
Information Systems
Solutions:

A Project Approach

Information Systems
Solutions:

A Project Approach Richard L. Van Horn

Albert B. Schwarzkopf

R. Leon Price
All of the University of Oklahoma

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York

San Francisco St. Louis Bangkok Bogotá Caracas Kuala Lumpur

Lisbon London Madrid Mexico City Milan Montreal New Delhi

Santiago Seoul Singapore Sydney Taipei Toronto

INFORMATION SYSTEMS SOLUTIONS: A PROJECT APPROACH

Published by McGraw-Hill/Irwin, a business unit of The McGraw-Hill Companies, Inc., 1221
Avenue of the Americas, New York, NY, 10020. Copyright © 2006 by The McGraw-Hill
Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed
in any form or by any means, or stored in a database or retrieval system, without the prior
written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any
network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers
outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9 8 7 6 5

ISBN 0-07-352436-0

Editorial director: Brent Gordon
Executive editor: Paul Ducham
Editorial assistant: Liz Farina
Senior marketing manager: Douglas Reiner
Media producer: Greg Bates
Project manager: Marlena Pechan
Lead production supervisor: Michael R. McCormick
Design coordinator: Cara David
Media project manager: Matthew Perry
Developer, Media technology: Brian Nacik
Typeface: 10/12 Palatino
Compositor: GTS—New Delhi, India Campus
Printer: R. R. Donnelley

Library of Congress Cataloging-in-Publication Data

Van Horn, Richard L.
Information systems solutions : a project approach / Richard L. Van Horn, Albert

B. Schwarzkopf, R. Leon Price.
p. cm.

Includes bibliographical references and index.
ISBN 0-07-352436-0 (alk. paper)
1. Information technology. 2. Management information systems. I. Schwarzkopf,

Albert B. II. Price, R. Leon. III. Title.
T58.5.V37 2006
658.4'032—dc22

www.mhhe.com 2005053443

About the Authors
Dr. Richard L. Van Horn is President Emeritus of the University of Oklahoma
(OU), Regent’s Professor of Management Information Systems, and Clarence E.
Page Professor of Aviation/Aerospace Studies. He also served at OU as the first
director for the Management Information Systems Division and the Center for
MIS Studies, an industry-university consortium. Before coming to OU, he served
as president of the University of Houston and as a faculty member, associate dean
of the Graduate School of Industrial Administration and provost at Carnegie
Mellon University. He worked on management applications of computers at the
Rand Corporation as a researcher, head of the Management Systems Group, and
codirector of the Management Systems Laboratory.

Dr. Van Horn holds a Ph.D. in system sciences from Carnegie-Mellon Uni-
versity, an M.S. degree in industrial management from the Massachusetts Insti-
tute of Technology and a B.S. degree in industrial administration with highest
honors from Yale University. He received an honorary Doctor of Business from
Reitsumeikan University. Dr. Van Horn has coauthored three books: Automatic
Data-Processing Systems, Business Data Processing and Programming, and Management
Information Systems: Progress and Perspectives. His information technology–related
professional activities over the years include national council member, the Insti-
tute of Management Sciences; Information Systems department editor, Manage-
ment Science; national lecturer, the Association of Computing Machinery; chairman,
Harvard University Visiting Committee for Information Technology; chairman of
the board, the National Center for Higher Education Management Systems; and
vice chairman of the board, EDUCOM.

Professor Albert B. Schwarzkopf received his Ph.D. in mathematics in 1968
from the University of Virginia and spent 15 years in the mathematics depart-
ment at the University of Oklahoma. In 1984, he transferred to the OU College
of Business Administration to help establish the MIS program. Other OU posi-
tions he has held include director of the Division of Management, director of
the Statistics Consulting Laboratory, statistician for the Information Systems
Program Office and, most recently, director of the Telecomputing Degree Pro-
gram. He has been heavily involved in the development and teaching of the
MIS curriculum and has coordinated the Field Project Course for the last seven
years.

Professor Schwarzkopf is a former chair of OU’s Faculty Senate and of the
University Computing Committee. He twice was selected as the outstanding
business faculty member by the student government. His research interests
include decision support and end-user computing in MIS and systems modeling
in production operations management and general business. He has obtained
several grants for research in various facets of MIS and business studies. His arti-
cles have been published in Research Policy, International Journal of Production
Research, Journal of Business Logistics, Journal of Retailing and Transportation
Research, and Communications of the ACM, among others.

v

Dr. R. Leon Price received a DBA from the University of Oklahoma, returned as
a faculty member, and has received several research and service awards as well as
more than 25 teaching awards during his tenure. He was co-PI for an NSF grant
and has received other teaching and research grants. He was involved in devel-
oping the MIS program at OU, developed the MIS field project course in the early
1980s, and has taught the course for over 25 years. He started working in infor-
mation systems while in the U.S. Navy in 1958 and has continued his lifelong love
of information systems for over 45 years. His background with the Federal Gov-
ernment and industry gives him a unique insight to information systems project
development and implementation. His work as a vice president of a consulting
firm provided insight toward outsourcing and prototyping as well as preparing
RFP responses.

Professor Price’s articles have been published in the Academy of Management
Review, Journal of Systems Management, Journal of Microcomputer System Management,
DATA Management, Information Resource Management, Information Executive, Behav-
ioral Science, Journal of Purchasing, Materials Management, and The American Oil and
Gas Reporter. He is a member of the Journal of Microcomputer Systems Manage-
ment Review Board, the Association of Information Technology Professionals, and
the Association for Information Systems; was selected the industry contact for the
International Conference on Information Systems, and served as MIS chairperson
for the Decision Sciences Institute and as the faculty coordinator for the annual
Oklahoma Business Conference.

vi About the Authors

Preface

vii

Information Systems Solutions: A Project Approach addresses the issues involved in
undertaking a project to develop a computer-based information system solution in
response to a problem or requirements posed by a client. Every organization that
exists in our modern society uses some type of information system to conduct its
activities. Many organizations today depend on computer-based information sys-
tems. With the advent of relatively low-cost personal computers and the Internet,
even the local bridge club and the family next door probably make some use of
computer-based information systems. In short, computer-based information sys-
tems exist very broadly across our society.

While computer-based information systems automate or computerize much of
our information handling, these systems themselves are acquired, operated,
maintained, and used by people. Anyone who has acquired a personal computer
and associated software realizes that the acquisition of a solution can involve
many issues. Large projects present a more complex set of questions than smaller
ones, but all projects raise similar issues. The process of acquiring and imple-
menting computer-based information system solutions involves a number of
often-complicated tasks that can require a large amount of knowledge and effort
to complete.

The prevalence of problems associated with information system solutions over
the years led to a broad variety of approaches, methods, and tools. Students at
universities or educational locations tend to learn about information systems in
a set of specialized courses. At a university, the information system curriculum
might include one or more courses on programming, data modeling, process
modeling, infrastructure, project management, and other areas. Other providers
may offer more specialized courses, for example, network and database
administration.

A disconnect exists between the set of separate courses that cover information
system theory, principles, methods and tools, and the knowledge, skills, and
experience needed to acquire an information system solution. To succeed at pro-
viding a “satisfactory” information system solution, a person must understand
how to:

• Integrate knowledge from a wide range of sources that include the standard
information systems topics and also the topics that relate to the content of the
environment for the system, for example, strategy, marketing, finance,
accounting, production, organizational behavior, new product development,
engineering, and science.

• Apply knowledge to solve a problem. Knowing about 10 different data mod-
eling tools can help, but knowing how to select a tool that works and apply
it correctly provides much more help.

While an ideal approach for learning to integrate and apply the knowledge and
skills for information system solutions may not exist, the authors believe that
this book can guide students toward an effective approach.

LEARNING MODEL

Information Systems Solutions: A Project Approach focuses on the issues of integrat-
ing and applying the knowledge and skills required to provide an information
system solution. The basic learning mechanism consists of a student or team of
students using the text as a guide to conduct an information system solution proj-
ect. “Learning by Doing” in a structured project context offers the most satisfac-
tory way yet found to learn about information systems solutions. After teaching
literally thousands of university students in a course built around this text, the
authors have received extensive feedback from both employers and employees
who are former students that indicates the approach works exceptionally well. A
learning model in a graphical format for a project course appears in Figure P.1.

Information system knowledge may cover the following:

• Programming. The concepts and use of a programming language and prefer-
ably several, including Visual Basic or a similar language.

• Database. The concepts and use of entity relationship diagrams, relational
schema, normalization, metadata, and a simple relational database engine, for
example, MS Access.

• Systems. Systems analysis theory, process models, data flow diagrams, cost
benefit analysis, prototypes, and project management.

• Infrastructure. Hardware and software basics, interoperability, and selecting
hardware and software.

Environmental knowledge may cover topics that include:

• Functional. The basics of accounting, economics, human resource manage-
ment, finance, marketing, production, quantitative methods, and strategy.

 Environmental
 Knowledge

Outcomes

Project Course:
Integration &
Application

Project Content

Programming
Database
Systems
Infrastructure

Information
Systems

Knowledge
Functional
Organizational

Learning
Client
Deliverables

Live Project
Case Project

viii Preface

FIGURE P.1

A Learning
Model for a
Project Course

Some projects take place in specialized technical areas where the environmental
knowledge may include areas of science and engineering.

• Organizational. The basics of managerial and organizational behavior.

The project-based learning experience may occur in a “capstone” course or in a
two-semester “systems” course sequence if students have not taken system analysis
and database courses. Students who possess all or most of the information system
knowledge previously described, can either omit or review Chapters 4 and 5 of the
text covering information system modeling tools. Students without a management
background are advised to read an introductory management textbook. Most peo-
ple working in organizations will possess the relevant environmental knowledge.

Project content represents a critical input to an effective project course. To a large
extent, the project content determines the specific activities that the team under-
takes. A good project contains enough data, process, and/or other content to chal-
lenge the student’s people, analysis, design, and project management skills. At the
same time, a good project needs to be small enough to allow the students to com-
plete the project within a semester or other appropriate time.

This book will work with three different project types:

1. Case project. Students receive a document or case that contains all of the infor-
mation needed to carry out the course work in this text. The instructor’s manual
contains cases that an instructor can use if desired. The instructor or an assistant
can take the role of the client during student presentations and other interactions.

2. Passive live project. A project based on an actual organization but without any
or much interaction with the people in the organization. For example, many
Web-enabled applications, such as reservation and catalog sales, systems contain
enough information on the Web to serve as passive live projects.

3. Active live project. The people working in an actual organization, for example,
in a department or branch at a college, university, company, nonprofit, or gov-
ernment office, define the project and interact with the students.

Active live projects may offer some additional learning experiences in that stu-
dents learn to work with a client and deal with ambiguity and change. With a lim-
ited supply of active live projects, an alternative is to assign the same project to all
the project teams and let the teams compete for the best solution. Teams find learn-
ing from competitions stimulating and valuable especially when the judges include
a senior person from the organization.

The project course may produce two outcomes. The primary outcome consists
of student learning. A typical course requires the students to apply more structure
with methods, tools, reports, and presentations than teams would use for any but
the largest projects in an actual work environment. The extra structure enhances
the transferability of the learning experience from small class projects to the wide
variety of projects encountered in the work environment. For active live projects,
the students also produce deliverables for and receive feedback from the clients,
activities that provide important learning experiences. Many organizations use the
systems or the recommendations the teams deliver.

Preface ix

ORGANIZATION AND CONTENT

The organization of this book follows the System Development Life Cycle
(SDLC), a widely accepted project management structure. The materials in the
text are arranged and grouped to appear where and when the students need
them. All the sections contain numerous examples and guidelines for applica-
tion of the text materials to a project. Project management concepts and tools are
applied throughout the book, as they should apply throughout a project.

The first section, “Project and Team Organization,” prepares students to work
effectively in teams, to understand system process and data concepts, and to
manage a project. Even a student working by him- or herself during the course
project can benefit from the material about working in teams because many proj-
ects in the work environment use teams. As noted earlier, students who have
taken systems analysis and database courses can omit or briefly review Chap-
ters 4 and 5. The material contained in Chapters 4 and 5 is applied and refer-
enced often in the remaining chapters.

The second section, “Project Definition,” guides students through interacting
with the client to learn about the organization’s strategy and the features and
constraints for the proposed system. In many situations, the students also will
want to learn about and document the key aspects of the current operation. Since
misunderstandings between analysts and clients plague project work, the text
explains a formal process for the students to review their understanding of the
project with the client.

The third section, “Proposed System,” helps students to identify the data,
processes, and physical and organizational infrastructure specifications for the
proposed system and to document the specifications in both text and graphical
formats. Students face a major decision at this point: select an alternative to
develop during the System Delivery phase of the project. The alternatives may
involve combinations of purchasing or building a solution and different levels
of functionality.

The final section, “System Delivery,” provides guidance for the tasks required
to either purchase or build a solution. Since the build and purchase tasks and
issues differ, the topics are covered in separate chapters. A proof of concept
model—an operational model of the solution—can strengthen greatly client
understanding and confidence. The proof of concept model normally consists of
an actual or demonstration version of a purchased solution or a prototype for a
build solution. The last part of this section covers the tasks associated with com-
piling documentation including testing, training, implementation, and mainte-
nance plans and with providing the final deliverables to the client.

x Preface

Acknowledgments

xi

Professor Price developed and implemented the University of Oklahoma project
course in 1982. Professors Schwarzkopf and Van Horn have evolved and taught
the course over a number of years. More than 3,000 undergraduate and gradu-
ate students have completed the course and over 200 organizations ranging from
large corporations to very small nonprofits have served as clients. Information
Systems Solutions: A Project Approach evolved from these teaching experiences and
from the experience the authors gained working in and managing a large num-
ber of information system projects.

The authors express their thanks and gratitude to the many students and clients
who have identified endless problems and contributed a multitude of good ideas.
The corporate CIOs and other senior IT members of the OU Center for Manage-
ment Information System Studies helped the authors to keep the text consistent
with industry issues and best practices. Our colleagues at the University of Okla-
homa, especially Professors Traci Carte and Jon Jasperson, provided insight on
many issues over the years. OU graduate student Trevor MacCann converted the
design specifications for the GB Video case into a proof of concept model in
Microsoft Access. We thank Dennis Logue, Dean of the Price College of Business
and Robert Zmud, Director of the MIS Division for supporting the project course.

Brief Contents
PART ONE
Project and Team Organization 1

1 Introduction to the Project
Approach 3

2 Organizing and Working in a
Project Team 33

3 Project Management 63

4 Data Modeling 113

5 Process and Object Modeling 155

PART TWO
Project Definition 191

6 Understanding the Client’s
Problem and Organization 193

7 Learning from the Current
Situation 229

PART THREE
Proposed System 253

8 Proposed System
Specifications 255

9 Alternatives, Evaluation, and
Recommendation 297

PART FOUR
System Delivery 337

10 Outsourcing 339

11 System Design 373

12 Proof of Concept 423

13 Project Completion 455

APPENDIX
GB Video Final Report 481

xii

Contents
PART ONE
PROJECT AND TEAM
ORGANIZATION 1

Chapter 1
Introduction to the Project Approach 3

Introduction 4
The Historical Role of Information 4

A Typical IT Project 5

Information System Solutions 5
System Solution Activities 6

Concepts and Models for Information Systems 8

Roles for Information Systems 12

The Information System Life Cycle 12

Adding Structure to System Acquisition 14

Project Management 15
Systems Development Life Cycle 16

Balancing Structure and Flexibility 20

Performing Development Activities 21
Technology-Driven Development 21

Output-Driven Development 22

Data-Driven Development 23

Process-Driven Development 24

Event-Driven Development 25

Object-Oriented Design 26

CASE Tool–Driven Development 26

Structuring Development Activities

in an IT Project 27

Field Project Challenges 27
Summary 28
Key Terms 29
Review Questions 30
Critical Thinking Exercises 30

Individual Exercises 30

Group Exercises 31

References 31

Chapter 2
Organizing and Working
in a Project Team 33

Introduction 33
Team Theory and Principles 35

Building an Effective Team 36
Start Up 36

Team Evolution 36

Team Contract 39
Skills Inventory 39

Assigning Roles 41

Code of Conduct 42

Managing a Team 43
Successful Teams 47

Individual Needs 48

Leadership from a Motivational

Perspective 50

Working in a Team 51
Communication 51

Manager Relations 52

Dealing with Nonperforming Members 53
Removing a Member 54

Resignation 55

Dysfunctional Teams 55

Peer Evaluations 57
Summary 59
Key Terms 61
Review Questions 61
Critical Thinking Exercises 61

Individual Exercises 61

Group Exercises 61

References 62

Chapter 3
Project Management 63

Introduction 64
Project Planning 64

Using the SDLC for Planning 65

The Spiral Model for Project Planning 66

Flexible Project Planning 67

Planning Mechanisms 69

Generating the Plan 73

Statement of Work 80
Project Execution and Control 84

Project Execution 85

Controlling Changes in Operations 85

Controlling Changes in Requirements 86

Monitoring Progress against the Plan 87

xiii

Taking Corrective Action 88

Project Review Points 89

Project Management Tools 90
Project Communication 91

Progress Reports 91

Written Reports 92

Presentations 98

The Final Presentation 103

Summary 104
Key Terms 107
Review Questions 107
Critical Thinking Exercises 107

Individual Exercises 107

Group Exercises 108

References 111

Chapter 4
Data Modeling 113

Introduction 113
Entity Relationship Data
Modeling 114

Model Components 115

Entity Relationship Diagram

Symbols 117

Building a Simple ERD 118

ERD Rules 122

Additional Constructs for ERDs 124

Simplified, Reduced-Form ERDs 130

Conceptual Data Models 131
Metadata 133
Enterprise Data Models 133
Logical Data Models 136

The Relational Model 136

Relational Schema 140

Normalization 144

Structured Query Language 145

Dimensional Models 146

Summary 147
Key Terms 150
Review Questions 150
Critical Thinking Exercises 151

Individual Exercises 151

Group Exercises 152

References 153

Chapter 5
Process and Object Modeling 155

Introduction 156
Process Models 157
Data Flow Diagrams 157

DFD Symbols 158

Building a Simple DFD 159

DFD Rules 162

Creating Hierarchical DFDs 165

Other Process Models 174
IPO Charts 174

Process Hierarchy Charts 175

Object Models 176
Use Case Diagrams 178

Class Diagrams 181

Sequence Diagrams 183

Advantages of Object-Oriented

Design 184

Summary 184
Key Terms 187
Review Questions 187
Critical Thinking Exercises 188

Individual Exercises 188

Group Exercises 189

References 190

PART TWO
PROJECT DEFINITION 191

Chapter 6
Understanding the Client’s
Problem and Organization 193

Introduction 194
Strategic Alignment 195

The Organization Case 196

Determining Alignment 198

The Project Definition Report 202
Project Statement 203

Strategic Alignment 204

Proposed System Features 205

Constraints 207

Scope 209

Examples of Project Definition Materials 210

xiv Contents

Working with the Client 210
Professional Behavior 215

Prepare for a Visit 216

Make a Visit 218

Information Collection Approaches 220
Interviews 221

Group Interviews 221

Documents 222

Observation 222

Surveys and Sampling 223

Summary 223
Key Terms 226
Review Questions 226
Critical Thinking Exercises 228

Individual Exercises 228

Group Exercises 228

Reference 228

Chapter 7
Learning from the Current
Situation 229

Introduction 229
Information Collection 231
Current Situation Narrative Model 232

Description of Current Operations 233

Physical and Organizational Infrastructure 234

Problem Analysis 234

Retention and Change Analysis 234

Correctness and Completeness with Multiple

Representations 239

Current Operation Graphical
Process Model 240

Guidelines 240

Process Model Metadata 243

Current Operation Graphical
Data Model 243
The Project Definition Presentation 247
Completing the Project Definition
Stage 249
Summary 250
Key Terms 251
Review Questions 251
Critical Thinking Exercises 252

Individual Exercises 252

Group Exercises 252

PART THREE
PROPOSED SYSTEM 253

Chapter 8
Proposed System Specifications 255

Introduction 256
Goals and Outcomes 257
Concepts for the Proposed System 258

Problem-Solving Methods 259

Organizational Models 263

Design Approaches 264

Narrative Specifications 266
Narrative Format 266

GB Video Narrative Model 269

Graphical Process Specifications 269
Modified Data Flow Diagrams 269

The Context-Level DFD 275

The First Explosion MDFD 275

Additional Explosions 278

Graphical Data Specifications 278
Metadata Specifications 281
Object-Oriented Design Specifications 282

Use Case Diagrams 287

Class Diagrams 288

Summary 291
Key Terms 293
Review Questions 293
Critical Thinking Exercises 294

Individual Exercises 294

Group Exercises 295

References 295

Chapter 9
Alternatives, Evaluation,
and Recommendation 297

Introduction 297
Making Choices 299
Alternative Solutions 300

Choosing a Design Option 300

Choosing Functionality 301

Choosing a Sourcing Option 302

Choosing Infrastructure 307

Evaluating Performance 308

Describing Alternative Solutions 308

Contents xv

Evaluation 309
Feasibility 311

Risk Analysis 313

Cost/Benefit Analysis 315

Evaluation Metrics 319

Features Analysis 324

An Example of Alternatives 324
The Evaluation Comparison and
the Recommendation 329

The Recommendation 329

Client Approval to Proceed 332

Summary 332
Key Terms 333
Review Questions 334
Critical Thinking Exercises 335

Individual Exercises 335

Group Exercises 335

References 336

PART FOUR
SYSTEM DELIVERY 337

Chapter 10

Outsourcing 339

Introduction 340
The Outsourcing Process 341

Models of Outsourcing 341

Determining Requirements 343

Product Features 344
Functional Features 344

Operational Features 344

Vendor Roles 351
Vendor Features 352

Product/Vendor Selection

Issues 353

Request for Proposal 354
RFP Content 355

GB Video RFP Example 356

Features Evaluation 363
Ranking Methods 363

Identifying Candidate Solutions 365

Assigning Ratings 365

Outcomes 367

GB Video Example of a Weighted

Features Analysis 367

Contracts 367

Summary 367
Key Terms 369
Review Questions 369
Critical Thinking Exercises 370

Individual Exercises 370

Group Exercises 371

Chapter 11

System Design 373

Introduction 374
A System Design Framework 375

Physical Infrastructure 377

Organizational Infrastructure 378

Infrastructure Example 379

Specifying Data Structure 379
Relational Schema 381

Metadata 382

Other Data Schema 386

Specifying Processes 387
Program Structure Charts 387

Physical Data Flow Diagrams 389

Process Model Metadata 389

Module Design 390
Module Specification 391

Pseudocode 392

Metadata for Module Logic 396

TIPOT Charts 399

Dialog-Driven Systems
Design 399

Page Navigation Maps 402

Page Action Maps 404

Page Navigation and Action Map

Metadata 407

Data Warehouse Design 408
Dimensional Models 408

Data Warehouse Metadata 411

The Extraction-Transform-Load

Process 411

Summary 418
Key Terms 419
Review Questions 419

xvi Contents

Critical Thinking Exercises 420
Individual Exercises 420

Group Exercises 420

References 422

Chapter 12

Proof of Concept 423

Introduction 424
Types of POC Models 425

Package POC Models 426

Prototype POC Models 428

Using a POC Model 429
Evaluating Operational Feasibility 429

Evaluating Design Parameters and

Compatibility 430

Prototype-Based Design 431
Building a Prototype 434

Choosing a Focus 434

Making Initial Design Decisions 436

Generating Code 437

Schedules and Assignments 437

Coding and Design Specifications 438

A GB Video Prototype 440
Creating the Tables 441

Coding the GB Prototype 445

Summary 452
Key Terms 453
Review Questions 453
Critical Thinking Exercises 454

Individual Exercises 454

Group Exercises 454

Chapter 13

Project Completion 455

Introduction 455
Testing Plans 456

Desk Checks 457

Walk-Through Tests 457

Design Specifications Walk-Through Tests 459

Operational Testing 459

Post-Implementation Tests 460

Documentation Clearance 460

Implementation 461
The Implementation Plan 461

Implementation Strategies 462

Training 465

Maintenance Plan 469

Documentation 469

System Controls 471

Disaster Plans 471

Post-Implementation Audit Plan 472

GB Video Implementation Plan 472

Closing the Project 474
Summary 474
Key Terms 478
Review Questions 478
Critical Thinking Exercises 479

Individual Exercises 479

Group Exercises 479

Reference 479

Appendix

GB Video Final Report 481

Index 511

Contents xvii

Part One

Project and Team
Organization
Over a lifetime, a person will participate in thousands of projects. A project con-

sists of a problem to be solved in a defined time period. Projects can include

such activities as buying a car, building a house, or choosing a college to attend.

Sometimes people carry out projects by themselves; at other times, several

people work together in a team on the project. As projects grow larger, the use

of teams becomes more common.

This book addresses the issues involved in finding solutions to information system

problems. A person in an organization identifies an information system problem

and wants a solution. Often, the organization sets up a project to find a solution

and assigns a person or a team of people to do the work. The project starts, the

team works on finding a solution, and the project ends when the team recom-

mends or implements a solution or when the available time or other resources run

out. The five chapters in this section address some key areas of underlying skills

and theory for finding information system solutions including organization theory

for teams; project management; and data, process, and object modeling.

Chapter 1 explores the concepts and issues of using a project to solve an infor-

mation system problem. Most learning takes place in a one-way, single-discipline,

focused context. The learner strives to acquire specific facts about a specific topic,

for example, data modeling, network design, or the Java programming language.

While this kind of learning works well for many subjects, problem solving in a

team and project context requires additional skills. These skills can include identify-

ing and planning activities, recognizing the specific knowledge needed from a

wide range of topics at each point in the project, actually applying the integrated

knowledge to work toward a solution, monitoring the progress of the effort,

changing direction as required, and working effectively with other people.

Chapter 1 builds the framework for learning to work in a project context.

Chapter 2 examines in depth the issues and skills for working on a project as

part of a team. A project team consists of two or more people jointly responsible

for reaching the goal of a successful project. Teams can reduce the time needed

to complete a project and can improve quality by bringing a wider range of

experience and providing a potential way to use the best strengths of each team

member. In most field project situations, teams are self-managed, which means

the team works out internal roles and responsibilities and establishes performance

expectations. Understanding and applying organization theory and principles can

help the team to function better. The team may create a skills inventory for each

member and create a written team contract to help build trust and facilitate

team operation.

Chapter 3 addresses the issues critical for managing projects. Project manage-

ment involves the functions of planning, control, execution, and communication.

Because most organizations and many teams find projects difficult to manage,

the chapter covers the specific tools and approaches needed for each of the

project management functions. Two project management models discussed include

the System Development Life Cycle and the Spiral models. Automated or computer-

assisted project management tools are often used to facilitate carrying out proj-

ect management functions in an effective and timely manner. Although this

chapter concentrates on project management, the reader will find various con-

cepts and tools of project management throughout the book, just as they should

appear throughout a project.

Chapters 4 and 5 review structured modeling concepts for the data and

process content of information systems. Information systems process data to

obtain useful information and other outputs. In other words, data and processes

represent key ingredients for finding solutions to information system problems.

The structured modeling approaches reviewed in Chapters 4 and 5 help the ana-

lyst to identify and understand the data and process requirements for an informa-

tion systems solution. Data, process, and object models are applied throughout

the rest of this book. Readers who are familiar with data, process, and object

models may wish to briefly review these chapters; readers without previous expo-

sure to these models may benefit from more intensive study of the chapters.

1. Introduction to the Project Approach

2. Organizing and Working in a Project Team

3. Project Management

4. Data Modeling

5. Process and Object Modeling

2 Part One Project and Team Organization

Chapter One

Introduction to the
Project Approach
Chapter outline

3

Introduction

The Historical Role of Information

A Typical IT Project

Information System Solutions

System Solution Activities

Concepts and Models for Information

Systems

The Component Model

The Content Model

The Technology Level of Models

Roles for Information Systems

The Information System Life Cycle

System Acquisition

System Use and Refinement

Adding Structure to System Acquisition

Project Management

Systems Development Life Cycle

Project and Team Organization

Project Definition

Proposed System

System Delivery

Balancing Structure and Flexibility

Performing Development Activities

Technology-Driven Development

Output-Driven Development

Data-Driven Development

Process-Driven Development

Event-Driven Development

Object-Oriented Design

CASE Tool–Driven Development

Structuring Development Activities

in an IT Project

Field Project Challenges

Summary

Key Terms

Review Questions

Critical Thinking Exercises

Individual Exercises

Group Exercises

References

4 Part One Project and Team Organization

INTRODUCTION

Every organization in modern society, whether part of business, government,
school, or a not-for-profit or social group, requires an information system to func-
tion. Information systems enable organizations to detect and record status and
events, both inside and outside the organizations, and to respond as appropriate.
The information system at the local breakfast club may operate mostly through
informal verbal communication among the participants. A large airline reserva-
tion system may utilize a number of large computers, thousands of user work-
stations, and extensive electronic communications. Many information systems, for
example, systems for universities, utilize both computer-based components (e.g.,
accounting, budgeting, payroll, personnel, etc.) and noncomputer components
(e.g., courses, textbooks, procedure manuals, information desks, etc.).

The Historical Role of Information
Information systems for organizations build on a long history. Society, civiliza-
tion, and life exist in the presence of information processing. Whereas one often
hears the expression information age used to describe the last 50 years, in truth,
the information age began long ago with the first living organisms. Living things
use information processing to survive and thrive, for example, to find food and
to avoid danger. The most versatile information processor the world has ever
known is a human being.

People use a wide range of information technologies (IT), that is, mechanisms
for information processing. As is true in many disciplines, people mimicked the
information processing mechanisms of nature by developing language: the use of
symbols in an organized pattern intended to communicate meaning. Early lan-
guages used both pictures and sounds for the symbols. Using language, people
could communicate with each other in much the same way that the cells in their
bodies communicated. With information processing via language, organized
groups of people, such as schools, families, tribes, cities, and nations, developed.

As the information processing between humans evolved, larger vocabularies
and written forms for languages developed. Writing overcame two major barriers
to information processing: time and distance. Written messages could be preserved
over time and carried over great distances. After several thousand years of the use
of writing, printing was invented in the 15th century. The major significance of
printing came from reducing the cost of information processing: Large numbers
of people could now afford to access the accumulated wisdom of society.

Several hundred years later, in the 19th and 20th centuries, people learned to
transmit symbols at the speed of light using electrical pulses, first with the tele-
graph and then with telephone, radio, and television. In 1950, the emergence of
the electronic digital computer started a new round of advances in information
technologies that continues today at an ever-increasing pace. For example, the
Internet moved from its beginnings to near universal use in a decade. Half a cen-
tury after the invention of electronic computers, electronic information tech-
nologies impact almost every aspect of our lives.

Our civilization and our lives depend on a history of advances in information
technologies, including languages, writing, and the use of electronic technolo-
gies for processing information and for communication. Forecasting the future
remains both difficult and uncertain. However, the history, universality, and
power of information processing and future advances to it most likely will con-
tinue to position information systems as a significant factor in all of our lives.

A Typical IT Project
An information technology (IT) project is a set of related activities with specific
beginning and ending times undertaken to create an information system solu-
tion for an organization. The acquisition of a computer-based information sys-
tem solution may require a substantial investment in facilities, equipment, and
people. This text provides a project approach to acquiring a computer-based
information system solution to solve a problem for an organization.

During a typical project, the team of people responsible for the information
system solution might perform the following activities:

• Organize the team and the project.

• Meet with the client and users to gather information about the project.

• Define the project—its scope, goals, constraints, possible solutions, develop-
ment plan, and so on.

• Review the project definition with the client.

• Obtain client agreement on the work the team will perform.

• Determine detailed requirements for a solution.

• Generate and evaluate alternative solutions.

• Work with the client to select a recommended solution.

• Design the solution, build a prototype of it, and/or design the specifications
for the purchase of a solution.

• Prepare implementation, training, audit, and maintenance plans.

• Deliver the recommended solution to the client.

In practice, project activities will vary greatly depending on the nature of the
project, the client, the team, and the environment. For some student projects, the
instructor or a teaching assistant may play the role of the client.

INFORMATION SYSTEM SOLUTIONS

Computer-based information systems in organizations do not just appear; peo-
ple either formally or informally design and procure or build them using analy-
sis and design skills and information technologies. Only a few years ago, most
organizations built most of their solutions in-house using a staff of analysts,
programmers, and other technology specialists. Today, however, most organi-
zations purchase some and often many of their information system solutions
from vendors.

Chapter 1 Introduction to the Project Approach 5

6 Part One Project and Team Organization

The processes of analysis and design that lead to a new or modified infor-
mation system solution are known as systems development or systems analy-
sis and design. An information system solution replaces a current situation
with a new or modified one. The current situation is the set of conditions that
currently exist in the area of the organization under study. The current situation
may or may not involve a current computer-based or manual information sys-
tem. For example, a project may focus on a new system to perform functions
that do not exist in the current situation.

System Solution Activities
The system solution process changes the information processing in an organiza-
tion. An organization is any collection of people, processes, and other resources
working together to accomplish a purpose or a set of functions. Organizations
include business firms, nonprofits, government, and social groups. The changes
in the information processing of the organization may affect computer programs,
equipment and facilities, data stores, data input and output displays, the way
that people do their jobs, products, markets, and the viability of the organiza-
tion. Change or anticipated change always brings the potential for unexpected
problems and disruptions.

A client is a person or group of people who represent the organization that will
use the solution or new system. A client with control over funding and accepting
a solution often is known as the sponsor for the project or system. The client may
or may not be a user of the system and may or may not possess in-depth knowl-
edge and skills for system development. Often a client will work with one or more
IT staff people or system analysts who possess specialized skills for finding infor-
mation system solutions. While on occasion one person working by him- or her-
self may develop a system, much systems development work utilizes teams.
Teams can include IT staff, sponsors, clients, users, third-party consultants, and
other specialists. The teams may identify projects, develop specifications for the
proposed system, evaluate alternatives, acquire a solution, implement the system,
and perform a myriad other activities as part of the solution process.

A team may follow a number of approaches to acquire a solution. From 1960
to 1990, teams generally built a solution, that is, developed the specifications and
wrote the programs. At present, many teams and clients choose to purchase a
solution. That purchase may involve (1) an existing package, (2) an information
processing service, (3) a design and build service, or (4) some combination. The
various ways to acquire a solution are known as solution classes. Each solution
class will encompass a number of alternative solutions.

In many organizations, a subunit of the organization holds the responsibility
for all or part of the acquisition, operation, and modification of information sys-
tems. This subunit may operate under the title of the Information Technology
Group (IT), the Information Systems Group (IS), or a variety of other titles. The
team members working on a project report to a manager, the person who has the
responsibility for the team. The manager may work in the IT group or a functional
group, such as finance, marketing, production, or sales. In a matrix organization,
the team may report to several managers. An organization may contract for some

or all of the system solution work with a third-party vendor, a group outside the
organization with specialized skills or products.

The system solution activities require knowledge and skills in many areas.
What is needed is functional knowledge of such areas as finance, marketing, or
production; technical knowledge of hardware, software, and related technolo-
gies; such design and development skills as analysis, synthesis, and problem
solving; and such interpersonal skills as communication, motivation, and team
building. People who wish to carry out system development activities face the
challenge of ongoing reeducation. By most estimates, the knowledge and skills
of a system analyst has a half-life of three years or less. In other words, half of
their existing knowledge and skills lose relevance after three years.

The system solution process results in deliverables, which are products or
outputs that are delivered to the client. The most important deliverable is the
computer-based system that meets the client’s objectives. Most projects pro-
duce other deliverables. The client and the analyst may work together to define
the required deliverables. Deliverables in a project might include such elements
as the following:

1. A contract and/or plan for the project—tasks, resource assignments, time
frame, budget, and more.

2. A project definition—the strategic framework for the project; functions, fea-
tures, and constraints for the proposed system; and an analysis of the cur-
rent operations and problems.

3. Reviews of progress with the client.

4. Conceptual data and process requirements for a proposed system.

5. Logical and physical specifications for the proposed solution.

6. Evaluations of alternative solutions and a recommended solution.

7. An operational proof of concept model.

8. Computer programs, a package program, or a procurement contract for the
recommended system.

9. Infrastructure specifications for the recommended system.

10. Testing plans.

11. Implementation and training plans.

12. Final system acceptance plan.

13. Post implementation review or audit plan.

14. Maintenance plan.

The system solution process often has a broad and major impact on the orga-
nization. The project, independent of outcome, will incur costs. A successful effort
may bring benefits, including reduced costs, increased sales, and revenues; an
improved competitive position of the organization, and so on. An unsuccessful
effort can incur large costs with little or no benefit and may reduce the compet-
itive advantage of the organization. Because a project to acquire a new system
can involve high complexity, high risk, and high benefits, the management of the
project activities in the solution process attract and deserve thoughtful analysis

Chapter 1 Introduction to the Project Approach 7

8 Part One Project and Team Organization

and execution. The discipline of project management consists of a body of
knowledge and a set of tools for managing projects.

IT projects compete for resources with other IT projects and with many such
different kinds of projects as marketing campaigns, new plant and equipment,
and others. The senior managers of an organization want to fund projects that
contribute to the strategic goals of the organization, perhaps profits, sales
growth, or customer service. Organizations often have ranking processes that use
return on investment, net present value, and similar measures to identify accept-
able projects. Once a project is accepted and started, the organization may hold
periodic reviews to decide actions for the next period. These actions can include
expanding, continuing, reducing, or canceling the project. In short, projects may
compete for resources over their entire existence. Resource and organizational
constraints often require the team to follow a less than ideal development
approach. The team may have to reduce the project scope or leave out functions
to meet cost and time constraints. Team participants also may not pursue some
promising alternatives because the client is not interested in them.

In many cases, the client and senior managers assign a budget and other
resources to a project with little or no involvement by the team members. In
other cases, a project team is asked to prepare a proposal for the project. In all
cases, the team members need to think about strategic alignment—the rela-
tionship of the project to the values of the organization. The team members make
many decisions every day, some of which may significantly impact the value of
the project. A team that understands the strategic alignment of their project can
make better decisions, can help the project to retain management support, and
can increase the likelihood of a successful outcome.

Concepts and Models for Information Systems
The fundamental aspects of an information system are data, processing, and
actions. Data consist of symbols arranged in a structure, format, or pattern. Peo-
ple use characters, numbers, and punctuation to communicate written data and
use sounds for spoken data. Computers use electrical pulses to transmit data.
Although the sets of pulses in a computer mean little to most people, the com-
puter follows a fixed structure to recognize sets of pulses as characters and num-
bers. When the sender and receiver of data can agree that the data represent a
particular thing or construct, then the data communicate information or meaning.
For example, 13578, 2 is data. When placed in context, for example, “Video num-
ber 13578 has status 2. Overdue,” the data have meaning and provide infor-
mation. The goal of an information system is to transform or process data into
information that will allow the system and/or the user of the system to take
appropriate actions. The system or the user can use the information about the
status of video 13578 to take an action, such as send an overdue notice to the
person who rented the video. In summary, an information system collects, stores,
retrieves, and transforms data into information, data that are useful for making
decisions or taking actions.

A number of different models or representations can define or characterize
information systems. A representation consists of symbols, conventions, and rules
to convey meaning about and allow manipulation of a situation. Macro represen-

Figure 1.1 shows a graphical representation of the component model for an
information system. In the component or flow model, data flow from one com-
ponent to another is shown by the arrows. A number of widely used tools—data
flow diagrams, for example—follow the structure of the component model.

The Content Model

For systems analysis and design purposes, the content representation of an infor-
mation system shown in Figure 1.2 can provide useful structure and guidance.
In the content model, an information system contains data, process, physical
infrastructure, and organizational infrastructure. Each of the content areas inter-
acts with all the others through the interconnections created by the system. As
shown in the diagram, a specific system may contain within its boundary only
part of the data, process, and physical and organizational infrastructure that

Chapter 1 Introduction to the Project Approach 9

Input
Collection

Output
Presentation

Output Data
& ActionsInput Data

Create, Delete, and
Update Data

Retrieve
Data

Processing

Data
Storage

FIGURE 1.1
A Component
Model of an
Information
System

Organizational Environment

Data

Organizational
Infrastructure

Process

Physical
Infrastructure

Information
System

FIGURE 1.2
A Content
Model of an
Information
System

tations of information systems provide a broad high-level view. The component and
content models offer two useful macro representations of information systems.

The Component Model

The traditional component or flow model views an information system as a set
of components or subsystems that work together to perform such functions as
collect or record the input data, process the data, store and retrieve data, and
produce output data. The component representation follows the physical struc-
ture of an information system. In an actual system, the physical infrastructure
consists of hardware and software components that execute the input, process-
ing, storage, and output functions.

10 Part One Project and Team Organization

exists in the overall environment; the rest of the parts are external to the system,
that is, outside the boundary.

The data section of the model describes the data structure for the system—
the things or entities about which the system collects and uses data, the attrib-
utes of the entities, and the relationships between the entities. Most systems use
only part of the enterprise data structure as shown in Figure 1.2, and several sys-
tems may use the same data. Entity relationship diagrams (ERDs) and relational
schemas provide graphical tools to analyze and specify data structure in the con-
tent representation of an information system. A number of texts cover data mod-
eling; for example, see Post, 2005 or Hoffer, Prescott, and McFadden, 2005.

The process section describes the processes that collect the input data, trans-
form the data, store and retrieve the data, and generate outputs. Data flow dia-
grams (DFDs), function hierarchy diagrams (FHDs), and other process models
or the computer programs themselves can represent the process content for a
system. In good design, process and data models work together, and some rep-
resentations of systems combine data and process. In DFDs, the analyst can use
an ERD data model to define the data content of the data stores and then show
processes and data flows in the process model. In object representation, objects
describe both the data and process content of a system. Process models are cov-
ered in systems analysis and design texts, for example, see Whitten, Bentley, and
Dittman, 2005 or Hoffer, George, and Valacich, 2005. For a discussion of object
models, see Fowler, 2004 and Schneider and Winters, 2001.

The infrastructure of an information system defines all of the content other
than data and process that is part of the system: computing facilities, buildings,
people, organizations, and so on. For a discussion of infrastructure, see Burd,
2001. The physical infrastructure includes such things as the buildings or facil-
ities, computing hardware (servers, workstations, networks, etc.), system soft-
ware, operating systems, programming languages, and database engines that are
used by the system. Parts of the infrastructure may support a number of sys-
tems. No standard graphical representations similar to ERDs or DFDs exist to
model architecture. Projects can use variations of the component model to pro-
vide a pictorial or graphical representation of the infrastructure components and
the network links. For an IT project, the team identifies the current infrastruc-
ture early in the project and later may recommend changes in the infrastructure
to support the proposed system.

The organizational infrastructure defines the people, policies, and procedures
that interact with the system. The overall strategy and policies for an organiza-
tion form part of the organizational infrastructure for all the systems within the
organization. For a video rental system, the organizational infrastructure includes
the clerks who process the video rentals, the manager of the clerks, and the poli-
cies and procedures that apply to rentals. Issues include performance, authority,
and responsibility for the system, for example, who specifies the requirements
and/or pays for the system, how the system affects the functions and outcomes
for the enterprise, who are the users, to whom do they report, who has access to
and/or can change data, and who can approve or change the system. During
implementation of the new system, training may represent a key and expensive

organizational issue. Standard representations exist for some of these relation-
ships, for example, use cases, organization charts, and access control lists. Design
and development tools, data dictionaries, and other system tools include provi-
sions for including some organizational content.

In most education and training programs, separate courses cover the theory
and applications in each of the content areas. The curriculum may contain one
or more database courses, systems analysis courses, programming courses, infra-
structure courses and such organizationally focused courses as strategy, organi-
zational behavior, ethics, business law, finance, accounting, marketing, production
and operations management. An IT project exercise requires the project team to
integrate the theory and applications from each of the relevant content areas to cre-
ate the new information system solution.

The Technology Level of Models

Information system representations also exist at different technology-specific lev-
els. Standard levels include conceptual, logical, and physical. Different textbooks
provide differing definitions for the meaning of these models. This book uses the
following meanings.

• Conceptual models focus on the underlying content of an information sys-
tem, for example, the data and processes in the system, independent of any
technology or class of technologies. A use case, entity relationship diagram,
or data flow diagram can represent a conceptual model since these diagrams
need not imply the use of a particular technology. With conceptual models,
technology does not place any constraints on the design.

• Logical models exist in the framework of a general class of technology, for
example, data in the form of a relational database or processes in a procedural
framework. Technology places constraints on “correct” logical models, for
example, a relational model may not contain multivalued attributes or many-
to-many relationships. A relational schema and a page navigation map repre-
sent logical models because they imply a class of technology, that is, a relational
database and a Web-based application.

• Physical models include specific technologies, such as an Oracle database
engine on a Hewlett-Packard server running UNIX or a Web site using Java.
Physical models may include specifications for database engines, computer
processors, input, output and storage devices, networks, operating systems,
application programming languages, file partitioning, and more. Technology
places many constraints on “correct” physical models, for example, interop-
erability, data formats, file sizes, and so on.

The dividing line between conceptual, logical, and physical models is not
always clear or clean. For example, consider an ERD developed for an appli-
cation on a relational database. While the ERD begins as a conceptual model,
it becomes a logical model when the author includes specific features of the
relational model, such as foreign keys. A process model for a system that
includes operations specific to one vendor’s database engine becomes a phys-
ical model.

Chapter 1 Introduction to the Project Approach 11

12 Part One Project and Team Organization

Roles for Information Systems
Organizations explicitly or implicitly apply the various information system mod-
els to create a wide variety of information systems. A one-person business may
use an informal information system developed by the proprietor over years of
experience and operated with the person’s memory and a notebook or two.
Large companies may use computer-based information systems with written
policies and procedures, input forms, output reports, and complex computer pro-
cessing programs. Just as people use their information processing abilities to see,
hear, read, walk, talk, and carry out many other daily activities, organizations
use information systems to direct and coordinate their actions, including order-
ing goods, serving customers, scheduling and controling operations, arranging
shipping, sending bills, and performing many other activities.

Information systems encountered in IT projects will play differing roles in the
organization. Many IT projects involve administrative systems that support func-
tional areas, for example, finance, accounting, payroll, and personnel systems. Oth-
ers may focus on decision support systems that provide information to answer
“what if” questions for analysis and forecasting. Some projects involve operational
systems that handle physical activities, for example, order processing, making
reservations, taking inventory, maintaining production control and shipping.

Many IT projects relate to selling products or services to customers. For exam-
ple, when a retail business customer makes a purchase, the sales clerk may scan
the identifier on each item of merchandise electronically to enter into the com-
puter system the identification numbers of the items being purchased. The com-
puter system uses the number to retrieve the name and current price of each
item and then computes a total, adds taxes, and prints a sales receipt for the cus-
tomer. At the same time, the computer system updates inventory, reducing the
quantity on hand by one for each of the items sold and transferring the amount
of sale and tax data to the accounting system. An IT project might create the
sales system or create a decision support system to use data generated by the
sales system.

IT projects can utilize a range of information technologies. Many IT projects
focus on creating and using a database or a data warehouse. Recently many proj-
ects have involved the design and use of an Internet Web site. The Web site proj-
ects may link to a database. Some IT projects deal with processing transactions,
including sales, purchases, payments, and more. Transaction processing system
projects can present difficult challenges for completion within a semester and
require careful scope bounds and planning.

The Information System Life Cycle
In common with most other mechanical and living systems, information systems
experience a life cycle. They emerge, flourish, age, and eventually cease to exist.
Information systems in organizations represent economic investments because
the decision to create an information system is a decision to spend money with
the expectation of future benefits. As illustrated by Figure 1.3, the information
system life cycle consists of two major phases: (1) system acquisition and (2) sys-
tem use and refinement. Each stage is shown in the figure and is described below.

System Acquisition

Acquisition starts with recognition of a perceived need for information and/or
processing capabilities within the organization that are either new or a modifi-
cation of those already in use. The desire for a new or modified system may
result from a recognition of mistakes or problems with the current system or
from changes in perceptions, people, organizations, products, markets, cus-
tomers, competition, laws, or technologies that generate the desire for the new
features. Whatever the reason, the recognition of the perceived need for a
change marks the beginning of the information system life cycle. Acquiring a
new system includes the steps of determining requirements and designing,
building or purchasing, testing, and implementing the new information system.
The organization hopes that the solution process will reach the start-up point:
the time at which the new system begins to operate and possibly to generate
benefits.

As noted, the organization initiates the solution process in anticipation of
improving performance with respect to its strategic mission and goals. The acqui-
sition of a system may take from several hours to a number of years and incur
costs for people, hardware, software, and facilities. In general, no benefits accrue
until the system begins to operate. Marginal net benefits, which are the marginal
benefits minus marginal costs for each small time period of operation, may
remain negative for some time after start-up until marginal benefits exceed the
marginal costs. As a result, total net cost, or the negative value of the total net
benefits for the system, will reach a maximum value at or sometime after the
end of the acquisition period as shown in Figure 1.3. The time period of highest
total net costs also represents a period of high risk in that a decision not to pro-
ceed with the system may result in a large loss for the organization.

Chapter 1 Introduction to the Project Approach 13

FIGURE 1.3
The Informa-
tion System
Life Cycle

Recognition
of Need

Start Up Payback
Period

Use and RefinementSystem

Acquisition

Cumulative

Net

Benefit

0

Shut
Down

Positive

Negative

Time

14 Part One Project and Team Organization

System Use and Refinement

During the use and refinement phase, the organization uses the new informa-
tion system. While the system operates, it may generate benefits, value, or revenues.
Most systems also undergo significant refinement or modification after the
period of use begins. The costs of refinement and modification generally exceed
the original solution cost by a factor of two or more. Systems are created with
the intent or hope that the total value or benefits generated by the system will
exceed the total costs of solution, operation, and modification. Some clients focus
on the payback period, which is the time at which the total benefits equal the
total costs. Other clients may wish to find the system alternative that will yield
the largest possible net present value (NPV), the time value of money adjusted
sum of benefits minus costs over the life of the system or the best return on
investment (ROI).

Although designers often plan for a new system to operate for three to five
years, actual systems may remain in use for anywhere from a day to 20 or more
years. This disparity between the planned and actual lifetime for systems led to
the infamous Y2K problem. System designers assumed that their solutions would
be shut down and replaced long before the year 2000 arrived so they allocated
only two digits for the Year field. Unfortunately, many of these systems still
operated as the year 2000 approached and had to be modified or replaced at
great expense.

Eventually, the net marginal value of a system (1) will decline to the point
where it produces little or no net benefit because the system outputs no longer
are needed or effective or because further operation is too expensive; and/or
(2) a possible replacement system is expected to produce larger net benefits.
Changes in people, technologies, markets, products, law and regulation, compe-
tition, or the environment can cause the net benefit produced by the system to
decline toward zero or below that of possible alternatives. If the system still pro-
duces a small net benefit, the organization may continue to operate it for some
time until a replacement system is ready to operate. However, even without a
replacement, if the system starts to incur a negative net benefit (that is, if the mar-
ginal costs of continuing to operate the system exceed the marginal benefits), the
system should be shut down immediately. In many organizations, systems with
no positive net benefit continue to operate because no one takes the time to ana-
lyze the situation and shut them down.

Adding Structure to System Acquisition
Because system acquisition is complex and demanding, people involved with it
have devised and experimented with a number of approaches. As of yet, no one
has found the ultimate approach. Most current IT projects use a variety of
approaches, methods, and tools. The nature and composition of the mix has
evolved over time in response to learning, new organizational demands, and new
technologies. Often the components of the mix are learned as separate subjects,
for example, database analysis, process analysis, infrastructure design, business
communications, and financial analysis. In an IT project, the team must integrate
the separate components to produce the set of deliverables. For all of the above

reasons, deciding on a reasonable set of approaches, methods, and tools for a
specific project presents a major challenge.

When people began to build computer-based systems in the mid-1950s, they
applied the just-do-it model, customized and largely informal approaches
invented by themselves or picked up from a colleague. The people involved built
systems with whatever plans or steps they thought were appropriate. They
might think about a problem, discuss it with colleagues, write part of a program,
go out and ask questions, and then write some more—in short, do whatever
seemed right at the time. Designers built many successful systems with this
approach, and some continue to build many systems this way today. The just-
do-it approach offers a high level of flexibility. Talented, experienced system peo-
ple can and do tailor their activities to fit the situation at hand with a high level
of effectiveness.

As organizations attempted to build larger, more complex systems in the
mainframe computer environments, the just-do-it approach sometimes led to
problems. These disappointing results caused teams to search for more organized
approaches to system development that might reduce costs and problems. All of
the new approaches shared the common feature of adding structure which
included step-by-step procedures and rules sometimes embedded in graphical
representations, to the system development process. The intended benefits of
adding structure to the system solution process are to increase benefits and
reduce risk by (1) benefiting from the accumulated wisdom and experience of
previous design efforts; (2) gaining consistency; (3) reducing the skill, expertise,
and luck required for a favorable outcome; (4) improving the effectiveness of the
new system; and (5) reducing the future costs of system maintenance. However,
these structured approaches can reduce the flexibility that works so well for
highly skilled, experienced people in the just-do-it approach.

Analysts can apply structure to two broad areas in system solution. The first
encompasses project management or the planning and management of the solu-
tion process—adding structure to select and identify project tasks, to combine
them with resources in a time frame, to monitor progress, and to take corrective
action. The second focuses on the performance of development activities, adding
structure to the methods and processes of systems analysis and design.

PROJECT MANAGEMENT

The act of acquiring a new system requires a broad set of planning and man-
agement skills and activities. The Project Management Institute defines project
management as “the application of knowledge, skills, tools and techniques to
project activities to meet project requirements” (PMBOK Guide, 2004). Project
management focuses on meeting client expectations within the available time
and cost constraints. Project management starts with the initiation of a project;
covers such topics as planning, executing, and monitoring of project activities;
provides for taking corrective action as needed; and continues until the end or
closing of the project.

Chapter 1 Introduction to the Project Approach 15

16 Part One Project and Team Organization

Project management is both a very old and a very new discipline. People have
managed projects for thousands of years to construct roads, buildings, and for-
tifications and to conduct battles, wars, hunting expeditions, and other activities.
Modern project management was influenced by such factors as the development
of the Gantt chart and the Program Evaluation and Review Technique (PERT).
Information system project management underwent rapid change in the 1970s
with the arrival of structured development approaches and has continued to
evolve at a rapid rate.

Although all projects involve some form of project management, the effec-
tiveness of the management varies. With just-do-it approaches, the project activ-
ities that were undertaken, the order of the activities, and the quality of the
deliverables varied widely from project to project. As noted, team members
might begin by trying to write a program. The team might learn that it did not
know all of the requirements or even the definition and boundaries of the prob-
lem. Several people might duplicate the same work while no one worked on
other parts of the project. Further into the project, the team members might learn
that the new programs did not include a number of features that the clients
wanted and liked. Projects might fall behind schedule or the cost might exceed
the budget. Sometimes the computing equipment selected before the design of
the programs turned out to be unsuitable for the final design. New systems were
installed without adequate testing. A system that works correctly might be very
expensive to modify and maintain. These kinds of experiences convinced a num-
ber of people that information system project management could benefit from
more structure.

Systems Development Life Cycle
The systems development life cycle (SDLC) adds structure to the development
process by (1) defining a set of uniform, explicit steps to be performed for all
projects and (2) identifying a development time period that begins with identi-
fication of a problem that the new system might solve and continues through
the design and implementation. In short, the SDLC concept matches the life of
the development process to the economic life of the information system and thus
explicitly recognizes that development continues throughout the life of a system.
The SDLC concept provides both a description of the development phases and
a prescription for a more effective development process. Various authors and
managers use different steps and definitions for the SDLC, but all versions
include defining steps that span the information system life cycle previously
noted. In this text, the SDLC includes the steps described below that match the
IT project plan used in the following chapters (see Figure 1.4).

Project and Team Organization

When a client requests a project, the team assigned to the project faces two imme-
diate tasks: (1) organize the team and (2) organize the project work plan. No seri-
ous work occurs until the team makes a first pass at these steps. To organize, the
team decides who will do what, how the team will operate, and what skills and
resources the team can utilize. Chapter 2 discusses team organization.

The SDLC normally incorporates the waterfall concept: the deliverables from
each stage flow into the next stage. Possible deliverables from this stage include
a team contract and the initial plan and schedule for creating the new system.
The plan potentially could include thousands of steps and can be revised at
many points as the solution proceeds. Building a plan and managing the project
is discussed in Chapter 3. Two basic tool areas for information system solutions,
data modeling, and process modeling, are discussed in Chapters 4 and 5.

Project Definition

In the project definition stage, the team learns about the client’s desires or require-
ments for the proposed system, expressed as features and constraints, and about
the current situation. The client, manager, and team combine to make initial deci-
sions on project scope. Project definition is discussed in Chapters 6 and 7.

The project definition stage normally starts with a strategic analysis of the
organization, encompassing such questions as, What are the organization’s and
sponsor’s values, mission, vision, goals, objectives, and performance measures?
This strategic analysis, by telling the team what the organization values, thereby
provides a framework for strategic alignment. That is, the team can align the
project activities and solution design with the values of the organization. The
team identifies the features that the client desires for the new system and also
identifies constraints, for example, the budget to which the client will commit
for the project.

The solution classes that the client will consider, for example, to fix the cur-
rent system, to build a new system, to buy a package solution, and so forth, make
up an important constraint. The team will create and evaluate specific detailed
alternatives at later stages when the proposed system specifications are better
defined. At this stage, the team just tries to understand the general type and
nature of solutions that the client will consider. The team also checks the feasi-
bility of alternatives and reduces or eliminates further work on alternatives that
appear infeasible.

A second part of the project definition consists of understanding the current
situation. The current situation analysis pursues a goal of identifying those
aspects of the current solution that can contribute to the design of the proposed
system. The analysis may produce a narrative description, enterprise data model,

Chapter 1 Introduction to the Project Approach 17

FIGURE 1.4
The Systems
Development
Life Cycle
(SDLC)

R
e
v

is
io

n

Project and Team Organization

Project Definition

Proposed System

System Delivery

18 Part One Project and Team Organization

and data flow diagrams for the current operations. The deliverables from this
stage (strategic alignment, features and constraints for the proposed system, and
text and graphical models of the current situation) flow to the next stage.

Proposed System

Once the client agrees that the team understands the project definition, the team
begins to develop the specific conceptual specifications for a new system that
will solve the client’s problem. The team prepares a narrative model for the pro-
posed system and the complementary graphical data and process models. For
example, the team might prepare a conceptual data model, detailed data flow
diagrams with explosions or other process models, and an extensive set of meta-
data. The goal is to make sure that the team fully understands and clearly doc-
uments the conceptual specifications for the proposed system. These activities
are discussed in Chapter 8.

The team also expands the conceptual specifications into several alternative
logical and physical solutions that appear to meet the client goals within the con-
straints, evaluates the alternatives, and attempts to select a recommended solu-
tion. These alternatives probably refine and extend some of the solution classes
discussed earlier with the client. Evaluation forms a critical part of this stage. The
analyst examines costs, benefits, advantages, disadvantages, and risks for each
alternative, and then compares the alternatives and presents this information to
the client. Risk analysis complements the economic analysis and examines the
associated technical, operational, and organizational risks. The team may make a
recommendation. Normally the client makes the final decision with input and
advice from the team. Alternatives and evaluation are discussed in Chapter 9.

The deliverables from the proposed system stage—conceptual specifications,
a description and evaluation of logical and physical alternatives, and a recom-
mendation—go on to the next stage.

System Delivery

During the system delivery stage, the team, vendors, or other groups convert
the conceptual design into a specific, detailed logical and physical realization of
the recommended solution and prepare implementation and maintenance sup-
port plans. The exact form and nature of this stage depends on the recommended
solution. If the team recommends purchasing a package or service, this stage
may focus on preparing a request for proposal (RFP) to send to vendors and then
to evaluate the responses. If the team decides to build the system, this stage will
produce data schema and process logic and may produce a prototype and/or
actual code. During system delivery, documentation becomes a critical issue. Any
divergence between the documentation and the actual physical realization for
the system can lead to serious problems during implementation and mainte-
nance. Chapters 10 through 13 describe these steps.

The team can choose from a large number of tools and methods at this stage.
The team may prepare a relational schema to define the table structure for the
data, a process hierarchy chart (PHC) or a program structure chart to define
graphically the structure of the program and a prototype to serve as a proof of

concept demonstration. As part of the associated metadata, the team provides
pseudocode or actual code for each of the modules on the PHC. Other tools and
methods used at this stage often depend on the choice of data management sys-
tem and programming languages, that is, tools often come from the vendor or
from a third party associated with the vendor and are specific to the language
or data management system.

Testing forms a part of all aspects of the design phase and forms part of the
basic plan for the development effort. Testing is used to answer two closely
related but separate questions: (1) Does the computer-based system correctly per-
form the functions identified in the project specifications? and (2) Does the over-
all system meet the client’s goals? Because development is complex and the
client/analyst communication is at best inexact, an effective and comprehensive
test plan can make the difference between a successful and a disastrous devel-
opment effort.

The team may produce an implementation plan for use by the client or alter-
natively may use the plan to manage or carry out the implementation. The plan
often will specify an implementation strategy and provide a detailed list of activ-
ities and the time schedule for each, often in PERT or Gantt chart form. These
activities can include data conversion or collection, hardware and software acqui-
sition, facilities construction, and training of customers, users, managers, and
operators. Training represents a major task for implementation and one that often
is underestimated.

The end of implementation marks the beginning of what often is the longest
and most expensive period of the system life cycle, system operation, and main-
tenance. Problems in the design and changes in law, competitive strategy, man-
agement policy, and numerous other activities require maintenance that continues
throughout the life of the system. Studies indicate that up to 80 percent or more
of IT resources are used for maintenance activities as opposed to the initial solu-
tion. In view of this situation, inexpensive and rapid modification often become
major goals of the system delivery stage. Building or purchasing a system that
is easy to modify may offer far more benefits that trying to do everything right
in the first version.

The final deliverables for this stage can include data schemas, process logic,
documentation, a proof of concept model, programs, infrastructure specifica-
tions, and test, implementation, and maintenance plans.

As noted previously, the SDLC steps normally are arranged in a sequence or
waterfall pattern as shown by the vertical arrows in Figure 1.4. The steps start
with project and team organization and end with system delivery. The results
and data from each stage feed into the one below. However, in practice, good
systems development requires more flexibility. The horizontal arrows in Figure 1.4
indicate that the team may choose to skip stages or to return to an earlier stage,
that is, go from any stage to any other stage either forward or backward to save
time and effort, or to solve newly recognized problems or incorporate newly dis-
covered ideas. The spiral model for project management in Chapter 3 offers
another tool to reflect the need to recycle through the stages of the SDLC as the
project proceeds.

Chapter 1 Introduction to the Project Approach 19

20 Part One Project and Team Organization

Balancing Structure and Flexibility
Good information system development involves compromise and trade-offs. As
noted, the SDLC adds structure and obtains a number of advantages from struc-
ture. Following all of the steps of the SDLC makes sense for the acquisition of a
new, large utility billing system on a mainframe. For other situations, the SDLC
may bring unneeded structure. For example, a client might request a minor
process change from the analyst who maintains a system: to change the interest
accumulation process on a class of bank accounts from monthly to daily. Cur-
rent situation analysis offers no value—the analyst and client already know the
current situation. The requirements are clear and need no analysis. The data
structure is unchanged. The analyst can and should proceed directly to the
design stage and insert the appropriate code. This approach certainly seems sen-
sible, but is it consistent with the SDLC? Or alternatively, is the SDLC a rigid
mandatory set of steps that all projects must follow or is it a checklist from which
team members choose the parts they want? For large projects in the mainframe
era, many IS groups viewed the SDLC as a rigid, mandatory set of steps and for
these projects, the rigid view worked well.

Environment issues in the 1990s—rapidly changing business conditions,
global competition, client/server and netcentric systems—focused new attention
on issues of structure and flexibility. Relational database engines, package appli-
cation software, and such fourth-generation languages as SQL, Visual Basic, C++,
Java, and more, facilitated more flexible and evolutionary or trial-and-error type
of development approaches. The emergence of client/server infrastructure facil-
itated decentralized development with smaller projects that focused on one area
or a limited set of functions. The explosion of the Internet followed by intranet
applications accelerated these trends. Increasingly, analysts and IT groups
observed a mismatch between a rigid SDLC approach and the flexibility needed
for rapid development of smaller projects. In today’s environment, clients want
the new application in days, weeks, or months; not after several years. With the
new tools that are available, an analyst can create an application in days or
weeks, but only by following a flexible set of steps. While good design can ben-
efit from structure, it also clearly can benefit from flexibility—the freedom to tai-
lor the approach to the problem.

Rapid development (RD) views the SDLC as a checklist from which the ana-
lyst selects the pieces that are needed for a particular project. The term rapid
development is used here instead of the more common one of rapid application
development (RAD) because RAD is sometimes associated with very specific
development steps or tools. RD represents a concept, not a set of methods or
tools. The highly flexible concept implied by RD is, Do whatever is necessary
and/or appropriate to deliver an application (1) that meets the clients perceived
needs; (2) in a short time; and (3) at a reasonable cost. With RD, the analyst, often
in concert with the client, decides either explicitly in advance or implicitly by
actions, which parts of the SDLC are relevant and how to achieve each part. Note
that RD resembles the just-do-it approach except that it uses the SDLC as a start-
ing point or checklist.

RD places a heavy responsibility on the analyst, client, and team. There is no
cookbook to follow. It is up to the team to figure out how to perform the most
important steps and to avoid everything else—a most challenging task. The
team, often with client participation, reviews the problem or task and selects the
steps that are needed to meet the RD goals of successful, fast, and cost-effective
development. The client may provide guidelines, for example, informal plans for
small projects and SDLC-like plans for very large, complex projects. In addition,
the plan may be subject to review by a team manager.

The available resources may constrain the development plan. A team that
believes that a new system offers the best solution may end up modifying the
existing system because of time and resource constraints. Clients often prefer an
acceptable solution now to a great solution at a much later date. With student
projects, the semester time limit tends to restrict solutions. The team may not
have enough time to learn new technologies and/or to include all the features
that the client desires.

RD can reduce the development time, and experience suggests that keeping
the development time as short as possible will reduce cost and will increase the
probability of success. RD may work better than the traditional SDLC approach
primarily because it can shorten the development time. Unfortunately, RD, along
with most development approaches, methods, and tools, comes without any
guarantees. Used incorrectly or inappropriately, RD can lead to problems, higher
costs, and poor performance. As always, there is no substitute for thoughtful,
knowledgeable analysts and clients.

PERFORMING DEVELOPMENT ACTIVITIES

Much of the time and effort in systems development goes to performing the activ-
ities defined in the SDLC or RD plan. Many of the problems that plague devel-
opment also arise from performing these activities. In some circumstances, adding
structure to the development activities themselves may alleviate some problems.
From the earliest days of building information systems, designers have searched
for effective ways to add structure to analysis and design, and a number of avail-
able approaches and tools do contain a significant amount of structure. Most proj-
ects can benefit from a combination of approaches and tools in response to such
drivers of the development process as technology, data, and process. Accordingly,
IT project teams experiment with a variety of approaches and tools.

Technology-Driven Development
Since data processing machines appeared, technology has influenced approaches
to or provided structure for development efforts. Specific technologies tend to
stimulate development related to the technology. For example, mainframes with
magnetic tape data storage led to application-oriented development, while data-
base engines have encouraged enterprise-oriented development. Relational data-
bases, client/server, Internet technologies, and many programming languages
have associated development tools and approaches. If an analyst plans to use a

Chapter 1 Introduction to the Project Approach 21

22 Part One Project and Team Organization

relational database, the system often is created with the methods and tools rec-
ommended and provided by the vendor of the database. Oracle, for example,
offers a set of tools that go with its database engine. These tools generate forms,
reports, tables, and SQL code for the Oracle database engine; but they also pro-
mote an “Oracle data-centric approach” to the solution process. In any event, they
provide a high level of technology-driven structure for the development effort.

Most modern system development tools structure development activities
around technologies. For example much of the structure in the Oracle tools
comes from relational algebra, SQL and the design of the Oracle database engine.
IT directors tend to like technology-focused tools and find them effective. While
technology-driven development can offer a number of benefits, it also may
focus attention on technology features to the possible detriment of the client’s
problems and goals. A technology focus on such tools as MS Access and Visual
Basic tends to influence the design of the proof of concept model for the IT proj-
ect. Virtually all projects involve at least some technology influence on design of
the solution.

Output-Driven Development
Output-driven development, an approach that appeared in the 1960s, uses out-
put to structure development activities. The analyst focuses the development activ-
ities on the outputs that the client and analyst desire from the system. The out-
puts in turn define the inputs, processes, and files required to obtain the outputs.
Clearly, an output focus gives more attention to clients and organization issues
than a technology focus. The structure consists of a set of rules or guidelines for
(1) asking clients what they want as output from the system; and (2) deriving the
inputs, files, and processing needed to create the outputs. Although output-driven
development brought client and problem focus, the original versions lacked suffi-
cient rules and structure to assure consistency and completeness. Additional struc-
ture was added by using matrices to depict graphically the relationships between
outputs and inputs or outputs, processes, and inputs. In virtually all projects, the
outputs desired by the client exert a major influence on the design of the solution.

Prototyping represents a modern form of output-driven development. With a
prototyping approach, the team builds a working model of the actual system
that produces the key outputs in response to actual inputs. The prototype may
represent a simplified version of the system with only a small number of records
in each file and with some complex processes and features omitted. The team
can use the prototype in iterative fashion to determine and refine system require-
ments. The steps of the prototyping approach are as follows:

1. Create a first version.

2. Demonstrate the prototype to the client and/or user. Let the user actually use
the prototype if possible.

3. Refine the prototype based on client/user comments.

4. Return to step 2.

5. When the client or users are satisfied with the prototype, build or procure the
actual system.

Modern programming languages and development tools allow teams to build,
and especially to modify, prototypes within reasonable time and effort con-
straints. While the original output models were descriptive, prototypes are oper-
ational, that is, they produce actual outputs for the analyst, client, and user to
review and modify. A prototype also may reveal deficiencies in process, inputs,
and files or tables. In common with most operational models, prototypes struc-
ture the development process more rigorously than the descriptive development
approaches.

Data-Driven Development
Data-driven development relies on a data model to structure development
activities. The analyst focuses on defining the underlying structure of data.
Some authors argue that data models are process and output independent and
thus are the polar opposite of process and output-oriented development. The
argument holds that once the underlying data structure is defined almost any
desired output can be generated, and any process can use the data. In prac-
tice, process, data, and output do interact. The analyst has to think about
desired outputs and processes to decide what data to include in the data
structure.

In recent years, data and databases have formed the core of many informa-
tion systems. If the analyst can identify, store, and access the appropriate data,
processes to transform the data into desired outputs are relatively easy to cre-
ate and modify. In addition, data seem to change less rapidly than the processes
that use the data. A number of tools and techniques recognize the important
role of data. Output-focused development and many process models explicitly
deal with data. Entity relationship diagrams provide a well-structured graphi-
cal tool to implement data-driven development in a (somewhat) process- and
output-independent form. The federal government has adopted standards
called IDEF1 and IDEF1X (see http://www.idef.com/idef1x.html) for data mod-
eling, and various vendors sell computer-assisted software engineering (CASE)
tools to facilitate the use of these standard models for database design.

Entity relationship diagrams (ERDs) add structure to data-driven develop-
ment by creating a model that (1) identifies the things about which the system
will collect data; (2) identifies what specific characteristics are collected for each
thing; (3) defines relationships between the data; and (4) displays this informa-
tion in graphical form. The ERD representation of data encouraged the devel-
opment of data structure independent of any specific application, that is, in an
example of content representation in which data and process are separate. A
number of different applications or sets of processes can use the resulting data
structure. ERDs appear to add structure while offering a high level of flexibility
and operationality and thus have gained widespread use. For the IT project, vari-
ations of ERDs are used both to help understand the current situation and to
specify the new one.

An example of an ERD appears in Figure 1.5. In the figure the boxes repre-
sent the entities and the lines connecting the boxes represent relationships. The
ERD is explained more fully in Chapter 4.

Chapter 1 Introduction to the Project Approach 23

24 Part One Project and Team Organization

Process-Driven Development
Prior to the advent of effective data-driven development tools, many development
efforts were process driven. The development activities focused on identifying and
specifying the processes necessary to convert inputs to outputs. Process-driven
development in common with data-driven development follows the content model
of an information system but focuses on process rather than the data. Some process
tools, for example, process hierarchy charts (PHCs), graphically represent process
largely independent of data. Using the PHC, an analyst can design the modular
process structure for the system without explicit consideration of data.

Such process tools as data flow diagrams (DFDs) include both data and
process and resemble the component model more closely than the content model.
Data flow diagrams allow the systems analyst to study a system using the com-
ponent representation of an information system where the components are input
sources, output destinations, processes, data stores, and data flows. DFDs build
on and add additional structure to the core ideas of output-driven analysis. Data
flow diagrams give the systems analyst a consistent, well-defined, graphical tool
to track data as it enters the system from an external source, moves through var-
ious processes, and is either stored or is sent to an external destination. The struc-
ture in the data flow diagrams comes from (1) decomposing a system into a set
of basic components with defined behaviors; (2) following explicit and restric-
tive rules for data flows; and (3) using a graphical representation.

Figure 1.6 shows an example of a data flow diagram. The rectangles represent
external data sources and destinations, the round corner boxes represent processes,
and the arrows represent data flows. An additional explanation for this diagram
appears in Chapter 5.

FIGURE 1.5
An Entity
Relationship
Diagram
(ERD) for GB
Video

Held by

Makes

Contains

1 0

1 0

1

1

CUSTOMER

Member-No
Name
Street
City
State
Zip
Tel-No
Credit-Card-No
Expire-Date

VIDEO

Video-No
Title
Date-Acquired
Vendor

RENTAL VIDEO

Rental-No
Video-No
Due-Date
Cost
Return-Date
Overdue-Charge

RENTAL

Rental-No
Date
Employee-No
Pay-Type

Analysts and organizations in the mainframe era used data flow diagrams exten-
sively. Preparing DFDs can consume considerable time and effort, and the result-
ing DFDs may restate in a well-structured graphic form what the client and analyst
already know. Some packages exist that allow the analyst to generate code from a
DFD; without code, DFDs lack operationality, which means the analyst cannot run
a DFD to see how it works. With the emergence of fourth-generation languages
(4GLs), relational databases, and network technologies, other process models and
tools that facilitate code generation and bring more operationality have gained
increasing use. DFDs remain a promising communication tool in the IT project con-
text for describing an existing system and for specifying a proposed system.

Event-Driven Development
Event-driven development reflects a change in the structure of the processes
inside a computer-based information system. In a classic flow or batch system,
a single trigger activates the system. For example, reaching the end of the billing
cycle triggers a billing process. Once the process is triggered, control and data
flow from one subprocess to another until the process ends. The subprocesses
occur in a fixed sequence, namely, they (1) read the next set of billing input data;
(2) retrieve the associated billing record; (3) process the data to compute the bill;
(4) update the billing record; (5) prepare and print the bill; and (6) return to step
(1). Unless interrupted by error conditions, the sequence repeats until the input
data is exhausted.

Chapter 1 Introduction to the Project Approach 25

FIGURE 1.6
A Data Flow
Diagram for
GB Video

External ID
Number

ID Data

Rental
Data 1

Rental Data Store

Process 1.0

Process 2.0

Rental
Data 2

Updated
Rental
Data

Process 3.0

Accept the
video ID
number

Customer

Retrieve the
rental data

Record
return and
store rental
data

26 Part One Project and Team Organization

With the advent of interactive systems, the flow pattern changes. In an interac-
tive system, a series of external events trigger different subprocesses of the overall
process. The subprocesses may have little direct relationship with each other and
may occur in a wide variety of difference sequences and times depending on the
external triggers. For example, a video store retail process might consist of major
subprocesses for renting a DVD, returning a DVD, and enrolling a member. Exter-
nal events, such as a customer request to rent or to enroll, or a customer action
to return a DVD, trigger the subprocesses associated with the events.

In event-driven development, the external events that trigger processes pro-
vide the structure for the development effort. The analyst focuses on identifying
and understanding the events that trigger the subprocesses. Once the events are
identified, the analyst can define the data and process logic associated with the
occurrence of each event. DFDs work reasonably well to describe some event-
driven systems, for example, video rental. Others, for example, Web site designs,
are described better by such tools as page navigation maps discussed in Chapter 11.
Once the system is described, the analyst may use event-driven and object-
oriented program languages such as Visual Basic, Java, and SQL, to convert the
design into an operational system.

Object-Oriented Design
Object-oriented design (OOD) focuses on and structures the development activ-
ities around objects. An object represents a thing, such as a person, product, or
event, that has a well-defined role in the actual system. Objects contain or
“encapsulate” both the data that describe the attributes of the object and the
processes that describe the behaviors that the object can exhibit. A standard set
of object-oriented diagrams and practices are defined in UML, the Uniform Mod-
eling Language (see Fowler, 2004 for a description). In UML, some of the more
commonly used diagramming and analysis tools include

• Class diagram—a diagram that resembles an ERD with a static representation
of the data and operations (processes) associated with each object.

• Use case—a graphical representation of who does what in the system.

• Sequence diagram—a dynamic representation of the interactions between objects.

• State diagram—a dynamic representation of how the state of objects change in
response to events.

In practice, the term object-oriented design is used by people to cover a range
of design activities including much Web and most event-driven development,
using such languages as Visual Basic, C++, and Java. In many of these efforts,
the UML standard notation and diagrams are not used.

CASE Tool–Driven Development
Computer-assisted software engineering (CASE) tools for development consist
of one or more computer programs to support the analyst’s activities. Everything
from fourth-generation programming languages, including SQL and Visual
Basic, to such comprehensive tools as Popkin System Architect and Oracle Devel-
oper Suite are described as CASE tools. Hundreds of CASE tools exist and are

in use. Such comprehensive CASE tools as System Architect (see http://www.
popkin.com/products/product_overview.htm) and Oracle Developer Suite (see
http://www.oracle.com/tools/index.html) contain mechanisms for creating con-
ceptual and logical system models (e.g., ERDs, etc.) and also mechanisms to
create or generate physical representations (e.g., databases, data tables, forms,
screens, reports, queries and associated program code). Comprehensive or upper
CASE tools incorporate aspects of process-, data-, output-, and technology-driven
development and add a high level of structure to the development process.

CASE tools, and especially upper CASE tools, may increase the cost and time
for system development. CASE tools work best when they are used frequently
on projects. One-time or occasional use incurs high learning costs for limited ben-
efits. The use of CASE tools also raises issues of continuing support for the CASE
tool and the applications developed therein. When a vendor stops supporting a
tool or an organization decides to discontinue its license for a CASE tool, main-
taining applications written with the tool can become difficult and expensive.

Structuring Development Activities in an IT Project
As noted, all development activities use some structure. Because of their learning
goals, student IT project development activities tend to contain more structure
than comparable projects in most other organizations. In a typical IT project, ERDs
and relational schema may specify the structure of data and DFDs, function hier-
archy diagrams, and/or other process models specify the process and program
structure. The FHD is complemented by further defining process with pseudocode,
a structured language that follows clear rules. Not surprisingly, physical design
contains the most structure of any phase of the solution process, and much of the
structure is technology driven. Such tools as form, as well as report generators
and programming languages add a high level of structure. Some general guide-
lines for Implementation exist, but implementation remains largely unstructured.
The main structure in the implementation deliverable for an IT project may come
from the use of text instructions and a Gantt chart.

FIELD PROJECT CHALLENGES

Field project teams face some formidable challenges: decide what, when, and how
to do tasks and then do it all in a limited time. In an ideal world, a team applies
a single tool or method to generate all of the required deliverables. In an IT pro-
ject, the team, in common with system development teams around the world, must
choose and integrate many skills, approaches, and tools. The portfolio includes
SDLC, rapid development, interviews, reviews, narrative models, DFDs, ERDs,
FHD, OOD, relational schema, pseudocode, 4GLs, and a host of other things.

Unfortunately, these approaches and tools may address the key issue only
peripherally, that is, finding a solution that meets the client’s perceived needs
within the client’s constraints. Finding a suitable solution generally will depend
heavily on careful analysis and good creativity from the analysts accompanied
by a lot of hard work. Of equal importance, information system projects involve
organizational values and behavioral and political issues. The team must apply

Chapter 1 Introduction to the Project Approach 27

28 Part One Project and Team Organization

communication, interpersonal, organizational, and political skills; strategic
analysis; and the problem-solving and decision-making skills learned in many con-
texts. The team must then temper these skills with experience and common sense.

Every team faces a final challenge of doing a “good enough” job. One can
always do more—more analysis, more alternatives, more evaluation, more
design, more testing, and so on—but all at more time and expense. Everyone
likes to talk about delivering the “best system” to the client. Best implies an opti-
mal solution. In mathematics, the concept of optimization—finding a maximum
or minimum of a function—has meaning. For information system solutions, even
experienced and highly qualified teams cannot define the meaning of “an opti-
mal system,” let alone find one. System development is characterized much bet-
ter by muddling through the process than by optimization.

If the team members cannot expect to find the best or optimal solution, what
should they strive for or expect to achieve? What is good enough? Often the team
can avoid or eliminate a large set of clearly poor solutions: ones that are infeasible,
too risky, or for which the costs far exceed the benefits. Teams can follow “best prac-
tices” to select approaches and tools that fit the problem and have a history of pro-
ducing good results. Hopefully, the team can find one or more acceptable solutions
that meet the client’s needs and constraints. In the end, the team should strive to
find a good solution, the most promising of the known acceptable solutions. The
purpose of this text is for the reader to learn how to increase the likelihood of find-
ing and recommending a good solution or, at least, an acceptable one.

Summary Every living thing and every organization require an information system to func-
tion. An information system collects, stores, retrieves, and transforms data into
information, meaning data that are useful for making decisions or taking actions.
The information system allows the organization to detect and record what is hap-
pening both inside and outside the organization and to respond as appropriate.

