedure, a sample is taken from
each source, the samples are then thoroughly
mixed and a subsample is taken from the mixture.
The mixture is the composite sample.

This section concerns the choice of sample size
and the interpretation of data from samples. The
following questions in particular are addressed
and answered:

• How big a sample should be taken?

• What proportion of a consignment of discrete,
homogeneous items is illicit?

Both questions have probabilistic answers and
these can be determined using a Bayesian frame-
work. With reasonable assumptions, a probability
distribution for the proportion of units in the con-
signment may be derived, based on the scientist’s
prior belief (i.e. prior to the inspection of individ-
ual units) and the outcome of the inspection of
the sample. The strength of the scientist’s prior
beliefs may be expressed by a probability density
function as described previously in Section 4.2. It
is possible to choose the function in such a way
that the effect of the scientist’s prior beliefs is very
small (or very large). The choice of the binomial



�

� �

�

396 Bayesian Inference

model which is used to represent the uncertainty
introduced by the sampling process is a subjective
choice influenced by the scientist’s prior beliefs.
The choice of the binomial distribution used here
requires assumptions about independence of the
probability for each unit being illegal and the
choice of a constant value for this probability.

A comparison will be made of the results
obtained from the Bayesian and frequentist
approaches to the assessment of uncertainty, in
order to (i) contrast the clarity of the inferences
obtainable from the Bayesian approach with the
lack of clarity associated with the frequentist
approach and (ii) illustrate the greater flexibility
of the Bayesian approach with the inflexibility of
the frequentist approach.

The methods are illustrated with reference to
sampling from consignments of drugs. However,
they apply equally well to sampling in other
forensic contexts, for example, glass fragments
(Curran et al., 1998a) and pornographic images.

Frequentist procedures are described in Tzidony
and Ravreboy (1992) for choosing a sample
size from a consignment. A distinction is drawn
between an approach based on the binomial
distribution and an approach based on the
hypergeometric distribution (Section A.2.5). It
is argued in Tzidony and Ravreboy (1992) that
the former can be used for large consignments in
which the sampling of units may be considered
equivalent to sampling with replacement. For
small samples, the sampling units cannot be so
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considered, sampling is without replacement and
the hypergeometric approach is used (Frank et al.,
1991). The Bayesian approach also has different
methods for analysing large and small samples.

Various methods for selecting the size of a
random sample from a consignment have been
accepted by the US courts (Frank et al., 1991;
Izenman, 2001). A summary of different proce-
dures used in 27 laboratories around the world is
given in Colón et al. (1993). Various procedures
suggested for the choice of sample size include
methods based on the square root of the con-
signment size, a percentage of the consignment
size, and a fixed number of units regardless of the
consignment size, as well as the hypergeometric
distribution. The formula

m = 20 + 10%(N − 20) (for N > 20), (4.10)

where m is the sample size, the number of items
inspected, and N is the consignment size is pro-
posed by Colón et al. (1993) and is listed by the
UN Office on Drugs and Crime (2009) along with
other so-called arbitrary sampling rules. As well as
being simple to implement, this approach, as the
authors rightly claim, provides the opportunity
to discover heterogeneous populations before the
analysis is completed. It has also been suggested
that ‘an inference made at the 95% confidence
level, that 90% or more of the packages in an
exhibit contain the controlled substance should
be accepted as sufficient proof in such cases’,
Frank et al. (1991). These summaries are given
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as confidence limits using a frequentist approach
and not in probabilistic terms.

A Bayesian approach can provide summaries in
probabilistic terms such as

‘How big a sample should be taken for it to be said that
there is a 100p% probability that the proportion on units
in the consignment which contain drugs is greater than
100𝜃0%?’

or, for a particular case, with p = 0.95 and 𝜃0 =
0.50,

‘How big a sample should be taken for it to be said that there
is a 95% probability that the proportion on units in the con-
signment which contain drugs is greater than 50%?’

Some of the most commonly used approaches for
sampling are compiled in a booklet issued by the
ENFSI Drug Working Group (ENFSI, 2016).

Results similar to those discussed here for
sample size determination and which take into
account the limited size of the consignment
and the discrete nature of the random variables
are given by Weusten (2011) and Moroni et al.
(2012). The methods described here assume the
consignment is homogeneous. A method based on
multiple sampling to take account of heterogeneity
is described by Dujourdy et al. (2013).

4.3.1 Choice of Sample Size in Large
Consignments

A large consignment is taken to be one which is
sufficiently large that sampling is effectively with
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replacement (Section A.2.3). This size can be as
small as 50, though in many cases it will be of the
order of many thousands.

A consignment of drugs containing N units
will be considered a random sample from some
super-population (Section 2.5.5) of units contain-
ing drugs. Let 𝜃 (0 < 𝜃 < 1) be the proportion
of units in the super-population, which contain
drugs. For consignment sizes of the order of
several thousand all realistic values of 𝜃 will
represent an exact number of units. For small
sample sizes less than 50, 𝜃 can be considered as a
nuisance parameter (i.e. one that is not of primary
interest) and integrated out of the calculation
leaving a probability distribution for the unknown
number of units in the consignment which con-
tain drugs as a function of known values. For
intermediate calculations, 𝜃 can be treated as
a continuous value in the interval (0 < 𝜃 < 1),
without any detriment to the inference. Let
m be the number of units sampled. The ratio
m∕N is known as the sampling fraction. Denote
the number which are found to contain drugs
by z.

A criterion has to be specified in order that the
sample size may be determined. Consider the
Bayesian criterion that the scientist wishes to
be 100p% certain that 100𝜃0% or more of the
consignment contains drugs when all units sam-
pled contain drugs (z = m). The criterion may be
written mathematically as

Pr(𝜃 > 𝜃0 ∣ 𝛼, 𝛽,m,m) = p, (4.11)
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or

∫
1

𝜃0

𝜃𝛼+m−1(1 − 𝜃)(𝛽−1)

B(𝛼 + m, 𝛽)
d𝜃 = p, (4.12)

using a beta conjugate prior distribution and
a binomial distribution to give a beta posterior
distribution (4.4), with the special case where the
number of ‘successes’ equals the number of trials
(4.5). The term B(𝛼 + m, 𝛽) is a beta function
(A.22). Such integrals are easy to evaluate using
standard statistical packages, such as R, given
values for 𝛼, 𝛽, and m. Table 4.1 contains, for
different values of 𝛼 and 𝛽, and different values
of m, the corresponding probabilities p satisfying
(4.12) for 𝜃0 = 0.5. Note from Table 4.1 that, for
values of m = 4,5, differing values of 𝛼 and 𝛽, as
long as both are small, have little effect on p.

Table 4.1 Probability that the proportion of drugs in
a large consignment is greater than 50% for various
sample sizes m and prior parameters 𝛼 and 𝛽,
Pr(𝜃 > 0.5 ∣ 𝛼, 𝛽, z,m).

𝛼 𝛽 m

2 3 4 5

1 1 0.88 0.94 0.97 0.98
0.5 0.5 0.92 0.97 0.985 0.993
0.065 0.935 0.78 0.90 0.95 0.97

Note that z = m.
Source: From Aitken (1999). Reprinted with permissions of
ASTM International.
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An alternative way of looking at (4.12) is to
reverse the role of the parameters and solve for
m. Given specified values for 𝜃 and p and values
for 𝛼 and 𝛽 chosen according to prior knowledge,
the appropriate value of m to solve (4.12) may be
found, again using standard statistical packages.
Consider the case where prior parameters 𝛼 and 𝛽

are set equal to 1. The sample size m (given that
all items are found to be positive) required to be
100p% certain that the proportion 𝜃 of positive
units is larger than a specified threshold, say, 𝜃0,
is then given by the value of m which satisfies the
equation

Pr(𝜃 > 𝜃0 ∣ 1,1,m,m) = ∫
1

𝜃0

𝜃m

B(1 + m,1)
d𝜃

= 1 − 𝜃m+1
0 = p, (4.13)

as B(1 + m,1) = 1∕(m + 1) (Section A.3.7). The
value of m is thus given by the smallest integer
greater than

[log(1 − p)∕ log(𝜃0)] − 1. (4.14)

This expression provides an answer to the
question ‘how many units should be inspected
to satisfy this criterion?’. The dependency of the
sample size on the values of p and 𝜃0 is illustrated
in Table 4.2 for p = (0.90,0.95,0.99) and 𝜃0 =
(0.5,0.6,0.7,0.8,0.9,0.95,0.99). Take p = 0.95
and 𝜃0 = 0.5. For large consignments, of whatever
size, the scientist needs only examine four units,
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Table 4.2 The sample size required to be 100p%
certain that the proportion of units in the consignment
which contain drugs are greater than 𝜃, when all the
units inspected are found to contain drugs.

𝜃0 p

0.90 0.95 0.99

0.5 3 4 6
0.6 4 5 9
0.7 6 8 12
0.8 10 13 20
0.9 21 28 43
0.95 44 58 89
0.99 229 298 458

The prior parameters 𝛼 = 𝛽 = 1.
Source: From Aitken (1999). Reprinted with permissions of
ASTM International.

in the first instance. This sample size is not large.
However, there is not very much information
gained about the exact value of 𝜃. It has only been
determined that, if all are found to contain drugs,
there is a 95% probability that at least 50% of the
consignment contains drugs.

Compare the clarity and flexibility of this result
with that derived from a frequentist perspective.
Consider the sample proportion p = z∕m which
is an unbiased estimator of 𝜃, i.e. E(Z∕m) = 𝜃

(see Section A.1). The variance of the sample
proportion p is given by Cochran (1977) as

𝜃(1 − 𝜃)
m

(N − m
N − 1

)
, (4.15)
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where (N − m)∕(N − 1) is the finite population
correction factor (fpc). The variance of the sample
proportion that has been introduced in Section
4.2.1 for calculating a confidence interval for the
proportion was based on the premise that obser-
vations are taken with replacement. However, in
populations of finite size N, sampling cannot be
equated to sampling with replacement, and the
correction factor allows more precise estimates of
𝜃 to be obtained. Interestingly, provided that the
sample size m is small in comparison with the pop-
ulation size N (say, less than 5% of the population
is sampled), the size of the population has no direct
effect on the precision of the estimate of 𝜃. For
example, if 𝜃 is the same in the two populations, a
sample of 500 from a population of 200 000, gives
almost as precise an estimate of the population
proportion as a sample of the same size 500 from a
population of 10 000. It can easily be shown using
the result in (4.15) that the estimated standard
deviation of 𝜃 in the second case is 0.98 times the
estimated standard deviation in the first case. Little
is to be gained by increasing the sample size in pro-
portion to the population size. An increase of sam-
ple size by a factor of 20, from 10 000 to 200 000
gives a more precise estimate of the parameter of
interest. However, the precision of the estimate in
the sample of size 10 000 is 98% of that of the sam-
ple of 200 000. A large increase in sampling costs
leads to only a very small increase in precision.

To simplify matters, assume the sampling frac-
tion is small so that the fpc can be ignored and the



�

� �

�

404 Bayesian Inference

standard deviation of the sample proportion p is
√

𝜃(1 − 𝜃)
m

.

Suppose further the sample size and proportion are
such that the sample proportion p may assumed
to be approximately Normally distributed.1 Recall
from Section 4.2.1 that the width of the confidence
interval for the proportion 𝜃 depends also on 𝜃,
which is unknown and can be estimated only after
sampling. It is necessary to have some guess about
the value of 𝜃 before determining the sample size.
The expression 𝜃(1 − 𝜃) takes its maximum value
of 0.25 at 𝜃 = 1∕2 and its minimum value of 0
when 𝜃 = 0 or 1. A conservative choice of sample
size is to take 𝜃 = 1∕2. Assume that 𝜃 is thought
to be about 0.75. It is stipulated that a sample size
m is to be taken to estimate 𝜃 to within 25%, that
is, in the interval (0.5,1.0), with approximately
95% confidence. The criterion for the sample size
is that there should be a confidence of 0.95 that
the proportion lies in interval 0.75 ± 0.25. This
implies that two standard deviations equal 0.25,
that is,

2

√
𝜃(1 − 𝜃)

m
= 0.25,

1The Normal approximation is accurate even if the proportion
𝜃 is close to 0 or 1 providing m is sufficiently large. However,
even for samples of modest size, the approximation is still accu-
rate provided that 𝜃 is close to 0.5 and the distribution is roughly
symmetric.
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(see Section A.3.2). This gives the following expres-
sion for m

m = 4𝜃(1 − 𝜃)
0.252

. (4.16)

When 𝜃 = 0.75, m = 12.
Thus, from a frequentist perspective, a sample

of size 12 in which all sampled items are illicit is
sufficient to estimate 𝜃 to be greater than 0.5 with
confidence 0.95. Contrast this with the result
derived from the Bayesian approach, which gave a
value of 4 for the sample size.

The Bayesian methodology can be extended to
allow for units that do not contain drugs. Take, for
example, the case where one of the original four
units is found not to contain drugs, then the pos-
terior distribution is Be(4,2). Suppose three more
units are inspected and all are found to contain
drugs. It can be shown that the probability that
𝜃 > 0.5, given that six out seven units contain
drugs is larger than 0.95:

Pr(𝜃 > 0.5 ∣ 4,2,3,3) = ∫
1

0.5

𝜃4+3−1(1 − 𝜃)2−1

B(4 + 3,2)
d𝜃

= 0.96.

Here 𝛼 = 4, 𝛽 = 2 from the posterior probability
distribution determined from the initial sampling
with three out of four units found to be illicit. This
distribution is taken to be the prior for the second
sample where x = n = 3 in the notation of (4.4).

A sequential approach to sampling is described
in Moroni et al. (2012). Take an initial sample. If
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all members of the sample contain drugs, deem all
members of the consignment to contain drugs. If
not all members of the sample contain drugs, take
an additional sample from the consignment to find
a lower limit on the number of members of the con-
signment that contain drugs.

Obviously, when considering the results in
Table 4.2, the consignment size has to be taken
into account in order that the sample size may
be thought small with respect to the size of the
consignment. Thus, for the last row in particular
to be useful, the size of the consignment from
which the sample is to be taken will have to be of
the order of several thousands.

There may be situations in which different
choices of 𝛼 and 𝛽 may be more appropriate,
though there may be concerns that it may be
very difficult for a scientist to formalise their prior
beliefs. An informal approach is described by
Zamengo et al. (2011).

• If there is no prior belief about the contents of
seizures from a consignment, set 𝛼 = 𝛽 = 1, the
uniform distribution.

• If there is a prior belief that either all items from
the consignment contain drugs or no items at all
contain drugs set 𝛼 = 𝛽 = 0.5.

• If there is prior information that it is illicit drugs
that are being considered and that all items con-
tain drugs, the higher 𝛼 should be relative to 𝛽.

A more formal approach to the determination of
𝛼 and 𝛽 requires the expert to assess a minimum
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of two summaries. It may be the scientist has some
substantial prior beliefs about the proportion of
the consignment that may contain drugs to which
they are prepared to testify in court. These beliefs
may arise from previous experiences of similar
consignments, for example. In such cases, use
can be made of various properties of the beta
distribution to assist the scientist in choosing
values for 𝛼 and 𝛽. When there is a substantial
amount of information, summaries of location
(e.g. the mean or expectation) and dispersion (e.g.
the variance) that characterise the distribution of
interest may be elicited from the expert. Denote
by l the available location summary, and by d the
available dispersion summary, respectively. Values
for 𝛼 and 𝛽 can be chosen by matching these
summaries to the corresponding moments (i.e. the
mean and the variance) of the beta distribution
(Section A.3.7), that is

l = 𝛼

𝛼 + 𝛽
,

d = 𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
.

Solving these two equations for 𝛼 and 𝛽 gives esti-
mates of the parameters of the Be(𝛼, 𝛽) prior, that is

𝛼 = {l2(1 − l)∕d} − l, (4.17)

𝛽 = {l(1 − l)2∕d} − 1. (4.18)

However, the information about the dispersion
(a priori) may be unavailable. A practitioner
(expert) may be able to provide an estimate of



�

� �

�

408 Bayesian Inference

the proportion (e.g. the sample proportion from a
previous experiment), which can be used to assess
the mean 𝛼∕(𝛼 + 𝛽) of the prior distribution, but at
least one further quantity will be needed to elicit
the full prior distribution. A method known as the
equivalent sample size method can be implemented
according to which the expert is requested to
provide an estimate of the sample size upon which
they are basing their assessment about the sample
proportion. Recall the mean and the variance
of the sample proportion are 𝜃 and 𝜃(1 − 𝜃)∕n.
Parameters 𝛼 and 𝛽 of the beta distribution can
be fixed by equating the mean and the variance of
the sample proportion evaluated at p to the mean
and the variance of the beta prior distribution, as

p = 𝛼

𝛼 + 𝛽
, (4.19)

p(1 − p)
n

= 𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
. (4.20)

Solving the equations for 𝛼 and 𝛽 gives

𝛼 = p(n − 1), (4.21)

𝛽 = (1 − p)(n − 1). (4.22)

Consider as an example a case where a sample
of glass objects is inspected and a given number of
positive outcomes of some nature is observed.
A beta prior distribution may be introduced to
model uncertainty about the proportion of glass
objects having this outcome. Prior knowledge
may be given by a sample of n = 40 glass objects
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collected in a previous experiment amongst which
one positive result has been observed. Parameters
𝛼 and 𝛽 can be determined by substituting n = 40
and p = 1∕40 in (4.21) and (4.22), to obtain,
approximately, 𝛼 = 1 and 𝛽 = 38. (The exact
values are 0.975 and 38.025, respectively.) The
prior density Be(1,38) is depicted in Figure 4.7.
The prior mass is concentrated at low values of 𝜃.

Alternatively, if it was felt that 𝛽 could be set
equal to 1 so that, for 𝛼 > 1, the beta function is
monotonic increasing with respect to 𝜃, and that
there was a prior belief about a lower bound l for
the proportion, say, that

Pr(𝜃 > l ∣ 𝛼, 𝛽 = 1) = p,

0.00 0.05 0.10 0.15 0.20

0
10

20
30

θ

f(
θ)

Figure 4.7 Beta prior distribution Be(1,38) over 𝜃 for
𝜃 ∈ (0,0.20).
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with l and p given, then

𝛼 = log(1 − p)∕ log(l).

Other elicitation methods have been developed
for quantifying opinion about a proportion 𝜃 when
the underlying model is a binomial distribution. A
review can be found in O’Hagan et al. (2006) and
references therein.

Practitioners should clearly inspect the shape
of the elicited prior distribution to verify its con-
sistency with their prior beliefs. Noting that with
𝛼∕(𝛼 + 𝛽) = p and 𝛽∕(𝛼 + 𝛽) = (1 − p), (4.20) can
be rewritten as

p(1 − p)
n

= 𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
=

p(1 − p)
𝛼 + 𝛽 + 1

,

so that 𝛼 + 𝛽 + 1 = n, where n represents the equi-
valent sample size. Bolstad and Curran (2017)
warn that given the elicited prior distribution (e.g.
as in (4.17) and (4.18)) one should compute the
equivalent sample size to check whether the avail-
able knowledge is realistically comparable with
the knowledge that would have been obtained
from an experiment of that size. If not, they sug-
gest one should increase the standard deviation
and calculate a new prior, in order to avoid the
assignation of a prior distribution that reflects
more information than that which is effectively
available.

Variation in the prior beliefs, expressed through
variation in the values of 𝛼 and 𝛽 may have little
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Figure 4.8 The prior probability 1 − F(𝜃0) that the
proportion 𝜃 of units in a consignment is greater than
𝜃0, for various choices of 𝛼 and 𝛽: 𝛼 = 𝛽 = 1 (dashed
curve), 𝛼 = 𝛽 = 0.5 (solid), 𝛼 = 0.065, 𝛽 = 0.935 (dot-
ted). Source: From Aitken (1999). Reprinted with per-
missions of ASTM International.

influence on the conclusions, once some data
have been observed. Figure 4.8 illustrates the
prior probability that the true proportion of illegal
units in a consignment is greater than a value 𝜃0,
0 < 𝜃0 < 1, for three choices of 𝛼 and 𝛽 producing
a radically different shape of the prior distribution
(see Figure A.5 in Section A.3.7), and therefore
divergent prior beliefs. The values 𝛼 = 𝛽 = 1
are chosen so that Pr(𝜃 > 0.5) = 0.5 with a
uniform distribution. The values 𝛼 = 𝛽 = 0.5
also have Pr(𝜃 > 0.5) = 0.5 but with more belief
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Figure 4.9 The posterior probability 1 − F(𝜃0) that
the proportion 𝜃 of units in a consignment is greater
than 𝜃0, for various choices of 𝛼 and 𝛽: 𝛼 = 𝛽 =
1 (dashed curve), 𝛼 = 𝛽 = 0.5 (solid), 𝛼 = 0.065, 𝛽 =
0.935 (dotted), after observation of four units all found
to be illegal. The corresponding probabilities that at
least 50% of the consignment contains illegal units
is marked as 0.985 (𝛼 = 𝛽 = 0.5), 0.970 (𝛼 = 𝛽 = 1),
0.950 (𝛼 = 0.065, 𝛽 = 0.935). Source: From Aitken
(1999). Reprinted with permissions of ASTM Interna-
tional.

in the tails of the distribution. The values 𝛼 =
0.065, 𝛽 = 0.935 are chosen so that 𝛼 + 𝛽 = 1
and Pr(𝜃 > 0.5) = 0.05, the complement of the
desired posterior probability that Pr(𝜃 > 0.5) =
0.95. Figure 4.9 illustrates the posterior distribu-
tion that the true proportion of illegal units in a
consignment is greater than 𝜃0, for these choices
of 𝛼 and 𝛽, once four units have been examined
and all found to be illegal.
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4.3.2 Choice of Sample Size in Small
Consignments

Consider a consignment of N tablets that are
homogeneous in nature (colour, texture, type of
logo) and about which it is desired to learn more
about the proportion which are illicit. Let R denote
the number (unknown), out of N, which are illicit.
A random sample of size m is examined and z(≤ m)
are found to be illicit. The probability of this event (z
tablets found to be illicit when m tablets are chosen
at random from N tablets of which R are illicit) is
given by the hypergeometric distribution (Section
A.2.5). A Bayesian approach for small consign-
ments, using the hypergeometric distribution, is
described in Aitken (1999), Coulson et al. (2001b),
Weusten (2011), and Moroni et al. (2012). A dis-
crete prior distribution is chosen for the (N + 1)
possible divisions of the consignment into licit
and illicit terms. The likelihood function is based
on the hypergeometric distribution sampling m
from N and a posterior distribution obtained. A
beta-binomial distribution (Section A.2.7) is used
to provide a probability statement about the num-
ber of units in the consignment that contain drugs.

As before, let 𝜃, satisfying (0 < 𝜃 < 1), be the
proportion of illicit units in the super-population.
The probability distribution of z, given m and 𝜃,
may be taken to be binomial, assuming a constant
probability 𝜃, independent of the sample size m.
For each unit, independently of the others in the
consignment, the probability it is illicit is taken
to be equal to 𝜃. The posterior distribution of 𝜃 is
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another beta distribution, with parameters (𝛼 + z)
and (𝛽 + m − z).

Since the consignment size is small, a better
representation of the variability of the number of
illicit units in the non-inspected consignment is
obtained considering a probability distribution for
this number, Y, say, explicitly. Let there be n units
in the reminder of the consignment (such that
m + n = N), which have not been inspected. Then
Y (unknown and no greater than n) is the number
of illicit units in this remainder. Given 𝜃, the
distribution of (Y ∣ n, 𝜃), like that of (Z ∣ m, 𝜃), is
binomial. However, 𝜃 has a beta distribution.
Therefore, the distribution of (Y ∣ n, 𝜃) and the
distribution of (𝜃 ∣ 𝛼, 𝛽,m, z) can be combined
to give a Bayesian predictive distribution for
(Y ∣ m, n, y, 𝛼, 𝛽), also known as a beta-binomial
distribution (Section A.2.7):

Pr(Y = y ∣ m, n, z, 𝛼, 𝛽)

=

Γ(m + 𝛼 + 𝛽)
(

n
y

)
Γ(y + z + 𝛼)

Γ(m + n − z − y + 𝛽)
Γ(z + 𝛼)Γ(m − z + 𝛽)Γ(m + n + 𝛼 + 𝛽)

,

(y = 0,1, . . . , n). (4.23)

From this distribution, inference can be made
about Y, such as probability intervals or lower
bounds for Y.

As with large consignments, values for 𝛼 and
𝛽 may be chosen subjectively to represent the
scientist’s prior beliefs before inspection about



�

� �

�

Sampling 415

the proportion of the units in the consignment
(as a random sample from the super-population)
which contain drugs. Consider the beta-binomial
distribution in (4.23) with 𝛼 = 𝛽 = 1. It can be
shown that

Pr(Y = y ∣ m, n, z,1,1) =
(m + 1)

(
m
z

)(
n
y

)

(m + n + 1)
(

m+n
z+y

) ,

(4.24)
for y = 0,1, ..., n. As an example, consider a
consignment of size N = 10, where five units
are inspected and all five are found to be illicit
(m = z = 5). For the proportion of illicit units in
the consignment to be at least 0.7 (𝜃 ≥ 0.7), it is
necessary for the number of units Y in the five
units not inspected to be at least 2 (Y ≥ 2). The
beta-binomial probability in (4.24) with a uniform
prior f (𝜃) = Be(1,1) is given by

Pr(Y ≥ 2 ∣ 5,5,5,1,1) =
5∑

y=2

6
(

5
5

)(
5
y

)

11
(

10
5+y

) = 0.985.

The beta-binomial approach enables a probability
of 0.985 to be assigned to the event that 𝜃 ≥ 0.7,
given a consignment of size 10 in which five units
have been inspected and all found to contain
drugs.

Compare this result with that obtained using
a frequentist perspective based on the hyperge-
ometric distribution (Sections 1.7.7 and A.2.5).
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Examples of the use of the hypergeometric dis-
tribution for sampling in drugs related cases
are given in Aitken (1999), Colón et al. (1993),
Coulson et al. (2001b), Frank et al. (1991),
Tzidony and Ravreboy (1992), Weusten (2011),
and Moroni et al. (2012). The hypergeometric
distribution is also recommended by the United
Nations in this context (UN Office on Drugs and
Crime, 2009). An application to fibres for the
determination of the optimal sample size is given
by Faber et al. (1999).

Let R = Z + Y be the total number of units in the
consignment that contain illicit drugs, where Z is
the number of units in the sample of size m and
Y is the number of units in the remainder which
contain drugs. Then the distribution of Z is hyper-
geometric (Section A.2.5) with

Pr(Z = z) =

(
R
z

)(
N−R
m−z

)

(
N
m

) ,

(z = 0,1, . . . ,min(R,m)).

When z = m this expression simplifies to

Pr(Z = m) = R!(N − m)!
N!(R − m)!

. (4.25)

Consider an example where z = m and N = 10.
Probabilities in (4.25) are computed for some
values of m (i.e. m = {4,5,6}) and for some values
of 𝜃 (i.e. 𝜃 = {0.6,0.7} so that R = N𝜃 = {6,7}),
with results in Table 4.3.
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Table 4.3 Probabilities all m inspected units contain
drugs for m = 4,5,6 in a population of size 10 where
𝜃 =0.6, 0.7 in a super-population.

𝜃 m

4 5 6

0.6 0.07 0.02 0.005
0.7 0.17 0.08 0.03

If 𝜃 = 0.7, so when N = 10, R = 7, the probabil-
ity all five inspected items out of 10 contain drugs
is 0.08. Thus 𝜃 = 0.7 is the 92% lower confidence
bound for the proportion of illicit items in the
super-population. If 𝜃 = 0.6, so when N = 10,
R = 6, the probability all five inspected items out
of 10 contain drugs is 0.02. Thus 𝜃 = 0.6 is the
98% lower confidence bound for the proportion of
illicit items in the super-population. Similarly, for
N = 10 and m = 4, if all 4 tablets sampled contain
illicit drugs, then one can be 83% confident that
the proportion of illicit drugs in the consignment
is at least 0.7. Finally, for N = 10 and m = 6, if all
6 tablets sampled contain illicit drugs, then one
can be 97% confident that the proportion of illicit
items in the consignment is at least 0.7.

It can be observed that the beta-binomial and
hypergeometric distributions give similar numer-
ical answers, though Bayesian and frequentist
approaches give different interpretations to the
results (Aitken, 1999). The hypergeometric
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distribution has the interpretation that if m =
z = 5, one is 92% confident that 𝜃 ≥ 0.7. The
beta-binomial approach enables one to assign a
probability of 0.985 to the event that 𝜃 ≥ 0.7.
As an aside, ignore the consignment size N.
Assume a binomial distribution with 𝜃 = 0.6.
The probability a sample of size 4 would be all
illicit is 0.64 = 0.13. This is considerably different
from the exact value of 0.07 provided by the
hypergeometric distribution for a consignment
size of 10.

General results can be obtained. The problem is
to choose m such that, given n, 𝛼, and 𝛽 (and pos-
sible values for z, consequential on the choice of
m and on the outcome of the inspection), a value
for y can be determined to satisfy some probabilis-
tic criterion, e.g. the value y0 such that Pr(Y ≥ y0 ∣
m, n, 𝛼, 𝛽) = p. Results are given in Aitken (1999)
for p = 0.9, where the consignment size N is taken
to be 30.

If six units are inspected and one or two do not
contain drugs then the number of units in the
remainder of the consignment which can be said,
with probability 0.9, to contain drugs drop from
17 to 12 to 9. Even if 16 units (out of 30) are
inspected and all are found to contain drugs, then
it can only be said, with probability 0.9, that 12
of the remaining 14 contain drugs (and this is so
even with 𝛼 = 4, 𝛽 = 1). See also Moroni et al.
(2012) where a sequential approach is described.

These approaches for sample size estimation
assume that the classification of items as licit
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or illicit is free of error. It is obviously desirable
that this assumption be true. An extension of
the proposed Bayesian approach to account for
possible laboratory errors has been proposed by
Biedermann et al. (2008b) by means of graphical
models and will be described briefly in Section
4.4.1. Further discussion of error is given in
Zamengo et al. (2011).

An additional benefit of the assumption that
analyses are error-free is that the posterior dis-
tribution of the proportion of the consignment,
which is illicit is robust to the choice of the prior
parameters. When there is a possibility of misclas-
sification, the posterior distribution is no longer
robust to the choice of the prior parameters. Such
a situation is not discussed here but details are
available in Rahne et al. (2000) A frequentist
approach using the hypergeometric distribution
with an adaptation to allow for false positives and
false negatives is described in Faber et al. (1999).
Application of these ideas to the sampling of glass
fragments is described in Curran et al. (1998a).

There are instances where experiments give rise
to more than two mutually exclusive events. In
such a case, the binomial distribution can be gen-
eralised to the multinomial distribution and the
beta distribution can be generalised to the Dirichlet
distribution (Section A.3.8). A generalisation may
be made, analogously, from the beta-binomial
distribution to a so-called Dirichlet-multinomial
distribution (Section A.2.7). An extension to
sampling with a categorical response in which
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there may be more than two possible responses
(e.g. with pills, the responses may be LSD, ecstasy,
and licit) is given in Mavridis and Aitken (2009).

4.4 BAYESIAN NETWORKS FOR
SAMPLING INSPECTION

The question of sampling size can also be
approached by graphical models, notably Bayesian
networks. Bayesian networks allow for (i) a flex-
ible analysis of sampling issues with the user
being able to interact directly with possible mod-
els, (ii) an explicit and visual representation of
underlying modelling assumptions, and (iii) cal-
culation of posterior probability distributions for a
consignment’s true proportion of positives.

The core ideas related to Bayesian networks have
been introduced in Chapter 2 (Section 2.9), and a
wide description of the implementation of Bayesian
networks in forensic science can be found in Taroni
et al. (2014a).

4.4.1 Large Consignments

A Bayesian network for inference about the
proportion of items showing a target character-
istic of interest in a large consignment has been
proposed by Biedermann et al. (2008b) and is
depicted in Figure 4.10 (see also Taroni et al.
(2014a, p. 304)). The proportion 𝜃 is modelled
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with a discrete chance node named 𝜃 whose
states represent disjoint intervals between 0 and 1
(this allows for an acceptable approximation of a
continuous entity). The probability assigned to the
intervals of node 𝜃 are determined by a beta dis-
tribution whose parameters 𝛼 and 𝛽 are provided
by the nodes 𝛼 and 𝛽, which are parents of node 𝜃.
Any values (> 0) can be defined to represent the
analyst’s prior beliefs about 𝜃. A particular aspect
of the Bayesian network shown in Figure 4.10
is the way in which the inspection procedure is
modelled. Instead of a node for the overall number
of successes (e.g. positive units) amongst the m
that have been inspected, separate nodes are used
to represent the target characteristic (‘positive’
or ‘negative’, ‘licit’ or ‘illicit’, and so on) of each
inspected unit. The result of an examination or
analysis on the i-th unit is modelled by a binary
node obs i with states ‘positive’ and ‘negative’.

Another interesting aspect of the Bayesian
network in Figure 4.10 is that it accounts for the
possibility of errors in the analysis. There may
be circumstances that shed doubt on the result
of an analysis. The condition of a unit chosen for
inspection or erroneous experimental settings
are possible reasons for this. Thus, an analysis
may not always provide a positive result when
the inspected unit is truly positive or may provide
a positive result when the inspected unit is truly
negative. For these reasons, a distinction is made
between the true, but unknown, condition of a
unit (e.g. containing or not containing an illegal
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Figure 4.10 A Bayesian network for inference about
a proportion of a large consignments. The definition of
the nodes are as given in Table 4.4. Source: From Bie-
dermann et al. (2008b). Reprinted with permissions of
Oxford University Press.

substance) and what is observed in the course of
an experiment designed to detect the presence
or the absence of that target characteristic. Such
distinctions are advocated, for example, in the
context of DNA profiling analyses (Thompson
et al., 2003), and are also challenged in other
forensic disciplines (Saks and Koehler, 2005).
Propositions according to which the i-th inspected
unit may or may not contain an illegal substance
is modelled by a binary node unit i. The outcome of
a given analysis depends directly on the presence
or the absence of the respective characteristic.
Directed edges thus connect the nodes obs i and
unit i. Generally, two probabilities can be used
to describe the accuracy: the probability of a
positive result when the unit is truly positive and
the probability of a negative result when the unit
is truly negative, the sensitivity and specificity,
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respectively, (Section 4.2.3) of a test (e.g. (Balding,
2005; Kaye, 1987c; Lindley, 2006; Robertson and
Vignaux, 1995b)). They can be used to complete
the probability tables of the nodes obs i.

Before inspection of a unit, the probability that
it is found to contain or not to contain an illegal
substance depends directly on the proportion of
units in the consignment that contain illegal sub-
stances. Directed edges are thus drawn from the
node 𝜃 to the nodes unit i. The model also contains
auxiliary nodes, namely, P, 𝜃 > 0.5?, 𝜃 > 0.7?,
𝜃 > 0.75?, 𝜃 > 0.9?, 𝜃 > 0.95?, which define a
substructure from which cumulative probabilities
Pr(𝜃 > 𝜃0 ∣ 𝛼, 𝛽,m, z) (4.11) may be evaluated.

The definition of the nodes is given in Table 4.4.
Five pairs of nodes (obs, unit) are incorporated in
the current model. Clearly, more trials may be
needed for routine use and additional nodes can be
added analogously. The proportion 𝜃 of positives in
a consignment is modelled with a discrete chance
node 𝜃 with intervals 0 − 0.05,0.05 − 0.10,
. . . ,0.95 − 1. The number of intervals as well as
their size may be varied according to the analyst’s
needs.

Consider again a scenario in which m = 4 units
are inspected and all are found to be positive. In
such a scenario, as was illustrated in Section 4.3.1,
there is – assuming a uniform prior probability
for 𝜃 – a probability equal to 0.97 that the pro-
portion of positive units 𝜃 is greater than 0.5 (see
Table 4.1). The Bayesian network described earlier
is depicted in Figure 4.11 with nodes expanded



Table 4.4 Definitions of nodes used in the Bayesian network shown in Figure 4.10.

Node Definition States

𝛼, 𝛽 Parameters of the beta distribution defined for the node 𝜃 0.5,1,2, ...,10
𝜃 Proportion of positives in the consignment 0 − 0.05, ...,0.95 − 1
P Lower limit for the evaluation of cumulative probabilities of

the proportion of positives in the consignment
0,0.05, ...,0.95,1

𝜃 > P? Is the proportion of the positives in the consignment
greater thanP?

yes, no

𝜃 > 0.5? Is the proportion of the positives in the consignment
greater than 0.5?

yes, no

(0.7, ...) than 0.5 (0.7, . . . )?
obs 1 (2, ...) Outcome of test conducted in order to positi𝑣e,

determine the characteristic of item 1 (2, ...) negati𝑣e
unit 1 (2, ...) True (but unknown) characteristic of positi𝑣e,

item 1 (2, ...) negati𝑣e
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and instantiations made at the relevant nodes.
Nodes 𝛼 and 𝛽 are set to 1, whilst nodes unit 1 to
unit 4 are set to positive. Instantiations of nodes
unit i rather than obs i follows from the assumption
that the determination of the characteristic of an
inspected unit is made without error (see Taroni
et al., (2010) for the examination of a setting in
which the determination of the analytical char-
acteristics cannot be assumed to be error free).
The node 𝜃 > 0.5? displays the target probability
Pr(𝜃 > 0.5 ∣ 1,1,4,4). Notice the decrease in
probabilities for Pr(𝜃 > 0.7),Pr(𝜃 > 0.75), etc., as
expected.

Notice further that consideration is not only
limited in the proposed Bayesian network to the
evaluation of findings that have actually been
obtained. The probability may also be evaluated
with which future trials, given previous obser-
vations, can be expected to yield positive and
negative results, respectively. This is illustrated in
Figure 4.11 where a probability of approximately
0.83 (0.832) is indicated for the fifth unit being
positive.

4.4.2 Small Consignments

A Bayesian network able to be used for inference
about the proportion of items showing a target
characteristic of interest in a small consignment
has been proposed by Biedermann et al. (2008b)
and is depicted in Figure 4.12 (see also Taroni
et al. (2010, pp. 267–270)). The target node of
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Figure 4.11 A Bayesian network for inference about a large consignment of discrete units. The
definitions of the nodes are as given in Table 4.4. Four units are analysed and found to be positive
(assuming error-free analyses). A uniform prior distribution is assumed for parameter 𝜃.
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Figure 4.12 A Bayesian network for inference about
a proportion of a small consignment. The definitions of
the nodes are as given in Table 4.5.

the Bayesian network is Y, the number of positive
units amongst those not analysed. The node
definitions are given in Table 4.5,

The Bayesian network is structured as follows.
Nodes N, M, and S are discrete chance nodes
modelling the consignment size, the number of
inspected items (sample size), and the number
of uninspected items, respectively. The nodes
Z and Y represent, respectively, the number of
positives in the sample and the number of positives
amongst the uninspected items. Following the
model discussed in Section 4.3.2, the distribution
of Y is binomial with parameters given by the
nodes S and the node 𝜃. The network also provides
a substructure that assures that the instantiations
that may be made at the nodes N and M satisfy
the constraint n ≥ m (node M 𝑣alid?), and that the



Table 4.5 Definitions of nodes used in the Bayesian networks shown in Figure 4.12.

Node Definition State

N Consignment size n = 0,1, ...,20
M Sample size m = 0,1, ...,20
S Number of units not inspected s = 0,1, ...,20
Z Number of positive units in the sample z = 0,1, ...,20
Y Number of positives amongst the y = 0,1, ...,20

Uninspected units
V Lower limit for evaluating cumulative probabilities of the

number of positives amongst the uninspected units
𝑣 = 0,1, ...,20

Y >= V? Are there at leastV positives amongst the uninspected
units?

yes, no

M 𝑣alid? Constraint on M true, false
V 𝑣alid? Constraint on V true, false
𝜃 Proportion of positives in the consignment 0 − 0.05, ...,0.95 − 1
𝛼, 𝛽 Parameters of the beta distribution defined for the node 𝜃 0.5,1,2, ...,10



�

� �

�

Inference for a Normal Mean 429

instantiations that may be made at the nodes S
and V satisfy the constraint s ≥ 𝑣 (node V 𝑣alid?).
Finally, the node Y ≥ V provides the probability
for the event that the number of positives amongst
the units not inspected (Y) is at least equal to or
greater than a specified number (V).

Consider again the scenario that was described
in Section 4.3.2, where five units were inspected
from a consignment of size 10 and all were found to
be positive. Assuming a uniform prior distribution,
a probability of 0.985 was found for the cumula-
tive probability to find at least two positive units in
the remainder of the consignment. The Bayesian
network described earlier is depicted in Figure 4.13
with nodes expanded and instantiations made at
the relevant nodes. Nodes 𝛼 and 𝛽 are set to 1, node
N is set to 10, nodes M and Z are set to 5 whilst
node V is set to 2. The node Y ≥ V?displays the tar-
get probability Pr(Y ≥ 2 ∣ 5,5,5,1,1) = 0.985.

4.5 INFERENCE FOR A NORMAL
MEAN

Consider now data in the form of measurements,
known as continuous data. For example, consider
a scientist who is interested in determining the
true level 𝜃 of alcohol concentration in the blood of
someone suspected of driving under the influence
of alcohol. The determination is to be done on the
basis of a series of measurements (also known as



Figure 4.13 A Bayesian network for inference about a small consignment of discrete units. The
definitions of the nodes are given as in Table 4.5. Five units are analysed from a consignment of size
10 and found to be positive. A uniform prior distribution is assumed for parameter 𝜃. Source: Adapted
from Taroni et al. (2010). ©John Wiley and Sons.
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repeated measurements) taken by traffic police.
The repeated measurements x may be considered
equivalent in practice to the outcome of drawing
a random sample from a Normally distributed
random variable X, whose mean 𝜃 is the unknown
quantity of interest.

Within the Bayesian paradigm, 𝜃 has a probabil-
ity distribution and it is desired to determine this
in order to make inferences about 𝜃. The variance
𝜎2 of measurements may be treated as known or
unknown. There are circumstances where it can
be plausibly approximated from ad hoc calibrations
(Howson and Urbach, 1996) and it is taken to be
known. Inference about a normal mean when
the variance is known is addressed in Section
4.5.1. However, there are circumstances where
the variance cannot be taken to be a known
quantity and it will be necessary to introduce a
prior distribution also for this quantity. Inference
about a normal mean where the variance is also
unknown is addressed in Section 4.5.2.

4.5.1 Known Variance

Consider a random variable X that has a Nor-
mal distribution with mean 𝜃 and variance 𝜎2

(assumed known), so that

(X ∣ 𝜃, 𝜎2) ∼ N(𝜃, 𝜎2).

The common choice of distribution for 𝜃, the mean
of a Normal distribution, is itself a Normal distribu-
tion. The Normal distribution is a conjugate prior
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distribution for the mean of a Normal distribution.
In the situation where the variance of the measure-
ments is known, the prior distribution for 𝜃 and the
distribution for (X ∣ 𝜃, 𝜎2) with known 𝜎2 combine
together to give a posterior distribution, which is
also a Normal distribution.

Denote the parameters of the Normal distribu-
tion for 𝜃 by 𝜈, the mean, and 𝜏2, the variance. The
distribution is represented by

(𝜃 ∣ 𝜈, 𝜏2) ∼ N(𝜈, 𝜏2).

Then it can be shown (e.g. Lee (2012)) that the
posterior distribution of 𝜃, given a value x for X,
and 𝜎2, 𝜈, and 𝜏2 is

(𝜃 ∣ x, 𝜎2, 𝜈, 𝜏2) ∼ N(𝜃1, 𝜏
2
1 ), (4.26)

where
𝜃1 = 𝜎2𝜈 + 𝜏2x

𝜎2 + 𝜏2
, (4.27)

and
(𝜏2

1 )
−1 = (𝜎2)−1 + (𝜏2)−1, (4.28)

or, equivalently,

𝜏2
1 = 𝜎2𝜏2

𝜎2 + 𝜏2
.

The posterior mean, 𝜃1, is a weighted average of
the prior mean 𝜈 and the observation x, where the
weights are the variance of the observation x and
the variance of the prior mean 𝜈, respectively, such
that the component (observation or prior mean)
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that has the smaller variance has the greater con-
tribution to the posterior mean.

The reciprocal of the variance is known as the
precision. Thus the precision of the posterior distri-
bution of 𝜃 is the sum of the precisions of the prior
distribution and the observation.

This result can be generalised to consider
the distribution of the mean 𝜃 of a set of n
independent, identically Normally distributed
observations x1, . . . , xn with mean 𝜃 and variance
𝜎2. The generalisation follows from the result
that X̄, the random variable corresponding to
the sample mean x̄ of a sample of size n, has a
distribution, known as the sampling distribution,

(X̄ ∣ 𝜃, 𝜎2) ∼ N(𝜃, 𝜎2∕n).

The posterior distribution of 𝜃 is Normally
distributed with mean

𝜃1 =
𝜎2

n
𝜃 + 𝜏2x̄

𝜎2

n
+ 𝜏2

, (4.29)

and variance

𝜏2
1 =

𝜏2𝜎2∕n

𝜎2∕n + 𝜏2
, (4.30)

or precision

(𝜏2
1 )

−1 = n(𝜎2)−1 + (𝜏2)−1. (4.31)

The posterior mean 𝜃1 is a weighted average of the
prior mean 𝜈 and the sample mean x̄, with weights
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proportional to the variances corresponding to the
prior distribution and the sampling distribution.
The mean of the distribution with lower variance
(or higher precision) receives greater weight. The
posterior precision is the sum of the precisions of
the prior and the likelihood.

Consider the example of a person whose mea-
surement x of the blood alcohol level is measured
as 0.85 g/kg (see also Section A.3.2). It is of
obvious interest to determine the probability that
the true level 𝜃 of blood alcohol is greater than
the legal threshold (say 0.80 g/kg). From (4.26),
a posterior distribution for 𝜃 may be obtained,
where the posterior mean 𝜃1 and the posterior
variance 𝜏2

1 are computed following the updating
rules given in (4.27) and (4.28). Application of
these methods requires values to be given for the
prior mean, 𝜈, and variance, 𝜏2. The choice of
these values may well be subjective and would
have to be done carefully given the legal context
in which the measurement x is being made. As
illustrated in Section 4.1 there is considerable
debate about the role of prior distributions in the
law and forensic science. One approach that has
been suggested to overcome the subjectivity of the
choice of prior is the use of a vague prior, that is, a
prior which provides poor information compared
to the information provided by the data. When
the unknown parameter lies in a finite interval,
a uniform prior distribution may be applicable,
that is, a distribution that is taken to be constant
over the range of the variable of interest. This idea
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was already introduced in Section 4.2, where the
parameter 𝜃 of interest was a proportion.

In the context of the mean of a Normal distri-
bution the range of interest is from −∞ to +∞.
For the mean of a Normal distribution, it is not
possible to take a constant value over the range of
interest and retain the properties of a probability
distribution as the probability density function
will not integrate to 1. In such a circumstance, the
prior distribution is then known as an improper or
vague prior distribution. However, such a choice
of prior may be acceptable if it combines with a
likelihood to give a proper posterior distribution.
In this example, the improper prior is uniform as
it takes a constant value over the whole real line.

This is so for the Normal distribution. The uni-
form prior distribution is defined as the limiting
distribution in which 𝜈 = 0 and 𝜏2 → ∞. Inspec-
tion of (4.27) and (4.28) shows that the limiting
values for the posterior mean and variance are
simply 𝜃1 = x and 𝜏2

1 = 𝜎2; i.e. for a uniform prior,
the posterior distribution of 𝜃 is

𝜃 ∼ N(x, 𝜎2). (4.32)

In the blood alcohol example, given a measurement
x = 0.85, a known variance for measurements
from this procedure of 0.005, and a uniform
(improper) prior for the true level 𝜃, the posterior
distribution of the true blood alcohol level, 𝜃,
is N(0.85,0.005). The probability that the true
blood alcohol level is greater than a legal threshold



�

� �

�

436 Bayesian Inference

𝜃0 = 0.8 g/kg is then

Pr(𝜃 > 0.8 ∣ 𝜃 ∼ N(0.85,0.005))
= 1 − Pr(𝜃 ≤ 0.8 ∣ 𝜃 ∼ N(0.85,0.005))

= 1 − Φ

(
0.80 − 0.85√

0.005

)

= 1 − Φ(−0.7071) = 0.76,

where Φ(⋅) is the cumulative distribution function
of the standardised normal distribution (Section
A.3.2).

This result invites the question as to whether
this reading of 0.85, combined with a uniform
prior, is sufficient to find the suspect guilty beyond
reasonable doubt of having a blood alcohol con-
tent greater than 0.80 g/kg. The assumption of
a uniform prior is very supportive of the defence
and implies the procedures are very imprecise,
an inference that may be drawn from a value of
𝜏2 → ∞. The assumption may also be perceived to
be attractive because it is generally felt, through
the choice of such a distribution, that one is not
committing oneself to any particular value. A
uniform prior distribution can be interpreted to
mean that no parameter value is favoured over
any other. However, it is rarely the case that one
has no information at all about the possible level
of alcohol in blood and that any non-negative
value can be considered as equally likely. The
prior distribution can be determined from past
experiments, the experience of the expert or from
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the literature (e.g. values of a given magnitude
are not physically justifiable). In the case at hand,
suppose available knowledge (typically, circum-
stantial information, such as the fact that the
person has been stopped by traffic police whilst
driving erratically, exceeding the speed limit and
so on) suggests a prior distribution centred around
1.3 with a standard deviation equal to 0.02,
𝜃 ∼ N(1.3,0.0004). Note that this is equivalent
to a judgement that a priori, a level of alcohol in
blood lower than 1.24 and larger than 1.36 (i.e.
more than three standard deviations from the
mean) is considered very unlikely. A blood sample
is analysed and a measurement x = 0.85 g/kg
is obtained. The posterior distribution for 𝜃 from
(4.27) and (4.28) is N(1.27,0.0003). The 95%
lower probability bound for 𝜃 is obtained from
the 95% lower bound for a Normal distribution
centred at 1.27 with variance equal to 0.0003.
This is 1.24. There is a probability of 0.95 that the
true value of 𝜃 is greater than 1.24.

Note also that if more than one measurement
(n > 1) were taken, the inference for the true
alcohol blood level would be based on the mean of
the n measurements and the posterior parameters
determined from (4.29) and (4.30). However, in
the current example there is only one available
measurement, and the variability 𝜎2 (0.005) of
the procedure is large with respect to the prior
uncertainty represented by 𝜏2 (0.0004). This will
result in a posterior inference strongly effected by
the prior distribution. Note that in any Bayesian
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analysis, it is important to assess the sensitivity
of any inferences with respect to changes in
the model assumptions, including assumptions
about the probability density f (x ∣ 𝜃) and the
prior density f (𝜃). The Normal assumption is
often made for computational convenience, and a
sensitivity analysis might suggest consideration of
a long-tailed alternatives such as the t-distribution
(Section A.3.4) (Gelman et al., 2014). In what
follows, a sensitivity analysis will be performed to
explore the sensitivity of posterior inference about
alcohol level concentration with respect to the
choice of parameters in the prior distribution (i.e.
the prior mean and the prior variance). The prior
distribution may be felt too informative, with a
high prior mean and a very small variance that
makes the weight of the measurements very small.
Figure 4.14 illustrates the impact of the choice
of smaller values of 𝜈 and larger values of 𝜏2 on
the posterior mean. It can be observed that as the
prior variance increases relative to the variance of
the observations then the posterior mean comes
closer to the mean of the observations.

4.5.2 Unknown Variance

When the variance of the measurements cannot be
assumed known, it is necessary to have an unin-
formative prior for it. A common such prior is a
so-called Jeffreys’ prior, Section A.3.3.

So far, the variance of the distribution of a
random variable X has been assumed known. If
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Figure 4.14 Posterior mean 𝜃1 of alcohol concentra-
tion (g/kg) as a function of the prior variance 𝜏2 for
different levels of the prior mean: 𝜈 = 0.9 (solid line),
𝜈 = 1.0 (dashed line), 𝜈 = 1.1 (dot-dashed line), 𝜈 = 1.2
(dotted line), given a sample mean of 0.85 g/kg with
variance 𝜎2 = 0.005.

this is not the case and it is necessary to consider
a prior distribution for both parameters, then
the posterior distribution for 𝜃 is related to the
t-distribution (see Section A.3.4, Bernardo and
Smith (2000); Bolstad and Curran (2017); Robert
(2007); Lee (2012)). Again, whenever very little
prior information is available (or it is desired to
have a large consensus about the prior choice),
Jeffreys’ prior is appropriate.

Consider the prior mean first. The concept
that only poor knowledge is available a priori
(compared with the information the experiment is
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expected to provide) can be expressed by assuming
indifference between parameter values that lead
to a likelihood which is completely determined a
priori, except for its location. This may be expressed
by adopting a uniform prior, that is, f (𝜃) = 1, for
−∞ < 𝜃 < ∞. Consider now the prior variance, it
can be shown that a uniform prior over 𝜎2 does
not represent a locally uniform prior, whilst a
uniform prior over log(𝜎2) does. A vague prior
distribution on 𝜎2 can be taken as f (𝜎2) = 1∕𝜎2

(see e.g. (Lee, 2012); (Taroni et al., 2010)).
A non-informative prior distribution on both

parameters is defined as the product of the two
locally uniform priors now introduced and is given
by

f (𝜃, 𝜎2) = 1
𝜎2

. (4.33)

Suppose there are n observations of X, x1, . . . , xn.
The sample mean is x̄ =

∑n
i=1 xi and the sample

variance is

s2 =
n∑

i=1

(xi − x̄)2∕(n − 1).

The marginal posterior distribution of the popu-
lation mean 𝜃 is now a non-central t-distribution
with (n − 1) degrees of freedom, centred at x̄
with spread parameter s2∕n (Section A.3.4). The
probability density function of the transformed
variable

t = (𝜃 − x̄)
s∕
√

n
.
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is a (central) t-density with (n − 1) degrees of
freedom and probabilistic inferences about 𝜃 can
be made with reference to the t-distribution.

Subjective prior distributions can be elicited
when more information is available. A conjugate
prior distributions for (𝜃, 𝜎2) can be chosen as

f (𝜃, 𝜎2) = f (𝜃 ∣ 𝜎2)f (𝜎2), (4.34)

where 𝜃 ∣ 𝜎2 is Normal with mean 𝜈 and variance
𝜎2∕n0 for some fixed prior parameters 𝜈 and n0,
and S0∕𝜎2 is a chi-squared distribution with k
degrees of freedom with fixed prior parameters S0
and k (Section A.3.5). Notice that as the number
of degrees of freedom increase, the probability
distribution is more concentrated at smaller
values of 𝜎2 (see Figure A.4 in Section (A.3.5)).
Note that the prior distributions in (4.34) are not
independent as the prior distribution about the
mean 𝜃 depends on the population variance 𝜎2. It
is possible for a joint prior distribution f (𝜃, 𝜎2) to
be taken as the product of independent conjugate
priors for each parameter, that is, f (𝜃, 𝜎2) =
f (𝜃)f (𝜎2). If so, greater computations are required
as the posterior distribution is not known in
closed form and numerical solutions must be
implemented. However, the choice to model the
joint prior distribution f (𝜃, 𝜎2) as the product
of dependent conjugate priors as in (4.34) can
be justified not only on grounds of convenience.
Since the prior distributions are often informed
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by previous observations, it may be reasonable to
calibrate prior beliefs about the population mean
by the scale of measurements of the observations
(Gelman et al., 2014). Parameter n0 can be
considered in terms of the prior sample size for the
prior distribution for 𝜃 expressing the strength of
belief about the chosen prior location 𝜈. In other
words, it can be interpreted as the sample size
of Normally distributed observations that would
have the same precision as the prior belief about
𝜃 (Bolstad and Curran, 2017). The marginal
distribution of 𝜃 is a t-distribution with k′ = k + n
degrees of freedom, centred at the mean 𝜃1 of the
conditional posterior distribution of 𝜃

𝜃1 =
nx̄ + n0𝜈

n + n0
,

with dispersion parameter equal to 𝜎2
1∕n′ where

𝜎2
1 =

S0 +
n∑

i=1
(xi − x̄)2 +

(
n0n

n0+n

)
(x̄ − 𝜈)2

k′
, (4.35)

and n′ = n0 + n.
Consider again the scenario described in Section

4.5.1 where it was of interest to infer the quantity
of alcohol in blood given available measurements
that were assumed to be Normally distributed
with known variance. Suppose a new procedure
is available, so that the variability of the measure-
ments cannot be treated as known. Two replicate
measurements (n = 2) are available for this new
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procedure, say x1 = 0.84 and x2 = 0.86. Consider
first a non-informative prior distribution for (𝜃, 𝜎2)
as in (4.33). From the available measurements x1
and x2, x̄ = 0.85 and s2 = 0.0002. Then

t = (𝜃 − x̄)
s∕
√

n
= (𝜃 − 0.85)√

0.0002∕2
(4.36)

has a t-distribution with 1 degree of freedom.
The 95% lower probability bound for 𝜃 is

obtained from the 95% lower bound for a t-distri-
bution with 1 degree of freedom. This is −6.31.
Then, solution of

(𝜃 − 0.85)√
0.0002∕2

= −6.31

gives 𝜃 = 0.78 There is a probability of 0.95 that
the true value of 𝜃 is greater than 0.78.

Alternatively, an informative prior distribution
as in (4.34) may be introduced. The prior distri-
bution for 𝜃 given 𝜎2 can be centred at 𝜈 = 1.30,
as in Section 4.5.1, with n0 = 1. As far as the
prior distribution about 𝜎2 is concerned, consider
a number of degrees of freedom k = 1 (see Figure
A.4 in Section (A.3.5)). In this way the probability
mass will be concentrated for smaller values of
𝜎2. Parameter S0 can be elicited using available
information about the variability of measure-
ments of the old procedure, that was known and
set equal to 0.005. One can consider that the
new procedure will have better performance with
respect to the older one, and that the variability
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of measurements should be smaller. Suppose it is
believed that Pr(𝜎2 > 0.005) = 0.1. Then

Pr
(
𝜎2

S0
>

0.005
S0

)
= Pr

(
S0

𝜎2
<

S0

0.005

)
= 0.1,

where S0∕𝜎2 has a chi-squared distribution with k
degrees of freedom and S0∕0.005 is therefore the
10% point of a chi-squared distribution with k = 1
degrees of freedom, that is 0.015 79, obtainable
from statistical software. Therefore,

S0 = 0.005 × 0.015 79 = 0.000 078 9,

so 𝜎2 has S0 = 0.000 078 9 times an inverse chi-
squared distribution with 1 degree of freedom
(Section A.3.6). The posterior distribution of the
target quantity 𝜃 will be a t-distribution with
k′ = 1 + 2 = 3 degrees of freedom, centred at

𝜃1 =
nx̄ + n0𝜈

n + n0
= 2 × 0.85 + 1 × 1.30

2 + 1
= 1,

and

𝜎2
1 =

S0 +
n∑

i=1
(xi − x̄)2 +

(
n0n

n0+n

)
(x̄ − 𝜈)2

k′

= 0.045 09.

The dispersion parameter is therefore 𝜎2
1∕n′ =

0.045 09∕3 = 0.015 03, which is set equal to
s∕
√

n. Then

t = (𝜃 − x̄)
s∕
√

n
= (𝜃 − 1)√

0.015 03
(4.37)

has a t-distribution with 3 degrees of freedom.
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The 95% lower probability bound for 𝜃 is
obtained from the 95% lower bound for a t-distri-
bution with 3 degrees of freedom. This is −2.35.
Then, solution of

(𝜃 − 1)√
0.015 03

= −2.35

gives 𝜃 = 0.711 There is a probability of 0.95 that
the true value of 𝜃 is greater than 0.711.

4.5.3 Interval Estimation

Consider now interval estimation about the
normal mean 𝜃 given the posterior distribution
N(𝜃1, 𝜏

2
1 ) in (4.27) and (4.28) (or in (4.29) and

(4.30) when more than one observation is avail-
able). Because of the symmetry of the Normal
distribution, the HPD interval for a given probabil-
ity value is symmetric about the posterior mean,
and it is equi-tailed. When the variance is known,
the 100(1 − 𝛼)% HPD interval is given by

[q𝛼∕2, q1−𝛼∕2],

where q𝛼∕2 and q1−𝛼∕2 are the 100𝛼∕2% and
100(1 − 𝛼∕2)% points of a Normal distribution
N(𝜃1, 𝜏

2
1 ) so that for 𝜃 ∼ N(𝜃1, 𝜏

2
1 )

Pr{q𝛼∕2 ≤ 𝜃 ≤ q1−𝛼∕2} = 1 − 𝛼. (4.38)

The HPD interval can also be obtained by rewriting
(4.38) as

Pr
{

q𝛼∕2 − 𝜃1

𝜏1
≤ 𝜃 − 𝜃1

𝜏1
≤ q1−𝛼∕2 − 𝜃1

𝜏1

}
= 1 − 𝛼,

(4.39)
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where (q𝛼∕2 − 𝜃1)𝜏−1
1 = −z1−𝛼∕2 and (q1−𝛼∕2 −

𝜃1)𝜏−1
1 = z1−𝛼∕2 are the 100𝛼∕2% and 100(1 −

𝛼∕2)% points of a standard Normal distribution
(Section A.3.2). The 100(1 − 𝛼)% HPD interval
can therefore be obtained as

(𝜃1 − z1−𝛼∕2𝜏1, 𝜃1 + z1−𝛼∕2𝜏1). (4.40)

Consider again the context of the estimation of
the concentration, 𝜃, of alcohol in blood intro-
duced earlier in Section 4.5.1. The measured
alcohol concentration X in blood was assumed
to be Normally distributed with variance known
equal to 0.005, so X ∼ N(𝜃,0.005), whilst both a
non-informative and an informative prior distribu-
tion was considered for parameter 𝜃. Consider the
informative prior distribution N(1.30,0.0004). A
blood sample is analysed and a measurement x =
0.85 g/kg is obtained. The posterior distribution
for 𝜃 from (4.27) and (4.28) is N(1.27,0.0003)
and a 95% equi-tailed HPD interval is as follows:

(1.27 ± 1.96
√

0.0003) = (1.23,1.30). (4.41)

The scientist is therefore entitled to say that their
degree of belief that the true alcohol level is in
fact in the realised interval (1.23,1.30) is equal to
0.95.

Compare the result in (4.41) with that obtained
from a frequentist perspective. A confidence inter-
val of level (1 − 𝛼) for the Normal mean can be
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obtained in the following way. Consider a Normal
distribution N(𝜃, 𝜎2) for the quantity of interest
X, then

Pr
{
−z1−𝛼∕2 ≤ X − 𝜃

𝜎
≤ z1−𝛼∕2

}
= 1 − 𝛼. (4.42)

Given the available measurement x, the 100(1 −
𝛼)% confidence interval for 𝜃 is

[x ± z1−𝛼∕2𝜎].

In the case at hand, a 95% confidence interval
can be obtained as

(0.85 ± 1.96 × 0.0051∕2) = (0.71,0.99).
(4.43)

This interval is very different from (4.41) because
no account is taken in (4.43) of prior information.

In many practical situations available measure-
ments are more abundant (n > 1). Consider a
random sample (X1, . . . ,Xn) from the distribution
X ∼ N(𝜃, 𝜎2), then the result in (4.42) can be
generalised as

Pr

{
−z1−𝛼∕2 ≤ X̄ − 𝜃

𝜎∕
√

n
≤ z1−𝛼∕2

}
= 1 − 𝛼,

where X̄ = 1
n

∑n
i=1 Xi is the sample mean and

X̄ ∼ N(𝜃, 𝜎2∕n) (see Section A.3.2). Given a sample
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of observations x1, . . . , xn, the sample mean x̄ is
calculated. Then, the 100(1 − 𝛼∕2) confidence
interval for 𝜃 is

(x̄ ± z1−𝛼∕2𝜎∕
√

n).

Note that, whenever the population variance 𝜎2

is unknown, it is estimated by the sample variance
s2 and the quantiles ±z1−𝛼∕2 will be substituted by
the corresponding quantiles of a t distribution with
(n − 1) degrees of freedom.

The conflict between the Bayesian credible inter-
val in (4.41), (1.23,1.30), and the confidence
interval in (4.43), (0.71,0.99), is not surprising.
Recall results in (4.27) and (4.29) according to
which the posterior mean is a weighted aver-
age of the prior mean and observations with
weights given by the population variance (i.e.
0.005 or 0.005∕n) and the prior variance (i.e.
0.0003). Since there is only one measurement
available, and the population variance is higher
than the prior variance, the posterior distribution
of the true quantity of alcohol 𝜃 is dominated by
the prior distribution. The reader can verify that
whenever a uniform prior distribution is taken for
𝜃 (as in Section 4.5.1), the probability interval
and the confidence interval coincide. However,
the interpretation differs since the philosophies
underlying their respective constructions are
different.
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4.6 QUANTITY ESTIMATION

Consider a setting where it is of interest to estimate
the quantity of drugs in a consignment of packets.
It is only possible to make a statement about the
consignment as a whole with certainty if the whole
consignment is analysed (and no error is commit-
ted). Once it is accepted that a sample has to be
considered, it is necessary to consider what level of
proof is adequate. This is strictly a matter for the
court to decide.

This section addresses and answers the follow-
ing question:

• Given a sample from a consignment of homo-
geneous material, what is the quantity of illicit
material in the consignment?

A frequentist approach based on Student’s
t-distribution is described in Mario (2010) and
Alberink et al. (2014, 2017). However it is a
Bayesian approach that is discussed here.

A probability interval is appropriate. In a
Bayesian context, a probability distribution is asso-
ciated with a parameter (Q, say) denoting the total
quantity of illicit material in the consignment and
probability statements of any desired kind may be
made. For example, these could include the proba-
bility that Q is greater than a certain value, which
will be of importance in sentencing hearings.
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The estimation of the quantity of drugs will
be treated in two stages. First the proportion of
the units in the consignment that contain illicit
drugs will be modelled. Secondly, the total weight
of the illicit material in those packets that do
contain anything illicit is estimated. Consider
the consignment as itself a random sample from
a large super-population of units or packages,
some or all of which contain illegal material. Then
𝜃 (0 < 𝜃 < 1) is the proportion of units in the
super-population that contain illegal material.
Uncertainty about the proportion of packets that
are illicit may be represented by a beta distribution
(Section A.3.7).

Consider a setting in which a consignment of
N = m + n units is seized. A number (m) of units
are examined; the choice of m may be made follow-
ing the procedures described in Section 4.3. On
examination it is found that z (≤ m) units contain
drugs and that (m − z) do not. The contents of
the z units that contain drugs are weighed and
their weights (x1, . . . , xz) recorded. The remainder
(n = N − m) are not examined. All of m, z, and
n are known. Let y(≤ n) be the number of units
that contain drugs amongst the units that are not
examined. Clearly, y is unknown. Let (𝑤1, . . . , 𝑤y)
be measurements of the quantity of drugs in
those units not examined which contain drugs.
Let x̄ =

∑z
i=1 xi∕z be the sample mean quantity

of drugs in units amongst those examined and
found to contain drugs, and let s be the sample
standard deviation where the sample variance
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s2 =
∑z

i=1 (xi − x̄)2∕(z − 1). Let �̄� =
∑y

j=1 𝑤j∕y be
the mean quantity of drugs in units containing
drugs amongst those not examined. Clearly, �̄�

is unknown. The total quantity q of drugs in the
exhibits is then (zx̄ + y�̄�) and the problem is one
of first estimating �̄�, given x̄, s, and z, whilst not
knowing y and then of finding y�̄� by finding
the posterior distribution of Y ∣ x̄. An estimative
approach is one in which the parameters (𝜃, 𝜎2) of
the Normal distribution representing the quantity
of drugs in an individual unit are estimated by
the corresponding sample mean x̄ and sample
variance s2 (Tzidony and Ravreboy, 1992). A
predictive approach is one in which the values
of the unknown measurements (𝑤1, . . . , 𝑤y)
are predicted by values of known measurements
(Aitchison and Dunsmore, 1975; Aitchison et al.,
1977; Evett et al., 1987; Geisser, 1993).

The predictive approach predicts the values of �̄�
(and hence q) from x̄ and s through the probability
density function f (�̄� ∣ x̄, s)

f (�̄� ∣ x̄, s) = ∫ f (�̄� ∣ 𝜃, 𝜎2)f (𝜃, 𝜎2 ∣ x̄, s)d𝜃 d𝜎2,

where f (𝜃, 𝜎2 ∣ x̄, s) is the posterior density func-
tion for (𝜃, 𝜎2) based on a prior density function
f (𝜃, 𝜎2) and the summary statistics x̄ and s. When
prior information for 𝜃 and 𝜎2 is not available
a uniform prior for 𝜃 and 𝜎2 may be used as in
Section 4.5.2. The predictive density function
f (y ∣ x̄) is then a generalised t-distribution as
described in Sections 4.6.1 and 4.6.2.
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The advantage of the predictive approach rel-
ative to the estimative approach is that any prior
knowledge of the variability in the parameters
(𝜇, 𝜎2) of the Normal distribution can be modelled
explicitly. Suggestions as to how this may be done
are given by Aitken et al. (1997) with reference to
U.S v. Pirre (1991).

4.6.1 Predictive Approach in Small
Consignments

The probability density function f (q) of Q has been
derived, for small and large consignments, respec-
tively, in Aitken and Lucy (2002). First, consider a
small consignment. Let Y (≤ n) denote the number
of units not examined, which contain drugs. The
estimation of quantity is able to take account of
the lack of knowledge of Y. A probability function
for Y may be determined using the methods
described in Section 4.3. A weighted average of
the quantities obtained for each value of Y is taken
with weights the probabilities of Y obtained from
an appropriate beta-binomial distribution (Section
A.2.7). Let (X1, . . . ,Xz) and (W1, . . . ,WY) be the
weights of the contents of the units examined and
not examined, respectively, which contain drugs.
It is assumed that these weights are Normally
distributed. Let (x1, . . . , xz) be the observed values
of (X1, . . . ,Xz). The total weight, Q, of the contents
of the units in the consignment is then given by

Q = zx̄ + YW̄,
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where x̄ =
∑z

i=1 xi∕z and W̄ =
∑Y

j=1 Wj∕Y. The dis-
tribution of (Q ∣ x1, . . . , xz), which is a predictive
distribution, is of interest. Once known, it is pos-
sible to make probabilistic statements about Q.

Let x̄ and s =
√∑z

i=1 (xi − x̄)2∕(z − 1) denote
the mean and the standard deviation, respec-
tively, of the measurements on the z units, which
were examined and found to contain drugs. The
number of units not examined equals n, of which
y (unknown) contain drugs and for which the
mean quantity of drugs is �̄� =

∑y
j=1 𝑤j∕y (and it is

unknown).
A lower bound q for the quantity Q of drugs can

be derived from the relationship Q = zx̄ + YW̄ as
follows. First, condition on Y = y. Then

Pr(Q < q ∣ m, z, n, y, x̄, s)
= Pr(zx̄ + yW̄ < q ∣ m, z, n, y, x̄, s)

= Pr
(

W̄ <
q − zx̄

y
∣ m, z, n, y, x̄, s

)
. (4.44)

In the absence of prior information about the mean
or the variance of the distribution of the weights of
drugs in the packages, a uniform prior distribution
is used. Details of how such prior information may
be considered is given in Aitken et al. (1997) (for
statistical considerations) and in Bring and Aitken
(1997) (for legal considerations). Given Y = y, the
quantity

W̄ − x̄

s
√

1
z
+ 1

y
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has a t-distribution with (z − 1) degrees of freedom
(Section A.3.4). Quantiles of this distribution and
hence lower bounds for the quantity q = zx̄ + y�̄�,
according to appropriate burdens of proof may be
determined.

For given values of m, z, n, y, x̄, and s, lower
bounds for �̄� and hence q can be determined from
the formula

�̄� = x̄ + s tz−1,𝛼

√
1
z
+ 1

y
,

where tz−1,𝛼 is the quantile of order 𝛼 of a
t-distribution with (z − 1) degrees of freedom. Let
T = (W̄ − x̄)∕s

√
(1∕z) + (1∕y). Then, from (4.44)

one obtains

Pr

⎛
⎜⎜⎜⎝

T <
q − (z + y)x̄

sy
√

1
z
+ 1

y

∣ m, z, n, y, x̄, s

⎞
⎟⎟⎟⎠
,

where T has a t-distribution with z − 1 degrees of
freedom. Let

tqy =
q − (z + y)x̄

sy
√

1
z
+ 1

y

.

For a small consignment, the value of y is a
realization of a random variable, which has a
beta-binomial distribution (Section A.2.7). The
conditional distribution of W̄, given Y = y, (W̄ ∣ m,

z, n, y, x̄, s), can be combined with the marginal dis-
tribution of Y to give a distribution (W̄ ∣ m, z, x̄, s).
The distribution and corresponding probability
function of Q may then be determined from the
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relationship Q = zx̄ + yW̄, say

Pr(Q < q ∣ m, z, n, y, x̄, s)

=
n∑

y=0

Pr(T < tqy ∣ m, z, n, y, x̄, s)Pr(Y = y).

The probability density function f (q) of Q can be
derived by differentiation of the cumulative distri-
bution function. Let ft,z−1(⋅) denote the probability
density function of the t-distribution with (z − 1)
degrees of freedom. The probability density func-
tion f (q) of Q is then given by

f (q) =
n∑

y=0

ft,z−1(tqy)
(

sy

√
1
z
+ 1

y

)−1

Pr(Y = y).

(4.45)
The values for Q corresponding to appropriate
percentage points of the distribution may be
determined from (4.45). Some results are given in
Table 4.6 together with frequentist lower bounds
using the fpc factor (4.15) and in Figure 4.15.

Estimative Approach

Given the sample size, and thus an estimate of the
proportion of a consignment which contain drugs,
and an estimate of the mean and the standard
deviation of the weight in the consignment, a
confidence interval for the true quantity of drugs
may be calculated following the method described
by Tzidony and Ravreboy (1992), according
to which the consignment is considered as a



Table 4.6 Estimates of quantities q of drugs, in a consignment of m + n units, according to various
possible burdens of proof, expressed as percentages P = 100 × Pr(Q > q ∣ m, z, n, x̄, s) in 26 packages
when 6 packages are examined (m=6, n=20) and z=6, 5, or 4 are found to contain drugs.

Percentage
P

Number of units examined
that contain drugs

Possible burden
of proof

6 5 4 (illustrative)

97.5 0.689 (0.930) 0.501 (0.744) 0.345 (0.575)
95 0.750 (0.968) 0.559 (0.785) 0.397 (0.613) Beyond reasonable doubt
70 0.944 (1.067) 0.770 (0.885) 0.603 (0.704) Clear and convincing
50 1.015 (1.105) 0.862 (0.921) 0.704 (0.737) Balance of probabilities

The mean (x̄) and standard deviation (s) of the quantities found in the packages examined which contain drugs are
0.0425 and 0.0073 g. The parameters for the beta prior are𝛼 = 𝛽 = 1. Numbers in brackets are the corresponding
frequentist lower bounds using the fpc factor (4.15).
Source: From Aitken and Lucy (2002). Reprinted with permissions of ASTM International.
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Figure 4.15 The probability that the total quantity Q
of drugs (in grams) in a consignment of 26 packages
is greater than q when 6 packages are examined and
6 (solid curve), 5 (dashed), or 4 (dot-dashed) are found
to contain drugs. The mean and standard deviation of
the quantities found in the packages examined which
contain drugs are 0.0425 and 0.0073 g. The parame-
ters for the beta prior are𝛼 = 𝛽 = 1. Source: Reproduced
with permission from Aitken and Lucy (2002). ©ASTM
International.

population and the packages (or units) examined
as a sample. The quantities (weights) of drugs
in the units are assumed to be random variables
that are Normally distributed, with population
mean 𝜃 and population variance 𝜎2, say. The mean
quantity in a unit in the consignment is estimated
by the mean, denoted x̄, of the quantities of found
in the sample. A confidence interval is determined
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for 𝜃 based on the sample size m, the sample mean
x̄, the sample standard deviation s of the quantities
of drugs in the unit examined, and an associated
t-distribution. Following results in Tzidony and
Ravreboy (1992), a 100(1 − 𝛼)% confidence
interval for the mean quantity in a package results

(
x̄ ± tm−1,1−𝛼∕2

s√
m

√
N − m

N

)
,

where tm−1,1−𝛼∕2 is the 100(1 − 𝛼∕2)% point of
a t-distribution with (m − 1) degrees of freedom,
and

√
(N − m)∕N is the finite population correc-

tor factor. An estimate of the total quantity of
drugs in the consignment is then determined by
considering the size N of the consignment and
the proportion 𝜃 of packages in the consignment
thought to contain drugs. The corresponding con-
fidence interval for Q, the total quantity of drugs
in the consignment is obtained by multiplying the
lower and the upper bound of the interval by N�̂�

where �̂� is an estimate for 𝜃 based on the sample
size m:

N�̂�

(
x̄ ± tm−1,1−𝛼∕2

s√
m

√
N − m

N

)
.

However, no account is taken of the uncertainty
in the estimation of 𝜃, only a point estimate of 𝜃
is used.

An example in which a seized drug exhibit
contained 26 street doses is given in Tzidony
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and Ravreboy (1992). A sample of six (m = 6)
units was taken and each was weighed. Twenty
(n = 20) units were not examined. All six of the
units examined contained drugs. The average
net weight x̄ of the powder in the six units was
0.0425 g with a standard deviation s of 0.0073 g.
A 95% confidence interval for the total quantity
in the 26 doses is

26[0.0425 ± 2.57 × 0.0073∕
√

6 ×
√

20∕26]
= (0.93,1.28).

Note that this interval incorporates the finite
population correction factor to allow for the
relatively large sample size (m = 6) compared
with the consignment size (N = 26). The Bayesian
approach described earlier does not require such
a correction.

It is also possible to consider just one end of the
confidence interval, a so-called confidence limit.
A lower limit on the quantity of drugs is desired
as it enables the court to determine a limit at
the appropriate level of proof above which the
true quantity lies. For example, from Frank et al.
(1991) a statement of the form that ‘at a 95%
confidence level, 90% or more of the packages in
an exhibit contain the substance’ is suggested by
them as being sufficient proof in cases of drug han-
dling that 90% or more of the packages contain
the substance. The nature of the construction of
the confidence limit is that in 95% of cases studied
for which these results are obtained then 90% of
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the packages will contain the substance. However,
the probability with which a particular interval in
a particular case contains the true proportion is
not known as there is no randomness associated
to the proportion. From a frequentist perspective,
the proportion is an unknown fixed quantity, and
the realised confidence interval will either contain
it or not. A corresponding 100(1 − 𝛼)% lower
bound for Q is given by

N�̂�

(
x̄ − tm−1,1−𝛼

s√
m

√
N − m

N

)
.

The lower end 0.93 g of the 95% confidence
interval (0.93,1.28) g for the quantity Q of drugs
in the 26 packages may be thought of as an
approximate 97.5% lower confidence limit for
Q. This can be compared with the value 0.689 g
in the corresponding cell of Table 4.6, which is
the amount such that Pr(Q > 0.689) = 0.975
obtained from the predictive approach. The pre-
dictive approach produces a lower value because
of the uncertainty associated with the values
determined for the number of unexamined units
that contain drugs. This difference is repeated for
different probabilities. In general, the Bayesian
approach gives smaller values for the quantities
than the frequentist approach.

Further details are available in Aitken et al.
(1997), Izenman (2001), and Aitken and Lucy
(2002) where it is shown that as the burden
of proof, concerning the amount of drugs in
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the packages, increases, the quantity for which
charges may be brought decreases thus lowering
the length of any sentence which may be related
to quantity. For example, if proof is required
beyond reasonable doubt and a probability of 0.95
is thought to meet this burden then the quantity
associated with this is 0.750 g (assuming all
six units examined contain drugs) since, from
Table 4.6, Pr(Q > 0.750) = 0.95. Alternatively, if
proof is required on the balance of probabilities and a
probability of 0.50 is thought to satisfy this, then
the quantity associated with this is 1.015 g since,
again from Table 4.6, Pr(Q > 1.015) = 0.50. If
less than six of the units examined are found to
contain drugs then the estimates for q decreases
considerably as can be seen from the second and
the third columns of Table 4.6.

4.6.2 Predictive Approach in Large
Consignments

For a large consignment the data are used to
provide a beta posterior distribution for the pro-
portion of illicit drugs in the whole consignment.
It is assumed that the consignment size is known.
The total weight, Q, of the contents of the units in
the consignment is given as before as

Q = zx̄ + yW̄.

The distribution of Q is then given by the t-density,
conditional on y, with Pr(Y = y) replaced by an
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appropriate part of a beta distribution over the
interval (0, n) (see Appendix A). Results for a large
consignment, obtained by scaling up by a factor
of 100 from the results in Table 4.6, are shown in
Table 4.7 and Figure 4.16 with a similar pattern
of results to those for small consignments. Note
that in the t-density component of the expression
y is treated as a discrete variable in the interval
{0, . . . , n} and in the beta component of the
expression it is treated as a continuous variable.
The treatment of y as a continuous variable for

Table 4.7 Estimates of quantities q g. of drugs, in a
consignment of m + n units, according to various
possible burdens of proof, expressed as percentages
P = 100 × Pr(Q > q ∣ m, z, n, x̄, s) in 2600 packages
when 6 packages are examined (m=6, n=2594) and
z=6, 5, or 4 are found to contain drugs.

Percentage Number of units examined
P that contain drugs

6 5 4

97.5 63 (95) 44 (78) 30 (61)
95 69 (98) 51 (80) 36 (63)
70 91 (106) 74 (88) 58 (70)
50 98 (110) 84 (92) 69 (74)

The mean (x̄) and standard deviation (s) of the quantities found
in the packages examined which contain drugs are 0.0425
and 0.0073 g. The parameters for the beta prior are 𝛼 = 𝛽 = 1.
Numbers in brackets are the corresponding frequentist lower
bounds without using the fpc factor.
Source: From Aitken and Lucy (2002). Reprinted with permis-
sions of ASTM International.
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Figure 4.16 The probability that the total quantity
Q of drugs (in grams) in a consignment of 2600 pack-
ages is greater than q when 6 packages are examined
and 6 (solid curve), 5 (dashed), or 4 (dot-dashed) are
found to contain drugs The mean and standard devia-
tion of the quantities found in the packages examined
that contain drugs are 0.0425 and 0.0073 g, respec-
tively. The parameters for the beta prior are 𝛼 = 𝛽 = 1.
Source: From Aitken and Lucy (2002). Reprinted with
permissions of ASTM International.

the beta integral enables the calculation of the
probability that y takes a particular integer value
for use with the t-density.

For more complicated cases see Alberink et al.
(2014, 2017). A guideline is proposed for the
estimation of the total amount of drugs in cases
where there are items of different weights con-
taining drugs in concentrations to which there is
considerable measurement uncertainty attached.
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Alberink et al. (2014) used t-distributions to
determine confidence intervals for quantities that
take account of variation in drug concentration
amongst items and of measurement uncertainty
with Normally distributed variation and con-
stant relative standard deviations. Alberink et al.
(2017) extended this work to examples that do
not assume constant relative standard deviations.

4.7 DECISION ANALYSIS

The framework that was introduced in Section 2.8
applies well to problems of statistical inference
described so far in this chapter, where the decision
problem is the choice of a proper summary (e.g.
an estimate) of a quantity of interest 𝜃, and the
decision space is the set Θ of possible 𝜃 values.
According to a decision-theoretic perspective,
a point estimate 𝜃 of a parameter 𝜃 represents a
decision to act as though 𝜃 were the true value of 𝜃.
A loss function L(𝜃, 𝜃)2 thus measures the conse-
quence of acting as if the true value of the quantity
of interest were 𝜃 when it is actually 𝜃, whilst the
probability distribution f (𝜃) describes personal
beliefs of a scientist about parameter 𝜃 (e.g. a
Normal mean). To find the optimal decision, one
must compute the Bayesian posterior expected loss

2L(𝜃, 𝜃) is used instead of the more correct L(c(𝜃, 𝜃)) for ease of
notation.
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of a decision that averages the loss according to the
posterior probability distribution f (𝜃 ∣ x) derived
after observing measurements x that encapsulate
all the available information about the parameter
of interest at the time of decision making:

EL(𝜃 ∣ x) = ∫Θ
L(𝜃, 𝜃)f (𝜃 ∣ x)d𝜃. (4.46)

An optimal decision, also called a Bayesian deci-
sion, is a decision 𝜃∗ that minimises the Bayesian
expected loss in (4.46). This is the equivalent of
(2.19) for a continuous parameter.

Such a decision framework can be extended to
any kind of statistical inference, including interval
estimation and hypothesis testing. An application
to the problem of sampling is developed in Section
4.7.2. Further examples can be found in Taroni
et al. (2010).

4.7.1 Standard Loss Functions

As for the prior distribution, a decision maker is
allowed to choose any loss function that reflects
their preferences, in particular the undesirabil-
ity of alternative consequences they may face.
However, the choice is best made with standard
mathematically tractable loss functions. Consider
the squared-error (or quadratic) loss:

L(𝜃, 𝜃) = k(𝜃 − 𝜃)2 (4.47)

where k denotes a constant (Press, 2003). The
loss associated with making a decision 𝜃 when the
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true state of nature is 𝜃 increases by the square of
the difference between 𝜃 and 𝜃 (i.e. decisions 𝜃 far
away from the true state of nature 𝜃 are strongly
penalised). For example, if the difference doubles
the loss quadruples. A squared-error loss with
k = 4 and 𝜃 = 0.5 is shown in Figure 4.17a. The
Bayesian posterior expected loss is given by

EL(𝜃 ∣ x) = ∫Θ
k(𝜃 − 𝜃)2f (𝜃 ∣ x)d𝜃. (4.48)

It can be shown (see, e.g. (Berger, 1985)) that the
Bayes decision 𝜃∗ under a quadratic loss, that is,
the one minimising (4.48), is the posterior mean.
The choice of a quadratic loss function may be
acceptable whenever it is reasonable to equally
penalise under-estimation and over-estimation,
though this can be achieved by means of alterna-
tive symmetric loss functions. Consider for the sake
of illustration the case where it is of interest to esti-
mate the height of an individual appearing in video
recordings made by a surveillance camera during
a bank robbery (Taroni et al., 2006). In such a
context it may be reasonable to accept that under-
and over-estimation of the actual height will incur
equal losses, and therefore a squared-error loss
may be chosen (Taroni et al., 2010).

Another standard loss function is the piecewise
linear loss function

L(𝜃, 𝜃) =
{

k1(𝜃 − 𝜃) if 𝜃 − 𝜃 ≥ 0,
k2(𝜃 − 𝜃) if 𝜃 − 𝜃 ≤ 0.

(4.49)
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Figure 4.17 (a) Quadratic loss function in (4.47)
with 𝜃 = 0.5 and k = 4; (b) Piecewise linear loss func-
tion in (4.49) with 𝜃 = 0.5, k1 = 2, and k2 = 1.
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This loss increases more slowly than the quadratic
loss and does not overpenalise large but unlikely
errors. The Bayesian posterior expected loss is
given by

EL(𝜃 ∣ x) = ∫
𝜃>𝜃

k1(𝜃 − 𝜃)f (𝜃 ∣ x)d𝜃

+ ∫
𝜃<𝜃

k2(𝜃 − 𝜃)f (𝜃 ∣ x)d𝜃. (4.50)

It can be shown (see, e.g. (Berger, 1985)) that
the Bayesian decision under a linear piecewise
loss function is the 100k1∕(k1 + k2)% point of
the posterior distribution of the parameter of
interest. The constants k1 and k2 can be cho-
sen so as to reflect the relative importance of
under-estimation and over-estimation. In the
particular case where k1 = k2, the loss function
is symmetric and the Bayes decision 𝜃∗ is the
posterior median. A piece-wise linear loss func-
tion is illustrated in Figure 4.17b that penalises
under-estimation more heavily (k1 > k2). One can
easily observe that with values of 𝜃 equidistant
from 𝜃 (in this case, 𝜃 = 0.5), losses associated to
an under-estimation are larger than those associ-
ated to an over-estimation of the same magnitude
(e.g. acting as 𝜃 = 0.5 when the true value 𝜃0 of
𝜃 is 0.8 is felt as more undesirable than acting as
𝜃 = 0.5 when the true value of 𝜃 is 0.2.). Take, for
example, the problem of estimating blood alcohol
concentration in blood that was discussed earlier
in Section 4.5, where – starting from a uniform
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distribution – the posterior distribution for the true
level 𝜃 of alcohol in blood was N(0.85,0.005).
A decision maker may prefer to penalise the
under-estimation of the true alcohol concentra-
tion more than the over-estimation. This may be
so because falsely concluding a modest alcohol
concentration in an individual with high alcohol
concentration is regarded as a more serious error
(because such an individual may represent a
serious danger in traffic) than falsely assigning a
high blood alcohol concentration to an individual
which has actually a low concentration level.
Given a piecewise linear loss function with k1 = 2
and k2 = 1, the Bayes decision 𝜃∗ is the 100(2∕3)%
point of the posterior distribution, 𝜃∗ = 0.88 g/kg.
An asymmetric piecewise linear loss function
was proposed by Taroni et al. (2014b) in forensic
toxicology (analysis of the presence of THC in
blood from car drivers).

As well as the choice of the prior distribution,
a recurrent question is how to choose an appro-
priate loss function and particularly how this
may impact on the optimal decision. A sensi-
tivity analysis is performed to different choices
of values k1 and k2 in (4.49). Results, in terms
of the 100k1∕(k1 + k2)% point of the posterior
distribution (the value minimising the expected
loss (4.50)), are given in Table 4.8.

The optimal decision is concerned with the
Bayesian estimate of the quantity of interest. A
different loss function may produce a different
Bayes decision, but does not necessarily influence
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Table 4.8 Sensitivity of the optimal decision on the
alcohol level (g/kg) to different choices of k1 and k2 in
the piecewise linear loss function in (4.49).

k1 k2

1 2 3 4 5

1 0.85 0.82 0.80 0.79 0.78
2 0.88 0.85 0.83 0.82 0.81
3 0.90 0.87 0.85 0.84 0.83
4 0.91 0.88 0.86 0.85 0.84
5 0.92 0.89 0.87 0.86 0.85

the decision to be taken by the recipient of the
expert evidence (e.g. a change from a guilty to
a non-guilty verdict in a legal contest). There
are instances in Table 4.8 where the Bayesian
estimate is lower than the threshold 𝜃0 (0.8),
though these values are obtained for choices of
k2 much larger than k1 (say, k2 = 4 and k1 = 1).
These values would imply an unlikely preference
structure according to which falsely concluding
a modest alcohol concentration in an individual
with high alcohol concentration is considered less
severe than falsely assigning a high blood alcohol
concentration to an individual which has actually
a low concentration level.

Another standard loss function is related to
a two-action decision problem. Suppose that
the parameter space Θ can be partitioned into
two non-overlapping sets Θ1 and Θ2 such that
Θ = Θ1 ∪ Θ2. A question that may be of interest
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is whether the true value of 𝜃 belongs to Θ1 or
to Θ2, that is, to compare alternative hypotheses
H1 ∶ 𝜃 ∈ Θ1 and H2 ∶ 𝜃 ∈ Θ2. The decision
space can be described as  = {d1, d2}. The first
decision, d1, amounts to accepting the view
according to which the parameter 𝜃 takes values
in Θ1. The second decision, d2, amounts to accept-
ing the view according to which the parameter
𝜃 takes values in Θ2. Formally, the two decisions
d1 and d2 can be conceptualised as decisions to
accept one of the two composite hypotheses: H1
and H2. A loss function for such a two-action
decision problem can be defined (for i = 1, 2) as:

L(di, 𝜃) =
{

0 if 𝜃 ∈ Θi,

fi(𝜃) if 𝜃 ∉ Θi.
(4.51)

A decision di is accurate if the true value of param-
eter 𝜃 lies in the range defined by hypothesis Hi,
and a zero loss is associated. Alternatively, incor-
rect decisions (i.e. when the true value of 𝜃 lies out-
side the range defined by hypothesis Hi) have an
associated positive loss fi(𝜃), where fi(𝜃) is a func-
tion (could be linear, quadratic, or something else)
of the distance between the decision di and the true
value of 𝜃. In other words, the loss depends on the
severity of the mistake.

4.7.2 Decision Analysis for Forensic
Sampling

Bayesian approaches illustrated in Section 4.3
consider sampling essentially as a problem of
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the derivation of probabilistic statements about
the composition of a consignment in order to
answer the questions of interest as ‘how big a
sample should be taken’ or ‘what proportion of a
consignment of discrete, homogeneous items is
illicit’? Although the handling of the uncertainty
through probability is an essential aspect of
sampling scenarios, the situation that is actually
faced by a customer of forensic expertise is one
that contains elements that allow the outcome to
be considered as a problem of decision making. This
section will examine this point in further detail.

Consider the consignment inspection scenario
that was described in Section 4.3, where a sam-
ple of size m from a large consignment (so that
sampling can be taken as with replacement) is
inspected, z items are found to be positive and the
uncertainty about the proportion 𝜃 of items pre-
senting a given target characteristic is modelled
by a beta distribution with parameters 𝛼 and 𝛽,
Be(𝛼, 𝛽). Two decisions might be detected. The first
one, d1, amounts to accepting the view according
to which the proportion 𝜃 of ‘positive’ units (i.e.
units with illicit content) in the consignment is
greater than some specified value 𝜃0, say, 𝜃 > 𝜃0.
The second one, d2, is the view according to which
the proportion 𝜃 of positive units in the consign-
ment is not greater than the specified value 𝜃0,
say, 𝜃 ≤ 𝜃0. Note that in this case Θ1 = (𝜃0,1) and
Θ2 = (0, 𝜃0].
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A loss function as defined in (4.51), with fi(𝜃) =
ki ∣ 𝜃 − 𝜃0 ∣, may be considered

L(di, 𝜃) =
⎧
⎪⎨⎪⎩

0 if 𝜃 ∈ Θi,

ki(𝜃 − 𝜃0) if 𝜃 ∉ Θi and 𝜃 ≥ 𝜃0,

ki(𝜃0 − 𝜃) if 𝜃 ∉ Θi and 𝜃 ≤ 𝜃0.

(4.52)
Given the stated loss function, the Bayesian pos-
terior expected loss for d1, that is, accepting H1 ∶
𝜃 > 𝜃0 is

EL(d1 ∣ z,m) = ∫Θ2

k1(𝜃0 − 𝜃)f (𝜃 ∣ z,m)d𝜃

= ∫Θ2

k1𝜃0f (𝜃 ∣ z,m)d𝜃

−∫Θ2

k1𝜃f (𝜃 ∣ z,m)d𝜃,

where f (𝜃 ∣ z,m) = Be(𝛼 + z, 𝛽 + m − z). Similarly,
the Bayesian posterior expected loss for d2, that is,
accepting H2 ∶ 𝜃 ≤ 𝜃0, is

EL(d2 ∣ z,m) = ∫Θ1

k2(𝜃 − 𝜃0)f (𝜃 ∣ z,m)d𝜃

= ∫Θ1

k2𝜃f (𝜃 ∣ z,m)d𝜃

−∫Θ1

k2𝜃0f (𝜃 ∣ z,m)d𝜃.
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After some algebra it can be shown that (Taroni
et al., 2010, pp. 214–215)

EL(d1 ∣ z,m) = k1

{
𝜃0∫Θ2

f (𝜃 ∣ z,m)d𝜃

− 𝛼 + z
𝛼 + 𝛽 + m∫Θ2

f1(𝜃 ∣ z,m)d𝜃
}

,

(4.53)

and

EL(d2 ∣ z,m) = k2

{
−𝜃0∫Θ1

f (𝜃 ∣ z,m)d𝜃

+ 𝛼 + z
𝛼 + 𝛽 + m∫Θ1

f1(𝜃 ∣ z,m)d𝜃
}

,

(4.54)

where f1(𝜃 ∣ z,m) = Be(𝛼′ = 𝛼 + z + 1, 𝛽′ = 𝛽 +
m − z).

Consider a specified value 𝜃0 = 0.80. In Section
4.3.1 it has been shown that if a sample of size
m = 13 is taken and all items turn out to be pos-
itive, and assuming a uniform prior distribution
for 𝜃, then the probability that the proportion of
positive items is greater than 0.8 is approximately
equal to 0.95, that is,

∫Θ1

f (𝜃 ∣z,m)d𝜃 = Pr(𝜃 > 𝜃0 ∣𝛼′ = 1 + 13, 𝛽′ = 1)

= 0.95,

and therefore ∫Θ2
f (𝜃 ∣ z,m)d𝜃 = 0.05. The other

probabilities in (4.53) and (4.54) can be obtained
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analogously and

∫Θ1

f1(𝜃 ∣ z,m)d𝜃

= Pr(𝜃 > 𝜃0 ∣ 𝛼′ = 1 + 13 + 1, 𝛽′ = 1)
= 0.964,

and ∫Θ2
f1(𝜃 ∣ z,m)d𝜃 = 0.036. Assume that values

for k1 and k2 in (4.52) are taken equal to 1. The
Bayesian posterior expected losses in (4.53) and
(4.54) can be obtained as

EL(d1 ∣ z,m) = 0.8 × 0.05 − 1 + 13
1 + 1 + 13

× 0.035

= 0.0023,

and

EL(d2 ∣ z,m) = −0.8 × 0.95 + 1 + 13
1 + 1 + 13

× 0.964 = 0.135.

The optimal decision d∗ is the one that min-
imises the expected losses EL(di ∣ z,m) in (4.53)
and (4.54). Therefore, one should decide d1 when-
ever EL(d1 ∣ z,m) < EL(d2 ∣ z,m). The optimal
decision here is d1, since it minimises the loss.

One might object that equal values for k1 and
k2 are not reasonable (or not justifiable). A false
consideration that 𝜃 > 𝜃0 (i.e. decision d1 is taken
and is incorrect) may be felt as more undesirable
than falsely considering 𝜃 < 𝜃0 (i.e. decision d2 is
taken and is incorrect). This would suggest taking
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k1 > k2. It can be verified that, whenever 13 items
are sampled and all are found to contain drugs
(and a uniform prior distribution is assumed),
decision d1 will remain the optimal decision unless
k1 > 60k2, that is, there is good reason to accept
the idea that falsely considering 𝜃 > 𝜃0 is roughly
60 times worse than falsely considering 𝜃 < 𝜃0.
It is possible to verify that whenever k1 = 60
and k2 = 1, the expected losses in (4.53) and
(4.54) would become equal to 0.14 and 0.135,
respectively.

The loss function in (4.51) can also take the form
of a so-called ‘0 − ki’ loss function, where fi(𝜃) is
constant and equal to ki, that is,

L(di, 𝜃) =
{

0 if 𝜃 ∈ Θi,

ki if 𝜃 ∉ Θi.

In the consignment inspection scenario described
so far, the loss k1 associated with erroneously
deciding d1 could represent the amount of com-
pensation to be allocated to an erroneously
pursued individual, or the net loss represented
by money that has been seized in a non-priority
case (i.e. one in which it was considered, falsely,
that 𝜃 > 𝜃0). In turn, the loss k2 associated with
erroneously deciding d2 could consist of the funds
or monetary value of property that could have
been confiscated by the investigative authority
as a penalty, and given to the public treasury.
The Bayesian posterior expected loss in (4.46) is
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given by

EL(d1 ∣ z,m) = k1∫Θ2

f (𝜃 ∣ z,m)d𝜃

= k1 Pr(𝜃 ≤ 𝜃0 ∣ 𝛼′ = 𝛼 + z, 𝛽′ = 𝛽 + m − z),
(4.55)

and

EL(d2 ∣ z,m) = k2∫Θ1

f (𝜃 ∣ z,m)d𝜃

= k2 Pr(𝜃 > 𝜃0 ∣ 𝛼′ = 𝛼 + z, 𝛽′ = 𝛽 + m − z).
(4.56)

The optimal decision d∗ is the one that minimises
the expected losses EL(di ∣ z,m) in (4.55) and
(4.56). Therefore, one should decide d1 whenever
EL(d1 ∣ z,m) < EL(d2 ∣ z,m). By rearranging terms,
decision d1 should be taken when

Pr(𝜃 ≤ 𝜃0 ∣ 𝛼′ = 𝛼 + z, 𝛽′ = 𝛽 + n − z) <
k2

k1 + k2
.

As an example, consider k1 = k2 = 100, but
readers may choose their own values, including of
course asymmetric values k1 ≠ k2. Recall the pos-
terior distribution of 𝜃 is Be(14,1) (a uniform prior
distribution was chosen, and a sample of size m =
13 has been inspected and all items are found to
be positive), then

Pr(𝜃 ≤ 0.8 ∣ 14,1) = 0.04 < 1∕2 ⇒ d∗ = d1.
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Figure 4.18 Collapsed representation of an influence
diagram for deciding about a proportion when m units
are inspected. The node 𝜃 represents the unknown pro-
portion, the diamond shaped node L the loss and the
squared node D the available actions. The remaining
nodes are defined according to Table 4.9. Source: From
Biedermann et al. (2012a). Reprinted with permissions
of Elsevier.

An influence diagram (Figure 4.18) can be
constructed to assist in the calculation of the
posterior probabilities for 𝜃 and the associated
expected losses for decisions d1 and d2 (see Section
2.9 and (Biedermann et al., 2012a)). The defini-
tions of the nodes are summarised in Table 4.9.
A network fragment covering discrete chance
nodes 𝛼, 𝛽, 𝜃, 𝜃 > 𝜃0? follows the definitions given
earlier in Section 4.4.1 (Table 4.4). The node
𝜃 > 𝜃0? represents probabilities for values of the
proportion that are greater than a specified value
𝜃0. This model fragment is extended with two
discrete chance nodes m and z providing the
number of inspected items and the number of
items that are found to be positive (i.e. presenting
the target characteristic), a decision node D
(covering the two available decisions d1 and d2),



Table 4.9 Definitions of the nodes used in the influence diagram shown in Figure 4.18. The states
of the nodes 𝛼, 𝛽, 𝜃0, k1 and k2 are chosen according to the requirements of the case under
investigation. Other ranges of values may be chosen as required.