Many different useful representations exist for information systems. The Com-
ponent model and the Content model offer two macro representations of infor-
mation systems. In the traditional Component model, a set of components or
subsystems work together to perform such functions as to collect input data,
process it, store it, retrieve it, and produce output data. The component repre-
sentation follows the physical structure of an information system; in an actual
system hardware and software components exist that carry out each of these
functions. For systems analysis and design, the Content model provides useful
structure and guidance. In the Content model, an information system contains
data, process, physical infrastructure, and organizational infrastructure. Each of
the content areas interacts with all the others through the interconnections cre-
ated by the system.

Information systems experience a life cycle. They emerge, flourish, and, as
they grow older, possibly lose usefulness. The Information Systems Life Cycle
consists of two major phases: (1) acquisition and (2) use and refinement. Acqui-
sition starts with recognition of a perceived need for new or modified informa-
tion and/or processing capabilities within the organization and ends at the point

Chapter 1 Introduction to the Project Approach 29

client, 6
component model, 9
computer-assisted

software engineering
(CASE), 26

conceptual model, 11
content model, 9
current situation, 6
data, 8
data-driven

development, 23
data flow diagrams

(DFDs), 24

deliverables, 7
entity relationship

diagrams (ERDs), 23
event-driven

development, 25
information systems group

(IS), 6
information technologies

(IT), 4
information technology

group (IT), 6
just-do-it model, 15
logical model, 11

object-oriented design
(OOD), 26

organization, 6
organizational

infrastructure, 10
output-driven

development, 22
physical infrastructure, 10
physical model, 11
process, 8
project, 5
project definition, 17
project management, 8

Key Terms

the new system begins to operate. During use and refinement, the organization
uses the new information system and modifies or maintains it. The organization
hopes the new system will reach the payback point at which total benefits exceed
total costs in a relatively short time.

The processes that lead to the solution for a new or modified information sys-
tem are known as system development or systems analysis and design. System
solutions replace a current situation with a new or modified one. A client is a
person who has the authority and ability to order and/or pay for the new sys-
tem. The system solution process results in deliverables—products or outputs
that are delivered to the client. The system solution process often causes a broad
and major impact on the organization. A successful effort may bring benefits and
an unsuccessful effort may incur huge costs.

Because system solution is complex, adding structure to the planning, man-
agement, and performance of system solution activities can improve results. The
System Development Life Cycle (SDLC) can add structure to the planning and
management of the development process. In this book, the steps in SDLC com-
prise Project and Team Organization, Project Definition, Proposed System, and
System Delivery.

A good system development plan allows a trade-off between adding structure
and obtaining flexibility. While the traditional SDLC concept may limit flexibility,
the rapid development version of the SDLC allows the team to do only those activ-
ities necessary to deliver an application that meets the client’s perceived needs, in
a short time, and at a reasonable cost. In the beginning, analysts built systems using
whatever steps and approaches seemed appropriate to them. Over time, analysts
used approaches based on technology, output, data, process, events, objects, and
CASE tools to add structure to the performance of system development activities.

IT projects pose many challenges, for example, completing a number of inter-
related activities in a limited time frame with limited resources. Team members
must acquire and apply a number of technical and interpersonal skills. Finally,
teams strive to arrive at a good solution, one that stands out from the known
satisfactory solutions.

30 Part One Project and Team Organization

Project Organization
proposed system, 18

prototyping, 22
rapid development (RD), 20
representation, 8
solution class, 6
Specifications
sponsor, 6

strategic alignment, 8
structure, 15
system delivery, 18
system solution, 5
systems analysis and

design, 6
systems development life

cycle (SDLC), 16

team, 6
team organization, 16
technology-driven

development, 22
user, 6
vendor, 7

Review
Questions

1. What roles can a client and a systems analyst play in the system solution process?

2. What is a representation of a system?

3. Describe the information system life cycle.

4. Explain the differences between conceptual, logical, and physical models of a system.

5. Compare the component model and the content model for an information system.

6. What are the phases of the systems development life cycle, and how do they relate to
the information system life cycle?

7. Define rapid development (RD). Why does or might it differ from rapid application
development (RAD)?

8. Do team members normally create optimal systems? Explain your answer.

9. Who might approve system deliverables? Explain why you made your choice.

Critical
Thinking
Exercises

The critical thinking exercises ask the student to apply common sense with the tools
and skills covered in this chapter. The Individual Exercises below are scaled to one per-
son. The Group Exercises that follow provide suitable problems for a team of people
working together. However, both sets of exercises will work for both individuals and
groups.

Individual Exercises

1. Prepare a rapid development plan to acquire a university degree.

2. Describe the possible impact of a new computer-based system on a grocery store

3. The retail sale system for a store works as follows. The customer takes items to the
checkout where the items are run by a scanner. The scanner or receiver reads the bar
or radio code on each item and sends the code to a computer. The computer system
uses the code to retrieve price and item description and at the end of the customer’s
order adds tax and computes a total. All this data prints out on the customer’s receipt
and is also stored in the system.

a. Draw a component model of the system.

b. Is your component model a conceptual, logical, or physical model?

4. For problem 3:

a. Draw a content model for the system.

b. Is your content model a conceptual, logical, or physical model?

5. Your team has been asked to transform a motor vehicle tracking system from an Access
database to an SQL Server database. Which development driver will you use for the
project? Justify your answer.

Chapter 1 Introduction to the Project Approach 31

Group Exercises
1. Define the activities your team will coordinate with a client to prepare a rapid devel-

opment plan.

2. A friend is getting married and has asked you for help in planning the big event.

a. Define the full SDLC steps required in planning a major wedding.

b. Your roommate decided to have a very small wedding. Using the RD approach,
eliminate the unnecessary SDLC steps that you defined for the major wedding. Jus-
tify the steps you eliminate.

3. Answer the questions below for each of the following development drivers: Process,
Event, CASE Tool, and Data.

a. Explain briefly the focus created by the driver.

b. What factors lead to or make the driver a good choice?

c. What are the consequences of a poor choice?

4. As an assistant soccer coach in the community little league, you learn that the records
on team members, teams, schedules, referee assignments, and locations are in a three-
ring binder maintained by the community activity director. You volunteer to build a
computer system to track this data.

a. Which development driver will you use for the project? Justify your answer.

b. How or from where will you obtain the initial data for the computer-based system?

References Burd, Stephen D. Systems Architecture. Boston: Course Technology, 2001.
Fowler, Martin. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
3rd ed. Reading, MA: Addison-Wesley, 2004.
Hoffer, Jeffrey A.; Joey F. George; and Joseph S. Valacich. Modern Systems Analysis and
Design. 4th ed. Upper Saddle River, NJ: Prentice Hall, 2005.
Hoffer, Jeffrey A.; M. B. Prescott; and F. R. McFadden. Modern Database Management.
7th ed. Upper Saddle River, NJ: Prentice Hall, 2005.
PMBOK Guide: A Guide to the Project Management Body of Knowledge. 3rd ed. Project
Management Institute (PMI), 2004.
Post, Gerald V. Database Management Systems. 3rd ed. New York: McGraw-Hill/Irwin,
2005.
Schneider, G. and Winters, J. P. Applying Use Cases: A Practical Guide. 2nd ed. Reading,
MA: Addison Wesley, 2001.
Whitten, Jeffrey L.; Lonnie D. Bentley; and Kevin C. Dittman. Systems Analysis and
Design Methods. New York: McGraw-Hill/Irwin, 2005.

Chapter Two

Organizing and Working
in a Project Team
Chapter outline

33

Introduction

Team Theory and Principles

Building an Effective Team

Start Up

Team Evolution

Team Contract

Skills Inventory

Assigning Roles

Code of Conduct

Managing a Team

Successful Teams

Individual Needs

Leadership from a Motivational

Perspective

Working in a Team

Communication

Manager Relations

Dealing with Nonperforming Members

Removing a Member

Resignation

Dysfunctional Teams

Peer Evaluations

Summary

Key Terms

Review Questions

Critical Thinking Exercises

Individual Exercises

Group Exercises

References

INTRODUCTION

In a modern organization, analysts and designers undertake many projects as a
member of a team. A project team consists of two or more people jointly respon-
sible for accomplishing work on a project—the goal is a successful project. Teams
may reduce the time needed to complete a project and may improve quality by
bringing a wider range of experience and providing a potential way to use best
the strengths of each team member. Most job recruiters rate the ability of a poten-
tial employee to operate effectively in a team as a critical information system (IS)
skill. Working effectively as a member of a team requires both skill and constant
thought. Intelligence, technical and business knowledge, and the willingness to
work hard all contribute to becoming an effective team member, but success also
requires an understanding of how teams function.

34 Part One Project and Team Organization

The sketches that follow illustrate some of the issues that people working as
teams encounter. Each of the issues is developed later in this chapter.

Teams mature and change over time. Behavior that team members appreciate,
or at least tolerate, at the beginning may provoke negative reactions as the team
matures.

• In the first meeting of the project team, Alan took charge. Alan had very good
grades and seemed to know what he wanted. For a while everyone felt like
they were making excellent progress and told Alan so. By the end of the
semester, however, Alan was complaining that he was doing all of the work.
In the peer review at the end of the semester, Alan received a poor evaluation
with most members calling him domineering and insensitive.

Teams form initial impressions of their members based on behavior during
the first several meetings. These initial impressions can last throughout the
project.

• Alice, a very bright student who does well in most of her classes, tends to be
quiet and reserved. When the project started, Alice said little at the first meet-
ing and did not request an initial assignment. She did offer to help wherever
she was needed. The team assigned her to work on the team contract. Susan
wrote the first draft and gave the draft to Alice to review. Alice, reluctant to
appear critical of Susan, made no changes. When the team met to go over the
final version, the members found a large number of errors and thought that
the document dealt poorly with how to resolve disagreements. After this expe-
rience, the team did not ask Alice to do much and then gave her poor peer
evaluations because of her lack of participation.

A good team member need not possess the credentials of a rocket scientist.
Teams value members who contribute from the beginning to the end of the proj-
ect and who work cooperatively.

• Jean is an average student, slightly introverted, and an excellent programmer.
She attended all of the team meetings and volunteered to work on project def-
inition and the prototype. She urged Ted to serve as the editor and checker
for all their work because Ted writes well and is very careful about details.
She volunteered to work with Ted. As she was building the prototype, Jean
discovered a number of differences and problems with respect to the proposed
system documentation. She talked to Ted and worked with him to bring the
prototype and proposed system documentation into agreement. Jean received
high peer evaluations from her team members.

Teams expect each member to make a reasonable contribution. Most teams will
understand if a member faces constraints, such as a job or other classes. How-
ever, teams tend to look poorly on members who agree to do something and then
do not do it.

• Edward, an excellent student, enrolled in 18 hours of classes and worked for the
campus computer store. When the team met, Edward told everyone that he
would appreciate plenty of advance notice for his assignments. At the next meet-
ing, the team asked Edward to develop the data model for the proposed system

Chapter 2 Organizing and Working in a Project Team 35

because he received an A in the Database course, and Edward agreed. Edward
put off working on the task and missed a number of team meetings because of
his other commitments. When asked about his progress, he reported he was on
schedule. The night before the design was due, the store asked Edward to work
overtime. He failed to complete his assignment, and his team lost points for a
late report. Edward was surprised when he heard that the rest of the team had
asked the team manager to remove him from the team for not contributing.

Some teams are effective and rewarding to work with; others are ineffective
and dysfunctional. Much of the difference relates to how the team members man-
age their relationships with each other. A knowledgeable team member should
recognize the issues in each of the previous sketches and know how to respond.
This chapter presents some principles of team behavior that will help team mem-
bers to recognize potential problems and deal with them. Effective team growth
requires the knowledgeable cooperation of all of the members.

Most projects that can be completed by a class team in a semester are rela-
tively small. Businesses might approach many of them as a single-person design
task using prototyping with little planning or documentation. Because learning
to practice effective team skills is one of the fundamental objectives of a field
project course, the course assignments involve extensive analysis, design, and
documentation even for small projects. Completing all of these activities requires
coordinated work by the members of the project team. Organizing and manag-
ing a team is critical for success in the field project course.

TEAM THEORY AND PRINCIPLES

A team is a group of people, but not every group is a team. Greenberg and Baron
(2000, p. 271) define a team as “a group whose members have complementary
skills and are committed to a common purpose or set of performance goals for
which they hold themselves mutually accountable.” Team characteristics for IT
projects include the following:

1. A team contains two or more members, anywhere from tens to hundreds in a
large project. A manager generally assigns members to the team. Team mem-
bers may suggest the choice of other members but may not make the final deci-
sion. Prior to joining the team, the members may or may not know each other
personally or professionally. To the extent that members possess limited infor-
mation about each other, mechanisms for learning about each other’s abilities
and for learning to trust each other are important. Teams in organizations often
include members from both the IT and client communities. While including
clients and users puts more of an organizational burden on the team initially,
the combination of skills generally produces a better product for the client.

2. Team members share a common purpose or goal—to create a satisfactory IT
product or system for the client within the constraints. Most team members
will pursue personal goals as well, for example, to obtain a good evaluation
by the manager or client, to work on other projects or tasks, to learn new skills,
to find a better job, to lead a good life, and more. Sometimes personal goals

36 Part One Project and Team Organization

conflict with the team goal due largely to conflicts over the use of time. One of
the ways to improve the effectiveness of the team is to recognize legitimate
individual goals and to support them within the context of the team objective.

3. Team members possess different skills. A well-functioning team makes assign-
ments to take advantage of the best skills of each member. A team contains a
portfolio of different personalities; in most cases, the composite ability of the
team exceeds the ability of the best member.

4. Team members are mutually accountable for the success of the project. If the
project succeeds, the team succeeds; if the project fails, the team fails. The team
may have an explicit or implicit structure to reward both total team and indi-
vidual contributions to the project.

5. Organization and management provide mechanisms to improve the effective-
ness of a team. Even with the best of intentions, team members may find that
working together effectively presents a difficult challenge.

6. Team members need to communicate or share information with each other
that is not readily available to nonmembers of the team. Mechanisms and tech-
nologies that facilitate communication may offer important tools to increase
the effectiveness of the team.

Team organization and management consist of two stages: (1) working out ini-
tial roles and responsibilities for team members; and (2) managing relationships
as the team matures to produce good results. Teams develop more quickly and
evolve more positively if the team members organize and manage their activities
with team development in mind. Many formal activities prescribed at the begin-
ning of the team’s life are designed to move the group dynamic toward one in
which each member contributes effectively to the overall goal. As the members
learn to work together and discover appropriate roles, informal, cooperative strate-
gies may replace some of the formal processes. This chapter suggests some prac-
tical guidelines for evolving to a mature, effective team as quickly as possible.

BUILDING AN EFFECTIVE TEAM

At the beginning of a field project exercise, the project team consists of a group
of acquaintances who know little about each other. Team members often are
assigned to rather than volunteer for a project. Most team members do work on
projects, but why do they bother? All the members have other things to do. The
reason they work relates to perceived rewards for their performance. The per-
ceived rewards may differ greatly from person to person. Most people want to
graduate, or to keep their job and receive salary, or get a good grade. Other team
members may obtain satisfaction or rewards from building a system that works
or from building it rapidly, or from applying their skills to solve problems.

Start-up
When a team starts up, one of the shared objectives of the team members should
be reaching mature performance as quickly as possible. Some of the activities

Chapter 2 Organizing and Working in a Project Team 37

that facilitate growth and maturity, such as a team contract, may not appear to
contribute directly to solving the client’s problem. And the client may show lit-
tle interest in how the team chooses to interact. However, team growth can con-
tribute significantly to the overall success of a project.

The early stages of a project are the time when a team sets up initial roles and
expectations about the people in the team and about how the team will function.
The primary objective is to develop trust among members and trust in the team.
The project usually starts with a meeting or a team-building exercise. In the early
stages of the project, each team member should learn about the other team mem-
bers and about what each can contribute. Some reasonable guidelines for the
behavior of team members follow.

• Facilitate instead of dominate. A facilitator helps and encourages the other team
members to express their views on the issues. A dominator aggressively pro-
vides an answer to every question that arises with little attention to the
views of others. Only the most confident members of the team will speak
up in the face of a domineering member. A team member is dominating if
the member interrupts other people, insists that his or her view should
always prevail, or tries to assign tasks to other people without their involve-
ment in the decision.

• Speak up. In early meetings, team members form quick impressions about their
colleagues that are hard to change. Members should talk about themselves
and about what they can contribute. Even if members are not sure what they
can do or how they can contribute, the team needs to know who they are.
This initial period is trust-building time and team members trust (most of) the
people they know more than they trust strangers.

• Stay flexible. Avoid locking into roles and answers early. Whatever plan devel-
ops at this stage will change and must change if the team is to grow. Establish
the minimum structure needed at the beginning and add roles and assign-
ments later.

• Meet obligations. A number of small tasks come up at the beginning of the proj-
ect. Each team member should volunteer for one or more tasks, do it well, and
complete it on time. Expectations are set early. If a team member only volun-
teers for later stage tasks, programming, for example, the team will not know
what to expect until after the team chemistry has jelled. Similarly, good perfor-
mance on the first few tasks builds confidence from other team members.

Team Evolution
A team may operate differently after it matures than when it began. At the begin-
ning of the team-forming process, teammates may welcome such behaviors as
taking charge and assigning roles. Once the team has matured, however, the same
behaviors may create resentment. Similarly, such apparently destructive behav-
iors as confrontation and disagreement can help establish roles and define norms
early in the team-building process but may create dissension in a mature team.

A well-functioning, mature team generally will make better decisions than any
individual member. This improvement happens when the members use clues

38 Part One Project and Team Organization

from each other to identify good ideas; this utilizes the strength of each of the
members. The members respect each other’s opinions and everyone feels encour-
aged to contributing relevant information. Teams work together easily to accom-
plish such natural group tasks as brainstorming. Teams find working on such
tasks as writing or programming more difficult. For effective teamwork, these
tasks require project management—for example, task assignment and coordination.
For five people to stand and watch one person write a paragraph, draw a dia-
gram or code a procedure makes no sense.

Teams require time to mature. In the beginning, many teams defer to the loud-
est or most persistent voice. If the team remains in this stage, team performance
may suffer and the members will not enjoy the experience. Effective teams move
to cooperative work as quickly as possible. They provide meaningful roles for
every member based on what each member does best. Not every team matures
in a positive way. Some dysfunctional teams divide into factions, become dom-
inated by a single individual, or come to resent freeloaders. Recognizing the
potential of some of these behaviors can help the team to avoid problems and
function effectively.

One organizational research model describes the maturing process with five
stages (Greenberg and Baron, 2000, p. 256):

• Forming: establish ground rules and get acquainted (team contract).

• Storming: contention over control and leadership.

• Norming: establish relationships and come to an understanding of team
expectations.

• Performing: work toward goals and getting the job done.

• Adjourning: disband the team.

In this representation, teams start with forming and storming, that is, testing
each other, arguing, and trying to figure out roles. Organizations often try to
facilitate this stage by scheduling retreats, special activities, or such exercises as
preparing a team contract to build trust and understanding among members.
Once the team gets through the forming and storming stages, the team can estab-
lish team expectations or norms. For example, the team may decide what process
the team will use to reach a consensus. In the final stage, the now mature team
works to get the job finished.

Teams often mature in a fairly abrupt way called “punctuated-equilibrium”
(Greenberg and Baron, 2000, p. 257). According to this model, the team sets goals,
defines tasks, and conducts a number of tasks described as forming, storming,
and norming in the stage model. During this time, work proceeds in a very formal
way, and progress toward goals may be structured and not very creative. Some-
where in the midpoint of the team’s life, the members suddenly discover that
they cannot meet their goals. At that point they begin to confront real issues more
creatively, to reassign tasks, and to make the changes necessary to meet dead-
lines. The team then works in this new mode until they generate a last burst of
energy necessary to finish the task.

Chapter 2 Organizing and Working in a Project Team 39

TEAM CONTRACT

The team contract is a mechanism to facilitate team organization. The contract
contains a written set of performance expectations for the team. A formal con-
tract is most useful when team members come from a varied background and
lack a common set of professional experiences—a typical situation for student
teams. Many business teams omit the use of a formal contract because company
policies, procedures, norms, and behavioral expectations predefine the behav-
ioral expectations that might appear in a contract. Companies may use a formal
contract when teams are made up of members from different branches of the
company or from widely different geographical areas.

A team can be self-managed or directed. In business, many teams are directed:
they have a leader or facilitator appointed by the organization whose job is to clar-
ify the purpose of the team and to facilitate the members’ contribution toward that
goal. Typically the leader has status, knowledge, or experience that the other team
members do not have. The leader may hold a management position in IT or in a
functional area. The leader in a directed team also may have input into the per-
formance review of the individual members of the team. In a self-managed team,
the members often are roughly equal in status, experience, and knowledge.

In most field project situations, teams are self-managed. The team works out
internal roles and responsibilities and establishes performance expectations. A self-
managed team may define roles, responsibilities, and performance expectations in
a formal written contract. Each member of the team may sign the document to
indicate that he or she will abide by its terms. The content may include a state-
ment of the team’s purpose, an inventory of member skills, duties/roles of each
team member, the team’s code of conduct, and the leadership function. The state-
ment of purpose gives the team a common goal or task. Normally the purpose of
the team is to complete the project within the resources and time allocated.

Skills Inventory
Every project requires a range of skills, and each part or task of a project requires
a distinct set of skills. Two issues arise. First, a well-functioning team will assign
tasks or roles to the members with the most appropriate skills for the task. Sec-
ond, one or more members of the team may need to learn new skills. Sometimes,
the team may need to redefine the project scope to fit the skills the team pos-
sesses or can learn in the time available. Mastering a new skill within the project
deadlines often poses serious problems. For all these reasons, the team should
act as soon as possible to identify the skills possessed by the team, those skills
needed for the project, and a process to acquire the additional skills, if any,
needed for the project.

At the first meeting, the team can start identifying skills. When the members
do not possess detailed information on each other’s professional skills, conduct-
ing a skills inventory can provide insight. A sample skills inventory form is shown
in Figure 2.1. Each member fills out the form. Using the information on the forms
as a starting point, the team can then discuss the available skills of its members.

FIGURE 2.1 IT Project Skills Inventory

40 Part One Project and Team Organization

IT Project Skills Inventory Form Name: Terrie Shaftkopf

• Instructions: For each skill, rank your expertise as one of the following:

5 in-depth knowledge and expertise or unusual ability in the area,

4 strong or above average knowledge and application skills or strong interest and

willing to learn more as needed.

3 average knowledge, able to apply to problems, some experience with use, interest

in learning more

2 know what it is, read about it in a text, some interest in learning more or

1 no knowledge and limited interest in learning about the area.

• For the strong areas ranked 3 or above, note your background briefly in the Comments

column: relevant courses, work or project experience in the area, etc.

• List the resources—i.e., programs, computers, meeting place, etc. that you can

contribute on the back of this form.

Area Rank Comments

1) Technical Skills

a) Programming

i) Visual Basic 4 Completed VB course; use it

ii) Access 4 Use at work

iii) HTML 5 Maintain my company Web site

iv) Active server pages, etc. 3 Some experience at work

v) SQL 3 Database course

vi) Pseudo code 2

b) Infrastructure

i) Client/server 2

ii) Telecommunications 2

iii) Web 2

iv) Database engines 2

2) Analysis and Design

a) Case tools 1

b) ERDs 4 “A” grade in Database from Prof. Carte

c) Table schema 4

d) DFDs 3 Systems course

e) Evaluation of alternatives 3

f) Object-oriented design 2

g) Other —

3) Writing and Checking Skills

a) Writing skills 2

b) Editing skills 1

c) Checking work against the 1

standards of the organization

or manager Page 1

Chapter 2 Organizing and Working in a Project Team 41

4) Manager Skills

a) Well organized 3 Manage my company Web site

b) Strong, good follow-up 3

c) Project management

experience or interest 1

d) Good people skills 2

5) Other—know and use MS 4 Use at work

Front Page

Page 2

During discussion, each member can provide additional background infor-
mation and describe his or her skills, including individual strengths and any
resources he or she will bring to the team. With this discussion, the members get
to know each other and can ask clarifying questions or make comments. For
example, if a member lists Visual Basic (VB) as a skill, the team discussion may
focus on refining how well the member knows VB. Or members may point out
skills that a teammate forgot to list.

Using the information on the skills inventory forms and the discussion, the
team may prepare a summary skills inventory for the team. If some needed skills
are not available, the team can add skills acquisition to the project plan telling
who will acquire the skills, how, and when. In addition to skills, the team
requires other resources to carry out a project. Possible resources include a
meeting place, computing facilities, contact with “experts”—people with skills
the team does not possess but may need, ownership of or access to relevant soft-
ware, and so forth. The team identifies what resources are needed and which
resources are possessed as part of the skills inventory.

Assigning Roles
The next step is to allocate initial roles. Two critical issues drive the assignment
of roles: (1) the work required in the project—the deliverables; and (2) the skills,
abilities, and interests of the members. The team may wish to look closely at the
first several deliverables before setting roles. The summary skills inventory and
the discussion by the team will form a guide for determining the initial interests
and abilities of the members. People perform better when they are asked to do
things they are good at and want to do. The team may not find it possible or
desirable to let everyone do exactly what he or she wants, but an effective team
takes individual preferences into consideration.

The team should view initial roles as temporary for the first several deliver-
ables or weeks. As the team matures and gains experience, the team will gain a
better understanding of both the work needed for the project and the abilities of
each team member. A good team reassigns roles as the understanding of the proj-
ect and agreements among team members change.

A possible set of initial roles includes the following:

• Coordinator: Schedules meetings; keeps track of due dates for deliverables
and team assignments; checks on and communicates progress, meeting
dates, and places to all members. The coordinator serves as a facilitator, not
a manager.

• Communicator: Takes charge of reporting and recording actions and products
of the team. Fills out the weekly progress report to the manager and ensures
that all members are informed of meeting dates and places. Sets up a Web site
or other mechanism to allow every team member to view the latest versions
of reports, drafts, and other products.

• Standards manager: Reviews all deliverables to ascertain that they meet the
requirements set out by the organization. Maintains documentation including
backup copies for all deliverables and other important items.

• Other initial roles might include analyst, designer, writer, editor, or one who
takes primary responsibility, perhaps shared with one or two others, for the
first deliverable or parts thereof.

Each member should have an initial assignment that allows the person to
begin working on the assignment immediately. Team members should contribute
throughout the project, not just in one period. As each week goes by, the team
will gain a better understanding of the potential contributions of each member
and the requirements of the project. This information will allow the team to
reassign roles that better fit the members and the task.

Code of Conduct
The code of conduct describes the norms or ground rules the team members
agree to follow. Teams should establish both task-oriented and people-related
ground rules. In all team situations, disagreements and conflict often arise even
with the most dedicated and well-meaning team members. The code of conduct
provides a neutral forum for resolving conflicts without letting them become part
of a personal dispute between two or more of the team members. The discus-
sion can proceed in such terms as, “We all agreed to the following . . .”, instead
of, “I object to what you are doing.”

Issues to consider when establishing ground rules include

• Meetings. How will the team set meeting times and places so that all mem-
bers can attend? What do “on time” and “meeting attendance” mean? By what
process and for what reasons can a member miss a meeting? What happens
when a member misses a meeting without prior agreement or is late to one?

• Roles and workload. How will the team assign and/or reassign specific roles or
tasks to members within each project phase? How will the team balance work-
loads among members?

• Operations. How will the team set deadlines and how firm will they be? How
will the team make decisions, especially decisions that change the plan? How
will team members give each other feedback? How will the team handle con-
flict or disagreements? What procedures will be used?

42 Part One Project and Team Organization

Chapter 2 Organizing and Working in a Project Team 43

• Evaluation. What procedures will the team follow when a member does not meet
his or her responsibilities? When the team conducts a peer evaluation, which
behaviors of members will they reward and which ones will they punish?

The discussion for each rule should include such elements as

• The purpose of the rule.

• The specific statement of the rule.

• A definition of what constitutes a violation of the rule.

• The action(s) that occur when the rule is violated.

• The procedure for taking action.

• The person or persons responsible for taking action.

• Exceptions, or mitigating circumstances that may lead to no action for a
violation.

The team should state ground rules in a comprehensive and specific manner.
A rule that says, “The team will set meeting times” does not follow the above
guidelines and is too ambiguous to help the team function. A better statement
might be similar to the one listed in the sample team contract in Figure 2.2. An
actual team will want to create a more complete contract.

MANAGING A TEAM

Team management involves two functions, headship and leadership. Headship
is the function of providing direction and assignments to the team. Headship
provides organization and structure. Leadership is getting people to do what is
desired. Leadership involves motivating, encouraging, and convincing people to
get behind the success of the team. Illustrative functions of headship and lead-
ership are listed in Table 2.1.

In self-managed teams, neither headship nor leadership nor any other roles
are predefined. The team must work out appropriate roles for each member. Fre-
quently a self-managed team will organize by selecting a person to serve as

TABLE 2.1
Headship and
Leadership
Functions

Headship Functions

• Makes assignments

• Communicates with management

• Keeps track of deadlines

Leadership Functions

• Demonstrates appreciation for everyone’s contribution

• Mediates conflict

• Promotes excellence

• Guides and motivates

44 Part One Project and Team Organization

Team Contract

Team 7 GB Video Project

Team Purpose

Team 7 is assigned to the GB Video Project: design or select a new computer-based

system to track and manage the rental and return of videotapes and DVDs as

requested by the client.

Skills and Resources

The skills inventory summary for the team is attached as Appendix I. The team totaled

the skills of each member to arrive at a measure of the aggregate level of skill in the

team for each area.

The team has access to the following resources:

• An office, AH 405, where the team can meet and/or store materials

• Laptop computers: Al and Dan

• Desktop computers at home: Al, Terrie, and Dick

• Everyone has e-mail access from home

• Cars: Terrie and Dick

Initial Roles for Project Definition

• Coordinator: Terrie

Handles all contacts with the client and the manager. Schedules team meetings,

manager meetings, and client visits. Keeps track of due dates for deliverables and

team work assignments. Tracks progress against the plan. Prepares the agenda,

questions, etc. for manager and client meetings.

• Communicator: Al

Reports and records all actions of the team. Works with the coordinator to communi-

cate progress, meeting dates, and places to all members. Prepares the weekly

progress report and e-mails it to the manager and all team members. Informs all mem-

bers by e-mail of every meeting time/date and place. Sets up a Web site to allow

every team member to view the latest versions of reports, drafts, and other products.

• Editor and Standards Manager: Dick

Completes and edits the draft of the SOW and the project definition report. Reviews

all deliverables to ascertain that they meet the requirements set out by the organiza-

tion. Maintains documentation including backup copies for all deliverables and other

important items.

• Analyst: Dan

Writes up the information obtained from the client in the format, prepares the draft

SOW, EDM, DFD and other project definition materials. Works closely with the editor.

The team will review and reassign roles when the first assignment is complete or as

needed.

Page 1

FIGURE 2.2 Sample Team Contract

Chapter 2 Organizing and Working in a Project Team 45

Code of Conduct

• Meeting Attendance

Purpose: To enable the team to conduct effective meetings and to make the best

possible use of everyone’s time.

Statement: The team identified a set of meeting times (e-mailed to all members)

that work for the team members at the initial organizational meeting. The team coor-

dinator will notify each member by e-mail at least 24 hours in advance if one of the

preestablished meeting times is not needed or if only some members are needed.

Members must attend the meetings. The team will keep a written record of

attendance at each meeting and post it on the team Web site.

Violation: Not showing up within 5 minutes after the set time or leaving before 1

hour (or the agreed-on end of the meeting if sooner) is a violation unless the mem-

ber has notified the team by e-mail at least 8 hours in advance and received

permission from the coordinator by e-mail for an absence. The coordinator or a des-

ignated representative will permit an absence for critical reasons—family emergency,

severe illness, etc. The coordinator will report any excused absences to the team. If

a majority of the team members feel that the excuse policy is being abused, they

may require the coordinator to get approval from a majority before granting an

excused absence.

Action: The coordinator will notify the person by e-mail that they missed a meeting.

Each missed meeting deducts 1 point from the individual’s team score. Three unex-

cused misses will result in a 5-point deduction. Members will consider the team

score when filling out peer evaluations.

• ……………..

• ……………..

• ……………..

• ……………..

• Changes. By majority vote, the team may grant exceptions to or change any of the

rules at any time. Fairness, effectiveness, and consistency shall form primary tests

for all actions.

Signatures

______________________________ ______________________________

Dick Von Kemp Al Price

______________________________ ______________________________

Terrie Shaftkopf Dan Cartperson

Page 2

46 Part One Project and Team Organization

Appendix I. Summary Skills Inventory for Team 7.

Team Members

Skill Areas Terrie Dan Dick Al Total

1) Technical Skills

a) Programming

i) Visual Basic 4 5 1 2 12

ii) Access 4 5 1 3 13

iii) HTML 5 4 1 3 13

iv) Active server pages, etc. 3 3 1 3 10

v) SQL 3 5 1 3 12

vi) Pseudo code 2 3 1 3 9

b) Infrastructure

i) Client/server 2 4 1 3 10

ii) Telecommunications 2 4 1 3 10

iii) Web 2 4 1 3 10

iv) Database engines 2 5 1 3 11

2) Analysis and Design

a) Case tools 1 3 3 3 10

b) ERDs 4 5 3 3 15

c) Table schema 4 5 3 3 15

d) DFDs 3 5 3 3 14

e) Evaluation of alternatives 3 3 3 3 12

f) Object-oriented design 2 2 4 3 11

g) Other — 0

3) Writing and Checking Skills

a) Writing skills 2 3 4 3 12

b) Editing skills 1 2 4 3 10

c) Checking work against the standards

of the organization or manager 1 4 5 3 13

4) Manager Skills

a) Well organized 3 3 4 3 13

b) Strong, good follow-up 3 3 4 3 13

c) Project management experience

or interest 1 4 4 3 12

d) Good people skills 2 4 4 3 13

5) Other—know and use MS Front Page 4 4 1 3 12

Page 3

Chapter 2 Organizing and Working in a Project Team 47

coordinator—a person to provide some aspects of headship. The coordinator also
may provide some leadership. But often leadership and headship come from sev-
eral members and vary over time. In a well-functioning team, the roles, includ-
ing the coordinator role, will change as the team members come to understand
how the relative strengths of the members match the task at hand. Flexibility and
rapid response to problems or changes are strengths of the self-managed
approach.

Most of the discussion in this chapter assumes that project teams are self-
managed because most class project teams are self-managed. In organizations,
many teams are directed. In directed teams, the organization assigns a person to
take charge of the team when the team is initially formed. Common titles for the
role include team lead, project director, or project manager. Usually the
assigned director has experience, knowledge, and/or skills that make him or her
qualified to guide the actions of the team and to evaluate the performance of the
other members of the team. The team director starts out with responsibility for
the headship and leadership functions of team management, including the role
of coordinator. He or she then may delegate some of the headship and leader-
ship functions to other team members on occasion.

In many cases, the assigned head is not the only or even the major leader on
the team. Other team members may earn some of the leadership functions on
the basis of their performance. Individual members often have a very large role
in influencing the behavior of other team members and in facilitating the suc-
cess of the project. Leadership becomes particularly important with teams com-
posed of members from both the client and the IT community. In many of these
teams, the formal project manager comes from the client community to assure align-
ment with organizational requirements. But a client manager may lack the techno-
logical credibility and cultural experience to lead or motivate the IT members of
the team. These teams usually have a senior IT member who is not the project man-
ager, but who is expected to provide leadership among the IT members in support
of the project goals.

Successful Teams
The most successful teams consist of people with a variety of personal skills and
technical abilities who are willing to work for the team. The management task is to
provide a team environment that makes people willing to work for the team. Reflect
for a moment on the old saying, “Everyone does at any moment the thing they
most want to do.” This saying is a tautology, a truth by definition. In a project envi-
ronment, the saying implies that the team needs to create an environment in which
the team members want (or at least are willing) to do what the project needs.

Many people hold the misconception that team member motivation works
mostly or only on the basis of salary or grade rewards and firing or failing threats.
These kinds of rewards and punishments clearly produce some effects, but relat-
ing significant short-term changes in salaries or grades to performance on a spe-
cific project task is difficult both in companies and universities. A team member
might reasonably expect to get a B (or A or C) regardless of how well they do a
specific task. Often, field project team members respond to other interpersonal

48 Part One Project and Team Organization

rewards much more readily than to grades. The rewards may include learning
new and desired skills, personal satisfaction for good work, and peer approval.

Individual Needs

The art of managing a team for success, both for self-managed and directed
teams, relies in part on providing team members the rewards they want from
the experience. The “art” part of that statement comes from the fact that differ-
ent people want different things, that is, they value different things. The Tri-
chotomy of Needs model offers a useful behavioral framework to identify what
people value (McClelland, 1961). McClelland uses the motivational theories of
contemporary psychology to extract three basic needs that people value when
making decisions about what to do.

McClelland observes that most people are motivated by some combination of
the following three needs:

1. A need to achieve (nAch).

2. A need for peer acceptance and affiliation (nAff).

3. A need for influence or power (nPow).

This motivational framework can help the team to identify the kind of rewards
that each member will value. The model at best provides a starting point, not an
exact prediction of how anyone will behave. The concepts in the model are
approximations and generalizations. Actual team members may or may not
behave as the model suggests and may behave differently from one situation to
the next. But using the model to characterize more clearly the preferences of each
member can help the team to organize and function in ways that reinforce moti-
vation for every member.

The need for achievement (nAch) represents a need to accomplish something
or to attain a goal. People with a need for achievement are more concerned with
the accomplishment than with a reward. They focus on the outcome and tend
to disregard the process rules for getting there. They feel a need to contribute
and want recognition for their individual contribution. They like accurate feed-
back from knowledgeable evaluators on their work, either positive or negative.
They tend to make optimistic estimates of what they can do until they get infor-
mation, but they don’t like real risk.

Most IT programs start people in a computer programming class that forces
an achievement-oriented approach. People who don’t like this experience are not
attracted to the MIT field. A team should expect several of its team members to
have a high need for achievement. Indeed the best technical members are likely
to be the most motivated by achievement.

From a team point of view, expect nAch members to tend to

• Demand to be included in decisions. If they are not included, they will probably
not work to support the team. They tend to be very bad at routine work. They
have a hard time letting go of their ideas.

• Try to take on a whole task. (nAch) people want to own a piece of the project
themselves and may not want to collaborate.

Chapter 2 Organizing and Working in a Project Team 49

• Avoid conflict. High-achievement people are disturbed by conflict and will
often give in or withdraw from participation if there is much team contention.

• Undervalue interpersonal relationships. Achievement people may want to get
directly to the task and not recognize unsaid concerns or wounded feelings
in team members. They can have difficulty with a leadership role.

The need for affiliation (nAff) represents a need for group acceptance and
approval. These people participate because of the group rather than use the group
to get something done. High-affiliation people are willing to do whatever tasks
the group needs. They prefer to work collaboratively rather than alone and to
value social time, even if it is not productive. They are uncomfortable taking stands
that might alienate someone in the group and have a hard time setting goals.

Expect nAff members to tend to

• Be good staff support. Affiliation people are willing to do partial tasks and sup-
port other people’s efforts, even if they don’t get credit for it.

• Expect good social relationships. High nAff people enjoy parties and may intro-
duce purely social topics into group meetings. Their feelings can be easily hurt
by negative feedback or conflict.

• Have difficulty defining and completing tasks. This dysfunction is particularly true
if one person alone assigns the tasks for independent work.

• Be uncomfortable as leaders. While affiliation people will work to make a group
become cohesive, they have a hard time demanding performance from others.

The need for power or influence (nPow) is a desire to accomplish a goal
through others rather than directly. The nPow motivation can exist as either
socialized or unsocialized power. Unsocialized power is used for the good of the
individual regardless of the consequences to others. The exercise of unsocialized
power leads to bullying behavior, “using” people, and team resentment. Social-
ized power is used to further the goals of the group. High-power people make
good leaders and enjoy making decisions for others. They understand process as
a tool of control. They enjoy conflict and emphasize winning. They accept risk
and like high-visibility rewards.

Most corporate managers have a high-power motivation. Recognizing this nPow
orientation can help the team to work well with executive clients. IT people, on the
other hand, tend to be uncomfortable with power positions and nPow people.

Expect nPow people to tend to

• Enjoy leadership. People with a high-power motivation will volunteer to lead
and probably try to organize the group. They may try to take over the group
and ignore contributions from other members.

• Prefer representing to doing. People with an nPow motivation are usually com-
fortable with public speaking and make very good presenters and front peo-
ple. They are less comfortable working without recognition or support.

• Introduce conflict. High-power people view conflict as a legitimate way of set-
tling disagreements, and they do not hold grudges about battles they lost.
They don’t understand people who back down or resent confrontation.

50 Part One Project and Team Organization

• Focus on process. Rules and procedures are used to manage the behavior of the
group. NPow people are uncomfortable with skipping steps or circumventing
people in charge.

Effective teams contain a mix of people with different motivational drives.
Each mix brings potential advantages and dangers. Two strong-willed nAch peo-
ple, however, might compete over the “best” way to do a project unless some-
one else mediates. Two nPow people may disrupt a meeting until one wins and
the other withdraws. When teams recognize the kinds of disruptive behavior that
arise from motivational mismatches, they will be better prepared to mediate.

Leadership from a Motivational Perspective
As noted, organizations possess only a limited ability to grant or deny tangible
rewards for day-by-day behavior. Raises usually come only once or twice a year.
Awards normally are handed out at the end of projects or at special events.
Offices and assignments change infrequently. In this environment, leaders and
managers need to use intangible rewards for ongoing motivation and control.
The McClelland model, in contrast to most other behavioral profiles, helps to
identify the intangibles that motivate people. Understanding that different peo-
ple work for different internal reasons helps a leader to replace grudging accep-
tance of assignments and tasks with willing participation.

Within a team, a leader needs to identify individual motivating desires and
use them to determine “payments” for supportive behavior. For example, hav-
ing team members compete for a trophy or prize can provide strong motivation
for an nPow member, but it may decrease motivation for members with nAch
of nAff profiles. However, putting an nPow member who has done nothing on
the project in charge of the final presentation because it is “the only thing he can
do” may appear to reward poor behavior. To insist that the nAff member con-
duct the final presentation because she has attended every meeting, provided
help whenever she could, and generally made the project a pleasant experience
may upset a good performer. Programmers, often nAch people, want accurate
feedback from knowledgeable people rather than unearned or generalized
praise. The nAch programmer who says, “Let me code the entire Web interface;
I don’t really need any help” probably means it. When the programmer com-
pletes the task, praise from the most senior person around will be appreciated.

The process of developing the tools for motivational leadership starts with try-
ing to identify the motivational profile of different members of the team from their
behavioral clues. Given the high likelihood of missing information and ambiguity,
leaders should be prepared to revise their assumptions as a project goes on. Peo-
ple provide clues in their conversation, in their office appearance, in their perfor-
mance, and in their reaction to different situations that they encounter. Once a
leader has formed an opinion of the motivational profile of a team member, the
leader can make good guesses about what rewards that person would value.
One option is to ask, “What do you think is a good way to motivate X?” Many
people will respond with what would motivate them, provided they identify with
X. The goal of good motivational leadership is to find and deliver positive,

Chapter 2 Organizing and Working in a Project Team 51

meaningful rewards for desired performance. Leadership is an art and motiva-
tional analysis is merely a tool to support that art. The leader tries to understand
both explicit and implicit preferences of people in order to make the team experi-
ence as rewarding as possible for both the organization and the team members.

WORKING IN A TEAM

Working in a team setting offers advantages but also poses difficulties. If the
team tries to do most of the work in meetings as a team, the meetings consume a
lot of time and may frustrate some or most of the members. If much of the work
is done individually or in subgroup meetings, parts of the project may end up
undone, incorrect, or duplicated unless the team places extra effort on organiz-
ing, managing, and communicating. Project management, an important topic, is
discussed in Chapter 3.

Communication
Most teams depend on communication between members to function effectively.
As each person develops assigned parts of the project, he or she may need to
coordinate with others working on related parts. All team members require com-
munication to learn about progress and any changes in deadlines, meetings,
plans, and standards or conventions. An effective team will focus communica-
tion on assignments and progress not on speculation about the motives or per-
sonal lives of the absent team members. Inevitably, both kinds of content appear,
but the balance should go strongly toward the constructive sharing of informa-
tion over dysfunctional gossip.

The major mechanisms for communication are face-to-face discussions in
teams or subgroups, telephone conversations, and sharing written documents
and electronic communications. Team meetings can provide good communica-
tion. These face-to-face sessions early in the project can develop team cohesion
and trust. As the project proceeds, freeform meetings, where everyone just comes
and free-associates, can generate some progress, but they mostly waste time.
Communication effectiveness is enhanced by an agenda where members report
briefly on issues and progress, and the team members respond with suggestions
and comments. The coordinator or other members can develop and distribute an
agenda and then follow up to see that people are prepared for the meeting. The
team should develop an agenda for the next meeting during each meeting. At a
minimum, the team can spend the first few minutes of an unplanned meeting
developing an agenda. Handouts distributed before the meeting and read in
advance by the members always help.

Electronic communications can greatly facilitate teamwork. The simplest form
consists of e-mail. E-mail can save a lot of time and communicate with less ambi-
guity. Meeting announcements or changes in plans fit well into e-mail. For
e-mail to work, the team members must check their e-mail regularly. An unread
message provides no communication. (In this respect, nothing beats a telephone
for a last-minute message if the person happens to answer.) E-mail also works
well for the distribution of draft documents or reports and for feedback.

52 Part One Project and Team Organization

Managers and some clients prefer e-mail communication for routine matters.
Every team should take full advantage of e-mail.

A second step in utilizing electronic communications fully is for the team, early
in the project, to agree on a location where the current version of every project
components is stored. The location can be a common data storage drive available
to everyone, a managed listserve location and/or other Web site. The Web sites are
good because members can access them from home, work, or travel. The team
should appoint a location coordinator to assure that the contents are current and
complete. The team also needs either formal or agreed-upon access control rules:
these determine who can add items to the site, change them, and/or delete them.

Electronic communication sometimes causes problems because of disinhibi-
tion. Team members, as a result of years of socializing, develop standards of
acceptable behavior for face-to-face, written, and telephone communication.
Sometimes members do not apply these same standards to such newer media as
electronic communication. Standards for effective electronic communication (as
well as all communication) include the following:

• Avoid flaming. If a team member is mad or upset, he or she should calm down
before communicating. Sending hostile or derogatory messages to all or part
of the team will not lead to constructive communication. Maintain profes-
sional standards in all team communications.

• Sign and date communications. Including versions, dates, and the author’s
explanatory comments in the electronic header of all documents helps the
coordinator and all the members to avoid replacing a new document with a
previous version. When the final product is assembled, the editor can remove
the markers.

• Assign ownership or access control to each document. Only the owner can autho-
rize changes to the official copy of the document. Others working on the same
component can submit suggested changes to the owner. Allowing everyone
to change the official copy leads to chaos and discord.

• Always maintain a backup copy of everything important at a separate, secure loca-
tion. A manager will show little sympathy when a team tells him or her that
the machine ate the report.

• Copy all members. When the team distributes versions of a product, send or
make it available to every team member. If the team has posted a major
change to a Web or listserve location, e-mail the new version or notice thereof
to every team member.

Manager Relations
While self-managed teams establish their own internal goals and processes, the
team’s client and manager set the external expectations for the team. The client,
or perhaps the sponsor, is the person responsible for setting the organizational
expectations for the project and for determining acceptable outcomes. The man-
ager is responsible for the quality, completeness, and timing of the work, obtain-
ing resources for the team and for personnel evaluation (i.e., grades). The team
bears major responsibility for behaving professionally toward the manager and
for developing an effective working relationship with the manager.

Chapter 2 Organizing and Working in a Project Team 53

A team in an organization may report to a single manager or, perhaps, to sev-
eral, for example, an IT manager and a client manager. A committee also can
serve as the manager for a team. The manager may assign projects and mem-
bers to teams, track performance, and provide a final evaluation. The manager
also may offer or agree to help with technical and political problems for the proj-
ect. The manager shares responsibility for the success of the project with the
team. Most managers perform other duties and can spend only part, perhaps a
small part, of their time with any one team. In a field project exercise, an instruc-
tor usually acts as the manager for the team.

Some guidelines for teams to use when interacting with managers include

• Keep the team manager informed of progress. Most important, warn the manager
as promptly as possible of any difficulties. Managers dislike problems, but
they hate unpleasant surprises. Managers cannot help solve or adjust for a
problem until they know the problem exists. They tend to punish the team
for problems that are revealed too late for corrective action or are revealed by
someone outside the team.

• Respect the manager’s time. Most managers are busy. Meet with the team man-
ager on a regular basis to review work and discuss difficulties. Take the initia-
tive to schedule or reschedule meetings; do not make the manager come look-
ing for the team members. Make appointments for meetings; do not drop in
casually unless team members are certain the manager encourages such visits.

• Ask for help when needed. The manager will help directly with some of the prob-
lems and will help the team find needed resources. Team members should do
their part first, however. Try to solve the team’s problem before bringing it to
the manager.

• Manage client relationships. A manager should never learn about a problem or
a development from the client. He or she should hear it from the team first.
Before scheduling meetings for formal presentations or conferences, check the
availability of the manager. Do not present the manager with a date on which
the team and the client have already agreed.

DEALING WITH NONPERFORMING MEMBERS

Teams, especially self-managed ones, can encounter problems with some mem-
bers. Team members are expected to contribute their best work to complete the
project. Most members contribute well if the team pays attention to the needs of
all of its members. Every member of the team has the responsibility to make sure
that all the members do their part and contribute to the welfare of the team.

Team members who are disruptive—difficult, domineering, or dogmatic—or
ones who are unable or unwilling to carry their share of the work can generate
resentment and resistance, and can reduce team productivity. If one or more mem-
bers fail to meet their responsibilities, the team may believe it faces three choices:
(1) convince the errant member to change; (2) expel the errant member; or
(3) live with the problem. Alternatively, if a member feels abused or unable to
work with the others, the member may wish to resign from the team.

54 Part One Project and Team Organization

The best way to deal with any problem is to solve it as rapidly as possible in
a satisfactory way. When a majority of teammates decide that a member or mem-
ber(s) are not performing at a satisfactory level, appropriate steps include

1. Review and encourage everyone to follow the team contract.

2. If the problem persists, try to resolve it in a low-key way that does not create
embarrassment or angry divisions within the team. For example, select a per-
son to talk privately with the errant member to make sure he or she under-
stands what the team expects. Ask the errant member about any problems or
issues inside or outside the team that may be affecting his or her performance.

3. If the problem still persists, ask the team manager to talk with the person.

4. If no improvement occurs, the team as a team informs the person that their
performance is unacceptable and that if no improvement occurs, the team will
consider further actions.

Hopefully, the errant member will respond to the information and to peer and
manager pressure to perform better when informed of expectations and/or prob-
lems. If no improvement occurs, the team may consider the next step, removal.
Timing may affect the appropriate action. If a member refuses to perform at the
beginning of a project, removal may represent a good option. But if a member
refuses to perform the week before the final report is due and resists all applica-
tions of peer pressure, the other team members have little choice but to shoulder
the additional load. The members can express their displeasure in the peer evalu-
ation process. The overriding goal is a successful project outcome, whatever it takes.

Removing a Member
Occasions may arise when one or more members prove unable or unwilling to
contribute a fair share even after individual, team, and manager counseling. The
removal of a team member is an extreme option and a rare one. A member who
is removed may face severe penalties. A team member facing removal is wise to
take every possible step to correct the situation. But when removal is deemed
necessary, the team, with the consent and participation of the manager, can use
a multistage process. Each organization has its own policy for removal to assure
fairness and to protect against lawsuits, but most work by notifying the person
of his or her unsatisfactory performance, specifying what must be done to cor-
rect the performance and then measuring outcomes.

A possible process to dismiss a member from a team might proceed as fol-
lows. The team first consults with the manager about the problem before taking
any steps toward removal. The manager normally reviews the team’s grievances
and efforts to resolve them, then may wish to meet with the entire team, may
ask the team to make an additional attempt to resolve the problem, and may
wish to meet privately with the offending member.

If the manager agrees that a problem remains and further action is warranted,
the team can put the member “on plan.” Possible steps for doing this include:

• Convene a team meeting at which the team decides what the errant member
must do to achieve acceptable performance, that is, meeting the plan terms.

Chapter 2 Organizing and Working in a Project Team 55

The team should define the desired actions, due dates, and quality standard
clearly in writing and use objective measures. The performance specified by
the plan should be similar to what is expected from other team members.

• Notify the team member in writing that his or her performance is unsatisfac-
tory using an objective statement approved by the manager. Provide the mem-
ber with a copy in writing of the proposed plan.

• The errant member can agree in writing to the plan. He or she should could agree
to meet the plan conditions by signing the plan or sending written notice of
agreement to all members and the manager. If the member refuses to agree to the
conditions, the team probably will choose to remove the member from the team.

If the team subsequently believes that the member meets all the conditions of
the plan, the team takes no further action. If the team concludes that the member
did not substantially fulfill the plan, the team can document the shortfall and pre-
sent it to the manager. The manager normally makes the final decision on removal.
People removed from a team for unsatisfactory performance generally receive
sanctions from the manager, such as they are ineligible for a raise, they receive a
grade reduction, or such. In actual organizations, the person’s employment some-
times is terminated, but often the person is just assigned to another task.

Resignation
Resignation from a team represents another extreme and disruptive option. A
member may risk sanctions when he or she asks to resign from a team. A wise
team member takes steps to avoid problems prior to or at the time of team for-
mation. When an existing and severe interpersonal conflict exists between poten-
tial team members, such as long-time antagonism or a failed romantic relationship,
the members should bring the issue to the attention of the manager at the begin-
ning of the project and request a new assignment at that time. Once the project is
underway, a request to resign identifies the team member as a person who cannot
get along.

A member should make every reasonable attempt to resolve differences before
asking to resign. Members are expected to set personal conflicts aside at work and
to interact on a professional basis. Members also are expected to work through
their conflicts and disagreements. Requests to resign from a project because the
team is not following a member’s suggestion or because the other members’ work
habits are not compatible are seldom viewed favorably. However, circumstances
exist when a work situation, if allowed to continue, may cause serious damage to
members or to the deliverables. In this case, ask the team manager to discuss the
merits of a resignation.

Dysfunctional Teams
Sometimes the problems faced by a team come not from a nonperforming mem-
ber but from the interactions between several or all of the members. Some of the
more common team interaction problems are discussed below.

Fragmentation occurs when two team members, often nPow types, insist on fol-
lowing incompatible approaches. Sometimes the differences result from differing

56 Part One Project and Team Organization

views of an appropriate approach, but often the split indicates a contest for recog-
nition and control among the members. In any case, the infighting consumes most
of the energy in the team, and the nAff and nAch members either join subteams
or withdraw. The nonfighting members need to stay together and take a role in res-
olution. If the team contract contains a dispute mechanism, one of the team mem-
bers needs to invoke it. If not, the other members can help by describing the prob-
lem openly as a conflict and staying focused on resolution, rather than on criticizing
the fighters. In the absence of any progress, the team manager can mediate the prob-
lem by calling a team meeting. The wise manager seeks to facilitate a solution by
the team rather than impose one on the team. The “loser” in these contests may
not provide much further contribution to the team.

A hijacked team occurs when a single, strong-willed person imposes his or
her vision on the team and ignores and suppresses contributions from other
members. Frequently the hijacker asserts his or her solution and takes over most
of the work at the beginning of the project. In this situation, the other members,
without thinking about the consequences, may disengage. Some members may
defer to the hijacker with the attitude, “If she wants to do all the work, let her.”
Others may become discouraged with the rejection of their input and just quit.
Note that the problem involves two components: (1) the hijacker and (2) the pas-
sivity of the other members. The highjacker cannot succeed without the implicit
consent of the highjackees.

The hijacked team faces two serious problems: (1) the team loses many good
and often the best ideas; and (2) more importantly, when the workload increases
beyond what the hijacker can do, the other members of the team may decline to
reengage. The project is no longer their project. The situation often results in a
poor project outcome to the detriment of all of the team members.

The best solution is to confront the hijacker early before the other members dis-
engage. The other members must insist that contributions from all team members
receive fair consideration and that the team share the workload. If the highjacker
continues to defy the rest of the team, one or several members need to involve the
team manager. The manager can reemphasize the basic tenet of a team project: all
of the team members share the responsibility for and consequences of the product.
The manager also can counsel the hijacker individually about effective team
participation. In the worst cases, the manager can encourage the team to put the
highjacker on plan and, if necessary, proceed to remove the highjacker from the team.

The secretive genius problem occurs when a member of the team tries to
assert exclusive, confidential ownership of some part of the solution. Often a pro-
grammer wants to develop the code by himself or herself and not share it with
the team until it is “complete,” but the same problem can happen with other
parts of the project. Unfortunately, this behavior may defer review of the
“genius’s” product until the genius is so invested in the work that he or she
fights all change and improvement. In any event, this behavior imposes an
unnecessary burden on the team members who may need information about the
genius’s work in order to proceed with their part of the project and reduces the
lead time for the team if corrective action is needed. Sometimes the genius will
produce a poor product or none at all, but more often the genius produces a

Chapter 2 Organizing and Working in a Project Team 57

satisfactory product at a time that is too late to correct any problems and to coor-
dinate this part of the project with everyone else.

The team can address this situation by holding one or more formal walk-
throughs for the final report (see Chapter 13). At this walk-through, the team
must insist that the genius fully describe his or her progress and results. By cov-
ering all parts of the team’s work, the walk-through will look more like a con-
structive review and less like a vendetta against the genius. If some members of
the team are concerned about participation by the genius, the team can ask the
manager to attend the walk-through. Most often, the manager’s presence con-
vinces the genius to participate and, if not, the manager has clear evidence of
the problem. The manager can then insist that the genius make a full presenta-
tion of his or her work at another walk-through in a few days.

PEER EVALUATIONS

Peer evaluations offer an opportunity for team members to comment on the per-
formance of their peers. For example, the team may ask its members at a midpoint
in the project to self-evaluate their own performance and to note any suggestions
for improving team effectiveness. The goal is to provide information during the
project that will allow the participants to modify their behavior for the success
of the project. Many actual organizations use a step midway through the project
called a 360-degree review. In these reviews, team members are asked to evalu-
ate their peers, managers, and subordinates on a collection of specific traits and
behaviors that are important to the project at hand. These evaluations have both
strengths and weaknesses. Although they simply may validate popularity, when
filled out thoughtfully, they can give each person useful feedback.

The prospect of a “good end of project evaluation” may serve as a reward to
motivate some team members during the project. At the end of the project peer
review, each person is asked to evaluate the total or overall performance of his
or her team members during the complete project. A sample end-of-project peer
review form is depicted in Figure 2.3. When team members fill out a peer review,
they should remember that the focus is on only those issues that affect job
performance. Each person should answer the items based on actual contributions
made, not on personality or preferences for friends. When a team member gives
one or more teammates credit for exceptional performance, the “fixed-sum” scor-
ing scheme described in Figure 2.3 requires the member to reduce the credit for
someone else. When some members perform better than others, the team should
give the better performers better-than-average scores to preserve the credibility
of the peer evaluation process.

Team members value and expect fairness. When members do a good job, they
want to be recognized for their work by their team, manager, client, and the orga-
nization. They might hope for a higher salary, a good grade, a new choice assign-
ment, or praise. Fairness in a field project poses many problems. The manager tries
to evaluate the deliverables and the team members. Some projects are more diffi-
cult and require more effort, but the manager can estimate relative effort and

58 Part One Project and Team Organization

Peer Evaluation

Name ______________________________ Team _______________

You can allocate a total of 10 points times the number of team members other than

yourself—i.e., if the team has 6 members, allocate 50 points; if the team has 7 members,

allocate 60 points. Assign from a maximum of 15 to a minimum of 0 points to each

member to recognize his or her contributions to the team’s performance. The team may

give every member 10 points. However, if one or more people made above-average

contributions, they deserve a higher rating than 10. Ask the team manager if anything

is unclear.

List all the team’s members except yourself Score (0 to 15)

in alphabetical order:

1. __ ___________

2. __ ___________

3. __ ___________

4. __ ___________

5. __ ___________

6. __ ___________

7. __ ___________

The Total must equal the points you have to allocate. ___________

Brief reason for lowest score:

Brief reason for highest score:

FIGURE 2.3 End-of-Project Peer Evaluation Form

Chapter 2 Organizing and Working in a Project Team 59

difficulty poorly, if at all. The manager tends to look for such things as the time-
liness and quality of the deliverables, evidence of innovation, excellence in apply-
ing knowledge, and adherence to standards. Hopefully the manager can obtain
input from the client to augment his or her own observations. The manager also
receives weekly or periodic progress reports from the team.

Summary In a modern organization, analysts and designers undertake many projects as a
member of a team. A project team consists of two or more people jointly respon-
sible for accomplishing work on a project: the goal is a “successful” project.
Teams may reduce the time needed to complete a project and may improve qual-
ity by bringing a wider range of experience and providing a potential way to
best use the strengths of each team member. Intelligence, technical and business
knowledge, and willingness to work hard all contribute to becoming an effective
team member but success also requires an understanding of how teams function.

Team characteristics for IT projects are as follows:

• A team contains two or more members. A manager generally assigns members
to the team.

• Team members share a common purpose or goal, which is to create a satis-
factory IT product or system for the client within the constraints.

• Team members possess different skills. A well-functioning team makes assign-
ments to take advantage of the best skills of each member.

• Team members are mutually accountable for the success of the project.

• Organization and management provide mechanisms to improve the effective-
ness of a team.

• Team members need to communicate. Mechanisms and technologies that facil-
itate communication offer tools to increase effectiveness of the team.

When a team forms, one of the shared objectives of the team members should
focus on reaching mature performance as quickly as possible. During the early
stages of a project a team sets up initial roles and expectations about the people
in the team and about how the team will function. The primary objective is to
develop trust among members and trust in the team. One organizational research
model describes the maturing process with five stages.

1. Forming: establish ground rules and get acquainted (team contract).

2. Storming: contention over control and leadership.

3. Norming: establish relationships and come to an understanding of group
expectations.

4. Performing: work toward goals and finishing the job.

5. Adjourning: disband the group.

In most field project situations, the teams are self-managed. The team works out
internal roles and responsibilities and establishes performance expectations. A self-
managed team may define roles, responsibilities, and performance expectations in

60 Part One Project and Team Organization

a formal, written team contract. The content can include a statement of the team’s
purpose, an inventory of member skills, the duties and roles of each team member,
the team’s code of conduct, and the leadership function. The statement of purpose
gives the team a common goal or task. The code of conduct sets forth the rules under
which the team will operate. The code provides a neutral forum for resolving issues
without letting them become part of a personal dispute between team members.

The most successful teams consist of people with a variety of personal skills
and technical abilities who are willing to work for the team. The management
task is to provide a team environment that makes people “willing to work for
the team.” Team management involves two functions, headship and leadership.
Headship is the function of providing direction and assignments to the group.
Headship provides organization and structure. Leadership is getting people to
do what is desired. Leadership involves motivating, encouraging, and convinc-
ing people to get behind the success of the group.

The art of team management, both for self-managed and directed teams, is to
provide team members the rewards they want from the experience. The “art” part
of that statement comes from the fact that different people want different things,
that is, they value different things. The Trichotomy of Needs model offers a frame-
work to identify what people value (McClelland, 1961). McClelland observes that
most people are motivated by some combination of the following three needs:

1. A need to achieve (nAch).

2. A need for peer acceptance and affiliation (nAff).

3. A need for influence or power (nPow).

At best the model provides a starting point, not an exact prediction of how
anyone will behave. Actual team members may or may not behave as the model
suggests.

Most teams depend on communication between members to function effectively.
As each person develops assigned parts of the project, he or she may need to coor-
dinate with others working on related parts. All team members require communi-
cation to learn about progress and any changes in deadlines, meetings, plans, and
standards or conventions. The major mechanisms for communication are face-to-face
communication in teams or subgroups, telephone communications, written docu-
ments, and electronic communications including e-mail and Web postings.

Team members are expected to contribute their best work to complete their
project. Most members contribute well if the team pays attention to the needs of
all of the members; however, teams, especially self-managed ones, can encounter
problems with members. When one or more members fail to meet their respon-
sibilities, the team needs a process that may include removing the member from
the team. Alternatively, if a member feels abused or unable to work with the oth-
ers, the member may wish to resign from the team.

Peer evaluations offer an opportunity for team members to comment on the
performance of their peers. For example, the team may ask its members to eval-
uate their own performance and to note any suggestions for improving team
effectiveness at the midpoint of the project. The goal is to provide information
during the project that will allow the participants to modify their behavior for

Chapter 2 Organizing and Working in a Project Team 61

the good of the project. The prospect of a “good end-of-project evaluation” may
serve as a reward to motivate some team members during the project. An end-
of-project peer review asks each person to evaluate the total or overall perfor-
mance of his or her team members during the complete project.

adjourning, 38
code of conduct, 42
communication, 36
effectiveness, 36
forming, 38
fragmentation, 55
goal, 35

headship, 43
hijacked team, 56
leadership, 43
matures, 37

members, 35
mutual accountability, 36
need for achievement

(nAch), 48
need for affiliation

(nAff), 49
need for power (nPow), 49
norming, 38
peer evaluations, 57
performing, 38
project director, 47

project manager, 47
punctuated-equilibrium, 38
removal, 54
resignation, 55
roles, 41
secretive genius, 56
skills inventory, 39
storming, 38
team, 33
team contract, 39
team lead, 47

Key Terms

Review
Questions

1. What is a team?

2. What are the purposes of establishing a team contract?

3. What are the major areas or issues that a team should include on a team contract?

4. What is a reasonable method of taking an inventory of skills and why is a skills
inventory important?

5. What are some of the issues a team should consider when establishing ground rules
to follow as a team during the project?

6. What responses should be made when a team ground rule is violated?

7. Describe and define the team five-stage maturity model.

8. For what reasons might a team member work on a team project?

9. Describe the characteristics of a person with a need for achievement.

10. Describe the characteristics of a person with a need for influence or power.

11. Describe peer evaluation.

Individual Exercises
1. Set up a plan for communicating with your team during the project. The plan should

include assignment and reporting mechanisms.

2. Prepare a skills inventory for yourself.

3. Prepare a team contract for a team that consists of you plus a roommate, spouse, or
parents.

Group Exercises
1. A team member with a 4.0 GPA at a university is a sergeant in the armed forces. He

attends the university on assignment and will receive a commission as an officer upon
graduation. He becomes irritated when he perceives that other members on his team
do not work as hard as he expects. He frequently chides his fellow team members to

Critical
Thinking
Exercises

62 Part One Project and Team Organization

References Greenberg, Jerald, and Robert A. Baron. Behavior in Organizations: Understanding and
Managing the Human Side of Work. 7th ed. Upper Saddle River, NJ: Prentice Hall, 2000.
McClelland, David C. The Achieving Society. New York: Van Nostrand Reinhold, 1961.

work up to their full potential. He is very strong willed and gets upset if the team
does not accept his ideas.

a. What type of individual is the sergeant?

b. What suggestions do you have for the team to achieve a better working relationship?

c. What suggestions would you have for the sergeant to better understand the team
and its goals?

2. A team consists of members who know each other well from working on other assign-
ments. They look forward to working with each other and believe that they will get
along well. They completed a skills inventory as part of the team contract. All the stu-
dents have good programming, communication, and analytical skills. During their first
walk-through with the client, they discover they need ASP. Dick, one of the team mem-
bers, knows ASP and had used it at another assignment. The team immediately assigns
Dick to the programming chores. Other team members are assigned to the graphical
and writing responsibilities. The team believes that since Dick is going to code, he does
not have to work on other aspects of the project. As the project progresses, Dick
becomes upset with the team and complains that they are not doing their part. When
nothing happens, he begins to skip meetings and also misses the deadline for the ASP
program. The project fails and all the team members receive penalties.

a. What should have happened when the team discovered the need for ASP?

b. During the course of the project, what could have been done to prevent the problems?

c. According to the McClelland model, what type of individual is Dick?

d. Do you think this is a rare incident?

e. Is it unusual for a team to need a new skill?

3. Judy is a very dynamic person on a team with two other women and three men. Team
member Bert seems to really enjoy Judy’s company. As the project progresses, Judy
and Bert begin to see each other socially. Other team members become concerned about
Judy’s and Bert’s “shoddy work.” Judy and Bert respond slowly if at all to work-
related e-mail and express little interest in the project.

a. Should the team contract discourage this type of behavior?

b. What should the team members do about this situation?

c. How and who should talk to Judy and Bert?

Chapter Three

Project Management
Chapter outline

Introduction

Project Planning

Using the SDLC for Planning

The Spiral Model for Project Planning

Flexible Project Planning

Planning Mechanisms

Client/Team Contract Plans

Planning with Joint Teams

Prototype-Based Plans

Outsourcing Plans

Generating the Plan

Selecting the Activities or Tasks

Task Times and Sequence

Constructing the Schedule

Statement of Work

Project Execution and Control

Project Execution

Controlling Changes in Operations

Controlling Changes in Requirements

Monitoring Progress Against the Plan

Taking Corrective Action

Project Review Points

Project Management Tools

Project Communication

Progress Reports

Written Reports

Table of Contents

Headings and Fonts

Executive Summary

Introduction

Good Writing

Report Appearance

Presentations

Team Member Roles at the Presentation

Visual Aids

Rehearsal

For the Presentation

During the Presentation

The Final Presentation

Summary

Key Terms

Review Questions

Critical Thinking Exercises

Individual Exercises

Group Exercises

References

63

INTRODUCTION

For the foreseeable future, people will build or purchase software application
solutions for use in organizations, often with great effort and considerable diffi-
culty. Project management offers the team tools for effective action in four areas:
(1) decide which tasks are required to complete the project, when to perform
each task, and what the role of each person is in the project; (2) convert plans
into action; (3) monitor progress and take action as required to deliver the solu-
tion on time and on budget; and (4) use oral, visual, and written media to inform
clients and managers about progress and results. The first area addresses plan-
ning, the second control, the third, execution, and the fourth communication. In
addition to such direct activities as project definition, proposed system specifi-
cation, system design, and system delivery, an effective analyst participates in a
number of project management activities. While this chapter specifically
addresses project management, concepts of and tools for project management
appear throughout the book just as they should appear throughout an entire
project.

IT projects can involve both strategic and tactical planning and management.
Strategic IT planning and management, generally conducted by one or a team
of senior executives, addresses how to focus, structure, and fund IT to support
the strategic goals of the company. For most field projects, the strategic IT plan
exists, often in an implied or assumed form, prior to the initiation of the project.
The project team can begin by identifying the strategic alignment of the project
as discussed in Chapter 6. From the viewpoint of a client, a successful project is
one that contributes to the strategic values of the organization.

This chapter explores the activities and functions of project management
within an existing strategic framework. The chapter covers planning, executing,
monitoring, correcting, and communicating actions with the goal of realizing “a
successful project.” The first part of the chapter discusses project planning
including the SDLC approach, the spiral approach, and rapid development. The
second and third parts of the chapter look at project execution, control, and com-
munication. The techniques presented in this chapter apply to many activities
in addition to information systems analysis and design projects. For an addi-
tional discussion of project management, see Forsberg, et al. (2000) or Schwalbe
(2000).

PROJECT PLANNING

Project planning represents a fundamental project management activity. Most
teams recognize the necessity of planning at the beginning of a project. How-
ever, with good project management, planning continues every day through-
out the life of the project. Projects face many kinds of uncertainty—activities
take longer than estimated, clients change requirements, team members do not
possess the needed skills, some parts of planned solution do not work as
expected, tools and equipment cause problems, vendors fail to deliver as

64 Part One Project and Team Organization

promised, users encounter unanticipated difficulties, and many other unex-
pected events occur. Each time an unexpected event occurs, the team must
change the plan. As a result, planning and replanning take place every day
throughout the project.

Using the SDLC for Planning
Chapter 1 presented the version of the SDLC that forms the framework for this
book using a graphical representation that appears again in Figure 3.1. The tra-
ditional SDLC (systems development life cycle) was developed in the 1970s as
a methodology to plan, manage, and document the process of creating a com-
puter system. An SDLC plan typically consists of a sequence of formal steps that
begins with organizing the team and project and continues to the delivery and
support of a new system. SDLC-based planning and management brought order
and improved results to the large, time-consuming development projects for
mainframe applications.

The SDLC developed during the time of large mainframe software develop-
ment projects when many major computer projects focused on the automation
of an existing process to increase efficiency and reduce cost. These projects were
plagued by cost overruns, missed deadlines, unmet requirements, and systems
that were difficult to maintain and modify. Information system managers
believed that many of these problems were caused by the inability of clients and
builders to communicate requirements, the inability of project managers to use
large teams of analysts effectively, and the difficulty of understanding complex
program control logic.

IT managers and clients wanted a planning approach that

• Facilitated communication between clients and builders.

• Provided a basis for evaluation of features and costs throughout the devel-
opment process.

• Allowed multiple teams to work on a single project.

• Provided good documentation to support operations and maintenance.

A highly structured plan built on the SDLC provided this approach and led to
improvement in both the effectiveness and the efficiency of the development
process.

Chapter 3 Project Management 65

R
e
v

is
io

n

Project and Team Organization

Project Definition

Proposed System

System Delivery

FIGURE 3.1
Systems
Development
Life Cycle

66 Part One Project and Team Organization

Implementation

Plan next phases

© 1988 IEEE

Design validation
and verification

Software
product
design

Software
requirements

Requirements
validation

Acceptance
test

Integra-
tion and
test

Integration
and test

plan

Development
plan

Concept of
operation

Commitment

partition
Requirements plan
life-cycle plan

Prototype
2

Prototype
1

Prototype
3

Risk
analysisRisk

analysis
Risk
analysis

Risk
analy-
sis

Operational
prototype

Unit
test

Code

Detailed
design

Review

Determine
objectives,
alternatives,
constraints

Evaluate alternatives,
identify, resolve risks

Cumulative
cost

Progress
through
steps

Develop, verify
next-level product

Simulations, models, benchmarks

FIGURE 3.2 The Spiral Model for Project Management (From Boehm, 1988, used by permission
of the IEEE)

The Spiral Model for Project Planning
The spiral model for project planning extends the concepts of the SDLC model
to recognize that project activities often follow a cyclical path. For example, the
team defines requirements at the beginning of the development process during
project definition, redefines requirements during the development of specifications
for the proposed system, further refines requirements during logical design, and
reviews requirements again during physical design. The spiral model, which is
shown in Figure 3.2, explicitly presents the cyclical pattern.

The spiral model views projects as cycling through the following four stages:

1. Determine objectives, alternatives, and constraints.

2. Evaluate alternatives, identify, resolve risks.

Chapter 3 Project Management 67

TABLE 3.1
Comparison
of Project
Planning
Models

Spiral Model Cycle SDLC

1. Initial Analysis Project Definition

2. Conceptual Design Proposed System

3. Logical Design Proposed System/System Delivery

4. Physical Design System Delivery

3. Develop, verify next-level product.

4. Plan next phases.

After the evaluation in step 2 of each cycle, the project reaches the commitment
partition, shown as a horizontal line in Figure 3.2. If the evaluation team
members can justify continuing the project, then the organization “commits” to
proceeding with the project. The model shows the option of using prototypes
as part of the evaluation stages and using simulations, models, and benchmarks
as part of reaching the next level of the product’s development. As shown on
the diagram, the spiral model ends with detailed design, coding, testing, and
implementation.

The spiral model’s first cycle might be called Initial Analysis, the second,
Conceptual Design, the third, Logical Design, and the fourth, Physical Design.
Table 3.1 shows the approximate correspondence between the spiral model and
the SDLC model used in this book. The spiral model adds levels of detail and
structure that may help the team to plan and manage large projects.

Flexible Project Planning
Today, most companies do not follow the SDLC or spiral approach rigorously,
if at all. Are companies careless, ignorant, or indifferent to “best practices”? As
one might expect in a field where everything keeps changing, the application
systems development environment has changed. While highly structured SDLC
models worked, they often required a great deal of time and resources. Ana-
lysts tried a number of methods to reduce the time and cost of implementing
such highly structured plans. CASE (computer-aided software engineering)
tools were introduced to facilitate and structure analysis and design and to stan-
dardize documentation. Automatic table and code generators were added to
CASE products to reduce the effort of coding a system after it was designed.
Fourth-generation languages (4GLs) were developed to simplify the coding
process using a format closer to the language of the original organizational
problem. Comprehensive graphical user interface (GUI) development environ-
ments attempt to translate the design specifications directly into a product or
working system.

In the 1990s, the IT environment underwent further change. The large, com-
plex transaction processing systems that the SDLC and spiral models were
designed to build were in place and part of a stable legacy infrastructure. Rela-
tional database engines, package application software, and 4GLs were in place to
support more flexible and evolutionary trial and error development approaches.
New systems to enhance analysis and decision making were designed with a

68 Part One Project and Team Organization

limited set of functions in smaller projects and with client/server architectures
that facilitated decentralized development. The explosion of Internet and intranet
applications accelerated these trends. IT groups learned through experience that
the traditional plans built on a highly structured planning approach did not fit a
number of the new software development projects. The rapid, evolutionary devel-
opment of smaller projects highlighted the need for more flexible plans.

The switch from mainframe to client/server and Web-based systems also came
with a change of development environments and focus on time to market for
new applications. Development teams in this new environment were typically
young, used to rapidly expanding hardware capability, and raised in a time-
driven development world. Many of these teams tried, often unsuccessfully, to
code systems without much of any plan. Modern systems require a compromise
plan that retains some of the structure of the SDLC/spiral models with the flex-
ibility to produce results rapidly at an affordable cost.

The new rapid development (RD) planning model selects parts from and
assigns priorities to the SDLC/spiral tasks. As noted in Chapter 1, rapid devel-
opment represents not a set of methods or tools, but a highly flexible concept:
“Do only what is necessary to deliver an application that (1) meets the clients per-
ceived needs, (2) in as short a time as possible, and (3) at the lowest possible cost.”
Analysts achieve these goals by incorporating one or more of the following con-
cepts into the project plan:

• Include only tasks or activities that are essential; for example, if requirements
are known and the analysts are already somewhat familiar with the current
operation, then do not include a detailed study of the current operation and
requirements determination tasks in the plan.

• Use programming tools and/or languages that allow fast development and
easy changes; for example, build into the plan the use of such tools as DBMSs,
SQL, upper- and lowercase tools including database definition and generation
tools, Web application design tools, report writers and screen generators,
visual languages, objects, and others.

• Work with planning mechanisms that facilitate communication and rapid
feedback between analysts and clients; for example, the use of prototypes or
client–analyst joint development teams.

The “rapid” piece of rapid development holds special importance. Clients
want new applications tomorrow, not in two years. In a global competitive envi-
ronment, companies cannot afford to wait several years for mission-critical appli-
cations; they may go out of business if the new application is not available. Speed
of development also can improve the chance of success and reduce cost. With a
long project, the problems associated with “scope creep” increase greatly. Scope
creep, or the addition of features to a system after the initial requirements are
set, happens when clients change their minds about requirements or reorgani-
zation brings a new set of clients with new requirements for the application.
Long development times encourage both clients and developers to add features
and refinements that may add little, if any, value. Most changes add cost and
can reduce the probability of success.

During the course of a long project, the analysts on the team also may change.
Each new analyst starts over, learning what the issues are and what other ana-
lysts have done, a costly and error-prone process. When analysts leave during
the later stages of a project, many organizations just ask the remaining people
to work harder and longer rather than incurring the problems of adding new
personnel. The problems and costs associated with changing clients, require-
ments, and developers are minimized by plans with short development times.

Every aspect of development suggests that keeping the development time as
short as possible will reduce cost and increase the probability of success. RD
plans work well primarily for this reason. RD plans generally lead to a form of
“satisficing,” that is, finding a reasonable or satisfactory approach that will
shorten development times, reduce costs, and/or improve the probability of suc-
cess compared to the full SDLC or other approaches. Unfortunately, RD comes
without any guarantees; used incorrectly or inappropriately, it can lead to such
problems as higher costs, poor performance, disasters, and more. As always,
there are no good substitutes for smart, experienced analysts and clients.

To create an RD plan, the analyst selects only those tasks and activities that
are essential to developing the specific application and includes any process, tool,
or method that facilitates delivering the application within the RD concept. For
a large utility billing system, the RD plan probably will look very similar to the
classic SDLC or spiral plan. For a Web site to make parts of an existing database
available to employees, the RD plan may consist of one task, “code it.”

Planning Mechanisms
As previously noted, the SDLC provides the starting point for most rapid devel-
opment plans. The analyst, often in concert with the client, decides which parts
of the SDLC are relevant and how to achieve each part. The relationship between
the clients for a project and the team that undertakes the effort forms a critical
relationship for all application software development and especially for rapid
development plans. Because RD plans require some critical decisions, the ana-
lyst and client normally make these decisions, that is, determine how to fit the
application under study into the RD plan, using a cooperative process based on
their prior experience. Teams can choose from a number of mechanisms that
facilitate preparation of a rapid development plan.

Client/Team Contract Plans

Under the client/team contract approach to RD plans, the client and team, or
perhaps a manager or chief information officer (CIO), jointly agree on a broad
plan, including the deliverables, major tasks, and schedule for the project. The
contract approach offers two advantages. First, because the client is a participant
in building the plan, the client is more likely to support the effort and to under-
stand when problems occur and when modifications are required. Second, the
client brings additional perspective and experience to the plan. The client often
knows how much risk he or she is willing to accept to shorten the development
time and/or lower the cost. If a team decides to eliminate one or more major
tasks or to follow such an alternative as prototyping-based planning, these deci-
sions should appear clearly in the plan contract.

Chapter 3 Project Management 69

70 Part One Project and Team Organization

In practice, most projects and projects teams create either a verbal or written
plan contract with their clients. Although verbal understandings may work rea-
sonably well for a small project, the project team can prevent much anger and
disappointment by entering into explicit, written contracts with clients. These
written plan contracts or agreements often are known as a statement of work
(SOW). Guidelines for creating a statement of work are discussed in more detail
in the next major section of this chapter.