Node Description State(s)

m Number of inspected items 0,1,2, · · ·
z Number of inspected items found to be positive 0,1, . . .
𝛼, 𝛽 Parameters of the beta distributed variable 𝜃 0.1,0.5,1,2, ...,10 (e.g.)
𝜃 Proportion 𝜃 of ‘positive’ units in the population (i.e. seizure or

consignment)
0 − 0.05, ...,0.95 − 1

𝜃0 Target value for the unknown proportion 0.85,0.9,0.95 (e.g.)
𝜃 ≥ 𝜃0? Is the true proportion 𝜃 greater than the specified target

value 𝜃0?
true, false

D Decision about the proportion (available actions) d1, d2
k1 Loss for erroneously deciding d1 ∶ 𝜃 > 𝜃0 when 100 000 (e.g.)

Θ2 ∶ 𝜃 ≤ 𝜃0 is the true state of affairs
k2 Loss for erroneously deciding d2 ∶ 𝜃 ≤ 𝜃0 when Θ1 ∶ 𝜃 > 𝜃0 is

the true state of affairs
100 000 (e.g.)

L Decision loss L(di,Θj), i, j = 1,2
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Figure 4.19 Partially expanded representation of the
influence diagram in Figure 4.18 for deciding about a
proportion when m units are inspected and z = m are
found to be positive. The node 𝜃 represents the unknown
proportion, the diamond shaped node L the loss and the
squared node D the available actions. The remaining
nodes are defined according to Table 4.9. Instantiated
nodes are shown with a bold border.

a loss node L for the decision consequences, and
two discrete chance nodes k1 and k2 providing the
losses. Node L takes the value 0, or the numerical
values defined for k1 and k2, depending on the
actual configuration of the parental nodes of L,
that is decisions di, the true state of nature Θj,
and the specified limiting value 𝜃0. The expanded
representation of this Bayesian decision network
is represented in Figure 4.19, where nodes m
and z are instantiated to the value 13, to reflect
available information. The node 𝜃 will account
for the posterior distribution, based on a uniform
prior distribution, whilst the posterior probability
that the proportion 𝜃 is greater than a given
threshold 𝜃0 (here 𝜃0 is set equal to 0.8) is provided
by the node 𝜃 > 𝜃0?. The posterior expected losses
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of decisions d1 and d2 are given in node D where
EL(d1) = 4398 and EL(d2) = 95 601.

Consignment inspection can be expensive and it
may be of interest to take into consideration also
the cost of inspection. The Bayesian decision net-
work in Figure 4.18 can be easily modified to take
into account the cost of inspection (Biedermann
et al., 2012a).

Another question that is regularly encountered
in practice is whether it is worth inspecting
individual items of a consignment or preferable
to make a decision about the proportion 𝜃 with-
out sample information. Aspects about such a
so-called pre-posterior analysis are developed in
Biedermann et al. (2012a).
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5

Evidence and
Propositions:

Theory

5.1 THE CHOICE OF
PROPOSITIONS AND
PRE-ASSESSMENT

In 1998, Evett and Weir emphasised that the like-
lihood ratio represents the best available model for
the scientist to understand and assess the value of
an item of evidence. They expressed three princi-
ples (see Section 5.2), two of which are of primary
importance for this chapter. These two principles
stipulate that in order to evaluate any item of
evidence, it is necessary to consider at least two
propositions and to condition one’s assessment
on a framework of task-relevant circumstances.
The perception of the circumstances has a clear
impact on the choice of the propositions, which
can broadly be organised within a so-called

483
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hierarchical model. The nature of the propositions
that the scientist will help address is therefore
of particular interest. This chapter will present
principles of interpretation and a methodology for
the choice of relevant propositions. The formal
development of the likelihood ratio expression at
different hierarchical levels is explained.

Later in the book, in Chapter 6, the evaluation of
evidence for different evidential types (e.g. fibres,
DNA) is described in detail through practical
examples. The evaluation of the value of recovered
glass fragments is the forerunner of many of the
ideas applied to other evidential types. These
include, for example, firearms and toolmarks, fin-
germarks, speaker recognition, hair, documents
and handwriting, and paint. Transfer material
(such as fibres or glass fragments) is discussed
in various different chapters throughout the
book as it is one of the better evidential types for
the discussion of the different ideas. There are
many other evidential types for which the logic of
evidence evaluation is not yet so well developed,
for example, numerical (i.e. digital) evidence for
which Biedermann and Vuille (2016) proposed
ideas for its evaluation.

In this chapter, various general principles
are presented that form the foundation of the
statistical approach for evidence evaluation in
various areas such as glass and fibres. Reference
is also made to these areas and others (various
transfer material, fingermarks and shoemarks)
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elsewhere as appropriate, mainly in Chapter 6
where numerical examples are developed to
illustrate the approach.

5.2 LEVELS OF PROPOSITIONS
AND ROLES OF THE FORENSIC
SCIENTIST

It is widely accepted that for the assessment of
scientific evidence, the scientist should consider
different propositions proposed by the prosecution
and the defence to illustrate their description of the
facts under examination.1 The approach to this
aspect of evidence evaluation was the subject of a
large-scale project at the Forensic Science Service
in the United Kingdom called the Case Assessment
Initiative. The pioneering works are those of Cook
et al. (1998a,b); and Evett et al. (2000e). This
methodology is also described in one of a series of
guides for judges, lawyers, forensic scientists, and
expert witnesses published by the Royal Statistical
Society (Jackson et al., 2014).

1The reason for the use of the term ‘propositions’ instead of
‘hypotheses’ is re-emphasised. Gittelson et al. (2016a) noticed
that ‘[ . . . ] in science, hypotheses refer to statements that can be
tested by performing a scientific experiment, whereas a ‘proposi-
tion’ is not necessarily testable. In forensic science, a statement
such as ‘The defendant murdered the victim’ cannot be tested in
a laboratory, so it is preferable to call this a ‘proposition’, and to
refer generally to the statements corresponding to Hp and Hd as
‘propositions’.’ (p. 186)
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Broadly speaking, propositions are statements
of issues of dispute. Forensic scientists evaluate
their findings under these propositions. The
formulation of propositions is a crucial basis for a
logical and scientific approach to the evaluation
of evidence (e.g. Cook et al., 1998b; Buckleton
et al., 2014). The framing of the propositions is
an important and difficult stage of the evaluation
process, because it depends on case information
and the allegations of each of the parties, parties
that have different key issues. The key issues are
formally defined by the ENFSI Guideline (ENFSI,
2015):

The key issue(s) represent those aspects of a case on
which a Court, under the law of the case, seeks to
reach a judgement. The key issue(s) provide the general
framework within which requests to forensic practitioners
and propositions (for evaluative reporting) are formally
defined. (p. 21)

More generally, the framing of propositions can
be guided by three key principles (Evett and Weir,
1998):

(1) Evaluation is only meaningful when at least
two competing propositions are considered,
conventionally denoted throughout this book
as Hp and Hd, or occasionally, for example,
Hdi

(i = 1, . . . , n).
(2) Evaluation of scientific evidence (E) con-

siders the probability of the evidence given
the propositions of interest, Pr(E ∣ Hp, I) and
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Pr(E ∣ Hd, I), where I denotes the task-relevant
information (see also point 3).

(3) Evaluation of scientific evidence is carried out
within a framework of circumstances, denoted
I. The evaluation is conditioned not only by the
competing propositions but also by the struc-
ture and content of the framework.

Note that the principles were previously given in
Evett (1990).

The importance of propositions in this evalua-
tive framework is discussed in Taroni et al. (2013),
Hicks et al. (2016), and Gittelson et al. (2016a).

Generally, propositions are considered in pairs.
There will be situations where there will be three
or more propositions and comments on these sit-
uations are given in Sections 2.3.2.2 and 6.1.6.2.
This can happen with DNA mixtures, for example,
where the number of contributors to the mixture
is in dispute (Buckleton et al., 1998; Lauritzen
and Mortera, 2002; Biedermann et al., 2011d;
Buckleton et al., 2019) or in cases involving
the DNA profile of a single stain of body fluids
when relatives of the defendant are considered as
potential donors of the recovered stain. Multiple
propositions may also be of interest in cases of
gunshot residue (GSR) when alternative actions
are emphasised by the prosecution or the defence
(e.g. ‘The defendant shot the victim’ versus ‘The
defendant did not shoot, but was a bystander’). It
is generally possible with some thought to reduce
the number of propositions to two, which will
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be identified with the prosecution and defence
positions, respectively.

Clearly the two propositions must be mutually
exclusive. It is tempting to argue that they ought to
be exhaustive, but this is not necessary (see Section
2.1.1). A simple way to achieve exhaustiveness is
by adding the word ‘not’ in the first proposition.
For example, changing ‘Mr C is the man who
kicked Mr Z’ to ‘Mr C is not the man who kicked Mr
Z’. This, however, gives the court no idea of the way
in which the scientist has assessed the evidence
with regard to the second proposition. Mr C may
not have kicked the victim, but he may have been
present during the incident (e.g. Mr C may say that
he helped the victim after the attack). Analogously,
consider the proposition ‘Mr B had sexual inter-
course with Miss Y’, modified to ‘Mr B did not have
sexual intercourse with Miss Y’. In fact, if semen
has been found on the vaginal swab, then it may be
inferred that someone has had sexual intercourse
with Miss Y and, indeed, the typing results from
the semen would be evaluated by considering their
probability given that it came from some other
man. It will help the court if this is made clear in
the alternative proposition that is specified. The
alternative could thus be ‘Some unknown man,
unrelated to Mr B, had sexual intercourse with
Miss Y’ (with no consideration of relatives). In
summary, the simple use of ‘not’ to frame the alter-
native proposition is unlikely to be particularly
helpful to the court (Cook et al., 1998b).
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In the same sense, it is useful to avoid words
such as ‘contact’ to describe the type of action
in the main propositions of interest, because
vague words may be misleading. As noted by
Evett et al. (2000e), the statement that a PoI
has been in recent contact with broken glass
could mean many things. There is a need, thus,
to specify propositions clearly in a framework of
circumstances. Moreover, the scientist may con-
fuse propositions with explanations. For example,
statements like ‘the crime stain originated from
the PoI’ and ‘the crime stain originated from some
unknown person who happened to have the same
genotype as the PoI’ represent explanations. The
probability of the evidence that the DNA profile
of the crime stain genotype matches the profile
of the PoI given the first explanation is 1, but the
probability of the evidence given the alternative
explanation is also 1. Thus, the likelihood ratio is
1 and would not help advance resolution of the
issues in the case. Analogously, if the propositions
are defined as ‘The matching DNA came from
the defendant’ and ‘The matching DNA came
from an unknown (unrelated) individual’, the
likelihood ratio equals 1, too (Hicks et al., 2015).
The interpretation is uninformative in this case
because the alternative proposition explains, so to
say, the observation but does not enable the value
of the evidence to be determined. Explanations can
be useful as an exploratory tool and they play an
important role in reconstructions that normally
contribute to the investigative phase. Details and
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examples of the distinction are presented by Evett
et al. (2000e) and by Jackson et al. (2014).

It is also common to observe that results (i.e.
observations on the recovered material) are
included in the formulation of the propositions.
This happens, for example, when the scientist,
upon observing a given feature in the trace (e.g.
a Nike logo in a shoemark), suggests that the
alternative proposition is that an unknown Nike
shoe left the mark. Hicks et al. (2015) explain,
through various examples, why this should
not be done. The main reason is that including
observations in the propositions will mean that
it will be for the court to evaluate the results,
without benefiting from any advice from the
scientist. So, if forensic scientists wish to assess the
value of the evidence in a meaningful way, they
should ensure that results do not overlap with the
definition of propositions. On the practical side,
the propositions that are of interest in a judicial
case depend on (i) the circumstances of the case,
(ii) the available background data, and (iii) the
key issue(s) (criteria supported by ENFSI (2015)).
A classification (a so-called hierarchy) of these
propositions into three main categories or levels
has been proposed, notably source level (level I),
activity level (level II), and offence level (level III)
propositions (Cook et al., 1998a).

It is important to note that – as presented by
Buckleton et al. (2014) – in some cases, when
there are no clear propositions or even no PoI, a
forensic scientist may be able to generate expla-
nations to account for the observations. In such a



�

� �

�

Levels of Propositions 491

case, the forensic scientist plays the role of investi-
gator rather than that of evaluator. It is important
to distinguish between the two roles and be
aware of them. A discussion on the roles and on
the inferential processes to guide thinking and
practice in investigation and in court proceedings
was presented in Jackson et al. (2006).

Bayes’ factor (or likelihood ratio) can be used for
two main purposes in forensic science:

(1) The first purpose consists of assigning a value
for a given item of evidence. This refers to the
evaluative level at which forensic science oper-
ates. Evaluation of a piece of evidence means
that the scientist provides an expression of
the value of the evidence in support – which
may be positive, negative, or neutral – of a
proposition of interest. This represents the
task introduced in Section 2.3. An important
aspect of this level of operation is that the
scientist does not express an opinion about a
proposition itself. This is the main difference
with respect to the second purpose.

(2) The second purpose is the provision of infor-
mation to the police. Here, the scientist acts
at an investigative level. At this stage, the
scientist tries to answer questions such as
‘what happened?’. The forensic scientist is said
to be ‘crime focused’ and observes evidence
that forms the basis for the generation of
propositions and suggestions for explana-
tions, in order to give guidance to the police
investigators.
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As previously reported by Buckleton et al.
(2014), in forensic settings it may be the case that
a PoI is not available for comparative purposes.
Therefore, it will not be possible to evaluate the
characteristics observed in the recovered material
and those in the control material as would be the
case in an evaluative setting. Notwithstanding
this, the data – measurements made on the recov-
ered material – can be used for an investigative
purpose. Scientists can offer to the police informa-
tion in support of more general propositions. See
Taroni et al. (2012b) for an example of questioned
documents where the (investigative) propositions
were ‘the author of the questioned document (say,
a threatening letter) is a male (or a female)’ or
‘the author of the questioned document is (is not)
left-handed.

The assessment of the evidence at level I propo-
sitions in the hierarchy (i.e. source level) depends,
in essence, on analyses and measurements on the
recovered and control materials. The value of a
trace (or, a mark, signal, or stain) given source
level propositions (e.g. ‘Mr. X’s pullover is the
source of the recovered fibres’ and ‘An unknown
garment is the source of the recovered fibres’) does
not need to take into account anything else other
than the analytical information obtained during
examination. Aspects such as the presence or
absence of material, or where a stain was found,
are not considered. Further, the nature of the stain
(e.g. a biological fluid or cells) is known. The prob-
ability of the evidence under the first proposition,
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providing the numerator of the likelihood ratio,
is considered from a careful comparison between
two materials (i.e. the recovered and the control).
The probability of the evidence under the second
proposition, providing the denominator of the
likelihood ratio, is based on a consideration of the
comparison result, that is, the observed features,
with respect to a population of alternative sources.

There can be uncertainty, however, regarding
the relevance of the evidence. Because of the
sensitivity of DNA current profiling technology, it
is now possible to encounter situations in which
it is not necessarily the case that a particular
profile actually came from what was observed as a
discernible region of staining. In such cases, it may
be necessary to address what are termed ‘sub-level
I’ propositions or sub-source propositions. In a
DNA context, for example, level I propositions
such as ‘The semen came from Mr Smith’ and ‘The
semen came from some other man’ are replaced
by ‘The DNA came from Mr Smith’ and ‘DNA
came from some other person’, respectively. In
that context, Taylor et al. (2016a) explore ‘the
use of information obtained from examinations,
presumptive and discriminating tests for body
fluids, in order to provide assistance to consider
propositions at source level.’ (p. 54)

As an aside, note also that it has been suggested
that when scientists talk about the source of part
of a DNA profile (i.e. the major component of a
profile) they refer to sub-sub-source propositions
(Hicks et al., 2016).
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The second hierarchical level (level II) is related
to activities. This implies that the definition of
propositions of interest has to include an action.
Activity level propositions could be, for example,
‘Mr X kicked the victim’ versus ‘Mr X did not kick
the victim’ (i.e. some other man kicked the victim,
and Mr X is not involved in the offence), or ‘Mr X
sat on the car driver’s seat’ versus ‘Mr X never sat
on the car driver’s seat’. The consequence of this
activity, the assault or the sitting on a driver’s seat,
is an event of contact (between the two people
involved in the assault, or the contact between the
driver and the seat of the car) and, consequently,
a transfer of material (e.g. blood or fibres in this
example). The scientist thus needs to consider
more detailed information about the case under
examination, relative to the transfer, persistence,
and recovery of the blood or fibres on the receptor
(the victim’s pullover or car’s seat for example).

The circumstances of the case (e.g. the distance
between the victim and the criminal, the strength
of the contact and the modus operandi, previous and
legitimate contacts) need to be known in order to
be able to answer relevant questions like ‘Is this the
sort of trace that would be seen if Mr X were the
man who kicked the victim?’ or ‘Is this the sort of
trace that would be seen if Mr X were not the man
who kicked the victim (Mr X is unconnected to the
assault)? ’.

The evaluation of evidence under level I propo-
sitions requires little in the way of circumstantial
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information. Only I, the background information,
is needed. Such information is required in order
to define the relevant population for use in the
assessment of the rarity of the characteristics of
interest (a detailed description of the role of the
background information I is given in Section
2.4.4). However, evaluation given activity level
(II) propositions is not feasible without also a
framework of circumstances (Kokshoorn et al.,
2017), notably on how and when traces may
have been deposited. The importance of this will
clearly appear in the discussion of pre-assessment
(see Sections 5.5.1 and 5.5.3). Pre-assessment
requires experts to examine the different ver-
sions of the case and to verify that all relevant
information for the proper assessment of the
evidence is available. The main advantage of level
II over level I propositions is that the evaluation
of evidence under activity (level II) propositions
does not strictly depend on the recovered material.
It is possible, for example, to assess the fact that
no fibres have been recovered and it is clearly
important to assess the importance of the absence
of material (such absence of material is evidence
of interest). A formal development is presented in
Sections 5.5.3 and 6.2.6.

Level III, known as the offence level, and some-
times as the crime level, is close to the activity
level. It needs elements that qualify the activity as
an offence. At level III, the propositions are those
of most interest to the jury. Non-scientific infor-
mation, such as whether or not a crime occurred,
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or whether or not an eyewitness is reliable, plays
an important role in the inference (on Hp or Hd),
and any decision taken subsequently. Factors
such as the relevance of the recovered stain, as
defined by Stoney (1991a), or the possibility of
transfer for innocent reasons play an important
role in the assessment of the evidence given level
III propositions.

In routine work, forensic scientists predom-
inantly assess scientific evidence given source
level propositions. Assessment given activity level
propositions requires that an important body of
circumstantial information is available to the sci-
entist (see Section 5.5.2). Often this is not the case
because of a lack of interaction between the scien-
tists and investigators, or for reasons related to an
oversimplification of the case (Biedermann et al.,
2016d). There are clear limitations in the use of
a sub- or source level evaluation in a criminal
investigation compared with an evaluation given
activity level propositions. For a discussion on
those limitations and on guidelines for biological
evidence, see Gill et al. (2018,2020).

Several criminal cases attest to such limitations.
See, for example, the discussions reported in the
judgement of R v. Weller (2010) and the comments
on the Amanda Knox case (2015) in Vuille et al.
(2013) and Gill (2016). Generally, the lower the
level (with offence level being the highest level) at
which the evidence is assessed, the more limited
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will be the importance of the results in the context
of the case as a whole discussed in court. For ease
of simplicity, note that even if the value, V, of the
evidence is such as to add considerable support
to the proposition that the evidence comes from
the PoI, this does not help determine whether the
evidence had been transferred during the criminal
action or for some innocent reason. Consequently,
there is often dissatisfaction if the scientist’s
evaluation is restricted to sub-level I and level I
propositions. The ENSFI Guideline (ENFSI, 2015)
emphasised this aspect, supporting evaluations at
activity level. The guideline specifies:

Activity level propositions should be used when expert
knowledge is required to consider factors such as transfer
mechanisms, persistence and background levels of the
material which could have an impact on the understanding
of scientific findings relative to the alleged activities. This is
particularly important for trace materials such as micro-
traces (fibres, glass, gunshot residues, other particles) and
small quantities of DNA, drugs or explosives. (p. 11)

In summary, thus, the available information,
the context of the case, and the key issue(s)
influence the choice of propositions. Propositions
should be amenable to a reasoned assignment of
credibility by a judicial body and be useable for
rational inference as emphasised in ENFSI (2015).
Examples illustrating the various levels of the
hierarchy of propositions are given in Table 5.1.
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Table 5.1 Examples of the hierarchy of propositions

Level Generic Examples

III Offence A Mr A committed the burglary
Another person committed the burglary

B Mr B raped Ms Y
Some other man raped Ms Y

C Mr C assaulted Mr Z
Some other man assaulted of Mr Z

II Activity A Mr A is the man who smashed window X
Another person smashed the window and Mr A was not present
when window X was smashed

B Mr B had sexual intercourse with Ms Y
Some other man had sexual intercourse with Ms Y

C Mr C is the man who kicked Mr Z in the head
Some other person kicked Mr Z in the head

I Source A The glass fragments came from window X
They came from some other broken glass object

B The semen came from Mr B
The semen came from some other man

C The blood on Mr C’s clothing came from Mr Z
The blood on Mr C’s clothing came from some other (unrelated) person

Source: From Cook et al. (1998a). Reprinted with permissions of Elsevier.
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5.3 THE FORMAL DEVELOPMENT
OF A LIKELIHOOD RATIO FOR
DIFFERENT PROPOSITIONS
AND DISCRETE
CHARACTERISTICS

5.3.1 Likelihood Ratio with Source
Level Propositions

As usual, let E be the evidence, the value of which
has to be assessed. Let the two propositions to
be compared be denoted Hp and Hd. The likeli-
hood ratio, V, taking into account background
information I, is then

V =
Pr(E ∣ Hp, I)
Pr(E ∣ Hd, I)

.

The propositions will be stated explicitly for any
particular context. If the court is interested in
determining the origin of a given stain or mark,
Hp and Hd will explicitly mention that a PoI (or an
object) is or is not the source of the stain (mark or
signal).

For illustrative purposes, consider a case involv-
ing transfer material such as fibres in which a
group of fibres has been left at the scene of the
crime by the person who committed the crime.
Denote by Γ the characteristics of interest. Shortly
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after the event, a PoI is arrested by police. A foren-
sic scientist compares the characteristics of the
recovered fibres and the characteristics of a group
of fibres taken from the PoI’s pullover that are also
of type Γ. It is of interest, then, to assess the value
of this fibre evidence. The two propositions to be
considered are:

Hp: the recovered fibres come from the PoI’s
pullover;

Hd: the recovered fibres come from some other
garment.

The scientist’s results, denoted by E, may be
divided into two parts (Ec,Er) as follows

Ec: the fibre characteristics, Γ, of the PoI’s
pullover;

Er: the characteristics, Γ, of the recovered fibres.

Note that this section assumes the charac-
teristics are discrete. The analysis of continuous
measurements on examined materials is presented
in Chapter 7. A numerical example is discussed in
Chapter 6.

The scientist knows, in addition, from data pre-
viously collected that the characteristicΓ occurs in
100𝛾% of some population, Ψ, say. A general for-
mulation of the problem is given here. The value to
be attached to E is given by

V =
Pr(E ∣ Hp, I)
Pr(E ∣ Hd, I)

.
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This can be simplified.

V =
Pr(E ∣ Hp, I)
Pr(E ∣ Hd, I)

=
Pr(Er,Ec ∣ Hp, I)
Pr(Er,Ec ∣ Hd, I)

=
Pr(Er ∣ Ec,Hp, I)
Pr(Er ∣ Ec,Hd, I)

Pr(Ec ∣ Hp, I)
Pr(Ec ∣ Hd, I)

. (5.1)

Ec is the evidence that the PoI’s pullover has char-
acteristics Γ. An assumption that may be made is
that the probability of a person’s pullover having
characteristics Γ does not depend on whether or
not that pullover is the source of the recovered
fibres. Thus

Pr(Ec ∣ Hp, I) = Pr(Ec ∣ Hd, I)

and the likelihood ratio reduces to

V =
Pr(Er ∣ Ec,Hp, I)
Pr(Er ∣ Ec,Hd, I)

.

If the PoI’s pullover is not the source of the recov-
ered fibres (Hd is true), then the evidence (Er) about
the recovered fibres’ characteristics is independent
of the evidence (Ec) about the characteristics of the
PoI’s pullover (Aitken and Taroni, 1997). Thus

Pr(Er ∣ Ec,Hd, I) = Pr(Er ∣ Hd, I)

and

V =
Pr(Er ∣ Ec,Hp, I)

Pr(Er ∣ Hd, I)
. (5.2)
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In examples concerning DNA profiles, it will be
generally understood that, given a proposition
that a stain does not come from a PoI, the stain
originated from some person unrelated to the PoI,
but from the same sub-population (Balding and
Nichols, 1994; Balding and Donnelly, 1995b).
This aspect requires a more detailed develop-
ment of the likelihood ratio because it cannot be
assumed that Pr(Er ∣ Ec,Hd, I) = Pr(Er ∣ Hd, I). An
example is presented in Chapter 6.

The above argument represents a ‘suspect-
anchored’ perspective (Section 5.3.1.3). It is also
possible to consider a ‘scene-anchored’ perspec-
tive. A similar argument to that used above shows
that

V =
Pr(Ec ∣ Er,Hp, I)

Pr(Ec ∣ Hd, I)
.

This result assumes that Pr(Er ∣ Hp, I) = Pr(Er ∣
Hd, I), that is, the features of the recovered mate-
rial are independent of whether the PoI’s pullover
was the source of the material at the scene or not,
remembering that nothing else is known about the
PoI’s pullover, in particular its characteristics. This
assumption, related there to a PoI’s DNA profile,
is discussed further in Chapter 6. The assumption
that the characteristics of a PoI’s garment are inde-
pendent of whether this garment is the source of
the recovered material or not should not be made
lightly. Some crime scenes may be likely to transfer
materials to an offender’s clothing, for example. If
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the characteristics of interest relate to such mate-
rials and the offender is later identified as a PoI,
the presence of such material is not independent of
their presence at the crime scene. If the legitimacy
of the simplifications is in doubt then the original
expression (5.1) is the one which should be used.

The background information, I, may be used
to assist in the determination of the relevant
population from which the criminal may be sup-
posed to have come. First, consider the numerator
Pr(Er ∣ Ec,Hp, I) of the likelihood ratio in the
suspect-anchored perspective. This is the probabil-
ity the recovered fibres have characteristic Γ given
the PoI’s pullover is the source of the recovered
fibres and the PoI’s pullover has the characteristic
Γ and all other information. This probability is
1 since if the PoI’s pullover is the source of the
recovered material and has the characteristic Γ
then the recovered material is of characteristic Γ,
assuming as before that all innocent sources of
the material have been eliminated and that the
characteristics do not change under the prevailing
conditions. It is also assumed that the forensic
laboratory is able to detect the characteristic Γ on
recovered materials every time material having
characteristic Γ is collected at crime scenes.

Note that – as explained in Section 6.1.8.4 –
observations and measurements are subject
to uncertainty and it is important to capture
and represent this uncertainty explicitly in the
probabilistic model adopted. So, consider Er as
the reported observation made by the forensic
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scientist and extend further the conditional
probability Pr(Er ∣ Ec,Hp, I) by considering the
true, but unknown, relationship between control
and recovered material (call this event M). The
numerator of the likelihood ratio becomes

Pr(Er ∣ Ec,M,Hp, I)Pr(M ∣ Ec,Hp, I)
+ Pr(Er ∣ Ec, M̄,Hp, I)Pr(M̄ ∣ Ec,Hp, I).

Assume that Pr(M ∣ Ec,Hp, I) = 1, that is there
is no variation in the material of interest. It is
also assumed that the PoI’s pullover is the source
of the recovered material and if the pullover has
characteristics Γ, it is (theoretically) certain that
the recovered material will match the control
material. Thus Pr(M̄ ∣ Ec,Hp, I) equals 0. The
numerator of the likelihood ratio then equals
Pr(Er ∣ Ec,M,Hp, I), that is, the probability that
the forensic scientist will report a correspondence
between (Er and Ec) when a common source is
assumed. If it assumed that this probability equals
1, then the numerator becomes 1, as previously
specified. A value of 1 for the numerator assumes
a correspondence between recovered and control
material if there is a common source and an
inspection process which has no false negatives.
A scenario involving a false positive probability is
described in Section 6.1.8.4.

Now consider the denominator, Pr(Er ∣ Hd, I).
Here the proposition Hd is assumed to be true;

i.e. the PoI’s pullover is not the source of the
recovered material at the crime scene. I is also
assumed known. Together I and Hd define the
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relevant population (see Section 6.1.3). Several
different scenarios are discussed.

5.3.1.1 General Population

For the sake of illustration, consider DNA evidence.
Suppose, initially, that I provides no information
about the criminal that will affect the probability
of his DNA profile being of a particular genotype.
For example, I may include eyewitness evidence
that the criminal was a tall, young male. How-
ever, a DNA profile is independent of all three of
these qualities, so I gives no information affect-
ing the probability that the DNA profile is of a
particular type.

The alternative proposition assumes that the PoI
is not the source of the recovered stain, and hence
is not the person who was at the crime scene. The
relevant population (Section 6.1.3) is deemed to
be Ψ. The donor of the material is an unknown
member of Ψ. Evidence Er is to the effect that
the crime stain is of profile Γ. Thus an unknown
member of Ψ is Γ. The probability of this is the
probability that a person drawn ‘at random’ (see
Section 1.3.2 for a comment on randomness) from
Ψ has profile Γ, denote this probability 𝛾 . Thus

Pr(Er ∣ Hd, I) = 𝛾.

Note that this expression assumes no DNA typing
error. The laboratory is considered error-free. If
this assumption is relaxed the denominator will
also consider the false positive probability. A formal
development is presented in Section 6.1.8.4.



�

� �

�

506 Evidence and Propositions: Theory

The likelihood ratio V is then

V =
Pr(Er ∣ Ec,Hp, I)

Pr(Er ∣ Hd, I)
= 1

𝛾
. (5.3)

This value, 1∕𝛾 , is the value of the evidence of
the profile of the bloodstain when the donor is a
member of Ψ. Note that this DNA example consid-
ers (unrealistically) Er and Ec as independent; this
is explained Section 6.1.7 for further comment.

5.3.1.2 Particular Population

Suppose now that I does provide information
about the donor, relevant to the genotypic occur-
rence, and the relevant population is now Ψ0, a
subset of Ψ. For example, as mentioned earlier, I
may include a eyewitness description of the crimi-
nal as Chinese (consider this eyewitness evidence
as completely reliable). Suppose the genotype
occurrence of Γ amongst Chinese is 100 𝛽%. Then
Pr(Er ∣ Hd, I) = 𝛽 and the likelihood ratio is

V = 1
𝛽
.

5.3.1.3 Scene- and Suspect-Anchored
Perspectives

As mentioned in Section 1.4, it is a feature of
likelihood ratios that it is not necessary to dis-
tinguish between the scene-anchored and the
suspect-anchored perspective; this is explained in
the following text and Stoney (1991a).
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Consider the following example. A bloodstain
is found at the scene of the crime. It is of geno-
type Γ for a hypothetical locus. All innocent
sources of the stain have been eliminated, the
knowledge of which may be recorded as relevant
background information I. Note here that if it
is thought unreasonable to be able to eliminate
all innocent sources of the stain then consider,
analogously, an example of a rape case in which
a semen stain replaces the bloodstain. There will
normally be other information which a jury, for
example, will have to consider. However, in this
context, I is restricted to information considered
relevant in the sense that the evidence for which
probabilities are of interest is dependent on I (see
Section 2.4.4). A PoI has been identified. They
are also of genotype Γ. Blood of genotype Γ is
not common amongst the general population
to which the donor is thought to belong, being
found in only 4% of this population. However,
the PoI is discovered to be of Ruritanian ethnicity
and blood of genotype Γ at a given locus is found
in 70% of Ruritanians. How, if at all, should
knowledge of the PoI’s ethnicity be taken into
account? In forensic science it is not uncommon
to read that it is appropriate to use reference data
on the population from which the PoI originated.
This argument is still one of the most persistent
fallacies in the DNA debate as mentioned by Weir
(1992). The following development will clarify
that information on the ethnicity of the PoI does
not affect the value of the likelihood ratio. More
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Table 5.2 Frequencies of Ruritanians and those of
genotype Γ for a given locus in a hypothetical
population

Ruritanians Others Total

Genotype Γ 700 100 800
Others 300 18 900 19 200
Total 1 000 19 000 20 000

on the notion of relevant population is presented
in Section 6.1.3.

There is assumed at present to be no other
evidence, such as eyewitness evidence, to provide
information about the ethnic group of the donor
of the recovered stain.

Consider Table 5.2, which gives frequencies of
Γ in the Ruritanian and other populations. Notice
that 800∕20 000 (4%) of the general population
are of genotype Γ whereas 700∕1 000 (70%)
of Ruritanians are of genotype Γ, satisfying the
description above.

The relevance of the Ruritanian ethnicity of the
PoI can be determined by evaluating the likelihood
ratio. The evidence E may be partitioned into three
parts:

• Eru: the racial grouping (Ruritanian) of the PoI;

• Ec: the genotype (Γ) of the PoI;

• Er: the genotype (Γ) of the crime stain.
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The likelihood ratio is then

V =
Pr(E ∣ Hp)
Pr(E ∣ Hd)

=
Pr(Eru,Ec,Er ∣ Hp)
Pr(Eru,Ec,Er ∣ Hd)

where the two propositions of interest are

Hp: the PoI is the source of the recovered mate-
rial;

Hd: an unknown person is the source of the stain.

Note that in this simplified example it is assumed
that there is no genetic relationship between the
PoI and the unknown person so that the genetic
profiles can be considered independent. Although
not explicitly mentioned in the equations, it
should be remembered that all the probabilities
under discussion here are conditional on I. Notice
also that the value of evidence given source level
propositions may be thought to imply guilt but the
inference of guilt from source is not one which the
forensic scientist should make. Rather it is for the
jury to make this inference, bearing in mind all
other evidence presented at the trial.

Scene-Anchored Perspective The scene-anchored
perspective is one in which the evidence related
to the PoI (Eru,Ec) is conditioned on the scene
evidence Er. The odds form of Bayes’ theorem (2.7)
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thus gives

V =
Pr(Eru,Ec,Er ∣ Hp)
Pr(Eru,Ec,Er ∣ Hd)

=
Pr(Eru,Ec ∣ Er,Hp)Pr(Er ∣ Hp)
Pr(Eru,Ec ∣ Er,Hd)Pr(Er ∣ Hd)

.

Consider, first, the ratio Pr(Er ∣ Hp)∕Pr(Er ∣ Hd). If
no more is assumed of the PoI other than that they
were the source of the recovered stain (Hp, the
numerator) or that they were not the source of the
stain (Hd, the denominator), then the probability of
the recovered material being of type Γ is the same
whether they were or were not the source of the
recovered material, thus Pr(Er ∣ Hp) = Pr(Er ∣ Hd).
The likelihood ratio reduces to

V =
Pr(Eru,Ec ∣ Er,Hp)
Pr(Eru,Ec ∣ Er,Hd)

.

This may be written as

Pr(Eru ∣ Er,Hp)Pr(Ec ∣ Eru,Er,Hp)
Pr(Eru ∣ Er,Hd)Pr(Ec ∣ Eru,Er,Hd)

.

If the PoI was the source of the crime stain
(Hp) and if the crime stain is of genotype Γ (Er),
then – assigning a probability with a relative
frequency (see Section 1.7.7) – the probability
they are Ruritanian is 7∕8, the proportion of
Ruritanians amongst those of genotype Γ. Thus
Pr(Eru ∣ Er,Hp) = 7∕8.

If the PoI was the source of the recovered mate-
rial (Hp) and if the crime stain is of genotype Γ (Er),
then the probability the PoI’s genotype is Γ (Ec) is
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1, independent of his ethnicity (Eru). Thus Pr(Ec ∣
Eru,Er,Hp) = 1.

If the PoI was not the source of the recovered
material (Hd), the blood profile (Er) of the crime
stain gives no information about their ethnicity
(Eru). Thus Pr(Eru ∣ Er,Hd) = Pr(Eru ∣ Hd) = 1∕20,
the proportion of Ruritanians in the general
population.

Similarly, if the PoI was not the source of the
recovered material, knowledge of the features of
the crime stain gives no information about the
characteristics of the PoI’s blood. This, again,
assumes that there is no sub-population effect
that generates genotyping dependence. Thus
Pr(Ec ∣ Eru,Er,Hd) = Pr(Ec, ∣ Eru,Hd) and this is
assumed to be the proportion of Ruritanians that
are of genotype Γ or, alternatively, the probability
that a Ruritanian, selected at random from the
population of Ruritanians, is of blood profile Γ.
This probability is 7∕10. Then

V =

(
7
8

)
× 1

(
1

20

)
×
(

7
10

) =
7∕8

7∕200
= 200

8
.

This is the reciprocal of the proportion of people of
genotype Γ in the general population. The ethnic-
ity of the PoI is not relevant. The general proof of
this result is given in Evett (1984).

Suspect-Anchored Perspective The suspect-ancho-
red perspective is one in which the scene evidence
(Er) is conditioned on the PoI evidence (Eru,Ec).
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From the odds form of Bayes’ theorem (2.7)

V =
Pr(Eru,Ec,Er ∣ Hp)
Pr(Eru,Ec,Er ∣ Hd)

=
Pr(Er ∣ Eru,Ec,Hp)Pr(Eru,Ec ∣ Hp)
Pr(Er ∣ Eru,Ec,Hd)Pr(Eru,Ec ∣ Hd)

.

Consider the ratio Pr(Eru,Ec ∣ Hp)∕Pr(Eru,Ec ∣ Hd).
Assume there is no particular predisposition
towards (or away from) criminality amongst
Ruritanians (Er) or those of genotype Γ (Es). Then,
Pr(Eru,Ec ∣ Hp) = Pr(Eru,Ec ∣ Hd) and

V =
Pr(Er ∣ Eru,Ec,Hp, )
Pr(Er ∣ Eru,Ec,Hd)

.

The numerator Pr(Er ∣ Eru,Ec,Hp) of this ratio
equals 1. The PoI is assumed to have been the
source of the recovered material (Hp), to be
Ruritanian (Eru) and of genotype Γ (Ec). Thus
Pr(Er ∣ Eru,Ec,Hp) = 1.

If the PoI is assumed not to be the source of
the recovered material (Hd), the information that
they are Ruritanian and of genotype Γ is not of
relevance for determining the probability that the
crime stain is of type Γ. Thus, the probability in the
denominator can be assigned, using the available
data, as 800∕20 000 (8∕200), which corresponds
to the proportion in the general population that
has type Γ. Then

Pr(Er ∣ Hd,Eru,Ec) = 8∕200,

V = 200∕8.
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As before, the ethnicity of the PoI is not relevant.
Also, the scene- and suspect-anchored perspec-
tives provide the same result.

5.3.1.4 Some Remarks on Scene-
and Suspect-Anchored Perspectives

Suppose now that all innocent sources of
the stain have not been eliminated. Consider
the scene-anchored perspective. Assume that the
PoI was the source of the recovered material (Hp)
and that the stain at the crime scene (though not
necessarily the ‘crime’ stain, in that it may not
have been left by the criminal) is of group Γ (Er).
No information is contained in this evidence about
the ethnicity of the suspect. Thus

Pr(Eru ∣ Er,Hp) = 1 000∕20 000 = 1∕20.

The stain at the crime scene may not have come
from the criminal. (See Section 5.3.3.1 for a more
detailed discussion of this idea, known as relevance
(Stoney, 1991a,1994).) Thus, the probability that
the genotype of the PoI is Γ, given they are Rurita-
nian (Eru) and that the PoI was the source of the
recovered material (Hp), is assumed to be numeri-
cally just the proportion ofΓ amongst Ruritanians,
which is 700/1 000 (7/10). Thus

Pr(Ec ∣ Eru,Er,Hp) = 7∕10.

The probabilities in the denominator have the
same values as before, namely, Pr(Eru ∣ Er,Hd) =
1∕20 and Pr(Ec ∣ Eru,Er,Hd) = 7∕10. Hence
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V = 1. In this case the recovered findings have
no probative value. A similar line of argument
derives the same result for the suspect-anchored
perspective.

Consider now eyewitness evidence that states
that the source of the stain is Ruritanian. This
eyewitness evidence is assumed to be completely
reliable; how to account for evidence that is less
than completely reliable is not discussed here
(refer to Taroni et al. (2014a) for a discussion
of so-called soft evidence and to Jeffrey (1983)
for a theoretical development. Examples are
presented in Corradi et al. (2013) and Garbolino
(2014).).

Note, however, that in such a case there are
two conditional probabilities to be considered.
Let T be an event and let WT be an eyewitness
report of T. Then it is necessary to consider both
Pr(T ∣ WT), the probability the event happened
given the eyewitness said it did, and Pr(WT ∣ T),
the probability the eyewitness said the event
happened given it did. The purpose of includ-
ing eyewitness evidence here is to illustrate the
effect of restricting the population of potential
donors to a particular subgroup of a more general
population.

Suppose the relevant background information,
I, relates to the ethnicity of the source of the stain.
The evidence E is now only of two parts

• Ec: the genotype Γ of the PoI;

• Er: the genotype Γ of the crime stain.
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Evidence Eru of the ethnicity of the PoI has been
subsumed into I and is now evidence of the ethnic-
ity of the source.

For the scene-anchored perspective, with I
assumed implicitly,

V =
Pr(Ec ∣ Er,Hp)
Pr(Ec ∣ Er,Hd)

.

The numerator is Pr(Ec ∣ Er,Hp) = 1 since, if it is
assumed that the PoI is the donor of the recovered
material and the blood profile of the crime stain is
Γ, the blood group of the PoI is certain to be Γ also.
The denominator is Pr(Ec ∣ Er,Hd) = Pr(Ec ∣ Hd) =
7∕10, the proportion of the population of Ruritani-
ans who are of type Γ. Hence, V = 10∕7. The eye-
witness evidence is such as to ensure that the eth-
nicity of the PoI (Ruritanian) is relevant.

For the suspect-anchored perspective, again
with I assumed implicitly,

V =
Pr(Er ∣ Ec,Hp)
Pr(Er ∣ Ec,Hd)

.

If the PoI was the source of the recovered
material and is of genotype Γ, then the crime
stain is certain to be of genotype Γ. Thus, the
numerator is Pr(Er ∣ Ec,Hp) = 1. The denomina-
tor is Pr(Er ∣ Ec,Hd) = Pr(Er ∣ Hd) = 7∕10 since
I includes the information that the source of
the stain is Ruritanian. The proportion of the
Ruritanian population that is of genotype Γ is
7∕10.
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The scene- and suspect-anchored perspectives
give the same result.

5.3.1.5 Types of Evidence: Recovered,
Control, and Background Data

It is largely accepted – as shown in Sections 2.4
and 2.3.1 – that the likelihood ratio assesses the
evidence under competing propositions. The scien-
tific findings or the outcomes of laboratory analy-
ses characterise what has been called evidence. An
alternative formulation for the likelihood ratio is
the following:

V =
Pr(Er,Ec,D ∣ Hp, I)
Pr(Er,Ec,D ∣ Hd,I)

where D is the background knowledge derived
from a population database of, for example,
possible donors of the stain or of a mark and is
considered part of the evidence. The role of the
database is to enable estimation of the population
proportion, say, 𝜃, of the feature of interest in
the case at hand. So, in a case involving DNA
evidence, a given genotype, say, Γ, characterises
the recovered stain. The PoI has the Γ profile, and
the scientist may be interested in the proportion
of people with a Γ profile in a given relevant
population.

The first component of the evidence is therefore
the recovered and control data that are related to
the case under investigation, the second compo-
nent is information – unrelated to the case – which
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is available to the scientist to assess a parameter, 𝜃
that is of relevance in the case.

The database information is used by scientists
to help evaluate the denominator of the likelihood
ratio; see Example 2.7 of Section 2.4.5. Here, this
information is directly expressed as relevant data
for both the numerator and the denominator.

Imagine a criminal case involving shoemarks
recovered on a crime scene. Imagine also that a PoI
wears a pair of shoes producing indistinguishable
marks if compared with prints recovered at the
scene. The marks can be classified as of type T,
say. Consider the general situation where there
are just two types of marks, those offering an
indistinguishable image (T) with probability 𝜃,
and those offering a distinguishable image (T̄)
with probability (1 − 𝜃). Consider also a police
shoeprints database of N prints where n are of
type T.

The available data are, therefore, shoemarks of
type T on the crime scene (Er), PoI’s shoeprints of
type T (Ec), and a given number, n, of shoes in the
database that are of type T. Independently of the
fact that the parameter 𝜃 is taken as a fixed but
unknown number or as a random variable (see
Section 4.2), the likelihood ratio can be viewed
as the ratio of the two likelihoods, where, on the
numerator the prosecution asserted that there
are n + 1 distinct shoes of type T (the n shoes
in the database and the crime shoe which is the
same as the PoI shoe) and, on the contrary, the
defence (under proposition Hd) supported n + 2
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observations of type T (the n shoes in the database,
the crime shoe and the PoI shoe which under
Hd is different from the crime shoe). Both parties
recognise that Er = Ec and that exactly n shoes
in the database are indistinguishable from Er

and Ec. The available data are conditioned on the
propositions and on the population proportion 𝜃.
The likelihood ratio can be expressed as

V =
Pr(Er = T,Ec = T, n,N − n ∣ Hp, 𝜃)
Pr(Er = T,Ec = T, n,N − n ∣ Hd, 𝜃)

=

(
N
n

)

(
N
n

) 𝜃n+1(1 − 𝜃)N−1−n+1

𝜃n+2(1 − 𝜃)N−2−n+2

=

(
N
n

)

(
N
n

) 𝜃n+1(1 − 𝜃)N−n

𝜃n+2(1 − 𝜃)N−n
= 1

𝜃
.

The likelihood ratio simplifies to 1∕𝜃, the result
presented in Section 5.3.1.1. Other examples of
such a development can be found in Ommen et al.
(2016), Dawid (2017), and Cereda (2017).

A decision has to be made as to what value of 𝜃
to use in the above expression. A Bayesian perspec-
tive is presented in Dawid (2017) where the uncer-
tainty on 𝜃 is modelled by a probability distribution
(see Section 7.2.2 for further details).

This approach considers the background infor-
mation derived from a population database as
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part of the evidence a scientist wishes to evaluate
instead of a conditioning event. Note, however,
that the database is general information unrelated
to a particular crime. The evidence to be evaluated
is that associated in particular with the crime
under consideration.

5.3.2 Likelihood Ratio with Activity
Level Propositions

The transfer, persistence, and recovery of material
collected on a receptor (e.g. a person’s garments,
crime scene, etc.) and the presence by chance of
such material on the receptor represent funda-
mental factors for the evaluation of evidence given
activity level propositions (see Section 5.2 and Evett
(1984), Cook et al. (1993), and Champod and
Taroni (2017)). Various technical information
that the scientist collects during the analysis, such
as (i) the quantity of the recovered material (e.g.
the number of recovered fibres), (ii) the materials
involved (the material composing the receptor
and the potential source), and (iii) the intensity
of the posited activity under consideration, are
essential for the numerical assignment of the
various factors that the likelihood ratio takes into
account. Procedures for their quantification have
been published, for example, by Chabli (2001) and
more recently by Grieve et al. (2017) and Roux
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and Wiggins (2017) for scenarios involving fibres
evidence.

The influence of such relevant factors on the
likelihood ratio is easily shown by the range of the
values that can be obtained in different versions
of a case (see Chapter 6). Likelihood ratio values
can vary over a wide range, from support for the
prosecutor’s proposition to support for that of
the defence. Various versions of cases in which
recovered material is assessed given activity level
propositions are presented and discussed in foren-
sic literature (e.g. Champod and Taroni, 2017).
In fibre transfer cases, examples of propositions of
interest could be

Hp: the PoI sat on the driver’s seat of the stolen
car;

Hd1: the PoI never sat on the driver’s seat of the
stolen car;

Hd2: the PoI sat on the seat one week ago for legit-
imate reasons.

In another context, the propositions could be

Hp: the victim sat on the passenger’s seat of the
PoI’s car;

Hd: the victim has never sat on the passenger’s
seat of the PoI’s car.

With such propositions it can be shown that
probabilities for aspects such as the background
presence of trace material of interest impact on
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the evaluation of the evidence. In particular, it
can be shown that the value of the likelihood
ratio with activity level propositions simplifies,
under certain assumptions, to 1∕𝜃 where 𝜃 is
the proportion of the recovered material in some
relevant population.

The following sections present examples to
illustrate distinct formal developments associated
with different versions of a given case: transfer
material left by the offender, Section 5.3.2.1,
transfer material not left by the offender, Section
5.3.2.2, and material transferred innocently,
Section 5.3.2.3. An extension considering the
uncertainty about the source is also introduced,
Section 5.3.2.4.

5.3.2.1 Transfer Material Left by an
Offender

Imagine a case in which a stolen car is used in
a robbery on the day of its theft. One hour after
the robbery, the car is abandoned. That night
the stolen vehicle is found by the police. On the
polyester driver’s seats (lower and upper back), a
number n = 170 of extraneous textile fibres are
collected. The day following the robbery, a PoI is
apprehended. Their red woollen pullover is seized
and submitted to the laboratory.

Following notation introduced in Section 2.4.1,
the evidence E𝑣 is the material from the car’s
seat Mr (where r denotes recovered) and from the
PoI’s pullover Mc (where c denotes control) and the
characteristics Er and Ec of these materials. These
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characteristics will be denoted y and x, short for Er

and Ec, respectively. The forensic evidence is then
described as:

y the group of n = 170 red woollen fibres,
described by a set y of extrinsic (physical
attributes such as quantity and position) and
intrinsic characteristics (chemical or physical
descriptors such as analytical results);

x the red woollen PoI’s pullover generates known
fibres described by a set x of intrinsic character-
istics.

For a discussion on extrinsic and intrinsic charac-
teristics, see Section 6.2. Note that the evaluation
of transfer material given activity level propo-
sitions, discussed here, assumes a direct source
relationship (i.e. the PoI wore the garment of
interest). Situations with uncertainty about the
true source are presented in Section 5.3.2.4.

The likelihood ratio is expressed as follows:

V =
Pr(y, x ∣ Hp, I)
Pr(y, x ∣ Hd, I)

where

Hp: The PoI sat on the driver’s seat of the stolen
car;

Hd: The PoI has never sat on the driver’s seat of
the stolen car.

The hypothesis Hd implies that an unknown
person sat on the driver’s seat of the stolen car.
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This point is important in the assessment of the
probabilities of transfer as will be seen later. The
previous equation can be expanded using the
third law of probability (1.8)

V =
Pr(y, x ∣ Hp, I)
Pr(y, x ∣Hd, I)

=
Pr(y ∣ x,Hp, I)
Pr(y ∣ x,Hd, I)

×
Pr(x ∣Hp, I)
Pr(x ∣Hd, I)

.

(5.4)
It is reasonable to assume that the probability

of the characteristics of the PoI’s pullover, x, do
not depend on whether or not the PoI sat on the
driver’s seat of the stolen car. Thus, the second
ratio of the right-hand side of (5.4) equals 1 and
the likelihood ratio is reduced to

V =
Pr(y ∣ x,Hp, I)
Pr(y ∣ x,Hd, I)

.

It is commonly accepted that the denominator
of the likelihood ratio is reduced to Pr(y ∣ Hd, I)
because it does not depends on knowledge about
the characteristics of the control object (here the
PoI’s pullover). Note that this is different in the
case of DNA evidence (see Section 6.1.7) where
the fact that a person is known to share the
stain’s characteristics influences the assignment
of the conditional probability called random (or
conditional) match probability, sometimes also
called conditional genotype probability. For an
extended discussion on this topic, see Buckleton
et al. (2016b,e).

The scientist has to assess (i) the probability of
the observed characteristics (both intrinsic and
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extrinsic) of the recovered fibres, y, given that the
PoI sat on the driver’s seat of the stolen car and
given that his pullover shares the same forensic
characteristics as the fibres found on the car seat
(the numerator of V), and (ii) the probability
of the observed characteristics of the recovered
fibres, y, given that the PoI has never sat on the
driver’s seat of the stolen car (the denominator
of V). In order to assess the findings under these
two propositions, it is important to note that the
scientist is interested in propositions that imply
an activity (the act of sitting on a driver’s seat)
and thus considers the logical consequence of this
activity. Imagine a person, the PoI or the offender
(who may be the same person), who sat in the
driver’s seat. This person and their clothes had a
physical contact with the seat, so that fibres from
the clothes will have been transferred to the seat
(as suggested by Locard’s exchange principle).
For the successful recovery and analysis of these
fibres, it is necessary for them to have persisted
on the seat and that they will then be successfully
recovered by the forensic scientist. The presence of
the evidence of the fibres may be explained in one
of two ways.

• The recovered group of 170 (n) fibres was
transferred, has persisted, and has been suc-
cessfully recovered from the driver’s seat. In this
situation, the group of fibres were not present
on the driver’s seat before the commission of
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the crime. Denote this transfer Tn (or T170 in
this case).

• The recovered group of 170 (n) fibres was not
transferred in the commission of the crime, and
hence did not persist on the driver’s seat. In this
situation, the recovered fibres are unconnected
with the action under investigation: the group
of fibres were on the driver’s seat before the
commission of the crime. Denote this absence of
transfer T0.

Note that Gill et al. (2020) commented on
potential misunderstandings related to the use of
the term probability of transfer. They noticed that it
is a term that has been used to describe two differ-
ent concepts. The first is when the term refers to
the probability of an activity, a primary/secondary
transfer, and is thus an example of the prosecutor’s
fallacy. However, the term ‘transfer’ is also used
by scientists to designate the probability of a given
(relative) quantity of [evidential material] being
transferred, having persisted and being recovered
if the activity took place. To avoid any misunder-
standings, they proposed forensic scientists use the
term ‘probability of recovering material’ for the
second concept. However, we retain the original
wording, the ‘probability of transfer’. With respect
to the key principles of interpretation mentioned
in Section 5.2 and to avoid misunderstandings
recall that the probability t refers to the proba-
bility of transfer (or of recovering material), the
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probability of a given quantity of material being
transferred, having persisted and being recovered.
It is not the probability of the occurrence of a
primary/secondary transfer.

The two explanations for the presence of the
evidence of the fibres may be considered as
so-called Association propositions (see Section
5.3.3.1). There is an assumption here that, in
the commission of the crime, no fibres have been
transferred, or that all the fibres that have been
transferred are from one source. Inclusion of these
two association propositions (see Section 5.3.3.2)
and omission of the background information I, for
simplicity of notation, leads to

V =

Pr(y ∣ x,Hp, T170)Pr(T170 ∣ x,Hp)
+Pr(y ∣ x,Hp, T0)Pr(T0 ∣ x,Hp)
Pr(y ∣ Hd, T170)Pr(T170 ∣ Hd)

+Pr(y ∣ Hd, T0)Pr(T0 ∣ Hd)

. (5.5)

For this likelihood ratio, consideration needs to be
given to eight conditional probabilities.

Pr(y ∣ x,Hp, T170) represents the probability
of observing and recovering a group of 170 red
woollen fibres on the car seat, given that the PoI
wore a red woollen pullover, that they sat on the
driver’s seat of the stolen car and that the group
of fibres was transferred during the activity, has
persisted, and was recovered successfully. If the
PoI sat on the driver’s seat and the group has been
transferred, this means that the group was not
there before the activity. This probability is thus
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1 × b0, where b0 is the probability of the presence
by chance of zero groups of fibres.

Pr(T170 ∣ x,Hp) represents the probability that a
group of 170 red woollen fibres was transferred,
has persisted and was recovered successfully from
the driver’s seat, given that the PoI sat on the
driver’s seat of the stolen car. This represents
the probability, say, t170, that the fibres had been
transferred from the PoI’s pullover, had remained,
and were recovered. This probability depends
on physical characteristics of the PoI’s pullover
(e.g. sheddability of fibres, the garment’s fibre
structure). It is assumed that the characteristics
are those of the control group because the sci-
entist assesses the probability under Hp. Denote
Pr(T170 ∣ x,Hp) by t170.

Pr(y ∣ x,Hp, T0) is the probability that a group
of 170 red woollen fibres are recovered from the
driver’s seat, given that the PoI wore a red woollen
pullover, that they sat on the driver’s seat of the
stolen car and that there was no transfer of fibres
during the activity, and hence no persistence and
successful recovery. If the group has not been
transferred in the commission of the crime, this
means that it was present on the seat before the
activity. Let b1,m × 𝛾 represent the probability of
the chance occurrence of a single group of size m,
a comparable number of fibres, on the driver’s seat
(b1,m), linked to the relevant population proportion
𝛾 for the observed characteristics y.

Pr(T0 ∣ x,Hp) represents the probability that
no group of fibres was transferred, persisted, or
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recovered successfully from the PoI’s pullover to
the driver’s seat. This probability, t0, is assigned
assuming that the PoI sat on the driver’s seat, Hp.

The numerator of the likelihood ratio is then
b0t170 + b1,m𝛾t0.

Next, consider the terms in the denominator of
(5.5).

Pr(y ∣ Hd, T170) represents the probability of
observing a group of 170 red woollen fibres
given that the PoI never sat on the driver’s seat
of the stolen car and that the group of fibres was
transferred, persisted, and recovered successfully
during the activity. If the PoI never sat on the
driver’s seat and the group has been transferred,
this means the driver’s seat did not have this group
of fibres before the commission of the crime and
the event of the shared characteristics is one of
chance. This probability is b0 × 𝛾 .

Pr(T170 ∣ Hd) represents the probability that a
group of 170 red woollen fibres was transferred,
persisted and recovered successfully from the
driver’s seat given that the PoI never sat on the
driver’s seat of the stolen car. This means that the
probability, say, t′170, has to be assigned assuming
that the fibres have been transferred from the
offender’s garment. Knowledge of the features
of the PoI’s pullover are thus irrelevant for this
assessment, because proposition Hd is that the PoI
is not the offender. The probability to be assessed
thus depends on the physical characteristics of an
unknown garment, that is the one worn by the
offender. Denote this probability by t′170.
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Pr(y ∣ Hd, T0) is the probability that a group
of 170 red woollen fibres is observed on the
driver’s seat given that the PoI never sat on the
driver’s seat and that this group of fibres was not
transferred, persisted, or recovered successfully
during the activity. If the group of fibres was not
transferred, it was present on the seat before the
commission of the crime. The probability of the
chance occurrence of a group of foreign fibres on
the driver’s seat linked to the relevant population
proportion 𝛾 for the observed characteristics y is
then b1,m × 𝛾 .

Pr(T0 ∣ Hd) represents the probability there was
no transfer from the offender’s garments to the
driver’s seat, persistence or recovery of a group of
fibres. This probability, t′0, is assigned assuming
that the PoI never sat on the driver’s seat and,
thus, another individual sat in the stolen car, Hd.

The denominator of the likelihood ratio is then
b0𝛾t′170 + b1,m𝛾t′0 and the likelihood ratio (5.5) is

V =
b0t170 + b1,m𝛾t0

b0𝛾t′170 + b1,m𝛾t′0
. (5.6)

The chosen notation assumes Pr(T170 ∣ x,Hp) ≠
Pr(T170 ∣ Hd) and Pr(T0 ∣ x,Hp) ≠ Pr(T0 ∣ Hd). In
practice, the probabilities are assigned on the
basis of results of controlled experiments using
the garments involved under propositions Hp and
Hd, so it is reasonable to assume that the values
are different. Multiple and complex variables
involved in transfer, persistence, and recovery
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phenomena should be taken into account directly
for the assignment of t170, t0, t′170, and t′0. The
aim is to assign values that appropriately reflect
the circumstances of the alleged offence. A mod-
elling technique for the assessment of transfer
probabilities in cases involving glass fragments
has been developed by Curran et al. (2000) (see
also Section 6.2.3.2). The technique can also help
in the assignation of probabilities in fibre cases
as discussed in Champod and Taroni (2017).
Siegel (1997), Roux et al. (1999), and Grieve et al.
(2017) discussed the use of surveys to inform
probability assignments for different case types
involving fibres.

Probabilities for the background presence of
fibres, bg,m, where g is the number of discrete
groups of fibres and m is the number of fibres in
each of the groups, {m1, . . . ,mg}, may be assigned
using data obtained in surveys in which groups of
extraneous fibres were recovered from surfaces of
interest. The probabilities thus derived depend on
the types of fibres considered. In fact, the proba-
bilities are influenced by the conditions of transfer
and the sheddability of the potential garments
involved (Roux and Margot, 1997). Sometimes
so-called target fibres studies are performed. These
studies enable the assignment of values for b1,m𝛾

directly (Palmer and Chinherende, 1996). The
probabilities b0 and bg,m are considered as prob-
abilities for mutually exclusive parts of the event
‘having 0, 1 or more groups of extraneous fibres
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which can be distinguished from the garments
of the habitual user(s) of the car’ (Champod and
Taroni, 2017) such that

b0 +
∞∑

g=1

bg,m = 1.

Then:

b1,m = 1 − b0 −
∞∑

g=2

bg,m ≤ 1 − b0.

For practical reasons, as discussed in Champod
and Taroni (1997), b1,m is set as the strict comple-
ment of b0, values for b2,m to b∞,m are set equal to
0 and m is written as m.

In the example of the car described earlier, it
is reasonable to assume that, on average, a large
number of extraneous fibres are transferred, have
persisted and are recovered from the driver’s seat
of the stolen car. This implies that t170 is much
greater than t0. A similar assumption applies
for t′170 and t′0, which are assigned through con-
trolled experiments involving woollen garments
of the type potentially worn by the offender. The
likelihood ratio (5.6) can then be reduced to

V =
t170

𝛾t′170

because t0 and t′0 are assumed negligible and hence
b1,m𝛾t0 and b1,m𝛾t′0 are negligible in this case.

Under the particular assumption that the trans-
fer characteristics of the PoI’s pullover do not differ
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from those of the offender’s garment, the likelihood
ratio may be reduced further to 1∕𝛾 . Lists of ref-
erences reporting values for 𝛾 are given in Chabli
(2001), Cantrell et al. (2001), and Palmer (2016).

Imagine two small modifications of the example
considered so far. First, consider a modifi-
cation, notably in the quantity of recovered
transfer material (i.e. the number of fibres)
on the driver’s seat. Second, consider transfer
probabilities to differ under propositions Hp

and Hd. Thus, Pr(Tn ∣ x,Hp) ≠ Pr(Tn ∣ Hd) and
Pr(T0 ∣ x,Hp) ≠ Pr(T0 ∣ Hd). In such situations,
Champod and Taroni (2017) have discussed an
example in which the following has been observed:

• If a group of 10 fibres has been recovered on
the driver’s seat and if 10 fibres is the average
number expected under the proposition of
involvement of the PoI and if, on average, a
potential offender’s garment will transfer 60
fibres, then the likelihood ratio exceeds the
reciprocal of the population proportion, 1∕𝛾 ,
without any notable influence of the back-
ground probabilities b0 and b1,m. This is because
V = t10∕𝛾t′10 and t10 is close to 1 and t′10 is very
small, close to zero.

• If a group of 10 fibres has been recovered on
the driver’s seat and if this quantity does not
correspond to the average number expected
under the proposition of implication of the PoI
(i.e. the PoI’s pullover transfers on average 50
fibres) and if on average a potential offender’s
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garment will transfer a comparable number of
fibres (i.e. approximately 10 fibres), then the
likelihood ratio may be lower than 1 so that the
findings support the defence proposition.

Numerical examples are presented in Chapter 6.

5.3.2.2 Transfer Material Not Left by the
Offender

A different situation involving fibres is described
later, taken from Champod and Taroni (2017).
The case is that of a car belonging to a man who
is suspected of abducting a woman. The victim
was wearing a red woollen pullover. According to
the PoI, nobody sat in the passenger’s seat of his
car at the time of the alleged event. On this seat, a
group of extraneous fibres consisting of n = 170
red wool fibres has been collected. In their defence
the PoI denied that the victim has ever sat on the
passenger’s seat of his car. This defence implies
that there is no offence at all, so the recovered
fibres are not related to a recent activity (e.g. the
seating of a person in the passenger’s seat of the
car). Hence, these fibres are on the passenger’s
seat by chance alone from an activity that was
not recent. This represents an important point
for the understanding of the development of the
likelihood ratio formula (see also the development
presented in Section 6.2). In fact, even if the
numerator of the likelihood ratio is still the same
as in (5.5), there is a change in the denominator.
There is no reason to develop Pr(y ∣ Hd) using
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the association propositions Tn and T0 because
the fibres are not considered to be the result of
transfer, persistence, and recovery following an
alleged action. The likelihood ratio thus becomes

V =
b0t170 + b1,m𝛾t0

b1,m𝛾
. (5.7)

It can be seen that if b0 is close to 1 (e.g. when the
seats are cleaned regularly) and if, as mentioned
before, b1,m ≃ 1 − b0, then b1,m, the probability
that the recovered group is present on the seat
by chance alone, is close to 0 and the likelihood
ratio (5.7) is increased with respect to (5.6). A
numerical example is given in Section 6.2.3 in the
context of DNA evidence.

The likelihood ratio (5.7) is the method of
evaluation widely used in cases involving glass
fragments (see Section 6.2.2). This is so because
it is often argued that the presence of glass frag-
ments on a PoI’s pullover, for example, is the result
of chance alone. In fact, Hd normally postulates
that the PoI has not broken the window, so an
alternative (perhaps criminal) action that could
account for the presence of the fragments is not
given. Equation (5.7) may be rewritten in this
context as

V =
b0t170 + b1,m𝛾t0

b1,m𝛾
=

b0t170

b1,m𝛾
+ t0.

An extension of this kind of case is given by
Buckleton and Evett (1989) where the number,
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g, of extraneous groups of fibres (i.e. a number
of fibres that is compatible with the nature of
the activity) is greater than 1. See also Curran
et al. (2000) and Curran and Hicks (2009) for an
analogous approach for glass fragments.

Recovered materials on the PoI are denoted
y1, y2, . . . , yg. Only one group corresponds to the
features of the victim’s pullover, x1. The likelihood
ratio developed by Buckleton and Evett (1989)
shows that it is important not only to focus on
the fibres that match, for example, the victim’s
garments, but also to consider other groups of
fibres that may be compatible with the alleged
action. There is an analogy to what is presented
in Section 6.1.4 on the so-called two-trace
problem.

Buckleton and Evett (1989) showed that

V =

(
Pr(y1, y2, . . . , yg ∣ x1, Tn,Hp)Pr(Tn ∣ x1,Hp)
+Pr(y1, y2, . . . , yg ∣ x1, T0,Hp)Pr(T0 ∣ x1,Hp)

)

Pr(y1, y2, . . . , yg ∣ Hd)
.

(5.8)
The likelihood ratio (5.8) can reasonably be

reduced to tn∕𝛾1g. Details of the development are
also given in Champod and Taroni (2017).

5.3.2.3 Innocent Transfer of Material

It may be the case that material is transferred
innocently. The transfer may be from the victim to
the assailant or from the assailant to the victim or
crime scene. In Section 5.3.2.1, it has been noticed
that – when considering propositions that imply
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an activity – the scientist should pay attention
to the logical consequence of these activities.
If a person sat in the driver’s seat of a car, this
person (and their clothes) had a physical contact
with the seat; the same phenomenon occurs if
a person assaulted a victim. It is of interest to
incorporate this consideration explicitly in the
formal development as shown in Garbolino and
Taroni (2002).

Imagine a scenario involving an assault where
characteristics describing the recovered mate-
rial (say, textile fibres), Er, found on the PoI,
are similar to the characteristics of the control
material coming from the victim, Ec. Therefore,
define the evidence E as (Er,Ec) and more pre-
cisely by a single group of recovered material of
size m.

The main propositions of interest are

Hp: The PoI assaulted the victim;

Hd: Some person other than the PoI assaulted
the victim.

The presence of the evidence of the fibres may be
explained in one of two ways:

T: There was a transfer from the victim;

T̄: There was not a transfer from the victim.

Moreover, an extension can be suggested by
taking into account the logical contact caused by
the action. If the PoI assaulted the victim, they
have a physical contact with the victim. Such



�

� �

�

The Formal Development 537

a contact may involve a transfer of evidential
material. Define

C: The victim has been in contact with the PoI;

C̄: The victim has not been in contact with the
PoI.

Consider the likelihood ratio V = Pr(E ∣
Hp)∕Pr(E ∣ Hd) (with background informa-
tion omitted for ease of notation). As previously
noted (see Section 5.3.2.1), the numerator of
the likelihood ratio is obtained by ‘extending the
conversation’ to proposition T and T̄.

Pr(E ∣ Hp) = Pr(E ∣ T,Hp)Pr(T ∣ Hp)
+ Pr(E ∣ T̄,Hp)Pr(T̄ ∣ Hp),

where Pr(E ∣ T,Hp) = b0, the probability of no
group of extraneous material being present (i.e.
an absence of trace material). The conditional
probability Pr(T ∣ Hp) needs to take into consider-
ation the uncertainty about propositions C and C̄,
leading to

Pr(T ∣ Hp) = Pr(T ∣ C,Hp)Pr(C ∣ Hp)
+ Pr(T ∣ C̄,Hp)Pr(C̄ ∣ Hp).

Consideration needs to be given to at least three
conditional probabilities. First, Pr(T ∣ C,Hp) repre-
sents the probability that a transfer from the victim
occurred. Denote this probability by the letter t.

Pr(C ∣ Hp) is the probability the victim has been
in contact with the PoI given that the PoI assaulted
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the victim. This probability is c. This probability
assignment depends largely on the circumstances
of the case, in particular the information on how
the assault was committed by the offender.

Note that Pr(T ∣ C̄,Hp) = 0; there is no possibility
for transfer when there was no contact.

Pr(E ∣ T̄,Hp) equals b1,m𝛾 , that is, the probability
of transfer other than from the victim. In other
words, such a probability represents the chance
occurrence of a single group of size m on the
PoI’s clothing linked to the relevant population
proportion 𝛾 for the observed characteristics.

Finally, Pr(T̄ ∣ Hp) is obtained in an extension to
C, that is,

Pr(T̄ ∣ Hp) = Pr(T̄ ∣ C,Hp)Pr(C ∣ Hp)
+ Pr(T̄ ∣ C̄,Hp)Pr(C̄ ∣ Hp),

where Pr(T̄ ∣ C,Hp) = (1 − t), Pr(C ∣ Hp) = c, Pr(T̄ ∣
C̄,Hp) = 1 and Pr(C̄ ∣ Hp) = (1 − c).

The numerator of the likelihood ratio becomes

Pr(E ∣ Hp) = b0tc + b1,m𝛾[(1 − t)c + (1 − c)].

Consider the denominator Pr(E ∣ Hd) of the
likelihood ratio. It is also obtained by taking into
account the uncertainty about propositions T and
T̄ by writing

Pr(E ∣ Hd) = Pr(E ∣ T,Hd)Pr(T ∣ Hd)
+ Pr(E ∣ T̄,Hd)Pr(T̄ ∣ Hd),
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where Pr(E ∣ T,Hp) = b0 and the conditional prob-
ability Pr(T ∣ Hd) is obtained by

Pr(T ∣ Hd) = Pr(T ∣ C,Hd)Pr(C ∣ Hd)
+ Pr(T ∣ C̄,Hd)Pr(C̄ ∣ Hd).

Pr(T ∣ C,Hd) = s represents the transfer prob-
ability given the alternative proposition. Note
that the nature of the crime and the position
where the trace was found may lead to a different
probability assignments for t and s, under Hp and
Hd, respectively.

Pr(C ∣ Hd) = d is a probability that takes into
account the possibility that the PoI could have
been in contact with the victim for reasons other
than the assault.

Note also that Pr(T ∣ C̄,Hd) = 0. As under propo-
sition Hp, there is no possibility for transfer when
there was no contact.

The denominator of the likelihood ratio becomes

Pr(E ∣ Hd) = b0sd + b1,m𝛾[(1 − s)d + (1 − d)].

The likelihood ratio is

V =
b0tc + b1,m𝛾[(1 − t)c + (1 − c)]
b0sd + b1,m𝛾[(1 − s)d + (1 − d)]

.

From this development, one can easily find that,
if c = 1 (meaning that it is assumed that the victim
has been in contact with the PoI given that the
PoI assaulted the victim) and d = 0 (meaning that
it is assumed that the PoI could not have been in



�

� �

�

540 Evidence and Propositions: Theory

contact with the victim for reasons other than
the assault) (or s = 0), then the likelihood ratio
becomes as expression (5.7):

V =
b0t + b1,m𝛾(1 − t)

b1,m𝛾
=

b0tn + b1,m𝛾t0

b1,m𝛾
,

where tn denotes the recovered group of n fibres
that was transferred, has persisted and has
been successfully recovered on the PoI, and as a
consequence, t0 = 1 − tn.

Consider, for sake of illustration, the evaluation
of recovered material under varying case circum-
stances.

Imagine a scenario in which a group of fibres
has been found on the jacket of a PoI who has
been arrested by the police because it is suspected
that they physically assaulted the victim. The
characteristics of these fibres are distinguish-
able from the fibres of the PoI’s own jacket but
indistinguishable from those of the clothing of
the victim. Consider Hp as ‘The PoI assaulted the
victim’ and Hd as ‘The PoI did not assault the
victim’. Probabilities t and s relate to transfer
under propositions Hp and Hd, respectively, and
are conditioned on background information
concerning the circumstances of the case under
examination. In fact, if the group of fibres has been
found on the PoI’s jacket, it may be reasonable
to assume that they result from the assault, so
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that t > s (i.e. Pr(T ∣ C,Hp) > Pr(T ∣ C,Hd). On the
other hand, if fibres are found on the lower part of
the trousers, then the assessment might change
and the assumption t = s could be made. This
reflects the view that the occurrence of a transfer
for such a group of fibres would be the same,
irrespective of the truth or otherwise of the main
propositions Hp and Hd. Notice also that, given the
circumstances of the case, it could be reasonable
to assume t = 1.

Another possibility may be to consider c = 1 and
t = 1 (i.e. no uncertainty about the occurrence of
contact and transfer given Hp), and to suppose that
the defence strategy is to assume that the PoI was
at the scene of the crime for reasons unconnected
to the crime and that they had contact with the
victim (e.g. they helped the victim after the assault
whilst waiting for the police to arrive). The latter
assumption leads to Pr(C ∣ Hd) = d = 1. The likeli-
hood ratio then becomes

V =
b0

b0s + (1 − s)b1,m𝛾
.

When, in addition, it is assumed that s = 0, that
is, no transfer from the victim occurred under Hd,
the likelihood ratio reduces to

V =
b0

b1,m𝛾
.
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If one assumes s = 1 that transfer occurred
from the victim under Hd, the likelihood ratio
reduces to

V =
b0

b0
= 1.

This example illustrates that the circumstances
of a case are a fundamental element of the anal-
ysis. The probabilities c, d, t, and s are crucial
considerations that have a bearing on the proba-
tive value. In addition, the probability of a group
of fibres being present on the receptor before-
hand, denoted b1,m, represents a further relevant
consideration.

Consider an alternative scenario involving
recovered fibres on the seat of a car that belongs to
a man who is suspected of abducting a woman and
attempting to rape her. There is a single group of
foreign red woollen fibres that have been collected
from the passenger seat of the car. The victim
was wearing a red woollen pullover. According
to the PoI, no one other than his wife ever sits
on the passenger seat. In addition, the car seats
have been vacuumed recently. The PoI denies
that the victim has ever been in contact with the
car. In such a case, the main issue of concern is
Hp, ‘The victim sat on the passenger seat of the
PoI’s car’, and Hd, ‘The victim has never sat on
the passenger seat of the PoI’s car’. Proposition C
refers to ‘The victim has been in contact with the
seat’ and alternatively, C̄, ‘The victim has never
been in contact with the seat’. Here, it appears
reasonable to assume that Pr(C ∣ Hp) = c = 1
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and Pr(C ∣ Hd) = d = 0. The numerator of the
likelihood ratio is b0t + (1 − t)b1,m𝛾 . Given Hd, the
transfer probability Pr(T ∣ C,Hd) = s = 0, so the
denominator of the likelihood ratio becomes b1,m𝛾 .
Thus, the likelihood ratio is

V =
b0t + (1 − t)b1,m𝛾

b1,m𝛾
.

Consider t = 1 and the fact that, as mentioned
earlier, no one other than the wife ever sits on
the passenger seat and also that the car seats
have been vacuumed recently. The probability b0
should therefore be considered as being close to 1.
Then, the likelihood ratio becomes approximately
1∕b1,m𝛾 .

5.3.2.4 Uncertainty About the True
Source

The general approach for the development of a
likelihood ratio for the evaluation of evidence
given activity level propositions can be applied to
various categories of findings (e.g. DNA, fibres,
shoemarks). Notice, however, that fibre evidence
and shoemarks differ from DNA in the sense that
they are not ‘intrinsic’ to a given individual; in
fact, a given individual has, as far as most of the
common typing techniques in forensic science are
concerned, one and only one DNA profile (leaving
aside biological anomalies and other special
cases) and it cannot be deliberately modified.
Most people, however, almost certainly, have more
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than one pullover or more than one pair of shoes.
Thus, with such items, it is necessary to make
assumptions regarding the relationship between a
particular pullover or a given pair of shoes and a
particular PoI such as when the shoes or clothes
were worn. In the examples presented earlier in
this chapter, it was tacitly assumed that there was
no uncertainty about the assumed known source.
In what follows this assumption is relaxed.

To continue the discussion on transfer evidence,
consider again a case involving textile fibres. A
potential relationship pertains, in the first place,
between the PoI’s pullover and fibres recovered
on a crime scene. This does not necessarily
include a relationship between this PoI and the
recovered fibres, and an extended likelihood ratio
development is needed in order to account for the
possibility of the PoI being (or not being) a wearer
of the pullover (Taroni et al., 2012a). Thus, the
problem of interest is that of uncertainty about
the item itself actually worn by the PoI if they
committed the action of interest. It may not be
known if the item worn by the PoI during the
alleged facts is in fact the item available (and
analysed) as a known source. This uncertainty
can be phrased in terms of propositions. Moreover,
one can no longer refer to the characteristics of
the available item of clothing as a control and no
longer assume it to be the clothing which was
worn by the PoI in the event that they truly are the
criminal. A distinction should be made between
the item available as a posited known source and
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the actual (yet unobserved) source worn by the
PoI (under Hp).

Taking into account all these uncertainties, the
likelihood ratio presented in (5.6), in a scenario
involving a unique group of extraneous fibres,
becomes

V =
b0tn𝛿 + b1,m𝛾[t0𝛿 + t′′0 ](1 − 𝛿)]

b0𝛾t′n + b1,m𝛾t′0
, (5.9)

where 𝛿 refers to [𝑤 + 𝛾 ′(1 −𝑤)] and w to the
probability that the PoI wore the known source
(e.g. the seized pullover) at the moment of the
alleged event. If the PoI did not wear the known
source at the moment of the crime, it is necessary
to consider the probability that the garment
actually worn by the PoI, but different from the
known source, would still be of the same type (e.g.
red wool): 𝛾 ′.

The probability t′′0 refers to the probability of no
transfer from the true source, in the event that
this source has characteristics different from those
seen on the known source (i.e. the PoI’s pullover).
The factor t′′0 can reasonably be conceptualised
as an average probability of no transfer from all
potential sources described as different from the
PoI’s pullover. The probability t′′0 has to be distin-
guished, however, from t0 because, potentially,
the probability of no transfer from the garment
available as a known source may be different.
It is also distinguished from the probability t′0,
which is reserved for no transfer from the garment



�

� �

�

546 Evidence and Propositions: Theory

worn by the true offender under the alternative
proposition Hd.

Notice that this extension of the numerator of
the likelihood ratio has a potential effect only for
cases in which there is uncertainty about whether
or not the PoI wore the garment available as a
known source. If there is no such uncertainty
(𝑤 = 1), then the numerator of the likelihood
ratio becomes, as before, b0t + b1,m𝛾t0. A com-
plete formal development, including Bayesian
network representations, is available in Taroni
et al. (2012a).

5.3.2.5 Cross- (or Two-Way) Transfer
of Trace Material

Another category of forensically relevant situa-
tions relates to cases in which a direct contact
between two persons (or objects) or a person and
an object may have occurred. In such cases, a
so-called cross- or two-way transfer of trace mate-
rial may take place. Consider again an example
with recovered fibres. The example is simplified for
generality.

A stolen vehicle is used in a robbery on the day
of its theft. An hour later it is abandoned. The
vehicle is found by the police a few hours later.
The car owner lives alone and has never lent the
vehicle to anyone. The owner wears nothing but
cotton. The day following the robbery a PoI is
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apprehended, their red woollen pullover and their
denim jeans are confiscated.2

On the driver’s black polyester seat, which has
recently been cleaned with a car vacuum cleaner,
one group of relevant foreign fibres, different from
cotton, is collected. It consists of a large number
of red woollen fibres. The evidence E1 is (y1, x1)
where y1 refers to the recovered fibres on the car
seat and x1 refers to known (control) material
from the PoI’s red woollen pullover. The fibres
on the driver’s seat are assumed to have been
transferred from the clothing of the offender to the
seat. Foreign fibre groups are groups of fibres that
can be distinguished from fibres from a known
source, associated either with the PoI or with an
object such as a car.

On the PoI’s pullover and denim jeans (together),
there are many foreign fibre groups. One consists
of twenty extraneous black fibres. They are in
agreement (in some sense) with the fibres of the
driver’s seat. The evidence E2 is (y2, x2) where y2

refers to the twenty recovered fibres on the PoI’s

2As previously noticed in Section 5.3.2.4, it is generally neces-
sary to make assumptions regarding the relationship between a
particular item of clothing and a particular PoI such as to when
the clothing was worn. In what follows, it is assumed the woollen
pullover and the denim jeans were worn by the PoI at the time of
the incident. As there is no uncertainty about this event, no exten-
sion considering uncertainty about the true source of the clothes
is required.
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clothes and x2 refers to known material from the
driver’s seat. The competing propositions (at the
activity level) could be

Hp: the PoI sat on the driver’s seat of the stolen
car;

Hd: the PoI has never sat on the driver’s seat of
the stolen car, they have nothing to do with
the robbery or the car theft.

When two individuals, or an individual and
an object, such as a car seat, are in contact, a
two-way (reciprocal) transfer of material is usu-
ally involved. The two sets of recovered traces then
have to be considered as dependent. If a transfer
has occurred in one direction and the expert
has recovered traces characterising this transfer,
then the expert would, in general, expect to find
trace material characterising transfer in the other
direction (Inman and Rudin, 2001). The presence
of material characterising transfer in one direction
gives information about the presence of material
characterising transfer in the other direction.
If Hd holds, that is the PoI has never sat on the
driver’s seat of the stolen car, then knowledge
about material found on the car’s seat should not
affect one’s expectations to find material on the
PoI’s pullover. A formal analysis will clarify these
aspects. Note that I is omitted for ease of notation,



�

� �

�

The Formal Development 549

so that

Pr(Hp ∣ E1,E2)
Pr(Hd ∣ E1,E2)

=
Pr(E2 ∣ Hp,E1)
Pr(E2 ∣ Hd,E1)

×
Pr(Hp ∣ E1)
Pr(Hd ∣ E1)

=
Pr(E2 ∣ Hp,E1)
Pr(E2 ∣ Hd,E1)

×
Pr(E1 ∣ Hp)
Pr(E1 ∣ Hd)

×
Pr(Hp)
Pr(Hd)

. (5.10)

The value of the evidence is then

V =
Pr(E2 ∣ Hp,E1)
Pr(E2 ∣ Hd,E1)

×
Pr(E1 ∣ Hp)
Pr(E1 ∣ Hd)

. (5.11)

The second ratio is equal to (5.6)

Pr(E1 ∣ Hp)
Pr(E1 ∣ Hd)

=
b0tn + b1,m𝛾1t0

b0𝛾1t′n + b1,m𝛾1t′0
, (5.12)

where 𝛾1 is the population proportion for the
characteristics from y1 in extraneous groups
of fibres of similar size found on seats of stolen
cars, determined with reference to a background
database of fibres. Equation (5.12) reduces to
1∕𝛾1, if two assumptions can be accepted. The
transfer probabilities ti and t′i(i = 0, n) refer, as
previously mentioned in Section 5.3.2.1, to
the probabilities of transfer from the PoI’s and
the true offender’s garments, respectively. By
considering tn = t′n and t0 = t′0, (5.12) reduces to
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1∕𝛾1. If these assumptions cannot be made, then
the extended form of the likelihood ratio (5.12)
holds. Alternatively,

(1) given the case circumstances, one may con-
sider that background material on the car’s
seat not attributable to the habitual user
would be absent; so, b1,m = 0 and b0 = 1;

(2) if the PoI has never sat on the driver’s seat
of the stolen car (proposition Hd), another
individual (different from the owner) sat on
it; hence, the transfer characteristics of the
unknown garment of that individual, the
assumed offender, are of importance.

Focus now on the first ratio on the right-hand
side in (5.11) that accounts for a recovered group
of twenty fibres (y2) present on the PoI’s clothing.
In the numerator of (5.11), it is assumed that this
group of fibres is, potentially, the result of transfer
whilst the PoI sat on the car’s seat. In the denomi-
nator, the presence of y2 is considered as being part
of the background presence. If the PoI did not sit on
the car’s seat, the fibres found on their pullover are
there by chance alone as previously mentioned in
Section 5.3.2.2. This denominator can be written
as b∗1,20𝛾2. The ∗ in this notation is used to distin-
guish the assignment of a probability for the occur-
rence of fibres on the pullover from some source
other than the car seat from the assignment used
for the background presence of fibres on the car
seat. The subscript 1, 20 refers to 1 group of 20
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fibres. The numerator Pr(E2 ∣ E1,Hp) may be writ-
ten as follows

Pr(E2 ∣ E1, T2,Hp)Pr(T2 ∣ E1,Hp)
+ Pr(E2 ∣ E1, T̄2,Hp)Pr(T̄2 ∣ E1,Hp), (5.13)

with an extension of the conversation using events
T2, the transfer of fibres from the car seat to the
PoI’s pullover, and T̄2, the transfer of no fibres from
the car to the PoI’s pullover, respectively.

Given T2, the observation E1 of the fibres on
the car seat (corresponding to the PoI’s pullover)
does not influence the conditional probability
of E2. Thus, Pr(E2 ∣ E1, T2,Hp) = Pr(E2 ∣ T2,Hp)
and Pr(E2 ∣ E1, T̄2,Hp) = Pr(E2 ∣ T̄2,Hp). Equation
(5.13) becomes

b∗0 Pr(T2 ∣ E1,Hp) + b∗1,20𝛾2 Pr(T̄2 ∣ E1,Hp).

Probabilities b∗0 and b∗1,20 represent, respectively,
zero background and background of one group
of comparable size with compatible analytical
features.

Pr(T2 ∣ E1,Hp) can also be extended by consider-
ing the events of transfer T1, the transfer of fibres
from the PoI’s (offender’s) pullover to the car seat,
and T̄1, the transfer of no fibres from the PoI’s
(offender’s) pullover to the car seat, so that

Pr(T2 ∣ E1,Hp) = Pr(T2 ∣ T1,Hp)Pr(T1 ∣ E1,Hp)
+Pr(T2 ∣ T̄1,Hp)Pr(T̄1 ∣ E1,Hp),
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because it is considered that event of transfer T2
and E1 are conditionally independent given T1.

Denote the probability Pr(T2 ∣ T1,Hp) as un∣T1
.

This is a conditional transfer probability (i.e.
conditional on the event T1 of transfer of a group
of n foreign fibres to the car seat). It is highly case
dependent because it is influenced by the kind of
textile material involved in the transfer.

Probability Pr(T1 ∣ E1,Hp) is obtained using
Bayes’ theorem:

Pr(T1 ∣ E1,Hp) =
Pr(E1 ∣ T1,Hp)Pr(T1 ∣ Hp)(
Pr(E1 ∣ T1,Hp)Pr(T1 ∣ Hp)
+Pr(E1 ∣ T̄1,Hp)Pr(T̄1 ∣ Hp)

)

=
b0tn

b0tn + b1,m𝛾1t0
. (5.14)

For simplicity, consider again the previously
supposed extreme situation with values b0 = 1
and b1,m = 0 for the background presence of
extraneous fibres on the driver’s seat. In such
a situation, Pr(T1 ∣ E1,Hp) = 1 and therefore
Pr(T̄1 ∣ E1,Hp) = 1 − Pr(T1 ∣ E1,Hp) = 0. This
expresses the view that if there were no back-
ground fibres on the driver’s seat, but fibres
corresponding to those on the PoI’s pullover were
found on the seat, then it is the event of transfer
that led to this finding. Thus, Pr(T2 ∣ E1,Hp) = un∣T1

and Pr(T̄2 ∣ E1,Hp) = (1 − un∣T1
) and (5.13)

becomes

b∗0u20∣T1
+ b∗1,20𝛾2(1 − u20∣T1

).
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Notice that the probability u20∣T̄1
does not

appear in this expression due to the extreme
values assumed for b0 and b1,20. If these assump-
tions are relaxed, then the probability u20∣T̄1

will
appear in the numerator of the likelihood ratio.
The denominator Pr(E2 ∣ E1,Hd) = b∗

1,20𝛾2. By
combining the developments for the numerator
and denominator of the likelihood ratios for the
two parts of (5.13) the final expression is

b∗0u20∣T1
+ b∗1,20𝛾2(1 − u20∣T1

)
b∗1,20𝛾2

× 1
𝛾1
. (5.15)

Treatment of the scenario in which there is
a two-way transfer of evidence is a particular
example of what is known generally as the prob-
lem of ‘combining items of evidence’. More on this
problem is presented in Section 5.6.

5.3.3 Likelihood Ratio with Offence
Level Propositions

An extension of the results of Sections 5.3.1 and
5.3.2 to deal with two further issues is considered
by Evett (1993a) and refers to the development of
a likelihood ratio with offence level propositions.
The first issue is that of relevance in relation to
material. Relevance in this context is defined by
Stoney (1991a) and Stoney (1994) as follows.
Crime material that is known to come from the
offender is said to be relevant in that it is relevant
to the consideration of persons of interest as
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possible offenders. Here, the notion of relevant
material should be distinguished from that of
relevant populations. The second issue concerns
the recognition that if the material is not relevant
to the case then it may have arrived at the scene
from a PoI for innocent reasons. In this section,
reference to I has, in general, been omitted for
ease of notation.

Evett (1993a) considers a situation in which
material is found on a crime scene. A crime has
been committed by k (≥ 1) offenders. A single
bloodstain is found at the crime scene in a position
where it may have been left by one of the offenders.
A PoI is found and they give a blood sample. The
PoI’s sample and the crime stain are of the same
profile, say, Γ. This profile is shared by the propor-
tion 𝛾 of the relevant population from which the k
offenders have come.

Suppose that the court is interested in the
evaluation of this evidence given the following
offence-level propositions:

Hp: the PoI is one of the k offenders;

Hd: the PoI is not one of the k offenders.

Notice the difference between these propositions
and those of Section 5.3.1. There, the propositions
referred to the PoI (or an object) being, or not
being, the source (donor) of the evidential material
found at the crime scene. Now, the propositions
are stronger, namely, that the PoI is, or is not, one
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of the offenders. The value V of the evidence is

V =
Pr(Er ∣ Hp,Ec)

Pr(Er ∣ Hd)
(5.16)

where Er is the profile Γ of the crime stain and Ec is
the profile Γ of the PoI, sometimes written as Er =
Γ,Ec = Γ, respectively. Note, again, that Ec is con-
sidered not to influence the assessment under the
alternative proposition Hd.

5.3.3.1 Probabilities of Innocent
Acquisition and Relevance

An argument needs to be developed, based on
what has been observed – the stain at the crime
scene – and the propositions of interest, that the
PoI is or is not one of the offenders. The argument
is made in two steps.

The first step is the consideration of a propo-
sition according to which the crime stain came
from one of the k offenders and an alternative
proposition that the crime stain did not come
from any of the k offenders. These propositions are
known as association propositions, or association
hypotheses (Buckleton, personal communication,
cited by (Evett, 1993a)) and introduced in (5.5).

Assume that the crime stain came from one of
the k offenders. The second step of the argument
is the consideration of a proposition that the
crime stain came from the PoI and the alternative
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proposition that the crime stain did not come
from the PoI. These propositions are known as
intermediate association propositions.

Development of these propositions requires
consideration of other factors. These are inno-
cent acquisition and relevance. The evaluation of
these factors may be done by partitioning the
expressions in the numerator and denominator
of (5.16). The following subjective (or personal)
probabilities are of interest:

• that of innocent acquisition, usually denoted p:
this value is a measure of belief that evidence
has been acquired in a manner unrelated to the
crime (Evett, 1993a);

• that of relevance, usually denoted r (Stoney,
1991a,1994; Evett et al., 1998). In this context
it denotes the probability that the stain recov-
ered from the crime scene is connected with
the crime and hence has been left by one of the
offenders.

5.3.3.2 Association Propositions

Consider the following association propositions:

B : the crime stain came from one of the k
offenders;

B̄ : the crime stain did not come from any of the
k offenders.

The value, V, of the evidence may now be
written using the law of total probability (Section
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1.7.10) as

V =

Pr(Er ∣ Hp,B,Ec)Pr(B ∣ Hp,Ec)
+Pr(Er ∣ Hp, B̄,Ec)Pr(B̄ ∣ Hp,Ec)
Pr(Er ∣ Hd,B)Pr(B ∣ Hd)

+Pr(Er ∣ Hd, B̄)Pr(B̄ ∣ Hd)

.

In the absence of information Er, regarding the
profile of the crime stain, knowledge of Hp and of
Ec does not affect our belief in the truth or other-
wise of B. This is what is meant by relevance in this
context. Thus

Pr(B ∣ Hp,Ec) = Pr(B ∣ Hp) = Pr(B)

and

Pr(B̄ ∣ Hp,Ec) = Pr(B̄ ∣ Hp) = Pr(B̄).

Let Pr(B) = r and Pr(B̄) = (1 − r), and call r the
relevance term. It is the probability that the stain has
been left by one of the offenders. The higher the
value of r, the more the stain is considered rele-
vant. Thus

V =
Pr(Er ∣ Hp,B,Ec)r + Pr(Er ∣ Hp, B̄,Ec)(1 − r)
Pr(Er ∣ Hd,B,Ec)r + Pr(Er ∣ Hd, B̄,Ec)(1 − r)

.

(5.17)

5.3.3.3 Intermediate Association
Propositions

In order to determine the component probabilities
of (5.17), the following intermediate association
propositions are introduced:
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A: the crime stain came from the PoI;

Ā: the crime stain did not come from the PoI.

Now consider the four conditional probabilities
from (5.17).

(a) Pr(Er ∣ Hp,B,Ec): This is the probability that
the crime stain would be of profile Γ if it had
been left by one of the offenders (B), the PoI
was one of the k offenders (Hp) and the PoI is
of profile Γ(Ec).

Pr(Er ∣ Hp,B,Ec)
= Pr(Er ∣ Hp,B,A,Ec)Pr(A ∣ Hp,B,Ec)
+ Pr(Er ∣ Hp,B, Ā,Ec)Pr(Ā ∣ Hp,B,Ec).

Here Er = Ec = Γ and Pr(Er ∣ Hp,B,A,Ec) = 1.
In the absence of Er, A is independent of Ec and
so

Pr(A ∣ Hp,B,Ec) = Pr(A ∣ Hp,B) = 1∕k,

assuming that there is nothing in the back-
ground information I to distinguish the PoI,
given Hp, from the other (k − 1) offenders as
far as blood shedding is considered.

In a similar manner, Pr(Ā ∣ Hp,B,Ec) = (k −
1)∕k. Also,

Pr(Er ∣ Hp,B, Ā,Ec) = Pr(Er ∣ Hp,B, Ā) = 𝛾,

since if Ā is true, Er and Ec are independent,
and one of the other offenders left the stain
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(since B holds). Thus

Pr(Er ∣ Hp,B,Ec) = {1 + (k − 1)𝛾}∕k.

(b) Pr(Er ∣ Hp, B̄,Ec): This is the probability that
the crime stain would be of profile Γ if it had
been left by an unknown person who was
unconnected with the crime (i.e. none of the k
offenders). This is the implication of assuming
B̄ to be true. The population of people who
may have left the stain is not necessarily
the same as the population from which the
criminals are assumed to have come. Thus, let

Pr(Er ∣ Hp, B̄,Ec) = 𝛾 ′.

where 𝛾 ′ is the probability of observing profile
Γ in a given person from the population of peo-
ple who may have left the stain. Note that the
symbol ′ is used to indicate that it may not be
the same value as 𝛾 , which relates to the pop-
ulation from which the criminals have come.

Consider now that the PoI is not one of the k
offenders and Hd is true.

(c) Pr(Er ∣ Hd,B,Ec) = Pr(Er ∣ Hd,B) = 𝛾 desig-
nates the probability of observing profile Γ by
chance on a given person from the population
from which the criminals have come. There
is no need to partition these probabilities to
consider A and Ā as the PoI is assumed not to
be one of the offenders and B is that the stain
was left by one of the offenders.
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(d) Consider now the term

Pr(Er ∣ Hd, B̄,Ec)
= Pr(Er ∣ Hd, B̄,A,Ec)Pr(A ∣ Hd, B̄,Ec)
+ Pr(Er ∣ Hd, B̄, Ā,Ec)Pr(Ā ∣ Hd, B̄,Ec).

If A is true, Pr(Er ∣ Hd, B̄,A,Ec) = 1. Also
Pr(A ∣ Hd, B̄,Ec) = Pr(A ∣ Hd, B̄). This is the
probability p of innocent acquisition: the
probability that the stain would have been
left by the PoI even though the PoI was
not one of the k offenders. It is assumed
that the propensity to leave a stain is inde-
pendent of the profile of the person who
left the stain. Hence Pr(A ∣ Hd, B̄) = p and
Pr(Ā ∣ Hd, B̄,Ec) = Pr(Ā ∣ Hd, B̄) = 1 − p. Also
Pr(Er ∣ Hd, B̄, Ā) = 𝛾 ′. Thus

Pr(Er ∣ Hd, B̄,Ec) = p + (1 − p)𝛾 ′.

Substitution of the aforementioned expressions
into (5.17) gives

V =
[r{1 + (k − 1)𝛾}∕k] + {𝛾 ′(1 − r)}

𝛾r + {p + (1 − p)𝛾 ′}(1 − r)

= r{1 + (k − 1)𝛾} + k𝛾 ′(1 − r)
k[𝛾r + {p + (1 − p)𝛾 ′}(1 − r)]

, (5.18)

as developed by Evett (1993a). An example of such
an evaluation is developed in Chapter 6.3.1.
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5.3.3.4 A Note on Evidence Assessment
Given Offence Level Propositions

As noted previously (Section 5.3.3.2), association
propositions in cases with material found on the
crime scene are of the kind ‘the crime stain comes
(does not come) from the offender’ (Evett, 1993a).
For cases involving transfer away from the scene
(e.g. from victim to offender), the relevance of
staining found on a PoI cannot be established
analogously by saying, e.g. that ‘the stain, found
on the PoI, comes (does not come) from the vic-
tim’. This is a source level proposition (the victim
is stated as the source of the material recovered on
the PoI). As such, it is not sufficient to establish an
argumentative connection from the observed cor-
respondence between Ec and Er to the offence level
propositions H. In fact, for cases involving transfer
away from the scene, it appears reasonable to
assume that the relevance of a stain found on a
PoI depends on whether or not the particular cat-
egory of evidence to which the stain belongs (e.g.
blood) was actually produced during the course of
the offence, depending on what is known through
the framework of circumstances. In a victim (or
scene) to offender transfer setting, establishment
that shedding of material (e.g. by bleeding) is
relevant to the case and an assumption that the
PoI is the offender do not necessarily imply that
the stain found on the PoI comes from the victim.
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This implication depends on whether or not there
is background staining on the PoI and whether or
not transfer from scene to offender occurred.

Relevance in this context could thus be inter-
preted as a property of the type (or category) of
evidence, such as blood, rather than the stain
itself. Although an alternative way to relate the
stain at hand to the crime could consist of a
proposition of the kind ‘the non-self stain found
on the PoI is present as a result of the crime’, this
proposition can be thought to be equivalent to the
proposition that the stain comes from the victim.
The result is a hidden redundancy with respect to
a genuine source-level proposition.

A tentative approach to deal with offence level
propositions in a case involving potential transfer
of material from a victim to a PoI is presented in
Biedermann and Taroni (2011), using Bayesian
networks to deal with the complexities of formal
developments.

5.4 VALIDATION OF BAYESIAN
NETWORK STRUCTURES: AN
EXAMPLE

Consider, for the purpose of illustration, the case
involving a recovered stain at a crime scene and
a PoI as a potential offender. The evaluation of
evidence given offence-level propositions has been
described earlier (see Section 5.3.3). To approach
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A

E

H B

Figure 5.1 Four-node network for the evaluation of
evidence given offence level propositions.

this issue probabilistically, it has been shown that a
connection is needed between the nodes represent-
ing the observation made on the crime stain and
the main proposition according to which the PoI is
the offender. The connection is made in two steps.
The first is the consideration of the proposition
that the crime stain came from the offender (i.e.
the association proposition). Then, assuming that
the crime stain came from the offender, the second
step is the consideration of the proposition that the
crime stain came from the PoI (i.e. the intermediate
association proposition). The Bayesian network
(see Section 2.9.1) describing this situation
contains four nodes as shown in Figure 5.1.