Planning with Joint Teams

Especially in larger projects, the clients and analysts spend a great deal of time
communicating with each other and trying to reach a common understanding
about the plan. In 1977, Chuck Morris of IBM conceived ways of getting users
together with IS personnel to work out plans to install distributed systems. These
ideas evolved into IBM’s Joint Application Design (JAD) approach (Wood and
Silver [1989], pp. 3–4). The joint team approach to RD planning involves form-
ing a team composed of analysts, clients, users, and perhaps managers to work
together intensively from start to finish on the project. This approach may work
better than the contract approach with relatively inexperienced users or clients. In
the contract approach, the plan decisions are made at the beginning of the project,
possibly but not always subject to change and modification as events unfold.

Because all the parties are present and actively involved, the joint team
approach to RD planning allows the team to make decisions as the project pro-
gresses. Many of the decisions and alternatives become clearer as the team com-
pletes the parts of the project. In addition to everyone learning from experience,
the clients have time to learn from the analysts and vice versa. Having some
client members on the team also helps to ensure that design trade-offs reflect
both a technical and a client perspective. Clearly, the joint team approach elim-
inates some of the delays and errors associated with communication between
separately located clients and analysts.

Joint effort is most valuable in establishing requirements for the project. If all
of the stakeholders participate in a joint design session, they can resolve many
of the requirements issues before the IT system is designed. Joint client analyst
design sessions are particularly useful when one or more of the following con-
ditions exist:

• Clients are uncertain about what they want.

• Several key clients bring different and/or conflicting requirements.

• Clients have unrealistic expectations.

• The analysts are not familiar with the client’s organization.

A possible negative issue with joint teams is the potential cost of taking the team
members, particularly the non-IT ones, away from other duties.

Prototype-Based Plans

Prototyping can offer a powerful rapid development tool. The spiral model of
system development explicitly includes prototyping. Prototype-based plans rest
on a simple concept. In place of or in addition to detailed project definition and

proposed system analysis, the team builds an initial physical version of the
application and uses the prototype to answer many of the project definition,
proposed system, and system delivery questions. Before starting to construct the
prototype, the team must answer some of the project definition, proposed sys-
tem, and system delivery questions. But in place of a time- and effort-consuming
full analysis, the team may use prior experience, read the trade literature, talk
with clients, learn from other projects, and/or look out the window and make
“reasonable” assumptions.

Prototyping often can clarify many of the issues in the project definition and
proposed system phases better than the traditional approaches. After looking at
a project plan and standard documentation, the average client and some analysts
have only a limited understanding of the implications of the project definition,
proposed system, and system delivery issues. Even the most abstraction-challenged
clients generally understand at least some the project definition, proposed sys-
tem, and system design questions and issues after working with a prototype.

Prototyping works best when a well-designed and understood data structure
for the project already exists. If the team does not know the data structure, team
members may need to conduct a structured data requirements analysis, for
example, building the conceptual data model, as an initial plan task prior to pro-
totyping. Minor changes or refinements in data structure that appear when the
prototype is used are simple to incorporate, especially in systems that use a rela-
tional database.

Prototypes clearly face limitations. Prototyping may cost more and take longer
than expected. A poorly designed prototype can give the client a negative view of
the project and can even result in cancellation of the project. The data structure
determination may slow the initial iterations to times that the client finds unac-
ceptable. Prototyping can generate the logic and code for a process- or event-driven
system, but provides little insight about such physical infrastructure–dependent
issues as response time and interoperability. Resolving the issues that the prototype
does not address requires placing additional tasks in the plan.

Throwaway prototypes are designed with the intent of throwing them away
after using them to determine requirements and/or demonstrate the feel and
function of the system. Throwaway prototypes can answer many of the ques-
tions for the project definition and proposed system stages of the plan. For this
option, the design team produces a sequence of input and output views and the
associated logic to demonstrate the way a final system might work. Throwaway
prototypes focus on a quick, cheap path to demonstrate feel and function; no
attempt is made to provide a program code base for the final system. From a
user’s point of view, the I/O interfaces and functions are the system. A throw-
away prototype allows a user or client to experiment with the look, feel, and
features of the new system. The design team rapidly can modify the prototype
to reflect the user or client desires.

Once the client approves the throwaway, the prototype’s only role is to pro-
vide the proposed system requirements. The final system may use completely
different database engines, programming languages, and infrastructures. In
short, the throwaway prototype allows the team to create a “quick and dirty”

Chapter 3 Project Management 71

72 Part One Project and Team Organization

proof of concept version of the system without concern for a robust architec-
ture and efficient operation. Once the specifications are determined to the client’s
satisfaction, the prototype is thrown away and the team proceeds with a system
delivery plan, that is, a plan to design or purchase and implement the robust,
efficient final system.

Evolutionary prototypes are designed with the intent that the prototype sys-
tem will evolve directly into the final system. Evolutionary prototypes allow the
team to (1) generate answers to project definition and proposed system require-
ments questions and (2) produce the actual data schema and program code for
the system delivery stage of the plan. Evolutionary prototypes use the physical
infrastructure, such as database engine, programming languages, and others,
selected for the final system. These prototypes may lack some of the complexi-
ties required in the final system, but they provide the base on which to add the
additional features. Such tools as database engines and 4GLs provide adequate
flexibility and efficiency to allow evolutionary prototypes to evolve into robust,
full-featured, efficient final systems. For many small field projects, the prototype
is the final system.

Outsourcing Plans

Increasingly, organizations acquire part or even most of their IT capability
through some form of IT outsourcing—purchasing an IT application or service
from a vendor. Outsourcing represents another approach to rapid development
because it provides a way to reduce time and cost for the solution process. Some
organizations choose to focus attention on a few core competencies and then to
outsource the noncore activities to other organizations. For example, an oil com-
pany might identify its core competencies as (1) exploration—finding new
reserves and (2) production—producing oil and gas from existing reserves. The
company might perform internally the information system activities related to
exploration and production and then outsource such noncore competency areas
as human resources and financial systems. Chapter 10 covers a number of issues
related to outsourcing.

A decision to outsource changes the tasks and activities in the system deliv-
ery phases of the project plan. With an outsourcing option, the system delivery
tasks associated with building a solution, such as specify detailed logic, code the
programs, and test the code, are replaced with such tasks as to identify vendors
and evaluate products or services. A common way to outsource a project is to
use a request for proposal (RFP), a document that sets forth for potential ven-
dors the desired system features and constraints and the evaluation process. To
use the RFP process, the team sets up the standard tasks in the project schedule
for the project definition and proposed system phases. At the system delivery
stage, the team defines and executes tasks to prepare the RFP, evaluate the
responses, and make a recommendation using the guidelines in Chapter 10. To
respond to an RFP, the vendor may perform major parts of the system delivery
process, including detail design, coding, testing, and other functions. The ven-
dor selected for the project also may perform or help with implementation, train-
ing, and maintenance as part of the purchase contract.

Purchasing a packaged application represents a common form of IT out-
sourcing. With a packaged application, the team and client determine the desired
features for the system, but the package designers select the specific features
included in their package, design the system, and complete the coding and
alpha/beta testing of the product. The tasks for purchasing a packaged solution
change from selecting and implementing features for a final design to deter-
mining how well the features in each package meet the client’s specifications and
needs. Because both the designers and other users have already reviewed pack-
ages, packages usually offer a more complete and bug-free product than an
application that has been built in-house. If the team can find a product that pro-
vides the features the clients wants at an acceptable cost, packaged solutions can
represent an effective rapid development option.

Sometimes a board of directors or a senior executive mandates the installa-
tion of a package, for example, the SAP Enterprise Resource Planning (ERP) sys-
tem. In these cases, many of the proposed system and system delivery tasks
reside in the package; the team focuses on tasks for selecting options within the
package, installation, testing, training, and maintenance. Rapid development is
a relative concept. While buying and installing an ERP package can take years
and millions of dollars, building an ERP system from scratch might take several
times as long and use more resources.

Organizations also can implement rapid development by outsourcing IT func-
tions to an external organization that (1) can do some or all of the development
or (2) can perform some or all of the functions for an area of the organization.
Hiring contract workers to execute part of the project changes few, if any, of the
crucial development tasks. Experienced contract workers, especially ones with
scarce skills, can speed up the development process but may add complexity to
project management. Hiring a firm to complete all or part of the project may
change the team’s major tasks and activities from development to project
management.

In common with most rapid development approaches, outsourcing has both
potential benefits and drawbacks. Possible benefits include acquiring skills that
do not exist within the organization, adding external people on a temporary basis
to handle workload peaks, and freeing up internal IT resources to work on core
issues. The biggest drawbacks usually involve costs and loss of control.

Generating the Plan
Project plans define the work, identify milestones, and help the team recognize
deviations of actual progress from planned or estimated progress. Many team
projects run on a tight time schedule with substantial resource limitations. In
most cases, the time available to organize a team of people with little common
history and then to deliver a useful product is limited. Furthermore, team mem-
bers have other conflicting duties and schedules to coordinate. The team must
organize, pick an appropriate approach, do the work, and deliver a product. The
careful design and use of a plan and project schedule can greatly increase the
team’s performance. Developing a project plan as early as possible also will
increase the likelihood of success.

Chapter 3 Project Management 73

74 Part One Project and Team Organization

A project plan requires several steps: (1) identify the appropriate activities—task
decomposition; (2) estimate person hours and sequence constraints for each
activity; and (3) build or generate the schedule in a format managers and team
members can understand. While all plans follow this basic structure, the rapid
development philosophy means that each system plan will evolve differently as a
function of the requirements for each specific project. Plans tend to follow similar
paths at the beginning, but the detailed plans will diverge in different directions
for different projects over time. The choice of “build versus purchase” represents
a major point of divergence, but many other factors cause plans to diverge.

Many times, a team will believe, often with some justification, that the time
needed to do the project work correctly or adequately exceeds the time avail-
able. To achieve production of the agreed-upon deliverables on time and within
budget, every team needs to pay strict attention to plans and to constantly strive
to eliminate unnecessary work. Useful planning principles for every project
include the following:

• Plans should evolve over time. At the beginning, many of the tasks and most
of the problems that will arise during the project are unknown. As the project
goes forward and the tasks and problems become clearer, the team can revise
the project plan to deal with the unfolding situation in concert with the team
manager and clients.

• Good plans reflect actual progress and status. Much of project management
involves tracking progress against the plan and revising the plan as needed
to adjust for actual progress.

• Teams should revise the plan at least weekly to reflect new or changed tasks
and to adjust for actual progress.

Selecting the Activities or Tasks

To identify the tasks associated with a project, the team can begin by identify-
ing the questions that the team must answer to reach an acceptable solution.
Each question then defines a task or set of tasks required to produce an answer.
Carrying out each task will require the assignment of team members and the
expenditure of effort over some period—the start and end times for the task.
Each of the tasks with people and the times assigned then becomes an entry in
the project schedule.

The SDLC model can help the team to define the questions that the team must
answer to obtain a solution to the client’s problem. Although the precise speci-
fication of questions, tasks, and deliverables varies from organization to organi-
zation, most organizations follow an SDLC type model characterized by major
stages and a set of formal management reviews. The SDLC model for this text
uses the major stages shown in Figure 3.1: Project and Team Organization, Proj-
ect Definition, Proposed System, and System Delivery. Each SDLC stage focuses
on the answer to a family of questions and involves a set of activities and deliv-
erables. At the end of certain stages, the team may make a formal presentation
to a client who may decide to continue, suspend, or cancel the project based on
progress and current organizational needs.

As previously noted, the answers to some SDLC questions are predefined. For
example, if the client has selected a specific solution, the team may choose to
spend little time generating and evaluating other alternatives. Or the client
already may have a clear definition for the project and the detailed requirements
for the proposed system. A good systems development process performs the
activities needed to answer the important unanswered questions that lead to a
good solution rather than performs a fixed set of activities. Thus, the project plan
evolves from a statement of the questions that need to be resolved at each stage
for a particular project and a proposed activity to answer each question.

Typical questions that may require answers and possible corresponding tasks
in the project schedule follow.

Project and Team Organization

1. How will the team function? Create the team contract.

2. What skills and resources do the members bring? Develop the skills matrix.

3. What deliverables will the team produce for the client and the manager? Pre-
pare the project schedule.

4. Who on the team will do each task and when? Refine the project schedule.

5. How will the team keep the manager informed? Send the weekly report and
set up meetings as needed.

Project Definition

6. What is the problem to solve? Meet with the client and write the project
statement.

7. What is the current situation in the organization as it relates to the project?
Meet with the client and develop the project definition report.

8. What can the client expect? Prepare the statement of work.

9. Are the team and client in agreement? Conduct the project definition
presentation.

Proposed System

10. What are the conceptual-level data, process, and infrastructure requirements
for the proposed system? Prepare the proposed system report.

11. What alternatives exist and which alternative is the recommended one?
Refine the alternatives, evaluation, and recommendation materials.

System Delivery

12. What are the design specifications for the recommended alternative? Gener-
ate the design specifications and/or the RFP.

13. How will the team demonstrate the proof of concept for the system? Find
the appropriate prototype, package program, or other model.

14. How will the recommended alternative be implemented and tested? Prepare
the testing and implementation plans for the client.

15. How will the team communicate the final results to the client? Prepare the
final report and conduct the final presentation.

Chapter 3 Project Management 75

76 Part One Project and Team Organization

As time goes on and more information becomes available, the team can
expand or modify these questions and the associated tasks. One approach is to
generate the detailed tasks for each new SDLC stage or deliverable as a final part
of the deliverable for the preceding stage. For example, the team can refine and
schedule the detailed proposed system stage tasks as a final part of the project
definition work. An astute team reviews or works jointly with the client and
manager as appropriate on all significant plan modifications.

Within the schedule, client meetings deserve extra attention. The team may
encounter significant difficulties in getting adequate access to and feedback from
clients. The team should plan as many client meetings as needed and try to
schedule them at the beginning of the project. Getting onto a client’s schedule at
the last minute is difficult. If meetings are scheduled well ahead, clients can
contact the team coordinator if conflicts arise, and hopefully will feel some obliga-
tion to reschedule the meeting. Whenever possible, teams should get the work
done before scheduled meetings with the client or manager and not try to
arrange a last-minute meeting when the work is done.

In real-world IT practice, the steps in the schedule may differ greatly from the
SDLC. A real-world team pursues a single goal: the successful, fast, and cost-
effective development of the product that the client wants. The team reviews the
problem and selects only the steps that are needed to meet the RD goal. Some
companies use formal prototyping methodologies, trial solutions, and little or no
other documentation to accomplish many of the functions in the SDLC. Consul-
tants and company IT groups may develop special standards and methodologies
to shorten the life cycle. The company may provide guidelines, for example,
informal plans for small projects and SDLC-like plans for very large, complex
projects. In non-IT companies, multiple levels of management may review and
attempt to influence a plan especially for large projects. In IT companies that spe-
cialize in software development or in large IS shops, project leaders and/or team
members may possess the trust, skills, and experience to create a plan with few
if any guidelines and little supervision.

In a student field project course, the activities in the plan must address at least
two objectives: (1) allow students to demonstrate the joint application of theory
and principles from business, programming, database, infrastructure, and sys-
tem analysis courses; and (2) deliver a useful product to a client. The education
goal may involve activities that are of little interest to the client. As a result of
the dual goal, the team probably will include more steps in the plan than a com-
pany IT team would use for any but the largest projects. The cost of education
can be high in many ways; hopefully, the benefits are commensurate.

Task Times and Sequence

Once the team determines specific tasks, the next step is to define a time

required for each task and the sequence constraints. The team can put the tasks
into sequence by identifying the other tasks that must be completed before the
current task can start. Sequence constraints should reflect only requirements
and not tradition. For example, building a proof of concept model appears in the
system delivery phase of the SDLC, the last stage. However, often the team can

and should start the design or selection of the proof of concept model near the
beginning of the project because it is a long lead-time item. On the other hand,
prior to visiting the client, the team may find starting the project definition DFD
offers little value.

Each activity has two sets of relevant times: (1) the start and end (due date)
calendar times for the activity; and (2) the number of person hours of work
required to complete the activity. The two are related but often not directly. If an
activity assigned to one person for an hour of effort due in a week actually takes
two or three hours, the effect on the due date may be negligible as long as the
person starts the activity before the last minute. The main effect of underesti-
mation in this example is an increase in cost. If the activity due in a week is esti-
mated to take 40 hours of effort and actually takes 120, then both cost and due
date may be affected.

Estimating time requirements represents a complex activity. PERT/CPM
methodology includes statistical procedures to estimate time requirements as
well as a process for identifying critical time deadlines that impact final deliv-
ery. IS developers have used such parametric estimation approaches as function
points, lines of code, and COCOMO to predict the time required by a project
with mixed results (see Schwalbe [2000], pp. 151–153 for a discussion of estima-
tion procedures). All of these approaches share some common properties: They
require experienced planners and often a database of past estimates compared
to actual times. Project estimation remains an art that relies heavily on experi-
ence with similar projects.

With less experienced analysts, simple projects, and no database, a reasonable
approach goes as follows. Use the experience of team members and any other
available sources of experience, such as managers or colleagues, to make esti-
mates. When making estimates, allow for the learning curve or ramp-up time
effect. Coding in Visual Basic or using ASP for Web site design may require one
or several team members to spend extensive time learning a new technology.
Recognize that the times may be incorrect; they are most often underestimated.
To compensate for the tendency to underestimate, allow more time. Start early
to keep time overruns from interfering with due dates, double or otherwise
increase your first estimate, and be prepared to replan as needed.

When actual person hours to complete a task exceed the estimate and will
extend the completion of the task beyond a due date or critical path time, the team
needs to take immediate project management action. Possible actions include
adding additional resources or people, working longer hours, looking for a way
to reduce the size of the task, revising the schedule, and/or asking the manager
for an extension. The key point is to address the time misestimates that interfere
with due dates as they arise. Hoping and praying that the problems will go away
or that no one will notice works poorly in the development environment.

Constructing the Schedule

Once the tasks, sequences, and time estimates are generated, the team can con-
struct the project schedule. A complex system may require the use of a project
management tool to build the schedule and identify the critical path. For

Chapter 3 Project Management 77

78 Part One Project and Team Organization

moderate-size projects, an activity table or a Gantt chart offers helpful graphical
model representations for the schedule (Schwalbe [2000], pp. 118–122, presents
a description of the use of a Gantt chart).

Suggestions for the assignment of start and finish times to activities include
the following:

• Start by entering any predetermined times, particularly the starting time for
the project and the date that the final deliverable is due. All the work must
fit within these two dates. Many projects will have other interim due dates.
The typical field project course, for example, has a number of due dates.

• Schedule as much work as possible as early as possible in the project. This
approach leaves time for the inevitable slippage. A few activities may take less
time than planned, but many tend to take longer than estimated. And the
team, the manager, and the client will identify new required activities as the
work proceeds.

• Note that some activities have few sequence constraints. For example, the
coders can learn a programming language for the prototype as soon as it is
chosen; they do not need to wait until the team completes the pseudocode
and data schema. Team members can search for possible package solutions
after the first meeting with the client; they should not wait (and do not need
to wait) until the proposed system report is finished. Again, start work as
early as possible.

• If possible, build in some slack or unused time before each due date in case
the work takes longer than planned. Most teams find that they often need the
slack to get the work done.

When assigning people to tasks in the schedule, the team should consider
workload balance and concurrent activity. If the schedule calls for 180 hours of
work in one week for two people, then the two either will have to give up eat-
ing and sleeping, or they will miss the deadline. Goals include not overloading
any one person and assigning roughly equal loads to each team member. Assign-
ing one person to start a task and another to finish it often causes coordination
and blame-shifting problems. Assigning the same person(s) to a task from begin-
ning to end generally works better.

The graphical format used for the plan can vary depending on the preferences
of the team, manager, and client. Often the client wishes to receive only sum-
mary information on progress and a list of delivery dates for the key deliver-
ables. Thus, the manager and the team often determine the format of the detailed
schedule. Many IS organizations have a standard format for detailed project
plans, for example, “Generate the plan using MS Project with options a, b, and
d.” In less structured situations, the team and manager may select either a Gantt
chart or table format for the plan.

Figure 3.3 shows a sample RD plan as a Gantt chart schedule for GB Video.
The chart contains only a few tasks; a typical field project plan will contain more
and perhaps different tasks. The Gantt chart allows easy visualization of the
start and end times and a sequence for a limited set of events, but it becomes

confusing with a large number of activities and extensive detail. The chart may
require a supplementary set of notes to record such data as people assignments,
due dates, and estimated person hours. Finally, without a computerized sched-
uling program, updating a Gantt chart can require a lot of work.

An activity schedule table offers an alternative that is easier to manage than
a Gantt chart. The table might show

• The major milestones or stages for the project.

• The key activities associated with each milestone or stage.

• The estimated or planned person-hours for each activity.

• The people assigned to each activity.

• Sequence prerequisites, the other activities that must be completed prior to
this activity.

• Key dates for the activity, such as

• Start date—time the team plans to start the activity.

• Draft date—time to start preparing a draft version of a deliverable.

• Due date—time that a deliverable is due to the manager or client.

• Status or condition of the stage or activity, for example, not started, sched-
uled, started, done, completed, turned in, in draft.

A sample activity schedule table is shown in Table 3.2. As before, the exam-
ple is incomplete and shows only a few of the entries needed for an actual field
project. A schedule table, however, can contain a lot of information and the team
can change or update the table with ease in any computer word processor. Note,
though, that sequence and the interrelationships of start and stop times are more
difficult to visualize than they are in a Gantt chart. Again, the team and man-
ager work together to decide the specific schedule format or combination they
wish to use.

Chapter 3 Project Management 79

FIGURE 3.3
Project
Schedule in a
Gantt Chart
Format

Project Organization

Project Definition

Build the GB Prototype

Prepare the Final Report

.................

......................

.................

0 1 2 3 4 10 11 12 13 14

Time Line (weeks)

80 Part One Project and Team Organization

STATEMENT OF WORK

The statement of work (SOW), as discussed earlier, represents one approach to
a rapid development plan. The SOW defines the work that the team will per-
form for the client in a written statement signed by both the team and the client.
It can include a description of the potential solutions that the team will pursue
and can identify the resources that are expected from both the client and the ana-
lysts. The statement of work can represent the final step of the project definition
stage.

A typical statement of work might include the following elements:

• Description. A description of the project—a short description of the problem
the client asked the team to solve.

• Work product. A description of the work that the team will perform to
address the client’s problem. For example, the work product can survey users,
determine the detailed requirements for the proposed system, design a data
structure, specify the processes for the system, build and demonstrate a pro-
totype, develop specifications for a package, identify possible packages, eval-
uate packages, recommend a solution, implement a solution, and more.

The work product section also lists the classes of solutions that the client and
team agree to consider. Possible solution classes include to build the system in-
house, hire a contractor to build the system, purchase a package, outsource the
information system operation or the entire function, and keep the current sys-
tem, perhaps with modifications. Unless there is a strong reason to the contrary,

TABLE 3.2 Project Schedule in Activity Schedule Table Format

Est.

Person People Sequence Start Draft Due

Milestone or Activity hours Assigned PreReqs. Date Date Date Status

1 Organization Plan 13 Jan 19 Jan 21 Jan Started

1.1 Deliverables

1.1.1 Team Contract 10 All 13 Jan 19 Jan 21 Jan In draft

1.1.2 Skill Inventory 5 All 13 Jan 17 Jan 21 Jan Complete

1.2 Meet with Manager 6 All 1.1 20 Jan 20 Jan 21 Jan Scheduled

1.3 Meet with Client 18 All 1.2 22 Jan 23 Jan 24 Jan Scheduled

2 Project Definition 24 Jan 31 Jan 3 Feb Not started

2.1 Review Client Request 6 All 1.3 24 Jan 24 Jan 24 Jan Not started

2.2 Draft SOW 8 Al/Dick 2.1 25 Jan 31 Jan 3 Feb Not started

2.3 Presentation 30 All 2.1 24 Jan 31 Jan 3 Feb Not started

3 Proposed System Not started

4 System Acquisition Not started

5 System Delivery Not started

5.1 Final Report and 9 Apr 18 Apr 23 Apr Not started

Presentation

the team must evaluate the merits of at least two possible solution classes as part
of the work.

This material should contain enough detail to allow the client to make a
decision on funding or continuing the project. The descriptions may include
specifications for such things as performance levels, evaluation criteria, and
documentation standards. In all cases, the work product section should define
clearly the project scope. If the project includes delivery of a prototype or a
package, describe the prototype or package in enough detail to define its
scope.

Often, the initial scope decision is made or implied by the client as a result
of specifying the goals for the new system. Look carefully at the scope and
refine it in concert with the client. Complexity as measured by the hours spent
on a project increases rapidly with size. Within the constraint of including
those areas that are important to the client, keep a project small enough to fit
the available time and resources. In keeping with RD concepts, drop from the
project scope any areas that may be “sort of interesting” but not really impor-
tant or central to the client’s perceived needs.

As part of the work product description, note the major deliverables that
the team will provide to the client (not to the manager). Most projects will
have only a few client deliverables, for example, a project definition review,
a prototype demonstration, and a final presentation and report.

• Client resources. Define in the SOW any client resources that you expect to
use for the project. Client resources usually include the client funds, existing
infrastructure, and people available for the project. Resources also may
include permission to interview people, use of client IT people or resources
to help you with the project, client-supplied test data, permission to use the
company’s name in contacting outside vendors or copies of software or data.

• Project success criteria. A careful, explicit definition of the criteria that the
client will use to determine the success of the project. The criteria may include
completion time, budget, quality, completeness of deliverables, and the impact
on organizational performance.

• Project schedule. A plan in table or chart format that gives the client the
date for every key event that will involve the client—client deliverables and
major planned visits—for example, your final presentation. One of the crit-
ical problems for projects with short deadlines is assuring access to busy
clients. Arranging appointments at the beginning helps the client to reserve
the time.

• Signatures. Normally, the lead client and one or more team members sign and
date the SOW. While not a legal contract, the SOW is a professional agree-
ment in which all parties pledge to use their best efforts to meet the terms.

In small projects, the SOW probably will fit on a couple of pages. In a large
project, the SOW may require many pages. A sample statement of work appears
in Figure 3.4. A well-done SOW for an actual field project probably will contain
more detail than this example.

Chapter 3 Project Management 81

82 Part One Project and Team Organization

Team 7 Statement of Work for GB Video

Project Description

GB Video asked Team 7 to design a new computer-based system for rental and return
of videotapes and DVDs because the current manual system maintains inadequate
records and is too slow. The new system should address improved customer service
and lower handling costs for each transaction.

Work Product

The team proposes to perform the following work for GB Video:
• Conduct a strategic analysis of GB Video to determine mission, objectives, goals,

and performance measures.
• Analyze the current video rental and return situation to (1) identify goals for the

proposed system and the constraints that GB Video wishes the team to observe,
and (2) understand the current operation, system, and problems. The team will
review these materials with GB Video before proceeding.

• Develop data, process, and infrastructure requirements for a new computer-based
system. The system scope includes video rental and return and enrolling members.

• Create and evaluate at least two design and procurement alternatives.
• Recommend a viable approach to solving the problem,—such as a recommended

design and procurement option for a new computer-based system for rental and
return of videos. The team understands that GB Video does not wish to keep the
current system unless all other alternatives exceed the budget constraint of
$200,000. With the agreement of GB Video, the team will consider both build and
purchase options.

• Demonstrate a proof of concept model—either (a) build, document, and demonstrate
a prototype rental/return system or (b) create an RFP to select and demonstrate a
purchase option for a video rental/return system.

• Provide a final report to GB Video that sets forth the essentials of all the work
carried out by the team and containing sufficient detail to allow GB Video to use the
report as a detail design and procurement document for the new system.

• Make a final presentation to GB Video to highlight the key points in the report.

Important Note: The team is not planning to deliver a final operational version of a
rental/return system to GB Video. GB Video either can perform or contract for the
production or procurement, testing, and implementation of an operational computer-based
video rental and return system based on the design and analysis provided by the team.

Project Success Criteria

The team and client agree that the success of the project will be measured against the
following criteria:
• The team delivers the final report to Mr. Cosier by no later than 23 April of this year.

This time criteria is extremely important and any delay will be considered a serious
failure by the team.

Page 1

FIGURE 3.4 Statement of Work for GB Video Company

Chapter 3 Project Management 83

• The recommended solution contains all of the features requested by Mr. Cosier and
is within the constraints. If for some reason the team cannot meet this criteria, the
team will immediately inform Mr. Cosier and include a complete and detailed analy-
sis of the reasons for the problem.

• The quality and completeness of the analysis and evaluation leading to a
recommended solution meet high professional standards.

Initial Project Schedule

The tentative dates for project activities include:

January 24 Collect initial information from GB Video
February 6 at 4:00 p.m. Project definition presentation
April 15 Demonstrate the proof of concept model
April 23 Deliver the final presentation and report to GB Video

Note: The team expects to schedule other meetings as needed and will arrange the
dates with Mr. Smith as far in advance as possible.

Client Resources

Mr. Cosier has agreed to provide an assistant manager, Robert Smith, as the contact
point. The team will always call for an appointment and not just drop in. Mr. Cosier
also will provide a suitable server, network, and workstations if the decision is to build
or buy a package.

Signatures

For Team 7 For GB Video

_______________________________ _________________________

Al Price Roberto Cosier, President

Date ____________________ Date ____________________

Page 2

The context for the SOW shown in Figure 3.4 comes from a hypothetical case
called the GB Video Company. The GB Video project materials are used through-
out this book for illustrations and examples. In the case, Mr. Cosier, the presi-
dent, gives an IT development team identified as Team 7 this instruction: “Design
a new computer-based system for the rental and return of DVDs and videotapes
because the current manual system maintains inadequate records and is too slow.
The new system should address improved customer service and lower handling

84 Part One Project and Team Organization

costs for each transaction.” See Appendix A for the full set of the Team 7 project
materials associated with GB Video.

Many organizations use some variation of the SOW approach to facilitate
rapid development. SOWs help in establishing the scope of a project, reducing
misunderstandings, and eliminating unnecessary activities. The effective use of
a SOW requires clients who can make meaningful choices about development
and analysts who can and do inform the client on technical issues. For example,
the analyst has an obligation to help the client understand the issues about the
best language or tools to use and the risks of using a current or proposed infra-
structure for the new project without extensive benchmarking and testing.

Even with a SOW, a number of problems remain. Having an SOW will nei-
ther keep requirements from changing nor guarantee that clients understand the
agreements. The project team will have to revise and review requirements and
expectations throughout the contract. The team also will have to recognize when
changing circumstances (1) require more time and resources than are available
or (2) make the SOW agreements infeasible for some other reasons. In either
event, the team must immediately discuss the problem with the manager.

PROJECT EXECUTION AND CONTROL

Project execution and control, two closely interrelated functions, start with the
process of converting plans into action, that is, put team members to work on the
various activities needed to meet the plan. Project execution and control operate
in the context of a feedback control system: take initial action, observe results, com-
pare progress to the plan, take action as needed, observe the results of that action,
and so on. The team uses the project control activities to identify problems and
opportunities. The team can then take new actions to alleviate the problems, cap-
italize on the opportunities, and use the project control function to monitor the
results. The only thing certain in a project is that things will change.

To deal with change, the team needs a mechanism to collect information on
actual required tasks and progress, and then to compare the actual to the plan.
If the actual situation departs from the plan in a manner that can affect com-
pleteness, correctness, or due dates, then the team should take corrective action.
The appropriate actions may include adding, deleting, or revising tasks; revis-
ing schedule times or sequence, changing the assignment of people; asking
people to work more effectively and/or longer hours; changing tools and tech-
nologies; working with the client and/or manager to revise due dates, deliver-
ables, and/or scope; and, when necessary, canceling the project. Selecting the
appropriate actions to take, if any, as a result of departures from plan presents
one of the major challenges to project management.

The team can select from among several approaches to project management.
The team members jointly may perform the project management functions or the
team may assign responsibility for project management to one or more members.
Either approach or a combination thereof will work; the critical issue is to make
sure that the project management functions occur promptly and effectively.

Good project management starts at the very beginning of a project and con-
tinues until the very end. Time is often the scarcest and yet most critical resource
for the team. Field projects generally receive sufficient funding (i.e., the efforts
and other resources provided by the team members) and adequate organizational
support, but they almost never contain enough time. At the beginning, the end
of the project seems a long time away. The team easily can lose a lot of time early
in a project on confusion, low-priority activities, or other wastes of time only to
discover that the team cannot finish the actual product creation by the deadline.
A team that uses the first few weeks well and gets off to a good start signifi-
cantly increases its chances of success.

Project Execution
A plan is a piece of paper or some data in a computer. Even the best plan pro-
duces no effects until the symbols in the plan become actions. The first project
management task is to make certain that all the team members know what they
are supposed to do and when, that is, to convert the plan into work performed
by members of the team. The team should make a special effort to eliminate con-
fusion, misunderstanding, or ambiguity at this time. Putting all assignments in
writing can reduce arguments about who was supposed to do what.

A poor execution of a plan might take the form of, “Al, since your name
appears on the plan for the project definition report, you work on it.” If Al
spends an hour thinking about the report, has he performed his assignment for
the week? Or, does Al have to collect information from the client, write the text,
draw the EDM and DFD, edit the report, and submit the finished copy to the
manager, all by himself? The team probably intends something in between; but
unless the team-members provide more specific and clearer project execution
direction, the results may both astound and disappoint them. At every meeting
the team should check to make certain that each member’s view of his or her
assignment corresponds to the team’s view.

Controlling Changes in Operations
IT projects are all about change. An organization sets up a project to bring about
change—to modify the current operation by the introduction of a proposed sys-
tem. The resulting changes may impact all of the stakeholders, including own-
ers, managers, customers, clients, users, and IT people. Change always brings
the possibility of resistance from one or more of the stakeholders. The following
are some thoughts about resistance to change and possible mitigating actions.

• People resist change when they are uncertain about and/or fear the conse-
quences. The team deals with this issue by trying to provide good informa-
tion. For example, a proof of concept model, by demonstrating the feel and
function of the system, may alleviate (or reinforce) user and client concerns
far more effectively than handing them a written description of the new
system.

• People resist changes that offer a perceived negative benefit or negative
reward to them. For example, workers may fear the change will reduce their

Chapter 3 Project Management 85

86 Part One Project and Team Organization

usefulness or comparative advantage or increase the amount of work they
must do with no direct benefit or make their jobs less interesting. The team
may deal with part of this problem by recommending to the client such things
as (1) training for the affected group, either on how to use the new system or
on how to perform in a new job area; (2) changes in the work content of a
job; and (3) changes in rewards or other factors that eliminate or, at least mit-
igate, the perceived negative benefits.

• People resist changes that they believe do not solve the perceived problem. If
users or clients appear dubious, the team should recheck their presentations
of the system features and benefits and/or check to see that they are address-
ing the correct problems and that their solution makes things better.

Controlling Changes in Requirements
Changes in system requirements come from at least two sources: the team and
the client. Changes requested by the client are a form of change that can pro-
duce a major impact on the team. Virtually all IT projects undergo some client-
proposed changes in requirements as the project proceeds. Most of these
changes cause additional work for the team and can jeopardize the prospects
for success.

A key project management task for the team is to control the amount and tim-
ing of client changes in requirements without antagonizing the client. Clients
prefer great freedom to make changes in requirements whenever they want
throughout the project. The team wants to freeze the requirements as early as
possible. The best compromise comes from sharing a thoughtful cost–benefit
analysis with the client. If the team can demonstrate the cost of a change to the
client, whether it is a delay in completion time, a risk that the project will not
succeed, or other cost, then the client can make a rational decision on whether
or not to proceed with the change. The team carries a heavy obligation to pro-
vide a fair analysis; a team that routinely announces that every proposed change
is prohibitively expensive soon loses credibility.

During the initial project definition stage, changes in requirements pose few
if any problems as long as the total project scope remains within the limits of
available time and resources. In fact, the team wants to encourage the client to
consider requirements changes at this time. The project definition presentation
represents a formal opportunity for the client to review scope and request
changes. Throughout the project, the team probably can and will incorporate
some changes to the design, for example, the proof of concept demonstration to
the client is intended to stimulate client thought about the completeness and
appropriateness of the design.

The later in the project that a new client issue surfaces, the more the team needs
to exercise care to prevent the scope from expanding to a size or into a functional
area or technology that the team cannot handle with the resources available. Once
in the system delivery stage, the team must carefully evaluate the impact of all
changes before agreeing to them. Sometimes a change will require only minor
work on a program, database, or RFP; other times the change will require the
team to almost start over or to increase greatly their time commitment. The team

should contact the team manager immediately if the client insists on an unwork-
able or unreasonable expansion or change of the scope.

Changes proposed by team members also can cause problems. As the project
proceeds, members of the team will discover possible ways to improve the solu-
tion. However, the team always should ask what impact a change will cause on
the quality and due dates of their deliverables. Some changes improve the work
product and result in little or no impact on effort and due dates. However, other
changes, even though they may significantly improve the deliverables, may also
cause havoc with workload and due dates.

Because of the need for consistency, introducing a change into one part of a
project may require changes to many other parts. Each change increases the prob-
ability of errors in the final deliverables. A satisfactory prototype that works and
is completed on time may serve the team and the client better than a “great”
prototype that does not work or is finished past the due date. Sometimes most
suggestions for change are unwise. When a new junior programmer joins an
actual project team, the programmer is expected to give first priority to writing
programs that implement the current requirements, not to trying to change the
requirements. A policy of staying with original decisions as long as they produce
a satisfactory outcome has much merit.

Monitoring Progress against the Plan
Managing change dominates IS project management. Each day, the team dis-
covers tasks to include in or remove from the RD plan. Tasks take more or less
time than expected, some people do not do what they agreed to do, and other
problems occur. The key to success in project management lies in obtaining and
using information on progress. Some teams try exception reporting, reports that
let the team know when and only when something changes. However, the peo-
ple most likely to fall behind are the people least likely to report. Spending time
on a careful review of progress at each team meeting probably represents the
most practical approach.

The most reliable status report is one that says an activity is either complete
or not started. Estimates of percent completion, for example, “I am 80 percent
done with the prototype,” are notoriously unreliable. The last 20 percent (what-
ever that means) may take more time than the first 80 percent did. Breaking
tasks into subtasks often provides better information. For example, instead of
saying that a prototype is 80 percent complete, one could say, “I finished cre-
ating and populating the prototype database and am ready to start creating
reports.”

Once the team understands the current status of a project, the team can mon-
itor progress by comparing the actual progress to the plan. The schedule chart
or table provides a good tool for comparing actual and plan. By redoing the
schedule to reflect current status, the team can see what appears to be happen-
ing to completion times for deliverables. If the completion time gets close to or
exceeds the due date, then the team needs to take corrective action. Many orga-
nizations require project teams to submit updated plans on a regular basis as part
of the project management control system. For large projects, a computer-based

Chapter 3 Project Management 87

88 Part One Project and Team Organization

project management tool, such as MS Project, can facilitate this kind of updating
and reporting.

Taking Corrective Action
Corrective action represents a most difficult aspect of project management.
When a team is in serious trouble, it will go to see the manager. Team members
explain that they fell behind a month ago and now have no hope of finishing on
time. When asked what actions they took to correct the problem, they look sur-
prised and offer no answers. Even when a team recognizes a problem, the team
often takes no action until it is too late. At every team meeting, the team should
discuss not only the status of the project, but also the actions that might correct
any problems.

Possible actions to correct problems that arise when actual progress falls
behind planned progress include the following:

• None needed except to change the expected completion date—the activity is
not on the critical path and thus has enough slack to prevent any delay in the
project.

• Reallocate resources to add person power to a critical area that is falling
behind. One or more team members may be working on a noncritical task and
can be reassigned to a more critical one.

• Work more effectively. With some thought and analysis, people often can use
their time better, that is, spend time on the most important activities, seek help
for tasks they do not understand, and so on.

• Work harder. Most people already have more than enough to do, but in emer-
gencies they can put in more effort.

• Find the best person. Sometimes the team members assigned to a task dis-
cover they lack the needed skills while another team member working on a
different task has the needed skills. Clearly, the team should change the
assignments at this point.

• Find a consultant. If the team members face a problem for which they lack
the needed skills or knowledge, the team should move rapidly to get outside
help from colleagues, the client, the manager, or anyone else who can help. A
project is not a closed-book exam; teams are encouraged to consult with others.

• Reduce the scope. Sometimes the team can make the decision by itself, for
example, to decide to add fewer bells and whistles to the prototype. Other
times, the team will need to discuss the scope change with and receive the
agreement of the client and manager.

• Ask the manager for an extension in a due date. Appeals should come with a
good reason. Appeals also should come as early as possible and well before
the due date. When the team asks for an extension an hour before the due date
for a problem that occurred a month ago, the granting of the appeal is unlikely.

When a problem first occurs, a number of the above actions may work. A
month later, none of them may work. A key to effective correction action is take
action as soon as the problem is detected.

Project Review Points
Although a team can and should take action any time a problem appears, most
organizations also identify and conduct in-process reviews at key points during
the project. For example, the spiral model contains a commitment line. Each time
the project arrives at the line, a review occurs to determine the appropriate
action: proceed on plan, make changes in the plan, or cancel the project. Each
organization may have a set of points at which reviews of the project by the
client occur. Possible major review points are listed below.

• The Project Definition Review. The team reviews their understanding of the cur-
rent operation and the goals and constraints for the proposed system with the
client. This review often clarifies the team’s understanding of the current oper-
ation and problems and may result in changing goals, constraints, scope, and
deliverables for the proposed system. The review may include the contents
for a statement of work.

• Proposed System Specifications. After the team has developed specifications for
the proposed system, developed alternatives, and selected a recommendation,
the team reviews this work with the client before proceeding with a build or
procure option. The client may ask the team to change the specifications and
recommendation or to pursue multiple options.

If approval is granted at this stage, the team proceeds on the path to build
or procure a solution. Once the team has good information either from review
of the possible procurement options or from building a prototype, the team is
ready for the final design review.

• Final Design Review. With a procure option, the team and client make a deci-
sion at this point on the specific procurement option. With a build option, the
team may have a prototype or initial version of the system plus refined esti-
mates of cost and time to complete the project. If the expected outcomes are
not satisfactory, the project either ends or starts a search for new alternatives
often with a revised scope. Once the project proceeds beyond this point, major
expenses are incurred. Projects should be terminated or revised at this point
if the available options do not meet the desired performance specifications or
if time and expense forecasts exceed constraints. For many student projects,
the final presentation basically is the final design review.

• Pre-Implementation Review. By this time, a full operating version of the system
exists in-house and has undergone testing. The team and client review the
results and make the decision to proceed with implementation or to conduct
modifications and/or further testing. Projects rarely are terminated at this
point. However, if the new system when implemented has a significant chance
of disrupting operations and causing expensive problems, the client and team
should seriously consider termination. While losing the investment to date in
the system is bad, incurring large additional expenses from a system that does
not work satisfactorily is worse.

• Post-Implementation Review. Systems seldom perform exactly as expected. Some
features may not work in the client’s specific situation, users may find ways

Chapter 3 Project Management 89

90 Part One Project and Team Organization

to use features not anticipated by the designers, and finally, the environment
in which the system operates may change. The post-implementation review
determines how the system actually is performing. The review can identify
successes and problems, focus corrective action as needed, and provide valu-
able insight for future projects.

In addition to reviews that involve the client, the team may conduct a num-
ber of individual and team reviews. For example, the team members normally
will conduct a team review of their work prior to every review with the client.
Problems found and corrected by the team cause far less embarrassment and
potential punitive actions than problems found by the client during a review.

PROJECT MANAGEMENT TOOLS

Project management involves a number of time-consuming jobs. The team mem-
bers must identify project tasks, estimate durations, identify dependencies (when
some tasks can be performed only after others are complete), assign resources to
the tasks, and organize all this information in Gantt charts, PERT charts, activity
schedule tables, and other formats. Constructing the initial charts and tables is a
daunting assignment; however, for project management to work correctly, the team
must update the schedule data frequently (often daily) as new tasks appear and
task dependencies, completion times, and resource assignments change. A team
easily could spend much or most of the available project time manually updating
the schedule with little time left over to solve the client’s problem.

Fortunately, computer-based project management tools can perform many
of the routine tasks. These tools provide convenient formats for input data on
tasks, durations, dependencies, and resources; create an initial schedule; update
the schedule in response to change data; and generate a variety of analyses and
reports. The effectiveness of a project management tool depends heavily on the
team’s diligence in identifying and reporting changes. If the team neglects to
identify and enter change data in a timely and complete fashion, clients and
managers viewing the reports will receive an incorrect impression of progress
and problems, and team members may spend time and effort on noncritical tasks
while critical ones go unattended.

Teams can choose from literally hundreds of project management tools. The
tools require an initial purchase and, more important, an investment by users
in learning how to use the tool. However, most of the tools are relatively inex-
pensive and relatively easy to learn. Many of the tools work on a PC, and a
number of tools provide networked versions that allow a group of users—the
team members, clients, and anyone else whom the team grants viewing and/or
updating access, to view the schedule and other project reports from any Web-
enabled workstation and, with updating rights, to make changes. Often an orga-
nization selects a preferred tool for all the teams in the organization to use.
Industry surveys suggest that Microsoft Project (see http://office.microsoft.com
for more information) is the most widely used tool, but a number of others also
are used.

Microsoft Project provides a familiar Windows interface for entering input
data. The team enters the list of tasks, sets the task durations, and creates depen-
dencies between tasks. The tool allows the team to specify lead times (e.g., to
start task A when task B is 50 percent complete) and lag times (e.g., to allow a
two-day gap between the end of task B and the start of task C). The team also
can assign resources, including people, to tasks, and each resource can have a
unit cost. Microsoft Project will display the schedule in Gantt chart format or in
a Network diagram (PERT chart format). MS Project will identify the “critical
path.” When an activity is on the critical path, any delay in completing the activ-
ity may delay the entire project. Clearly, the team and the client want to focus
attention on the activities on the critical path. MS Project also can produce a vari-
ety of other reports on project activities, costs, and resources. As the project pro-
ceeds and things change, MS Project updates the charts and reports when the
change data are entered. Microsoft Project is available in both stand-alone PC and
network versions.

PROJECT COMMUNICATION

Project communication with team members, managers, and clients forms an
essential part of every project. Communication with the client generally occurs
on an “as needed basis,” although sometimes clients request regular status
reports. Communication with the team manager often occurs on a scheduled or
regular basis, perhaps weekly and whenever a significant unexpected event
occurs. The team can use a variety of forms of communication: face-to-face, tele-
phone, e-mail, or delivery of written documents. The best form to use depends
on both the people involved and the content. The team can ask both the client
and manager about which forms of communication are acceptable and pre-
ferred. For example, teams can complement written progress reports with peri-
odic meetings with the manager. The purpose of these regular meetings is to
give the manager and team time to review work and discuss issues. Normally,
the team can deliver routine messages and reports by e-mail or telephone; the
delivery of significant, bad news, however, works best with a face-to-face visit.

The following material addresses communication with clients and managers.
Chapter 2 covers member-to-member communication within a team. During the
course of a project, the team normally will report progress in writing or in elec-
tronic form on a periodic basis. As milestones are reached, the team will make
oral and written reports of substance to the client. The team concludes a project
with a final report and a final presentation for the client. A working copy of the
program and related documentation is part of the final report. If the organiza-
tion uses a standards manual, all communications should follow the guidance in
the manual.

Progress Reports
Effective management of a project requires good information on progress or a
progress report. Typically, managers monitor progress by tracking departures

Chapter 3 Project Management 91

92 Part One Project and Team Organization

(exceptions) from plan, critical success measures, or a combination of the two.
Exception reports to the manager provide information on only actual or poten-
tial departures from the plan, that is, delays, difficulties, or potential problems.
In the critical success factor approach, the manager specifies the measures of
interest, such as the completion of key activities or deliverables, client satisfac-
tion levels, total team effort, and other measures. The team reports the values of
these measures. Most managers and clients prefer some combination of infor-
mation on both departures and success measures.

Timing and frequency represent additional issues in reporting. One option is
event-oriented status reporting, whereby the team reports all significant changes
or accomplishments to the team manager when they happen. The team may
update the RD plan as events happen and give the manager access. Or the team
may send written or electronic notices to the manager. For many projects, event
reporting provides more timely and voluminous information than the manager
wants. Normally, progress monitoring on a weekly or longer basis can provide
all the information a manager can use.

A typical weekly report contains: (1) a text summary of significant team
accomplishments; (2) any problems and the actions the team is taking to solve
them; (3) plans for the next week or next several weeks; (4) a table that for each
person on the team shows: (a) work performed this week; (b) hours expended on
the project this week; and (c) total hours expended on the project to date; and
(5) an updated RD plan showing work completed to date and project status (e.g.,
on schedule, ahead of schedule, or behind schedule). Figure 3.5 shows a sample
weekly progress report. A team that takes rapid development seriously will mod-
ify the last week’s report to create the report for each new week. The team can
create the format and tables once and modify them as needed.

The hours reported for each person for the week should fit within reason the
text description of the work performed. For example, a report of 40 hours to
arrange a visit to the client seems unreasonable; one hour for this task seems
more reasonable. If the person actually spent 40 hours on the task, the person
should include a note of explanation. Report only the time spent on the project;
however, time spent reviewing the materials for project guidance or skills com-
prise an appropriate charge to the project.

Written Reports
The team may prepare several interim written reports and a final report for the
client to record the results of the team’s analysis and design activities. The reports
help the client to evaluate the team’s work and provide a base for any additional
or future work including system operation, maintenance, and modification. The
contents and sequence of the reports follow the organization’s standards, if any
standards exist. Many reports start with a description of the problem that the client
asked the team to address, then describe the team’s accomplishments to date, and
end with the work required in the future.

A sample list of contents for a final report appears in Figure 3.6. The materials
in the report, except the table of contents and the executive summary, are discussed
in detail in subsequent chapters. Interim reports will follow a similar format but

Memo

To: Team Manager
From: Al Price for Team 7
Subject: Progress for the Week ending 24-Jan
Date: 1-27

Significant Team Accomplishments

This week, the team turned in the Team Contract, held its first meeting with the client, GB
Video, and started work on project definition and the SOW. During the meeting, the team
discussed scope, the strategic environment, current operations, problems with the current
system, and goals for the proposed system. We scheduled 6-Feb at 4:00 with our manager
and the client for a project definition review. Following our meeting with GB, our team
discussed scope and feasible solutions and assigned duties to individual team members.

Problems Addressed This Week

This week our team faced two obstacles, a team member’s illness threatened to interfere with
our client meeting and uncertainty about what the client wants. Our initial client meeting was
held as planned after the health of our team member improved. At the meeting, we were able
to clarify the project scope. The team will address only rental, return, and member processes.
All purchasing, inventory, accounting, and billing activities are separate systems. The project
remains on schedule as set forth in the attached plan.

Plans for Next Week

The team expects to complete the draft SOW by next Friday and to have an initial draft of
the Project Definition Report. We have scheduled a meeting with the client for 4:00 p.m. on
30-Jan to go over any questions that arise. The team also will prepare a first version of the
project definition presentation.

Individual Effort for the Week of 19-Jan

Hours Total

Team This Project

Member Activities Week Hours

Al Price Attended group, manager, and client meetings. 8.0 15.0
Created weekly report, turned in the team
contract, studied tasks and deliverables, assigned
work to team members and updated schedule.

Dick Von Attended group and client meetings, started the 5.5 9.0
Kemp narrative, EDM and DFD for project definition.

Dan Attended group, manager, and client 7.0 11.0
Cartperson meetings, started a first draft of the SOW.

Terrie Attended group and client meetings, wrote up 6.0 12.0
Shaftcart client request per group discussion, wrote up

two feasible solution classes—build and buy.

TOTALS 26.5 47.0

Page 1

FIGURE 3.5 Progress Report for the Week of January 24

93

94 Part One Project and Team Organization

Updated schedule as of 24-Jan

Est.

Per. People Sequence Start Draft Due

Milestone or Activity hours Assigned PreReqs Date Date Date Status

1 Organization Plan 13 Jan 19 Jan 21 Jan Complete

1.1 Deliverables

1.1.1 Team Contract 10 All 13 Jan 19 Jan 21 Jan Handed in

1.1.2 Skill Inventory 5 All 13 Jan 17 Jan 21 Jan Handed in

1.2 Meet with Manager 6 Terrie/Dan 1.1 19 Jan 20 Jan 21 Jan Done

1.3 Meet with Client 18 All 1.2 13 Jan 23 Jan 24 Jan Done

2 Project Definition 24 Jan 31 Jan 13 Feb In-progress

2.1 Review client request 6 All 1.3 24 Jan 24 Jan 24 Jan Done

2.2 Draft SOW 10 Dan/Al 2.1 24 Jan 31 Jan 3 Feb Started

2.3 Draft Project Def. Rpt. 40 Dick/Al/Dan 1.3 24 Jan 3 Feb 13 Feb Started

2.4 Proj. Def. Presentation 30 All 2.2, 2.3 26 Jan 4 Feb 6 Feb Started

3 Proposed System 1 Feb 28 Feb 28 Feb Not started

3.1 Prepare specifications Not started

3.2 Draw models Not started

3.3 Refine Alternatives Not started

3.4 Conduct Evaluation Not started

3.5 Select recommendation Not started

4 System Acquisition 1 Mar 15 Mar 15 Mar Not started

Option A. Purchase

Option B. Build

5 System Delivery 15 Mar 8 Apr 8 Apr Not started

5.1 Acceptance Test Not started

5.2 Implementation Not started

6 Final Report and Presentation 5 Mar 18 Apr 23 Apr Not started

Page 2

will contain only parts of the section I through V materials. A wise and effective
analyst will write each interim report so that it can become a part of a final report
with only minor editing. Interim reports might include a project definition report,
a proposed system specifications report, and a system design report.

Reports may vary in length depending on the project. A good report commu-
nicates the message that the team explored the issues in depth and wrote enough
about them to clearly and completely describe the issues. A one- or two-sentence
project statement may suffice. A one-page project definition or proposed system
specifications section suggests to the client (and to the instructor for students) that

the team did not take the task seriously. The major sections of the report proba-
bly will cover from 3 to as many as 10 or more pages.

A final report that contains graphical process and data models for the current
and proposed system probably consists of at least 20 pages, and more likely
25 pages or more, plus appendixes. In IT work, good final reports almost always
have a number of appendixes. On the other hand, a report of 50 or more pages
plus appendixes for the typical small project probably contains a lot of material
that is not very useful.

Table of Contents

The table of contents lists each major section and appendix of the report
through perhaps the second or third level of headings followed by the page num-
ber on which the section appears in the final report. For whatever level the team
picks, the table must show every heading at that level with the corresponding
page number. The type font used in the table, whether Ariel, Times New Roman,
or other must match the font used in the report for the headings. When a report
is complete, check again that the table correctly lists all of the headings with cor-
rect page numbers.

Headings and Fonts

Many heading schemes will work as long as you use a consistent one. For exam-
ple, consider the following scheme:

Level One

[Place text here.]

Level Two

[Place text here.]

Level Three

[Place text here.]

Chapter 3 Project Management 95

Title Page
Table of Contents
Executive Summary
Introduction
Part I. Project Definition
Part II. Proposed System Specifications
Part III. Alternatives, Evaluation, and Recommendation
Part IV. Design Specifications and/or RFP
Part V. Implementation and Support
Appendixes

FIGURE 3.6 Contents of a Final Report

96 Part One Project and Team Organization

Use the same heading scheme, typeface, and font size conventions through-
out the report. Level one designates the major sections, such as the table of
contents, executive summary, project definition, and so on. Level two desig-
nates subtopics in level one sections and level three designates subtopics in
level two sections. Most writing books ask you to include at least two subheads
within a section if you use any at all. If you wish, you can use a different type
font or size for the headings. Most PC word processing programs come with
a built-in heading scheme. Using a default scheme saves time and effort.
Adding complexity to the heading scheme or to any part of the report makes
rewriting more difficult and increases the likelihood of making mistakes and
inconsistencies. Rapid development focuses on eliminating complexity for this
reason.

Executive Summary

The executive summary consists of one or several pages of text intended for senior
managers and clients. A manager or client who reads the summary should
receive information on all of the key contents in the report—especially a project
statement, strategic alignment, desired features, constraints, specifications, alter-
natives, evaluation, and conclusions or recommendations. The summary high-
lights every main point in the entire report and must not introduce any material
not in the report. If the team discovers a new point that should go in the sum-
mary, the team must first cover the point in the body of the report.

One good approach to preparing a summary is to copy sentences or para-
graphs from the body of the report that cover all of the main or key points for
the report and paste them into the draft summary document. After editing to
remove duplication, examples, and other unneeded materials and to provide
coherence and smooth transitions, the draft becomes the summary. The team also
may wish to rearrange the order in which points appear. This approach guar-
antees that the summary actually summarizes materials in the report and does
not introduce new content, observations, or conclusions that do not appear in
the report.

Introduction

The introduction identifies and briefly describes the pieces and parts that make
up the report. (The executive summary, by way of contrast, summarizes the most
important content or ideas and conclusions from the report.) The introduction
offers the reader an annotated version of the table of contents with only the most
significant or interesting items described. For example, the introduction probably
says nothing about the table of contents or the executive summary but may
describe the contents of the current situation and other key sections in some detail.

Good Writing

All reports should follow good writing standards. You may wish to review any
previous business or general writing courses. If you learned nothing from them,
then learn how to write well now. Some examples of writing problems and better
solutions appear in Table 3.3.

Questionable Better

[Past, passive with indefinite pronoun] It The team recommends a package program.

has been recommended by the team to

use a package program.

[Weak verb] Direct implementation is the Direct implementation offers the best

best choice. choice.

[Ping-pong] Figure 1 contains the DFD. Figure 1 contains the DFD. The DFD

Figure 2 contains the EDM. The DFD covers three pages. Figure 2 contains the

covers three pages. EDM.

[Poor lead sentence] The team recommends The narrative for the current situation

alternative 2. The narrative for the current outlines two problems. These problems

situation outlines two problems with the relate to the lack of a database and to . . .

current situation. These problems relate to [new paragraph] The team recommends . . .

the lack of a database and to . . .

[Indefinite pronouns, poor verb forms] The team recommends Alternative 3. This

Alternative 3 may be best. This is our alternative (not just “This”) receives the

recommendation. It was given the highest highest score in our evaluation model.

score by our evaluation model.

A few suggestions to deal with the most commonly observed problems
follow:

1. Use active, present-tense verbs whenever appropriate. “The team recom-
mends . . . The client wants . . . DFDs show . . .” Sometimes transitive verbs
work well. “The goal is . . .”, but most of the time, active, present-tense verbs
work best.

2. Replace indefinite pronouns, for example, “this, it, they” with more definite
nouns or phrases. Use “This experience explains the teams . . .” in place of
“This explains the teams”

3. Avoid ping-pong paragraphs or sections. Once you raise a subject, finish dis-
cussing it before going on to a new topic.

4. The first sentence of a paragraph should relate to the main content of the
paragraph.

5. Long, convoluted sentences like this one may fit in some places, but when
used often in your deliverables and other documents, for example, a memo,
can lead to reader confusion in some, if not many, cases and can even
antagonize your reader or, perhaps, your manager who may retaliate by
giving you a lower evaluation or salary, a situation you probably want to
avoid.

6. Use as few words as possible to express your ideas clearly.

When your report contains good writing, perform a final spelling, punctuation,
and meaning check. Reports containing misspelled words that are detectable by
a spell-check program indicate an inexcusable lack of care by the team. Spell-
check programs catch many spelling problems, but do not catch correctly spelled
words used incorrectly, for example, the use of you for your or teem for team. Your

Chapter 3 Project Management 97

TABLE 3.3
Examples of
Writing

98 Part One Project and Team Organization

team will need one or several good editors to conduct a final review. Finally, check
as a group to confirm that the meaning imparted by the report to the reader
matches the ideas you intended to convey. A well-prepared report may not save
a poor project, but a poor report can damage a good project.

Report Appearance

The client will appreciate a clean, clear, easy-to-read report. A word processing
program with an attractive, professional-looking font and a large, legible type
size—11 or 12 point for text—will produce a good-looking report. Replace any
smudged or visually impaired pages with clean ones. Covers and some form of
binding give your report an official look and will protect it. A stapled report that
comes apart on first inspection may give your client a poor impression of your
work and the pride you take in it. The front cover should display the name of
the client’s organization, the project name, a date and, if desired, the team mem-
bers’ names.

Presentations
Presentations, for example, a project definition or a final presentation, give the
team a structured opportunity to demonstrate their competence to their man-
ager and to the client. Sometimes the client will invite senior managers to the
presentation—the CIO or even the CEO. Frequently, the CIO, CEO, and other
senior managers will glance only briefly if at all at the written report. How-
ever, these senior managers will listen to you. In a world where everyone
rushes around with little time to focus on any one issue, a presentation offers
a unique environment, a few minutes of relatively undivided attention. If the
team does an outstanding job with a presentation, the team can create a long-
lasting, positive impression of grace, competence, and spirit. On the downside,
a disorganized presentation or a demonstration that fails with no backup can
create a negative feeling. The team certainly faces strong incentives to do a
good job.

Good presentations do not just happen; preparation counts. A presentation
works best when the team produces a good product. The product comes across
best when embedded in an attractive, smooth, clear audio-visual (A/V) format
presented by alert, clear-speaking, and well-rehearsed team members. In short,
a good 30-minute presentation flows from hours, weeks, or even months of
hard work.

Guidelines for preparing for a formal presentation include the following:

• Identify strong and significant content for the preparation. Tailor the content
to the client; put an emphasis on those things of most interest to the client
and your manager.

• Produce appropriate visual aids to help communicate the content.

• Prepare handouts for backup in the event of an A/V failure or as the main
A/V media and/or to cover any materials that the clients may find difficult
to read in the main A/V.

• Assign roles of who will do what at the presentation.

• Rehearse, revise, and rehearse again until the presentation is smooth and
convincing.

• Before the presentation, if possible, visit the meeting room to note and test
seating arrangements, existing visual aids, electrical outlets, network outlet,
and such and also learn the names of the clients who will attend.

• Make certain that all the team members and the manger know where to go
for the presentation and how to get there. Use e-mail or another form of writ-
ten directions.

Team Member Roles at the Presentation

The team assigns team member roles for every member prior to the presenta-
tion. Possible roles include

• Anchor—who opens and closes the presentation.

• Presenter—who presents part of the material.

• Technology driver—who operates the projector, runs the prototype, etc.

• Note taker—who records client comments during the presentation; may pre-
pare a summary for the end.

• Host—who welcomes the clients, gives them name tags, shows them to a seat,
and converses with them until the presentation starts. The host may stand out-
side the door to show attendees the way to the presentation.

One person may play several roles, but every team member should perform
in at least one role. When several people are going to speak, each speaker can
introduce the next. Alternatively, the anchor can introduce every presenter at the
beginning or can refer to the printed agenda, which shows who will present
what. After the anchor’s remarks, each presenter, when his or her turn comes,
can state his or her name and start talking.

If the team uses a computer to run a demonstration or to project images, the
technology driver operates the computer for the slides or runs the demo while
the presenters speak. One person doing both roles tends to slow the tempo and
bore the attendees. You can make better eye contact with the attendees while
looking at them rather than while looking at the screen. If (when) a computer
problem occurs, the driver can try to fix it while the presenter improvises, that
is, goes on to the next topic, relates preplanned materials that the presenter orig-
inally cut out for lack of time, or if all else fails, invents interesting and useful
thoughts. Being a lucid speaker while trying to fix the blasted computer chal-
lenges even the most gifted team member.

Visual Aids

Even spellbinding orators benefit from good visual aids, such as colors, pictures,
and images of text. The best visual aids to use depend on the purpose and nature
of the presentation. For example, flip charts work well at the project definition
presentation because the team wants to encourage a high level of interaction with
the clients. Computer-generated slides look like a finished product and may
inhibit suggestions for changes or additions. For a final presentation, PowerPoint

Chapter 3 Project Management 99

100 Part One Project and Team Organization

or similar computer-generated aids allow the team to integrate the slides with
the proof of concept model demonstration. IT people should use computer-based
technologies. Below are some guidelines for visual aids.

• Select high contrast colors for text and background; use black on a very light
color, for example. In general, color adds to a presentation, but slightly
restrained colors tend to wear better than a neon orange background with pas-
sion purple and fluorescent green letters. The goal is to sell, not to nauseate,
the client.

• All type must appear in a large enough font to be read easily at the back of
the room. Copies of documents or tables with a lot of text and numbers sel-
dom show up clearly on a screen. Consider using handouts for these kinds of
displays.

• Half or more of the charts used in your presentation should have specific con-
tent that you want the client to note and/or to remember, such as data, a list
of benefits, or other important information, not just an outline of what you
will say. An occasional outline chart is fine, but make sure the content ones
are there as well.

• Use sounds and special slide transitions with caution. Noises and pictures fad-
ing in and out, flying in from an edge, or flashing around on the screen may
distract the client from the content. Avoid automatic timing such as setting
the projector to display a new slide every 30 seconds.

• Look carefully at your proof of concept visuals. You may wish to include
screen shots, input forms, or reports with content that is difficult to read. If
so, prepare a handout.

The content on the visual aids will vary by project and client. Typical visual
aids for a final presentation on a project may include:

• A title slide that shows the project name, client’s organization, and client(s)
names(s). Clients like to see their names appear. The slide also may include
the team members’ names.

• A project statement that summarizes what the client asked the team to do.

• An agenda for the presentation.

• Strategic alignment which answers how will the solution contribute to the orga-
nization’s goals.

• Features for the proposed solution. What features does the client want or
ask for?

• Constraints that the client placed on the proposed solution.

• Specifications for the proposed solution. Use one or more slides on the speci-
fications that the team developed based on the client’s desired features and
constraints.

• Alternatives provide one or more slides for each of the alternatives with a
description, advantages, disadvantages, costs, benefits, risks, and so on.

• Evaluation summary includes a table that shows the key criteria for alternatives
with a value for each criteria for each alternative that ties to strategic alignment.

• Recommendation gives the selected alternative and the key reasons for selec-
tion. This slide should tie back to the evaluation summary and to the strate-
gic alignment.

• Introduction to the proof of concept (POC) demonstration. Include a slide or slides
that cover the key features and limitations of the proof of concept model. Is
it a prototype or package? What features are missing? What are limitations of
the data in the tables? Most clients want only an overview, not the full tech-
nical specifications.

• The POC demonstration uses live operation, if possible. If live operation is not
possible, use screen shots of inputs and outputs.

• Implementation issues include approach, schedule, players, testing, mainte-
nance, and more.

• Summary should restate the recommendation and any other key issues. Finally,
thank the client(s) for their time.

Some presentations may contain all of the above slides and more. Others may
contain only selected slides from the above list plus any needed additions. The
team may wish to change the order, for example, to cover implementation before
the demo.

Rehearsal

Even the best team can benefit from rehearsals. With enough rehearsal, the pre-
senters can appear comfortable and spontaneous while still covering all the
points in the allocated time. Experiment at the rehearsal with the proper role for
each presenter and how to transition from one person to the next. Check care-
fully the readability of your visual aids. Can you hear and understand the
speaker? Constructive criticism at this point can lead to a much stronger final
version. Keep a record of times. The actual presentation probably will run longer
than the rehearsal: Extra comments or a little confusion and repeated sentences
tend to creep into the final presentation.

During the rehearsal, plan for contingencies. The Basic Rule of Presentations
holds that what you least expect or most fear may happen; imitate a good Boy
Scout: “Be prepared.” An unwanted event that you are prepared to handle may
cause annoyance. But if you are not prepared, it escalates into a crisis or a disaster.
For example, plan what the team will do if the following interruptions occur.

1. A team member becomes ill and/or does not show or must leave.

2. A team member becomes confused, stops, or forgets to cover material.

3. The video projector will not work or fails in the middle of the presentation,
or the room is too light to see the images.

4. The proof of concept demonstration does not work.

5. The client asks so many questions that the team cannot finish.

6. The client strongly objects to or argues with some of your material.

7. The CEO or CIO announces that she must leave but will return shortly.

The preceding list gives only a few examples; many other problems can arise.

Chapter 3 Project Management 101

102 Part One Project and Team Organization

For the Presentation

The team must prepare and present themselves in a professional and courteous
manner. The team will need to be aware of the following suggestions:

1. Wear appropriate clothes.

2. Know where you are going and how to get there.

3. Plan to arrive far enough in advance to allow for bad traffic, minor mechan-
ical failures, getting lost, waiting for an escort to enter the building, or other
potential delays.

4. Set everything up and check for proper operation before the clients arrive.

5. With the client’s permission, set the room up the way you want it. Do not feel
constrained by an existing bad arrangement. Set up the room so that all the
clients can see and read the visual aids with comfort. If possible, arrange seats
so that each person can see all of the others.

6. Position a team member in the hall outside the room to welcome attendees
and help them find the place.

7. Greet every attendee, give him or her a name tag, and help him or her find
a seat.

8. Bring name tags and/or place cards for all the clients and the team members.
Bring blank extras in the event unexpected clients arrive.

9. Start on time or as soon as the key clients arrive and agree to start.

During the Presentation

Presentation and professionalism are the key to success of any presentation. The
team should always be aware of the following concepts:

1. The team members may stand at the front of the room during the pre-
sentation or may sit down when not speaking. If the team members are
seated, intermix team members and clients in the seating; avoid an “us”
versus “them” seating across a table that may seem adversarial to the
client.

2. Welcome the attendees and thank them for coming.

3. Either introduce everyone or ask each person to introduce him- or herself.

4. Ask permission to record, if relevant.

5. Indicate how you plan to deal with questions—during or at the end or both.

6. Apply what you learned during rehearsals to realize a smooth, exciting, and
interesting presentation.

7. Speak loudly enough for the clients to hear without strain. If the room has
a noisy air conditioner, you may need to speak quite loudly. Watch for any
signs that the clients are straining to hear. Ask them if they can hear. Shout
if you must.

8. With small groups (up to about 5 or 6 clients), welcome and introduce a
client who arrives late or ask the client to introduce him- or herself. With
larger groups and people who straggle in after the presentation starts, the

team may choose to recognize the arrival of only the most key clients: CIOs,
CEOs, and such.

9. Encourage interaction. Ask questions if the clients do not volunteer com-
ments. During the discussion, follow the guides for interviews: avoid lead-
ing questions, do not interrupt the client, and so forth.

10. Restore the arrangement of the room and clean up any mess you created
before you leave.

The Final Presentation
The team prepares for the final presentation throughout the project. All of the
work during each stage of the project contributes to the final presentation. Fol-
low the general guidelines for presentations. Normally, the team will use visual
aids, computer-generated visuals if possible, for the final presentation. The con-
tent of the final presentation will vary depending on the nature of the project
and client. General content guidelines appear below.

1. A brief description of the project—what the client asked the team to do.

2. The agenda—what the team plans to do for the presentation.

3. A brief, concise summary of the strategic alignment for the project.

4. A review of goals or requirements and constraints for the proposed system
as defined by the client.

5. A summary of the specifications developed by the team for the proposed
system.

6. A discussion of any special activities the team undertook to find solutions.

7. A review of alternatives the team considered.

8. A presentation of the evaluation of alternatives. The evaluation must relate
to and build on the strategic alignment for the project.

9. A recommendation that is clear, strong, and unambiguous. Earlier in the proj-
ect, the team discussed the recommendation with the client and received
client approval to proceed. The client does not want to hear any uncertainty
or lack of enthusiasm at this point, especially in front of the CIO, CEO, or
other officer.

10. Demonstration of the proof of concept model for the recommended system.

11. Implementation and maintenance plans.

12. Summary including a strong restatement of the recommendation.

The amount of emphasis and time that the team devotes to each topic will
depend on previous interaction with the client(s). If all of the clients present are
familiar with some of the content areas, the team can mention or briefly cover
the familiar areas and spend most of the time on the less familiar areas. If a high-
level client with little previous exposure to the work attends, the team should
cover carefully the areas of most interest to the senior person, for example, strate-
gic alignment, evaluation, and recommendation. If the client attendees are tech-
nical types, the team may spend more time on specifications, alternatives, build
or procure issues, and implementation.

Chapter 3 Project Management 103

104 Part One Project and Team Organization

Most teams ask the client to schedule one hour for a presentation. A busy or
impatient client, however, may limit the team to 30 minutes. The team’s pre-
sentation including demonstration of the proof of concept model should not last
longer than two-thirds of the time the client has allocated; for example, in a typ-
ical one-hour slot, allow no more than 40 minutes of presentation in order to
leave at least 20 minutes for discussion. Many teams encourage the clients to ask
questions as the presentation proceeds and the client’s questions may use up part
of the planned discussion time. The team needs to make sure to present the most
important points before the client leaves. If due to questions, the presentation is
running longer than planned, ask the client if more time is available. If an impor-
tant client must leave, try to stop any discussion, make the critical points, and
then resume discussion.

Summary Project management offers the team tools for effective action in four areas:
(1) decide the tasks that are required to complete the project, when to perform
each task, and the role of each person in the project; (2) convert plans into action;
(3) monitor progress and take action as required to deliver the product on time
and on budget; and (4) use oral, visual, and written media to inform clients and
managers about progress and results. The first area addresses planning, the sec-
ond control, the third, execution, and the fourth communication. In addition to such
direct activities as project definition, proposed system specification, system
design, and system delivery, an effective analyst participates in a number of proj-
ect management activities.

Planning represents a fundamental project management activity. With good
project management, planning continues every day throughout the life of the
project. An SDLC plan typically consists of a sequence of formal steps that may
begin with organizing the team and project and continue to the delivery and
support of a new system. The spiral model for project planning extends the con-
cepts of the SDLC model to recognize that project activities often follow a cycli-
cal path. Modern systems can benefit from a compromise plan that retains some
of the structure of the SDLC/spiral models with the flexibility to produce results
rapidly at an affordable cost. The new rapid development planning model
selects parts from and assigns priorities to the SDLC/spiral tasks. Rapid devel-
opment represents a highly flexible concept: “Do only what is necessary to
deliver an application that (1) meets the client’s perceived needs, (2) in as short
a time as possible, and (3) at the lowest possible cost.” Analysts achieve these
RD goals by incorporating one or more of the following concepts into the proj-
ect plan:

• Include only tasks or activities that are essential.

• Use programming tools and/or languages that allow fast development and easy
changes.

• Work with planning mechanisms that facilitate communication and rapid feed-
back between analysts and clients.

The “rapid” piece of rapid development holds special importance. Clients
want new applications tomorrow not in two years. Speed of development also
can improve the chance of success and reduce cost. Scope creep or the addition
of features to a system after the initial requirements are set, happens when clients
change their minds about requirements or reorganization brings a new set of
requirements. The problems and costs associated with changing clients, require-
ments, and developers are minimized by plans with short development times.
Even with RD, a key project management task is to control client changes in
requirements without antagonizing the client. If the team can demonstrate the
cost of a change to the client, such as a delay in completion time or the risk that
the project will not succeed, then the client can make a rational decision on
whether or not to proceed with the change.

Teams can choose from a number of mechanisms that facilitate preparation
of a rapid development plan. Under the contract approach to RD plans, the
client and team, or perhaps a manager or CIO, jointly agree on a broad plan,
including the deliverables, major tasks, and schedule for the project. The state-
ment of work (SOW) represents one approach to a contract-based rapid devel-
opment plan. The joint team approach to RD planning involves forming a team
composed of analysts, clients, users, and perhaps others such as managers, to
work together intensively from start to finish on the project. In place of a
detailed predetermined plan, prototype-based plans start by building an initial
physical version of the application and use the prototype to answer some of the
project definition, proposed system, and system delivery questions for the new
system.

Increasingly, organizations acquire part or even most of their IT capability
through some form of outsourcing, which is purchasing an application or IT
service from a vendor. Outsourcing represents another approach to rapid devel-
opment, a way of trying to reduce time and cost for the development process.
Purchasing a packaged application or an IT service represents a common form
of outsourcing. The team also can evaluate the outsourcing of IT functions by
finding an external organization to do some or all of the development or to per-
form the functions of the system. A common way to outsource a project is to use
a request for proposal (RFP). To respond to an RFP, the vendor, in effect, per-
forms parts of the system creation process.

A project plan requires several steps: (1) identify the appropriate activities—
task decomposition; (2) estimate person hours and sequence constraints for each
activity; and (3) build or generate the schedule in a format that managers and
team members can understand. While all plans follow this basic structure, the
rapid development philosophy means that each system plan will evolve differ-
ently as a function of the requirements for each specific project. A complex sys-
tem may require the use of a project management tool to build the schedule and
identify the critical path. For moderate-size projects, an activity table or a Gantt
chart offers helpful graphical model representations for the schedule.

Project execution and control, two closely interrelated functions, start with
the process of converting plans into action, that is, they put team members to
work on the various activities needed to meet the plan. Project execution and

Chapter 3 Project Management 105

106 Part One Project and Team Organization

control operate in the context of a feedback control system; they take initial
action, observe results, compare to plan, take action as needed, observe results,
and more. The team uses the project control activities to identify problems and
opportunities. The team can then take new actions to alleviate the problems,
capitalize on the opportunities, and use the project control function to monitor
the results.

Corrective action represents a most difficult aspect of project management. At
every team meeting, the team should discuss not only status, but also the actions
that might correct any problems. Possible actions to correct problems that arise
when actual progress falls behind planned progress include: change the expected
completion date, reallocate resources, work more effectively, work harder, find a
consultant, and/or reduce the project scope. When a problem first occurs, a num-
ber of the aforementioned actions may work. A month later, none of them may
work. A key to effective correction action is to take action as soon as the prob-
lem is detected. Although a team can and should take action any time a problem
appears, most organizations also identify and conduct in-process reviews at key
points during the project.

Project management involves a number of time-consuming jobs. Fortunately,
computer-based project management tools can perform many of the routine
tasks. These tools provide convenient formats for input data on tasks, durations,
dependencies, and resources; create an initial schedule; update the schedule in
response to change data; and generate a variety of analysis and reports. Teams
can choose from literally hundreds of project management tools. The tools
require an initial purchase and, more important, an investment by users in learn-
ing how to use the tool. Industry surveys suggest that Microsoft Project is the
most widely used tool, but a number of others also are used.

Communication with team members, managers, and clients forms an essen-
tial part of every project. The team can deliver routine messages and reports by
mail, e-mail, or telephone; the delivery of significant bad news works best with
a face-to-face visit. Effective management of a project requires good information
on progress. Normally, progress monitoring on a weekly or longer basis can pro-
vide all the information a manager can use. A typical weekly report contains a
summary of significant team accomplishments, problems and corrective actions;
a time or effort report by task and person; and an updated RD plan.

The team may deliver interim and final written reports and presentations.
The reports and presentations help the client to evaluate the team’s work and
provide a base for any additional or future work including system operation,
maintenance, and modification. The contents and sequence of the reports and
presentations follow the organization’s standards, if standards exist. A standard
model starts with a description of the problem that the client asked the team
to address, describes the team’s accomplishments to date, and ends with work
required in the future. Presentations give the team a face-to-face opportunity
to demonstrate their competence and sell their product to the client. A good
product comes across best when embedded in an attractive, smooth, clear
audio-visual format presented by alert, clear-speaking, well-rehearsed team
members.

Chapter 3 Project Management 107

Key Terms activity schedule table, 79
CASE (computer-

aided software
engineering), 67

client/team contract
approach, 69

corrective action, 88
evolutionary prototype, 72
executive summary, 96
final presentation, 103
Gantt chart schedule, 78
good writing, 96
introduction, 96
joint team approach, 70
monitor progress, 87
outsourcing, 72
packaged application, 73

PERT chart, 91
progress report, 91
project communication, 91
project control, 84
project execution, 84
project management

(PM), 64
project management

tools, 90
project planning, 64
project schedule, 81
proof of concept, 72
prototyping, 70
rapid development (RD)

planning model, 68
rehearsal, 101
resistance to change, 85

reviews, 89
scope creep, 68
SDLC (systems

development life
cycle), 65

sequence constraints, 76
spiral model, 66
statement of work

(SOW), 80
table of contents, 95
task times, 76
team member roles, 99
throwaway prototype, 71
weekly report, 92
work product, 80

1. What is the definition of project management?

2. What are the main activities or subtopics of project management?

3. How can an analyst achieve RD goals?

4. What are the differences between the SDLC and the spiral models?

5. What are some of the conditions that make joint client/analyst design sessions par-
ticularly useful?

6. In what situations does prototyping seem to work the best?

7. Why would an analyst want to design a throwaway prototype?

8. What is meant when one uses the phrase, “Plans should evolve over time”?

9. What are the main components of a SOW?

10. Since IT projects are about change, why do users resist change?

11. The project is falling behind because of a bug in the code that the team cannot cor-
rect. What should the team do?

12. Describe the guidelines for good visual aids to be used in a presentation.

13. Why is communication important for project management?

14. You have been chosen to send the weekly progress report to your manager. Design
the format of the report and add data to show a sample first week report.

Review
Questions

Critical
Thinking
Exercises

Individual Exercises

1. You have been asked to develop a client database for a marketing organization. There
are several users in various locations throughout the state. Your manager has asked
you for your advice regarding a rapid development approach. What is your recom-
mendation and justification for your approach?

2. A local business wants you to develop a simple informational Web site in HTML. The
business wants the site to reflect the business goals, the product line, the owners, busi-
ness hours, and the location. The owners want pictures of themselves and the location
on the site. You were advised in your systems class to get everything in writing before

108 Part One Project and Team Organization

beginning the coding. Prepare a statement of work that will protect you and the busi-
ness owners.

3. For exercise 2, describe how you will determine what to charge the business owners
for your work. Include your sources in your answer.

4. Again, using the information shown above in question 2, you have been working on
the project for several weeks and are ready to present it to your client. This morning
you received a call from the client wanting to add several pages to the site. How will
you approach this problem with your client?

5. You are a member of a team that has worked hard and prepared well for your final
presentation. What will you do if the following situations occur?

a. A team member with a crucial role in the presentation becomes ill and cannot show
up for the meeting.

b. The client continues to interrupt and your scheduled time frame is close to being
over.

c. The client strongly objects to your proof of concept model.

d. One of your team members constantly interrupts your client.

Group Exercises
1. Your team has agreed to arrive at project definition review presentation with the client

wearing business casual clothing. The team’s definition of business casual is slacks,
sports shirt, dress shoes for the men and skirt and blouse with dress shoes for the
women. One of the team members arrives in blue jeans, sandals, no socks, and a
pullover T-shirt with crude lettering on the back.

a. What should the team do if you discover the member outside the client’s office?

b. What can the team do if the offending member arrives in the room with the client?

c. How can a team prevent this problem from happening?

The following questions use mini-cases that appear in additional questions in later
chapters.

2. Your team has been given the assignment of building or buying a package to track
ordering and issuing of office supplies for a major law firm. The senior partner is
your primary contact. She has the impression that supplies seem to walk out of the
office, especially as each school year starts. She wants to set up a system that will
provide controls on issues, reports on usage by division, and procurement based on
need rather than when a bin is empty. She wants the system to assist in an annual
physical inventory, which she believes will minimize pilfering. Your team is to do the
following:

a. Set up a schedule of activities for the project in activity table format.

b. Set up the schedule in a Gantt chart.

c. For each important piece of information in the schedule and plan, evaluate the effec-
tiveness of an activity table versus a Gantt chart for displaying the information.

d. Prepare a statement of work for this project.

Your team must also answer the following questions:

e. How will the team members communicate with each other?

f. How will the team monitor progress against the plan?

g. What will you do if progress as shown on your Gantt chart falls behind your
planned progress?

Chapter 3 Project Management 109

3. The Business Association is conducting a babysitter service as a fundraiser for differ-
ent clubs in the college. When a customer is entered into the system, the Association
coordinator gets the customer’s name, address, and phone number. The coordinator
also records each babysitting job, the amount paid for it, and the sitter assigned to the
job. Each person may sign up to credit only one club, and the system keeps the con-
tact person and phone number for each participating club.

The treasurer wants to determine how much each customer was billed by week,
month, or year and how much each employee earned, also summed by time periods.
The treasurer is interested in how much work is done on weekends, holidays, or other
special days.

a. Set up a schedule of activities for the project in activity table format.

b. The team has three members, Al, Jane, and Kim. Assign each activity on the chart
to one or more of the team members.

c. Explain why activities were assigned to team members. To answer, make up skills
for Al, Jane, and Kim.

d. The team is far behind schedule, but the advertisements distributed all around
the campus give next week as the starting date for the service. What should the
team do?

4. The Motor Vehicle Pool (MVP) at the University of Oklahoma rents vehicles to univer-
sity departments. A vehicle may be rented for short trips or for long-term use. Univer-
sity departments renting a vehicle must have an employee who is a certified driver to
operate the vehicle. Payment is not made at the time of the rental; rather, payments for
all rentals are made at the end of each month. On the last working day of each month,
the funds for each department’s rentals are transferred to the MVP operating account
from each university department that rented vehicles.

The MVP has a total of five employees. Two of these are office clerks, who take
reservations, process paperwork, and update vehicle cards. These two employees are
each paid $20,000 per year with 33 percent benefits. The MVP has two mechanics who
provide minor maintenance on the vehicles such as tune-ups, hose replacement, belt
replacement, and other minor repairs. These two persons are each paid $26,000 per
year with 33 percent benefits. All major maintenance and bodywork is contracted to
the lowest bidder. The bidding is based on the hourly labor rate and the parts are bid
at cost plus their profit. These contracts are awarded annually to begin on January 1
and extend through December 31 of any given year. Finally, the MVP has a pool man-
ager, who is responsible for the MVP operation, ordering new vehicles, and setting up
the annual auction of vehicles to be retired. The pool manager is paid $50,000 per year
with 33 percent benefits. Each vehicle is retired and auctioned after four years of ser-
vice or 200,000 miles, whichever comes first.

When a university employee wishes to rent a vehicle, they send an e-mail or make a
phone call, requesting a specific type of vehicle for a specified time frame. The MVP clerk
who makes the reservation checks to see if that type of vehicle is available for the requested
time, and if the person who will be responsible for the vehicle has the appropriate license.
The MVP manager must certify each driver of a university vehicle. If the vehicle being
requested is designed to carry 15 or more passengers, the driver must carry a class C
license. All other university vehicles that can be rented require only a class D or regular
driver’s license. Before a driver can be certified as a qualified university driver, the driver
candidate must pass a written and driving test for the specific vehicle type, which will be
administered by the MVP manager. It does not matter what civilian state driver’s license
one holds, the potential university driver must be certified by the university.

110 Part One Project and Team Organization

If the requested vehicle is available, and the driver/operator has been certified by
the university, then a reservation is recorded on the vehicle card. When the vehicle
is turned over to the driver, any dents or major scratches are duly noted on the rental
form. The driver personally inspects the vehicle and indicates that he/she agrees with
the MVP clerk on the condition of the vehicle. While the university is self-insured,
the MVP manager suggests that the driver also be personally insured by his/her own
insurance company. The vehicle is then checked out with a full tank of gas, and the
renter told that the vehicle needs to be returned with a full tank. If it is not, the
department will be charged the current price of gas at the ConocoPhillips station,
plus a $10.00 surcharge to cover the maintenance personnel’s time to obtain the vehi-
cle’s fuel.

At the time of the rental, the following information is recorded about each driver on
a rental card: university ID number, civilian driver’s license number, university driver’s
certified number, driver ID data (e.g., hair color, eye color, weight, height, driving
restrictions), department account number, department name, job title, years with the
university, and renter’s driving record (e.g., accidents, driving violations, etc). This is
self-reported, and each time an authorized operator rents a vehicle he/she is asked to
update his/her driving history. There is a no-tolerance policy on this issue, and an
employee will be terminated for failure to report accidents and/or driving violations.

Additionally, the following information is recorded about the vehicle on the card:
the vehicle tag number, VIN, passengers, mileage at last check-in, outgoing condition,
maintenance record, mileage at time tires were replaced, record of maintenance activ-
ity, where work was done, what was done, cost of maintenance for this action, mileage
at time of maintenance, record of use, driver, reason for use, beginning mileage, end-
ing mileage, list of other university personnel (name and ID) on the trip with vehicle
(may be in another vehicle or traveling by an alternate mode of transport), and vehi-
cle accessories such as snow tires or cell phone hookup.

The cost charged to the renting department is based on the cost of operating the
MVP, prorated to each vehicle. The cost of the MVP department is all operating
expenses and vehicle depreciation.

When a vehicle reaches 200,000 miles or is four years old, the MVP manager will
set up an auction. This is only done once a year in the late spring, so some of the vehi-
cles may be a little older than four years, and some may have a few more than 200,000
miles. The auction is held at the motor pool yard and is an open bid procedure. The
funds received are deposited in the MVP operating account.

At various times during the year, the MVP manager orders replacement vehicles
based on demand and forecast of needs. The new vehicles are purchased by the uni-
versity general operating fund, and set up so that depreciation can be deducted as
expenses to the MVP operating account. The information on new vehicles is forwarded
to the MVP from the university purchasing department.

The beginning of a school year brings a heavy load of new university personnel
who need to be certified by the university as qualified vehicle operators. A group of
volunteers who have been previously certified to be university drivers have agreed to
function as driver’s test examiners when the manager of the MVP is overloaded. Each
spring, volunteers are requested from the cadre of qualified drivers and are taught how
to administer the driving test. This qualification is noted on the individual’s driver
information card.

When the driver arrives to pick up the vehicle, he or she is provided with a rental
report. This report contains the following information: driver’s name, driver’s univer-
sity ID, driver’s license number, driver’s University Certification Number, destination,

Chapter 3 Project Management 111

time and date of checkout, anticipated time and date of return, vehicle condition, and
other university personnel in vehicle.

At the end of each school year, a summary report of usage by department is pre-
pared for each department director. It contains the same information as the rental
report, except that instead of anticipated time and date of return, it has the actual
time and date of return. Within each department, the information is organized by
driver. An accident/incident report is prepared for each department director as
soon as the accident/incident is reported to the MVP manager. An overall vehicle
summary report is prepared at the end of each fiscal year. This report summarizes
use, maintenance, and accidents by vehicle.

Currently, the MVP manages the vehicles manually. Your task is to specify the
requirements to automate these processes. The information provided to you for this
case is very realistic, compared to information that you would collect through specifi-
cation requirements interviews with your client. As you work the case, you will very
likely discover the need for additional information or clarification on given points. You
will need to clarify with your instructor the procedure to follow when questions arise
within your team.

a. Set up a schedule of activities for the project in an activity schedule table.

b. Prepare a statement of work for this project.

c. What skills including knowledge of technologies and organization functions are
important for this project?

References Boehm, Barry W. “A Spiral Model of Software Development and Enhancement.” IEEE
Computer, May 1988, pp. 5, 61–72.
Forsberg, Kevin; Hal Mooz; Howard Cotterman; and Norman Augustine. Visualizing
Project Management: A Model for Business and Technical Success. New York: Wiley, 2000.
Schwalbe, Kathy. Information Technology Project Management. Cambridge, MA: Course
Technology, 2000.
Wood, Jane; and Denise Silver. Joint Application Design: How to Design Quality Systems in
40% Less Time. New York: Wiley, 1989.

Chapter Four

Data Modeling
Chapter outline

113

Introduction

Entity Relationship Data Modeling

Model Components

Entity Relationship Diagram Symbols

Building a Simple ERD

ERD Rules

Basic Rules and Guidelines

Naming Rules

Additional Constructs for ERDs

Multivalued Attributes

Weak Entities

Associative Entities

Degree of a Relationship

Minimum Cardinality

Supertypes and Subtypes

Simplified, Reduced-Form ERDs

Conceptual Data Models

Metadata

Enterprise Data Models

Logical Data Models

The Relational Model

Basic Concepts

Rules for Relational Models

Relational Schema

Converting ERDs to Relational Schema

Unary Relationships

Normalization

Structured Query Language

Dimensional Models

Summary

Key Terms

Review Questions

Critical Thinking Exercises

Individual Exercises

Group Exercises

References

INTRODUCTION

Data and data models affect all aspects of the lives of people. For thousands of
years, people have communicated with each other using visual and/or verbal
symbols. Data are symbols, abstract representations of real things, that convey
meaning. These representations include words, signs, writing, sounds, codes, and
more. In order to facilitate the transfer of knowledge, data require a structure of
rules and conventions. Many information systems provide the structure for col-
lecting, manipulating, storing, and presenting data. In other words, data play a
central role in many information systems. Until several decades ago, information
systems often were known as data processing systems.

114 Part One Project and Team Organization

All information systems use a data model of some kind, that is, some speci-
fications or structures for the data included in the system. The analyst may think
about the data and incorporate a data structure (a data model) in the program.
In COBOL programs, one data model is the Data Division of the program, which
provides specifications for all the data used or referenced by the program. Non-
IT people often prefer a narrative data model—a text or natural language
description of the data in the system.

In 1976, Peter Chen proposed the entity relationship data model, a well-
structured data model that was independent of the design and implementation
of a current or proposed system. Chen’s work was extended and modified by a
number of other people. This chapter examines several structured data models.
Models provide a standardized representation that facilitates communication
between the people working on a project or system. Chapter 1 discusses the role
of models and the concepts, advantages, and disadvantages of structure. As noted
in Chapter 1, in the content model view, an information system contains data,
process, physical infrastructure, and organizational infrastructure. This chapter
discusses data models while Chapter 5 discusses process and object models.

Data modeling concepts and tools discussed in this chapter include

• Entity relationship data modeling.

• Conceptual data models (CDMs).

• Enterprise data models (EDMs).

• Logical data models—relational schema.

• Data modeling languages.

Entity relationship diagrams (ERDs), used in Chapters 7 and 8, provide a
structured graphical picture of the entity-relationship data model for an organiza-
tional area. ERDs come in a variety of formats. The Enterprise Data Model ver-
sion of an ERD is used in Chapter 7 and the Conceptual Data Model version is
used in Chapter 8. Chapter 11 illustrates the application of relational schema.

The chapter strives to cover material that often makes up a demanding one-
semester course. The chapter focuses on the topics most important to a person
who works on or manages information system projects, but obviously not every
relevant aspect of every topic is covered. Most textbooks on systems analysis and
design contain a number of chapters on data models, for example, see Whitten,
2005 or Hoffer, 2005a. More in-depth coverage of data models appears in such
database texts as Post, 2005 and Hoffer, 2005b. Many books cover principles and
programming with SQL; see for example, Pratt, 2003.

ENTITY RELATIONSHIP DATA MODELING

Entity relationship modeling provided a new perspective in which to analyze
and design the data structure needed for an organization to carry out its mission.
Entity relationship models describe data independently of the way that current
or future systems use the data. Analysts often designed traditional data struc-
tures in the context of a specific system by thinking about forms and files. Find-
ing an answer to what data were needed for the system involves answering such

Chapter 4 Data Modeling 115

questions as (1) What should the input data forms look like? (2) What files are
needed? and (3) What reports should the system produce?

The forms shown in Figure 4.1 (from the GB Video example in Chapter 7)
describe in a traditional manner the data structure for the GB Video rental activ-
ity. These forms include

• Data Input Form—Member Data Card (Figure 4.1, Exhibit 1). The customer’s
name, member number, address, telephone number, credit card number, and
other information is entered on an input form. The Customers file stores the
data on the Member Data Cards.

• Data Input Form—Invoice (Figure 4.1, Exhibit 2). The invoice form contains
three types of data: (1) customer data—member number and customer name;
(2) rental data—rental number, date, payment type, and amount of payment;
and (3) video data—video number, video name, due date, return date and
overdue charge. The Invoices file stores the invoice data.

• Data Input Form—Video Rental Card (Figure 4.1, Exhibit 3). The form contains
two types of data. The video number, title, and vendor data are entered when
the video is purchased by the store. The rental number date out and date in
data are entered each time the videotape or DVD is rented. The video rental
data is stored in the Video Rentals file.

• Data Output Form—Customer Receipt. Contains the same data as Invoice.

This example illustrates some possible problems with the traditional data
structure created by thinking about the input and output forms used in a cur-
rent system or application. Programmers often implemented the traditional data
model in the logical form of sequential or “flat files” built to meet the needs of
the specific application. With flat files developed this way, even minor changes
in programs often resulted in a need to restructure the data at considerable cost.
A new system may use a different set of forms and files. The traditional struc-
ture also may contain duplication of data. For example, the invoice file contains
duplicated data from both the customers and video rentals files.

The entity relationship model (ER model) addresses the problems of the tra-
ditional data model. The ER model ignores the current system and asks instead
the following questions:

• What are the entities—the things in the organization or activity under study
about which the client wishes to collect and maintain data?

• What are the organizational relationships between the entities about which the
client wishes to collect data?

• What are the attributes—the specific items of data the client wishes to collect
about each entity?

Model Components
An entity is a person, event, object, place, concept, or thing in an organization
about which the client wishes to maintain data. Examples of entities include

• Person—customer, student, employee, member.

• Event—rental, sale, repair, enrollment, flight.

GB Customer Record

Richard Jazzperson

307 Brooks
Norman, Oklahoma 73019

(405) 325-0768

VISA
9444 5432 6666 1234

04 09

1346

Member NumberName

GB Video Stores

THANK YOU

11-2-2006 175

Richard Jazzperson

15751378

6613498

Patriot Games

African Queen

Member :

Date: Emp # :

Member No :

Pay Type : Cash

Credit

Tax :

Total :

Copy 1 Store

11-3

11-4

$ 2.00

$ 3.00

$

Video # Title
Due
Date Cost

Return
Date

Overdue
Charge

1346

RENTAL NO. 1715

.40$

$ 5.40

ⴛ

Video No :

Date Acquired Vendor :

Title :6613489 African Queen

6-1-06 129

Rental
No.

Date
Out

Date
In

Rental
No.

Date
Out

Date
In

1497

1558

1579

1715

6-3-06

8-7-06

8-20-06

11-2-06

6-4

8-9

8-21

FIGURE 4.1
GB Video
Forms

116

Exhibit 1. Member Data Card

Exhibit 3. Video Rental Card

Exhibit 2. Invoice (Copy 1) and Customer Receipt (Copy 2)

Chapter 4 Data Modeling 117

• Object—videotape or DVD, product, vehicle, house.

• Place—city, zip code, area, store, plant.

• Concept—military unit, work group, bank account.

An entity in entity relationship models represents a class, set, or group of
things. For example, the person entity, Customer, in GB Video can represent all
of the customers for GB Video. An individual customer is referred to as an
instance of the entity class called Customer. Exhibit 1 in Figure 4.1 shows the
data for a customer with the name of Richard Jazzperson, that is, one instance,
of the entity Customer. In this chapter and text, the word entity always refers to
an entity class. Other entities in the GB Video example might include an event
entity, Rental, and an object entity, Video.

For each entity, the attributes of the entity define the properties or character-
istics of the entity class about which the client wants to maintain data. Attributes
can include keys, names, descriptions, dates, size, color, quantity-on-hand, address,
telephone number, and many others. For example, the attributes for the entity
Customer as shown in Exhibit 1 of Figure 4.1 include name, member number,
address, telephone number, credit card number, and credit card expiration date.

In entity relationship models, every entity must have an attribute or a set of
attributes that serve as the primary key for the entity. The attribute(s) that serves
as the primary key must have unique values over all instances—each value for the
primary key can appear only once among all of the instances that belong to the
entity class. For example, Member Number probably is a suitable primary key for
the entity Customer. Name may not work because two customers may have the
same name, for example, two Joe Smiths. The combination of name and address
probably will work most of the time as a primary key, but two Joe Smiths might
live at the same address. Some text materials use the term primary identifier instead
of primary key to describe the unique identifier for each instance in an entity.

A relationship links or connects instances of one entity to instances of another
entity to describe the way the organization functions. Relationships, in common
with entities and attributes, are derived by the analyst from studying the way
the organization operates. For example, in GB Video, the entity Customer is
related to the entity Rental in that a Customer can engage in or make rental trans-
actions. One of the major goals of models is to provide a standardized repre-
sentation that facilitates communication between systems people working on a
project or system. In ER models, the standardization comes from standard sym-
bols for each component and from standard rules to construct a graphical rep-
resentation of an entity relationship diagram that describes the data model. The
next section illustrates standard symbols used in ERDs. The following section
describes constructs and rules and gives examples of ERDs.

Entity Relationship Diagram Symbols
Figure 4.2 illustrates one possible set of standard symbols for ERDs. The sym-
bols in Figure 4.2 include only some of the ones used in ERDs. Other symbols will
be introduced as needed in the text. In practice, people use a variety of different
symbol sets. This chapter will use another symbol set later to illustrate some of

118 Part One Project and Team Organization

the differences an analyst may encounter. Once the basic ERD ideas are mastered,
the analyst should be able to understand any symbol set after a few minutes of
study. The next section illustrates how to use the symbols in Figure 4.2 to con-
struct an ERD.

Building a Simple ERD
To build an ERD, the analyst combines the symbols to represent the structure of
the data in the organization as it relates to the problem posed by the client. The
analyst examines the organization to identify the entities, attributes, and rela-
tionships. Some analysts find it useful to write out a description of how the orga-
nization works; others, particularly analysts with experience, can just look at or
think about the organization and translate it to an ERD.

Consider the following simple narrative that describes how an organization rents
videos, videotapes or DVDs, using the forms shown in Figure 4.1. The narrative is
a simplified version of the GB Video rental process discussed in Chapter 7.

Customers may rent one or more videos, videotapes or DVDs, for one or more
days. The customer brings the desired videos to the counter along with his or her
membership card. The clerk copies the name and number from the card and
copies the title and unique ID number from the label on each video onto a
prenumbered form for the rental. If the customer forgets his/her card, the clerk

Relationship Types

One to One

Many to Many

One to Many

Entity Relationship Attribute Multivalued
Attribute

FIGURE 4.2
ERD Basic
Symbols

Chapter 4 Data Modeling 119

looks up the number in the customer file. The clerk also enters his/her employee
number, the date of rental, and a due date for each video computes the amount
of the charge and tax and gives a copy of the form to the customer as a receipt.
Customers may pay cash or use a credit card for rentals. The clerk notes the pay-
ment type on the form.

Analysts follow different paths to create ERDs for a system. Some analysts
like to start by identifying all of the entities since entities form a central focus of
ER models, and then add the attributes and relationships. By reading the narra-
tive and thinking about the organization, an analyst could determine that this
organizational activity involves a person entity, CUSTOMER and an object entity,
VIDEO. Note that each of these entity classes represents a number of instances,
such as a number of customers and a number of videos exist. The narrative also
describes an event, RENTAL, and a number of instances of rental exist. At this
point, the ERD can contain the three entities CUSTOMER, VIDEO, and RENTAL.
These three entities are the things about which the organization currently col-
lects and maintains data for the rental activity. An ERD with these three entities
appears in Figure 4.3 using the symbols from Figure 4.2.

FIGURE 4.3
Entity
Relationship
Diagram for
Video Rental

Video-No

Tel-No

Credit-
Card-No

Expire-
Date

Makes

ContainsDue-Date

Rental-
Charge/Day

Overdue-
Charge

Return-
Date

Rental-No

Pay-Type

Date

Employee-
No

Cost

Address

Member-
No

Street City State

Zip

Name

Title

CUSTOMER RENTAL

VIDEO

Vendor

Date-
Acquired

120 Part One Project and Team Organization

A second step is to identify relationships. The basic activities in this situation are:
a customer makes rentals and each rental involves one or more videos. In other
words, a relationship exists between the Customer and Rental entities and a second
relationship exists between Rental and Video entities. In the actual organization
function, a customer ends up with a video only through the rental event. The ER
model always should reflect the real situation. A relationship that links Customer
to Video is incorrect because no such link exists in the actual rental activity.

Relationship lines specify not only the links between entities but also the maxi-
mum cardinalities for the link. Normally, the only two maximum cardinalities
considered are (1) one and (2) many, which is more than one, although notation
does exist to specify other maximums. The ER model specifies the maximum car-
dinality for both ends of a relationship using a straight line symbol for a maxi-
mum of one, and a crow’s foot or three-line symbol for a maximum of more than
one as shown in Figure 4.2. The one or the many symbol that connects an entity
to a relationship specifies the maximum number of instances of that entity that
can interact with one instance of the entity at the other end of the relationship.
With one-to-many relationships, the analyst must take special care to get the
one and many symbols next to the correct entity. With one-to-one and many-
to-many relationships, this problem disappears.

The maximum cardinalities for relationships involved in this organizational
situation as shown on Figure 4.3 are as follows:

• A customer may enter into many rentals, but each rental is for one customer, that
is, a one-to-many relationship between CUSTOMER and RENTAL. As noted, the
end of the relationship symbol with a single line is the “one” end; the other end
with the crows foot or three lines is the “many” end. The analyst graphs this rela-
tionship on the ERD by placing the many symbol next to the Rental entity, to
show a maximum of many rentals per customer, and the one symbol next to the
Customer entity, to show a maximum of one customer per rental.

• A rental may involve a maximum of many videos. But at different points over
time, a video also may be part of many rentals, for example, a specific video
can be rented many times. The result is a many-to-many relationship between
RENTAL and VIDEO. The relationship symbol that joins RENTAL and VIDEO
has a crow’s foot at both ends, indicating a many-to-many relationship.

The last step is to identify attributes. Examining the forms in the Figure 4.1
exhibits and reading the narrative suggests the following attributes for the entities:

• CUSTOMER—Name, Member-No, Address, Tel-No, Credit-Card-No, Expire-
Date. Since Member-No has a unique value for every instance, Member-No
can serve as a primary key for the entity CUSTOMER. Address is a composite
attribute, an attribute that consists of several other component attributes, in
this case, Street, City, State, and Zip.

• RENTAL—Rental-No, Date, Employee-No, Pay-Type. Rental-No is the pri-
mary key for RENTAL.

• VIDEO—Video-No, Title, Date-Acquired, Rental-Charge/Day, Vendor. Video-
No is the primary key for VIDEO.

Chapter 4 Data Modeling 121

In Figure 4.3, a line connects each oval attribute symbol to its entity. Every
symbol, attribute, entity, and relationship, has a name to identify it. The names
for attributes that serve as primary keys of entities are underlined. With a com-
posite attribute, additional lines connect the composite attribute to its compo-
nent attributes.

Several attributes from the forms and narrative, Due-Date, Cost, Return-Date,
and Overdue-Charge, do not seem to belong to any entity. They are in fact attrib-
utes of the many-to-many relationship between RENTAL and VIDEO. Only
many-to-many relationships may have attributes. When one instance of a Rental
is linked to one instance of a Video, then Due-Date, Cost, Return-Date, and
Overdue-Charge are attributes of the pair of instances linked by the relationship.
Lines connect the attributes of the many-to-many relationship to the diamond
symbol for the relationship.

Two data items in Figure 4.1, Exhibit 2, Tax and Total, do not appear above
as attributes. These items are calculated during the rental process. If desired, Tax
and Total could be included in the data model as derived attributes of rental,
that is, attributes whose values are calculated from the data in other attributes.
Often derived attributes are not included in the data model because a process
can calculate the values as needed.

Note that Figure 4.3 presents a different-looking data model than the forms
shown in Figure 4.1. Both describe the same data. The forms describe the data
in terms of a specific implementation or application, that is, the forms are
application dependent. The forms also contain duplicated data. The ERD
describes the underlying data structure associated with the entities involved
in the organizational function of renting a video. The ERD model is indepen-
dent of any specific application or implementation. The ERD model also elim-
inates some data duplication in that each attribute shows up only once in the
ER diagram.

Data models in common with other models can exist at these three technol-
ogy levels:

1. Conceptual—A conceptual data model (CDM) presents the data in only an
organizational context with no reference to technologies or mechanisms for
physical implementation.

2. Logical—A logical data model operates within a class of technologies, for
example, flat files or relational tables. Relational models are discussed in the
next section.

3. Physical—A physical data model follows the constraints of one specific
technology, for example, the use of an MS Access database or an Oracle Server
database.

The ERD models presented in this chapter represent conceptual data models;
the models neither assume a logical structure for the data nor a physical imple-
mentation. The data model in Figure 4.1 and the associated narrative specify both
a logical structure (flat files) and a physical implementation (paper forms in
files). A list of the contents of the forms from Figure 4.1 could be a conceptual
data model.

122 Part One Project and Team Organization

ERD Rules
For ERDs to realize their value as an analysis and communication tool, analysts
should follow a common set of rules or procedures to construct them. Ideally, or
if the rules were complete, different analysts looking at the same system should
create identical ERDs. In practice, the rules for ERDs facilitate a standard
approach, but each analyst still must make a number of decisions about how to
represent the system in ERD format.

The rules attempt to achieve the following goals:

• Assure that the model accurately and completely represents the relevant con-
tent of the system. ERDs do not claim to model graphically all the data in an
organization. However, ERDs should accurately model all of the data related
to the organizational function under study that are of interest to the client.

• Within the limits of the rules, every analyst should model the data for the
same function with the same or a similar representation.

Basic Rules and Guidelines

The basic rules and guidelines provide the underlying common structure for the
ERDs. A number of additional rules discussed later deal with specific situations.
An examination of the ERD in Figure 4.3 will show that the ERD follows the
rules below.

• A thing is an entity only if the organization wishes to keep data about the thing. In
the GB Video example, Customer, Rental, and Video are entities because the
client wishes to collect and maintain data about them. Most of the time, forms
and reports are not entities. The invoice form in Exhibit 2 of Figure 4.1 is not
an entity because the organization does not wish to keep information about
invoice forms. Forms and reports tend to reflect a specific application, not the
underlying data. Forms and reports contain data from the underlying entities.
The invoice form contains data from the Customer, Rental, and Video entities.
In an organization with a high level of security, classified reports could be
entities if the organization wishes to keep information on the people who see
or have access to each report.

• An entity must contain more than one instance. In the GB Video example, GB
Video probably is a “thing” about which the organization wishes to keep data,
but GB Video is not an Entity because it consists of only one instance.
Customer, Rental, and Video contain multiple instances and are entities.

• Every entity must have an attribute or a set of attributes that serve as a primary
key for the entity and the primary key must be unique. In other words, a specific
value for a key can appear only once in all instances of the entity. Some enti-
ties will contain more than one candidate for a primary key. For example, a
Customer entity may contain a unique customer number and also a Social
Security number. Both are unique candidate keys. The analyst chooses which
one to use.

• A primary key can be a set of attributes or a composite attribute. For example,
customer last name, first name, and telephone number might serve as a

Chapter 4 Data Modeling 123

composite primary key for the Customer entity class. The analyst should
check carefully to ascertain that the composite key is unique. For example, the
composite of two primary keys of the entities related to an associative entity
may not always be unique. The cautious analyst uses an arbitrary sequential
set of characters, for example, member number, in place of a composite
attribute as the primary key to assure uniqueness.

• An entity has two or more attributes. If an entity has only one attribute, then that
attribute must be the primary key. Other than the key, the entity contains no
data and thus does not meet the definition of an entity—things about which
the organization wishes to collect data. In the GB Video example, Clerk or
Employee is not an entity in the video rental function because the only data
needed on clerks are the Employee ID numbers. Employee probably is an
entity in the personnel or payroll part of the organization. Exceptions to this
rule may exist, but such exceptions are rare.

• A many-to-many relationship can have one or more attributes. The attributes of a
relationship are attributes that exist only when an instance of one entity is linked
to an instance of one or more other entities by the many-to-many relationship.

• A relationship must represent a situation that actually exists or the client wants to
exist in the organization. The relationship between Customer and Rental actu-
ally exists in GB Video in that customers do make rentals. Placing a relation-
ship on the GB Video ERD between Customer and Video is an error; no direct
relationship exists between Customer and Video in the GB rental activity as
described. The only way that a customer interacts with a video is through a
rental event (or perhaps inappropriately through a shoplifting event). If a
social organization wants to keep data about the videos owned by each of its
members, then a relationship will exist between Member and Video.

Naming Rules

Naming rules define how names and/or labels are assigned to entities, relation-
ships, and attributes. Labels and names add clarity and resolve ambiguity. All
the components in Figure 4.3 have unique names that follow the rules provided
below. At a later stage, the analyst may wish to generate additional information
about each of the components in a metadata section or table. The unique labels
or names for each component allow the analyst to tie the additional information
to each specific component in the ERD. Unique labels or names also allow the
programmer to write documentation that ties code modules to specific compo-
nents on the ERD.

The rules below present some commonly used conventions for labels and
names. In practice, organizations often establish their own detailed rules for
labels and names. Many times, analysts may do their own thing. Just about every
naming convention imaginable will appear if one examines enough ERDs.

• Every component on an ERD must have a unique name and/or label. Some analysts
use only names. Some ERD drawing tools and analysts may assign sequential,
unique ID characters to every component or to some components as a label, for
example, E1, E2, . . . En for entities; R1, R2, . . . Rn for relationships; and so on.

124 Part One Project and Team Organization

• An Entity name consists of a singular noun in all capital letters that describes the
instances in the entity class, for example, CUSTOMER. People, including the
authors, who dislike using all capital letters sometimes use upper- and lower-
case for entities, for example, Customer.

• A Relationship name consists of a verb or a phrase in upper- and lowercase letters,
for example, “Make” or “Requestor of.”

• Attribute names are nouns or a string of nouns, adjectives, and other characters con-
nected by hyphens or underscore characters using upper- and lowercase, for example,
Employee_ID or Employee-ID or Address1.

• When an attribute serves as the primary key for an entity, the attribute name is under-
lined, for example, Member-No.

A number of other rules and conventions, exist for ERDs. These conventions
will be discussed and illustrated later in the chapter.

Additional Constructs for ERDs
ERDs contain or provide for many features and constructs in addition to those
discussed thus far. This chapter covers only the major ones including multival-
ued attributes, weak entities, associative entities, relationship degrees, minimum
cardinality, and supertypes/subtypes.

Multivalued Attributes

A multivalued attribute can have several values for a single instance of an
entity. For example, the client might wish to allow family members of customers
to rent videotapes or DVDs using the customer’s member number. The attri-
butes, Family-first-name and Family-last-name, may consist of the first and last
names of one, two, or a number of family members. The name attributes are
thereby multivalued. Taken together, the attributes form a repeating group, in this
case, a list of related first and last names. Figure 4.4 is a partial ERD showing
one possible representation for this multivalued repeating group of attributes
using the multivalued attribute symbol. Some technologies, for example, COBOL,
will support multivalued attributes, but relational database technologies, for
example, MS Access or Oracle Server, will not.

Weak Entities

A weak entity is an entity that can exist only in conjunction with a regular or
strong entity. In Figure 4.5, a weak entity replaces the multivalued attribute in
Figure 4.4 for names of family members.

FIGURE 4.4
Multivalued
Attributes

Person-First-
Name, Person-Last-

Name

CUSTOMER

Chapter 4 Data Modeling 125

If a customer ends his or her relationship with GB Video, the family mem-
bers’ relationships also end. Family members exist only in conjunction with a
specific customer. The primary key of a weak entity is the composite of the pri-
mary key of the regular entity and the local key for the weak entity such as
Member-No. plus Person-ID in Figure 4.5. Person-ID probably is a sequential
key, such as 1, 2, 3 . . . n for the family members for a customer. This key by
itself is not unique: A number of customers may have 1, 2, 3, or more family
members. Sometimes, the double box shown in Figure 4.5 or another special
symbol is used for weak entities, but much of the time the standard entity
symbol is used.

Associative Entities

While many-to-many relationships accurately can describe some organizational
activities in a data model, an alternate representation called an associative entity
can add specificity and avoids implementation problems with some logical and
physical data models. An associative entity links an instance of one entity in
the many-to-many relationship to the related instances, if any exist, in the other
entity. The associative entity replaces the many-to-many relationship with two
one-to-many relationships linking the associative entity to the two other entities as
shown in Figure 4.6. The diagram shows the many-to-many relationship discussed
previously between Rental and Video converted into two one-to-many relation-
ships with an associative entity called Rental/Video.

The new relationships mean

• A Rental instance may contain many Rental/Video instances, but each Rental
Video instance is linked to one Rental instance.

• A Video instance may be held by many Rental/Video instances, but each
Rental/Video instance is linked to one Video instance.

Chapter 4 Data Modeling 125

FIGURE 4.5
Weak Entity

Person-
First-Name

Person-Last-
Name

Person-ID

CUSTOMER
FAMILY
MEMBER

FIGURE 4.6
Associative
Entity

Held byContains
RENTAL VIDEORENTAL/VIDEO

126 Part One Project and Team Organization

In other words, the two one-to-many relationships specify that each instance in
the entity Rental/Video links exactly one instance of Rental to exactly one instance of
Video. If a rental involves three videos, then Rental/Video will contain three
instances that link to the same instance in Rental, and each of these three
Rental/Video instances will link to a different instance of Video.

Figure 4.6 shows the associative entity linking instances from two entities;
however, an associative entity can link instances from three or more entities by
adding more one-to-many relationships connecting the other entities to the asso-
ciative entity.

One naming convention for an associative entity is the composite of the linked
entity names, in this case, Rental/Video. However, the analyst may give the asso-
ciative entity any name that seems descriptive, for example, Line, Subrental, and
so forth. The diamond in the relationship becomes the associative entity and the
“many” sides of the one-to-many relationships always connect to the associative
entity. The diamond in the box is a standard symbol for an associative entity, but
some case tools and analysts use the standard entity symbol for all entities. At
the level of logical and physical data models, all entities—regular, weak, and
associative—behave the same. To paraphrase Gertrude Stein, An entity is an
entity is an entity.

The attributes of the relationship, if any, become attributes of the associative
entity. The primary key of the associative entity may be (1) the composite of the
primary keys for Video and Rental if unique; or (2) a new arbitrary unique ID
over all instances of Rental/Video; or (3) a composite of the primary key for
Rental plus a unique key for each of the instances that link to one Rental instance,
for example, 1, 2, . . . n; or (4) any other unique key. In Figure 4.6, the compos-
ite of the Rental-No and Video-No attributes is unique and can serve as the pri-
mary key for Rental/Video. When the key is the composite of the primary keys
of the linked entities and the special associative entity symbol is used, the iden-
tifying attributes are assumed and need not appear on the diagram.

Degree of a Relationship

The examples used thus far show a relationship linking two entities—a binary
relationship. A relationship also can link an entity to itself—a unary relation-
ship. Or a relationship can link three entities—a ternary relationship. The
number of entity classes that participate in a relationship defines the degree of
the relationship.

Two examples of unary relationships are shown in Figure 4.7. The examples
show the entity Police Officer. The entity contains data about the officer’s, for
example, Name, Address, Rank, and so forth. An officer may have a partner with
whom he or she works. An officer may have one partner, or an officer may be a
partner of one other officer. A unary one-to-one relationship describes this orga-
nizational situation.

A second unary relationship for the same entity shows the command situation.
An officer may be the commander of a number of other officers and an officer has
one commander, which is a one-to-many unary relationship. This example also
shows that an entity may be involved in a number of relationships including

Chapter 4 Data Modeling 127

FIGURE 4.7
Unary
Relationships

Commands
Partner

of

POLICE

OFFICER

FIGURE 4.8
Ternary
Relationships

WORK HALL

ARTIST

Performs

Time-Period

multiple unary relationships. An entity also may participate in a unary many-to-
many relationship. Unary many-to-many relationships are difficult to understand.
Unary many-to-many relationships are discussed in the next section on logical data
models, where they are easier (but not easy) to understand.

In a ternary relationship, three entities interact in a manner defined only by
linked instances of all three entities. For example, the recital schedule during a
music festival might be described in terms of data about three entities: Artist,
Work, and Hall. A specific performance brings the artist, work, and hall together
at a given time period. Performances may take place with many works in many
halls and by many artists. The ternary relationship for this situation is illustrated
in Figure 4.8.

The attribute Time-Period is an attribute only of the ternary relationship; it is
not an attribute of an entity or of a binary relationship between any of the pairs
of entities, that is, at one specific Time-Period, one instance from each of the three
entities link together.

When the ternary relationship is converted into an associative entity, the result-
ing ERD is shown in Figure 4.9. In a number of cases (as in this one), the associa-
tive entity is more than an abstract concept; a Performance is a physical “thing” in
the organizational situation. A specific artist, work, and hall may appear together
in a number of performances, that is, the composite of the primary keys for Artist,
Work, and Hall is not unique. In this situation, the attribute, Time-period, is also
needed to create a composite primary key for Performance. A cautious analyst
ignores composite keys and gives the Performance entity a unique key.

128 Part One Project and Team Organization

Higher degree relationships with four or more entities can exist in some situ-
ations. Most people find the use of an associative entity to diagram ternary or
higher degree relationships clearer than the relationship by itself.

Minimum Cardinality

Just as maximum cardinality specifies the maximum number of other instances
that an instance can relate to, minimum cardinality, sometimes called optional-
ity, specifies whether an instance from an entity at one end of a relationship must
interact with any instance from the entity at the other end of the relationship.
Can an instance relate to zero other in instances? Minimum cardinality normally
is either one or zero. For example, must a Customer instance relate to one or
more Rental instances; or in other terms, can a person be a customer and have
never rented a video?

This type of requirement is an example of an organizational rule because it
represents a constraint that is determined by the way the organization chooses
to operate. If GB Video decides that customers can exist without making any
rentals, then a Customer instance has a zero minimum cardinality or an optional
relationship with respect to Rental instances; in other words, a Customer
instance may relate to zero Rental instances. Alternative, GB might decide to
classify people as customers only if they have rented a video, so there is a min-
imum cardinality of one rental per customer.

At GB Video and at most video stores, a rental must relate to a specific cus-
tomer, that is, every Rental instance has a mandatory relationship with exactly
one Customer instance, or a minimum cardinality of one customer per rental and
a maximum cardinality of one customer per rental. If a rental is made with no
customer involved, the store may encounter great difficulty getting the video
back (who has it?).

Every relationship on an ERD has two minimum cardinality indicators—one for
each end of the relationship. An optional relationship, minimum cardinality of zero,
is shown in this chapter and text by placing a 0 on or near the relationship line
next to the entity; and a mandatory relationship, minimum cardinality of one, by
placing a 1 on or near the relationship line next to the entity. Many conventions for
showing optionality exist. For example, Oracle design and developer tools use two
segment relationship lines with a dotted line segment for optionality and a solid

FIGURE 4.9
Associative
Entity
Converted
from Ternary
Relationship

WORK HALL

ARTIST

Time-Period

PERFORMANCE

line for a mandatory relationship in the reverse of the position of the lines from
where one might expect. A dotted line at one end of a relationship indicates option-
ality at the other end. Careful study may be required to understand the meaning
and operation of the minimum cardinality notation used on a specific diagram.

This relationship for Customer and Rental is illustrated in Figure 4.10. The
combination of cardinality and optionality symbols in the figure show that a
customer can make zero, one, or more than one rentals (minimum of zero and
maximum of many), but a rental must be for exactly one customer (minimum and
maximum of one).

Supertypes and Subtypes

Some entities appear to contain subgroups within them. For example, GB Video
might rent two types of videos—regular videos and educational videos. The
company wishes to maintain some additional data about educational videos—
age group, for example, 2–4, 5–8, 9–12, 12–16, and area, for example, history, lit-
erature, science. In addition, an educational video can have one or more items
of additional teaching materials that supplement the content of the video; in
other words, a relationship exists between Video and Material.

The analyst has two ways to deal with this organizational situation. The ana-
lyst can include Age-Group and Area as attributes of Video and set up an
optional one-to-many relationship between Video and Material. A regular video
will link to zero instances in Material, but an educational video may link to one
or more instances of Material.

Alternatively, the analyst can set up supertype/subtype entities. A supertype
is an entity that has subtypes and the supertype contains the common data
that apply to all variations of the entity. A subtype contains only the attributes
that apply to the subtype. A subtype has a one-to-one relationship with the
supertype and may enter into relationships with other entities. A supertype/sub-
type representation for Video (a supertype), the subtype named Ed-Video and a
regular entity, Material, is shown in Figure 4.11.

Chapter 4 Data Modeling 129

FIGURE 4.10
Cardinality
and
Optionality
Symbols

Makes RENTAL01CUSTOMER

FIGURE 4.11
Supertype/
Subtype
Represen-
tations

Video-No Area Age-Group

VIDEO ED-VIDEO MATERIAL1 10 0

130 Part One Project and Team Organization

The primary key of Ed-Video is the same as the primary key of Video. The
minimum and maximum cardinalities of the relationship state that an instance
in Video may link (optional or minimum cardinality of 0) to one instance in Ed-
Video, but every instance in Ed-Video must link to exactly one instance of Video.

Sometimes the analyst ends up with several entities that contain much of the
same data, for example, the entities Motorcycle, Car, and Truck might exist in a
vehicle registration area of an organization. When entities contain a lot of the
same data, the entities probably are subtypes of a supertype. For example,
Motorcycle, Car, and Truck might be subtypes of the supertype, Vehicle.

Rules for supertype/subtype entity classes include the following:

• A supertype entity has one or more subtype entities.

• The supertype and subtype entities are linked by one-to-one relationships.

• Each subtype entity may participate in additional relationships with other entities.

• The attributes common to all the subtypes are the attributes of the supertype.

• Each subtype may have additional attributes.

• Supertypes can participate in two types of specialization:

• With total specialization, every instance of the supertype must link to one instance
in one of the subtypes.

• With partial specialization, an instance in the supertype may link to zero instances
in all of the subtypes. In the GB Video example, some instances of regular videos
link to zero instances in the subtype.

• Instances of a supertype can link to multiple instances of subtypes as follows:

• Disjoint—A supertype instance can link to an instance of only one subtype.

• Overlap—A supertype instance can link to one instance in each of several subtypes.

Entity-relationship models provide special notation to represent specialization
and disjoint/overlap relationships graphically (see, for example, Hoffer, 2005b).

Simplified, Reduced-Form ERDs
The ERD in Figure 4.3 correctly describes the organizational activity for renting
a video, uses standard symbols, and follows the rules. For many people, espe-
cially busy analysts, the ERD seems too busy and unwieldy. Regular users of
ER models and system development tool vendors tend toward more parsimo-
nious representations. One such representation is the simplified, reduced-form
ERD (SERD).

Rules for simplified, reduced form ERDs or SERDs include

• Omit the relationship diamonds but keep the relationship names.

• Eliminate the ovals for attributes; list attributes in the entity box and place the entity
name at the top of the box in bold print.

• Replace composite attributes with the component attributes.

• Replace many-to-many relationships by an associative entity using the standard
entity symbol.

• Replace multivalued attributes with an entity using the standard entity symbol for
both regular and weak entities.

Figure 4.12 illustrates a simplified, reduced form ERD for the GB Video rental
function. The new diagram contains the same information as Figure 4.3 except
the composite attribute Address has disappeared: The component attributes of
Address—Street, City, State, and Zip—appear in the diagram.

The diagram also shows both maximum and minimum cardinalities. Every
rental must be made by exactly one customer (minimum of one and a maximum
of one), but a customer may have zero, one, or many rentals (a minimum of zero
and a maximum of many). In other words, the customer can be a member and
not have rented a video. Every Rental instance must contain at least one
Rental/Video instance (minimum of one and maximum of many) and each
Rental/Video instance must be contained by exactly one Rental instance (mini-
mum and maximum of one). Every Rental/Video instance must link to exactly
one Video instance (minimum and maximum of one), but a Video instance may
link to zero Rental/Video instances (minimum of zero and maximum of many).
The store may have some videos in stock that have never been rented.

CONCEPTUAL DATA MODELS

Conceptual data models (CDMs) provide the best view of the underlying data
structure associated with an activity in an organizational context. The concep-
tual data model for an existing situation specifies the data that the organization

Chapter 4 Data Modeling 131

FIGURE 4.12
Simplified,
Reduced-
Form ERD for
Video Rental

Held by

Makes

Contains

1 0

1 0

1

1

CUSTOMER

Member-No
Name
Street
City
State
Zip
Tel-No
Credit-Card-No
Expire-Date

VIDEO

Video-No
Title
Rental-Charge/Day
Date-Acquired
Vendor

RENTAL/VIDEO

Rental-No
Video-No
Due-Date
Cost
Return-Date
Overdue-Charge

RENTAL

Rental-No
Date
Employee-No
Pay-Type

132 Part One Project and Team Organization

currently keeps about the activity. The conceptual data model for a proposed sit-
uation specifies the data that the client wishes to keep about the organization’s
function or activity under study.

As already noted, conceptual data models are independent of the technologies
selected to implement the data structure. Some people suggest that conceptual
data models also are application independent. While conceptual data models help
the analyst to devise a data structure that can support multiple applications,
CDMs are not completely application independent. The analyst and client must
think about the possible applications to make sensible decisions on the entities
and attributes to include in the model.

Conceptual models should strive to eliminate duplication of data. The model
shown in Figure 4.12 for GB Video eliminates much of the duplication found in
the form- and file-based model of the current system as described by the narra-
tive and Figure 4.1. But, as previously discussed, some duplication still exists.
Every instance of Video contains attributes for Title, Cost, and Vendor. But each
title is produced by one and only one vendor and has a single cost. Instead of
duplicating the vendor and cost data in each instance with the same title in the
Video entity, the analyst can create an entity called Title to hold this data once
for each title. The relationship is one-to-many, that is, each instance in Title may
relate to many instances in Video, but an instance in Video relates to one and
only one instance of Title.

Figure 4.13 shows a conceptual data model for GB Video in simplified, reduced
form. The ERD, as already shown, contains an entity for Title. This diagram
appears in Chapter 8 and is based on the narrative model for a proposed GB

FIGURE 4.13 Conceptual Data Model for GB Video

Name for

Owner of

Holder of

1 1
Requestor of

1 0

1

0

RENTAL

Rental-No
Date
Clerk-No
Pay-Type
CC-No
Expire
CC-Approval

CUSTOMER

Cust-No
F-Name
L-Name
Ads1
Ads2
City
State
Zip
Tel-No
CC-No
Expire

TITLE

Title-No
Name
Vendor-No
Cost

VIDEO

Video-No
One-Day-Fee
Extra-Days
Weekend

1 0

LINE

Line-No
Due-Date
Return-Date
OD-Charge
Pay-Type

Video system. Figure 4.13 contains a number of minor changes from the diagram
in Figure 4.12, including some additional attributes discussed in Chapter 8 and
different attribute names and phrases to name the relationships. In this diagram,
the associative entity is named Line. One of the advantages of ERDs is that these
changes in format and nomenclature tend to have little impact on meaning. The
meaning of the diagram remains clear to most people familiar with ERDs.

METADATA

Metadata are data about data. More precisely, metadata describe the meaning,
identification, and form of the components of a model. Detailed metadata about
a data model can be extensive and are usually maintained in some form of elec-
tronic repository. Some database management systems, for example, Microsoft
Access, incorporate that repository in the interface of the system itself, while
most larger database engines maintain metadata in a separate location. The
appropriate level of detail for metadata varies with the complexity of the project
and the standards of the IT organization.

Conceptual-level metadata focuses on the components of the data model while
physical-level metadata deals with how to implement the components in a spe-
cific physical environment. At the conceptual level, many physical parameters,
such as formatting and storage space requirements, are not of immediate concern.
However, recording such information when it is encountered or discussed can
help the physical system developers at a later time. Sample metadata for the ERD
in Figure 4.13 appear in Table 4.1.

ENTERPRISE DATA MODELS

Enterprise data models (EDMs) use the entity-relationship model framework to
provide an overview of the data structure associated with an organization. An
EDM displays the major entities and relationships. Normally, an EDM gives a
broad context for a proposed system or may cover the entire organization. Figure
4.14 shows a possible EDM for the GB Video rental/return activity. Two entities

Chapter 4 Data Modeling 133

FIGURE 4.14
Enterprise
Data Model
for GB Video
Rental/Return
Activity

CUSTOMER RENTAL
Requests

Makes

Contains

Supplies

VIDEO

EMPLOYEE VENDOR

TABLE 4.1
Metadata for
the GB Video
Rental ERD

Entity Metadata. Entity metadata may contain the names of the entity classes in the
model and a description of the data they hold. Additional design data might include
file size, file location, and access authority.

Entity Description

CUSTOMER Contains all the available information about each customer who has made

a transaction in the last year

LINE Contains the information on each video associated with a rental transaction

RENTAL Contains the information on each rental transaction

TITLE Contains information on each distinct title of the videos

VIDEO Contains information on each individual video

Attribute Metadata. Attribute metadata may contain the attribute name and a
description of the attribute. Additional metadata might include data type (text, number,
etc.), length, format, whether null values are allowed, etc.
CUSTOMER. Contains all the available information about each customer who has
made a transaction in the last year.

Attribute Description

Cust-No A unique key assigned to each member

F-Name First name and middle initial if any

L-Name Last name

Ads1 Street or box address

Ads2 Apartment number or other as needed

City Name of city

State State id code

Zip Zip code

Tel-No Telephone number

CC-No Credit card number

Expire Expiration date on the credit card

RENTAL. Contains the header information on each rental transaction.

Attribute Description

Rental-No Unique key assigned to each rental

Date Date of the rental

Clerk-No Employee number of the clerk entering the rental

Pay-Type Cash, check, or credit card

CC-No Credit card number

Expire Expiration date of the credit card

CC-Approval Credit card approval code

LINE. Contains the information on each video associated with a rental transaction.

Attribute Description

Line-No Unique key assigned to each line

Due-Date Date tape is to be returned

Return-Date Actual return date

OD-Charge Charge for days kept after due date if applies

Pay-Type Method of payment for the overdue charge

134

Chapter 4 Data Modeling 135

VIDEO. Contains information on each individual video.

Attribute Description

Video-No A unique key assigned to each video

One-Day-Fee First day rental fee

Extra-Days Extra days rental fee

Weekend Rental fee for Sat. and Sun.

TITLE. Contains information on each distinct title of the videos.

Attribute Description

Title-No Unique key for the title

Name The name of the video, e.g., Charlie’s Angels

Vendor-No Key for the vendor who produced/sold the video

Cost Purchase price for the video

Relationship Metadata. Relationship metadata may give the relationship name,
describe the relationship, and for both of the entities in the relationship: states the
entity name, explains in a sentence the meaning of the minimum and maximum
cardinalities and shows the minimum and maximum cardinalities in parentheses. When
the minimum cardinality is one (mandatory), the text uses “must” before the verb;
when the minimum cardinality is zero (optional), the text uses “may” before the verb.
The minimum and maximum cardinalities in the metadata must correspond exactly to
the ones shown next to each corresponding entity in each relationship on the ERD, in
this example, the ERD in Figure 4.13. The text sentence clarifies the cardinalities for
someone who is not familiar with the notation or definitions.

Relationship Entity1 with (min, Entity2 with (min,

Name Description max) cardinality max) cardinality

Requestor of Links each customer to CUSTOMER—a rental RENTAL—a customer

rentals made by the must be for one may make many rentals

customer customer (1, 1) (0, many)

Owner of Links each rental to RENTAL—a line must LINE—a rental must

the associative entity belong to one rental contain one or many

(1, 1) lines (1, many)

Holder of Links the associative LINE—a video may VIDEO—a line must

entity to a specific be held by many hold one video (1, 1)

video lines (0, many)

Name for Links a title to the VIDEO—a title may be TITLE—a video must be

videos that use the the name for many named by one title

title videos (0, many) (1, 1)

136 Part One Project and Team Organization

appear that probably will not appear in the proposed system, Employee and Ven-
dor. Employee is relevant for the EDM because employees rent tapes or DVDs to
customers and the employee number appears as an attribute of Rental. GB Video
purchases the videos from Vendors and the vendor identification appears in the
Video entity. In other words, both Employee and Vendor are part of the broad
data structure for the organizational area. The analyst could and in many cir-
cumstances should expand the GB Video EDM to cover the entire organization.

The following rules apply to EDMs:

• All of the strong or regular entities that play a role in the entire organization or the
organizational area under study are included. Weak, multivalued attribute and refer-
ence entities are omitted. In the GB Video example, Title, a reference data entity,
does not appear on the EDM.

• Relationships are shown with maximum cardinalities but without minimum cardi-
nalities. Verbs or phrases to describe the relationship are included but relationship dia-
monds are omitted.

• Many-to-many relationships are acceptable. The GB Video example shows a
many-to-many relationship between Rental and Video.

• Attributes of the entities are not shown.

• Associative entities are not included unless they represent an important “thing” in
the organization. The associative entity, Line, in GB Video does not represent
an important “thing”; it is a part of the rental activity. In the music festival
example, the associative entity Performance that replaces the ternary relation-
ship is an important “thing” in the organization and probably should appear
on an EDM.

LOGICAL DATA MODELS

Logical data models translate conceptual data models into a specific data stor-
age structure. Many information systems from 1950 to 1980 used a logical struc-
ture of sequential or “flat” files stored physically on magnetic tape. In a flat file
structure, the instances of data, often ordered by a primary key, are stored one
after another in the file. The most widely used programming language for orga-
nizational data processing in the 1960s through the 1990s, COBOL, was built
around the flat file logical data structure. Magnetic tape files were replaced by
files on magnetic disk drives with random access, but often the flat file logical
structure remained. The availability of disk storage led to increasing use of hier-
archical and network logical structures, for example, the Information Manage-
ment System (IMS) and the Integrated Data Management System (IDMS).

The Relational Model
Today, the most common logical model for data storage is the relational model.
E. F. Codd, in 1970, set forth the theory for the relational model, a formal math-
ematical structure that allowed for mathematical proof of fundamental data
operations. A large number of physical database implementations use the rela-
tional model. Many, if not most, new applications use relational databases.

Basic Concepts

The relational model carries over the concepts of entity relationship models but
adds additional structure. Table 4.2 shows the correspondence between the rela-
tional model and the entity relationship model.

In the relational model, data are stored in two-dimensional tables containing
rows and columns. Each table corresponds to or contains the data for an entity.
Each column in a table represents an attribute, and columns have names that
correspond to attribute names. Rows correspond to entity instances in that each
row holds the data for one instance. One of the columns in each table holds the
data for the unique key for the row; in other words, one column corresponds
to the primary key for an entity, called a primary key in the relational model. A
one-to-many relationship between two entities is implemented in the relational
model by inserting a foreign key column in the table that corresponds to the
entity on the many side of the relationship. The data in the foreign key column
for each row link that row to the single row in the table on the one side of the
relationship with a primary key value that matches the foreign key value.

Part of an ER diagram for GB Video appears in Figure 4.15 with the two enti-
ties Customer and Rental and several attributes for each entity. The figure also
contains the corresponding relational tables with sample data. As noted, the Cus-
tomer and Rental tables in Figure 4.15 correspond to the Customer and Rental

Chapter 4 Data Modeling 137

TABLE 4.2
ER and
Relational
Model
Correspon-
dence

ER Model Terms and Concepts Relational Model Terms and Concepts

Entity (regular, weak, or associative) Table or relation

Single-valued attribute Column or attribute

Multivalued attribute (Not allowed)

Instance Row or tuple

Primary key or primary identifier Primary key

One-to-one or one-to-many relationship Foreign key

Many-to-many relationship (Not allowed)

FIGURE 4.15
ER Diagram
with Corre-
sponding
Relational
Tables

Cust-No

CUSTOMER

L-Name City State Rental-No Date Clerk-No Cust-No

23278 Clinton Little Rock AR

10995 Dole Wichita KS

22671 Kerry

Bush

Boston MA

00987 Crawford TX

1176 01022006 11 22671

2235 02032006 07 00987

4450 11212006 07 22671

0067 01022006 09 10995

3309 05102006 11 10995

2621 03302006 08 22671

CUSTOMER

Cust-No
L-Name
City
State

RENTAL

Rental-No
Date
Clerk-No

RENTAL

Makes

138 Part One Project and Team Organization

entities. Each entity attribute becomes a column heading in the corresponding
table. Each row contains the data for one instance of the entity. For example, the
first row in the Customer table contains the data for a customer who lives in
Little Rock, Arkansas, and whose last name is Clinton.

The Customer entity has a one-to-many relationship to the Rental entity, so
that a customer can make one or more rentals, but each rental is for one cus-
tomer. To express this relationship in the tables, the Rental table contains a new
column for a foreign key called Cust-No that is not an attribute in the Rental
entity. The foreign key expresses the relationship between the Customer and
Rental tables. The foreign key value for Cust-No links each row in the Rental
table to the primary key value for the corresponding row in the Customer table.
For example, customer Kerry (CUSTOMER:Cust-No 22671) made three rentals
with rental numbers of 1176, 4450, and 2621 as indicated by the foreign key value
of RENTAL:Cust-No “22671” for those rows in the Rental table.

Rules for Relational Models

As noted, relational models add additional structure to the ER model. The struc-
ture comes from the table concept and from such rules as those below.

• Every table name and the full name of every column must be unique. The full name
for a column is the table-name plus the local column-name. Two or more
tables may have the same local column name, for example, Cust-No, but the
full names, for example, CUSTOMER:Cust-No and RENTAL:Cust-No, must
be unique.

• A column must have a single value for each row. Multivalued attributes are not
allowed in relational tables.

• The meaning of a column is determined only by the name. The location or order of
columns has no significance. For example, the column names in the Rental
table may appear in any order.

• A row is defined only by the content of the information in the row. The order in
which the rows are stored has no significance.

• The content of each row must be unique. Because primary keys must contain
unique values, the content of a row with a primary key column or attribute
always will be unique.

• The data type and format for data in each column must be the same across all rows.
For example, Clerk-No in the Rental table cannot be defined as an integer for
some employees and a text description for others (required by most physical
implementations).

The primary key value serves as a key for each row. Primary keys can consist
of one or more data attributes but more commonly consist of a set of arbitrary
unique values generated specifically to act as keys. For example, sequential values
of integers 1, 2, 3, . . . n, can serve as primary keys. Desirable primary keys have
the following properties:

• Constant values over the life of the database. Some keys and some smart keys
(the keys in which part or all of the key has meaning) tend to change over

time. For example, a smart key employee number might start with an IT (e.g.,
IT25, IT26, etc.) to identify employees in the IT department. If the employee
changes departments, either the key must change or the key no longer con-
veys the correct meaning. Other smart keys, for example, the VIN number of
an automobile that is set at the time the vehicle is manufactured, never change.

• Not composites of many attributes. Large composite keys may lead to unan-
ticipated duplicate values and can slow down database operations.

• Uniquely representable. Floating point numbers make poor keys because of
possible rounding errors. Keys normally use integer or alphanumeric data
types (a physical model issue).

As noted, foreign keys are added to express the possible relationships between
tables. In the relational model, foreign keys observe the following rules:

• A foreign key column may have any unique full name. The foreign key column local
name often is the same as the local name for the primary key in the referenced
table, but any unique name will work. For example, the analyst could use a
foreign key local name of RentC# in place of Cust-No in the Rental table. The
relationship between the foreign key and the primary key is defined not by the
names but by text symbols or an arrow in a diagram at the logical level and
by a data definition and/or operations command at the physical model level.

• For one-to-many relationships, the foreign key always goes in the table on the many
side of the relationship. For example, the foreign key to link the Customer and
Rental tables, goes in the Rental table. An attempt to place a foreign key of
Rental-No in the Customer table will not work because the foreign key may
have multiple values for the same row, that is, a customer can have more than
one rental.

• For binary one-to-one relationships, the foreign key may appear in either table.

• Relational tables do not allow for the implementation of many-to-many relationships.
A many-to-many relationship implies multivalued attributes, for example,
multiple values for a foreign key, and thus violates the single value rule. The
analyst must replace the many-to-many relationship with a table that corre-
sponds to the associative entity in an ERD representation.

• The data type of the foreign key must match the data type of the corresponding pri-
mary key (a physical model rule).

The relational model does not provide a specific convention to represent min-
imum cardinalities or optionality. The analyst can specify mandatory relation-
ships, for example, a rental must be for exactly one customer, by requiring that
the foreign key value be non-null. A null value is an undefined value for a col-
umn of a row. In the GB Video rental example, the analyst probably would
require non-null values for the foreign key, RENTAL:Cust-No. In other words,
every rental must have a specific customer number entered that matches one of
the primary key values in the Customer table. If null values are allowed, then
the relationship is optional; a rental may be for a specific customer or may be
for a null or undefined customer. GB Video management probably wants to pre-
vent rentals that are associated with undefined and thus unknown customers.

Chapter 4 Data Modeling 139

140 Part One Project and Team Organization

Relational Schema
A relational schema is a graphical representation of the structure of the tables
and the relationships between the tables for a relational model. A relational
schema is the relational model equivalent of an ERD in the ER model. Repre-
sentations for relational schema that are in common use include:

• Column heading schema—Uses a table name and the column heading row to
represent the entire table.

• Set notation schema—Uses the table name followed by column names enclosed
in parentheses to represent each table.

• Box schema—Uses a box with the table name and the column names inside to
represent each table.

Figure 4.16 shows three different relational schema representations for the Cus-
tomer and Rental tables in Figure 4.15. In the column heading and set notation
schema, relationships are represented graphically by a referential integrity arrow
from the foreign key column name to the primary key column name in the related
table. The box schema shows referential integrity with a line that connects the for-
eign key and primary key. The symbol 1 near the line indicates a maximum car-
dinality of one and an * a maximum cardinality of many. The * or many symbol
can only appear next to a foreign key. The arrow or line shows that a primary
key/foreign key correspondence exists—that referential integrity exists.

In the different schema in Figure 4.16, some of the column names appear in
different order; as noted in the rules, the order is of no significance. All the
schema convey the same meaning but use different formats and notations. In
each schema, the primary key for each table is underlined. Some notations mark
the foreign keys especially in the box schema, for example, by adding an [fk] at

FIGURE 4.16 Alternative Representations for a Relational Schema

Cust-No L-Name City State Rental-No Date Clerk-No Cust-No

CUSTOMER

Cust-no
L-Name
City
State

RENTAL

Rental-No
Date
Cust-No
Clerk-No

*

1

Box Schema

Set Notation Schema

Column Heading Schema

CUSTOMER RENTAL

CUSTOMER(Cust-No, City, L-Name, State) RENTAL (Rental-No, Cust-No, Date, Clerk-No)

the end of the column name. When referential integrity arrows are used, the tails
of the arrows clearly identify the foreign keys.

A column heading schema best displays the table structure. A set notation
schema is the easiest and fastest to create in a word processing program. A box
schema resembles ERDs. MS Access uses a box schema in the table relationship
diagram.

Converting ERDs to Relational Schema

Different people hold differing views about the most efficient and effective way
to generate a relational schema for a system. Some people, especially experienced
analysts, can generate a relational schema correctly and rapidly without an ERD.
Other analysts believe that starting with an ERD for the system and converting
the ERD to a relational schema increases the likelihood of a complete and cor-
rect model.

The steps in the process of converting a conceptual ERD to a relational schema
are as follows:

1. Convert all the many-to-many relationships, if any, to associative entities.

2. Convert all multivalued attributes, if any, to entities.

3. Convert every entity (regular, weak, or associative) to a table with column
headings that correspond to the attributes of the entity.

4. For every one-to-many relationship between two entities, add a foreign key to
the table that corresponds to the entity on the many side of the relationship.
A table that corresponds to an associative entity will have two or more foreign
keys because it receives a foreign key for each of the one-to-many relation-
ships that connect to the entity on the many side. The table that corresponds
to an associative entity for a ternary relationship will have three foreign keys—
one key for each degree of the relationship.

5. For a one-to-one relationship between two entities, add (or identify, if the pri-
mary key also is used as the foreign key) a foreign key to either one of the
tables that correspond to the entities in the relationship.

6. Add a referential integrity arrow or line from each foreign key to the primary
key of the entity on the other side of the relationship.

7. With unary relationships, one-to-one or one-to-many relationships that
involve only one entity, the foreign key is added into the table for the entity
and the referential integrity arrow goes from the foreign key to the primary
key in the same table.

Applying these rules to the ERD in Figure 4.3 results in the relational schema
(using box schema notation) in Figure 4.17.

The many-to-many relationship in Figure 4.3 is replaced with an associative
entity, Rental/Video (rule 1). The four entities (three regular and the associative
entity) become the Customer, Rental, Rental/Video, and Video tables with
the same attributes as the entities (rule 3). The relational schema adds the for-
eign key, Member#, in the Rental table and two foreign keys, Rental-No and
Video-No in the Rental/Video table (rule 4). The Rental/Video also uses the two

Chapter 4 Data Modeling 141

142 Part One Project and Team Organization

foreign keys, Rental-No plus Video-No, as a composite primary key. The Rental/
Video table has two foreign keys because of the two one-to-many relationships
that attach to the corresponding associative entity at the many side. The rela-
tionship symbols are replaced with referential integrity lines that go from the
foreign keys to the primary keys (rule 6).

The relational schema in box format closely resembles the simplified, reduced
form ERD shown in Figure 4.12. Simplified, reduced-form ERDs already incor-
porate rules 1 and 2. The analyst can start the conversion at rule 3.

Unary Relationships

Relational schema for unary relationships appear different than for binary rela-
tionships because only one table is involved. However, the rules for converting
an ERD representation to a relational schema remain the same for all degrees of
relationship. The diagram in Figure 4.18 from the ERD section of the chapter
shows two unary relationships, a one-to-one and a one-to-many relationship. The
corresponding relational schema is shown in the lower portion of Figure 4.18.

The relational schema follows directly from the ERD conversion rules. The
Police Officer entity becomes a table with column names corresponding to the
attribute names. Each of the unary relationships results in adding a foreign key
to the table, Partner# for the partner of relationship and Commander# for the

FIGURE 4.18
Unary
Relationships

Commands
Partner

of

Rank Partner# Commander#NameID#

POLICE OFFICER

OFFICER
POLICE

ID#

Name

Rank

FIGURE 4.17 GB Video Rental/Return System Relational Schema

CUSTOMER

Member-No
Name
Street
City
State
Zip
Tel-No
Credit-Card-No
Expire-Date

VIDEO

Video-No
Title
Date-Acquired
Vendor
Rental-Charge/Day

RENTAL/VIDEO

Rental-No
Video-No
Due-Date
Cost
Return-Date
Overdue-Charge

RENTAL

Rental-No
Member-No
Date
Employee-No
Pay-Type

1

*

1

*

1

*

commands relationship. The foreign keys contain the ID# of the officers who
serve as partners and commanders.

The one-to-one and one-to-many relationships look the same in the column
heading relational schema. Both of the relationships are expressed as foreign keys
that reference the primary key of the table. Some information from the ERD, in
this case both minimum and maximum cardinalities, disappears in the heading
format and set notation graphic relational schema. The analyst can record this
information in the metadata for the schema or use box schema to show maxi-
mum cardinalities.

Many-to-many unary relationships bring a higher degree of complexity. The
best known such relationship is the bill of materials problem. A bill of materials
looks at the relationships between parts used in a manufacturing or assembly
operation. Some quantity of a part can go into an assembly of parts, and an assem-
bly of parts can contain other parts including other assemblies. The ERD in Fig-
ure 4.19 is a mix of conventional and simplified notation.

The first step (rule 1) is to convert the many-to-many relationship into an
associative entity, PART/PART, as shown in Figure 4.20 in simplified reduced
form notation. Because the many-to-many relationship is unary, both of the new
one-to-many relationships connect to the single entity, Part.

In Figure 4.20, a part can “go into” one or more other parts and also a part
can contain one or more other parts. A part can range from a single component
to an assembly of many components including other assemblies. The relational
schema in Figure 4.21 comes from applying the ERD conversion rules.

Chapter 4 Data Modeling 143

Quantity
Goes into

or contains

PART

ID#
Description
Cost

FIGURE 4.19
ERD for a
Unary Many-
to-Many
Relationship

Goes into

Contains

PART

ID#
Description
Cost

PART/PART

Line#
Quantity

FIGURE 4.20
Unary Many-
to-Many
Relationship
Converted to
an Associative
Entity

Assembly-Part# Component-Part# QuantityLine#

Description Cost

PART

ID#

PART/PART

FIGURE 4.21
Relational
Schema
Applying ERD
Conversion
Rules

144 Part One Project and Team Organization

Assembly-Part# and Component-Part# are the two new foreign keys that
express the two one-to-many relationships in the ERD. Line# is a new arbitrary,
sequential primary key for the table, PART/PART. The composite of the two for-
eign keys is unique and could be used as the primary key. The attribute Quan-
tity specifies the number of the component parts that go into each assembly part.

Normalization
Normalization addresses the improvement of a logical data design to avoid pos-
sible problems with data duplication and with the deletion and updating of data.
The normalization process converts an un-normalized relation or table into two
or more smaller, normalized tables. The normalization process consists of six
steps that successively transform a relation into first, second, third, Boyce/Codd,
fourth, and fifth normal forms.

First normal form requires the removal of any multivaried attributes from a
relation. Because of the table structure the relational model will not accommo-
date multivalued attributes: A column in a single row can hold only one value.
A relation must be in first normal form for physical implementation in a rela-
tional database.

Second normal form issues arise only when a table in first normal form has a
composite primary key with at least one attribute that is not part of the key. If
the value of one of the nonkey attributes depends on only part of the compos-
ite primary key—a condition known as functional dependency—the table is not
in second normal form. The Rental/Video table (see Table 4.3) illustrates a sec-
ond normal form violation.

The table is in first normal form. It has a composite key (Rental-No Video-
No) and has one or more nonkey attributes. Due-date depends on the full pri-
mary key, that is, the due date is for a specific video that is part of a specific
rental. However, Title depends only on the Video-No because a specific video
always has the same title regardless of the rental that it is in, and thus constitutes
a second normal form violation. Creating two tables, as shown in Figure 4.22, cor-
rects the problem shown in Table 4.3.

Both tables now observe second normal form.
Third normal form issues arise when a table in second normal form has a non-

key attribute that depends on another nonkey attribute, a condition known as a
transitive dependency. Table 4.4 illustrates a third normal form violation.

Due-DateRental-No Video-No

TitleVideo-No

FIGURE 4.22
Rental and
Video Tables
in Second
Normal Form

Rental-No Video-No Due-Date TitleTABLE 4.3
Second
Normal Form
Violation

Chapter 4 Data Modeling 145

Table 4.4 is in first normal form and automatically is in second normal form
because it has only a single attribute primary key. The nonkey attributes, Title-
No and Date-Acquired, depend only on the primary key, Video-No. However,
because a video title is sold only by the vendor that owns the rights to it, Ven-
dor depends on Title-No, a third normal form violation.

Tables that are not normalized can lead to anomalies, which are problems
associated with carrying out operations on the data in the tables. These prob-
lems are as follows:

• Insertion anomaly. With the video table shown in Table 4.4, GB Video is unable
to store information on vendors unless they set up a record for a specific video.

• Deletion anomaly. If GB Video disposes of all the videos for a specific title and
deletes the records in the video table, the company will lose the information
on the vendor.

• Modification anomaly. If a vendor sells the rights to a Title-No to another ven-
dor, GB Video must change the vendor data in every row of the Video table
that includes the Title-No.

These anomalies can be eliminated by converting the Video table to two
smaller tables in third normal form as shown in Figure 4.23.

The fourth, fifth, and sixth steps of normalization eliminate partial functional
and transitive dependencies and other anomalies. The database texts listed at the
end of this chapter cover these normalization steps.

Structured Query Language
Structured Query Language (SQL) represents a programming language for rela-
tional databases that exists at both the logical level and in a number of specific
implementations at the physical level. At the logical level, SQL consists of a stan-
dard set of commands that appear in all implementations of SQL. Each vendor
implementation, for example, MS Access or Oracle Server, also contains a num-
ber of vendor-specific features.

In SQL a database consists of a number of related tables. For example, the GB
Video database might consist of the Customer, Rental, Rental/Video, Video, and
Title tables. SQL provides commands for these languages:

• Data Definition Language (DLL) to create, alter, and drop tables. Some vendors,
for example, MS Access, provide a graphical user interface (GUI) that allows

Video-No Title-No Vendor Date-AcquiredTABLE 4.4
Third Normal
Form Violation

FIGURE 4.23
Tables in
Third Normal
Form

Date-AcquiredVideo-No Title-No

VendorTitle-No

146 Part One Project and Team Organization

people to create tables without using DDL commands. However, MS Access also
contains the SQL DDL commands that one can use to create tables if desired.

• Data Manipulation Language (DML) to insert, update, modify, and retrieve data
into or from tables. Again, some vendors also provide a GUI for these tasks.

• Data Control Language to allow the database administrator to grant and
revoke access privileges for a database.

SQL is described in such database texts as Hoffer, 2005b and Post, 2005 and
in more specialized SQL programming books such as Pratt, 2003. Chapter 10 con-
tains additional discussion on creating and populating relational tables in MS
Access and on retrieving data from tables.

Dimensional Models
While the relational model works well for many applications, some specialized
applications use a variation called the dimensional model. The dimensional
modeling principle derives from research by E. F. Codd at about the same time
as his work on relational databases. Dimensional models strive to maximize user
understanding and ease of retrieval. The basic idea is to use static data, which
is data generated by operations that will not change over the period of use, to
identify problems or discover opportunities in time to take advantage of the
information. The users of the data in the dimensional model query the data to
gain insight for strategic and tactical decisions.

The typical dimensional model–based data structure is a data mart. Data
marts are designed around a central fact table that contains numeric values for
analysis and dimension tables for keeping track of properties that determine cat-
egories and groupings. The process of converting a relational schema into a data
mart proceeds as follows:

• Select a table that corresponds to an associative entity as the central fact table for
the mart. If there is more than one table that corresponds to an associative
entity, the system probably will generate more than one potential data mart.

• The tables that relate both directly and indirectly to the central fact table are dimen-
sion tables.

• Add the primary keys from all the dimension tables as foreign keys in the central fact
table. In a data mart, adding the foreign key for all the related tables makes
for a simpler query structure. This action probably denormalizes the central
fact table. That means it creates a third normal form violation; however, it sim-
plifies the structure and operation of the data mart.

The data mart model supplies the framework for creating a data warehouse
for an organization. Post (2005) identifies some challenges to the effective cre-
ation and use of a data warehouse. These are to

• Set up a system to collect and clean the data.

• Obtain acceptable query performance for literally millions or even billions of
rows of data.

• Create or procure tools to analyze the data.

The data in the data warehouse often come from capturing data from the
ongoing transaction systems that support the operational activities of the orga-
nization. For instance, Wal-Mart keeps all sales register checkout information in
a data warehouse for over a year and uses the data to learn about customer pur-
chasing habits. The data mart model structure of a single table allows rapid
querying of very large sets of data. Sometimes, organizations apply data min-
ing techniques to obtain information from the data in the warehouse. Data min-
ing techniques are special programs used to drill down into large bodies of data
to extract patterns.

Chapter 11 contains an example of creating a data mart model for a GB Video
data warehouse. GB Video management might want to know answers to such
questions as the most popular videos by zip code, rental patterns by month,
largest customers by sales volume, customers classified by the video type they
prefer, and so on. When personnel in purchasing, marketing, or other people
have questions, they can consult the data warehouse for insight. The organiza-
tion also can share selected data with vendors.

Summary Data and data models affect all aspects of the lives of people. For thousands of
years, people have communicated with each other using data: visual and/or ver-
bal symbols. Many information systems serve a primary role of collecting,
manipulating, storing, and presenting data. In other words, data play a central
role in many information systems. Until several decades ago, information sys-
tems often were known as data processing systems.

All information systems use a data model of some kind, that is, some specifica-
tions or structures for the data included in the system. The analyst may think about
the data and incorporate a data structure (a data model) in the program. Non-IT
people often prefer a narrative data model, which provides a text or natural lan-
guage description of the data in the system. Data modeling concepts and tools dis-
cussed in this chapter include entity relationship diagrams (ERDs), conceptual data
models (CDMs), enterprise data models (EDMs), and logical data models.

Rules for preparing ERDs include

• A thing is an entity only if the organization wishes to keep data about the thing.

• An entity must contain more than one instance.

• Every entity must have an attribute or a set of attributes that serve as a primary key
for the entity and the primary key must be unique, that is, a specific value for a key
can appear only once in all instances of the entity.

• A primary key can be a set of attributes or a composite attribute.

• An entity must have two or more attributes.

• A relationship must represent a situation that actually exists or the client wants to
exist in the organization.

• Every entity in an ERD must be linked either directly or indirectly to every other
entity in the diagram by one or more relationships.

• Every component on an ERD must have a unique name and/or label.

Chapter 4 Data Modeling 147

148 Part One Project and Team Organization

Rules for supertype/subtype entities include

• A supertype entity has one or more subtype entities.

• The supertype and subtype entities are linked by one-to-one relationships.

• Each subtype entity may participate in additional relationships with other entities.

• The attributes common to all the subtypes are the attributes of the supertype.

• Each subtype may have additional attributes.

Rules for simplified, reduced-form ERDs include

• Omit the relationship diamonds but keep a naming phrase for the relationship.

• Eliminate the ovals for attributes, list attributes in the entity box, and place the entity
name at the top of the box in bold print.

• Replace composite attributes with the component attributes.

• Replace all the many-to-many relationships by an associative entity using the stan-
dard entity symbol.

• Replace multivalued attributes with an entity.

The following rules apply to enterprise data models (EDMs):

• All of the strong or regular entities that play a role in the entire organization or the
organizational area under study are included. Weak, reference, and multivalued
attribute entities are omitted.

• Relationships are shown with maximum cardinalities, but without minimum cardi-
nalities. Verbs or phrases to describe the relationship are included, but relationship
diamonds are omitted.

• Many-to-many relationships are acceptable.

• Attributes of the entities are not shown.

• Associative entities are not included unless they represent an important “thing” in
the organization.

Logical data models translate conceptual data models into a specific data stor-
age structure. Today, the most common logical model for data storage is the
relational model. A large number of physical database implementations use the
relational model and many, if not most, new applications use relational data-
bases. The relational model retains many of the concepts of entity relationship
models but adds additional structure. Data are stored in two-dimensional tables
containing rows and columns. Each column represents an attribute and rows cor-
respond to entity instances. A relationship is implemented in the relational model
by inserting a foreign key column in one table that references the primary key
of the related table.

A relational schema is a graphical representation of the structure of the tables
and the relationships between the tables for a relational model. Representations
for relational schema that are in common use include column heading, set nota-
tion, and box schema. In all three schema, relationships are represented graphi-
cally by a referential integrity arrow or line from the foreign key column name

to the primary key column name in the related table. The structure in a relational
schema comes from the table concept and from such rules as those listed below.

• Every table name and the full name of every column must be unique.

• A column must have a single value for each row.

• The meaning of a column is determined only by the name.

• A row is defined only by the content of the information in the row.

• The content of each row must be unique.

• The data type and format for data in each column must be the same across all rows.

• A foreign key column may have any unique full name.

• For one-to-many relationships, the foreign key always goes in the table on the many
side of the relationship.

• Relational tables do not allow many-to-many relationships.

• The data type of the foreign key must match the data type of the corresponding
primary key.

The steps in the process of converting a conceptual ERD to a relational
schema are

1. Convert all the many-to-many relationships, if any, to associative entities.

2. Convert all multivalued attributes, if any, to entities.

3. Convert every entity (regular, weak, or associative) to a table with column
headings that correspond to the attributes of the entity.

4. For every relationship, add a foreign key to the table that corresponds to the
entity on the many side of the relationship.

5. Add a referential integrity arrow from each foreign key to the primary key of
the entity on the one side of the relationship.

Relational schema for unary relationships appear different than for binary
relationships because only one table is involved. However, the rules for con-
verting an ERD representation to a relational schema remain the same for all
degrees of relationship.

Normalization addresses the improvement of a logical data design to avoid
possible problems with data duplication and with deletion and updating of data.
The normalization process converts an un-normalized relation or table into two
or more smaller, normalized tables. The normalization process consists of six
steps that successively transform a relation into first, second, third, Boyce/Codd,
fourth, and fifth normal forms.