It is assumed that all four nodes are binary. The
two possible values for each of the nodes are as
follows:

• H: the PoI is (Hp) or is not the offender (Hd);

• B: the crime stain did (B) or did not come from
the offender (B̄);

• A: the crime stain did (A) or did not come from
the PoI (Ā);
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• E: the PoI and crime stain have (E) or do not have
(Ē) the same DNA profile.

Nodes H and B are parent nodes and are inde-
pendent, i.e. there is no link between these two
nodes. Knowing that the stain comes from the
offender does not tell one anything about the
probability that the PoI is (or is not) the offender.
Thus, only one probability needs to be specified for
each node, i.e. Pr(Hp), the probability the PoI is
the offender, and Pr(B), the probability the crime
stain came from the offender (i.e. the so-called
relevance term). The probabilities Pr(Hd) and
Pr(B̄) are the complements of Pr(Hp) and Pr(B),
respectively. The outcome of node A is dependent
on the nodes H and B. Four probabilities are
needed:

• Pr(A ∣ Hp,B): The probability that the crime
stain came from the PoI, conditional on the PoI
being the offender and the crime stain coming
from the offender; here, certainly, the stain
came from the PoI, so the probability equals 1.

• Pr(A ∣ Hp, B̄): The probability that the crime
stain came from the PoI, conditional on the
PoI being the offender and the crime stain
not coming from the offender; here, certainly,
the stain did not come from the PoI, so the
probability equals 0.

• Pr(A ∣ Hd,B): The probability that the crime
stain came from the PoI, conditional on the
PoI not being the offender and the crime stain
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coming from the offender; here, certainly, the
stain did not come from the PoI, so the probabi-
lity equals 0.

• Pr(A ∣ Hd, B̄): The probability that the crime
stain came from the PoI, conditional on the
PoI not being the offender and the crime stain
not coming from the offender; this is the prob-
ability that the stain would have been left by
the PoI even though they were innocent of the
offence (this probability is denoted p in Section
5.3.3.3).

For the fourth node E two probabilities need to
be assigned. The first is Pr(E ∣ A), the probability
the PoI and the crime stain have the same profile,
given the crime stain came from the PoI. This
probability is assigned the value 1. The second is
Pr(E ∣ Ā), the probability the PoI and the crime
stain have the same profile, given the crime stain
did not come from the PoI. This is the profile prob-
ability 𝛾 , assigned using data from the relevant
population.

The probability of interest is Pr(Hp ∣ E). The
probabilities given earlier are provided. There is
then an observation that node E takes the value
‘PoI and crime stain have the same DNA profile’.
Then

Pr(Hp ∣ E) = Pr(E ∣ Hp)Pr(Hp)∕Pr(E)

=
Pr(E ∣ Hp)Pr(Hp)

Pr(E ∣ A)Pr(A) + Pr(E ∣ Ā)Pr(Ā)
.
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The probability of A can be determined as

Pr(A ∣ Hp,B)Pr(Hp,B) + Pr(A ∣ Hp, B̄)Pr(Hp, B̄)
+ Pr(A ∣ Hd,B)Pr(Hd,B) + Pr(A ∣ Hd, B̄)Pr(Hd, B̄)

which, making use of the independence of H and
B, can be rewritten as

Pr(A ∣ Hp,B)Pr(Hp)Pr(B)
+Pr(A ∣ Hp, B̄)Pr(Hp)Pr(B̄)
+Pr(A ∣ Hd,B)Pr(Hd)Pr(B)
+Pr(A ∣ Hd, B̄)Pr(Hd)Pr(B̄).

Then Pr(E ∣ Hp) can be determined as

Pr(E ∣ Hp) = Pr(E ∣ Hp,A)Pr(A ∣ Hp)
+Pr(E ∣ Hp, Ā)Pr(Ā ∣ Hp)

= Pr(E ∣ A)Pr(A ∣ Hp)
+Pr(E ∣ Ā)Pr(Ā ∣ Hp),

and

Pr(A ∣ Hp) = Pr(A ∣ Hp,B)Pr(B)
+ Pr(A ∣ Hp, B̄)Pr(B̄)

with Pr(Ā ∣ Hp) = 1 − Pr(A ∣ Hp).
If it is assumed that Pr(B) = r and Pr(A ∣

B̄,Hd) = p, a simplified version of (5.18) (when
the number of offenders is reduced to k = 1), is
obtained:

V = r + {𝛾 ′(1 − r)}
𝛾r + [p + (1 − p)𝛾 ′](1 − r)

. (5.19)
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Note that r defines the relevance term, p is the
probability of innocent acquisition, 𝛾 denotes
the probability of observing the profile of interest
by chance on a given selected person from the
population from which the criminal has come, and
finally 𝛾 ′ represents the probability of observing
the profile of interest in a given selected person
from the population of people who may have left
the stain (for an innocent reason).

The agreement between the likelihood ratio
derived from the Bayesian network and an existing
likelihood ratio formula (here (5.18), previously
published in Garbolino and Taroni (2002)) can
be taken as an indication that the Bayesian net-
work structure and the associated probabilistic
assessments are appropriate. Consider also that
if it is assumed further that p equals 0 and that
the relevance of the crime stain is maximal
(r = 1), then the likelihood ratio is reduced to
its simplest form, 1∕𝛾 , a well-known result in
the context of evaluation given source level
propositions. Garbolino and Taroni (2002) gave
further examples of Bayesian network structures
that accurately present existing and accepted
probabilistic solutions for forensic inference
problems.

Section 5.5 introduces the notion of pre-
assessment and a real-case application. Sci-
entists are encouraged with this approach to
consider what propositions they should address
before attempting any examination and con-
sidering what magnitude of the likelihood ratio
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might be expected if the prosecution or the defence
proposition were true (Champod and Evett, 2009).

5.5 PRE-ASSESSMENT

5.5.1 Pre-assessment of the Case

The evaluation process should start when the
scientist first meets the case. It is at this stage that
the scientist thinks about the issues with which
they are requested to help and the outcomes that
may be expected. The scientist should provide
assistance in the definitions of the propositions of
interest and think about the value of evidence that
is expected (Evett et al., 2000e). However, there is
a tendency to consider evaluation of evidence as
a final step of casework examination, notably at
the time of preparing the formal evaluative report.
This is so even if an earlier interest in the process
would enable the scientist to make better decisions
about the allocation of resources (Jackson et al.,
2006). For example, consider a case of assault
involving the possible cross-transfer of textile
fibres between a victim and assailant. The scientist
has to decide whether to look first for potentially
transferred fibres on the victim’s pullover, or for
extraneous fibres potentially present on a PoI’s
pullover. If traces analytically consistent with the
PoI’s pullover are found on the victim’s pullover,
then the expectation of the detection of traces
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analytically consistent with the victim’s pullover
on the PoI’s pullover has to be assessed. This
includes the possibility of reciprocal transfer.
Should the scientist have expectations? How
can they be quantified? And, what is the inter-
pretative consequence when those expectations
are or are not met, that is, expected material is
present or absent? Matters to be considered here
include (i) an adequate definition of expectation,
(ii) the quantification of the expectations, and
(iii) the interpretation of the presence or absence
of trace material, in terms of the realisation or
otherwise of the expectations.

The scientist requires an adequate appreciation
of the circumstances of the case so that a frame-
work may be set up for consideration of the kind
of examinations that may be carried out and what
may be expected from them (Cook et al., 1998a)
and (Champod and Evett, 2009), in order for a log-
ical decision to be made (Taroni et al., 2005).

Such a procedure is known as a pre-assessment of
the case. It can be justified on a variety of grounds.
An essential argument is that the choice of the
appropriate level of proposition for the evaluation
of scientific evidence is carried out within a frame-
work of circumstances. These circumstances have
to be known before any examination can be made
in order that meaningful and helpful propositions
may be proposed. This is particularly important
when a choice needs to be made between activity
and source level propositions. As noticed by the
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ENFSI Guideline (ENFSI, 2015):

Conditioning information is the relevant case information
that helps the forensic practitioner recognise the pertinent
issues, select the appropriate propositions and carry out the
case pre-assessment. It shall always be regarded as provi-
sional and the examiner shall be ready to re-evaluate find-
ings if the conditioning information changes. Examples of
relevant information that could change include the nature
of the alleged activities, time interval between incident and
the collection of traces (and reference items) and the PoI’s /
victim’s account of their activities. (p. 21)

Moreover, this process provides a basis for a
consistency of approach by all scientists who are
thereby encouraged to consider carefully factors
such as circumstantial information and data that
are to be used for the evaluation of evidence, and
to declare these considerations in the final report
(Jackson and Jones, 2009).

The ENFSI Guideline (ENFSI, 2015) reinforces
the importance of the pre-assessment procedure
by affirming:

Case pre-assessment seeks to specify potential findings
prior to performing any analyses or prior to knowing the
results, in order to assess the potential value associated
with each of these findings, as well as the probability
with which these results may be obtained under each of
the competing propositions. The purpose is to (i) avoid
bias in the evaluations of the findings, and (ii) devise an
examination strategy on which a mandating authority or
party can – in terms of expected results and associated
evidential value – agree (Cook et al., 1998a). To ensure a
balanced approach, forensic practitioners should – prior to
any examinations – formulate potential outcomes (along
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with probabilities for these outcomes) given, in turn, that
each of the competing propositions is true. Otherwise
an evaluation may be biased. For example, a statement
of the kind: ‘These observations correspond well to my
expectations if the prosecutor’s proposition is true’ is
more trustworthy if the scientist can demonstrate that the
respective expectations (including assignments for factors
such as transfer and persistence) have been formulated
prior to conducting any examinations. (pp. 22–23)

The scientist should proceed by providing prob-
ability assignments for whatever evidence will be
found given each proposition of interest. Consider,
for example, a case in which a window was
smashed and assume that the prosecution and
defence propose the following competing versions
of the event: ‘The PoI is the person who smashed
the window’, and ‘The PoI was not present when
the window was smashed’. The examination of
the PoI’s pullover will reveal a quantity, say, Q,
of glass fragments, where Q can be, for example,
one of the following states {no, few, many} or a list
of numerical ranges such as {0, 1–10, 11–100,
> 100}. The role of these categories is to maximise
the possibility of discrimination between the
propositions of interest. Next, the scientist should
consider the following two questions.

• The first question focuses on the assessment of
a value for the numerator of the likelihood ratio:
‘What is the probability of finding a quantity Q of
matching glass fragments on the PoI’s pullover if
the PoI is the man who smashed the window?’
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• The second question focuses on the assessment
of a value for the denominator of the likelihood
ratio: ‘What is the probability of finding a quan-
tity Q of glass fragments (with corresponding
analytical features) on the PoI’s pullover if
the PoI was not the person who smashed the
window (moreover, the PoI was not present
when the window was smashed)?’

This leads the scientist to assess six different
probabilities, related to three potential findings,
such as {no, few, many} (fragments), and two
propositions of interest (Hp and Hd), using data
on surveys, relevant publications on the matter,
or personal expert assessments: the probability of
finding {no, few, many} matching glass fragments
if the PoI is the person who smashed the window,
and the probability of finding {no, few, many}
matching glass fragments if the PoI was not
present when the window was smashed.

These probabilities may not be easy to assign
because of a lack of information available to the
scientist. For example, it will be very difficult to
assess transfer probabilities (see Section 6.2.2) if
the scientist has no answer to questions like the
following.

• Was the window smashed by a person or by a
vehicle? The fact that a window was smashed
by a person or by a vehicle changes the amount
of glass fragments the scientist expects to be
transferred.
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• How (modus operandi) was the window smashed?
If it was smashed by a person, then was that
person standing close to it? Was a brick thrown
through it? Was a hammer used, and if so
how many blows were necessary to break the
window? Information about the way a window
is smashed is important because it provides
information on the amount of glass potentially
projected. Information of the distance between
the person who smashed the window and the
window offers relevant information on the
amount of glass fragments the scientist will
expect to recover.

Where there is little information about the
time of the alleged offence and the time at which
investigators took possession of any clothing
that may be associated with the alleged offence,
the lapse of time between the offence and the
collection of transfer material cannot precisely be
assessed. It is also difficult to assign the probability
of persistence of any transferred glass fragments
(see Section 6.2.3). Therefore, if the scientist has
a limited amount of information about the case
under examination, then the pre-assessment has
to clearly mention this fact. Consideration only
of source (or, sub-source) level propositions may
not be an option if the needs relate to posited
activities and factors such as transfer and per-
sistence that require expert knowledge which
needs to be taken into account in order to assess
properly the findings in the context of the case as
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a whole. Note that source level propositions may
be adequate in cases when there is no risk that
the court will misinterpret them in the context
of the alleged activities in the case, that is, when
no expert knowledge of factors such as transfer
and persistence is needed. With transfer material,
such as glass, this is rarely the case, as under-
lined by the ENFSI Guideline (ENFSI, 2015) (see
Section 5.2).

The process of case pre-assessment can be sum-
marised by the following steps:

• collection of task-relevant information that the
scientist may need about the case;

• consideration of the issues in the case and the
questions that the scientist can reasonably help
address; this includes an assessment of the
appropriate level of propositions under which
the findings are to be evaluated;

• identification of the relevant factors that will
appear in the likelihood ratio formula;

• assessment of the strength of the evidence, in
terms of the likelihood ratio, that is expected
given the background information;

• determination of the examination strategy;

• conducting analyses and gathering observa-
tions, leading to examination outcomes;

• calculation of the likelihood ratio for each of sev-
eral potential findings.

An illustration of this procedure is presented in
Section 5.5.3.



�

� �

�

Pre-Assessment 575

5.5.2 Pre-assessment of Evidence

Examples that consider the pre-assessment of
various types of scientific evidence include the fol-
lowing. Cook et al. (1998b) discuss pre-assessment
through the example of a hypothetical burglary
involving potentially transferred glass fragments
(i.e. an unknown quantity, Q, of recovered frag-
ments). Stockton and Day (2001) consider an
example involving signatures on questioned doc-
uments. Champod and Jackson (2001) consider
a burglary case involving fibre evidence. Booth
et al. (2002) discuss a drug case. A cross-transfer
(or two-way transfer) case involving textiles is
presented by Cook et al. (1999) where it is shown
how pre-assessment can be updated when a staged
approach is taken; the results of the examination
of one of the garments are used to inform the
decision about whether the second garment
should be examined.

Puch-Solis and Smith (2002) describe a pre-
assessment procedure within a training package
to assess fibre evidence. The purpose is to provide
support to forensic scientists to help determine
whether an analysis of the collected fibres is cost
effective. Possible values for the likelihood ratios,
determined under the prosecution and defence
propositions, are assigned to seven categories: (i)
strong support for the defence, (ii) support for the
defence, (iii) weak support for the defence, (iv) no
support, (v) weak support for the prosecution,
(vi) support for the prosecution, and (vii) strong
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support for the prosecution. The scientist consid-
ers the probabilities for the likelihood ratios, given
the proposition of the prosecution or defence.
If there is a high probability for support for a
particular proposition, then advice can be given to
proceed with the analysis.

Theory and detailed examples are presented
in Jackson et al. (2014). For a discussion on
pre-assessment and interpretation, see Jackson
et al. (2006), Jackson and Jones (2009), and
Jackson (2013).

5.5.3 Pre-assessment: A Practical
Example

In Section 5.5.1, the approach to pre-assessment
proposed by Cook et al. (1998a,b) was presented
from a general point of view. The aim of this
section is to develop a practical example in a case
involving textile fibres. Consider the following
stages of pre-assessment as presented in Cham-
pod and Jackson (2001): identification of the
task-relevant information the scientist may need,
identification of the propositions used to assess
the findings, progress through the pre-assessment
of the case, determination of the examination
strategy, assignment of the likelihood ratio and
assessment of sensitivity, and identification of the
effect of a change in the propositions.
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5.5.3.1 Task-Relevant Information

Two armed and masked men burst into a post
office. They threatened the staff, the takings for
the day were handed over, and the men left.
Witnesses said that one of the men was wearing
a dark green balaclava mask and the other man
was wearing a knotted stocking mask. They also
said that the two men drove away from the scene
in a car driven by a third man. Further along the
presumed getaway route, a dark green balaclava
was found. Mr U was arrested the following day.
He denied all knowledge of the incident. Reference
samples of his head hair and blood were taken as
well as combings from his head hair. Mr U has not
yet been charged with the robbery because there
is very little evidence against him.

5.5.3.2 Formulation of Propositions
of Interest and Events

Investigators are interested in knowing whether
Mr U has worn the recovered mask because the
intended charge is robbery. The scientist is, at first,
able to define source-level propositions, such as

Hp1: Hairs in the mask came from Mr U;

Hd1: Hairs in the mask came from someone else.

Hp2: Saliva in the mask came from Mr U;

Hd2: Saliva in the mask came from someone else.
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Hp3: Fibres in U’s hair combings came from the
mask;

Hd3: Fibres in U’s hair combings came from some
other garment or fabric.

The scientist may seek, however, to assess the
findings given activity-level propositions (e.g. Hp,
Mr U wore the mask at the time of the robbery, and
Hd, Mr U has never worn the mask) because such
propositions are, at a later point in the process,
more relevant for the court and closer to the main
issue in the case (Taroni et al., 2013). However,
in order to work with such propositions, scientists
will need to ensure that they (i) have task-relevant
background information on the offence (e.g. time
of the offence, time of arrest, time the traces are
collected) to be able to assign the factors that
relate to transfer and persistence of the recovered
trace material of interest, and (ii) can collect
data (i.e. literature) on transfer, persistence,
and recovery of hairs, fibres, and saliva when
someone wears a mask, as well as survey data
on masks. Published data on hairs and saliva are
very limited; data for fibres transfer to hair and
for persistence are available though from more
than 20 years ago. See, for example, Ashcroft et al.
(1988), Salter and Cook (1996), and Cook et al.
(1997).

If criteria (i) and (ii) are satisfied, the sci-
entist can consider fibres first. If no sufficient
background information is available to evalu-
ate the findings (fibres, saliva, hairs) regarding
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activity-level propositions, it will not be possible
to offer an evaluative report that is helpful for
the investigators or the court at the appropriate
propositional level. Experts will have to limit their
reporting to a statement of the analytical results.
Assessment of the findings given source-level
propositions can be prejudicial for the defendant
if factors requiring expert knowledge, such as
transfer and persistence, remain unaddressed and
should not be left to the fact-finder (judge or jury)
to consider. Thus, in the aforementioned case, the
strategy would be to offer an assessment given
activity-level propositions for fibres.

The second step in the pre-assessment is to
determine the possible findings. Regarding fibres
on hair combings, the scientist could consider
the following results: no fibres are observed, a
small number of fibres are observed (i.e. 1–3), or a
large number of fibres are observed (i.e. more than
3). Note that the definitions of these categories
is flexible and may depend on the available data
or on the need to enhance the use of fibres to
discriminate between the two propositions of
interest. Note also that more than one group of
fibres could be present, a version of the case that is
not considered in this example.

Next, principal events involved in the activity
level assessment are defined. To help the scientist
determine which events are relevant for the
pre-assessment of the findings in such a case, it
is useful to consider questions of the kind ‘What
could happen if Mr U wore the mask at the time of
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the robbery?’. If Mr U wore the mask, then three
possibilities are as follows:

• event T0: no fibres have been transferred, have
persisted, and have been recovered;

• event Ts: a small number of fibres have been
transferred, have persisted, and have been
recovered;

• event Tl: a large number of fibres have been trans-
ferred, have persisted, and have been recovered.

Recovered fibres may be the consequence of
either transfer during the course of the crime or
presence beforehand by chance. The events linked
to background presence are: no group of fibres is
present by chance (event P0); one group of fibres is
present by chance (event P1).

When a group of fibres is present by chance, it
may be a small or a large group. The events are
denoted as follows: the group of fibres present
by chance is small (event Ss); the group of fibres
present by chance is large (event Sl). Note that in
Section 6.2.1, probabilities for events Pi and Sj are
grouped using the notation bg,m.

Finally, consider that when a recovered group
of fibres of unknown origin is compared with a
control, two outcomes are possible: the recovered
fibres correspond to (or cannot be distinguished
from) the control with respect to the analysed
features (event M); the recovered fibres do not
correspond to (or can be distinguished from) the
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control with respect to the analysed features (event
M̄). Note that when the scientist takes into account
discrete features then, under the assumption that
a sample known to come from a particular homo-
geneous source is compared with that source, the
probability of observing corresponding features is
often considered equal to 1.

5.5.3.3 Expected Likelihood Ratios

Upon analysing the hair combings, the scientist
could observe one of the four situations given in
Table 5.3. This list of outcomes does not take into
account other possibilities such as the observation
of a group of fibres coming from the transfer and a
second group of fibres from the background. This
aspect can be considered in a probabilistic graph-
ical environment, such as Bayesian networks, as
discussed in Taroni et al. (2014a).

To pursue the formulaic approach proposed
here, clear assumptions are needed, such as for
the number of groups. The analysis later considers
that at most one group is present. The events
occurring under the two activity-level proposi-
tions of interest, Hp and Hd as previously specified,
are given in Table 5.4. This table also defines the
probabilities related to the various events.

Note that the probabilities listed under Hp have a
sum 1 − (ts + tl)p1, which is less than 1; the events
to which they refer are not exhaustive. The proba-
bility (ts + tl)p1 is the probability that two groups of
fibres are transferred, one background group and
one from the mask. The probabilities listed under



Table 5.3 Potential findings following the analysis of hair combings

Outcome Number
of groups

Number of
non-corresponding

groups

Number of
corresponding

groups

Size of
matching

groups

A 0 0 0 —
B 1 1 0 —
C 1 0 1 Small
D 1 0 1 Large

Table 5.4 Events and probabilities relating to findings under Hp and Hd

Outcome from Events (Ev) to occur Pr(E𝑣|Hp) Events (Ev) to occur Pr(E𝑣|Hd)
Table 5.3 if Hp is true if Hd is true

A T0,P0 t0p0 P0 p0
B T0,P1,M̄ t0p1(1 − m) P1,M̄ p1(1 − m)
C T0,P1,Ss,M orTs,P0 t0p1ssm + tsp0 P1,Ss,M p1ssm
D T0,P1,Sl,M orTl,P0 t0p1slm + tlp0 P1,Sl,M p1slm
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Hd do add to 1. The events to which they refer are
exhaustive. Since it is assumed under Hd that there
is no transfer of fibres from the mask, ts + tl = 0.

The next step in the pre-assessment process is
to assign the various probabilities using data from
published literature, case-specific experiments, or
expert judgements based on the demonstrable and
disclosable experience of the scientist. Consider
the following:

• Probabilities for events of transfer: To assess the
probabilities t0, ts, tl, it is useful to answer ques-
tions like ‘If the person of interest wore a mask,
what is the probability that no/a small/a large
number of fibres are transferred, persist and
then would be recovered?’ Note that informa-
tion on the PoI (i.e. type and length of the PoI’s
hair), the material involved (i.e. sheddability),
the methods used to search and collect fibres,
and the circumstances of the case (i.e. alleged
activities, time delays) are all relevant for a
case-tailored assessment of probabilities.

• Probabilities for background presence: The prob-
abilities p0, p1, ss, sl refer to the occurrence
by chance of no fibres (p0) or one group of
fibres (p1), which may be small (ss) or large
(sl), as previously defined, on the hair in the
event that no fibres have been transferred or
if the PoI denied having worn the mask. Note
that Hd specifies that the PoI never wore any
mask. If the alternative proposition changes, for
example, when the PoI states that they wore a
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similar mask two days before the alleged facts,
probabilities for background presence change,
requiring new assessments.

• Probabilities for observing corresponding features:
The probability m, often called the ‘match
probability’, represents an assessment of the
relative rarity of the extraneous fibres found
on the head of a person incorrectly accused of
wearing a mask. This assessment focuses on
fibres that correspond, by chance, to the refer-
ence fibres coming from the mask. The relative
rarity of fibres may be assessed in various ways.
Scientists can refer to literature where fibres
have been recovered on hairs of individuals
and consider the relative proportions of fibres
presenting the features of interest. They can
also use so-called target fibre studies, stressing
however that such studies offer different prob-
abilities, notably probabilities for observing by
chance one target group of fibres that match
the control, written formally as Pr(P1, Ss,M|Hd)
and Pr(P1, Sl,M|Hd). These probabilities are
different from m. Databases can also be used,
assuming that the potential source of fibres are
hats, neckwear, bedding, and jumpers, so that
the scientist will be able to assess the relative
rate of occurrence of the corresponding fibres
in this population.

Examples for probability assignments are dis-
cussed in Champod and Jackson (2001), leading
to likelihood ratios summarised in Table 5.5.



Table 5.5 Likelihood ratios for the outcomes from Table 5.4 with t0 = 0.01, ts = 0.04, tl = 0.95;
p0 = 0.78, p1 = 0.22; ss = 0.92, sl = 0.08; m = 0.05, as proposed by Champod and Jackson (2001)

Outcome from
Table 5.3

Number of
non-corresponding
groups

Number of
corresponding
groups

Pr(E𝑣 ∣ Hp) Pr(E𝑣 ∣ Hd) V

A 0 0 t0p0 p0 0.01
B 1 0 t0p1(1 − m) p1(1 − m) 0.01
C 0 1 (small) t0p1ssm + tsp0 p1ssm 3.09
D 0 1 (large) t0p1slm + tlp0 p1slm 842.05
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Likelihood ratios obtained in this pre-assessment
for fibres help to answer to the question ‘Is it useful
to proceed with the analysis of the fibres?’. It has
been shown that all situations offer a likelihood
ratio different from the value of 1, that is, evidence
with no evidential support; see Tables 5.3 and 5.4.
If no fibres at all are recovered (outcome A), or if
a group of fibres is recovered and this group does
not correspond to the control object (outcome
B), likelihood ratios supporting the alternative
proposition are obtained. On the other hand, if
one group, small or large, of fibres is recovered
(outcomes C and D), and the group matches the
control group, then a likelihood ratio greater
than 1 is obtained, supporting the prosecution’s
proposition over the alternative proposition.

As previously noticed, pre-assessment can be
applied as one aspect of practical decision-making
in more sophisticated cases. Imagine a cross- or
two-way transfer case. Pre-assessment can be
updated when a staged approach is taken. For
example, the victim’s pullover is analysed first,
then the PoI’s pullover (Cook et al., 1999). The
results of the examination of one of the garments
are used to inform the decision about whether the
second garment should be examined. As specified
by Cook et al. (1999), it is easy to see how the prin-
ciples could be extended to other kinds of cases.
For example, if the crime involves the smashing
of a sheet of glass and if clothing is submitted
from a PoI, then the phased approach could be
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applied to the order in which the garments are
examined. If examination of the jacket reveals
no glass, then how does formal pre-assessment
inform the decision about examining the trousers
or shoes? Examples are studied by Jackson et al.
(2014). Another example, dealing with gun shot
residue, is presented in Biedermann et al. (2009a).

Their model, using Bayesian networks, allows
scientists to account for findings in terms of broad
categories, such as ‘no (0)’, ‘few (1–4)’, ‘some
(5–8)’, etc. particles, rather than a highly detailed
description that would be required of a count
variable.

These examples support the founding idea of
pre-assessment, which ‘[...] was driven not only by
serious questions raised about the quality of expert
opinion but also by the growing requirement to
manage limited forensic science resources in the
most appropriate and cost-effective way’ (Jackson
and Jones, 2009, at p. 483).

5.5.3.4 The Relevant Population of Fibres

To clarify some of the remarks made in Section
5.5.3.3 on probabilities for the observation of
corresponding features (so-called ‘match prob-
abilities’), consider the following example. An
offender attempted to enter the rear of a house
through a hole which they cut in a metal grille
but failed when a security alarm went off. They
left the scene. About ten minutes after the offence,
a PoI wearing a red pullover was apprehended in
the vicinity of the house following information



�

� �

�

588 Evidence and Propositions: Theory

from an eyewitness who testified seeing a man
wearing a red pullover running away from the
scene. At the scene, a tuft of red fibre was found on
the jagged end of one of the cut edges of the grille.

If the propositions from the prosecution and
defence are that the fibres at the crime scene
came from the PoI (Hp), and the fibres at the crime
scene did not come from the PoI (Hd), respectively,
following the argument of Section 5.3.1, the value
of the evidence is given by

V =
Pr(y ∣ x,Hp, I)

Pr(y ∣ Hd, I)
,

where y is the evidence of the red fibres on the grille
and x is the evidence of fibres from the PoI’s red
pullover.

If Hd is true, the probability in the denominator
is the probability of finding the characteristics
of the tuft of fibre in the grille in a population of
potential sources, called the relevant population.
Assume that a survey has been made of the
characteristics in a relevant population and the
proportion of fibres with these characteristics is 𝛾 .
As in Section 5.3.1.1, the value of the evidence
is then

V = 1
𝛾
,

where the relevant population is defined by Hd

and I. Some considerations for the definition in
this example are given by Champod and Taroni
(2017).
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• If the proposition Hd is that the PoI had never
been present at the scene, then the relevant pop-
ulation is defined as that of red upper garments
worn by burglars, accepting that the eyewitness
had seen the burglar and was correct in the
report that the burglar was wearing a red upper
garment.

• If the proposition Hd is that the PoI has been
correctly identified by the witness but had never
been in contact with the grille, then the relevant
population is defined by the potential sources of
red fibres without any distinction in respect of
the colour of the garment worn by the burglar.

• In the absence of an eyewitness, if the PoI has
been apprehended because he was wearing a
red pullover and the fibres found at the crime
scene were red then the relevant population
is defined as that of potential perpetrators
wearing red garments. Further discussion of the
implications of such a so-called search strategy
is given in Section 6.1.8.1.

• In the absence of an eyewitness, if the PoI has
been apprehended independently of the forensic
attributes of the tuft, then the relevant popu-
lation is defined by the potential perpetrators
without any distinction in respect to the colour
of the garment.

Analogously, an example of the influence of
the defence’s strategy for the definition of the
relevant population is given in Robertson and
Vignaux (1995b). Blood that did not belong to
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a murdered victim was found at the scene of a
crime in Auckland. An eyewitness saw a man of
Maori appearance running away from the scene.
Subsequently, a Maori person was arrested. The
prosecution’s proposition, Hp, is that this man
is the criminal. The defence has two possible
alternatives:

Hd1: the accused was the person seen running
away but was not the murderer;

Hd2: the accused person was not the person seen
running away.

Under Hd1 there is no information about the
murderer, so the murderer is to be considered as
a randomly selected person in New Zealand. The
scientist will then use the population as a whole as
the relevant population for the value of 𝛾 . Under
Hd2 it is implicitly assumed the eyewitness saw the
murderer and correctly identified their ethnicity;
there is information about the murderer. He was
of Maori appearance, so the murderer is to be
considered as a randomly selected person of Maori
appearance. The scientist will then use the Maori
population as the relevant population for the
value of 𝛾 .

5.5.3.5 The Defence and a Change in the
Proposition

Consider a modification of the case of pre-
assessment for fibres. Imagine that the evidence is
not potential fibres recovered on the PoI’s head,
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but potential hairs found in the mask worn by the
offender. Mr U was arrested, as said before, the
following day. Instead of denying all knowledge of
the recovered mask, he admitted the mask was his
own mask and he lost it the day before the crime.
Reference samples of his head hairs were taken,
and a quantity n of head hairs are recovered from
the mask by the forensic laboratory. Investigators
are interested in knowing if Mr U has worn the
mask at the time of the robbery. As a consequence,
a question of interest is how the pre-assessment
changes if the alternative proposition becomes
‘Mr U has not worn the mask at the time of the
robbery but the day before’.

Recall a general expression of the likelihood ratio
(5.6) that presents the value for the evidence under
an alternative (activity level) proposition specify-
ing that the PoI did not wear the mask, but that an
unknown person wore it.

V =
b0tn + b1,m𝛾t0

b0𝛾t′n + b1,m𝛾t′0
. (5.20)

If the PoI specifies that he had worn the mask
the day before the crime, then the first term in
the denominator of the likelihood ratio changes
from b0𝛾t′n to b0t′n. The reason for this is that
no uncertainty about the characteristics of the
recovered hairs needs to be taken into account,
as they are the hairs from the PoI. Note further
that, following the discussion presented in Section
5.3.2.1, the likelihood ratio reduces to tn∕t′n. It
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will depend on the probability of transfer under
the two propositions: the probability of transfer,
persistence, and recovery of n hairs if the PoI
wore the mask at the time of the crime, and the
probability of transfer3 of n hairs if the PoI wore
the mask the day before the crime.

5.6 COMBINATION OF ITEMS OF
EVIDENCE

In Section 2.9, Bayesian networks have been
introduced with the aim of addressing uncer-
tainties that affect inference based on results of
various kinds of scientific examinations conducted
on traces such as fibres, glass fragments, and
biological material (DNA). In Section 5.3.2.5, the
cross-transfer of material such as textile fibres
during a criminal activity has been analysed
and discussed. It represents a first example of the
combination of results. The networks introduced
in Section 5.4 provide valuable assistance in
addressing some of a wide range of issues that
affect a coherent evaluation of probative value.

3Note again that the term ‘transfer’ involves the properties of
‘transfer’, ‘persistence’ and ‘recovery’ that are always by conven-
tion considered as a single entity. All properties are necessary
for their inclusion in the evaluation of evidence at activity-level.
Examples of an extended way to evaluate the evidence by con-
sidering separately the previous properties is presented in Taroni
et al. (2014a) using Bayesian networks. The network structure
was inspired by Halliwell et al. (2003).
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Existing probabilistic solutions proposed in the
scientific literature may be used as a guide to elicit
appropriate network structures (e.g. Garbolino
and Taroni, 2002). By providing an explicit
representation of the relevant variables together
with their assumed dependence and independence
properties, Bayesian networks have the potential
to clarify the rationale behind a given probabilistic
approach, in particular, with formulae for likeli-
hood ratios. However, these formulae may attain
critical levels of complexity, even for single items of
evidence. One often needs to account for particu-
lar sources of uncertainty, related to phenomena
such as transfer, persistence, and background
presence. It may thus become increasingly difficult
to structure probabilistic analyses properly and
to discern the relevant variables as well as their
relationships. If, in addition, several items of
evidence need to be combined, then even further
complications may be expected. In such situations,
Bayesian networks may assist forensic scientists in
constructing coherent, transparent, and defensi-
ble arguments (Juchli et al., 2012; Juchli, 2016)
and so handle multiple sources of evidence even
in legal cases (see, for sake of illustration Hepler
et al. (2007); de Zoete and Sjerps (2018); Neil
et al. (2019); Fenton et al. (2019); Graversen et al.
(2019)).

Section 5.6.1, illustrates generic patterns of
inference in combining evidence. So-called disso-
nant and harmonious evidences are described in
Section 5.6.2 with the use of Bayesian networks.
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More on the technical aspects can be found in
Schum (2001). From a forensic science point
of view examples are presented in Taroni et al.
(2014a).

5.6.1 A Difficulty in Combining
Evidence: The Problem
of Conjunction

Unlike the evaluation of single items of scientific
evidence, the joint evaluation of several distinct
items of forensic evidence using formal methods
has, to date, received occasional rather than sys-
tematic attention. To some extent, this is remark-
able since forensic science typically requires
consideration of multiple items of evidence. A
complication that arises in such settings is that the
application of probability theory to multiple items
of evidence becomes increasingly complex, even
for apparently simple questions. An example is the
problem known as the ‘difficulty of conjunction’.

The difficulty of conjunction is closely tied
with the difference between the probability of the
evidence and the probability of an explanatory
proposition (Section 2.2). It thus also connects to
the problem of posterior probabilities as an expres-
sion for the value of the evidence. Historically, the
difficulty in combining evidence was the subject of
a debate between Cohen (1977,1988) and Dawid
(1987). In essence, the problem is described as
follows: two items of evidence, when considered
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individually, support a particular proposition,
but when considered in combination, they seem
to produce lower support. As an illustration, let
E1 and E2 denote two distinct items of evidence.
These shall be used to draw an inference con-
cerning some proposition of interest, say, H for
convenience. H has two possible outcomes Hp and
Hd, denoting the propositions proposed by, respec-
tively, the prosecution and the defence. For the
purposes of this example, Hp and Hd are deemed
to be mutually exclusive and exhaustive. Imagine
further that some evaluator would give a probabil-
ity of 0.7 for Hp given the occurrence of either E1

or E2, that is Pr(Hp ∣ E1) = Pr(Hp ∣ E2) = 0.7. The
probability of interest is Pr(Hp ∣ E1,E2).

If E1 and E2 are considered to be independent,
given Hp or Hd, their joint probability can be writ-
ten as the product of the individual conditional
probabilities, that is, Pr(E1,E2 ∣ Hp) = Pr(E1 ∣
Hp) × Pr(E2 ∣ Hp). It is now tempting to believe
that Pr(Hp ∣ E1,E2) is obtained analogously, that
is, by Pr(Hp ∣ E1,E2) = Pr(Hp ∣ E1) × Pr(Hp ∣ E2).
The apparent contradictory result of this (incor-
rect) procedure is 0.7 × 0.7 = 0.49, which is less
than the probability of Hp given either E1 or E2.

At this stage it is useful to consider Bayes’
theorem. For two items of evidence, E1 and E2, and
propositions Hp and Hd, the odds form of Bayes’
theorem is

Pr(Hp ∣ E1,E2)
Pr(Hd ∣ E1,E2)

=
Pr(E1,E2 ∣ Hp)
Pr(E1,E2 ∣ Hd)

×
Pr(Hp)
Pr(Hd)
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or

Posterior odds = likelihood ratio (V) × prior odds.

Assuming equal prior probabilities, Pr(Hp) =
Pr(Hd), the target probability Pr(Hp ∣ E1,E2) is
thus given by V∕(1 + V). The likelihood ratio can
be obtained as follows:

V =
Pr(E1 ∣ Hp)
Pr(E1 ∣ Hd)

×
Pr(E2 ∣ Hp)
Pr(E2 ∣ Hd)

by independence of E1and E2,

=
Pr(E1 ∣ Hp)
Pr(E1 ∣ Hd)

×
Pr(Hp)
Pr(Hd)

×
Pr(E2 ∣ Hp)
Pr(E2 ∣ Hd)

×
Pr(Hp)
Pr(Hd)

since Pr(Hp) = Pr(Hd)so
Pr(Hp)
Pr(Hd)

= 1;

=
Pr(Hp ∣ E1)
Pr(Hd ∣ E1)

×
Pr(Hp ∣ E2)
Pr(Hd ∣ E2)

= 0.7
0.3

× 0.7
0.3

= 0.49
0.09

.

From this, the probability of interest

Pr(Hp ∣ E1,E2) =
V

1 + V
=

0.49∕0.09
1 + 0.49∕0.09

= 0.84,

which is greater than 0.7. Thus, under the stated
assumptions, the combination of the two items of
evidence yields a higher probability for Hp than
when considered separately.

This example illustrates that in cases where two
items of evidence are deemed to provide relevant
information for the same pair of propositions, the
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value of the two pieces of evidence in combination
cannot readily be determined by the sole use
of the posterior probabilities of the respective
propositions, based on isolated considerations of
the single items of evidence. This is also one of
the reasons why scales of conclusions (see Section
2.4.6) based on posterior probabilities, as have
been proposed, for example, in the field of shoe-
mark analyses (Katterwe, 2003) or handwriting
examination (Köller et al., 2004), are inadequate
means for the assessment of scientific evidence
(Taroni and Biedermann, 2005).

Such inferential impasses may be avoided by
following established inferential procedures based
on the likelihood ratio. Examples of reasoning
problems unfortunately used to demonstrate the
limitations of probability theory in legal reasoning
can be found and discussed in de Zoete et al.
(2019).

By focusing on a likelihood ratio (Section 2.3.1),
one can successively add one item of evidence at a
time and examine the probability of a proposition
of interest, H, for example, given the available
evidence, as described in (2.16) Section 2.4.1.
The posterior odds after considering one item
of evidence, E1, for example, become the new
prior odds for the following item of evidence, E2,
say. In a more formal notation one thus has, for
propositions Hp and Hd:

Pr(Hp)
Pr(Hd)

×
Pr(E1 ∣ Hp)
Pr(E1 ∣ Hd)

=
Pr(Hp ∣ E1)
Pr(Hd ∣ E1)

. (5.21)
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The term on the right-hand side of (5.21) repre-
sents the odds in favour of the proposition Hp given
E1. When E2, a second item of evidence, becomes
available, one may proceed as follows:

Pr(Hp ∣ E1)
Pr(Hd ∣ E1)

×
Pr(E2 ∣ Hp,E1)
Pr(E2 ∣ Hd,E1)

=
Pr(Hp ∣ E1,E2)
Pr(Hd ∣ E1,E2)

.

(5.22)
Here the posterior odds in favour of the proposition
Hp incorporate knowledge about both items of
evidence, E1 and E2. The likelihood ratio for E2,
shown in the center of (5.22), allows for a possible
dependency of E2 on E1. More generally, this
way of proceeding was concisely summarised by
Lindley as ‘Today’s posterior is tomorrow’s prior’
(Lindley, 2000, at p. 301).

5.6.2 Generic Patterns of Inference
in Combining Evidence

When reasoning about a scientific finding or
result, two aspects are of interest: inferential
direction and inferential force. Inferential direc-
tion informs about which proposition, compared
with a given alternative, is favoured by the evi-
dence. Inferential force expresses the strength
of evidential support. Multiple items of evidence
may exhibit various combinations of inferential
direction and force. With respect to inferential
directions, two situations can be distinguished.
Either the inferential directions will point towards
different propositions, or they point towards the
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(a)

E

H

E

S1 S2

F

S2S1

H

(b)

Figure 5.2 Generic Bayesian network structures
for dissonant and harmonious evidence. Figure (a)
accounts for situations of contradiction and corrobora-
tion and Figure (b) covers conflicting and converging
evidence. The dotted arrow applies whenever one
assumes a dependency between the two events E and F
conditional upon H. In (a) S1 denotes a source stating E
did occur, S2 denotes a source stating E did not occur. In
(b), S1 denotes a source saying E did occur, S2 denotes a
source saying F did occur.

same proposition. Following Schum (2001),
the first situation involves evidence said to be
‘dissonant’, whereas the second situation involves
evidence said to be ‘harmonious’. Using various
examples, the following sections discuss the
probabilistic underpinnings of these distinctions
in some further detail. Figure 5.2 represents the
generic Bayesian network structures that underlie
these patterns of reasoning.

5.6.2.1 Dissonant Evidence: Contradiction
and Conflict

Contradiction All dissonant evidence incorpo-
rates an inferential divergence, although only
some situations of dissonance can properly be
called contradictory. Schum (2001) consid-
ered dissonant evidence that is not contradic-
tory as being in ‘conflict’. Properly speaking, a
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contradiction is given only if the occurrence of
mutually exclusive events is reported. In order
to clarify this, consider a source S1 stating that
the event E occurred. Let this statement of S1 be
denoted by E∗. The asterisk in this notation is
chosen to refer to a report about the occurrence
of event E. This is different from the situation
mentioned in Section 2.9.2.3, Example 2.9,
concerning the assessment of the potential of
error based on a distinction between a reported
correspondence (i.e. ‘match’) and an actual corre-
spondence. Next, suppose also a second source S2

that states Ē∗, that is, ‘Event E did not occur’.
In a case involving questioned documents, it

may be of interest to learn something about the
event E, that the PoI wrote a signature on a hand-
written document. Denote by Ē the alternative
event that the PoI did not write the questioned
signature, but that someone else did. One cannot
directly know whether or not the PoI is the author
of the questioned signature. One may therefore
rely on an opinion presented by, for example,
an eyewitness. Let this source of information be
denoted by S1. The report given by this source is
written E∗, that is, a statement that E occurred.
Next, one may also have a further source of
information, given by source S2. This source, too,
reports on the proposition E, but affirms that its
negation, Ē, holds. An example for such a second
source of information could be another eyewitness
or a forensic document examiner, though it is
emphasised that it is not appropriate for the latter
to opine directly on source level propositions.
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Given these outcomes, a question of inter-
est then is how to draw an inference about a
pair of ultimate propositions Hp and Hd, whilst
allowing uncertainty about the event E now
considered intermediate between E∗ and H. Thus,
Pr(E∗ ∣ E,Hp) = Pr(E∗ ∣ E),Pr(Ē∗ ∣ Ē,Hp) = Pr(Ē∗ ∣
Ē),Pr(E∗ ∣ E,Hd) = Pr(E∗ ∣ E) and Pr(Ē∗ ∣ Ē,Hd) =
Pr(Ē∗ ∣ Ē). For the example introduced earlier,
the proposition H could be, for example, the
commission of a fraud, or any other criminal
activity for which the establishment of authorship
of the questioned signature at hand is inferentially
relevant. For such a situation, the likelihood ratio
for the two reports {E∗, Ē∗} takes the following
form:

VE∗,Ē∗ =
Pr(E∗, Ē∗ ∣ Hp)
Pr(E∗, Ē∗ ∣ Hd)

. (5.23)

Assuming a dependency structure as shown in
Figure 5.2a, the likelihood ratio in (5.23) can
be presented in some further detail as follows
(Schum, 2001):

VE∗,Ē∗ =
Pr(E∗, Ē∗ ∣ Hp)
Pr(E∗, Ē∗ ∣ Hd)

=
Pr(E ∣ Hp) +

[
h1m2

f1c2
− 1

]−1

Pr(E ∣ Hd) +
[

h1m2

f1c2
− 1

]−1
, (5.24)

where h1 denotes Pr(E∗ ∣ E), m2 denotes Pr(Ē∗ ∣ E),
f1 denotes Pr(E∗ ∣ Ē), and c2 denotes Pr(Ē∗ ∣ Ē),
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based on notation largely adopted from Schum
(2001). The extended form of the likelihood ratio
shown in (5.24) is reproduced here because it
contains the expression [(h1m2∕f1c2) − 1]−1.
This part of the formula is also referred to as
the drag coefficient, as it acts like a drag upon
VE = Pr(E|Hp)∕Pr(E|Hd) (Schum, 2001,2009).
That is, if the likelihood ratio is thought as a force
acting on the probabilities of Hp and Hd to move
them from their prior positions to posterior posi-
tions, then the size of the force is measured by the
value of VE, and the drag coefficient acts as a drag
on this force. The drag coefficient accounts for the
credibility of the statements made by the sources of
interest. In particular, it determines the closeness
of VE∗,Ē∗ to VE. Note that the likelihood ratio VE

describes the inference about H on the basis of the
intermediate variable E and is given by the ratio of
the two likelihoods Pr(E ∣ Hp) and Pr(E ∣ Hd).

The result shown in (5.24) can be further under-
stood by considering local likelihood ratios for
drawing an inference about E, on the basis of the
distinct items of information S1 = E∗ and S2 = Ē∗.
In other words, one can write a likelihood ratio for
item of evidence E∗, written V′

E∗, and one for the
item of evidence Ē∗, written V′

Ē∗:

V′
E∗ =

Pr(E∗ ∣ E)
Pr(E∗ ∣ Ē)

=
h1

f1
, V′

Ē∗ =
Pr(Ē∗ ∣ E)
Pr(Ē∗ ∣ Ē)

=
m2

c2
.

A prime (′) is used here to indicate that the
likelihood ratio concentrates on an inference
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about E only, rather than about the ultimate
proposition H.

When taking the reciprocal of the latter like-
lihood ratio, V′

Ē∗, then one has an expression
of the degree to which Ē∗ favours Ē: V−1

Ē∗′ =
Pr(Ē∗ ∣ Ē)∕Pr(Ē∗ ∣ E) = c2∕m2. It can now be seen
that the overall support of the two statements
S1 = E∗ and S2 = Ē∗ for E depends on the relative
magnitude of V′

E∗ and V′
Ē∗. In particular, in all the

cases where (h1∕f1) > (c2∕m2), the evaluation of
the statements will strengthen the proposition E,
in the sense that the support for E given E∗ is
greater than the support for Ē given Ē∗. Con-
versely, if (h1∕f1) < (c2∕m2), then the alternative
proposition, Ē, will be favoured.

More generally, notice further that the overall
inferential force VE∗,Ē∗ is bounded by VĒ and VE so
that VĒ ≤ VE∗,Ē∗ ≤ VE. That is, VE represents the
capacity of E to discriminate between Hp and Hd,
given by Pr(E ∣ Hp)∕Pr(E ∣ Hd), whereas VĒ rep-
resents the discriminative capacity of Ē, given
by Pr(Ē ∣ Hp)∕Pr(Ē ∣ Hd). Usually, however, com-
plete knowledge of the occurrence of either E or Ē
will not be available, only evidence in the form of
the statements {E∗, Ē∗}.

Conflict Situations of evidence in conflict
differ from those involving contradicting evi-
dence because ‘conflict’ relates to events that
are not mutually exclusive. This is illustrated in
Figure 5.2b. For this model, suppose that source S1
states E∗, that is, the occurrence of event E, which
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is one that favours the proposition Hp. A second
source, S2, states F∗, that another event F, favour-
ing proposition Hd, has occurred. The example
given hereafter illustrates this outcome.

Consider again a report E∗ that event E occurred,
such as the event that a given PoI wrote a signa-
ture on a questioned document. Imagine further
that the questioned document bears ridge skin
marks (i.e. fingermarks). Let F denote the event
according to which the fingermarks come from
some person other than the PoI. Let F∗ denote a
scientist’s report of such a conclusion. Again, it
is emphasised that experts should not opine in
this way, but it must realistically be conceded that
such an approach represents currently the most
widespread reporting practice, and this raises
the question of how to process such a conclu-
sion within a coherent framework. Conversely,
let F̄ denote the event according to which the
fingermarks come from the PoI. Assuming that
the fingermarks are found in a position on the
questioned document where marks from the
author of the crime of interest would be expected
to be found, the event F can be considered relevant
in an inference about the proposition H, that
is, ‘the person of interest is the author of the
fraud’. Clearly, event F would favour Hd here
because the probability of F can be reasonably
be taken to be greater given Hd than given Hp.
Stated otherwise, the likelihood ratio for F, written
VF = Pr(F ∣ Hp)∕Pr(F ∣ Hd), is smaller than 1.
This represents support for Hd, compared with
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Hp. In turn, the event E, which relates to the
authorship of the questioned signature, provides
support for Hp, rather than Hd. The likelihood ratio
for E is VE = Pr(E ∣ Hp)∕Pr(E ∣ Hd), and is greater
than 1.

In this example, the evidential values of the
reports E∗ and F∗ by, respectively, source S1 and
source S2, are given by

VE∗ =
Pr(E∗ ∣ Hp)
Pr(E∗ ∣ Hd)

=

(
Pr(E∗ ∣ E)Pr(E ∣ Hp)
+Pr(E∗ ∣ Ē)Pr(Ē ∣ Hp)

)

(
Pr(E∗ ∣ E)Pr(E ∣ Hd)
+Pr(E∗ ∣ Ē)Pr(Ē ∣ Hd)

) ,

(5.25)

and

VF∗ =
Pr(F∗ ∣ Hp)
Pr(F∗ ∣ Hd)

=

(
Pr(F∗ ∣ F)Pr(F ∣ Hp)
+Pr(F∗ ∣ F̄)Pr(F̄ ∣ Hp)

)

(
Pr(F∗ ∣ F)Pr(F ∣ Hd)
+Pr(F∗ ∣ F̄)Pr(F̄ ∣ Hd)

) ,

(5.26)

where use is made of the results that Pr(E∗ ∣
E,Hp) = Pr(E∗ ∣ E) and Pr(F∗ ∣ F,Hp) = Pr(F∗ ∣ F)
with similar results for E∗ and Ē and F∗ and
F̄. The two likelihood ratios (5.25) and (5.26)
incorporate uncertainty about the actual – but
unobserved – state of the events E and F, respec-
tively. This is achieved by writing a given report,
for example, E∗, conditioned on both E and Ē,
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weighted by the probability of, respectively, E
and Ē. Note further that the representation of
the value of these two pieces of evidence, E∗

and F∗, as the product of the separate likelihood
ratios requires an assumption of conditional
independence given H.

The two likelihood ratios (5.25) and (5.26) can
also be written in a more compact form as follows
(Schum, 2001):

VE∗ =
Pr(E ∣ Hp) +

[
h1

f1
− 1

]−1

Pr(E ∣ Hd) +
[

h1

f1
− 1

]−1
, (5.27)

VF∗ =
Pr(F ∣ Hp) +

[
h2

f2
− 1

]−1

Pr(F ∣ Hd) +
[

h2

f2
− 1

]−1
(5.28)

where h1 = Pr(E∗ ∣ E), f1 = Pr(E∗ ∣ Ē), h2 =
Pr(F∗ ∣ F), and f2 = Pr(F∗ ∣ F̄). The fractions h1∕f1
and h2∕f2 represent the evidential values – that is
the likelihood ratios – of the reports E∗ and F∗ for
discriminating between the states of the distinct
events E and F.

Given the assumption of conditional inde-
pendence given H, the overall evidential value
of the two reports E∗ and F∗, that is, VE∗,F∗, is
given by the product of the individual likelihood
ratios: VE∗,F∗ = VE∗ × VF∗ . In the last example,
such an assumption seems reasonable, notably it
appears reasonable to consider ridge skin surface
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characteristics as independent of handwriting
characteristics.

More generally, if the events {E, Ē} and {F, F̄}
need to be considered as not necessarily condition-
ally independent upon {Hp,Hd}, then the overall
likelihood ratio will be of the form VE∗ × VF∗∣E∗.
The likelihood ratio for the second report F∗ from
source S2 is then conditioned upon knowledge of
the first report E∗ from source S1. More formally,
this is written as VF∗∣E∗. Whilst VE∗ is as defined
earlier in (5.25), the term VF∗∣E∗ involves a more
extended development that can be shown to
reduce to

VF∗∣E∗ =

⎛
⎜⎜⎜⎝

Pr(E ∣ E∗,Hp)[Pr(F ∣ E,Hp)
−Pr(F ∣ Ē,Hp)]

+Pr(F ∣ Ē,Hp) +
[

h2

f2
− 1

]−1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Pr(E ∣ E∗,Hd)[Pr(F ∣ E,Hd)
−Pr(F ∣ Ē,Hd)]

+Pr(F ∣ Ē,Hd) +
[

h2

f2
− 1

]−1

⎞
⎟⎟⎟⎠

. (5.29)

Here h2 = Pr(F∗ ∣ F) and f2 = Pr(F∗ ∣ F̄). These
two terms represent, respectively, the numera-
tor and denominator of a local likelihood ratio
V′

F∗ that expresses the degree to which the
report F∗ discriminates between the intermediate
propositions F and F̄.

There is a close relationship with respect to
(5.28). In fact, when E is irrelevant for the assess-
ment of F conditional on H, then (5.29) reduces
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to (5.28). When knowledge of E is irrelevant, this
relationship is expressed as

Pr(F ∣ E,Hp) = Pr(F ∣ Ē,Hp) = Pr(F ∣ Hp) and

Pr(F ∣ E,Hd) = Pr(F ∣ Ē,Hd) = Pr(F ∣ Hd),

and this eliminates the terms Pr(E ∣ E∗,Hp)[Pr(F ∣
E,Hp) − Pr(F ∣ Ē,Hp)] and Pr(E ∣ E∗,Hd)[Pr(F ∣
E,Hd) − Pr(F ∣ Ē,Hd)] in, respectively, the numer-
ator and the denominator of the likelihood
ratio VF∗∣E∗.

5.6.2.2 Harmonious Evidence:
Corroboration and Convergence

Corroboration There are two main cases of
harmonious evidence that can be distinguished,
corroborating evidence and convergent evidence.
The former case, corroboration, applies to evi-
dence from sources that relate to the occurrence
of the same event. As previously illustrated,
consider two sources S1 and S2 both of which
state E∗, that event E occurred. Suppose further
that Pr(E ∣ Hp) > Pr(E ∣ Hd), that is, event E is one
that is more probable to occur if Hp is true, rather
than when the specified alternative, Hd, is true.
Using notation introduced so far, this expression
of evidential value is written as VE.

Consider, for example, a case where each of two
independent handwriting experts reports E∗, that
is, they provide a report of the event E, where E
is defined as ‘The person of interest is the source
of the signature on the questioned document’.
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These reports represent evidence from two distinct
sources. In such a setting, each expert reports
the occurrence of the same event E. In turn, E is
relevant for an inference about Hp, the proposition
according to which the PoI is the person who
committed a given crime. In a Bayesian network,
proposition Hp may be called an ultimate proban-
dum because it is a root variable with no entering
arcs from other nodes. In such a situation, H is
said to be a graphical parent of node E.

When there is a dependence relationship
between the variables as shown in Figure 5.2a,
the likelihood ratio for the reports E∗

1 and E∗
2 by,

respectively, sources S1 and S2, follows the general
structure defined earlier in (5.23). For the case
considered here, the expression can again be
developed further and shown to be as follows:

VE∗
1,E

∗
2
=

Pr(E∗
1,E∗

2 ∣ Hp)
Pr(E∗

1,E∗
2 ∣ Hd)

=
Pr(E ∣ Hp) +

[
h1h2

f1f2
− 1

]−1

Pr(E ∣ Hd) +
[

h1h2

f1f2
− 1

]−1
. (5.30)

The overall inferential force of E∗
1 and E∗

2 does
not only depend on the value of evidence E for
the comparison of Hp and Hd, as expressed by
the likelihoods Pr(E ∣ Hp) and Pr(E ∣ Hd). It also
depends on the conditional probabilities of the
reports given E, that is, the local likelihood
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ratios V′
E∗

1
= h1∕f1 associated with the first report,

and V′
E∗

2
= h2∕f2 associated with the second report.

Notice further that (5.30) can also be extended
to multiple, say, n, independent sources, assuming
conditional independence as before. For such a sit-
uation, the likelihood ratio can be shown to take
the following form:

VE∗
1, . . . ,E

∗
n
=

Pr(E∗
1, . . . ,E∗

n ∣ Hp)
Pr(E∗

1, . . . ,E∗
n ∣ Hd)

=
Pr(E ∣ Hp) +

[∏n
i=1

hi

fi
− 1

]−1

Pr(E ∣ Hd) +
[∏n

i=1
hi

fi
− 1

]−1
. (5.31)

Such a setting is typically encountered in so-called
testing cases, where n independent examiners
work on a well-defined question; this could be an
actual case or an experiment under predefined
testing conditions (such as a proficiency test).

In order to obtain so-called overall corroboration
with respect to the proposition Hp, it is necessary
that

∏n
I=1

hi

fi
> 1.

Notice further that the likelihood ratios in (5.30)
and (5.31) cannot exceed VE or VĒ. The joint value
in an inference about H, based on a given number
of individual sources that report on E, cannot be
higher than that for complete knowledge about E,
that is, a situation in which the actual state of E
was known. Alternatively, it can be said that the
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values of the individual reports for discrimination
about H depend on the strength of the individual
reports to discriminate between the states of the
variable E. For example, if a report E∗ is capable of
making E certain, then the likelihood ratio for E∗,
that is, VE∗, would equate to that for E, that is VE.
However, if E∗, denoting multiple independent
reports E∗

1, . . . ,E∗
n, leaves some uncertainty about

E, then VE∗ would be less than VE.

Convergence A situation of convergence is one in
which two or more sources state the occurrence of
distinct events that support different intermediate
propositions that separately support the ultimate
proposition. As depicted by Figure 5.2b, sources S1
and S2 may report the occurrence of the events E
and F, which are conditionally independent
given H. This is equivalent to having two indepen-
dent lines of inference E∗ → E → H as illustrated
in Figure 5.2(a) where S is substituted for E∗ and
the lines of inference are translated in the BN as
H → E → S. In such a case, the overall likelihood
ratio for the two reports E∗ and F∗ is given by the
product of the likelihood ratios associated with the
individual reports. That is, VE∗,F∗ = VE∗ × VF∗, and
(5.25) and (5.26) can again be applied.

For illustration, suppose a scientist reports E∗,
that event E occurred (e.g. a given PoI) wrote a
signature on a questioned document. In addition,
assume further that the questioned document
bears ridge skin marks. Let F now denote the
event that the fingermarks come from the PoI.
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Hence, let F∗ denote a scientist’s report of such
a conclusion. Assume that the fingermarks are
found in a position on the document where marks
from the offender would be expected to be found.
The proposition F can then be considered relevant
in an inference about the proposition H, that ‘the
person of interest is the person who committed
the fraud’. The event F favours H when the prob-
ability of F is considered to be greater given Hp

than given Hd. Stated otherwise, the likelihood
ratio for F, written VF = Pr(F ∣ Hp)∕Pr(F ∣ Hd), is
greater than one. Given a likelihood ratio for E,
written as VE = Pr(E ∣ Hp)∕Pr(E ∣ Hd) > 1, event
F presents a further item in support of H, and thus
implies convergence.

If, however, the events E and F are conditionally
dependent upon the ultimate probandum Hp, then
(5.29) is the relevant equation. In particular, in
the assessment of the probative value of F, it is
necessary to account for what has been observed
in relation with the first item of evidence, E.
This dependency is expressed by the conditional
likelihood ratio VF∣E. According to the specified
probabilistic underpinning, this may lead to the
observation, known as synergy, that the second
item, F, has more evidential value when E is
already known, compared with a situation in
which the outcome of the inspection of the first
item of evidence is not known. In such a case, the
evidence is called synergetic. However, it may also
be the case that knowledge about E diminishes
the inferential force of F. This would be a situation
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sometimes referred to as redundancy. This may
go as far as to entail a directional change, rather
than only a reduction in the inferential force of F.
An event F with VF > 1 that supports Hp may, in
the light of knowledge of E, lead to a situation in
which F ∣ E supports Hd with VF∣E < 1.

Analyses of these and similar aspects of the
joint evaluation of multiple items of evidence can
be found in Lempert (1977), Biedermann and
Taroni (2006), Juchli et al. (2012), Juchli (2016),
Taroni et al. (2014a), de Zoete et al. (2015),
Lucena-Molina et al. (2015a), de Zoete et al.
(2017), and de Koeijer et al. (2019).
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6

Evidence and
Propositions:

Practice

Chapter 5 developed technicalities for the deriva-
tion of equations for the value of the evidence
measured in terms of the likelihood ratio.
Equations for the assessment of transfer evidence
given source, activity, and offence level proposi-
tions were presented with explanations on the way
scientific literature reached these developments.
This chapter presents examples of the use of these
formulae.

6.1 EXAMPLES FOR EVALUATION
GIVEN SOURCE LEVEL
PROPOSITIONS

Start by considering, for the purpose of illustra-
tion, a simplified example with classical genetical

615
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markers (i.e. the ABO system). Buckleton et al.
(1987) provided data for blood group gene rel-
ative frequencies in New Zealand for different
ethnic groups. These data may be used to derive
numerical examples applicable to Sections 5.3.1.1
and 5.3.1.2. Consider the ABO blood grouping
system and that the potential source (i.e. person of
interest, PoI) and receptor (crime) stain are both
of group B.

6.1.1 General Population

From Buckleton et al. (1987), the gene (relative)
frequencies for New Zealand in this system are
given in Table 6.1. Thus, for a crime for which
the relevant population Ψ was the general New
Zealand population,

V = 1∕0.063 = 15.87 ≃ 16.

It is about 16 times more probable to observe this
evidence if the PoI was the source of the recovered
stain present at the crime scene than if they were
not and an unknown person from the population
Ψ was the source.

Table 6.1 Gene (relative) frequencies for New
Zealand in the ABO system.

Blood group A B O

Relative frequency 0.254 0.063 0.683
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6.1.2 Particular Population

Suppose that background information I includes
an eyewitness description of the criminal as
Chinese. From Buckleton et al. (1987), the gene
(relative) frequencies for Chinese in the ABO
system are as given in Table 6.2. Then for a crime
for which the Chinese population, Ψ0, a subset of
Ψ, was the relevant population,

V = 1∕0.165 = 6.06 ≃ 6.

The evidence is six times more probable to be
observed if the PoI was the source of the recovered
stain at the crime scene than if they were not and
an unknown person from the subpopulation Ψ0
is the source. Thus the value of the evidence has
been reduced by a factor of 15.87∕6.06 = 2.62 if
there is external evidence that the criminal was
Chinese.

Note that, as discussed in Section 5.3.1.4, in
cases with material found on the crime scene (i.e.
potentially left by the offender), evidence derived
from blood group population data has to relate to
the population from which the potential donors

Table 6.2 Gene (relative) frequencies for Chinese in
New Zealand in the ABO system.

Blood group A B O

Relative frequency 0.168 0.165 0.667
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come, not to that of the PoI (though they may be
the same). More details are presented in Section
6.1.3. In order to use blood group population data
for Chinese, I has to contain information, such
as eyewitness evidence, about the criminal. Kaye
(1987a, 1993, 2004) commented on this point.
Referring to People v. Pizarro (2003) and People v.
Prince (2005), Kaye (2008b) also wrote:

The California Court of Appeal applied Pizarro, insisting
that independent evidence had to establish the racial or eth-
nic identity of the perpetrator for any statistics on the fre-
quency of a DNA genotype in that racial or ethnic group to
be relevant. (p. 310)

As discussed in Buckleton et al. (1987), the
data on blood groups for the general population
have been derived from a weighted average of the
blood group frequencies in each ethnic group or
subpopulation, which make up the population
from which the criminal may be thought to have
come. The weights are taken to be the proportion
of each ethnic group in the general population.
For a full discussion on this aspect, see also Kaye
(2004, 2008a,b). Kaye (2004) wrote:

According to the Pizarro Court, when a crime has been
committed by someone whose race or ethnicity is not
known, presenting data on the relative frequency in
various racial or ethnic groups of the type of DNA found
at the scene of the crime is ‘objectionable’ because it is
extraneous, potentially irrelevant and prejudicial. The
Court reaches the same conclusion concerning statistics
computed under alternative hypotheses about possible
contributors to a mixed stain. (p. 211)
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The statistical argument is said to be ‘objection-
able’ because – as reported in Kaye (2008b) – the
prosecution failed to present substantial evidence
to prove that the perpetrator was Caucasian,
Hispanic, or Afro-American. A solution is to derive
a weighted average as presented through an
example in Kaye (2008a). Further, note that the
previous example on the genetic marker is a sim-
plified version of how scientists should compute
the denominator of the likelihood ratio. In most
of the cases, one cannot assume independence
between the PoI’s profile and the true donor’s
profile. This peculiarity should be considered in all
cases involving biological material. Section 6.1.7
provides further discussion on this aspect.

6.1.3 A Note on The Appropriate
Databases for Evaluation Given
Source Level Propositions

It is important to analyse and to discuss issues
that pertain to the choice of relevant databases
or populations for assigning values to the com-
ponents of evaluative likelihood ratio procedures
when propositions of interest are at source level.
A detailed analysis on how to choose relevant
data for assigning a likelihood ratio with source
level propositions is proposed in Champod et al.
(2004). Their paper also outlined various forms
of likelihood ratios that are suitable for evaluative
assessments given source level propositions.
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To start, consider some initial notation and
definitions in a hypothetical shoemark case. In
particular, let Er and Ec denote the observations
made on the mark recovered on the crime scene
and on the test prints obtained from the PoI’s
shoes under controlled conditions, respectively.
The assumption made here is that shoes with
obviously different general patterns are left aside,
and that they can safely be discarded from further
consideration. Suppose also that the following
pair of source level propositions are considered:
Hp: The footwear mark found on the crime scene
was made with the PoI’s shoe; Hd: The footwear
mark found on the scene was made with some
other shoe.

Notice that, to facilitate the presentation, the
discussion hereafter will refer to only one crime
mark, taken as most representative, rather than
several marks. It is assumed that, even though
there may be several fragmentary marks with
a comparable general pattern, these may be
grouped if they are found in a ‘logical sequence’
(i.e. position), or form a ‘trail’, on which the
offender is thought to have moved. It is conceded
at this point that the wording ‘was made’ in the
propositions defined earlier implies an action,
so that one may be tempted to consider them
activity level propositions. Let us notice, however,
that for the kind of evidence considered here
(i.e. marks on a floor), as well as its associated
process of generation, the question of ‘source’
necessarily requires a well-defined action (i.e. the
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process of walking). Putting this to one side, the
stated propositions are interpreted as source level
propositions here essentially because no factors
(or phenomena) such as transfer, persistence,
and recovery – typically required in genuine
evaluations given activity level propositions (e.g.
for glass and fibre evidence as in Chapter 5) – are
considered in the setting discussed here.

Let Ic and Ip refer to the framework of circum-
stances relevant to the crime and the person of
interest, respectively. Note that Ic and Ip can be
seen as part of Ib as presented in Section 2.4.4. For
example, Ic pertains to aspects of the crime under
investigation (such as the number of offenders),
whereas Ip accounts for relevant descriptors of the
PoI (such as their occupation or their lifestyle);
both sources of information may have an impact
on the choice of databases. Considering that Er and
Ec refer to a given group of corresponding marks
left by manufacturing features, the likelihood ratio
can be written, in its general form, as follows:

V =
Pr(Er,Ec ∣ Hp, Ic, Ip)
Pr(Er,Ec ∣ Hd, Ic, Ip)

.

Given the proposition Hd, according to which the
mark recovered on the crime scene was made by a
shoe other than that of the PoI, the observations Er

and Ec can be regarded as independent so that the
denominator can be rewritten as follows:

Pr(Er,Ec ∣ Hd, Ic, Ip)



�

� �

�

622 Evidence and Propositions: Practice

= Pr(Er ∣ Hd,Ec, Ic, Ip) × Pr(Ec ∣ Hd, Ic, Ip)
= Pr(Er ∣ Hd, Ic, Ip) × Pr(Ec ∣ Hd, Ic, Ip).

Moreover, given Hd, the observations on the
crime mark Er can be considered independent of
information pertaining to the PoI, Ip. Conversely,
observations on the test prints made by the PoI’s
shoes are not affected by information about the
crime if the PoI’s shoes are not the source of
the crime mark. Therefore, the denominator can
be further reduced to

Pr(Er ∣ Hd, Ic) × Pr(Ec ∣ Hd, Ip).

Next, consider the numerator of the likelihood
ratio in some further detail. Regarding the mark’s
features originating from general sole pattern as
considered in this setting, it seems reasonable to
accept the idea that such features are reasonably
stable in time, and that there were no events that
could have caused substantial changes to such
major shoe sole features. Such an assumption
can be further supported, for example, if the
time lapse between the commission of the crime
and the seizure of the PoI’s shoes is short. Thus,
given knowledge of the characteristics of the PoI’s
shoes, these characteristics can be expected to be
found in the crime mark and be recognised by the
examiner as being in agreement with the features
in the known comparison prints, if the PoI’s shoe
is in fact the source of the mark (proposition Hp).
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Therefore, Pr(Er ∣ Hp,Ec, Ic, Ip) = 1 so that the
extended form of the numerator

Pr(Er,Ec ∣ Hp, Ic, Ip) = Pr(Er ∣ Hp,Ec, Ic, Ip)
× Pr(Ec ∣ Hp, Ic, Ip),

can be written more concisely as

Pr(Er,Ec ∣ Hp, Ic, Ip) = Pr(Ec ∣ Hp, Ic, Ip).

Combining the results for the numerator and the
denominator, one thus obtains the following likeli-
hood ratio:

V =
Pr(Er,Ec ∣ Hp, Ic, Ip)
Pr(Er,Ec ∣ Hd, Ic, Ip)

= 1
Pr(Er ∣ Hd, Ic)

×
Pr(Ec ∣ Hp, Ic, Ip)

Pr(Ec ∣ Hd, Ip)
. (6.1)

It is worth noting that the assumption that Pr
(Er ∣ Hp,Ec, Ic, Ip) = 1 is one that may not gen-
erally hold by default. When considerations are
extended to particular acquired features, for
instance, then it may not be taken as certain that
a given configuration of features, seen in the print
of known source, will necessarily be observed in
a mark made by the shoe sole of interest. In fact,
repeated applications over time of a given shoe
sole may lead to different configurations of marks
appearing in the traces produced. Due to factors
such as pressure, direction of application, use or
walking surface characteristics, some aspects may



�

� �

�

624 Evidence and Propositions: Practice

preferentially be reproduced, rather than others.
In a strict sense, such considerations could also
be applied for more general aspects, such as sole
pattern. Indeed, footwear marks are often frag-
mentary and the general pattern of a sole is rarely
reproduced in its entirety. Therefore, such charac-
teristics may also show up differently in repeated
applications of a given shoe sole. In other words,
the extent of reproduction of a given sole pattern
is subject to variation. These considerations imply
that the probability of observing a given configu-
ration of marks is less than one. It should also be
noted that the common statement according to
which given footwear features are compatible or,
in agreement, with features observed in a mark
does not necessarily imply that Pr(Er,Ec ∣ Hp, Ic, Ip)
should be 1. A judgement of ‘compatible with’
merely says that Pr(Er,Ec ∣ Hp, Ic, Ip) is not zero. In
fact, as noted earlier, there is much reason to con-
sider that this probability should take a value lower
than one. A practical example of such reasoning
is presented in Biedermann et al. (2012b).

The result of the aforementioned development
is that there are three distinct probabilities that
make up (6.1). As discussed in Champod et al.
(2004), the assignment of values to these compo-
nent terms requires distinct data collections: (i) a
‘crime-related database’ focusing on materials
associated with crimes of the appropriate nature,
to help with assigning Pr(Er ∣ Hd, Ic), (ii) an
‘offender-related database’ focusing on people
who are known to have some kind of association
with a crime scene of the relevant kind, to help
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assigning Pr(Ec ∣ Hp, Ic, Ip), and (iii) an ‘innocent
suspect database’ covering data on individuals
who are known not to have an association with
a crime of the relevant kind but yet have come to
the notice of the police, to help in the assignation
of Pr(Ec ∣ Hd, Ip).

The populations from which these databases are
taken are all relevant to the evaluation of evidence.
A general definition of a relevant population is the
following.

Definition. A relevant population is the population
defined by the combination of the proposition Hd

proposed by the defence and the background infor-
mation I.

This population is also called suspect population
by some authors. The definition clarifies why it
is not appropriate to use reference data on the
population from which the suspect originated as
presented in Section 5.3.1.3. The discussion on
this argument was initiated by Kaye (1987a),
Evett and Weir (1991), Lempert (1991), Wooley
(1991), Weir and Evett (1992), and Weir (1992).
Lempert (1993) clarified the point:

This analysis does not mean, however, that the use of
a black database is, for example, appropriate if a white
man is arrested for rape in a black ghetto. The suspect
population consists of those who are plausible suspects
given those factors that condition suspicion. If a rape
victim claims her assailant was white, the police are not
going to arrest a black-appearing man for the crime no
matter how many black men would have been potential
suspects absent information about the defendant’s race.
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The suspect population will consist of white-appearing
males, and the database used to estimate the uniqueness of
a defendant’s allele configuration should reflect that fact.
(pp. 4–5)

Moreover, Robertson and Vignaux (1995b) asked
a simple question to deal correctly with the identi-
fication of the relevant population. They wrote:

[...] the accused’s race is not relevant to the probability of
obtaining the evidence under the alternative hypothesis
if that is someone else left the mark. [...] We then have
the question ‘what sort of someone else?’ and the answer
depends on what is known about the perpetrator, not the
accused. (p. 149)

An interesting aspect has been put forward
by Lempert (1993) who focused on the role of
relatives as members of the relevant population.
He noticed that ‘the suspect population, which is
to say the group of people who plausibly might
be suspected of having committed the crime,
contains members of the same imbreed group’.
(pp. 2–3) So, this suspect population have allele
configurations across the loci tested with a relative
high probability of matching that of the defendant.
Robertson and Vignaux (1993a) extended further
this idea and its implication for the value of
evidence and for the probability of the proposition
of interest. They wrote:

In some cases it will not be in the interest of the defendant
to make such a claim [to be member of a restricted popula-
tion such as relatives]. If, for example, the defendant claims
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to be a Pitcairn Islander and argues that it will be possible
that the perpetrator is also a Pitcain Islander, the use of a
specific Pitcain Island database might be justified. However,
if there are only 50 Pitcairn Islanders in the country where
the crime was committed, then the prior odds are dramati-
cally reduced and the impact of the DNA evidence may even
be increased. (p. 4)

This aspect is emphasised again in Robertson and
Vignaux (1995b) by stating:

Let us re-emphasise that although the value of the evidence
is decreased if the alternative perpetrator is a brother, so is
the pool of possible suspects. In fact, specifying a brother
as the alternative may reduce the prior odds from 1 in sev-
eral million to 1 in three or four. The combined effect of this
and the blood evidence may even be to strengthen the case
against the accused. (pp. 42–43)

The choice of the relevant population has, there-
fore, an impact on the value of the evidence and on
the case as a whole.

6.1.4 Two Trace Problem

The single trace case described in Section 6.1.3
can be extended to a case in which two blood-
stains, or two groups of fibres (or, more generally
two traces having different features), have been
left at the crime scene (Evett, 1987b). Imagine
the following case. A crime has been committed
by two men, each of whom left a bloodstain at
the crime scene. The stains are analysed, one is
found to be of type Γ1, the other of type Γ2. Later,
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as a result of information completely unrelated
to the bloodstains, a single PoI is identified. For
situations in which the PoI is selected through a
database search, see Section 6.1.8.1. The PoI’s
blood is found to be of type Γ1. It is assumed there
is no evidence in the form of injuries. The scientific
evidence is confined solely to the results of the
blood analysis. The two propositions of interest
are

Hp: the crime stains came from the PoI and one
other man (so the PoI and the other man are
the sources of the recovered stains);

Hd: the crime stains came from two other (unre-
lated) men.

The scientific evidence E consists of two compo-
nents Er and Ec, defined as follows:

• Er: two crime stains with profiles Γ1 and Γ2;

• Ec: the PoI’s blood is of type Γ1 (a similar result
follows if the PoI is of profile Γ2).

The value, V, of the evidence is given by

Pr(Er ∣ Hp,Ec, I)
Pr(Er ∣ Hd, I)

. (6.2)

Note that if the bloodstain did not come from the
PoI, their profile is generally considered not rele-
vant for the assessment of the denominator (on this
aspect, see comments made in Section 6.1.7).

The scientist knows that profiles Γ1 and Γ2
occur with probabilities 𝛾1 and 𝛾2, respectively, in
some relevant population. Assume that I contains
no information which may restrict the definition of



�

� �

�

Source level propositions 629

the relevant population to a subset of the general
population.

Consider the numerator of (6.2) first. This is the
probability that the two stains are of profilesΓ1 and
Γ2, given

• that the PoI is the source of one of the crime
stains;

• that the PoI is of profile Γ1 and

• all other information, I: from the assumption
above I implies that profile population propor-
tions in the general population are relevant for
the case at hand.

Assume that the two crime stains are indepen-
dent pieces of evidence in the sense that knowledge
of the profile of one of the stains does not influence
the probability that the other will have a particular
profile. Let the two criminals be denoted A and B.
Further, Er may be considered in terms of the fol-
lowing two mutually exclusive partitions:

• Er1: A is of profile Γ1, B is of profile Γ2;

• Er2: A is of profile Γ2, B is of profile Γ1.

Partitions Er1 and Er2 may be further subdivided
using the assumption of independence. Thus Er1 =
(Er11,Er12) where

• Er11: A is of profile Γ1;

• Er12: B is of profile Γ2.

Similarly, Er2 = (Er21,Er22) where

• Er21: A is of profile Γ2;

• Er22: B is of profile Γ1.
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Thus, since Er1 and Er2 are mutually exclusive:

Pr(Er ∣ Hp,Ec, I)
= Pr(Er1 or Er2 ∣ Hp,Ec, I)
= Pr(Er1 ∣ Hp,Ec, I) + Pr(Er2 ∣ Hp,Ec, I),

following (1.5), the second law of probability for
mutually exclusive events. However, only one of
these two probabilities is non-zero. If the PoI is A
then the latter probability is zero; if the PoI is B
then the former probability is zero. Assume, again
without loss of generality, that the PoI is A. Then

Pr(Er ∣ Hp,Ec, I)
= Pr(Er1 ∣ Hp,Ec, I)
= Pr(Er11 ∣ Hp,Ec, I) × Pr(Er12 ∣ Hp,Ec, I)

by independence.
Now, Pr(Er11 ∣ Hp,Ec, I) = 1 since if the PoI was

the source of one of the crime stains, and his profile
is Γ1, then it is certain that one of the profiles is Γ1.

Also, Pr(Er12 ∣ Hp,Ec, I) = 𝛾2 since the second
bloodstain was left by the other donor. At present,
in the absence of information from I, the offender
B is considered a member of the relevant popu-
lation. The probability is thus assumed to be the
population proportion of profile Γ2 in the relevant
population and this is 𝛾2. The numerator then
takes the value 𝛾2.

Now consider the denominator of (6.2),

Pr(Er ∣ Hd, I) = Pr(Er1 ∣ Hd, I) + Pr(Er2 ∣ Hd, I)
= Pr(Er11 ∣ Hd, I)Pr(Er12 ∣ Hd, I)
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+Pr(Er21 ∣ Hd, I)Pr(Er22 ∣ Hd, I)
= 𝛾1𝛾2 + 𝛾2𝛾1

= 2𝛾1𝛾2.

Thus,
V = 𝛾2∕(2𝛾1𝛾2) = 1∕(2𝛾1). (6.3)

This result should be compared with the result
for the single trace case, V = 1∕𝛾 . The likelihood
ratio in the two-trace case is one half of what it
is in the corresponding single trace case. This is
intuitively reasonable. If there are two donors and
one PoI, one would not expect the evidence of a
matching bloodstain to be as valuable as in the
case in which there is one donor and one PoI. Note
that if 𝛾1 is greater than 0.5 then V is less than 1.
The evidence is supportive of the proposition that
the crime stain came from two men, not including
the PoI. As has been commented, ‘this appears
counterintuitive at first sight but, rather than
demonstrating a flaw in the logic, it demonstrates
that intuition can be unreliable!’ (Evett, 1990).
An illustrative example, using an idea from the
tossing of two coins, is given by Evett and Weir
(1998, p. 34).

Other pairs of propositions may appear more
appropriate in different situations. For example,
suppose the stains are located at distinct positions
on the crime scene. It could be that one was found
on a carpet and another on a pillowcase. The
propositions may then be

Hp : the PoI left the stain on the carpet;

Hd : two unknown people left the two stains or
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Hp : the PoI left the stain on the carpet;

Hd : an unknown person left the stain on the car-
pet and another unknown person left the stain
on the pillowcase.

The context of the case or the strategies of the
prosecution and defence can influence the choice
of the propositions. Different propositions could
lead to different values for the evidence. It is
necessary then to look at Bayes’ theorem (2.12)
in its entirety. Different propositions may have
different prior odds Pr(Hp ∣ I)∕Pr(Hd ∣ I) as well
as different values of the evidence. It follows
that the posterior odds Pr(Hp ∣ E, I)∕Pr(Hd ∣ E, I)
may also be different for different propositions.
Further comments on these ideas may be found
in Meester and Sjerps (2003). A detailed analysis
with the aim of clarifying the interrelationships
that exist amongst the different solutions (and in
this way, produce a global vision of the problem) is
presented in Gittelson et al. (2013a).

Further discussion of the value of evidence in
the two trace problem when considering activity
or crime level propositions illustrates that several
factors have to be considered: the number of
reported perpetrators, the relevance of each stain
and the specification of transfer probabilities
(Triggs and Buckleton, 2003). Gittelson et al.
(2012a) developed a model to relax assumptions
made by Triggs and Buckleton (2003) for the
development of the likelihood ratio, generalised
to cases involving n traces. Because the algebraic
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approach becomes increasingly challenging to
follow in cases with an increasing number of
variables and dependence relationships between
these variables, probabilistic graphical models
(i.e. Bayesian networks) are suggested as a way to
support the application of a likelihood ratio based
evaluation. An example is presented in De March
et al. (2016).

An extension to cases with n stains, k groups of
stains, and m donors is given in Section 6.1.5, but
without consideration of relevance or probabilities
of transfer.

6.1.5 Many Samples

6.1.5.1 Many Different Profiles

Consider a crime in which n bloodstains are left at
the crime scene, one from each of n donors. A sin-
gle PoI is identified whose DNA profile corresponds
to that of one of the bloodstains at the crime scene.
Assume throughout that I contains no relevant
information. Whilst hypothetical the example
illustrates points that require consideration in the
evaluation of evidence. A similar argument can be
developed for a case in which there are n groups of
fibres from n distinct sources and a PoI has been
identified in whose possession is clothing whose
fibres correspond to one of the groups.

Assume that the n bloodstains, one from each of
n donors, all have different profiles. The two propo-
sitions to be considered are:
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Hp: the trace from the crime scene came from the
PoI and (n − 1) other people;

Hd: the trace from the crime scene came from n
unknown people.

The scientific evidence E is defined as follows:

• Er: the crime stains have profiles Γ1,Γ2, . . . ,Γn,

• Ec: the PoI’s profile is Γ1.

The population proportions for the profiles
Γ1,Γ2, . . . ,Γn are, respectively, 𝛾1, 𝛾2, . . . , 𝛾n.

Consider the numerator Pr(Er ∣ Hp,Ec, I) first.
The PoI’s profile corresponds to that of the stain of
profile Γ1. There are (n − 1) other donors who can
be allocated to the (n − 1) other stains in (n − 1)!
ways. Thus:

Pr(Er ∣ Hp,Ec, I) = (n − 1)!
n∏

i=2

𝛾i

= (n − 1)!(𝛾2 · · · 𝛾n).

Now, consider the denominator. There are n!
ways in which the n donors, of whom the PoI is
not one, can be allocated to the n stains. Thus:

Pr(Er ∣ Hd, I) = n!
n∏

i=1

𝛾i = n!(𝛾1 · · · 𝛾n).

Hence

V =
(n − 1)!

n∏
i=2

𝛾i

n!
n∏

i=1
𝛾i

= 1
n𝛾1

. (6.4)
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6.1.5.2 General Cases

n Stains, k Groups, k Donors Suppose now that
there are k different profiles Γ1, . . . ,Γk, with
population proportions 𝛾1, . . . , 𝛾k and that these
profiles correspond to the profiles of k different
people amongst the n stains (k < n) recovered on
the crime scene and that the PoI has one of these
profiles. Two propositions of interest to considered
could be:

Hp: the stains from the crime scene came from
the PoI and (k − 1) other people;

Hd: the stains from the crime scene came from k
unknown people.

The scientific evidence consists of:

• Er: the crime stains with profiles Γ1, . . . ,Γk and
there are s1, . . . , sk (

∑k
i=1 si = n) of each,

• Ec: the PoI’s profile is Γ1 (without loss of gener-
ality).

The probabilities given later are in the form of
the multinomial distribution (Section A.2.4).
Consider the numerator Pr(Er ∣ Hp,Ec, I) first. The
PoI’s profile corresponds to that of the stains of
profile Γ1. There are (n − s1) other bloodstains
that can be allocated in (n − s1)!∕(s2! · · · sk!) ways,
where

∑k
i=2 si = n − s1, to give

Pr(Er ∣ Hp,Ec, I) =
(n − s1)!
s2! · · · sk!

𝛾
s2

2 · · · 𝛾sk

k .
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Next, consider the denominator. There are
n!∕(s1!s2! · · · sk!) ways in which the n stains,
none of which is associated with the PoI, can be
allocated to the profiles. Thus

Pr(Er ∣ Hd, I) = n!
s1! · · · sk!

𝛾
s1

1 · · · 𝛾sk

k .

Hence

V =
(n − s1)!s1!

n!𝛾s1

1

= 1(
n
s1

)
𝛾

s1

1

. (6.5)

Notice that V is independent of k, the number of
donors and that if s1 = 1 the result reduces to that
of (6.4).

n Stains, k Groups, m Donors A similar result may
be obtained in the following situation. There are n
bloodstains with k different profiles with si in the
ith group (

∑k
i=1 si = n). There are m donors with

mi in each profile (
∑k

i=1 mi = m) such that sij (j =
1, . . . ,mi) denotes the number of stains belonging
to the jth donor in the ith group and

∑mi

j=1 sij = si

when it is assumed, without loss of generality, that
the first set of stains in the first group came from
the PoI. The denominator equals

n!
s11! · · · skmk

!
𝛾

s1

1 · · · 𝛾sk

k .

The numerator equals

(n − s11)!
s12! · · · skmk

!
𝛾

s1−s11

1 𝛾
sk

2 · · · 𝛾sk

k .
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Then

V =
(n − s11)!s11!

n!
× 1
𝛾

s11

1

= 1(
n

s11

)
𝛾

s11

1

,

a result similar to (6.5).

6.1.6 Multiple Propositions

Remember the principle of evidence evaluation
that stipulates that for the assessment of the value
of any item of scientific evidence, the forensic
scientist needs at least two propositions. However,
this raises the question of what to do if there
are more than two propositions that should
be considered. Typically, this happens in DNA
evidence cases when relatives of the PoI are
amongst the potential sources of the crime stain
(Lempert, 1991; Buckleton and Triggs, 2005).
Historically, two approaches have been proposed.
The first approach focuses on the calculation of
the posterior probabilities of the propositions. The
second approach proposes the development of a
Bayes’ factor (see Section 2.3.2) for the multiple
propositions. Below, the two approaches are
presented using examples.

6.1.6.1 Multiple Propositions: Posterior
Probabilities

Consider a situation in which the evidence E is that
of a DNA profile of a stain of body fluid found at the
scene of a crime and of the DNA profile from a PoI
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which is reported to correspond to the profile of the
crime stain. Further, suppose that there are three
propositions to be considered:

Hp: the PoI is the donor of the crime stain;

Hd1: an unknown person from the population is
the donor of the crime stain;

Hd2: a brother of the PoI is the donor of the crime
stain.

This situation has been discussed by Evett (1992).
Evett’s original notation is retained, so that 𝜃0, 𝜃1,
and 𝜃2 denote the prior probabilities for each
of these three propositions (𝜃0 + 𝜃1 + 𝜃2 = 1).
Assume that Pr(E ∣ Hp) = 1. Denote Pr(E ∣ Hd1)
by 𝜙1 and Pr(E ∣ Hd2) by 𝜙2. Also, Hd, the com-
plement of Hp, is assumed to be the conjunction
of Hd1 and Hd2. Then, using Bayes’ theorem (2.4)
and the law of total probability (1.12),

Pr(Hp ∣ E) =
Pr(E ∣ Hp)𝜃0

Pr(E ∣ Hp)𝜃0 + Pr(E ∣ Hd1)𝜃1
+Pr(E ∣ Hd2)𝜃2

=
𝜃0

𝜃0 + 𝜙1𝜃1 + 𝜙2𝜃2
, (6.6)

Pr(Hd ∣ E) =
𝜙1𝜃1 + 𝜙2𝜃2

𝜃0 + 𝜙1𝜃1 + 𝜙2𝜃2
,

and hence the posterior odds in favour of Hp are

𝜃0

𝜙1𝜃1 + 𝜙2𝜃2
.
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Let the relevant population size be N and let
the number of siblings be n where N ≫ n. It can
be assumed that 𝜃0 = 1∕N, 𝜃1 = (N − n)∕N and
𝜃2 = (n − 1)∕N. The posterior odds in favour of Hp

are approximately equal to

1
𝜙1N + 𝜙2(n − 1)

,

replacing (N − n) with N.
Consider an example where the probability (𝜙1)

of a correspondence with a random person in the
relevant population is assessed as 1∕25 000 000.
If N = 100 000, and there are no siblings so that
n = 1 then the posterior odds in favour of Hp

are 1∕(N𝜙1) = 250. If there is a brother, then
𝜙2 ≃ (1∕4)2, n = 2 and the posterior odds are

1∕
{

1
250

+
(1

4

)2
}

= 1
0.004 + 0.063

≃ 15.

The existence of the brother has reduced the
posterior odds by a factor of over 15 from 250
to 15. Note that 𝜙2 can be known given the PoI
profile (e.g. Pr(G2 ∣ G1), where G1 and G2 denote
the genotypes of both individuals (Balding and
Nichols, 1994). Bayesian networks are a simple
tool to infer such a conditional probability.

A more general approach involving a brother is
discussed by Balding (1997, 2000). The existence
of just one brother amongst the possible donors
of the crime stain can outweigh the effect of very
many unrelated men for realistic values of the
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profile probabilities. The possible crime stain
donors are the PoI, one brother of the PoI (note
that the brother may, however, be missing, or
refuse to collaborate with investigators, or it may
not even be known whether or not the PoI has any
brothers) and one hundred unrelated men. Only
the DNA profile of the PoI is available. Consider
that the profile probability for the brother is
1∕100 and the profile probability for the other
men is 1∕1 000 000. Suppose that the probability
Pr(I ∣ Hp) of the non-DNA evidence I was the same
for all the possible donors of the crime stain (102
individuals). Then

Pr(Hp ∣E, I) = 1∕{1 + 0.01 + (100 × 0.000001)}
= 0.99.

Thus Pr(Hd ∣ E, I) = 0.01.
If the brother is ignored, then

Pr(Hp ∣ E, I) = 1∕{1 + (100 × 0.000001)}
= 0.9999

and Pr(Hd ∣ E, I) = 0.0001. Consideration of
the presence of the brother has increased the
probability of the defence proposition by a factor
of 100. See Section 6.1.8.3 for further details.

The consequences are more dramatic if other
brothers, cousins, or other relatives are members
of the relevant population of potential sources of
the crime stain. It may in some cases be plausible
that the non-DNA evidence has approximately
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the same value for the PoI as for some or all
of the siblings. In this case, it can be assumed
that the probability, Pr(Hp ∣ E, I), that the PoI
is the donor of the stain is at most 1∕(1 + qx)
where x denotes the number of such siblings and q
represents the sibling profile probability (Balding
and Donnelly, 1995b).

Buckleton and Triggs (2005) raised a related
question, whether a scientist should systematically
consider (at least) two alternatives propositions
in the denominator of Bayes’ factor. The authors
emphasised that it would seem reasonable to
include this number if it is important for the
decision making process. They remarked that:

The central thesis of this paper, then, is whether this
match probability should be that for an unrelated person
or for both the unrelated person and a brother. To do this
we examine what contributes to the ‘remainder’ of the
posterior probability that is not assigned to the PoI. This
remainder represents the doubt, if any. It must fall on
either the sibling or on one or more unrelated males.
(p. 117)

In the authors’ analysis, the value for the posterior
probability related to the ‘brother’ proposition
increases as the number of genetic markers
increases. Thus, there is the need to consider at
least two propositions for the defence side.

An alternative development has been proposed
in Evett and Weir (1998) referring to Balding and
Donnelly (1995a,b) . Consider a scenario where
the DNA profile of a recovered stain corresponds
to that of a person of interest (PoI). Consider
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also, as previously stated, that Pr(Hp ∣ I) = 𝜋1 is
the prior probability that the PoI is the source
of the recovered stain and that 𝜋i(i = 2, . . . , n)
are the prior probabilities of the alternative
propositions for other members of the relevant
population:

∑
i Pr(Hdi ∣ I) =

∑n
i=2 𝜋i = 1 − 𝜋1.

Assume that the probability of observing the
recovered profile Er given that the PoI has profile
Ec and that they are the source of the recovered
stain (Hp), Pr(Er ∣ Ec,Hp, I) = 1, the posterior
probability of proposition Hp is

Pr(Hp ∣ Er,Ec, I) =
𝜋1∑n

i=1 Pr(Er ∣ Ec,Hdi, I)𝜋i

= 1

1 +
∑n

i=2
Pr(Er∣Ec,Hdi,I)𝜋i

𝜋1

. (6.7)

The use of the ratio 𝑤i = 𝜋i∕𝜋1 of the prior prob-
abilities is suggested (Evett and Weir, 1998) as
a ’weighting function that expresses how much
more (or less) probable than the PoI is the i-th
person to have left the crime stain, based on
the non-DNA evidence‘. (p. 41). Balding (2000)
commented on 𝑤i and further details are pre-
sented in Section 6.1.8.3. Therefore, the posterior
probability on Hp becomes:

Pr(Hp ∣ Er,Ec, I) = 1
1 +

∑n
i=2 Pr(Er ∣ Ec,Hdi, I)𝑤i

.

Another way to cope with multiple propositions
are Bayesian networks. Details are presented
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in Biedermann et al. (2012d) and Taroni et al.
(2014a).

Note also that the consideration of three propo-
sitions has led to consideration of posterior odds in
favour of one of the propositions. For comparing
more than two propositions, propositions have to
be combined in some meaningful way to provide
two propositions for comparison. Both methods
(posterior probabilities and Bayes’ factors) have
been applied in questioned document cases; for
examples and discussions, see Köller et al. (2004)
and Taroni and Biedermann (2005).

6.1.6.2 Multiple Propositions: Bayes’
Factor

Consider the case of State v. Klindt (1968) dis-
cussed in Lenth (1986). This case has two aspects
of interest. It illustrates a method for combining
evidence and it illustrates a method for evaluating
the evidence for more than two propositions. The
example uses blood grouping whereas DNA pro-
filing would now be used. However, the principles
remain the same and this example provides a good
example of them.

The case involved the identity of a portion of a
woman’s body. The portion was analysed and it
was determined that the woman was white, aged
between 27 and 40, had given birth to at least
one child and had not been surgically sterilised.
Also, the results for seven genetic markers were
obtained. All but four missing persons in the
area of the four states round where the body was
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found were eliminated as possible identities for the
woman. Label these four persons as P,Q,R, and
S. Women Q,R, and S had been missing for six
months, six years, and seven years, respectively,
and their last known locations were at least 200
miles from where the body was found. Woman P
had been missing for one month at the time the
body was discovered and had last been seen in the
same area.

The blood type of P was known to be A. The
blood types of Q,R, and S were not known. The
genetic constitution for the other markers was
unknown for all four women. For the remaining
six phenotypes, samples of tissues from the parents
of P enabled a value of 0.5 to be calculated for
the probability that the woman whose body was
found had the phenotypes it had if it were that
of P; i.e. Pr(given phenotypes∣ P) equals 0.5. See
also Section 6.3.3 for another such example of
kinship analysis. For some general population the
proportion of individuals with these phenotypes
was assigned as 0.00764. No kinship analyses
were conducted for Q,R, or S. The ages of all four
women were known and they were all mothers.
However, in order to illustrate the procedure for
combining evidence, Lenth (1986) made the
following alterations to the actual data: it was
not known whether Q was a mother; R’s age was
taken to be unknown and S was known to have
type A blood.

The previous information is summarised in
Table 6.3 using information on population



Table 6.3 Probability evidence in State v. Klindt (altered for illustrative purposes).

Indicator Attribute Woman, X

P Q R S

Age (years) 33 27 unknown 37
E1 Mother∣age 1.0 0.583 1.0 1.0
E2 Sterilised∣ mother, age 1.0 0.839 0.662 0.542
E3 Type A blood 1.0 0.362 0.362 1.0
E4 Other six phenotypes 0.500 0.007 64 0.007 64 0.007 64

Pr(E1,E2,E3,E4 ∣ age,X) 0.5000 0.001 35 0.001 83 0.004 14
Fraction of total, Pr(X ∣ E, age) 0.9856 0.0027 0.0036 0.0082

Source: From Lenth (1986). Reprinted with permissions of Elsevier.
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proportions given by Lenth (1986). If a particular
characteristic is known to hold for a particular
woman, then a probability of 1 (corresponding to
certainty) is entered. If the presence or absence
of an attribute is not known, the population
proportion of the attribute amongst the general
population is given. There are four propositions
to be compared, one for each of the four women
whose body may have been found. The evidence
to be assessed is E = {E1, . . . ,E4}, the four
separate items of evidence listed in Table 6.3.
The probabilities to be determined are of the
form Pr(E1 · · ·E4 ∣ age,X) where X is one of
P,Q,R, or S. These items of evidence are not all
mutually independent. Denote the evidence as
follows:

• E1: mother, yes or no;

• E2: not sterilised, yes or no;

• E3: type A blood, yes or no;

• E4: other six phenotypes.

Using the third law of probability for dependent
events (1.9)

Pr(E ∣ age,X) = Pr(E1,E2,E3,E4 ∣ age, X)
= Pr(E1 ∣ age, X) × Pr(E2 ∣ E1, age, X)
× Pr(E3 ∣ E2,E1, age, X)
× Pr(E4 ∣ E3,E2,E1, age, X)
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= Pr(E1 ∣ age, X) × Pr(E2 ∣ E1, age, X)
× Pr(E3 ∣ X)Pr(E4 ∣ X)

where X is one of P,Q,R, or S, and the final
expression depends on certain independence
relationships amongst the four pieces of evidence.
For example, the probability of sterilisation is
dependent on age and being a mother or not,
whilst the probability an individual has type A
blood (E3) is independent of age, whether a mother
or not (E1), and whether or not sterilised (E2).
The probabilities for the combined evidence E
are given in the penultimate row of Table 6.3,
namely,

• Pr(E ∣ age, P) = 0.5000;

• Pr(E ∣ age, Q) = 0.00135;

• Pr(E ∣ age, R) = 0.00183;

• Pr(E ∣ age, S) = 0.00414.

Explicit dependence on ‘age’ is now omitted for
ease of notation. The posterior probability that
the body is that of P, Pr(P ∣ E), may be assigned
so long as information concerning the identity
of the body prior to the discovery of the evidence
contributing to E is available and is represented
by the prior probabilities Pr(P),Pr(Q),Pr(R) and
Pr(S). From Bayes’ theorem (2.4)

Pr(P ∣ E) = Pr(E ∣ P)Pr(P)
Pr(E)
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with similar results for Q,R, and S. From the law
of total probability (1.11), since the events P,Q,R,
and S are mutually exclusive and exhaustive

Pr(E) = Pr(E ∣ P)Pr(P) + Pr(E ∣ Q)Pr(Q)
+Pr(E ∣ R)Pr(R) + Pr(E ∣ S)Pr(S).