SQL represents a programming language for relational databases that exists at
both the logical level and in a number of specific implementations at the physi-
cal level. At the logical level, SQL consists of a standard set of commands that
appear in all implementations of SQL. Each vendor implementation, for example,
MS Access or Oracle Server, also contains a number of vendor-specific features.

While the relational model works well for many applications, some special-
ized applications use a variation called the dimensional model. Dimensional

Chapter 4 Data Modeling 149

150 Part One Project and Team Organization

associative entity, 125
attribute, 117
binary relationship, 126
primary key, candidate 122

class, 117
composite attribute, 120
composite primary key, 123
conceptual data model

(CDM), 121
data mart, 146
data mining, 147
data warehouse, 146
derived attribute, 121
dimensional model, 146
enterprise data model

(EDM), 133
entity, 115
entity relationship diagram

(ERD), 114

entity relationship model
(ER model), 115

foreign key, 137
functional dependency, 144
instance, 117
logical data model, 121
mandatory relationship, 128
many-to-many

relationships, 120
maximum cardinality, 120
metadata, 133
minimum cardinality, 128
multivalued attribute, 124
normalization, 144
one-to-many relationship,

120
one-to-one relationship, 120
optional relationship, 128
physical data model, 121

primary key, 117
referential integrity, 140
relational model, 136
relational schema, 140
relationship, 117
simplified, reduced-form

ERD (SERD), 130
structured query language

(SQL), 145
static data, 146
subtype, 129
supertype, 129
table, 137
ternary relationship, 126
transitive dependency, 144
unary relationship, 126
unique key, 137
weak entity, 124

Key Terms

1. Name some symbols that would convey meaning as data.

2. Define the three technology levels of data models and explain how they are used.

3. When designing an entity relationship model, what questions should the designer
address?

4. Why must an entity contain more than one instance?

5. Why should an entity contain more than one attribute?

6. Describe a situation that involves multivalued attributes.

7. Describe a situation where an analyst might need to use a weak entity.

8. Describe the various types of relationships that may appear in an ERD.

9. What is an associative entity? When is the function or role of an associative entity?

10. What is the function of enterprise data models?

11. How do the rules for an EDM differ from those of an ERD?

12. Provide examples of supertype and subtype relationships.

13. Give an example of a unary relationship.

Review
Questions

models use static data—data generated by operations that will not change over
the period of use, to identify problems, or to discover opportunities in time to
take advantage of the information. Dimensional models known as data marts are
designed around a central fact table that contains numeric values for analysis
and dimension tables for keeping track of properties that determine categories
and groupings. The data mart model supplies the framework for creating a data
warehouse for an organization. Sometimes, organizations apply data mining
techniques to obtain information from the data in the warehouse.

Chapter 4 Data Modeling 151

Critical
Thinking
Exercises

Individual Exercises
For the problems below, complete one or more of parts a, b, c, and d.

a. Draw an EDM.

b. Draw the ERD. Show the primary key for each entity. Show minimum and maxi-
mum cardinality for all relationships.

c. Convert the ERD to a relational schema using column heading, set notation, or box
schema. Include appropriate referential integrity arrows or lines. Include the one
and many symbols for box schema.

d. Convert the relational schema in part c to third normal form if it is not already in
third normal form.

1. The director of a bowling tournament needs a database to connect PLAYERS with
MATCHES. The database should contain data on PLAYER-NAME, PLAYER-PHONE,
GAME-TIME, LANE-NUMBER, and SCORE for each player.

2. A car rental company defines customers as business, leisure, and urban. They want
to keep name, address, and home phone on all renters, business name and business
phone for business customers; leisure customers need destination(s); and urban cus-
tomers need insurance company and expected numbers of days. When a customer
arrives at an office they are assigned a vehicle (VIN, Make, Color, License) and a
rate depending on how they reserved the vehicle. When they return the vehicle the
agency records days rented and number of miles. Each office owns the vehicles it
rents. The database keeps location, manager, and owned vehicles.

3. Sooner Software Company wishes to sell software products to small businesses. Each
product in inventory is identified by a PRODUCT-NUMBER and has attributes PROD-
UCT-NAME and PRICE. Sooner employs SALESMEN (SALESMAN-ID, SALESMAN-
NAME, SALESMAN-PHONE) to promote the products. INTERNAL-SALESMEN have
a SALARY and a dollar QUOTA of software to sell. COMMISSIONED-SALESMEN
have a RATE. Each SALE to a customer is recorded on a sales slip containing RECEIPT-
NUMBER, DATE, SALESMAN-ID, and a list of products with PRODUCT-NUMBER
and QUANTITY-SOLD. All products are sold at full PRICE. Each week the company
adds up all sales and produces a SALES-REPORT that calculates sales and remaining
quota for the internal salesmen and total commission earned for the commissioned
salesmen.

4. A business school wants a database to manage ticket sales for its business conference.
The college collects NAME, ADDRESS, and PHONE from all REGISTRANTS. Corporate
registrants give their COMPANY and TITLE; Faculty give their DEPARTMENT; and

14. Give an example of a ternary relationship.

15. Explain column heading, set notation, and box schema.

16. What is the purpose of a referential integrity arrow or line?

17. Explain how to convert an ERD into a relational schema.

18. You are designing a relational database and accidentally forget to put in an attribute. Is
adding attribute to a table a major task? Do the existing programs need to be changed?

19. Why might an analyst normalize the tables in a relational database?

20. What is SQL?

21. How do dimensional models differ from other relational databases?

22. Why would an organization use a data warehouse?

152 Part One Project and Team Organization

Students provide their YEAR-IN-SCHOOL and their MAJOR. The Dean also wants to
record the COMPANY-NAME, COMPANY-ADDRESS, and DONATION-AMOUNT for
all companies having corporate participants. When they arrive, each participant signs up
for up to three afternoon SESSIONS for a specific SESSION-TOPIC, SESSION-LEADER,
TIME, and ROOM.

5. The city athletic league is forming baseball teams for the spring. Coaches register teams
by providing a roster of players and coaches for their team. The roster includes team
name and age group, along with first and last names, addresses, and phone numbers
for players and coaches. It indicates the head coach’s years of experience as well. A
player can play on only one team but a coach may coach teams in several different
age groups. Once registration is complete the registrar prints a list of teams and
coaches for the scheduler to produce schedules. Head coaches record Name, Address,
Phone, and Experience. Assistant coaches only record Name and Phone.

6. An IS program wants a database to track potential donations. Donors are either indi-
viduals or corporations. For corporate donors record Company Name, Contact Person,
Contact Phone. For individuals keep Contact Person, Contact Phone, and Year Grad-
uated. The MIS program identifies a number of Accounts that can be contributed to
such as the DPMA Scholarship Account and the MIS Foundation and records Account
Name, Account Number, and Account Type (general, scholarship, restricted, etc.). Each
donor can donate to one or more accounts each year, and the MIS program wishes to
keep track of each year’s donation by donor and amount donated to each account.

7. A service club wants to set up a babysitting service. Members sign up for nights that
they can babysit. When a customer calls in with a request the project coordinator calls
up a Sitter Screen on the club computer that displays which members can sit at given
times. He then calls one of the sitters. When the sitter agrees to an engagement, the
coordinator enters the customer ID to confirm the engagement between customer and
member. Each week he prints a Weekly Summary to show how much each customer
owes and how much each member has earned.

Group Exercises
For the problems below, draw the EDM and conceptual ERD, for the problem. Convert
the ERD to a relational schema in third normal form.

1. Problem 4 in Chapter 3.

2. A business school is establishing a new Masters degree program in telecommunica-
tions and needs to track industry SPONSORS as well as STUDENTS. The director
needs NAME, ADDRESS, PHONE, and COMPANY for all contacts. For SPONSORS
the director also needs POSITION and COMMITTEEs to indicate the area of interest
and committees that the individual supports. Students have an ADMISSION STATUS
to indicate their enrollment status. The director also wants to maintain a CONTACT
LOG for all students to indicate DATE, CONTACT-TYPE, and conversation SUM-
MARY for contacts to students. Finally the director keeps track of COURSES by
COURSE#, DESCRIPTION, and DATE-OFFERED to track enrollment and grades for
each of the students.

3. You are building a database for a political campaign. The campaign office starts by
building a list of workers with their name and phone number. Workers are either paid
or volunteer; paid workers need pay rate and hours worked each week, volunteers
need business phone and number of hours available. Each worker is on one or more
committees. Committees have Name and Total Budget as attributes; the database also
identifies the chairman who can be paid or can volunteer. The campaign maintains

Chapter 4 Data Modeling 153

an inventory of supplies for events. When a committee plans an activity, the chairman
contacts the volunteers, orders supplies (type, price, and quantity) from the inventory,
and supervises the event. Each week the chairman writes a report to the campaign man-
ager detailing the people who participated, the supplies used, and the success of the
week’s activity.

4. The Premier Products Company is a wholesale hardware company that provides prod-
ucts to customers. Each customer is served by a salesman who processes orders. The
salesman is paid from commissions earned on each customer order. A customer places
an order by calling the company and contacting the salesman. The salesman records
the ordering person, products, and quantity ordered. In the Premier Products Company
each salesman is paid from commissions earned on each customer order. A customer
places an order by calling the company and contacting the salesman. The salesman
records the ordering person, products, and quantity ordered. The order consists of Cus-
tomer data, Salesman data, and a list of products, price, and quantity for the products
that the customer wants delivered.

5. Construct a data mart design for the rental data generated in Group Exercise 1 above.
Chen, P. P-S. “The Entity Relationship Model—Toward a Unified View of Data.” ACM
Transactions on Database Systems, March 1976, pp. 9–36.

Codd, E. F. “A Relational Model of Data for Large Relational Databases.” Communica-
tions of the ACM, June 1970.
Hoffer, Jeffrey A.; Joey F. George; and Joseph S. Valacich. Modern Systems Analysis and
Design, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2005a.
Hoffer, Jeffrey A.; M. B. Prescott; and F. R. McFadden. Modern Database Management,
7th ed. Upper Saddle River, NJ: Prentice Hall, 2005b.
Post, Gerald V. Database Management Systems, 3rd ed. New York: McGraw-Hill/Irwin, 2005.
Pratt, Philip J. A Guide to SQL, 6th ed. Boston, MA: Course Technology, 2003.
Whitten, Jeffrey L.; Lonnie D. Bentley; and Kevin C. Dittman. Systems Analysis and
Design Method. New York: McGraw-Hill/Irwin, 2005.

References

Chapter Five

Process and
Object Modeling
Chapter outline

155

Introduction

Process Models

Data Flow Diagrams

DFD Symbols

Building a Simple DFD

DFD Rules

Basic Rules

Labeling Rules

Sufficiency Rules

Other Rules and Conventions

Creating Hierarchical DFDs

The Context-Level DFD

The First-Level Explosion DFD

Additional Explosion DFDs

Other Process Models

IPO Charts

Process Hierarchy Charts

Object Models

Use Case Diagrams

Class Diagrams

Sequence Diagrams

Advantages of Object-Oriented Design

Summary

Key Terms

Review Questions

Critical Thinking Exercises

Individual Exercises

Group Exercises

References

156 Part One Project and Team Organization

INTRODUCTION

Processes provide the engines for an information system. Processes accept data
from sources outside the system, place data in and retrieve data from data stores,
modify data, transfer data between processes, and send data to users outside the
system. In short, processes accomplish all of the work or activity that occurs in
a system. This chapter examines process models. The role of information systems
models is to add structure to information system analysis and design. Chapter
1 discusses the role of models and the concepts, advantages, and disadvantages
of structure. As noted in Chapter 1, the content model views an information sys-
tem as containing data, process, physical infrastructure, and organizational infra-
structure. Chapter 4 discusses data models. The last section of this chapter
reviews object models or object-oriented design (OOD). Object models view a
system as consisting of objects that communicate with each other and with exter-
nals. Objects incorporate both data and process.

From the late 1950s until the late 1970s, people wrote programs and code
in whatever way seemed best to them. Some organizations developed structures
of their own to guide development, but no standard and generally accepted
mechanism existed to provide structure for process knowledge and controls. As
programs grew larger and larger, the lack of standard approaches to structuring
programs became an increasingly evident problem. Gane and Sarson, 1979, pro-
vided the seminal work on a structured approach to systems analysis. Yourdon
and Constantine, 1986, followed with work that used different symbols, but fol-
lowed the basic concept of Gane and Sarson’s earlier work. These structured
approaches or process models allowed analysts to graphically represent the
interaction of processes with each other, data stores, data sources, and users fol-
lowing a standard set of rules.

Process models provide abstract representations of real systems that capture
some but not all of the structure of the processes in the system in a form that
analysts and some clients can understand. Most process models use graphical
representations. With process models and the tools that soon followed, analysts
could both perform graphical design and track design changes. The process
modeling sections of this chapter describe and illustrate several of the better
known process models including data flow diagrams. Most textbooks on sys-
tems analysis and design discuss process models, for example, see Whitten, 2005
or Hoffer, 2005.

Many of the concepts of object modeling evolved over the past several
decades and appear in many applications. Structured object modeling came
originally from the work of James Rumbaugh, Ivar Jacobson, and Grady Booch,
1999. These concepts are incorporated in a framework known as the Unified
Modeling Language (UML). Version 2.0 of the UML defines 12 diagrams or
graphical tools for object-oriented design. The object modeling sections of this
chapter describe and illustrate several of the more commonly used object model
diagrams including class diagrams. Most systems analysis textbooks provide
some information on object-oriented design (OOD). Whitten, 2005, and Hoffer,

2005, contain sections on OOD. Fowler, 2003, provides one of the more under-
standable guides to UML.

PROCESS MODELS

In a process model, processes play the central role. Processes manage or carry
out all of the interactions with each other and with such parts of the system as
users and data stores. Process modeling tools that evolved from the structured
approach to systems analysis include:

• Data flow diagrams (DFDs)

• Process hierarchy charts (PHCs)

• Input/process/output (IPO) charts

Data flow diagrams, used in Chapters 7 and 8, provide the most detailed rep-
resentation of processes and their interactions. Process hierarchy charts, also
called function hierarchy diagrams (FHDs) and used in Chapter 11, show how
processes and subprocesses relate to each other. Input/process/output charts
represent in table format the relationships between data coming into and going
out of the system with a text description of the activities in each process. The
following materials discuss each of these process modeling tools along with
examples of their use.

DATA FLOW DIAGRAMS

Data flow diagrams provide a detailed, graphical tool for systems analysts to
model processes and their interactions in an information system. This tool tracks
the flow of information from each external source to a process, where the data
are modified and/or sent to a data store, another process, or an external user.
Each component in the system––external data source or data user, data flow,
process, and data store––has a standard, unique symbol. On the diagram, the
data flow symbols show how data flow between the external sources and users,
processes, and data stores. Descriptive labels are placed inside or next to each
symbol. For example, an external data source symbol might have the label “Cus-
tomer” to show that the data come from a customer. Detailed textual informa-
tion about each of the components often appears in a separate metadata table or
section of the model. This chapter and Chapters 7 and 8 contain examples of
data flow diagrams.

One of the major goals of models is to provide a standardized representation
that facilitates communication between systems people working on a project or
system and may facilitate communication between analysts and clients. In DFD
models, the standardization comes from standard symbols for each component
and from standard rules on how to construct the diagrams. The next section illus-
trates standard symbols used in DFDs. The following section describes standard
rules.

Chapter 5 Process and Object Modeling 157

158 Part One Project and Team Organization

DFD Symbols
Figure 5.1 illustrates two possible sets of symbols for building DFDs, the Your-
don symbols and the Gane and Sarson symbols. Note that both use similar sym-
bols with minor variations.

The DFD symbol meanings are

• Data Flow—The data flow symbol indicates a flow of data from one com-
ponent to another. For example, data might flow from an external source to a
process. For a data flow symbol, Gane and Sarson use a straight line and Your-
don uses a curved line, both with an arrowhead pointing toward the flow des-
tination. The arrowhead shows the direction of the flow of the data. In DFDs,
all flows are unidirectional.

• Data Store—The data store symbol indicates that data temporarily stop
moving or are stored. While data flows show data in motion, that is, mov-
ing from one component to another, data stores show data at rest or stationary.
Filing cabinets and inboxes serve as physical data stores in manual systems.
Computer-based systems use electronic, optical, or magnetic devises to store
data. The data store symbols differ slightly: The Yourdon symbol is the dou-
ble line and the Gane and Sarson symbol is an open-ended rectangle with an
internal cross bar.

Data flow

Label Yourdon Symbol Gane and Sarson Symbol

Data store

External

Process

FIGURE 5.1
DFD Symbols

• External––The external symbol represents a thing outside the system that
sends data to the system or receives data from the system. Externals may
be an organization, person, group, device, external data store, or other. An
external that provides data to the system is known as a source, while an exter-
nal that receives data from the system is known as a sink. The external sym-
bols are the same in both of the methodologies. In early articles and texts,
externals sometimes are referred to as “entities.” This term was dropped to
avoid confusion with the term entity in entity relationship diagram data
models.

• Process––The process symbol signifies that an action is taking place, for exam-
ple, accepting input data, storing or retrieving data, computing a value, using
some data, and so forth. Process symbols differ the most with Yourdon using
a circle and Gane and Sarson using a rectangle with rounded corners.

In practice, people sometimes mix symbols, for example, they may use the
Gane and Sarson symbols for data flows and the Yourdon symbols for processes,
externals, and stores because this is the easiest symbol set to draw in a word
processing program. Some organizations, analysts, and authors create their own
set of symbols, but regardless of the specific symbol set, the concepts and mean-
ings remain the same. Once a person is familiar with the rules and concepts for
DFDs, an examination of a DFD quickly reveals the symbol set in use. This chap-
ter and the rest of this textbook use the Gane and Sarson symbols.

Building a Simple DFD
To build a DFD, the analyst combines the symbols to represent the operation of
an existing or proposed system. The analyst examines an existing system or
thinks about a proposed system to identify the externals, processes, and data
stores and the data flows that link them. Some analysts find it useful to write
out a description of how the system works; others, particularly analysts with
experience, can just look at or think about the system and translate it to a DFD.
Such word processing languages as MS Word contain the symbols and features
needed to draw DFDs. MS Visio and a number of CASE tools provide features
that simplify drawing DFDs. Some of the DFDs in this text originally were drawn
with Word; others were drawn with a CASE tool called Visible Analyst.

Analysts follow different paths to create DFDs for a system. Some analysts
like to start by identifying all of the major processes since processes form the
central focus of process models. Other analysts like to use a building block
approach, that is, to identify the components that interact with each process.
Consider the following narrative for a simplified version of the GB Video return
process discussed in Chapter 7.

When a customer returns a video, a clerk retrieves the rental form for the rental
from the file, records the return date on the rental form, and returns the form to
the file.

Using a building block approach, the analyst can start by looking at the first
block of the video return. The customer (an external) supplies data on the ID
number of the video that is returned (a data flow) to a process that accepts the

Chapter 5 Process and Object Modeling 159

160 Part One Project and Team Organization

input data. To start the DFD, the analyst can take the symbols for an external,
data flow, and process and arrange them as shown in Figure 5.2. The arrow
shows that the data flow goes from the customer to the process. Also note that
the external, data flow, and process all have names, labels, or descriptions that
help the viewer understand the activity that the diagram represents.

DFDs reflect the conceptual view of data and process in the system indepen-
dent of the physical mechanisms that carry the data or perform the processes.
The customer may hand the tape to a clerk who looks at the tape to get the ID
number. But conceptually, the DFD shows the customer supplying the video ID
number for the return because the customer returns the tape and the tape con-
tains the data, which is the ID number. The data flow reflects the flow of the
data, the ID number, not the physical flow of the video. In this case, the ID Num-
ber data flow from the customer to the “Accept the video ID number” process.

After the clerk accepts the video ID number from the customer, the clerk uses
the ID number to retrieve the appropriate rental form for the tape or DVD (a
data retrieval process). The rental forms in the file hold data from the time of
the rental until the return; this set of forms is a data store. This information
describes a second building block for the DFD consisting of another process,
“Retrieve the rental data,” a data store, “Rental Data Store,” and a data flow,
“Rental Data.” Because the DFD provides the conceptual rather than the physi-
cal model of the system, the process is called “Retrieve the rental data,” not
“Retrieve the rental form.” The data flow and data store names reflect the same
conceptual view. The expanded diagram with the second building block added
appears in Figure 5.3.

FIGURE 5.2
First Block of
the Return
DFD

External
Customer

ID
Number

Process 1.0

Accept the
video ID
number

External
Customer

ID
Number

ID Data

Rental Data Store

Process 1.0

Accept the
video ID
number

Rental
Data

Process 2.0

Retrieve the
rental data

FIGURE 5.3
First and
Second Blocks
of the Return
DFD

Chapter 5 Process and Object Modeling 161

External
Customer

ID
Number

ID Data

Rental
Data 1

Rental Data Store

Process 1.0

Accept the
video ID
number

Rental
Data 2

Updated
Rental
Data

Process 2.0

 Process 3.0

Record
return and
store rental

data

Retrieve the
rental data

FIGURE 5.4
The DFD for
Video Return

To expand the diagram, the analyst again selects the symbols for the retrieval
process, the rental data store, and the rental data flow and arranges them on the
diagram. The analyst then notes that the first and second parts of the diagram
do not connect. Something must be missing. Indeed, to retrieve the appropriate
rental data, process 2.0 must know the ID number of the video. To reflect this
requirement, the analyst adds a data flow for the ID data from process 1.0 to
process 2.0. This flow must occur for the system to work. Note that the Rental
Data flow arrow goes from the store to the process, the correct representation of
a retrieval action. In a retrieval from a data store, the process pulls or fetches the
data from the store, that is, the data flows from the store to the process. The clerk
who is doing all the work in this example does not appear on the diagram
because the clerk is part of the system, not an external. The clerk in this case is
viewed as a physical mechanism that carries out processes, some of which the
computer probably will perform in an automated system.

Two tasks remain for the third and final building block. The clerk must record
the day and time that the video was returned and then put the rental data back
in the Rental Data Store. The process “Record return and store rental data” is
assumed to know today’s date/time; the clerk knows the date/time and com-
puters use an internal clock to generate today’s date/time. Figure 5.4 shows the
completed DFD for the return of a video.

The arrow running from process 3.0 to the data store is the correct represen-
tation of a data storage action; the updated rental data flows from the process

162 Part One Project and Team Organization

to the store. Once again, the analyst must add a data flow from process 2.0 to
process 3.0 to make the system work. In order to store the updated rental data
in the Rental Data Store, process 3.0 must get the original rental data from
somewhere, in this case from process 2.0 as shown on Figure 5.3. Note that a
one-sentence description of the return generates a DFD with a number of com-
ponents. Note also that the DFD describes what is happening more specifically
and clearly than the text sentence, the traditional value of adding structure.

While the symbols in Figure 5.4 correctly represent the contents of the system,
the figure also illustrates a common DFD problem. Where did the original data
in the Rental Data Store come from? The original rental data was not created by
this system; it must have come from another system, that is, from outside the
boundary of the return system. In this event, the Rental Data Store actually
should appear as an external––an external data store that can act both as a source
and a sink for data. This issue tends to come up frequently today. With modern
database technologies, several or many systems often store and retrieve from the
same data stores.

DFD Rules
For DFDs to realize their value as an analysis and communication tool, analysts
should follow a common set of rules or procedures to construct them. Ideally, or
if the rules were complete, different analysts looking at the same system should
create identical DFDs. In practice, the rules for DFDs facilitate a standard
approach, but each analyst still must make a number of decisions about how to
represent the system in DFD format. The rules attempt to achieve the following
goals:

• Assure that the DFD model accurately and completely represents the relevant
content of the system. DFDs do not claim to model graphically some aspects
of a system, for example, the conditional logic of branch points. However, the
DFD should accurately model every data flow to and from externals, and to
and from the data stores, and between the processes shown in the model.

• Within the limits of the rules, every analyst should model system activities
with the same representation. For example, the rules do not specify precisely
how to break down or decompose a system into modules, but with a given
set of modules, every analyst should model the same system with the same
representations.

Basic Rules

The basic rules provide the underlying common structure for the DFDs. A num-
ber of additional rules deal with specific situations. An examination of the DFD
in Figure 5.4 will show that the DFD follows the rules below:

• Process dominance. Every data flow must come from a process or go to a process
or both. Processes perform all the work in the DFD process model. A process
is required to accept data from a source, send data to a sink, and store into
or retrieve data from a data store. Data may not flow directly between two
data stores or between a data store and an external or between two externals.

• Process completeness. Every process must have one or more data flows into the
process and one or more data flows out of the process. When a DFD model shows
a data flow into a process and no flow out, clearly something is wrong, that
is, the process is incomplete. A process that produces no output adds nothing
to the system. When a process has a data flow out and no data flow in, the
system probably contains a design error; in other words, the process receives
no input data with which to generate an output flow. (Some special excep-
tions exist, for example, computer subroutines that generate sequential cus-
tomer numbers, or today’s date are processes with output flows but no input
flows of a normal kind. On DFDs, these subroutines generally appear only as
part of another process and thus their output flows seldom appear on the DFD
to trigger a rule violation.)

• Data store completeness. Every data store must have one or more data flows into
the store and one or more data flows out of the store. If a data store has only out-
put flows, then the system contains an error or some other system must be
storing the data into the data store, that is, the data store actually is an exter-
nal. If a data store has only input flows, then either the design is incorrect or
some other system uses the data; the data store actually is an external.

Labeling Rules

Labeling rules define how labels and descriptions are generated for data flows,
data stores, externals, and processes. Labels and descriptions add clarity and
resolve ambiguity in DFDs. All the components in Figures 5.2, 5.3, and 5.4 have
unique labels that follow the rules follow. At a later stage, the analyst may
wish to generate additional information about each of the components on the
DFD in a metadata section or table. The unique labels or descriptors for each
component allow the analyst to tie the additional information to each specific
component in the DFD. Unique labels also allow the programmer to write doc-
umentation that ties code modules to specific components on the DFD, that is,
Code module 3.1.2 generates the flow of Updated Rental Data from Process 3.1.2
to the Rental Data Store. The rules below present some commonly used con-
ventions for labels. In practice, organizations often establish their own more
detailed rules for labels.

• Every component on a DFD must have a unique label or descriptor. Some analysts
and DFD drawing tools assign sequential, unique ID characters to every com-
ponent or to some components as part of the label, for example, F1, F2, . . .
Fn for flows; D1, D2, . . . Dn for data stores; P1, P2, . . . Pn for processes; and
E1, E2, . . . En for externals. Because the IDs are unique, the combination of
an ID and a descriptive word phrase always is unique.

• Data flow labels consist of a word or phrase that describes the data in the flow. The
labels for data flows should be as descriptive as possible, yet short enough to
not clutter the chart.

• Externals have a noun label that describes the source or destination.

• Data stores have a noun label. When the data stores correspond to the entities
on an entity relationship diagram (ERD), the data store name is the name of

Chapter 5 Process and Object Modeling 163

164 Part One Project and Team Organization

the corresponding entity. Some analysts use the plural of the entity name; for
example, if the entity name is Customer, the data store name is Customers
because it contains information about multiple customers.

• Processes are labeled with a numeric identifier, for example, 1, 2.0, 5.1, 8.1.1, and
so on. In addition, processes have a descriptive phrase that varies depending
on the type of the process. Process descriptive phrases and numbering
schemes are explained in the next section along with the description of process
types.

Sufficiency Rules

The DFD basic and label rules deal with the mechanics of DFDs. The analyst can
determine if the rule is satisfied by looking at the diagram. The two rules below
are quite different in that they deal with the “correctness” of the representation.
A system that follows a correct DFD model will produce the desired results. The
analyst cannot tell if the rules are satisfied by looking at the diagram. Instead,
the analyst must mentally walk through the processes and flows, with perhaps
reference to the metadata descriptions if such descriptions exist, to determine if
the rules are satisfied.

• Process data sufficiency. The data flowing into a process must be sufficient to
allow the process to (a) perform its tasks and (b) generate the data flowing out of the
process. In the DFDs in Figures 5.3 and 5.4, the analyst had to add data flows
from Process 1.0 to 2.0 and from 2.0 to 3.0, in order for processes 2.0 and 3.0
to have enough data to perform their tasks. The analyst could modify Process
3.0 in Figure 5.4 to generate a return receipt data flow to the customer con-
taining the customer’s name if and only if the data flow into the process called
Rental Data 2 contains the customer’s name.

• Data store sufficiency. The data placed or stored into a data store must be
sufficient to populate any data flows out from the store. In other words, a pro-
cess may retrieve from a data store only data stored there by other
processes.

Other Rules and Conventions

DFDs provide for a hierarchical structure that starts with a highest level DFD for
a system and works downward in ever increasing detail. The hierarchical struc-
ture is explained and illustrated in the next section. The additional rules that
apply to the DFD hierarchical structure are presented with the discussion of hier-
archy levels.

DFDs allow for some alternative representations, for example, split data flows.
A split data flow is a flow that may begin at one component and go to several
other components. For example, several processes may retrieve the same data
from a data store. A split flow for this event begins at the data store box as a
single line and then splits into several branches that go to the separate process
boxes. A split data flow indicates identical information going to different desti-
nations. Use of a split flow in place of several separate flows may relieve clutter

on the DFD. The DFDs later in this chapter use split flows to reduce clutter. Some
DFD drawing tools are not designed to handle split flows.

Sometimes DFDs show the flow of control data. Control data tell a process or
device what to do. For example, a person or scheduling process may send con-
trol data to a reporting process at the end of a month to trigger or start the oper-
ation of the reporting process. The external users of the reports never see the
control data. If the analyst wishes to show the flow of control data on the DFD,
the convention is to create a data flow using a dotted line for the control data.
The DFDs in this chapter and in the text do not contain control flows.

Creating Hierarchical DFDs
When an analyst decides to represent a system in a DFD model, the analyst may
choose to use a hierarchical approach, especially as systems grow in scope and
complexity. The analyst may choose a top-down approach, which means he or
she starts with a high-level DFD that represents the entire system as one process
and then explodes, breaks down or decomposes the system to create a set of
related DFDs that show additional detail. Alternatively, the analyst may use a
bottom-up approach. Using this approach, he or she starts with a set of detailed
DFDs and then combines the detailed DFDs into higher level DFDs and finally
into a single DFD. Or the analyst may use some combination of approaches. In
any event, the analyst ends up with a hierarchy of DFDs, some showing
overviews of the system and others giving great detail. The combination of
overview and detailed DFDs can provide a better understanding of the system than
either the detailed or overview DFDs by themselves. This section describes the
rules that apply to hierarchical DFDs and illustrates the process of creating them
using a top-down approach.

The process specifications for the GB Video proposed system appear in Chap-
ter 8. The process specifications are reproduced in Figure 5.5. These specifica-
tions provide the content base for the following discussions on creating hierar-
chical DFDs for a system. The analyst begins the top-down approach by
preparing a context-level DFD, an overview diagram that represents the entire
system as a single process. The analyst then explodes, decomposes, or breaks
down the single system process into a set of major subprocesses in a first explo-
sion DFD. The analyst may then explode some or all of the processes on the first
explosion DFD, and then explode some or all of the processes in the second
explosions, and so on until a sufficient level of detail is obtained.

The Context-Level DFD

The purpose of the context-level DFD model is to allow the analyst to describe
the interaction between the system and the environment that surrounds the sys-
tem. The analyst identifies all of the externals and all of the data flows to and
from the externals. These data flows define the interaction of the system with
the external environment––data flows to and from externals cross the boundary
between the system and the environment. As noted, the context-level DFD rep-
resents all the processes and subprocesses as a single high-level process. The

Chapter 5 Process and Object Modeling 165

166 Part One Project and Team Organization

The proposed GB Video Rental/Return system contains the following functions:

(1) Member—Create a new member record or update an existing one; (2) Rental—

Rent videos; (3) Return—Return videos; and (4) Overdue—Create overdue notices

for videos that are overdue. These functions resemble the ones in the current opera-

tion. However, using the problem-solving methods described above, the team

introduced a number of changes to achieve the customer service and cost goals

specified by the client. The client considers all of the functions described in the nar-

rative mandatory.

The customers of GB Video identify the videos that they wish to rent and go to a

checkout position. To improve the likelihood that GB rents only to customers who are

members, the member option must be selected at the beginning of every rental

transaction.

Member

The member process is triggered by a customer request to (1) rent videos and/or

(2) become a member. If the customer has and knows the customer number, the num-

ber is entered; the system retrieves the record from the Customer data store and dis-

plays the customer data. If the customer does not have the number, the customer can

provide a telephone number (or a name and zip code). The system tries to retrieve the

customer’s record from the Customer data store.

If the system is unable to retrieve the customer record or if the customer is not a mem-

ber, the new member subprocess is initiated. The system will create a new member

provided the person has a credit card, telephone, and government-issued ID. The cus-

tomer supplies the customer data and the data are entered. The system generates a

customer number, creates a membership card output, and gives the output to the new

member. The system creates a record in the Customer data store for the new member.

Once the appropriate customer record is available, the customer is shown and asked

(1) to verify the name, address, telephone, and credit card data; and (2) to report any

changes or corrections. This subprocess increases the likelihood that the system will

contain current information for the customer. Any change data are entered and the

customer data store is updated. When a verified customer record is available and the

customer wishes to rent, the member process triggers the rental option and the mem-

ber data are sent to the rental process. The rental process can be accessed only from

the member process; the rental process cannot be accessed directly.

Rental

The rental process is triggered by and only by the member process. The rental

process accepts the member data from the member process and generates a new

rental transaction number and the rental date. The customer provides the video num-

ber and the proposed return date—i.e., the due date. The video number and the due

FIGURE 5.5 Process Specifications for the GB Video Proposed System

Page 1

Chapter 5 Process and Object Modeling 167

date are entered into the system. The system retrieves the video data from the Video

data store and based on the due date calculates the rental price for each video rental.

This process is repeated for each video. After all the videos are processed, the system

adds the rental price for each video to get a rental subtotal. The system multiplies the

rental subtotal by the tax rate (state sales tax county sales tax city sales tax) to

get the tax. The total rental cost is the rental subtotal plus the tax.

The payment type—cash, check, or credit card—is supplied by the customer and

entered into the system. If payment is by credit card, the credit card data are entered.

The system sends the credit card data and the total rental cost to the credit card

processor. If the transaction is approved (or is for cash or a check), the system “com-

mits” the rental and line records—i.e., the records are created in the data stores. The

rental number, date, clerk number, pay type, and credit card data go to the rental

record. The due dates go to the line records for each video.

The system then generates a receipt for the customer. The receipt data includes all of

the data supplied by the customer, sent from the member process, and generated by the

system during the rental transaction. The system also retrieves the title data from the

Title data store and includes the name in the receipt data.

Return

When a video is returned, the video number is entered into the system. The system

retrieves the corresponding line and rental records, enters the return date, and calcu-

lates overdue charges if any. The customer may charge the overdue fee to the credit

card used for the rental or may pay by cash or check. About 95 percent of the time,

customers return videos with no payment type input—for example, drop them in a

return box. In the absence of customer input on payment, the system retrieves a credit

card number from the customer record and processes the overdue charge against the

credit card. The system records the charge and payment type in the Line data store.

The system may create a return receipt for the customer.

Overdue

After the overnight returns are processed, a clerk instructs the system to run the over-

due program, i.e., triggers the overdue function. The system processes the Line

records. For each video that is two or more days overdue (i.e., today’s date – due date

 2), the system retrieves the rental record for the video, retrieves the customer

record for the rental, generates an overdue notice, and sends the notice to the

customer. When a video is 14 days overdue, the system retrieves the customer’s credit

card number from the Customer data store and the video cost from the Video and Title

data stores, charges the customer’s credit card for the amount of the cost of the video,

and sends a notice informing the customer of the charge. If a customer has a complaint

about overdue charges, the complaint is handled and processed by Accounting.

Page 2

168 Part One Project and Team Organization

process box is the boundary of the system. Everything inside the box is part of
the system; everything outside the box is external. The context-level DFD derived
from the GB Video proposed system appears in Figure 5.6.

To prepare the context-level DFD, the analyst looks at the written narrative
description or thinks about the proposed system if no written description exists.
The process part is easy; the analyst just places a single process box in the center
of the diagram with a description in the box that shows the name of the system.
On Figure 5.6, the process box contains a numerical label of zero in the space at
the top. The label of zero or 0.0 is used to indicate the highest level or root
process in a system.

Reading the narrative quickly shows that the customer serves as both an exter-
nal data source and sink: Customers provide input data flows and receive out-
put data flows. Further reading reveals that payment data flows go to an exter-
nal credit card processor, and confirmation flows come back into the system from
the credit card processor, that is, the credit card company is another external
source and sink. The analyst now can add the externals Customer and Credit
Card Company to the DFD in Figure 5.6.

Video Data....Receipt Data

Payment Data....

Confirmation....

Return Receipt

Video ID and Payment

Overdue Notice

Title Data....

Member Data

Customer and
Request Data

Customer

Customer

Credit Card

Company
Video—

External

Datastore

Title—

External

Datastore

Proposed

Rental/Return

System

0

Video and
Payment

Information

FIGURE 5.6
Context-Level
DFD for the
GB Video
Proposed
System

Identifying the data flows to and from the externals requires careful reading
or thinking. The analyst identifies each flow and assigns a name to it. The data
flows associated with customer in the Member and Rental paragraphs of the
specifications and the corresponding text that describe the flows are as follows:

• Customer and Request Data. “If the customer has and knows the customer
number, the number is entered; the system retrieves the record from the cus-
tomer data store and displays the customer data. If the customer does not
have the number, the customer can provide a telephone number (or a name
and zip code).”

• Member Data. “Once the appropriate customer record is available, the cus-
tomer is shown and asked (1) to verify the name, address, telephone and
credit card data . . .”

• Receipt Data. “The system then generates a receipt for the customer. The
receipt data include all of the data supplied by the customer, sent from the
member process, and generated by the system during the rental transaction.
The system also retrieves the title data from the title data store and includes
the name in the receipt data.”

• Video and Payment Information. “The customer provides the video number
and the proposed return date––the due date. The payment type, which can be
cash, check, or credit card, is supplied by the customer and entered into the
system. If payment is by credit card, the credit card data are entered.”

In similar fashion, the analyst identifies and names the three flows to and
from the customer in the Return paragraph (Return Receipt, Overdue Notice,
and Video ID and Payment) and the two flows associated with the credit card
company (Payment Data and Confirmation). Note that the symbol for the
external, Customer, appears twice in Figure 5.6. To allow for shorter, simpler
data flow arrows, analysts may place multiple copies of external symbols on
the diagram.

The two external data stores shown in Figure 5.6 may cause the analyst some
problems. An experienced analyst working at GB Video may know that these
two data stores are created by other systems. When this analyst sees data coming
from them in the narrative, the analyst may recognize that the data actually come
from externals, in this case, from external data stores. An analyst from outside
GB Video at first may identify Title and Video as data stores inside the system
and only recognize them as externals when they violate the Data Store Com-
pleteness rule in the First Explosion DFD. The two stores will have output flows
but no input flows. Often, an analyst who starts with a context-level DFD will
need to correct it after preparing the first explosion DFD and to correct the first
explosion after preparing the second explosions, and so on. System analysis and
design are iterative processes.

In summary, the following rules apply to context-level DFDs:

• All of the processes in the system are represented by a single process box with the
system name as the description in the box. The outline of the box represents the bound-
ary of the system.

Chapter 5 Process and Object Modeling 169

170 Part One Project and Team Organization

• Each and every external in the system must appear on the diagram.

• Each and every data flow in the system to or from an external must appear on the
diagram.

• Data stores, as such, must not appear on the diagram; by definition, data stores are
internal to the system. Data stores created or used by other systems may appear on
the diagram as externals.

The First-Level Explosion DFD

The context-level DFD provides a good overview of the interaction between the
system and the external environment, but it does not provide much detail about
what goes on inside the system. The act of providing more detail is called
“exploding the process.” Exploding a process consists of the following steps:

• The analyst divides or decomposes the original process into subprocesses. The
new subprocesses are placed on the Explosion DFD.

• All of the data flows into or from the original process are connected to one of
the subprocesses on the DFD.

• Data stores used by the subprocesses are placed on the DFD.

• Data flows are added to reflect retrieval from the data stores. Data storage
flows are added and must satisfy the data store sufficiency rule.

• Subprocess to subprocess data flows are added as needed to achieve process
data sufficiency.

Any process for which the analyst can define subprocesses can be exploded.
The explosion of a process can result in two types of processes:

1. An elementary process (EP), primitive process, or basic function module
(BFM). In concept, an elementary process consists of only one process with no
subprocesses. The analyst cannot explode an EP because it contains no sub-
processes. In practice, an EP is the lowest level of detail that the analyst wants
on the DFD: The analyst does not want to generate an explosion for an EP.
The description for an EP starts with a present-tense active verb and consists
of a phrase that describes the action performed by the EP, such as “Identify
overdue video.”

2. A compound process. In concept, a compound process contains two or more
identifiable subprocesses, which may be compound processes or elementary
processes. In practice, when a compound process appears on a DFD, an explo-
sion DFD for the process exists. The description of a compound process con-
tains the word process at the end of the name, such as Rental Process.

Figure 5.7 shows the first-level explosion of the system process on the context-
level DFD in Figure 5.6. Some analysts prefer to start with the first-level explo-
sion DFD and dispense with the context level. Some DFD drawing tools do not
include context-level diagrams. Conceptually, the context-level DFD is the root
of the hierarchy from which the first-level explosion and all other DFD explo-
sions evolve. Since the context diagram contains only one process, the system
process, only one first-level explosion DFD will exist. The dotted line represents

Check and

update data

or enroll a

new member

1

Rental

Process

2

Record

return of

videos

3

Identify

overdue

video

4

Customer

Credit Card

Company

Video —

External

Datastore

Title —

External

Datastore

Credit Card

Company

Customer

Title Data

Video Data

Rental Data

Return
Data

Rental
Data

Rental
Data

Customer

Line

Rental

Customer

Member Data

Member
Data

Receipt Data

Payment Data

Customer and
Request Data

Confirm
atio

n

Payment Data

Video ID and
Payment

Overdue Notice

Member
Data

Line Data

Member Data

Line
Data

Overdue
Data

Title—

External

Datastore

Video—

External

Datastore

Video and Payment
Information

Confirmation

Return Receipt

Payment Data

Member Data

Member Data

Title Data

Video Data

FIGURE 5.7 First Explosion DFD for GB Video Proposed System

171

172 Part One Project and Team Organization

the system boundary; the space enclosed by the dotted line corresponds to the
process box on the context diagram––all the components inside of the boundary
box are part of the system.

Everything that crosses or is outside the boundary box corresponds directly
and exactly to the data flow and external components on the context DFD.
Every data flow from or to an external on the context diagram must appear on
the first explosion DFD. If a new external and/or data flow to or from an exter-
nal is needed, the new flow and or/new external also must be added to the
context-level DFD. To reduce clutter, four flows: Title Data, Video Data, Pay-
ment Data, and Confirmation, appear only once on the context-level diagram
with names followed by “. . . .” to indicate that they represent multiple flows of
the same data. Each of these flows appears several times on the first-level
explosion.

To start adding components inside the boundary box in the DFD of Figure
5.7, the analyst identifies the major subprocesses. Based on the process specifi-
cations and/or thinking about the rental/return system, Member, Rental, and
Return seem like the appropriate major subprocesses. The specifications also
talk about an Overdue process, that is, what to do when tapes or DVDs are
overdue for return. These four processes appear in Figure 5.7, three with BFM
type descriptions and one, Rental Process, with a compound process descrip-
tion. The description Rental Process tells the viewer that an explosion exists
for this process. Each process also receives a number label such as 1, 2, . . . n.
The analyst connects the external data flows to the appropriate subprocesses.
From the specifications and from the ERD when one exists, the analyst can
determine that the data stores are Customer, Rental, and Line. Two symbols for
the Customer data store appear on the diagram, again for clarity and to keep
the chart uncluttered.

The analyst can now add new internal data flows as needed between processes
or between processes and data stores. As described in the specifications, Member
Data flows from process 1 to process 2. The remaining new flows represent
retrievals from data stores (flows from the store to a process) and storage of data
(flows from a process to a data store) as described in the process specifications.
In DFDs, as in the real world, data are perishable. Because the rental and return
processes take place at different times, the rental process cannot send Rental Data
and Line Data to the return process. Instead, the Rental Process stores the data in
the Line and Rental data stores and the return process (process 3) retrieves the
data from the Rental and Line data stores when they are needed.

Additional Explosion DFDs

As noted previously, any process with subprocesses can be exploded. While only
one first-level explosion DFD can exist, the analyst can create a second-level DFD
for each process on the first level, and then third-level DFDs for processes on
the second-level DFDs, and so on. Thus the analyst could create four second-
level DFDs for the four processes on Figure 5.7. Because textbook authors and
readers have limited time and patience, this chapter contains only one second-
level explosion DFD and no third-level explosions.

Chapter 5 Process and Object Modeling 173

To explode process 2, the analyst again follows the procedure given earlier for
explosions. The new second-level explosion of process 2 appears in Figure 5.8.
The components inside the dotted boundary box are what exists inside process
2. The newly created subprocesses contain numerical labels of 2.1, 2.2, 2.3, and
2.4. The final integer in the label is assigned sequentially to the new processes

Input the

data for a

rental

All
Rental
Data

2.1

Calculate

cost and

process

payment

2.2

All
Rental
Data

Create

rental and

lines

2.3

Create a

receipt

2.4

Customer

Credit Card

Company

Customer

Line

Rental

Title—

External

DatastoreTitle Data

Video—

External

DatastoreVideo Data

Line Data

Rental Data

Member
Data

Video and
Payment and
Member Data

Video and Payment
Information

Payment Data

Confirmation

Receipt Data

FIGURE 5.8
Explosion of
Process 2.0

174 Part One Project and Team Organization

on the DFD. The leading integer in the label separated by a period shows that
the new processes are part of process 2. The external flows on this chart match
exactly the flows into and from process 2.0 in Figure 5.7. The new process to
process flows are required to satisfy the process data sufficiency rule, which
means the processes need the data in these flows to perform their actions.

In summary, explosion DFDs must follow all DFD rules as well as the addi-
tional rules listed below:

• Decomposition. An explosion must contain at least two subprocesses.

• Consistency. Every data flow and only data flows into and out of the original process
can cross the boundary box of the explosion and connect to one of the subprocesses.
Each of these flows must have exactly the same name on both diagrams. Existing
flows into the original process cannot disappear, and new flows that cross the bound-
ary box of the explosion cannot appear.

• Labeling. In an explosion, compound processes receive a noun and adjective descrip-
tion that ends with the word Process. BFMs receive a text phrase that begins with
an active, present-tense verb and describes the action performed by the BFM. All
processes receive a numeric label. The label for processes in an explosion is the numeric
label of the original process followed by a “.” and an integer.

OTHER PROCESS MODELS

Many other process models in addition to DFDs exist. Most computer-assisted
software engineering (CASE) tools contain one or more process models, often mod-
els tailored to the specific viewpoint of the vendor and designed to work with the
vendor’s other development tools. The actual code for a system is a highly spe-
cific and detailed process model. Program code represents an operational model;
the analyst can cause the computer to execute the code and observe whether or
not the code model performs as desired. Most process models are nonoperational;
they represent precursors to the operational model, the program code.

The remainder of this section describes two other process models: IPO charts
and process hierarchy charts. Both of these models bear a relationship to DFDs.
Chapter 11 discusses and applies some additional process models.

IPO Charts
The IPO (input/process/output) chart is a process model used to study a sys-
tem by identifying the input and output data flows. IPO charts consist of a table
with these three columns:

• The left column contains the external data that flows into the system.

• The center column contains descriptions for every one of the BFM processes
in the system.

• The right column contains the external data flows from the system.

A sample IPO chart for the GB Video proposed system appears in Table 5.1.
The input and outputs correspond to the external data flows in the context-level

DFD. The processes correspond to the BFM processes that appear on the first-
and second-level explosion DFDs. Thus, the IPO chart captures some but not all
of the information in the hierarchy of DFDs in a compact table format.

To use the IPO chart as a first step in the analysis or design of a system, the
analyst might determine the outputs from the system that the client wants or
specifies and enter them as shown in the right-hand column of the table. The
analyst then must ascertain which inflows the system will use to produce the
required outflows. The last step is to determine the processes associated with
each of the inflows and outflows––in other words, what functions accept the
input data and what functions produce the outflows for the system. The rows of
the chart may appear in any order, not necessarily chronologically. As in all parts
of system analysis and design, the construction of IPO charts is an iterative
process. The analyst may go through the IPO process several times.

Process Hierarchy Charts
The process hierarchy chart (PHC) or function hierarchy diagram (FHD) is a
process modeling tool that graphically displays the hierarchical relationships
between processes in a compact format. The design process for a PHC follows
the design for hierarchical DFDs. With a top-down approach, the analyst starts
with the one process that represents the entire system, the root process. The ana-
lyst then decomposes the root process into the major subprocesses and decom-
poses the new subprocesses as appropriate. Alternatively, the analyst may start
by identifying the lowest level processes and build upward or some combination.

A process hierarchy chart for the GB Video Rental/Return System described
in Chapter 11 appears in Figure 5.9. The chart corresponds directly to the DFD
hierarchy for GB Video developed in the previous section. In the DFDs, the
processes appear in three separate diagrams. In the PHC, the processes appear
on a single chart that shows their relationships to each other. However, only the
processes appear in the PHC; all of the information about externals, data flows,
and data stores has disappeared. Process hierarchy charts, for this reason, are
referred to as “pure” process models in contrast to DFDs which combine infor-
mation about processes with information about data.

Chapter 5 Process and Object Modeling 175

TABLE 5.1
IPO Chart for
GB Video

Input Process Output

Customer and Request Check and update data Member Data

Data or enroll a new member

Video and Payment Input the data for a rental

Information

Confirmation; Video Data Calculate cost and Payment Data

process payment

Title Data Create a receipt Receipt Data

Video ID and Payment; Record return of videos Payment Data;

Confirmation Return Receipt

Title Data; Video Data Identify overdue video Payment Data;

Overdue Notice

176 Part One Project and Team Organization

PHCs use the same process naming and labeling conventions as DFDs.
Processes 1.0, 3.0, 4.0, 2.1, 2.2, 2.3, and 2.4 are at the elementary process or BFM
level. Process 2.0, as shown by the name and the diagram, has an explosion.

Analysts may use process hierarchy or similar charts as a guide for pro-
grammers to write code. When PHCs are used as a coding guide, the analyst
tries to decompose each process until the resulting BFMs each represent a single
block of code consistent with structured programming rules for code blocks.
When PHCs are constructed from the bottom up, a primary step in the con-
struction of the chart is deciding how to group the processes. Since all of the ele-
mentary processes labeled 2.1, 2.2, 2.3, and 2.4 refer to rental activities, the ana-
lyst can group the related processes together as the rental process.

As noted earlier, no data flows, externals, or data stores appear in the PHC.
The analyst provides this information in metadata for each data store and process.
The metadata for each process describe all of the creation, update, and retrieval
actions for data stores, and the data flows to and from externals and between
processes. Chapter 11 contains an example of metadata for the processes on the
PHC for the GB Video proposed system shown in Figure 5.9.

OBJECT MODELS

Many system analysts and designers tend to think in process model terms; they
use a “procedural” approach building systems around a set of procedures or
processes. In a typical batch-style procedural structure, a program begins, pro-
ceeds sequentially through a series of activities, and ends. As information tech-
nology evolved, especially with interactive systems, some designers began to
recognize different underlying program structures. These “different” programs
had no standard order or sequence for activities; users of the systems determined

Check and
update data
or enroll a

new member
1.0

Rental
Process

2.0

Proposed
Rental/Return

System
0.0

Record
return of
videos

3.0

Identify
overdue

video
4.0

Input the data
for a rental

2.1

Create rental
and lines

2.3

Create a
receipt

2.4

Calculate cost
and process

payment
2.2

FIGURE 5.9

Process
Hierarchy
Chart for GB
Video

the flow of the program. Consider a typical personal computer operating system
and the associated word processing and other programs. The program designer
has no idea in what order the user will wish to execute the various features avail-
able in the operating system and programs.

Designers of interactive programs started thinking and building these sys-
tems in what they called objects: self-contained modules that could communi-
cate and interact with many other modules in the overall program. Such lan-
guages as Visual Basic appeared with a structure that allowed the programmer
to write the code associated with forms and events; for example, accept some
input data from a user in a form and put the data in a table, or generate a report.
The modules the programmer writes in VB for each event are largely indepen-
dent, but modules or objects can communicate with each other. The GB Video
system builds around a set of events: (1) a request by a person to become a mem-
ber; (2) a request by a member to rent one or more videos; and (3) the return of
a video.

As the evolution of systems design continued, some people realized that a
new and different design structure might offer advantages over the DFD/PHC
type structures of the procedural model. The new model, Object Oriented Design
(OOD), came to have the following significant features:

• With OOD, programs and systems are structured not around data, processes,
or events, but around “objects.” Objects are things that exist and play a sig-
nificant role in the actual physical environment of the system. Clients and
users think of a system in terms of objects. In the GB Video example, the
conceptual-level objects are those that by now seem familiar to the reader: cus-
tomer, rental, rental-line, and video. At the physical and logical levels of
design, other objects appear. For example, the workstation or point of sale
screens used by the GB Video clerks become objects in the system OOD at the
physical level.

• An object represents an individual thing, for example, a customer object rep-
resents a single customer. An object class represents all of the objects in a sys-
tem that are members of the class. The object class Customer represents all
the customer objects (instances) in the system.

• Objects contain within them the data and operations (processes) required to
carry out their desired behavior. All object classes contain standard “CURD”
operations to: (1) create a new object in the class; (2) update and/or (3) retrieve
data for existing objects; and (4) delete objects. The Customer object class or
the objects within the class store the data about customers and know how to
create an object for a new customer and to update and/or retrieve data for
existing customer objects. In other words, the objects in the Customer object
class manage the Customer Data Store for the system.

In addition, to the data management behavior standard for all objects, some
objects may contain operations for other behavior. The objects in the Rental
object class, in addition to managing rental data, must contain an operation
to calculate the total charge for a rental, which may consist of adding up the
rental charges for one or a number of videos and calculating and adding the

Chapter 5 Process and Object Modeling 177

178 Part One Project and Team Organization

sales tax. In summary, an object is an entity instance on steroids; it contains all
the data for the instance and also all the behaviors that apply to the object class.

• Objects interact with each other and with externals by sending and receiving
messages, such as “Here is some data and/or a task for you,” or “Send me
the data about x.” Procedures or operations and data in an object are encap-
sulated or hidden. A rental line object doesn’t know or care how a rental
object calculates the total charge for a rental. All a rental line object has to do
is send the rental charge for itself when it receives a message to do so. The
rental object doesn’t care how the rental line objects store, retrieve, and process
data as long as the rental object receives the rental charges back after sending
messages to obtain them.

In the early days, every person working on OO design had his or her
favorite way to model the system. Three object pioneers, Grady Booch, Ivar
Jacobson, and Jim Rumbaugh, pooled their ideas to create the beginnings of
a Unified Modeling Language in 1997. The Object Management Group
(OMG), a consortium of companies, continued work on the standard and has
released a number of additional versions of UML, the most recent of which
is version 2.0 (see www.omg.org for specifications and the most current infor-
mation). Most of the UML definitions are highly technical and written in com-
plex language. While UML provides a standard structure for object-oriented
design and development, UML, in common with DFDs, ERDs, and most pro-
cedural models, is not a design methodology and does not specify a design
process.

UML version 2.0 specifies 12 diagrams for object-oriented modeling of a sys-
tem. Four diagrams––class, object, component, and deployment––display the
structure or a static view of the system. Five diagrams––use case, sequence,
activity, collaboration, and state––display dynamic behavior of the system over
time. The other three diagrams are used for model management. Fowler, 2003,
describes and explains each of the diagrams. Remember that models are rep-
resentations of the actual system. Because all systems contain process, data, and
infrastructure as discussed in the content model of Chapter 1, some of the UML
diagrams, not surprisingly, resemble familiar diagrams from previously dis-
cussed data and process models. An object model, data model, and process
model of a system all represent parts of the same underlying system, albeit
with different focus, symbols, and formats.

The next sections describe and illustrate three of the more commonly used
UML diagrams: (1) use case diagrams, (2) class diagrams, and (3) sequence dia-
grams. Example diagrams from the GB Video proposed system in Chapter 8
illustrate the appearance, content, and use of each diagram.

Use Case Diagrams
Use case diagrams give the analyst a way to display the interaction of system
processes with each other and the external environment. The UML provides a
diagram format for use case diagrams but has little to say about the appropriate

or correct content. Figure 5.10 shows the use case diagram for the GB Video pro-
posed system. The use case diagram looks like a process model of the system
and resembles the first explosion DFD in Figure 5.7. The labels in bold type with
dotted line arrows show the components: actors (externals in a DFD), use cases
(processes in a DFD), the system boundary (same in a DFD), and the relationship
lines that connect the actors to the use cases that involve them (vaguely similar
to external data and/or control flows in a DFD).

Three of the use cases, Rent Videos, Return Videos, and Find Overdue Videos,
all involve a common activity: contact the credit card company and place a
charge against the customer’s credit card. The use case diagram shows this sit-
uation by creating a use case called “Charge Credit Card” and letting the other
three use cases make use of or include the Charge Credit Card use case. Rent
Videos also includes the Check Member use case. The <<include>> relationship
is shown by a labeled arrow with a dashed line. The Rent and Find use cases
interact with the purchasing system in that they use data from the Video and
Title data stores maintained by Purchasing. Some analysts incorporate additional

Chapter 5 Process and Object Modeling 179

Enroll or update
member

Charge Credit
Card

Find overdue
videos

Rent videos Return videos

Customer

Credit Card
Company

Clerk

Purchasing
System

System

Boundary

Actor

Relationship

Use

Case

<<Include>>

<<Include>>

<<Include>>

<<Include>>

FIGURE 5.10
Use Case
Diagram

180 Part One Project and Team Organization

UML-defined features in use case diagrams, but the additional features may add
more confusion than understanding. All of the behaviors shown on the use case
diagram must appear as behaviors associated with one of the objects in the OOD
version of the system.

The most important part of the use case diagram is the metadata for each of
the use cases on the diagram. The description of the content of a use case is
known in object-speak as a scenario. Scenarios resemble pseudocode. Figure 5.11
shows the scenario for the Rent Videos use case in Figure 5.10.

The scenario can have some header information, in this case, a precondition
and a trigger. The precondition tells what the system must ensure is true before
this use case begins. The trigger specifies the event that starts the operation of
the use case. The main success scenario describes the things that happen when
all goes well and the end result is a successful rental. The extensions show by
line number in the main success scenario, things that can go wrong and prevent
a successful rental. The underlining in steps 3 and 7 indicates that these steps
include another use case as shown in Figure 5.10.

Rent Videos Scenario

Precondition: None

Trigger: Customer decides to rent one or more videotapes.

Main Success Scenario

1. Customer selects the videos to rent.

2. Customer goes to checkout and provides member data.

3. System confirms that customer is a member and retrieves and updates member

data.

4. Customer provides the video number for each video.

5. System retrieves charge, due date, and title data and creates a rental with a

line entry for each video.

6. System calculates the total charge.

7. System contacts the credit card company and enters the total charge.

8. System produces a receipt for the customer.

Extensions

3a. The customer is not a member.

1. Sign up the customer as a member.

2. Else, terminate rental.

7a. Credit card company declines to authorize purchase.

1. Ask customer for an alternate card.

2. Else, terminate rental.

FIGURE 5.11 Scenario for the Rent Videos Use Case

Class Diagrams
A class diagram shows the static structure of the system and represents the
key or central diagram in an object design. The class diagram describes each
object class in the system, identifies the data and operations for each object
class, and shows the associations between object classes. Class diagrams resem-
ble ERDs but follow a different concept and contain additional information. A
simplified conceptual-level class diagram appears in Figure 5.12.

Each rectangle represents an object class. The object class rectangles are
divided into three areas by horizontal lines. The top area contains the object
class name, the middle area has the attributes of the class, and the bottom
area shows the operations for the class. Object class names start with upper-
case letters; attribute and operation names start with lowercase letters. Video
appears as an object class on this diagram because video objects supply data
to the rental system. However, the Video object class is controlled by the
purchasing system. Other objects in the rental system can ask the video
objects to retrieve data but may not ask the video objects to perform any other
operations.

A solid line between two object class symbols represents an association
(similar to a relationship on an ERD). An association may show multiplicity in
a format ([min]..[max]) similar to minimum and maximum cardinality on an
ERD. The 1..1 symbol next to Customer indicates that each rental object is asso-
ciated with one (minimum) and only one (maximum) customer object. The 0..*
symbol next to Rental indicates that a customer object may be associated with
zero (minimum) or many (maximum) instances of rental objects.

Chapter 5 Process and Object Modeling 181

Rented

Makes

1..*

1..1

Customer

member-no.
name
street
city
state
zip
tel#
credit-card#
expire-date

Video

video-no.
title
rent-charge/day
date-acquired
vendor

RentalLine

id#
due-date
cost
return-date
overdue-charge

Rental
Object Class

Name

Attributes

Operations

1..1 0..*

1..1 0..*

calculate cost
calculate overdue

rental-no.
date
employee#
pay-type
total

calculate total

Contains Association

FIGURE 5.12
Class
Diagram for
GB Video
Proposed
System

182 Part One Project and Team Organization

Attributes of object classes specify the properties of the objects in the class.
Attributes of objects resemble attributes for entities, but the diagram may dis-
play such other properties in addition to the attribute name as:

• Visibility. Tells if the attribute is public, visible to other objects (similar to a
global variable), or is private, for internal use only by the owning object (sim-
ilar to a local variable).

• Type. The data type: Date, String, Integer, Money, etc.

• Multiplicity. Similar to minimum and maximum cardinality.

• Default. The value of the attribute when a new instance of the object is cre-
ated when the creation process does not specify a value (similar to a null
value).

• Property string. Additional properties, for example, {readOnly}, {ordered}, etc.

Most of the attributes describe the data associated with the objects in the class,
but the associations between object classes also may appear as attributes or prop-
erties. In UML class diagrams, attributes and associations represent alternative
ways to represent properties. An attribute in the Rental object class with the con-
tent of “lines: RentalLine [*]” shows an attribute with the name of “lines” that
specifies the association between the Rental object class and the RentalLine object
class, for example, “each rental object may be associated with many rental-line
objects.” Similarly, the attribute “Date” in Rental might be represented as an
association between the Rental object class and the Date object class.

As noted previously, all object classes are assumed to contain the CURD oper-
ations of create, update, retrieve, and delete. These operations are not shown in
the operations area of the object class. The Customer object class contains only
the CURD operations, so nothing appears in the operations area of the rectan-
gle for the Customer object class. The Rental object class shows behavior in
addition to the CURD operations. A rental object must obtain from each asso-
ciated rental-line object the data on the cost, add the costs to obtain a subtotal,
and calculate and add the sales tax to get a total cost for the rental object. This
behavior appears in Figure 5.12 as an operation called “calculate total” in the
Rental object class. In similar fashion, the RentalLine object class might have oper-
ations to calculate the associated cost, perhaps the number of days the video is
rented times the cost per day, and also an operation to calculate the overdue
charge when a video is returned after the due date. The Video object class may
contain other operations, but the other operations are not available to the rental
system.

UML uses the term features to refer to both properties and operations of an
object class. UML specifies a broad range of information that the analyst may
include in a class diagram. Conceptual-level diagrams often contain mostly infor-
mation about the organizational functions and roles. Physical-level class dia-
grams can contain all of the information needed to generate code. The physical
version of the GB Video class diagram contains additional objects and much
more detail than shown in Figure 5.12.

Chapter 5 Process and Object Modeling 183

Sequence Diagrams
A sequence diagram shows how objects behave for a specific scenario. The sce-
nario may describe a use case or an operation in an object. A sequence diagram
is an example of a dynamic, behavioral UML diagram, one that shows behavior
over time. The diagram in Figure 5.13 shows a sequence diagram for the sce-
nario of the “calculateTotal” operation of the Rental object class.

The rectangles labeled aRental and aRentalLine are objects––instances of their
object classes. The arrow at the top left labeled calculateTotal shows the
“found” message that initiates the sequence. The sequence starts with the acti-
vation of the aRental object shown by the vertical rectangle under the aRental
object. The aRental object sends a message, *getCost, to get the costs from each
of the associated aRentalLine objects. The * at the beginning of *getCost indi-
cates iteration; the aRental object may need to obtain cost from one or more
aRentalLine objects. The aRentalLine objects associated with the aRental object
activate as shown by the box and return the costs. The number of costs
returned is determined by the number of rental lines in the rental. Often the
return arrow is not shown since the message to get a cost implies that the
aRentalLine object will return the cost. Any box on the lifeline for the object
represents the activation of the object. In the example, the aRentalLine object
activates only once, but it might activate a number of times in a more com-
plex scenario.

When the aRental object receives the costs, it self-calls or calls on itself to cal-
culate a subtotal. After it completes the subtotal, the aRental object calls itself
again to calculate the tax and add the tax to the subtotal. The sequence now has

aRental aRentalLine

Activation

Lifeline

Message

Return

SelfCall

a cost

*getCostcalculateTotalTime

calculateSubTotal

calculateTax

FIGURE 5.13
Sequence
Diagram for
the “calculate-
Total” Opera-
tion in Rental

184 Part One Project and Team Organization

calculated the total and is finished. The arrow at the left shows that moving
down in the diagram represents the progression of time.

Advantages of Object-Oriented Design
Object-oriented design (OOD) represents an alternative way to define and
implement the structure of a system. Many new systems are implemented in
such object-oriented programming languages as C and Java. When object-
oriented languages are used, the charts and other specifications in UML offer a
consistent way to define the system at both conceptual and physical levels. The
object representation of a system in a class diagram provides an obvious way
to divide up the design tasks by assigning a person or team of people the
responsibility to work on the design of an object or group of objects. The class
diagram, once it exists, allows the teams to perform the detail design work
largely independently of each other. The encapsulation of data and operations
in objects with messages to invoke the interactions between objects also can
simplify the maintenance and modification of an object-designed system. The
analyst can make changes within an object with little if any effect on the rest of
the system.

Object proponents cite reuse or reusability as a major advantage of an object
design. For example, once a Customer object is designed, the same object can be
used in many different systems that involve customers. The reuse also can extend
beyond organizational boundaries. Libraries of standard objects exist and are
growing. An organization that wants to design a new system can incorporate the
standard objects that already exist into the new system. The reuse of a standard
object may require changing some of the features of the object, but many of the
features probably will transfer from organization to organization with little if any
change. Object-oriented design is a step, and probably a significant step, but
certainly not the last step on the never-ending quest for better ways to design
systems.

Summary Processes provide the engines for an information system. Processes accept data
from sources outside the system, place data in and retrieve data from data stores,
modify data, transfer data between processes, and send data to users outside the
system. In short, processes accomplish all of the work or activity that occurs in
a system.

Process models provide abstract representations of real systems that capture
some but not all of the structure of the processes in the system in a form that
people can understand. Most process models use graphical representations.
Some process modeling tools that evolved from the structured approach to sys-
tems analysis include:

• Data flow diagrams (DFDs)

• Process hierarchy charts (PHCs)

• Input/process/output (IPO) charts

Data flow diagrams provide the most detailed representation of processes and
their interactions. Process hierarchy charts, also called function hierarchy dia-
grams (FHDs), show how processes and subprocesses relate to each other.
Input/process/output charts represent in table format the relationships between
data coming into and going out of the system with a text description of the activ-
ities in each process.

Rules for preparing DFDs include:

• Process dominance. Every data flow must come from a process or go to a process
or both.

• Process completeness. Every process must have one or more data flows into the
process and one or more data flows out of the process.

• Data store completeness. Every data store must have one or more data flows into
the store and one or more data flows out of the store.

• Labels. Every component on a DFD must have a unique label or descriptor. Data
flow labels consist of a word or phrase that describes the data in the flow. Externals
have a noun label that describes the source or destination. Data stores have a noun
label. Processes are labeled with a numeric identifier: 1, 2.0, 5.1, 8.1.1, and so on. In
addition, processes have a descriptive phrase that varies depending on the type of the
process.

• Process data sufficiency. The data flowing into a process must be sufficient to allow
the process to (a) perform its tasks and (b) generate the data flowing out of the process.

• Data store sufficiency. The data placed or stored into a data store must be sufficient
to populate any data flows out from the store.

• Context-level DFDs. All of the processes in the system are represented by a single
process box with the system name as the description in the box. The outline of the
box represents the boundary of the system. Each and every external in the system
must appear on the diagram. Each and every data flow in the system to or from an
external must appear on the diagram. Data stores, as such, must not appear on the
diagram; by definition, data stores are internal to the system. Data stores created or
used by other systems may appear on the diagram as externals.

• Decomposition. An explosion must contain at least two subprocesses.

• Consistency. Every data flow and only data flows into and out of the original process
can cross the boundary box of the explosion and connect to one of the subprocesses.
Each of these flows must have exactly the same name on both diagrams.

• Labeling of processes in explosions. In an explosion, compound processes
receive a noun and an adjective description that ends with the word Process. BFMs
receive a text phrase that begins with an active, present-tense verb and describes
the action performed by the BFM. All processes receive a numeric label. The label
for processes in an explosion is the label of the original process followed by a “.”
and an integer.

The analyst can prepare a hierarchy of DFDs. The context-level DFD provides a
good overview of the interaction between the system and the external environ-
ment, but it does not provide much detail about what goes on inside the system.

Chapter 5 Process and Object Modeling 185

186 Part One Project and Team Organization

The act of providing more detail is called “exploding the process.” Exploding a
process consists of the following steps:

• The analyst divides or decomposes the original process into subprocesses. The
new subprocesses are placed on the explosion DFD.

• All of the data flows into or from the original process are connected to one of
the subprocesses on the DFD.

• Data stores used by the subprocesses are placed on the DFD.

• Data flows are added to reflect retrieval from the data stores. Data storage
flows are added and must satisfy the data store sufficiency rule.

• Subprocess to subprocess data flows are added as needed to achieve process
data sufficiency.

The process hierarchy chart (PHC) or function hierarchy diagram is a process
modeling tool that graphically displays the hierarchical relationships between
processes in a compact format. The design process for a PHC follows the design
for hierarchical DFDs. The IPO (input/process/output) chart is a process model used
to study a system by identifying the input and output data flows. IPO charts
consist of a table with three columns.

1. The left column contains the external data that flows into the system.

2. The center column contains descriptions for every one of the BFM processes
in the system.

3. The right column contains the external data flows from the system.

Object-oriented design represents an alternative way to define and implement
the structure of a system. Many new systems are implemented in such object-
oriented programming languages as C and Java. The object representation
provides a way to divide up the design tasks by assigning a person or team of
people responsibility to work on the design of an object or group of objects.
Object design also can simplify maintenance and modification. Object propo-
nents cite reuse or reusability of objects as a major advantage. Object-oriented
design is a step, and probably a significant step, but certainly not the last step
on the never-ending quest for better ways to design systems.

With object-oriented design, programs and systems are structured not around
data, processes, or events, but around objects, things that exist and play a sig-
nificant role in the actual physical environment of the system. Objects contain
within them the data and operations (processes) required to carry out their desired
behavior. An object is an entity on steroids: It represents all the data for the
instances and also all the behaviors that apply to the object class. Objects interact
with each other by sending and receiving messages: “Here are some data and/or
a task for you,” “Send me the data about x,” and so forth. Procedures or
operations and data in an object are encapsulated or hidden.

The Unified Modeling Language (UML) provides a standard structure for object-
oriented design and development. Three of the more commonly used UML
charts are: (1) use case diagrams, (2) class diagrams, and (3) sequence diagrams.
Use case diagrams give the analyst a way to display the interaction of system

1. For the data flow diagram (DFD), answer the following questions.

a. What is an elementary process?

b. Why should metadata for an elementary process normally be at the code level?

c. How does a DFD capture process logic?

d. What is common between a DFD and an ERD?

2. For a context diagram in a DFD, answer the following questions.

a. What is shown on a context diagram?

b. What is the connection between a context diagram and the first-level explosion?

3. Answer the following questions about rules for data flows.

a. What are the contents of a data flow?

b. What kind of DFD objects can be connected directly with a data flow?

c. What are the rules for data flow labels?

4. For explosions in a DFD, answer the following:

a. What kind of artifact can be exploded on a DFD?

b. What are the naming conventions that connect an explosion to the higher level
diagram?

c. What must an explosion have in common with the higher level diagram?

Chapter 5 Process and Object Modeling 187

processes with each other and the external environment. The use case diagram
looks like a process model of the system and resembles the first explosion DFD.
A class diagram shows the static structure of the system and represents the key
or central diagram in an object design. The class diagram describes the objects
in the system, identifies the data and operations for each object, and shows the
relationships between objects. A sequence diagram shows how objects interact
over time to carry out a scenario.

actor, 179
association, 181
attribute, 181
basic function module

(BFM), 170
class diagram, 181
compound process, 170
context-level DFD, 165
data flow, 158
data flow diagram

(DFD), 157
data store, 158
data store completeness, 163
data store sufficiency, 164
decompose, 162
elementary process (EP), 170

encapsulate, 178
explode, 165
external, 159
feature of an object, 182
hierarchical DFDs, 165
IPO (input/process/

output) chart, 174
label, 163
message, 178
object, 177
object class, 177
object-oriented design

(OOD), 184
operations, 177
process, 159
process completeness, 163

process data sufficiency, 164
process dominance, 162
process hierarchy chart

(PHC), 157
process model, 156
property, 182
reusability, 184
sequence diagram, 183
sink, 159
source, 159
split data flow, 164
Unified Modeling

Language (UML), 156
use case, 179
use case diagram, 178

Key Terms

Review

Questions

188 Part One Project and Team Organization

5. Answer the following questions about an IPO chart.

a. Which processes are on both models?

b. Why does an IPO chart not include entities?

c. Which flows should appear on both IPO and DFDs?

6. Answer the following questions about a process hierarchy chart.

a. What is a process hierarchy chart intended to show?

b. What is the difference between a process hierarchy chart and an IPO chart?

c. What is common between a process hierarchy chart and a DFD?

7. Define the following object oriented terms:

a. Use case diagram

b. Class diagram

c. Sequence diagram

8. How do objects handle the following parts of a system design?

a. Process analysis

b. Sequence of code execution

c. Data modeling

9. For an object model, answer the following:

a. What is the difference between an object and an object class?

b. What are CURD operations?

c. What is encapsulation?

d. What is a message?

10. Under what circumstances would you choose the following model approaches?

a. DFD model

b. Object model

c. IPO model

Critical
Thinking
Exercises

Individual Exercises
1. The director of a bowling tournament needs a database to connect PLAYERS with

MATCHES. The database should contain data on PLAYER-NAME, PLAYER-PHONE,
GAME-TIME, LANE-NUMBER, and SCORE for each player.

Players sign up with a team. Players may play for several teams, but for only one
team in a given league. Once enough teams have been enrolled to form a team, the
league sets up a schedule that determines who plays who each week.

As teams play each other the league keeps track of team victories, team total pins,
and individual game averages. Each match consists of three head-to-head games. The
team score is calculated by adding one point for the winner of each game plus one
point for the high total points plus handicap. For scoring, each player receives his or
her total number of pins plus the player’s handicap.

This league recalculates handicaps after the season not on an ongoing basis using
an 80 percent of 200 basis. The handicap is calculated on the best six games for each
player. The handicap is given by subtracting the average of these six games from 200
and multiplying that difference by 80 percent. If the six-game average is higher than
200, there is no handicap. No handicap can be larger than 20 pins.

At the end of the season, the league calculates the team winners and the individ-
ual scoring winners and then awards trophies.

Draw a data flow diagram for this system. Make sure that the files in your model
match the entities you found in the data model from Chapter 4.

2. A car rental company classifies customers as business, leisure, and urban. The com-
pany wants to keep name, address, and home phone number for all rental customers.
Specifically for business customers, the company wants to keep the business name and
business phone numbers; for leisure customers the company needs destination(s); and
for urban customers the company needs the insurance company and expected num-
bers of days needed. When customers arrive at an office they are assigned a vehicle
(VIN, make, color, license) and a rate depending on how they reserved the vehicle.
When they return the vehicle, the agency records days rented and number of miles.
Each office owns the vehicles it rents. The database keeps the information on location,
manager, and owned vehicles.

When a customer calls in for a reservation, the clerk enters the basic customer infor-
mation into the system. The system checks the car inventory to be sure that a vehicle
will be available when it is needed and returns a confirmation with confirmation num-
ber and other necessary information.

When a customer arrives at the rental office, the clerk checks the system to retrieve
the reservation information, gets credit card and insurance data from the customer, and
assigns a car to the customer for use. If the customer has not reserved a car ahead of
time the clerk will go through both the reservation and delivery process at the counter.

Once the customer returns the car, the clerk checks it for damage and enters any dam-
age or cleaning charges. The system then calculates the bill based on time and mileage
according to the rate package that the customer signed up for and prints a receipt. Once
the customer signs the receipt, the system bills her/his credit card for the correct amount.

Draw a data flow diagram for this. Make sure that the files in your model match
the entities you found in the data model from Chapter 4.

3. For the process of running a babysitting service at the University (see Group Exercise
3 in Chapter 3), do the following:

a. Prepare an IPO, a process hierarchy chart, and a DFD.

b. Construct a use case and a class diagram.

c. Prepare a sequence diagram for one of the operations in the class diagram.

4. Draw an IPO, a process hierarchy chart, and a DFD for setting up and managing a
professional club for the IT students in your program of study.

Group Exercises
1. Use Group Exercise 4 in Chapter 3 to complete the following exercises.

a. Draw an IPO, a process hierarchy chart, and a DFD for the system.

b. Construct a use case and a class diagram.

2. Sooner Events is a service organization that runs business retreats at their lakeside
camping facilities. The service wants an interactive system that will allow their cus-
tomers to manage their own schedules.

The service gave the following description of what they want. Customers can select
camps on their own. The system should display the camp topics and times that Sooner
supports. Customers can schedule camps, guarantee attendance, and select special
activities that go with them. The customer will provide a list of attendees. Individual
attendees will register with Sooner, guarantee their bill, and select any special needs
or meals they might need during the camp time.

Behind the scenes the system should support the process of scheduling event staff
to provide services. Planners working for Sooner will interact with the system to select

Chapter 5 Process and Object Modeling 189

190 Part One Project and Team Organization

and contact contract employees who deliver the seminars, order refreshments and
amenities, and schedule special events. In addition, the system should allow the lodge
manager to schedule blocks of rooms in the lodge and to inform the kitchen of any
special needs.

Draw a use case and class diagram for this system.

References Fowler, Martin. UML Distilled: A Brief Guide to the Standard Object Modeling Language,
3rd ed. Reading, MA: Addison-Wesley, 2003.
Gane, Chris; and Trish Sarson. Structured Systems Analysis and Design Tools and Tech-
niques. Upper Saddle River, NJ: Prentice Hall, 1979.
Hoffer, Jeffrey A.; Joey F. George; and Joseph S. Valacich. Modern Systems Analysis and
Design, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2005.
Rumbaugh, James; Ivar Jacobson; and Grady Booch. The Unified Modeling Language
Reference Manual. Reading, MA: Addison-Wesley, 1999.
Schneider, G.; and J. P. Winters. Applying Use Cases: A Practical Guide, 2nd ed. Reading,
MA: Addison Wesley, 2001.
Yourdon, Edward; and Larry Constantine. Structured Design: Fundamentals of a Discipline
of Computer Program and Design. Englewood Cliffs, NJ: Yourdon Press, 1986.
Whitten, Jeffrey L.; Lonnie D. Bentley; and Kevin C. Dittman. Systems Analysis and
Design Methods. New York: McGraw-Hill/Irwin, 2005.

Part Two

Project Definition
Projects are undertaken on behalf of a client and a sponsor. Normally, the client

requests a project to solve a problem. The client communicates to the team such

information as goals, constraints, and features that the client wants to guide the

team to a satisfactory solution. In initial communications, the client may neglect

to mention some important information and may become aware of additional

constraints and desired features as the project proceeds. Project definition repre-

sents a carefully structured effort by the team to discover and document the

client’s requirements and to help the client clarify and refine the goals, features,

and constraints for the project. Project definition occurs at the beginning of the

project, but as noted in the discussion of the spiral model, the team may need

to revisit the project definition at other points during the project as both the

client and the team learn more about the issues.

Chapter 6 explores the concepts and issues of determining goals, features,

and constraints for solutions to the client’s problem. A project is successful only

when the project contributes to the goals and values of the organization and the

client. Elegant and technically advanced solutions may appeal to the team, but

may or may not contribute to the client’s goals or values. Strategic alignment

addresses how to focus the project to contribute to such strategic values or goals

of the organization as profits, quality, service, sales, and customer satisfaction. The

team conducts the strategic analysis at the beginning of the project and uses

the insight gained from the analysis to make decisions throughout the project.

The term performance-oriented design embodies the idea that the team makes

all project decisions in the context of providing performance or value to the

client.

Sometimes the client provides all the information that the team needs without

prompting. Often, though, the team will want to ask questions, make observa-

tions, and collect additional information. The team needs information to define

the desired features for the solution, including the functionality and/or perfor-

mance the client wants that does not exist in the current situation. The team

also needs for the client to define constraints for the project, for example, time

and budget limits. The team explores acceptable solution options with the client.

The client may be willing to do one or more of the following: purchase a solu-

tion, build a solution, or continue with the current situation. When the team has

acquired enough information, the team members may present their understand-

ing of the requirements for review by the client and/or enter into a written

agreement or statement of work with the client that defines the project.

Chapter 7 examines the issues and steps the team can take to understand the

current situation. The team learns about the current situation in order to gain

insight on possible solutions. When the proposed solutions consist of modifica-

tions of the current situation, the team may wish to learn about the current situ-

ation in depth and detail. When the proposed solutions represent a new set of

capabilities that do not exist in the current situation, the team studies the current

situation mainly to understand the problems in the current situation that caused

the client to initiate the project. The team can prepare graphical process and

data models to help clarify the current operations.