If the four prior probabilities are assumed mutually
exclusive, exhaustive and equal,

Pr(P) = Pr(Q) = Pr(R) = Pr(S) = 1∕4.

Hence,

Pr(P ∣ E) = Pr(E ∣ P)
Pr(E ∣ P) + Pr(E ∣ Q) + Pr(E ∣ R)

+Pr(E ∣ S)

.

From Table 6.3

Pr(P ∣ E) = 0.5000
0.5000 + 0.00135

+0.00183 + 0.00414

= 0.9856,

the value given in the final row of the table. The
posterior odds in favour of P versus Q,R, or S then
equal 0.5000/(0.001 35+0.001 83+0.004 14)
≃68. This can be verified by determining Pr(P ∣
E)∕Pr(P̄ ∣ E) = 0.9856∕0.0144 ≃ 68 where P̄ is
the complement of P, which, for the moment, is
taken to be Q,R, or S.

The value V of the evidence that equals Pr(E ∣
P)∕Pr(E ∣ P̄) may be determined, again if the prior
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probabilities are available. From Bayes’ theorem
(2.4)

Pr(E ∣ P̄) = Pr(P̄ ∣ E)Pr(E)
Pr(P̄)

= {Pr(Q ∣ E) + Pr(R ∣ E) + Pr(S ∣ E)}Pr(E)
Pr(Q) + Pr(R) + Pr(S)

=

{
Pr(E∣Q)Pr(Q)

Pr(E)
+ Pr(E∣R)Pr(R)

Pr(E)
+ Pr(E∣S)Pr(S)

Pr(E)

}

×Pr(E)
Pr(Q) + Pr(R) + Pr(S)

=

Pr(E ∣ Q)Pr(Q) + Pr(E ∣ R)Pr(R)
+Pr(E ∣ S)Pr(S)

Pr(Q) + Pr(R) + Pr(S)
. (6.8)

If Pr(Q) = Pr(R) = Pr(S) then

Pr(E ∣ P̄) = Pr(E ∣ Q) + Pr(E ∣ R) + Pr(E ∣ S)
3

= 0.00732
3

= 0.00244.

Thus

Pr(E ∣ P)
Pr(E ∣ P̄)

= 0.5000
0.00244

= 204.92.

It is about 205 times more probable to observe
the evidence if the body is that of P than that of one
of the other three women.

If Pr(P) = Pr(Q) = Pr(R) = Pr(S) = 1∕4 then
Pr(P)∕Pr(P̄) = 1∕3 and the posterior odds in
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favour of P equals

0.5000
0.00244

× 1
3
= 0.5000

0.00732
≃ 68

as determined previously.
It is also possible to determine the value of

the evidence in favour of P relative to one other
woman, Q, say, in the usual way of comparing two
propositions:

Pr(E ∣ P)
Pr(E ∣ Q)

= 0.5000
0.00135

≃ 370.

The evidence is about 370 times more probable
to be obtained if the body is that of P rather than
that of Q.

As well as age, the conditioning on background
information I has, as usual, been omitted for
clarity of exposition. However, there is information
available regarding the length of time for which the
women have been missing and their last known
locations. This may be considered as background
information I. As such it may be used to assign
the prior probabilities that may then be written
as Pr(P ∣ I),Pr(Q ∣ I),Pr(R ∣ I), and Pr(S ∣ I). Sup-
pose (P ∣ I) is thought the most probable event
and that the other three events are all equally
improbable. Represent this as Pr(P ∣ I) = 0.7, Pr
(Q ∣ I) = Pr(R ∣ I) = Pr(S ∣ I) = 0.1 (though this is
not the only possible combination of probabilities
which satisfy this criterion). The likelihood ratio
Pr(E ∣ P)∕Pr(E ∣ P̄) is the same as before, 204.92,
since it was determined assuming only that
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Pr(Q) = Pr(R) = Pr(S), without specifying a par-
ticular value. The posterior odds alter, however.
The prior odds are

Pr(P ∣ I)
Pr(P̄ ∣ I)

= 0.7
0.3

.

The posterior odds then becomes

204.92 × 0.7
0.3

≃ 478

and Pr(P ∣ E) = 0.998.
The posterior probabilities in Table 6.3 have

been calculated assuming Pr(P) = Pr(Q) = Pr
(R) = Pr(S) = 1∕4. If these probabilities are not
equal, the posterior probabilities have to be calcu-
lated taking account of the relative values of the
four individual probabilities. For example,

Pr(P ∣ E) = Pr(E ∣ P)Pr(P)
Pr(E ∣ P)Pr(P) + Pr(E ∣ Q)Pr(Q)
+Pr(E ∣ R)Pr(R) + Pr(E ∣ S)Pr(S)

.

The likelihood ratio also has to be calculated
again if Pr(P),Pr(Q),Pr(R), and Pr(S) are not
equal. From (6.8)

Pr(E ∣ P)
Pr(E ∣ P̄)

=
Pr(E ∣ P){Pr(Q) + Pr(R) + Pr(S)}
Pr(E ∣ Q)Pr(Q) + Pr(E ∣ R)Pr(R)

+Pr(E ∣ S)Pr(S)

.

(6.9)
These results for comparing four propositions

may be generalised to any number, n, say, of
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competing exclusive propositions. Let H1, . . . ,Hn
be n exclusive propositions and let E be the evi-
dence to be evaluated. Denote the probability
of E under each of the n propositions by Pr(E ∣
Hi), (i = 1, . . . , n). Let 𝜋i = Pr(Hi), (i = 1, . . . , n)
be the prior probabilities of the propositions, such
that

∑n
i=1 𝜋i = 1. Then consider the value E for

comparing H1 with (H2, . . . ,Hn) = H̄1, say.

Pr(E ∣ H1)
Pr(E ∣ H̄1)

=
Pr(E ∣ H1)(

∑n
i=2 𝜋i)∑n

i=2 Pr(E ∣ Hi)𝜋i
(6.10)

from a straightforward extension of (6.9). Thus

Pr(E ∣ H1)
Pr(E ∣ H̄1)

=
Pr(E ∣ H1)(1 − 𝜋1)∑n

i=2 Pr(E ∣ Hi)𝜋i

,

since
∑n

i=2 𝜋i = 1 − 𝜋1, and

Pr(H1 ∣ E) =
Pr(E ∣ H1)𝜋1

Pr(E)

=
Pr(E ∣ H1)𝜋1∑n
i=1 Pr(E ∣ Hi)𝜋i

.

The posterior odds are best evaluated by writing
Pr(H̄1 ∣ E) as 1 − Pr(H1 ∣ E) and then

Pr(H1 ∣ E)
Pr(H̄1 ∣ E)

=
Pr(E ∣ H1)𝜋1∕

∑n
i=1 Pr(E ∣ Hi)𝜋i

1 − {Pr(E ∣ H1)𝜋1∕
∑n

i=1 Pr(E ∣ Hi)𝜋i}

=
Pr(E ∣ H1)𝜋1∑n
i=2 Pr(E ∣ Hi)𝜋i

.

The probability figures for non-sterilisation of
women, and for women who are mothers and of a
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certain age are based on information about white
women in general. It is unlikely that the probabili-
ties are the same amongst missing white women.
However, these results are the best available and
serve to illustrate the methodology.

There is a possibility not so far accounted for
that the body may be that of a woman other
than P,Q,R, or S. If such a possibility is to be
considered, then it can be done by adding an
additional proposition to the four under con-
sideration and using the general results with
n = 5. Information is then needed concerning the
probability 𝜋5 to be assigned to this proposition,
remembering to adjust 𝜋1, . . . , 𝜋4 appropriately so
that 𝜋1 + · · · + 𝜋5 = 1. Information is also needed
concerning Pr(E ∣ H5). Some is available from
Table 6.3 by taking relevant information from that
pertaining to the other women. Thus Pr(mother∣
age unknown) = 0.583, from Q. However, Pr(not
sterilised∣ mother unknown, age unknown) is
unavailable. Probabilities are given in Table 6.3
for mothers of unknown age and for women of
a certain age but about whom it is not known
if they are mothers or not. A probability is not
given for the probability that a woman would
be sterilised when her age is unknown and it is
not known whether she is a mother or not. The
probabilities for E3 (type A blood) and E4 (other
six phenotypes) would remain the same since
the unknown woman has been identified from
her remains as being white, and the appropriate
probabilities have been given.
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As previously noticed (see Section 6.1.6.1), it
can be difficult to see how to apply directly (6.7)
in a given scientific report because (6.7) directly
relates to prior probabilities. The similar problem is
faced with the full expression (6.10) for the value
of the evidence. A solution to reduce the impact of
prior probabilities has been proposed by Buckleton
et al. (2006b) by simply considering an exclusive
and exhaustive partition of Hd = H2, . . . ,Hn and
by expanding it using the ‘extension of conver-
sation’ rule (see Section 1.7.10). The value of
the evidence requires just values for the prior
probabilities Pr(Hi ∣ Hd). The general expression is
as follows:

Pr(E ∣ Hp, I)
Pr(E ∣ Hd, I)

=
Pr(E ∣ Hp, I)∑n

i=2 Pr(E ∣ Hi,Hd, I)Pr(Hi ∣ Hd, I)
.

A general framework based on Bayes’ factor for
a number of situations is presented in Nordgaard
et al. (2012b). Derivations for probabilistic graph-
ical models are presented in Buckleton et al.
(2006b), Biedermann et al. (2012d), and Taroni
et al. (2014a).

6.1.7 A Note on Biological Traces

Consider likelihood ratio based evaluation in a
common situation involving DNA where there
is the profile Er of the crime scene item and the
profile Ec of the PoI. Let I represent the background
information and let the propositions, for example,
at the source level, be
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Hp: the PoI is the source of the stain;

Hd: another person, unrelated to the PoI, is the
source (i.e. the PoI is not the source of the
stain).

Suppose that both profiles are, for example, of type
A. From (5.2), the likelihood ratio can then be
expressed as

Pr(Er = A ∣ Ec = A,Hp, I)
Pr(Er = A ∣ Ec = A,Hd, I)

.

Assume that the DNA typing system is sufficiently
reliable so that two samples from the same person
will be found to have corresponding DNA profiles,
and that there are no false negatives. Thus, the
recovered item is expected to be of type A if it
is known that the PoI is of type A, and if Hp is
assumed true: Pr(Er = A ∣ Ec = A,Hp, I) = 1.

It is widely assumed that the DNA profiles from
two different people, such as the PoI and the
donor of the stain when proposition Hd is true, are
independent. Then Pr(Er = A ∣ Ec = A,Hd, I) =
Pr(Er = A ∣ I). In such a case only the so-called
profile probability 𝛾A with which an unknown
person would have the profile A is needed. In such
a case 𝛾A is 2𝛾i𝛾j for a heterozygote stain/PoI and
𝛾2

i for a homozygote stain/PoI, where 𝛾i and 𝛾j are
the proportions of alleles i and j in a relevant pop-
ulation. This is a widely accepted simplification.
In reality, however, the evidential value of a match
between the profile of the recovered stain and
the profile of the PoI needs to take into account
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the fact that there is a person, the PoI, who has
already been seen to have the profile of interest
(here, type A). So, the probability of interest is
Pr(Er = A ∣ Ec = A,Hd, I) and this can be quite
different from Pr(Er = A ∣ I) (Weir, 2000b).

Observation of one gene in the (sub)population
increases the chance of the observation of another
of the same type. Hence, within a (sub)population,
DNA profiles with matching allele types are more
common than suggested by the independence
assumption, even when two individuals are not
directly related. The conditional genotype prob-
ability (also called conditional match probability or
random match probability) incorporates the effect
of population structure or other dependencies
between individuals, such as that imposed by
family relationships (Weir, 2000a).

The question thus is how many other individu-
als amongst the population of possible offenders
might be expected to share the DNA profile of inter-
est. The answer to this question is complicated by
the phenomenon of genetic correlations due to
shared ancestry (Balding, 1997). The calculation
of profile probabilities using the so-called product
rule (i.e. the multiplication of allele proportions
within and across loci to obtain a probability for
the complete multi-locus profile) is not sufficient
when there are dependencies between different
individuals involved in the case under examina-
tion, such as the PoI and the perpetrator (i.e. the
actual source of the recovered stain) as assumed
under the alternative proposition, Hd.
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The more common source of dependency is a
result of a membership of the same population and
having similar evolutionary histories. The mere
fact that populations are finite in size means that
two people taken at random from a population
have a non-zero chance of having relatively recent
common ancestors. Thus, to disregard this cor-
relation amongst alleles in the calculation of the
value of the evidence is to exaggerate the strength
of the evidence against the compared person (e.g.
the PoI in a criminal case or the alleged father in
civil paternity cases) even though it is not as impor-
tant as the relatedness in the same population
(Curran et al., 2003; Buckleton et al., 2006a).

A measure FST of inter-population variation
in allele frequencies was introduced by Wright
(1922). It can be considered as a measure of
population structure. Extensive studies have been
made of allele frequencies in many human pop-
ulations to estimate values of FST (Balding et al.,
1996; Foreman et al., 1997, 1998; Balding and
Nichols, 1997; Lee et al., 2002) suggesting that
it is prudent to use FST values from the large end
of the currently observed range (Buckleton et al.,
2016c). Values less than 0.01 are often used.

Evett and Weir (1998) discussed three so-called
F-statistics, which provides a measure of rela-
tionship between a pair of alleles, and are relative
to some background level of relationship. The
notation used here is that used by Wright (1951,
1965). Evett and Weir (1998) use the notation of
Cockerham (1969, 1973).



�

� �

�

658 Evidence and Propositions: Practice

• The additional extent to which two alleles
within one individual are related when com-
pared with pairs of alleles in different individuals
but within the same subpopulation is denoted
FIS.

• The extent of relatedness of alleles within an
individual compared with alleles of different
individuals in the whole population is denoted
FIT.

• The relationship between alleles of different
individuals in one subpopulation when com-
pared with pairs of alleles in different subpopu-
lations, also known as the coancestry coefficient,
is denoted FST.

Slight differences between the definitions of
Wright (1951, 1965) and Cockerham (1969,
1973) are pointed out by Evett and Weir (1998).
Wright defined his quantities for alleles identified
by the gametes carrying them; Cockerham defined
his statistics for alleles defined by the individuals
carrying them. For random mating subpopula-
tions, Evett and Weir (1998) comment that the
distinction can be ignored. Discussion on the use
of such statistics in forensic genetics is presented
in Ayres and Overall (1999).

The following argument for deriving the prob-
ability of a correspondence is taken from Balding
and Nichols (1994, pp. 138–139). Let 𝛾A and 𝛾B

denote the population proportions of alleles A and
B, respectively. Interpret the value of FST as the
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probability that two alleles are identical through
inheritance from a common ancestor in the same
sub-population. With reasonable assumptions,
two alleles drawn from the sub-population are
identical through a common ancestor in the sub-
population with probability FST and the ancestor
is of type A with probability 𝛾A. If not identical by
descent, two alleles are of type A with probability
𝛾2

A. Thus, the probability of drawing allele A in both
of two random draws from the sub-population is

Pr(A2 ∣ 𝛾A) = 𝛾A{FST + (1 − FST)𝛾A}. (6.11)

The observation of one A allele in the subpopu-
lation makes it likely that A is more common in the
subpopulation than in the general population and
hence Pr(A2 ∣ 𝛾A) is larger than the probability 𝛾2

A
of drawing two consecutive A alleles in the general
population. The probability of drawing first an A
followed by a B allele is

Pr(AB ∣ 𝛾A, 𝛾B) = 𝛾A𝛾B(1 − FST). (6.12)

In general, let Pr(ArBs) denote the probability that
amongst r + s alleles drawn randomly from the
subpopulation, the first r are of type A and the
following s are of type B then

Pr(Ar+1Bs ∣ 𝛾A, 𝛾B) = Pr(ArBs ∣ 𝛾A, 𝛾B)

×
rFST + 𝛾A(1 − FST)
1 + (r + s − 1)FST

.

(6.13)
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Special cases of (6.13) with s = 0, r = 3 and
then s = 0, r = 2 gives

Pr(A4 ∣ 𝛾A) = Pr(A2 ∣ 𝛾A)

(2FST + (1 − FST)𝛾A)
× (3FST + (1 − FST)𝛾A)
(1 + FST)(1 + 2FST)

(6.14)

and

Pr(A2B2 ∣ 𝛾A, 𝛾B) = Pr(AB ∣ 𝛾A, 𝛾B)

×

(FST + (1 − FST)𝛾A)
× (FST + (1 − FST)𝛾B)
(1 + FST)(1 + 2FST)

.

(6.15)

Assume that an innocent PoI, with profile Gc =
AB is drawn from the same subpopulation as the
donor of the stain, who has profile Gr = AB but
that the two people are not closely related. Let A
and B be the two observed alleles. Then

Pr(Gr = AB ∣ Gc = AB) =
Pr(Gr = AB,Gc = AB)

Pr(Gc = AB)
= Pr(A2B2)∕Pr(AB).

(6.16)

Assume also that 𝛾A and 𝛾B are available only for
a collection of subpopulations. Then from (6.15)
and (6.16) the probability that the donor has a par-
ticular genotype given that the PoI has been found
to have that type is

Pr(Gr = AB ∣ Gc = AB) = 2

{FST + (1 − FST)𝛾A}
×{FST + (1 − FST)𝛾B}
(1 + FST)(1 + 2FST)

,

(6.17)
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where the factor 2 is to allow for the two ways
of ordering the matching A and B alleles. This
expression is known as the conditional genotype
probability. Note that when FST = 0, the proba-
bility reduces to 2𝛾A𝛾B, the basic result assuming
Hardy–Weinberg equilibrium.

Similarly, the homozygote match probability
may be obtained from (6.14), to give

Pr(Gr = A2 ∣ Gc = A2)

=
{2FST + (1 − FST)𝛾A}{3FST + (1 − FST)𝛾A}

(1 + FST)(1 + 2FST)
.

These are the equations referred to in recom-
mendation 4.2 of the 1996 NRC report (National
Research Council, 1996). They allow the scientist
to obtain profile probabilities for complete pro-
files. Single-locus probabilities from Balding and
Nichols’ (Balding and Nichols, 1994) formula
are multiplied across loci. It should be empha-
sised that the results hold for two people in the
same sub-population, but are an average over
sub-populations. Allele proportions are an aver-
age over sub-populations and are not those in a
particular sub-population. The last two equations
allow population-wide allele proportions to be
used for sub-populations for which FST applies. A
simple derivation of Balding and Nichols’ (Balding
and Nichols, 1994) formula for heterozygotes and
homozygotes is presented in Harbison and Buck-
leton (1998). Logical implications of applying the
principles of population genetics to the evaluation
of DNA evidence are presented in Triggs and
Buckleton (2002).
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It is possible to assess the effect of popula-
tion substructure on forensic calculations. For
heterozygotes between alleles with equal allele
probabilities 𝛾 , the likelihood ratio for source
level propositions is assessed as the reciprocal of
the conditional genotype probabilities. Table 6.4
presents the likelihood ratios for various values of
FST.

The effect of FST decreases as allele frequencies
increase and is not substantial when 𝛾 = 0.1 even
for FST as high as 0.01 (Weir, 1998). A discussion
is presented in Taylor et al. (2014).

Therefore, it is important to distinguish between
profile probabilities and conditional genotype prob-
abilities. It is very helpful to use the term profile
probability for the event of a single individual
having a particular profile, in distinction to
(conditional) profile probability for the event of a
person having the profile when it is known that

Table 6.4 Effects of population structure as
represented by FST on the likelihood ratio, the
reciprocal of the conditional genotype probability
(6.16) for heterozygotes between alleles with equal
allele probabilities 𝛾 .

Allele probability FST

0 0.001 0.01 0.05

𝛾 = 0.01 5000 4152 1301 163
𝛾 = 0.05 200 193 145 61
𝛾 = 0.1 50 49 43 27
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another person has the profile. The conditional
profile probability, therefore, explicitly requires
statements about two profiles. Profile probabilities
are of some interest but are unlikely to be relevant
in forensic calculations. It is of little consequence
that the profile is rare in a given population, what
is relevant is the rarity of the profile, given that
one person (i.e. the perpetrator) has the profile. In
other words, it is relevant to know the probability
that the PoI would have the profile given that
the perpetrator has the profile and that these are
different people (Balding and Donnelly, 1995b).
In practical cases, the pool of possible sources of
a crime stain usually contains individuals with
differing levels of ancestry shared with the PoI and
therefore differing between-person correlations.
The task is then to investigate the plausible range
of conditional profile probabilities in a helpful and
fair way. Further developments for mixed racial
populations that avoid the approach of reporting
separate values for each race is proposed by Triggs
et al. (2000).

The distinction between profile and conditional
profile probabilities is rarely made by practic-
ing forensic scientists, and this is most likely
because the two quantities have the same value
in the simple case when ‘product rule’ calcu-
lations are assumed. If there is no relatedness
in a large population, due to either immediate
family membership or common evolutionary
history, and there is completely random mating
and population homogeneity, and an absence of
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linkage, selection, mutation, and migration, then
all the alleles in a DNA profile are independent.
The profile probability and the conditional profile
probability are both just the product of the allele
probabilities, together with factors of two for
each heterozygous locus. Thus, when FST = 0,
the genotype probability reduces to 𝛾2

A, the basic
result assuming Hardy–Weinberg equilibrium
for homozygotes. The assumption that each of
the alleles on a locus, one from the father and
one from the mother, are independent of each
other leads to an equilibrium distribution for the
allelic proportions in a population. This is known
as Hardy–Weinberg equilibrium or random mating.
The allele population proportions are generally
denoted with Latin letters, usually p. This differs
from the convention used in the rest of the book
of Greek letters denoting population proportions.
However, the use of Roman letters, such as p
(and q for (1 − p)), is so widespread that it is felt
that the lesser confusion would be caused by
following this practice. The genotype probability
of AA is p2

A, of Aa is 2pq, and of aa is q2, and
p2 + 2pq + q2 = (p + q)2 = 1. In general, let pi and
pj be the population proportions of alleles Ai and Aj
for i, j = 1, . . . , k where k is the number of alleles
at the locus in question. The genotype population
proportions (i.e. genotype probabilities) Prij are
obtained from the following equations assuming
Hardy–Weinberg equilibrium:

Pr
ij
= 2pipj, i ≠ j,

= p2
i , i = j. (6.18)
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The previous discussion has assumed that
the reference population contains no related
individuals. Unrelated individuals have a very
low probability of sharing the same profile but
the probability increases for related individuals.
In fact, relatives have the possibility of receiving
the same genetic material from their common
ancestors and therefore having the same DNA
profile (Balding, 2000). So, the largest effect of
dependencies between the DNA profiles of two
individuals is when they are related. Other than for
an identical twin, relationships such as brothers
or fathers or cousins have very large effects on the
likelihood ratio when their DNA profiles are not
available. If a sibling or a close relative is amongst
the possible contributors of the stain recovered at
a crime scene, this should be reflected in the value
of the likelihood ratio. Brothers, for example, have
at least a 25% probability of sharing the same
genotype at any locus. Consider, for example, the
following two propositions:

• Hp: the PoI is the source of the crime scene item;

• Hd: a relative of the PoI left the crime item.

Let the evidence be the observation of alleles AiAj
of the recovered and control item with allelic
population proportions 𝛾i and 𝛾j. Assume that, if
Hp is true, then the numerator of the likelihood
ratio is 1, an assumption that will not necessarily
be true but will serve to illustrate the point. If
the donors of the recovered and control item are
different individuals (i.e. Hd is true), and there
is no familial relationship between them, then
the denominator would be, under the simplifying
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Hardy–Weinberg assumption, 2𝛾i𝛾j for i ≠ j and
𝛾2

i for i = j. The effects of different familial rela-
tionships are given in Table 6.5 from Weir and
Hill (1993) where numerical values are given
assuming allelic population proportions of 0.1.
See also Brookfield (1994), Ayres (2002), Ayres
and Balding (2005), and Kaye (2016) for further
examples and comments.

Sjerps and Kloosterman (1999) study cases in
which the PoI’s profile does not correspond to that
of the crime stain, a result that may suggest that
a close relative of the PoI might be found to corre-
spond, in particular when the profiles share rare
alleles.

Analyses using Bayesian networks have been
presented in Dawid et al. (2002), Hepler and
Weir (2008), Cowell et al. (2011), Cowell (2016),
Taroni et al. (2014a), Mortera et al. (2016), Green
and Mortera (2017), and Taylor et al. (2018a). A
review of the use of probabilistic graphical models
for DNA evidence assessment was presented in
Biedermann and Taroni (2012).

Weir (2007) completes the previous conditional
probabilities of Table 6.5 to account for the popula-
tion structure parameter FST (see Table 6.6 where
FST is denoted 𝜃 for clarity). Extension of this work
has been published in Bright et al. (2013).

Conditional genotype probabilities are consid-
ered by Foreman and Evett (2001) for a variety
of specified alternatives (i.e. possible sources of
the stain other than the PoI) that correspond
to individuals who exhibit different degrees



�

� �

�

Source level propositions 667

Table 6.5 Conditional genotype probability
Pr(Gr ∣ Gc,Hd, I) for the crime stain genotype (Gr),
knowing the PoI’s genotype (Gc), and assuming that a
relative of the PoI is the donor of the crime stain.

PoI Relative Pr(Gr ∣ Gc,Hd, I) Likelihood
ratio,

V

AiAj Father or son (𝛾i + 𝛾j)∕2 10
Full brother (1 + 𝛾i + 𝛾j + 2𝛾i𝛾j)∕4 6.67
Half-brother (𝛾i + 𝛾j + 4𝛾i𝛾j)∕4 16.67
Uncle or

nephew
(𝛾i + 𝛾j + 4𝛾i𝛾j)∕4 16.67

First cousin (𝛾i + 𝛾j + 12𝛾i𝛾j)∕8 25
Unrelated 2𝛾i𝛾j 50

AiAi Father or son 𝛾i 10
Full brother (1 + 𝛾i)2∕4 3.3
Half-brother 𝛾i(1 + 𝛾i)∕2 18.2
Uncle or

nephew
𝛾i(1 + 𝛾i)∕2 18.2

First cousin 𝛾i(1 + 3𝛾i)∕4 30.8
Unrelated 𝛾2

i 100

Corresponding values for V assume allelic population propor-
tions of 0.1.
Source: From Weir and Hill (1993). Reprinted with permis-
sions of Elsevier.

of relatedness to the PoI and when there are
fully corresponding profiles. The most common
SGM-plus (10-locus STR profiling system) profile
was determined using databases routinely used in
forensic casework. Sampling error was taken into
account using a size-bias correction (Curran et al.,
2002; Curran and Buckleton, 2011). General



Table 6.6 Effects of family relatedness on conditional genotype probabilities,
Pr(Gr ∣ Gc,Hd, I).

PoI Relationship Pr(Gr ∣ Gc,Hd, I)

AiAj Full sibs
(1+𝛾i+𝛾j+2𝛾i𝛾j)+(5+3𝛾i+3𝛾j−4𝛾i𝛾j)𝜃+2(4−2𝛾i−2𝛾j+𝛾i𝛾j)𝜃2

4(1+𝜃)(1+2𝜃)

Parent and child
2𝜃+(1−𝜃)(𝛾i+𝛾j)

2(1+𝜃)

Half sibs
(𝛾i+𝛾j+4𝛾i𝛾j)+(2+5𝛾i+5𝛾j−8𝛾i𝛾j)𝜃+(8−6𝛾i−6𝛾j+4𝛾i𝛾j)𝜃2

4(1+𝜃)(1+2𝜃)

First cousins
(𝛾i+𝛾j+12𝛾i𝛾j)+(2+13𝛾i+13𝛾j−24𝛾i𝛾j)𝜃+2(8−7𝛾i−7𝛾j+6𝛾i𝛾j)𝜃2

8(1+𝜃)(1+2𝜃)

Unrelated
2[𝜃+(1−𝜃)𝛾i][𝜃+(1−𝜃)𝛾j]

(1+𝜃)(1+2𝜃)

AiAi Full sibs
(1+𝛾i)2+(7+7𝛾i−2𝛾2

i )𝜃+(16−9𝛾i+𝛾2
i )𝜃

2

4(1+𝜃)(1+2𝜃)

Parent and child 2𝜃+(1−𝜃)𝛾i

1+𝜃

Half sibs [2𝜃+(1−𝜃)𝛾i][2+4𝜃+(1−𝜃)𝛾i]
2(1+𝜃)(1+2𝜃)

First cousins [2𝜃+(1−𝜃)𝛾i][1+11𝜃+3(1−𝜃)𝛾i]
4(1+𝜃)(1+2𝜃)

Unrelated [2𝜃+(1−𝜃)𝛾i][3𝜃+(1−𝜃)𝛾i]
(1+𝜃)(1+2𝜃)

Note the use of 𝜃 for FST for clarity.
Source: Adapted from Weir (2007). © John Wiley and Sons Ltd.
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conditional profile probability values range from
1 in 10 000 for a sibling relationship with the
PoI to 1 in a billion for someone who is unrelated
to the PoI. Values for other relationships such as
parent/child and first cousins are given in Evett
et al. (2000a). These values are recommended for
use when reporting fully corresponding profiles.
A general discussion of this topic is presented in
Evett et al. (2000a). The same range of values
is also reported by Hopwood et al. (2012) using
15-plex STR profiling systems.

Note that the use of values smaller than 10−9 for
a conditional genotype probability is widely criti-
cised (see, for example, Kaye (1993) and Curran
(2010)).

Moreover, Hopwood et al. (2012) noticed:

Such values [values smaller than 10−9] invoke inde-
pendence assumptions to a scale of robustness that we
cannot demonstrate empirically, given the size of available
databases. [...] In addition to the empirical evidence for the
reliability of DNA evidence interpretation, we recognise
also that such numbers are difficult to conceptualise and
require unreasonable real life comparisons. (p. 188)

Scientific (Lambert et al., 1995b; Weir, 2004;
Curran et al., 2007, 2008; Buckleton et al.,
2006a; Tvedebrink et al., 2012) and judicial
(Koehler, 1997a; Saks and Koehler, 2008) liter-
ature has already underlined and discussed this
practical aspect.

Hopwood et al. (2012) – crediting (Kaye, 2009c)
– stated that:
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A scientist quoting LRs higher than those currently pre-
sented, perhaps of the order of trillions or greater may serve
only to detract from the real issues for the jury. (p. 188)

Throughout this subsection, only a short
overview of a specific issue associated with the
evaluation of evidence from DNA profiles is given.
Further and extended topics, such as DNA mix-
tures, evaluation of results for low template DNA,
and Y-STR haplotypes, are given in specialist
books, chapters on forensic DNA evidence, and
scientific papers (e.g., Evett and Weir, 1998; Bald-
ing and Steele, 2015; Buckleton et al., 2016f,g;
Taylor et al., 2018b; Bright et al., 2019), and in
references therein.

The use of sophisticated software to deal with
low template DNA and mixture stains has opened
new topics for intensive discussion between scien-
tists and lawyers on validation (e.g., Bright et al.,
2015; Imwinkelried, 2016; Taylor et al., 2017b;
Moretti et al., 2017; Kelly et al., 2018). See also
U.S. v. Gissantner (2019) for comments on the
support of software for evidence evaluation.

6.1.8 Additional Considerations
on Source Level Propositions

Interest in the probabilistic evaluation of DNA
profiling results has grown considerably during
the past 20 years. Topics such as the consideration
of error probabilities and the effect of database
searches have been responsible for the increase
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in interest in forensic inference amongst forensic
scientists. Several aspects are developed below.

6.1.8.1 A Probabilistic Approach
to Database Searching

When a scientific expert needs to assess the value
of a DNA result, the manner in which the PoI
was selected is crucial. The evaluation of DNA
evidence for a PoI who was found through the use
of a database has been a matter of scientific and
judicial debate for some time, see, for example,
Thompson and Ford (1989), Kaye (2001, 2009c),
Balding (2002), Imwinkelried (2001). The debate
was reopened when the German Stain Commis-
sion issued a recommendation supporting debated
principles (Schneider et al., 2010) and there is a
later contribution by Wixted et al. (2019).

The compilation of DNA databases seeks to
enable investigative authorities to collect traces
of unsolved criminal cases, as well as control
material from convicted persons. Such stored
information may help select PoIs in a way similar
to the collection and storage of other types of
forensic information, such as fingermarks, fin-
gerprints, shoemarks, and shoeprints. Forensic
databases are now well established across the
world.

Confusion surrounding the interpretation of
the outcome of a search in a database can arise
because the probability of finding a correspon-
dence increases as the database becomes larger. As
explained by Robertson and Vignaux (1995a), the
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confusion consists of claiming that the evidential
value of a correspondence, say, of a DNA profile,
when the PoI is selected through a search in a
database, is affected by the number of comparisons
that have been made. This leads to the erroneous
conclusion that the larger the database, the
weaker the evidence. This is one reason for believ-
ing that the evidential value of a corresponding
DNA profile under such circumstances may be of
little or no evidential value. However, evidence
is still relevant if it is more (or less) probable to
be observed if the PoI is the source than if an
unknown person is the source. A correspondence
between the PoI’s DNA profile and that of a crime
stain is certain, under some assumptions (e.g.
absence of analytical error), when in fact the PoI
is the source of the stain. However, corresponding
DNA profiles are also certain, it is argued, when
the result follows from a search of a database
under the hypothesis that the PoI is not the source,
because the PoI was chosen based on the fact that
their DNA profile corresponds to the profile of the
actual source of the crime stain. Therefore, the
consequent likelihood ratio of 1 suggests that this
evidence has no probative value: the evidence is
as probable to arise if the PoI is the source as if an
unknown person is (Thompson and Ford, 1989).

Confusion also arises because it is not clear
whether the scientist is concerned with the proba-
bility of finding a match or with the increase that
arises, through the discovery of the match, in the
probability that it was the PoI who left the trace
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(Robertson and Vignaux, 1995a). Analyses of
the second point have been provided by Balding
and Donnelly (1995b–1996), Dawid and Mortera
(1996), and Evett and Weir (1998).

These analyses showed that the likelihood ratio
is higher following a search in a database than
in a case where the size of the potential criminal
population is known and no sequential search has
been performed. In fact, each person whose profile
is found not to correspond with the DNA profile
of the recovered trace is excluded. Therefore, the
exclusion of these individuals from the size of
the potential sources of the crime stain increases
the probability that the individual, whose profile is
found to correspond, is the source of the recovered
stain. Although a database search is useful, it has
to be emphasised that the strength of the overall
case against the PoI can be much weaker than
in the probable cause setting, defined by Balding
and Donnelly (1996) as the setting in which the
PoI has been identified on other grounds and
subsequently subjected to DNA profiling. This
is because of a lack of supporting evidence; no
further incriminating evidence has been obtained
(Balding and Donnelly (1996) and Donnelly
and Friedman (1999)). Therefore, the discovery
of a correspondence between the DNA profile of
a crime stain and the profile of a person in a
database does not mean that the perpetrator of the
crime has been found.

The fact that the likelihood ratio for source level
propositions is greater than the reciprocal of the
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conditional profile probability may be justified
through the arguments developed by Balding and
Donnelly (1996) and Evett and Weir (1998).

Let Hp be the proposition that the PoI is the
source of DNA found at the crime scene, Hd be
the proposition that an unknown person is the
source of the DNA found at the crime scene, and E
be the evidence that the profile of the DNA found
at the crime scene and the profile of the DNA of
the PoI correspond. Then, the value, V, of the
evidence is given by

V =
Pr(E ∣ Hp)
Pr(E ∣ Hd)

.

A search has been made of a database which
contains the DNA profiles of N named individuals.
Exactly one of the profiles in the database corre-
sponds to that of the DNA found at the crime scene
and that individual becomes the PoI. Note that V
does not depend on the probability that a search
through the database would find a corresponding
profile. The evidence is not that at least one (or
exactly one) of the profiles of the individuals in the
database corresponds to the profile of the crime
stain. Other information does not affect the value
of the evidence. Other information will be heard at
any trial and will be accounted for there. To assess
the value of the evidence, including the outcome
of the search, let O denote the event that no other
individual’s profile in the database corresponds
to the profile of the crime stain. Also, E may be
separated into two components, Er, the profile of
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the crime stain and Ec, the profile of the PoI. Then,
V can be written as

V =
Pr(Er,Ec,O ∣ Hp)
Pr(Er,Ec,O ∣ Hd)

=
Pr(Er,Ec, ∣ Hp,O)
Pr(Er,Ec ∣ Hd,O)

Pr(O ∣ Hp)
Pr(O ∣ Hd)

. (6.19)

In the probable cause setting, the value of the evi-
dence is

Pr(Er,Ec, ∣ Hp,O)
Pr(Er,Ec ∣ Hd,O)

(6.20)

which is the first ratio in (6.19). Here the con-
ditioning is extended to the information O. The
numerator in (6.20) equals p, the profile probabil-
ity. The fact that there has been a database search
does not affect this probability. The denominator
is given by the probability that two individuals
chosen at random have corresponding profiles.
Information O just increases one’s confidence in
the rarity of the profile. So,

Pr(Er,Ec, ∣ Hp,O)
Pr(Er,Ec ∣ Hd,O)

=
p

p2
= 1

p
.

It remains to be determined whether the second
ratio, Pr(O ∣ Hp)∕Pr(O ∣ Hd) is smaller or greater
than 1.

Consider Ō. This is the event that at least one of
the other individuals in the database matches the
profile of the crime stain. If Hd is true there are two
ways in which Ō may occur. One of the other indi-
viduals may be the source of the stain or none may
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be the source but at least one happens by chance
to match Er. If Hp is true, then only the second
of these is possible. Thus Pr(Ō ∣ Hp) < Pr(Ō ∣ Hd).
Hence Pr(O ∣ Hp) > Pr(O ∣ Hd) and the second
ratio in (6.19) is greater than unity. A more
extended development that involves the general
discriminating power of the profiling system for
the assessment of the second ratio is proposed by
Evett and Weir (1998). Their approach also shows
that the second ratio is greater than unity. Thus,
the value of the evidence when there has been a
database search is greater than when the probable
cause setting applies.

Balding and Donnelly (1996) and Evett and
Weir (1998) argue that, although the difference
in value is difficult to quantify in general, it seems
likely that the database search value will be only
slightly greater than the conventional likelihood
ratio and that it is therefore convenient, and ben-
eficial to the PoI, to calculate and report only the
value without adjustment for the database search.

The aforementioned argument may be used to
counter the following possible defence strategy.
‘The profile probability for the DNA stain found at
the scene of the crime is one in a million. The police
database contains 10 000 profiles. The probability
that, on searching the database, a match will be
found is thus 10 000 × (1∕1 000 000) = 1∕100.
This figure, rather than one in a million, is the
relevant probability to consider. This is not nearly
small enough to be regarded as convincing evi-
dence against the PoI’. From this point of view,
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the effect of the database search is to weaken, very
dramatically, the strength of the evidence against
the PoI.

Consider a crime profile that has a profile prob-
ability of p. Consider a database with N unrelated
individuals in it. The probability that the profile
of an individual from the database does not corre-
spond to the crime profile is (1 − p) and, assuming
independence, the probability that no profiles
from the database corresponds to the crime profile
is (1 − p)N. Hence, the probability that at least one
profile from the database corresponds to the crime
scene profile, by chance alone, is 1 − (1 − p)N (see
Section 2.5.5), which, for small p such as occurs
with DNA profiles, is approximately equal to Np,
hence the figure 1∕100 in the previous paragraph.
This result gives rise to the simple rule that, to
determine the probability of a correspondence in
a search of a database, one should take the match
probability p and multiply it by the size N of the
database.

This simple rule is concerned with the proba-
bility that there is at least one correspondence in
the database. An extreme case can illustrate why
the rule approximates to the answer for which
it is designed and why it is not the right answer.
Assume p, the profile probability, is extremely
small and N is extremely large, such that Np is
close to 1. It can be argued that the probability of
finding at least one correspondence increases as
N increases, and may even become close to 1 as N
approaches the population of the world. Note that
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the correct result is 1 − (1 − p)N which will never
be greater than 1. The simple rule, Np, cannot
be used if it will give an answer greater than 1.
As Np becomes larger, so the evidence reduces
in value. However, the counter-argument is that
the evidence becomes stronger as N becomes
larger (Balding and Donnelly, 1996; Balding,
1997). This latter argument makes more sense,
as it attaches greater value to the outcome of
the search of a large database in which only one
correspondence has been found when all other
members of the database have been eliminated
from the enquiry. The PoI so ‘identified’ is now
one of a smaller overall population (smaller by the
elimination of (N − 1) members).

Balding and Donnelly (1996) make an inter-
esting comment, in the light of subsequent
discussion, see Stockmarr (1999), Dawid (2001),
Devlin (2000), Evett et al. (2000b,c), Balding
(2002), and Meester and Sjerps (2003). An
alternative pair of propositions is that the source
of the crime stain is or is not in the database. The
probability of the evidence of exactly one corre-
spondence in the database given the source is in
the database is 1. The probability of the evidence
of exactly one match in the database, given the
source is not in the database, is Np(1 − p)N−1.
The likelihood ratio, assuming (1 − p)N−1 to be
1, is then 1∕Np, which is the value given by the
NRC (National Research Council, 1996). This
result assumes that each of the individuals in the
database is, without the DNA evidence, equally
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likely to be the source. Note that it is possible for
Np to be greater than 1, as has been pointed out
by Donnelly and Friedman (1999). Such a result
would imply that the evidence favours the PoI if
a sufficiently large number of people are profiled.
Thus one could have the rather strange situation
where the more people that were profiled and
found not to match the crime scene profile the
more support there would be for the PoI’s defence
case.

The flaw in this argument is explained very
well by Balding (2002). He notes that many
statisticians will instinctively feel that a database
search weakens the evidence against the PoI
because one is conducting multiple comparisons.
He comments that in a database search there is a
‘crucial distinction’, namely, that it is known in
advance that exactly one proposition of the form
‘X is the source of the crime stain’ is true. Consider
two situations. In the first, there is evidence that
a particular proposition is true. This would be
the case if there had been no database search.
In the second, there is evidence that a particular
proposition is true and that many other propo-
sitions are false. This would be the case if there
had been a database search. Put in this way, the
evidence of a database search, in which no other
correspondences were found strengthens the
case against the PoI. The bigger the search which
results in only a single correspondence, the more
reason there is to be convinced that the observed
correspondence is unique in the population.
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A derivation is also offered by Berger et al.
(2015). An extension for situations involving
multiple correspondences is also presented in
Robertson et al. (2016).

The derivation proposed by Berger et al. (2015)
is as follows. Consider first the propositions of
interest, say, Hp, the PoI is the person who donated
the trace, and Hd, the trace was donated by some
other (unrelated) person than the PoI. A likelihood
ratio can be assigned by dividing the posterior to
the prior odds, denoted SHp

∣ E and SHp
, respec-

tively, based on the expected number of alternative
sources of the trace, say, S. The idea is therefore
that of considering the factor that reduces the
expected number of sources:

V =
1∕SHp∣E

1∕SHp

=
SHp

SHp∣E
.

Four quantities are of importance for the calcu-
lation:

N: the number of persons in the population;

n: the number of persons in the database;

m: the number of matches found in the database;

𝛾 : the probability of finding the profile of interest
in a relevant population.

At first, consider the classical scenario where a
correspondence is reported between the recovered
Er and the control, Ec profiles.

V =
SHp

SHp∣E
= N − 1

𝛾(N − 1)
= 1

𝛾
.
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As expressed by Berger et al. (2015, p. 157), ‘the
numerator is the number of other persons in
the population (N − 1), and the denominator is
the number of other persons in the population
expected to match 𝛾(N − 1)’.

Consider now the situation involving a single
match throughout a database search.

V =
SHp

SHp∣E
= N − 1

𝛾(N − n)
.

Note that n persons have been excluded through-
out the database search. So the denominator is
reduced by n and the likelihood ratio becomes
larger than in the first scenario. This solution is in
agreement with previous solutions (e.g. Donnelly
and Friedman 1999). Different scenarios are
developed by the authors.

These insights have not always been well appre-
ciated. In 2010, the German Stain Commission
(Schneider et al., 2010) stated the following:

The German Stain Commission has developed recom-
mendations on how to adequately take into account the
probability of an adventitious match given the database
size. Following these recommendations, the relevant match
probability can be derived from the frequency of the DNA
profile corrected by the actual number of persons in the
database. (...) a statistical concept is described that allows
to calculate either a match probability or a likelihood ratio
without overestimating the weight of evidence following a
database search. (p. 113)

As noted in Taroni et al. (2011), elements of
these recommendations have already been widely
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discussed in both literature and practice, and
found to be problematic. In a reply to Taroni et al.
(2011), Fimmers et al. (2011) defended the Stain
Commission’s recommendations and reaffirmed
the view that (i) the random match probability
ought to be multiplied by a factor equal to the size
of the database (which tends to reduce the value
of the likelihood ratio), and that (ii) so-called
data-dependent propositions (e.g. ‘the PoI (some
other person) is the source of the crime stain’)
should be avoided by choosing propositions of
the kind ‘the source of the crime stain is a person
inside (outside) the database’. Based on a hypo-
thetical example, the authors argued that this
tends to reduce the probability of false convictions.
However, the latter type of proposition is of little
help because it suggests that the database is on
trial; in reality, only the defendant is, hence the
former set of propositions is appropriate.

A full discussion on the topic of DNA match
statistics after a database search can be found in
Walsh and Buckleton (2009) and Nordgaard et al.
(2012b). Further probabilistic analyses of these
issues are given in Biedermann et al. (2011c,e).
An extension, using decision theory to analyse
the issue of how to decide about the identification
of the individual found as a result of a database
search, is presented by Gittelson et al. (2012b).

Publication of Wixted et al. (2019) gave rise to a
new debate on the management of a single-match
DNA database search. The authors supported the
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calculation of the posterior odds that the DNA
belongs to the person who is the source of the
single match by suggesting the evaluation of the
prior odds based on a case-independent estimate of
the size of the active criminal population as derived
from database search statistics. A series of papers
commented on and criticised the approach (see,
Neumann and Ausdemore (2019), Meester and
Slooten (2019a, 2019b) and Sjerps (2019) with
rejoinders by Rouder et al. (2019) and Wixted and
Rouder (2019)).

6.1.8.2 Search and Selection Effect
(Double Counting Error)

Database searches are currently used by scien-
tists in other areas of forensic science such as
shoemarks and fingermarks. As previously, there
may be a concern that the fact that the mark
was retrieved as a result of a search in a database
in some way weakens the evidence from the
comparison with a shoe, for example. This is not
the case (Evett et al., 1998). The likelihood ratio
summarises all of the evidence that derives from
the comparison. The fact that the mark (of the
shoe) was found from a search of a database is
relevant to the forming of prior odds in favour of
the proposition that the PoI is the offender for that
case (it is assumed that the shoemark is relevant
and that there is a clear connection between the
shoe and the PoI). If there is no evidence other
than the geography of the incident and arrest,
then the prior odds would be small but in this
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case they could presumably be increased by the
evidence of the property that was found at the
PoI’s home (Evett et al., 1998).

Robertson et al. (2016) noted that to avoid
the unjustified repeated use of items of evidence,
they ought only be used once in relation to each
issue. This means that a decision maker, at a given
instance in the process, may use the evidence for a
given purpose (e.g. arrest), and that later, another
decision maker, at another instance in the process,
may use the evidence for another purpose (e.g.
determination of guilt at trial).

Robertson and Vignaux (1995b) gave the
example of a person stopped because of blood-
stains observed on their clothing. In such a case,
one might be tempted to consider the bloodstains
of lower value compared with a case in which the
person was selected based on other information.
However, as Robertson and Vignaux (1995b)
argued, this is not correct, the probative value
of the bloodstains is still given by the probability
of this observation given the competing propo-
sitions of interest. A difference between the two
situations, selection of the person because of
their bloodstained clothing or because of other
information, arises because there may be less
information in the former than in the latter
situation. Specifically, if the PoI has been selected
based on other evidence, that other evidence may
already have increased the prior odds. Such an
increase of prior odds might not have occurred
in the case where the only information is the
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bloodstained clothing leading to arrest in the first
place. This also illustrates the crucial point that
reasoning about a single item of evidence must
not be conflated with reasoning on the case as a
whole, based on all the evidence. In an analogous
way, Meester et al. (2006) emphasised the problem
of the use of available data twice: first to identify
the suspect and indeed to suspect that a crime has
occurred and after that again in the computation
of some measure for the value of the evidence.

6.1.8.3 The Island Problem

Consider an island on which there are N + 2
people, one of whom is murdered. Of the remain-
ing N + 1 people, N are innocent and one is the
offender. Label these from 0 to N. There is trace
evidence, such as DNA, thought to be left by the
offender. The conditional profile probability for
this item of evidence in the relevant population is
𝛾 . The posterior probability that a person with this
profile is guilty is

1∕(1 + N𝛾).

The arguments in this section are based on those
expressed in Balding and Donnelly (1995a,b) and
Balding (2000). A discussion of extensions beyond
the scope of this book are given in Balding and
Donnelly (1995a) and Balding and Steele (2015).
Other relevant publications are Balding (1995)
and Dawid and Mortera (1996). Here, the develop-
ment provides useful insight into ideas underlying
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inferences for forensic identification. There are
two propositions to be considered

Hp : the PoI is the offender;

Hd : an unknown person is the offender.

The background information is denoted I and this
is assumed to be independent of the evidence. If
Hd is true, one of the other members of the island
population is the offender. Let C be the random
variable denoting the criminal and s the identity
of the PoI (s is one of 0,1, . . . ,N). Using Balding
and Donnelly (1995a) notation that replaces Hp

and Hd, the expression C = s denotes that the PoI
is the offender. The expression C = x denotes that
individual x is the offender.

The evidence, E, is the DNA profile observed for
the crime stain. A PoI s has been apprehended and
observed to have the DNA profile. Proposition Hd is
that an unknown person, different from the PoI, is
the offender, and this can be denoted C ≠ s.

The probability of the PoI being the offender, C =
s, assuming independence between E and I may be
written as

Pr(C = s ∣ E, I)

= Pr(E ∣ C = s)Pr(C = s ∣ I)
Pr(E ∣ C = s)Pr(C = s ∣ I)

+
∑

x≠s Pr(E ∣ C = x)Pr(C = x ∣ I)

.

(6.21)
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Let Vs(x) denote the likelihood ratio for x versus s
(note that propositions Hp and Hd are switched),

Vs(x) =
Pr(E ∣ C = x, I)
Pr(E ∣ C = s, I)

.

The notation with s as a subscript is indicative of
the asymmetry of the context in that the evidence
is being considered with relation to propositions Hp

and Hd that s is or is not the criminal. Let 𝑤s(x) be
defined by the ratio

𝑤s(x) =
Pr(C = x ∣ I)
Pr(C = s ∣ I)

.

This ratio is neither an evidential value, since I is
the conditioning, nor an odds since the proposi-
tions C = s and C = x are not complementary. It is
interesting to consider the relationships between
different situations and the values of 𝑤s(x), as
discussed in Balding (2000). If the case against
s rests primarily on DNA evidence there may be
many x for which𝑤s(x) ≃ 1. Balding and Donnelly
(1995b) noticed that

The perceived strength of DNA evidence has led to cases in
which there is little or no evidence against the defendant
other than the DNA evidence. Even if close relatives are
unequivocally excluded, there may be many unrelated
individuals who, if not for the DNA evidence, would be in
much the same situation as the defendant. In other words,
there may be many i such that Pr(C = i)∕Pr(C = s) is
close to unity. (p. 11744)
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For most sexual or violent crimes 𝑤s(x) ≃ 0
when x refers to women, children, and invalids. If
there is strong alibi evidence or the victim has not
been able to identify s then 𝑤s(x) ≫ 1. With this
notation, (6.21) may be written as

Pr(C = s ∣ E, I) = 1
1 +

∑
x≠sVs(x)𝑤s(x)

,

a result that has already been presented in (6.7)
with a different notation. An example of this result
has been given in Section 6.1.6.2.

The island problem is of some interest for the
study of related questions, such as the evaluation
of results of database searches (Section 6.1.8.1).
As shown by Kaye (2009b), the logic of dealing
with database search results can be illustrated
through an extension of the island problem.
Assume that the variable N represents the size
of the total population. Suppose that the DNA
profiles of the first 1, . . . , n individuals, where
the index 1 is that of the PoI, are in a database.
The individuals (n + 1), . . . ,N are outside the
database. Also one of the assumptions here is that
the profile of the crime stain is compared with
all n individuals in the database. This search of the
database reveals that only the profile of the PoI
corresponds to the profile of the crime stain. This
correspondence is denoted by M1. Besides, the
database search has also revealed that the 2, . . . , n
individuals on the database other than the PoI
do not correspond. The fact that a profile of an
individual i, for i = 2, . . . , n, does not correspond
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to the crime stain is denoted here by Xi. One can
thus write X2X3· · · Xn for the information that all
entries of the database other than that of the PoI do
not correspond. The two elements M1 and X2X3· · ·
Xn need to be jointly evaluated. The totality of the
findings may be written as En = M1X2X3· · · Xn.

Assume that the PoI will certainly correspond
if they are the source of the crime stain, so
Pr(M1 ∣ H1) = 1, where H1 is that the PoI (indi-
vidual 1 in the database) is the source of the crime
stain. Let Pr(M1 ∣ Hi) = 𝛾 for i = 2, . . . , n where
Hi is the proposition the profile of individual i
corresponds to the crime stain but is not its source.
Then 𝜋′

1, the posterior probability for H1 after
considering the observation M1, is

Pr(H1 ∣ M1) = 𝜋′
1 =

𝜋1

𝜋1 + 𝛾(1 − 𝜋1)
(6.22)

since Pr(M1 ∣ Hi) = 𝛾 for all i and thus

N∑
i=2

Pr(M1 ∣ Hi)Pr(Hi) = 𝛾

N∑
i=2

Pr(Hi)

= 𝛾(1 − 𝜋).

The size of the population is N. Consideration
of the knowledge that there are n − 1 individuals
in a database (with n < N) leads to a minor
refinement in the way in which the source level
propositions Hi (for i = 2, . . . , n) are formulated.
In fact, they can now be framed as ‘the profile of
individual i in the database corresponds to the pro-
file of the crime stain but is not its source’. A more
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conceptual underpinning of these propositions Hi

(for i = 2, . . . , n) is that they refer to individuals
who had their DNA profile compared with that of
the crime stain. This is a difference with respect
to the individuals (n + 1), . . . ,N whose profiles
were not compared. On the whole, one can thus
think of the population of size N as a splitting
into n individuals as database members, and N − n
that are not. This splitting becomes apparent
when writing the posterior probability for the
observation En:

Pr(H1 ∣ En) =
Pr(En ∣ H1)Pr(H1)

⎛
⎜⎜⎝

Pr(En ∣ H1)Pr(H1)
+
∑n

i=2 Pr(En ∣ Hi)Pr(Hi)
+
∑N

i=n+1 Pr(En ∣ Hi)Pr(Hi)

⎞
⎟⎟⎠

.

(6.23)

This term can be shown to reduce to (Kaye,
2009b):

Pr(H1 ∣ En) = 𝜋′
1

=
Pr(H1)

Pr(H1) + 𝛾
∑N

i=n+1 Pr(Hi)

=
𝜋1

𝜋1 + 𝛾
∑N

i=n+1 𝜋i

. (6.24)

The logic of this result is that the second
term in the denominator, 𝛾

∑N
i=n+1 𝜋i, is smaller

than 𝛾(1 − 𝜋1) in (6.22). This latter expres-
sion involves a sum of prior probabilities for all
members of the population (with no one except
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the PoI being in the database), minus the PoI.
In (6.24), the sum covers only those members
of the population which are not in the database.
Stated otherwise, the prior probabilities for the
individuals in the database that are found to have
profiles different from that of the crime stain are
not relevant because of the multiplication with
the zero likelihood, that is, Pr(En ∣ Hi) = 0, for
i = 2, . . . , n. Because of a smaller denominator,
the posterior probability 𝜋′

1 in (6.24) turns out
to be greater than that in (6.22). The selection
of a PoI in a database along with an exclusion of
other database members by DNA profiling results
thus provides more information against the corre-
sponding PoI than if no database search had been
conducted. These results can also be tracked in a
Bayesian network as shown in Biedermann et al.
(2011c–2012e) and Taroni et al. (2014a).

6.1.8.4 A Probabilistic Approach
to Laboratory Error

Proper consideration of the role of the probabil-
ity of error in the evaluation of DNA profiles is
important. The need to consider the potential
of errors in the assessment of forensic science
evidence in general has been mentioned by many
scholars in scientific and legal literature (Meier
and Zabell, 1980; Gaudette, 1986, 1999; Koehler,
1996; Faigman et al., 2000; Saks and Koehler,
2005; Koehler, 2008, 2013, 2014, 2017a,b).
Official reports on forensic science also insisted
the importance of this topic. The Report to the US
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President on ‘Forensic science in criminal courts;
ensuring scientific validity of feature-comparison
methods’, commonly known as the PCAST report
(President’s Council of Advisors on Science and
Technology (PCAST), 2016), mentioned:

Without an appropriate estimate of accuracy, an exam-
iner’s statement that two samples are similar – or even
indistinguishable – is scientifically meaningless: it has no
probative value, and considerable potential for prejudicial
impact. Nothing - not training, personal experience
nor professional practices - can substitute for adequate
empirical demonstration of accuracy. (p. 46)

When evaluating the strength of DNA evidence
when propositions of interest relate to questions of
source, two factors must thus be considered. One
factor is the conditional profile probability. This
value characterises the rarity of the DNA profile.
The second factor is the probability of a false
positive finding. A false positive occurs when a
laboratory erroneously reports a correspondence
in DNA profiles for two items that actually have
different profiles. A false positive may occur due
to error in the collection or handling of items,
misinterpretation of test results, or incorrect
reporting of test results (Thompson, 1995). Either
a correspondence by chance or a false positive
could cause a laboratory to report a DNA match
between items from different people. Thus the
conditional profile probability and the false posi-
tive probability should both be considered in order
to make a fair evaluation of DNA evidence. Labo-
ratory error rates, as determined, for example, in
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proficiency testing, do not necessarily equate to
the false positive probability in a particular case.
The unique circumstances of each case may give
rise to various different types of errors, but their
probability of occurrence cannot be reduced to
a conjectured error rate. Nevertheless, data on
the rate of various types of errors in proficiency
testing can provide insight into the order of mag-
nitude of values for a particular case (Thompson,
1997; Koehler, 1997b). When DNA evidence is
presented in court, juries typically receive data
relevant for the profile probability only (Kaye and
Sensabaugh, 2000). Kaye (1993) clearly mention
the importance of the quantification:

As with the likelihood ratio or other probabilities, however,
the most reasonable response is to insist that no DNA
results be admitted without information on the rate of false
positives as determined by external proficiency testing.
(p. 167)

A further practical difficulty is the presentation
of a logical framework that takes into account
both the probability of corresponding DNA profiles
and the probability of error. Various suggestions
have been made (Robertson and Vignaux, 1995b;
Balding and Donnelly, 1995b; Balding, 2000).
As pointed out by Balding (2000), when a case is
based primarily on DNA evidence, the prosecution
ought to demonstrate that the relevant error prob-
abilities are small. This is particularly important
when the conditional profile probability is very
small: the latter can be misleading unless the
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relevant probability of error is also small. Further,
evaluations should focus on types of errors, and
their related probabilities, that could actually
have occurred in the case at hand, not any type of
unspecified event of error.

A formal framework for considering the role
that error may play in determining the value
of forensic DNA evidence in a particular case is
presented in Thompson et al. (2003). According
to this framework, even a small false positive
probability can, in some circumstances, have a
strong impact, so serious consideration has to be
given to this probability assignment. Thus, the
proper assignation of false positive probabilities
can be crucial for assessing the value of DNA
evidence. Consider two propositions,

Hp: a crime scene stain came from a PoI;

Hd: the crime scene stain came from an
unknown person.

The evidence E is a report of a correspondence
between the DNA profile of the PoI and the profile
of a stain found on a crime scene. The conditional
profile probability and the probability of a false
positive both contribute to Pr(E ∣ Hd). Let M
denote a true correspondence. It is assumed that
either

M: the PoI and the crime scene stain have corre-
sponding DNA profiles or

M̄: the PoI and the crime scene stain do not have
corresponding DNA profiles.
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From the law of total probability (1.12)

Pr(E ∣ Hp) = Pr(E ∣ M,Hp)Pr(M ∣ Hp)
+ Pr(E ∣ M̄,Hp)Pr(M̄ ∣ Hp)

and

Pr(E ∣ Hd) = Pr(E ∣ M,Hd)Pr(M ∣ Hd)
+ Pr(E ∣ M̄,Hd)Pr(M̄ ∣ Hd).

The value of the evidence is then

Pr(E ∣ Hp)
Pr(E ∣ Hd)

=

Pr(E ∣ M,Hp)Pr(M ∣ Hp)
+Pr(E ∣ M̄,Hp)Pr(M̄ ∣ Hp)
Pr(E ∣ M,Hd)Pr(M ∣ Hd)
+Pr(E ∣ M̄,Hd)Pr(M̄ ∣ Hd)

.

Assume that given M, the report E is inde-
pendent of Hp and Hd: the probability that a
correspondence will be reported if there really is
a correspondence is not affected by whether the
correspondence is coincidental. Consequently, Pr
(E ∣ M,Hp) = Pr(E ∣ M,Hd) = Pr(E ∣ M). Consider
further that the PoI and the crime scene stain will
necessarily have corresponding DNA profiles if the
PoI is the source of the stain, so Pr(M ∣ Hp) = 1
and Pr(M̄ ∣ Hp) = 0. Finally, because M̄ can only
arise under Hd, Pr(E ∣ M̄,Hd) can be simplified to
Pr(E ∣ M̄). Thus, the likelihood ratio becomes

Pr(E ∣ Hp)
Pr(E ∣ Hd)

= Pr(E ∣ M)
Pr(E ∣ M)Pr(M ∣ Hd)
+Pr(E ∣ M̄)Pr(M̄ ∣ Hd)

.
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In this expanded version of the likelihood ratio,
the term Pr(E ∣ M) is the probability that the ana-
lyst will report a correspondence if the PoI and the
crime scene stain have corresponding DNA profiles
and it is assumed to be 1.

The term Pr(M ∣ Hd) is the probability of a
coincidental correspondence of DNA profiles. For
cases involving single-source items, Pr(M ∣ Hd) is
the (conditional) profile probability, denoted 𝛾 ,
and Pr(M̄ ∣ Hd) is the complement of 𝛾 . The term
Pr(E ∣ M̄) is the false positive probability denoted
𝜖. Thus

Pr(E ∣ Hp)
Pr(E ∣ Hd)

= 1
𝛾 + {𝜖(1 − 𝛾)}

.

The influence of variations in the prior odds in
favour of Hp, 𝛾 , and 𝜖 on the posterior odds that
the PoI was the source of the crime scene stain is
shown in Table 6.7.

The prior odds presented in Table 6.7 are
designed to correspond to two distinct case types
that vary in how strongly the PoI is implicated as
the source of the specimen by evidence other than
the DNA results. Prior odds of 2 ∶ 1 describe a case
in which the other evidence is fairly strong but
not sufficient in itself for propositions of common
source. It has been reported that DNA analysis
results lead to the exclusion of approximately 1∕3
of PoI’s in sexual assault cases. Hence, prior odds
of 2 ∶ 1 might describe a typical sexual assault
case submitted for DNA testing.
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Table 6.7 Posterior odds that a PoI is the source of a
crime scene stain that reportedly has a corresponding
DNA profile, as a function of prior odds, random match
probability, and false positive probability.

Prior
odds

Random
match

probability

Probability
of a false
positive

Posterior
odds

2 ∶ 1 10−9 0 2 000 000 000
2 ∶ 1 10−9 0.0001 20 000
2 ∶ 1 10−6 0 2 000 000
2 ∶ 1 10−6 0.0001 19 802
1 ∶ 1000 10−9 0 1 000 000
1 ∶ 1000 10−9 0.0001 10
1 ∶ 1000 10−6 0 1 000
1 ∶ 1000 10−6 0.0001 9.9

Source: Modified from Thompson et al. (2003).

Prior odds of 1 ∶ 1 000 describe a case in which
there is almost no evidence apart from the DNA
result. The profile probabilities presented are
chosen to represent two values that may plausibly
arise in actual cases. Profile probabilities on the
order of 1 in one billion (1 in 10−9) are often
reported when laboratories are able to find a cor-
respondence between a reference item and a single
source stain over 10 or more STR loci. Random
match probabilities closer to 1 in one million (1 in
10−6) are common when fewer loci are examined,
for example, when the laboratory obtains only a
partial profile for one of the examined items. The
probability of a false positive in any particular case
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will depend on a variety of factors. Some years ago,
it has been suggested that the overall rate of false
positives was between 1 in 100 and 1 in 1 000
(Thompson et al., 2003). New research on errors
in a variety of forensic fields is now available (see,
e.g. Langenburg et al. (2015), Song et al. (2018),
Ribeiro et al. (2019), Martire et al. (2019), Murrie
et al. (2019)).

Of course, for cases in which particular mea-
sures, such as repeated analyses, have been taken
to reduce the possibility of the occurrence of an
event of error, the false positive probability will
be reduced. If two independent examinations
comparing the same pair of items each had a false
positive probability of 1 in 100, then the probabil-
ity of a false positive on both examinations would
be 1 in 10 000. A false positive probability of zero
is also included for purposes of comparison. More
results are available in Thompson et al. (2003).
In the context of crime level propositions, Balding
(2000) finds that the probability of a false negative
is not relevant, at least to a first approximation.

It can happen that a PoI claims a reported
correspondence, RM, between the recovered and
control materials (Er = Ec) arises because of a
manipulation error made at the laboratory by
the analyst (i.e. the analyst is suspected to have
analysed an alternative material instead of Ec).
This scenario can be analysed in a similar way to
that arising from other forms of laboratory error
and also taking account of a true match given a
reported match. This analysis involves expanding
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the conditional probabilities in the numerator
and denominator of the likelihood ratio using the
principles of the extension of the conversation
(1.12).

A slightly different approach for combining the
probability of laboratory error and the expression
of the rarity of the corresponding DNA character-
istics has been proposed in Buckleton et al. (2005).
It is interesting to note that the approach in Buck-
leton et al. (2005) can be related to that of Thomp-
son et al. (2003) by relaxing the assumption of no
false negatives and by extending the view on the
false positives (the probability of an error and the
probability of a false positive correspondence given
that an error has occurred). A formal comparison
and the development of Bayesian networks are pre-
sented in Taroni et al. (2014a).

6.2 EXAMPLES FOR EVALUATION
GIVEN ACTIVITY LEVEL
PROPOSITIONS

In Sections 5.3.2.1 and 5.3.2.2, it has been shown
that two derivations for the value of evidence
can be obtained in cases where the findings are
assessed given activity-level propositions. Let b0
represent the probability of the presence by chance
of 0 (groups of) stains/marks/traces, tn and t′n be
the probabilities for transfer, persistence, and
recovery of n stains/marks/traces from the person
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of interest (or the alternative person, respectively),
and bg,m𝛾 represent the probability of the chance
occurrence of g groups of m stains/marks/traces
recovered on the receptor (bg,m), with 𝛾 denot-
ing the relevant population proportion of the
observed characteristics and m = (m1, . . . ,mg)
representing the group sizes. Probabilities t and b
relate to what has been called extrinsic evidence,
and proability 𝛾 to what has been called intrinsic
evidence (Kind, 1994) (Section 5.3.2.1).

On one side, when the (transfer) material has
potentially been left by the offender (i.e. transfer to
the scene/victim), the likelihood can be expressed
as follows (5.6):

V =
b0tn + bg,m𝛾t0

b0𝛾t′n + bg,m𝛾t′0
.

On the other side, when the material is found on
the person of interest (potential transfer away
from the scene), the likelihood ratio reduces to
(5.7):

V =
b0tn + bg,m𝛾t0

bg,m𝛾
.

This equation can be simplified to

V = t0 +
b0tn

bg,m𝛾
,

and approximated by b0tn∕bg,m𝛾 . In what follows,
examples of applications in fibre and glass domains
are presented.
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6.2.1 A Practical Approach to Fibres
Evaluation

For the sake of illustration, consider the fibre cases
introduced in Section 5.3.2.1, modified to versions
(a) and (b) outlined later. Suppose that transfer
probabilities have been assigned, following Curran
et al. (1998b). It is assumed that the number of
fibres transferred does not decrease as a function
of time, because fibres are found on the back of a
car seat, and that the performance of the recovery
technique is high (between 90% and 95% of the
fibres shed are recovered). The following results
are obtained.

• (a): Pr(T10 ∣ x,Hp) = t10 = 0.098, Pr(T0 ∣ x,Hp)
= t0 = 0.005, Pr(T10 ∣ Hd) = t′10 = 0.0001 and
Pr(T0 ∣ Hd) = t′0 = 0.0001. Using conservative
values for probabilities of background, say,
b0 = 0.01 and b1,m = 0.99 (these assignments
imply that it is very probable that a group of
extraneous fibres will be found on the driver’s
seat, in that sense those values are conservative
regarding the PoI). Note also that it is assumed
that b0 + b1,m ≤ 1 and that the occurrence 𝛾 for
the fibre characteristics is set equal to 0.01. The
following likelihood ratio is obtained:

V =
b0t10 + b1,m𝛾t0

b0𝛾t′10 + b1,m𝛾t′0
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= 0.01 × 0.098 + 0.99 × 0.01 × 0.005
0.01 × 0.01 × 0.0001 + 0.99 × 0.01

×0.0001

≈ 1030.

This value strongly supports proposition Hp.

• (b): Pr(T10 ∣ x,Hp) = t10 = 0.006, Pr(T0 ∣ x,Hp)
= t0 = 0.0001, Pr(T10 ∣ Hd) = t′10 = 0.017 and
Pr(T0 ∣ Hd) = t′0 = 0.021. Using conservative
values for probabilities of background,
b0 = 0.01 and b1,m = 0.99, and a value of
0.01 for 𝛾 , the following likelihood ratio is
obtained:

V =
b0t10 + b1,m𝛾t0

b0𝛾t′10 + b1,m𝛾t′0

= 0.01 × 0.006 + 0.99 × 0.01 × 0.0001
0.01 × 0.01 × 0.017 + 0.99

×0.01 × 0.021

= 0.29.

This likelihood ratio supports Hd, with a value of
0.29−1 = 3.4.

These conclusions appear reasonable in view of
the fact the number of recovered fibres, 10, is in
agreement with transfer characteristics of the
PoI’s pullover and of the potential garments of the
offender, respectively.

Various comments may be made following these
examples. First of all, extraneous fibres have been
collected on the upright part of the driver’s seat.
There is no information at all on potential fibres
that may be on the bottom part of the seat. The
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focus on multiple observations made at different
positions on the seat, and the joint assessment of
two or more items of evidence is an interesting
topic, though potentially challenging using formal
approaches.

Secondly, the probabilities for the background
presence of fibres bg,m relate to the occurrence
by chance of g groups of m foreign fibres on the
driver’s seat. This kind of probability can be divided
into two sets of probabilities, pg, the probability by
chance of g groups of fibres, and {si,ji

, i = 1, . . . , g}
the probabilities of the ith group being of size ji,
as currently done in glass analysis, where ji may
take a positive integer value or be replaced by the
letter l or s to denote that the group is large or
small, respectively. Therefore, bg,m can be replaced
in formulae by pg

∏g
i=1 si,ji

.
The next section (6.2.2) will present examples

using such notation as proposed in the fibre pre-
assessment example given in Section 5.5.3. For
the assessment of glass fragments, it is assumed, as
mentioned by Curran et al. (2000), that (i) there
is no association between the number of groups
found on surfaces of interest and the sizes of those
groups, and (ii) there is no association between
the occurrence of a given type of item with either
the number of groups or the size of the group.
These assumptions are questionable in the context
of fibres evidence.

Thirdly, the trousers of the PoI have not been
seized. It is of interest to look at these in relation
with the driver’s seat and consider the evidence
potentially found on the two textile surfaces, the
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trousers, and the bottom of the car seat. Sugges-
tions on how to approach such a situation can
be found in Taroni et al. (2014a) using Bayesian
networks.

Fourthly, a pullover is supposed to have been in
physical contact with the seat, so that it is expected
that fibres from the pullover will be transferred
to the seat. But note that fibres from the seat can
also be transferred to the pullover. The scientist
should be interested in a potential cross-transfer;
see Section 5.3.2.5 for a suggestion on how to
proceed to evaluate the two groups of findings in
such a situation.

Finally, a grouping approach should be adopted
for the recovered foreign fibres. Here the target
group was defined as a set of items of material,
which share the same forensic attributes. The
scientist declares the presence of a group of fibres
if there is sufficient characterisation in the shared
features to relate these traces reasonably to a
single source. However, this declaration amounts
to a qualified opinion, and a formal approach on
how grouping may be done should be explored.
An example is presented in Triggs et al. (1997)
and Curran et al. (2000) in the context of forensic
glass analysis.

6.2.2 A Practical Approach to Glass
Evaluation

Four situations are described and, for each, an
expression for a likelihood ratio is derived.



�

� �

�

Activity level propositions 705

Evett and Buckleton (1990) describe four situa-
tions involving the transfer of one or two groups of
fragments of glass that may or may not have come
from one or two windows that have been smashed
during the commission of a crime.

The circumstances are as follows. One or two
windows have been smashed with criminal intent.
A PoI has been apprehended very soon after the
crime and one or two groups of glass fragments
have been found on their clothing. The two
propositions of interest are

Hp: the PoI is the person who smashed the win-
dow(s) at the scene of the crime;

Hd: the PoI is not the person who smashed the
window(s) at the scene of the crime; they have
nothing to do with the incident.

Probabilities for various events need to be specified.
These probabilities can be assigned by reference
to an appropriate survey (as done historically by,
for example, Pearson et al. (1971), Dabbs and
Pearson (1970, 1972), Pounds and Smalldon
(1978), Harrison et al. (1985), McQuillan and
Edgar (1992), Lambert et al. (1995a), Allen
and Scranage (1998), Allen et al. (1998a,b,c,d),
Coulson et al. (2001a)) with care taken to ensure
the relevance of the survey to the case in question
and to the use of personal experience. The prob-
abilities used here are those given by Evett and
Buckleton (1990). The various events with their
probabilities are:
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• a person having no glass on their clothing by
chance alone, probability p0 = 0.636;

• a person having one group of fragments on
their clothing by chance alone, probability p1 =
0.238;

• a person having two groups of fragments on
their clothing by chance alone, probability p2 =
0.087;

• a person having more than two groups of frag-
ments on their clothing by chance alone, proba-
bility p2+ = 0,039;

• a group of fragments found on members of the
population being large, probability sl = 0.029;

• during the commission of the crime, no glass
being transferred, probability t0 = 0.2;

• during the commission of the crime, a large
group of fragments being transferred, retained,
and found, probability tl = 0.6.

The values are given for illustrative purposes
and it is a simple matter to substitute other values
where this is thought appropriate. Also, the defi-
nition of large is unspecified but again a suitable
definition with an appropriate probability may be
made for a particular case. If it is not felt possible
to choose a particular value for a probability,
then sensitivity analysis using a range of values
may be tried. When a likelihood ratio remains
relatively stable over the range of probability
values investigated, this provides reassurance that
a detailed elicitation of a given value is not crucial.
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If a likelihood ratio does depend crucially on the
choice of a probability, then careful thought is
needed as to the usefulness of the method in the
case under consideration.

For both windows, the values (𝛾1, 𝛾2) for the
occurrence of glass of the observed refractive
indices on clothing is taken to be 3% in both
cases, so that 𝛾1 = 𝛾2 = 0.03, where 𝛾1, 𝛾2 refer
to the first and second windows, respectively.
These values may be obtained from a histogram
of refractive index measurements. In a more
detailed approach, these values would be replaced
by probability density estimates; see Section 7.5.
Four cases can now be considered.

6.2.2.1 Case 1

One window is broken, one large group of frag-
ments is found on the PoI, and it is found to have
properties similar to those of the broken window.

The denominator, which is derived assuming
that the PoI is innocent, is p1sl𝛾1, representing the
product of the probability p1, a person having
one group of fragments on their clothing, the
probability sl, that such a group is large, and the
value 𝛾1, reflecting the rarity of the fragments’
analytical features in the relevant population.

The numerator is p0tl + p1slt0𝛾1. The first term
accounts for the possibility that the PoI has had no
glass on his clothing transferred by chance alone
(p0) and has had a large group of items transferred,
retained, and found as a result of the commission
of the crime (tl). The probability that such a group
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of fragments has the required properties is 1. The
second term accounts for the probability that the
PoI has had glass of the required properties present
by chance alone (p1sl𝛾1) and no glass transferred
as a result of the commission of the crime (t0). The
likelihood ratio for Case 1 thus takes the following
form:1

V1 = t0 +
p0tl

p1sl𝛾1
. (6.25)

6.2.2.2 Case 2

One window is broken and two large groups of
fragments (of size n and m) are found on the
PoI. The analytical features of the first group
correspond to those of the broken window. The
second group does not correspond. The likelihood
ratio for this case is

V2 =
t02p2snsm𝛾1𝛾2 + tnp1sm𝛾2

2p2snsm𝛾1𝛾2
,

where sm and sn are the probabilities that groups
of size m and size n, respectively are found and
recovered. Under Hp, the PoI smashed the window,
two aspects are considered. First, no group of glass
fragments has been transferred, has persisted,
or was recovered, so the two groups are on the
receptor for chance alone (t02p2snsm𝛾1𝛾2). Second,
the group of n matching fragments has been

1The likelihood ratio can be, for sake of illustration, expressed in
the following form: t0 + p0tl

p1sl

1
𝛾1

. Here, the value of 𝛾1 is set equal

to 0.03. For a likelihood ratio assignment which takes continuous
measurements into account, see Section 7.3.
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transferred, has persisted, and was recovered, and
the second group is present on the receptor for
reasons unconnected with the criminal action
(tnp1sm𝛾2). The likelihood ratio can be simplified as
follows:

V2 = t0 +
p1tn

2p2sn𝛾1
.

Note that the factor ‘2’ appears in the denomina-
tor since there are two groups. As previously pre-
sented in Section 6.3.2, there are two possibilities
to select two groups: you select first the group with
n fragments and then the group of m fragments, or
vice-versa. The variable accounting for the size and
the probability of occurrence of the second group
of fragments appears in both the numerator and
denominator and cancel out. Hence, they do not
appear in the final expression.

6.2.2.3 Case 3

Two windows are broken and one large group of
fragments is found on the PoI, the properties of
which correspond to one of the broken windows.
In such a case, both propositions involve the two
broken windows. If the PoI smashed the windows,
the corresponding fragments are the result of
transfer, persistence, and recovery, but the other
group of fragments has not been transferred,
persisted, or recovered. Otherwise both groups are
present on the receptor by chance alone. If the PoI
did not smash the two windows, the correspond-
ing group of glass fragments is present by chance



�

� �

�

710 Evidence and Propositions: Practice

alone. Given t1,k and t2,h, the probabilities that k
or h fragments have been transferred, persisted,
and recovered, from the first and second windows,
respectively, then the likelihood ratio becomes

V3 =
t1,0t2,0p2sk𝛾1 + t1,kt2,0p0

p1sk𝛾1

= t1,0t2,0 +
t1,kt2,0p0

p1sk𝛾1
.

The likelihood ratio can be reduced to

V3 = t2
0 +

p0t0tl

p1sl𝛾1
,

when it has been assumed that the transfer prob-
abilities (t1,0, t2,0) are the same for both windows
and denoted t0, and t1,k and sk are denoted tl and sl

with l denoting large.

6.2.2.4 Case 4

Two windows have been broken and two large
groups of glass have been recovered on the
surfaces of the clothing of a PoI. The analytical
features of one group correspond to those of one
broken window, and the features of the other
group correspond to those of the other window.
The proposition Hp specifies that the PoI is the
person who smashed the two windows. Under
Hd, the two recovered groups of glass fragments
are present by chance. Under Hp, four possibilities
should be taken into account:
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(1) the two groups were transferred from the
scene windows and the PoI has no glass on
their clothing beforehand;

(2) one group of glass fragments came from scene
window 1, and no glass was transferred from
scene window 2. The PoI already had one
group of glass fragments on their clothing;

(3) one group of glass fragments came from scene
window 2, and no glass was transferred from
scene window 1. The PoI already had one
group of glass fragment on their clothing; and
finally

(4) no glass fragments were transferred from the
two scene windows, but the PoI already had
two groups of glass fragments on their cloth-
ing beforehand.

The likelihood ratio becomes

V4 = t2
0 +

p0t2
l

2p2s2
l 𝛾1𝛾2

+
p1t0tl

2p2sl𝛾1
+

p1t0tl

2p2sl𝛾2
.

Using the probability figures given earlier, it is easy
to verify the second term is the dominant one.

Thus, in the four case examples considered
so far, the following approximate results are
obtained:

V1 ≃
p0tl

p1sl𝛾1
, (6.26)
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V2 ≃
p1tl

2p2sl𝛾1
, (6.27)

V3 ≃
p0t0tl

p1sl𝛾1
, (6.28)

V4 ≃
p0t2

l

2p2s2
l 𝛾1𝛾2

. (6.29)

Using the probability values given earlier, with 𝛾1
and 𝛾2 equal to 0.03, Equations (6.26)–(6.29) give
the following results:

V1 ≃ 1 843, V2 ≃ 943, V3 ≃ 368,

V4 ≃ 1 738 000.

There are many imponderables, such as the
specification of the transfer probabilities to be
considered. Therefore, rather than in terms of
their exact numerical values, a comparison of the
orders of magnitude provides a useful qualitative
assessment of the relative worth of these results.
For example, consider a comparison of V3 with V4.
The latter, V4, is bigger than the former, V3, by a
factor of about 5000. The effect on the value of the
evidence when two windows have been broken of
discovering two groups of fragments, with similar
properties to the broken windows, rather than just
one, on the clothing of a PoI, is considerable. An
approximate general formula is given by Curran
et al. (2000) and more complex examples can be
studied using probabilistic graphical models, such
as Bayesian networks.
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6.2.3 The Assignment of Probabilities
for Transfer Events

The evaluation of transfer evidence given an
activity level proposition requires assignments of
probabilities for events of transfer. For example,
in a case in which a window has been broken,
consideration needs to be given to the probability
of transfer, persistence, and recovery of glass
fragments. These three factors may be referred to,
generally, as the transfer process.

Assume that a crime is committed. Depend-
ing on the circumstances, it is expected by the
investigators that there will have been transfer of
evidence in both directions between the criminal
and the crime scene. A PoI is apprehended and
evidence is found on their person which is found
to correspond, in some way, with material from
the crime scene.

Transfer is an event that will depend on the
nature of the contact between the criminal and
the scene. For example, if a window has been
broken to gain entry then the type of window
and the distance from the window at which the
criminal stood in order to break it will be factors
in assessing the quantity of glass transferred.

Persistence is a phenomenon that will depend
on the elapsed time between the commission of
the crime and the apprehension of the PoI, their
supposed activities during this time, and on the
nature of the clothes that the PoI may be thought
to have been wearing at the time of the crime.
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Persistence will also depend on the nature of the
contact, as for the transfer event. The persis-
tence of glass fragments from a broken window
may have features that are different from the
persistence of blood following a prolonged assault.

Recovery will depend on the previous two fac-
tors, transfer and persistence. It will also depend
on the quality of the resources, methods, and tech-
niques available for the detection and collection
of the evidence, including the examiner’s skills in
successfully operating the recovery procedure; see
Samie et al. (2019) for a discussion focused on
DNA evidence.

Note that the factors influencing the aforemen-
tioned three distinct phenomena may be explicitly
expressed using Bayesian networks. Refer to
Taroni et al. (2014a) for an example.

Modelling in the context of transfer probabil-
ities constantly evolves and raises new issues of
discussion, typically linked to the robustness and
reliability of data supporting probability assign-
ments. Samie (2019) explores such difficulties. A
discussion is presented in Section 6.2.3.3.

Cook et al. (1993) provide an example of a case
study involving fibres evidence. An assault was
described in which a PoI answering a description
given by the victim was arrested shortly after
the assault was committed. Six fibres were found
on the sweatshirt worn by the PoI, which were
indistinguishable from those of a jumper worn
by the victim. The probability of transfer, in this
case, is the probability of more than one fibre of
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the relevant type being transferred, persisting
and being recovered from the PoI’s clothing if
the PoI committed the crime. Cook et al. (1993)
note that, whilst it would be satisfying to consider
the probability of exactly six fibres being found
on the PoI’s clothing, the imponderables of a
particular case would not enable a probability
distribution to be established with any degree
of precision. Factors listed by Cook et al. (1993)
that have to be considered include pressure and
duration of contact, nature of the donor and recip-
ient fibre surfaces, types of fibres involved, and
elapsed time. These factors can form the basis of a
discussion amongst investigators and probabilities
for transfer of 0, 1 or more than one fibre can be
determined by a consensus. These probabilities
can be thought of as three positive numbers that
add up to 1. Cook et al. (1993) suggested a graph-
ical approach using a pie chart. Thus, a circle is
to be split into three segments corresponding to
the three probabilities for 0, 1 and more than one
fibre being transferred, followed by persistence
and recovery. The investigators can agree on the
relative areas of the segments of the pie chart and
the corresponding probabilities can be obtained.
Such an approach will commend itself to those
who find it easier to think visually rather than
numerically.

Another example for the modelling of proba-
bilities of transfer is given by Evett et al. (1995)
in cases involving glass fragments as recovered
material. The authors used a Poisson distribution
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(Section A.2.6) for the number of glass fragments
remaining at time t after the breaking of a window.
Let X be the number of fragments remaining
at time t, and let 𝜆t be the mean number of
fragments remaining at time t, determined from
experimental data on the persistence of glass
fragments. Then

Pr(X = x ∣ 𝜆t) =
e−𝜆t𝜆x

t

x!
, x = 0,1, . . . .

Thus, given 𝜆t, the probabilities for different out-
comes X are obtained. It is a matter of judgement
by the expert, perhaps informed by experimental
data, as to what value to choose for 𝜆t. However,
as noted by Evett et al. (1995), the assumption of a
Poisson distribution means that the variance of
the distribution is also 𝜆t. This may give a value
for the precision (thought of as the reciprocal
of variance), which may not correspond to the
expert’s view. If this is the case, then, a different
model will need to be assumed for the number of
fragments transferred, followed by persistence and
recovery, in a time interval of length t.

To assign probabilities for transfer, persistence,
and recovery, a Bayesian point estimation pro-
cedure has been proposed in Biedermann et al.
(2009b) for gunshot residues. Samie et al. (2016),
in a DNA case involving a stabber and biological
material transferred to a knife, assign probabilities
for transfer based on the number of observations
made in the experiments, using uniform prior
counts. Point estimation, also called parameter
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estimation, essentially refers to the process of
using sample data to estimate the value of a
population parameter. Sample surveys, which are
a means for collecting sample data, commonly
serve as a basis for parameter estimation. A
Bayesian statistical model is specified with the
choice of a prior distribution 𝜋(𝜃) that allows the
scientist to express initial beliefs about the target
parameter 𝜃. Assuming a probability model for
the data, all available information about the value
of the parameter of interest 𝜃, after observing the
data, is contained in the posterior distribution
𝜋(𝜃 ∣ x). In other words, the posterior distribution
encapsulates all that is known about 𝜃. Examples
of point estimation can be found in Taroni et al.
(2010).

The relationships amongst the three relevant
phenomena transfer, persistence, and recovery
may be illustrated with a graphical model with
nodes to represent these variables, and arrows
joining the nodes to indicate relationships between
the nodes thus joined. In addition, factors that
contribute to the three variables of the transfer
process may also be represented by nodes, with
links to other nodes to indicate relationships as
appropriate. An example of a graphical structure
is presented in Taroni et al. (2014a).

It is possible to include probabilistic relation-
ships in such a graph. For example, the probability
of a transfer of trace material in a particular
case may be dependent on several factors. This
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dependency can then be represented with a con-
ditional probability distribution, the conditioning
being on the values of the factors on which the
event of transfer is depending. The use of graphical
models requires decisions to be made concerning
not only the values of parameters in probability
distributions but also the type of probability
distributions themselves. For example, in the
case of a broken window, the distance D from the
window at which the criminal was standing when
it was broken may be unknown. Because there is
uncertainty associated with D, it may be modelled
probabilistically. Suggestions have been presented
by Curran et al. (1998b). Variable D has been
modelled with a gamma distribution (A.3.5).2

The distribution Pr(N = n) of the number N of
fragments transferred is dependent on D and on
other factors, such as those mentioned earlier.
This distribution is not expressible as a formula
from which probabilities may be simply obtained
by the replacement of the values of the contribut-
ing factors. Instead, the distribution has to be
derived empirically through a process known as
simulation, which is beyond the scope of this book.
Further details of the simulation process used for
the modelling of the transfer of glass fragments
are available in Curran et al. (2000). The authors
commented (at p. 124) that the ‘simulation pro-
cess can be thought of as generating thousands of

2The software tfer (Forensic Glass Transfer Probabilities) devel-
oped by Curran is freely available, in R format, at https://cran.r-
project.org/web/packages/tfer/ (last visited November 2019).
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cases where the crime details are approximately
the same and observing the number of fragments
recovered’. For each of these ‘thousands of cases’,
a value of n is obtained. A histogram of n is then
derived and used as an approximation to the
distribution Pr(N = n). From this approximation,
an assignment for the probability at the particular
value of N for the case in hand may be obtained.

Consider a case in which a PoI was apprehended
about an hour or two after the commission of
the crime. There is eye-witness evidence that the
criminal was about one metre from the window
when it was broken. The scientist expects that for
a criminal standing one metre from the window
in the circumstances of this crime that about 60
fragments of glass would have been transferred.
The scientist expects about 80%–90% of any frag-
ments transferred to the clothing of the criminal
to be lost in the first hour and 50%–70% of the
fragments remaining at the beginning of an hour
to be lost in the subsequent hour. The scientist
also expects to recover about 90%–95% of the
fragments remaining on the clothing at the time
of inspection.

The scientist inspects the clothing of the PoI and
finds N = 4 fragments of glass. The simulation
process of Curran et al. (1998b) indicates a
probability Pr(N = 4) of 0.08 and Pr(N = 0) of
0.104. The values 0.08 and 0.104 are values for
tn in (6.25) solving Case 1 in Section 6.2.2, with
n = 4 and n = 0, respectively. An example of the
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application of such a methodology in fibres cases
is presented in Champod and Taroni (2017).

As an example, consider another example using
historical references for the factors of interest.
The aim, at this point, is to describe the general
methodology. Up-to-date data will substitute those
used for the example. Let Γ be a DNA profile that
has a conditional profile probability of approx-
imately 0.01 amongst Caucasians in England.
Assume that the distribution of DNA profiles
amongst stains on clothing is approximately the
distribution amongst the relevant population.
This assumption is not necessarily correct (Get-
tinby, 1984), and there is further discussion of it
below. Then 𝛾 = 0.01. A survey of men’s clothing
was conducted by Briggs (1978) from which it
appears reasonable that b0 > 0.95, b1,1 < 0.05.
It is necessary to assign transfer probabilities t0
and t1 based on a study of the circumstances of
the crime and, possibly, experimentation. Suppose
t1 > 0.5 (Evett, 1984). Then, irrespective of the
value of t0 (except that it has to be less than
(1 − t1); i.e. less than 0.5 in this instance),

V >
0.5 × 0.95

0.05 × 0.01
= 950, (6.30)

a value that represents strong support for the
hypothesis that the PoI assaulted the victim,
rather than they had nothing to do with the case.
It is at least 950 times more probable to observe
this evidence if the PoI assaulted the victim than if
they did not.
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Notice that the previous equation is consider-
ably different from 1∕𝛾 (= 100 in the numerical
example), a standard result if the findings are
assessed given source-level propositions. The
latter result would hold if (t1 b0∕b1,1) were approx-
imately 1, which may mean that unrealistic
assumptions about the relative values of the
probabilities of transfer would have to be made.

Various data have been published regarding
studies carried out to investigate numerous
aspects of transfer and persistence, and to offer
values for probabilities. For glass particles, see
references previously quoted in Section 6.2.2. A
summary concerning transfer and persistence
studies can be found in Curran et al. (2000).

Another example, by McDermott et al. (1999)
concerns the transfer of paint fragments between
vehicles, and foreign paint is found on a PoI’s vehi-
cle. Consider two propositions:

Hp: the PoI’s vehicle and the injured party’s vehi-
cle were in contact;

Hd: the PoI’s vehicle and the injured party’s vehi-
cle were not in contact.

A note on the use of the term ‘contact’ is in order.
As much as the simple use of ‘not’ to frame the
alternative proposition is unlikely to be partic-
ularly helpful to the court, it is also important
to avoid the use of unclear words like ‘contact’ to
describe the type of action specified by the propo-
sitions. There is a danger in using such a vague
word. As emphasised by Evett et al. (2002b), the
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statement that a PoI has been in recent contact,
for example, with broken glass, could mean many
things. There is a clear need to specify propositions
concisely, considering the framework of circum-
stances, so as to ensure a transparent approach to
the consideration of the evidence.

The value of the evidence in the example by
McDermott et al. (1999) is approximately

V =
tn(1 − bg,m)

bg,m𝛾
(6.31)

where

• tn is the probability of paint transferring in the
course of an automobile accident and consisting
of one top coat layer;

• bg,m is the probability that a random vehicle will
have foreign paint on it, maybe in g groups of
size m;

• 𝛾 is the probability that the foreign paint would
correspond to that of the injured party’s vehi-
cle (when paint transfer from the injured party’s
vehicle to the PoI’s vehicle is considered).

McDermott et al. (1999) provided the following
values. The value 0.8 is suggested for tn on the
basis of experience; paint consisting of at least
a top layer is transferred in 80% of collisions
investigated. A value for bi,m of 0.094 is used,
having been obtained from a survey of damage to
vehicles in which 9.4% had foreign paint on the
surface. A value of 0.127 is used for 𝛾 , this being
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the proportion of vehicles with white solid paint.
The value of the evidence is then

V = 0.8 × 0.906
0.094 × 0.127

= 61.

A similar argument applies when paint is trans-
ferred in the opposite direction, to the injured
party’s vehicle from the vehicle that caused the
accident. It is important, however, not to approach
this situation in terms of the simple reciprocal of
the relevant population proportion of the analyt-
ical features of the recovered paint fragment, and
the use of source level propositions of the following
kind:

Hp: paint on the injured party’s vehicle origi-
nated from the PoI’s vehicle;

Hd: paint on the injured party’s vehicle came
from an unknown vehicle.

However, consider

Hp: the injured party’s vehicle and the PoI’s vehi-
cle collided;

Hd: the injured party’s vehicle collided with
another vehicle.

With such propositions, the evaluation of the
evidence has to take into account the possibility
of transfer of paint from a source other than the
PoI’s vehicle. Assuming equal probabilities for
background in the numerator and denominator
of the likelihood ratio, the likelihood ratio V is
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reduced to tn∕t′n, an expression that emphasises
the role of the transfer probabilities tn and t′n.

Notice again that the role of activity level
propositions for the evaluation of transfer material
can be illustrated through Bayesian networks. A
review can be found in Taylor et al. (2018a, c).

6.2.3.1 Probabilities of Transfer in The
Context of DNA

There is considerable ongoing research devoted
to DNA evidence and transfer. This is due to the
peculiar aspect of this type of evidence. Technical
developments have made it possible to analyse very
low amounts of DNA. This has many advantages,
but the drawback of this technological progress
is that interpretation of the results becomes
increasingly complex: the number of mixed DNA
profiles increased compared with single source
DNA profiles and stochastic effects in the DNA
profile, such as drop-in and drop-out,3 are more
often observed. Moreover, the relevance of low
template DNA material regarding the alleged
activities is not as straightforward as it was at a
time when, for example, large quantities of blood

3Drop-in and drop-out are stochastic phenomena that appear in
traces containing low quantities of DNA. Drop-out characterises
the phenomena of an allele that fails to amplify (below the detec-
tion level). The phenomenon of drop-in refers to a false allele that
is not reproducible. Note that drop-in should not be confused with
contamination (or, pollution). The phenomenon of drop-in occurs
independently for markers as opposed to contamination which
affects the entire profile.
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were recovered. The possibility of secondary and
tertiary transfer is now becoming a pressing issue.
This represents one of the core messages of the
ENFSI (2015) guidelines for evaluative reporting.

It is regularly questioned, both during inves-
tigation and in court, how DNA traces were
deposited, directly during the crime or innocently,
for instance, by secondary transfer. Scientists
cannot answer such questions directly. At best,
using specialised knowledge, scientists can assign
probabilities for findings given posited events of
transfer or secondary transfer in different situa-
tions. The evaluation of evidence in such a context
is described by Hicks et al. (2016) and Taylor et al.
(2017a, 2019).

Several papers have been published on
transfer-related topic. See, for example, Cale et al.
(2016), Meakin et al. (2017), van Oorschot
et al. (2017, 2019), and Burrill et al. (2019).

They present and consider data from trace DNA
experiments to assess the type of DNA findings
that may be obtained as a result of different
types of transfer. Generally, the data show great
variability in the results obtained, presumably
as a consequence of the variety of factors that
influence transfer, persistence, recovery, and
analysis of trace DNA. A literature review of such
experimental results is presented in Meakin and
Jamieson (2013). Notice that scientists assign
probabilities of transfer as one part (amongst
others) of likelihood ratio based procedures for
evaluating probative value (Evett and Weir, 1998,
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pp. 35–39), but their main task is to address the
question ‘what is the probability to find a given
quantity of material, if the PoI committed the
alleged action’. Hence, scientists do not opine
or report on the probability of transfer or what
is often referred to loosely as ‘the likely mode of
transfer’. It is a completely different question to
infer the action or mechanism of transfer based
on a given quantity of recovered DNA. If done,
using the experimental data only, this represents a
case of a transposed conditional (or prosecutor’s
fallacy). In R. v. D. Reed and T. Reed (2009), it was
noted:

It was common ground that cellular material could be
transferred by direct contact with the plastic (primary
transfer) by the person whose DNA had been so transferred
or by secondary transfer to the plastic by another person
transferring the cellular material of the person whose DNA
had been found (or even tertiary transfer) [...]. Although
all of these were accepted by [the expert] to be possibilities,
she expressed views that it was highly unlikely that the
appellants had innocently touched the knives at some stage
and that someone else had brought the knives to Peter
Hoe’s address. She also considered that it was unrealistic
that each appellant had passed their DNA to someone else
who then transferred it to the pieces of plastic which were
found at Peter Hoe’s address.

Fonneløp et al. (2017) studied factors influ-
encing transfer, such as the shedder status (high
or low DNA shedders) of the involved persons,
during stabbing activities. In the context of alleged
sexual offences, evaluating the detection and
non-detection of DNA corresponding to involved
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persons is particularly challenging. To help with
such cases, Jones et al. (2016) studied the rates of
transfer of DNA in a variety of situations of staged
non-intimate social contact as well as unprotected
sexual intercourse.

Studies have also been devoted to different
aspects relating to the mode of DNA deposition
and transfer. For example, spermatozoa could
regularly be obtained from bathwater (Page
et al., 2014) and extraneous DNA can be found
within an operational laboratory (Taylor et al.,
2016b). Transfer and detection rates of a specific
DNA source in the presence of background DNA
sources have been studied (Lehmann et al., 2015).
Issues in relation to who wore rather than touched
a garment, in particular rates of DNA detection
after wear and touch, have been studied by
Breathnach et al. (2016). Transfer may also arise
during the processing of items, in particular in lab-
oratories. Margiotta et al. (2015) and Szkuta et al.
(2015) have studied the role of gloves and labora-
tory examination tools in transfer. The occurrence
of transfer beyond the laboratory, for example,
by criminal investigators, has been studied by
Fonneløp et al. (2016) and data on transfer and
persistence of non-self DNA on hands over time
can be found in Szkuta et al. (2018). The impact
of the mode of DNA deposition and transfer on the
value of evidence has been studied by Pun (2016).

In child sexual abuse cases, the alleged offender
is often a close relative, such as a member of
the same family. In such cases, it is relevant to
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consider whether there is a possibility for the
PoI’s DNA to have been innocently deposited
onto the victim’s clothing, for example. One such
possibility, investigated by Noël et al. (2016),
is by the way of secondary transfer through a
washing machine. Samie et al. (2016) studied the
transfer of DNA when a person handles a knife.
They also studied the potential of transfer of DNA
from persons closely connected to the handler
(Samie et al., 2020). In a wider perspective, Daly
et al. (2012) investigated the transfer of DNA
on different materials (glass, fabric, and wood).
The recovery and analysis of transferred DNA,
and the reporting of associated results, have also
been studied and discussed in a comparative
perspective, through an inter-laboratory exercise,
with some variation found in the results obtained
by the participants (Steensma et al., 2017). A
discussion is presented in Section 6.2.3.3.