At the end of the current situation analysis, the team should be able to spec-

ify in detail the current operations, the problems in the current operations, and

those aspects of the current situation that will change and those that will remain

in the proposed solutions. A team that does not understand the current situation

is unlikely to understand how to create a satisfactory solution.

During project definition, the team interacts in a number of ways with the

client. These interactions give the team members an opportunity to demonstrate

that they are competent professionals. Some aspects of professionalism include

respecting the client’s views, using the client’s time effectively, providing the client

with professional-quality written and oral communications, and, most importantly,

arriving at a complete and accurate specification of the requirements for the

project.

192 Part Two Project Definition

6. Understanding the Client’s Problem and Organization

7. Learning from the Current Situation

Chapter Six

Understanding the Client’s
Problem and Organization
Chapter outline

193

Introduction

Strategic Alignment

The Organization Case

The Organization

The Organization’s Goals and Objectives

Project Contribution

Project Success

Determining Alignment

Understanding the Organization

Identifying Objectives and Goals

Identifying Project Contribution

Project Success

The Project Definition Report

Project Statement

Strategic Alignment

The Organization

The Organization’s Goals and Objectives

Project Contribution

Project Success Criteria

Proposed System Features

Constraints

Constraint Types

Solution Options

Scope

Examples of Project Definition Materials

Working with the Client

Professional Behavior

Prepare for a Visit

Make a Visit

Information Collection Approaches

Interviews

Group Interviews

Documents

Observation

Surveys and Sampling

Summary

Key Terms

Review Questions

Critical Thinking Exercises

Individual Exercises

Group Exercises

References

194 Part Two Project Definition

INTRODUCTION

As previously discussed, the process of generating an information systems solu-
tion consists of four stages: (1) project and team organization; (2) project defini-
tion; (3) proposed system; and (4) system delivery. During the first stage, the
client proposes a project. Once the project is approved, the team forms, orga-
nizes, and prepares the initial plan. Phases, of course, can overlap and interact.
The team may and probably should work on team and project organization
throughout the project. However, once the initial team and project organization
work is done, the team can move on to the next stage, project definition.

The basic goal of the project definition stage, the first stage during which the
team interacts with the client, is to acquire and analyze information to answer
the following questions:

1. What does the organization value? What are the goals, objectives, and the key
measures of organizational performance for the organization?

2. Can the proposed solution add value to the organization? Can it enhance or
contribute to the performance measures of the organization?

3. Who is the client––the person or group with the authority to sponsor or define
the project, and what does the client value?

4. What features and constraints for the proposed information system solution
does the client want?

5. What can the team learn from the current situation for the design of the pro-
posed system?

6. Can the proposed solution solve the client’s problem? Can it eliminate or
reduce the problems and/or achieve the client’s objectives?

7. Is the project scope reasonable?

The first three questions in this list relate to the issue of strategic alignment.
From the beginning of the project, team members want to understand how the
project fits into such strategic values or goals of the organization as profits, qual-
ity, service, sales, customer satisfaction, and similar concerns. To address the
alignment question, the team must identify what the organization and sponsor
value, sometimes a difficult task. When the team understands the organization’s
values, the team can relate better with the clients and can focus the project work
on achieving outcomes that contribute to the organization’s values. At each point
in the project, the team should follow the path that looks most likely to result in
a system that will add value to the organization.

The team refines the project plan to identify the activities to perform during
project definition. Some typical activities include the following:

• Establish contact with the client and arrange for one or more visits.

• Plan, prepare for, and make the visits with the client to collect information.

• Assemble the materials on strategic alignment, features, constraints, and alter-
natives materials.

• Assemble the data, process, infrastructure, problems, retention, and change
materials for the current situation or operation.

• Prepare the draft version of the project definition report.

• Conduct a project definition presentation with the client.

• Complete the final project definition report.

The team carries out information collection, analysis, and modeling related to
the problems, goals, requirements, constraints, and alternatives for the project.
Information collection represents a primary activity during the project defini-
tion stage of the project. Team members should prepare a plan for the informa-
tion they wish to collect and the approaches that they will use to collect it. Nor-
mally information collection requires a number of visits to the client’s location.
After each visit and subsequent analysis and modeling, the team may identify
additional information to collect. The project definition presentation with the
client provides an excellent opportunity to identify and fill in missing or incor-
rect information.

One obvious way to begin finding answers to all of the project definition ques-
tions is to ask the client. The team should ask the client and note carefully the
answers. In some uncomplicated projects, the client may say something like “Here
is the definition for my project: The organizational values, what I want, when I
want it, and how much I am willing to spend.” In most cases, the process involves
more complexity. Different people—senior managers, functional managers, and
users—may have different desires and perceptions of problems and requirements.
A nonuser client may not understand fully the current operation and may not
know all the problems. The client may not know what is possible, what are the
reasonable solutions, and more importantly what are the trade-offs. In other
words, what are the costs, benefits, and risks of the alternatives? The team bears
the responsibility to help the client clearly understand all of the relevant issues.

STRATEGIC ALIGNMENT

Organizations sometimes say they want better information systems, but actually
organizations want better performance with respect to overall organizational
values or goals: higher stock prices, more profit, higher sales, lower costs, more
satisfied customers, and so on. The client believes or hopes that a proposed infor-
mation system will bring value to the organization by improving one or more
important measures of performance. In contrast, many information technology
(IT) teams, and even some IT managers, operate with little thought about the
relationship between information systems and organizational values. IT people
tend to focus on requirements, analysis, code, problems with existing systems,
schedules, and costs.

To succeed, an IT team needs to understand and think like the client. In well-
run organizations, managers at all levels and in all areas of the organization are
constantly reminded to focus on strategic goals or on critical organizational values.
One of the recurring themes in discussions of the most critical information

Chapter 6 Understanding the Client’s Problem and Organization 195

196 Part Two Project Definition

technology issues is the alignment of IT activities with the organization. Alignment
of IT activities means focusing IT activities to support organizational values.

A project team should understand and support organizational values for the
following interrelated reasons:

• To gain organizational acceptance and credibility for the team with the rest of
the organization. Many modern organizations operate as a network of teams.
Senior managers think of themselves as heads of a team of workers who iden-
tify with each other and work together for a common goal. Critical factors in
the success of any project include strong managerial and organizational sup-
port. Unless the IT people can “talk the talk” of the rest of the organization,
they will remain peripheral to and less supported by the larger organizational
team.

• To obtain and retain financial sponsorship. IT projects often receive funding not
from the IT budget but from the budget of one of the core operating units of
the organization. For example, a marketing division might fund a Web-based
product sales system or a vice president of manufacturing might pay for a
supply chain management system. To succeed, a project must obtain a spon-
sor who will pay for the project and the project must retain the support of the
sponsor even if and when predetermined conditions change, as often they
will. The team should demonstrate that it understands the organizational val-
ues and that the project will contribute enough to organizational values to
warrant the support of the sponsor.

• To justify the recommended solution. Managers are usually cost- and value-
oriented. They resist spending money without understanding the value they
will receive in return. Accepting an IT recommendation incurs costs, often
large costs, and non-IT managers seldom understand fully either the costs or
the expected value. The managers must rely on the IT professionals to sup-
ply sound organizational judgments. IT teams must justify projects and rec-
ommendations on organizational values not on the merits of the technology
or the elegance of the solution. Values can encompass a range of things. A
police department might value a reduced crime rate while an art museum may
measure success in increased attendance.

• To make good ongoing project decisions. The project team makes a continuing
sequence of decisions. How much functionality, performance, security, and so
forth is enough? How important is an audit trail? And so on. The team should
make decisions in the context of the impact of a feature on organizational
values. Some decisions may involve trade-offs between system features and
project resources, and the clients may not understand the consequences of the
choices. When the consequences are significant, the team must present the
choices to the clients and sponsors and explain the potential impact on orga-
nizational values.

The Organization Case
The team collects information and prepares an organizational case to establish and
maintain the alignment of the project with organizational values. The organization

case for strategic alignment rests on three components: the organization, goals
and objectives, and project contribution. These dimensions provide a way to
align any project, IT or other, with the goals of the organization.

The Organization

As noted, the team needs to understand the organization to gain acceptance and
credibility. Senior managers seldom talk about DFDs, foreign keys, or Java. Man-
agers talk about customers, employees, products, plants, equipment, operations,
sales, service, billing, profits, and stock prices. Some of the organization attrib-
utes that could hold importance for the project include mission, vision, culture,
organization charts, authority and responsibility, available resources, legal and
regulatory issues, security, glossary of key terms, and a description of current
operations. The project may result in changes to the organization. Only a few
aspects of the organization will produce a major impact on the project and those
few are the critical ones to understand and document. For additional discussion
of organizational style and its impact on information systems, see Kendall, 2002.

The Organization’s Goals and Objectives

The central issue of alignment is to assure that project outcomes support the
goals and objectives of the organization. A goal is an expression of a commit-
ment to a state that the organization wants to achieve, for example, to become
more profitable is a goal, albeit an elusive one, for every airline. Typical high-
level goals refer to such areas as profits, cost-control, revenue enhancement,
sales, quality, service, and customer satisfaction. An objective is a concrete, mea-
surable action that supports that goal, for example, to increase airline revenues
by increasing aircraft utilization with faster turnaround and better scheduling.
When possible, objectives are stated in terms of such outcome measures as prof-
its, revenue, costs, turnaround time, sales, inventory reduction, and more. These
outcomes provide the basis for evaluating success in the organization and for
the IT system.

Some organizations conduct periodic strategic planning exercises in which
they review past operations, evaluate challenges and opportunities, and identify
goals and objectives for the next time period. Other organizations identify goals
and objectives in less formal ways. The goals and objectives that come out of
these high-level meetings drive the prioritization process for investments, includ-
ing investments in IT. Identifying the strategic framework of goals and objectives
that relate to the project forms a critical step in determining value for a project.

Project Contribution

The final and critical step to strategic alignment consists of identifying the con-
tribution of the project to the strategic objectives of the organization. At this
point, the team understands the organization and has selected some goals that
relate to the project. The team either finds or formulates objectives that (1) lead
toward the selected goals and (2) are facilitated by the project. Often, the objec-
tives target improving a part of the organization that does not function as
well as desired. In this event, the team identifies the problems and constructs

Chapter 6 Understanding the Client’s Problem and Organization 197

198 Part Two Project Definition

features for the proposed system that will improve performance with respect
to objectives. This process is known as performance-oriented design.

The team should identify specific, tangible performance measures that the
proposed system will impact. The performance measures must relate directly to
the objectives. For example, if the team selected an objective of reducing the cost
of selling the product, then the appropriate performance measure is sales cost.
Some objectives are more difficult to measure; for example, to improve customer
satisfaction by giving the customer access to an electronic ordering system.
Accounting standards, laws, and regulations do not define how to measure cus-
tomer satisfaction. Perhaps customer satisfaction can be measured by surveys or
by an increase in orders, but measuring customer satisfaction is more difficult
than measuring costs.

Project Success

The sponsor and/or lead client formally or informally will hold in mind a set of
criteria for a successful project. The project success measures may involve one
or more organizational performance measures, for example, the project is a suc-
cess if sales costs are reduced by 10 percent. Often measures of success also
involve project parameters, such as to complete the project on time and on bud-
get. Student projects involve an additional success measure not directly related
to the client, such as to meet the grading criteria for the instructor. While teams
may pursue many goals, most teams want to achieve a “successful” project.

Determining Alignment
The team normally performs strategic alignment only once at the beginning of
the project. The team conducts the strategic analysis early in the project because
it provides the context or a frame of reference for addressing the critical issues
in the following stages. The team uses the strategic alignment analysis through-
out the project to identify features for inclusion in the system, to set priority of
activities in the project plan, and to evaluate the merit of system alternatives.
The mission, objectives and goals, and key performance measures for the orga-
nization normally will remain constant over the life of a project.

Understanding the Organization

The team starts the alignment process by making sure that it understands the
organization’s values. Teams that already work in an organization will start with
some organizational understanding. Teams from outside the organization must
start at the beginning to build understanding. The process of understanding an
organization usually starts with an understanding of the mission and vision of
the organization and sponsoring unit. The mission statement tells the current
major focus of the organization. Mission statements, when they exist, often
appear in such documents as annual reports and/or on the Web. These state-
ments should provide insight on what the organization thinks is important or,
at least, what the organization wants other people to believe is important.

The vision of an organization is the understanding or picture of what the
organization wants to be in the future. Sometimes vision statements appear in

documents; other times the vision is a general agreement among key members
of the organization. The client may provide organization charts, insight into orga-
nizational culture, procedure or standards manuals, and other information on
the organization. During project definition, the team will analyze current oper-
ations as another way to gain an understanding of the organization.

Organizational culture can impact the project. Organizations, like people,
develop dogma, preferences, and opinions that become part of the decision struc-
ture of the managers in the organization. For example, some organizations pur-
chase applications whenever possible while others prefer to build their own.
Some like to make decisions fast using mostly experience and intuition with lit-
tle if any formal analysis. Others demand extensive analysis and a comprehen-
sive written review for even minor decisions. Tolerance for risk is an important
part of culture. In organizations that are risk adverse, the team wants to pursue
and recommend low-risk alternatives. Clients often provide insight into the orga-
nization’s culture during discussions. For example, the client may say something
like “We always do it this way” or “We never do that.”

Identifying Objectives and Goals

A critical step in aligning a project to an organization is determining what the
organization values most. Goals and objectives are more precise statements of
organizational values related to the organization’s perceived vision and mission.
If the organization practices formal strategic planning, then the senior executives
meet periodically to revise and review the objectives. Objectives usually trans-
late into specific assignments for senior managers on which their performance is
measured. Supporting critical organizational objectives is the highest priority of
most potential sponsors.

Some organizations have a documented strategic plan with stated goals and
objectives and may share the plan with the team. Organizations also may have
a strategic IS plan that identifies and prioritizes IS projects and/or systems in
support of the organization’s strategic objectives. Clearly the team should col-
lect any information on strategic plans that the client is willing to share. If large,
multiple-page strategic plans exist, the team can extract the relevant parts for the
project.

Other organizations, particularly smaller ones, may not prepare a strategic
plan. In this event, the team can work with the client to obtain a mutually accept-
able strategic framework. Asking a client to list goals and objectives may elicit
little useful information. Clients often are preoccupied with the most current hot
issues and may look blank when asked to list their goals and objectives. In many
situations, team members will need to infer goals, objectives, and other values
from their discussions with the clients. The team can develop their own list and
ask the client to comment and expand on the list. The mission statement may
provide the starting point for a discussion of goals and objectives with the client.
Mission statements can indicate what an organization thinks are important val-
ues; however, the team should approach mission statements with some care. Mis-
sion statements often present public relations messages rather than a careful
recitation of organizational goals, objectives, and values.

Chapter 6 Understanding the Client’s Problem and Organization 199

200 Part Two Project Definition

The team may end up with a list of goals and objectives, only some of which
hold any relevance to alignment issues for any particular project. Some of the
objectives may not match up with the project in any way. The team should focus
on the important objectives that the project can support. For example, a reserva-
tion system for an airline may support the objectives of reducing operations cost
and decreasing oversold flights but probably brings little value to an objective
of improving refueling safety. In addition to identifying the specific objectives that
relate to the project, the team also wants to identify the objectives valued by a
sponsor or potential sponsor of the project. The most important objectives for a
marketing sponsor probably will differ from those valued by the vice president
of operations. In summary, a good project team focuses on the several objectives
that (1) the project sponsor values and (2) the project can support. A clear state-
ment of these objectives will appear in the project definition report. The team may
wish to record the goals and related objectives in a table similar to the one shown
in Table 6.1 for a video rental store.

Identifying Project Contribution

Once a team has a clear idea of the relevant objectives, the team can move on to
identify how the project can help achieve the objectives. Most organizations pro-
duce something: a product, a service, a capability, or an idea. The client’s prob-
lem often refers to a part of the organizational process that performs at a lower
than desired level. Often, the objectives target improving a part of the process.
The team’s task is to understand the production process for the product or ser-
vice, to identify the parts that do not work correctly, to relate the problems to
objectives, and to identify how the features of the proposed system can help to
achieve the objectives. The team identifies the features of the proposed system
as part of project definition.

A possible approach to identifying how the system can contribute contains the
following steps:

1. Obtain from the Goals and Related Objectives table the list of objectives rele-
vant to the proposed system that the team and/or client identified.

2. Obtain the list of features for the proposed system. A discussion of obtaining
features for the proposed system appears in the Project Definition Report sec-
tion of this chapter. The analysis at this point is conceptual—as free as possi-
ble of technologies. Avoid features that involve or imply a specific technology
unless the technology is a basic part of the project statement from the client.
If the client wants a Web site, the Web site part of the technology is given, but
such more specific technologies as Java should not appear as features.

TABLE 6.1
Goals and
Related
Objectives for
a Video
Rental Store

Goals Related Objectives

1. Increase profitability 1.1. Reduce the labor cost of renting and returning videos

1.2. Reduce the cost of nonmembers renting and not

returning videos

2. Increase customer satisfaction 2.1. Reduce the average checkout time for a rental

3. For each objective, analyze and, if possible, quantify, the impact of each of
the features for the proposed system on the objective. In order to measure
impact, a goal must have a performance measure. In a well-designed strate-
gic plan, objectives are stated in terms of measurable objectives. If the orga-
nization currently has no such measures, the team will need to work with the
client to generate performance measures. Most people think first of cost sav-
ings, but other measures may hold more importance in some situations. The
team and client must work together to determine appropriate measures and
the project’s potential for improving the measures.

4. Each new feature should impact at least one of the objectives.

a. If a feature does not match up with an objective, review the objectives to
see if one is missing. Remember that each objective must contribute to one
of the organizational goals. If no objective matches the feature, consider
deleting the feature. Discuss the situation with the client before acting.

b. If an objective exists with no features that impact it, then review possible
features for the new system to try to find a feature that will impact the
objective. If no reasonable features appear to impact the objective, drop the
objective from the analysis.

5. Try to generate an estimate of the impact on each objective. Sometimes the
impact on the objective comes from a single feature; other times the impact
may come from a combination of features or from the system as a whole. If
the objective is to increase sales, then obtain an estimate of the impact on
sales—perhaps, sales will increase by at least 5 percent. The client is the best
source of such estimates.

The process reinforces the concepts of performance-oriented design. The key
features of the proposed system relate to improved performance measures for
objectives of the organization. The team can place this information in a table such
as the one shown in Table 6.2.

When the table is complete, the team may have a large number of
feature/objective impacts. In reports, the team should discuss and stress the most
important or higher impact ones. The team even may wish to eliminate the less
important objective/feature impacts in the project definition materials prepared
for the client.

Chapter 6 Understanding the Client’s Problem and Organization 201

TABLE 6.2
Feature
Impact Table
for Video
Rental

Objective Measure Feature Impact

1.1. Reduce the labor Labor cost Automate process $50,000 per year

cost of renting and

returning videos

1.2. Reduce the cost of Cost of Access rental $5,000 per year

nonmembers renting unrecoverable process only from a

and not returning videos videos confirmed member

2.1. Reduce the average Checkout time Automate process Decrease from an

checkout time for a average of 4.5

rental to 1.5 minutes

202 Part Two Project Definition

Project Success

Sponsors and, with student projects, instructors determine the success of a proj-
ect. The team may believe that the project was a resounding success while the
client is disappointed. Alternatively, the team may regret the lack of more ele-
gance in the solution while the client believes that the solution is wonderful. The
folklore joke about surgeons, “The operation was a success, but the patient died,”
sums up the dilemma. The client wants a healthy patient, that is, an outcome
that solves his/her problem, not a project with a dead patient that the team
thinks was a success.

The team discusses the project success criteria with the sponsor or key client.
The team should ask in detail about the deliverables the client wants, the bud-
get and time constraints, any organizational performance objectives that the
client expects, and the trade-offs important to the client. For example, the client
may say, “I absolutely must implement the solution by a certain date. Do the
best you can to include all the features in the specs. But if you cannot do every-
thing, drop feature A first, then B if needed, but above all make sure that you
meet the completion date.” A good definition of success criteria goes in the state-
ment of work.

The instructor often expresses the educational or learning success criteria for
a project in the course syllabus, assignments, grading sheets and instructions,
and standards manual. The instructor’s learning success criteria may differ sig-
nificantly from the ones expressed by the client. The learning objectives include
acquiring the knowledge appropriate to carry out larger and more complex proj-
ects than the ones typically used for class.

THE PROJECT DEFINITION REPORT

The project definition report sets forth the team’s understanding of the client’s
problems and requirements in an organizational context. At this point the
team focuses on understanding the client and helping the client to express
fully the client’s views and requirements. The team will have an opportunity
during proposed system design to innovate or create solutions for the client’s
problems.

The project definition report is “client-centric” in that it reflects only the
client’s views and desires. Many, if not most, projects take longer and/or cost
more and/or produce less than expected because the team does not identify fully
and correctly the client’s desires and requirements. The difficulties may result
from the client’s inability to express requirements or from the team’s lack of focus
and effort to understand the client or from a combination of both. The report
normally contains the following materials:

• Title Page

• Table of Contents

• Executive Summary

• Introduction

• Project Definition

• Introduction

• Project Statement

• Strategic Alignment

• Functions and Features

• Constraints

• Current Situation (see Chapter 7)

• Proposed System (stub)

• System Delivery (stub)

• Appendix A. Statement of Work (see Chapter 3)

• Appendix B. Documents supplied by the client

• Other Appendixes as needed

The team may select from several options for the project definition report. The
option shown above uses the format in Chapter 3 for the final report with the
Proposed System and System Delivery sections stubbed. A stubbed section con-
sists of a section heading with no content or the phrase “To be prepared later.”
A second option is to omit the Proposed System and System Delivery section
headings. The team manager may specify the format that he or she wants.

The following materials discuss the project statement, strategic alignment,
functions, and features for the proposed system, as well as the constraints and
an exploration of alternatives in more detail. The introductory materials (execu-
tive summary, table of contents and introduction, and the statement of work) are
covered in Chapter 3. A discussion of learning from the current situation appears
in Chapter 7.

Much of the project definition material appears in narrative model or text rep-
resentation. Clients find text descriptions and tables easy to understand. In addi-
tion, standard graphical models to represent such things as a project statement or
strategic alignment do not exist. In the current situation materials, both narrative
and graphical models are used because standard graphical data models (ERDs)
and process models (DFDs) do exist. Creating both narrative and graphical mod-
els provides a powerful tool with which to check for consistency and completeness.

Project Statement
The project statement defines the project in a short paragraph. Subsequent sec-
tions on features, constraints, and the current situation expand and clarify the
basic problem statement. A project statement for the GB Video rental system
might read

Design and acquire a new computer-based system for the rental and return of
videos because the current manual system maintains inadequate records and is
too slow. The new system should address improved customer service and lower
handling costs for each transaction.

The client normally specifies the project statement although the team may
wish to restate or expand on it for clarity and completeness. Ideally, the project

Chapter 6 Understanding the Client’s Problem and Organization 203

204 Part Two Project Definition

statement should address only logical requirements and not specify specific solu-
tions, software, or hardware. In practice, the client often specifies general or spe-
cific technologies, such as “I want a computer-based system” or “I want to go
from paper records to images on optical storage.”

Strategic Alignment
As noted in the previous section, the team normally performs a strategic analy-
sis of the organization only once, at the beginning of the project. The strategic
analysis focuses on the strategy and values of the company or organization and
not on the details of the information system. The team uses this analysis
throughout the rest of the project to identify features for inclusion in the system,
to set the priority of activities in the plan, and to evaluate the merit of system
alternatives. The preceding section also describes the four components for the
organization’s case for strategic alignment: (1) the organization; (2) goals and
objectives; (3) project contribution; and (4) project success criteria. The team dis-
cusses each of these areas in the strategic alignment section of the project
definition report.

The Organization

The organization section highlights the parts and aspects of the organization
that relate closely to the project. Typical content for the section can include mis-
sion statement, vision, organization description, and organization charts. The
team should include any formal mission statement if one exists, but augment
general mission statements with a more focused vision statement about what the
company actually wants to achieve. For example, if GB Video offers the general
mission statement, “Serve the Customer,” the team can complement this state-
ment with a vision: “Offer for rental the best available selection of videos in the
market area at competitive prices and with better customer service than com-
petitors.” The description of the organization identifies products, services, loca-
tions, and organizational structure including the relationship to a larger organi-
zational unit if relevant. The team can include an organization chart or describe
a simple organization in text.

The organizational material should maintain a focus on the project. For GB
Video, the section describes the rental and return areas of the organization—the
retail stores, clerks, and so on. A detailed description of the purchasing and per-
sonnel parts of the GB Video organization may offer less value for a rental sys-
tem project.

The Organization’s Goals and Objectives

In the project definition report, the team identifies the goals for the organization
and the objectives that may help the organization to achieve the goals. The team
may wish to try to identify the full set of goals for the organization and to iden-
tify only those objectives that relate to the proposed system. Some of the objec-
tives probably will not relate to the project, and some of the goals may not match
any of the objectives that relate to the project. The team can retain the non-
matching goals and objectives or can omit them. The client may want to see a

full set of goals and objectives, including ones that do not relate directly to the
project. Objectives that are supported by features of the proposed system war-
rant a central focus and full discussion. A table similar to the one in Table 6.1
can focus and clarify the discussion of goals and objectives. The table should
serve as the basis for the discussion not as a substitute for a fuller discussion.

Project Contribution

A critical step to strategic alignment consists of identifying the contribution of
the project to the strategic objectives of the organization. As described earlier in the
chapter, the strategic alignment analysis follow a top-down model—start with
the mission and vision of the organization, and work down to how the proposed
system features contribute to objectives. The proposed system contribution sec-
tion in the strategic alignment part of the project definition report is usually stated
in the reverse order following the flow of Figure 6.1. The team notes that the pro-
posed system contains features that impact the company’s objectives and the
associated performance measures and that the objectives support organizational
goals.

The team provides the following information about project contribution:

• Features of the system and the objectives that each feature supports.

• Specific, tangible performance measures for each objective that the proposed
system will impact.

Table 6.2 offers a convenient way to summarize and highlight the content of the
discussion of objectives, features, and performance measures.

Project Success Criteria

The team provides a detailed discussion on the project success criteria as defined
by the sponsor. The discussion expands on the summary information on project
success criteria in the statement of work.

Proposed System Features
The solution process starts with and builds on what the client wants to accom-
plish, or on solving the client’s problem. The team will refine and expand as

Chapter 6 Understanding the Client’s Problem and Organization 205

The Proposed
System

Features and
Functions

Objectives and
Measures

Organizational
Goals

Contains

Impact

Contribute to

FIGURE 6.1
Proposed
System
Contribution
Model

206 Part Two Project Definition

necessary the client’s set of features during the proposed system phase to arrive
at final specifications for the proposed system.

The client may identify several kinds of desired features for the proposed sys-
tem including:

• System functions include the organizational functions that the new system
should and should not include. Functions are the activities the organization
performs to accomplish its mission. For example, GB Video might state that
the proposed system should include functions for enrolling new members,
renting videos, returning videos, and preparing reports and should not
include functions for keeping accounting records, managing inventory, pur-
chasing videos, billing customers, and sending out advertising.

• System structure encompasses, for example, automating the input, automat-
ing the processing, entering input data only once, storing the data in a com-
puter database, having only one customer database for multiple users, and so
forth. Information systems provide data and processes to support the perfor-
mance of organizational functions.

• System performance covers features to eliminate errors, reduce the time to
process a transaction, strengthen security, and so on. The performance of the
information system can determine how well the organization carries out the
functions for its mission.

The team works with the client to identify features for the proposed system.
The team can begin by asking the client to identify the desired functions, struc-
ture, and performance. In a number of cases, the team will need to use the client’s
answers as a starting point, and then develop the specific features and present
them to the client for approval. For example, the client may specify only some
general goal, such as to automate the current manual system. With a general
goal, the team will need to work with the client to develop a more specific and
complete set of feature statements. When the client asks the team to automate
the current system, the client may mean that the desired functions for the pro-
posed system are the same as for the current system. However, often the client
also wants changes in some functions and just assumes that the team will under-
stand what is wanted. Miscommunication between client and team causes a large
number of the problems that arise during system solution.

Often the goals as stated by the client relate to eliminating or mitigating prob-
lems with the current system. The team can gain significant insight from think-
ing about how to improve a current system. However, whatever the source of
the features, the team also should relate system features to the organizational
goals and measures identified in the strategic alignment.

Sometimes the client will propose incompatible or impossible features, for
example, eliminating all the data errors, developing a system with maximum
functionality at minimum cost, or developing an airline reservation system with a
function that will predict exactly how many passengers will show up for each
flight. No matter what system the team builds, some data errors probably will
occur and some flights will end up over- or underbooked. And the system with the
best or fullest set of functions probably will cost a lot more than the “minimum

cost” system. The team can work with the client to reach more meaningful state-
ments, for example, “Eliminate 99 percent of the data errors in the current sys-
tem or include as much functionality as possible within a budget limit.”

The team should place major attention on identifying the features that the
client wants. The team can ask a lot of questions, talk with the relevant people,
and collect copies of all of the relevant documents. However, despite the best
efforts of the team, the client may and often does change desired function, struc-
ture, and performance as the project goes along.

Constraints
The team can devise many proposed solutions that contain the features desired
by the client. Features together with constraints define the set of feasible solu-
tions to a client problem as shown in Figure 6.2. A features set acceptable to the
client identifies a subset of solutions from the universe of all solutions relevant
to the problem area, for example, the area of video rental. The constraints iden-
tify a second subset of solutions that the client can afford or is willing to con-
sider. The overlap, if any, of the features and constraints subsets defines the set
of acceptable solutions—ones that provide the desired features and that the client
is willing to consider. After further analysis, one of the acceptable solutions
becomes the recommended solution.

The model shown in Figure 6.2 provides a good perspective for purchased
solutions with the rectangle showing all the available package solutions for the
area, the circle showing the ones with the desired features, and the ellipse show-
ing the ones within the client’s constraints. Some of the solutions with the
desired features may not meet the client’s constraints, perhaps, for example, they
are too expensive. And some of the solutions that meet the client’s constraints
may not contain the desired features. The recommended solution contains the
desired features and exists within the constraints. For a build option, the num-
ber of possible solutions probably approaches infinity. The team normally
focuses on a limited set that spans the space, for example, the solution with the
best of everything, the minimum cost solution, the low-risk solution, and sev-
eral in the middle solutions.

Chapter 6 Understanding the Client’s Problem and Organization 207

All of the possible solutions for an area or problem

Solutions that contain
the features set
wanted by the client

Acceptable
solutions The

recommended
solution

Solutions that
meet the client’s
constraints

FIGURE 6.2
The Role of
Features and
Constraints in
Finding
Solutions

208 Part Two Project Definition

Constraint Types

The team, as with most issues, should ask questions about and explore possible
constraints with the client. The team should come prepared with as much infor-
mation as possible. The simple question, What are the constraints? may not elicit
much of a response from the client. The well-prepared team can move from gen-
eral, open-ended questions to much more specific questions, for example, What
is the maximum amount you are willing to spend for the new system? Exam-
ples of possible constraints include the following:

• Budget. This is the maximum amount that the client wishes to spend in total
and/or for various parts of the system solution effort.

• Time. This is when the client wants a particular deliverable. For student proj-
ect teams, the client’s time line may not match the class time line.

• Function. Is the client willing to change the way the process operates, to sim-
plify the system, or to fit an existing package?

• Organization. Does the client wish to keep the current organization or is change
possible?

• Physical infrastructure. Should the team plan to use the existing hardware, soft-
ware, and communications or is change possible?

• Procurement options. Which options will the client consider: keep and refine
the existing system, build a solution in-house, buy a package, outsource devel-
opment or services?

Solution Options

The set of procurement options that is acceptable to a client represents an
important and often difficult-to-define constraint. The team wants to spend time
on only those solutions that the client will consider; however, early in the proj-
ect the client may experience difficulty in identifying the solution constraints.
For example, the question “Will you consider a package solution?” may receive
a no answer because the client has little knowledge about packages. If the team
briefly describes several packages that the team identified as possible solutions,
the client can provide a better-informed reaction. The team has a due diligence
responsibility—the responsibility to make certain that the client understands the
available options.

Even at this early point, the team should consider the feasibility of the solu-
tion options. Some options may cost too much or take too long or require more
skills than are available. As shown in the spiral model for system development
(see Chapter 3), the team will revisit the issues of alternatives and evaluation at
each stage of the project as additional information becomes available.

When the strict enforcement of a feature or constraint appears to produce a
negative impact on the proposed system, the team may wish to revisit the
requirements with the client. For example, the team may identify an attractive alter-
native that supports the strategic objectives that the client values, but the alter-
native lies outside the acceptable set of solutions; perhaps the cost is slightly
higher than the client’s budget limit or the solution is missing a desirable but
noncritical function. Often clients will consider changing the conditions if the

team presents a good argument. Before raising questions, the team should col-
lect the relevant information and do the analysis, that is, do the homework first.

Scope
The combination of the desired features with the constraints largely define the
scope of the project. Figure 6.2 graphically represents one dimension of project
scope—the acceptable systems that contain the desired features and fit within
the constraints. Other aspects of scope include such things as the team’s required
skills, effort, and time to complete the project. Because many clients know what
makes up a reasonable scope for a project, the project as defined by the client
may encompass just the right scope for the team. However, the client may define
a project with a scope that doesn’t work. Scope problems include:

• The project is too large and requires more effort than is available. For example, a
request by GB Video for a student team to redesign the entire information sys-
tem including rental/return, purchasing, inventory, accounting, billing,
accounts payable, personal payroll, advertising, and market research proba-
bly represents a scope beyond the effort available for most student teams in
a one-semester time frame.

• The project will take too long. Some projects with a reasonable total effort
requirement involve several sequential stages and take a long time regardless
of how many people are assigned. For example, GB Video might ask a team
to (1) conduct a mail survey of the GB customers to learn about video pref-
erences and (2) create a procurement system that responds to the customer
preferences determined from the survey. Either one or even both projects
might fit within a reasonable scope except for the sequence constraint. The
team must conduct and analyze the survey before the team can define require-
ments for the procurement system.

• The project is technically too complex and/or demands skills the team does not pos-
sess. Designing a high-volume travel reservation system or a loan scoring sys-
tem may involve such very complex activities as high-volume transaction pro-
cessing, business policies on booking, overbooking, cancellation, or decision
making on establishing scores. Even a system that requires the use of a com-
plicated programming language, network, or database environment may pre-
sent technical and skill difficulties beyond the team’s ability to master in the
available time.

• The project appears to address the wrong issues. For example, GB Video might ask
the team to set up a computer database to hold videotape and DVD rental
records. GB Video proposes to continue creating written records during the
rental process and then keying the data from the paper forms into a computer
database. This scope probably offers few benefits. The more relevant scope
might address capturing the data in electronic form during the rental activity
and then storing it in the computer database.

• The project is trivial. For example, a project to design for GB Video a new paper
file card to hold the information on each video gives a student team little
opportunity to learn about project and system issues and to demonstrate mas-
tery of the topics in the course.

Chapter 6 Understanding the Client’s Problem and Organization 209

210 Part Two Project Definition

All of the scope mismatches discussed in the preceding list will cause prob-
lems for the team. Too large or too complex projects will cause the team to either
go without sleep and food for the duration of the project and/or fail to complete
the project. A project that addresses the wrong issue may result in client disap-
pointment at the end. The following equation represents a first approximation
to the likelihood that a project will succeed:

Project success index

For a given project, more time and or more people (i.e., more available effort)
increase the probability of success. For a student project with a given time period
and number of people, decreasing the project size and/or complexity increases the
likelihood of success. Obviously a number of other factors, for example, people
skills, management support, strategic relevance, and others, enter into the index.

Before finalizing a statement of work with the client, the team should care-
fully examine the scope issue with its manager. A wise team makes conservative
commitments. Changes in scope can create problems with the client. The client
may agree to scope reduction at the beginning of a project but may feel cheated,
annoyed, or outraged if the team wants to reduce the scope near the end. The
manager should review and agree to scope changes prior to discussion with the
client.

Examples of Project Definition Materials
Figure 6.3 shows examples for the GB Video case of a project statement, strate-
gic analysis, problem analysis, features, and constraints. Figure 6.3 provides only
an illustration. Materials prepared by teams in practice may be more compre-
hensive. While the sections may remain the same for all field projects, the con-
tent and emphasis may vary. Each team should tailor their material to the client’s
specific problem.

WORKING WITH THE CLIENT

Starting with the project definition stage and at multiple other points through-
out the project, team members will interact with the client. Because contact with
the client represents a high-priority activity to begin work, the team should
schedule an initial visit as soon as possible. Little other work can proceed until
after one or more visits. If the team puts off the initial visit, the entire project
may suffer.

The client wants to solve a problem with a goal of improving his or her orga-
nization. Clients are experts in the organization and its mission and operations,
but frequently not experts in information technology. The client’s interest in IT
may extend only to its usefulness in solving the client’s problem. The client has
agreed to work with the team for one specific purpose—to help the team arrive
at a solution to the problem. Working with the team may take a significant
amount of the client’s time and concentration.

(Time available People assigned)

(Size Complexity)

Chapter 6 Understanding the Client’s Problem and Organization 211

Project Statement

GB Video wishes to automate their current manual system for processing videotape
and DVD rentals and returns. Reporting will be handled by a separate system. The
new system should address improved customer service and lower handling costs for
each transaction.

Strategic Alignment

The team worked closely with Mr. Cosier to determine the strategic alignment for the
project. Mr. Cosier has approved all statements on goals, objectives, and impacts of
features.

Organization

Mr. Cosier, the owner of GB Video, stated, “The mission of GB Video is to serve the
customer.” The vision of GB Video is: In the markets where GB owns stores, become
the leading seller and renter of videos and related supplies with the best selection of
videos at competitive prices and with better customer service than competitors.

GB Video, with headquarters in Jackson, Oklahoma, operates three video stores in
towns of about 10,000 people. Each store operates largely independently although the
headquarters performs some functions for all three stores, for example, payroll,
purchasing, and accounting. The company employs 37 people and realized revenues
of $1.5 million and profits of $133,000 last year.

The stores operate from 10 a.m. to 10 p.m. except on Sunday when the hours are
12 noon to 10 p.m. Each store has a store manager and the store managers report to
Mr. Cosier. Within a store, two assistant managers and a number of full and part-time
clerks report to the store manager. The assistant managers are in charge of store oper-
ations on shifts when the manager is not on duty. The assistant managers and clerks
perform any or all of the store functions as assigned by the manager on duty—serve
customers, shelve new videos, shelve returned videos, send overdue reminders, etc.

Goals and Objectives

Discussions with Mr. Cosier and his staff people identified the following strategic goals
and objectives. GB wants to increase profit to 10 percent or more of revenue and to
increase sales by 5 percent per year after adjusting for inflation. The profit increase
will result from reducing the costs of renting and selling merchandise and from
economies of scale as the business grows. Mr. Cosier is in the process of renegotiat-
ing the leases for his stores and expects to save money for current and future stores
with lower rent. The 5 percent sales increase will result from offering customers fair
prices—at or slightly below those of competitors and providing faster checkout service
and a wider range of selections than competitors. Mr. Cosier also wants to begin a
targeted direct mail marketing effort using data about customers and rentals. The cus-
tomer and rental data also will allow the purchasing department to do a better job of
stocking the videos that are most in demand. He believes that these actions will

FIGURE 6.3 Selected Project Definition Report Materials for GB Video

Page 1

212 Part Two Project Definition

increase the number of members, the number of visits per member, and the average
number of videos rented on each customer visit.

The GB Video goals and objectives are summarized in the table below. Some of the
information in the table comes for the proposed system features discussion in the next
section of this report.

GB Video Goals Related Objectives

1. Increase GB profitability to 10% or 1.1. Reduce the labor cost of renting and
more of revenue returning videos

1.2. Benefit from economies of scale

1.3 Lower rent for stores

1.4 Reduce cost of nonreturned videos
rented to unknown nonmembers

2. Increase sales by 5% a year or 2.1. Competitive prices
more after inflation adjustments

2.2 Faster checkout

2.3 Tie video inventory to customer
preferences

2.4 Targeted mail advertising to members

Proposed System Contribution to Performance

Mr. Cosier states that the new system is mission critical for GB Video. Mr. Cosier plans
to open additional stores if the new system results in improvements. The new
information system should increase profits by reducing labor cost per transaction and
eliminating the cost of videos rented to nonmembers and not returned. Faster checkout
service and better selections can lead to increased customer satisfaction, more mem-
bers, and higher sales. GB Video looks at labor costs, profits, and revenues per store
as major performance measures and at the total number of active members and the
number of rentals per member. The accompanying table summarizes the impact of
proposed system features on objectives. The impact target data in the table are
derived from discussions between Mr. Cosier and the team and approved by him.

The new system will not affect the rental cost of stores. The system is not involved in
setting rental prices. As a result, objectives 1.3 on store rental costs and 2.1 on pricing
do not appear in the table and are not discussed in subsequent analysis.

Page 2

Chapter 6 Understanding the Client’s Problem and Organization 213

Objective Measure Feature Impact Target

1.1. Reduce the labor Labor cost Automate the $50,000 per year in
cost of renting and rental/return labor cost savings
returning videos processes

1.2. Benefit from Increase in Automated system Increases in costs
economies of scale revenues versus handles increased equal to 85% or less

increased costs volume with little or of increased revenues
no new cost

1.4 Reduce the cost of Lost video costs System must confirm $5,000 per year
nonreturned videos member before

renting

2.2 Faster checkout Checkout time Automate process Decrease from an
average of 4.5 to 1.5
minutes

2.3 Tie video Increase in sales; Rentals database 5% increase a year
inventory to customer increase in available to
preferences members purchasing department

2.4 Targeted mail Increase in sales Rentals and customer 5% increase a year
advertising to databases available
members for use

Project Success Criteria

Discussions with Mr. Cosier led to the following measures of success for the project.
Mr. Cosier will consider the project a success if the team:

1. Completes the project on time. Since the team will not handle implementation,
success is defined as submitting a complete final report by April 23.

2. Identifies and fully specifies a solution that provides the features desired by the
client within the client’s constraints, or demonstrates clearly that no such solution
exists. If no solution can be found, Mr. Cosier wishes to know this information as
soon as possible so that he can consider modifying the requirements.

While Mr. Cosier feels strongly about the profit and sales goals, he understands that
many factors other than the project influence profits and sales. He will consider the
project a success if the team accomplishes items 1 and 2 above.

Features for the Proposed System

The team identified the following features based on discussions with the client
representatives. As shown above, these features contribute to the organizational goals
identified in the strategic analysis—increased profits and sales.

Page 3

214 Part Two Project Definition

The client wants the proposed rental/return system to include the following functions:

1. Membership
a. Collect data and store data on new members.
b. Update data for existing members.
c. Issue a member card to members.

2. Rental
a. Rent tapes only to members.
b. Create and store a rental record with identification of member and video.
c. Adjust an inventory record to reflect the rental.
d. Issue a receipt to the customer/member.

3. Return
a. Update the rental record and the inventory record to reflect the return.
b. Calculate the overdue charge if any.

The client wants the processes to accomplish the above functions changed so that
they require less clerk time. The client also requests that the proposed system contain
the following features:

1. Automate the entry of video ID and member number. The client asked the
team to look at bar code scanning.

2. Automate the entry of the current date/time for rental and return.
3. Reduce the time the clerks spend working with the paper files—the files of

return forms, videos, and members.
4. Eliminate duplicate manual data entry and storage, for example, entering the

rental date and return date on both the video card and the rental form.
5. Eliminate the cost to manually send data to accounting.
6. Reduce the cost of separate credit card and rental transaction processing.
7. Move all reporting functions out of the rental/return system.
8. Automate the sending of overdue notices to customers as part of the rental

system.
9. Provide rental data for a data warehouse to be used by purchasing.

10. Provide rental and customer data for a database for marketing department.

Constraints

Mr. Cosier states that GB Video will consider solutions that will realize a payback in
two years or less and cost less than $200,000 up front to acquire and implement. The
system should be in full operation in one year if possible.

GB is willing to consider changes in function and organization if the changes provide
significant benefits to GB. In particular, GB wishes to transfer reporting and overdue
notice functions to the accounting group.

Adequate air-conditioned space in the headquarters exists for a server and network
room. GB will acquire the equipment if that is the best alternative. Since GB currently
owns no computers, interoperability with current hardware and software is not a problem.

Page 4

Chapter 6 Understanding the Client’s Problem and Organization 215

GB does not wish to continue with the current system unless all computer-based alter-
natives are prohibitively expensive, i.e., outside the $200,000 limit. The procurement
options that GB will consider include:

1. Package System. Search for a package system that will handle the rental and
return tasks to the client’s satisfaction. GB prefers to purchase a package as long as
the cost to purchase and implement the package including infrastructure does not
exceed $200,000.

2. Contract for Service. Contract with an application service provider (ASP) to provide
and operate the rental and return system. Mr. Cosier will consider contracting with an
ASP if a suitable package is not available or cost-effective.

3. Contract for a Custom Package. Contract with an IT consulting company to create
a custom package program for the rental and return system. Mr. Cosier will consider
this alternative if a suitable package is not available or cost-effective.

4. Build the System In-House. Mr. Cosier states that GB Video has no in-house
capability to build a system. Only if all other alternatives look unsatisfactory is he
willing to consider developing such a capability. He believes that the cost probably
is prohibitive.

Page 5

In return, the team accepts the responsibility to (1) use the client’s time effi-
ciently and to (2) deliver as much value to the client as possible—in the form of
such deliverables as project definition, proposed system specifications, a recom-
mended solution, and a proof of concept demonstration model. The following
guidelines apply to all of the contacts with the clients for any reason and should
help the team to establish and maintain a good relationship with the client. Note,
however, that no guideline works with all the people all the time. Always watch
the client and observe the client’s reactions to what is happening. If the client
expresses or shows any signs of boredom, disagreement, annoyance, anger, or
distress, try to identify the problem and use a different approach.

Professional Behavior
Each team member should demonstrate to the client that he or she is an “infor-
mation systems professional.” Team members should behave in the same manner
as a competent and successful member of a major consulting firm. Professional
behavior includes such conduct as the following:

• Demonstrate a professional regard for the role of the client. Try to react only to the
content provided by and the role of the client. Try to avoid letting the client’s
personality, appearance, and manner influence your views.

216 Part Two Project Definition

In project work, the client is, within reason, always right. Do whatever you
can to provide good information and analysis to help the client explore issues
and alternatives. But when the discussion is over, accept and follow the
client’s decision even when you think it is incorrect. If the client insists on an
unreasonable request or gives too little time or attention to your project for it
to succeed and you have tried every polite and reasonable way to bring about
a change, contact your manager. If the client asks or implies that the team take
any action that appears even marginally unethical or illegal, contact the team
manager immediately.

• Submit professional deliverables. Professional deliverables contain correct and com-
plete content, and consist of neatly printed materials with clean, clear diagrams
and attachments, good writing, and clear, consistent format. Always use spell
check and grammar check, but review carefully what grammar check wants you
to do. Note also that spell check is not a meaning check: It misses all instances
of using a correctly spelled word with an incorrect meaning, for example, “work”
in place or “word,” “he” in place or “the,” or “the” in place of “they.”

• Look like a professional. Appropriate professional appearance covers a broad
range in the modern “business casual” world. A good guideline is to dress as
well as the best-dressed client in the meeting. If you plan to visit with a fore-
man who is in overalls and the president who is in a suit, dress to match the
president. When in doubt, use conservative business attire: suit, coat and tie,
a business dress or pants suit. Unless the client states otherwise, a consultant
can wear business attire to visit any client representative, even a foreman in
a dirty, hot shop; but both you and the foreman may feel more comfortable
when you wear casual clothes.

• Protect your professional integrity. Regardless of what the client or your team
members say or want, do not participate in any activity that you know or sus-
pect is a violation of ethical behavior, is illegal, involves a significant risk of
injury or death, or might expose you to serious personal liability. As soon as
you suspect such a situation, do not participate and contact your manager
immediately.

Prepare for a Visit
Once a project is assigned, the team can contact the client and arrange to meet.
The first visit generally will follow an interview format but also may involve
document collection and observation. Initial impressions are important. When
possible, the team uses the first visit to create a serious, professional, work-
focused model for future visits. The first visit should encompass as much work
as possible. Just showing up and saying hello wastes both the client’s and the
team’s time. During the first visit, the team should outline and, if possible,
schedule the other planned visits including the project definition and final pre-
sentations. The team should explain any schedule constraints to the client and
ask for his or her help in meeting the schedule.

Successful client visits start with good preparation. Normally, the team will
meet to prepare before a visit, especially the first several visits. A team that shows

up at a client meeting without any preparation looks unprofessional, wastes the
client’s time, and wastes the team’s time. As part of the preparation, team mem-
bers should think carefully about what information to collect on each visit. The
client may have little understanding of the information that the team wants. The
team members can make the best use of both their own and the client’s time by
developing a clear map of the information they wish to collect. Looking at the
information needed to (1) answer the questions in the introduction to this chap-
ter and to (2) prepare the final report and final presentation provides a good
starting point on what information to collect.

For most projects, the team will begin by collecting information to prepare
materials on the following:

1. Project plan.

2. Problem statement.

3. Strategic alignment.

4. Goals and features for the proposed system.

5. Procurement options that are acceptable to the client.

6. Constraints.

7. Current situation.

8. Statement of work.

The team should review each of these topics before the first client visit and
prepare a list of questions and requests for information. Much of the aforemen-
tioned information is needed for the project definition report and presentation
early in the project. Other information depends on the procurement options
selected by the team. For example, a team that decides to purchase a solution
may collect extensive information on packages while a team that decides to build
may collect detailed data and process information. The basic message is simple:
Identify what the team needs to do and then collect the information to support
the actions. Collecting all the information that the team happens to encounter
and then looking at what needs to be done can waste a lot of time and jeopar-
dize the project.

Other guidelines for advance preparation by the team include these tasks:

• Learn as much as possible about the organization, problem, and client. The team
should show respect for the client’s time by learning from available sources
before asking the client questions. For example, the organization may operate
a Web site, and articles about the organization or about the industry may be
available in trade publications. The team should study the readily available
knowledge about the organization and the current situation before the first
interview with the client.

• Telephone or e-mail the client to schedule a visit. Unless the client tells the team
otherwise, avoid showing up without an appointment or arrangement. To do
so may suggest that you think the client’s time is less valuable than yours.
Schedule visits as far in advance as possible. In the first meeting with the
client, the team can outline the expected pattern of visits for the course of the

Chapter 6 Understanding the Client’s Problem and Organization 217

218 Part Two Project Definition

project and actually schedule some if not most of them. However, only sched-
ule a visit if a clear and necessary reason for the visit exists. Offer the client
the option to cancel a scheduled visit if it no longer appears necessary.

• Work on building a good relationship with the client’s secretaries and/or assistants.
An assistant may manage much of the team’s relationship with the client. Try
to learn names, telephone numbers, e-mail addresses, and other important
pieces of information. Call staff members by name when you see or talk with
them. Thank them for their help. Staff members can assist you greatly or make
life difficult if they so choose.

• Always prepare an explicit, preferably written, plan and agenda for each client visit.
The team can prepare the written plan in rough draft form or even on the
back of an envelope. List the purpose of the meeting, questions for which the
team wishes to obtain answers, materials that the team wishes to request, and
the agenda, which states who will do what and when at the meeting. If pos-
sible, send the agenda to the client prior to the meeting.

• Each team member who is present at a client meeting should have at least one role:
meeting organizer, agenda presenter, question asker, listener and note taker, materials
collector, or other. Many team members will perform in several roles. If a team
member has no role, the client will wonder why he or she is there.

• The one person designated in your team contract or update thereof as the client con-
tact person should take responsibility for coordinating the visit arrangements with the
client and communicating the arrangement to the other team members. If several peo-
ple contact the client to arrange a visit, a high likelihood exists of conflicting
or confusing messages. The visit coordinator should make sure that all team
members, and the manager if present, receive clear instructions on how to get
to the client’s office and who or what to ask for (person, room, etc.).

• If possible, explain clearly and briefly to the client in advance why you are coming
and what you expect to accomplish. Advance notice gives the client the oppor-
tunity to collect materials and information, thereby saving time and avoiding
possible embarrassment. Providing the client with a copy of the agenda, ques-
tions, and so forth, also can help to focus the meeting.

• Use e-mail and/or the telephone in place of more time-consuming and disruptive in-
person visits when appropriate. Avoid visits to answer a simple question, for
example, “How many workstations are available at the Help Desk? “or” Is
Tuesday April 21st at 2:00 p.m. an acceptable time for our final presentation?”

Make a Visit
Visits give the team the opportunity to observe the organization and build a
good relationship with the client. Visits provide a greater level of flexibility than
e-mail or telephone contacts. If the client mentions a form, report, or document,
the team can ask to see it and/or obtain a copy. Clients also tend to provide more
information during in-person visits than they do using e-mail or the telephone.
The team should take every possible precaution to see that each visit gains the
needed information for the team and leaves the client feeling good about the
relationship.

Chapter 6 Understanding the Client’s Problem and Organization 219

Some guidelines for visits include:

• Arrive on time. Allow for getting lost or stuck in traffic; it happens more than
you may think. If you arrive more than 15 minutes early, wait outside until
the 15-minute mark; use the time to review your preparation for the visit. If
you must arrive late due to unforeseen circumstances beyond your control,
try to notify the client and/or your team.

• Assure the client at the beginning of each meeting that you will safeguard any infor-
mation you acquire. You will use the information only for the project purposes
and will not reveal it to any person not affiliated with your team. Use extra
care to honor this pledge unless the client authorizes other use of the infor-
mation. Many companies consider the content of some of their information
systems as proprietary. Do not argue or complain if the client declines to give
you certain pieces of information. Ask for alternatives, for example, a sample
report in place of a real one.

• Ask permission in advance if you wish to record the client’s remarks. Even if the
client agrees, watch for signs of any problem especially in an informal meet-
ing with a single client. Sometimes recording makes the client nervous and
reluctant to talk openly about the situation. In a more formal meeting with a
number of clients present, clients already tend to guard what they say, and
recording is less likely to inhibit discussion.

• Treat the client with professional respect and respect the client’s time. Ways of show-
ing respect include:

• Have a well-thought-out plan and follow it.

• If the client demonstrates a lack of understanding of technology or some
other issue, do not make any kind of a demeaning remark or expression—
grimace, roll your eyes, sigh, or other.

• Always allow the client to finish a sentence, point, or thought. If the client
introduces unrelated, irrelevant, or personal topics, listen politely until the
client stops talking or at least stops to take a breath. Then try to return to
your agenda.

• If the client makes a statement you believe is incorrect, ask for clarification
politely and in a neutral way. For example, “Could you explain; I am not
sure that I understand.” If the client still appears wrong, do not argue with,
contradict, or challenge the client. Check other sources.

• Keep your discussion focused on topics related to the project. The team
members should not introduce unrelated or personal topics. The client may
not want to spend his or her time learning how you spent your summer
vacation or hearing a joke you like.

• Do not ask irrelevant or personal questions or questions with obvious
answers. Many inappropriate questions result from nervousness and con-
fusion caused by lack of a plan for the visit. Examples of inappropriate
questions might include: “Do you like your boss?” (personal and possibly
embarrassing); “Who was the architect for this building?” (irrelevant); or
when introduced to the CIO asking, “Do you work in IT?” (obvious).

220 Part Two Project Definition

• Encourage the client to interact. Some clients tell more than the team wants to
know while others volunteer nothing beyond a direct answer to questions. If
the client does not interact on his or her own, ask questions or ask the client to
comment on the team’s remarks or materials. The team then can ask follow-
up questions on the client’s remarks.

• Demonstrate to the client that you are listening. Show interest by sitting up and
looking up often at the client. Assign some team members to take notes and
others to focus on the conversation.

• Take good and complete notes or record the conversation if the client agrees. Show-
ing up to ask the client about things he or she already told you a week ago
shows disrespect for the client’s time and looks unprofessional.

• Use feedback to demonstrate that you absorb what the client is saying. You can pro-
vide feedback by:

• Asking the client to elaborate on what was just said, for example, “Can you
tell us more about what the order clerk does when the customer has no
record.”

• Repeating the statement: “Do I understand correctly that the order clerk
cannot process the order if the customer has no record on file?”

• Making a change to reflect the client’s comments on your flip chart or on
the whiteboard if they exist.

• Manage the end of the visit. Establish how much time the client wishes to spend
when the team sets up the visit. Confirm with the client at the beginning of
the meeting how long he or she wishes to spend with you. When the time is
up, volunteer to leave even if the client does not bring it up. If client wants
you to stay longer, the client can tell you. If the client declines to offer you
more time or when you have the information that you want, thank the client
and leave promptly. Once the visit reaches the end point, your departure
should take only a minute. Do not stand at the door for ten minutes with a
last few questions. To paraphrase Yogi Berra, “When it’s over, it’s over.” You
can ask to schedule another visit if more time is needed.

To summarize these guidelines, behave as a professional with a courteous and
respectful manner, plan your visits, demonstrate you are listening, and stay
focused on business during visits.

INFORMATION COLLECTION APPROACHES

During this stage the team must collect at a minimum the information needed
to prepare the project definition deliverables defined in the plan. These products
clearly include the ones defined in this chapter and in Chapter 7. In addition,
the team can save time and work by collecting as much as possible all of the
information needed to produce a final report and presentation for the client. In
other words, team members need to look ahead to assure that they collect the
right information. The team’s plan for information collection looks carefully and
in detail at the deliverables.

Chapter 6 Understanding the Client’s Problem and Organization 221

Collecting the information that the team will want probably will require mul-
tiple visits and approaches. The team can utilize various approaches to collect-
ing information including: (1) interviews, (2) document collection, (3) observa-
tion, and (4) surveys. Often these approaches are used in combination. The team
may wish to use one or more of these approaches to collect information from
both the client and others, for example, vendors and/or from similar organiza-
tions and applications. These other organizations may have found a solution to
the problem that the client posed or may know what doesn’t work.

Interviews
Interviews with clients, users, senior managers, systems people, and others offer
a widely used approach to collecting information. Completely unstructured
interviews, ones with no prior plan or agenda, waste both the client’s and the
team’s time. Before any interview, the team should prepare an explicit agenda
and a list of questions and requests. The team may wish to give the client a copy
of the agenda in advance. Guidelines for the interview include those below.

1. Start with a general open-ended question for each area of interest, for example,
“Please describe how the current system works when a customer wants to
rent a tape,” or “What are your goals for the new system?”

2. Follow up with more specific questions to clarify and expand on points the intervie-
wee made or to cover areas that the interviewee did not address, for example, “Can
a customer without a credit card become a member?”.

3. If the interviewee mentions a form, report, or other document, ask for a copy.

4. Avoid leading questions that imply a right answer. Examples include, “Did you fol-
low good practice and prepare a project plan?” or “Of course, you have an IT
strategic plan, don’t you Mary?” The client may take offense or may answer incor-
rectly in an attempt to save face. A better question is, “We want to make sure that
we understand your practices. Do you have plans or guidelines that relate to IT?”

5. Be opportunistic. If the interviewee mentions a topic or issue that is not on your
question list but seems relevant, ask questions to explore it further. A plan
gets you started, but should not constrain you from developing new areas.

6. If the interviewee does not know the answer to a relevant question, ask for sugges-
tions on where or how you might get the answer.

7. At some point, ask clients about procurement options that are acceptable to them. For
example, “Which build and purchase options for a proposed system can the team
consider?” If asked about your thoughts on good solutions by a client, say that
you wish to complete your analysis before making any recommendations. The
purpose of an interview is to collect information, not to give advice to the client.

Group Interviews
Group interviews may facilitate the information collection process. Often one
person may know only part of how things work. He or she may be unable to
answer some questions or may answer incorrectly based on casual knowledge
or perceptions outside direct experience. Interviewing a group of people may

222 Part Two Project Definition

mitigate some of the problems. For example, an interview with a group consist-
ing of users, clients, and system analysts may provide a more complete picture
than interviews with each separately. If different people give different answers
to the same question, a group interview may help to resolve the differences. The
interviewer must take care to remain neutral and not to appear to side with one
faction when conflict arises. The client may decide to arrange group interviews
or the team may suggest them.

Focus groups offer another form of group interview. To use a focus group,
the team arranges with the client to interview a group of people with similar
responsibilities and authority, for example, a group of order clerks, without any
supervisors present. Explain to the group members that you plan to share the com-
ments with the client but will not identify who said what. With the presence and
reinforcement of co-workers and in the absence of superiors, people often will
talk more openly about problems and current practices. When reporting the com-
ments from the focus group to the client, remember to honor your commitment
and keep all comments anonymous.

All group interviews present possible group interaction hazards. One or sev-
eral loud, strong, and assertive people may get the group to espouse a view that
many of the other people in the group do not share. When the team suspects
that this problem is occurring, try to arrange to talk with some of the less
assertive people individually.

Documents
In most current situations, the team can find documents that describe or illus-
trate how things work or at least how they should work. Examples of documents
include the IT and/or the organization’s strategic plan, organization charts, pro-
cedure manuals, policy statements, memos, data input forms or screens, reports,
instructions for system users, file formats, data schema, flow charts, other dia-
grams, system documentation, and reports of auditors and internal or external
consultants. Ask the client if any of these documents exist and if you may have
copies of them. The client may consider some documents as proprietary and
decline to release them. Attached documents can add greatly to your narrative
description of the current situation.

Observation
Even the best descriptions of how things work leave unanswered questions. In
addition, people often follow different processes than the ones described in doc-
umentation or by their managers. For example, telephone order takers probably
know ways to use the system that the manager or analyst never considered and
ways to compensate for errors that the manager or analyst does not know about.
If possible ask to observe and talk with system users at work. The team may
learn a lot by observing the operations of an organization that runs a system
similar to the proposed system. If permission is given, take special care not to
interfere with ongoing operations.

Observation by an outside group, even a group of students, may make sys-
tem users nervous and may change their behavior. People who seldom or ever

Chapter 6 Understanding the Client’s Problem and Organization 223

follow the written procedures may do so when under observation by outsiders.
The team should take extra efforts to avoid saying or doing anything that might
imply criticism or evaluation of the users. Take pictures or recordings only with
permission.

Surveys and Sampling
If a user or client group contains a number of people, interviewing every mem-
ber may be impractical and unproductive. For example, an airline or car rental
company may employ thousands of reservation takers. On the other hand, the
views of one or several people may differ substantially from those of the full
group. One alternative is to interview a representative sample of group mem-
bers, but even a reasonable sample may require a large amount of interview time.
In this case, a survey may offer the best choice.

Normally project team surveys are used informally to discover general views
or trends. In a few cases, the team may wish to apply statistical analysis to deter-
mine confidence levels on the results. With a well-designed survey, the team may
discover different views within different subsets of the group. For example, users
in small offices may encounter different issues than users in large offices.

The team starts by preparing a set of questions or the survey form. Short sur-
veys, one page or so of questions, tend to work better than long surveys. With
long surveys, many people lose patience and either decline to complete the sur-
vey or rush through giving random answers. Test the survey on three or more
typical survey participants before starting the main survey. Questions that seem
obvious to the team may be totally mystifying or mean something quite differ-
ent to the participants.

If feasible, telephone surveys probably provide the clearest picture. With a
telephone survey, the team gets to pick and/or control the people who actually
respond. If a question confuses the participant, the team member can try to
explain and clarify. Participants also are more likely to answer thoughtfully with
a live human on the other end. However, telephone surveys can use up a lot of
team member time.

For an organization, a written survey form probably is the easiest format. With
the active support of and a cover letter from management, the team may get rea-
sonable return rates, perhaps 15 to as much as 80 percent. Written surveys often
tend to reflect bias—the people with strong feelings respond at a higher rate than
the typical people. E-mail surveys increasingly get lost among the flood of spam
unless the organization has effective spam controls and/or the survey comes
from a manager. For customers or other groups outside the company, the team
can try a telephone, Web-based, or e-mail survey. The participation rate for out-
siders with e-mail and Web-based surveys, however, will tend to be low.

Summary Organizations sometimes say they want better information systems. Actually
organizations want better performance with respect to such overall organiza-
tional values and goals as higher stock prices, more profit, higher sales, lower
costs, and more satisfied customers. To succeed, an IT team needs to understand

224 Part Two Project Definition

and think like the client. In well-run organizations, managers at all levels and in
all areas of the organization are constantly reminded to focus on strategic goals
or on critical organizational values. Strategic alignment of IT activities means
focusing IT activities to support organizational values.

A project team should understand and support organizational values for the
following interrelated reasons:

• To gain organizational acceptance and credibility.

• To obtain and retain financial sponsorship.

• To justify the recommendation.

• To make good ongoing project decisions.

The team collects information and prepares an organizational case to estab-
lish and maintain the alignment of the project with organizational values. The
organization case for strategic alignment rests on three components: the organi-
zation, goals and objectives, and project contribution. Some of the organization
attributes that may hold importance for the project include vision, mission, cul-
ture, organization charts, authority and responsibility, available resources, legal
and regulatory issues, security, glossary of key terms, and a description of cur-
rent operations.

A goal is an expression of a commitment to a state that the organization wants
to achieve, for example, to become more profitable is a goal for every airline.
Typical high-level goals refer to such areas as profits, cost-control, revenue
enhancement, sales, quality, service, and customer satisfaction. An objective is a
concrete, measurable action that supports that goal, for example, increase rev-
enues by increasing aircraft utilization with faster turnaround and better sched-
uling. The real issue of alignment is to assure that project outcomes support the
goals and objectives of the organization.

The final and critical step to strategic alignment consists of identifying the
contribution of the project to the strategic objectives of the organization. The
team either finds or formulates objectives that (1) lead toward the selected goals
and (2) are facilitated by the project. Often, the objectives target improving a part
of the organization that does not function as well as desired. In this event, the
team identifies the problems and adds or constructs features for the proposed
system that will improve performance with respect to objectives. This process is
known as “performance-oriented design.”

The team should identify specific, tangible performance measures that the pro-
posed system will impact. The performance measures must relate directly to the
objectives. Finally, the team identifies measures of success for the project. The
success measure may involve the performance measure; the project is a success
if sales costs are reduced by 10 percent. Often measures of success may involve
several parameters, such as to reduce costs by 10 percent and to complete the
project on time and on budget.

The project definition report contains the team’s understanding of the client’s
problems and requirements in an organizational context. The project definition
report is “client-centric” in that it reflects only the client’s views and desires.
Many, if not most, projects take longer and/or cost more and/or produce less

Chapter 6 Understanding the Client’s Problem and Organization 225

than expected because the team does not identify fully and correctly the client’s
desires and requirements. The difficulties may result from the client’s inability
to express requirements or from the team’s lack of focus and effort to understand
the client or from a combination of both. The report normally contains the fol-
lowing materials:

• Title Page

• Table of Contents

• Executive Summary

• Introduction

• Project Definition

• Introduction

• Project Statement

• Strategic Alignment

• Functions and Features

• Constraints

• Current Situation (see Chapter 7)

• Proposed System (stub)

• System Delivery (stub)

• Appendix A. Statement of Work (see Chapter 3)

• Appendix B. Documents supplied by the client

• Other Appendixes as needed

The team acquires and analyzes information in the project definition stage to
answer the following questions:

1. Who is the client? Who is the person or group with the authority to sponsor
or define the project?

2. What does the client want? What are the scope, goals, features, and structure
for the proposed information system?

3. Can the proposed system solve the client’s problem? Can it eliminate or
reduce the problems and/or achieve the client’s goals?

4. What does the organization value? What are the core competencies for the
organization and what are the key measures of organizational performance?

5. How will the proposed system add value to the organization? How will it
enhance or contribute to the performance measures of the organization?

6. What are the constraints? What resource, procurement option, and other lim-
its does the client wish to set for the team?

7. What can the team learn from the current situation? What aspects of the current
operations relate to or can contribute to the design of the proposed system?

To gain answers to these questions, the team interacts with the client. The
team must maintain a solid professional working relationship with the client by
following such guidelines as to submit professional deliverables and to behave
with professional integrity.

226 Part Two Project Definition

The team should prepare for each visit by developing an explicit statement of
purpose for the visit, a list of questions, and an agenda. A good plan makes effi-
cient use of both the client’s and the team’s time. Other guidelines for visits
include to schedule in advance, arrive on time, assure the client that the team will
safeguard information, ask for permission to record the meeting if so desired,
encourage the client to interact, demonstrate to the client that the team members
are listening, treat the client with respect, and manage the end of the visit.

The team can utilize four approaches to collecting information: (1) interviews,
(2) document collection, (3) observation, and (4) surveys. Often these approaches
are used in combination. Interviews offer a good method to obtain information,
but effective interviews require structure and planning. The team can interview
the clients individually or in groups. The team collects any relevant documents
that are available. The team can learn about or verify how the current process
works by directly observing the current operation. The team can use surveys to
obtain information from a large group of people.

The team structures the information collection to obtain the information required
for project definition: project statement, strategic alignment, functions and features
for the new system, and constraints. The functions, features, and constraints nar-
row the set of all possible solutions to the set that meets the client requirements.

Key Terms constraints, 207
documents, 222
features, 198
focus groups, 222
functions, 206
goals, 197
group interviews, 221
impact of a feature, 196
information collection, 195
interviews, 221
mission statement, 198

objectives, 197
observation, 222
organization, 204
performance, 206
performance measures, 198
performance-oriented

design, 198
procurement options, 208
professional behavior, 215
professional integrity, 216
project definition, 194

project statement, 203
project success, 198
recommended solution, 196
sample, 223
scope, 209
strategic alignment, 197
structure, 206
surveys, 223
vision, 198

1. For a strategic analysis of an organization, answer the following:

a. What are the basic purposes of the analysis?

b. What are the strengths and weaknesses of published mission statements?

c. When should you focus on strategic alignment with the sponsor instead of the
entire organization?

2. Define the following terms:

a. Vision

b. Mission

c. Goal

d. Objective

Review
Questions

3. Using the GB Video example, either quote or infer the following:

a. What is the problem GB Video wants to solve?

b. What is GB Video’s vision of itself?

c. What is GB Video’s mission?

d. What GB Video goal(s) are relevant to the problem?

e. What GB Video objective(s) are relevant to the problem?

f. For each objective, what measures are important?

4. For features and constraints as discussed in the text, answer the following:

a. What is the difference between a feature and a constraint?

b. Why do teams often not try to produce an optimal solution?

c. What is the difference between a mandatory and a desirable feature and/or
constraint?

d. When your client states, “I want better performance,” what may the client actu-
ally want?

5. What are four approaches to collecting information?

a. When is it appropriate to use each?

b. What are the strengths and weaknesses of each one?

6. You are preparing for an interview with your client.

a. What sources of information can the team use to prepare for the visit?

b. How can a team demonstrate that the members are a group of information sys-
tems professionals?

c. What are the roles that the team should assign to members and why is it impor-
tant to have roles in an interview?

d. What are guidelines for setting up meetings that respect the client’s time?

7. For the team to manage client relationships:

a. Name some events, incidents, or activities that will damage the relationship with
the client.

b. What are some important guidelines to remember when interacting with the client?

8. When arranging and making visits with clients,

a. List guidelines for successful visits with the client.

b. What preparation should the team make for each visit?

c. What are some behaviors team members should avoid?

d. Contrast the role of a client and a team manager.

9. For a project definition report,

a. What are the components?

b. For each section of the report, write a one-sentence description of what that sec-
tion should do.

c. For each section of the report, describe the target reader.

10. To determine the right project scope,

a. When bounding a given project, what are some indications of possible scope
problems?

b. What should a team do when they expect that a project scope is too large or too
small?

Chapter 6 Understanding the Client’s Problem and Organization 227

228 Part Two Project Definition

Kendall, Kenneth E.; and Julie E. Kendall. Systems Analysis and Design, 5th ed. Upper
Saddle River, NJ: Prentice Hall, 2002.

Reference

Critical
Thinking
Exercises

Individual Exercises
1. Based on the GB Video illustrations in Chapter 6,

a. Prepare the executive summary for the GB Video project definition report materi-
als presented in Figure 6.5 in this chapter.

b. Where will the team go to gather information on the GB Video project?

c. What method of information collection will the team use for GB Video?

2. The team has been assigned to work up a series of banking summary reports for year-
end reporting requirements to the FDIC. Upon visiting with the client, the team ascer-
tains that the reports come from an IBM AS-400 and are written in RPG, a mainframe
COBOL environment, and from an Oracle Database. None of the team members have
RPG or COBOL skills. How should the team approach a scope discussion with your
manager?

Group Exercises
1. The team has been asked to create an automated appointment system for your col-

lege’s advising system. Use team knowledge to answer the following questions.

a. What is the business problem?

b. How will a solution to the problem contribute to the client’s mission?

c. What are specific objectives that the system will address?

d. What measures of performance do these objectives suggest?

e. How will the proposed computer system help solve the problem?

2. The team has been asked to interview the dean of the business college concerning an
alumni database for all graduates of the college.

a. Write up questions to ask the dean.

b. Who else should be interviewed for this project?

3. The team has been assigned to the staff of Monday Night Football. Management wants
the team to set up a quick retrieval warehouse for team and individual statistics as
well as personal anecdotes on the players. The announcers need this information dur-
ing the broadcast of the game and must be available with a series of triggers for cer-
tain types of information.

a. What information collection system will the team use? Justify your choice.

b. Who will the team interview to get the specifications? Use imagination on this issue.

c. Who is the client?

d. Who are the users?

e. Prepare the project statement and the strategic analysis part of the project defini-
tion report for the above project.

4. Using the project defined in Chapter 3, Group Exercises, problem 4, prepare the fol-
lowing:

a. Project statement.

b. Strategic analysis of the organization.

c. Goals and features for the proposed system.

d. Constraints of the new system.

Chapter Seven

Learning from the
Current Situation
Chapter outline

229

Introduction

Information Collection

Current Situation Narrative Model

Description of Current Operations

Physical and Organizational Infrastructure

Problem Analysis

Retention and Change Analysis

Correctness and Completeness with

Multiple Representations

Current Operation Graphical Process

Model

Guidelines

Process Model Metadata

Current Operation Graphical Data

Model

The Project Definition Presentation

Completing the Project Definition Stage

Summary

Key Terms

Review Questions

Critical Thinking Exercises

Individual Exercises

Group Exercises

INTRODUCTION

The team normally analyzes the current situation to learn more about the environ-
ment and requirements for the proposed system. The current situation contains
the organizational functions or activities that the organization currently performs
in the areas within the project scope. Sometimes a current information system,
either a manual or a computer-based one, will exist to support some of the orga-
nizational functions, but the client wishes to modify or replace the existing infor-
mation system. In other cases, the client wishes to devise an information system
to support an organizational function or a set of functions that are not supported
at present, a situation in which a current information system with processes and
data to support the organizational function does not exist. Even when no cur-
rent system exists, the team can conduct an analysis to determine how the pro-
posed system will integrate with the current situation.

230 Part Two Project Definition

The current situation analysis examines (1) the current operations—the exist-
ing events, inputs, processes, data, and outputs associated with the organizational
functions within the scope of the project; (2) the existing organizational and phys-
ical infrastructure to support the operations; and (3) problems with the current
operations and infrastructure. For many projects, the information system content
model with data, process, and infrastructure provides a useful framework for the
analysis of the current situation. The team may model data, process, and infra-
structure in two representations: narrative and graphical. The multiple representa-
tions help the team and the client to check carefully for completeness, correctness,
and consistency. Graphical models offer a convenient way to organize and cross
check data and process information. Graphical models also provide a standard
format that may facilitate communication between team members and sometimes
with clients; however, many clients will prefer a narrative model.

The goal of current situation analysis is to obtain information to answer the
following questions:

• What happens in the current operation? What and how do events, processes,
and data interact as the current operations start, proceed, and end?

• What existing physical and organization infrastructures support the current
operations?

• What problems result from the current operations and infrastructure? What
things happen or do not happen that the client considers undesirable?

• How do the problems in the current situation affect the performance measures
identified during the strategic alignment analysis?

• What aspects of the current situation may or must appear in the proposed sys-
tem solution? What operations, problems, and infrastructure carry over to the
proposed system?

• What aspects of the current situation should change in the proposed system
solution? How should operations, problems, and infrastructure change?

The level of detail and effort devoted to the analysis of the current situa-
tion should vary from project to project. When the new system represents a
modification of a current system to introduce new technologies, add new fea-
tures, or correct some existing problems, the team may conduct a more detailed
and in-depth analysis of the current situation as part of the proposed system
activities discussed in Chapter 8. When the new system bears little resemblance
to the current one, the limited analysis of the current situation prepared for the
project definition will suffice. In a few cases, the current operations may offer lit-
tle or no insight on the functions that the client wants for the proposed system.

At the end of the analysis of the current situation, the team should have infor-
mation to (1) identify the infrastructure, data, and process that will remain and
that will change with the proposed system; (2) demonstrate to the client that the
team understands the current situation; and (3) refine the features and constraints
for the proposed system. The goal is to obtain enough information to provide
“satisfactory” answers for defining the proposed system, not to learn everything
possible about the current situation.

During the analysis of the current situation, a team may prepare a narrative
model plus graphical data and process models. The narrative model describes
the current situation in natural language, but follows a format to encourage com-
pleteness and facilitate communication between team members. The data and
process models present a conceptual-level graphical view of the information-
related activities including the actual physical data stores, data flows, and
processes that exist in the current operation. The current operation models may
encompass more or fewer data and functions than the new system will include.

The analyst must decide in what order to conduct the analysis and prepare the
models. Many analysts start the modeling process for the current situation with
what they see as the most “natural form”—the narrative model. Clients generally
describe the current situation in narrative form. In many situations, the operations
portion of the narrative model translates easily into DFDs. Some analysts argue
that the graphical models, data flow diagrams (DFDs), entity relationship dia-
grams (ERDs), or similar, are the appropriate starting point. Some teams assign the
tasks to different members and prepare the various models simultaneously. This
approach may lead to the team spending extra time to coordinate the models.

Whatever the starting point, the goal remains the same—the narrative and
graphical models together should give a complete, correct, and consistent view of
the current situation. Achieving this goal probably will require several iterations,
for example, changing a DFD to correspond with the narrative or changing the
narrative to reflect some newly discovered processes and flows on the DFD.

INFORMATION COLLECTION

During the strategic analysis and the determination of features and constraints
for the proposed system, the team relies mainly on interviews or discussions
with the client supplemented perhaps by such documents as a strategic plan, if
available. To learn from the current situation, the team can continue to talk with
the client but also may wish to apply some of the other information collection
approaches described in Chapter 6. For example, the problems with the current
situation described by the client may not mean much until the team directly
experiences or at least observes them. And the best way to gain the knowledge
to prepare the narrative and graphical models is to observe or participate in the
current situation. Sometimes the client may express reluctance for the team to
directly observe or participate. Often the client welcomes direct involvement
from the team or from one or two team members.

When relevant, the team members should ask to:

• Observe the current situation. Most organizations will allow the team to observe
unless the situation is hazardous or there are security issues. In the GB Video
example, observing means going to a store and watching clerks process rentals
and returns for customers.

• Obtain forms, reports, and other related documents. Some organizations have
formal documentation for existing systems. The team always should ask for
systems documentation, but such documentation seems unlikely to exist at

Chapter 7 Learning from the Current Situation 231

232 Part Two Project Definition

organizations like GB Video. At GB Video and most organizations, the team
can obtain copies of all the forms used in the system including the reports
that are prepared, overdue notices sent out, and other forms. GB Video and
many organizations may have instruction or procedure manuals for system
participants. Most organizations will let the team examine the materials that
are available subject to proprietary, privacy, or confidential information limits.

• Talk with users. Users often express views and insights about the current situ-
ation that the client neglects to mention or may not know. Most of the time,
the client will allow the team to talk with employees. Although the team
should inquire, the client may or may not want the team to talk with such
external people as customers or vendors. The client might allow the team to
survey customers and vendors, another way of talking with them. At GB
Video, users include clerks, vendors, and customers.

• Participate in the current situation. Actually using the system often provides the
best possible insight on the problems with the current situation. The team cer-
tainly should ask for permission to participate. The client may allow a team
member to serve as a volunteer employee for a couple of hours. At GB Video,
the team members for a small outlay of cash certainly can participate as rental
customers and may gain good insight by so doing.

The team wants to be proactive in collecting information and developing
insight. The team easily can lose out on a good source of information simply
because the team neglected to ask. However, if the client denies a request, good
professionals accept the decision with grace and understanding.

CURRENT SITUATION NARRATIVE MODEL

The current situation narrative model serves two purposes: (1) to describe the
relevant aspects of the current situation in a representation that most clients
understand and (2) to provide cross-checks for the completeness and correctness
of the graphical models. The narrative describes the issues and problems from
the current situation that are relevant to the proposed system design in a set of
well-written and well-organized paragraphs. The narrative always should use
terms and concepts that the client understands. The client normally will under-
stand the terms that describe the operations of the organization but may not
understand such terms as DFD unless the client comes from an IT area. While
each project will differ, some general guidelines will help in the construction of
the narrative. The narrative contains four sections:

1. The description of current operations.

2. The description of physical and organizational infrastructure.

3. An analysis of problems in the current operations.

4. An analysis of the aspects of the current situation that the proposed system
retains and the aspects that change.

Each of the sections is described below.

Description of Current Operations
The description of current operations describes the activities that take place in
an organizational context: who, what, where, and when. When possible, the
description should read as a story or mini-play. Often the narrative makes most
sense when it follows the natural sequence of the activity. For example, in a video
store the first process is “Rental” and the second is “Return.” But, the process
“New Member” may precede everything because only members may rent tapes
and DVDs. The narrative should describe fully the operation and read well, that
is, be complete, correct, and follow the rules for good writing. A set of cryptic
lists and disconnected sentences do not make a narrative model.

Much of the time, the activities that the proposed system will perform cur-
rently take place in some form. For example, a new Web site may provide infor-
mation that people currently get from less current, complete, and convenient
other sources. In this case, the current operation narrative will describe the what,
where, who, and how for the way the information currently is provided.

The content for the description of the narrative for current operations should
follow the concepts from data and process analysis. The narrative may include
text descriptions for the following:

• Events. The event(s) that initiate action. In some batch processing operations,
for example, preparing monthly management reports or utility bills, the only
event is reaching a particular time. More interactive operations—video rentals,
catalog sales, Web pages—may encompass a number of trigger events. In GB
Video the trigger events include when (1) a customer asks to become a mem-
ber; (2) a customer asks to rent one or more videos; and (3) a customer returns
a video.

• Data flows and processes. Each trigger event directly or indirectly causes data
flows through the various processes to the outcome events. In GB Video, a
rental request involves input data from externals: video IDs, customer num-
ber, credit card number, and expiration date. Tracing the data flows shows
that these data flow through a number of processes to create a invoice record,
compute the rental charge, collect a payment from the customer, retrieve data
from the video rental and customer records, and prepare a receipt for the cus-
tomer. The receipt is an outcome event, which is an action or data set that
leaves the system. Data collection, storage, and retrieval systems may contain
only a few processes to input and store new data and retrieve data. Transaction
processing systems may contain a large number of processes.

• Data content. Each data flow and data store will contain data about such
“things,” as a customer, or a video. For management reporting or query activ-
ities or for some Web site operations, identification of the data structure may
comprise the bulk of the analysis task.

• Other issues. The description also should address any important issues of timing,
frequencies or volumes, file and record sizes, and special business concerns.

While collecting information to prepare the narrative, the team may encounter
forms, reports, and other materials. Copies of all relevant materials should appear

Chapter 7 Learning from the Current Situation 233

234 Part Two Project Definition

either in the narrative or in an appendix. All documents included always are
referenced or cited in the text of the narrative and explained as appropriate. When
the team studies a current system, much of the aforementioned information on
events, data, and process may come from the system documentation. If no or only
incomplete system documentation is available, the team may need to reverse engi-
neer the system, to infer the data and process structure or models by analyzing
the system inputs, outputs, and other materials.

An example of a description of current operations for GB Video appears in
the narrative model in Figure 7.1.

Physical and Organizational Infrastructure
In most circumstances, the current situation will contain a physical infrastructure,
including I/O devices, data storage devices, processors, telecommunications, oper-
ating systems, and programs; and an organizational infrastructure, including
people, roles, authority, and responsibility. Even a manual system may contain tele-
phones, files, calculators, and such. This section of the narrative defines and
describes the infrastructure. The description should cover only the infrastructure
relevant to the project statement. For the GB Video project, stores, videos, files,
forms, shelves, return bins, and cash registers probably are relevant but Mr.
Crosier’s office, the check printing machine, and the employee lounge probably are
not. The organizational structure for clerks making rentals and returns is relevant;
the organizational structure for payroll probably is not. The organizational and
physical infrastructures may have sketches, charts, or pictorial models that specify
components and show how they are connected, or the team may wish to prepare
such a model. Figure 7.1 shows a description of infrastructure for GB Video.

Problem Analysis
As noted previously, the client often wants a proposed system to alleviate
problems that the client believes exist in the current situation. Even without
prompting, the client often will identify a number of problems. Typical problems
are that the system is too slow, contains errors, costs too much, stores redundant
data, is disliked or not used by users and/or customers, doesn’t supply the infor-
mation or functions that the client wants. Alleviating the problems should
improve the performance measures associated with the objectives the team iden-
tified during the strategic alignment analysis. Normally the team describes the
problems as clearly as possible in text form. Identification of as many of the
perceived problems as possible is important because the perceived problems sug-
gest possible alternatives and features for the proposed system. A sample prob-
lem analysis for GB Video appears in Figure 7.1.

Retention and Change Analysis
The retention and change analysis of the current situation defines the parts or
aspects of the current situation that (1) should remain in the proposed system and
(2) may change. A proposed system that omits one or more critical features of the
current system may force the client to run both systems until the new one includes
the additional capability. To develop the analysis, the team reviews the description

Chapter 7 Learning from the Current Situation 235

Current Situation Narrative Model

Introduction

The narrative model for the GB Video Rental and Return system contains sections that
cover a description of the current operations and the physical and organizational infra-
structure, an analysis of problems in the current operations, and an analysis of the
aspects of the current situation that the proposed system retains and the aspects that
change. A discussion of activities the team plans to undertake and the client
deliverables appears in the statement of work in Appendix A.

Description of Current Operations

In consonance with the request of Mr. Cosier, the team looked at video rental and
return and closely related activities. GB operates in a manner similar to most video
stores. GB rents only to customers who are members. If a customer wishes to become
a member, GB will issue a membership provided the customer has a credit card, tele-
phone, and a government-issued picture ID (driver’s license, etc.). The GB clerk
obtains the name, address, credit card number, and expiration date from the picture ID
and credit card; asks the customer for a telephone number; prints this data on a cus-
tomer form and assigns a unique member number. The clerk prepares a membership
card with name and member number and gives it to the customer. The customer form
is placed in the customer file box. On every contact, the clerk asks the customer about
changes and updates the customer form any time a customer reports a change. Exhibit
1 in Appendix B shows a customer form.

Although most staff members at GB Video talk about renting “videotapes,” GB actually
rents more DVDs than tapes. This report uses the term video to refer to both tapes
and DVDs. Customers may rent one or more videos for one or more days. The
customer finds the desired videos and brings them to the counter. The clerk copies the
name and number from the customer card and copies the title and unique ID number
from the label on each video onto a prenumbered invoice form. Exhibit 2 in Appendix B
shows an invoice form. If the customer forgets his/her member card, the clerk looks up
the number in the customer file. The clerk also enters his/her employee number, the
date of rental, and a due date for each video; computes the amount of the charge and
tax; and gives a copy of the invoice to the customer as a receipt. Customers may pay
for rentals with cash, check, or a credit card. The clerk notes the payment type on the
invoice. For credit card payments, the clerk runs the customer’s credit card through the
credit card terminal and keys in the amount. The credit card company approves or
denies the charge.

As time permits, a back office clerk processes the invoices. The date and rental num-
ber for each rental are entered on the file card for the video in the video rental file.
The header data on the card for each video owned by the store shows the video num-
ber, title, vendor number, and date acquired. Purchasing enters this header data when
a video is received. In this manner, the store can track the status of each video.
Exhibit 3 in Appendix B shows a video rental card.

FIGURE 7.1 Current Situation Narrative Model for GB Video

Page 1

When a video is returned, a back office clerk retrieves the card for the video rental
and the invoice, records the return date on the invoice and the video rental card, cal-
culates overdue charges if any, and processes the credit card transaction. The credit
card number is obtained by retrieving the customer form from the customer file. The
overdue charges are noted on the invoice. The videos from a rental may be returned
on different dates.

Once a week, the office uses the copies of the invoices and an employee file to
prepare a report for the store manager showing the number of rentals for each video
and for each clerk. The completed invoices and copies of video rental forms for videos
that are more than three days overdue are sent to Accounting. As part of a separate
system, the accounting clerk uses the invoices to get revenue data for accounting
records and sends out overdue notices to members as required.

The office also uses the video rental cards and the vendor file to prepare and mail a
monthly report to each vendor showing the rentals for each video supplied by the ven-
dor grouped by title.

Graphical data and process models for the current operation appear in Appendix C.

Physical and Organizational Infrastructure

As noted in the description of current operations, GB Video operates a mostly manual
system. The system uses paper forms and index cards in file boxes for data input, out-
put, and storage. The clerks write on the forms and cards with pencil or pen. The
credit card terminal is the only electronic communication device in the system.

Each store owns and manages its own data. The store manager controls the operation
of the store information system. The clerks and all other employees in the store report
to the manager. Clerks are allowed to create and update invoice and customer records.
Video rental records are created by Purchasing and updated by the clerks.

Problem Analysis

Mr. Cosier and his staff identified the following problems in the current situation:

1. Because of the manual system, GB requires more clerks than similar stores with
automated systems resulting in a higher cost and longer elapsed time per
transaction.

2. Customers complain about long lines and slow checkout of rentals. Some frustrated
customers dump their videos on the counter and go off without completing the
rental.

3. Delays occur when several clerks wish to use the member or video card file at the
same time.

4. Mistakes are common. For example, the video card may indicate that the video is
on the shelf because it shows a return date and no new rental date, but the actual
video cannot be found. Clerks make mistakes in computing the charges.
Customers often correct overcharges but remain silent when the clerk
undercharges.

Page 2

236 Part Two Project Definition

5. People, including some members, use false member numbers and names to
rent videos. If the customer does not show a member card, the clerk is
supposed to check the member file. Because of the time and effort needed to
check the file, the clerks omit checks most of the time, especially when the store is
busy. GB experiences a higher nonreturn or loss rate for videos than other similar
stores.

6. Accounting gets busy and does not send overdue notices to customers on a timely
basis. Sometimes a video is several weeks’ overdue before the customer receives a
notice. Customers use the late notice as a reason to refuse to pay overdue
charges.

7. Because of the expense of preparing a manual mailing, GB does not do any direct
mail marketing to members. Other stores have successfully used direct mail market-
ing to increase revenues.

8. The rental data summarized by video is costly to prepare and of questionable accu-
racy. No data exist on customer preferences. Purchasing often uses guesses, esti-
mates, and periodic direct observation to determine which videos and how many
copies to buy.

Mr. Cosier estimates that correcting these problems should increase revenue by at
least 5 percent and at the same time reduce costs by over $55,000 a year.

Retention and Change Analysis

The proposed system will retain, at the conceptual level, the functions in the current
system to enroll a member, rent a video, and return a video. The proposed system will
continue to collect all of the data collected by the current operation. However, the data
model will change to one based on the “things” about which data are collected rather
than on the forms and file cards in use. The proposed system may contain additional
functionality to prevent nonmembers from renting videos.

The reporting functions will move to another system. The Rental and Return System will
make the data it collects and stores available to the other systems. As a result of the
move of the reporting functions and the new data model, a number of the data flows
will change. Since the purchasing, reporting, and accounting functions will access the
rental return data with their own systems, the Rental and Return system will show no
flows to Accounting, Management, and Vendor. The contents of flows to and from the
Invoices and Video Rentals stores will change to match the new data model. The flows
to and from the externals Customer and Credit Card Company remain unchanged in
content.

The physical infrastructure will change from one based on manual operations to a
computer-based infrastructure. The proposed system will have computer input and out-
put devices that do not exist in the current system. The organization infrastructure will
change in one respect—the clerks will interact with computer I/O devices.

In this case, the analysis of the current situation provides a good base upon which to
design the proposed system. With the structure outlined above, GB Video should real-
ize their strategic goals of increases in profits and sales.

Page 3

Chapter 7 Learning from the Current Situation 237

Appendix A. Statement of Work. (Not included here, see Chapter 3.)

Appendix B. Forms and Documents. This appendix contains forms used by GB
Video in the current Rental and Return system. The role and use of each form is
described in the narrative. The documents in this appendix are

• Exhibit 1. Member Data Card
• Exhibit 2. Invoice and Customer Receipt
• Exhibit 3. Video Rental Card

Exhibit 1. Member Data Card

Exhibit 2. Invoice (Copy 1) and Customer Receipt (Copy 2)

Page 4

GB Customer Record

Richard Jazzperson

307 Brooks
Norman, Oklahoma 73019

(405) 325-0768

VISA
9444 5432 6666 1234

04 09

1346

Member NumberName

GB Video Stores

THANK YOU

11-2-2006 175

Richard Jazzperson

15751378

6613498

Patriot Games

African Queen

Member :

Date: Emp # :

Member No :

Pay Type : Cash

Credit

Tax :

Total :

Copy 1 Store

11-3

11-4

$ 2.00

$ 3.00

$

Video # Title
Due
Date Cost

Return
Date

Overdue
Charge

1346

RENTAL NO. 1715

.40$

$ 5.40

ⴛ

238 Part Two Project Definition

of the current operations, the problem analysis, and the proposed system features
described in Chapter 6.

An example of a retention and change analysis appears in Figure 7.1. An over-
all structure of paragraphs reads more easily than lists, but the analysis may con-
tain lists and/or tables within the paragraphs as appropriate.

Correctness and Completeness with Multiple Representations
While the narrative model should describe fully the current situation, more struc-
tured models can help team members to identify errors and omissions and to
communicate with each other and the client. Typically a team will select DFDs
as the graphical process model and an ERD as the graphical data model. The
multiple representations, the narrative and graphical models, must match. The
team’s graphical data and process models should provide consistency. Pictures
of the current operation should include all of and only the data and processes that
appear in the narrative model for the current operation. If the narrative describes

Appendix C. Graphical Data and Process Models

This appendix contains the data and process models for the GB Video System. The
models included in the appendix consist of:

• Exhibit 1. Context Level DFD for GB Video Current Operation
• Exhibit 2. First Explosion DFD for GB Video Current Operation
• Exhibit 3. Metadata for the GB Video Current Operation DFD
• Exhibit 4. Enterprise Data Model for GB Video

(The models are not included here. The figures appear later in this chapter.)

Exhibit 3. Video Rental Card

Page 5

Video No :

Date Acquired Vendor :

Title :6613489 African Queen

6-1-06 129

Rental
No.

Date
Out

Date
In

Rental
No.

Date
Out

Date
In

1497

1558

1579

1715

6-3-06

8-7-06

8-20-06

11-2-06

6-4

8-9

8-21

Chapter 7 Learning from the Current Situation 239

240 Part Two Project Definition

data or processes that do not appear on the EDM and/or DFDs, then the diagrams
and/or the narrative must contain errors or omissions and lack correctness. If the
DFDs and/or EDM contain items that do not appear in the narrative, again one
or more errors must exist and the diagrams lack completeness. In systems work,
completeness and correctness are critical properties.

CURRENT OPERATION GRAPHICAL PROCESS MODEL

While the team can choose from a number of process models, in many cases
DFDs provide a good representation for understanding the current operation.
Such representations as object-oriented models, process hierarchy diagrams, and
page maps, often contribute more when used as part of the proposed system
design. Data flow diagrams for the current operation provide a high-level model
of the physically existing data flows, stores, and processes. DFDs present the data
and process information from the narrative model in a pictorial or graphical for-
mat. The narrative should contain a clear and explicit reference to the associated
DFDs. If the client has an IT background, the DFDs may appear as figures in the
text body; otherwise, DFDs probably fit best in an appendix. If the narrative
already exists, the team can identify the major processes, the data flows, the
stores, and the externals in the narrative and translate them to the DFD.

Guidelines
Chapter 5 covers the concepts and mechanics of data flow diagrams. A reader
unfamiliar with DFDs should read or review Chapter 5 prior to reading this sec-
tion. In many cases, graphical models of the current operation provide an
overview and general insight. As noted previously, the current operation mod-
els are not intended as detailed guidance for programmers or vendors; the pro-
posed system models in Chapters 8 and 11 fill this role.

The guidelines for creating current operation DFDs include the following:

• DFDs should follow the rules described in Chapter 5.

• Every DFD should be referenced in the narrative.

• A context-level DFD can provide a high-level overview of how externals interact with
the system in the current operation. The externals and flows on the diagram
should match the description in the narrative.

• A first explosion DFD can identify the main processes, data flows, and stores. Nor-
mally a first explosion DFD provides all the detail about the current system that
is helpful for proposed system design. When a project involves automating a
manual system or changing the physical infrastructure for an existing system,
the current operation process model also may serve as the proposed system
process model and thus may involve substantially more detail and depth.

• The first explosion process boxes should match the narrative and provide
enough detail to give a clear idea of what is happening. For most projects, two
processes probably are too few; 20 probably are too many. Some of the processes
in the current operation may lie outside the boundary of the proposed system.

• Data stores that are owned and/or maintained by other systems can appear
as externals outside the system boundary on the DFDs.

• The metadata provide a brief description of every object on the DFDs—external,
store, flow, and process.

• After creating each draft of the DFDs, the team should check carefully to assure
that the DFDs and the narrative model are consistent, complete, and correct.

The GB Video context-level DFD is shown in Figure 7.2 and the first explosion
DFD in Figure 7.3. In Figures 7.2 and 7.3, the DFDs correspond directly to the
current operation description in the narrative model. Every process in the narra-
tive appears on the DFD (unless it is described as part of a separate system), and
every process on the DFD appears in the narrative. The dotted line in Figure 7.3
identifies the boundary of the system; everything inside the dotted line box on

Chapter 7 Learning from the Current Situation 241

FIGURE 7.2 Context-Level DFD for GB Video Current Operation

Receipt Data

Video ID Data

Invoice Data

Employee
Data

Vendor
Data

Report
Data

Member Card Data

Customer Data
Overdue Charge

Charge Data

Vendor Rental Data

Confirm Data
Customer

Manager

Vendor

Employees

External

Data store Vendors

External

Data Store

Accounting

Credit Card

 Company

GB Video

Rental/Return

System

Video Request
and Member
Data

0

Enroll a new

member or

update data

1

Rent

video(s) to

member

2

Record

return of

video(s)

3

4

Prepare a

monthly

vendor

report

5

Customer

Credit Card

Company

Accounting
Prepare a weekly

report and send data to

accounting

Manager

Vendor

Customer

Customers

Video Rentals

Invoices

Employees’

External

Datastore

Vendors’

External

Datastore

Receipt Data

Charge Data

Confirm Data

Member Data

Member Data

Status Data

Video Request and
Member Data

Invoice Data

Report Data

Rental Data

Return Date

Return Data

Vendor Data

Video Data

Invoice Data

Employee Data

Vendor Rental Data

Video Rentals

Member Card Data

Customer Data

Overdue Charge

Video ID Data

FIGURE 7.3 First Explosion DFD for GB Video Current Operation

242

Chapter 7 Learning from the Current Situation 243

Figure 7.3 lies inside the system process box on Figure 7.2. Some of the processes
in the DFD, for example, processes 4 and 5, will lie outside the boundary of the
new system but are included because they are part of (inside the boundary of)
the current operation. The DFD in Figure 7.3 follows the rules for DFD explosions
found in Chapter 5. In this example and in many current operations some exist-
ing physical data stores modeled in the DFD may contain attributes from several
entities. For example, the data store Customers contains only the attributes of the
entity Customer, but the data store Invoices contains attributes of the Customer,
Rental, Employee, and Video entities.

The DFD in Figure 7.3 assumes that the Video Rentals data store is owned by
the Rental and Return System and thus belongs inside the system boundary. The
rental/return system probably owns the Invoices and Members data stores so these
data stores also appear inside the system boundary. The data stores called Vendors
and Employees receive no input in the DFD. This lack of input reflects the fact that
they are owned by different systems, and thus they appear as externals outside the
system boundary on the DFD. The correct identification of ownership adds value
to the DFD. When an analyst sees a data store outside the system boundary on
a DFD, the analyst knows immediately about the requirement to contact and
work with the owner of the data store on access and changes.

Process Model Metadata
Metadata, or data about data, describe the relevant features of each of the
objects that appear in the graphical models of the system. A viewer with a ques-
tion about the meaning or significance of some portion of the graphical models
can refer to the metadata for more information. For the current operation process
model, the metadata may consist of short, concise text descriptions for each
object—external, data flow, process, and data store—on the DFD. The metadata
should identify clearly the content of data flows and data stores. The process
descriptions should come directly from the text of the current operation narrative,
rearranged or reformatted as appropriate. All of the metadata descriptions
should match the content of the narrative. Sample metadata for the GB Video
Current Operation DFD appear in Figure 7.4.

CURRENT OPERATION GRAPHICAL DATA MODEL

A data model provides a graphical tool to define the underlying conceptual data
structure for the current operation. The data model can help the team to under-
stand the content of the current operation and to check for correctness and com-
pleteness with the narrative model. The team can use an ERD model to graphi-
cally represent the underlying conceptual data structure. The physical data stores
in the current system may contain data from several entities. The graphical data
model should be consistent with both the narrative model and process model
for the current situation.

Because the goal is to provide a broad overview of the current operation in
preparation for the design of the proposed system, the team may wish to use

244 Part Two Project Definition

Externals

Accounting. The person who keeps the financial and accounting data at GB Video.
Credit Card Company. The company that processes credit card transactions for GB Video.
Customer. People who wish to rent videos at a GB store. A customer must become a

member to rent a video.
Manager. GB Video store manager(s) and Mr. Cosier.
Vendor. Companies that sell videos to GB.

Data Flows

Charge Data. Credit card number, expire date, and transaction amount.
Confirm Data. Either an approval or a reject message.
Customer Data. Name, address, telephone and credit card info for a potential member

supplied by a customer to become a member or to update his/her record.
Employee Data. The employee’s number.
Invoice Data. All of the data on completed invoice forms.
Member Card Data. Name and member number printed on a member card.
Member Data. Customer data plus a member number.
Overdue Charge. Credit card number, expire date, and transaction amount.
Receipt Data. The data on the receipt given to the customer including rental number,

employee number, customer number, name, rental date, title, planned return date,
payment type, cost, tax, and total charge.

Rental Data. The member, video, and rental transaction data.
Report Data. An analysis of the data on completed invoice forms.
Return Data. The date each video is returned plus the overdue charge if any.
Return Date. The date the video is returned.
Status Data. The rental number and rental date.
Vendor Data. The vendor numbers, names, and addresses.
Vendor Rental Data. The analyzed data about rentals from video rental cards.
Video Request and Member Data. The numbers of the videos that the customer wishes

to rent plus the customer’s member number or other identifier.
Video Data. The video number, vendor number, and rental dates for each video.
Video ID Data. The video number of a returned video.

Data Stores

Customers. Contains customer data on paper forms arranged alphabetically. A copy of
the form appears in Exhibit 1.

Employees. Contains personal and payroll data for employees at GB Video. Each
employee has an employee number.

Invoices. Contains rental, customer, employee, and video data on paper forms, one for
each rental arranged by rental date. A copy of the form appears in Exhibit 2.

Vendors. Contains in a notebook an alphabetical list of names with addresses for vendors.
Video Rentals. Contains video and rental data on index cards, one for each rental

video arranged alphabetically by title and then by video number within a title. A
copy of the card appears in Exhibit 3.

FIGURE 7.4 Metadata for the GB Video Current Operation DFD

Page 1

Chapter 7 Learning from the Current Situation 245

Processes

C1.0 Enroll a new member or update data. GB operates in a manner similar to most

video stores. GB rents only to customers who are members. If a customer wishes to

become a member, GB will issue a membership provided the customer has a credit card,

telephone, and a government-issued picture ID (driver’s license, etc.). The GB clerk

obtains the name, address, credit card number, and expiration date from the picture ID

and credit card, asks the customer for a telephone number, prints this data on a customer

form, and assigns a unique member number. The clerk prepares a membership card with

name and member number and gives it to the customer. The customer form is placed in

the customer file box. On every contact, the clerk asks the customer about changes and

updates the customer form any time a customer reports a change.

C2.0 Rent video(s) to member. Customers may rent one or more videos for one or

more days. The customer finds the desired videos and brings them to the counter. The

clerk copies the name and number from the customer card and copies the title and

unique ID number from the label on each video onto a prenumbered invoice form.

Exhibit 2 in Appendix B shows an invoice form. If the customer forgets his/her member

card, the clerk looks up the number in the customer file. The clerk also enters his/her

employee number, the date of rental and a due date for each video, computes the

amount of the charge and tax, and gives a copy of the invoice to the customer as a

receipt. Customers may pay cash or use a credit card for rentals. The clerk notes the

payment type on the invoice. For credit card payments, the clerk runs the customer’s

credit card through the credit card terminal and keys in the amount. The credit card

company approves or denies the charge. As time permits, a back office clerk

processes the invoices. The date and rental number for each rental are entered on the

file card for the video in the video rental file. (The header data on the card for each

video owned by the store shows the video number, title, vendor number, and date

acquired. Purchasing enters this header data when a video is received.) In this

manner, the store can track the status of each video.

C3.0 Record return of video(s). When a video is returned, a back office clerk

retrieves the card for the video rental and the invoice, records the return date on the

invoice and the video rental card, calculates overdue charges if any, and processes

the credit card transaction. The credit card number is obtained by retrieving the

customer form from the customer file. The overdue charges are noted on the invoice.

The videos from a rental may be returned on different dates.

C4.0 Prepare a weekly report and send data to Accounting. Once a week, the

office uses the invoices and an employee file to prepare a report for the store

manager showing the number of rentals for each video and for each clerk. The

completed invoice and copies of video rental cards for videos that are more than three

days overdue are sent to Accounting. As part of a separate system, the accounting

clerk uses the invoices to get revenue data for accounting records and sends out over-

due notices to members as required.

C5.0 Prepare a monthly vendor report. The office also uses the video rental cards

and the vendor file to prepare and mail a monthly report to each vendor showing the

rentals for each video supplied by the vendor grouped by title.

Page 2

246 Part Two Project Definition

such a high-level ERD as an enterprise data model (EDM) to identify the enti-
ties and relationships that correspond to the data in the data stores shown on
the DFD for the current operation. Information on the attributes of each entity
often is unnecessary for the current situation. In the project definition report,
the EDM can appear as a figure within the text if the client has an IT back-
ground; otherwise, the EDM goes in an appendix. The EDM and the metadata
for the EDM should correspond to the descriptions in the narrative and to
the DFDs. The narrative must contain a clear and explicit reference to the
associated EDM. The EDM or any other ERDs should follow the rules listed in
Chapter 4.

The EDM in Figure 7.5 shows the underlying entities of Customer, Rental,
Employee, Vendor, and Video as described in the narrative and exhibits for the
GB Video rental and return current operation. Figure 7.5 also contains metadata
for each of the entities. For the current system, a simple text description provides
adequate metadata.

Some of the data stores, forms, and reports associated with the current opera-
tion contain data from several different entities. For example, the invoice in the
Invoices data store and the receipt that a GB Video customer receives to document
a rental contain attributes from the entities of Customer—name, address, and other
customer information; Rental—date, rental number; Employee—employee num-
ber; and Video—video number title, description.

As noted, the current Rental system does not manage the data associated the
Employee and Vendor entities. However, data from the Employee and Vendor
entities are part of the current operation. An employee makes every rental, and

CUSTOMER RENTAL
Requests

Makes

Contains

Supplies

VIDEO

EMPLOYEE VENDOR

FIGURE 7.5

Enterprise
Data Model
for GB Video

Entity Metadata

CUSTOMER. A customer is a person who rents videos from GB Video. Before a customer can rent
a video, the customer must become a member. A customer may make multiple rentals.

RENTAL. A rental is the set of transactions for a customer to rent and return one or more videos.

VIDEO. A video is a tape or DVD that may be rented to multiple customers.

EMPLOYEE. An employee is a clerk, manager, or other person employed by GB Video who may
handle multiple rentals.

VENDOR. A vendor is a firm that may sell multiple videos to GB Video.

the employee number appears in the current invoice. In similar fashion, vendors
supply the videos and a vendor number appears in the current Video Rental
record. The current report preparation processes also use data from both
Employee and Vendor entities. The EDM includes Vendor and Employee to cor-
rectly identify all of the entities associated with the current operation. The ana-
lyst can and should exercise some discretion on what entities to include in the
EDM. The goal is clarity with respect to what to retain and change in the pro-
posed system.

THE PROJECT DEFINITION PRESENTATION

At a number of points during the project, the team may seek client approval to
proceed. The client and team agree on the specific review points for each proj-
ect. Typical review points include asking for client approval of the set of activ-
ities the team will undertake and the deliverables (the statement of work), the
strategic alignment, and the proposed system features, constraints, and procure-
ment options (the project definition presentation), and the recommended
solution (often a meeting with the client). Some clients will ask for more approval
points. Each weekly or other progress report provides the client the option
to approve continuing the project. The client might decide to cancel or end the
project at any of the review points, but more often the client either approves or
suggests changes.

When the team has collected enough information to prepare drafts for the
problem definition report, the team can proceed with a formal project definition
presentation for the client. The overall goal of this meeting is to assure to the
extent possible that the team and client visualize the same requirements for the
proposed system. Possible objectives of the presentation are to achieve

• Correctness. Get the client to interact with the team members to correct any
errors or omissions and/or to provide additional information.

• Competency. Demonstrate to the client that the team can construct an ade-
quate overall view of the current situation and strategic alignment and fea-
tures, constraints, and alternatives for the proposed system.

• Feedback. Show the client that the team understands and listens to the
client.

• Approval. Give the client the opportunity to approve or disapprove of the
team’s work to date and to take any actions the client deems appropriate.

Normally a project definition presentation runs for about an hour. The team
should prepare an agenda for the meeting and should share it with the client in
advance, if possible. The typical order of the presentation is

1. Introductions.

2. Thank the clients for attending and ask permission to record if needed.

3. Review the agenda.

Chapter 7 Learning from the Current Situation 247

248 Part Two Project Definition

4. Summarize the materials from the team’s draft Problem Definition Report.

a. Problem statement.

b. Current situation overview.

c. Strategic alignment.

d. Features and constraints for the proposed system including procurement
options.

5. Review the team’s draft statement of work making sure the client engages and
comments.

6. Summarize the key points stressing any ideas, changes, corrections, and other
comments received from the client.

7. Thank the clients.

8. Close the meeting.

The team should tailor the presentation to the clients. Charts with lists,
graphs, diagrams, and other devices can help the client to understand rapidly
what the team plans for the content of each of the sections. The team should
make sure that the client can read all of the content of the visual aids from
the expected viewing distance. Flip charts, charts drawn on a whiteboard, and
such are easy to change and encourage discussion. Computer-generated charts
are a little more difficult to change during the discussion but can work well
provided that the team takes steps to generate discussion during the presen-
tation. Diagrams and charts tend to stimulate discussion better than lists. If
the clients are not IT specialists, the presentation should avoid such IT terms
as ERD, and DFD. Although the team may wish to show an ERD chart, team
members should describe it as a chart that shows the data in the system not as
an ERD.

The “correctness” objective is achieved only by getting the clients to comment
on corrections and additions. The team should strive for a highly interactive ses-
sion. At the beginning of the review, the team can invite the clients to comment
as the presentation proceeds. Sometimes the clients will make comments with-
out further urging. The team can encourage the clients to interrupt by stopping
the team presentation and letting the clients talk at the first sign of any com-
ments or concerns. After each part of the presentation, the team should stop and
ask for additional comments. If the client offers no comments, the team can pre-
pare and ask the client questions. The team can demonstrate to the client that
the team hears the comments by marking changes or suggestions on the charts
or by repeating the client’s key points.

While the team wants to encourage client interaction, the team nonetheless
should control the flow of the meeting. If the client goes off into personal stories
or other nonrelevant material, the team should listen politely and not interrupt.
But when the client stops talking for a moment, the team can use the agenda to
get the discussion back on track. For example, a team member can say, “Shall
we move on to the next topic?” When time or topics of conversation run out or
the client wants to leave, the team should end the meeting. The team can han-
dle any unresolved items by telephone or e-mail or at another visit. Additional
material on presentations appears in Chapter 3.

TABLE 7.1 Revised Project Plan as of February 12

Est.

Per. People Sequence Start Draft Due

Milestone or Activity hours Assigned PreReqs Date Date Date Status

1. Organization Plan 13 Jan 19 Jan 21 Jan Complete

1.1 Deliverables

1.1.1 Team contract 10 All 13 Jan 19 Jan 21 Jan Handed in

1.1.2 Skill inventory 5 All 13 Jan 17 Jan 21 Jan Handed in

1.2 Meet with manager 6 Terrie/Dan 1.1 19 Jan 20 Jan 21 Jan Done

1.3 Meet with client 18 All 1.2 13 Jan 23 Jan 24 Jan Done

2. Project Definition Complete

2.1 Review client request 24 Jan 31 Jan 31 Jan Done

2.2 Draft SOW 12 All 1.3 24 Jan 24 Jan 24 Jan Done

2.3 Draft project def. rpt. 40 Dan/Al 2.1 24 Jan 31 Jan 13 Feb Draft done

2.4 Proj. def. presentation 23 Dick/Al/Dan 1.3 24 Jan 3 Feb 6 Feb Done

3. Proposed System 1 Feb 28 Feb 28 Feb Started

3.1 Prepare specifications 20 Al/Terrie 2.3 1 Feb 20 Feb 20 Feb Started

3.2 Draw models 1 Feb 20 Feb 20 Feb Started

3.2.1 Data model 5 Al 2.3 1 Feb 20 Feb 20 Feb Done

3.2.2 Process model 20 Dan 2.3 1 Feb 20 Feb 20 Feb Started

3.3 Refine alternatives 5 Dick/Terrie 2.3 5 Feb 12 Feb 12 Feb Done

3.4 Conduct evaluation 15 Dick 3.3 13 Feb 20 Feb 20 Feb Not started

3.5 Select recommendation 2 All 3.4 20 Feb 28 Feb 28 Feb Not started

4. System Acquisition 3.5 1 Mar 15 Mar 15 Mar Not started

Option A. Buy

Option B. Build

5. System Delivery 15 Mar 8 Apr 8 Apr Not started

5.1 Acceptance test Not started

5.2 Implementation Not started

6. Final Report and Presentation 5 Mar 18 Apr 23 Apr Not started

Chapter 7 Learning from the Current Situation 249

COMPLETING THE PROJECT DEFINITION STAGE

Once the team makes the Project Definition Presentation, the team can complete
the Project Definition Report. The team should enter any corrections or changes
that arise during the presentation into the report and the Statement of Work
(SOW) as appropriate. When the team has a final corrected copy of the SOW, the
team asks the client to sign the SOW to get a written expression of the client’s
approval to proceed with the project.

Toward the end of problem definition, the team can update the project plan
for the project. As the team carries out the problem definition activities, the team
will learn more about what the client wants, the current situation, and the activ-
ities appropriate to the next stages of the plan. The team can use this informa-
tion to prepare or revise the detailed steps for the Proposed System Phase and
to make other revisions as needed. In all cases, the team should make sure that
the client and manager understand and agree with any revisions that affect them.
A revised project plan for GB Video appears in Table 7.1.

250 Part Two Project Definition

Summary The goal of current situation analysis is to obtain information to answer the fol-
lowing questions:

• What happens in the current operation? What and how do events, processes,
and data interact as the current operations start, proceed, and end?

• What existing physical and organization infrastructures support the current
operations?

• What problems result from the current operations and infrastructure? What
things happen or do not happen that the client considers undesirable?

• How do the problems in the current situation affect the performance measures
identified during the strategic analysis?

• What aspects of the current situation may or must appear in the proposed sys-
tem solution? What operations, problems, and infrastructure carry over to the
proposed system?

• What aspects of the current situation should change in the proposed system
solution? How should operations, problems, and infrastructure change?

The level and extent of the analysis will depend on the nature of the project,
the background information possessed by the team, and the desires of the client
and the project manager. The team might prepare a narrative model, enterprise
data model, and data flow diagram for the current operation. Graphical and nar-
rative representations help establish completeness, correctness, and consistency,
and the representations provide a convenient way to organize and cross-check
data about current operations.

Narrative models describe the “who, what, where, and when” of the current
situation in well-written paragraphs. Narratives should identify events, data
inputs from externals, the outputs to externals, internal data flows, data stores,
data flows to store and retrieve data and processes. A section of the narrative
lists the organizational and physical infrastructure for the current operation. The
team also conducts a problem analysis to identify the problems that exist in the
current situation and a retention and change analysis.

More structured models can help team members to identify errors and omis-
sions and to communicate with each other and the client. A team might select
DFDs as the graphical process model and an EDM as the graphical data model.
The team’s graphical data and process models should provide a coherent and
complete picture of the current operation that includes all of and only data and
processes that appear in the narrative model for the current operation. In sys-
tems work, completeness and correctness are critical properties.

The current operation DFDs model the externals, processes, flows, and stores
as they physically exist in the current operation. The existing data stores may
contain data from several entities. The enterprise data model presents a graphi-
cal overview of the conceptual data structure for the current operation. The EDM
may include entities that relate to the current operation but will lie outside the
boundary of the proposed system.

At a number of points during the project, the team may seek client approval
to proceed. The client and team agree on the specific review points for each

Chapter 7 Learning from the Current Situation 251

project. Once the team completes a draft of the project definition materials, the
team may conduct a project definition presentation with the client in order to
(1) obtain client approval to proceed with the project; (2) provide feedback—
show the client that the team understands and has listened to what the client
said; (3) demonstrate competency—demonstrate to the client that the team can
construct an adequate overall view of organizational strategy, goals and features
for the proposed system, constraints, alternatives, and the current situation; and
(4) correct the project definition materials—get the client to interact with the team
members to correct any errors or omissions and/or to provide additional infor-
mation. The team uses the insight gained form the presentation to create a final
project definition report including a statement of work.

As the team carries out the problem definition activities, the team will learn
more about what the client wants, the current situation, and the activities appro-
priate to the next stages of the plan. The team can use this information to pre-
pare or revise the detailed steps for the Proposed System phase and to make
other revisions as needed to the project plan.

Key Terms approval, 247
competency, 247
completeness, 240
consistency, 239
correctness, 247
current situation, 229
current operations, 233

data model, 243
feedback, 247
graphical model, 239
metadata, 243
multiple

representations, 239
narrative model, 232

organizational
infrastructure, 234

physical infrastructure, 234
problem analysis, 234
process model, 240
retention and change

analysis, 234

Review

Questions

1. Answer the following questions about current operations.

a. What should a team expect to learn from examining the current system?

b. What are the guidelines for deciding how much detail about current operations is
needed?

c. It is very rare that no current system exists to be analyzed. Give an example.

2. Answer the following questions about current situation models.

a. Why is it helpful to have both the narrative and the graphical models when they
both reflect exactly the same system?

b. Who is the intended reader of the current system narrative?

c. Who is the reader of the current system graphical model?

3. Consider the subject of information collection: teams usually interview their client(s)
about current operations.

a. What other sources of information might be sought?

b. Under what circumstances might a client not want to share forms?

c. Why might a client not want you to talk to users?

4. What level models are necessary in order to analyze the current operation?

a. How much detail should the DFD contain?

b. What is in an enterprise data model (EDM)? What does it leave out?

252 Part Two Project Definition

5. What information do you include in the graphical data model?

a. What metadata should be included with this model?

b. When should you include an ERD in the appendix and not in the body of the report
or presentation?

c. What are the standard guidelines for the enterprise data model?

6. What information do you include in the graphical process model?

a. What metadata should be included with this model?

b. When should you include the DFD in the appendix and not in the body of the report
or presentation?

c. What are the rules for DFD preparation?

7. Answer the following questions about retention and change analysis.

a. What is retention and change analysis?

b. According to the chapter, “The team reviews the description of the current opera-
tions, the problem analysis, and the proposed system features.” How does this
work?

8. Answer the following questions concerning the project definition presentation.

a. What are possible objectives of the project definition presentation?

b. How does the team use the meeting to correct any errors or omissions in their
understanding?

c. What are some techniques for generating discussion in the project definition
presentation?

9. Upon completing the project definition stage,

a. What should the team do after the project definition presentation to complete that
stage of work?

b. What are some of the milestones that should be included in the revised project plan?

Critical
Thinking
Exercises

Individual Exercises
1. Using the information on GB Video provided in Chapters 6 and 7, prepare a project

definition report.

2. Prepare a project definition presentation for the report developed in exercise 1, above.

Group Exercises
1. Use your knowledge of your own college registration system,

a. Prepare a narrative of the current system.

b. Prepare a DFD and EDM that match the narrative.

c. Assuming that you have been asked to develop a computerized system to replace
the advising system, prepare a retention/change analysis of the system.

2. Use the example of the motor vehicle problem 4 from the Group Exercises in Chapter 3,
and the information you prepared in your answer to that exercise to prepare the
following:

a. A project definition report.

b. A project definition presentation from the above report.

Proposed System
For many people, project definition tasks seem analytic, routine, and even mun-

dane; finding a proposed solution feels creative and more satisfying. A typical

team member views inventing the specifications for solutions as a natural task.

Many teams begin to think about and identify satisfactory solutions from the first

day of the project. Imagination, creativity, knowledge, and experience all play

important roles in finding solutions. Team members know that their mission is to

satisfy or give value to the client, and the client wants a solution for his or her

problem. The proposed system activities of identifying and evaluating solutions

focus directly on what the client wants.

Alas, the proposed system activities, regardless of the amount of creativity and

enthusiasm the team invests, may offer little to the client unless the team builds

carefully on the information from project definition. During project definition, the

team identified the client’s values, features, and constraints for the proposed

system. The team expands and refines the features set forth by the client within

the value and constraint framework to arrive at specifications for the proposed

system and a recommended solution. Unless the team truly and fully understands

what the client wants and values, the proposed solution may disappoint the

client.

Chapter 8 explores the concepts and issues of developing specifications for a

proposed system that will solve the client’s problem. At this stage, the team

determines conceptual specifications for the proposed system that the team can

translate into different sourcing and infrastructure alternatives at a later stage.

While most people can devise solutions using intuitive approaches, the team may

benefit from applying more formal problem-solving methods. Helpful methods

include heuristics, difference reduction, calculation, and applied experience. The

team also may gain insight from such organizational frameworks as the value

chain model.

As specifications emerge, the team needs to make another important decision:

how best to document or record the specifications for use in future design or

procurement activities. Good specifications provide a clear, unambiguous, and full

description of the essentials of a proposed system that will allow the team to

create and evaluate specific solution alternatives. The team may choose a combi-

nation of a narrative statement of specifications and such graphical data and

Part Three

process models as modified data flow diagrams and entity relationship diagrams.

The use of several representations of the specifications helps the team to dis-

cover possible errors and omissions.

Chapter 9 examines the issues and steps associated with translating the con-

ceptual specifications into specific alternative solutions, evaluating the alternatives

with respect to client values, and choosing a recommended solution that

addresses the client’s problem. A recommended solution involves two interrelated

choices: (1) the specification of features—the levels of functionality, infrastructure,

and performance included in the system; and (2) the sourcing path—the specific

build or buy option. To make these choices, the team can use a value-oriented

design approach: (1) Review the strategic alignment for the project; and (2) use

the strategic alignment framework to look at the cost-effectiveness or value

impact of each choice. If the cost of a feature set and sourcing path appears to

exceed the value or the client’s budget constraint, the team can look for a possi-

ble reduction in features and/or a different sourcing path.

Evaluation and alternatives remain central themes throughout the life cycle of

a system. The team begins the evaluation process during project definition with

the analysis of strategic alignment, applies value-oriented design to arrive at

specifications, and evaluates alternative versions of features and sourcing options

to select the recommended solution. The valuation process may consider such

factors as feasibility, risk, features analysis, payback period, net present value, and

return on investment. Tabular presentations of evaluation data can help the team

to focus the analysis and communicate effectively with the client. The evaluation

leads to a key decision point: the selection of the recommended solution. At this

point, the team proceeds to build or procure a solution.

Evaluation continues to play a significant role. The team evaluates to select a

specific purchase option or to modify the build plan in the event that time or

budget issues arise. When the system starts to operate, the client may conduct a

post-implementation review to determine if the system meets design goals. The

client may conduct continuing evaluation over the life of the system to select

appropriate modifications and to find the correct shutdown point. Good systems

work incorporates alternative and evaluation thinking into every activity that

occurs.

8. Proposed System Specifications

9. Alternatives, Evaluation, and Recommendation

254 Part Three Proposed System

Chapter Eight

Proposed System
Specifications
Chapter outline

255

Introduction

Goals and Outcomes

Concepts for the Proposed System

Problem-Solving Methods

Experience-based Methods

Trial and Error

Heuristics

Difference Reduction

Calculation and Optimization

Organizational Models

Design Approaches

Modification

New Design

Narrative Specifications

Narrative Format

Introduction

Data Specifications

Process Specifications

Organizational Specifications

GB Video Narrative Model

Graphical Process Specifications

Modified Data Flow Diagrams

The Context-Level DFD

The First Explosion MDFD

Additional Explosions

Graphical Data Specifications

Metadata Specifications

Object-Oriented Design Specifications

Use Case Diagrams

Class Diagrams

Summary

Key Terms

Review Questions

Critical Thinking Exercises

Individual Exercises

Group Exercises

References

256 Part Three Proposed System

INTRODUCTION

During project definition, the team performs mostly analysis activities. These
activities include decomposing the situation into such pieces as strategy, prob-
lems, features, constraints, and operations; gathering information about each
piece from the client; and analyzing the information. The team may bring the
results from the project definition stage into the proposed system specification
process including the:

• Statement of work.

• Project plan.

• Strategic alignment.

• Proposed system features and constraints.

• Problem analysis.

• Retention and change analysis.

• Sourcing options acceptable to the client.

Requirements specification for the proposed system marks the beginning of
the synthesis phase of a project. Synthesis means combining separate pieces to
form a coherent whole, that is, a proposed system solution that meets the
client’s requirements. During requirements specification, the team begins to
assemble the pieces for the proposed system. Imagination, creativity, knowl-
edge, and experience all play important roles during synthesis. Requirements
specification builds directly on the existing prior work. The client identified the
features and constraints that he/she feels are relevant to the proposed system.
The team by means of diplomatic questions and suggestions tries to expand and
refine the features mentioned by the client. If the team believes the client is over-
looking or misconstruing an important feature, the team can ask the client ques-
tions for clarification.

This chapter assumes that the team will determine the conceptual specifica-
tions for the proposed system separately from sourcing and physical infrastruc-
ture alternatives, a useful practice when time and cost permit. The team applies
problem-solving techniques and a variety of data, process, and object models to
arrive at the conceptual specifications. Conceptual specifications represent solu-
tions that the team can implement in different sourcing and infrastructure
options. In the framework of this book, teams choose a sourcing option, such as
to build or buy, and select a general physical infrastructure during the evalua-
tion phase, which is covered in Chapter 9.

In practice, the nature and level of the proposed system specification process
depends on the organization’s policies, the complexity of the problem, and the
team. For example, the team can tailor specifications to fit a sourcing option
specified by the client or company policy: “Our company policy is to purchase
packages for all non-mission-critical systems and build mission-critical systems
in-house.” When the team plans to build the new system, requirements specifi-
cation may merge with detail design or coding and testing. When the team plans

to purchase the new system, requirements specification may merge with the
identification and evaluation of packages.

Conceptual specifications and technologies may mix together or interact. The
team may introduce or imply technology constraints without meaning to do so.
For example, a data model for the proposed system that identifies foreign keys
implies the use of a relational database. With prototyping or prototype-based
design, the team uses a physical model of the system built with specific tech-
nologies to determine or refine the conceptual specifications. The conceptual
specifications may dictate parts of the physical infrastructure. For example, a gro-
cery sale system with a reasonable set of functional specifications probably
requires bar-code scanner input to be cost-effective.

In some situations, organizational policy and/or the client may influence the
physical infrastructure. For example, policy or the client may specify the use of
the existing physical infrastructure or may specify the use of certain products,
for example, UNIX operating systems or Intel chip servers. Policy may require
the use of such higher-level languages and development systems as Microsoft
Visual Basic or Oracle development tools. These tools generate and/or work best
in specific logical and/or physical structures; for example, Visual Basic works
with an event-driven rather than a batch-sequential logical structure, and Oracle
tools assume an Oracle relational database.

Creating conceptual specifications gives the team and client significant flexi-
bility. Conceptual specifications translate into a variety of logical and physical
environments. The sourcing option selected might include to build in-house, to
buy a packaged application, or to outsource to an application service provider.
Technology environments might involve mainframe or netcentric architectures,
relational, network, or other data structures, and a broad set of available servers,
operating systems, and data storage devices. If the team can demonstrate that
sourcing options or infrastructures other than the specified ones lead to better
cost-effectiveness, clients may change their minds and policies can have exceptions.

GOALS AND OUTCOMES

The goal of the proposed system phase is to assure that the conceptual specifi-
cations for the proposed system are complete and correct before the team
expends any significant effort on the logical and physical design—a philosophy
of “make it right; then make it work.” Developing a complete and correct under-
standing of the conceptual specifications of the system can consume substantial
time and effort and may involve additional information gathering activities. For
example, the team may conduct additional interviews with clients and users
and/or observe the users at work. The team may conduct prototyping sessions
at which clients and/or users try out a prototype or package. By whatever appro-
priate processes, the team must identify the desired features and outcomes and
translate them into conceptual specifications for the proposed system.

During this phase, the team answers questions that include (1) what functions
or processes should the system include to provide the features that the client

Chapter 8 Proposed System Specifications 257

258 Part Three Proposed System

wants and (2) what data are required to support or operate the included func-
tions? The team may answer these questions by preparing such deliverables con-
taining specifications for the proposed system as:

• A narrative statement.

• Graphical process and data models.

• Graphical object models.

The team creates narrative and graphical models of the proposed system spec-
ifications because models offer an effective way to create and communicate the
requirements. Models provide a standard format that may facilitate communi-
cation between team members and sometimes with clients. The amount and level
of modeling tends to be both more detailed and more extensive than for the cur-
rent situation because the proposed system models serve as input for the system
delivery phase. The conceptual specifications models provide the base for the
logical and physical specifications for the programs and data. However, the log-
ical and physical designs generally involve an even greater level of detail than
conceptual specification.

The narrative model describes the proposed system specifications in natural lan-
guage, but follows a specific format to encourage completeness and to facilitate
communication between team members. A conceptual data model (CDM) can
illustrate graphically the data environment for the proposed system including all
of the entities, relations, and attributes. A CDM includes all of the entities that
will define data stores in the new system, that is, it includes the entities for data
stores inside the new system plus the entities for external data stores that the
new system uses to retrieve or store data.

The team may use one of a number of process models to specify the program
structure and logic. Many projects will create the conceptual process model with
modified data flow diagrams (MDFDs). MDFDs work well as conceptual process
models for a wide range of project types, but other process models may work
better for some projects. When the client wants a Web site or other dialog-driven
system, a page navigation map may offer the most effective process model (see
Chapter 11). Alternatively, the team may choose to create object-oriented design
(OOD) diagrams to represent the conceptual specifications. The team should dis-
cuss their plan for requirements specification and the proposed data and process
models with the team manager before investing time and effort.

CONCEPTS FOR THE PROPOSED SYSTEM

As previously noted, the team must solve a synthesis problem to determine spec-
ifications. To synthesize a solution, team members must combine the appropri-
ate features into the conceptual specifications for the proposed system. Most
people find inventing the specifications for solutions a natural task. Many teams
start to think about and identify satisfactory solutions from the first day of the
project. However, informally generated solutions and specifications come with
some possible hazards. The informal solutions may not deal with all of the
client’s requirements and may involve higher costs and lower benefits than other

possible solutions. The team is well advised to follow or at least consider more
formal approaches to generating specifications. The more formal approaches
include problem-solving methods, organizational models, and design approach
models.

Problem-Solving Methods
Much thought has gone into and much has been written about problem solving.
Team members solve hundreds of problems every day without even thinking
about them, such as what to wear, where to eat lunch, what to do first when arriv-
ing at work, and so on. As problems become more complex, the additional struc-
ture provided by the use of problem-solving methods may help. The problem-
solving methods discussed in the following materials apply to all of the aspects
of the synthesis phase as described in Chapters 8 through 13.

To the casual observer, teams appear to come up with design decisions by
some unknown gestalt. Actually, the team, perhaps without conscious intent,
applies a mix of problem-solving methods to make the design decisions. The
team can choose from a large array of problem-solving methods, but most meth-
ods fall into one of several classes:

• Experience-based methods that use prior experience or experiences of other
organizations to derive solutions.

• Trial and error methods that try out different solutions.

• Heuristic methods that follow a set of rules that “seem to work well” but do
not guarantee a best solution to a problem.

• Difference reduction methods that identify and try to reduce the differences
between the current state and the desired state.

• Calculation and optimization methods that use mathematical procedures to
find a solution.

The analyst may use a combination of several methods to solve the system syn-
thesis problems.

Experience-based Methods

Experience-based methods find frequent use in information systems work. The
analyst may bring direct experience from solving similar problems or may use
ideas learned from colleagues. Sometimes an analyst will look at a solution in
another organization. The literature, including books, trade journals, and pro-
fessional journals about information system and organization solutions, often
provide a rich source for experience-based solutions. For example, most people
have rented a videotape or DVD and know from their own experience and/or
from observation and literature that most video rental systems contain member,
rental, and return modules; use bar-code readers to enter the video ID number,
and so on. Most teams facing the GB Video problem probably would use expe-
rience to arrive at an initial set of specifications for a proposed system. The team
also might visit a video rental company to learn about their system.

Brainstorming offers another experience-based variation for problem solving
that can generate innovative solutions. During a brainstorming session, a group

Chapter 8 Proposed System Specifications 259

260 Part Three Proposed System

of people including team members, clients, and perhaps others, use experience
to come up with a broad set of possible solutions. No attempt is made to eval-
uate the solutions; the goal is to generate a wide-ranging set of ideas. Brain-
storming can take place in a standard face-to-face meeting or with the use of
group support system (GSS) technologies. Sometimes brainstorming leads to
innovative solutions that differ from the solutions used by most organizations.

Trial and Error

Trial and error methods relate closely to experience-based methods. With trial
and error, the analyst may use experience to determine an initial “trial” solution.
If the initial solution is satisfactory, the problem is solved. If the trial solution is
less than satisfactory (an error), then the analyst looks for another solution to try
out. Ideas undergo a trial in a variety of ways. The analyst may just think about
a solution to determine if it is satisfactory or may seek the opinion of other team
members and/or the client. Prototyping provides a more formal structure in
which to evaluate solutions in a trial and error approach.

Heuristics

In information system design, heuristic problem solving normally consists of
finding and applying “best practices.” Best practices represent generalizations of
experience, that is, ideas that appear to provide benefits learned from experience
at a number of organizations. For example, using an SDLC approach to plan a
system project is a heuristic. Often heuristics build on pieces of theory or prin-
ciple, but the theory framework is incomplete and does not guarantee a best
solution. Some typical heuristics or best practices for solving conceptual specifi-
cations problems in information systems include:

• Design the system to capture input data only once. After the initial capture, retrieve
the data from storage when they are needed. (Underlying principles: data input
is expensive and error prone; single input should reduce cost and errors.)

• Design the system with single point data storage for possible use by multiple appli-
cation programs. All of the customer data is stored in one and only one data
store. (Underlying principles: duplication of data or multiple data stores for
the same data can lead to data integrity problems and can increase the costs
for updating and maintenance.)

• The system automatically should generate and insert standard input data when pos-
sible. For example, the system can generate current date and time, transaction
number, or customer number for a new customer. (Underlying principle: the
system can generate these data at lower cost and higher consistency than man-
ual input.)

• The system should perform all calculations. (Underlying principle: the system can
perform calculations at lower cost and higher accuracy than people.)

• The system should verify data about third parties. Third parties include customers,
vendors, employees, and others; data should be verified on every contact with
a third party. (Underlying principle: people tend to omit or delay reporting
changes in their data.)

• Error checking of input data (online, real time if possible) represents a good invest-
ment in a system. (Underlying principle: The cost to prevent erroneous data
from entering the system is less than the cost to correct bad data and/or repair
the damage that bad data can cause.)

Hundreds or thousands of other best practices exist. While best practice meth-
ods provide helpful guidelines for requirements specification or other parts of
synthesis, a “best practice” may or may not constitute the best solution. Condi-
tions may exist that cause a best practice to provide a less than satisfactory solu-
tion. For example, extensive error checking may increase costs, slow down input,
antagonize the third parties, and add little if anything to data integrity.

Difference Reduction

Difference reduction methods find widespread use in information’s system
design. Many times during design, the analyst, either directly or indirectly, com-
pares the current state to the desired state and looks for ways to move the cur-
rent state closer to the desired state. The following list (adapted from Zuboff,
1988) provides one characterization of general operations to move from the cur-
rent state to a desired state for an information system.

• Automate. Replace manual activities in the current situation with functions
performed by a computer-based solution and/or replace current information
technologies with more cost-effective ones—a physical design issue.

• Inform. Provide new information that is not available in the current situation
to such users as managers, employees, vendors, and customers.

• Transform. Change the functions, structure, and/or performance for organi-
zational processes in the current situation.

• Discover. Allow users to learn things about the organization and/or its envi-
ronment for which the current situation does not allow discovery.

Many times, the team will use a combination of the operations to move from
the current situation to the proposed system. For example, “Automate” is an
important operation to move from the current situation at GB Video to the
desired solution. The GB proposed system also “Transforms” the way the orga-
nization does business by allowing access to rentals only for confirmed mem-
bers, and “Informs” by providing new information on members to marketing.
The new system may allow Purchasing to “Discover” customer rental patterns.

An obvious application for difference reduction involves looking at the prob-
lems in the current operation and finding ways to move to a desired “problem-
free” state. The difference reduction table shown in Table 8.1 lists problems
identified in Chapter 7 for the GB Video example and the possible actions or
operators that the analyst can apply to move toward the desired state.

The analyst also can apply difference reduction to the features that the client
wants in the proposed system compared to the current operation. The difference
reduction table shown in Table 8.2 uses the proposed system features identified
in Chapter 6. A number of the differences relate to logical and physical design;
Chapters 9 through 13 deal with some of these design issues.

Chapter 8 Proposed System Specifications 261

262 Part Three Proposed System

TABLE 8.1
Difference
Reduction
Table Based
on Problems

Reduction Action or Operation to Arrive at a

Problems in the Current Operation Problem-free Proposed System (PS)

Manual system leads to high cost Physical design issue—automate

Long lines, slow checkout Physical design issue—automate

Accessing manual files causes delays Physical design issue—automate

Incorrect rental charges Include a better calculation function in the PS

False or missing member numbers Access the rental function only from the member

function in the PS

Nontimely overdue notices Include a better overdue notice function in the PS

TABLE 8.2
Difference
Reduction
Table Based
on Features

Client-Desired Proposed

Current Operation System Features Reduction Action

Member, rental, and return Faster, simpler, member Redesign rental, return, and

functions rental and return functions member functions

All manual data entry Automate data entry where Physical design issue

possible

A lot of clerk time Less clerk time Physical design issue

Duplicate data entry and Reduce the cost and errors Include single point entry

data storage for data entry and storage

Manually send data to Eliminate manual data Give accounting direct

accounting transfer access to data stores

Credit card and rental form Save the cost of separate Integrate credit card

processing are entirely processing of the rental processing into the rental

separate form and the credit card function

Rental and Return system No reporting functions in the Transfer reporting functions

contains two reporting functions rental and return system to accounting

Manual overdue notices Automated overdue notices Physical design issue

This comparison tends to duplicate part or much of the problem table but may
contain some new information. A team may wish to combine the problem and
feature tables.

Calculation and Optimization

Standard mathematical approaches apply to solving some problems, especially
physical infrastructure problems. For example, a GB Video customer record
might consist of 250 bytes. Assuming that the system after blocking and other
storage considerations can utilize 80 percent of the storage, how much storage
is required for 1,000 customers? This problem becomes a simple calculation using
the following formula:

Total data storage

Total data storage 312.5 KB
(250 1,000)

0.8

(Customer record size Number of customers)

Utilization

Optimization methods consist of mathematical processes for finding the con-
ditions that result in the minimum or maximum value of a function. Common
optimization methods include differential calculus, difference techniques, math-
ematical programming, and enumeration. While optimization techniques are dif-
ficult to apply to many problems, they can provide powerful solution tools for
some problems.

Organizational Models
The Value Chain Model of an organization can provide guidance on developing
specifications for the proposed system. Michael Porter developed a value chain
model in his analysis of effective business strategies (Porter, 1985). The value chain
follows the system decomposition model used by such systems analysis tools as
DFDs: break the value-producing activities of the organization into components
that allow managers to identify and focus on solvable problems. A value chain
represents the value production function for the organization—the activities that
result in the total value, net benefits, or profits produced by the organization.

The value chain model shown in Figure 8.1 identifies five primary activities
and four support activities. The five primary value chain activities in the upper
half of the diagram consist of:

1. Inbound logistics. The acquisition, transportation, and storage of resources
needed to produce the desired good or service.

2. Operations. The activities that actually create the product or service.

3. Outbound logistics. The actions necessary to deliver the product or service to
a destination, such as warehousing, transportation, and so on.

Chapter 8 Proposed System Specifications 263

Inbound

Logistics

Outbound

Logistics

Marketing

and Sales

Value, Net

Benefits,

or Profits

Operations Service

Support Activities

The Primary Activities Value Chain

Administration — accounting, finance, strategic planning, general management
 Resource Management — payroll, personnel, benefits, recruiting, training
Technology Development — R&D, IT, product and process improvement

Procurement — purchasing, contracts, RFPs

FIGURE 8.1 The Value Chain Model

264 Part Three Proposed System

4. Marketing and sales. Advertising, promotion, and other activities that make
potential customers aware of the results and more likely to use them.

5. Service. Activities that support the product or service after initial delivery to
a customer, such as training, spare parts, maintenance, and updates.

The support activities appear in the lower half of the diagram. The arrows show
the flows of value.

Most of the time, team members can frame their system problem into a form
that addresses value through the primary value chain. Problems in any of the
primary activities can reduce the total value produced by the organization.
The objective of value chain analysis is (1) to identify aspects in the value
chain for the current situation that constrain the value production function;
and (2) to identify proposed system features that will eliminate or reduce the
constraints.

To use value chain analysis, the team carries out the following steps:

1. Define the product or service related to the goals and objectives identified dur-
ing strategic alignment. If the goal is to increase profits at GB Video, the
related product is video rentals.

2. For the product or service related to the goal, identify the key subactivities
for each part of the primary value chain. Different people may put subactiv-
ities in different places. The important part is to identify the subactivities. The
value chain serves only as a guide for thinking about the activities. All or most
of the relevant subactivities may fit in one area of the value chain. In the GB
Video example, many of the subactivities fit into the operations activity of the
value chain.

3. Classify each subactivity as (1) a strength for which there is little reason to
invest further effort; or (2) a weakness for which additional effort may have
a large payoff. The idea is to find the most promising areas for improvement.

4. For the most promising areas, create features for the solution that will elimi-
nate or mitigate the weaknesses and thereby add value to the chain.

Although features of the proposed system may contribute in some way to all
of the primary activities, the team should focus on the most important contribu-
tions. These key contributions drive the major decisions and also are most likely
to attract the support of the sponsor. Teams often are tempted to focus on such
technology features as, “The Web interface will allow people to order their own
videos online and reduce the cost of outbound operations.” At the conceptual
stage, the team should try to focus instead on the features that provide the
desired functionality and performance for the new system.

Design Approaches
Design approaches determine the route or processes used by the team to move
from the current situation to the proposed system. Clients often request one or
both of two broad design approaches for the new system: modification and/or a
new design.

Modification

If the client requests a modification of the current system or a new system that
closely resembles the current system, the team can modify and extend the cur-
rent operation materials to incorporate the features of the new system. The dis-
advantage of this approach is that the team may miss or ignore changes that
could improve greatly the functionality of the system.

The GB Video example represents primarily a modification of the current man-
ual system. Both the current operation and the proposed system use the same
basic functions and data. The biggest changes occur with respect to the logical
and physical design; these changes include automating the manual system,
changing the data structure, and rearranging responsibilities. At the conceptual
level, the MDFDs for the proposed system should look similar to (but not iden-
tical to) the DFDs for the current operation. In short, a more detailed analysis of
the current operation can provide such significant information for the proposed
system as data formats for attributes of all of the entities and detailed procedures
for rentals, returns, and members.

New Design

If the client requests a new system that differs significantly in function from the
current situation, the team may wish to construct the new narrative from the strate-
gic goals and objectives and from the desired features and operation of the new
system. With a new design, the team avoids the design bias that may result from
starting with the current operation narrative and graphical models. After the con-
ceptual design for the proposed system is complete, the team may review the
models of the current operation to make certain that no key features were omit-
ted. If no current system exists, new design is the only option.

For the GB Video example, a team probably would not use a new design
approach because much of the data and processes remains the same. In the
new system, customers will request and return videos with the same processes
and flows as before. New design aspects enter into the GB Video example
mainly at the logical and physical level. To meet the client goals, the logical
data structure probably will change to a relational model, and physically, the
system will change from manual operations to bar-code scanning, keyboard
input, and computer processing. Analysts tend to think about all of these issues
at the same time. As a result, analysts working on actual problems in organi-
zations often combine the conceptual, logical, and physical design phases for
small projects.

If the nature of the GB Video system changed substantially from the proposed
system, then new design becomes more relevant. For example, the client at GB
Video might ask the team to create a Web-based video rental service. The client
wants to use the Web site to rent videos. The customers will select videos on the
Web and then pick up the items at their convenience or receive them from a
delivery service. The new operation will differ substantially from the current
operation. The current operation still can provide information on the attributes
of the entities for the proposed system, but clearly the proposed system will

Chapter 8 Proposed System Specifications 265

266 Part Three Proposed System

contain some new processes and functionality even at the conceptual level. This
scenario also provides an example of technology-driven design. The introduction
of Web technology results in changes in functionality and processes. Chapter 11
contains illustrations that show how the resulting system might work.

NARRATIVE SPECIFICATIONS

The narrative model provides the specifications for the proposed system in a text
format. The narrative specifications paint a comprehensive and precise natural-
language picture of both the rationale and the features for the proposed system.
The proposed system narrative specifications may differ significantly both in
structure and content from the narrative for the current operation. The proposed
system narrative applies the results of problem-solving techniques, organiza-
tional models, and design approaches to synthesize the conceptual specifications.
In the proposed system narrative, the events, data flows, processes, and data
specifications reflect those needed to meet the client’s goals, instead of the actu-
ality of the current operation. In addition, the team provides the specifications
in sufficient detail to construct the program and data schema during detail
design in-house or to contract with an outside vendor for the purchase option.

Narrative Format
For completeness and ease of comprehension, the proposed system narrative
specifications follow a standard format or a structure. The analyst may wish to
include the following items about the proposed system in the narrative in lan-
guage that the client and an outside vendor, if applicable, will understand:

1 An introduction.

2. A discussion of the problem-solving methods and rationale that the team
applied to determine the specifications. Normally the team discusses the
problem-solving rationale as part of the data and process discussion.

3. The proposed system process and data specifications or object specifications.

4. Any organizational changes required to use the proposed system.

Although the team should try to avoid any commitment to specific technolo-
gies in the conceptual specifications, field projects focus on exploring the design
and use of computer-based information systems. During the evaluation phase a
team might conclude that a manual system appears most cost-effective. How-
ever, the great majority of projects will result in a computer-based system and
the specifications often assume explicitly or implicitly that the solution will
involve a computer-based system.

The order in which the team prepares the data and process specifications
depends on team preferences and project content. With systems that focus mainly
on data, for example, building a database that will support a number of appli-
cations or a data warehouse, the team may wish to start with specifying the data
structure. If the project involves complicated processes, such as a reservation sys-
tem, the team may choose to start by specifying the process structure. In any

event, preparing the narrative, data, and process models often involves an iter-
ative process. The team starts by specifying the data structure and probably will
discover additional data specifications during process specification. When the
team prepares the graphical model specifications, the team probably will dis-
cover changes for the narrative or vice versa if the team starts with graphical
models.

Introduction

The introduction to the proposed system specifications restates briefly the prob-
lem and the major issues or goals for the team. The introduction may include
the content of the project statement to clarify again what the team is trying to
do. The introduction also identifies the content of the rest of the specifications
materials.

Data Specifications

At this stage, the team generates the conceptual data specifications for the pro-
posed system. The specifications may closely resemble the current operation or
may differ significantly. The team should explain the rationale for retaining
and/or changing the data specifications using problem-solving methodology. The
team identifies only the content of the data specifications at this stage; decisions
on the logical and physical structure come in the next step. Normally the narra-
tive specifies the entities for the new system, most or all of the attributes, cardi-
nality, and primary keys or identifiers. The analyst should include information
about file sizes or expected number of instances if available. If the proposed sys-
tem materials contain graphical data models, the narrative should contain
explicit references to each of the graphical models.

Preparing the data specifications for a proposed system involves synthesis or
creativity. As discussed, experience, difference reduction and best practices, may
give the analyst ideas for the proposed system. Some thoughts on applying these
methods specifically to determine data specifications include:

• Look at the data specifications for the current operation. Keep the entities and
attributes that appear useful, if any.

• Review the problems identified by the client and look for the new entities and
attributes that will reduce or eliminate the problems.

• Determine the entities and attributes required to support the client-specified
goals and functionality for the proposed system. If the client wants to send
mailings to customers, the system must contain the customer mailing addresses
as part of the data specifications. If the client wants to know how many cus-
tomers are over 65, then the data need to contain birth date.

• Look at the data specifications used by competitors or other similar organi-
zations for this kind of system. Looking at other organizations Web sites may
reveal a lot about the data specifications in use.

Team members always have a professional obligation to the client, namely the
obligation to use their information system and organizational expertise to help
the client. Clients often experience difficulty specifying the data required for

Chapter 8 Proposed System Specifications 267

268 Part Three Proposed System

operations, decisions, and analysis. The team should do more than ask what the
client wants. For example, the team can create options and suggestions and then
ask the client to comment on them. If the team builds a prototype, the team prob-
ably will discover that some data needed to make the prototype operate are miss-
ing from the original specifications.

Process Specifications

The team specifies the processes in the proposed system required to meet the
client’s goals. The process specifications tell the story of how the new system
will work, including who does what and when. Normally, the paragraphs in the
process section correspond to modules in the graphical process model or oper-
ations in the object model. When the proposed system materials contain graph-
ical process or object models and/or input and output specifications, the text
should contain references to the graphical models and specifications.

The team also applies problem-solving methods to determine the process
specifications. Suggestions for applying problem-solving models that are specific
to process resemble those for data and might include:

• Looking at the processes in the current operation and keeping the useful ones,
if any, as part of the proposed system specifications.

• Reviewing the problems, features, and goals identified by the client and iden-
tifying new or changed processes that will reduce problems and/or meet
goals.

• Identifying all of the outputs to externals, such as shipping notices, purchase
orders, and manufacturing schedules. Each output activity to any external
requires specification of one or many processes.

• Examining the ways that data enter the proposed system. An input process is
required any time that data enter the system from an external.

• Specifying the processes that are required for all the data store operations
when the system stores, retrieves, updates, or deletes data.

• Checking carefully that processes exist in the specifications to move data from
the point of origin all the way to the point of use. Any missing process link
in the chain will cause an integrity error.

The specifications may contain both mandatory processes—those processes
that must be present to provide the minimum functionality required by the client
and desirable or optional processes. One common set of processes, error checks,
often involve both mandatory and optional processes. A check to assure that the
credit card number is present in the data record for a new GB customer proba-
bly is mandatory. An error check to determine if the zip code matches the cus-
tomer’s city and street address may be optional. Other kinds of desirable
processes include processes that simplify the task for the user, for example, the
automatic transfer of member data from the member process to the rental
process, or processes that enhance system usefulness for a customer. During the
evaluation stage (presented in Chapter 9), the team and the client will explore
which optional processes to include in the final system specifications.

Organizational Specifications

The organization specifications identify the relevant organization issues for the
proposed system. At a minimum, the organizational specifications define the
sources of external inputs and the recipients of external outputs. Such graphical
representations of the proposed system specifications as DFDs and use case dia-
grams show this information. Another common organizational issue is to deter-
mine who has the authority and responsibility to specify data and process and to
request or approve changes. The organizational specifications may include iden-
tification of the organization unit(s) or title(s) that may access and change data,
perform a process, and/or is responsible for its correct operation. If the proposed
system materials contain graphical organizational models or charts, the text
should contain references to the models.

GB Video Narrative Model
A sample narrative model for the GB Video proposed system specifications
appears in Figure 8.2. The narrative model in Figure 8.2 provides only an illus-
tration of specifications for a proposed system. While the sections may remain the
same for many field projects, the content and emphasis may vary widely. Each
team should tailor their narrative model specifications to the specific problem.

GRAPHICAL PROCESS SPECIFICATIONS

The team may choose to represent specifications graphically with a variety of
graphical process models. The graphical process model must:

• Represent correctly the specifications for the process.

• Help to define the structure of the final program or code.

• Match the specifications in the narrative model.

Modified data flow diagrams may represent a good model especially for event-
driven, transaction processing or batch processing situations. As noted before,
the team also may use an object model to define the structure of both data and
process. In some situations, the computer program itself or a prototype of it
serves well as a process model.

Modified Data Flow Diagrams
Modified data flow diagrams (MDFDs) include all the features and rules of DFDs
plus some additional rules that help the analyst to focus more clearly on speci-
fications for the proposed system. The additional rules link the ERD for the pro-
posed system to the proposed system DFDs, introduce the concept of process
triggers, and add time as a dimension to the DFDs.

A trigger for a process is the event or thing that causes the process to carry
out the code, logic, or actions it contains. Every process must have a trigger that
causes the process to begin to operate. Possible triggers include:

• A data flow into the system from an external, for example, the flows associ-
ated with a customer providing member data or with a customer returning

Chapter 8 Proposed System Specifications 269

270 Part Three Proposed System

Introduction

The proposed computer-based Rental and Return System will focus on improved

customer service and lower handling costs for each transaction. This narrative

addresses only the conceptual specifications for the proposed system. The

specifications described in this model derive from the problems, features, and func-

tions identified by GB Video during project definition. The team applied experience,

difference reduction techniques, and best practices to arrive at the conceptual data

and process specifications described in both narrative and graphical form in the fol-

lowing materials. The team will recommend sourcing and physical features in subse-

quent materials.

Problem Solving

The proposed system builds on a modification of the current operation. The team

members used their experiences with video rental systems plus information in the liter-

ature to arrive at a tentative set of features for the proposed system. The team incor-

porated the following best practices in the desired system:

• Capture rental and return input data only once. After the initial capture, retrieve the

data from storage when they are needed.

• Single point data storage of rental and customer data for use by the rental and

return system and by Accounting.

• Automatic generation and insertion of rental number and customer number for a new

member.

• System calculation of tax and total cost.

• System verification of customer data on each contact with a customer.

The team also used difference reduction. The difference reduction tables for

problems and client-desired features appear below. All of the features suggested

by these tables are incorporated in the proposed system narrative and graphical

models.

Reduction Action or Operation to Arrive

Problems in the Current Operation at a Problem-Free Proposed System (PS)

Incorrect rental charges Include a calculation function in the PS

False or missing member numbers Access the rental function only from the

member function in the PS

Nontimely overdue notices Include an overdue notice function in the PS

Page 1

FIGURE 8.2 Narrative Model for GB Video

Chapter 8 Proposed System Specifications 271

Client-desired Proposed

Current Operation System (PS) Features Reduction Action

Member, rental and Faster, simpler, member, Redesign rental, return,

return functions rental and return functions and member functions

Duplicate data entry and Reduce the cost and Include single point entry

data storage errors of data entry and storage

Send data to Accounting Eliminate data transfer Give Accounting access to

problems data stores

Credit card and rental Save the cost of separate Integrate credit card

form processing are processing of the rental processing into the rental

entirely separate form and the credit card function

Rental and return system No reporting functions in Transfer reporting

contains two reporting the rental and return functions to Accounting

functions system

Process Specifications

The proposed GB Video Rental and Return System contains the following functions:

(1) Member— create a new member record or update an existing one; (2) Rental—

rent videos; (3) Return—return videos; and (4) Overdue— create overdue notices for

videos that are overdue. These functions resemble the ones in the current operation.

However, using the problem-solving methods described above, the team introduced a

number of changes to achieve the customer service and cost goals specified by the

client. The client considers all of the functions described in the narrative mandatory.

The customers of GB Video identify the videos that they wish to rent and go to a checkout

position. To improve the likelihood that GB rents only to customers who are members, the

member option must be selected at the beginning of every rental transaction.

Member

The member process is triggered by a customer request to (1) rent videos and/or (2)

become a member. If the customer has and knows the customer number, the number

is entered; the system retrieves the record from the Customer data store and displays

the customer data. If the customer does not have the number, the customer can

provide a telephone number (or a name and zip code). The system tries to retrieve the

customer’s record from the Customer data store.

If the system is unable to retrieve the customer record or if the customer is not a mem-

ber, the new member subprocess is initiated. The system will create a new member

provided the person has a credit card, telephone, and government-issued ID. The cus-

tomer supplies the customer data and the data are entered. The system generates a

customer number, creates a membership card output, and gives the output to the new

member. The system creates a record in the Customer data store for the new member.

Page 2

Once the appropriate customer record is available, the customer is shown and asked

(1) to verify the name, address, telephone, and credit card data and (2) to report any

changes or corrections. This subprocess increases the likelihood that the system will

contain current information for the customer. Any change data are entered and the

customer data store is updated. When a verified customer record is available and the

customer wishes to rent, the member process triggers the rental option and the mem-

ber data are sent to the rental process. The rental process can be accessed only from

the member process; the rental process cannot be accessed directly.

Rental

The rental process is triggered by and only by the member process. The rental

process accepts the member data from the member process and generates a new

rental transaction number and the rental date. The customer provides the video num-

ber and the proposed return date, or the due date. The video number and the due

date are entered into the system. The system retrieves the video data from the Video

data store and based on the due date calculates the rental price for each tape or DVD

rental. This process is repeated for each video. After all the videos are processed, the

system adds the rental price for each video to get a rental subtotal. The system multi-

plies the rental subtotal by the tax rate (state sales tax county sales tax city sales

tax) to get the tax. The total rental cost is the rental subtotal plus the tax.

The payment type— cash, check, or credit card— is supplied by the customer and

entered into the system. If payment is by credit card, the credit card data are entered.

The system sends the credit card data and the total rental cost to the credit card

processor. If the transaction is approved (or is for cash or a check), the system

“commits” the rental and line records; the records are created in the data stores. The

rental number, date, clerk number, pay type, and credit card data go to the rental

record. The due dates go to the line records for each video.

The system then generates a receipt for the customer. The receipt data includes all

of the data supplied by the customer, sent from the member process, and generated

by the system during the rental transaction. The system also retrieves the title data

from the Title data store and includes the name or title in the receipt data.

Return

When a video is returned, the video number is entered into the system. The system

retrieves the corresponding line and rental records, enters the return date, and calculates

overdue charges if any. The customer may charge the overdue fee to the credit card

used for the rental or may pay by cash or check. About 95 percent of the time,

customers return videos with no payment type input, for example, drop them in a

return box. In the absence of customer input on payment, the system retrieves a credit

card number from the customer record and processes the overdue charge against the

credit card. The system records the charge and payment type in the Line data store.

The system may create a return receipt for the customer.

Overdue

After the overnight returns are processed, a clerk instructs the system to run the overdue

program, that is, it triggers the overdue function. The system processes the Line

records. For each video that is two or more days overdue (i.e., today’s date due date

 2), the system retrieves the rental record for the video, retrieves the customer
Page 3

272

record for the rental, generates an overdue notice, and sends the notice to the

customer. When a video is 14 days overdue, the system retrieves the customer’s credit

card number from the Customer data store and the video cost from the Video and Title

data stores, charges the customer’s credit card for the amount of the cost of the video,

and sends a notice informing the customer of the charge. If a customer has a complaint

about overdue charges, the complaint is handled and processed by Accounting.

These processes are represented graphically in the data flow diagrams in the next section.

Data Specifications

The new computerized system will contain data about Customer, Rental, Line, Video, and

Title. The Customer entity will contain customer number, name, address, telephone, credit

card number, and expiration date. If a member does not rent a tape for 24 months, the

record is deleted and the person must rejoin as a new member to rent tapes. GB expects

to start with about 4,000 members and this number will grow over time.

The Rental data will contain rental number, rental date, clerk number, payment type

(cash, credit card or check), and for credit card payments credit card number, expira-

tion date, and the credit card approval code received from the credit card company.

About 80 percent of rental payments consist of cash, 10 percent checks and

10 percent credit cards. The Line data for each video rented will contain line number,

due date, return date, overdue charge if any, and payment type for the overdue

charge. An average rental consists of two videos, requiring two lines, but some rentals

may consist of 10 or more videos.

At the end of each week, the Accounting system will process the Rental and Line

data, will transfer the data on completed rentals to a data warehouse, and will delete

the records for completed rentals. On average, the rental file is expected to contain

about 800 rental records just before processing by Accounting.

The Video data contain the rental fees for each video number. A video may have three

fees— the one-day rental fee, a lower fee for additional days, and a special fee for a

weekend and/or holidays. Since GB closes on Sundays and holidays, the special fee

encourages members to rent several videos for Sunday and holiday periods. The Title

data contain the title number, name of the video, the vendor code, and the cost paid

by GB to acquire the video. Title and Video define data stores that are accessed by

the Rental and Return system but are created and maintained outside of the system.

This data structure is represented graphically in the conceptual data model in the next

section.

Organizational Specifications

The organizational sources and destinations for external data are shown in the context-

level DFD in the next section. The sales clerks, who report to each store manager,

have the authority to retrieve, create, or update records in the Member, Rental, and

Line data stores and to retrieve records in the Video and Title stores. The Accounting

department at headquarters has the authority to retrieve records from all stores and to

delete records in the Customer, Rental, and Line stores. Accounting produces all

reports on rental activities. Records in the Title and Video data stores are created,

updated, and deleted by Purchasing at headquarters.

Page 4

273

274 Part Three Proposed System

a video. Any external request that causes a process to begin operation is a
trigger.

• A data flow from another process. A flow from another process always triggers
the receiving process. A process-to-process flow can occur only with a process
or subroutine call.

• A control flow as a result of time, a count, or other system condition. A control mes-
sage to prepare a report at the end of the month triggers the monthly report
process.

Once the concept of triggers is added, time becomes a dimension of DFDs; in
other words, a process is executed when and only when the trigger event occurs.
One process can pass data to another process only when the second process exe-
cutes immediately after receiving the data. If a time interval occurs between the
two processes, the first process must place the data in a data store and the sec-
ond process retrieves the data from the store at a later time. Sometimes, the first
process sends data to an external, and the external at some later time may pro-
vide the data as input to trigger a second process.

Additional rules for MDFDs include the following:

• DFD/ERD integration. All of the entities and only the entities on the conceptual
ERD for the system appear as data stores in MDFDs. The contents of a data store in
an MDFD is defined by the attributes of the entity. This rule binds tightly together
the conceptual ERD and the DFDs for the system and clarifies the specifica-
tion process. During logical and physical design, an analyst or database
administrator may decide to create data stores (tables, views, or files, etc.) that
include attributes of several entities.