6.2.3.2 Transfer Probabilities
and Micro-traces

Research on phenomena such as transfer has
been pioneered by scientists working with traces
other than DNA, in particular textile fibres, glass
fragments, gunshot residues, and other transfer-
able small particles. Research carried out is often
a consequence of problems encountered during
casework. An interesting example is the role of
water in affecting fibre persistence. Indeed, many
extraneous fibres present on a receptor surface
can be lost as a result of exposure to rainfall or



�

� �

�

Activity level propositions 729

immersion in water (Lepot and van den Driessche,
2015; Lepot et al., 2015). Weather and the skin
of living persons were also found to play a major
role. More generally, a body deposited outdoors is
expected to lose the majority of transferred fibres
within two days. However, no complete loss of
fibres, in some studies focusing on time intervals
up to twelve days, has been reported (Palmer and
Burch, 2009; Palmer and Polwarth, 2011; Hong
et al., 2014). Similar results have been obtained
in a study on textile fibres on buried carcasses
(De Battista et al., 2014). Yet other external influ-
encing factors, such as washing machines, on
transfer and the persistence phenomena of fibres
have been studied by Watt et al. (2005). De Wael
et al. (2010) have studied physical characteristics
of textile fibres, such as sheddability. This study
also proposes a practical method to assess the
shedding potential of textile materials.

The occurrence of secondary transfer has been
previously established for various evidence types.
In the particular area of fibres, secondary transfer
has been studied, for example, by French et al.
(2012) and Palmer et al. (2017). Secondary
transfer in chains involving both individuals and
inert objects has been found to be possible, and can
extend to tertiary and quaternary transfers. The
population of textile fibres has also been studied in
human hair. Palmer and Oliver (2004) found that
the population of fibres in hair is comparable with
other population studies involving other types
of receptor surfaces. However, factors such as
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season and geographical location may affect fibre
populations in hair. Secondary transfer of fibres in
hair, from a mask to pillow cases, has been studied
by Palmer and Banks (2005), taking into account
factors such as fibre type, hair style, time, and fibre
persistence. A review of the literature is presented
in Palmer (2016). General studies on fibres are
also available (Wiggins et al., 2004; Coyle et al.,
2012; Palmer, 2016).

Phenomena of transfer have also been studied
extensively in relation to glass fragments, in
the context of different modes of breaking win-
dows (e.g. Hicks et al., 2005; Irwin, 2011; Cooper,
2013). A further common type of transfer material
is paint. Moore et al. (2012) conducted a survey to
investigate the background presence of paint frag-
ments on items of clothing of persons suspected
of involvement in crime, complementing previous
research in this area by Pearson et al. (1971).

Other transfer materials that have been studied
are pollen grain, powder, diatoms, and metal
particulates, in particular regarding persistence
on various types of target surfaces. Generally, it is
observed that there is a decrease in the quantity
of particles over time, comparable with what is
known in existing literature about the persistence
of fibres and glass fragements (Wiggins et al.,
2002; Bull et al., 2006; French et al., 2012;
Schield et al., 2016; Levin et al., 2017). Aspects of
pollen distribution and persistence in a room have
been studied in Morgan et al. (2014).

For the assessment of the probative value of
gunshot residues (GSR), it is important to consider



�

� �

�

Activity level propositions 731

the probability of finding GSR on a PoI by chance,
that is when there was no recent direct exposure
to a firearm discharge. Studies have thus been
conducted to assess the presence by chance of
GSR, and other particles resembling GSR, on
members of the population at large (Grima et al.,
2012; Lucas et al., 2016). Organic components
of GSR, and in particular their persistence, have
been studied by Arndt et al. (2012), whereas
Hofstetter et al. (2017) focused on prevalence
in different populations (general population and
members of law enforcement personnel). Hanni-
gan et al. (2015) studied the prevalence of GSR
on clothing submitted to a laboratory in cases
with no connection to firearms. The potential of
GSR to undergo secondary and tertiary transfers
has been studied by French and Morgan (2015).
Conceptual aspects of evaluating GSR findings
using likelihood ratios are discussed by Gauriot
et al. (2013) and Gallidabino et al. (2015). Eval-
uation of evidence with regard to activity-related
questions is more closely aligned to judicial and
investigative aims than an assessment at source
level propositions as already emphasised by the
ENFSI (2015) guidelines and Maitre et al. (2017).

6.2.3.3 Additional Considerations
on Activity Level Propositions and Transfer
Probabilities

The evaluation of scientific results given activity
level propositions represents an important topic
for current forensic science practice. Illustrative
examples for this can be found in connection with
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DNA traces. When forensic scientists evaluate
and report on the probative value of single donor
DNA traces, it is common to rely on only one
number expressing, in some sense, the rarity of the
DNA profile in the population of interest (Section
5.3.1.1). The reason for this is that propositions
of interest refer only to the source of the recovered
trace material, such as ‘The person of interest is
the source of the crime stain’ and ‘An unknown
person is the source of the crime stain’. Given the
latter proposition, one is directed to think about
the rarity of the DNA profile. Nowadays, however,
DNA profiling technology is capable of producing
results from very small quantities of trace material
(e.g. non-visible staining). Such traces transfer
very easily so that the issue of source is becoming
less central, to the point that it is often not con-
tested. As noted by Evett et al. (2002a), this has led
to a shift from questions of the kind ‘whose DNA
is this?’ to questions of the kind ‘how did this DNA
come to be there?’. This means that the primary
need of recipients of expert information is assis-
tance with evaluation when the competing propo-
sitions of interest refer to different posited activities
(Taroni et al., 2013). This need is widely demon-
strated in day-to-day forensic practice (Champod,
2013). Examples are complications encountered
in cases such as R v. Jama (2009) (Vincent, 2010),
where the PoI’s DNA was found in trace material
collected on a woman believed to have been
sexually assaulted, or the Lukis Anderson case
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(People v. Howell (2016)) (Kaplan, 2014) where
DNA of the PoI supposedly made its way to
the crime scene through the paramedics who
had arrived at the victims’ residence. A further
example is R. v. Weller (2010) where alternative
modes of transfer, such as the PoI touching the
complainant’s hair and vomit when putting her
into bed, were raised as reasons for the DNA
detected on the PoI’s fingers, rather than placing
his finger in the complainant’s vagina. A report
of the UK Forensic Science Regulator (Forensic
Science Regulator, 2012) related to the case of
Adam Scott who was also ‘the innocent victim of
avoidable contamination from an unrelated case
that did contain his DNA’. (p. 13).

Notwithstanding the aforementioned, many
forensic scientists remain reluctant to assess
their results given propositions that relate to
different activities. Some scientists consider
evaluations beyond the issue of source as being
overly speculative, because of the lack of relevant
data and knowledge regarding phenomena and
mechanisms of transfer, persistence, and back-
ground of DNA. Encouragement to assess findings
given activity level propositions, as expressed in
the ENFSI Guideline (ENFSI, 2015), highlights
the need for rethinking current practice. Such
proposals are sometimes viewed skeptically or
are considered not feasible. Note that the ENFSI
guideline clearly emphasised the following:
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[I]t could be misleading to factually report the presence of
two rare fibres on the victim that cannot be distinguished
from the PoI’s jacket when the circumstances of the case and
the characteristics of the fabric suggest that a large number
of fibres should have been found if the alleged activity has
occurred. (p. 11)

Generally, source-level propositions may be ade-
quate in cases where there is no risk that the court
will misinterpret them in the context of the alleged
activities in the case. The ENFSI Guideline also
presents practical examples to illustrate these
understandings.

The extent to which available data can be
used to support evaluation of DNA findings in
the light of different activities sparks intensive
discussion (Meakin and Jamieson, 2013, 2016;
McKenna, 2013; Jamieson, 2016). Biedermann
et al. (2016d) selected and discussed recurrent
skeptical views, as well as some of the alternative
solutions that have been suggested.

6.2.4 The Assignment of Probabilities
for Background Traces

The general presence of transfer materials on
various target surfaces (i.e. persons and their
garments), commonly called background, is an
important consideration in the evaluation of
recovered trace material. Curran et al. (2000)
summarised research back to the 1970s regard-
ing glass found on different groups of persons
(i.e. their clothing, head hair, etc.), connected
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and unconnected with criminal activities. More
recently, Daéid et al. (2009), for example, studied
the presence of glass fragments on the clothing of
law enforcement and forensic laboratory person-
nel. The population of foreign fibres on garments
(or objects) has been studied, for example, by
Marnane et al. (2006), and Cammarota et al.
(2019), Lepot et al. (2017), Grieve et al. (2017),
and Roux and Wiggins (2017). Moore et al.
(2012) investigated the presence of paint flakes on
the clothing of persons suspected of involvement
in crime, whereas Reed et al. (2010) focused on
polyurethane foam fragments on outer-garments.
In the field of biological traces, the presence of
saliva on underwear and bodily swabs is studied
by Breathnach and Moore (2015) to help assess
the probative value of saliva traces encountered in
suspected sexual assault cases.

Consider a simple classic example based on
the ABO blood group system. The aim of this
example is to clarify the reasoning for the assign-
ment of probabilities for background traces. In
the previous section, it has been assumed that
the distribution of blood groups among stains
on clothing corresponds approximately to the
distribution amongst members of the relevant
population. This aspect has been questioned by
Gettinby (1984). This is because the blood on a
piece of clothing may have come from the wearer
of the clothing and thus there is a bias in favour
of the genotype of the wearer. The following
argument is based on that in Gettinby (1984).
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Consider a population of size N in which a
proportion p have innocently acquired bloodstains
on their clothing. Let po, pa, pb, and pab be the
proportions with which blood groups O,A,B, and
AB occur in the population such that po + pa +
pb + pab = 1. Consider people of group O. Blood-
stains detected on clothing may arise from several
sources:

• by self-transfer (O type stains), with probability
𝛼, say,

• O stains from somewhere else, with probability
𝛽0, say,

• stains of type A,B, or AB, necessarily from some-
where else, with probability 𝛾0, say,

such that

𝛼 + 𝛽0 + 𝛾0 = 1,

𝛽0 = (1 − 𝛼)po. (6.32)

The proportion 𝛼 is independent of the blood
grouping of the individuals under consideration,
unlike 𝛽0 and 𝛾0. With an intuitively obvious
notation, the following results for individuals of
types A,B, and AB can be stated:

𝛼 + 𝛽a + 𝛾a = 1,

𝛽a = (1 − 𝛼)pa; (6.33)

𝛼 + 𝛽b + 𝛾b = 1,

𝛽b = (1 − 𝛼)pb; (6.34)

𝛼 + 𝛽ab + 𝛾ab = 1,

𝛽ab = (1 − 𝛼)pab. (6.35)
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Of those individuals who have bloodstains that
have arisen from a source other than themselves
(non-self stains), only a proportion 𝛾 will be
distinguishable as such, where

𝛾 = po𝛾o + pa𝛾a + pb𝛾b + pab𝛾ab.

For example, po𝛾o = Pr(type A,B, or AB stain found
on clothing ∣ person is of type O) ×Pr(person is
of type O). Multiplication of pairs of Equations
(6.32)–(6.35) by po, pa, pb, and pab, respectively,
gives:

po𝛼 + (1 − 𝛼)p2
o + po𝛾o = po,

pa𝛼 + (1 − 𝛼)p2
a + pa𝛾a = pa,

pb𝛼 + (1 − 𝛼)p2
b + pb𝛾b = pb,

pab𝛼 + (1 − 𝛼)p2
ab + pab𝛾ab = pab,

and summing gives

𝛼 + (1 − 𝛼)(1 − 𝛿) + 𝛾 = 1 (6.36)

where
𝛿 = 1 − p2

o − p2
a − p2

b − p2
ab,

the discriminating power (Section 3.5) of the ABO
system. From (6.36),

𝛼 = 1 − 𝛾

𝛿
.

Values of 𝛾 = 0.182 and 𝛿 = 0.602 are used
by Gettinby (1984) who cited Briggs (1978).
From these a value of 𝛼 ≃ 0.7 is obtained for the
probability of a bloodstain being acquired from
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oneself, given that a bloodstain has been found on
the clothing; i.e. approximately 70% of bloodstains
on clothing are acquired by self-transfer.

Consider a person of blood group O. Denote by
CO(O) the probability that this person innocently
bears a bloodstain and that the bloodstain is of type
O. Then

CO(O) = Pr(PoI has stain from self)
+ Pr(PoI has stain not from self but of type O)
= p𝛼 + p(1 − 𝛼)po.

With similar notation, for a person of blood group
O to bear bloodstains of types A,B, or AB, the prob-
abilities are

CA(O) = p(1 − 𝛼)pa,

CB(O) = p(1 − 𝛼)pb,

CAB(O) = p(1 − 𝛼)pab.

The sum

CO(O) + CA(O) + CB(O) + CAB(O) = p,

is the probability of innocently acquiring a blood-
stain. A value of p = 0.369 is given by Briggs
(1978) and used by Gettinby (1984). Also, the
distribution of blood groups amongst innocently
acquired bloodstains on clothing of people of type
O may be determined. For example, the probability
a person of type O has a bloodstain of type O on
his clothing, given it was acquired innocently is
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CO(O)∕p = 𝛼 + (1 − 𝛼)po. The distribution of blood
groups, for people of type O, is thus

Pr(type O ∣ innocent acquisition of a bloodstain)

= 𝛼 + (1 − 𝛼)po,

Pr(type A ∣ innocent acquisition of a bloodstain)

= (1 − 𝛼)pa,

Pr(type B ∣ innocent acquisition of a bloodstain)

= (1 − 𝛼)pb,

Pr(type AB ∣ innocent acquisition of a bloodstain)

= (1 − 𝛼)pab,

with similar results for people of types A, B, and AB.
The comparison of this distribution with the gen-
eral distribution is made in Table 6.8.

6.2.5 Presence of Material
with Non-corresponding
Features

In transfer evidence it may be that material
present on the PoI or at the scene of the crime
does not correspond to that found at the scene of
the crime or on the PoI, respectively. For example,
consider a case involving the potential transfer of
fibres from the scene of a crime to the criminal.
A PoI is found with fibres on his clothing which
correspond, in some sense, to the fibres from the
scene of the crime. However, the PoI also has fibres



Table 6.8 Distribution of blood groups of innocently acquired bloodstains on clothing of people of
type O, compared with the distribution in the general population.

Blood group O A B AB Total

Clothing of people of type O 𝛼 + (1 − 𝛼)po (1 − 𝛼)pa (1 − 𝛼)pb (1 − 𝛼)pab 1
General population po pa pb pab 1
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of many different types on his clothing which
do not correspond to those found at the scene
(so-called foreign fibres).

A likelihood ratio for such a situation has been
derived by Grieve and Dunlop (1992). It includes
factors such as transfer probabilities, probabilities
of foreign fibre types being found on the person,
probabilities for the occurrence of the correspond-
ing fibre types, and a factor to account for the
number of corresponding fibres amongst the total
number of fibres. The importance of this type of
situation lies in the recognition that the number
of items found, which do not correspond has to be
considered when assessing the evidence as well as
the number of items found which do correspond.
A formal development has been presented in
Section 5.5.3.

6.2.6 Absence of Evidence for Activity
Level Propositions

6.2.6.1 A Question of Terminology

Terms like absence of evidence, negative evidence,
or even missing evidence are often used as syn-
onyms. A brief clarification note can be helpful.
The notion absence of evidence can be considered
as a generic term that encapsulates two aspects:
on one side, the adjective negative evidence that
specifies the non-occurrence of an expected event
in cases where the scientist looks for a given item
of evidence and they did not observe it (i.e. the
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scientist did not observe the presence of a given
DNA profile of interest on a receptor, but they
observed another DNA profile or nothing at all).
On the other side, missing evidence can be used
to characterise the absence of information about
the state of the expected evidence because the
scientist did not report it (an example is presented
in Section 6.3.5). The reason not to report does
not play a fundamental role. Schum (1994)
and Kadane and Schum (1996) agreed on the
fact that the information is not acquired after a
search of the evidence. But the use of the same
phrase can also occur in situations in which the
scientist did not even look for evidence. Therefore,
by consequence, there is uncertainty about the
presence (or not) of so-called positive evidence
and about the existence of a situation involving
negative evidence. A discussion can be found in
Taroni et al. (2019).

6.2.6.2 Some Practical Examples

Based on a scenario presented by Hicks et al.
(2016), consider the variation of some aspects and
the development of two scenarios to see how the
likelihood ratio, at activity level, can be quantified.

Scenario 1 A crime is committed and DNA
is searched for on Mr A, a potential assailant,
arrested 20 minutes after the alleged event. The
prosecutor’s view is that Mr A attacked Ms B who
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spat several times on Mr A’s face and T-shirt. Mr
A said that he had never met Ms B. From the case
information, it is known that Mr A was arrested
in a bar, which he entered a few minutes after the
incident and that he had not changed his T-shirt
all day. The T-shirt of Mr A is searched for DNA
and the forensic scientist noticed that there was
only one single profile that corresponded to its
owner (no extraneous DNA). Define the evidence E
as that of no extraneous DNA. In order to evaluate
this observation, the probabilities of these results
under the competing propositions need to be
assigned.

(1) If Ms B spat on Mr A (proposition Hp), and
a single DNA profile that corresponds to the
T-shirt wearer (Mr A) is recovered, this means
that (i) there was no DNA transferred from Ms
B when she spat on his T-shirt or that none
was recovered (probability t0) and (ii) there
was no background DNA (extraneous DNA
from some unknown source) on Mr A’s T-shirt
(probability b0).

(2) If Ms B never spat on Mr A (proposition Hd),
then the single profile is due to absence of back-
ground DNA (probability b0).

The likelihood ratio equals (t0 × b0)∕b0 = t0, a
value smaller than 1, so that the finding supports
the proposition Hd.

Scenario 2 Consider a variation of the previous
scenario. It is not the victim who spits on the
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assailant, but the assailant who spits on Ms B and
her T-shirt. It is not contested that the assailant
spat on Ms B, but Mr A says he has nothing to
do with the incident. DNA corresponding to Ms
B only (the wearer of the T-shirt in this case)
is recovered. Let E denote the evidence of no
extraneous DNA. As in the previous scenario,
probabilities of the findings should be quantified
under competing propositions.

(1) If Mr A spat on Ms B (proposition Hp), and
a single DNA profile that corresponds to the
T-shirt wearer (Ms B) is recovered, no DNA
was transferred from Mr A when he spat on
her T-shirt (probability t0) and no background
on Ms B’s T-shirt was present (probability b0).

(2) If an unknown person spat on Ms B (propo-
sition Hd), and no extraneous DNA is found
(a single profile that corresponds to Ms B is
recovered), no DNA was transferred from
the unknown aggressor when he spat on her
T-shirt (probability t′0 and no background was
present on Ms B’s T-shirt (probability b0).

The likelihood ratio becomes (t0 × b0)∕(t′0 × b0) =
1 assuming that transfer probabilities are the
same for the PoI and the unknown offender.
The evidence is neutral and supports neither
propositions.

More examples are presented and discussed in
Taroni et al. (2019) in support of the analysis pro-
posed by Thompson and Scurich (2018).
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6.3 EXAMPLES FOR EVALUATION
GIVEN OFFENCE LEVEL
PROPOSITIONS

6.3.1 One Stain, k Offenders

Start by recalling the value of evidence expression
(5.18), repeated here for convenience, when there
are k offenders, one item of evidence (here a blood-
stain), and the prosecution’s proposition is that the
PoI is one of the k offenders:

V =
[r{1 + (k − 1)𝛾}∕k] + {𝛾 ′(1 − r)}

𝛾r + {p + (1 − p)𝛾 ′}(1 − r)

= r{1 + (k − 1)𝛾} + k𝛾 ′(1 − r)
k[𝛾r + {p + (1 − p)𝛾 ′}(1 − r)]

. (6.37)

Consider the case where it may be assumed that
𝛾 and 𝛾 ′, the occurrences of the feature character-
ising the recovered stain in a criminal population
and in the general population, respectively, are
(approximately) equal. This expresses the idea that
there is no reason to suppose that the occurrence
of a given genetic trait depends on the criminal ori-
gin of the donor (i.e. the donor is or is not one of the
members of the group of k offenders). Notice that
one may consider different population proportions
regarding the analytical characteristic of the trace,
for people with or without criminal background,
typically if faced with findings such as textile fibres
or shoemarks. Thus, the assumption 𝛾 = 𝛾 ′ should
be considered carefully.
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Assume also that p = 0. This latter assumption
holds if is considered impossible that the PoI may
have left the stain at the crime scene for innocent
reasons. Then

V = r{1 + (k − 1)𝛾} + k𝛾(1 − r)
k{𝛾r + 𝛾(1 − r)}

= r + (k − r)𝛾
k𝛾

. (6.38)

If 𝛾 is so small that r∕k𝛾 ≫ 1 then V ≃ r∕k𝛾 . If
r = 1,V ≃ 1∕k𝛾 , see (6.4), the value of the evi-
dence has been reduced by a factor corresponding
to the number of offenders.

Consider another example. Assume p ≠ 0 but
that 𝛾 and 𝛾 ′ are (approximately) equal. Then

V = r + (k − r)𝛾
k[p(1 − r) + 𝛾{r + (1 − p)(1 − r)}]

= r + (k − r)𝛾
k[p(1 − r) + 𝛾{1 − p + pr}]

.

A further interesting example of the use of such
an approach relates to the evaluation of shoe-
marks, as given by Evett et al. (1998). The evalua-
tion is analogous to that derived in Section 5.3.3.3,
considering a single offender (k = 1). The proposi-
tions are, however, different. Consider a shoemarks
case with Ec the evidence of a shoe-print from a
PoI. The offence level propositions are

Hp: the PoI is the offender;

Hd: some unknown person is the offender.
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The association propositions are

B: the shoemark was left by the offender;

B̄: the shoemark was left by someone other than
the offender.

The intermediate association propositions are

A: the shoemark was made by a particular shoe
(X, say), owned by the PoI;

Ā: the shoemark was made by some unknown
shoe, which may or may not have been owned
by the PoI.

Now, write Pr(A ∣ Hp,B,Ec) = Pr(A ∣ Hp,B) =
𝑤, the probability that the shoemark comes from
the PoI’s shoe X, given that the PoI was the
offender and that the PoI left the shoemark. An
illustration for the determination of 𝑤 is given by
Evett et al. (1998). The PoI was interviewed the
day after the commission of the offence, he had ten
pairs of shoes in his possession. Considering that
the PoI has no preference for one of those pairs
rather than for another, then 𝑤 could be assigned
as 0.1. Notice that in situations involving DNA
evidence, for example, the value 1 can be retained
for 𝑤. The reason for this is that a given person
typically has, assuming the common DNA profil-
ing systems, one type of DNA, though there may
be exceptions to this, for example, with mt-DNA.

For shoemarks, a variant of (5.18) is avail-
able in which the conditional probability Pr(Er ∣
Hp,B,A,Ec), where Er denotes the observed fea-
tures in the mark, may be different from unity,
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denoted pmrk for short. The proportion of the
relevant population of shoes that have the char-
acteristics seen in the shoemark is 𝛾 . Consider,
for sake of simplicity, 𝛾 and 𝛾 ′ to be equal. A more
detailed analysis would treat these as different
since the probability of seeing a particular shoe-
mark may be dependent on the wearer. Evett et al.
(1998) consider the rarity of the observed features
to be of two parts, one relevant to the manufac-
turing features and one relevant to the acquired
features. Also, assuming that the shoemark has
not been left for an innocent reason enables p
to be set equal to zero. Then Pr(Er ∣ Hp,B,Ec) =
𝑤pmrk + 𝛾(1 −𝑤) and Pr(Er ∣ Hp, B̄,Ec) = Pr(Er ∣
Hd,B,Ec) = Pr(Er ∣ Hd, B̄,Ec) = 𝛾 . Then

V =
r{𝑤pmrk + 𝛾(1 −𝑤)} + 𝛾(1 − r)

𝛾r + 𝛾(1 − r)

=
r𝑤pmrk − r𝑤𝛾 + 𝛾

𝛾

= (1 − r𝑤) + r𝑤
𝛾

pmrk. (6.39)

Numerical examples are given in Evett et al.
(1998).

An alternative way to express (6.39) is

V = r𝑤VmVa + (1 − r𝑤),

where Vm and Va represent the value of the
evidence under source-level propositions for
observable aspects of the shoemark related to
manufacturing (m) and acquired (a) features,
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respectively. So,

Pr(Er ∣ Ec,A) = Pr(Era,Erm ∣ Ec,A)
= Pr(Era ∣ Erm,Ec,A)Pr(Erm ∣ Ec,A).

These conditional probabilities represent the
denominator of Va and Vm, respectively.

In this likelihood ratio development, it is
important to devote some consideration to the
probabilities r and p. The former, r, is the proba-
bility that the crime stain came from one of the
offenders. Stoney (1991a) has referred to this
probability as the relevance of the crime stain. The
second probability, p, is the probability that the
crime stain came from the PoI, given the PoI did
not commit the crime and that the crime stain did
not come from any of the offenders. Stated oth-
erwise, this is the probability that the crime stain
was left innocently by someone who is now a PoI.

Evett (1993a) suggested that determination of
the probabilities such as those earlier may be the
province of the court and that it is necessary to
establish the conditions under which the scientific
evidence can be of any guidance to the court.
Evett suggested an examination of the sensitivity
of V to values of p and of r. As an illustration, in
a case involving a biological stain, the number of
offenders k is taken to be 4 and the factors 𝛾 and 𝛾 ′

are set to 0.001. Then

V = r + 0.004
4[p(1 − r) + 0.001(1 − p + pr)]

,
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Figure 6.1 Variation in logarithm of the value of evi-
dence with variation in the probability that the evidence
had been left innocently and variation in the relevance.]
Variation in the logarithm to base 10 of the likelihood
ratio V of the evidence with p, the probability that the
stain would have been left by the PoI even though they
were innocent of the offence, for various values of r, the
probability that the stain would have been left by one of
the offenders. The number of offenders, k, equals 4 and
the population proportion of the corresponding features
in the mark, 𝛾 , is 0.001. Source: Adapted from Evett
(1993a) with the inclusion of a curve for r = 0. The dot-
ted line at log(V) = 0 indicates where the evidence has
the same probability under both propositions.

where r + (k − r)𝛾 has been approximated by
r + k𝛾 . The variation of V with r and p is shown in
Figure 6.1.

The graph has been drawn with a logarith-
mic scale for V. This is plotted against p for
r = 1, 0.75, 0.50, 0.25, and 0. It is useful
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to consider individually the terms within the
expression for V for the case in which there is one
bloodstain of profile Γ and associated population
proportion 𝛾 :

• The number of offenders, k: this factor is
assumed to be well known. Note, however,
that uncertainty may accompany k, similarly
to DNA mixtures where the number of con-
tributors to the mixture is not agreed by the
parties. An approach to deal with uncertainty
about the number of contributors is presented
in Biedermann et al. (2011d).

• Relevance, r: the probability that the crime stain
came from one of the offenders. Here, factors to
be considered include location, abundance, and
apparent freshness of the recovered blood.

• Innocent deposit, p: the probability that the
crime stain came from the PoI, given that the
PoI did not commit the crime and given that
the crime stain did not come from any of the k
offenders.

Values for the probabilities of relevance and
innocent deposit may be retained by the scientist,
in agreement with the parties, but some argue the
values should be decided by the courts. In general,
V decreases as r decreases or as p increases.

For r = 1, meaning that it is certain that the
crime stain came from one of the offenders,

V = 1.004
0.004

,
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= 251,

log10(V) = 2.40.

For r ≠ 1, V is very sensitive to p. If there is a
non-zero probability that the crime stain did not
come from one of the offenders, then the probabil-
ity of innocent deposit has a considerable influence
on V. For example, if r = 0.25, so that there is
a small probability the crime stain came from
one of the offenders, V becomes less than 1 for
p > 0.083 ≃ 1∕12. Thus, if p > 1∕12 (and there
is a small probability that the crime stain came
from the PoI, conditional on everything else), then
the evidence supports the proposition that some
other person is one of the offenders rather than
the proposition that the PoI is one of the offenders.

6.3.2 Two Stains, One Offender

The two-trace bloodstain problem of Section 6.3.2
has been modified by Stoney (1994) to the case
where there are two bloodstains, of profile Γ1
and Γ2, respectively. There is only one offender,
however, rather than two as in Section 6.3.2, who
left one of the bloodstains, but it is not known
which one. A PoI is found who is of group Γ1.
Relevance is applicable in this context since it
provides a measure of the belief (probability) in
the proposition that the stain at the crime scene
that comes from the offender is the one that is of
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the same group as the PoI. The two competing
propositions to be considered are as follows:

Hp: the PoI is the offender;

Hd: an unknown person is the offender.

Let r be the probability that the stain (Γ1) with
corresponding profile was from the offender. It
has been assumed that one of the stains is from
the offender so there is a probability (1 − r) that
it is the other stain (Γ2) that is from the offender.
Suppose Hp is true. Then, using association
propositions, the following may be considered:

Pr(PoI’s profile and crime profile

correspond in typeΓ1

∣ stainΓ1 was from the offender) = 1.

Pr(stainΓ1was from the offender) = r.

Pr(PoI’s profile and crime profile

correspond in typeΓ1

∣ stainΓ2 was from the offender) = 0.

Pr(stainΓ2was from the offender) = (1 − r).

Thus Pr(correspondence in type Γ1 ∣ Hp) = r.
Suppose next that Hd is true, so there is no need

to develop the denominator of V using association
propositions. The probability of a correspondence
in Γ1 is the probability that a randomly selected
person is of profile Γ1. This is the population
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proportion 𝛾1. The likelihood ratio is then

V = r∕𝛾1.

If the two stains have equal probabilities of
being left by the offender, so that r = 1∕2, then the
likelihood ratio equal 1∕2𝛾1. This is numerically
equivalent to the figure 1∕2𝛾1 derived by Evett
(1987b) and quoted in (6.3) for a problem with
two stains, one left by each of the two offenders,
and a single PoI whose profile corresponds to
that of one of the stains and whose population
proportion is 𝛾1. The derivation, however, is very
different.

Stoney (1994) continued the development for
the case where neither stain may be relevant but
there is still a single offender. The PoI has profile
Γ1. Let there be the following probabilities

Pr(The stain of profileΓ1 is from

the offender) = r1,

Pr(The stain of profileΓ2 is from

the offender) = r2,

Pr(Neither stain is from

the offender) = 1 − r1 − r2.

If Hp is true (i.e. the PoI is the offender), there are
three components to consider:

• Stain of profile Γ1 is from the offender. Corre-
sponding profiles are observed with probability
1 × r1.
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• Stain of profile Γ2 is from the offender. The prob-
ability of corresponding profiles is zero since the
PoI is assumed to be the offender and only one
offender is assumed (0 × r2).

• Neither stain is from the offender. This event
has probability (1 − r1 − r2) and if it is true
there is a probability 𝛾1 of a correspondence
between the PoI’s profile (Γ1) and the crime
stain of the same profile. The probability of the
combination of these events is (1 − r1 − r2)𝛾1.

These three components are mutually exclusive
and the probability in the numerator of the likeli-
hood ratio is the sum of these three probabilities:
r1 + (1 − r1 − r2)𝛾1.

If Hd is true (i.e. the PoI is not the offender), the
probability of a correspondence is 𝛾1, as before.

The likelihood ratio is then

V =
r1 + (1 − r1 − r2)𝛾1

𝛾1
.

Certain special cases can be distinguished. As
r1 and r2 tend to zero, which implies that neither
stain is relevant, then the likelihood ratio tends
to 1. A likelihood ratio of 1 provides no support
for either proposition, a result in this case that is
entirely in agreement with the information that
neither stain is relevant.

For r1 = r2 = 1∕2, the value of the evidence
becomes V = 1∕2𝛾1. For r1 = 1, V equals 1∕𝛾1. As
r2 → 1, then r1 → 0 and V → 0. All of these are
perfectly reasonable results.
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6.3.3 Paternity and The Combination
of Likelihood Ratios

A special situation in which offence level propo-
sitions apply, in particular in civil proceedings,
is that of paternity cases. At trial the plaintiff ’s
proposition will generally be the allegation of a
woman that the PoI is the father of her child. The
alternative proposition, that of the PoI, is that he
is not the father of the child. Thus, in paternity
cases, the likelihood ratio is used to compare two
probabilities, as in the criminal context. More
formally, the propositions of interest are

Hp: the alleged father is the genetical father,

Hd: an unknown person is the genetical
father.

The probability of seeing the child’s non-maternal
alleles given they were passed by the alleged father
is compared with the probability of seeing those
alleles if they came from an unknown man. Thus
the value V of the evidence is

V =

Probability of the alleles given they
were passed by the alleged father

Probability of the alleles given they
were passed by a unknown man

.

This ratio has also been called the paternity index
(PI) by Salmon and Salmon (1980). The example
discussed here is an example of the use of the
likelihood ratio to include more than one item of
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Table 6.9 Allelic configuration of three individuals, a
child, a mother, and an alleged father, regarding two
DNA markers in a hypothetical case of disputed
paternity.

Genotypes

Evidence Locus Child Mother Alleged
father

E1 Penta D 13–13 9–13 11–13
E2 VWA 18–19 16–19 18–18

evidence through consideration of more than one
DNA marker.

For illustration, consider two items of evidence
E1 and E2, referring to the two genetic markers
(loci) Penta D and VWA.4 DNA profiling results are
available for the child, the mother and the alleged
father as shown in Table 6.9.

The likelihood ratio, or paternity index PI, for
Ei, i = 1,2, is

Pr(Ei ∣ Hp)
Pr(Ei ∣ Hd)

.

Let GCi,GMi, and GAFi denote the genotypes of the
child C, the mother M, and the alleged father AF,
respectively, for evidence Ei. Let AMi and APi denote
the maternal and paternal alleles for evidence Ei.
Let 𝛾i,j be the population proportion of allele j for
evidence Ei.

4Scientists generally use commercial kits offering, for example,
results for 16 markers simultaneously.
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For E1, the numerator of the likelihood ratio,
Pr(GC1 ∣ GM1,GAF1,Hp), is 1∕4. This is because
parents with genotypes 9–13 and 11–13, respec-
tively, will have a child with genotype 13–13 with
probability 1∕4. The denominator is given by:

Pr(GC1 ∣ GM1,GAF1,Hd)
= Pr(AM1 ∣ GM1) × Pr(AP1 ∣ Hd)
= Pr(AM1 = 13 ∣ GM1 = 9–13)
× Pr(AP1 = 13 ∣ Hd)

= (1∕2) × 𝛾1,13.

The likelihood ratio for Penta D is then 1∕(2𝛾1,13).
For E2, the numerator of the likelihood ratio,

Pr(GC2 ∣ GM2,GAF2,Hp), equals 1∕2, because a
couple with genotypes 16–19 and 18–18, respec-
tively, will have a child with genotype 18–19 with
probability 1∕2. The denominator is

Pr(GC2 ∣ GM2,GAF2,Hd)
= Pr(AM2 ∣ GM2) × Pr(AP2 ∣ Hd)
= Pr(AM2 = 19 ∣ GM2 = 16 − 19)
× Pr(AP2 = 18 ∣ Hd)

= (1∕2) × 𝛾2,18.

The likelihood ratio for VWA is then 1∕𝛾2,18.
Under an assumption of independence (see

Section 6.1.7 for a comment on this aspect), the
likelihood ratio for the combination (E1,E2) of
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evidence is

Pr(E1,E2 ∣ Hp)
Pr(E1,E2 ∣ Hd)

=
Pr(E1 ∣ Hp)
Pr(E1 ∣ Hd)

×
Pr(E2 ∣ Hp)
Pr(E2 ∣ Hd)

= 1
2𝛾1,13

× 1
𝛾2,18

.

Assume that 𝛾1,13 = 0.206 and 𝛾2,18 = 0.227 in a
given relevant population. Then 1∕(2𝛾1,13𝛾2,18) =
10.7 ≃ 11. Thus, the evidence of the two marker
systems is approximately 11 times more probable
given the proposition that the alleged father is the
true father than the proposition that an unknown
male is the father. From Table 2.8 this represents
moderate support for the proposition that the
alleged father is the true father. It is this ratio that
is known as the paternity index.

If the assumption of independence is not
accepted and subpopulation effects have to be con-
sidered, the likelihood ratio takes a different form.
For illustration, consider the second marker and
the probability Pr(GC2 ∣ GM2,GAF2,Hd). Here, Pr
(AP2 ∣ GM2,GAF2,Hd) cannot be reduced to Pr
(AP2 ∣ Hd), because the observed alleles should
be taken into account. Assume that the mother,
the alleged father and the true father all belong
to the same population, then the mother’s and
the father’s alleles are conditioning the proba-
bility of the true father’s alleles: Pr(AP2 = 18 ∣
GM2 = 16 − 19,GAF2 = 18 − 18,Hd). Paternal
allele 18 is therefore conditioned by the previous
observation of alleles 16,19, and 18. Using the



�

� �

�

760 Evidence and Propositions: Practice

formula of Balding and Nichols (1994) (6.13)
for the probability that amongst n alleles drawn
randomly from the subpopulation, the first ni are
of a given type of interest and the following n − ni

are of other types, the paternity index, for the two
markers, becomes

PI = 1 + 3𝜃
2[2𝜃 + (1 − 𝜃)𝛾1,13]

× 1 + 3𝜃
2𝜃 + (1 − 𝜃)𝛾2,18

,

where 𝜃 represents the co-ancestry coefficient.
Consider another case and, again, for the sake of

illustration, marker 2 only. Assume that only the
father and the alleged father belong to the same
subpopulation, but not the mother. The PI will
change again due to the fact that only the alleles
of the alleged father are used as a conditioning, i.e.
Pr(AP2 = 18 ∣ GAF2 = 18 − 18,Hd). The PI thus
becomes

PI = 1 + 𝜃

2𝜃 + (1 − 𝜃)𝛾2,18
.

Note that generally forensic scientists use
formulae for calculating the probability of DNA
profiles for two related individuals under an
assumption of independence of genes. Balding and
Nichols (1995) consider paternity indices for the
case where the mother, alleged father and alterna-
tive father all belong to the same sub-population
and values of the allele proportions are available
only for the total (general) population. Pater-
nity formulae considering parentage or other
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alleged relationships, when only two individuals
are analysed (i.e. alleged parent and child), are
proposed by Ayres (2000) and Lee et al. (2000).
The formulae incorporate the co-ancestry coeffi-
cient, FST. The effect of incorporating FST into the
equations is, in most situations, to decrease the
paternity index for parentage. In fact, uncertainty
arises from the fact that corresponding profiles
could be due to allele sharing between the alleged
father and the set of alternatives as specified by Hd.

Formulae for the PI have also been developed
for some of the most often encountered alleged
relationships between two individuals, such as
alleged full siblings and half-siblings versus unre-
lated individuals (Fung et al., 2003). Mutation
probabilities have also been incorporated into like-
lihood ratios. For a discussion on mutation rates
and their assignment (see Dawid et al. (2001),
Vicard and Dawid (2003), Vicard et al. (2008),
Slooten and Ricciardi (2013)).

Moreover, it has been shown that it is important
to allow for the fact that a close relative of the
alleged father may be the true father, in addition to
the usual alternative of an unrelated man. Formu-
lae to allow for this are given in Lee et al. (1999).

Likelihood ratio equations have also been devel-
oped for cases in which additional family members
are analysed or the alleged father is deceased
(Evett and Weir, 1998). Mortera et al. (2016) and
Green and Mortera (2017) considered situations
involving DNA mixtures. A general formula
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for a likelihood ratio that is appropriate for the
evaluation of many potential relationships, based
on two DNA profiles, is presented in Brenner and
Weir (2003). Fung (2003) proposed a comput-
erised approach for the calculation of likelihood
ratios. Bayesian networks have been developed
and proposed for situations involving additional
family typings, absence of members of a family
or complicated pedigrees (e.g. Corradi et al.,
2003; Cavallini and Corradi, 2006; Hepler and
Weir, 2008; Taroni et al., 2014a). Mathematical
solutions are given in Fung and Hu (2008) and
Buckleton et al. (2016a,b,d).

6.3.4 Probability of Paternity

In the context of paternity, it is appropriate to
make a digression from consideration solely of
the likelihood ratio and to consider the (posterior)
probability that the alleged father is the true
father; i.e. the probability that Hp is true, known
as the probability of paternity.

Consider the two items of evidence, E1 and E2
of Table 6.9. First, the odds in favour of Hp, given
E1 may be written, using the odds form of Bayes’
theorem (2.7), as

Pr(Hp ∣ E1)
Pr(Hd ∣ E1)

=
Pr(E1 ∣ Hp)
Pr(E1 ∣ Hd)

×
Pr(Hp)
Pr(Hd)

and
Pr(Hd ∣ E1) = 1 − Pr(Hp ∣ E1)
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so

Pr(Hp ∣ E1) =
Pr(E1 ∣ Hp)
Pr(E1 ∣ Hd)

×
Pr(Hp)
Pr(Hd)

× {1 − Pr(Hp ∣ E1)}

and

Pr(Hp ∣ E1)
{

1 +
Pr(E1 ∣ Hp)
Pr(E1 ∣ Hd)

×
Pr(Hp)
Pr(Hd)

}

=
Pr(E1 ∣ Hp)
Pr(E1 ∣ Hd)

×
Pr(Hp)
Pr(Hd)

,

so that

Pr(Hp ∣ E1) =
{

1 +
Pr(E1 ∣ Hd)
Pr(E1 ∣ Hp)

×
Pr(Hd)
Pr(Hp)

}−1

,

(6.40)
a result analogous to (3.6).

Suppose that the alleged father and only one
other man, of unknown genetical type, could be
the true father and that, initially, each of these two
possibilities is considered equally probable (Essen-
Möller, 1938). Then Pr(Hp) = Pr(Hd) = 0.5. More
generally, note however that the assignment of a
probability of 0.5 is not a necessary consequence
of the assumption of there being only two possible
fathers. It is perfectly feasible to entertain a prior
probability of 0.5 for the alleged father being the
true father, given the background information of
the case at hand, even when there is more than
one alternative father. Using again the example
introduced in Section 6.3.3, the posterior proba-
bility of the alleged father being the true father is
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obtained as follows:

Pr(Hp ∣ E1) = 1∕(1 + 2𝛾1,13) = 1∕(1 + 0.412)
= 0.708.

Now, second, include E2. The posterior odds
Pr(Hp ∣ E1)∕Pr(Hd ∣ E1) in favour of Hp, given E1,
replace the prior odds Pr(Hp)∕Pr(Hd) (5.22) and
the posterior probability for Hp, given E1 and E2, is
given by

Pr(Hp ∣ E1,E2)

=
{

1 +
Pr(Hd ∣ E1)
Pr(Hp ∣ E1)

×
Pr(E2 ∣ Hd)
Pr(E2 ∣ Hp)

}−1

=
(

1 + 0.292
0.708

×
0.227∕2

1∕2

)−1

= 0.914, (6.41)

where the assumption of the independence of E1
and E2 has been made just to simplify the nota-
tion. The probability that the alleged father is the
true father was, initially, 0.5. After presentation
of the Penta D evidence, E1, it became 0.708.
After the presentation of the VWA evidence, E2, it
became 0.914. Note that this posterior probability
is just the ratio of PI to (1 + PI), i.e. in the case
here, 10.7∕11.7 = 0.914.

Note that it is important to properly define the
space of propositions in order to avoid breaches of
the laws of probability (Berry, 1991; Allen et al.,
1995). For example, if there are two fathers, both
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of type (11 − 13,18 − 18), it is not appropriate
then to calculate a posterior probability by con-
sidering the alleged father 1 versus an unrelated
male, and then another posterior probability by
considering alleged father 2 versus an unrelated
male. This would lead, for each of the two alleged
fathers, to a posterior probability of 0.914 of being
the true father. The probability of one or other
being the true father would then be the sum of
these two probabilities, i.e. 1.828. However, this
is greater than 1 and breaches the first law of
probability (1.6). Clearly, thus, if there is more
than one alleged father, they must be considered
within the same space of propositions, such as
alleged father 1 is the true father versus alleged
father 2 is the genetical father including, if nec-
essary, also the proposition that an unrelated
male is the true father. Further discussion of such
intricacies are given in Ellman and Kaye (1979),
Kaye (1989), Allen et al. (1995), and Taroni and
Aitken (1998a). This situation involves multiple
propositions and is approached as presented in
Section 6.1.6.2.

Concerning prior probability assignment, note
that, for a long time, some Courts have been aware
of the unrealistic nature of default assumptions,
such as equal prior probabilities. The following is
an example from Re the Paternity of M.J.B. : T.A.T.
(1988):

Leaving the choice of the prior odds to the legal decision
maker is preferable to presenting or using an unarticulated
prior probability.



�

� �

�

766 Evidence and Propositions: Practice

Table 6.10 Posterior probabilities of paternity for
various prior probabilities for evidence for alleged
father, E1 = 11–13 and E2 = 18–18.

Pr(Hp) 0.5 0.25 0.1 0.01

Pr(Hp ∣ E1) 0.708 0.447 0.195 0.024
Pr(Hp ∣ E1,E2) 0.914 0.781 0.516 0.097

The effect on the posterior probability of altering
the prior probability can be determined from
(6.40) and (6.41). Some sample results are given
in Table 6.10.

This idea has been repeatedly expressed, for
example, in the case State of New Jersey vs. J.M.
Spann (1993):

The expert’s testimony should be required to include an
explanation to the jury of what the probability of paternity
would be for a varying range of such prior probabilities
running from 0.1 to 0.9.

The International Society of Forensic Genetics, in
its recommendations on biostatistics in paternity
testing, emphasises (Gjertson et al., 2007):

In addition to the combined PI, test reports shall also
contain the individual PI’s for each genetic system reported
and the racial/ethnic backgrounds used by the laboratory
for calculations. If the probability of paternity (W) is
reported, then the prior probability assumption used to
calculate W shall be stated. Test reports shall include
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statements of assumptions, validation and computational
techniques whenever alternative biostatistical methods to
PI are used. (p. 228)

A general discussion about prior probabilities, in
particular equal prior probabilities, can be found
in Biedermann et al. (2007).

The probability Pr(Hp ∣ E1,E2) for independent
E1 and E2 may be written as
{

1 +
Pr(E1 ∣ Hd)
Pr(E1 ∣ Hp)

×
Pr(E2 ∣ Hd)
Pr(E2 ∣ Hp)

×
Pr(Hd)
Pr(Hp)

}−1

.

and if Pr(Hd)and Pr(Hp)are taken equal to 0.5 then

Pr(Hp ∣ E1,E2)

=
{

1 +
Pr(E1 ∣ Hd)
Pr(E1 ∣ Hp)

×
Pr(E2 ∣ Hd)
Pr(E2 ∣ Hp)

}−1

.

In general, for n independent DNA markers, rep-
resenting evidence E1,E2, . . . ,En, with Pr(Hp) =
Pr(Hd),

Pr(Hp ∣ E1, . . . ,En) =

{
1 +

n∏
i=1

Pr(Ei ∣ Hd)
Pr(Ei ∣ Hp)

}−1

where
∏n

i=1 Pr(Ei ∣ Hd)∕Pr(Ei ∣ Hp) is the prod-
uct of the reciprocals of the n likelihood ratios
Pr(Ei ∣ Hp)∕Pr(Ei ∣ Hd). This expression is called
the plausibility of paternity (Berry and Geisser,



�

� �

�

768 Evidence and Propositions: Practice

1986). Notice that it depends on the assump-
tion Pr(Hp) = Pr(Hd) = 0.5, which is a default
assumption and unrealistic in many cases. The
assumption that Pr(Hp) equals Pr(Hd) may easily
be dispensed with to give the following result

Pr(Hp ∣ E1, . . . ,En)

=

{
1 +

Pr(Hd)
Pr(Hp)

n∏
i=1

Pr(Ei ∣ Hd)
Pr(Ei ∣ Hp)

}−1

.

The plausibility of paternity is also sometimes
referred to as the likelihood of paternity (Hummel,
1971, 1983) to provide a verbal scale, given here
in Table 6.11. Notice that this verbal scale is one
for probabilities (on the propositions). Hummel
(1983) provided other values for the ranges of
plausibility of paternity and corresponding verbal
equivalent. The Hummel (1971) verbal scale has
been adopted by Swiss jurisprudence. Note also
that the verbal scale provided by Table 2.8 is for
likelihood ratios.

6.3.5 Absence of Evidence for Offence
Level Propositions

This is an example where a Bayesian network
structure can be elicited from an existing like-
lihood ratio formula (Taroni et al., 2004). The
problem of interest is missing evidence, for which
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Table 6.11 Likelihood of paternity.

Plausibility of paternity Likelihood of paternity

0.9980–0.9990 Practically proved
0.9910–0.9979 Extremely likely
0.9500–0.9909 Very likely
0.9000–0.9499 Likely
0.8000–0.8999 Undecided
0.8000 Not useful

Source: Based on Hummel (1971).

Lindley and Eggleston (1983) have provided a
general Bayesian formula. According to Schum
(1994) (as discussed in Section 6.2.6), evidence
is called missing if it is expected, but is neither
found nor produced on request. The example
presented in Lindley and Eggleston (1983) relates
to a collision between two motor cars, described
as follows:

The plaintiff sues the defendant, claiming that it was his car
that collided with the plaintiff ’s. The evidence (...) is weak,
and the defendant relies on the fact that, his car being red,
the plaintiff has produced no evidence that any paint, red or
otherwise, was found on the plaintiff ’s car after the colli-
sion. (p. 87)

A likelihood ratio to assist the court in the exam-
ination of the effect that the evidence is missing
(variable M) has on the truth or otherwise of
the main proposition of interest (variable H) is
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(Lindley and Eggleston, 1983):

Pr(M ∣ Hp)
Pr(M ∣ Hd)

=

Pr(M ∣ E1)Pr(E1 ∣ Hp)
+Pr(M ∣ E2)Pr(E2 ∣ Hp)
+Pr(M ∣ E3)Pr(E3 ∣ Hp)

Pr(M ∣ E1)Pr(E1 ∣ Hd)
+Pr(M ∣ E2)Pr(E2 ∣ Hd)
+Pr(M ∣ E3)Pr(E3 ∣ Hd)

.

(6.42)
The variable E designates the form of the evidence
that is missing, defined as follows: there was red
paint on the plaintiff ’s car (E1), there was paint on
the plaintiff ’s car, but it was not red (E2), there was
no paint on the plaintiff ’s car (E3).

The construction of a Bayesian network based
upon an existing formula has the advantage
that the number and definition of the nodes is
already given. From the above example on missing
evidence, three variables are of interest.

(1) The variable H represents the event that the
defendant committed the offence for which he
has been charged. This event may either be
true of false, represented by the two states Hp

and Hd.

(2) The variable M represents the event that
evidence is missing. This variable can take
the value true or false, denoted M and M̄,
respectively.

(3) The variable E designates the form of the evi-
dence that is missing, with three states E1, E2,
and E3 as defined above.
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In order to find a graphical representation that
appropriately reflects the conditional dependen-
cies as specified by the likelihood ratio displayed
above (6.42), it is helpful to follow a two-stage
approach. Lindley and Eggleston (1983) assert
that their formula (6.42) contains all the rele-
vant considerations for the paint case, notably
conditional probabilities for:

• the various forms of the evidence given that the
prosecution hypothesis Hp is true and given the
defence hypothesis Hd is true,

• the evidence being missing were it E1, E2, or E3,
respectively.

Consider the first of the two points mentioned ear-
lier. Accepting that the probability of the evidence
is conditioned on the truth state of the variable H
means, graphically, that H is chosen as a parental
variable for E, as shown in Figure 6.2a. One can
proceed similarly for the second of the above two
points. If the event that evidence is missing (M)
is conditioned on the form the missing evidence
can take (E), then E can be chosen as a parental
variable for M (see Figure 6.2b). Next, since the
variable E shown in Figure 6.2a is the same as in
Figure 6.2b, the two network fragments combine
to give the Bayesian network structure shown in
Figure 6.2c.

When searching for a sound structure for a
Bayesian network, based on the three variables M,
E, and H, it is legitimate to ask whether there could
be an arrow pointing from H to M. Consideration
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M

H

E

E

M

H

E

(a) (b) (c)

Figure 6.2 Bayesian network fragments for the prob-
lem of missing evidence, representing the relation
between (a) the variables E and H, and (b) the variables
M and E respectively; (c) Bayesian network for missing
evidence.

of the proposed network structure as shown in
Figure 6.2c indicates that there should be none.
As with any other graphical element employed
in Bayesian network structures, the absence of
an arrow must be justified as well. In the current
example, the absence of a directed edge between H
and M can be justified by the argument given by
Lindley and Eggleston (1983), who assumed that

( . . . ) were the form of the missing evidence known, then
the view of the defendant’s guilt would not be altered by
knowing that this evidence had, or had not, been produced
in court. (p. 90)

Stated otherwise ‘[...] the actual evidence sup-
presses any importance being attached to its
omission’ (p. 91). In formal notation, this corre-
sponds to the following: Pr(Hp ∣ E,M) = Pr(Hp ∣
E), where E may take any of its three possible
states E1, E2, or E3, and M either be M or M̄. The
proposed Bayesian network correctly encodes this
property through its serial connection, where H
and M are independent conditional on knowing
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E. Practically, this means that the transmission of
evidence between the nodes H and M is blocked
whenever E is instantiated. This is also sometimes
expressed as the node E ‘screening off’ M from H,
which is an example of d-separation.

The main aim of the current example is to
discuss, using graphical models, the logical struc-
ture of the proposed likelihood ratio for missing
evidence. Thus, the numerical specification of
the Bayesian network for the current example is
not covered here. However, the implementation
of the Bayesian network in a suitable Bayesian
network software would provide further means
to validate the proposed network structure. In
particular, the effect of different probabilities for
the suppression of favourable and unfavourable
evidence for the defendant on the odds of the
offence for which he has been charged can be
examined and compared with the indications
given in Lindley and Eggleston (1983).

6.3.6 A Note on Relevance and Offence
Level Propositions

Relevance is a factor to be taken into account
when assessing findings given offence level propo-
sitions, but not when considering activity level
propositions. Let 𝛾 be the population proportion
for an analytical trait or feature. Under offence
level propositions, the value of the evidence
cannot be greater than 1∕𝛾 (if k = 1, r = 1 and p =
0). It may be reduced below this value because
relevance, expressed as a probability, may be less
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than 1 and the probability the crime stain comes
from the PoI given that they did not commit the
crime and the crime stain did not come from the
offender(s) is not equal to 0. Under activity level
propositions, the value of the evidence can be
greater than 1∕𝛾 . Here, factors such as transfer
and background presence have to be considered.

However, under offence level propositions and
assuming that the PoI has to be present to commit
the crime, then the activity level does not need to
be considered. Consider two propositions, Hp1 that
the PoI committed the crime (offence level) and
Hp2 that the PoI was present at the crime scene
(activity level). Then

Pr(E ∣ Hp1,Hp2) = Pr(E ∣ Hp1).

6.4 SUMMARY

The main results of the previous sections may use-
fully be summarised.

6.4.1 Stain Known to Have Been Left
by Offenders: Source-Level
Propositions

6.4.1.1 One Stain Known to Have Come
from One Offender

The profile of the crime stain and the profile of the
PoI is Γ. The proportion of the relevant population
that has type Γ is 𝛾 . The propositions to be com-
pared are
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Hp: the stain at the crime scene came from the
PoI;

Hd: the stain at the crime scene came from an
unknown person.

Then
V = 1

𝛾
.

6.4.1.2 Two Stains, One from Each of Two
Offenders

There are two crime stains, of profiles Γ1 and Γ2,
with associated population proportions 𝛾1 and 𝛾2.
There is one PoI with profile Γ1. The propositions
to be compared are

Hp: the crime stains came from the PoI and one
other person;

Hd: the crime stains came from two unknown
people.

Then
V = 1

2𝛾1
.

6.4.1.3 Multiple (n) Stains, One from
Each of n Offenders

There is one PoI with profileΓ1 and associated with
population proportion 𝛾1. The propositions to be
compared are

Hp: the crime stains came from the PoI and (n −
1) other people;

Hd: the crime stains came from n unknown
people.
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Then
V = 1

n𝛾1
.

6.4.1.4 Multiple (n) Stains, k Different
Profiles, k Different Offenders

There are si stains of type i (i = 1, . . . , k;
∑k

i=1 si =
n). There is one PoI with profile Γ1 and associated
population proportion 𝛾1. The propositions to be
compared are

Hp: the crime stains came from the PoI and (k −
1) other people;

Hd: the crime stains came from k unknown peo-
ple.

Then
V = 1(

n
s1

)
𝛾

s1

1

.

6.4.1.5 Multiple (n) Stains, k Different
Profiles, m Offenders

This situation may arise where there are limited
analytical results. There are mi offenders with
profile i (i = 1, . . . , k;

∑k
i=1 mi = m). There are

sij stains belonging to the jth offender for the
ith profile. There is one PoI with blood group
Γ1 and associated population proportion 𝛾1.
Assume without loss of generality this is the first
offender with the first profile. The propositions to
be compared are
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Hp: the crime stains from the PoI and (m − 1)
other people;

Hd: the crime stains came from m other people.

Then
V = 1(

n
s11

)
𝛾

s11

1

.

6.4.2 Material Known to Have Been (or
Not to Have Been) Left
by Offenders: Activity-Level
Propositions

6.4.2.1 Material Left by The Offender

In cases involving an activity, the scientist may
encounter a situation where the transfer material
has been left by the offender. The propositions to
be compared are

Hp: the PoI assaulted the victim;

Hd: an unknown person assaulted the victim.

Then

V =
b0tn + bg,m𝛾t0

b0𝛾t′n + bg,m𝛾t′0
.

6.4.2.2 Material Not Left by The Offender

When the recovered material has not been left by
the offender, the likelihood ratio is reduced to

V =
b0tn + bg,m𝛾t0

bg,m𝛾
,
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6.4.2.3 Innocent Transfer of Material

In cases where an innocent transfer can be
assumed, the likelihood ratio is

V =
b0tc + b1,m𝛾[(1 − t)c + (1 − c)]
b0sd + b1,m𝛾[(1 − s)d + (1 − d)]

,

where c is the probability the victim has been in
contact with the PoI given proposition Hp, d is the
probability the PoI could have been in contact with
the victim for reasons other than the assault, and s
represents the transfer probability given the alter-
native proposition Hd; see Section 5.3.2.3.

6.4.2.4 Material Left by The Offender
(Uncertainty About The True Source)

In situations involving material, which is not
unique to one source (such as an individual’s
DNA) but can be shared as fibres from pullovers,
shoeprints, and so on, there is uncertainty
about the assumed known source. Therefore, the
likelihood ratio can be expressed as

V =
b0tn𝛿 + bg,m𝛾[t0𝛿 + t′

′

0](1 − 𝛿)]
b0𝛾t′n + bg,m𝛾t′0

, (6.43)

where 𝛿 refers to [𝑤 + 𝛾 ′(1 −𝑤)], 𝑤 specifies the
probability that the PoI wore the known source,
and t′′0 represents the probability of no transfer
from the true source; see (5.9).
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6.4.3 Stain May Not Have Been Left
by Offenders: Offence-Level
Propositions

6.4.3.1 One Stain, k Offenders

Relevance is defined as the probability that a
crime stain came from one of the k offenders. This
probability is denoted r. The propositions to be
compared are

Hp: the PoI is one of the k offenders;

Hd: the PoI is not one of the k offenders.

The stain is of profile Γ. It may have been left
by an offender. There are k offenders. The PoI is
of profile Γ. The applicable population proportion
for this profile is 𝛾 , referring to the population
from which the criminals may be thought to have
come. The population proportion is 𝛾 ′ amongst
the people who may have left the stain that may
not be the same population as that from which the
criminals may be thought to come. For example,
there may be eyewitness evidence that the crimi-
nals are from one ethnic group whereas the people
normally associated with the crime scene may be
from another. The probability that the stain would
have been left by the PoI even though they were
innocent of the offence is p.

V =
[r{1 + (k − 1)𝛾}∕k] + {𝛾 ′(1 − r)}

𝛾r + {p + (1 − p)𝛾 ′}(1 − r)
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= r{1 + (k − 1)𝛾} + k𝛾 ′(1 − r)
k[𝛾r + {p + (1 − p)𝛾 ′}(1 − r)]

.

In some situations, the likelihood ratio reduces
to simpler forms: For example, if 𝛾 = 𝛾 ′ and p = 0
then

V = r + (k − r)𝛾
k𝛾

.

If, also, r = 1,

V = 1 + (k − 1)𝛾
k𝛾

.

Compare this with the case in which there are n
stains (rather than 1) and the number (k) of offend-
ers equals the number of stains (n), with one stain
coming from each of n offenders. Then V = 1∕n𝛾 =
1∕k𝛾 .

If there is one stain and k offenders

V = 1 + (k − 1)𝛾
k𝛾

= 1 + 1
k𝛾

− 1
k
,

and an increase of the value of the likelihood ratio
is observed compared with the situation n = k
where n ≠ 1. However, if 𝛾 is small, V becomes,
independently of the scenario, approximately
equal to 1∕k𝛾 .

If 𝛾 = 𝛾 ′ and p ≠ 0 then

V =
[r{1 + (k − 1)𝛾}∕k] + {𝛾(1 − r)}

[𝛾r + {p + (1 − p)𝛾}(1 − r)]
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= r + (k − r)𝛾
k[p(1 − r) + 𝛾{r + (1 − p)(1 − r)}]

= r + (k − r)𝛾
k[p(1 − r) + 𝛾(1 − p + pr)]

.

6.4.3.2 Two Stains, One of Which is
Relevant, One Offender

The offender left one of the bloodstains but it is
not known which one. The propositions to be
compared are

Hp: the PoI is the offender;

Hd: an unknown person is the offender.

A PoI is of profile Γ1, with associated population
proportion 𝛾1. Let r be the probability that the
crime stain that comes from the offender and
corresponds to the group of the PoI is from the PoI.
Then (1 − r) is the probability that the crime stain
which does not correspond to the profile of the PoI
is from the offender. Then

V = r
𝛾1
.

6.4.3.3 Two Stains, Neither of Which May
Be Relevant, One Offender

The propositions to be compared are

Hp: the PoI is the offender;

Hd: an unknown person is the offender.

A PoI is of profile Γ1, with associated population
proportion 𝛾1. Let r1 and r2 be the probabilities that
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the stain of profile Γ1 and the stain of profile Γ2 is
from the offender, respectively. Then (1 − r1 − r2)
is the probability that neither stain is from the
offender and

V =
r1 + (1 − r1 − r2)𝛾1

𝛾1
.
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7

Data Analysis

7.1 INTRODUCTION

The evaluation of scientific evidence is often
thought of as the assessment of a comparison
between evidential material whose source is
unknown (i.e. recovered material) and evidential
material whose source is known (i.e. control
material). The quantitative part of the evidence is
represented by the measurements of the character-
istic of interest. Let x denote a measurement on the
control material and let y denote a measurement
on the recovered material. These measurements
can be either discrete, such as DNA profiles or the
types of resins detected on black toner found on
questioned documents, or continuous, such as
measurements on the refractive indices of frag-
ments of glass that are available for comparison.
For example, if a window is broken during the
commission of a crime, the measurements on the
refractive indices of m fragments of glass found at
the crime scene will be denoted x = (x1, . . . , xm)T.
The refractive indices of n fragments of glass found

783
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on a PoI will be denoted y = (y1, . . . , yn)T. By
convention, vectors are denoted in bold font and
the elements of a vector are written in a column.
The corresponding row vector is denoted with a
superscriptT to denote transpose (of a column to
a row). See Section B.1.2 for further details. The
quantitative part of the evidence concerning the
glass fragments in this case can be denoted by

E = (x,y).

In the notation of Section 1.7.1, Mc is the broken
window at the crime scene, Mr is the set of glass
fragments from the PoI, Ec is x, Er is y, M is
(Mc,Mr), and E = (Ec,Er) = (x, y).

Let Hp and Hd denote the prosecution and the
defence propositions according to which the con-
trol and recovered items originate from the same
or from different sources, respectively, and I denote
the background information. Then the value V of
the evidence is, formally,

V =
Pr(E ∣ Hp, I)
Pr(E ∣ Hd, I)

, (7.1)

as before (see (2.15) in Section 2.4.1 and (5.1) in
Section 5.3.1).

As well as the problem of comparison, the like-
lihood ratio may also be used when the scientist
wishes to assign an observation to one of several
populations on the basis of available measure-
ments of some attributes, a procedure known
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as discrimination. This situation is discussed
in Section 7.7. For example, assume there are
two populations, P1 and P2. The propositions
for the likelihood ratio are H1 and H2, denoting
membership of populations 1 and 2, respectively.
Denote the measurements by z. The likelihood
ratio is then

Pr(z ∣ H1)
Pr(z ∣ H2)

,

where values of the likelihood ratio greater than
one support membership of population 1 and less
than one support membership of population 2. For
more than two populations, prior probabilities for
population membership are required in a formula-
tion described in Section 7.7.

Many of the models described in the chapter are
Bayesian hierarchical random effects models. A
review of these models in forensic science is given
in Aitken (2018).

7.2 THEORY FOR DISCRETE DATA

Several proposals and examples can be found in
the literature when data are continuous. This is
not so when data are discrete. Other than for DNA
profiling there is a paucity of methods and pro-
posals when data are discrete. Consider the case
where discrete measurements, such as counts,
are collected in correspondence of recovered and
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control material that is available for comparison.
The likelihood ratio (7.1) may be written as

V =
Pr(X = x,Y = y ∣ Hp, I)
Pr(X = x,Y = y ∣ Hd, I)

. (7.2)

Among problems and difficulties that may be
encountered, there are the numbers of probabili-
ties that need to be elicited. If several variables are
measured (say, p) and each variable has several lev-
els of response (say, k for each variable), there will
be (k − 1)p marginal probabilities to be assessed
along with interactions, with appropriate adjust-
ments if there are differing levels of responses for
each variable. Independence between variables
allows elementary models for counts to be applied,
but this is not always feasible. In what follows, a
likelihood ratio will be computed for observations
in the form of independent counts from a Poisson
distribution (Section 7.2.1) and for observations
in the form of realizations of independent trials
in which the target characteristic will take one of
two or more mutually exclusive outcomes (Section
7.2.2 and 7.2.3).

Another problem that may be encountered is
related to the possible autocorrelation between
adjacent observations. For example, it is pos-
sible that drug traces are transferred from a
contaminated banknote to an adjacent one. A
model that takes into account autocorrelation has
been proposed by Wilson et al. (2014, 2015) for
continuous data and will be discussed briefly in
Section 7.7.3.
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7.2.1 Data of Independent Counts
with a Poisson Distribution

Consider the following scenario where a crime
is committed and a piece of recorded speech
of unknown origin is available. The number
of occurrences of a given characteristic (e.g.
a click, a parameter that can be analysed in
speech (Aitken and Gold, 2013)) of the speech in
each of a succession of consecutive time periods,
say, ky, is noted. These are the recorded data,
y = (y1, . . . , yky

). Assume these characteristics are
independent between different time periods and
that observations can be treated as realizations
from a Poisson distribution centred at 𝜆r (Section
A.2.6). The probability distribution of available
counts can be obtained as follows:

Pr(Y = y ∣ 𝜆r) =
ky∏

i=1

Pr(Yi = yi ∣ 𝜆r)

=
ky∏

i=1

e−𝜆r𝜆
yi
r

yi!
=

e−ky𝜆r𝜆
ty
r∏ky

i=1 yi!
,

where ty =
∑ky

i=1 yi.
The number of occurrences of the same char-

acteristic of the speech of a suspect in each
of a succession of consecutive time periods,
say, kx, is noted. These are the control data,
x = (x1, . . . , xkx

), and can be treated again as
realizations from a Poisson distribution centred at
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𝜆c. The probability distribution of available counts
can be obtained analogously as

Pr(X = x ∣ 𝜆c) =
e−kx𝜆c𝜆

tx
c∏kx

i=1 xi!
,

where tx =
∑kx

i=1 xi.
The following propositions might be of interest:

Hp: the recovered and the control speech origi-
nate from the same source;

Hd: the recovered and the control speech origi-
nate from different sources.

If available counts y and x originate from the same
source (i.e. if proposition Hp is true), then 𝜆r = 𝜆c.
Vice versa, if these counts do not originate from
the same source, then 𝜆r may or may not equal
𝜆c. The mean number, say, 𝜆, being unknown, a
prior distribution f (𝜆) will be introduced to model
prior uncertainty about 𝜆 and application to the
likelihood ratio in (7.2) will give

V =
∫ Pr(X = x ∣ 𝜆)Pr(Y = y ∣ 𝜆)f (𝜆)d𝜆

∫ Pr(X = x ∣ 𝜆)f (𝜆)d𝜆 ∫ Pr(Y = y ∣ 𝜆)f (𝜆)d𝜆
.

(7.3)
The most common distribution for 𝜆 is the gamma
distribution, denoted Ga(𝛼, 𝛽), a continuous distri-
bution parameterised by 𝛼 and 𝛽, with probability
density function given by

f (𝜆 ∣ 𝛼, 𝛽) = 𝛽𝛼

Γ(𝛼)
𝜆𝛼−1e−𝛽𝜆; 𝛼 > 0, 𝛽 > 0, 𝜆 > 0,
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(Section A.3.5). The numerator of the likelihood
ratio in (7.3) can be computed as (see Aitken and
Gold (2013))

∫
e−kx𝜆c𝜆

tx
c∏kx

i=1 xi!

e−ky𝜆r𝜆
ty
r∏ky

i=1 yi!

𝛽𝛼

Γ(𝛼)
𝜆𝛼−1e−𝛽𝜆d𝜆

= 𝛽𝛼

Γ(𝛼)
∏kx

i=1 xi!
∏ky

i=1 yi!
×

Γ(𝛼 + tx + ty)
(𝛽 + kx + ky)𝛼+tx+ty

.

For the denominator, the marginal distribution of
observations X = x can be obtained as

∫
e−kx𝜆𝜆tx

∏kx

i=1 xi!
𝛽𝛼

Γ(𝛼)
𝜆𝛼−1e𝛽𝜆d𝜆 = 𝛽𝛼

∏kx

i=1 xi!

Γ(𝛼 + tx)
(𝛽 + kx)𝛼+tx

.

Analogously, the marginal distribution of observa-
tions Y = y will result

∫
e−ky𝜆𝜆ty

∏ky

i=1 yi!

𝛽𝛼

Γ(𝛼)
𝜆𝛼−1e𝛽𝜆d𝜆 = 𝛽𝛼

∏ky

i=1 yi!

Γ(𝛼 + ty)
(𝛽 + ky)𝛼+ty

.

The likelihood ratio is then

Γ(𝛼 + tx + ty)Γ(𝛼)
Γ(𝛼 + tx)Γ(𝛼 + ty)

×
(𝛽 + kx)𝛼+tx(𝛽 + ky)𝛼+ty

𝛽𝛼(𝛽 + kx + ky)𝛼+tx+ty
.

(7.4)
Imagine the number of clicks in each of kx = 6 and
ky = 6 minutes of recorded speech are registered.
The total number of observed clicks amounts
to tx = 4 and ty = 4. Parameters 𝛼 and 𝛽 of the
gamma distribution can be elicited through the
method of moments. The mean of a gamma
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distributed random variable is equal to 𝛼∕𝛽, and
the variance is equal to 𝛼∕𝛽2 (Section A.3.5). The
prior mean and the prior variance can be equated
to the sample mean and the sample variance from
a training set (whenever available) and solved for
𝛼 and 𝛽. Alternatively, values for the expectation
and variance may be obtained through subjective
elicitation. Suppose it is believed that the mean
number of clicks in a given time period is equal
to 3 and the variance is equal to 3, then 𝛼 = 3
and 𝛽 = 1. The likelihood ratio in (7.4) then
gives

Γ(3 + 4 + 4)Γ(3)
Γ(3 + 4)Γ(3 + 4)

× (1 + 6)3+4(1 + 6)3+4

(1 + 6 + 6)3+4+4
= 5.3,

a value that gives weak support (Table 2.8) to the
proposition that the recovered and control speech
originate from the same source.

In another application, the Poisson distribution
represents a standard approach to model the
number of gunshot residues (GSR) that might be
found on an individual that shot firearms, or the
number of consecutive matching striations (CMS)
for the assessment of identification of firearms and
toolmarks. A Bayesian approach was studied by
Biedermann et al. (2009a), Taroni et al. (2014a),
and Biedermann et al. (2011a) to the analysis
of GSR and by Bunch (2000), Buckleton et al.
(2008), and Bunch (2013) to the analysis of
CMS data.
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7.2.2 Data of Independent Counts
with a Binomial Distribution

Many practical situations are encountered
where available measurements are in the form
of realizations of experiments that may assume
only two mutually exclusive outcomes. These
include DNA profiling (e.g. questioned and control
material showing the same characteristic) and the
presence or absence of a striation in a tool mark.

Consider the scenario described in Section
5.3.1.5 involving shoemarks recovered at a crime
scene. A person of interest owns a pair of shoes
producing prints (of type T) indistinguishable
from the marks recovered at the crime scene.
The evidence is the recovered material (Er = T)
and the control material (Ec = T). Assume the
probability a shoeprint is of type T is 𝜃. The pros-
ecution proposition Hp is that the shoeprints and
shoemarks originate from the same source and
the defence proposition Hd is that the shoeprints
and shoemarks originate from different sources.
Conditioning on 𝜃, the likelihood ratio is:

V =
Pr(Er = T,Ec = T, ∣ Hp, 𝜃)
Pr(Er = T,Ec = T, ∣ Hd, 𝜃)

= 1
𝜃
. (7.5)

As stated in Section 5.3.1.5, the uncertainty in
𝜃 needs to be modelled. A beta prior distribution
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can be used for this purpose (as in Sections A.3.7
and 4.2). A police shoeprint database reports a
total number of n prints of type T out of a database
of size N and it can be used to update the beta prior
parameters to 𝛼 + n and 𝛽 + N − n, respectively.
Alternatively, if all available knowledge is given
by the shoeprint database, the beta prior distri-
bution can be elicited following the approach in
Section 4.3.1. If the recovered shoemark and the
control shoeprint originate from the same source
(i.e. if Hp holds), the probability of the evidence
can be obtained as

Pr(Er = T,Ec = T ∣ Hp, n,N − n)

= ∫Θ
𝜃𝜃𝛼+n−1(1 − 𝜃)𝛽+N−n−1∕B(𝛼 + n, 𝛽 + N − n)d𝜃

where Θ = [0,1].
If the recovered shoemark and the control

shoeprint originate from different sources (i.e. if
Hd holds), the probability of the evidence can be
obtained as

Pr(Er = T,Ec = T ∣ Hd, n,N − n)

= ∫Θ
𝜃2𝜃𝛼+n−1(1 − 𝜃)𝛽+N−n−1∕B(𝛼 + n, 𝛽 + N − n)d𝜃.

The value of the evidence is then

V =
∫Θ𝜃𝛼+n(1 − 𝜃)𝛽+N−n−1d𝜃

∫Θ𝜃𝛼+n+1(1 − 𝜃)𝛽+N−n−1d𝜃

= B(𝛼 + n + 1, 𝛽 + N − n)
B(𝛼 + n + 2, 𝛽 + N − n)

= 𝛼 + 𝛽 + N + 1
𝛼 + n + 1

.
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It can be observed that this is just the inverse of
the posterior mean of 𝜃 (see Section A.3.7). In
such a case the beta posterior distribution for 𝜃 is
Be(𝛼 + n + 1, 𝛽 + N − n). A report of such a value
does not deprive the legal system of relevant infor-
mation about the case. All available information,
including prior uncertainty about the unknown
value of 𝜃, are encapsulated in the reported value
of the likelihood ratio. Clearly, different prior
probability distributions may be used, or different
databases might be available, and in such a case a
different value will be reported. See Taroni et al.
(2016) for further discussion.

7.2.3 Data of Independent Counts
with a Multinomial Distribution

In many practical situations available measure-
ments are in the form of realizations of experiments
that may assume two or more mutually exclusive
outcomes.

Consider the case of questioned printed docu-
ments, where control documents originating from
a known source (i.e. a printer) are available for
comparison. In the case of black toner that may be
found on printed documents, resins are commonly
analysed by means of Fourier Infrared Spec-
troscopy (FTIR), the results of which (so-called IR
data) may be classified into one of several mutually
exclusive categories (Biedermann et al., 2009b,
2011b, 2016c).
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The following propositions might be of interest:

Hp: the recovered (questioned) and the control
documents originate from the same source;

Hd: the recovered (questioned) and the control
documents do not originate from the same
source.

Denote by Er and by Ec the resin group con-
tained in the toner present on the questioned
document and in the toner used by the control
source (printer), respectively, and by A1, . . . ,Ak

the resin group categories. Suppose that the resin
type contained in the questioned document cor-
responds to that contained in the document from
the control source, say, Er = Ec = Aj, j = 1, . . . , k.
Suppose moreover a database is available, with the
records of the resin group contained in documents
originating from several printers of different
models. The available data in the case at hand
(including the recovered evidence, the control
evidence, and the background data) are given by
Er = Aj, Ec = Aj, and by the number of counts
in the k categories from the background data,
n1, . . . , nk.

Assume that observations of distinct cate-
gories can be reasonably treated as independent.
Denoted by 𝜃j the probability a resin is in group j
(j = 1, . . . , k) with

∑k
j=1 𝜃j = 1. Available counts

can be treated as realizations from a multinomial
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distribution (Section A.2.4). Clearly, if proposition
Hp holds, then the type of resin contained in the
document in question corresponds to that of
the potential source, and the probability of the
evidence is

Pr(Er = Aj,Ec = Aj ∣ Hp, 𝜃1, . . . , 𝜃k) = 𝜃j.

Alternatively, if proposition Hd holds, the proba-
bility of the evidence is

Pr(Er = Aj,Ec = Aj ∣ Hd, 𝜃1, . . . , 𝜃k) = 𝜃2
j .

The likelihood ratio can be obtained as in (7.3),
where a Dirichlet prior probability distribution
(Section A.3.8) will be considered for modelling
probabilities for k outcomes

f (𝜃1, . . . , 𝜃k ∣ 𝛼1, . . . , 𝛼k)

= Γ(𝛼)
Γ(𝛼1) ⋅ · · · ⋅ Γ(𝛼k)

𝜃
𝛼1−1
1 ⋅ · · · ⋅ 𝜃𝛼k−1

k ,

where 𝛼 =
∑k

j=1 𝛼i. The probability in the numera-
tor of the likelihood ratio can be computed as

Pr(Er = Aj,Ec = Aj ∣ Hp) =

∫ 𝜃j
Γ(𝛼)

∏k
i=1 Γ(𝛼i)

𝜃
𝛼1−1
1 ⋅ . . . 𝜃

𝛼j−1
j ⋅ · · · ⋅ 𝜃𝛼k−1

k d𝜽,
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where 𝜽 = (𝜃1, . . . , 𝜃k). The probability in the
denominator of the likelihood ratio can be
computed analogously. Using the available back-
ground database, the parameters of the Dirichlet
prior distribution can be replaced with 𝛼j + nj, j =
1, . . . , k, where nj represents the number of counts
in the database in category j. The likelihood ratio
then becomes

V =
∫ 𝜃

𝛼1+n1−1
1 ⋅ · · · ⋅ 𝜃𝛼j+nj

1 ⋅ · · · ⋅ 𝜃𝛼k+nk−1
k d𝜽

∫ 𝜃
𝛼1+n1−1
1 ⋅ · · · ⋅ 𝜃𝛼j+nj+1

1 ⋅ · · · ⋅ 𝜃𝛼k+nk−1
k d𝜽

=
𝛼 +

∑k
i=1 ni + 1

𝛼j + nj + 1
.

Consider the following example from Bieder-
mann et al. (2011b). Suppose the resin groups
contained in the bi-component toner present on
the control and questioned printed documents are
both of type Epoxy A, say. Table 7.1 summarises
the results obtained following the analyses of the
component type (magnetism) and the polymer
resins (IR-category) of each of 23 samples of
bi-component black toners.

Suppose a uniform Dirichlet prior distribution
is taken, that is, 𝛼1 = · · · = 𝛼7 = 1. The likelihood
ratio is then

V = 7 + 23 + 1
1 + 3 + 1

= 6.2.
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Table 7.1 Results obtained following the
analyses of, respectively, the component type
(magnetism) and the polymer resins
(IR-category) of 23 samples of bi-component
black toner.

Resin group Counts

1. Styrene-co-acrylate 14
2. Epoxy A 3
3. Epoxy B 2
4. Epoxy C 1
5. Epoxy D 1
6. Polystyrene 1
7. Other 1

Source: Extracted from Biedermann et al. (2011b).
Reprinted with permission from Elsevier.

This provides weak support for the proposition
that the questioned and the control printed docu-
ments originate from the same source.

If the common resin group had been Styrene-
co-acrylate, the likelihood ratio would be

V = 7 + 23 + 1
1 + 14 + 1

= 1.9

and if the common resin group had been Epoxy-D,
the likelihood ratio would be

V = 7 + 23 + 1
1 + 1 + 1

= 10.3.
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The change in value with change of rarity of the
resin group is easily seen.

7.3 THEORY FOR CONTINUOUS
UNIVARIATE DATA

Section 7.2, considered the evaluation of the like-
lihood ratio where the evidence was represented
by discrete data with specific reference to pieces
of recorded speech (Section 7.2.1), to recovered
shoemarks at the crime scene (Section 7.2.2), and
to analysis of the resin type of black toner from
printed documents (Section 7.2.3). The values of
the evidence in different contexts were derived.
However, much evidence is of a form in which
measurements may be taken and for which the
data are continuous. The form of the statistic
for the evaluation of the evidence under these
circumstances is similar to that for discrete data.
Many of the examples in this chapter concern the
interpretation of glass evidence; a review of the
statistical interpretation of such evidence is given
in Curran et al. (2000) and Curran and Hicks
(2009).

Continuous measurements are being considered
and the probabilities Pr are therefore replaced by
probability density functions f so that

V =
f (x, y ∣ Hp, I)
f (x, y ∣ Hd, I)

. (7.6)
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Bayes’ theorem and the rules of conditional
probability apply to probability density functions
as well as to probabilities. The value, V, of the
evidence (7.6) may be rewritten in the following
way

V =
f (x,y ∣ Hp, I)
f (x,y ∣ Hd, I)

=
f (y ∣ x,Hp, I)
f (y ∣ x,Hd, I)

×
f (x ∣ Hp, I)
f (x ∣ Hd, I)

.

The measurements x are those on the source, or
control, object. Their distribution and correspond-
ing probability density function are independent of
whether Hp or Hd is true. Thus

f (x ∣ Hp, I) = f (x ∣ Hd, I)

and

V =
f (y ∣ x,Hp, I)
f (y ∣ x,Hd, I)

.

If Hd is true, it is assumed that the measurements
(y) on the recovered item and the measurements
(x) on the control item are independent. Thus

f (y ∣ x,Hd, I) = f (y ∣ Hd, I),

and

V =
f (y ∣ x,Hp, I)

f (y ∣ Hd, I)
. (7.7)

There are scenarios where the assumption of inde-
pendence between measurements of control and
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recovered materials when Hd is true, is unreliable,
and must be relaxed. An example was introduced
in Section 6.1.5 in the discussion around DNA
profiling. As a second example, consider the case
of questioned signatures. Under the hypothesis
that a signature is not authentic (Hd), it has to be
taken into account that a forger might attempt
to reproduce the features of a target (original)
signature, and therefore the control and recovered
measurements cannot be taken as independent.

The numerator in (7.7) is a predictive distribution
(Section 4.6). The denominator is the so-called
marginal distribution of the measurements on the
recovered sample in the relevant population, the
definition of which is assisted by I. This formu-
lation of the expression for V shows that for the
numerator the distribution of the measurements
on the recovered sample, conditional on the source
measurements as well as I, is considered. For the
denominator, the distribution of the recovered
measurements is considered over the distribution
of the whole of the relevant population.

The two propositions to be compared are

Hp: the recovered sample is from the same source
as the control sample;

Hd: the recovered sample is from a different
source than the control sample.

First, consider Hp. The control and recovered
samples are from evidence from the same source.
The measurements on this source have a true
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unknown value 𝜃, say. For example, if the mea-
surements are of the refractive index of glass, then
𝜃 denotes the mean refractive index of the window
from which the fragments have been taken. For
clarity, the conditioning elements Hp and I, the
background information, will be omitted in the
following argument. The predictive distribution
f (y ∣ x) may be expressed as follows

f (y ∣ x) = ∫ f (y ∣ 𝜃)f (𝜃 ∣ x)d𝜃

=
∫ f (y ∣ 𝜃)f (x ∣ 𝜃)f (𝜃)d𝜃

f (x)

=
∫ f (y ∣ 𝜃)f (x ∣ 𝜃)f (𝜃)d𝜃

∫ f (x ∣ 𝜃)f (𝜃)d𝜃
,

the ratio of the joint distribution of x and y to the
marginal distribution of x. Both distributions are
independent of 𝜃, which is integrated out.

For Hd, the situation where the control and
recovered samples are from different sources, it is
the measurements y on the recovered sample that
are the ones of interest. The probability density
function for y is

f (y) = ∫ f (y ∣ 𝜃)f (𝜃)d𝜃.

The value, V, of the evidence (7.7) may then be
rewritten in the following way

∫ f (y ∣ 𝜃)f (x ∣ 𝜃)f (𝜃)d𝜃
∫ f (x ∣ 𝜃)f (𝜃)d𝜃 ∫ f (y ∣ 𝜃)f (𝜃)d𝜃

. (7.8)
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For those unfamiliar with these kinds of manip-
ulations, Bayes’ theorem applied to conditional
probability distributions is used to write f (𝜃 ∣ x) as
f (x ∣ 𝜃) f (𝜃)∕f (x). The law of total probability with
integration replacing summation is used to write
f (x) as ∫ f (x ∣ 𝜃) f (𝜃) d𝜃.

7.3.1 Assessment of Similarity Only

The case in which a window is broken, a large
group of fragments is found on the suspect and
the group is similar in properties to the broken
window was discussed earlier in Section 6.2.2 and
the likelihood ratio is given by (6.25). The factor
1∕𝛾1 in (6.25) is an approximation to the ratio
given in (7.7).

An approach to the evaluation of V in (7.7) that
only considers similarity is to consider the sum-
mary statistics for the recovered and control data.
The available data x and y may be replaced by
summary statistics for the means and variances,
with

x̄ =
m∑

i=1

xi∕m and ȳ =
n∑

j=1

yj∕n,

and

s2
x =

m∑
i=1

(xi − x̄)2∕(m − 1) and

s2
y =

n∑
j=1

(yj − ȳ)2∕(n − 1).
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Then, following the argument of Walsh et al.
(1996), the ratio (7.7) may be written as

V =
f (x̄ − ȳ ∣ x̄, sx, sy,Hp)

f (ȳ ∣ x̄, sx, sy,Hd)
. (7.9)

The numerator of (7.9) may be taken to be a Stu-
dent’s t-density with a Welch modification (Welch,
1937) (Section A.3.4) when the data x and y are
Normally distributed and the population variances
𝜎2

x and 𝜎2
y , of which s2

x and s2
y are estimates, are

not assumed equal. The t-statistic for the numer-
ator, which is to be referred to the t-density with
the Welch modification, is

tW =
(x̄ − ȳ)√

s2
x

m
+

s2
y

n

. (7.10)

The statistic tW does not have a t-distribution but
may be approximated by a t-distribution with 𝜈

degrees of freedom, where 𝜈 may be estimated
from the data as

𝜈 =

(
s2

x

m
+

s2
y

n

)2

(
s4

x

m2(m−1)
+

s4
y

n2(n−1)

) , (7.11)

which need not necessarily be an integer. Den-
sity values for tW are provided on many readily
available statistical software packages (such
as R).



�

� �

�

804 Data Analysis

The denominator of (7.9) is the value of the prob-
ability density for the relevant population of glass
at ȳ. This is usually obtained from a kernel density
estimate (see (7.22), Section 7.5.1).

Consider as an example the data in Table 7.2
with ȳ=1.519 507 3, x̄=1.519573 0, sy=5.24 ×

Table 7.2 Refractive indices of glass
fragments for Johnston, recovered, and a
control set with means, separate and pooled
standard deviations (s.d.).

Johnston Control

1.519 40 1.519 50
1.519 46 1.519 52
1.519 47 1.519 53
1.519 48 1.519 56
1.519 50 1.519 57
1.519 52 1.519 59
1.519 52 1.519 60
1.519 53 1.519 60
1.519 56 1.519 62
1.519 57 1.519 64
1.519 57

Mean 1.519 507 3 1.519 573 0
S.d. 5.24 × 10−5 4.55 × 10−5

Pooled s.d. 4.92 × 10−5

The number of recovered fragments n = 11 and
the number of control fragments m = 10.
Source: From Walsh et al. (1996). Reprinted with
permissions of Elsevier.
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10−5, sx = 4.55 × 10−5, m = 10, and n = 11. The
value of the t-statistic in (7.10) using a pooled
standard deviation, with 19 degrees of freedom, is
3.06. The 99.5% point of a t-distribution with 19
degrees of freedom is 2.86, so the null hypothesis
that the recovered (Johnston) and control data are
samples from populations with the same mean is
rejected in favour of the two-sided alternative of
samples from populations with different means at
the 1% level. The significance probability (Section
3.6) for the two-sided test is 0.0064. Thus, the
conclusion of a scientist who used this approach
would be to reject the hypothesis that the glass
fragments found on Johnston came from the crime
scene window and this evidence would be dis-
carded. However, one of the problems associated
with the use of significance probabilities is that
there is a dichotomy between data for which the
null hypothesis is rejected and data for which the
null hypothesis is not rejected, the ‘fall-off-the-cliff’
effect of Section 1.3.3.

The value of the numerator is obtained as the
probability density at x equal to the Johnston
mean 1.519 507 3 of a non-central t-distribution
(Section A.3.4) with 𝜈 = 31.29 degrees of freedom
(derived from (7.11)), centred at the control mean,
𝜇 = 1.519 573 0, with spread parameter 𝜆 equal

to

√
s2

x

nx
+

s2
y

ny
, which equals 2.14 × 10−5 in this

example. Transformation to y = (x − 𝜇)∕𝜆 gives a
value for the t-statistic of 3.07 with 31.29 degrees
of freedom. Reference to appropriate statistical
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software (such as R) gives a value for the central
t-density function of 0.006. An adjustment by
the factor 1∕𝜆 gives a value for the non-central
t-density of 0.006∕2.14 × 10−5 or 280. This is the
value for the numerator.

The value of the denominator is obtained from
population data and a kernel density estimate.
For this example, the value of the density estimate
at the Johnston mean is taken to be 109 (Walsh
et al., 1996). The likelihood ratio is then 280/109
= 2.6. This provides slight support for the propo-
sition that the fragments found on Johnston’s
clothing come from the crime scene window. This
conclusion is in contrast to the rejection of this
proposition at the 1% level using a two-tailed test.

Goldmann et al. (2004) described another
application of the t-distribution and the Welch
modification, in which the determination of the
source of illicit pills through examination of
the dye present in the pills is assisted. The dye
considered is CI 147 20. There is a sample Y with
5 pills to be compared with a specific batch X with
20 pills and with another batch containing 100
pills attributed to the same producer, Z, as the
producer of X. The measurement of interest is the
concentration of the dye, expressed as a percent-
age. Two pairs of propositions are compared. The
first is as follows:

Hp1: sample Y comes from batch X;

Hd1: sample Y does not come from batch X.

The second is as follows:
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Hp2: sample Y comes from a batch produced by
Z;

Hd2: sample Y does not come from a batch pro-
duced by Z.

The summary statistics (Goldmann et al., 2004)
are presented in Table 7.3.

No sample size is given for the general popula-
tion. The population is characterised by illicit pills
coloured with dye CI 14 720. The percentage con-
centration of the dye in the pills is Normally dis-
tributed with mean 0.300% and standard devia-
tion 0.06%. This contrasts with the denominator
in the previous example in which a kernel density
estimate was used.

The degrees of freedom (𝜈) and pooled standard
deviations (sp) of Y with X and of Y with Z are 𝜈y,x =
4.50, sp,y,x = 0.0092, and 𝜈y,z = 5.75, sp,y,z =
0.0098.

Table 7.3 Summary statistics for concentration of
dye CI 14 720 in illicit pills.

Sample Sample
Y

Batch
X

Producer
Z

General
population

Size 5 20 100 —
Mean (%) 0.165 0.140 0.180 0.300
Standard

deviation (%)
0.02 0.01 0.04 0.06

Source: From Goldmann et al. (2004). Reprinted with permis-
sions of ASTM International.
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Consider the first pair of propositions. The value
of the evidence is obtained by comparing the prob-
ability density of ȳ in batch X and the probability
density of ȳ in the general population. This is 5.4.

Consider the second pair of propositions. The
value of the evidence is obtained by comparing
the probability density of ȳ in batches produced by
Z and the probability density of ȳ in the general
population. This is 23.3.

7.3.2 Sources of Variation: Two-Level
Models

Notice that there are often two sources of varia-
tion to be considered in the measurements. There
is variation within a particular source and there is
variation between sources.

For example, consider evidence of fragments of
glass from a broken window from which refractive
index (r.i.) measurements have been made. There
is variation in the r.i. measurements amongst
the different fragments of glass. These different
measurements may be thought of as a sample
from the population corresponding to all possible
r.i. measurements from that particular window.
The population has a mean, 𝜃, say, and a variance
𝜎2. The measurements of r.i. of fragments from
that window can be assumed to be Normally
distributed with mean 𝜃 and variance 𝜎2. Sec-
ondly, there is variation in the r.i. mean 𝜃 between
different windows. The mean 𝜃 has a probability
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distribution with its own mean 𝜇, say, and vari-
ance 𝜏2. Typically 𝜏2 will be much greater than 𝜎2.
A Normal distribution is assumed for 𝜃. However,
a look at Figure 7.1, which is a histogram of r.i.
measurements from 2269 examples of float glass
from buildings given in Table 7.11 (Lambert and
Evett, 1984), shows that this is not a particularly
realistic assumption. A more realistic approach
will be described in Section 7.5.2.

Similar considerations apply for other types of
evidence. For measurements on the medullary
widths of cat hairs, for example, there will be
variation amongst hairs from the same cat and
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Figure 7.1 Refractive index measurements from
2269 fragments of float glass from buildings (Source:
Modified from Lambert and Evett, 1984).
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amongst hairs from different cats. For mea-
surements on footprints there is considerable
variability between footprints from different
people and considerable similarity for multiple
impressions taken from the same person (Kennedy
et al., 2003). For handwriting evidence, there will
be variation in characteristics between characters
of a given type (say, letter o) from the same writer
(the so-called within-writer variability) and from
different writers (the so-called between-writers
variability) (Marquis et al., 2005).

Thus, when considering the assessment of con-
tinuous data at least two sources of variability have
to be considered: the variability within the source
(e.g. window or writer) from which the measure-
ments were made and the variability between the
different possible sources (e.g. windows or writ-
ers). In some cases, a third level of variability must
be added alongside the levels described earlier.
For glass evidence, for example, one may need to
model the measurement error (i.e. the error due to
the precision of the instrument) separately. Three
level models will be addressed in Section 7.6.5.
Such models are known as hierarchical.

7.3.3 Transfer Probability

Consider transfer of material from the crime scene
to the criminal. A PoI is found with similar mate-
rial on his clothing, say. This material may have
come from the crime scene. Alternatively, it may
have come from somewhere else under perfectly



�

� �

�

Theory for Continuous Univariate Data 811

innocent circumstances. There are two sets of
circumstances to consider. First, conditional on
the PoI having been present at the crime scene
(Hp), there is a probability that material will have
been transferred from the scene to the PoI. It has
also to be borne in mind that someone connected
with the crime may have had no fragments trans-
ferred from the scene to their person and have
had fragments similar to those found at the crime
scene transferred to their person from somewhere
else by innocent means. Secondly, there is the
probability that a person unconnected with the
crime (i.e. this is conditional on a PoI not having
been present at the scene, Hd) will have material
similar to the crime material on their person.

Consider the case of glass fragments as described
by Evett (1986). Let ti (i = 0,1,2, . . . ) be the prob-
ability that, given Hp, i fragments of glass would
have been transferred. More correctly, let tn be the
probability that, given Hp, the presence of the PoI
at the crime scene, n fragments would be found on
the clothing of the PoI on searching. This allows
not only for the mechanism of transfer but also
for the mechanisms of persistence and recovery.
Let b1,m (m = 1,2, . . . ) denote the probability
of the chance occurrence of a single group of m
fragments of glass on their clothing (see Section
5.3.2.1). In general, the probability of the chance
occurrence of g groups, with m1, . . . ,mg fragments
of glass from each group, on their clothing can be
denoted bg,m1, . . . ,mg

or {bg,m;m = (m1, . . . ,mg)T}.
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Also, b1,s and b1,l denote the conditional proba-
bilities that, if one group of fragments is found,
it contains a small (s) or large (l) number of
fragments, as described in Section 5.5.3.

Consider the case where a single fragment has
been found. A general expression for more groups
of fragments is given in Evett (1986).

The evidence E consists of three parts. The first
part is the existence (m1) of one fragment on the
clothing of the person of interest. The second
part is that its refractive index is y. This is the
transferred particle form of the evidence. The
probability that a person in the relevant popula-
tion has a fragment of glass on their clothing may
be denoted Pr(m1 ∣ Hp) or b1,1. The probability
that a person in the general population does
not have a fragment of glass on their clothing is
denoted b0. The third part of the evidence are the
measurements x on the control material. This is
relevant for the determination of the numerator
but not the denominator.

Consider the denominator of the likelihood ratio.
This is

Pr(E ∣ Hd, I) = Pr(m1, y ∣ Hd, I)
= Pr(m1 ∣ Hd, I) × f (y ∣ Hd, I,m1)
= b1,1f (y ∣ Hd, I,m1).

The probability density function f (y ∣ Hd, I,m1) is
taken to be a Normal density function, with mean
𝜇 and variance 𝜏2 (or, more correctly, 𝜏2 + 𝜎2) as is
illustrated in Section 7.4.2.
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Consider the numerator of the likelihood ratio.
If the PoI was present at the crime scene, there
are two possible explanations for the presence
of the glass fragment on the clothing of the PoI.
Either the fragment has been acquired by innocent
means (an event with probability b1,1) and no frag-
ment has been transferred from the crime scene
(an event with probability t0), or the fragment
was transferred from the crime scene and none
was transferred by innocent means, two events
with probabilities t1 and b0, respectively (these
explanations can be relaxed to take into account
different situations such as the presence of two
groups of recovered material, one transferred from
the crime scene, the other transferred by innocent
reasons, as in Section 6.2.2). Let x denote the
measurements on the source (control) sample.
The numerator is then

t0b1,1f (y ∣ Hd, I,m1) + t1b0f (y ∣ Hp, x, I),

where f (y ∣ Hp, x, I) is taken to be Normal with
mean x̄ and variance 𝜎2. Notice the terms t0b1,1
and t1b0. The former is the probability that no
particle is transferred from the crime scene and
one particle is transferred from the background.
The latter is the probability that one particle is
transferred from the crime scene and no particle
is transferred from the background. In the term
involving Hd the fragment is assumed to have
been transferred by innocent means (see Section
5.3.2.2). The probability density function for y
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in this situation is then the one that holds when
the PoI is unconnected with the crime. Hence, the
conditioning on Hd is permissible.

The likelihood ratio is then

V = t0 +
t1b0

b1,1

f (y ∣ Hp, x, I)
f (y ∣ Hd,m1, I)

. (7.12)

This is the equivalent of (5.7) in Section 5.3.2.2
where 1∕𝛾 = f (y ∣ Hp, x, I)∕f (y ∣ Hd,m1, I).

Another derivation for continuous data is given
by (7.18) in Section 7.4.3.

7.4 NORMAL BETWEEN-SOURCE
VARIATION

The approach to evidence evaluation described
in Section 7.3 was first proposed by Lindley
(1977c) in the context of a problem involving
the measurements of the refractive index of glass.
These measurements may be made on fragments
of glass at the scene of a crime and on fragments of
window glass found on the clothing of a PoI (see
Example 1.2 in Section 1.3.3). These measure-
ments are subject to error and it is this which is
incorporated into V.

7.4.1 Marginal Distribution
of Measurements

Let x be a measurement from a particular con-
trol fragment. Let the mean of measurements
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from the source of this fragment be 𝜃1. Let y be
one measurement from a particular recovered
fragment. Let the mean of measurements from
the source of this fragment be 𝜃2. The variance
of measurements within a source is assumed
constant amongst sources and is denoted 𝜎2. The
dependence of the distribution of these measure-
ments on the control source from which they
come can be made explicit in the notation. The
distributions of X and Y, given 𝜃1, 𝜃2, and 𝜎2, are

(X ∣ 𝜃1, 𝜎
2) ∼ N(𝜃1, 𝜎

2),

(Y ∣ 𝜃2, 𝜎
2) ∼ N(𝜃2, 𝜎

2),

where the dependence on 𝜃1 or 𝜃2 and 𝜎2 is made
explicit. Notice, also, that variation in X is mod-
elled. Contrast this approach with the coincidence
probability approach of Section 3.7 in which
the mean of measurements on the control frag-
ments was taken as fixed. The conditioning on Hd is
implicit. The means 𝜃1 and 𝜃2 of these distributions
may themselves be thought of as observations
from another distribution (that of variation
between sources), which for the present is taken to
be Normal, with mean 𝜇 and variance 𝜏2. Thus, 𝜃1

and 𝜃2 have the same probability density function
and

(𝜃 ∣ 𝜇, 𝜏2) ∼ N(𝜇, 𝜏2).

The distributions of X and of Y, independent
of 𝜃, can be determined by taking the so-called
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convolutions of x and of y with 𝜃 to give

f (x ∣ 𝜇, 𝜎2, 𝜏2) = ∫ f (x ∣ 𝜃, 𝜎2)f (𝜃 ∣ 𝜇, 𝜏2)d𝜃

= ∫
1

2𝜋𝜎2𝜏2
exp

{
− 1

2𝜎2
(x − 𝜃)2

}

exp
{
− 1

2𝜏2
(𝜃 − 𝜇)2

}
d𝜃

= 1√
2𝜋(𝜎2 + 𝜏2)

exp
{
− 1

2(𝜎2 + 𝜏2)
(x − 𝜇)2

}
,

using the result that

1
2𝜎2

(x−𝜃)2+ 1
2𝜏2

(𝜃 − 𝜇)2 =
(𝜃 − 𝜇1)2

𝜏2
1

+ (x − 𝜇)2

𝜎2 + 𝜏2
,

where

𝜇1 =
𝜎2𝜇 + 𝜏2x
𝜎2 + 𝜏2

,

𝜏2
1 = 𝜎2𝜏2

𝜎2 + 𝜏2
.

Similarly

f (y ∣ 𝜇, 𝜎2, 𝜏2) = 1√
2𝜋(𝜎2 + 𝜏2)

exp
{
− 1

2(𝜎2 + 𝜏2)
(y − 𝜇)2

}
.

Notice that 𝜏2 has been omitted from the distri-
butions of x and y, given 𝜃1, 𝜃2, and 𝜎2. This is
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because the distributions of x and y, given these
parameters, are independent of 𝜏2. Similarly, the
distribution of 𝜃, given 𝜇 and 𝜏2, is independent
of 𝜎2.

The effect of the two sources of variability is that
the mean of the r.i. measurements is the overall
mean 𝜇 and the variance is the sum of the two
component variances 𝜎2 and 𝜏2. The distribution
remains Normal. Thus

(X ∣ 𝜇, 𝜎2, 𝜏2) ∼ N(𝜇, 𝜎2 + 𝜏2),
(Y ∣ 𝜇, 𝜎2, 𝜏2) ∼ N(𝜇, 𝜎2 + 𝜏2). (7.13)

7.4.2 Approximate Derivation of the
Likelihood Ratio

Consider an application to a broken window as in
Example 1.2 (Section 1.3.3). A crime is committed
in which a window is broken. A PoI is apprehended
soon afterwards and a fragment of glass is found
on their clothing. Its refractive index is y. A sample
of m fragments is taken from the broken window
at the scene of the crime and their refractive index
measurements are x = (x1, . . . , xm)T, with mean
x̄. The two propositions to be compared are as
follows:

Hp, the recovered fragment is from the crime
scene window;

Hd, the recovered fragment is not from the crime
scene window.
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An approximate derivation of the likelihood
ratio may be obtained by replacing 𝜃 by x̄ in
the distribution of y so that f (y ∣ 𝜃, 𝜎2) becomes
f (y ∣ x̄, 𝜎2). (See (4.32) for a similar result using
a uniform prior for a Normal distribution.) This
is only an approximate distributional result. A
more accurate result is given later to account for
the sampling variability of x̄. For the present, an
approximate result for the numerator is that

(Y ∣ x̄, 𝜎2,Hp, I) ∼ N(x̄, 𝜎2), (7.14)

an application of (4.32). Also, from (7.13)

(Y ∣ 𝜇, 𝜎2, 𝜏2,Hd, I) ∼ N(𝜇, 𝜏2 + 𝜎2). (7.15)

For 𝜏2 much greater than𝜎2, assume also that 𝜏2 +
𝜎2 can be approximated by 𝜏2. The likelihood ratio
is then

V =

[
1

𝜎
√
(2𝜋)

exp
{
−
(y − x̄)2

2𝜎2

}]/

[
1

𝜏
√
(2𝜋)

exp
{
−
(y − 𝜇)2

2𝜏2

}]

= 𝜏

𝜎
exp

{
(y − 𝜇)2

2𝜏2
−
(y − x̄)2

2𝜎2

}

(Evett, 1986). Note that this likelihood ratio
depends on an assumption that fragments from a
single source are found on the PoI and that these
have come from the crime scene.
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This result has some intuitively attractive
features. The likelihood ratio is larger for values
of y, which are further from 𝜇 and are therefore
assumed to be rarer; that is, the rarer the value
of the refractive index of the recovered fragment,
the larger the likelihood ratio. Also, the larger
the value of ∣ y − x̄ ∣, the smaller the value of the
likelihood ratio; that is, the further the value of
the refractive index of the receptor glass fragment
is from the mean of the values of the r.i’s of the
source fragments, the smaller the likelihood ratio.

Values for 𝜏 equal to 4 × 10−3 and for 𝜎 equal
to 4 × 10−5 are given by Evett (1986). Values of V
for various values of (y − 𝜇)∕𝜏 and of (y − x̄)∕𝜎, the
standardised distances of y from the overall mean
and the source mean, are given in Table 7.4. Note
that the ratio 𝜏∕𝜎 =100, giving ample justification
for the approximation 𝜏2 to the variance of y, given

Table 7.4 Likelihood ratio values
for varying values of (y − x̄)∕𝜎 and
(y − 𝜇)∕𝜏.

(y − x̄)∕𝜎 (y − 𝜇)∕𝜏

0 1 2

0 100 165 739
1 61 100 448
2 14 22 100
3 1 2 8
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Hd, earlier. Also, this ratio is a large contributor to
the value of V.

7.4.3 Lindley’s Approach

A more detailed analysis was provided by Lindley
(1977c). Assume, as before, that the measure-
ments are distributed about the true unknown
value, 𝜃, of the refractive index with a Normal
distribution and a known variance 𝜎2 and that
the propositions Hp and Hd to be compared are
as in Section 7.4.2. If m measurements are made
at the scene (source measurements, x1, . . . , xm),
then it is sufficient to consider the sample mean,
x̄ =

∑m
i=1 xi∕m. Conditional on 𝜃1, the mean of

the r.i. measurements of the crime window, the
sample mean X̄ is Normally distributed about 𝜃1
with variance 𝜎2∕m (Section A.3.2). Let ȳ denote
the sample mean of n similar measurements
(recovered measurements, y1, . . . , yn) made on
material found on the PoI; conditional on 𝜃2, Ȳ
is Normally distributed about 𝜃2 with variance
𝜎2∕n. In the case Hp holds, where the source and
recovered measurements come from the same
source, 𝜃1 = 𝜃2. Otherwise, in the case Hd holds,
𝜃1 ≠ 𝜃2.

The distribution of the true unknown value 𝜃

has also to be considered. There is considerable
evidence about the distribution of r.i.s.; see, for
example, Curran et al. (2000). First, assume as
before that the true unknown values 𝜃 are Nor-
mally distributed about a mean 𝜇 with variance
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𝜏2, both of which are assumed known. Typically
𝜏 will be larger, sometimes much larger, than 𝜎

(see earlier, where 𝜏∕𝜎 = 100). This assumption
of Normality is not a realistic one in this context
where the distribution has a pronounced peak and
a long tail to the right; see Figure 7.1. However,
the use of the Normality assumption enables
analytic results to be obtained as an illustration of
the general application of the method. The uncon-
ditional distributions of the means of the control
and recovered measurements (with m measure-
ments on the control and n on the recovered
sample), X̄ and Ȳ, in the denominator are inde-
pendent and are, respectively, N(𝜇, 𝜏2 + 𝜎2∕m)
and N(𝜇, 𝜏2 + 𝜎2∕n).

Let 𝜎2
1 = 𝜏2 + 𝜎2∕m and 𝜎2

2 = 𝜏2 + 𝜎2∕n where
𝜏2 is the between-source variance. Then (X̄ − Ȳ) ∼
N(0, 𝜎2

1 + 𝜎2
2) and Z = (𝜎2

2X̄ + 𝜎2
1Ȳ)∕(𝜎2

1 + 𝜎2
2) is

distributed as N(𝜇, 𝜎2
1𝜎

2
2∕(𝜎

2
1 + 𝜎2

2)), and (X̄ − Ȳ),
and Z are also independent. The denominator may
then be written as

1
2𝜋𝜎1𝜎2

exp

{
−

(x̄ − ȳ)2

2(𝜎2
1 + 𝜎2

2)

}

exp

{
−
(z − 𝜇)2(𝜎2

1 + 𝜎2
2)

2𝜎2
1𝜎

2
2

}
.

In the numerator, it can be shown that the
joint unconditional distribution of X̄ and Ȳ is
bivariate Normal with means 𝜇, variances 𝜎2

1
and 𝜎2

2, and covariance 𝜏2 (Section A.3.9). The
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distribution of X̄ − Ȳ is N
(

0, 𝜎2( 1
m
+ 1

n
)
)

. Let

W = (mX̄ + nȲ)∕(m + n). The distribution of
W is N(𝜇, 𝜏2 + 𝜎2∕(m + n)). Also, (X̄ − Ȳ) and
W are independent. Let a2 = 1∕m + 1∕n and
𝜎2

3 = 𝜏2 + 𝜎2∕(m + n). Then the numerator may
be written as

1
2𝜋a𝜎𝜎3

exp
{
−
(x̄ − ȳ)2

2a2𝜎2

}
exp

{
−(𝑤 − 𝜇)2

2𝜎2
3

}
.

The value, V, of the evidence is the ratio of
the numerator to the denominator; after some
simplification, this is

𝜎1𝜎2

a𝜎𝜎3
exp

{
−

(x̄ − ȳ)2𝜏2

a2𝜎2(𝜎2
1 + 𝜎2

2)

}

exp

{
−(𝑤 − 𝜇)2

2𝜎2
3

+
(z − 𝜇)2(𝜎2

1 + 𝜎2
2)

2𝜎2
1𝜎

2
2

}
.

Large values of this provide good evidence that the
suspect was at the crime scene.

This expression may be simplified. Typically, 𝜏 is
much larger than 𝜎. Then 𝜎2

1 = 𝜎2
2 = 𝜎2

3 = 𝜏2, Z =
(X̄ + Ȳ)∕2, and

V ≃ 𝜏

a𝜎
exp

{
−
(x̄ − ȳ)2

2a2𝜎2

}

exp
{
−(𝑤 − 𝜇)2

2𝜏2
+ (z − 𝜇)2

𝜏2

}
. (7.16)
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If the number of control measurements equals
the number of recovered measurements then
m = n, z = 𝑤 = 1

2
(x̄ + ȳ), and

V ≃ m1∕2𝜏

21∕2𝜎
exp

{
−

m(x̄ − ȳ)2

4𝜎2

}
exp

{
(z − 𝜇)2

2𝜏2

}
.

(7.17)
Consider the particular case where m = n = 1.

According to (7.17), V consists of two factors
that depend on the measurements. The first is
exp{−(x̄ − ȳ)2∕4𝜎2}. This compares the absolute
difference ∣ x̄ − ȳ ∣ of the control and recovered
measurements with their standard deviation 𝜎

√
2

on the proposition (𝜃1 = 𝜃2) that they come from
the same source. Let

∣ x̄ − ȳ ∣ ∕𝜎
√

2 = 𝜆.

Then the value of the first factor is exp(−𝜆2∕2). A
large value of 𝜆 favours the hypothesis that the two
fragments come from different sources. This factor
has an effect like that of a significance test of a null
hypothesis of identity (𝜃1 = 𝜃2).

The second factor, exp{(z − 𝜇)2∕2𝜏2}, with
z = 1

2
(x̄ + ȳ) measures the typicality of the two

measurements. This factor takes its smallest
value, 1, when z = 𝜇 and increases as ∣ z − 𝜇 ∣
increases relative to its standard deviation. Thus
the more unusual the glass (i.e. the larger the
value of ∣ z − 𝜇 ∣), the greater the value of V and
the stronger the inference in favour of a common
source for the two measurements. Consider the
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comment by Parker and Holford (1968) in Section
3.8. The first factor considers similarity. The
second factor considers typicality. The assessment
of similarity is not by-passed.

Note again that result (7.17) assumes implicitly
that the fragments are from a single source.
Denote this assumption by S. Then the afore-
mentioned result is the ratio of the probability
density functions f (x̄, ȳ ∣ Hp, S)∕f (x̄, ȳ ∣ Hd, S).
A result including S as one of the uncer-
tain elements and deriving an expression for
f (x̄, ȳ, S ∣ Hp)∕f (x̄, ȳ, S ∣ Hd) was given by Grove
(1980). Let T denote the event that fragments
were transferred from the broken window to the
suspect and persisted there until discovery by the
police. Let A be the event that the suspect came
into contact with glass from some other source.
Assume that Pr(A ∣ Hp) = Pr(A ∣ Hd) = pA, that
Pr(T ∣ Hp) = pT, that A and T are independent
given Hp and that Pr(T ∣ Hd) ≃ 0. Grove (1980)
shows that

V =
f (x̄, ȳ, S ∣ Hp)
f (x̄, ȳ, S ∣ Hd)

= 1 + pT

{
(p−1

A − 1)
f (x̄, ȳ ∣ Hp)
f (x̄, ȳ ∣ Hd)

− 1
}

= (1 − pT) +
pT(1 − pA)

pA
×

f (x̄, ȳ ∣ Hp)
f (x̄, ȳ ∣ Hd)

, (7.18)

where f (x̄, ȳ ∣ Hp)∕f (x̄, ȳ ∣ Hd) is the ratio of Lindley
(1977c). The value derived by Grove (1980)
takes account of transfer and persistence in a
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way already derived for discrete data (see Section
6.2.3).

7.4.4 Interpretation of Result

Compare the result in (7.18) with the alternative
derivation for the likelihood ratio obtained in
(7.12) where t0 replaces (1 − pT), t1 replaces
pT, b0 replaces (1 − pA), and b1,1 replaces pA.
The ratio of the density functions f (y ∣ Hp, x, I)
and f (y ∣ Hd,m1, I) was considered earlier. The
extension described in (7.12) accounts for possible
different sources of the fragment. For the single
fragment case

V = t0 +
t1b0

b1,1

√
𝜎2 + 𝜏2

𝜎

exp
{

(y − 𝜇)2

2(𝜏2 + 𝜎2)
−

(y − x̄)2

2𝜎2

}
.

Illustrative values for the distributional parame-
ters and for the transfer probabilities from Evett
(1986) are given in Tables 7.5 and 7.6.

The values for b0, b1,1 are suggested by Evett
(1986) who cited Pearson et al. (1971). Evett

Table 7.5 Distributional parameters for glass
problems.

𝜇 𝜏 𝜎

1.5186 4 × 10−3 4 × 10−5
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Table 7.6 Transfer probabilities for glass
problems.

b0 b1,1 t0 t1

0.37 0.24 0 0.056

contrasted the probabilities in Table 7.6 with
results from Harrison et al. (1985) in which the
numbers of people with one and two fragments on
their clothing were proportionately closer. There
is a need for a closer investigation of the estimation
of these probabilities. Further examples are given
in Section 7.5.2. These transfer probabilities
are provided by Evett (1986) citing a personal
communication by C.F. Candy. These probabilities
are different from those given in Section 6.2.2.
No claim is made that either set is definitive.
All these probabilities are provided primarily for
illustrative purposes. In practice more up-to-date
values should be used. It is the responsibility
of the expert to ensure the values used are of
relevance.

From these values t1b0∕b1,1 = 0.086. Notice
that 𝜏∕𝜎 = 100 and that 𝜏2 + 𝜎2 ≃ 𝜏2. Thus

√
𝜏2 + 𝜎2

𝜎
≃ 𝜏

𝜎
.

For the single fragment case

V ≃ 8.6 exp
{
(y − 𝜇)2

2𝜏2
−
(y − x̄)2

2𝜎2

}
. (7.19)
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Table 7.7 Some values for the likelihood ratio
V for the single fragment case.

(y − x̄)∕𝜎 (y − 𝜇)∕𝜏
0.0 1.0 2.0

0.0 9 14 63
1.0 5 9 38
2.0 1 2 9
3.0 0.1 0.2 0.7

Source: Evett (1986). Reproduced with permission of
Elsevier.

Some values for varying values of (y − x̄)∕𝜎 and
(y − 𝜇)∕𝜏 (standardised differences of y from the
sample mean of the source fragments and from the
overall mean) are given in Table 7.7. Small values
of (y − x̄)∕𝜎 imply similarity between source and
recovered fragments. Small values of (y − 𝜇)∕𝜏
imply a common value of y. Notice the largest
value of V is given by a small value of (y − x̄)∕𝜎
and a large value of (y − 𝜇)∕𝜏.

7.4.5 Examples

Consider a case with only one control (m = 1)
and one recovered (n = 1) fragment of glass.
Denote these as x̄ and ȳ, for consistency with
(7.17). Suppose the ratio of between-groups
standard deviation 𝜏 to within-groups standard
deviation 𝜎 is 100. The control and recovered
measurements are found to be two within-group
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standard deviations apart. Since the variance of
(x̄ − ȳ) equals 2𝜎2, this separation implies that
∣ x̄ − ȳ ∣ ∕𝜎

√
2 = 2. A conventional significance

test (Section 3.6) would reject the hypothesis of
a common source at the 5% level of significance.
Assume that the mid-point of x̄ and ȳ, which is
(x̄ + ȳ)∕2, the mean denoted z in (7.17) is the
population mean 𝜇. Then, from (7.17)

V = 100e−2

√
2

= 9.57.

The odds in favour of a common source are
increased by a factor of almost 10, a result in
contrast to the rejection at the 5% level of signif-
icance in a conventional significance test. The
values of (7.17) for 𝜏∕𝜎 = 100 as a function of 𝜆
and 𝛿 = ∣ z − 𝜇 ∣ ∕𝜏, the deviation of the mean of
the two measurements from 𝜇, standardised on
the assumption that the hypothesis of a common
source is true are given in Table 7.8. For other
values of 𝜏∕𝜎, multiply entries by 𝜏∕(100𝜎).

Consider the more general formula for V, as
given in (7.16) in Section 7.4.3, namely,

V ≃ 𝜏

a𝜎
× exp

{
−
(x̄ − ȳ)2

2a2𝜎2

}

× exp
{
−(𝑤 − 𝜇)2

2𝜏2
+ (z − 𝜇)2

𝜏2

}
. (7.20)

The following information is needed in order that
V may be evaluated:
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Table 7.8 Value of 𝜏(21∕2𝜎)−1 exp(−1
2
𝜆2 + 1

2
𝛿2)

(7.17) as a function of 𝜆 = ∣ x̄ − ȳ ∣ ∕(21∕2𝜎) and
𝛿 = ∣ z − 𝜇 ∣ ∕𝜏 for 𝜏∕𝜎 = 100.

𝛿 𝜆

0 1.0 2.0 4.0 6.0

0 70.7 42.9 9.57 0.024 1.08 ×10−6

1.0 117 70.7 15.8 0.039 1.78 ×10−6

2.0 522 317 70.7 0.175 7.94 ×10−6

3.0 6370 3860 861 2.14 9.71 ×10−5

• The number of control measurements (m);

• The mean of the control measurements (x̄);

• The number of recovered measurements (n);

• The mean of the recovered measurements (ȳ);

• The variance (assumed known) of the measure-
ments on the control and recovered samples
(𝜎2);

• The overall mean (assumed known) of the
refractive indices (𝜇);

• The overall variance (assumed known) of the
refractive indices (𝜏2).

The following values may be derived from the
earlier:

• z = (x̄ + ȳ)∕2;

• 𝑤 = (mx̄ + nȳ)∕(m + n);
• a2 = 1∕m + 1∕n.
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In the following numerical example using
data from Evett (1977) and Lindley (1977c), we
have x̄ = 1.518 458, m = 10; ȳ = 1.518 472,
n = 5; 𝜎 = 0.000 04; 𝜏 = 0.004. The overall
mean 𝜇 is taken to be 1.518 2 and has been
derived from the 2 269 measurements for build-
ing float glass published by Lambert and Evett
(1984); see Figure 7.1. With these figures,
a2 = 0.3, 𝑤 = 1.518 463, z = 1.518 465, and

𝜏

a𝜎
= 182.5742,

(x̄ − ȳ)2

2a2𝜎2
= 0.2042,

(𝑤 − 𝜇)2

2𝜏2
= 0.002 16,

(z − 𝜇)2

𝜏2
= 0.004 39,

V = 149.19.

The odds in favour of the suspect being at the crime
scene are thus increased by a factor of 150.

7.5 NON-NORMAL
BETWEEN-SOURCE VARIATION

The normality of observations often represents a
convenient assumption to model between-source
variation (as in Section 7.4). However, it must
be acknowledged that there are many practical
situations where available measurements do not
have regular characteristics that make it suitable
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to use such standard parametric models. In par-
ticular, not all data are unimodal, symmetric, and
bell-shaped and may not be modelled by a Normal
distribution. The histogram of the refractive index
of glass fragments (Figure 7.1) and a histogram
of the medullary width of cat hairs (Figure 7.2
from data in Table 7.9) both illustrate this. In such
cases, an estimation of the probability density
function may provide a better representation of
available data.

7.5.1 Estimation of a Probability
Density Function

The estimation of a population mean (𝜇) and
population variance (𝜎2) by a sample mean (x̄)
and variance (s2) of data sampled from a relevant
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Figure 7.2 Medullary width (in microns) of 220 cat
hairs (Source: Based on Peabody et al., 1983).
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Table 7.9 Medullary widths in microns of 220 cat
hairs (Source: Based on Peabody et al., 1983).

17.767 28.600 39.433 52.233 68.467
18.633 28.600 39.867 52.867 69.333
19.067 29.033 39.867 53.300 71.067
19.067 29.033 39.867 53.300 71.500
19.067 29.467 40.300 53.733 71.667
19.133 30.333 40.300 53.733 73.233
19.300 30.767 40.733 54.167 74.533
19.933 31.200 41.167 54.600 75.400
19.933 31.200 41.167 55.033 76.267
20.367 31.300 41.600 55.467 76.267
20.367 31.633 41.600 55.900 77.133
20.367 31.633 42.033 56.767 77.367
20.600 31.807 42.467 57.200 78.000
20.800 32.000 42.467 57.200 78.000
20.800 32.067 42.467 57.200 79.500
21.233 32.067 42.467 57.633 79.733
21.233 32.500 42.467 58.067 80.167
21.400 32.500 42.467 58.067 80.167
22.533 33.800 42.900 58.500 80.167
22.967 33.800 42.900 58.933 81.467
22.967 34.233 42.900 58.933 81.467
23.400 34.667 42.900 60.233 81.900
23.833 34.667 43.333 60.533 82.767
23.833 35.533 44.200 60.667 84.067
24.267 35.533 44.200 60.667 87.100
24.700 35.533 44.300 60.667 87.967
25.133 35.533 45.067 61.100 90.133
25.133 35.533 45.933 61.967 90.267
25.133 36.400 45.933 62.400 91.867
25.133 36.400 45.933 62.400 91.867
25.300 37.267 46.150 63.000 92.733
26.000 37.267 46.583 63.267 93.167
26.000 37.267 46.800 63.700 93.600
26.233 38.567 46.800 65.433 95.333

(continued)
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Table 7.9 (Continued)

26.433 38.567 47.167 65.867 96.267
26.433 38.567 48.100 66.300 97.067
26.867 39.000 48.317 66.733 97.500
26.867 39.000 48.967 66.733 97.500
27.133 39.000 48.967 66.733 97.933
27.733 39.000 49.400 67.167 99.667
27.733 39.000 50.267 67.600 100.100
27.733 39.433 51.567 67.600 106.600
28.167 39.433 51.567 68.033 106.600
28.167 39.433 52.000 68.033 107.467

population is a common idea. Also, the probability
density function itself may be estimated from data
taken from the population.

Estimation of a probability density function
is not too difficult so long as the distribution
is fairly smooth. A procedure known as kernel
density estimation is used; see Silverman (1986) for
technical details. For early applications to forensic
science, see Aitken and MacDonald (1979) for
an application with discrete data to forensic
odontology and Aitken (1986) for an application
to the discrimination between cat and dog hairs in
which two variables are considered. An example
is given here of the application of the technique
to the distribution of the medullary width of cat
hairs.

Consider data on the medullary widths (in
microns) of 220 cat hairs (Peabody et al., 1983).
A version of these modified to make the analysis
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easier is given in Table 7.9 and a histogram to
illustrate the distribution is shown in Figure 7.2
from which it can be seen the data are positively
skewed and perhaps not unimodal. The histogram
has been constructed from the full data set by
selecting intervals of fixed width and fixed bound-
ary points, namely, 15.01–20.00, 20.01–25.00,
. . . , 105.01–110.00 microns. Individual obser-
vations are then allocated to the appropriate
interval and a frequency count obtained. Each
interval is five units (microns) wide and there
are 220 observations. If each observation is
allocated unit height the total area encompassed
by the histogram is 5 × 220 equals 1100 units.
Thus if the height of each bar of the histogram is
reduced by a factor of 1100, the area under the
new diagram is 1. This new histogram may be
considered a very naïve probability function (with
steps at the boundary points of the bars of the
histogram).

The method of kernel density estimation may
be considered as a development of the histogram.
Consider the histogram to be constructed with
rectangular blocks, each block corresponding to
one observation. The block is positioned according
to the interval in which the observation lies.
The method of kernel density estimation used
here replaces the rectangular block by a Normal
probability density curve, known in this context
as the kernel function. The curve is positioned by
centring it over the observation to which it relates.
The estimate of the probability density curve is
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then obtained by adding the individual curves
together over all the observations in the data
set and then dividing this sum by the number of
observations. Since each component of the sum
is a probability density function, each component
has area 1. Thus, the sum of the functions divided
by the number of observations also has area 1 and
is a probability density function.

In the construction of a histogram a decision
has to be made initially as to the width of the
intervals. If these are wide, the histogram is very
uninformative regarding the underlying distribu-
tion. If these are narrow, there is too much detail
and general features of the distribution are lost.
Similarly, in kernel density estimation, the spread
of the Normal density curves has to be determined.
The spread of the curves is represented by the
variance. If the variance is chosen to be large, the
resultant estimated curve is very smooth. If the
variance is chosen to be small, the resultant curve
is very spikey (see Figure 7.3).

Mathematically, the kernel density estimate of
an underlying probability density function can
be constructed as follows. The discussion is in
the context of estimating the distribution of the
medullary widths of cat hairs. There is variation
in the medullary width both within hairs from an
individual cat and between different cats. Denote
the measurement of the mean medullary width
of hairs from a particular cat by 𝜃. The corre-
sponding probability density function f (𝜃) is to be
estimated. A training data set D = {z1, . . . , zk} is
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Figure 7.3 Examples of kernel density estimates
showing individual kernels. Smoothing parameter
values are (a) 𝜆 = 0.5 and (b) 𝜆 = 1.

available to enable this to be done. The variance of
the width of hairs from different cats is estimated
by

s2 =
k∑

i=1

(zi − z̄)2∕(k − 1), (7.21)

where z̄ is the sample mean. This variance is a
mixture of the variances measuring the variability
of the medullary width between and within cats
and will be used as an approximation to the
variance of the medullary width between cats. The
sample standard deviation s is then multiplied by
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a parameter, known as the smoothing parameter,
denoted here by 𝜆, which determines the smooth-
ness of the density estimate. The kernel density
function K(𝜃 ∣ zi, 𝜆) for point zi is then taken to be
a Normal distribution with mean zi and variance
𝜆2s2,

K(𝜃 ∣ zi, 𝜆) =
1

𝜆s
√

2𝜋
exp

{
−
(𝜃 − zi)2

2𝜆2s2

}
.

The estimate f̂ (𝜃 ∣ D, 𝜆) of the probability density
function is then given by

f̂ (𝜃 ∣ D, 𝜆) = 1
k

k∑
i=1

K(𝜃 ∣ zi, 𝜆). (7.22)

Notice here that there is an implicit assump-
tion that a suitable data set D exists and that
it is a data set from a relevant population. This
latter comment is of particular relevance when
considering DNA profiling where there is much
debate as to the choice of the relevant population
in a particular case. Also, if data were available
on variability within groups, an adjustment can
be made to the estimate of the between-group
variance s2 (7.21). Consider data of the form
{zij, i = 1, . . . , k, j = 1, . . . l} where k is the num-
ber of groups and l is the number of members of
each group, assumed constant amongst groups.
Let z̄i denote the mean of the i-th group and z̄ the
overall mean. The within-group variance 𝜎2 is
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then estimated by

�̂�2 =
k∑

i=1

l∑
j=1

(zij − z̄i)2∕(kl − k)

and the between-group variance 𝜏2 by

s2 =
k∑

i=1

(z̄i − z̄)2∕(k − 1) − �̂�2∕k,

an adjustment of �̂�2∕k from (7.21).
The smoothing parameter 𝜆 has to be chosen.

Mathematical procedures exist, which enable
an automatic choice to be made. For example,
a so-called pseudo-maximum likelihood procedure
(Habbema et al., 1974) was used to determine
the value of 𝜆 (0.09) used in Figure 7.4. A value
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Figure 7.4 Medullary widths, in microns, of cat hairs
(Source: Based on Peabody et al., 1983) and associ-
ated kernel density estimate with smoothing parameter
equal to 0.09.
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Figure 7.5 Medullary widths, in microns, of cat hairs
(Source: Based on Peabody et al., 1983) and associ-
ated kernel density estimate with smoothing parameter
equal to 0.50.

of 𝜆 equal to 0.50 was used to produce the
curve in Figure 7.5 to illustrate the effect that
a larger value of 𝜆 produces a smoother curve.
Functions for kernel smoothing are available
in R.

The choice of 𝜆 has to be made bearing in mind
that the aim of the analysis is to provide a value
V for the evidence in a particular case, as repre-
sented by the likelihood ratio. Using the kernel
density estimation procedure an expression for V
is derived; see (7.24). An investigation of the vari-
ation in V as 𝜆 varies is worthwhile. If V does not
vary greatly as 𝜆 varies, then a precise value for 𝜆 is
not necessary. For example, it is feasible to choose
𝜆 subjectively by comparing the density estimate
curve f̂ obtained for various values of 𝜆 with the
histogram of the data. The value that provides the
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best visual fit can then be chosen. Alternatively,
from a scientist’s personal experience of the distri-
bution of the measurements on the characteristic
of interest, it may be thought that certain possible
values are not fully represented in the data set
D available for estimation. In such a situation a
larger value of 𝜆 may be chosen in order to provide
a smoother curve, more representative of the
scientist’s experience. The subjective comparison
of several plots of the data, produced by smoothing
by different amounts, may well help to give a
greater understanding of the data than the con-
sideration of one curve, produced by an automatic
method.

The choice of 𝜆 is also sensitive to outlying obser-
vations. The original cat hair data included one
hair with a medullary width over 139 microns, the
next largest being under 108 microns. The value
of 𝜆 chosen by the automatic pseudo-maximum
likelihood procedure was 0.35, a value that pro-
duced a very different estimate of the probability
density function from that produced by the value
of 𝜆 of 0.09 when the data set was modified as has
been done by replacing the value of 139 microns
by a value of 63 microns. The choice of 𝜆 is also
difficult if the data are presented in grouped form
as is the case with the glass data (Table 7.11). In
this case, the value of 𝜆 was chosen subjectively,
see Figures 7.6 and 7.7 with values of 𝜆 of 0.025
and 0.25.
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Figure 7.6 Kernel density estimate with smoothing
parameter 0.025 of refractive index measurements from
2269 fragments of float glass from buildings (Source:
Modified from Lambert and Evett, 1984).
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Figure 7.7 Kernel density estimate with smoothing
parameter 0.25 of refractive index measurements from
2269 fragments of float glass from buildings (Source:
Modified from Lambert and Evett, 1984).
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7.5.2 Kernel Density Estimation
for Between-Source Data

If the assumption of a Normal distribution for
𝜃 is thought unrealistic, the argument may be
modified for a general distribution for 𝜃 using a
kernel density estimation as described by Chan
and Aitken (1989) for cat hairs, by Berry (1991)
and Berry et al. (1992) for DNA profiling.

More recent examples are presented in Meuwly
(2001), Gonzalez-Rodriguez et al. (2005), Neu-
mann et al. (2006), Gonzalez-Rodriguez et al.
(2007), Davis et al. (2012), and Ali et al. (2015).

An application to the evaluation of fibre evi-
dence in which the marginal distribution of the
recovered measurements y was estimated by a
kernel density function was given by Evett et al.
(1987) and a rather more elaborate treatment
was given by Wakefield et al. (1991). This was a
bivariate case involving colour measurements.
Further details of these ideas are given in Section
7.6 where they are applied to multivariate data.

The method described here is applicable to
situations in which the data are univariate and
for which there are two components of variability,
that within a particular source (e.g. window
or cat) and that between different sources (e.g.
windows or cats).

Consider the numerator in the original expres-
sion (7.8) for V, namely,

∫ f (y ∣ 𝜃)f (x ∣ 𝜃)f (𝜃)d𝜃.
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Given the value for 𝜃, the distribution of (X̄ − Ȳ)
is N(0, a2𝜎2) and the distribution of W, given 𝜃, is
N(𝜃, 𝜎2∕(m + n)). If a change in the numerator is
made from (x̄, ȳ) to (x̄ − ȳ, 𝑤) then V may be writ-
ten as

1

a𝜎
exp{−(x̄−ȳ)2

2a2𝜎2
} ∫ (m+n)1∕2

𝜎
exp{−(𝑤−𝜃)2(m+n)

2𝜎2
}f (𝜃)d𝜃

∫ √
m

𝜎
exp{−(x̄−𝜃)2m

2𝜎2
}f (𝜃)d𝜃 ∫ √

n

𝜎
exp{−(ȳ−𝜃)2n

2𝜎2
}f (𝜃)d𝜃

(7.23)
(Lindley, 1977c). The probability density function,
f (𝜃), for 𝜃 was previously assumed to be Normal.
If this is thought to be unrealistic, the probability
density function may be estimated by kernel den-
sity estimation.

The expression for V in (7.23) may be evaluated
when f (𝜃) is replaced by the expression in (7.22).
Some straightforward, but tedious, mathemat-
ics gives the result, a kernel approach to the
calculation of a likelihood ratio, that

V =
K exp{−(x̄−ȳ)2

2a2𝜎2 }
∑k

i=1 exp{− (m+n)(𝑤−zi)2

2[𝜎2+(m+n)s2𝜆2]
}

∑k
i=1 exp{− m(x̄−zi)2

2(𝜎2+ms2𝜆2)
}
∑k

i=1 exp{− n(ȳ−zi)2

2(𝜎2+ns2𝜆2)
}
,

(7.24)
where

K =
k
√
(m + n)

√
(𝜎2 + ms2𝜆2)

√
(𝜎2 + ns2𝜆2)

a𝜎
√
(mn)

√
{𝜎2 + (m + n)s2𝜆2}

.

There are four factors, explicitly dependent on
the data, in the expression for V which contribute
to its overall value:
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(a) exp{−(x̄ − ȳ)2∕(2a2𝜎2)};

(b)
∑k

i=1 exp{−(m + n)(𝑤 − zi)2∕
2[𝜎2 + (m + n)s2𝜆2]};

(c)
∑k

i=1 exp{−m(x̄ − zi)2∕2(𝜎2 + ms2𝜆2)};

(d)
∑k

i=1 exp{−n(ȳ − zi)2∕2(𝜎2 + ns2𝜆2)}.

The first factor, (a), accounts for the difference
between the control and recovered evidence. A
large difference leads to a smaller value of V, a
small difference to a larger value of V.

The second factor, (b), accounts for the location
of the combined evidence in the overall distribu-
tion from the relevant population. If it is far from
the centre of this distribution then V will be smaller
than if it were close. This provides a measure of the
rarity of the combined evidence.

The third and fourth factors, (c) and (d), account
for the rarity or otherwise of the source and recep-
tor evidence, separately. The further these are from
the centre of the overall distribution the smaller the
corresponding factor and the larger the value of V.

Notice, also, the difference between 𝜎2, which
measures the variance within a particular source
(e.g. window or cat), and s2, which estimates the
overall between-group variance.

7.5.3 Examples

7.5.3.1 Medullary Widths of Cat Hairs

Consider a crime in which a cat is involved. For
example, in a domestic burglary, there may have
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been a cat at the crime scene. A PoI is identified
who has cat hairs on their clothing. A full assess-
ment of the evidence would require consideration
of the PoI’s explanation for the presence of these
hairs and of the probabilities of transfer of cat hairs
from the scene of the crime and from elsewhere.
Such issues are not debated here. Measurements
are made of the medullary widths, among other
characteristics, of these hairs and of a sample of
hairs from the domestic cat. Let x̄ denote the mean
of m hairs from the source (the domestic cat), let
ȳ denote the mean of n hairs from the receptor
(the PoI’s clothing). Some sample results for the
value, V, as given by (7.24) of the evidence are
given in Table 7.10 for various values of x̄, ȳ, and

Table 7.10 Value of the evidence for the medullary
width of cat hairs for various values of x̄ and ȳ, the
smoothing parameter 𝜆 and the within cat standard
deviation 𝜎; m = n = 10 throughout; s = 23 microns.

x̄ ȳ 𝜎 V

𝜆 = 0.09 𝜆 = 0.50

15 15 10 16.50 12.01
15 25 10 1.39 0.782
15 35 10 9.81 × 10−4 4.47 × 10−4

110 110 10 84.48 53.61
50 50 10 6.97 6.25
50 50 16 3.86 3.93
50 50 5 16.14 12.48
50 55 10 3.75 3.54
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𝜎. Variation in 𝜎 is given to illustrate the effect of
changes in the variation within cats of medullary
width on the value of the evidence. The value of
the smoothing parameter 𝜆 has been taken to be
0.09 and 0.50 to illustrate variation in V with 𝜆.
The corresponding density estimate curves are
shown in Figures 7.4 and 7.5, which can be used
to assess the relative typicality of the evidence.

7.5.3.2 Refractive Index

These data, from Lambert and Evett (1984), are
shown in Table 7.11 and illustrated in Figure 7.1.
There are many coincident points and an auto-
matic choice of 𝜆 is difficult and perhaps not
desirable. Figures 7.6 and 7.7 show the kernel
density estimate curves for 𝜆 equal to 0.025 and
0.25. The coincidence probabilities, from (3.8),
and values V of the evidence, using (7.20) and
(7.24), are given in Table 7.12.

Notice that, in general, the kernel approach
leads to considerably higher values for V than
does the Lindley approach. This arises from the
more dispersed nature of the Lindley expression.
Two examples in Table 7.12 show the failure of
the coincidence probability approach. These are
examples in which the separation of the control
(x̄) and recovered (ȳ) fragments is such that an
approach based on coincidence probabilities
would declare these two sets of fragments to have
come from different windows. However, both the
kernel and Lindley approaches give support to
the proposition that they come from the same
window.
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Table 7.11 Refractive index of 2 269 fragments of
float glass from buildings.

r.i. Count r.i. Count r.i. Count r.i. Count

1.5081 1 1.5170 65 1.5197 7 1.5230 1
1.5119 1 1.5171 93 1.5198 1 1.5233 1
1.5124 1 1.5172 142 1.5199 2 1.5234 1
1.5128 1 1.5173 145 1.5201 4 1.5237 1
1.5134 1 1.5174 167 1.5202 2 1.5240 1
1.5143 1 1.5175 173 1.5203 4 1.5241 1
1.5146 1 1.5176 128 1.5204 2 1.5242 1
1.5149 1 1.5177 127 1.5205 3 1.5243 3
1.5151 1 1.5178 111 1.5206 5 1.5244 1
1.5152 1 1.5179 81 1.5207 2 1.5246 2
1.5153 1 1.5180 70 1.5208 3 1.5247 2
1.5154 3 1.5181 55 1.5209 2 1.5249 1
1.5155 5 1.5182 40 1.5211 1 1.5250 1
1.5156 2 1.5183 28 1.5212 1 1.5254 1
1.5157 1 1.5184 18 1.5213 1 1.5259 1
1.5158 7 1.5185 15 1.5215 1 1.5265 1
1.5159 13 1.5186 11 1.5216 3 1.5269 1
1.5160 6 1.5187 19 1.5217 4 1.5272 2
1.5161 6 1.5188 33 1.5218 12 1.5274 1
1.5162 7 1.5189 47 1.5219 21 1.5280 1
1.5163 6 1.5190 51 1.5220 30 1.5287 2
1.5164 8 1.5191 64 1.5221 25 1.5288 1
1.5165 9 1.5192 72 1.5222 28 1.5303 2
1.5166 16 1.5193 56 1.5223 13 1.5312 1
1.5167 15 1.5194 30 1.5224 6 1.5322 1
1.5168 25 1.5195 11 1.5225 3 1.5333 1
1.5169 49 1.5196 3 1.5226 5 1.5343 1

Source: Lambert and Evett (1984). Reproduced with permis-
sion of Elsevier.



Table 7.12 Coincidence probability and value of the evidence for the refractive index of glass
(kernel and Lindley approaches) for various values of x̄ and ȳ and the smoothing parameter 𝜆 (for the
kernel approach); m = 10, n = 5; within window standard deviation 𝜎 = 0.000 04, between
window standard deviation 𝜏 = 0.004; overall mean 𝜇 = 1.5182.

x̄ ȳ Coincidence
probability

𝜆 for kernel approach Lindley
0.025 0.05 0.25

1.515 00 1.515 01 2.845 × 10−9 17 889 7 055 2 810 226
1.516 00 1.516 01 2.643 × 10−3 563 489 419 191
1.517 00 1.517 01 2.863 × 10−2 54.3 52.4 48.9 172
1.518 00 1.518 01 3.083 × 10−2 53.3 54.4 49.2 164
1.519 00 1.519 01 2.246 × 10−2 70.0 69.2 102.4 167
1.520 00 1.520 01 8.536 × 10−9 5 524 2 297 471.2 182
1.521 00 1.521 01 4.268 × 10−9 13 083 4 381 1 397 210
1.522 00 1.522 01 1.321 × 10−2 128 143 304 259
1.515 00 1.515 05 — 740 519 217 18.4
1.516 00 1.516 05 — 48.4 42.4 32.6 15.6
1.516 00 1.516 10 — 1.76 × 10−2 1.74 × 10−2 1.22 × 10−2 6.30 × 10−3

1.517 00 1.517 10 — 1.35 × 10−3 1.42 × 10−3 1.51 × 10−3 5.69 × 10−3
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7.6 MULTIVARIATE ANALYSIS

7.6.1 Introduction

Multivariate data are becoming more prevalent in
forensic science. Often more than one characteris-
tic, or variable, is recorded for a piece of evidence.
Glass fragments that are searched and recovered
at a crime scene or drug samples that are seized
under suspicion of containing illicit substances
may be analysed and compared on the basis of a
profile of the elemental compositions of chemical
compounds as well as physical characteristics. A
comprehensive review of statistical analysis for
the evaluation of multivariate physicochemical
data can be found in Zadora et al. (2014). Multi-
variate data may arise in other domains of forensic
science, such as handwriting examination, where
each handwritten character can be described by
several variables (such as height, surface, or by
Fourier descriptors as proposed by Marquis et al.
(2005)).

One of the criticisms that can be addressed
against the use of multivariate methods in forensic
science is the lack of background information
from which to estimate the model parameters.
Forensic laboratories often need to deal with
databases characterised by a complex dependence
structure, with a large number of variables and
multiple sources of variation. Score-based models
are an attempt to reduce dimensionality, as they
allow a reduction in the multivariate structure
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to a univariate distance or similarity score (as
is illustrated in Section 7.8). In other situations,
provided variables are (at least roughly) inde-
pendent, the likelihood ratio can be simplified to
a product of univariate likelihood ratios. How-
ever, the hypothesis of independence is seldom
guaranteed, these various characteristics may
not be independent and it might be necessary
to allow for the dependence among variables in
the evaluation of evidence. An example of the
importance of allowing for dependence between
characteristics has been given in Section 3.6.3
where the characteristics are the refractive index
and density of glass. The product of two separate
significance probabilities was 0.0016, which
may be thought to be highly significant. It was
shown in Section 3.6.3 that when the depen-
dence between two variables was included in the
analysis, the significance probability was only
0.1225. The two characteristics were significant
individually at the 5% level but together were
not significant at the 10% level. It is possible to
transform multivariate data, for example, using a
method known as principal component analysis
(Jolliffe, 1986). Such an approach in the context
of footprints is discussed in Kennedy et al. (2003).

Some methods for the evaluation of the evidence
in the form of multivariate data will be presented
in this chapter. The likelihood ratio generalises the
likelihood ratio in (7.17) and assumes that data
are Normally distributed. As in the development of
(7.17), there will be assumed multiple sources of
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variation. In Section 7.6.2 a two-level model that
accounts for within-source and between-source
variation will be considered. A three level model
that accounts also for variation due to mea-
surement error will be considered in Section
7.6.5.

The ideas will be illustrated with an example
concerning elemental concentrations of glass. The
arithmetic involved is considerable. In order to
have data that can be presented easily an example
will be considered in Section 7.6.4 in which only
three variables are considered and in which there
are only two control and two recovered items.
Two sets of results will be calculated, one for when
the control and recovered items come from the
same source and one for when the control and
recovered items come from different sources.

Other methods relying on frequentist ideas
might be considered. A significance test based
on Hotelling’s T2-statistic has been proposed by
Curran et al. (1997a,b).

7.6.2 Multivariate Two-Level Models

Let Ω denote a population of p characteristics of
items of a particular evidential type. Continuous
measurements of these characteristics are avail-
able on a random sample of m members from Ω
with n(≥ 2) replicate measurements on each of
the m members. In the case of glass data, items
are fragments and the characteristics measured
are concentrations in elemental composition. The
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background data are denoted xij = (xij1, . . . , xijp)T,
i = 1, . . . ,m and j = 1, . . . , n with x̄i =

∑n
i=1 xij.

As in Section 7.3.2 the model discussed here
assumes two sources of variation, that between
replicates within the same group or source (known
as within-group variation) and that between
groups or sources (known as between-group
variation). It is assumed that both the variation
within-group and the variation between-group
are Normally distributed.

Within-group: Denote the mean vector within
group i by 𝜽i and the within-group covariance
matrix by U. The subscript i is omitted from the
covariance matrix to indicate that it is assumed
that the within-group variability is constant over
all groups. This is an extension of the assumption
made in standard univariate analysis of variance
techniques. This assumption will be relaxed in
Section 7.6.2.4. Then, given 𝜽i and U, the distri-
bution of Xij (a p × 1 column vector indicating
the p characteristics of the j-th member of the i-th
group) is taken to be Normal, where the notation
is the same as in Section A.3.9:

(Xij ∣ 𝜽i,U) ∼ N(𝜽i,U), i = 1, . . . ,m; j = 1, . . . , n.

Between-group: Denote the mean vector between
groups by 𝝁 and the between-group covariance
matrix by C. The distribution of the 𝜽i, as mea-
sures of between-source variability, is taken to be
Normal:

(𝜽i ∣ 𝝁,C) ∼ N(𝝁,C).
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This distribution arises as the model is assumed
to be a so-called random effects model. The different
groups in the population database are thought of
as a random sample from a larger population (or
super-population). Thus, measurements on the
groups in the (population) database are a random
sample from a larger population and thus have
variability. The term ‘multivariate random effects’
arises because the data are multivariate.

There are multivariate data from a crime scene,
which are assumed to come from one source, and
multivariate data from a PoI, which are assumed to
come from one source. These sources may or may
not be the same source. A likelihood ratio is derived
to measure the support for the proposition that the
sources are the same as opposed to the proposition
that the sources are different.

Control data are denoted y1 and recovered data
are denoted y2. Note that, contrary to the conven-
tion elsewhere in the book that x denotes control
and y denotes recovered data, the control and
recovered data are distinguished by subscripts,
and y denotes control or recovered data. Also x
refers to training data whereas elsewhere (e.g.
Section 7.5.1) z refers to training data. This is for
ease of notation in the description of the models
and in comparison with Aitken and Lucy (2004).

Let there be n1 observations at the crime scene
(recovered data), with vectors of measurements
y11, . . . , y1n1

and n2 observations from a PoI
(control data), with vectors of measurements
y21, . . . , y2n2

, where n1 is not necessarily equal
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to n2. The means of these two sets of observations
are

ȳ1 =
n1∑

j=1

y1j∕n1, and ȳ2 =
n2∑

j=1

y2j∕n2.

The distributions of the means (Ȳl; l = 1,2) of
the measurements on the recovered and control
data, conditional on the source, are also taken to
be Normal, with means 𝜽l and covariance matrix
Dl where D1 = n−1

1 U and D2 = n−1
2 U. Thus

(Ȳl ∣ 𝜽l,Dl) ∼ N(𝜽l,Dl); l = 1,2.

Then it can be shown that

(Ȳl ∣ 𝝁,C,Dl) ∼ N(𝝁,C + Dl); l = 1,2.

This is the multivariate generalisation of (7.15).

7.6.2.1 Parameter Estimation

Information on the overall vector mean 𝝁, the
within- (U), and between-source (C) covariance
matrices can be assessed on the basis of back-
ground information obtained from a suitable data-
base x = {xij, i = 1, . . . ,m, j = 1, . . . , n} where m
is the number of groups and n is the number
of members of each group, assumed constant
between groups, with mn = N. The mean 𝝁 is
estimated by x̄, the mean vector over all groups,
that is,

�̂� = x̄ = 1
mn

m∑
i=1

n∑
j=1

xij. (7.25)



�

� �

�

Multivariate Analysis 855

The within-group covariance matrix U is
estimated from the background data {x} by

Û =
S𝑤

(N − m)
(7.26)

where

S𝑤 =
m∑

i=1

n∑
j=1

(xij − x̄i)(xij − x̄i)T.

The between-group covariance matrix C is esti-
mated from the background data {xij} by

Ĉ = S∗

m − 1
−

S𝑤

n(N − m)
, (7.27)

where

S∗ =
m∑

i=1

(x̄i − x̄)(x̄i − x̄)T.

7.6.2.2 Likelihood Ratio Using a
Multivariate Random Effects Model
and Assumptions of Normality

The value of the evidence (yl; l = 1,2) is then the
ratio of two probability density functions, eval-
uated at the point (y1, y2) given two competing
propositions Hp and Hd. For the calculations in the
numerator (i.e. Hp holds) it is assumed that the
control and recovered items come from the same
source and the means 𝜽1 and 𝜽2 are equal. For the
calculations in the denominator (i.e. Hd holds), it
is assumed that the control and recovered items
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come from different sources and the means 𝜽1 and
𝜽2 are not equal.

First, consider the numerator where 𝜽1 = 𝜽2 =
𝜽, say, which is unknown. The parameter 𝜽 can
be eliminated by integration, analogous to the
approach of Section 7.3, to obtain a probability
density function f0(y1, y2 ∣ 𝝁,U,C) given by

∫ f (y1 ∣ 𝜽,D1)f (y2 ∣ 𝜽,U)f (𝜽 ∣ 𝝁,C)d𝜽.

The component probability density functions
are multivariate Normal. The expressions for
f (y1 ∣ 𝜽,D1), f (y2 ∣ 𝜽,D2), and f (𝜽 ∣ 𝝁,C) earlier
are obtained by appropriate substitutions in the
general formula (A.27).

The integral can then be shown to be equal to

f0(y1, y2 ∣ 𝝁,U,C) = ∣ 2𝜋U ∣−
1
2
(n1+n2) ∣ 2𝜋C ∣−1∕2

× ∣ 2𝜋{(n1 + n2)U−1 + C−1}−1 ∣1∕2

exp
{
−1

2
(H1 + H2 + H3)

}
(7.28)

where

H1 =
2∑

l=1

tr(SlU
−1), (7.29)

H2 = (ȳ − 𝝁)T

(
U

n1 + n2
+ C

)−1

(ȳ − 𝝁), (7.30)

H3 = (ȳ1 − ȳ2)T(D1 + D2)−1(ȳ1 − ȳ2), (7.31)
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ȳ = (n1ȳ1 + n2ȳ2)∕(n1 + n2),

Sl =
nl∑

j=1

(ylj − ȳl)(ylj − ȳl)T,

(Aitken and Lucy, 2004). Note that the term tr in
(7.29) denotes the trace of a matrix, Section B.1.1.
The exponential term in (7.28) is a combination
of three terms, H3 that accounts for the difference
(ȳ1 − ȳ2) between the means of the measurements
on the control and recovered items, H2 that
accounts for their rarity (as measured by the dis-
tance of the mean weighted by sample sizes from
𝝁), and H1 that accounts for internal variability.

Second, consider the denominator where
𝜽1 ≠ 𝜽2. The probability density function
f1(y1, y2 ∣ 𝝁,U,C) is given by

∫ f (y1 ∣ 𝜽,U)f (𝜽 ∣ 𝝁,C)d𝜽

× ∫ f (y2 ∣ 𝜽,U)f (𝜽 ∣ 𝝁,C)d𝜽,

where y1 and y2 are taken to be independent as the
data are assumed to be from different sources. The
integral

∫ f (y1 ∣ 𝜽,U)f (𝜽 ∣ 𝝁,C)d𝜽

can be shown to be equal to

f (y1 ∣ 𝝁,U,C)

= ∣ 2𝜋U ∣−n1∕2 ∣ 2𝜋C ∣−1∕2 ∣ 2𝜋(n1U−1 + C−1)−1 ∣1∕2
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× exp

{
−1

2
tr(S1U−1) − 1

2
(ȳ1 − 𝝁)T

(
U
n1

+ C
)−1

(ȳ1 − 𝝁)

}
, (7.32)

with an analogous result for

∫ f (y2 ∣ 𝜽,U)f (𝜽 ∣ 𝝁,C)d𝜽.

The value of the evidence is the ratio of f0(y1, y2 ∣
𝝁,U,C) to the product of ∫ f (y1 ∣ 𝜽,U)f (𝜽 ∣ 𝝁,C)d𝜽
and ∫ f (y2 ∣ 𝜽,U)f (𝜽 ∣ 𝝁,C)d𝜽. After some manip-
ulations it can be shown this is equal to the ratio
of

∣ 2𝜋{(n1 + n2)U−1 + C−1}−1 ∣1∕2 exp
{
−1

2
(H2 + H3)

}

(7.33)
to

∣ 2𝜋C ∣−1∕2 ∣ 2𝜋(n1U−1 + C−1)−1 ∣1∕2

∣ 2𝜋(n2U−1 + C−1)−1 ∣1∕2

× exp
{
−1

2
(H4 + H5)

}
(7.34)

where

H4 = (𝝁 − 𝝁
∗)T{(D1 + C)−1 + (D2 + C)−1}

(𝝁 − 𝝁
∗), (7.35)
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H5 = (ȳ1 − ȳ2)T(D1 + D2 + 2C)−1(ȳ1 − ȳ2),
(7.36)

𝝁
∗ = {(D1 + C)−1 + (D2 + C)−1}−1

{(D1 + C)−1ȳ1 + (D2 + C)−1ȳ2},

D1 = U∕n1 and D2 = U∕n2.
Alternatively, a maximum likelihood approach

has been proposed by Ommen and Saunders
(2018).

7.6.2.3 Likelihood Ratio Using a
Multivariate Random Effects Model
and Non-normal Between-Source Variation

A multivariate normal distribution for the vector
mean 𝜽 may not always be a reasonable assump-
tion. The assumption of normality can be removed
by considering a kernel density estimate for the
between-group distribution (as in Section 7.5.2).
Given a data set D = {x̄1, . . . , x̄m}, which in this
case will be taken to be the vector of group means
x̄i, i = 1, . . . ,m, the kernel density function is
taken to be a multivariate Normal density func-
tion, with a mean at x̄i and covariance matrix h2C,
and denoted by K(𝜽 ∣ x̄i,C, h) where

K(𝜽 ∣ x̄i,C, h) = (2𝜋)−p∕2 ∣ C ∣−1∕2

hp

exp
{
−1

2
h−2(𝜽 − x̄i)TC−1(𝜽 − x̄i)

}
.
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The estimate f (𝜽 ∣ x̄1, . . . , x̄m,C, h) of the overall
probability density function is then

f (𝜽 ∣ x̄1, . . . , x̄m,C, h) = 1
m

m∑
i=1

K(𝜽 ∣ x̄i,C, h),

(7.37)
where the smoothing parameter h can be
estimated as

ĥ =
(

4
2p + 1

)1∕(p+4)

m−1∕(p+4) (7.38)

(Silverman, 1986; Scott, 1992).
The numerator of the likelihood ratio, for which

hypothesis Hp is assumed true, can be shown to be
given by (see (Aitken and Lucy, 2004))

f0(y1, y2 ∣ U,C) = (2𝜋)−p ∣ D1 ∣−
1
2

∣ D2 ∣−
1
2 ∣

∣ C∣−
1
2 (mhp)−1 ∣ D−1

1 + D−1
2 + (h2C)−1 ∣−

1
2

× exp
{
−1

2
H3

}
×

m∑
i=1

exp
{
−1

2
Hi

}
, (7.39)

where H3 is as in (7.31),

Hi = (y∗ − x̄i)T{(D−1
1 + D−1

2 )−1 + (h2C)}−1

(y∗ − x̄i), i = 1, . . . ,m,

and y∗ = (D−1
1 + D−1

2 )−1(D−1
1 ȳ1 + D−1

2 ȳ2).
The denominator of the likelihood ratio, for

which hypothesis Hd is assumed true, can be
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shown to be given by

f1(y1, y2 ∣ U,C) = (2𝜋)−p ∣ C ∣−1(mhp)−2

2∏
l=1

[
∣ Dl ∣−

1
2 ∣ D−1

l + (h2C)−1 ∣−
1
2

m∑
i=1

exp
{
−1

2
Hli

}]
, (7.40)

with

Hli = (ȳl − x̄i)T(Dl + h2C)−1(ȳl − x̄i), l = 1,2 ;
i = 1, . . . ,m.

The likelihood ratio is then the ratio of (7.39)–
(7.40) and is

∣ C ∣
1
2 mhp ∣ D−1

1 + D−1
2 + (h2C)−1 ∣−

1
2

exp
{
−1

2
H3

}∑m
i=1 exp

{
−1

2
Hi

}

∏2
l=1

[
∣ D−1

l + (h2C)−1 ∣−
1
2
∑m

i=1 exp
{
−1

2
Hli

}]

(7.41)

A kernel density estimation procedure with an
unconstrained bandwidth matrix is recommended
by Neocleous et al. (2011) for the evaluation of
evidence in the form of compositional data.1

1Compositional data are multivariate data whose individual com-
ponents add up to a fixed, known, constant, usually 1 or 100%.
An example is the elemental composition of glass where the pro-
portions of the elements which form the composition of the glass
add up to 100%.
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Alternatively, Pedroso et al. (2016) proposed
the use of a Gaussian mixture model for the
between-source variation, where observations
are assumed to be generated from a mixture of a
finite number of Normal densities with unknown
parameters estimated by a maximum likelihood
approach.

7.6.2.4 Non-constant Within-Group
Covariance Matrix

There may be domains where a constant variabil-
ity within groups is difficult to justify. One example
is given by handwriting comparison, where it can
be observed that each writer is characterised by
a particular variability (Marquis et al., 2006).
To account for a non-constant variability within
sources, Bozza et al. (2008) proposed a two-level
model, where the distribution of the Xij is taken
to be Normal, with mean given by the mean
vector within group 𝜽i, but with a non-constant
within-group covariance matrix Ui,

(Xij ∣ 𝜽i,Ui) ∼ N(𝜽i,Ui), i = 1, . . . ,m; j = 1, . . . , n.

The distribution of the 𝜽i is taken as in Section
7.6.2, whilst an inverse Wishart distribution
(Section A.3.11) is taken for the within-group
covariance matrix Ui,

(Ui ∣ Σ, 𝜈) ∼ W−1(Σ, 𝜈),

where the scale matrix Σ is taken so that the
prior mean of the {Ui} is taken to be equal to
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the common within-group covariance matrix
estimated from the background data and 𝜈 is the
prior degrees of freedom. A two-level multivari-
ate random effects model with a non-constant
within-group covariance matrix has been adopted
also by Ommen et al. (2017).

Consider the numerator where 𝜽1 = 𝜽2 = 𝜽, say,
and U1 = U2 = U, which are unknown. The prob-
ability density function f0(y1, y2 ∣ 𝝁,C,Σ, 𝜈) under
Hp can be obtained as

∫ f (y1 ∣ 𝜽,U)f (y2 ∣ 𝜽,U)f (𝜽,U ∣ 𝝁,C,Σ, 𝜈)d(𝜽,U).
(7.42)

Consider the denominator, where 𝜽1 ≠ 𝜽2
and U1 ≠ U2. The probability density function
f1(y1, y2 ∣ 𝝁,C,Σ, 𝜈) under Hd is given by

∫ f (y1 ∣ 𝜽,U)f (𝜽,W ∣ 𝝁,C,Σ, 𝜈)d(𝜽,U)

× ∫ f (y2 ∣ 𝜽,U)f (𝜽,W ∣ 𝝁,C,Σ, 𝜈)d(𝜽,U).

(7.43)

However, the integrations in (7.42) and (7.43)
do not have an analytical solution. The
marginal likelihoods f0(y1, y2 ∣ 𝝁,C,Σ, 𝜈) and
f1(y1, y2 ∣ 𝝁,C,Σ, 𝜈) can be obtained by means of
Markov chain Monte Carlo methods, as in Bozza
et al. (2008) where a Gibbs sampling algorithm
was applied to the set of the conditional densities.
A summary of fundamental elements of Bayesian
computation and Markov chain simulation can be
found in Gelman et al. (2014).
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7.6.3 A Note on Sensitivity

The described procedures might be sensitive to
changes in the control and recovered measure-
ments. A sensitivity analysis may be conducted
in terms of the percentages of false negatives and
false positives that are obtained whenever mea-
surements originating from a common or from
different sources are compared (e.g. Aitken and
Lucy (2004), Bozza et al. (2008)). The scientist
may in this way focus on how many times a par-
ticular likelihood ratio – obtained for a particular
setting (e.g. same or different source) – points in
the wrong direction (i.e. supports the first propo-
sition instead of the second, or vice versa). This
is not to provide a distribution for the likelihood
ratio. Given the available measurements, back-
ground information, statistical model, and prior
knowledge, the best estimate of the value of the
evidence is given by a single number. The purpose
of considering false positives and false negatives
is to inform about the potential of misleading
evidence (Taroni et al., 2016) (see Chapter 8). In
fact, as reported by Taylor et al. (2016c),

The key point is that it is not our belief (i.e. our probabil-
ity) that is more robust, but the basis of this belief (i.e. the
amount of knowledge, the data). (p. 408)

This use of the term ‘sensitivity’ should be con-
trasted with the use given in Section 2.2.2 for the
performance of a test.
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7.6.4 Case Study for Two-Level Data

The example that is used to illustrate the methods
in Sections 7.6.2.2 and 7.6.2.3 is based on a
database consisting of the measurements of the
elemental concentration on glass fragments from
several (m = 62) windows (Aitken and Lucy,
2004). Three derived variables were retained
because they were considered the most discrim-
inatory (i.e. the ratios Ca/K, Ca/Si, Ca/Fe). A
logarithmic transformation was made to reduce
positive skewness and to make the normality
assumption more valid.

The overall mean elemental concentration 𝝁

is estimated by the overall sample mean x̄ for the
three log elemental ratios as in (7.25)

�̂� = x̄ = (4.20,−0.75,2.77)T.

The within-group covariance matrix U is esti-
mated by Û as in (7.26)

Û =
⎛
⎜⎜⎝

1.68 × 10−2 2.66 × 10−5 2.21 × 10−4

2.66 × 10−5 6.53 × 10−5 7.40 × 10−6

2.21 × 10−4 7.40 × 10−6 1.33 × 10−3

⎞
⎟⎟⎠
.

The between-group covariance matrix C is
estimated by Ĉ as in (7.27)

Ĉ =
⎛
⎜⎜⎝

7.06 × 10−1 9.88 × 10−2 −4.63 × 10−2

9.88 × 10−2 6.21 × 10−2 6.96 × 10−3

−4.63 × 10−2 6.96 × 10−3 1.01 × 10−1

⎞
⎟⎟⎠
.
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The measurements y11, y12 on the two control
fragments are taken to be the same throughout.
These are

y11 =
⎛
⎜⎜⎝

3.774
−0.891

2.620

⎞
⎟⎟⎠
, y12 =

⎛
⎜⎜⎝

3.939
−0.893

2.639

⎞
⎟⎟⎠
.

The mean vector of these two vectors is obtained by
taking the mean of the three components. These
three means together give the mean vector. This
may be denoted ȳ1 and is

ȳ1 = (3.856,−0.892,2.629)T.

There will be two sets of recovered fragments. One
will be used for the evaluation of the evidence
when the control and recovered fragments come
from the same source, and one will be used for the
evaluation of the evidence when the control and
recovered fragments come from different sources.

The measurements y21, y22 on the two recovered
fragments taken to be from the same source as the
control fragments are

y21 =
⎛
⎜⎜⎝

3.844
−0.910

2.654

⎞
⎟⎟⎠
, y22 =

⎛
⎜⎜⎝

3.725
−0.898

2.619

⎞
⎟⎟⎠
,

with mean

ȳ2 = (3.784,−0.9041,2.6368)T.
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The measurements y31, y32 on the two recovered
fragments taken to be from a different source to the
control fragments are

y31 =
⎛
⎜⎜⎝

4.077
−0.835

2.739

⎞
⎟⎟⎠
, y32 =

⎛
⎜⎜⎝

4.109
−0.819

2.796

⎞
⎟⎟⎠
,

with mean

ȳ3 = (4.0933,−0.8268,2.7674)T.

These are denoted with a subscript 3 to distin-
guish them from those recovered fragments,
with a subscript 2, deemed to be from the
same source as the control fragments, with a
subscript 1.

7.6.4.1 Normal Density
for Between-Group Distribution

First, consider the case where the control and
recovered fragments are chosen to come from the
same source.

Consider the determination of the numerator.
The first term in (7.33) involves inverses of covari-
ance matrices and a square root of a determinant
of a function of the two covariance matrices U and
C and gives

∣ 2𝜋{(n1 + n2)U−1 + C−1}−1 ∣1∕2 = 7.467 × 10−5.
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The term H2 (7.30) measures the difference
between the overall mean of the control and
recovered fragments and the overall population
mean. In this example,

H2 = (ȳ − 𝝁)T

(
U

n1 + n2
+ C

)−1

(ȳ − 𝝁) = 0.6734.

The term H3 (7.31) measures the difference
between the means of the control and recovered
fragments. Note that, for the example under
discussion, n1 = n2 = 2 and so D1 + D2 = U. In
this example,

H3 = (ȳ1 − ȳ2)T(D1 + D2)−1(ȳ1 − ȳ2) = 2.5716.

So, exp
{
−1

2
(H2 + H3)

}
= 0.1974.

All these terms can be put together to give the
numerator of the likelihood ratio, (7.33), which is

(7.467 × 10−5) × 0.1974 = 1.474 × 10−5.

Now consider the denominator. The various
terms in (7.34) which involve determinants,
inverses of covariance matrices and determinants
of functions of the two covariance matrices U and
C take the following values:

∣ 2𝜋C ∣−1∕2 = 1.0993,

∣ 2𝜋(n1U−1+C−1)−1 ∣1∕2

= ∣ 2𝜋(n2U−1 + C−1)−1 ∣1∕2

= 0.000 21.
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(Note that in this example n1 = n2 = 2.) From
(7.35)

H4 = (𝝁 − 𝝁
∗)T{(D1 + C)−1 + (D2 + C)−1}(𝝁 − 𝝁

∗)
= 1.3437.

From (7.36)

H5 = (ȳ1 − ȳ2)T(D1 + D2 + 2C)−1(ȳ1 − ȳ2)
= 0.0037.

So, exp
{
−1

2
(H4 + H5)

}
= 0.5098.

All these terms can be put together to give the
denominator of the likelihood ratio, which is

1.0993 × 0.000 21 × 0.000 21 × 0.5098

= 2.471 × 10−8.

The value of the evidence is then

V = 1.474 × 10−5

2.471 × 10−8
= 596.47.

The likelihood ratio correctly supports the
proposition according to which the control and
recovered fragments originate from the same
source.

Now, consider the case where the control
and recovered fragments are chosen to come
from different sources. Many of the terms and
calculations will be the same as or similar to
the calculations done for the example where the
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control and recovered fragments were chosen to
come from the same sources. This is because the
control group has been chosen to be the same in
both cases and because the covariance matrices U
and C and the sample sizes are the same.

Consider the determination of the numerator.
The first term in (7.33) which involves inverses
of covariance matrices and a square root of a
determinant of a functions of the two covariance
matrices U and C is the same as before, namely,

∣ 2𝜋{(n1 + n2)U−1 + C−1}−1 ∣1∕2 = 7.467 × 10−5.

The term H2 (7.30), which measures the difference
between the overall mean of the control and recov-
ered fragments and the overall population mean, is
now equal to

H2 = (ȳ − 𝝁)T

(
U

n1 + n2
+ C

)−1

(ȳ − 𝝁) = 0.2881.

The term H3 (7.31), which measures the difference
between the means of the control and recovered
fragments, is now equal to

H3 = (ȳ1 − ȳ2)T(D1 + D2)−1(ȳ1 − ȳ2) = 80.007.

So, exp
{
−1

2
(H2 + H3)

}
= 3.666 × 10−18.

All these terms can be put together to give the
numerator of the likelihood ratio, which is

(7.467 × 10−5)× 3.666× 10−18 = 2.737 × 10−22.

Now consider the denominator. The various
terms in (7.34) which involve determinants,
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inverses of covariance matrices and determinants
of functions of the two covariance matrices U and
C are the same as before, namely,

∣ 2𝜋C ∣−1∕2 = 1.0993,

∣ 2𝜋(n1U−1 + C−1)−1 ∣1∕2

= ∣ 2𝜋(n2U−1 + C−1)−1 ∣1∕2

= 0.000 21.

The term H4 (7.35) is now equal to

H4 = (𝝁 − 𝝁
∗)T{(D1 + C)−1 + (D2 + C)−1}(𝝁 − 𝝁

∗)
= 0.5754.

The term H5 (7.36) is now equal to

H5 = (ȳ1 − ȳ2)T(D1 + D2 + 2C)−1(ȳ1 − ȳ2)
= 0.1697.

So, exp
{
−1

2
(H4 + H5)

}
= 0.6889.

All these terms can be put together to give the
denominator of the likelihood ratio, which is

1.0993 × 0.000 21 × 0.000 21 × 0.6889

= 3.34 × 10−8.

The value of the evidence is then

V = 2.733 × 10−22

3.34 × 10−8
= 8.18 × 10−15.

The likelihood ratio correctly supports the
proposition according to which the control and
recovered fragments originate from different
sources.
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7.6.4.2 Kernel Density for Between-Group
Distribution

First, consider the case where the control and
recovered fragments are chosen to come from the
same source.

Consider the determination of the numerator of
the likelihood ratio where the control and recov-
ered fragments are assumed to (i.e. hypothesis Hp is
true). The first terms in the numerator that involve
the square root of the determinant of the covari-
ance matrix C and the square root of the inverse
of the determinant of a function of the two covari-
ance matrices U and C are

∣ C ∣1∕2 = 0.0577,

∣ D−1
1 + D−1

2 + (h2C)−1 ∣−1∕2 = 4.665 × 10−6.

The smoothing parameter h can be estimated as
in (7.38) and equals 0.511 94. In this way

mhp = 8.3189,

where p = 3 and m = 62.
The term H3 has been calculated in Section

7.6.4.1, so that exp
{
−1

2
H3

}
equals 0.276. The

expression
m∑

i=1

exp
{
−1

2
Hi

}

equals 7.237.
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Consider the determination of the denominator
of the likelihood ratio where the control and recov-
ered fragments are assumed to originate from dif-
ferent sources (i.e. hypothesis Hd is true).

The first term in the denominator that involves
inverses of covariance matrices and a square
root of a determinant of a functions of the two
covariance matrices U and C is the same as before,
namely,

∣ D−1
1 + (h2C)−1 ∣−1∕2 = ∣ D−1

2 + (h2C)−1 ∣−1∕2

= 1.29 × 10−5.

Note that in this example n1 = n2, so that
D1 = D2.

Consider first l = 1. Then
∑m

i=1 exp
{
−1

2
H1i

}
=

7.6939. In the same way, when l = 2,
∑

exp
{
−1

2
H2i

}
= 7.0027.

The value of the evidence is then

V =

0.0577 × 8.3189 × 4.665
×10−6 × 0.276 × 7.237

1.29 × 10−5 × 7.6939 × 1.29
×10−5 × 7.0027

= 498.85.

The likelihood ratio correctly supports the
proposition according to which the control and
recovered fragments originate from the same
source.

Consider now the case where the control and
recovered fragments are chosen to come from
different sources.
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Consider the determination of the numerator of
the likelihood ratio where the control and recov-
ered fragments are assumed to originate from the
same source (i.e. hypothesis Hp is true). The first
terms in the numerator that involve a square root
of the determinant of the covariance matrix C, and
the square root of the inverse of the determinant
of a function of covariance matrices U and C
are

∣ C ∣1∕2 = 0.0577,

∣ D−1
1 + D−1

2 + (h2C)−1 ∣−1∕2 = 4.665 × 10−6.

The smoothing parameter h is estimated as
before, so mhp = 8.3189.

The term H3 has been calculated in Section
7.6.4.1, so that exp

{
−1

2
H3

}
equals 4.234 ×

10−18. The expression

m∑
i=1

exp
{
−1

2
Hi

}

equals 9.377.
Consider the determination of the denominator

of the likelihood ratio where the control and
recovered fragments are assumed to originate
from different sources (i.e. hypothesis Hd is
true).

The first terms in the denominator that involve
inverses and square roots of inverses of determi-
nants of functions of covariance matrices U and C
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are, as before,

∣ D−1
1 + (h2C)−1 ∣−1∕2 = ∣ D−1

2 + (h2C)−1 ∣−1∕2

= 1.29 × 10−5.

Note again that n1 = n2, and D1 = D2.
Consider first l = 1. Then

∑m
i=1 exp

{
−1

2
H1i

}
=

7.6939. In the same way, when l = 2,∑m
i=1 exp

{
−1

2
H2i

}
= 9.4339.

The value of the evidence is then

V =

0.0577 × 4.665 × 10−6 × 8.3189
×4.233 × 10−18 × 9.377

1.29 × 10−5 × 1.29 × 10−5

×7.6939 × 9.4339

= 7.35 × 10−15.

The likelihood ratio correctly supports the
proposition according to which the control and
recovered fragments originate from different
sources.

The same-source likelihood ratio equals
498.85, the different-source likelihood ratio
equals 7.35 × 10−15. The biggest contributor to
this difference in values is the term exp{−1

2
H3},

which equals 0.276 for the same-source compar-
ison and 4.233 × 10−18 for the different-source
comparison. The term H3 (7.31) measures the
difference between the mean of the control and
recovered fragments. If they are dissimilar H3 is
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large and hence exp{−1
2

H3} is small. If they are

similar H3 is small and hence exp{−1
2

H3} is large.
In both these examples the likelihood ratio for

different source comparisons is of the order of
10−15. It is proposed that caps of 109 and 10−9 be
placed on likelihood ratios. Jurists will find it hard
to believe in values of greater magnitude.

7.6.5 Three-Level Models

So far in this chapter, the discussion has been
about two-level models. It is not uncommon
for there to be three levels of variation in the
data. For example, this may occur when there
is measurement error on individual items. This
error provides a third level of variation along
with variation within and between groups. An
example is given in Aitken et al. (2006) that con-
cerns data from a scanning electron microscope
coupled with energy dispersive X-ray detectors
(SEM-EDX). The instrument provides elemental
concentration information from float glass. The
three levels of variation are measurement error
(relating to the precision of the instrument),
within-source error (variation of measurements
made on the same object) and between-source
variation (variation between measurements made
on different objects of the same evidential type).
A brief summary of the model is given here. Full
details are given in Aitken et al. (2006), where
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graphical models are implemented to address the
problem of dimensionality.

Let Ω denote a population of p characteristics of
items of a particular type. Background data are
available of continuous measurements of these
characteristics on a random sample of N = mt
members (t members from each of m groups) from
Ω with n(≥ 2) independent replicate measure-
ments on each of the N members. For example,
the data could be the logarithms of the ratio of the
concentration of oxygen to each of several other
elements in an analysis of float glass; Aitken et al.
(2006) consider the logarithmic ratio of oxygen
to each of sodium, magnesium, aluminium,
silicon, and calcium, so p = 5. The background
data are denoted as xikj = (xikj1, . . . , xikjp)T; i =
1, . . . ,m; k = 1, . . . , t; j = 1, . . . , n; with x̄ik⋅ =
1
n

∑n
j=1 xikj; x̄i⋅⋅ = 1

t

∑t
k=1 x̄ik⋅; and x̄··· = 1

m

∑m
i=1 x̄i⋅⋅.

The data x are used to estimate various parameters
of Ω.

Control data are denoted y1 and recovered data
denoted y2, as in Section 7.6.2. For control data,
denote the number of replicate measurements as
n1 on each of nc items. For recovered data, denote
the number of replicate measurements as n2 on
each of ns items.

Define a subscript l, which takes one of two
values corresponding to whether the data are
control (l = 1) or recovered (l = 2). The control
and recovered measurements y1, y2 are vectors
with elements ylkj = (ylkj1, . . . , ylkjp)T, j = 1, . . . , nl;
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k = 1, . . . , nx; l = 1,2; x = c if l = 1; x = s if
l = 2. Let n0 = (n1nc + n2ns), ȳlk = 1

nl

∑nl

j=1 ylkj,

ȳl = 1
nx

∑nx

k=1 ȳlk, and ȳ = (n1ncȳ1 + n2nsȳ2)∕n0.
The model assumes three sources of variation,

that of measurement error (replicate measure-
ments on the same item), that between items
within the same group (known as within-group
variation), and that between groups (known as
between-group variation). It is assumed that
the variation at all three levels is Normally
distributed.

Replication: Denote the mean vector within item
k in group i as 𝜽ik and the covariance matrix of
replicate variability as U, constant over all items
and groups. Then, given𝜽ik and U, the distribution
of Xikj is taken to be Normal:

(Xikj ∣ 𝜽ik,U) ∼ N(𝜽ik,U);
i = 1, . . . ,m; k = 1, . . . , t; j = 1, . . . , n.

Within-group: Denote the mean vector within
group i by 𝝁i and the within-group covariance
matrix by V. Then, given 𝝁i and V, the distribution
of 𝜽ik is taken to be Normal:

(𝜽ik ∣ 𝝁i,V) ∼ N(𝝁i,V), ; i = 1, . . . ,m; k = 1, . . . , t.

Between-group: Denote the mean vector between
groups by 𝝓 and the between-group covariance
matrix by W. The distribution of the 𝝁i, as a
measure of between-source variability, is taken to
be Normal:

(𝝁i ∣ 𝝓,W) ∼ N(𝝓,W); i = 1, . . . ,m.
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Consider the control data y1kj, k = 1, . . . , nc, j =
1, . . . , n1. Then

(Y1kj ∣ 𝜽i1k,U) ∼ N(𝜽i1k,U),

(Ȳ1k ∣ 𝜽i1k,U) ∼ N(𝜽i1k, n−1
1 U),

(Ȳ1k ∣ 𝝁i1
,U,V) ∼ N(𝝁i1

, n−1
1 U + V),

(Ȳ1 ∣ 𝝁,U,V) ∼ N(𝝁, (n1nc)−1U + n−1
c V),

(Ȳ ∣ 𝝓,U,V,W) ∼ N(𝝓, (n1nc)−1U + n−1
c V + W),

where 𝜽i1k is the mean of the replicate measure-
ments on the kth member of the control group. The
control group is indicated i1.

Analogous results follow for the recovered data
with i2 denoting the recovered group so that, for
example, 𝝁i2

replaces 𝝁i1
.

7.6.5.1 Parameter Estimation

The overall mean 𝝓 is estimated by x̄i⋅⋅, the mean
vector over all groups in the background database.

The measurement error (replicate error) covari-
ance matrix U is estimated from the background
data {xikj} by

Û =
SU

{mt(n − 1)}
, (7.44)

where SU =
∑m

i=1
∑t

k=1
∑n

j=1(xikj − x̄ik.)(xikj − x̄ik.)T.
The within-group covariance matrix V is

estimated from the background data {xikj} by

V̂ =
SW

{m(t − 1)}
− Û

n
, (7.45)

where SW =
∑m

i=1
∑t

k=1(x̄ik. − x̄i..)(x̄ik. − x̄i..)T.
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The between-group covariance matrix W is esti-
mated from the background data {xikj} by

Ŵ =
SB

(m − 1)
− V̂

t
− Û

tn
, (7.46)

where SB =
∑m

i=1(x̄i.. − x̄...)(x̄i.. − x̄...)T.

7.6.5.2 Likelihood Ratio Using a
Multivariate Random Effects Model
and Assumptions of Normality

The value of the evidence y1 and y2 is the ratio
of two probability density functions of the form
f (y1, y2 ∣ 𝝓,U,V,W), one for the numerator,
where Hp is assumed true, and one for the denomi-
nator, where Hd is assumed true. In the numerator
the source means 𝜽1 and 𝜽2 are assumed equal
(to 𝜽, say) but unknown. In the denominator it is
assumed that the source means 𝜽1 and 𝜽2 need
not be equal.

In the numerator denote the probability density
function by f0(y1, y2 ∣ 𝝓,U,V,W). It is given by

∫ ∫ f (y1 ∣ 𝜽,U)f (y2 ∣ 𝜽,U)f (𝜽 ∣ 𝝁,V)f (𝝁 ∣ 𝝓,W)d𝝁d𝜽,

where the four probability density functions are
multivariate normal.

In the denominator, the probability density func-
tion, denoted f1(y1, y2 ∣ 𝝓,U,V,W), is given by

∫ ∫ f (y1 ∣ 𝜽,U)f (𝜽 ∣ 𝝁,V)f (𝝁 ∣ 𝝓,W)d𝝁d𝜽

× ∫ ∫ f (y2 ∣ 𝜽,U)f (𝜽 ∣ 𝝁,V)f (𝝁 ∣ 𝝓,W)d𝝁d𝜽,
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where y1 and y2 are taken to be independent as the
data are assumed to be from different sources.

The value V of the evidence can be shown to be
proportional to the ratio of

exp
(
−1

2
(H1 + H2)

)
to exp

(
−1

2
(H3 + H4)

)

where

H1 = (ȳ1 − ȳ2)T

(
n1ncn2nsU−1

n0

)
(ȳ1 − ȳ2),

H2 = (ȳ − 𝝓)T

(
U
n0

+ (V + W)
)−1

(ȳ − 𝝓),

H3 = (ȳ1 − 𝝓)T[(n1nc)−1U + (V + W)]−1(ȳ1 − 𝝓),

H4 = (ȳ2 − 𝝓)T[(n2ns)−1U + (V + W)]−1(ȳ2 − 𝝓).

The constant of proportionality is a function of
the estimates of the population covariance matri-
ces U,V, and W.

The terms H1,H2,H3, and H4 account for
similarity between control and recovered data
(H1) and various measures of rarity: H2 for overall
rarity comparing the overall mean of control and
recovered data with the estimate of the overall
mean of the background population; H3 and H4

for the rarity of the control and recovered data
separately.

A full exposition, with a description of the use of
graphical models in the reduction of dimensional-
ity, is given in Aitken et al. (2006).
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7.7 DISCRIMINATION

Forensic scientists are sometimes faced with
the problem of assigning an observation (e.g.
an individual, an item, evidence) to one of sev-
eral populations on the basis of the available
measurements of some attributes.

First, consider only two populations, P1 and
P2. There are n independent measurements
z = {z1, . . . , zn}, which have come from P1 or
P2. It is desired to evaluate the strength of the
evidence in the form of z in support of membership
of P1 or P2.

This problem should be contrasted with the
problem of comparison that is prevalent through-
out the rest of the book. In a comparison problem,
there are control and recovered data. Training
data are available from which underlying popula-
tion parameters may be drawn. The propositions
used for the likelihood ratio are the control and
recovered data come from the same source (Hp)
and the control and recovered data come from
different sources (Hd). No statement is made as to
what the source may be when Hd is assumed true.
In a discrimination problem, there is only one
set of evidential data, often denoted z. Training
data are available from two populations and
population parameters are estimated for both
populations. The probability distribution of Z,
the corresponding random variable, is known
from previous experience for each of the two
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populations. Assume each population distribu-
tion is parameterised by a known parameter 𝜃i

for population Pi, i = 1,2, with corresponding
probability density function f (z ∣ 𝜃i), 𝜃i ∈ Θ. The
likelihood ratio is then

V =
f (z ∣ 𝜃1)
f (z ∣ 𝜃2)

and values of V > 1 support membership of P1 for
z and values of V < 1 support membership of P2
for z. This idea can be extended to the situation
where there is more than one population so long
as prior probabilities for each population may
be assigned. Denote the populations P1, . . . ,Pk

with prior probabilities p1, . . . , pk and parameters
𝜃1, . . . , 𝜃k. Consider the propositions Hp that z
comes from P1 and Hd that z comes from one of
P2, . . .Pk. The likelihood ratio is then

f (z ∣ Hp)
f (z ∣ Hd)

=
f (z ∣ 𝜃1)(1 − p1)∑k

i=2 f (z ∣ 𝜃i)pi

,

a continuous analogue of (6.10).
When the 𝜃i are not known, a marginal prob-

ability distribution fi(z) can be obtained for each
population as

fi(z) = ∫Θ
f (z ∣ 𝜃i)f (𝜃i)d𝜃l,

where f (𝜃i) is a prior probability distribution
reflecting available knowledge about 𝜃i. The
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likelihood ratio for discrimination between two
populations is then

V =
f1(z)
f2(z)

.

This is a Bayes’ factor (Section 2.3.2).
This can be combined with the prior odds

Pr(P1)∕Pr(P2) in favour of P1 to produce the pos-
terior odds Pr(P1 ∣ z)∕Pr(P2 ∣ z). The observations
can be assigned to population P1(P2)whenever the
posterior odds in favour of P1 is greater (smaller)
than 1. It is also possible to include costs in the
process of assignation through the use of decision
analysis.

7.7.1 Discrete Data

Imagine a scenario where some banknotes (n)
are seized on a suspect and some of them (z) after
inspection are found to be contaminated with
cocaine. These numbers are the evidence E. A
typical question a forensic scientist may be called
to answer is whether or not the banknotes have
been connected with drug trafficking.

Consider a population of banknotes seized
during trafficking investigations (P1), and a pop-
ulation of banknotes in general circulation (P2).
In a simplistic model, the number Zi of banknotes
contaminated in a sample of size n can be mod-
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elled by a binomial distribution, Zi ∼ Bin(ni, 𝜃i),
i = 1,2, where 𝜃1(2) denotes the probability that
a banknote is contaminated in each of the two
populations. It is known that banknotes may be
contaminated with drugs in a higher or lower
proportion depending on whether they have or
have not been involved in drug dealing.

Consider two propositions:

Hp: the banknotes have been involved in drug
dealing;

Hd: the banknotes are part of the general circu-
lation.

The value of evidence in a particular case can be
determined by considering the ratio of two bino-
mial probabilities and is given by

V =
Pr(E ∣ Hp)
Pr(E ∣ Hd)

=

(
n
z

)
𝜃z

1(1 − 𝜃1)n−z

(
n
z

)
𝜃z

2(1 − 𝜃2)n−z
. (7.47)

The proportions 𝜃1 and 𝜃2 being typically
unknown, a beta prior distribution can be intro-
duced as in Section 4.2, 𝜃i ∼ Be(𝛼i, 𝛽i), i = 1,2.
The marginal probability distribution fi(z) is a
beta-binomial distribution (Section A.2.7) with
parameters n, 𝛼i, 𝛽i

fi(z) =
(n

z

) Γ(𝛼i + 𝛽i)Γ(𝛼i + z)Γ(𝛽i + n − z)
Γ(𝛼i)Γ(𝛽i)Γ(𝛼i + n + 𝛽i)

.
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The likelihood ratio for support for Hp against Hd is
then

f1(z ∣ Hp)
f2(z ∣ Hd)

=

Γ(𝛼1 + 𝛽1)Γ(𝛼1 + z)Γ(𝛽1 + n − z)Γ(𝛼2)
Γ(𝛽2)Γ(𝛼2 + n + 𝛽2)

Γ(𝛼2 + 𝛽2)Γ(𝛼2 + z)Γ(𝛽2 + n − z)Γ(𝛼1)
Γ(𝛽1)Γ(𝛼1 + n + 𝛽1)

.

Consider data concerning numbers of ban-
knotes contaminated with drugs in the two
groups, as shown in Table 7.13 (Besson, 2003).

The first group is banknotes seized during drug
trafficking investigations, the second group is
banknotes in general circulation. Parameters
(𝛼1, 𝛽1) and (𝛼2, 𝛽2) of the beta prior distributions
that have been introduced to model uncertainty
about proportions 𝜃1 and 𝜃2 of contaminated
banknotes in the two populations can be elicited
according to the procedure that was described in
Section 4.3.1, (4.21) and (4.22). This provides a

Table 7.13 Numbers of banknotes contaminated.

Number
contaminated

Number not
contaminated

Total

Notes seized in
drug dealing

382 80 462

Notes in general
circulation

562 430 992
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Be(381,80) distribution for 𝜃1, and a Be(561,430)
distribution for 𝜃2. Suppose that a sample of size
n = 100 is seized and 66 banknotes are found
to be contaminated (z = 66). The values of the
beta-binomial densities can be computed using a
statistical software (e.g. R) and the likelihood ratio
results

f1(z ∣ Hp)
f2(z ∣ Hp)

=

Γ(942)Γ(447)Γ(114)Γ(561)
Γ(430)Γ(231)

Γ(991)Γ(627)Γ(464)Γ(381)
Γ(80)Γ(401)

= 1∕125. (7.48)

Note that this is a Bayes’ factor as it depends also
on the prior parameters and does not simplify to a
ratio of likelihoods (see Section 7.9).

The values of the evidence for certain values of n
and z are given in Table 7.14.

The results (n = 100, z = 66) and (n = 50, z =
33) are such that they support Hd. As the ratio z∕n
increases for fixed n, the strength of the evidence
in support of Hp increases. For the same z∕n, the
larger z and n the stronger the support is in favour
of Hp or Hd.

Alternatively, a scientist might opt for a standard
likelihood procedure for comparing two proposi-
tions in presence of unknown parameters, where
the sample proportions of the parameters for each
hypothesis, that is, �̂�1 and �̂�2, are substituted
into the associated terms in the numerator and
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Table 7.14 The value of evidence in comparing two
binomial proportions for different values of sample size
n and number of ‘successes’ z, where the samples are
banknotes and a ‘success’ is a contaminated banknote.

Sample size Number
contaminated

Proportion Evidential
value

n z z∕n V

100 66 0.66 1/123
100 72 0.72 5.65
100 76 0.76 516

50 33 0.66 1/15
50 36 0.72 2.25
50 38 0.76 25.23

Population parameters 𝜃1 and 𝜃2 are modelled by a beta prior
distribution, Be(381,80) and Be(561,430), respectively.

denominator in (7.47) as

V =

(
n
z

)
�̂�z

1(1 − �̂�1)(n−z)

(
n
z

)
�̂�z

2(1 − �̂�2)(n−z)
.

If Hp is true then the proportion of banknotes
contaminated with drugs is estimated to
be �̂�1 = 382∕462 = 0.83, from the data in
Table 7.13 and, similarly, if Hd is true then the
proportion of banknotes contaminated with
drugs is estimated to be �̂�2 = 562∕992 = 0.57.
The value V of the evidence E in favour of the
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proposition that the banknotes have been involved
in drug dealing is then

V =

(
n
z

)
0.83z(1 − 0.83)(n−z)

(
n
z

)
0.57z(1 − 0.57)(n−z)

=
(0.83

0.57

)z(0.17
0.43

)(n−z)
= 1∕854.

The use of the binomial distribution may be
questioned here. One of the modelling assump-
tions for a binomial distribution is that all
members of the sample have a constant proba-
bility of ‘success’, independent of other members
of the sample. Models that allow for dependence
amongst members of the sample are beyond the
scope of this book; see, for example, Wilson et al.
(2014, 2015).

7.7.2 Continuous Data

As a theoretical example with two continuous
populations, assume 𝜃i = (𝜇i, 𝜎

2)(i = 1,2) and
a univariate random variable Z ∼ N(𝜇1, 𝜎

2) for
population P1 and Z ∼ N(𝜇2, 𝜎

2) for population
P2. Let Hp be the proposition that Z is a member
of population P1 and Hd be the proposition that
Z is a member of population P2. Consider a set
z = {z1, . . . , zn} of n observations. Then the
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probability density function for z in population
Pi is

fi(z) =
n∏

j=1

f (zj ∣ 𝜇l, 𝜎
2)

= 1

𝜎
√
(2𝜋)

exp

{
− 1

2𝜎2

n∑
j=1

exp (zj − 𝜇i)2

}
.

The likelihood ratio for support for Hp against Hd is
then

∏n
j=1 f (zj ∣ Hp, 𝜇1, 𝜎

2)
∏n

j=1 f (zj ∣ Hd, 𝜇2, 𝜎
2)

= exp

{
− 1

2𝜎2

[
n∑

j=1

(zj − 𝜇1)2 −
n∑

j=1

(zj − 𝜇2)2

]}

= exp
{
−

n(𝜇1 − 𝜇2)
𝜎2

[1
2
(𝜇1 + 𝜇2) − z̄

]}
.

Assume 𝜇1 > 𝜇2. Then the likelihood ratio is less
than 1, and hence supportive of the proposition
that z comes from population P2 with mean 𝜇2,
if z̄ < (𝜇1 + 𝜇2)∕2, i.e. if z̄ is less than the mean
of the two proposition means, an intuitively
reasonable result given the precision (reciprocal of
the variance) with which the data are measured
in each population is the same.

An example with unequal population vari-
ances is given in Taroni et al. (2010). A scientist
is interested in evaluating the measurement
of colour dye concentration in ecstasy tablets.
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A comparison is to be made of the measurement
z on a tablet of unknown origin and measure-
ments on a consignment (C) of tablets for which
laboratory analysis has revealed the presence
of a certain kind of colour dye. One proposition
(Hp) for discrimination is that the tablet comes
from C; the other proposition (Hd) is that it comes
from a population of unrelated cases, denoted P.
The concentration of colour dye is a continuous
measurement (expressed as a percentage) with
a Normal distribution. For tablets from C, the
distribution is assumed to be N(𝜇c, 𝜎

2
c ). For tablets

from P, the distribution is assumed to be N(𝜇p, 𝜎
2
p ).

The likelihood ratio for measurement z is then the
ratio of two Normal density functions

V =
f (z ∣ Hp, 𝜇c, 𝜎

2
c )

f (z ∣ Hd, 𝜇p, 𝜎
2
p )

=
𝜎p exp

{
−1

2

(
z−𝜇c

𝜎c

)2
}

𝜎c exp
{
−1

2

(
z−𝜇p

𝜎p

)2
} .

An example is given using data from Goldmann
et al. (2004). A tablet is analysed and the colour
concentration measured equals 0.155%. Distri-
butions of competing propositions for populations
C and P are taken to be N(0.14,0.012) and
N(0.30,0.062), respectively. The likelihood ratio
for evaluating a link to C is then

V =
f (0.155 ∣ Hp,0.14,0.012)
f (0.155 ∣ Hd,0.30,0.062)

≃ 36.
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The observed colour dye concentration in the
incriminated tablet may thus be said to be approx-
imately 36 times more likely if it is linked to C than
to P.

Consider the case where the mean 𝜇i of the Nor-
mal distribution is unknown and the variance𝜎2 is
assumed common and known to both populations.
Suppose now there is prior information about the
probability distribution of𝜇 for each of the two pop-
ulations so that 𝜇i ∼ N(𝜂i, 𝜏

2), i = 1,2. The distri-
bution of Z can be shown to be N(𝜂i, 𝜎

2 + 𝜏2) (see
Section 7.4.1) and the likelihood ratio can then be
determined as before but with an increased vari-
ance to allow for the uncertainty surrounding 𝜇1

and 𝜇2.
Further examples of discrimination are given

in Taroni et al. (2010) by taking advantage of a
Bayesian decision perspective. In particular, an
example is given where the variance as well as
the mean is unknown. The resulting probability
distribution for the measurement is a Student’s
t-distribution. This example is illustrated with
the examination of skeletal remains. The two
populations under consideration are those of
males and of females. Analysis and measurements
of the sacral base (basis osseus sacri) is considered
a good determinant of sex (Benazzi et al., 2009).
Another example is that of scenarios in microbial
forensic science for the identification of source
cultures generated by a pathogen (Lindgren et al.,
2019).
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7.7.3 Autocorrelated Data

The methodology for discrimination described so
far has assumed the observations are indepen-
dent. An example with univariate data where
this assumption does not hold is that of the
quantity of cocaine on banknotes. Consider a
bundle of banknotes. The quantity of cocaine
on a banknote is associated positively with the
quantity of cocaine on its immediate neighbour.
Further details are available in Wilson et al.
(2014, 2015).

The banknotes on which the quantities of
cocaine are measured in order to determine the
value of the evidence (V) are provided by law
enforcement agencies to an analytical chemistry
laboratory. The laboratory measures the quantity
of cocaine either on all of the banknotes or on a
subset of the banknotes and is interested in the
support provided by the results for one or other of
the following propositions:

Hp: the banknotes are associated with a person
who is associated with a criminal activity
involving cocaine;

Hd: the banknotes are associated with a person
who is not associated with a criminal activity
involving cocaine.

The data used for the analysis are the logarithms
of the peak areas (where the peaks are obtained
using a mass spectrometer) corresponding to
cocaine on a set of banknotes. Training data are
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available, first, from banknotes from cases that
went to trial and in which the defendant was con-
victed (either by trial or through a plea of guilty)
of a crime involving cocaine and, second, from
banknotes associated with general or background
circulation.

There has been some suggestion of regional vari-
ation in the quantity of cocaine on banknotes in
general circulation. However, Aitken et al. (2017)
shows that there is no meaningful variation of the
quantities of cocaine on banknotes in general cir-
culation in England and Wales.

7.7.4 Multivariate Data

Often, multivariate continuous data are available
for discrimination between two or more sources.
Evidence such as handwritten or printed charac-
ters in a questioned document, or fragments of
glass recovered at a crime scene, or a drug sample
can be characterised by more than one variable.
A statistical model for the evaluation of evidence
through the computation of a likelihood ratio for
multivariate data has been proposed by Aitken
and Lucy (2004) in the context of the elemental
composition of glass data, and by Bozza et al.
(2008) in the context of handwritten questioned
documents, both for comparison problems. An
example for discrimination is given here.

Consider a scenario involving questioned docu-
ments that have been printed by one of two printers
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(P1 and P2). The two printers are the subject of the
two propositions for discrimination:

Hp: the questioned document has been printed
with printer P1 (e.g. Canon model ir400);

Hd: the questioned document has been printed
with printer P2 (e.g. HP model 41).

Note that there is not necessarily an association
in this case between printer and prosecution and
defence.

There are several (p) variables that may be
measured on each printed character (e.g. the
area (Mazzella and Marquis, 2007)). The back-
ground data consist of ni, i = 1,2, measurements
of these variables on characters printed with
each of the two printers, and are denoted as
xij = (xij1, . . . , xijp)T, i = 1,2, j = 1, . . . , ni. The
procedure outlined earlier for two univariate
Normal populations is extended to the case of
multivariate data. Once new printed documents
of unknown origin become available, the problem
becomes one of discrimination of their source
between the two multivariate Normal popula-
tions, corresponding to the two printers, say,
N(𝜽1,Σ) and N(𝜽2,Σ), where 𝜽i = (𝜃i1, . . . , 𝜃ip)T is
the vector of means of the i-th population, i = 1,2,
and Σ is the matrix of variances and covariances
of each population, assumed to be the same in
each population.

Denote the recovered measurements to be clas-
sified by z = (z1, . . . , zn)T, where zj = (zj1, . . . , zjp)T,
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j = 1, . . . , n. The probability density of a multivari-
ate Normal variable Z (Appendix A.3.9) N(𝜽,Σ) is

f (z ∣ 𝜽,Σ) = (2𝜋)−p∕2|Σ|−1∕2

exp
[
−1

2
(z − 𝜽)TΣ−1(z − 𝜽)

]
.

If the populations are exactly known (i.e. the mean
vectors and the covariance matrix are known), the
value V of evidence is given by

V =
f (z ∣ 𝜽1,Σ)
f (z ∣ 𝜽2,Σ)

=

∏n
j=1 exp

[
−1

2
(zj − 𝜽1)TΣ−1(zj − 𝜽1)

]

∏n
j=1 exp

[
−1

2
(zj − 𝜽2)TΣ−1(zj − 𝜽2)

]

= exp

{
−1

2

[
n∑

j=1

(zj − 𝜽1)TΣ−1(zj − 𝜽1)

−
n∑

j=1

(zj − 𝜽2)TΣ−1(zj − 𝜽2)

]}
. (7.49)

Generally, population distributions will not be
completely known. A simple criterion for dis-
crimination consists in estimating 𝜽1, 𝜽2, and Σ
from the background data {xij} and substituting
them into (7.49). The mean vector 𝜽i can be
estimated by

x̄i =
1
ni

ni∑
j=1

xij, i = 1,2.
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The covariance matrix Σ can be estimated by

S = 1
n1 + n2 − 2

[
n1∑

j=1

(x1j − x̄1)(x1j − x̄1)T

+
n2∑

j=1

(x2j − x̄2)(x2j − x̄2)T

]
. (7.50)

Consider an example with two variables, the
area and the box-ratio of the letter ‘a’, thus
p = 2. Two (n = 2) characters of type ‘a’ are
measured from a questioned document. The
document might have been printed by a Canon
model ir400 (printer P1, hypothesis Hp), or by an
HP model 4l (printer P2, hypothesis Hd). The mean
vectors x̄1 and x̄2, which are used as estimates
of 𝜽1 and 𝜽2, are x̄1 = (462 550,1.24)T and
x̄2 = (430 350,1.32)T. The covariance matrix Σ
is estimated by S, from (7.50), and is

S =
(

2.37e + 0.8 −2.11e + 0.2
−2.11e + 0.2 9.98e − 04

)
.

Substituting �̂�i = x̄i, i = 1,2, and Σ̂ = S in (7.49)
gives

V =
f (z ∣ x̄1, S)
f (z ∣ x̄2, S)

= 6 074.

The available measurements from the questioned
document are approximately 6000 times more
likely if the questioned document has been printed
with printer P1.
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A Bayesian framework for multivariate discrim-
ination would require the introduction of a prior
distribution for the unknown parameters, and it
is briefly sketched later. Consider the simplest case
where the prior distribution of the mean vectors 𝜽i
is taken to be Normal, say, 𝜽i ∼ N(𝝁i,C), i = 1,2.
The covariance matrix Σ, conversely, is estimated
from the available background data.

The marginal distribution under Hp (the
questioned document has been printed with
printer P1), f (z ∣ 𝝁1,C,Σ,Hp), is given by

∫ f (z ∣ 𝜽1,Σ)f (𝜽1 ∣ 𝝁,C)d𝜽1 = ∫
n∏

j=1

|2𝜋|−p∕2|Σ|−1∕2

exp
{
−1

2
(zj − 𝜽1)TΣ−1(zj − 𝜽1)

}
× |2𝜋|−p∕2|C|−1∕2

× exp
{
−1

2
(𝜽1 − 𝝁1)TC−1(𝜽1 − 𝝁1)

}
d𝜽1

and can be shown to be equal to

f (z ∣ 𝝁1,Σ,C,Hp)

= |2𝜋Σ|−n∕2|2𝜋C|−1∕2|2𝜋(nΣ−1 + C−1)−1|1∕2

exp
{
−1

2

[
tr(SΣ−1) + (z̄ − 𝝁1)T

(1
n
Σ + C

)−1

(z̄ − 𝝁1)

]}
,

where z̄ = 1
n

∑n
j=1 zj, S =

∑n
j=1(zj − z̄)(zj − z̄)T.

In the same way the marginal distribution under
Hd (the questioned document has been printed
with printer 2) is given by f (y ∣ 𝝁2,Σ,C,Hd).
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The value of the evidence is given by

V =
f (z ∣ 𝝁1,Σ,C,Hp)
f (z ∣ 𝝁2,Σ,C,Hd)

. (7.51)

In the same way, it is possible to address the case
where a prior distribution is considered for both the
mean vector and the covariance matrix. However,
the elicitation of a prior distribution for the param-
eters of a multivariate Normal distribution, in par-
ticular for the covariance matrix, can be a difficult
problem and it will not be pursued anymore. Some
suggestions are given in O’Hagan et al. (2006).

Further examples of discrimination problems
for univariate and multivariate data may be found
in Taroni et al. (2010) and Zadora et al. (2014).
It is possible to use kernel density estimation for
discrimination if a Normal distribution is deemed
inappropriate; see Aitken (1986) and Peabody
et al. (1983).

7.7.5 Cut-Offs and Legal Thresholds

Many analytical branches of forensic science,
e.g. forensic toxicology, rely on what are called
cut-offs. These are numerical values against which
measurements made on questioned items are
compared in order to support an interpretation
or conclusion in a forensic toxicological assess-
ment regarding a person of interest. Examples
for sets of results are concentrations of toxic
or controlled substances in blood or of target
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substances (e.g. metabolites) in hair. Examples
where these analyses are of wide interest are
workplace safety, child custody cases, suspected
doping cases in sport and ink dating in forensic
document examination. A sample from a person
for whom it is not known whether they fall in one
or other category of individuals is analysed. The
comparison of the measured value against the
cut-off provides discriminatory information.

The idea of discrimination for a so-called
forensic cut-off in toxicology is critically analysed
and discussed in Biedermann et al. (2018). The
examples discussed are those of alcohol markers in
hair, used widely by forensic toxicologists to reach
conclusions regarding the drinking behaviour of
individuals. A cut-off is, however, incompatible
with current evaluative guidelines (e.g. ENFSI
(2015)). A cut-off does not define an offence. The
results are advisory.

In the context of hair analysis, the amount of
ethyl glucoronide (EtG) could be used to define
a cut-off to assist in answering questions about
the habit of alcohol consumption in a person of
interest, e.g. is the habit one of excessive alcohol
consumption? The legal question focuses on
the characteristics (drinking behaviour) of the
person of interest but there is no legally prescribed
limit for a particular substance, nor is there any
mention of a particular type of biological tissue
(e.g. hair).

As an example of the interpretation of a forensic
cut-off, consider the case of a man suspected
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of chronic excessive alcohol consumption. The
forensic medical diagnosis of excessive alcohol
consumption may be necessary, for example,
for reasons of safety in the workplace. Hair of
the person of interest was analysed following
accepted analytical procedures. The analysis of
hair revealed a concentration of 28 pg/mg in the
proximal segment up to 6 cm. The Society of Hair
Testing (SoHT) has declared that a ‘concentration
of greater than 30 pg/mg EtG in the proximal scalp
hair up to 6 cm strongly suggests chronic excessive
alcohol consumption’.2 Thus a concentration of
28 pg/mg would lead to the conclusion that there
is no ‘strong suggestion’ for chronic excessive
alcohol consumption. The perspective based on
the application of a cut-off limits the analyst to
such a conclusion, though this might lead to the
fallacious perception that such a comparison of
the results with the cut-off value is sufficient to
form a conclusion about a particular proposition.
Note that no alternative proposition is specified,
and so no guidance is provided on what to do if
results are below the cut-off. However, consider
the principle that evidence should be evaluated
with respect to two competing propositions. The
use of a cut-off begs the question of what probative
value the particular result of 28 pg/mg has with
respect to competing propositions of interest.

22016 Concensus for the use of alcohol markers in hair
for the assessment of both abstinence and chronic exces-
sive alcohol consumption (http://soht.org/images/pdf/Revision
%202016_Alcoholmarkers.pdf)
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Generally, a value of 28 pg/mg is something
less typically found among non-heavy drinkers.
In the case here, suppose that the two competing
propositions of interest are: ‘The person of interest
is a chronic excessive drinker’, and ‘The person
of interest is a low-risk (i.e. social) drinker’. A
different approach to that of the SoHT is taken by
Kharbouche et al. (2012). These authors define
‘at-risk’ drinkers to be those who consume more
than 30 g of alcohol per day and ‘low-risk male
drinkers’ to be those who declare, according to
a Daily Alcohol Self-Monitoring log (DASM log),
that they drink less than 30 g/d. These alternative
definitions enable a likelihood ratio to be devel-
oped for the EtG measurements. Kharbouche et al.
(2012) study the EtG levels for people in each of
these groups. Probability distributions of EtG levels
for each of the two groups can then be determined.
Figure 7.8(a) illustrates EtG concentrations mea-
sured in the hair of 14 male low-risk drinkers and
28 male heavy drinkers. Figure 7.8(b) illustrates
the same data limited to concentrations below
100 pg/mg EtG (Kharbouche et al., 2012). Ideally,
probability densities for the distribution of EtG
under each of Hp and Hd would be determined
from the data. The ratio of the density functions
at the observed value of 28 pg/mg would then
provide a likelihood ratio with an interpretation
that the observation (28 pg/mg) is so many times
more likely if the person of interest is a chronic
excessive drinker than if he is a social drinker.
However, the data are sparse and only a more
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Figure 7.8 (a) EtG concentrations measured in the
hair of 14 male low-risk drinkers and 28 heavy drinkers.
(b) Representation of the same data limited to concen-
trations below 100 pg/mg EtG. Note that within each of
the two categories displayed on the y-axis, the vertical
scattering of the values has no particular meaning other
than serving the purpose of visually separating values
with the same or very similar values on the x-axis (EtG
concentrations).

general conclusion may be drawn. For example,
there are 7 out of 28 monitored heavy drinkers
with values in the range 20–40 pg/mg. Thus a
probability of 0.25 (7∕28) may be assigned to the
stated range for heavy drinkers. In contrast there
are only 2 out of 14 monitored social drinkers
with values in the range 20–40 pg/mg. Thus a
probability of approximately 0.14 (2/14) may be
assigned to the stated range for social drinkers.
The likelihood ratio is then (7∕28) divided by
(2∕14) or (7 × 14)/(28 × 2) = 1.75. Thus the data
are very approximately twice as probable if the
person of interest is a chronic excessive drinker
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than if he is a social drinker, and this supports the
proposition ‘heavy drinker’ versus the proposition
‘social drinker’ despite the result being below the
cut-off of 30 pg/mg. This result is not an expres-
sion of the probative value of the particular result
of 28 pg/mg. It is a more coarse description of the
findings in terms of a value within a particular
range of values, namely, 20–40 pg/mg.

For further details of the development of like-
lihood ratios for alcohol consumption and the
comparison with an approach based on cut-offs,
see Biedermann et al. (2018) and Alladio et al.
(2017).

It must be observed that a scientific cut-off
is effectively not needed when the question of
interest to a recipient of expert information relates
to discrimination. In contrast, numerical legal
thresholds are limiting values that serve the pur-
pose of defining situations that constitute offences.
A question that is commonly encountered by
toxicologists and forensic scientists in general is
whether a target substance is measurable in some
examined material and, if so, whether the quantity
of the substance of interest exceeds a particular
threshold defined by law. For an analysis and
discussion, see e.g. Taroni et al. (2014b).

From the perspective of forensic interpretation,
numerical legal thresholds can be used as a
basis for the definition of propositions of interest.
Propositions can be defined from case circum-
stances and agreed key issues and may reflect
the positions taken by adversarial parties at trial.
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For example, in a context where the law defines
the highest admissible quantity of a target (e.g.
toxic) substance in the blood or urine of a person
of interest, the propositions of interest become
whether or not the person of interest is below or
above the legally prescribed limit.

An example is that of drink driving where there
is a legal limit. A driver who is found to be above
the limit is guilty of an offence. However, there is
measurement error and hence random variation
in the instrument used to determine the level of
alcohol present in the blood, say. Suppose the
limit is 𝜃0. It is of interest to know if the blood
alcohol level 𝜃 for the driver is above 𝜃0. Let x
be the measured level and assume this has a
probability distribution f (x ∣ 𝜃) dependent on the
blood level of alcohol. The probability of interest
is Pr(𝜃 > 𝜃0 ∣ x). If this probability is sufficiently
high then the driver can be charged with drink
driving.

Let Θp be the set {𝜃 > 𝜃0} and Θd be the set {𝜃 <

𝜃0}. There are two propositions:

Hp ∶ 𝜃 ∈ Θp;

Hd ∶ 𝜃 ∈ Θd.

The prior odds are

∫Θp
f (𝜃)d𝜃

∫Θd
f (𝜃)d𝜃

,

where f (𝜃) is a prior probability distribution reflect-
ing available knowledge about 𝜃.
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The posterior odds are

∫Θp
f (x ∣ 𝜃)f (𝜃)d𝜃

∫Θd
f (x ∣ 𝜃)f (𝜃)d𝜃

.

The ratio of the posterior odds to the prior odds
provides Bayes’ factor. It will be shown in Section
7.9 that this does not simplify to a likelihood
ratio.

7.8 SCORE-BASED MODELS

Models for comparison and for discrimination that
use the original data are known as feature-based
models. The models discussed in Sections 7.6 and
7.7 are all feature-based. Feature-based models
described in Section 7.6 compare the probability
of observing the evidence given that the evidential
samples (control and recovered) measured, and
compared, come from the same source as or
come from different sources. In contrast, what
are known as score-based models and which are
considered in the current section compare the
probability of observing the pairwise similarity
between two samples (control and recovered)
given that they come from the same source with
the probability of the pairwise similarity given that
the samples come from different sources.

Consider the problem of comparison of sources
with a p-dimensional control measurement
x = (x1, . . . , xp)T and a p-dimensional recovered
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measurement y = (y1, . . . , yp)T. For those
occasions when a feature-based model is not
tractable (e.g. multidimensional binary data,
Aitken and Huang (2017)), the distance d(x, y),
known as a score can be used instead. A score can
be defined as a metric that summarizes the results
of a forensic comparison of two items in terms of a
univariate statistic, such as a measure of similarity
or difference (distance). There are various distance
measures that may be used. Three examples are

• Euclidean: d =
√∑p

i=1 (xi − yi)2;

• Manhattan: d =
∑p

i=1 ∣ xi − yi ∣;
• Pearson correlation distance: 100(1 − r)∕2

with

r =
∑p

i=1(xi − x̄)(yi − ȳ)
√∑p

i=1 (xi − x̄)2
∑p

i=1 (yi − ȳ)2
.

For multiple control and recovered data
xi, i = 1, . . . ,m and yi, i = 1, . . . , n, respectively,
pairwise score measurements or means can
be used.

The value of the evidence is then

V =
f (d(x , y) ∣ Hp, I)
f (d(x , y) ∣ Hd, I)

.

Inference may then continue as before but using
the score, which is univariate, as the statistic of
interest. Score-based approaches do not require
the distributional assumptions needed to fit feature
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based models (e.g. within-source normality) but
still require a function to be chosen to model the
probability distribution of the score.

For the calculation of score-based likelihood
ratios, distributions of scores of same-source
comparisons and of different-source comparisons
are required. In order to estimate these a training
set is required. Determination of the same-source
distribution can be made by comparing measure-
ments x of the known feature and the features of
items known to originate from the same source
as x, except with x itself for which the distance is
zero. For the different-source distribution, a chal-
lenging task consists in choosing an appropriate
training set for measurements comparison. In
particular, it can be proposed a (i) source-anchored
approach, where the features x of the control
items are compared with the features selected
randomly from the relevant population; (ii) a
trace-anchored approach, where the feature y of
the recovered item are compared with the features
selected randomly from the relevant population;
and (iii) a non-anchored approach, where features
of the items are taken from randomly selected
sources from the relevant population. See Hepler
et al. (2012) for a discussion.

These results may then be used to estimate the
distributions of same-source and between-source
comparisons. The distributions can be repre-
sented initially by histograms. They may then
be smoothed with a kernel density estimator or
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an appropriate parametric distribution. The cho-
sen distribution functions, one for same-source
comparisons and one for different-source compar-
isons, can then be used to determine the density
calculation (height of the density curve) of the
evidence score for both distributions and hence
calculate a likelihood ratio.

Score-based approaches have been used for
handwriting (Hepler et al., 2012), forensic MDMA
comparison (Bolck et al. (2015), speech recogni-
tion (Gonzalez-Rodriguez et al. (2006); Brümmer
and Du Preez (2006); Morrison (2011)), finger-
prints (Egli et al. (2007); Gonzalez-Rodriguez et al.
(2005); Leegwater et al. (2017)), signatures (Chen
et al., 2019), marks left on gun cartridges (Riva
(2011); Riva and Champod (2014); Riva et al.
(2017)), and in Morrison and Enzinger (2018) for
different branches of forensic science. A review of
different approaches proposed in the literature is
presented in Jacquet and Champod (2020).

A comparison of the performances of
score-based and features-based likelihood ratios
for forensic MDMA comparisons is given by Bolck
et al. (2015). Feature-based models have the
valuable benefit compared with the score-based
models of preserving the original data dimension-
ality with no loss of information. Moreover, with
feature-based models, rarity and similarity of the
features relate directly to the magnitude of the
likelihood ratio. Conversely, feature-based models
can be difficult to implement because of the limited
population samples to estimate model parameters.
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Further comments are given by Neumann and
Saunders (2015) and Neumann and Ausdemore
(2019).

7.8.1 Example

An experiment was conducted to investigate the
evidential value of striation marks in screwdrivers
(Petraco et al., 2012). The striation patterns
made by each of nine screwdrivers were recorded.
Distances of each line or groove from the left edge
of each striation pattern were measured to the
nearest 0.05 mm. Each striation pattern was no
more than 7 mm wide. For each pattern, a list of
140 pieces of information (7/0.05 mm slots) was
created. Each piece of information is a 1 or 0. A 1
is recorded in a slot on the list if a line or groove
were present or spans the slot. A 0 is recorded
otherwise. The sample space, represented as B140,
for the data is then a vector of 140 1’s and 0’s,
denoting the presence and absence of a mark,
respectively.

In another case, the evidence E would be the
striated marks made by a screwdriver presented in
the form of a vector in B140 = {0,1}140. The con-
trol evidence, x, is the vector of marks for which
the source (screwdriver) is known. This could be a
screwdriver found in the possession of a person of
interest, for example. The recovered evidence, y, is
evidence for which the source is not known. This
could be a set of striation marks found at the scene
of a crime. These marks could have been made
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by the screwdriver found in the possession of the
PoI; this would be the prosecution’s proposition,
Hp. Alternatively, these marks could have been
made by some other screwdriver; this would be the
defence proposition, Hd.

Training data are available (Petraco et al., 2012)
from the nine screwdrivers with (8, 6, 9, 8, 9, 9,
8, 9, 9) replicates for each screwdriver. Let x and
y be two sets of binary measurements in B140, not
necessarily equal to any vector in the training set.
The distance d(x, y) between them is defined as

d(x, y) = (x − y)T(x − y) =
140∑
i=1

(xi − yi)2;

{xi, yi} ∈ {0,1}.

The result is a number between 0 and 140, inclu-
sive. There are 279 within-group distances and
2496 between-group distances. The distributions
of these distances can be estimated with a kernel
density function. Histograms and fitted density
functions for within-group and between-group
distances are shown in Figures 7.9 and 7.10,
respectively.

The problem of the evaluation of evidence for a
vector consisting of 140 1’s and 0’s has been trans-
formed into one for continuous data, treating the
141 possible distances 0, . . . , 140 as a continuous
variable. Most of the within-group distances are
below 40, whereas the between-group distances
cluster in the interval 30–70. The likelihood ratio
for a particular distance is the ratio of the height
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Figure 7.9 Histogram and kernel density estimate for
279 within-group distances for 140 striation marks
from nine screwdrivers (Source: Modified from Aitken
and Huang, 2017).
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Figure 7.10 Histogram and kernel density estimate
for 2496 between-group distances for 140 striation
marks from nine screwdrivers (Aitken and Huang,
2017).



�

� �

�

Bayes’ Factor and Likelihood Ratio (cont.) 913

of the within-group curve to the height of the
between-group curve at that particular distance.
As an example of the approach in practice, the
distance between the first two sets of striation
marks from the first screwdriver is 11 and the
likelihood ratio is 2 × 1010.

The validity of large values of the likelihood
ratio, such as the one just given, has to be
questioned. Scientists who have more intimate
knowledge of the theories and models adopted and
data used, should appreciate the limitations of the
theories and models and also the limitations of the
possible conclusions. The robustness of an adopted
model used for the calculation of a likelihood ratio
should be empirically supported. Methods to deal
with those aspects are presented in Chapter 8.
DNA scientists are also faced with this problem.
Extremely large likelihood ratio values can be (the-
oretically) obtained. Scientists are conscious that
such large values invoke independence assump-
tions with a scale of robustness that cannot be
demonstrated empirically given the size of cur-
rently available DNA profiles databases. Moreover,
scientists are also conscious of problems related
to the conceptualization of such large values and
their relationship with real life situations. A brief
discussion of this is presented in Section 6.1.5.

7.9 BAYES’ FACTOR AND
LIKELIHOOD RATIO (CONT.)

In the current chapter several instances for the
determination of a likelihood ratio have been
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addressed for evaluative and discriminative pur-
poses, for univariate and multivariate data, and
for feature-based and score-based approaches. As
already mentioned in Section 2.3.2, the likelihood
ratio is in fact a Bayes’ factor (BF), though it is gen-
erally referred to in forensic science applications
as a likelihood ratio (LR). The distinction between
a BF and a LR has been discussed in Section 2.3.2
for discrete events, and will now be extended to
encompass continuous quantities that have been
modelled in this chapter (e.g. population means).

Consider an unknown quantity X and suppose
f (x ∣ 𝜃) is a suitable probability model for X,
where the unknown parameter 𝜃 belongs to the
parameter set Θ. Suppose also that the parameter
set is partitioned into two non-overlapping sets
Θp and Θd. A question that may be of interest
is whether the true but unknown value of the
parameter 𝜃 belongs to Θp, or to Θd, that is, to
test the hypothesis3 Hp ∶ 𝜃 ∈ Θp, against the
alternative hypothesis Hd ∶ 𝜃 ∈ Θd. A hypothesis
is called simple if there is only one possible value
for the unknown parameter, say, Θp = {𝜃0}; if a
hypothesis is not simple it is called composite. Let
𝜋p = Pr(𝜃 ∈ Θp) and 𝜋d = Pr(𝜃 ∈ Θd) denote one’s
prior probabilities for the competing hypotheses.

First, consider the case where competing
hypotheses are simple, say, Hp ∶ 𝜃 = 𝜃0 versus
Hd ∶ 𝜃 = 𝜃1. The parameter sets in this case

3The term ‘hypothesis’ is used here instead of ‘proposition’. This is
for compatibility with the corresponding mathematical statistical
exposition.
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are Θp = {𝜃0} and Θd = {𝜃1}. Denote the prior
probabilities by 𝜋p = Pr(𝜃 = 𝜃0) and 𝜋d = Pr(𝜃 =
𝜃1). If 𝜋p + 𝜋d = 1, the ratio 𝜋p∕𝜋d of the prior
probabilities of the competing hypotheses is the
prior odds of Hp against Hd.

Suppose a set of observations x = (x1, ..., xn) is
available. Denote by 𝛼p the posterior probability of
the hypothesis Hp given the data and prior proba-
bilities. It can be computed with an application of
Bayes’ theorem:

𝛼p = Pr(𝜃 = 𝜃0 ∣ x) =
f (x ∣ 𝜃0)𝜋p

f (x ∣ 𝜃0)𝜋p + f (x ∣ 𝜃1)𝜋d
.

The posterior probability 𝛼d of the alternative
hypothesis is computed analogously by

𝛼d = Pr(𝜃 = 𝜃1 ∣ x) =
f (x ∣ 𝜃1)𝜋d

f (x ∣ 𝜃0)𝜋p + f (x ∣ 𝜃1)𝜋d
.

The ratio 𝛼p∕𝛼d of the posterior probabilities is the
posterior odds of Hp against Hd and is given by

𝛼p

𝛼d
=

f (x ∣ 𝜃0)𝜋p

f (x ∣ 𝜃1)𝜋d
. (7.52)

Given that the BF is the ratio between posterior
odds to prior odds, it can be shown that

BF =
f (x ∣ 𝜃0)𝜋p

f (x ∣ 𝜃1)𝜋d
×
𝜋d

𝜋p
=

f (x ∣ 𝜃0)
f (x ∣ 𝜃1)

= LR.

In the case of testing a simple hypothesis versus a
simple alternative hypothesis, it can be observed
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that Bayes’ factor is just the likelihood ratio of Hp

to Hd.
When a parameter 𝜃 is continuous (e.g. a

proportion or a mean), one or both of the two
competing hypotheses may be composite. Consider
testing Hp ∶ 𝜃 ≤ 𝜃0 versus Hd ∶ 𝜃 > 𝜃0 (so, if 𝜃 is a
proportion, Θp = [0, 𝜃0] and Θd = (𝜃0,1]), and let
𝜋(𝜃) denote the prior probability density describ-
ing available knowledge about 𝜃. Accordingly,
in contrast to the discrete probabilities earlier of
𝜋p = Pr(𝜃 = 𝜃0) and 𝜋d = Pr(𝜃 = 𝜃1), the prior
probabilities 𝜋p and 𝜋d are now:

𝜋p = Pr(𝜃 ∈ Θp) = ∫Θp

𝜋(𝜃)d𝜃;

𝜋d = Pr(𝜃 ∈ Θd) = ∫Θd

𝜋(𝜃)d𝜃.

The posterior probability of hypothesis Hp can be
computed as

𝛼p = Pr(𝜃 ∈ Θp ∣ x) = ∫Θp

𝜋(𝜃 ∣ x)d𝜃

= ∫Θp

f (x ∣ 𝜃)𝜋(𝜃)d𝜃∕f (x), (7.53)

where f (x) = ∫Θf (x ∣ 𝜃)𝜋(𝜃)d𝜃 is the normalising
constant. Similarly, the posterior probability of the
alternative hypothesis Hd is of the form

𝛼d = ∫Θd

f (x ∣ 𝜃)𝜋(𝜃)d𝜃∕f (x). (7.54)
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The posterior odds whenever hypotheses are com-
posite is given by

𝛼p

𝛼d
=

∫Θp
f (x ∣ 𝜃)𝜋(𝜃)d𝜃

∫Θd
f (x ∣ 𝜃)𝜋(𝜃)d𝜃

. (7.55)

It will now be shown that in the more general
case of testing composite hypotheses, the Bayes’
factor depends also on the prior input and is not
equivalent to a likelihood ratio. To show this, it
is useful to rewrite the prior density 𝜋(𝜃) in the
following way. Let 𝜋Hp

(𝜃) denote the restriction
of the prior density on Θp, and 𝜋Hd

(𝜃) denote the
restriction of the prior density on Θd, that is,

𝜋Hp
(𝜃) = 𝜋(𝜃)

𝜋p
for 𝜃 ∈ Θp ;

𝜋Hd
(𝜃) = 𝜋(𝜃)

𝜋d
for 𝜃 ∈ Θd.

The probability densities 𝜋Hp
(𝜃) and 𝜋Hd

(𝜃)
describe how the prior probability is spread over
the competing hypotheses. In other words they
are the conditional densities of 𝜃 given Hp and Hd,
respectively. Therefore, the prior density, 𝜋(𝜃), can
be written as

𝜋(𝜃) =
{

𝜋p𝜋Hp
(𝜃) if 𝜃 ∈ Θp

𝜋d𝜋Hd
(𝜃) if 𝜃 ∈ Θd

.

The posterior probabilities (7.53) and (7.54) are
easily rewritten as

𝛼p = 𝜋p∫Θp

f (x ∣ 𝜃)𝜋Hp
(𝜃)d𝜃∕f (x)
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and

𝛼d = 𝜋d∫Θd

f (x ∣ 𝜃)𝜋Hd
(𝜃)d𝜃∕f (x).

Bayes’ factor being the ratio between the posterior
odds and the prior odds simplifies to

BF =
∫Θp

f (x ∣ 𝜃)𝜋Hp
(𝜃)d𝜃

∫Θd
f (x ∣ 𝜃)𝜋Hd

(𝜃)d𝜃
.

Bayes’ factor is now the ratio of weighted likeli-
hoods under the postulated hypotheses, and it no
longer depends only on the sample data. The prior
input is via the weights 𝜋Hp

(𝜃) and 𝜋Hd
(𝜃).
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8

Assessment of the
Performance of
Methods for the

Evaluation of
Evidence

8.1 INTRODUCTION

It is essential for the evaluation of evidence based
on a likelihood ratio that the method used to
calculate the likelihood ratio performs well in
some sense. Previous chapters have introduced
methods for the calculation of likelihood ratios.
It is important to know how well a particular
method performs. If it performs badly then it
should not be used. For example, the method
may give a high probability for strong misleading
evidence (Section 8.3.1). Several methods for the

919
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assessment of the performance of methods for
the evaluation of evidence are introduced in this
chapter.

In a comparison problem, the likelihood ratio
is a function of the measurements of control
and recovered data given (at least) two propo-
sitions. The two propositions could be those
of same-source and different-source. In a dis-
crimination problem, the likelihood ratio is a
function of the measurements of one set of data.
The two propositions are those of membership
of one population versus membership of another
population. The likelihood ratio is a function of
the measurements of control and recovered data,
in a comparison problem, or of measurements of
one set of data in a discrimination problem. If the
data change, the value changes.

The value of a likelihood ratio used in court is a
particular value (Section 2.4.3). If the control and
recovered data are from the same source in the
comparison scenario, or from the first population
in the discrimination scenario, the likelihood ratio
is expected to be greater than 1. If the control
and recovered data are from different sources
in the comparison scenario, or from the second
population in the discrimination scenario, the
likelihood ratio is expected to be less than 1. In
practice, it is not known whether the data come
from the same or different sources or from a
particular population. A value greater than 1
is support for the proposition of same source or
membership of the first population. A value less
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than 1 is support for the proposition of different
sources or membership of the second population.

Performance measures are not for use in court.
Their use is for validation purposes in forensic labo-
ratories and in experimental studies. Their use pro-
vides a theoretical criterion to determine whether
a given method should or should not be used for
the evaluation of evidence. See Ramos-Castro et al.
(2013) and Zadora et al. (2014).

From the perspective of forensic statistics, the
likelihood ratio is the best approach to the evalua-
tion of evidence (Section 2.4.2). Good (1989) has
presented an argument to show that it is the only
approach to evaluate evidence. Its use provides a
balanced and coherent method for determining
the support of the evidence for one proposition
over another. Its use enables the prior belief of a
fact-finder about the truth or otherwise of a propo-
sition to be updated in the light of new evidence to
provide a posterior belief. This posterior belief can,
in turn, become a prior belief for more evidence
and this belief is then, in turn, updated to form a
new posterior belief.

Whilst forensic statisticians consider it the
only approach to balanced reporting, there are
many different forms a procedure based on the
likelihood ratio can take. There are five main
components in the formulation of a likelihood
ratio, the prosecution proposition Hp, the defence
proposition Hd, the evidence E itself, the back-
ground information I, and the probabilistic model,
ideally informed by data, for assessment of the
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probabilities or probability densities in the numer-
ator and denominator. There are choices to be
made for each of these components.

For propositions, there are four levels in the
hierarchy of propositions, offence, activity, source,
and sub-source (Chapters 5 and 6). There are
various choices for the defence proposition at each
level depending on key issues (5.2). The defence
could identify someone else as the criminal, it
could suggest the criminal is a member of some
sub-population other than the sub-population
of the defendant, or it may offer no suggestion
as to who the criminal is. At the activity and
offence levels there are a series of probabilities to
be assigned. Examples of these for the evaluation
of trace evidence are probabilities for transfer and
persistence at activity level (Section 5.3.2) and for
relevance at the offence level (Section 5.3.3).

For background information, the information
available to (or permissible for) the forensic
scientist to use differs from that available to (or
permissible for) the fact-finder to use. It has been
shown (Section 2.4.4) that, though these two sets
of background information differ, there is no effect
on the posterior odds available to the fact-finder.

However, the greatest choice lies with the choice
of probabilistic model. For the purposes of illustra-
tion, the evidence discussed in this chapter will
be in the form of measurements of trace evidence,
such as the chemical composition of drugs and the
elemental composition of glass for the comparison
problem and the quantity of drugs on banknotes
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for the discrimination problem. A case study
of kinship determination (Section 8.5) is used
to illustrate graphically some of the methods of
assessment. There is randomness associated with
the evidence. As mentioned earlier, there are two
types of investigation that may be conducted. The
first is one of comparison of source for control
and recovered evidence. The second is one of
discrimination of one piece of evidence as to which
of several populations it might belong.

For the evaluation of a comparison, there are
three components to the evidence. First, there
is control material whose source is known. Sec-
ond, there is recovered material whose source
is unknown. Third, there are background data,
chosen according to some notion of relevance,
whose sources are known and which are used as
training data for the development of the models
from which the likelihood ratio in a particular case
can be calculated. The assessment of performance
considers the values of the likelihood ratio using
members of the background data in a manner
described in Section 8.4.

Evaluation is also required in a problem of dis-
crimination (Section 7.7) where it is of interest to
evaluate the support of the evidence for the assign-
ment of evidential material to one population or
another. For example, one may wish to evaluate
the support of the evidence of drugs on banknotes
for the assignment of the notes to the population
of notes associated with a person associated with
crime or to the population of notes associated with
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a person not associated with crime. With the prob-
lem of discrimination, there are training data that
can be used to develop statistical models of popu-
lation membership for each of the possible popula-
tions to which the evidence can be assigned. The
assessment of performance considers the value of
the likelihood ratio using members of each of the
populations.

The methods described in previous chapters for
the evaluation of evidence depend crucially on the
models chosen for the evaluation. The forensic
scientist has to make a choice of model. It is
reasonable to assume that the choice will be made
based on the comparative quality of the models.
The scientist will choose as their preferred model
the one that is best according to certain criteria.
In order to do this, a definition of quality and a
method by which it can be assessed are needed.
Quality is defined here as the ability of the model
to support the correct result as assessed using the
training data. Support is defined as the value of
the likelihood ratio. A large value of the likelihood
ratio is strong support for a proposition, a small
value, close to but greater than 1, is weak support
for the same proposition.

Various measures of assessment of quality
are described here. Evidence E is evaluated with
the likelihood ratio (V), or a function of V. In
a comparison problem, the evidence E has two
components, control evidence Ec and recovered
evidence Er, so that E = {Ec,Er}. For the purpose of
assessment, the propositions that are considered
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here are source propositions. Assessment is a
generic measure of the quality of a model; it is
not applicable to a particular case and therefore
is not for use in court. Thus it is not possible to
consider activity or offence propositions for which
considerations of transfer, persistence, recovery,
and relevance are important but also specific to an
individual case. The source propositions discussed
here are Hp, that of a common source for Ec and Er,
normally associated with the prosecution, and Hd,
that of a different source for Ec and Er, normally
associated with the defence. Then the value V of
the evidence E is given by (2.15)

V =
Pr(E ∣ Hp, I)
Pr(E ∣ Hd, I)

,

where I is background information.
A value of V greater than 1 is said to support Hp.

A value of V less than 1 is said to support Hd. For
any particular case, it is not known which of these
propositions is correct.

Consider source propositions and two sets of
trace evidence in a comparison problem. One
set (Ec) of trace evidence is from a known source
and one set (Er) from an unknown source. The
prosecution proposition Hp is that Ec and Er are
from the same source. The defence proposition
Hd is that Ec and Er are from different sources.
Assume the existence of a database, known as a
validation database, which may be used to check
the outcomes of the evaluations. In the validation
database sets of measurements of trace evidence
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of a hierarchical form (Sections 7.3.2 and 7.6.5),
within and between groups, are available. Ideally,
the validation database is different from the
training database. Often, however, the training
database and the validation database are the
same. An example of such trace evidence is that
of window glass evidence, with measurements
of refractive index and elemental compositions
from fragments within the same windows and
with many windows that provide the opportunity
to compare measurements between windows.
Comparisons may then be made of measurements
on two sets of different fragments from within the
same window (same-source comparisons) and
on two sets of different fragments from different
windows (different-source comparisons). For
each comparison one set may be chosen as the
one of known source (Ec) and the other may
be chosen as the one of unknown source (Er).
As the source (window) of each set is known,
the correct proposition in any comparison, Hp,
same-source, or Hd, different-source, is known.
For each comparison and given a model to deal
with the hierarchical structure, a likelihood ratio
LR using a chosen model is calculated. A value
of log(V) greater than 0 is said to support the
prosecution proposition Hp. A value of log(V) less
than 0 is said to support the defence proposition
Hd. However, unlike a court case where it is not
known which proposition is correct, the correct
answer is known. A correct answer is one in
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which log(V) is greater than 0 in a same-source
comparison or less than 0 in different-source
comparison. Performance of the implemented
model can then be assessed with a comparison of
the results (supports) with the type of comparison
(same-source or different-source), which had
been made. It is possible that a same-source
comparison may result in a negative log(V);
this result is known as a false negative. Simi-
larly, a different-source comparison may result
in a positive log(V); this result is known as a
false positive. Note that this procedure can be
considered as part of a pre-assessment proce-
dure to answer questions of the following kind:
‘Is it possible to obtain a value supporting the
hypotheses of interest in this scenario?’ (Taroni
et al., 2016).

Quality has been defined as the ability of the
model to produce likelihood ratios that support
the correct proposition. The ability of the model
to support the correct proposition is itself defined
with a measure of assessment of the performance
of the model. Properties of methods for the
evaluation of the likelihood ratio are discussed
in Section 8.2. Some general ideas relating to
assessment and to presentation are discussed in
Section 8.3. Methods for the assessment of the
performance of the likelihood ratio are discussed
in Section 8.4. These are illustrated graphically
with an example on kinship determination taken
from Taroni et al. (2005) in Section 8.5.
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8.2 PROPERTIES OF METHODS
FOR EVALUATION

Four distinct properties are mentioned regularly
in the context of the role of scientific evidence
in court. These are the properties of accuracy,
precision, reliability, and validity. It is of interest
to consider their definitions in the Oxford English
Dictionary1 in the context of evidence evaluation
and the likelihood ratio.

• Reliability: Ability to be relied on with confi-
dence; trustworthiness, sureness, reliability; to
rely is to depend on with full trust or confidence.

• Accuracy: The closeness of a measurement,
calculation, or specification to the correct
value. Contrasted with precision (the degree of
refinement of the measurement, etc.).

• Validity: The quality of being well-founded on
fact, or established on sound principles, and
thoroughly applicable to the case or circum-
stances; soundness and strength (of argument,
proof, authority, etc.).

• Precision: The degree of refinement in a
measurement, calculation, or specification,
especially as represented by the number of digits
given. Contrasted with accuracy (the closeness
of the measurement, etc., to the correct value).

For the likelihood ratio method of evidence eval-
uation, these properties may be interpreted as

1http://www.oed.com.
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• Reliability: The method has the characteristics of
trustworthiness and sureness. In 1993, the US
Supreme Court ruled that scientific knowledge
will assist the trier of fact only if it is also reliable,
or trustworthy.

The requirement that an expert’s testimony pertain
to ‘scientific knowledge’ establishes a standard of . . .

evidentiary reliability - that is, trustworthiness.

In a case involving scientific evidence, evidentiary
reliability will be based on scientific validity.
(Daubert v. Merrell Dow Pharmaceuticals.)

Note that reliability is interpreted by Royall
(2000) to be the probability of observing strong
misleading evidence (Section 8.3.1). This is a
technical mathematical definition and is not to
be confused with the legal terminology.

Note also the following in discussion of an
experimental study of complex DNA profiles

The findings of this study further demonstrate . . . that
regardless of the strength or complexity of the DNA
data, as long as the models used to analyse the data
are reliable, then the LR produced will also be reliable.
(Taylor et al., 2015, p. 170)

Taylor (2014) gives a fuller discussion of the
meaning of reliability in DNA profiling.

• Accuracy: It is not possible to determine accu-
racy as there is no true value of the likelihood
ratio against which accuracy can be deter-
mined. Ramos-Castro and Gonzalez-Rodriguez
(2013) define accuracy as the closeness of a
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validation ECE curve to the PAV ECE curve
(Section 8.5).

• Validity: The method is well-founded on fact,
is established on sound principles, and is thor-
oughly applicable to the case or circumstances;
it is sound and has strength of argument, proof,
and authority. For example, methods relying on
probabilistic arguments need to satisfy the laws
of probability.

• Precision: The method can produce as many
digits as is desired though it is restricted to the
precision of any measuring instrument used
to provide the relevant data; the language is
exact – the evidence is so many times more
probable if one proposition is true than if the
other proposition is true. Precision is also a
statistical term defined as the reciprocal of the
variance of a distribution. Further discussion of
the meaning of precision is given in Biedermann
et al. (2016b), which also discusses the concept
of resolution:

‘There may be discussion about whether it is feasible and
desirable to determine if a single probability should be
given to, for example, four significant figures and hence
make a distinction between 0.0101 and 0.0102. This
is a question of the level of resolution, not of precision.
The probabilities 0.0101 and 0.0102 are different and
hence, by definition, express different levels of uncertainty.
However, on practical grounds, evidential value should
be considered as measurable in increments which are no
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smaller than that which may be thought discernible by a
juror or other fact-finder. This connects to the historical
notion of ban, used to name units of information, with
deciban being considered as the smallest change in
evidential value that is perceptible to humans (Hodges,
1992). Consider a probability value of 1 as a numerator
for a likelihood ratio. For denominators of 0.01, 0.0101,
and 0.0102, the evidential values are 100, 99.0099,
and 98.03922, respectively. It is questionable whether
a human being could separate meaningfully these three
different evidential values’ (p. 394).

Thus, methods of evaluation of evidence based
on the likelihood ratio are reliable and valid. It is
not possible to assess accuracy. Precision is subject
to the precision of any measuring instrument.

The assessment of these characteristics is not so
clear when consideration is of the numbers calcu-
lated in a particular case. The assessment has to
take account of the relevance of the data and model
used to produce the numbers. Taylor et al. (2016c)
stated that

‘Obviously, the more structured data we have, the
better. But, in real life, the numbers of experiments
that can be carried out are limited. It is thus impor-
tant to know if/when our knowledge is sufficient and
when one needs to perform further experiments to be
in a position to report the value of the observations
made’ (p. 402).

The method may be reliable and valid. The data
have to be assessed separately for reliability and
validity.
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The meanings of these words are also discussed
in Robertson et al. (2016, p. 62) along with
sensitivity and specificity. In the context of evi-
dence evaluation, sensitivity is the probability
of a likelihood ratio greater than 1 when the
proposition in the numerator is true. Specificity
is the probability of a likelihood ratio less than 1
when the proposition in the denominator is true.
The existence of considerable discussion indicates
that these words should be used with care.

Evidence in a particular case is evaluated by
the likelihood ratio. This is reported as a single
value for reasons explained in Section 2.4.3.
Further precision in the sense of closeness of
several values is not an issue since only one
value has been calculated. The calculation,
especially if it involves a computer program,
may return a result to many significant figures.
However, those beyond the precision of the mea-
suring device that provided the original data
will be meaningless. The precision of a model
may be determined. The precision of a partic-
ular result provided by the model may not be
determined.

Whilst it is not possible to consider properties of
the value of the evidence in a particular case, it is
possible to assess the properties of the model that
was used to determine the value.

For investigation of a particular case, there
may be a choice of models for the evaluation of
evidence. It will strengthen the expert’s report
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if they can testify that they have used the best
model available. In order to be able to so testify, the
performances of various competing methods have
to have been assessed.

8.3 GENERAL TOPICS RELATING
TO SAMPLE SIZE ESTIMATION
AND TO ASSESSMENT

Two general topics are discussed. The first topic
concerns the choice of an optimal sample size in
a comparison problem for continuous measure-
ments through determination of the probability
of strong misleading evidence. The second topic
concerns a method for assessment of performance
known as calibration.

8.3.1 Probability of Strong Misleading
Evidence: A Sample Size Problem

This section discusses probabilistic limits and cri-
teria for the sample size when collecting evidence
in the form of continuous measurements. Consider
the following quote:

Statistical thinking concerns the relation of quantitative
data to a real-world problem, often in the presence of
variability and uncertainty. It attempts to make precise
and explicit (current authors’ italics) what the data has
(sic) to say about the problem of interest. (Mallows,
1998, p. 3)
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Two of the requirements of the courts in the
United States for scientific evidence are that it be
relevant and reliable. Likelihood ratios consider
the matter of relevance. Evidence can be said to be
relevant if the likelihood ratio is different from 1;
i.e. the posterior odds after presentation of the
evidence is different (larger or smaller) from the
prior odds before presentation of the evidence. In
a book and a series of papers Mellen and Royall
(Royall 1997, 2000; Mellen 2000; Mellen and
Royall 1997) discuss the issue of reliability
through the concept of weak evidence and strong
misleading evidence. Weak evidence is evidence
with a low likelihood ratio. Strong misleading
evidence is evidence with a high likelihood ratio
in favour of the wrong proposition; e.g. evidence
which has a high likelihood ratio in favour of
the prosecution proposition when the defence
proposition is true.

Relevance is addressed in the United States
through Rule 401 of the Federal Rules of Evidence.
Evidence is relevant if ‘it has any tendency to make
a fact more or less probable than it would be with-
out the evidence; and the fact is of consequence in
determining the action’.

A change in the odds, greater or less than previ-
ously, in favour of the prosecution’s proposition,
through a value for the evidence different from
1, is a change in the probability of the prosecu-
tion’s proposition. Thus, there is a connection
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between Rule 401 and the likelihood ratio. Note
that this concept of relevance is different from
that discussed in Chapters 5 and 6 where it is
taken to be the probability that trace evidence,
which is recovered from the victim/PoI and
which matches (in some sense) trace evidence
associated with the PoI/victim is connected with
the crime (Stoney, 1991a,1994), (Evett et al.,
1998). The relevance that is a probability is used
as a term in the expression for the likelihood
ratio. The relevance as defined in Rule 401 of
the Federal Rules of Evidence can be thought
of in terms of the value of the likelihood ratio
as a whole.

Rule 702 of the Federal Rules of Evidence lays
out when expert witnesses may be allowed to
testify. ‘A witness who is qualified as an expert
by knowledge, skill, experience, training, or edu-
cation may testify in the form of an opinion or
otherwise if:

• the expert’s scientific, technical, or other spe-
cialised knowledge will help the trier of fact to
understand the evidence or to determine a fact
in issue;

• the testimony is based on sufficient facts or data;

• the testimony is the product of reliable principles
and methods; and

• the expert has reliably applied the principles and
methods to the facts of the case’.
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In 1999, the US Supreme Court stated

Daubert’s general principles apply to the expert matters
described in Rule 702. The Rule, in respect to all such
matters ‘establishes a standard of evidentiary reliability’
(509 U.S. at p. 590)

. . . the trial judge must determine whether the testimony
has ‘a reliable basis in the knowledge and experience of [the
relevant] discipline’ (509 U.S. at p. 592). (Kumho Tire
Co., Ltd. v. Carmichael)

Consider two competing propositions, A and B
for evidence E. The likelihood ratio is Pr(E ∣ A)∕
Pr(E ∣ B). Denote this as VAB. Strong evidence in
favour of A will be taken to be evidence for which
the likelihood ratio is greater than a specified
value k(> 1), say. Thus the probability of strong
misleading evidence will be evidence for which
Pr(VAB > k) when B is the correct proposition or
Pr(VAB < 1∕k) when A is the correct proposition.
The subscript B can be used in the notation to
clarify under which proposition the probability
is being determined, so that the probability of
strong misleading evidence when B is the correct
proposition can be denoted PrB(VAB > k). Consider
E as a set of measurements x (with corresponding
random variable X), such as DNA profiles (PoI,
victim, and background data) or refractive indexes
of glass (PoI, crime scene, and background data).
Then, it can be shown (Royall, 1997) that it is
unlikely there will be strong evidence favouring A,
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when B is true. In particular,

PrB(VAB > k)
= PrB(Pr(X = x ∣ A)∕Pr(X = x ∣ B) > k) < 1∕k,

where X = x has been substituted for E.
Consider the set S of all possible values of X,

which produce a value VAB greater than k. For
each of these values x of X,

Pr(X = x ∣ B) < Pr(X = x ∣ A)∕k

by rearrangement of the probabilistic inequality
earlier. It is then possible to sum over all values x
of X in S to obtain

Pr(S) =
∑
x∈S

Pr(X = x ∣ B) <
∑
x∈S

Pr(X = x ∣ A)∕k.

The right-hand sum
∑

x∈S Pr(X = x ∣ A) will
not be greater than 1, as it is a sum of mutually
exclusive probabilities. Thus,

∑
x∈S Pr(X = x ∣ A)∕

k < 1∕k and, hence Pr(S) < 1∕k. Further details
and a stronger result that ‘if an unscrupulous
researcher sets out deliberately to find evidence
supporting his favourite but erroneous hypothesis
over his rival’s, which happens to be correct,
by a factor of k, then the chances are good
that he will be eternally frustrated’ are given
in Royall (1997).
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Values of k of 8 and 32 are proposed by Royall
(1997, p. 25) to represent ‘fairly strong’ and
‘strong’ evidence respectively. These are justified
with reference to an urn example (see Section
1.7.2). Consider an urn that may contain all white
balls or half white balls and half black balls. If
three balls are drawn without replacement and
all are found to be white this may be thought of
as ‘fairly strong’ evidence that the urn contains
only white balls. The probability of this event if
the urn contains half white and half black balls
is (1∕2)3 = 1∕8. If five balls are drawn without
replacement and all are found to be white, this may
be thought of as ‘strong’ evidence that the urn
contains only white balls. The probability of this
event if the urn contains half white and half black
balls is (1∕2)5 = 1∕32. Similar benchmarks have
been proposed by Edwards (1992), Jeffreys (1983),
and Kass and Raftery (1995). Comparison should
also be made with Sections 2.4.6 and 4.2.1.

An example is given in Mellen (2000) of the
application of these ideas to DNA evidence. Let s
denote the source of the DNA and d denote the
defendant. Consider two propositions

• The defendant is the source of the crime scene
DNA (s = d);

• An unknown person is the source (s ≠ d).

Suppose that the crime scene DNA and the
DNA of the PoI have corresponding features.
Let z denote the genotype that is observed. Let
Zi denote the random variable corresponding to
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the genotype from person i; Zr is the genotype
from the source (recovered) of the DNA at the
crime scene and Zc is the genotype from the PoI
(control). Then Zc = Zr = z. The probability of
misleading evidence (evidence whose value V is
greater than k) is evaluated assuming s ≠ d. Thus

Pr(V > k ∣ Zr = z)
= Pr(V > k, Zc = z ∣ Zr = z)
= Pr(V > k ∣ Zc = z, Zr = z)Pr(Zc = z ∣ Zr = z)
< Pr(Zc = z ∣ Zr = z).

Assuming that s ≠ d, this final probability is equal
to the conditional genotype probability. The prob-
ability of strong misleading evidence is not greater
than the conditional genotype probability. As
stated in Mellen (2000), ‘as might be expected, if
the genotype z tends to be rare among individuals
in the same genetic subset of the population as
the defendant, then the probability of observing
genotypes in the defendant and the reference
sample that constitute strong misleading evidence
is not great. If, on the other hand, the genotype z
tends to be quite common in this subpopulation,
then the probability might be larger’. (p. 140)

In the discussion at the end of Mellen and Royall
(1997) comment is made on several useful features
of the analysis. These include the following:

• Separation between measures of evidence and
reliability of the process that produces the
evidence;
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• Distinction between the strength of implicating
evidence and the improbability of its occur-
rence – there is a low probability of misleading
strong implicating evidence;

• Explicit conditioning on the circumstances of a
case: condition on the non-DNA evidence to
delimit the suspect population and condition on
the source DNA type in probabilities of strong
implicating evidence;

• Generality of the methods, the importance of
conditional probabilities (Balding and Donnelly,
1995a), and the extension of the methods
to identification evidence other than DNA
evidence.

Royall (2000) extended these ideas to con-
tinuous data and discrimination. Consider two
propositions H1 and H2 for evidence in the
form of measurements X, such that, for H1,
denoted f1,

X ∼ N(𝜃1, 𝜎
2)

and, second, for H2, denoted f2,

X ∼ N(𝜃2, 𝜎
2).

Let there be data x1, . . . , xn. Then the likelihood
functions f1n and f2n, in the two propositions, are

f2n =
n∏

i=1

(2𝜋𝜎2)−
1
2 exp

{
− 1

2𝜎2
(xi − 𝜃2)2

}
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= (2𝜋𝜎2)−
n
2 exp

{
− 1

2𝜎2

n∑
i=1

(xi − 𝜃2)2

}

f1n = (2𝜋𝜎2)−
n
2 exp

{
− 1

2𝜎2

n∑
i=1

(xi − 𝜃1)2

}

f2n

f1n
= exp

{
− 1

2𝜎2

[
n∑

i=1

(xi − 𝜃2)2 −
n∑

i=1

(xi − 𝜃1)2

]}

= exp
{

n(𝜃2 − 𝜃1)
𝜎2

(
x̄ −

𝜃1 + 𝜃2

2

)}
.

If H1 is true then

X̄ ∼ N(𝜃1, 𝜎
2∕n)

and it can be shown (Royall, 2000) that

Pr
1

(
f2n

f1n
> k

)
= Φ

(
−
Δ
√

n

2𝜎
−

𝜎loge(k)
Δ
√

n

)

where Δ =∣ 𝜃2 − 𝜃1 ∣ and the subscript 1 associ-
ated with the Pr indicates that the first proposition
is taken to be true. In analogous notation, Pr2 will
indicate that the probability is to be determined
assuming the second proposition to be true. If Δ
expressed as a multiple c of the standard error of X̄
is such that Δ =∣ 𝜃2 − 𝜃1 ∣= c𝜎∕

√
n, then

Pr
1

(
f2n

f1n
> k

)
= Φ

(
− c

2
−

loge(k)
c

)
,

assuming 𝜃1 to be the true mean. This function is
a so-called bump function.
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If 𝜃1 is the true mean then there is very little
chance of observing strong evidence supporting
𝜃2 over 𝜃1 when the difference Δ between the
two parameter values is a small fraction of the
standard error 𝜎∕

√
n.

These ideas may be used to determine a sample
size based on the criteria of controlling for the prob-
ability of strong misleading evidence and for the
probability of weak evidence. Consider a likelihood
ratio f2∕f1 of density functions where the subscripts
denote the two competing propositions.

• Strong evidence is defined as evidence for which
the f2∕f1 is greater than a pre-specified value k,
or, conversely, less than 1∕k.

• Strong misleading evidence is defined as evidence
for which f2∕f1 is greater than the pre-specified
value k when proposition 1 is assumed true, or,
conversely, less than 1∕k when proposition 2 is
assumed true.

• Weak evidence is evidence that is not strong; i.e.
evidence for which 1∕k < f2∕f1 < k.

The probability, M(n), of observing strong mis-
leading evidence, as a function of the sample size
n, is given by

M(n) = Pr
1

(
f2n

f1n
> k

)

= Pr
2

(
f1n

f2n
> k

)

=Φ

(
−
Δ
√

n

2𝜎
−

𝜎loge(k)
Δ
√

n

)
(8.1)
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Figure 8.1 Bump function for the probability of mis-
leading evidence Pr1(

f2n

f1n
> k) for k = 8 and k = 32 as a

function of c, the distance from the true mean to the
alternative, in standard errors. Source: Royall (2000).
Reprinted with permission of Taylor and Francis Ltd.

and the probability W(n), of observing weak evi-
dence, as a function of the sample size n, is given by

W(n) = Pr
1

(
1∕k <

f2n

f1n
< k

)

= Pr
2

(
1∕k <

f2n

f1n
< k

)

= Φ

(
−
Δ
√

n

2𝜎
+
𝜎loge(k)
Δ
√

n

)
− M(n). (8.2)

Consider an example where the characteristic of
interest is the refractive index of glass. A window
is broken at the crime scene. A PoI is apprehended
soon afterwards and they have fragments of glass
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on their clothing. They explain the presence of the
fragments by saying that they had just broken a
glass. The two propositions of interest are

H1: The glass fragments on the clothing of the
PoI came from the crime scene window.

H2: The glass fragments on the clothing of the
PoI came from the broken glass.

The window at the crime scene is of a very
common type. There is a population database
with a refractive index of assumed known mean
(𝜃1) and standard deviation 𝜎 for variation within
windows.2 The glass from which the broken glass
was manufactured is also of a common type with a
refractive index of assumed known mean (𝜃2) and
standard deviation 𝜎 for variation within glasses
(the same as for the crime scene window glass).

A pre-assessment question (see Section 5.5.2
for further discussion) is the determination of the
number of fragments of glass from the clothing of
the PoI to be examined. Once this number has been
determined, refractive indices of fragments of glass
from the clothing of the PoI and fragments from
the crime scene window can be measured and
compared using the likelihood ratio expressions of
Chapter 7.

From (8.1) and (8.2), with Δ =∣ 𝜃1 − 𝜃2 ∣ and
𝜎 known, the two unknowns are the sample size
n and the criterion k for strong evidence. Both

2This scenario is different from the hierarchical model used for evi-
dence evaluation in Section 7.3.
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n and k can be varied and the corresponding values
of M(n) and W(n) investigated. For the determina-
tion of the sample size in the pre-assessment stage
it is necessary to consider three criteria:

• the meaning of ‘strong’ (the value for k), and, as
a consequence:

• the probability of strong misleading evidence;

• the probability of weak evidence.

This procedure is illustrated using the following
values for the parameters:

• 𝜃1: 1.5195073,

• 𝜃2: 1.5195730,

• 𝜎: 0.0000492.

Then,Δ = 0.0000657 and from (8.1) and (8.2),
Table 8.1 can be obtained.

Suppose it is decided that strong evidence
(either in support of H1 or of H2) is evidence with
a value greater than 8, and that it is tolerable to
have a probability of strong misleading evidence
no greater than 0.005 and to have a probability

Table 8.1 Probabilities of strong misleading evidence
M(n) and weak evidence W(n) for boundary values k of
8 and 32 for strong evidence and sample sizes n of
5, 10, and 20

k M(5) W(5) M(10) W(10) M(20) W(20)
8 0.0143 0.1985 0.0046 0.0481 0.0004 0.0038
32 0.0040 0.3658 0.0017 0.0967 0.0002 0.0079
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of weak evidence no greater than 0.05. These
criteria will be satisfied with a sample of size 10.
This follows from inspection of Table 8.1, in the
row for k = 8 and the columns for M(10) and
W(10) where the corresponding cell values are
0.0046 (<0.005) for M(10) and 0.0481 (<0.05)
for W(10).

A probability of 0.005 for strong misleading evi-
dence is the probability that strong evidence will
be obtained that the glass fragments on the cloth-
ing of the PoI came from the crime scene window,
when in fact they came from the broken glass or
that the glass fragments on the clothing of the PoI
came from the broken glass when in fact they came
from the crime scene window.

Other applications can be considered. For
example, consider the sampling of a consignment
of drugs as described in Sections 4.3 and 4.4. The
sample size n is determined by the criterion of
satisfying a pre-specified probability that the true
proportion of illicit drugs in the consignment is
greater than a pre-specified value.

In contrast to that criterion, consider two
propositions about the possible source of the
consignment:

H1: The drugs are from a source with mean
quantity of drug per tablet of 𝜃1;

H2: The drugs are from a source with mean
quantity of drug per tablet of 𝜃2.

The criterion k for strong evidence can be cho-
sen. Then the probabilities for strong misleading



�

� �

�

General Topics Relating to Sample Size 947

evidence and for weak evidence may be deter-
mined.

A procedure for estimating the quantity of drug
in a consignment, based on a sample from the
consignment, was described in Section 4.6. This
procedure could be adapted to estimate the mean
amount of drug in one tablet in the consignment.

There are, thus, two procedures. In the first,
probabilities for strong misleading evidence and
for weak evidence are used to determine sample
size in a pre-assessment stage before sampling to
compare two propositions about the source of the
consignment. In the second, an estimate of the
quantity of drug in the consignment is obtained,
without reference to any possible source of the
consignment.

The results from the sampling can be used in the
determination of a likelihood ratio to evaluate the
evidence from the consignment in support of either
Hp or Hd.

It is also possible to determine a sample size from
the criteria based on (8.1) and (8.2). This may give
a different sample size from that obtained using
the criteria described in Section 4.3. However, the
two criteria are designed to answer two different
questions and thus may give different answers.
The criteria based on (8.1) and (8.2) are designed
to compare two propositions about a mean value.
The criterion described in Section 4.3 is designed
to satisfy a pre-specified probability that the true
proportion of illicit drugs in the consignment is
greater than a pre-specified value.
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The ideas discussed here are for consideration of
model performance. They are not for application
in a particular case. Thus it makes sense to discuss
the probability of a likelihood ratio which it would
not make sense to do in the context of a particular
case (see Sections 2.4.3 and 7.6.3).

8.3.2 Calibration

The performance of a procedure can be charac-
terised by the distribution of likelihood ratios,
one for each of two propositions. An interesting
property of the likelihood ratio is that the like-
lihood ratio of the likelihood ratio is itself the
likelihood ratio (van Leeuwen and Brümmer,
2013). Equation (2) of van Es et al. (2017) states

Pr(LR ∣ Hp)
Pr(LR ∣ Hd)

= LR.

The proof is in van Leeuwen and Brümmer
(2013) and their notation and example is used
here. A speaker recognition system has as
input two speech segments, denote these as X
and Y. Let s = f (X,Y) be a single, scalar score
(see Section 7.8). The likelihood ratio, here
denoted r for consistency with van Leeuwen and
Brümmer (2013), is a function of s:

r =
Pr(s ∣ Hp,M)
Pr(s ∣ Hd,M)

, (8.3)

where Hp is the proposition that X and Y originate
from the same speaker, Hd is the proposition that
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X and Y are from different speakers, and M is a
probabilistic model for s. In practice s is a scalar
score, though the authors claim the theory is
sufficiently general to remain applicable for more
ambitious models.

Let Pr(Hp ∣ M) = 𝜋. Then

Pr(Hp ∣ s,M, 𝜋)

=
Pr(s ∣ Hp,M, 𝜋)𝜋

Pr(s ∣ Hp,M, 𝜋)𝜋 + Pr(s ∣ Hd,M, 𝜋)(1 − 𝜋)

= r𝜋
r𝜋 + (1 − 𝜋)

, (8.4)

since Pr(s ∣ Hp,M, 𝜋) = Pr(s ∣ Hp,M) and Pr(s ∣ Hd,

M, 𝜋) = Pr(s ∣ Hd,M). Thus r is such that the pos-
terior for Hp depends on s only through r. A similar
argument holds for Hd with

Pr(Hd ∣ s,M, 𝜋) = (1 − 𝜋)
r𝜋 + (1 − 𝜋)

.

Thus, the posterior probability may be written as

Pr(h ∣ s,M, 𝜋) = Pr(h ∣ r,M′, 𝜋), h ∈ {Hp,Hd}
(8.5)

where M′ has been introduced to denote M aug-
mented with (8.3). Then

Pr(Hp ∣ s,M, 𝜋)
Pr(Hd ∣ s,M, 𝜋)

= 𝜋

(1 − 𝜋)
Pr(s ∣ Hp,M)
Pr(s ∣ Hd,M)

= 𝜋

(1 − 𝜋)
r;

Pr(Hp ∣ r,M′, 𝜋)
Pr(Hd ∣ r,M′, 𝜋)

= 𝜋

(1 − 𝜋)
Pr(r ∣ Hp,M′)
Pr(r ∣ Hd,M′)
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⇒
𝜋

(1 − 𝜋)
r =

Pr(Hp ∣ s,M, 𝜋)
Pr(Hd ∣ s,M, 𝜋)

=
Pr(Hp ∣ r,M′, 𝜋)
Pr(Hd ∣ r,M′, 𝜋)

from (8.5)

= 𝜋

(1 − 𝜋)
Pr(r ∣ Hp,M′)
Pr(r ∣ Hd,M′)

⇒ r =
Pr(r ∣ Hp,M′)
Pr(r ∣ Hd,M′)

.

As discussed in Section 8.1, the use of a training
set enables the determination of distributions
for likelihood ratios. Van Es et al. (2017) used
probability density estimates from a training set
for the distribution of likelihood ratios based on
same-source propositions and the distribution of
likelihood ratios based on different-source propo-
sitions. They used these distributions to amend, or
calibrate, the result, s0, say, in a particular case.

Let r0 be the likelihood ratio derived from s0,
which is to be calibrated based on the informa-
tion of probability densities (same-source and
different-source), denote these as f (r ∣ Hp) and
f (r ∣ Hd). Then the calibrated likelihood ratio is
given by

f (r0 ∣ Hp)
f (r0 ∣ Hd)

.

It is this ratio that van Es et al. (2017) reported
as the value of the evidence. A problem with this
approach is that it is not possible to update eviden-
tial value when new evidence is obtained.
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The posterior odds for one piece of evidence
become the prior odds for the next piece of
evidence. Given two pieces of evidence, E1 and E2,
from (2.16)

Pr(Hp ∣ E1,E2)
Pr(Hd ∣ E1,E2)

=
Pr(E2 ∣ Hp,E1)
Pr(E2 ∣ Hd,E1)

×
Pr(E1 ∣ Hp)
Pr(E1 ∣ Hd)

×
Pr(Hp)
Pr(Hd)

. (8.6)

Calibration of these likelihood ratios gives two
new likelihood ratios, LR1 and LR2 defined as

LR1 =
Pr{Pr(E1 ∣ Hp)∕Pr(E1 ∣ Hd) ∣ Hp}
Pr{Pr(E1 ∣ Hp)∕Pr(E1 ∣ Hd) ∣ Hd}

and

LR2 =
Pr{Pr(E2 ∣ E1,Hp)∕Pr(E2 ∣ E1,Hd) ∣ Hp}
Pr{Pr(E2 ∣ E1,Hp)∕Pr(E2 ∣ E1,Hd) ∣ Hd}

.

It is not clear how to combine evidential value
for two or more pieces of evidence that have been
calibrated. For example, the product of LR1 and
LR2 has no meaning. Mathematically it is not
possible to model the dependencies of a likelihood
ratio for two or more pieces of evidence if one of
the likelihood ratio expressions has been adjusted
during the calibration process.

The result that the likelihood ratio of the like-
lihood ratio is the likelihood ratio is a general
result. Consider a class of problems such as that
of kinship (Section 8.5). The likelihood ratio can



�

� �

�

952 Assessment of Performance

be calculated for all possible outcomes and a
distribution obtained. It then makes sense to refer
to the probability of a likelihood ratio (or the value
of the probability density function). In practice,
interest is concentrated on one particular value
of the likelihood ratio. In that context, it makes
no sense to talk of the probability of the likelihood
ratio. The result is an interesting theoretical result
but not one that should be used in practice. The
result can be used for comparison of performance.
For example, plot the likelihood ratio LR against
Pr(LR ∣ Hp)∕Pr(LR ∣ Hd). The closer the plot is to a
straight line, the better the method.

This definition of calibration can be contrasted
with that used by Bayesian statisticians. For
example, DeGroot and Fienberg (1983) discuss
calibration with regard to weather forecasts. A
forecaster is well-calibrated if their forecast of a
probability p of rain the following day is such that
on 100p% occasions on which they make that
forecast it does indeed rain on the following day.

8.4 ASSESSMENT OF
PERFORMANCE OF A
PROCEDURE FOR THE
CALCULATION OF THE
LIKELIHOOD RATIO

Sensitivity analyses of models provide one mea-
sure of reliability. The change in the output (LR) of
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a model as parameters change can be investigated.
See Taylor et al. (2014) for an example with DNA
profiles where variation of the value of the LR is
investigated as there are changes in the value of
FST, the weights given to genotype combinations
in a continuous interpretation model, and the
composition of the relevant population. This
section does not concern itself with these analyses
of sensitivity. Instead it concentrates on the assess-
ment of the performance of a particular model
where the characteristics of the model remain
unchanged. The changes considered are those of
the evidence, the control and recovered data, for
example.

Consider a training database where the source
of each data point is known (in the comparison
scenario) or where the population membership is
known (in the discrimination scenario). It is then
possible to study the variation of the likelihood
ratio as the control and recovered data change.

Consider hierarchical data with two levels in
a comparison problem. An example is that of a
training set of windows with measurements of
refractive indices. There is variation of refractive
indices within windows and between windows.
(See Section 7.3.2 for an example.) The training
set consists of m windows with n fragments of
glass in each window. Denote the measurements
of refractive indices of the fragments by xij, i =
1, . . . ,m, j = 1, . . . , n. Two fragments, with mea-
surements denoted y1 and y2, represent control
and recovered data, respectively. They are chosen
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from the training set and evaluated against two
propositions, Hp that the two fragments come from
the same source and Hd that the two fragments
come from different sources and a likelihood
ratio f (y1, y2 ∣ Hp)∕f (y1, y2 ∣ Hd) is calculated.
The likelihood ratio for all possible pairs of frag-
ments in the training set can be calculated. A set of
within-window likelihood ratios is calculated, con-
sisting of 1

2
mn(n − 1) values (the pairs of fragments

compared consist of two fragments from the same
window) and a set of between-window likelihood
ratios is calculated, consisting of 1

2
m(m − 1)n2

values (the pairs of fragments compared consist of
two fragments from different windows). It is to be
expected the calculated within-window likelihood
ratios are greater than 1 and the between-window
likelihood ratios are less than 1. These two sets of
likelihood ratios provide the distributions of likeli-
hood ratios for within-source and between-source
comparisons. Examples of such distributions in a
problem of kinship determination are shown in
Figure 8.4. Performance measures are obtained
through study of these distributions. These distri-
butions are used to assess the performance of the
likelihood ratio as a method for the evaluation of
evidence. They are not used in a particular case.

Consider a set {Ei = (Eci,Eri), i = 1, . . . , np} of
evidential pairs (control c and recovered r) for
same-source comparisons and a set {Ej = (Ecj,Erj),



�

� �

�

Assessment of Performance of a Procedure 955

j = 1, . . . , nd} of evidence pairs (control and
recovered) for different-source comparisons. Log
likelihood ratios for same-source comparisons

Vsame = log
{

f (Eci,Eri ∣ Hp

f (Eci,Eri ∣ Hd

}
, i = 1, . . . , np

and for different source comparisons

Vdiff = log
{

f (Ecj,Erj ∣ Hp

f (Ecj,Erj ∣ Hd

}
, j = 1, . . . , nd

may be calculated using the ideas of Section 8.1.
A similar set of calculations can be made for

the discrimination problem. Let HA and HB be the
propositions for membership of population A and
B, respectively. Consider a set {EAi, i = 1, . . . , nA}
of pieces of evidence from population A and a set
{EBj, j = 1, . . . , nB} of pieces of evidence from
population B. Log likelihood ratios for members of
the set from population A

VA = log
{

f (EAi ∣ HA

f (EAi ∣ HB

}
, i = 1, . . . , nA

and for members of the set from population B

VB = log
{

f (EBj ∣ HA

f (EBj ∣ HB

}
, j = 1, . . . , nB

may be calculated using the ideas of Section 8.1.
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8.4.1 Histograms and Tippett Plots

Denote the two propositions to be considered
as H1 and H2 where {H1,H2} = {Hp,Hd} in
the comparison scenario and {HA,HB} in the
discrimination scenario.

Two histograms are determined as estimates
of probability distributions of results for log(LR)
for data from H1 and, separately, from H2. The
base of the logarithms is conventionally chosen
to be 10 but it need not be. Also, likelihood ratios
could be used without a logarithmic scale but
this could lead to difficulties of presentation. The
discriminating power3 of a method at a particular
value of log(LR) is the amount of overlap of the dis-
tributions at that value. If there is no overlap then
there is 100% discrimination; this is a practical sit-
uation since for continuous data there will always
be some overlap. If there is no separation then one
distribution is wholly included in the range of the
other and there is no discrimination. Examples
from a case study of kinship determination are
shown in Figure 8.4.

If the training set is not large, then the estimates
of the probability distributions can be replaced by
histograms. Histograms of log10(LR) values in an
artificial set of LR values are shown in Figure 8.2.
Histograms from a case study in kinship determi-
nation are shown in Figures 8.5 and 8.6.

3This definition of discriminating power is not to be confused with
that of Section 3.5.
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Figure 8.2 Histograms of log10(LR) values in an arti-
ficial set of LR values. The area of overlap is indicated in
grey.

Tippett plots are generalisations of rates of mis-
leading evidence for comparisons. They are the
complement of empirical cumulative distribution
functions for same-source and different-source
comparisons or for the two populations in a
discrimination problem. The plots come in pairs,
one for same-source comparisons and one for
different-source comparisons or one for member-
ship of group A and one for membership of group
B. The log(LR) is plotted on the x-axis and, for a
particular value x0 of the log(LR), the value on the
y-axis is the proportion of comparisons greater
than x0. For same-source comparisons, it is to
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be hoped that all log(LR) values are greater than
0. Thus for x < 0, it is hoped the corresponding
value on the y-axis will be 1 (or 100%). Similarly,
for different-source comparisons, it is to be hoped
that all log(LR) values are less than 0. Thus for
x > 0, it is hoped the corresponding value on the
y-axis will be 0 (or 0%). An artificial example from
Zadora et al. (2014) is shown in Figure 8.3. Tippet
plots from the case study in kinship determination
are shown in Figure 8.8. Other examples of
Tippett plots are presented in Meuwly (2001),
Riva (2011), Riva and Champod (2014), and
Lucena-Molina et al. (2015a).

The distance from the intersection of the same-
source plot with the line log(LR) = 0 and the line
y = 1(100%) is the rate of misleading evidence
for same-source comparisons, the proportion of
same-source comparisons that have a value of
log(LR) < 0 (LR < 1) (false negatives). The dis-
tance from the intersection of the different-source
plot with the line log(LR) = 0 and the line
y = 0(0%) is the rate of misleading evidence for
different-source comparisons, the proportion of
different-source comparisons that have a value of
log(LR) > 0 (LR > 1) (false positives).

Applications of this procedure have been
described for DNA (Evett et al., 1993; Evett
and Buckleton, 1996; Evett and Weir, 1998),
for speaker recognition (Meuwly and Drygajlo,
2001), for relationships between heroin seizures
(Dujourdy et al., 2003), and for marks left on gun
cartridges (Riva, 2011; Riva et al., 2017).
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8.4.2 False Positive Rates, False
Negative Rates and DET Plots

Often the value 1 for the likelihood ratio (or 0 for
the logarithm of the likelihood ratio) is chosen as
a threshold for the proposition which is supported
by the likelihood ratio. Thus

(a) for comparisons, false negative and false
positive rates can be estimated. These are
the number of same-source comparisons
with LR < 1 divided by the total number of
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Figure 8.3 Tippett plots of a validation set of LR val-
ues artificially generated. The curve for true Hp values is
the solid line on the right and the curve for the true Hd
values is the dashed line on the left. The rates of mislead-
ing evidence are indicated in the title of the plot. Source:
From Zadora et al. (2014), John Wiley & Sons.
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same-source comparisons (false negatives)
and the number of different-source com-
parisons with LR > 1 divided by the total
number of different-source comparisons
(false positives);

(b) for discrimination, the number of allocations
of members of the validation set that are
to the wrong group, divided by the total
number of allocations provide error rates. For
discrimination between two groups, A and
B, say, two rates can be determined, first, the
number of members of A allocated to B divided
by the total number of members of A and,
second, the number of members of B allocated
to A divided by the total number of members
of B. If there are more than two groups,
various possible combinations of rates may be
calculated.

However, it may be that a different threshold,
𝜏, say, for the logarithm of the likelihood ratio is
chosen. A criterion for the choice of threshold
could be the one that provides the optimal values
of false positive and false negative rates. Note
that as the rate of false positives changes in one
direction (positive or negative) with a change
in threshold the rate of false negatives changes
in the other direction (negative or positive). A
plot of false positives versus false negatives as 𝜏

changes is known as a detection error trade-off plot
or DET plot. Examples of DET plots are shown
in Figure 8.7.
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8.4.3 Empirical Cross-Entropy

Another measure of performance for comparisons
is the so-called log-likelihood ratio cost, Cllr. Let
np be the number of same-source comparisons
and nd be the number of different-source compar-
isons in a test of performance. The values of the
likelihood ratios calculated for the same-source
comparisons are denoted LRpi, i = 1, . . . , np and
for the different-source comparisons are denoted
LRdi, i = 1, . . . , nd. The Cllr gives higher penalties
for larger values of misleading evidence (van
Leeuwen and Brummer, 2007).

It is defined as

Cllr = 1
2

(
1
np

np∑
i=1

log2

(
1 + 1

LRpi

)

+ 1
nd

nd∑
i=1

log2(1 + LRdi)

)
,

where the prior probabilities of the two proposi-
tions of same source (Hp) or different source (Hd)
are taken to be equal: Pr(Hp) = Pr(Hd) = 0.5. The
expression can also be written as

Cllr = −1
2

(
1
np

np∑
i=1

log2(Pr(Hp ∣ E))

+ 1
nd

nd∑
i=1

log2(Pr(Hd ∣ E))

)
.

Note that values of LRpi < 1 and LRdi > 1 lead to
increases in Cllr.
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A variation on this measure of performance
to account for different probabilities for these
propositions is given in Ramos-Castro et al. (2013)
and Lucena-Molina et al. (2015b). Further details
of measures of performance including descriptions
of strictly proper scoring rules and calibration may be
found in Ramos-Castro and Gonzalez-Rodriguez
(2013) and Ramos-Castro et al. (2017).

The score used by Lindley (1991) was the
quadratic scoring rule (1.4). Another scoring rule
is the logarithmic rule (Good, 1952).

In the context of forensic science, consider
the prosecution and defence propositions Hp
and Hd, respectively, and in this context, assume
Pr(Hp) = 1 − Pr(Hd). For evidence evaluation, the
logarithmic rule with base 2 is used. The base
of the logarithm is irrelevant for the theory and
application. The base 2 is normally used in this
context for reasons associated with information
theory where the common unit of information
is the bit, based on logarithms to base 2. Given a
particular model, let p be the posterior probability
obtained for Hp given evidence E and background
information I. Then (1 − p) is the posterior prob-
ability for Hd given evidence E and background
information I. Determination of a posterior prob-
ability requires knowledge of a prior probability.
The logarithmic scoring rule states that

• If Hp is true, the score is −log2p = −log2 Pr(Hp ∣
E, I);

• If Hd is true, the score is −log2(1 − p) =
−log2 Pr(Hd ∣ E, I).
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If p is high and Hp is true then the score is
low. If p is high and Hd is true then the score
is high. For example, consider p = 0.9 and Hp

true; the score is −log2(0.9) = +0.15. If Hd

true; the score is −log2(1 − 0.9) = +3.32.4 See
Meuwly et al. (2017) and Ramos-Castro and
Gonzalez-Rodriguez (2013) for further details.

There are two propositions. In a comparison
problem the prosecution proposition Hp is that
the control and recovered evidence come from the
same source. The defence proposition Hd is that the
control and recovered evidence come from differ-
ent sources. Let O(Hp ∣ I) = Pr(Hp ∣ I)∕Pr(Hd ∣ I). If
Hp and Hd are mutually exclusive and exhaustive,
then O(Hp ∣ I) is the odds in favour of Hp. Then, for
evidence E, Bayes’ theorem shows that

O(Hp ∣ E, I) =
Pr(E ∣ Hp, I)
Pr(E ∣ Hd, I)

× O(Hp ∣ I)

= V × O(Hp ∣ I),

where O(Hp ∣ E, I) = Pr(Hp ∣ E, I)∕Pr(Hd ∣ E, I) and
V = Pr(E ∣ Hp, I)∕Pr(E ∣ Hd, I), the likelihood ratio.
When Hp and Hd are complementary propositions,
so that Pr(Hp) = 1 − Pr(Hd), it can be shown that

Pr(Hp ∣ E, I) =
V × O(Hp ∣ I)

1 + V × O(Hp ∣ I)
.

Consider a set {Eci,Eri, i = 1, . . . , np} of eviden-
tial pairs (control and recovered) for same-source

4Note for calculation purposes, log2x = log10(x)∕log10(2).



�

� �

�

964 Assessment of Performance

comparisons and a set {Ecj,Erj, i = 1, . . . , nd}
of evidence pairs (control and recovered) for
different-source comparisons.

The overall measure of performance for a
method of evaluation of evidence may be defined
as the mean value of the logarithmic scoring rule
over many different comparisons of control and
recovered evidence from a validation set for which
the outcome of the comparison, same-source or
different-source, is known. This mean is known as
the logarithmic loss, L:

L = 1
np

np∑
i=1

log2 Pr(Hp ∣ Eci,Eri, I)

− 1
nd

nd∑
j=1

log2 Pr(Hd ∣ Ecj,Erj, I).

The measure of performance for evidence evalu-
ation is then a weighted average value of the loga-
rithmic scoring rule, and is known as the empirical
cross-entropy (ECE):

ECE = −
Pr(Hp ∣ I)

np

np∑
i=1

log2 Pr(Hp ∣ Eci,Eri, I)

−
Pr(Hd ∣ I)

nd

nd∑
j=1

log2 Pr(Hd ∣ Ecj,Erj, I)
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=
Pr(Hp ∣ I)

np

np∑
i=1

log2

(
1 + 1

Vi × O(Hp ∣ I)

)

+
Pr(Hd ∣ I)

nd

nd∑
j=1

log2(1 + Vj × O(Hp ∣ I)),

(8.7)

where

Vi =
Pr(Eci,Eri ∣ Hp, I)
Pr(Eci,Eri ∣ Hd, I)

,

Vj =
Pr(Ecj,Erj ∣ Hp, I)
Pr(Ecj,Erj ∣ Hd, I)

. (8.8)

This measure indicates better performance
when the likelihood ratio leads to the correct
decision. The numerical value will be lower as the
performance increases. Since the prior odds are
not known, it is not possible to evaluate a particu-
lar value of the ECE. The ECE can be represented as
an ECE-plot, showing its value for a certain range
of priors (Ramos-Castro et al., 2013).

Consider an increase in information to mean a
reduction in uncertainty about Pr(Hp) and Pr(Hd).
If values of the likelihood ratio given by the model
under consideration are increasingly misleading
to the fact-finder then ECE values increase; more
information is needed to know which proposition,
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Hp or Hd, is true. If values of the likelihood ratio
given by the model under consideration increas-
ingly support the correct proposition, then ECE
values decrease.

Three curves illustrate the effectiveness of the
model under consideration. The first is the curve
for which the LR equals 1 for all prior odds. The
posterior odds equal the prior odds. The second
curve plots the ECE against the prior odds. It is to
be hoped that the second curve is always below the
first curve. The third curve represents the result
for a model that is perfectly calibrated in that it
gives the correct answer each time. This curve can
only be obtained with the use of a training set or
validation set and is obtained using the so-called
pool adjacent violators algorithm. It is to be hoped
the second curve is close to this curve.

8.4.3.1 Pool Adjacent Violators Algorithm

Consider a variable H that has two realisations,
propositions denoted Hp and Hd so H = {Hp,Hd}.
For example, in a comparison problem with con-
trol and recovered evidence Ec and Er, respectively,
the propositions may refer to the same source (Hp)
and different sources (Hd) for E = {Ec,Er}.

Consider a validation set of n evidential
pairs (Ei,Pi), i = 1, . . . n where Ei = (Eic,Eir), i =
1, . . . , n. The variable P is a binary variable that
takes the value 0 if Hd is true and the value 1 if
Hp is true. As the dataset is a validation set, the
components Pi, i = 1, . . . , n are known and are a
set of zeroes and ones. Determine the likelihood
ratio for members of the validation set. Choose
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a prior distribution for Hp and Hd, assuming the
propositions are mutually exclusive and exhaus-
tive. Hence obtain a set of posterior probabilities yi
from the relationship:

yi = Pr(Hp ∣ E, I)

=
Pr(Ei ∣,Hp, I) Pr(Hp ∣ I)

Pr(Ei ∣,Hp, I) Pr(Hp ∣ I) + Pr(Ei ∣,Hd, I) Pr(Hd ∣ I)
.

(8.9)

The yi, ordered in increasing magnitude, are
compared with the corresponding Pi using an
algorithm known as the pool adjacent violators
(PAV) algorithm.5 Using the PAV algorithm,
an example of the use of which is given in
Section 8.4.3.2, the Pi are transformed to P∗

i . The
P∗

i and chosen prior odds can be used to obtain
a transformed likelihood ratio V∗

i . The prior odds
can be varied to obtain a variable ECE using the
expression

ECE =
Pr(Hp ∣ I)

np

np∑
i=1

log2

(
1 + 1

V∗
i × O(Hp ∣ I)

)

+
Pr(Hd ∣ I)

nd

nd∑
j=1

log2(1 + V∗
j × O(Hp ∣ I)).

(8.10)

5The name ‘pool adjacent violators’ may arise from consideration
of the {Pi}. Adjacent Pi which do not satisfy (do violate) a mono-
tonicity requirement are pooled to provide a set {P∗

i } which does
satisfy a monotonicity requirement that as yi increases, so the fre-
quency of Pi = 1 increases.



�

� �

�

968 Assessment of Performance

The variation in ECE as the prior odds vary can be
plotted. See Figure 8.9 for examples. This curve is
described as ‘calibrated accuracy’ in Zadora et al.
(2014) and shows the ‘performance of a validation
set of optimally calibrated LR values’.

As an example (Zadora et al., 2014) consider
a validation set consisting of 11 pairs {(yi,Pi),
i = 1, . . . ,11} in Table 8.1. Use of a validation
set and (8.9) gives the values yi = Pr(Hp ∣ E, I),
i = 1, . . . ,11, which may be thought of as scores.

Consider pair 3 in Table 8.2 for illustration.
The model used for evidence evaluation deter-
mines the posterior probability y3 = 0.28 from
(8.9) and the evidence E is such that Ec and
Er are known, from the validation set, to come
from the same source (Hp is true, P3 = 1). If the
knowledge about the source of the evidence was
not available and comparison was based on the
posterior probability then this would be a misclas-
sification. This argument assumes that decision

Table 8.2 Eleven illustrative pairs of posterior
probabilities Pr(Hp ∣ E, I) = y and labels P = 1 if Hp is
true and P = 0 if Hd is true

Pair i 1 2 3 4 5 6 7 8 9 10 11
yi 0.02 0.03 0.28 0.34 0.40 0.62 0.64 0.72 0.81 0.90 0.95
Pi 0 0 1 0 1 0 0 1 0 1 1

Evidence E = {Ec,Er} denotes control (c) and recovered (r)
data. Proposition Hp is that Ec and Er have the same source and
proposition Hd is that Ec and Er have different sources. Back-
ground information is denoted I.
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costs (utilities) are equal; an extension to include
such considerations is not discussed here.

8.4.3.2 Implementation of the PAV
Algorithm

Intuitively, as the underlying probability of Hp
increases, yi, the posterior probability of Hp,
assigned on the basis of the validation set, should
increase. The objective of the algorithm is to create
an empirical distribution function satisfying this
condition for the posterior probability P of Hp
given E = {Ec,Er} and I. It is known in advance, it
is a ground truth, to which group the evidence Ei in
the validation set belongs, namely, either that of
same source Hp or that of different source Hd. This
knowledge is denoted Pi(i = 1, . . . , n) in Table 8.2
with Pi = 1 if the corresponding member of the
validation set is assigned to Hp and Pi = 0 if the
corresponding member of the validation set is
assigned to Hd. The PAV algorithm transforms
these assignments to probabilities P∗

i , i = 1, . . . , n
with a monotonicity requirement such that
P∗

i ≤ P∗
i+1 for i = 1, . . . , (n − 1). As y increases, so

the probability P∗ = Pr(Hp ∣ E, I) increases.
The solution is dependent only on the order of

the posterior probabilities. After sorting the input
scores yi, i = 1, . . . ,11, it is only the sequence
of occurrences of P = 1 and P = 0 that matters,
not the values of the scores. This means it does
not matter whether the yi are likelihood-ratios,
log-likelihood ratios, or probabilities. This solution
works for all sortable scores, with the meaning
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that larger scores favour Hp(P = 1) and smaller
scores favour Hd(P = 0) (Brümmer, 2010).

Consider the individual Pi in order. First,
P2 = P1 = 0 so P∗

2 = P∗
1 = 0. Second, P2 < P3 = 1

but P3 > P4 = 0. Replace P3 and P4 by their
mean value 1∕2 so P∗

3 = P∗
4 = 1∕2. Now

P∗
4 = 1∕2 < P5 = 1 but P5 > P6 = 0. Replace P5

and P6 by their mean value 1∕2 so P∗
5 = P∗

6 = 1∕2.
Then P∗

6 = 1∕2 > P7 = 0. Replacement of
P∗

6 = 1∕2 and P7 = 0 by their mean 1∕4 gives a
result with P∗

5 = 1∕2, which is greater than 1/4
and so the sequence does not satisfy the mono-
tonicity requirement. This problem is resolved by
assigning the mean number of 1’s for pairs 3–7
inclusive. Thus P∗

3 = P∗
4 = P∗

5 = P∗
6 = P∗

7 = 2∕5.
For pairs 8 and 9, P8 = 1 > P9 = 0. These can
be replaced by their mean value 1/2 and still
satisfy the monotonicity requirement with pre-
vious values of P∗ so P∗

8 = P∗
9 = 1∕2. Finally,

P∗
9 = 1∕2 < P10 = P11 = 1 so P∗

10 = P∗
11 = 1. The

transformed posterior probabilities P∗ are then
given in Table 8.3.

8.4.3.3 Transformation of ECE

Consider the following expression for ECE:

ECE = −
Pr(Hp)

N1

∑
i∶Hpis true

log2 Pr(Hp ∣ Ei, I)

−
Pr(Hd)

N2

∑
i∶Hdis true

log2 Pr(Hd ∣ Ei, I).



�

� �

�

Assessment of Performance of a Procedure 971

Table 8.3 Eleven sets of posterior probabilities
Pr(Hp ∣ E, I) = y and labels P = 1 if Hp is true and P = 0
if Hd is true, transformed using the PAV algorithm to P∗,
updated probabilities Pr(Hp ∣ E, I) with values given as
fractions for clarity

Pair i 1 2 3 4 5 6 7 8 9 10 11
yi 0.02 0.03 0.28 0.34 0.40 0.62 0.64 0.72 0.81 0.90 0.95
Pi 0 0 1 0 1 0 0 1 0 1 1
P∗

i 0 0 2/5 2/5 2/5 2/5 2/5 1/2 1/2 1 1

Evidence E = {Ec,Er} denotes control (c) and recovered (r)
data. Proposition Hp is that Ec and Er have the same source. and
proposition Hd is that Ec and Er have different sources. Back-
ground information is denoted I.

For evidence E, the posterior probabilities
Pr(Hp ∣ E, I), and hence Pr(Hd ∣ E, I) are cal-
culated as functions of Pr(Hp) and Pr(Hd),
which is 1 − Pr(Hp). These probabilities are then
transformed using the empirical cumulative
distribution function determined from the PAV
algorithm as in Table 8.3. The resultant ECE is
then

ECE = −
Pr(Hp)

N1

∑
i∶Hpis true

log2

∗
Pr(Hp ∣ Ei, I)

−
Pr(Hd)

N2

∑
i∶Hdis true

log2

∗
Pr(Hd ∣ Ei, I).

A plot of ECE against prior odds Pr(Hp ∣ I)∕
Pr(Hd ∣ I) is used to illustrate the performance
of a validation set of optimally calibrated LR
values obtained by a transformation applied to the
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original validation set of LR values using {
∗
Pr}.

This curve is not possible to obtain in practice. It
represents a ceiling of performance6 (Zadora et al.,
2014) useful for measuring calibration.

For further details, see Ayer et al. (1955) and
Ramos-Castro et al. (2013).

8.5 CASE STUDY: KINSHIP
ANALYSIS

In addition to the parent–child investigation
in traditional kinship analysis, other kinds of
relationships of individuals also need to be tested.
An example is given here of a situation involving
the analysis of kinship for possible inheritance
consequences. See Taroni et al. (2005) for further
details. Two individuals A and B wish to know
if they are full sibs or unrelated. Let Hp be the
proposition that they are full sibs and Hd be the
proposition that they are unrelated. Before DNA
profile analyses are conducted, it is of interest to
known if a value of the likelihood ratio supporting
Hp or Hd can be obtained. The methodology is
extended to cover half-sibs as well as full sibs and
unrelated individuals. A subsequent question

6The ECE curve obtained using the PAV algorithm is a minimum
for possible posterior probabilities so the term ‘ceiling’ may be
thought a misnomer. The term is chosen since the curve indicates
the best (highest) performance obtainable by a model for evidence
evaluation.
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considers the decision on whether or not to
perform DNA profile analyses and a discussion of
this question is in Taroni et al. (2005).

The case study here concerns the first question
regarding the values of likelihood ratios. Allele
proportions (at different loci) from a selected pop-
ulation database are chosen. Databases of large
numbers of pairs of full siblings, half-siblings, and
unrelated individuals are generated using meth-
ods suggested by Triggs and Buckleton (2002).
Three pairs of likelihood ratios for individuals with
genotypes GA and GB are generated.

• Full sibs versus unrelated:

Pr(GA,GB ∣ full sibs)
Pr(GA,GB ∣ unrelated)

; GA,GB full sibs.

Pr(GA,GB ∣ full sibs)
Pr(GA,GB ∣ unrelated)

; GA,GB unrelated.

• Full sibs versus half-sibs:

Pr(GA,GB ∣ full sibs)
Pr(GA,GB ∣ half-sibs)

; GA,GB full sibs.

Pr(GA,GB ∣ full sibs)
Pr(GA,GB ∣ half-sibs)

; GA,GB half-sibs.

• Half-sibs versus unrelated:

Pr(GA,GB ∣ half-sibs)
Pr(GA,GB ∣ unrelated)

; GA,GB half-sibs.

Pr(GA,GB ∣ half-sibs)
Pr(GA,GB ∣ unrelated)

; GA,GB unrelated.
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Figure 8.4 Probability density functions of likelihood
ratios: (a) unrelated versus full siblings, (b) half-siblings
versus full siblings, (c) unrelated versus half-siblings.

The estimates of the probability density func-
tions of the log-likelihood ratios for the three
pairs of propositions are shown in Figure 8.4.
The separation for the comparison of unrelated
pairs to full siblings is well marked in Figure 8.4a
with little overlap of the distributions. This is in
contrast to the comparison of half-siblings to full
siblings and unrelated versus half-siblings where
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Figure 8.5 Histograms of log likelihood ratios: (a)
unrelated versus full siblings assuming full siblings,
(b) half-siblings versus full siblings assuming full
siblings, (c) unrelated versus half-siblings assuming
half-siblings.

there is considerable overlap of the distributions,
see Figure 8.4b and c.

The histograms are shown in Figures 8.5 and
8.6. These are included for completeness. They
are not required for large databases as used here
but will be for smaller validation databases.



�

� �

�

976 Assessment of Performance

(c)

F
re

q
u
e
n
c
y

−4 −2 0 2 4 6

0

500

1000

1500

log
10

(V )

(b)

F
re

q
u
e
n
c
y

−3 −2 −1 0 1 2

0

500

1000

1500

2000

2500

log
10

(V )

(a)

F
re

q
u
e
n
c
y

−5 0 5

0

2000

6000

10000

14000

log
10

(V )

Figure 8.6 Histograms of log likelihood ratios: (a)
unrelated versus full siblings assuming unrelated,
(b) half-siblings versus full siblings assuming half-
siblings, (c) unrelated versus half-siblings assuming
unrelated.

The DET plots are shown in Figure 8.7 and the
Tippett plots in Figure 8.8. A DET curve shows
the relationship between the rates of false positives
and false negatives. As the rate of one decreases,
the rate of the other increases. The curve is of
negative gradient. It is desirable that both rates
are small. In such a situation, the curve will be in
the bottom left-hand corner of the space. Under
this criterion (a) provides the best discrimination.
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Figure 8.7 DET curves: (a) unrelated versus full sib-
lings, (b) half-siblings versus full siblings, (c) unrelated
versus half-siblings.

Relationships (b) and (c) have approximately the
same effectiveness; there is little to choose between
the two DET curves. The relative effectiveness of
the three relationships indicated in the DET curves
is mirrored in the Tippett plots. The rates of
misleading evidence are small in (a), not so small
in (b), and very large for unrelated misclassified as
half-sibling in (c).

The ECE plots are shown in Figure 8.9. The
performance of the half-sibling versus unrelated
is very poor. The performance of the half-sibling
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Figure 8.8 Tippett plots: (a) unrelated versus full sib-
lings, (b) half-siblings versus full siblings, (c) unrelated
versus half-siblings.

versus full sibling is excellent. This is in dis-
agreement with the poor separation of the
corresponding distributions. Ramos-Castro and
Gonzalez-Rodriguez (2013) define properties of
accuracy, discrimination, and calibration. For
accuracy, they state that the lower the solid curve,
the more accurate the method is. For discrimina-
tion, they state that the lower the dashed curve
the better the discriminating power. Finally, the
closer the solid and dashed curves are, the better
the calibration.
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Figure 8.9 ECE plots: (a) unrelated versus full sib-
lings; (b) half-siblings versus full siblings; (c) unrelated
versus half-siblings.

8.6 CONCLUSION

The use of the criteria for the assessment of perfor-
mance will be subjective. If the various criteria are
deemed to be good then the method can be used.
The following comments may help the judgement.

• False positives and false negatives: false positives
are more undesirable than false negatives in
a comparison problem. Both rates have to be
low for a method to be usable but how low is a
subjective decision.



�

� �

�

980 Assessment of Performance

• Tippett plots: again it is a subjective decision as
to how close the plots are to perfection. The plot
for the prosecution proposition, corresponding
to the numerator in the likelihood ratio, should
be close to 1 for the likelihood ratio less than 1
(log likelihood ratio less than 0). The plot for
the defence proposition, corresponding to the
denominator in the likelihood ratio, should be
close to 0 for the likelihood ratio greater than 1
(log likelihood ratio greater than 0).

• ECE plots: the data curve has to be close to
the one obtained from the PAV algorithm and
below the one assuming a likelihood ratio of
1 throughout. If the data curve crosses the 1
assuming a likelihood ratio of 1 in a big way
(with a subjective decision as to what is meant
by ‘big’), then the method should not be used,
though this stricture may only apply in cases
where the log prior odds takes values where the
data curve crosses the curve for a likelihood
ratio of 1.
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A

Probability
Distributions

A.1 INTRODUCTION

Various probability distributions have been men-
tioned in the course of the book. They are
summarised here in the Appendix for ease of refer-
ence with a few examples to aid understanding. In
certain general circumstances the way in which
probability is distributed over the possible numbers
of counts or values for the measurements can be
represented mathematically, by functions known
as probability distributions. Distributions for
counts and for measurements will be described in
Sections A.2 and A.3, respectively. Further details
of many of the distributions mentioned here and
others may be found in Forbes et al. (2010) or in
Wikipedia. Before probability distributions can be
discussed here, however, certain other concepts
have to be introduced.

981



�

� �

�

982 Probability Distributions

A characteristic of interest from a population
is known as a parameter. The corresponding
characteristic from a sample from the population
is known as an estimate. For example, the pro-
portion 𝛾AA of Caucasians in Chicago with allele
AA at locus LDLR is a parameter. The proportion
of Caucasians with allele AA at locus LDLR in
the sample of 200 people studied by Johnson
and Peterson (1999) is an estimate of 𝛾AA. Con-
ventionally a ̂ symbol (read as ‘hat’) is used to
denote an estimate. Thus �̂�AA (read as ‘gamma-hat
AA’) denotes an estimate of 𝛾AA. From Table 1.1,
�̂�AA = 0.188.

Another notational convention, as well as
the ̂ notation, is to use Roman letters for func-
tions evaluated from counts or measurements
from samples and Greek letters for the corre-
sponding parameters from populations. Thus
given a sample of size n from a population with
measurements {x1, . . . , xn}, the sample mean is
(x1 + · · · + xn)∕n, which may be summarised as∑n

i=1 xi∕n and denoted x̄ (read as ‘x-bar’). The
corresponding population mean is denoted with
a Greek letter, e.g. 𝜇. A sample standard deviation
may be denoted s and for the sample {x1, . . . , xn}
an estimate of the standard deviation is the square
root of

∑n
i=1 (xi − x̄)2∕(n − 1). The corresponding

population standard deviation is often denoted 𝜎.
The square of the standard deviation is known as
the variance; a sample variance may be denoted s2,
and the corresponding population variance 𝜎2.
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The concept of a random variable (or random
quantity or uncertain quantity) (Lindley, 1991)
needs some explanation also. A random variable,
in a rather circular definition, is something that
varies at random. For example, the number of
sixes in rolls of four dice varies randomly amongst
the five numbers {0, 1, 2, 3, 4} as the dice are
rolled for several sets of rolls; the number of sixes
in each set of rolls is a discrete random variable.
Similarly, the refractive index of a fragment of glass
varies over the set of all fragments of glass and
is a continuous random variable. The variation
to be considered in the refractive index of glass
is however of a more complicated structure than
the number of sixes in rolls of four dice. There is
variation in refractive index within a window and
between windows. This requires parameters to
measure two standard deviations, one for each
type of variation, and this problem is discussed in
greater detail in Chapter 7.

Notation is useful in the discussion of random
variables. Rather than write out in long-hand
phrases such as ‘the number of sixes in rolls of
four dice’ or ‘the refractive index of a fragment of
glass’, the phrases may be abbreviated to a single
upper-case Roman letter. For example, let X be
short for ‘the number of sixes in rolls of four dice’. It
then makes sense to write mathematically Pr(X =
3), which may be read as ‘the probability that
the number of sixes in rolls of four dice equals 3’.
More generally still, the 3 may be replaced by a
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lower-case Roman letter to give Pr(X = x), say,
where x may then be substituted by one of the
permissible values {0, 1, 2, 3, 4} as required.

Similarly, X may be substituted for ‘the refractive
index of a fragment of glass’ and the phrase ‘the
probability that the refractive index of a fragment
of glass is less than 1.5185’ may be written as
Pr(X < 1.5185), or more generally as Pr(X < x)
for a general value x of the refractive index. For
reasons that are explained later (Section A.3.2), it
is not possible to evaluate Pr(X = x) for a random
variable representing a continuous measurement.
In general, upper case Roman letters (such as X
or Y) represent a random variable and lower case
Roman letters (such as x or y) represent a partic-
ular value (sometimes known as a realisation) of a
random variable.

The mean of a random variable is the cor-
responding population mean. In the examples
earlier this would be the mean number of sixes in
the conceptual population of all possible sets of
rolls of four dice (and here note that the population
need not necessarily exist except as a concept) or
the mean refractive index of the population of all
fragments of glass (again, effectively, a conceptual
population). The mean of a random variable is
given a special name, the expectation, and for
a random variable, X, say, it is denoted E(X).
Similarly, the variance of a random variable is the
corresponding population variance. For a random
variable X, it is denoted Var(X).
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Observations x1, . . . , xn from a random sample1

from a population may be treated as realisations
of random variables X1, . . . ,Xn. A statistic is a
function of the data. The function of the corre-
sponding random variable has a distribution. For
example, x̄ =

∑n
i=1 xi∕n is a sample mean. The

corresponding random variable may be denoted
X̄ =
∑n

i=1 Xi∕n. Thus, the sample mean and the
sample variance are statistics. A particular value
of a statistic that is determined to estimate the
value of a parameter is known as an estimate. The
corresponding random variable is known as an
estimator. An estimator, X, say, of a parameter, 𝜃,
say, which is such that E(X) = 𝜃 is said to be unbi-
ased. If E(X) ≠ 𝜃, the estimator is said to be biased.

It is hoped that an estimate will be a good
estimate in some sense. Different samples from the
same population may produce different estimates.
The proportion of people with an AA allele at locus
LDLR in a second sample of 200 Caucasians from
Chicago may have produced a different number of
people with AA alleles from the first example and
hence a different value for �̂�AA. Different results
from different samples do not mean that some are
wrong and others are right. They merely indicate
the natural variability in the distribution of allelic
frequencies amongst people.

Properties of a procedure for estimation of
a parameter are given with reference to the
1A random sample from a population is one in which every mem-
ber of the population has an equal probability of selection.
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estimator. The estimator is a random variable and
has an expectation and variance. An estimator
may be considered good if it is accurate and precise
(Section 8.2). Accuracy is a measure of closeness
of an estimator to the true value of the parameter
of interest. For example, this closeness may be the
absolute difference between the expectation and
the true value of the parameter. Precision is related
to the variance of the estimator. In mathematical
statistical terminology, precision is synonymous
with the reciprocal of the variance. The greater
the variance of an estimator, the less its precision.

Once a sample has been selected, the particular
value of the estimator applicable to that sample is
known as an estimate. If different samples lead to
estimates with different sample means and sample
variances of the same characteristic, then there is a
suggestion that the variability is great and the esti-
mates are not very precise. For example, if the vari-
ability in the estimation procedure is large then a
second estimate, from a different sample of people
than those in Table 1.1, of 𝛾AA may produce an esti-
mate very different from 0.188 (�̂�AA).

In the example earlier it is obviously desirable
that �̂�AA be close to 𝛾AA. Precision is a measure of
the variability of the estimators, whether or not
they are close to the true value (Dodge, 2006). It
is possible to have an accurate estimator that is
not very precise and a precise estimator that is not
very accurate.

The importance of allowing for variability is
illustrated by the following hypothetical example
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from a medical context. The reaction times of two
groups of people, group A and group B, say, are
measured. Both groups have the same median2

reaction time, 0.20 seconds, but group A’s times
vary from 0.10 to 0.30 seconds, whereas group
B’s range from 0.15 to 0.25 seconds. Samples
of equal numbers of people from each group are
then given a drug designed to reduce reaction
times. In both cases, the reaction times of the
samples of people given the drug range from 0.11
to 0.14 seconds. For group A, this is within the
range of previous knowledge and there is a little,
but not very strong, evidence to suggest that the
drug is effective in reducing reaction times. For
group B, however, the result is outwith the range
of previous knowledge and there is very strong
evidence to suggest that the drug is effective. Note
that both group A and group B had the same
initial median reaction time. The drug produced
the same range of reaction times in samples from
both groups. The distinction in the interpretation
of the results between the two groups arises
because of the difference in the range, or variabil-
ity, of the results for the whole of each of the two
groups.

Later, in Section A.3.2, it will be seen that
when measurements are standardised, variation
is accounted for by inclusion of the standard
deviation.

2A median is the value such that 50% of the distribution is less
than it and 50% greater than it; see Section A.3.1.
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The applications of these concepts are now dis-
cussed in the context of probability distributions
for counts and for measurements.

A.2 PROBABILITY DISTRIBUTIONS
FOR COUNTS

A.2.1 Probabilities

Suppose four fair six-sided dice are to be rolled,
once each. Let the event of interest be the number
of occurrences of a six being uppermost; denote
this by X. Then X can take one of five different
integer values, 0, 1, 2, 3, or 4. Over a sequence
of groups of rolls of the four dice, X will vary
randomly over this set of 5 integers. Outcomes of
successive groups of rolls are independent. For
any one group of rolls of the four dice, X takes a
particular value, one of the integers {0, 1, 2, 3,
4}. Denote this particular value by x.

There is a formula that enables this probability
to be evaluated easily. Notice that in the roll of any
one die, the probability of throwing a six is 1/6,
since the dice are fair and each side has a probabil-
ity of 1/6 of landing uppermost. The probability of
not throwing a six is 5/6, as this is a complemen-
tary event to the throwing of a six. Then, for the
rolls of four dice

Pr(X = x) =
(4

x

)(1
6

)x(5
6

)4−x
,

x = 0,1, . . . ,4;
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an example of the binomial distribution (Section
A.2.3). The term (1∕6)x corresponds to the x sixes,
each occurring independently with probability
1/6. The term (5∕6)4−x corresponds to the (4-x)
non-sixes, each occurring independently with
probability 5/6. The term

(
4
x

)
is the binomial

coefficient (4
x

)
= 4!

x!(4 − x)!
,

where x! = x(x − 1)(x − 2) · · ·1, known as
x-factorial and, conventionally, 0! = 1. The bino-
mial coefficient here is the number of ways in
which x sixes and (4−x) non-sixes may be selected
from the rolls of the four dice, without attention
being paid to the order in which the sixes occur.

Suppose x = 1, there is one six and three
non-sixes, then

Pr(X = 1) =
(4

1

)(1
6

)1(5
6

)3
.

Now (4
1

)
= 4!

1!3!
= 4 × 3 × 2 × 1

1 × 3 × 2 × 1
= 4,

(1
6

)1
= 1

6
,

(5
6

)3
= 125

216
,

Pr(X = 1) = 4 × 1
6
× 125

216
= 0.3858.

The probabilities for the five possible outcomes
relating to the number of sixes in the rolls of the
four dice are given in Table A.1.



�

� �

�

990 Probability Distributions

Table A.1 Probabilities for the number of sixes, X, in
rolls of four fair six-sided dice.

Number of
sixes (x)

0 1 2 3 4 Total

Pr(X = x) 0.4823 0.3858 0.1157 0.0154 0.0008 1.0000

Notice that the sum of the probabilities is 1 since
the five possible outcomes 0, 1, 2, 3, and 4 are
mutually exclusive and exhaustive (Sections 1.7.8
and 1.7.10).

A.2.2 Summary Measures

It is possible to determine a value for the mean
of the number of sixes in rolls of four dice; this is
the expectation (see Section A.1) of the number of
sixes in rolls of the dice. Consider 10 000 groups
of rolls of four dice. The probabilities in Table A.1
may be considered as the expected proportion of
times in which each of 0, 1, 2, 3, and 4 sixes would
occur. Thus it would be expected that on 4823
times there would be 0 sixes, 3858 times 1 six,
1157 times 2 sixes, 154 times 3 sixes, and on 8
times there would be 4 sixes. The total number of
sixes expected is thus

(0 × 4823) + (1 × 3858) + (2 × 1157)
+ (3 × 154) + (4 × 8) = 6666.

In any one group of rolls, the expected number
E(X) of sixes is then 6666∕10 000 = 0.6666.
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Notice that this is not an achievable number (0,
1, 2, 3, or 4) but is justified by the calculations.
(In a similar way, an average family size of 2.4
children is not an achievable family size.) There is
a formula for the calculation of its expectation

E(X) = 0 × Pr(X = 0) + · · · + 4 × Pr(X = 4)

=
4∑

x=0

x Pr(X = x). (A.1)

This can be further shortened by denoting Pr(X =
x) by 𝜃x so that

E(X) =
4∑

x=0

x 𝜃x,with 𝜃0 + · · · + 𝜃4 = 1.

Note that

E(X∕n) =
4∑

x=0

x
n
𝜃x = 1

n

4∑
x=0

x 𝜃x = E(X)∕n.

In general, for (n + 1) outcomes {0,1, . . . , n} with
associated probabilities 𝜃0, 𝜃1, . . . , 𝜃n,

E(X) =
n∑

x=0

x 𝜃x,with 𝜃0 + · · · + 𝜃n = 1.

Note the use of the Greek capital letter Σ to
denote summation (S for summation). The expres-
sion below the symbol (when it is displayed) or as
a subscript (when in the body of the text) denotes
the term over which the summation is being made
and the starting point of the sum. The finishing
point of the sum is above the symbol (when it is
displayed) or as a superscript (when in the body
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of the text). This symbol should be compared with
the Greek capital letter

∏
to denote product (P for

product) where the same convention for indexing
the product is used. The first example of the use of∏

is in Section 3.5.4.
The expectation is a well-known statistic. Not so

well-known is the variance that measures the vari-
ation in a set of observations. The number of sixes
which occurs in any group of rolls of the four dice
varies from group to group over the integers 0, 1,
2, 3, and 4.

Consider the square of the difference, d(x)2 =
{x − E(X)}2 between an outcome x and its
expectation. This squared difference has a corre-
sponding random variable d(X)2 = {X − E(X)}2

and as such has an expectation. The expectation
of d(X)2, E{d(X)2}, for a set of (n + 1) out-
comes {0,1, . . . , n} with associated probabilities
𝜃0, 𝜃1, . . . , 𝜃n is the variance of X, denoted Var(X),

Var(X) =
n∑

x=0

{x − E(X)}2 𝜃x. (A.2)

As before, the square root of the variance is the
standard deviation.

Note that

Var
(X

n

)
=

n∑
x=0

{x
n
− E
(X

n

)}2
𝜃x

= 1
n2

n∑
x=0

{x − E(X)}2 𝜃x = Var(X)∕n2.
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Another, quicker, method of evaluation of the
variance is to evaluate

Var(X) =
n∑

x=0

x2 𝜃x −

(
n∑

x=0

x 𝜃x

)2

.

The variance may be determined for the example
of the number of sixes in rolls of four dice as follows,
where E(X) = 0.6666.

The variance of X may then be calculated as

Var(X) =
4∑

x=0

{x − E(X)}2 𝜃x

=
4∑

x=0

d(x)2 𝜃x = 0.5557.

The quicker way is to evaluate

Var(X) =
4∑

x=0

x2 𝜃x −

(
4∑

x=0

x 𝜃x

)2

= 1.0000 − 0.66662 = 0.5556.

The intermediate calculations are given in
Table A.2.

This example of one roll of each of four fair
six-sided dice may be generalised. Consider each
roll of a die as a trial, in a statistical context. Such
a trial is different from a trial in a legal context.
A statistical trial is an experiment to investi-
gate the relationships amongst characteristics
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Table A.2 Intermediate calculations for the variance
of the number of sixes, x, in one roll of each of four fair
six-sided dice.

x 0 1 2 3 4
d −0.6666 0.3334 1.3334 2.3334 3.3334
d2 0.4444 0.1112 1.7780 5.4448 11.1116
𝜃x 0.4823 0.3858 0.1157 0.0154 0.0008
x2 0 1 4 9 16

through observations of the characteristics on
individuals in a random sample from a population.
An example is that of the relationship amongst
elemental concentrations of fragments of window
glass. The population could be that of window
glass, the sample would be a subset of fragments
of glass from the population.

Consider the example of one roll of a fair
six-sided die. The roll of each die may be consid-
ered as a trial. For each trial there will be one of
only two outcomes, a six or a non-six (1, 2, 3, 4,
5). Conventionally, in general terms, these may
be known as success (a six) and failure (a non-six).
The trials are independent of each other. The
probability of each of the outcomes is constant
from trial to trial (the probability of a six is 1/6 for
each die). Such a set of trials is known as a set of
Bernoulli trials (after the Swiss mathematician,
James Bernoulli, 1654–1705). The conditions to
be met are

• fixed number of trials;
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• independent trials;

• two and only two outcomes, conventionally
denoted success and failure or positive and
negative;

• constant probability of success from trial to trial.

A.2.3 Binomial Distribution

For the binomial distribution, and the multino-
mial distribution to follow, the probability of a
particular outcome in any one trial is assumed
constant. Thus the probability of a six in a throw of
a fair die is assumed equal to 1/6 regardless of the
number of throws of the die. A simplistic approach
to the evaluation of a DNA profile assumes the
probability of a particular allelic type is assumed
constant, regardless of the number of other people
who have been observed with or without that
type. See Section 6.1.1 for a relaxation of this
assumption. The population from which these
observations have been taken (all throws of a fair
die, all people in the population) is sufficiently
large that the observation of a particular outcome
does not alter the probability of that outcome in
future trials. In a sense, it may be considered that
once that outcome from the population has been
observed, it is then returned to the population
and may be selected for observation again. The
selection (or sampling) of observations from the
population is said to be with replacement.
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Let n denote the number of independent trials.
Let X denote the number of successes. Let 𝜃 denote
the probability of a success in any individual trial
and let (1 − 𝜃) denote the probability of a failure
in any individual trial. Denote the probability,
Pr(X = x), that X, the number of successes,
equals x, by 𝜃x; x = 0,1, . . . , n. This probability is
dependent on n and 𝜃 and more correctly should
be written as Pr(X = x ∣ n, 𝜃).

The situation described earlier is a very common
one. Examples include the number of heads in ten
tosses of a fair coin (n = 10, 𝜃 = 1∕2), the number
of sixes in one roll of five fair dice (n = 5, 𝜃 = 1∕6),
the number of people with genotype {11,12},
at the FES locus in a sample of size 50 from a
relevant population (n = 50, 𝜃 may be estimated
from previous population data). The distribution
of the probabilities (probability distribution) over
the set of possible outcomes is known as the
binomial distribution. The function that gives the
formula for the probabilities Pr(X = x) is known as
a probability function. For the binomial distribution
Pr(X = x ∣ n, 𝜃) is given by

Pr(X = x ∣ n, 𝜃) =
(n

x

)
𝜃x (1 − 𝜃)n−x,

x = 0,1, . . . , n; 0 < 𝜃 < 1; (A.3)

where (n
x

)
= n!

x!(n − x)!
, (A.4)

the binomial coefficient. The distribution of X can be
denoted in short-hand as

X ∼ Bin(n, 𝜃)
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where ∼ is to be read as is distributed as, the first
term n in (, ) denotes the number of trials and the
second term 𝜃 denotes the probability of success.
For example, if X is the number of sixes in one
throw of each of 10 fair dice, then this can be
denoted as

X ∼ Bin(10,1∕6).

It can be shown that

E(X) = n𝜃, Var(X) = n𝜃(1 − 𝜃).

(Verification of these formulae can be made by
reference to the numerical results in Section
A.2.2.) Note that E(X∕n) = E(X)∕n = n𝜃∕n = 𝜃.
Thus, X∕n, the sample proportion of successes,
is an unbiased estimator of 𝜃, the probability
of success in an individual trial. Note also that
Var(X∕n) = Var(X)∕n2 = 𝜃(1 − 𝜃)∕n.

A.2.4 Multinomial Distribution

The multinomial distribution is a generalisation
of the binomial distribution. The binomial dis-
tribution models a situation in which there is a
sequence of independent trials in each of which
there are only two possible mutually exclusive
outcomes. The multinomial distribution models a
situation in which there is a sequence of indepen-
dent trials in each of which there are k possible
mutually exclusive outcomes (k ≥ 2). Denote
the probabilities for the k outcomes 𝜃1, . . . , 𝜃k
with

∑k
i=1 𝜃i = 1. Consider n independent trials in

which the observed number of occurrences of each
of the k outcomes is x1, . . . , xk with

∑k
i=1 xi = n.
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The corresponding random variables are denoted
X1, . . . ,Xk where Xi is shorthand for the phrase
‘the number of occurrences of outcome i’. The
probability of observing {X1 = x1, . . . ,Xk = xk}
is then

Pr(X1 = x1, . . . ,Xk = xk ∣ n, 𝜃1, . . . , 𝜃k)

= n!
x1!x2! . . . xk!

𝜃
x1

1 . . . 𝜃
xk

k ,

where
∑k

i=1 xi = n,
∑k

i=1 𝜃i = 1. This distribution
may be used to model allele frequencies at loci
where there are more than two possible alleles
and to model drug frequencies in consignments of
tablets in which there are more than two possible
drug types. When k = 3 and there are three
mutually exclusive outcomes, the distribution
is also known as a trinomial distribution. When
k = 2, the multinomial distribution is the binomial
distribution.

A.2.5 Hypergeometric Distribution

There are instances when the population is not
large and the observation of the outcome of a
particular trial does change the probability of
that outcome in future. For example, consider
sampling from a consignment of N white tablets
to determine the proportion that are illicit, an
example for which further details were given in
Section 4.3.2. The tablets are assumed indistin-
guishable by size, colour, weight, and texture
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but each is assumed to be either licit or illicit. A
sample of size m is taken from the consignment.
The true, but unknown, number of illicit tablets
is R and the true, but unknown, number of licit
tablets is N − R. The first tablet examined is either
illicit (with probability R∕N, the proportion of
illicit tablets in the consignment) or licit (with
probability (N − R)∕N). After examination it
is put to one side; it is not placed back in the
consignment. A second tablet is then examined.

Assume the first tablet was illicit. The second
tablet is either illicit or licit. The probability that
it is illicit is (R − 1)∕(N − 1), the proportion of
illicit tablets remaining in the consignment.
The probability that it is licit is (N − R)∕(N − 1),
the proportion of licit tablets remaining in the
consignment.

Assume the first tablet was licit. The second
tablet is either illicit or licit. The probability that it
is illicit is R∕(N − 1), the proportion of illicit tablets
remaining in the consignment. The probability
that it is licit is (N − R − 1)∕(N − 1), the propor-
tion of licit tablets remaining in the consignment.

After examination, the second tablet is put to
one side. A third tablet is examined. There are
three possibilities for the probability it is illicit.
These depend on the outcomes of the first two
examinations, in which there may zero, one, or
two illicit tablets.

Sampling in this context where N, the consign-
ment size, is small is said to be without replacement.
The distribution that models the probability of the
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number X of illicit tablets in a sample of size n from
a consignment of size N in which R are illicit and
(N − R) are licit is the hypergeometric distribution.
The hypergeometric distribution arises in a discus-
sion of exchangeability (Section 1.7.7).

The probability function is given by

Pr(X = x ∣ R,N,m) =

(
R
x

)(
N−R
m−x

)

(
N
m

) ;

max(0,m + R − N) ≤ x ≤ min(m,R). (A.5)

Further examples of the use of the hypergeomet-
ric distribution are given in Curran et al. (1998a)
for glass comparisons and in ENFSI guidelines on
sampling of illicit drugs for qualitative analysis
(ENFSI, 2016).

It is possible to extend the hypergeometric distri-
bution to the situation where there are more than
two categories. This is analogous to the extension
of the binomial to the multinomial. No further dis-
cussion of this extension is given here.

A.2.6 Poisson Distribution

This probability distribution is named after the
French mathematician, S.D. Poisson (1781–
1840). The distribution is generally used to
describe the number of events that occur ran-
domly in a specified period of time or interval of
space. It is parameterised by a single parameter,
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𝜆, say, the mean or expectation of the distribution
(in unit time or space). Then, the probability the
number of events X equals x in unit time or space
is given by

Pr(X = x ∣ 𝜆) = 𝜆x

x!
exp(−𝜆); x = 0,1, . . . ; 𝜆 > 0,

where exp{· · · } denotes e, the base of Napierian
logarithms (e = 2.718 281 828 . . . ) and exp(−𝜆)
denotes e−𝜆. A characteristic of the Poisson dis-
tribution is that the variance equals the mean;
Var(X) = E(X) = 𝜆. The distribution of X can be
denoted in shorthand as X ∼ Po(𝜆).

The parameter 𝜆 is then multiplied by the period
of time or interval of space under consideration
to give the mean number of events within that
period. As an example in time, consider the emis-
sion of radioactive particles from a radioactive
source, as measured by a Geiger counter. Take the
unit of time to be one second. Denote the mean
number of particles emitted in one second by 𝜆, a
number, not necessarily an integer, greater than 0.
The mean number of particles emitted in t seconds
is then 𝜆t, where 0 < t < ∞. As an example in
space, consider the number of characteristics
of a particular kind in a piece of handwriting.
Take the unit of space to be one character in the
handwriting. Again, denote the mean by 𝜆, where
here this is the mean number of the particular
kind of characteristic, and it would be expected
that 𝜆 is very much less than 1. The mean number
of characteristics of the particular kind in a length
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of handwriting of s characters is then 𝜆s. Note that
the parameter 𝜆 has units ‘per unit time’ or ‘per
unit interval of space’. Thus, when considering the
distribution of the number of events it is important
to specify the length of time or area or volume of
space, which is being considered.

Consider time. Let X denote the number of events
in a period of time t, which is considered as a ran-
dom variable with mean 𝜆t that follows a Poisson
distribution. Then, the probability that X takes a
particular value x (a non-negative integer) is given
by the equation

Pr(X = x ∣ 𝜆, t) = (𝜆t)x

x!
exp(−𝜆t);

x = 0,1, . . . ; 𝜆 > 0. (A.6)

Equation (A.6) is sometimes written, more conve-
niently, as

Pr(X = x ∣ 𝜆, t) = (𝜆t)x

x!
e−𝜆t; x = 0,1, . . . ; 𝜆 > 0.

(A.7)

A.2.7 Beta-Binomial and
Dirichlet-Multinomial
Distributions

Consider an example of a consignment of tablets, a
proportion of which are suspected to be drugs. For
large consignments, the probability distribution of
the proportion 𝜃 which are drugs can be modelled
with a beta distribution (Sections 4.3.1 and A.3.7
later in this chapter), which treats the proportion
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𝜃 as a variable that is continuous over the interval
(0,1). For small consignments, say, N < 50, then
a more accurate distribution, which recognises the
discrete nature of the possible values of the propor-
tion, may be used (Section 4.3.2).

Of the number m sampled and inspected, z are
found to be illicit. Assume there remain n units
in the consignment, which are uninspected so
that m + n = N, the total consignment size. Let Y
(≤ n and unknown) be the number of units in the
remainder of the consignment that contain drugs.
The total number of units in the consignment that
contain drugs is then (z + y) (≤ N). The distribu-
tion for (Y ∣ m, n, z, 𝛼, 𝛽) is a so-called Bayesian
predictive distribution known as the beta-binomial
distribution (Bernardo and Smith, 2000) with

Pr(Y = y ∣ m, n, z, 𝛼, 𝛽)

=

Γ(m + 𝛼 + 𝛽)
(

n
y

)
Γ(y + z + 𝛼)

× Γ(m + n − z − y + 𝛽)
Γ(z + 𝛼)Γ(m − z + 𝛽)
× Γ(m + n + 𝛼 + 𝛽)

;

y = 0,1, . . . , n, (A.8)

where

Γ(x + 1) = xΓ(x),
Γ(x + 1) = x! for integer x > 0,

Γ(1∕2) =
√
𝜋,

is the gamma function, values of which are avail-
able from appropriate software such as R.
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The derivation of this distribution requires a beta
prior (Section A.3.7) and a binomial model for the
data (m, z). This gives a posterior beta distribution
for the proportion. This is then combined with a
binomial model for the uninspected portion (n, y)
of the consignment to give the beta-binomial distri-
bution earlier. Further details are given in Section
4.3.2 and Aitken (1999).

The beta-binomial distribution may be gener-
alised to consider more than two categories, and
the corresponding distribution is known as the
Dirichlet-multinomial distribution.

For the example of a consignment of tablets,
there may be more than two types of drugs. For
large consignments, the probability distribution of
the proportions {𝜃i, i = 1, . . . , k} of the various
types of drugs can be modelled with a Dirichlet
distribution (Section A.3.8), which treats the
proportions 𝜃i as variables that are continuous
over the interval (0,1) with the constraint that
Σk

i=1𝜃i = 1.
As before, consider a consignment of tablets.

A sample of size m has been inspected and zi

are found to be of drug i, i = 1, . . . , k such that∑k
i=1 zi = m. Assume there are n units in that part

of the consignment that has not been inspected
such that m + n = N, the total consignment size.
Let (Yi, i = 1, . . . , k) be the numbers (unknown) of
tablets in each of the k groups in the remainder of
the consignment that contain drugs.

The total number of tablets in the consignment
of type i is then (zi + yi) (≤ N). The distribution
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for (Yi ∣ m, n, z1, . . . , zk, 𝛼1, . . . , 𝛼k) is the Bayesian
predictive distribution known as the Dirichlet-
multinomial distribution (Bernardo and Smith,
2000) with

Pr(Y1 = y1, . . . ,Yk = yk ∣ m, n, z1, . . . , zk, 𝛼1, . . . , 𝛼k)

=
Γ(m +

∑k
i=1 𝛼i)

n!
y1!···yk!

∏k
i=1 Γ(yi + zi + 𝛼i)

∏k
i=1 Γ(zi + 𝛼i) Γ(m + n +

∑k
i=1 𝛼i)

;

0 ≤ yi ≤ n;
k∑

i=1

yi = n. (A.9)

The derivation of this distribution requires a
Dirichlet prior (Section A.3.8) and a multinomial
model (Section A.2.4) for the data (m, z1, . . . , zk).
This gives a posterior distribution for the pro-
portions of each of the k types. This distribution
is then combined with a multinomial model for
the uninspected portion (n, y1, . . . , yk) of the
consignment to give the Dirichlet-multinomial
distribution earlier. A brief further reference is
given in Section 4.3.2.

A.3 MEASUREMENTS

A.3.1 Summary Statistics

Consider a population of univariate continuous
measurements with parameters mean 𝜇, variance
𝜎2, and standard deviation 𝜎. These are continu-
ous equivalents of (A.1) and (A.2) for expectation
and variance of discrete random variables.
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Given sample data (x1, x2, . . . , xn) of measure-
ments from this population, 𝜇 and 𝜎 may be
estimated from the sample data as follows. The
sample mean, denoted x̄, is defined by

x̄ =
n∑

i=1

xi∕n. (A.10)

The sample standard deviation, denoted s, is
defined as the square root of the sample variance,
s2, which is itself defined by

s2 =
n∑

i=1

(xi − x̄)2∕(n − 1). (A.11)

This can also be calculated as

s2 =
⎧
⎪⎨⎪⎩

n∑
i=1

x2
i −

(
n∑

i=1

xi

)2/
n

⎫
⎪⎬⎪⎭
∕(n − 1). (A.12)

As an example of the calculations, consider the
five measurements of the medullary widths, in
microns, of cat hairs (n = 5) in Table A.3

Then, from (A.10)

x̄ =
n∑

i=1

xi∕n = 94.700∕5 = 18.9400.

Table A.3 Five measurements x1, . . . , x5 of
medullary widths in microns of cat hairs.

x1 x2 x3 x4 x5

17.767 18.633 19.067 19.300 19.933
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From (A.12)

s2 =
⎧
⎪⎨⎪⎩

n∑
i=1

x2
i −

(
n∑

i=1

xi

)2/
n

⎫
⎪⎬⎪⎭
∕(n − 1)

= (1796.220 − 94.7002∕5)∕4 = 0.6505

and the sample standard deviation is

s =
√
(0.6505) = 0.8065.

Note that the sample mean and standard deviation
are quoted to one more decimal place than the
original measurements.

Another population parameter is the quantile.
This is the parameter that specifies the proportion
of the population that is below a certain value.
Thus the 100p% quantile is the value x of a
random variable X such that Pr(X ≤ x) = p. This
is illustrated in Figure A.1. The median is the
special case when p = 0.5.

A.3.2 Normal Distribution

When considering data in the form of counts,
the variation in the possible outcomes can be
represented by a function known as a probability
function. The variation in measurements, which
are continuous, may also be represented math-
ematically by a function, known as a probability
density function. Probability functions and prob-
ability density functions are both examples of
probability models.



�

� �

�

1008 Probability Distributions

f(
x)

xp

p

Figure A.1 Quantile xp of order p of a probability
density function f (x).

As an example of a probability model for a
continuous measurement, consider the estima-
tion of the quantity of alcohol in blood. From
experimental results, it has been determined
that there is variation in the measurements, x
(in g/kg), provided by a certain procedure. The
variation is such that it may be represented by
a probability density function that in this case
is unimodal, symmetric, and bell-shaped. The
particular function that is used here is the Normal
or Gaussian probability density function (named
after the German mathematician Carl Friedrich
Gauss, 1777–1855).

The binomial distribution required the number
of trials and the probability of a success to be
known in order that the probability function could
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be defined. Two characteristics (or parameters)
of the measurement are required to define the
Normal probability density function. These are
the mean, or expectation, 𝜇, and the standard
deviation, 𝜎. The mean may be thought of as
a measure of location to indicate the size of the
measurements. The standard deviation may be
thought of as a measure of dispersion to indicate the
variability in the measurements. The square of the
standard deviation, the variance, is denoted 𝜎2.
Given these parameters, the Normal probability
density function for x, f (x ∣ 𝜇, 𝜎2), is given by

f (x ∣ 𝜇, 𝜎2) = 1√
2𝜋𝜎2

exp
{
−(x − 𝜇)2

2𝜎2

}
.

(A.13)
The function takes its maximum value when x =
𝜇, it is defined on the whole real line for −∞ < x <

∞ and is always positive. The area underneath the
function is 1, since x has to lie between−∞ and∞.

As an example of its use, consider blood alcohol
levels. In some countries if the alcohol level in
blood is estimated to be greater than 0.80 g/kg
a person is considered to be under the influ-
ence of alcohol. The variability inherent in a
measurement, x, of alcohol quantity is known
from previous experiments to be such that it is
Normally distributed about the true value 𝜇 with
variance, 𝜎2, of 0.005. Consider a person whose
true unknown quantity, 𝜇, of alcohol in the blood
is 0.70 g∕kg. The probability density function
f (x ∣ 𝜇, 𝜎2) for the measurement of the quantity of
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Figure A.2 Probability density function for a Normal
distribution, with mean 0.7 and variance 0.005.

alcohol in the blood is then obtained from (A.13)
with the substitution of 0.70 for 𝜇 and 0.005 for
𝜎2. The function is illustrated in Figure A.2. Note
the labelling of the ordinate as ‘probability den-
sity’. The reasoning for this is described later in this
section. In particular it is possible for the probabil-
ity density function to take values greater than 1.

There is a special case of zero mean (𝜇 = 0) and
unit variance (𝜎2 = 1). The Normal probability
density function is then

f (z ∣ 0,1) = 1√
2𝜋

exp
(
−z2

2

)
, (A.14)

where z is used instead of x to denote the special
nature of parameter values of zero mean and unit
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variance. The Normal probability density function
is so common that it has special notation. If a ran-
dom variable Z is Normally distributed with mean
0 and variance 1, it is denoted

Z ∼ N(0,1),

where Z is the random variable corresponding
to z and the conditioning on 𝜇 = 0 and 𝜎2 = 1
on the left-hand side has been omitted for clarity.
This distribution is known as a standard Normal
distribution. In general, a Normally distributed
measurement, X, say, with mean 𝜇 and variance
𝜎2, may be said to be such that

(X ∣ 𝜇, 𝜎2) ∼ N(𝜇, 𝜎2).

The first symbol within parentheses convention-
ally denotes the mean, the second conventionally
denotes the variance. It is not always necessary
for the notation to make explicit the dependence of
X on 𝜇 and 𝜎2. The distributional statement may
then be denoted

X ∼ N(𝜇, 𝜎2),

and such abbreviated notation is used often.
The determination of probabilities associated

with Normally distributed random variables is
made possible by a process known as standardi-
sation, whereby a general Normally distributed
random variable is transformed into one that has
a standard Normal distribution. Let

Z = (X − 𝜇)∕𝜎.
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Then E(Z) = 0 and Var(Z) = 1 and the random
variable Z has a standard Normal distribution.
Notice that standardisation requires variability,
as represented by 𝜎, to be taken into account. For
example, the division by 𝜎 ensures the resulting
statistic is dimensionless.

Consider the following numerical example of
blood alcohol measurements using the parameter
values above. Let X be the random variable of
measurements of blood alcohol for a particular
person, with x denoting the value of a particular
measurement. Suppose the true, unknown, level
of alcohol in the person’s blood is, as before,
𝜇 = 0.70 g/kg and the standard deviation in the
measurement is 𝜎, the square root of 0.005, which
equals 0.07 (to two decimal places). Suppose the
measurement x of the blood alcohol quantity
recorded by the measuring apparatus is 0.85 g/kg,
which is over the permitted limit of 0.80 g/kg. The
variance 𝜎2 is assumed known as it has been
estimated from many previous experiments with
the measuring apparatus and it is assumed to
be a constant, independent of 𝜇. Substitution of
x = 0.85 g/kg, 𝜇 = 0.70 g/kg, though unknown
in this case, and 𝜎2 = 0.005 into (A.13) gives

f (x) = f (0.85) = 1√
0.01𝜋

× exp
(
−(0.85 − 0.70)2

0.01

)
= 0.60,

(A.15)
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see Figure A.2. In practice, what is of interest is
the probability that the true blood alcohol level is
greater than 0.80 g/kg, when the instrument pro-
vides a measurement of 0.85 g/kg. This requires
consideration of a prior distribution for 𝜇 and is
discussed in detail in Section 4.5.

Consider the continuous case in more detail.
The function modelling the variation is known as
a probability density function, not a probability
function as it does not measure probabilities. An
intuitive understanding of the terminology can
be gained by considering the following analogy.
A cylindrical rod, with circular cross-section, has
a density that varies along its length according
to some function, f , say. Then its weight over any
particular part of its length is the integral of this
function f over that part. In the same way, with
a probability density function, the probability of
a random variable lying in a certain interval is
the integral of the corresponding density function
over the interval. Thus the probability of the
measurement of the blood alcohol quantity x
lying within a certain interval would be the
integral of f (x) over this interval. Note, however,
the following theoretical detail. A cross-section
of zero thickness of the rod would have zero
weight since its volume would be zero. Similarly,
the probability of a continuous random variable
taking a particular value is zero. In practice, mea-
suring instruments are not sufficiently accurate to
measure to an infinite number of decimal places,
and this problem does not arise so long as one
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determines the probability of a measurement lying
within a particular interval and does not attempt
to calculate the probability of a measurement
taking a particular value. (see Section 3.5.5 for an
application of this idea.)

This probability cannot be determined analyti-
cally and reference has to be made to appropriate
statistical packages.

Let Z be a random variable with a standard Nor-
mal distribution, thus

Z ∼ N(0,1).

There is a special notation to denote the probabil-
ity, known as the cumulative distribution function,
that Z is less than a particular value z. The prob-
ability that Z is less than z, Pr(Z < z), is denoted
Φ(z). Certain values of z are used commonly in
the discussion of significance probabilities. See, for
example, Section 3.6.1, particularly those values
for which 1 − Φ(z) is small, and some of these are
tabulated in Table A.4.

The probability 1 − Φ(z) is the probability that
Z > z.3 Corresponding probabilities for absolute
values of Z may be deduced from the tables by use
of the symmetry of the Normal distribution. By
symmetry,

Φ(−z) = Pr(Z < −z) = Pr(Z > z) = 1 − Pr(Z < z)
= 1 − Φ(z).

3As the variable Z is continuous there is no need to be concerned
with Z = z as, for reasons explained earlier, such an event has
probability zero.
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Table A.4 Values of cumulative
distribution function Φ(z) and its
complement 1 − Φ(z) for the
standard Normal distribution for
given values of z.

z Φ(z) 1 − Φ(z)

1.6449 0.950 0.050
1.9600 0.975 0.025
2.3263 0.990 0.010
2.5758 0.995 0.005

Thus

Pr(∣ Z ∣< z) = Pr(−z < Z < z)
= Pr(Z < z) − Pr(Z < −z)
= Φ(z) − Φ(−z)
= 2Φ(z) − 1.

Particular, commonly used, values of z with the
corresponding probabilities for the absolute values
of z are given in Table A.5.

Figure A.3 illustrates the probabilities for the fol-
lowing events:

• (a) Pr(Z > 1) = 0.159,

• (b) Pr(Z > 2) = 0.023,

• (c) Pr(∣ Z ∣< 2) = Pr(−2 < Z < 2) = 0.954,

• (d) Pr(Z > 2.5) = 0.006.

An interval, known as a confidence interval,
for the mean 𝜇 of a random variable X with an
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Figure A.3 Selected area probabilities for a standard
Normal random variable Z ; (a) Pr(Z > 1), (b) Pr(Z > 2),
(c) Pr(∣ Z ∣< 2), and (d) Pr(Z > 2.5).

N(𝜇, 𝜎2) distribution may be determined from the
expression

Pr
(
−z𝛼∕2 <

X − 𝜇

𝜎
< z𝛼∕2

)
= 1 − 𝛼, (A.16)

where Pr(Z > z𝛼∕2) = Pr(Z < −z𝛼∕2) = 𝛼∕2 and
Z = (X − 𝜇)∕𝜎 ∼ N(0,1). Rearrangement of (A.16)
shows

Pr(X − z𝛼∕2𝜎 < 𝜇 < X + z𝛼∕2𝜎) = 1 − 𝛼. (A.17)
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Replacement of the random variable X with an
observation x gives the interval x − z𝛼∕2𝜎 < 𝜇 <

x + z𝛼∕2𝜎, which is said to be a 100(1 − 𝛼)%
confidence interval for 𝜃. For example, if 𝛼 = 0.05,
the 95% confidence interval for 𝜃 is

(x − 1.96𝜎, x + 1.96𝜎),

where the figure 1.96 is taken from Table A.5.
Note that a 95% confidence interval for 𝜇 means
that if an experiment is repeated many times
under identical conditions, 95% of the confidence
intervals estimated will cover the true value of
the parameter of interest. This does not mean that
there is a 95% probability that the true value is in
the estimated interval. For further details see Kaye
(1987b) and Section 4.2.1.

Consider the mean X̄ of a sample of size n.
Then it can be shown that X̄ ∼ N(𝜇, 𝜎2∕n). A
similar argument to the one earlier shows that
the 100(1 − 𝛼)% confidence interval for 𝜇, given

Table A.5 Probabilities for absolute values from the
standard Normal distribution function.

z Φ(z) Pr(∣ Z ∣< z) Pr(∣ Z ∣> z)
= 2Φ(z) − 1

1.6449 0.950 0.90 0.10
1.9600 0.975 0.95 0.05
2.3263 0.990 0.98 0.02
2.5758 0.995 0.99 0.01
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observations x1, . . . , xn, is

(x̄ − z𝛼∕2𝜎∕
√

n, x̄ + z𝛼∕2𝜎∕
√

n).

Some variables, including blood alcohol level, can
only take positive values. If the mean is sufficiently
far away from zero, in units of standard deviations,
then the probability the variable takes a value less
than zero can effectively be discounted.

In some cases, the distribution may be positively
skewed in the sense that the right-hand-tail of the
distribution is much longer than the left-hand-tail
and the distribution is asymmetric (e.g. the mean
is greater than the median). (A distribution in
which the left-hand-tail of the distribution is much
longer than the left-hand-tail and the mean is less
than the median is said to be negatively skewed.) For
positively skewed distributions, a transformation
to the logarithm of the variable of interest will
often produce a variable, which is more symmetric
than the original variable and for which inferences
based on the Normal distribution may be used.
Care must then be taken to remember to transform
the results back to the original measurements for
the final summary.

A.3.2.1 Normal Approximations to the
Binomial and Poisson Distributions

One of the advantages of the Normal distribution
is that it can be used as an approximation to
other distributions in situations where it may be
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impractical or just simply tedious (such as in the
absence of a suitable statistical package to do the
sums) to use the other distributions. Two examples
are the binomial and Poisson distributions. These
are two discrete distributions where it is tedious to
evaluate exact probabilities for large numbers of
events. For example, whilst possible, it is tedious to
evaluate exactly the probability of less than 531
heads in 1000 tosses of a fair coin.

Let X be a random variable with a binomial dis-
tribution with n trials and success probability 𝜃 so
that E(X) = n𝜃 and Var(X) = n𝜃(1 − 𝜃). For n large
and 𝜃 not too close to 0 or 1, the distribution of
X may be approximated by a Normal distribution
with the same mean and variance. Thus, approxi-
mately,

X ∼ N(n𝜃, n𝜃(1 − 𝜃)).

Also, E(X∕n) = 𝜃,Var(X∕n) = 𝜃(1 − 𝜃)∕n and, ag-
ain approximately,

X∕n ∼ N(𝜃, 𝜃(1 − 𝜃)∕n). (A.18)

In answer to the question posed immediately
earlier, let X denote the number of heads in 1000
tosses of a fair coin. Then

Pr(X < 531 ∣ n = 1000, 𝜃 = 0.5)

=
530∑
x=0

(1000
x

)
0.5x 0.51000−x,
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a sum which can be evaluated, given time.4

Alternatively, the Normal approximation is the
following:

Pr(X < 531 ∣ n = 1000, 𝜃 = 0.5)

≃ Φ((530.5 − 500)∕
√

250) = Φ(1.93)
= 0.9732,

where 0.5 is added to 530 to allow for the approx-
imation of a discrete distribution by a continuous
distribution. For the discrete distribution, X takes
only integer values ( . . . ,529,530,531, . . . ),
whereas for the continuous distribution, X can
take any value. In this example, the value 530.5 is
chosen as being the value midway between 530
and the value 531 immediately above it. The exact
probability evaluated using statistical software is
0.9732. The approximation is excellent.

Let y1, . . . , yn be n observations for a Pois-
son distribution with mean 𝜆. Let Ȳ be the
random variable corresponding to the sample
mean. The expectation of Ȳ is E(

∑n
i=1 Yi∕n) =∑n

i=1 E(Yi)∕n = n𝜆∕n = 𝜆 and the variance of Ȳ
is Var(

∑n
i=1 Yi∕n) =

∑n
i=1(Var(Yi)∕n2 = n𝜆∕n2 =

𝜆∕n. For large n, the distribution of Ȳ may be
approximated by a Normal distribution such that

Ȳ ∼ N(𝜆, 𝜆∕n). (A.19)

4The probability that X < 531 is the probability that X ≤ 530
since X is an integer. The statement X < 531 implies X takes one
of the values 0, . . . ,530.
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A.3.3 Jeffreys’ Prior Distributions

In Bayesian probability, Jeffreys’ prior distribution,
named after Sir Harold Jeffreys (1891–1989), is
a non-informative (objective) prior distribution
for a parameter space (Jeffreys, 1983). Examples
include

• f (𝜇) ∝ 1,−∞ < 𝜇 < ∞, for the distribution of
the mean 𝜇 of a Normally distributed random
variable X ∼ N(𝜇, 𝜎2);

• f (𝜎) ∝ 1∕𝜎, 𝜎 > 0, for the distribution of the
standard deviation 𝜎 of a Normally distributed
random variable X ∼ N(𝜇, 𝜎2);

• f (𝜆) ∝ 1∕
√
𝜆, 𝜆 > 0, for the distribution of the

mean 𝜆 of a Poisson distributed random variable
X ∼ Po(𝜆);

• f (𝜃) ∝ 𝜃−1∕2(1 − 𝜃)−1∕2, 𝜃 ∈ [0,1], for the
distribution of the probability 𝜃 of a Bernoulli
trial that is a ‘success’ with probability 𝜃 and is
a ‘failure’ with probability (1 − 𝜃).

Note that the prior may not be proper in that it
does not integrate to a finite value over its range.
However, when combined with a likelihood func-
tion, a proper posterior distribution is obtained.
See, for example, Lee (2012), Taroni et al. (2010).

A.3.4 Student’s t-Distribution

In practice, the standard deviation 𝜎 of data
from a Normal distribution is rarely known
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and it is estimated from the data by the sample
standard deviation s. Consider n independent,
identically distributed Normal random variables
X1,X2, . . . ,Xn such that

Xi ∼ N(𝜇, 𝜎2), i = 1, . . . , n.

Then the random variable X̄ corresponding to the
mean of X1, . . . ,Xn, and given by

X̄ =
n∑

i=1

Xi∕n

has itself a Normal distribution, such that

X̄ ∼ N(𝜇, 𝜎2∕n).

The transformed, standardised variable Z, defined
as

Z = (X̄ − 𝜇)∕(𝜎∕
√

n)

has a standard Normal N(0,1) distribution.
Precision as a statistical concept is the reciprocal

of the variance. Thus to double the precision of an
estimator of a parameter it is necessary to increase
the number of observations by a factor of four.

If the standard deviation, 𝜎, is not known and
it is replaced by the sample standard deviation S
( S2 =

∑n
i=1 (Xi − X̄)2∕(n − 1)) corresponding to its

estimate s, the resulting statistic is

(X̄ − 𝜃)∕(S∕
√

n). (A.20)

This statistic does not have a standard Normal
distribution. It is the ratio of the functions of
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two random variables X̄ and S. The distribution
is known as a Student’s t-distribution and the
corresponding statistic is known as a t-statistic.
(‘Student’ was the pseudonym of W.S. Gosset,
1876–1937.) The distribution is symmetric about
zero. The extra uncertainty induced by replacing
𝜎 with an estimate s leads to the t-distribution hav-
ing greater dispersion than the standard Normal
distribution. Also, the distribution depends on the
sample size, n. In particular, if the standard devia-
tion s is estimated from a sample of n observations
x1, . . . , xn for use in the statistic (A.20) then the
value (n − 1) is known as the number of degrees of
freedom associated with the t-statistic. The degrees
of freedom are determined from the denominator
of the expression used to derive s. Informally, the
number of degrees of freedom may be considered
as the number of observations free to estimate s
after 1 has been deducted from n to estimate x̄.
Given the values of (n − 1) observations and the
value of the mean x̄ on n observations, it is possible
to determine the value of the n-th observation
from the expression

xn = nx̄ −
n−1∑
i=1

xi.

As n increases, the t-distribution approaches
the standard Normal distribution. As with the
standard Normal distribution, the associated prob-
abilities cannot be determined analytically and
reference has to be made to statistical software.
See Section 4.5.2 for an example.
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Table A.6 Percentage points t(n−1)(P) for the
t-distribution for given values of sample size n, degrees
of freedom (n − 1) and P, and the corresponding point
z(P) for the standard Normal distribution.

P% (100 − P)% n (n − 1) t(n−1)(P) z(P)

95 5 10 9 1.812 1.645
95 5 20 19 1.725 1.645
99 1 10 9 2.764 2.326
99 1 20 19 2.528 2.326
99.5 0.5 10 9 3.250 2.576
99.5 0.5 20 19 2.861 2.576

Some probabilities for the t-distribution are
given in Table A.6 where t(n−1)(P) is the value
of t from a t-distribution with (n − 1) degrees of
freedom (denoted t(n−1)) such that the probability
the random variable T (with a t(n−1) distribution)
is greater than t(n−1)(P) is P∕100. For example,
when the sample size n is 20, the probability that
T is greater than 2.528 is 1∕100 or 0.01.

There is a more general form of the t-distri-
bution, which is not centred about zero, known
as a non-central t-distribution. There are three
parameters which will be denoted 𝜇, 𝜆, and 𝜈.
If X has such a non-central t-distribution then
the transformed variable Y = (X − 𝜇)∕𝜆 has a
(central) t-distribution with 𝜈 degrees of freedom.
An example of the use of this distribution is given
in Section 7.3.1 to determine the value of the
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numerator in the evaluation of glass fragments,
where 𝜇 is a control mean and 𝜆 is an estimate
of the standard deviation of the refractive index
of the population of glass fragments from which
the recovered fragments have come. The value of
the numerator is the value of the central t-density
at the appropriate point, with an adjustment by
multiplication of the density value by a factor of
1∕𝜆 to allow for the standardisation.

A.3.5 Gamma and Chi-Squared
Distributions

The gamma distribution is a conjugate prior for
various types of inverse scale or rate parameters. It
is parametrised by a positive shape parameter, here
denoted 𝛼 > 0 and a positive rate parameter, here
denoted 𝛽 > 0. The probability density function
for a random variable X is

f (x ∣ 𝛼, 𝛽) = 𝛽𝛼

Γ(𝛼)
x𝛼−1e−𝛽x; x > 0.

The expectation is E(X) = 𝛼∕𝛽, the variance is
Var(X) = 𝛼∕𝛽2 and Γ(𝛼) is the gamma func-
tion where Γ(𝛼) = (𝛼 − 1)! for integer 𝛼 and
Γ(1∕2) =

√
𝜋.

A special case of the gamma distribution known
as the chi-squared distribution occurs when 𝛼

is denoted as 𝜈∕2 and 𝛽 = 1∕2. The parameter
𝜈 is the degrees of freedom associated with the
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distribution. The probability density function for a
random variable X is

f (x ∣ 𝜈) = 1
2𝜈∕2Γ(𝜈∕2)

x(𝜈−2)∕2e−x∕2; x > 0.

The expectation is E(X) = 𝜈 and the variance is
2𝜈. Examples of the chi-squared distribution with
1, 2, 5, 10, 20, and 50 degrees of freedom are
shown in Figure A.4. The statistic S2(n − 1)∕𝜎2

of n normally distributed random variables has a
chi-squared distribution with (n − 1) degrees of
freedom.

A.3.6 Inverse Gamma and Inverse
Chi-Squared Distributions

The inverse gamma distribution is the distribution
of the reciprocal of a variable with a gamma distri-
bution. It arises as a marginal distribution for the
variance of a Normal distribution if an uninforma-
tive prior is used and as an analytically tractable
conjugate prior if an informative prior is required.
The probability density function for a random vari-
able X with a shape parameter 𝛼(> 0) and scale
parameter 𝛽(> 0) is

f (x ∣ 𝛼, 𝛽) = 𝛽𝛼

Γ(𝛼)
x−𝛼−1e−𝛽∕x; x > 0.

The expectation is E(X) = 𝛽∕(𝛼 − 1), (𝛼 > 1)
and the variance is Var(X) = 𝛽2∕{(𝛼 − 1)2(𝛼 −
2)}, (𝛼 > 2).
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Figure A.4 Probability density function for chi-squared distributions with k degrees of freedom and
(a) k = 1, (b) k = 2, (c)k = 5, (d) k = 10, (e)k = 20, and (f) k = 50.



�

� �

�

1028 Probability Distributions

As with the gamma distribution, there is a spe-
cial case of the inverse gamma distribution known
as the inverse chi-squared distribution that occurs
when 𝛼 is written as 𝜈∕2 and 𝛽 = 1∕2. The param-
eter 𝜈 is the degrees of freedom associated with the
distribution. The probability density function for a
random variable X with an inverse chi-squared dis-
tribution with 𝜈 degrees of freedom is

f (x ∣ 𝜈) = 1
2𝜈∕2Γ(𝜈∕2)

x−(𝜈+2)∕2e−1∕2x; x > 0.

The expectation is E(X) = 1∕(𝜈 − 2) (𝜈 > 2) and
the variance is Var(X) = 2∕{(𝜈 − 2)2(𝜈 − 4)}
(𝜈 > 4).

A.3.7 Beta Distribution

Consider an example in which it is desired to know
the proportion of a consignment that is illicit
drugs. This example has been discussed in Section
4.2 with reference to a consignment of tablets.
The number of tablets that are illicit is R and the
consignment size is N. The proportion of illicit
tablets is then R∕N, which takes a finite number of
values, depending on the value of R, ranging from
0∕N to N∕N in steps of 1∕N. As N increases, this
proportion becomes closer to a continuous mea-
surement, over the interval (0,1). The uncertainty
in a continuous random variable that is a pro-
portion can be modelled by the Beta distribution.
Denote the random variable by 𝜃. For a consign-
ment of drugs, assume that it is representative of a
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super-population of drugs in which the proportion
of illicit tablets is 𝜃 (0 < 𝜃 < 1). See Smith and
Charrow (1975) and Finney (1977) for comments
about super-populations and also Section 2.5.5.
For example, the consignment may be known
to have come from a particular location and 𝜃 is
the proportion of units in the super-population
that contain drugs. In order to make probability
statements about 𝜃, it is necessary to have a
probability distribution for 𝜃 to represent the
uncertainty in 𝜃. This uncertainty may simply
be uncertainty in one’s knowledge of the exact
value of 𝜃, uncertainty that may arise because the
consignment is considered as a random sample
from a super-population. The Bayesian philosophy
permits this uncertainty to be represented as a
probability distribution. The beta distribution is
the most common distribution for 𝜃, characterised
by two parameters, denoted here as 𝛼 and 𝛽 with
probability density function

f (𝜃 ∣ 𝛼, 𝛽) = 𝜃𝛼−1(1 − 𝜃)𝛽−1

B(𝛼, 𝛽)
, 0 ≤ 𝜃 ≤ 1, (A.21)

denoted Be(𝛼, 𝛽), where

B(𝛼, 𝛽) = Γ(𝛼)Γ(𝛽)
Γ(𝛼 + 𝛽)

, (A.22)

and Γ is the gamma function of Section A.3.5.
The expectation is E(X) = 𝛼∕(𝛼 + 𝛽) and the
variance is Var(X) = 𝛼𝛽∕{(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)}.
The function B(𝛼, 𝛽) is known as the beta function.
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Note the special case

B(m + 1,1) = Γ(m + 1)Γ(1)
Γ(m + 2)

= 1
m + 1

.

Examples of the beta distribution with parame-
ters (𝛼, 𝛽) = (5,5), (3,3), (1,1), (5,1), (2,5), and
(0.5,0.5) are shown in Figure A.5.

The use of the beta distribution in this context is
described in Aitken (1999). Values for 𝛼 and 𝛽 may
be chosen subjectively to represent the scientist’s
prior beliefs before inspection about the proportion
of the units in the consignment (as a random sam-
ple from the super-population) that contain drugs.
A large value of 𝛼 relative to 𝛽 would imply a belief
that 𝜃 was high. Larger values of 𝛼 and 𝛽 would
correspond to higher certainty about the value of
𝜃. A detailed discussion is given in Aitken (1999)
and summarised in Section 4.3.1. In many cases,
the scientist will not wish to quantify their prior
beliefs and will wish to remain neutral. This can
be done by choosing 𝛼 = 𝛽 = 1. Also, as shown in
Aitken (1999) for variations in 𝛼 and 𝛽, when both
are small, the evidence from the sample will soon
reduce the effect of the values of 𝛼 and 𝛽 consider-
ably. This is intuitively reasonable: little prior infor-
mation is soon subsumed by the data.

The beta distribution on [0,1] can be generalised
to the interval [a, b] with a < b. The density func-
tion is

f (x ∣ 𝛼, 𝛽, a, b) = (x − a)𝛼−1(b − x)𝛽−1

(b − a)𝛼+𝛽−1B(𝛼, 𝛽)
;

a < x < b, 𝛼, 𝛽 > 0. (A.23)
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Figure A.5 Probability density functions for beta distributions with parameters (𝛼, 𝛽) and (a)
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The expectation and variance are

E(X) = 𝛼b + 𝛽a
𝛼 + 𝛽

,

Var(X) = 𝛼𝛽(b − a)2

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
.

The special case when a = 0 and b = n (> 0) has
density function

f (𝜃 ∣ 𝛼, 𝛽, n) = 1
B(𝛼, 𝛽)

𝜃𝛼−1(n − 𝜃)𝛽−1

n𝛼+𝛽−1
; 0 < 𝜃 < n.

(A.24)

A.3.8 Dirichlet Distribution

The example in which it is desired to know the
proportion of a consignment that is illicit drugs
may be generalised to a situation in which there
may be several drug types (say k) and it is desired
to know the proportions in each type. Consider
again a consignment of tablets of size N. Denote
the number of tablets in each of the k types as
Ri, i = 1, . . . , k. The proportion of tablets of type
i is then Ri∕N, which takes a finite number of
values, depending on the value of Ri, ranging
from 0∕N to N∕N in steps of 1∕N. As N increases,
these proportions become closer to a continu-
ous measurement, over the interval (0,1). The
uncertainty in a set of random variables that are
proportions and for which the sum is 1 is mod-
elled by a generalisation of the beta distribution,
known as the Dirichlet distribution, named after
the German mathematician, P.G.L. Dirichlet
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(1805–1859). This generalisation is analogous
to the generalisation by the multinomial distribu-
tion (Section A.2.4) of the binomial distribution
(Section A.2.3).

Denote the set of random variables by 𝜃i, i =
1, . . . , k, which are such that

∑k
i=1 𝜃i = 1. The

beta distribution is the case described here for
which k = 2 and, conventionally, 𝜃1 is denoted 𝜃

and 𝜃2 = 1 − 𝜃1 = 1 − 𝜃. For a consignment of
drugs, assume, as before, that it is representative
of a super-population of drugs in which the
proportion of tablets in each of the k categories
is 𝜃i, i = 1, . . . , k;0 < 𝜃i < 1;

∑k
i=1 𝜃i = 1). For

example, the consignment may be thought to have
come from a particular location and the set {𝜃i; i =
1, . . . , k} are the proportions of units in the
super-population, which fall into the k categories.
In order to make probability statements about
{𝜃i}, it is necessary to have a probability distri-
bution for {𝜃i} to represent the uncertainty in
{𝜃i}. This uncertainty may simply be uncertainty
in one’s knowledge of the exact values of {𝜃i},
uncertainty which may arise because the con-
signment is considered as a random sample from a
super-population. The Dirichlet distribution is the
most common distribution for {𝜃i; i = 1, . . . , k}
with probability density function

f (𝜃1, . . . , 𝜃k ∣ 𝛼1, . . . , 𝛼k) =
𝜃
𝛼1−1
1 · · · 𝜃𝛼k−1

k

B(𝛼1, . . . , 𝛼k)
,

0 < 𝜃i < 1, i = 1, . . . , k,
k∑

i=1

𝜃i = 1, (A.25)
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where

B(𝛼1, . . . , 𝛼k) =
Γ(𝛼1) · · · Γ(𝛼k)
Γ(𝛼1 + · · · + 𝛼k)

.

The mean E(𝜃i) of 𝜃i is 𝛼i∕(
∑k

i=1 𝛼i) and the vari-
ance Var(𝜃i) of 𝜃i is E(𝜃i)(1 − E(𝜃i))∕(1 +

∑k
i=1 𝛼i).

The {𝜃i} add to 1 so they are correlated. The
covariance Cov(𝜃i, 𝜃j), i ≠ j, between 𝜃i and 𝜃j is
given by Cov(𝜃i, 𝜃j) = −E(𝜃i)E(𝜃j)∕(1 +

∑k
i=1 𝛼i).

Note that this is negative; given the value of 𝜃i,
the range of values for 𝜃j is reduced from (0,1) to
(0,1 − 𝜃i).

The Dirichlet distribution is characterised by
k parameters, {𝛼1, . . . , 𝛼k}(𝛼i > 0; i = 1, . . . , k).
Values for {𝛼1, . . . , 𝛼k} may be chosen subjectively
to represent the scientist’s prior beliefs before
inspection about the proportions of the units in
the consignment (as a random sample from the
super-population) for each of the k categories.

Consider a single-locus marker for DNA profil-
ing. Let (X1,X2) be the sample frequencies of the
two alleles of the locus found on a crime scene
profile. The overall sample size, from which X1
and X2 are obtained is n. Let X3 = n − X1 − X2,
the sample frequency of the combination of all
other alleles at that locus. The corresponding
population relative frequencies are 𝜃1, 𝜃2, and
𝜃3 with

∑3
i=1 𝜃i = 1. The Dirichlet distribution

provides a convenient prior distribution for the
{𝜃i}, with three categories, k = 3.

Further details of the previous example and
inferences that may be drawn from study of the
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crime scene profile are given in Balding (1995).
An example of the use of the Dirichlet distribution
as a prior for a multinomial likelihood for blood
grouping data is given in Leonard and Hsu (1999,
pp. 195–196). Applications to forensic match
probabilities are described in Lange (1995) and to
sample size estimation with categorical responses
in Aitken and Mavridis (2009); see also Section
7.2.3.

A.3.9 Multivariate Normal
Distribution and Correlation

Often, more than one characteristic is of interest,
e.g. the refractive index, the density and various
elemental compositions for window glass. The
data (measurements of these characteristics)
are referred to as multivariate data and in the
special case where only two characteristics are
measured they are known as bivariate data. Let the
measurements be denoted as a vector x.5 There
is a notational convention as to how a vector is
written. A vector x is conventionally written in
bold script and expanded as a column (illustrated
here with p variables)

x =
⎛
⎜⎜⎜⎝

x1
x2
⋮
xp

⎞
⎟⎟⎟⎠
.

5A vector in mathematics is a list of more than one characteristic
associated with a unit of interest. With only one characteristic, the
corresponding term is scalar.
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The transpose of a column vector to a row vec-
tor is indicated with a superscript T such that
xT = (x1, x2, . . . , xp). For bivariate data p = 2.
In the example of window glass, x1 would be
the value of the refractive index, x2, the value of
the density and the elemental compositions would
be denoted x3, x4, . . . , xp. For continuous data, the
vector x has a probability density function, just as
the individual characteristics have.

If the characteristics are independent (Section
1.7.8) then the joint probability density function
f (x) is the product of the individual probability
density functions. Thus

f (xT) = f (x1, . . . , xp) =
p∏

i=1

f (xi), (A.26)

which may be thought of as an extension of the
third law of probability for independent events
(1.10).

If the characteristics are not independent,
however, such an approach is not possible.
Assume the measurements of these character-
istics are Normally distributed and dependent.
The measurements are said to be correlated. A
multivariate analogue of the Normal distribution
may be obtained. The multivariate mean 𝝁 is
the vector formed by the means of the individual
variables. Instead of a variance 𝜎2 there is a
square (p × p) symmetric matrix Σ of variances
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and covariances. Some properties of matrices are
given in Appendix B.

The matrix Σ is known as the covariance
matrix. Covariance is a measure of the association
between a pair of characteristics and is the product
of the individual standard deviations and a factor
that measures the correlation (degree of linear
association) between the two characteristics. The
variances of the p variables are located on the
diagonal of Σ. The covariances are the off-diagonal
terms so that the (i, j)-th cell of Σ contains the
covariance between Xi and Xj (the covariance of Xi

and Xi is simply the variance of Xi). The correlation
between two variables is a parameter, convention-
ally denoted 𝜌, which measures the amount of
linear association between the variables. It takes
values between −1 and 1. Two variables that
have a perfect linear relationship with a positive
slope (as one increases so does the other) have
a correlation of 1 (𝜌 = 1). Two variables which
have a perfect linear relationship with a negative
slope (as one increases, the other decreases) have
a correlation of 𝜌 = −1. A correlation of 0 implies
that there is no linear association between the two
variables. Notice that this does not mean there
is no association between the variables, just that
there is no linear association.

Denote the variance of Xi by 𝜎2
i , (i = 1, . . . , p).

The correlation between Xi and Xj is denoted
by the correlation coefficient 𝜌ij (i = 1, . . . , p;
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j = 1, . . . , p; i ≠ j), with 𝜌ij = 𝜌ji. Then the covari-
ance between Xi and Xj, denoted Cov(Xi,Xj), is
given by

Cov(Xi,Xj) = 𝜌ij𝜎i𝜎j, i = 1, . . . , p; j = 1, . . . , p.

Cov(Xi,Xi) = 𝜌ii𝜎
2
i = 𝜎2

i since 𝜌ii = 1.

Denote the determinant of Σ by ∣ Σ ∣ (Section
A.1.4) and the inverse by Σ−1 (Section B.1.6).
Then the probability density function of X is
given by

f (x) = (2𝜋)−
1
2

p ∣ Σ ∣−
1
2

× exp
{
−1

2
(x − 𝝁)TΣ−1(x − 𝝁)

}
. (A.27)

This may be written in short-hand, equivalent to
the univariate case, as

(X ∣ 𝝁,Σ) ∼ N(𝝁,Σ). (A.28)

Consider the special case of p = 2. The multivari-
ate Normal distribution is then called the bivariate
Normal distribution. The vector parameters may
be written out in full;

𝝁 =
(
𝜇1
𝜇2

)
,

Σ =
(

𝜎2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

)
, (A.29)

Σ−1 = 1
1 − 𝜌2

(
𝜎−2

1 −𝜌∕𝜎1𝜎2

−𝜌∕𝜎1𝜎2 𝜎−2
2

)
,

∣ Σ ∣
1
2 = 𝜎1𝜎2

√
(1 − 𝜌2).
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Notice that

(x − 𝝁)TΣ−1(x − 𝝁)

=

{
(x1 − 𝜇1)2

𝜎2
1

− 2𝜌
(x1 − 𝜇1)(x2 − 𝜇2)

𝜎1𝜎2

+
(x2 − 𝜇2)2

𝜎2
2

}
∕(1 − 𝜌2).

The bivariate Normal density function may then
be written as

f (x1, x2) =
1

2𝜋𝜎1𝜎2

√
(1 − 𝜌2)

× exp

[
− 1

2(1 − 𝜌2)

{
(x1 − 𝜇1)2

𝜎2
1

−2𝜌
(x1 − 𝜇1)(x2 − 𝜇2)

𝜎1𝜎2
+
(x2 − 𝜇2)2

𝜎2
2

}]
.

For the special case in which 𝜇1 = 𝜇2 = 0,

f (x1, x2) =
1

2𝜋𝜎1𝜎2

√
(1 − 𝜌2)

× exp

{
− 1

2(1 − 𝜌2)

(
x2

1

𝜎2
1

− 2𝜌
x1x2

𝜎1𝜎2
+

x2
2

𝜎2
2

)}
.

Another special case is when 𝜌 = 0. The bivari-
ate Normal density function is then

f (x1, x2) =
1

2𝜋𝜎1𝜎2
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× exp

[
−1

2

{
(x1 − 𝜇1)2

𝜎2
1

+
(x2 − 𝜇2)2

𝜎2
2

}]

which may be written as

1

2
√

𝜋𝜎2
1

exp

[
−1

2

{
(x1 − 𝜇1)2

𝜎2
1

}]

× 1

2
√

𝜋𝜎2
2

exp

[
−1

2

{
(x2 − 𝜇2)2

𝜎2
2

}]
.

This is the product of the probability density
functions for two Normal distributions, one with
mean 𝜇1 and variance 𝜎2

1 and one with mean 𝜇2

and variance 𝜎2
2.

Applications are given in Sections 3.6.3 and 7.6.

A.3.10 Wishart Distribution

The multivariate analogue of the gamma distribu-
tion (Section A.3.5) is the Wishart distribution,
named after the Scottish mathematician and agri-
cultural statistician, John Wishart (1898–1956).
The distribution is the conjugate prior of the
inverse covariance matrix of a multivariate ran-
dom Normal variable. Consider a p × p positive
definite symmetric matrix V. The parame-
ters are Ω, a p × p positive definite symmetric
matrix, and the degrees of freedom n(> (p − 1)).
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The probability density function for V is

f (V ∣ Ω, n) = ∣ V ∣(n−p−1)∕2

2np∕2 ∣ Ω ∣n∕2Γp(n∕2)
× exp{−tr(Ω−1V)∕2};

where ‘tr’ is the trace of the matrix, the sum of
terms on the leading diagonal, and Γp(⋅) is the
multivariate gamma function

Γp

(n
2

)
= 𝜋p(p−1)∕4

p∏
j=1

Γ
(

n
2
− j − 1

2

)
.

This may be written in short-hand, equivalent to
the univariate case, as

(V ∣ Ω, n) ∼ W(Ω, n).

A.3.11 Inverse Wishart Distribution

The inverse Wishart distribution is the multi-
variate generalisation of the univariate inverse
gamma distribution (Section A.3.6). Let U be a
p × p positive definite matrix following an inverse
Wishart distribution with positive definite scale
matrix Σ, and n degrees of freedom. Then for
2p < n, the probability density of U is

f (U ∣ Σ, n) = ∣ Σ ∣(n−p−1)∕2

c ∣ U ∣n∕2
exp{−tr(U−1Σ)∕2},
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where the constant c is given by

c = 2(n−p−1)p∕2𝜋p(p−1)∕4
p∏

j=1

Γ
(

n − p − j
2

)
.

This may be written in short-hand, equivalent to
the univariate case, as

(U ∣ Σ, n) ∼ W−1(Σ, n).

The mean of an inverse Wishart distribution is
given by

E(U) = Σ
n − 2p − 2

, n − 2p > 2.

It is the distribution of the inverse of a random
matrix following a Wishart distribution. Note that
if V ∼ W(Ω, n), if follows that V−1 ∼ W−1(Ω−1, n +
p + 1).

An inverse Wishart distribution can be used
to model the uncertainty about the covariance
matrix of a multivariate random variable. It is
the conjugate prior for the covariance matrix of
a multivariate Normal distribution. It has been
proposed by Bozza et al. (2008) to model the
within-source covariance matrix characterising a
writer in the context of handwriting evidence (see
Section 7.6.2.4).



�

� �

�

Statistics and the Evaluation of Evidence for Forensic Scientists,
Third Edition. Colin Aitken, Franco Taroni and Silvia Bozza.

© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.

B

Matrix Properties

B.1 MATRIX TERMINOLOGY

A brief introduction to matrices is given here. If
further details are desired, good references are
Lütkepohl (1996), Mardia et al. (1979), and Press
(1982).

A matrix A is a rectangular array of numbers. If
A has r rows and c columns it is said to be of order
r × c (read as r-by-c). For example, r measurements
on c characteristics (or variables) may be arranged
in this way. The subscripts for A denote the cell in
which the item is located. Thus aij is the member of
the (i, j)-th cell, the cell in row i and column j of the
matrix. A matrix A is sometimes denoted {aij}.

An example is the matrix of variances and
covariances Σ, introduced in Section A.3.9 and
known as the covariance matrix. If r = c, the matrix
is said to be square of order r, and an example
of a square matrix is the covariance matrix.
The diagonal terms are the variances and the
off-diagonal terms (those in the top-right-hand
and bottom-left-hand corners of 2 × 2 matrices)

1043
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are the covariances. The covariances are equal
since the covariance between variables 1 and 2 is
the same as the covariance between variables 2
and 1.

B.1.1 The Trace of a Square Matrix

The trace of a square matrix is the sum of the
terms in the leading diagonal, that is, the diagonal
that runs from the top-left-hand corner to the
bottom-right-hand corner of the matrix. Thus,
the trace of a 2 × 2 matrix A is a11 + a22. This is
denoted tr(A). It only exists if the matrix is square.

B.1.2 The Transpose of a Matrix

The transpose of an r × c matrix C = {cij}, (i =
1, . . . , r; j = 1, . . . , c) is a c × r matrix D = {dji},
(j = 1, . . . , c; i = 1, . . . , r) such that dji = cij. The
element in the j-th row and i-th column of D is
the element in the i-th row and j-th column of
C. The transpose of C is denoted CT.

Let C be a 3 × 2 matrix

C =
⎛
⎜⎜⎝

c11 c12
c21 c22
c31 c32

⎞
⎟⎟⎠
.

Then

CT =
(

c11 c21 c31
c12 c22 c32

)
.
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A matrix C is symmetric if it is equal to its trans-
pose, C = CT. Such a matrix is of necessity square
with r = c. An r × 1 matrix is a column vector and
its transpose is a 1 × r row vector. For r = 3,

x =
⎛
⎜⎜⎝

x1
x2
x3

⎞
⎟⎟⎠

and

xT = (x1, x2, x3).

B.1.3 Addition of Two Matrices

Two matrices of the same order may be added
together to give a third matrix of the same order.
Let A and B be 2 × 2 matrices

A =
(

a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
.

Then the matrix A + B is obtained by adding cor-
responding cell entries together.

A + B =
(

a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
.

Note that A + B = B + A.

B.1.4 Determinant of a Matrix

The determinant of a square matrix A is denoted
∣ A ∣. For the 2 × 2 matrix A in Section (B.1.3), the



�

� �

�

1046 Matrix Properties

determinant is the difference between the product
of the leading diagonal terms and the product of
the off-diagonal terms. Thus

∣ A ∣= (a11a22 − a12a21).

Care has to be taken in understanding the nota-
tion. For a matrix, the symbols ∣ ⋅ ∣ denote the
determinant. For a real number, the symbols ∣ ⋅ ∣
denote the positive value of the number. Multipli-
cation of a matrix by a constant, c, say, results in a
matrix in which every cell is multiplied by c. Thus

cA =
(

ca11 ca12
ca21 ca22

)
.

and ∣ cA ∣ = c2 ∣ A ∣. In general, for a p × p matrix,
∣ cA ∣ = cp ∣ A ∣.

B.1.5 Matrix Multiplication

Examples are given here of how matrices and row
and column vectors may be multiplied together for
two-by-two matrices, and row and column vectors
with two components. First, consider the multipli-
cation of a vector and a matrix. Let a column vector

x =
(

x1
x2

)

and the matrix A be as in Section B.1.3. The order
of multiplication of a pair of matrices is important
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and the number of columns in the first member
of the pair must equal the number of rows in the
second member. The outcome is a matrix in which
the number of rows equals the number of rows in
the first member of the pair of matrices and the
number of columns equals the number of columns
in the second member of the pair of matrices.
Thus, multiplication of an r × c matrix and a c × p
matrix results in an r × p matrix.

Multiplication of the (1 × 2) row vector xT and
the (2 × 2) matrix A, written as xTA gives a (1 × 2)
row vector. Note that a row or column vector may
be thought of as a matrix, with only one row or one
column. The row vector xTA is

(x1a11 + x2a21, x1a12 + x2a22).

The members of the row vector multiply the cor-
responding members of the columns of A and the
resultant products are then summed.

Multiplication of the (2 × 2) matrix A and the
(1 × 2) column vector x written as Ax gives a
(2 × 1) column vector. The column vector Ax is

Ax =
(

a11x1 + a12x2
a21x1 + a22x2

)
,

This is not equal to xTA. The expression xTAx is

(x1a11 + x2a21, x1a12 + x2a22)
(

x1
x2

)
,
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which is equal to

x2
1a11 + x1x2a21 + x1x2a12 + x2

2a22

= x2
1a11 + x1x2(a21 + a12) + x2

2a22.

This is simply a number, not a matrix. A 2 × 2
symmetric matrix has a12 = a21. Thus, for such a
matrix

xTAx = x2
1a11 + 2x1x2a12 + x2

2a22.

For the multiplication of two matrices, the rows
of the first matrix and the columns of the second
are multiplied together component by component.
Thus

AB =
(

a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
,

BA =
(

a11b11 + a21b12 a12b11 + a22b12
a11b21 + a12b22 a12b21 + a22b22

)
. (B.1)

In general, AB ≠ BA. However if A and B are
symmetric then a12 = a21, b12 = b21 and AB =
BA. For the product AB, A is said to pre-multiply B
and B is said to post-multiply A.

B.1.6 The Inverse of a Matrix

The square matrix I defined as

I =
(

1 0
0 1

)

is known as the identity matrix. This is because pre-
or post- multiplication of another square matrix
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A by I leaves A unchanged: AI = IA = A. This
may be checked from Section B.1.5. The existence
of an identity matrix then leads naturally to the
concept of an inverse of a matrix. The inverse of a
square matrix A is defined as that matrix, denoted
A−1, which when used to pre- or post-multiply
A gives as a product the identity matrix I. Thus
AA−1 = A−1A = I. For A, as in Section B.1.3, the
inverse of A is given by

A−1 = 1
∣ A ∣

(
a22 −a12
−a21 a11

)
. (B.2)

Matrix multiplication AA−1 and A−1A verifies that
the products are I and that the matrix given in
(B.2) satisfies the definition of an inverse.

Note that an inverse only exists if the deter-
minant ∣ A ∣ is non-zero. A matrix for which the
determinant is zero is said to be singular and an
inverse does not exist. This is the matrix equiva-
lent of the non-existence of the reciprocal of the
number 0. The two rows and the two columns of
a singular 2 × 2 matrix are equal or proportional.
Note, also, that it makes no sense to consider
division by a matrix. The operation with matrices
that is equivalent to division by a number is
multiplication by an inverse of a matrix.

B.1.7 Completion of the Square

A fundamental result for the derivation of prob-
ability distributions for hierarchical models in
Chapter 7 is that of completion of the square.
Integrals evaluated in the derivation of these
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models are those of the multivariate Normal
density function. The algebra required for their
solution is that of the completion of squares for
multivariate data.

Consider vectors 𝜽, a and b, and matrices A and
B of appropriate order for the multiplications. Then
the general result is that

(𝜽 − a)TA(𝜽 − a) + (𝜽 − b)TB(𝜽 − a)
= (𝜽 − 𝜽

∗)T(A + B)(𝜽 − 𝜽
∗)

+ (a − b)T × (A−1 + B−1)−1(a − b),

where
𝜽
∗ = (A + B)−1(Aa + Bb).
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Notation

The Greek and Roman alphabets provide a large
choice of letters to be used for mathematical
notation. Despite this large choice, some letters,
such as x, are used in this book to mean more
than one thing. It is hoped that no letter or symbol
is asked to mean more than one thing at the
same time and that the list that follows will help
readers to know what each letter or symbol does
mean at any particular point. Chapter or Section
references are given for the first or main use of
many of the letters or symbols.

∈: denotes containment in a set,
thus x ∈ {1,2,3} indicates x is
one of the integers 1, 2, or 3.

. . . : three dots, written on the line,
indicate ‘and so on in sequence
to’. Thus x1, . . . , x5 can be read
as ‘x1 and so on in sequence to
x5’ and is short-hand for the
sequence x1, x2, x3, x4, x5.
Usually, the last subscript is a
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general one such as n so that a
sequence of n items would be
written as x1, . . . , xn.

· · ·: three dots, written above the line,
indicate ‘a repeat of the operation
immediately before and after the
dots’. Thus x1 + · · · + x5 is short-
hand for ‘x1 + x2 + x3 + x4 + x5’.
Similarly x1 × · · · × x5 is short-
hand for ‘x1 × x2 × x3 × x4 × x5’.
Usually, the last subscript is a
general one such as n so that a
sum or product of n items would
be written as x1 + · · · + xn or
x1 × · · · × xn. Also, the symbol ×
is often omitted and x1 × · · · × xn
written as x1 · · · xn or

Pr(R ∣ S) ⋅ Pr(S) =
Pr(R ∣ S) × Pr(S).

( . . . ): For numerical ranges, the limits
are not included in the range.
Thus 𝜃 ∈ (0,1) is equivalent to
0 < 𝜃 < 1. Contrast this with
[ . . . ]; Section 4.7.2.

[ . . . ]: For numerical ranges, the limits
are included in the range. Thus
𝜃 ∈ [0,1] is equivalent to
0 ≤ 𝜃 ≤ 1. Contrast this with
( . . . ); Section 4.7.2.∑

: the sum of terms following the
symbol. For example,

∑n
i=1 xi

denotes the sum of x1, . . . , xn
(x1 + · · · + xn), Section A.2.2.
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⋅: a single dot written as a suffix
denotes summation over the
index indicated by the location of
the suffix; for example, the mean
over j of (xij, i = 1, . . . ,m,

j = 1, . . . , n) could be indicated
x̄i⋅ = 1

n

∑n
j=1 xij; Section 7.6.5.∏

: the product of terms following the
symbol. For example,

∏n
i=1 Pr(Si)

denotes the product of the
probabilities Pr(S1), . . . ,Pr(Sn)
(Pr(S1) · · ·Pr(Sn)), Section 3.5.4.

̄: to be read as ‘the opposite of’ or
the ‘complement of’, thus if M
denotes male, M̄ denotes female;
Section 2.1.1.

̄: to be read as ‘the mean of’, thus x̄
is the mean of a set of
measurements x1, . . . , xn;
Section A.3.1.

≡: to be read as ‘as equivalent to’.
For example, if M denotes male
and F denotes female, then
M ≡ F̄ and F ≡ M̄.

>>: to be read as ‘is very much
greater than’ (in contrast to >

which is simply ‘is greater than’);
Section 3.6.2.

∝: to be read as ‘is proportional to’.
For example, this is often used in
Bayesian analysis where the
distribution of the random
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variable is taken to be
proportional to an expression
involving only terms in the
random variable and omitting
other terms which are needed to
ensure the distribution is a
probability distribution, i.e. has a
total probability of 1. Use of such
a notation eases the algebraic
manipulations associated with
Bayesian inference; Section
A.3.3.

(X ∣ 𝜽,Σ) ∼ multivariate random variable X
N(𝜽,Σ): has a Normal distribution with

mean vector 𝜽 and covariance
matrix Σ; Section A.3.9.

∣ x ∣: for x a number, the absolute value
of x; if x > 0, ∣ x ∣= x, ; if x < 0,
∣ x ∣ = −x; for example, ∣ 6 ∣ = 6,
∣ −6 ∣ = 6.

∣ Σ ∣: determinant of the matrix Σ.
∼: is distributed as; X ∼ N(𝜇, 𝜎2) is

X is distributed Normally with
mean 𝜇 and variance 𝜎2.

∼: for consequences, indicates
indifference, thus c1 ∼ c2
indicates indifference between
consequences c1 and c2; Section
2.8.1.

≺: for consequences, indicates a
strict preference, thus c1 ≺ c2
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indicates a strict preference for c2
over c1; Section 2.8.1.

⪯: for consequences, a lack of
preference, thus c1 ⪯ c2 indicates
that c1 is not preferred to c2;
Section 2.8.1.

𝛼: a prior parameter for the beta
distribution; Section A.3.7.

1 − 𝛼: the size of a Bayesian credible
interval; Section 4.1.

𝛼1: given evidence E the posterior
probability of proposition H1,
Pr(H1 ∣ E); Section 2.8.2.

𝛼2: given evidence E the posterior
probability of proposition H2,
Pr(H2 ∣ E); Section 2.8.2.

b0: probability of zero groups of
material being found as
background; Section 5.3.2.1.

bg,m: probability of g groups of material
of sizes (m1, . . . ,mg) = m being
found; Section 5.3.2.1.

b∗1,m: probability of occurrence of one
group of material from some
external source other than
that of the investigation; Section
5.3.2.5.

𝛽: a prior parameter for the beta
distribution; Section A.3.7.

B(𝛼, 𝛽): the normalising constant for a
beta distribution; Section A.3.7.
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B(𝛼1, . . . , 𝛼k): the normalising constant for a
Dirichlet distribution; Section
A.3.8.

Be(𝛼, 𝛽): beta distribution with parameters
𝛼 and 𝛽; Section A.3.7.

c2: Pr(Ē∗ ∣ Ē); Section 5.6.2.1.
c(d, 𝜃): the consequence of decision d

when the actual state of nature is
𝜃, sometimes abbreviated to c;
Section 2.8.1.

: the set of all consequences c(d, 𝜃);
Section 2.8.1.

CX(Y): the probability a person of blood
group Y innocently bears a
bloodstain of blood group X;
Section 6.2.4.

d: decision; Section 2.8.1.
d: distance; Section 7.8.
: set of all decisions; Section 2.8.1.
Γ: analytical result from the

inspection of trace evidence.
𝛾 : frequency of Γ in a relevant

population; a parameter.
Γ(x + 1): the gamma function; Section

A.3.5.
E: quality or measurements of

evidential material; Chapter 1.
Ec: quality or measurements of

evidential material of control
form, also denoted x; Section
1.7.1.
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Er: quality or measurements of
evidential material of recovered
form, also denoted y; Section
1.7.1.

E𝑣: the totality of the evidence,
equals (M,E); Section 1.7.1.

E∗: a report about E; Section 5.6.2.1.
EL: expected loss; Section 2.8.1.
EU: expected utility; Section 2.8.1.
E(𝜃i): the mean of the variable 𝜃i, also

known as the expectation; Section
A.3.8.

f1: Pr(E∗ ∣ Ē); Section 5.6.2.1.
ft,z−1{.}: the probability density function

of the t− distribution with (z − 1)
degrees of freedom; Section
A.3.4.

g: number of groups; Section
5.3.2.1.

h1: Pr(E∗ ∣ E); Section 5.6.2.1.
Hd: the proposition of the defence;

Section 2.1.1.
Hp: the proposition of the

prosecution; Section 2.1.1.
I: the identity matrix; Section

A.1.6.
I: background information; Section

1.7.9.
Is,t: information available to person S

at time t: Section 1.7.5.
li: i = 1,2, loss function; Section

2.8.2.
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L (c(d, 𝜃)): the loss for a given consequence
c(d, 𝜃) of decision d with true state
of nature 𝜃; Section 2.8.1.

loge: logarithm to base e.
log10: logarithm to base 10.
m2: Pr(Ē∗ ∣ E); Section 5.6.2.1.
M: evidential material; Section

1.7.1.
Mc: evidential material of control

form; Section 1.7.1.
Mr: evidential material of recovered

form; Section 1.7.1.
m: number of items inspected;

Section 4.3.
𝜇: mean or expectation of a Normal

distribution; Section A.3.2.
n: number of items not inspected;

Section 4.3.
n: number of groups transferred

between two objects; Section
5.3.2.1.

N: consignment size (= m + n);
Section 4.3.

N(𝜃, 𝜎2): Normal distribution of mean 𝜃

and standard deviation 𝜎.
𝜈: degrees of freedom; Section

A.3.4.
O: odds; Section 2.1.
Ω: the universal set, Pr(Ω) = 1.;

Section 1.7.6.
Ω: population of characteristics of

items; Section 7.6.2.
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P: the probability of what is
observed, or anything more
extreme, calculated assuming the
null hypothesis is true, known as
the significance probability: Section
3.6.1.

Pi: i = 1,2, population; Section 7.7.
p: probability of transfer of material

to the person of interest from the
crime scene or from the person of
interest to the crime scene,
persisting and being recovered if
the person of interest were
innocent; Section 5.3.3.3.

p: the number of variables in a
vector, e.g. xT = (x1, . . . xp).

𝜙: the empty set, Pr(𝜙) = 0; Section
1.7.6

pi: probability of presence of i (≥ 0)
groups of material on the person
of interest; Section 6.2.2.

Pr: probability.
Ψ: subpopulations; Section 2.2.2.
𝜋: {𝜋1, . . . , 𝜋n} is a permutation of

{1, . . . , n}; Section 1.7.7.
𝜋1: the prior probability that the

person of interest is the source of
a recovered stain; Section
6.1.4.1.

𝜋i: (i = 2, . . . , n), the prior
probabilities of the alternative
propositions for other members of
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a relevant population other than
a person of interest; Section
6.1.4.1.

Q: random variable corresponding
to quantity to be estimated;
Section 4.6.

q: equals 1 − p where p is the
relative frequency in a sample.

q: quantity to be estimated; Section
4.6.

𝜌: population correlation
coefficient; Section A.3.9.

R: number of items in the
consignment which are illicit;
Section 4.3.2.

r: the probability of relevance:
some, all or none of the
transferred material may be
present for innocent reasons (e.g.
reasons unassociated with the
offender) and some, none or all
for guilty reasons (e.g. reasons
associated with the offender);
some of the material is selected
for analysis. If the selected
material is part of that which was
there for guilty reasons then it is
defined as relevant; Section
5.3.3.2.

s: standard deviation of a sample or
of measured items; Section A.3.1.
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sl: probability that a group of
fragments found on members of a
population is large; Section 6.2.2.

𝜎: standard deviation of a
population; Section A.3.1.

Σ: covariance matrix; Section A.3.9.
t𝜈(P): the 100P% point of the

t-distribution with 𝜈 degrees of
freedom; Section A.3.4.

tn: probability of transfer of n(≥ 0)
items of material to the person of
interest from the crime scene or
from the person of interest to the
crime scene, persisting and being
recovered if Hp is true. Section
6.2.2.

tW: the numerator of the Student’s
t-density (7.10); Section 7.3.1.

t′n: probability of transfer of n (≥ 0)
items of material to the offender
from the crime scene or from the
offender to the crime scene,
persisting and being recovered if
Hd is true; Section 5.3.2.1.

𝜃: probability of at least one match
of evidence of a given frequency
with an identified individual in a
population of individuals
unrelated to the identified
individual and of finite size;
Section 2.5.5.

𝜃: a state of nature, Section 2.8.1.
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𝜃: parameter of a probability
distribution; for a prior
distribution it is treated as a
variable; Sections A.3.7 and
A.3.8.

𝜃: proportion of the consignment
which contains illicit items;
Section 4.3.1.

𝜃: co-ancestry coefficient FST;
Section 6.1.5.

𝜃: point estimate of parameter 𝜃;
Section 4.7.

𝜃∗: optimal decision; Section 4.7.
𝜃0: lower bound for the proportion of

the consignment which contains
illicit items; Section 4.3.1.

Θ: the set of all possible states of
nature; Section 2.8.1.

Θ: set of all possible values of 𝜃;
Section 4.7.

U(c(d, 𝜃)): the utility of the consequence of
decision d for true state of nature
𝜃; Section 2.8.1.

un∣T: transfer probability of n pieces of
evidence, conditional on event T;
Section 5.3.2.5.

V: the value of evidence, the
likelihood ratio; Section 2.4.1.

V s(x): the value of the evidence, the
likelihood ratio for x versus s;
Section 6.1.6.3.
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𝑤j: the weight of the contents of the
j-th item not examined which is
illicit; Section 4.6.

�̄�: mean weight of items not
inspected which are illicit;
Section 4.6.

x: measurement on control
material; Section 7.3.

xi: the weight of the contents of the
i-th item examined which is
illicit; Section 4.6.

x̄: mean weight of inspected items
which are illicit; Section 4.6.

xij: background multivariate data for
sample j in group i, i = 1, . . . ,m,

j = 1, . . . , n; Section 7.6.2.
xijk: background multivariate data for

replicate j of member k in group i,
i = 1, . . . ,m, j = 1, . . . , n, k =
1, . . . , t; Section 7.6.5.

x!: x factorial; when x is a positive
integer, the product of x with all
positive integers less than it and
greater than zero, = x(x − 1)
(x − 2) · · ·2 ⋅ 1; conventionally
0! = 1; Section A.2.1.

y: measurement on recovered
material; Section 7.3.

y: number of items not inspected
which are illicit; this number is
unknown and modelled by a
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beta-binomial distribution;
Section 4.3.

y1: multivariate control data; Section
7.6.

y2: multivariate recovered data;
Section 7.6.

zi: a member of the background
data for univariate data,
i = 1, . . . , k; Section 7.5.

z: number of items inspected which
are found to be illicit; z ≤ m;
Section 4.3.

z: realisation of a random variable Z
which has a standard normal
distribution; Z ∼ N(0,1).(

n
x

)
: the binomial coefficient, the

number of ways in which
x (0 ≤ x ≤ n) items may be
chosen from n (≥ x) in which no
attention is paid to ordering;
equals n!∕{x!(n − x)!}; Section
A.2.1.
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78, 84

foreign fibres group 547
framework of

circumstances 139
function

probability 996

gamma distribution
718, 788, 789,
1025–1026

gamma function 1003,
1025, 1029

multivariate 1041
Gauss, Carl Friedrich

1008

Gaussian distribution
1008

Gosset, W.S. (‘Student’)
1023

graphical model 717,
881

Great Books 284
ground truth 969
gunshot residue 790

Hardy–Weinberg
equilibrium 90,
664

harmonious evidence
600, 609

hierarchical model 810
hierarchy of propositions

490
highest posterior density

365
histogram 956, 975
Hotelling’s T2-statistic

851
hypergeometric

distribution 77,
396, 413, 998–1000

hyperparameter 361
hypothesis 45, 485

and proposition 45,
103

association 555
composite 914
null 327
simple 914
working 327
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1196 Subject Index

hypothesis determination
286

identification 3, 4, 206
identity matrix 1048
improper prior distribution

435
Independence

conditional 607
individualization 4, 206
inferential direction 599
inferential force 599
influence diagram 272,

478
information

background 38
innocent acquisition

555, 556
probability of 567

innocent suspect database
625

innocent until proven
guilty 240

Institutio Oratoria 280
intermediate association

proposition 556,
557, 747

interpretation 101
errors in 180

interval
likelihood 379

intrinsic characteristics
522

intrinsic evidence 700

inverse chi-squared
distribution 444,
1026–1028

inverse gamma
distribution
1026–1028

inverse of a matrix 1048
inverse Wishart

distribution 862,
1041

investigator 491
island problem 685
item

crime 34
suspect 34

Jeffreys’ paradox 337
Jeffreys’ prior distribution

438, 439, 1021
Jeffreys, Sir Harold 1021

kernel density estimation
806, 833–835, 839,
842–844, 872–876

kernel density function
837, 859

kernel function 834
knowledge management

28
known material 33
known source 33

laboratory error 691
law of total probability

90–96
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Subject Index 1197

laws of probability
78–90

legal threshold
899–906

likelihood 361
and probability 354
function 369

likelihood interval 379
likelihood of paternity

768
likelihood ratio 122,

125, 351–357
approximate derivation

of 817
justification for 154
kernel approach 843,

846, 848
Lindley’s approach

820, 846, 848
logarithm 134, 174
multivariate random

effects model
non-constant

within-group
covariance
matrix 862

non-normal
between-source
variation 859

normality
assumption
855, 880

significance probability
333

single value 158

Lindley’s paradox 337
Locard’s exchange

principle 1, 31, 524
log-likelihood ratio cost,

Cllr 961
logarithmic loss 964
logarithmic scoring rule

962
logical imprudence 55
loss

expected 276
logarithmic 964

loss function 248, 464,
465

piecewise linear 466
quadratic 465
squared-error 465
two-action 471

Manhattan distance 907
marginal distribution

800
Markov chain 264
match 43, 232
match probability 588
material

control 41
recovered 41

matrix 1043
addition 1045
covariance 1037,

1043
determinant 1045
identity 1048
inverse 1048
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1198 Subject Index

matrix (contd.)

multiplication 1046
singular 1049
trace 1044
transpose 1044

maximum likelihood
estimate 379

measure of belief 51
measure of dispersion

1009
measure of location

1009
median 987, 1007
missing evidence 742,

768, 769
Bayesian network 771

mixed argument 282
Monty Hall problem 182
multinomial distribution

373, 419, 635, 794,
997–998

multiple propositions
637

Bayes’ factor 643
posterior probability

637
multiplication of matrices

1046
multivariate analysis

849–881
parameter estimation

854, 879
three-level model 876
two-level model 851

multivariate gamma
function 1041

multivariate Normal
distribution 896,
1035–1040

mutually exclusive and
exhaustive events
91

mutually exclusive events
80, 105

negative evidence 741
negatively skewed

distribution 1018
nominal data 35
non-anchored relevant

population 908
non-central t-distribution

440
non-corresponding

features 739
non-Normal distribution

between-source
variation
830–846

Normal distribution
807, 809,
1007–1021

approximation to
binomial
distribution
1018–1021

approximation to
Poisson
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distribution
1018–1021

between-source
variation
814–830

Normal mean
inference for

429–448
interval estimation

445
known variance

431
unknown variance

438
Normal probability

distribution 336
null hypothesis 327
numerical conversion

error 196, 199,
225

odds 101
against 105
and probability 106
definition 105
evens 107
in favour of 105
on 106

offence level proposition
553–562, 568

absence of evidence
768

evaluation 745–774
multiple offenders

554

relevance 773
offender-related database

624
ordinal data 35

paradox
Jeffreys’ 337
Lindley’s 337

parameter 982
parameter estimation

717
partition 91
paternity 756–769
paternity index 353,

756, 759
Pearson correlation

distance 907
People v. Collins

299–302
persistence 593, 713,

811
person of interest 2, 104
personal probability 51
piecewise linear loss

function 466
plausibility of paternity

767
point estimation 716
Poisson distribution

205, 715, 787,
1000–1002

Normal approximation
to 1018–1021

Poisson, S.D. 1000
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pool adjacent violators
algorithm
966–972

population 36–41
appropriate database

619
relevant 293, 588,

625
non-anchored 908
source-anchored

908
trace-anchored

908
super- 197, 450
suspect 625

positively skewed
distribution 1018

posterior density function
362

posterior distribution
362

posterior odds 123
posterior probability 123
pre-assessment

568–593
a practical example

576
of evidence 575
of the case 568

pre-posterior analysis
481

precision 433, 928, 930,
986, 1022

predictive distribution
800, 1003

prevalence 112
principal component

analysis 850
prior distribution 359
prior odds 123
prior probability 123
probability 13, 28, 41,

134
(another match) error

196
law of total 90–96
and likelihood 354
and odds 106
average 315
background 734
classical definition of

57
coincidence

342–350, 846,
848

comparison stage
346

significance stage
347

conditional 82
conditional genotype

523, 656, 661,
662, 939

conditional match
523, 656

conditional profile
662, 692, 696

density estimate 974
density function 1007
distribution 996
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false positive 692, 696
first law of 78, 84
frequentist definition of

57
function 996, 1007
interval 364
laws of 78–90
match 308, 588
model 1007
of a type 1 error 347
of discrimination 308
of non-discrimination

308
of paternity 353, 762
of strong misleading

evidence
933–948

of the causes 290
of the effects 290
personal 51
profile 655, 662
random match 523,

656
second law of 80, 84

for mutually exclusive
events 81

significance
325–341, 1014

standard for
uncertainty 46

subjective 51
betting scheme 64

subjective definition of
60

third law of

for dependent events
85

for independent
events 81, 88

transfer 713,
810–814

DNA 724
micro-traces 728

updating 96–99
probable cause setting

673
probandum 10

ultimate 610
problem of the three

caskets 182
profile probability 655,

662
proper scoring rule 75
proportion

estimation with zero
occurrences 381

inference for
368–391

interval estimation
374

proposition 45, 305,
485, 489

activity level
absence of evidence

741
evaluation

699–744
activity level

519–553
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proposition (contd.)
and hypothesis 45,

103
association 526, 555,

556, 747
intermediate

association 556,
557, 747

key issues 486
multiple 637

Bayes’ factor 643
posterior probabilities

637
offence level

absence of evidence
768

evaluation
745–774

relevance 773
offence level

553–562, 568
source level

evaluation
615–699

scene-anchored
perspective
509

suspect-anchored
perspective
511

source level 499
sub-source 493
sub-sub-source 493

propositions
complementary 103

hierarchy of 490
prosecutor’s fallacy 189,

226, 286, 293
pseudo-maximum

likelihood procedure
838, 840

pure argument 282

quadratic loss function
465

quadratic scoring rule
75, 962

qualitative data 34
quantile 374, 1007
quantitative data 35
quantity estimation

large consignment
461

small consignment
452

quantity estimation
449–464

questioned evidence 32
Quintillian 280

random effects model
853

random man 21
random match probability

212, 523, 656
random mating 664
random quantity 983
random sample 985
random selection 47
random variable 983



�

� �

�

Subject Index 1203

realisation of 984
rarity 798, 844, 857,

881, 909
receptor evidence 31
receptor object 33
receptor person 33
reciprocal transfer 569
recovered evidence 32
recovered material 41
recovery 593, 714, 811
redundancy 614
relative frequency of

occurrence 210
relevance 51, 553, 555,

556, 749, 779, 934
offence level proposition

773
relevance ratio 136, 218
relevance term 557, 567
relevant population 37,

293, 588, 619, 625
non-anchored 908
source-anchored 908
trace-anchored 908

reliability 928, 929
replication 878
reported observation

503
resolution 930
Rhetorica 283
Rhetorica ad Herennium

280
rule

proper scoring 75
quadratic scoring 75

strictly proper scoring
75

sample 70
arbitrary 397
composite 395
convenience 394
simple random 394
with replacement 995
without replacement

999
sample mean 1006
sample size

large consignment
398–412

small consignment
413–420

sample standard deviation
1006

sample variance 1006
sampling

decision analysis 471
sampling distribution

433
sampling inspection

Bayesian network 429
large consignment

420–425, 429
small consignment

425
sampling with

replacement 399
scale of conclusions 598
scene-anchored

perspective 33, 509
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score
similarity 850

score-based model
906–913

scoring rule
Brier 75
logarithmic 962
proper 75
quadratic 75, 962
strictly proper 75, 962

search and selection effect
683

second law of probability
80, 84

second law of probability
for mutually
exclusive events 81

secondary transfer 729
sensitivity 111, 387,

864, 932
significance probability

325–341, 1014
calculation of 326
combination of 338
error of the first kind

330
error of the second kind

330
likelihood ratio 333
P-value 329
significance level 329
type 1 error 330, 347
type 2 error 330

similarity 802, 824,
827, 881, 907, 909

similarity score 850

simple hypothesis 914
simple random sample

394
singular matrix 1049
size-bias correction 667
smoothing parameter

837, 838, 846, 860
Socrates 283
soft evidence 514
source evidence 30
source level proposition

499
evaluation 615–699
scene-anchored

perspective 509
suspect-anchored

perspective 511
source probability error

190, 225, 354
source-anchored relevant

population 908
specificity 111, 387,

932
squared-error loss

function 465
standard deviation 982,

987, 992
standard Normal

distribution 1011
standardisation 1011
statistic 25, 985
statistics 13
status quo 327
strictly proper scoring rule

75, 962
strong evidence 942
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strong misleading
evidence 942

Student t-test 25
Student’s t-distribution

438, 441, 464, 892,
1021, 1025

non-central 805,
1024

with a Welch
modification
803, 806

sub-source proposition
493

sub-sub-source
proposition 493

subjective probability 51
Sudden Infant Death

Syndrome 303
super-population 197,

399, 415, 450
suspect item 34
suspect population 625
suspect-anchored

perspective 33, 511
synergy 613

Talmud 279
tfer 718
third law of probability

87
third law of probability for

dependent events
85

third law of probability for
independent events
81, 88

Thomas Aquinas 284
three caskets

problem of the 182
three-way table 130
threshold value 25
Tippett plot 956, 957,

980
trace 1044
trace evidence 1, 32
trace-anchored relevant

population 908
training database 926
transfer 593, 713,

811
reciprocal 569

transfer evidence 1, 22,
32

transfer material
left by an offender 521
not left by offender

533
transfer of material

cross- 546
innocent 535
reciprocal 548
two-way 546, 548
uncertainty about true

source 543
transfer probability 713,

810–814
DNA 724
micro-traces 728

transfer process 713
transferred particle

evidence 31
transpose 1044
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transposed conditional
fallacy 236

Treatise on Law 284
trial 993

Bernoulli 368, 994
trinomial distribution

998
two trace problem 627
two-action decision

problem 470
two-action loss function

471
two-level model

808–810
two-stage approach 44
type 1 error 330
type 2 error 330
typicality 823, 824,

846

ultimate issue error 190,
194

ultimate probandum
610

unbiased estimator 985
uncertain quantity

983
uncertainty 14
uniform distribution

411
uniform prior distribution

371, 389, 434,
435

uniqueness 206
universal set 65

updating of probability
96–99

utility function 247

vague prior distribution
371, 435

validation database 925
validity 928, 930
value of the evidence

144
variable

random 983
variance 984, 992
variation

between-group 852,
878

within-group 852,
878

weak evidence 942
weight of evidence 134,

351
Welch modification

Student’s t-distribution
with 803, 806

Welch test, modified 25
Wishart distribution

1040–1041
Wishart, J. 1040
within-group covariance

matrix 852, 855,
862, 865

within-group variation
852, 878

working hypothesis 327