• Process triggers. Every process on the MDFDs must be triggered by (1) a data flow
from an external; (2) a data flow from another process; or (3) a control flow. The trig-
ger rules help the analyst to understand how the proposed system works and
lay the foundation for the eventual physical design.

• Time and immediacy. When a data flow goes from process A to process B, the flow
always is the trigger for process B, that is, process B starts immediately when the
flow arrives. A and B are sequential processes and B always takes place immediately
after A.

• Labeling. External data flows that trigger a process are labeled by placing an asterisk
(*) at the beginning of the flow name or by another symbol as noted on the diagrams.
Only some of the data flows from externals serve as triggers and thus trigger
flows need a symbol. Process-to-process flows do not need a special symbol
because they always serve as triggers.

The guidelines for creating MDFDs include these:

1. Observe the standard rules, features, and symbols for DFDs and the rules for
MDFDs. Chapter 5 contains a full set of rules for DFDs.

2. Some analysts may wish to create the ERD before drawing the MDFDs; oth-
ers may wish to use the MDFDs as a guide to selecting entities for the ERD.

3. Use the narrative to identify the data stores that will correspond to the enti-
ties on the ERD for the proposed system; the processes or functions; and the
externals and data flows. The narrative is used as the source of the metadata
for each process module.

4. Generate a first explosion MDFD and additional explosions in adequate detail
to map to program modules and to match the narrative. Create a context-level
diagram if desired.

5. Review the data stores to determine if they are inside or external to the system
boundary. Stores internal to the system must conform to the data completeness
rule, that is, each store must connect to at least one input and one output data
flow. Some of the data stores may lie outside the boundary of the new system;
as such, they are external data stores controlled and/or used by another system.
External stores use the external symbol to connect to an input or output flow.

6. Identify a trigger for every process—the event that causes the process to begin
to execute. When an external data flow corresponds to a trigger, place an * in
front of the flow name as provided for in the Label rule. Data flows to and
from stores and to externals may not serve as triggers. For processes that are
triggered by a system condition, the trigger action can be shown using a dot-
ted line for a control flow from an external called System.

The Context-Level DFD
The GB Video proposed system context-level DFD is shown in Figure 8.3. The
process box contains the name of the system. The externals and data flows to
and from externals correspond directly to the information presented in the
narrative.

In Figure 8.3, data flows that go to more than one process on the first explosion
are shown with several dots following the flow name. This convention eliminates
the need to show the multiple flows on the context level and adds to clarity by sim-
plifying the diagram. Using this convention, the context DFD and the first-level
explosion DFD are consistent or balanced; in other words, all the flows and only
the flows to and from externals on the context diagram appear on the first explo-
sion. Two data stores, Video and Title, appear on the context level as externals
because they are outside the rental/return system. The Video and Title data stores
are created, updated, and managed by another organization.

The two external data flows that trigger processes are marked with an * at the
beginning of the flow name: *Customer and Request Data and *Video ID and Pay-
ment. As noted in the rules, the flows from the system to an external never serve
as triggers. The four other input flows from externals occur in response to actions
from an ongoing process and at the conceptual level do not trigger the process.
At the physical design level, these flows may trigger subprocesses.

The First Explosion MDFD
The analyst begins by selecting the major processes to show in the first ex-
plosion. Most field projects contain two to six or so major processes; large

Chapter 8 Proposed System Specifications 275

276 Part Three Proposed System

projects in organizations can contain more. During preparation of the narra-
tive, the GB team identified four major processes: member, rental, return, and
overdue. These processes must appear on the first explosion to keep the nar-
rative and MDFDs consistent. Since member and rental are sequential
processes, the two could be combined into a single major process in both the
narrative and MDFDs. The return and overdue processes occur at different
times with different triggers and thus cannot be combined with member and
rental processes.

The first explosion MDFD shown in Figure 8.4 corresponds to the description
in the narrative model and follows MDFD rules. Every process in the narrative
appears on the MDFD (unless it is described as part of a separate system) and
every process on the MDFD appears in the narrative. Because the rental process
contains the word process in the name, rental process will have an explosion.
Every data store corresponds to a store mentioned in the narrative and matches
(or will match) one of the entities on the CDM. Every data flow is mentioned in
the narrative and/or must be present to satisfy the DFD completeness rules.

Video Data....Receipt Data

Payment Data....

Confirmation....

Return Receipt

*Video ID and Payment

Overdue Notice

Title Data....

Member Data

*Customer and
Request Data

Customer

Customer

Credit Card

Company
Video—

External

Datastore

Title—

External

Datastore

Proposed

Rental/Return

System

0

Video and
Payment

Information

FIGURE 8.3
Context-Level
DFD for the
GB Video
Proposed
System

FIGURE 8.4 First Explosion MDFD for the GB Video Proposed System

Check and

update data

or enroll a

new member

1

Rental

Process

2

Record

return of

videos

3

Identify

overdue

video

4

Customer

Credit Card

Company

Video —

External

Datastore

Title —

External

Datastore

Credit Card

Company

Customer

Title Data

Video Data

Rental Data

Return
Data

Rental
Data

Rental
Data

Customer

Line

Rental

Customer

Member Data

Member
Data

Receipt Data

Payment Data

*Customer and
Request Data

Confirm
atio

n

Payment Data

*Video ID and
Payment

Overdue Notice

Member
Data

Line Data

Member Data

Line
Data

Overdue
Data

Title—

External

Datastore

Video—

External

Datastore

Video and Payment
Information

Confirmation

Return Receipt

Payment Data

Member Data

Member Data

Title Data

Video Data

277

278 Part Three Proposed System

Each of the four processes has a trigger. The member and return processes
have external data flow triggers; the triggering data flows from the externals
display an * in the flow name. Because the proposed system design calls for
access to the rental process only from the member process, the only way to trig-
ger the rental process is with a data flow from the member process. This design
should prevent nonmembers from renting tapes. The overdue process does not
connect to a process-to-process flow or to a trigger flow from an external.
Process 4 is a batch process triggered by time, that is, a clerk triggers it after all
the overnight returns are processed. The diagram could show a dotted line con-
trol flow from an external called System to the overdue process, if desired.

Additional Explosions
Careful, well-structured design at the specifications level can greatly simplify
coding at the next stage. When a number of different functions take place inside
a process on the first level explosion, the analyst may choose to explode the
process further for clarity. The member, rental, and return processes all have sev-
eral different functions inside and are candidates for further explosion. The ana-
lyst must use judgment to determine the level of detail that provides the most
clarity. Too little detail may obscure important functions. Too much detail will
add little to clarity and may confuse the viewer.

An illustrative explosion for process 2 appears in Figure 8.5. In this example,
Rental Process 2 becomes four subprocesses. Following good practice, each sub-
process performs only one major function: 2.1 enters input data, 2.2 receives pay-
ment; 2.3 creates new records in two data stores, and 2.4 prepares the customer
receipt. One could explode process 2 into more than four subprocesses or could
explode one or more of the subprocesses. For example, 2.4 could explode to 2.4.1
Retrieve Video and Title data and 2.4.2 Generate receipt.

Explosions for MDFDs follow the rules for DFD explosions. For example, the
consistency or balance rule requires that every flow connecting to a process
must appear and be resolved on the explosion. Note that the sample explosion
is balanced. All of and only the flows to and from process 2 on the first explo-
sion diagram appear as external flows on the diagram for the explosion of
process 2. Three new process-to-process flows appear: from 2.1 to 2.2, from 2.2
to 2.3, and from 2.3 to 2.4. These flows cannot appear on the first level explo-
sion because they connect subprocesses that exist only on the second explosion.
Under MDFD rules, these flows indicate that process 2.1 triggers 2.2; 2.2 triggers
2.3; and 2.3 triggers 2.4. These processes occur in sequence and immediately
after one another. The explosion also shows that 2.1 is the subprocess part of
rental process 2 that is triggered by a data flow from process 1.

GRAPHICAL DATA SPECIFICATIONS

The conceptual data model defines the data specifications for the proposed system
without reference to the physical implementation. The CDM includes entities,
attributes, relationships, minimum cardinalities, associative and weak entities, and

Chapter 8 Proposed System Specifications 279

Input the

data for a

rental

All
Rental
Data

2.1

Calculate

cost and

process

payment

2.2

All
Rental
Data

Create

rental and

lines

2.3

Create a

receipt

2.4

Customer

Credit Card

Company

Customer

Line

Rental

Title—

External

DatastoreTitle Data

Video—

External

DatastoreVideo Data

Line Data

Rental Data

Member
Data

Video and
Payment and
Member Data

Video and Payment
Information

Payment Data

Confirmation

Receipt Data

FIGURE 8.5
Explosion of
Process 2

280 Part Three Proposed System

subtypes/super types as appropriate. The CDM defines the content of the data
stores on MDFDs. Each data store on the MDFDs is defined by one and only one
entity. Alternatively, the team may choose to represent the specifications for both
data and process in an object-oriented model.

The team can construct the CDM using top down analysis: What are the things
(entities) about which the new system will collect and use data? The EDM for
the current operation may help the team to identify the strong entities; however,
the data stores in the new system may contain data from strong entities that are
not part of the current operation and may omit ones that are. The CDM also
must match the narrative model. As the design proceeds, the team may need to
revise the narrative, DFDs, and/or CDM to keep them consistent.

Once the entities are identified, the team can proceed to add relationships, car-
dinality, attributes, and primary identifiers. Examine carefully the functions that
the client wants the new system to perform and make sure that the team has the
entities, attributes and relationships needed to perform the functions. In some
cases, the team may discover super-type/sub-type structures. The CDM should
reflect these when they exist.

Guidelines for a proposed system CDM are as follows:

1. Select and use a standard notation. State on the diagram if any unusual nota-
tion is used.

2. Include all of the entities that define: (a) data stores within the bounds of the
new system and (b) external data stores that are used by the new system.

3. Add the attributes of each entity to define the data store contents. A data
store contains all of and only the attributes of the defining entity.

4. Show a primary key or identifier in standard notation for every entity. If the
primary identifier of an associative entity is the composite of the primary
identifiers of the linked entities, it need not appear.

5. Include the relationships with both maximum and minimum cardinalities
correctly represented.

6. Replace many-to-many relationships with associative entities.

7. Convert multivalued attributes to entities.

8. Eliminate as much data duplication as possible. Convert reference data that
is common to multiple instances of an entity, for example, the title data for
a video, into entities.

9. The presence of foreign keys implies that the team has selected a logical data
model, that is, the relational model. For this reason, foreign keys should not
appear on the conceptual data model.

10. Diagrams must appear clean, neat, clear, and readable.

A CDM for the proposed GB Video computer-based system appears in
Figure 8.6. The simplified, reduced form notation used in the diagram is
explained in Chapter 4 and is described on the diagram. The associative entity,
Line, must appear to resolve the m:n relationship between Rental and Video.
Information that is common to several Video instances appears in a new

Chapter 8 Proposed System Specifications 281

Name for

Owner of

Holder of

1 1
Requestor of

1 0

1

0

RENTAL

Rental-No
Date
Clerk-No
Pay-Type
CC-No
Expire
CC-Approval

CUSTOMER

Cust-No
F-Name
L-Name
Ads1
Ads2
City
State
Zip
Tel-No
CC-No
Expire

TITLE

Title-No
Name
Vendor-No
Cost

VIDEO

Video-No
One-Day-Fee
Extra-Days
Weekend

1 0

LINE

Line-No
Due-Date
Return-Date
OD-Charge
Pay-Type

FIGURE 8.6 Conceptual Data Model for GB Video

Note: the diagram uses Simplified, reduced form notation. Attributes are placed inside the entity boxes
and relationship diamonds are omitted.

reference entity, Title. The diagram shows the entity Rental with the attributes
of credit card number (CC-No) and the credit card expiration date (Expire)
because customers may pay with any credit card, not just the one they used to
become a member. The narrative also says that most customers pay cash. If
desired, the team could use a super-type entity called Rental with a subtype
entity called CC Rental.

All of the content on the CDM must appear either directly or indirectly in the
narrative model and vice versa. Note that two entities from the current operation
EDM, Employee and Vendor, do not appear in the CDM because the proposed
system specifications do not include retrievals from or storage of Vendor or
Employee data. Because of the ERD/DFD integration rule for MDFDs, the data
stores on MDFDs for the proposed system must correspond exactly to the enti-
ties in the CDM. Two of the entities, Title and Video, appear as external data
stores.

METADATA SPECIFICATIONS

Metadata for the requirements specification consist of natural language text
to describe the objects that make up the models of the new system. At the
requirements specification level, the descriptions focus on the functional roles

282 Part Three Proposed System

or logic of the objects. Data objects include entities, attributes, and relation-
ships. The metadata for them consist of descriptions for each of the objects.
Process objects include externals, processes, data stores, data items, and data
flows. The team may reuse descriptions from the current operation metadata
when appropriate.

1. Externals, metadata consist of descriptions.

2. Data store metadata may consist of the definition of the store, the attributes
contained within it, plus the size or expected number of records, retention pol-
icy for records, and access control policies.

3. Data flow metadata consist primarily of the contents of the flow—the attrib-
utes or data items within the flow. If the flow contains data items, data ele-
ments that are not attributes, then each data item should have a description.

4. Process metadata provide the full logic for each process in text form, such as
what triggers it, any such data operations as retrieve or store, what happens in
the process, and what other processes it triggers. Every DFD process should
have a logic description. Normally, the metadata for a process come directly
from the narrative with editing as appropriate.

Figure 8.7 shows sample metadata for the GB Video new system.

OBJECT-ORIENTED DESIGN SPECIFICATIONS

The content model discussed in Chapter 1 defined information systems as con-
taining data, process, and infrastructure. At the conceptual model level, both the
object model and process model frameworks specify the same data and process
content of an information system but use different representations. Each rep-
resentation highlights certain aspects and structure of the target information
system.

With a process model framework, the analyst represents the specifications as
structured around the major processes. The DFD process model shows the
processes and also shows how each process links to or operates on data. With
modified data flow diagrams (MDFDs), the conceptual data model (CDM)
defines the content of each data store. As shown in Figure 8.4, the GB Video pro-
posed system contains processes for (1) enrolling a member, (2) renting a video,
(3) recording the return of a video, and (4) identifying overdue videos. The CDM
in Figure 8.6 defines the data store contents for the GB Video proposed system.

With object-oriented design, the analyst represents the specifications as
structured around objects, not around processes. The objects contain within them
both the data and operations (processes) required to carry out their desired
behavior. The link between data and processes occurs within the objects and in
interactions between objects. The structure of the conceptual-level object model
resembles the structure of the conceptual data model. For the GB Video proposed
system, the conceptual-level object classes are (1) customer, (2) rental, (3) rental-
line, and (4) video, a quite different structure for the object model than for the

Entities, Attributes, and Relationships for the CDM. The tables below contain the

entity, attribute, and relationship data for the CDM of GB Video.

Entity Description

CUSTOMER Contains all the available information about each customer who

has made a transaction in the last year

LINE Contains the information on each video associated with a rental

transaction

RENTAL Contains the information on each rental transaction

TITLE Contains information on each distinct title of the videos

VIDEO Contains information on each individual video

CUSTOMER

Attribute Description

Cust-No A unique identifier assigned to each member

F-Name First name and middle initial if any

L-Name Last name

Ads1 Street or box address

Ads2 Apartment number or other as needed

City Name of city

State State id code

Zip Zip code

Tel-No Telephone number

CC-No Credit card number

Expire Expiration date on the credit card

RENTAL

Attribute Description

Rental-No Unique identifier assigned to each rental

Date Date of the rental

Clerk-No Employee number of the clerk entering the rental

Pay-Type Cash, check, or credit card

CC-No Credit card number

Expire Expiration date of the credit card

CC-Approval Credit card approval code

FIGURE 8.7 Metadata for the GB Video Proposed System

Page 1

Page 2

284

LINE

Attribute Description

Line-No Unique identifier assigned to each line

Due-Date Date tape is to be returned

Return-Date Actual return date

OD-Charge Charge for days kept after due date, if applicable

Pay-Type Method of payment for the overdue charge

VIDEO

Attribute Description

Video-No A unique identifier assigned to each videotape

One-Day-Fee First day rental fee

Extra-Days Extra days rental fee

Weekend Rental fee for Sat. and Sun.

TITLE

Attribute Description

Title-No Unique identifier for the title

Name The name of the video, e.g., Charlie’s Angels

Vendor-No Identifier for the vendor who produced/sold the video

Cost Purchase price for the video

Relationship Entity1 with Min, Entity2 with Min,

Name Description Max Cardinality Max Cardinality

Links each customer CUSTOMER—a rental RENTAL—a customer

Requestor of to rentals made by must be for one may make many

the customer customer (1, 1) rentals (0, many)

Links each rental to RENTAL— a line must LINE — a rental

Owner of the associative entity belong to one rental must contain one or

(1, 1) many lines (1, many)

Links the associative LINE— a video may VIDEO — a line must

Holder of entity to a specific be held by many hold one video

video lines (0, many) (1, 1)

Links a title to the VIDEO—a title may TITLE—a video

Name for videos that use be the name for must be named by

the title many video (0, many) one title (1, 1)

Chapter 8 Proposed System Specifications 285

MDFD Data Stores

Each data store is defined by the entity in the CDM with the corresponding name.

Externals

Name Description

Customer People who rent and return videos from GB Video

Credit Card The processing center that receives a requested transaction on a

Company credit card number, verifies it, and issues an approval code

Data Flows

1. All Rental Data: the attributes of Video, Customer, Rental, and Line plus rental-

subtotal, tax, and total-rental-cost

2. Confirmation: CC-No, CC-Approval

3. Customer and Request Data: the attributes of Customer

4. Line Data: the attributes of Line

5. Member Data: the attributes of the entity Customer

6. Overdue Data: Line-No, OD-Charge, Pay-Type

7. Overdue Notice: the attributes of Customer and Title plus Due-Date, OD-Charge,

Pay-Type, CC-No

8. Payment Data: CC-No Total-charge

9. Receipt Data: All Rental Data Name

10. Rental Data: the attributes of Rental

11. Return Data: Rental-No Video-No Return-Date OD-Charge Pay-Type

12. Return Receipt: Member Data Rental Data Line Data

13. Title Data: the attributes of Title

14. Video and Payment and Member Data: Video and Payment Information Member Data

15. Video and Payment Information: Video-No Payment-Type CC-No Expire

16. Video Data: the attributes of Video

17. Video ID and Payment: Video-No, Pay-Type

Processes

1. The member process is triggered by a customer request to (1) rent videos and/or

(2) become a member. If the customer has and knows the customer number, the num-

ber is entered; the system retrieves the record from the Customer data store and dis-

plays the customer data. If the customer does not have the number, the customer can

provide a telephone number (or a name and zip code). The system tries to retrieve the

customer’s record from the Customer data store.

If the system is unable to retrieve the customer record or if the customer is not a mem-

ber, the new member subprocess is initiated. The system will create a new member

provided the person has a credit card, telephone, and government-issued ID. The cus-

tomer supplies the customer data and the data are entered. The system generates a

customer number, creates a membership card output, and gives the output to the new

member. The system creates a record in the Customer data store for the new member.

Page 3

286 Part Three Proposed System

Once the appropriate customer record is available, the customer is asked (1) to verify

the name, address telephone, and credit card data and (2) to report any changes or

corrections. This subprocess increases the likelihood that the system will contain

current information for the customer. Any change data are entered and the customer

data store is updated. When a verified customer record is available and the customer

wishes to rent, the member process triggers the rental option and the member data

are sent to the rental process. The rental process can be accessed only from the

member process; the rental process cannot be accessed directly.

2. The rental process is triggered by and only by the member process. The process

begins with 2.1.

2.1 This process accepts the member data from the member process and generates a

new rental transaction number and the rental date. The customer provides the video num-

ber and the proposed return date, the due date. The video number and the due date are

entered into the system. The system retrieves the video data from the Video data store

and, based on the due date, calculates the rental price for each video rental. This process

is repeated for each video. After all the videos are processed, process 2.2 is triggered.

2.2 The system adds the rental price for each video to get a rental subtotal. The system

multiplies the rental subtotal by the tax rate (state sales tax county sales tax city

sales tax) to get the tax. The total rental cost is the rental subtotal plus the tax. The pay-

ment type — cash, check, or credit card, is supplied by the customer and entered into

the system. If payment is by credit card, the credit card data are entered. The system

sends the credit card data and the total rental cost to the credit card processor. If the

transaction is approved (or is for cash or a check), the process triggers 2.3.

2.3 This process “commits” the rental and line records, that is, the records are created

in the data stores. The rental number, date, clerk number, pay type, and credit card

data go to the rental record. The due dates go to the line records for each video. The

process triggers 2.4.

2.4 This process generates a receipt for the customer. The receipt data includes all of

the rental data supplied by the customer, sent from the member process, and

generated by the system during the rental transaction. The system also retrieves the

title data from the Title data store and includes the name in the receipt data. The

rental process ends here.

3. When a video is returned, the video number is entered into the system. The system

retrieves the corresponding line and rental records, enters the return date, and calcu-

lates overdue charges if any. The customer may charge the overdue fee to the credit

card used for the rental or may pay by cash or check. About 95 percent of the time,

customers return videos with no payment type input, for example, drop them in a

return box. In the absence of customer input on payment, the system retrieves a credit

card number from the customer record and processes the overdue charge against the

credit card. The system records the charge and payment type in the Line data store.

The system may create a return receipt for the customer. The return process ends.

Page 4

process model. An analyst preparing a conceptual-level OOD model for a system
probably will prepare a Use Case Diagram and a Class Diagram. The analyst
may create other OOD diagrams during detail design when the build option is
selected.

Use Case Diagrams
Use case diagrams, process models that resemble DFDs, give the analyst a way
to specify the interaction of system processes with each other and the external
environment. Figure 8.8 shows the Use Case Diagram for the GB Video Proposed
System.

The use cases on the diagram correspond to the processes in the GB Video
first explosion MDFD in Figure 8.4. Three of the use cases, Rent videos, Return
videos, and Find overdue videos, all involve a common activity: they contact
the credit card company and place a charge against the customer’s credit card.
The use case diagram represents this situation by adding a use case called
Charge credit card and letting the other three use cases “include” the Charge
credit card use case. Rent videos also includes the Enroll member use case. The
Rent and Find use cases interact with the purchasing system in that they use
data from the Video and Title data stores maintained by Purchasing. With OOD
modeling, all of the behaviors shown on the use case diagram must appear as
behaviors associated with one of the objects in the system. Unfortunately, the
use case diagram provides no guidance as to which behavior goes in which
object.

The metadata or scenario for each of the use cases forms an important part
of the use case diagram. Figure 8.9 shows the scenario for the Rent videos use
case in Figure 8.8. This scenario contains some header information, including
a Precondition and a Trigger. The Precondition tells what the system must
ensure is true before this use case begins. The Trigger specifies the event that

Chapter 8 Proposed System Specifications 287

4. After the overnight returns are processed, a clerk instructs the system to run the

overdue program, that is, it triggers the overdue function. The system processes the

Line records. For each video that is two or more days overdue (today’s date due

date 2), the system retrieves the rental record for the video, retrieves the customer

record for the rental, generates an overdue notice, and sends the notice to the

customer. When a video is 14 days overdue, the system retrieves the customer’s credit

card number from the Customer data store and the video cost from the Video and Title

data stores, charges the customer’s credit card for the amount of the cost of the video,

and sends a notice informing the customer of the charge. The overdue process ends.

If a customer has a complaint about overdue charges, the complaint is handled and

processed by Accounting.

Page 5

288 Part Three Proposed System

starts the operation of the use case. The Main Success Scenario describes the
things that happen when all goes well and the end result is a successful rental.
The Extensions show by line number in the Main Success Scenario, things that
can go wrong and prevent a successful rental. The underline in steps 3 and 7
indicates that these steps include another use case as shown in Figure 8.8.

Class Diagrams
A Class Diagram specifies each object class in a system, identifies the data and
operations for each object in the object class and shows the associations
between objects. A simplified conceptual-level class diagram for the GB Video
proposed system appears in Figure 8.10. The diagram omits some of the oper-
ations related to the rental return system, for example, the operations pertain-
ing to checking and charging the customer’s credit card and refusing rentals
for nonmembers.

No clear rules exist on how to select the objects for the class diagram. In
general, the entities that appear in the conceptual data model become the
objects for the class diagram. In Figure 8.10, the entities from the CDM in

Enroll or update
member

Charge Credit
Card

Find overdue
videos

Rent videos Return videos

Customer

Credit card
Company

Clerk

Purchasing
System

System

Boundary

Actor

Relationship

Use

Case

<<Include>>

<<Include>>

<<Include>>

<<Include>>

FIGURE 8.8
GB Video
Proposed
System Use
Case Diagram

Rented

Makes

1..*

1..1

Customer

member-no.
name
street
city
state
zip
tel#
credit-card#
expire-date

Video

video-no.
title
rent-charge/day
date-acquired
vendor

RentalLine

id#
due-date
cost
return-date
overdue-charge

Rental
Object Class

Name

Attributes

Operations

1..1 0..*

1..1 0..*

calculate cost
calculate overdue

rental-no.
date
employee#
pay-type
total

calculate total

Contains
Association

FIGURE 8.10
A Conceptual-
Level Class
Diagram for
the GB Video
Proposed
System.

Rent Videos Scenario

Precondition: None

Trigger: Customer decides to rent one or more videos.

Main Success Scenario

1. Customer selects the videos to rent.

2. Customer goes to checkout and provides member data.

3. System confirms that customer is a member and retrieves and updates member

data.

4. Customer provides the video number for each video.

5. System retrieves charge, due date, and title data and creates a rental with a line

entry for each video.

6. System calculates the total charge.

7. System contacts the credit card company and enters the total charge.

8. System produces a receipt for the customer.

Extensions

3a. The customer is not a member.

1. Sign up the customer as a member.

2. Else, terminate rental.

7a. Credit card company declines to authorize purchase.

1. Ask customer for an alternate card.

2. Else, terminate rental.

FIGURE 8.9 Scenario for the Rent Videos Use Case

289

290 Part Three Proposed System

Figure 8.6 appear as objects except for Title. Title has no function except to
provide data, and in Figure 8.10, the Title data are part of the Video objects.
Video appears as an object class on this diagram because Video objects play an
important role in the rental system. The Video object class is controlled by the pur-
chasing system. Other objects in the rental system can ask the video objects to
retrieve data but may not ask the video objects to perform any other operations.

The use case diagram for GB Video in Figure 8.8 contains these four use cases:

1. Enroll or update member.

2. Rent videos.

3. Return videos.

4. Find overdue videos.

Each of these behaviors must be contained in or associated with an object class.
The analyst must decide which object is associated with which behavior.

The “Enroll or update member” behavior clearly seems associated with the
Customer object class. However, the only operations associated with this behavior
are to retrieve member data, create a new customer object for each new mem-
ber, update member data, and delete the appropriate customer object when a
member becomes inactive. Since all object classes contain the CURD operations
of create, update, retrieve, and delete, the CURD operations are not shown in
the operations area of the object class. As a result, the Customer object class con-
tains no entries in the Operations area.

The “Rent video” behavior results in creating a Rental object and one or more
Rental Line objects. The create operations are assumed and not shown in the
operations areas for the Rental and Rental Line object classes. However, the
Rental object class shows additional behavior to calculate the value for a derived
attribute of Rental called “total,” the total cost of a rental. A rental object must
obtain from each associated rental-line object the data on the cost, add the costs to
obtain a subtotal, and calculate and add the sales tax to get a total cost for the
rental object. This behavior appears in Figure 8.10 as an operation called “calculate
total” in the Rental object class. In similar fashion, the RentalLine object class has
an operation to calculate the derived attribute, cost, perhaps an operation that mul-
tiplies the number of days the video is rented by the cost per day. The “Rent video”
behavior also results in the retrieval of data from the associated video objects. The
Video object class may contain other operations, but the other operations are not
available to the Rental system and are not shown on the class diagram.

The “Return video” behavior updates data in the associated RentalLine object.
Returning a video has no effect on the Rental object, only on the RentalLine object
for the video that is returned. The RentalLine object class also contains an opera-
tion to calculate the derived attribute, overdue-charge, when a video is returned
after the due date. The “Find overdue videos” behavior is associated with the
RentalLine object class because the data on due-date appears in the RentalLine
objects. The overdue videos are identified by the operation “calculate overdue.”
This operation displays polymorphism or different behaviors depending on the
situation. “Calculate overdue” finds the overdue charge, if any, when a video is
returned and also finds all of the overdue videos during the daily processing cycle.

The OOD version of the GB Video proposed system as represented by the con-
ceptual class diagram contains all the same data and behavior as the process
model representation but uses a very different structure. Some analysts prefer
the OOD representation especially when the system will be built with an object
programming language.

Summary Requirements specification for the proposed system marks the beginning of the
synthesis phase of a project. Synthesis means combining separate pieces to form
a coherent whole, that is, a proposed system that meets the client’s goals. Dur-
ing requirements specification, the team begins to assemble the pieces for the
proposed system. Imagination, creativity, knowledge, and experience all play
important roles during synthesis.

The goal of the proposed system phase is to assure that the conceptual spec-
ifications for the proposed system are complete and correct before the team
expends any significant effort on the logical and physical design—a philosophy
of “make it right; then make it work.” Conceptual specifications represent solu-
tions that a team can implement in different sourcing options and in different
technology environments. Developing a complete and correct understanding of
the conceptual specifications of the system can consume substantial time and
effort and may involve additional information gathering activities. During this
phase, the team creates answers to questions that include (1) what functions or
processes should the system include to provide the features that the client wants
and (2) what data are required to support or operate the included functions.

The team may answer these questions by preparing such major deliverables
containing the proposed system specifications as:

• Narrative specifications for the proposed system. The narrative model specifies
the proposed system in natural language and follows a specific format to
encourage completeness and facilitate communication between team members.

• Graphical process specifications. Many projects will create the conceptual process
model with modified data flow diagrams (MDFDs); however, other process
models may work better for some projects.

• Graphical data specifications. A conceptual data model (CDM) includes all of the
entities that will define data stores in the new system.

The team must solve a number of problems to determine specifications. The prob-
lem-solving methods discussed here apply to all the aspects of the synthesis phase:
proposed system specifications, creating and evaluating alternatives, outsourcing,
and system design. Most problem-solving methods fall into one of several classes:

• Experience-based methods that use prior experience or experiences of other orga-
nizations to derive solutions.

• Trial and error methods that try out different solutions.

• Heuristic methods that follow a set of rules that seem to work well but do not
guarantee a best solution to a problem.

• Difference reduction methods that identify and try to reduce the differences
between the current state and the desired state.

Chapter 8 Proposed System Specifications 291

292 Part Three Proposed System

• Calculation and optimization methods that use mathematical procedures to find
a solution.

The value chain model of an organization also can provide guidance on devel-
oping specifications for the proposed system. A value chain represents the value
production function for the organization: the activities that result in the total
value, net benefits, or profits produced by the organization. The analyst may use
a combination of several problem-solving methods to solve the system synthe-
sis problems.

Modified data flow diagrams (MDFDs) often provide a good process model
at the conceptual level. MDFDs include all the features and rules of DFDs plus
some rules that help the analyst to focus more clearly on specifications for the
proposed system. The additional rules for MDFDs include:

• DFD/ERD integration. All of the entities and only the entities on the conceptual
ERD for the system appear as data stores in MDFDs.

• Process triggers. Every process on the MDFDs must be triggered by a data or con-
trol flow.

• Time and immediacy. A data flow from process A to process B always triggers
process B.

The CDM defines the data specifications for the proposed system without ref-
erence to the physical implementation. The CDM can consist of a context-level
diagram, a first explosion and additional explosions as appropriate. The CDM
includes entities, attributes, relationships, minimum cardinalities, associative and
weak entities, and subtypes/super types as appropriate. The CDM defines the
content of the data stores on the DFDs. Each data store on the DFDs is defined
by one and only one entity.

Metadata for requirements specification consist of natural language text to
describe the objects that make up the models of the new system. At the require-
ments specification level, the descriptions focus on the functional roles or logic
of the objects. Data objects include entities, attributes, and relationships. Process
objects include externals, processes, data stores, data items, and data flows. Meta-
data often is presented in a table format.

Alternatively, the team may choose to represent the structure of both data and
process in an object-oriented model. With object-oriented design (OOD), the ana-
lyst represents the specifications as structured around objects not around
processes. The objects contain within them both the data and operations
(processes) required to carry out their desired behavior. The link between data
and processes occurs within the objects and in interactions between objects. The
structure of the conceptual-level object model resembles the structure of the con-
ceptual data model.

A class diagram specifies each object class in a system, identifies the data and
operations for each object in the object class, and shows the associations between
objects. No clear rules exist on how to select the objects for the class diagram. In
general, the entities that appear in the conceptual data model become the objects
for the conceptual-level class diagram.

Chapter 8 Proposed System Specifications 293

Use case diagrams, process models that resemble DFDs, give the analyst a
way to specify the interaction of system processes with each other and the exter-
nal environment. The metadata or scenario for each of the use cases forms an
important part of the use case diagram. With OOD modeling, all of the behav-
iors shown on the use case diagram must appear as behaviors associated with
one of the objects in the system. Unfortunately, the use case diagram provides
no guidance on which behavior goes in which object. The analyst must decide
which object is associated with which behavior.

The OOD graphical specifications for a proposed system as represented by the
conceptual class diagram contain all the same data and behavior as the process
model specifications but use a very different structure. Some analysts prefer the
OOD representation especially when the system will be built with an object pro-
gramming language.

Key Terms automate, 261
best practices, 260
brainstorming, 259
calculation and

optimization methods,
259

class diagram, 288
conceptual data model

(CDM), 258
conceptual specifications,

256

DFD/ERD integration, 274
difference reduction

methods, 259

discover, 261
experience-based methods,

259

graphical model
specifications, 267

heuristic methods, 259
immediacy, 274
inform, 261
mandatory process, 268
metadata, 281
modification of the current

system, 265
modified data flow

diagram (MDFD), 258

narrative specifications, 266
object-oriented design

(OOD), 258
optimization, 263
optional process, 268
problem solving, 259
proposed system

specifications, 258
synthesis, 256
transform, 261
trial and error methods, 259
trigger, 269
use case diagram, 287
value chain model, 263

Review

Questions

Answer the following questions regarding these topics.

1. Proposed system specification.

a. Explain why proposed system analysis is synthesis rather than decomposition.

b. What does it mean to say that proposed system analysis should be conceptual?

2. Proposed system outcomes.

a. What is the goal of the proposed system phase?

b. Who are the audiences for the different components of the proposed system
specification?

3. Problem solving.

a. Explain the five different problem-solving methods discussed in the chapter.

b. Give an example of when you would use each of these methods.

c. What are the four basic functions that a computer system can perform to produce
a difference reduction outcome?

294 Part Three Proposed System

4. Narrative models.

a. How is the narrative model for the proposed system different from that of the cur-
rent system?

b. Who is the audience for the narrative model?

c. What is the difference between a mandatory and a desirable process? Give an exam-
ple of each.

5. Graphical process models.

a. What must the graphical process model do?

b. What does a modified data flow diagram include that an ordinary data flow dia-
gram does not include?

c. What is a trigger? Give examples.

d. How is a trigger indicated on an MDFD?

e. What denotes a data flow that goes to more than one process on the first explosion?

6. Conceptual data models.

a. What is a conceptual data model?

b. How does a CDM handle keys and foreign keys?

c. How does a CDM handle a many-to-many relationship?

7. Model integration.

a. What do the narrative model and the graphical process model have in common?

b. What do the graphical data model and the graphical process model have in common?

8. Object-oriented models.

a. How does an object-oriented model differ from an MDFD/CDM model?

b. What are three basic diagrams used to implement an OO model?

c. What is the purpose of each of these diagrams?

9. Team responsibilities.

a. Should the team design the system around the existing technology? Explain your
answer.

b. Should the team create options and suggestions or let the clients decide what they
want without any team input? Explain your answer.

c. What are some issues that a team might include in an organizational model?

Critical
Thinking
Exercises

Individual Exercises
1. You have been asked to develop a new system for a small library to track books. The

library has three computers that are used for such basic tasks as typing letters and
sending e-mails.

a. Would you use the modification approach or plan a new design? Explain your answer.

b. In the library situation, which problem-solving methods will you use initially to
develop specifications for a proposed system? Justify your answer.

2. Describe each stage in the value chain of each of the following organizations:

a. A manufacturer that produces a product.

b. A store that sells products at retail.

c. A service firm such as a doctor’s office or a law firm.

d. A public service organization such as a police force.

Chapter 8 Proposed System Specifications 295

Group Exercises
1. The library from Individual Exercise 1 works as follows. The customer selects a book

and brings it to the librarian, along with the customer’s library card. The librarian
makes a copy of the library card along with the book information and files this infor-
mation in a folder under the date. When the customer returns the book, the librarian
removes this information from the folder.

a. What processes might be included in a narrative model for the library book loan
system?

b. Choose one of these processes and explain it in narrative model format.

c. Define the metadata for the process you explained in problem (b.) above.

2. Draw a context and first level MDFD for the library.

3. Redraw the class diagram for GB Video in the textbook to serve as a class diagram for
the library problem.

References Hoffer, Jeffrey A.; Joey F. George; and Joseph S. Valacich. Modern Systems Analysis and
Design, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2005a.
Hoffer, Jeffrey A.; M. B. Prescott; and F. R. McFadden. Modern Database Management, 7th ed.
Upper Saddle River, NJ: Prentice Hall, 2005b.
Porter, Michael E. Competitive Advantage: Creating and Sustaining Superior Performance.
New York: Free Press, 1985.
Post, Gerald V. Database Management Systems, 3rd ed. New York: McGraw-Hill/Irwin,
2005.
Whitten, Jeffrey L.; Lonnie D. Bentley; and Kevin C. Dittman. Systems Analysis and
Design Methods. New York: McGraw-Hill/Irwin, 2005.
Zuboff, Shoshana. In the Age of the Smart Machine: The Future of Work and Power. New
York: Basic Books, 1988.

Chapter Nine

Alternatives, Evaluation,
and Recommendation
Chapter outline

Introduction

Making Choices

Alternative Solutions

Choosing a Design Option

Choosing Functionality

Choosing a Sourcing Option

Building a Solution In-house

Outsourcing the Solution

Choosing Infrastructure

Evaluating Performance

Describing Alternative Solutions

Evaluation

Feasibility

Risk Analysis

Cost/Benefit Analysis

Benefits

Costs

297

INTRODUCTION

Evaluation and alternatives remain central themes throughout the life cycle of a
system. The team begins the evaluation process with the analysis of strategic
alignment during project definition. The team also generates acceptable sourcing
options as part of project definition. At the beginning of the Proposed System
Phase, the team prepares the conceptual specifications for the proposed system.
Once the conceptual specifications for the proposed system are known, the team
may identify and evaluate a number of alternatives to find the systems that
appear to provide satisfactory solutions or the recommended system(s). Good
evaluation involves close interaction with the client. The team can and should

Evaluation Metrics

The Implied Benefits Method

Cost/Benefit Table

Features Analysis

An Example of Alternatives

The Evaluation Comparison and

the Recommendation

The Recommendation

Client Approval to Proceed

Summary

Key Terms

Review Questions

Critical Thinking Exercises

Individual Exercises

Group Exercises

References

clarify and quantify the choices, but only the client can determine how well a
recommendation meets the organization’s or the sponsor’s values, goals, and
objectives. The recommendation represents a key decision point. When the client
accepts the recommendation, the team enters into the system delivery phase to
procure a solution from a vendor, build a system, or some combination.

A recommended solution involves two interrelated choices: (1) the specification
of features—the levels of functionality, infrastructure, and performance included
in the system; and (2) the sourcing path—the specific build or buy option. The first
choice requires the organization to look at the cost-effectiveness or value impact of
each feature in the proposed specifications for the new system. If the cost of imple-
menting the full set of specifications appears to exceed the value or the client’s bud-
get constraint, the organization will need to remove some of the less cost-effective
features from the specifications. The second choice, the sourcing path, may further
complicate the decision. An outsourced solution with a desirable total cost may
not offer all of the features that the organization wants and a custom-built inter-
nal solution with all the desired features may fail the cost-effectiveness test. Eval-
uation remains important during system delivery. A team that decides to outsource
will use evaluation techniques to select the most suitable procurement option, for
example, to select the most suitable package from among the products of various
vendors. A team and client that decide to build may use evaluation techniques to
determine which features to include especially when the recommended system
appears to cost too much or take too long to build.

The initial evaluation decisions about functionality, performance, infrastructure,
and sourcing that lead to a recommendation occur before the system delivery work
when the team knows less of the relevant information. As additional information
on cost, risk, and available vendor options unfolds, the team and client revisit the
earlier choices as shown clearly in the Spiral Model. The client may relax some
requirements to save money or add additional features if the costs are acceptable.
A client who initially wants to build the proposed system may decide to buy and
install a package, hire a contractor to build the system, outsource the entire func-
tion to a vendor, or some combination. A client who started with an outsource
preference may switch to a build option if the choices available from vendors omit
mandatory requirements or cost too much. Sometimes the client may cancel or
substantially revise the entire project. While major changes can and do occur at
any point in the solution process as the team and client continue to learn more
about the problem, change becomes increasingly expensive and potentially dis-
ruptive. Major changes during system delivery may result in losing the benefits of
some or most of the possibly large expenditures to date of time and monies for
design, programming, testing, and/or vendor products.

The most accurate evaluation probably occurs after system delivery. Many
clients conduct a post implementation audit, an evaluation to determine if the sys-
tem actually operates as planned and/or produces the expected benefits. Addi-
tional evaluation may occur after an extended period of use to determine
whether modification is feasible and desirable or whether the system has reached
the shutdown point. Thus, evaluation continues from project definition until the
final shutdown of the system.

298 Part Three Proposed System

The input to and output from the alternatives, evaluation, and recommenda-
tion phase of the proposed system include:

• Input. Project definition and conceptual specifications for the proposed system.

• Output. The recommended solution.

For the recommended solution, the team explores and analyzes the evaluation
issues in as much depth as practical, makes best guesses or estimates as neces-
sary, and chooses a recommendation. With client agreement, the team then pro-
ceeds to system delivery for (1) a buy option, as we discuss in Chapter 10 or
(2) a build option, as we discuss in Chapter 11. In a few cases, the client may
wish for the team to explore both build and buy options in depth. The team
might build a prototype that contains the exact functions the client wants. In
addition, the team may find packages that match as closely as possible with the
client’s requirements. The team can demonstrate both the prototype and the
packages and let the client make a final buy/build choice. However, in many
cases the cost for multiple alternatives is too high. Evaluation, along with most
things in systems work, involves compromise and good judgment.

MAKING CHOICES

The client often will present a preferred solution as part of the goals for the new
system. The team should look carefully at the client’s preferred choice, but the
team also should exercise professional responsibility. The client may lack an IT
background and/or may not have studied the problem in depth. Senior managers
sometimes catch the “airline magazine” syndrome, that is, they read about an
alternative in an airline or similar glossy magazine and decide that their orga-
nization needs it. The team’s professional obligation requires the team to explore
a reasonable set of alternatives and present an evaluation and recommendation
to the client. The team always wants to seek out and understand client prefer-
ences, but most clients will appreciate information contrary to their views or
preferences especially when it is presented in a nonconfrontational manner.

Usually the team can identify several, often three or four or more, reasonable
alternatives for a new system. The next step is to evaluate the alternatives and
choose a recommended one. While people often talk about finding the “best
alternative,” in practice, the team will find great difficulty identifying what the
best alternative even means let alone how to find it. “Finding the best alterna-
tive” really means avoiding the clearly unsatisfactory alternatives and finding
one or more satisfactory alternatives (March and Simon, 1958). To choose a rec-
ommended alternative, the team considers such factors as the organization’s
strategy, costs and benefits, risks, and available resources. The team conducts the
evaluation within the framework of the culture and values of the organization.
The team identified these values during the strategic alignment step of project
definition. The team also identified the scope and possible solutions that are
acceptable to the client. Culture and values influence many of the trade-off deci-
sions. For example, some clients lean strongly toward low-risk solutions while

Chapter 9 Alternatives, Evaluation, and Recommendation 299

300 Part Three Proposed System

others want to be “leaders,” even if leadership involves higher risk. Some clients
prefer to build all applications while others prefer to purchase packages when-
ever a cost-effective package exists.

Choosing a recommended alternative for the proposed system requires some
distinct skills, including (1) an understanding of strategy alignment to identify
the important values for the new system; (2) innovation or creativity to identify
feature and sourcing options that support organizational values; and (3) a frame-
work within which to evaluate the alternatives and choose a recommended solu-
tion for system delivery. The two essential requirements for a recommended
solution are (1) the client accepts the solution and (2) the solution positively
impacts the performance measures for objectives identified during the strategic
alignment.

ALTERNATIVE SOLUTIONS

When a team can think of only one way to solve a problem, then the team may
not really understand the problem and the solution may work poorly. While
focusing on a plan of action as early as possible is convenient, this approach
often leads to incremental modifications or to radical leaps of faith. Part of a
prudent early analysis is to formulate several realistic feature and sourcing
alternatives and then compare them. Sometimes the alternatives create useful
new revelations, and sometimes they confirm that the current system is not badly
broken. In most situations, the team should be able to come up with three or
more reasonable alternatives.

Choosing a Design Option
Design options represent the overall design approach that the team selects to
obtain the proposed system. Design alternatives include the following:

• Use the current system. With minor modifications, the current operation may
provide the desired functions and performance at low risk and cost and
sooner than most other alternatives. Correcting the obvious flaws in an exist-
ing system may cost little and may offer a good alternative to the time, risk,
and expense for developing a new system. Clients may become disenchanted
with a system and may want to discard it although a small effort to fix the
problems or to provide appropriate training on its use may convert it into a
desirable and cost-effective alternative.

• Modify a current system. This option focuses on a current system as a starting
point for synthesis of an alternative. Many projects use some variation of a
current system to create proposed system alternatives. The team may change
the features and/or sourcing or may replace the entire current system with an
updated version. A common variation involves taking a current system from
another organization, perhaps a competitor or one in a different business, and
modifying it for use in the client’s organization.

Changing to a different physical infrastructure of software and hardware
products represents a common modification to a current system that often

improves performance. The most significant modification in the GB Video case
involves converting to a computer-based infrastructure. Many projects in the last
few years have involved converting applications from mainframes to server net-
works or Web-based systems often with little change in functionality. Another
common form of modification adds new functionality with or without changes
in infrastructure. For example, a GB Video Web-based system might add a video
availability function that allows customers to view the availability of videos from
a Web site display, a function that lies outside the current system.

• Apply zero-base design. Zero-base design options discard or ignore the current
operation and focus on the strategic framework as a starting point to synthe-
size an alternative. For the area under study, the team searches for the feature
and sourcing choices that contribute to the strategic goals, objectives, and per-
formance measures of the organization. When no current operation or system
exists, zero-base design offers the only option.

For each design option, the team may choose from among a number of func-
tion, performance, sourcing, and infrastructure options. For example, the team
may hire an application service provider (ASP) to make the minor fixes and run
the current system or to modify and/or run the current system. Or the team may
replace the current system with a purchased package system. The package may
have more, the same, or less functionality and/or performance. Many companies
contract with an IT design firm or purchase a package system for zero-base
design; they do this to acquire quite different functionality and infrastructure
than exist in the current operation. With combinations of different design, func-
tion, performance, infrastructure, and sourcing options, a team easily can create
many different alternatives.

Choosing Functionality
Normally, the client provides the initial set of functions for a proposed system
during project definition. During the proposed system specification phase, the
team defines and documents the conceptual specifications for functionality in
more detail. With a typical conceptual model, a single fixed set of requirements
define functionality. During evaluation, the team views functionality differently
in two respects. First the team adds the logical and physical dimensions; the
team defines the physical and organizational infrastructure and examines the
expected performance. Second, functionality becomes a variable; the team con-
siders trade-offs.

With many smaller projects, the team and client easily can identify a reason-
able set of functions to include in the system, and further analysis may add little
if any value. As projects become large and complex, looking at alternatives with
differing levels of functionality becomes more interesting. For these projects, the
team, working closely with the client, can try to answer the following questions:

• Can the team find functions, not identified initially by the client, to add to the
proposed system? Only functions that result in significant value, that is, have
a significant impact on the measures for the objectives identified during
strategic analysis, represent good “add-on” candidates.

Chapter 9 Alternatives, Evaluation, and Recommendation 301

302 Part Three Proposed System

• Can the team eliminate any of the functions in the conceptual model of the
proposed system? Only functions that add significantly to costs with little
impact on benefits represent good candidates for elimination. If the team and
client did not identify each function as either mandatory or optional while
preparing the conceptual model of the proposed system, the team may wish
to classify each function at this time. Optional functions represent good can-
didates for possible elimination in an alternative.

In the GB Video case, an “availability function” might provide a good “add-
on” candidate for an alternative. With the availability function, a client might tele-
phone a clerk to determine if the tape or DVD that he or she wants to rent is
available, or use the Web site to browse to see what is available. If the customer
finds a video that he or she wants, the customer enters a rental via telephone or
the Web and arranges for delivery or picks the video up at his or her convenience.
Adding this function allows the customer to avoid frustrating trips to the video
store when no desirable videos are available. As noted, the availability function
represents a good add-on candidate only if it improves such performance mea-
sures as rental revenue and customer loyalty.

In the GB Video case, the team might consider an alternative of eliminating the
functional requirement to go through the member process for every rental. With
the new alternative, the customer could access the rental function directly. This
change in functionality represents a good candidate only if it saves costs or pro-
vides benefits. For example, perhaps customer satisfaction will increase if the cus-
tomer doesn’t have to wait for the system to go through the member process. Or
perhaps most package systems do not include this feature but handle membership-
checking in another way.

Choosing a Sourcing Option
Once a team decides what a new system should do, the team can then decide how
best to obtain the solution. In the early years of computing, most organizations found
only one sourcing option: build. The option to purchase package systems did not
exist. Today, organizations can choose from a wide range of sourcing options—to
build in-house, to lease a package, to buy a package, to contract with a vendor
for a custom package, or to hire an application service provider to take over oper-
ation of the entire function.

Many organizations look first at the purchase of a package—typically the low-
cost, low-risk alternative. If a suitable package exists, the use of the package often
becomes the recommended alternative. When no suitable package exists, then the
organization may consider in-house development, contract development, or ASP
alternatives. For very small organizations, some form of outsourcing may offer
the only feasible alternative for a solution. Larger companies may use some form
of outsourcing for noncore applications and reserve internal development efforts
for systems that involve proprietary data or provide competitive advantage.

Most teams and clients feel comfortable with selecting sourcing options. Many
clients bring prior experience with making sourcing decisions in other areas of

the organization. Most people make personal sourcing decisions every day, for
example, buy a house or rent an apartment, paint your house or hire a painter,
fix a meal or eat out, select the specific restaurant when you do decide to eat out.
While often summarized as “build or buy,” information system sourcing actually
involves a very wide range of alternatives.

Building a Solution In-house

Clients may decide to build a solution in-house. This option means the organi-
zation takes the primary responsibility for building the application using its own
staff members. Consultants or third-party staff often may perform part of the
work on the project. Some of the situations that lead to building an application
in-house include:

• Modify a legacy system or create a new system to work with a legacy system.
In-house people already know the legacy system while outsiders will face a
more costly and time-consuming learning curve.

• Modify or create a mission-critical system. The organization does not want
outsiders to gain knowledge of the proprietary features or competitive infor-
mation associated with the system.

• Build a small application where the administrative costs of outsourcing may
exceed the cost to build the application.

• Build “institution-specific” applications. The organization may believe that
they can build certain applications faster and for less cost than any outsourcer.
For example, organizations often decide to build customized decision support
or information presentation systems to fit the preferences of management.
With institutional knowledge and modern tools, the in-house staff quickly can
generate custom access to data tailored to the preferences of the managers.
Tailoring a purchased package to present the desired data and interfacing the
package with the existing transaction systems often costs more. For similar
reasons, organizations often build simple Web display programs.

Outsourcing subalternatives related to building a system in-house include hir-
ing contract people and consultants to assist the in-house staff and outsourcing
programming. Using contract people to cover workload peaks often incurs less
expense than expanding the in-house staff. Consultants bring skills and knowl-
edge that may not exist in-house and may cost a lot to develop in-house. Some
organizations hire an outside project manager and use primarily their own staff
to do the work. Once complete detailed specifications exist, many domestic and
international vendors perform programming at a low unit cost. Much of the pro-
gramming work at a large number of U.S. organizations today is outsourced,
often to overseas companies.

Outsourcing the Solution

Solution outsourcing occurs when the client gives primary responsibility for an
application to an external party. Representatives of the client may work with the

Chapter 9 Alternatives, Evaluation, and Recommendation 303

304 Part Three Proposed System

vendor to monitor progress and quality and to make decisions as needed. Staff
members of the client may perform part of the work. Some of the situations that
may lead to solution outsourcing include:

• Small organizations may not possess the information technology (IT) people
needed to build and maintain a system in-house.

• When a number of suitable package programs exist for an application, the costs
and risks of building a system in-house often exceed those for purchasing the
package.

• Organizations may outsource some or all of the less mission-critical systems
in order to focus in-house IS people on higher priority projects and/or to
smooth out the workload.

• Multiuser transaction processing systems (such as airline reservation services,
catalog sales, and such) are good candidates for outsourcing. Building transac-
tion systems with good performance, good audit trails, backup and bulletproof
interfaces takes major time and specialized skills. If a team can find an appro-
priate package system, the package may represent the cost-effective solution.

• Systems that require skills and experience that the organization does not pos-
sess are good candidates for outsourcing. Outsourcing may provide the desir-
able alternative for projects or parts of projects that involve such issues as new
languages, new hardware, complex logic, high levels of integration, and spe-
cial security requirements. Working in new environments can require high
training and learning curve costs. Designing a system in a new environment
involves a high risk of failure and/or serious cost and time overruns.

Writing good application software poses a difficult, time-consuming task. Large
computer systems are some of the most complex systems ever created. Major appli-
cations can contain hundreds of thousands of code statements. Each code statement
is a potential source of error. Creating clean tested code takes a long time. Some
estimates of programmer efficiency suggest that 25 statements of debugged, tested
code per day represent a reasonable output for an experienced person. Most ana-
lysts can develop a system that satisfies a few basic functional requirements. How-
ever, adding the edit checks, audit trails, optional dialogs, and exception process-
ing to create an effective operational system rapidly becomes complex.

As noted earlier, the client may find it difficult to specify the logic and other
specifications needed to solve the problem that the client faces. Particularly in
smaller organizations, a client may know the desired outcome but know little about
how the system should achieve the desired outcome. Purchased systems incorpo-
rate a set of solutions and options that have satisfied the needs of a number of pre-
vious customers. The package system’s developers have researched, implemented,
revised, optimized, tested, and packaged appropriate functions to form a complete
system.

Early purchased systems offered a limited set of options. If the vendor would
provide the source code, customers who disliked the design decisions made by
the vendor sometimes revised the logic of the purchased package by changing
the code. These revisions could cause serious problems. When a problem arises

in the modified system, the package vendor blames the customer’s modifica-
tion and the customer blames the purchased system. A further disadvantage of
customer-modified code occurs when a vendor releases new versions of the
package to correct errors and add features. Vendors may put out several new
releases a year and often stop providing support for the older releases. A cus-
tomer with a modified package faces difficult choices—either stay with the old
release and give up the improvements and vendor support or incur the modifi-
cation cost and hassles all over again for each new release.

Package and service developers have improved their products by including a
number of customization options. Some types of customization are quick and
relatively easy. For example, Microsoft Office products work without customiza-
tion, or the user, if desired, can activate or deactivate a number of functions and
select from many different displays quickly and with little if any training. At the
other extreme, the SAP Enterprise Resource Planning System usually takes a sub-
stantial team of analysts several years to customize the system for the client orga-
nization’s requirements.

Even with customization options, clients often want to modify packages. The
more thoughtful IT managers have learned from experience that the only reason-
able way to customize a package is to leave the package code intact and “wrap” the
package in customized interface programs. Packages often contain application
program interfaces (APIs) to facilitate the wrap process. For example, a customer
who buys a package without a Web option may write Web-enabled screens that
capture, edit, format, and submit data to the package through an interface. Cus-
tomization beyond wraps that change the package code can cause serious prob-
lems as noted earlier. Organizations contemplating the purchase of a package
system should resolve to live with the code in the package even if the purchaser
must modify existing rules and procedures to accommodate the new system. A
more complete discussion of the issues associated with outsourcing appears in
Chapter 10. A team that plans to recommend an outsourcing option may wish
to read Chapter 10 before proceeding.

Many vendors offer package systems for such common organizational func-
tions as budgeting, accounting, purchasing, payroll, personnel, project manage-
ment, and hundreds of others. Some packages focus on small organizations while
others handle the largest multinational corporations. Several vendors, for exam-
ple, SAP, Oracle, and PeopleSoft, provide enterprise resource planning (ERP)
packages, which are a group of integrated systems that cover a broad set of core
functions. Packages represent a form of resource sharing, that is, the multiple
users of the package can share the cost of development and modification. Advan-
tages of package systems may include:

• The package may cost less and/or provide an operational system much faster
and/or involve lower risks than building in-house.

• Generally, lower levels of skills and experience are required to implement a
package than to build one.

• The package vendor may agree to maintain and update the system either at
no cost or for a fee.

Chapter 9 Alternatives, Evaluation, and Recommendation 305

306 Part Three Proposed System

• Many packages come with such features as I/O interfaces, logic, error check-
ing, and performance, that the vendor has field-tested in a number of prior
implementations.

Possible disadvantages of packages include:

• The time and cost of implementing a package in an organization may amount
to far more than the client expects.

• Packages provide only a predefined set of functions. While some packages
contain many options, they may not contain all the functions the client wants.
Modifying a package to meet client desires negates many of the advantages.

• The package may not provide all of the functionality and performance claimed
by the vendor.

• The package may become an orphan when the vendor goes out of business
and/or stops supporting the package.

With contract development, consulting companies and other vendors, for
example, Accenture and IBM Global Services, build a system to the client’s speci-
fications. The contractor may assume full responsibility for building and deliver-
ing a solution and/or may work in a partnership with the client. For some projects,
the contractor works on a fixed price; for others, the contractor receives actual costs
incurred plus a fee. Advantages of contract development may include:

• The contractor may possess the skills and experience that are lacking on the
client’s staff.

• The contractor may have built similar applications for other clients.

• The contractor frees up the client’s staff for other projects.

Possible disadvantages of contract development include:

• The resulting product may not arrive on time, may not work at all or as spec-
ified, and/or may cost much more than expected.

• When the client has little involvement in building the product, the client may
experience major problems maintaining the system.

• Contract development may cost more than building in-house or using a
package.

A number of application service providers (ASP) offer full-service outsourcing.
An ASP outsourcer accepts the primary responsibility for running an application
including entering the inputs, doing the processing, maintaining the files, and
preparing the outputs. The ASP may develop and maintain the application pro-
gram or use one supplied by the client or a third party. Often, the ASP provides
the facility and hardware to run the application. Advantages of ASPs may include:

• The client need not commit any resources except money to the project. The
ASP may provide facilities, equipment, operating staff, and maintenance.

• An ASP with a number of customers can provide frequent updates for volatile
situations at a reasonable price, because the costs are shared by all the customers.

Possible disadvantages of ASPs include:

• The ASP and the client may operate with conflicting goals. The ASP wants to
run the application at the lowest possible cost to increase the ASP’s profit
while the client wants the best possible results and service.

• The ASP may go out of business or discontinue the service leaving the cus-
tomers in a difficult situation.

• The ASP may respond slowly, ineffectively, or not at all to user and customer
concerns.

Choosing Infrastructure
Selecting physical infrastructure often is either very complicated or very easy. For
small projects in large organizations, the team often must use either the physical
infrastructure that exists or select from a standard list, for example, the organi-
zation’s IT group may require the use of specific servers running a specific oper-
ating system with a specific database engine. For many of the smaller projects
typical to class field projects, almost any server and database engine will execute
the desired functions. For large projects, selecting the appropriate physical infra-
structure requires a lot of skill and experience plus some good luck. Many larger
organizations hire staff members who specialize in physical infrastructure design.

Since many infrastructures will execute the desired functions, the major prob-
lems with infrastructure selection are achieving interoperability and the desired
performance at a reasonable cost. Interoperability is the ability of different soft-
ware and hardware components to work together correctly and effectively. Only
certain combinations of servers, operating system, database engines, and other
components work well with each other. Many projects also involve specialized
hardware—for example, communication networks, bar-code scanners, optical
data readers, and point-of-sale devices that introduce additional interoperability
issues. Performance evaluation is discussed in the next section.

When the team must select or recommend infrastructure, some guidelines are
as follows:

• Consult with the client’s infrastructure expert if one exists.

• Talk with people from similar organizations to find out what infrastructure
they use.

• If the client has a major or dominant infrastructure vendor, ask the vendor
representative for suggestions. The team also can look on the Web or contact
vendors to find out what is available.

• Give preference to infrastructure from established vendors, that is, vendors with
a multiyear record of supplying products to a number of satisfied customers.

• Give preference to infrastructure products that fit the existing skills and expe-
rience of the client’s IT staff members.

• Give preference to “expandable” infrastructure products. For example, design
the processing infrastructure so that the client can add memory and additional
processors to a server or can add more servers if more capacity is required.

Chapter 9 Alternatives, Evaluation, and Recommendation 307

308 Part Three Proposed System

Evaluating Performance
Complex interactions between the physical infrastructure, system functionality,
user behavior, load, file or database sizes, program design, and other factors
determine performance. While cost-effective program execution or run times
remain a consideration, most performance issues focus on response times for
interactive systems, system availability, and load capacities. Response time is the
interval between the time a user makes a request and the time that the user
receives a response. For GB Video, the response time is how long it takes from
the time that the user enters a member number and clicks on the “Find customer
record” button to the time that the customer data appears. A second or two may
seem immediate, 10 seconds or more may become annoying, and a minute or
more probably becomes almost unbearable.

Most small single-user systems tend to provide good response times given the
speed of modern hardware. Response times become an issue mostly in multi-
user systems with large files and complex logic. A system may produce good
response with only a couple of users but slow way down as the number of online
users increases. In similar fashion, large file sizes and complex multitable queries
may slow down response time in multiuser systems.

Availability is the percent of time the system is operating correctly during the
interval the users want to access the system. Both hardware failures and pro-
gram errors may reduce availability. A number of equipment vendors offer hard-
ware with features to enhance availability. When a system supports an online
revenue generating function—for example, airline reservations, or catalog sales—
most clients want availability well over 99 percent. With an informational Web
site or an off-line application, a client may accept lower availability. GB Video
probably wants over 99 percent availability for the Rental and Return system,
but accounting can accept lower availability for their system to produce reports.

Estimating performance presents major difficulties. Most prototypes and
demonstration packages show very good response times because they operate
with a single user and small file sizes. Prototypes and demo packages tend to pro-
vide little or no insight on the response time or availability in the actual system.
Most student project teams possess little ability to evaluate system performance.
Some client organizations may contain people who can make reasonable estimates
of performance. For large online systems, especially package systems, many clients
want to see a full-scale performance test. The organization will run the actual pack-
age on the physical infrastructure the client plans to use with a copy of the actual
client database and an appropriate number of real or simulated users.

In the modern IT world, load-related performance problems tend to cause less
havoc than they did in the legacy mainframe world. Since many modern systems
use off-the-shelf hardware, clients can quickly and inexpensively add additional
hardware to improve poor response times or to increase capacity, especially if
the infrastructure was designed to be “expandable.”

Describing Alternative Solutions
For an alternative to be useful, the team must describe it in sufficient detail for
both team and client to understand how it will work—features, response time,
capacity, and availability; what actions and costs are required to implement it;

and what benefits will result. Many alternatives sound great when stated in the
one paragraph but fall apart on a more specific examination of the functionality,
performance, required infrastructure, and organization. A comprehensive descrip-
tion of each alternative forces the team to think through the issues, allows the
clients to decide if the system contains the appropriate functionality, and gives
the evaluation base for a reasonable comparison of alternatives.

The description of the current system or situation provides a baseline. The
descriptions of the other alternatives can avoid a large amount of redundancy
by focusing on only those features that are major differences from the current
situation. A full description for each alternative contains three parts:

1. A clear and explicit title that describes the system. The title “Option 1” only
makes sense to the design team while most clients will understand the title
“Current System.”

2. A comprehensive description. A good description starts with a one-paragraph
summary of the alternative. Additional paragraphs can provide a general
description of these critical features:

a. Data structure. Significant changes from the current system, including new
entities, additional attributes, and new or changed relationships.

b. Logic and functionality. Features that are added, deleted, or changed. A high-
level DFD can illustrate the differences graphically.

c. Architecture. Specifications for additional or modified hardware, software,
and more are needed for each alternative. An alternative that introduces a
completely new environment or adds some new components into an exist-
ing infrastructure raises concerns about the interoperability between such
components as networks, application packages, DBMS, transaction moni-
tors, operating systems, and processors. A diagram displaying the new
architecture can help when significant changes are proposed.

3. An evaluation, or an estimate of the merit of a solution. Normally the dis-
cussion of each alternative concludes with an evaluation of the alternative.
The evaluation may include:

a. An analysis of risk and feasibility.

b. A listing of advantages and disadvantages.

c. An economic or cost/benefit analysis.

An example with descriptions for the GB Video alternative solutions appears in
Figure 9.2 at the end of the next section on evaluation.

EVALUATION

Evaluating alternatives for their impact on organizational performance forms a
critical step in information system design and one that often is forgotten in the
rush to build or buy something. The widespread use of rapid development
approaches for IT design makes the performance-oriented design framework even
more critical. Some teams and managers focus from the beginning on only one
alternative, omit any evaluation and go directly to detail design or procurement.

Chapter 9 Alternatives, Evaluation, and Recommendation 309

310 Part Three Proposed System

At a minimum the team should spend one or several hours evaluating alterna-
tives against the strategic framework for the project. Without at least a minimal,
performance-oriented evaluation, the team has no reasonable way to choose a
satisfactory set of function, infrastructure, and procurement options. For large,
expensive projects, much more evaluation effort is warranted.

The organization’s strategic and tactical requirements provide the basis for
evaluation and choice of alternatives. Sponsors, clients, senior managers, users,
customers, and other non-IS people make the judgments about the value that an
alternative adds to an organization. These value judges care little or nothing
about the elegance of the design, the programming languages used, or any other
IT issues. Their judgments use the answers to such questions as:

• Does the alternative help the organization compete or fulfill its mission?

• Will the alternative contribute to organizational performance? Will it increase
sales and profits, reduce costs, improve response time, or improve quality?

In short, the value judges ask the questions that the team studied in the strate-
gic alignment part of project definition.

As noted in Chapter 6, the strategic alignment for a project involves vision, mis-
sion, strategies, objectives, and performance measures. The team uses the strategic
framework to examine each alternative to determine its contribution to perfor-
mance. Once the performance contributions are identified, the team should “test”
the accuracy and realism of the results. Every alternative deserves at least a pro-
forma test; try out some scenarios and work up the numbers to show how the sys-
tem actually might achieve the performance improvements. Many projects that
sound good during project definition require unrealistic assumptions, for example,
a 200 percent increase in sales in a mature market to produce the claimed benefits.

Choosing the alternative to recommend represents one of the more complex
and difficult tasks the team will face. In micro economic theory, the evaluation
and choice process is simple: from a universe of all possible alternatives, select
the alternative that maximizes (total benefits total costs). Unfortunately, the real
world poses many difficulties. The team knows only a few of the alternatives, not
all the possible ones. Even worse, estimates of total cost and benefits made prior
to detail design and implementation prove notoriously unreliable. Costs and ben-
efits arise over time leading to time-value-of-money issues. Most alternatives con-
tain substantial risk. Will the new system work? Can the team complete it on
schedule? How long will the organization use the new system? The endless rapid
emergence of new technology adds more uncertainty and further complicates
evaluation because new technologies enable new alternatives about which little
or nothing is known at the time of the evaluation. The life of the proposed sys-
tem also is uncertain; the system may stay in service for many years or never
become operational. With high levels of uncertainty, risk becomes an important,
if not the most important, part of selecting the recommended solution.

Because of the difficulties of evaluation, some teams give up after a brief look
at the evaluation process and hope for the best. The better teams, however, use
their best efforts and recognize that many sources of error exist. For example,
the team may use formal evaluation methods to eliminate clearly poor choices.

If several “similar” and acceptable choices remain, the team and client can select
the recommended solution using client preferences and/or organizational policy
and culture. As noted earlier, the team does not have to find the best alterna-
tive—finding a reasonably good or satisfactory one often meets the needs of the
organization. March and Simon (1958) call this concept “satisficing” and suggest
that satisficing is the most feasible way to select most solutions.

Reasonable guidelines for a practical approach to evaluation suggest that the
team begin by conducting a feasibility analysis, a broad, high-level evaluation,
to separate alternatives into more promising and less promising groups. Often,
a very limited evaluation will show that an alternative does not meet the con-
straints of the client or is less desirable than other alternatives. These less promis-
ing alternatives warrant little if any further evaluation. For example, if building
a system in-house costs several times as much as buying exactly the same func-
tionality and performance in a package system, the team and client can drop fur-
ther analysis of the build option.

Feasibility analysis also can help the team to avoid further consideration of
“likely disasters”—solutions that contain a much larger risk of a serious nega-
tive impact on profits and/or critical performance measures of other alternatives
with similar benefits. A single large, long, high-cost project contains more disaster
potential than several phased smaller, shorter, less expensive ones that accom-
plish the same result. When an unsuccessful project can lead to disaster (bank-
ruptcy, loss of key markets, etc.) the team should try to rule out such high-risk
alternatives as outsourcing to unknown or unproven vendors, buying package
systems that lack adequate backup options, building alternatives that require
skills and resources the organization does not currently possess, or selecting
alternatives that require unreasonably short deadlines.

Only the more promising alternatives are candidates for in-depth evaluation
by the team. For the more promising alternatives, the team can consider such
evaluation methods as these:

• Cost/Benefit analysis. Identify and quantify the costs and benefits for a solu-
tion and calculate a measure of merit, for example, net present value (NPV),
return on investment (ROI), or payback period. Select the alternative that
scores highest on the selected measure. Organizations often insist on cost/ben-
efit analysis for projects that involve a large front-end investment of capital.

• Features analysis. Identify the features that are most relevant to the selection
of a recommended solution and assign a measure of merit (yes/no or numer-
ical value) for each of the features in each of the alternative solutions. Orga-
nizations often use features analysis for smaller projects and sometimes for
larger ones when cost/benefit analysis appears unfeasible.

Feasibility and in-depth evaluation approaches are discussed in more detail
in the following sections.

Feasibility
In a feasibility analysis, a broad evaluation overview, the team asks if a solution
can meet the schedule, cost, technical, legal, security, organizational, outcome,

Chapter 9 Alternatives, Evaluation, and Recommendation 311

312 Part Three Proposed System

and risk constraints of the client’s organization. The full evaluation of a solution
alternative can involve large amounts of time and effort. The team wants to
devote this time and effort only to alternatives that meet the client’s broad con-
straints. A feasibility review may allow the team to eliminate infeasible alterna-
tives. The team normally conducts a feasibility review early in the project during
project definition and revisits the question of feasibility at every major decision
point in the project. When the team is unable to find any satisfactory alternative
to meet the client’s constraints, the team needs to review constraints and goals
with the client.

Schedule and cost feasibility refer to whether the team and client can imple-
ment the system within the time and cost constraints determined by the client.
Clients often have a limit on the money they are willing to expend for a system.
If a client sets a limit of $200,000, then the team can consider eliminating alter-
natives that cost substantially more. The team also can consider eliminating alter-
natives that fail to meet the client’s schedule. For example, if GB Video wishes to
begin catalog sales on May 15, then the team and client may reject a “low-cost”
vendor who proposes a June 15 date because of schedule infeasibility. Sometimes
clients choose to start with a bare-bones package or an evolutionary prototype
solution to get the essential features operating within a schedule constraint.

Technical feasibility focuses on the ability of (1) available technology to han-
dle the system functions and performance and (2) the available staff to use the
technology. The analysis focuses on the “technological stretch” necessary to
develop the solution. A solution that builds on technology already in use at the
client’s organization requires little or no stretch. A solution that uses complex
technologies never before used by the client and with which the client’s staff have
no experience requires a huge “stretch.” Such a solution may be technologically
infeasible. A solution that uses complex technologies for the first time ever any-
where runs a very large risk of technological infeasibility.

Legal feasibility examines the legal and ethical issues associated with the proj-
ect. Privacy and licensing issues are common sources of legal and ethical problems.
For example, a loan application system that uses information on the applicant’s race
or religion probably is legally infeasible. In many areas, for example, accounting
and finance systems, human resource management systems, automobile manufac-
turing, airline operations, food processing, and pharmaceuticals, a large number of
government regulations apply. Systems that do not meet or accommodate these
regulations probably are legally infeasible. A system that uses customer informa-
tion for purposes unrelated to the reason the customer supplied the information,
even if legal, may raise questions of ethical feasibility.

Operational feasibility assesses the impact of the solution on the way the
organization operates. When solutions require major reorganization or major
changes in existing procedures, the people in the organization may be unable or
unwilling to operate within the changed structure. Package systems often intro-
duce issues of operational feasibility because packages assume an organizational
model that may not match the existing one. With a package system solution, the
client must decide if the people in the organization are willing and able to make
the operational and policy changes required to utilize the package. A system built

in-house to automate existing processes often has little impact on the organiza-
tion and thus raises few questions of organizational feasibility.

Outcome feasibility refers to whether or not the alternative can achieve the
outcome desired by the client. For example, when a client has a major goal of
increasing sales, a feasible solution enhances the competitive advantage or posi-
tion of the client. An infeasible solution may have little or no impact on sales or
worse, may introduce new competitors, or may restrict the client’s suppliers or
customers in a way that limits sales growth.

Security feasibility represents a major issue for many projects. A package that
offers many features and good benefits may end up as infeasible because of a
lack of adequate security. Financial, military, and other organizations may rank
security as the first consideration. Web access generally raises security issues and
may necessitate a firewall or even a separate network. Data stores raise both
access control and protection, or backup, issues. Because security issues involve
complexity and continuous change, organizations often hire consultants to eval-
uate and specify appropriate security measures.

The overriding considerations for a solution may influence or determine fea-
sibility. Overriding considerations mandate or strongly direct the team toward
or away from a specific solution and can include:

• Competitive necessity. The organization must implement an alternative or one
of a class of alternative solutions to avoid such severe consequences as loss of
market share or profits. Several bookstore chains implemented Web-based
catalog sale systems to protect their market from a Web-based competitor.

• Client directive. A client with authority and/or funds wants a specific alterna-
tive. The team should perform an evaluation of alternatives and share the
evaluation with the client. However, if the client continues to demand a spe-
cific solution, the team normally will proceed to system delivery with the
client’s recommended solution.

Risk Analysis
The level of risk associated with a project often represents an evaluation mea-
sure of high importance to the client and, as noted earlier, high risk solutions
may fail the feasibility test. Risk means that a project may realize less desirable
outcomes, such as extended completion date, higher costs, lower benefits, and
less functionality, than forecast or planned. All projects involve risk that can arise
from one or more of the following sources:

• Technology and vendor. A successful IT project requires technology products
delivered on time that work as expected. Even with the best of intentions, ven-
dors and customers often miscommunicate. The vendor may not deliver the
product at the time the client expects. When delivered, the products may not
work as expected. For example, package program vendors sometimes tell cus-
tomers that the desired features are in the next release due in six months. The
features actually may appear in six months, in several years, or never. Or the
vendor literature may say that a package works with a particular operating

Chapter 9 Alternatives, Evaluation, and Recommendation 313

314 Part Three Proposed System

system when it actually works only with certain releases of the operating sys-
tem or only with the operating system running on certain servers.

• Staff. A successful project requires people with time to spend on the project,
who have skills, experience, and dedication. A project may lack the necessary
people from the beginning or may start with adequate people and then lose
them. For example, the existing IT and/or functional staff members may lack
the necessary knowledge or experience and/or the organization may not hire,
train, and assign the people required for the project. During the project, the
organization may assign the needed people to other projects, or the key staff
members may leave for other jobs. The IT organization probably has more
control over staff risk than over risk from other sources.

• Sponsor. A successful project requires a sponsor to fund and defend the proj-
ect. The key sponsor may leave, change his/her mind about the project, be
overruled by a superior, get into a control struggle with another senior per-
son, demand features that are impossible to implement or do not work, set
impossible deadlines or budgets, run out of money, or for some other reason
withdraw support for the project.

• Competition. The value of a system often depends on the competitive envi-
ronment. For example, a system may promise large benefits because it offers
features that the competitors do not have. However, by the time the system
is ready to use, the competitors may have as good or better systems in place.
Changes in the competitive environment can bring disastrous consequences
to IT projects.

In concept, risk is expressed by a probability distribution of outcomes. For
example, a project that the team estimates may cost $1.5 million might have the
following distribution of cost outcomes:

• Cost $1 million with probability .1

• Cost $1.5 million with probability .7

• Cost $10 million with probability .2

The team could use the $1.5 million cost estimate in a cost/benefit analysis and
say no more. But the solution might cost as much as $10 million. If the system
is mission critical and the company cannot afford $10 million, this alternative
might lead to a “disaster.” The client may wish to reject the solution because of
the disaster potential.

In practice, the team seldom can estimate the distribution of possible out-
comes. However, the team can help the client to reduce risk. Possible actions
include those that follow:

• Follow safe design practices. For example, limit project scope, strive for short
development times, use non-mission-critical applications to experiment with
new technologies, purchase infrastructure components from the industry lead-
ers, hire a consultant or contractor if the internal staff does not have the appro-
priate skills and experience, and build some slack into the budget and the
schedule.

• Practice safe communication. Keep the client informed of possible risks and tell
the client immediately and repeatedly when problems occur.

• If a solution with a substantial risk of a disaster appears to offer the best or only viable
choice, make absolutely certain that both the client and sponsor understand the risks.
In some cases, a solution with a substantial risk of disaster may offer the only
viable choice, but the client and sponsor need to fully understand the situation.

• If at all possible, provide backup for a high risk or possible disaster alternative. For
example, a catalog company project to develop its first Web solution for the
order-taking process probably represents a high-risk project. To protect itself,
the company might add capacity to the existing telephone order system and
maintain the telephone system to work effectively until the new solution
passes all the tests and begins operation.

• Use a shorter payback period criterion or a higher internal rate or return for the higher
risk alternatives.

• Use intuition and judgment to get a ranking of alternatives that combines cost/ben-
efit and risk.

Deriving estimates for risk can present difficulties. The more experience the
analysts and clients have with IT development, the more likely they are to make
reasonable judgments about risk. Some helpful checkpoints are listed below:

• Risk goes up with size as measured in person months to complete the project. Small
projects, for example, projects that require a couple of person months, are low
risk, because they are easy to manage and if they fail, not much is lost. For
the same reasons, large projects, which require tens of person years, are higher
risk. Cost risk is relative to the size of the organization. A $1 million project
may present low risk for an organization with $1 billion of annual revenues
but very high risk for an organization with only several million dollars of
annual revenues.

• Risk goes up with lack of familiarity and experience. An experienced mainframe
COBOL programmer can develop a new COBOL application similar to exist-
ing ones with low risk. The same programmer developing a first application
in Visual Basic and Oracle to run on servers in a distributed network faces a
much higher risk. Everything in the development environment has changed.

• Risk goes up with emerging technologies. Employing leading-edge technologies
introduces not only the lack of familiarity with the technology but also the
risk of unexpected problems with the technology itself. For example, the tech-
nology may lose its market share and disappear.

In virtually every project and for every alternative solution, a careful evaluation
of risk provides a valuable input to the choice of the recommended solution.

Cost/Benefit Analysis
Applying cost/benefit analysis for a set of alternatives consists of three steps:
(1) identify the benefits and the costs for each alternative; (2) select an evaluation
metric—net present value, payback period, and so on, and (3) rank the alternatives.

Chapter 9 Alternatives, Evaluation, and Recommendation 315

316 Part Three Proposed System

Without careful thought and a plan, the team may focus on costs, which are the
“easiest” part to measure, and neglect benefits. If the performance-oriented design
phase was conducted correctly, many of the benefits of the applications already
are identified, for example, revenue enhancement, cost reduction, customer ser-
vice, employee productivity, or quality improvements. A good way to get a desir-
able cost/benefit performance from a new system is to (1) set specifications to
achieve the desired benefits and to (2) use costs for guidance on the most effec-
tive way to achieve benefits.

Costs and benefits may occur as one-time or ongoing amounts. One-time
amounts are usually associated with solution delivery—development costs, hard-
ware and package purchases, initial training, and so on. Ongoing amounts recur
on a monthly or annual basis—operating costs, yearly fees, and such.

Benefits

Estimating benefits raises a number of challenging problems. The major benefit
from a computer system often comes from changing the way the organization
operates. As a result, the team must estimate benefits for a situation that cur-
rently does not exist. If the IT team members possess expertise only in IT, the
team members may not understand the impact of their system on the organiza-
tion’s performance measures. For example, the IT team might consider the poten-
tial for enrollment growth as a major benefit of a new enrollment system, while the
university administration wants to keep enrollment constant. A good strategic
alignment analysis (see Chapter 6) can help the team to avoid this problem.

The team probably will find neither the time nor effort to evaluate every
potential benefit in depth. In this event the team can apply the 80/20 rule: focus
on the 20 percent of benefits that give the most return and make fast, rough esti-
mates for the others. In evaluating ongoing benefits, the team should recognize
that any competitive advantage from an IT solution might experience a short life.
For example, the advantage gained by the first firm to use a targeted merchan-
dising system may disappear in a few years as other firms catch up. A well-
designed information system offers a vehicle for continuing innovation, not a
finished product.

Information technologies substitute capital for labor, a traditional and effec-
tive way to achieve higher productivity and lower costs. To use information
technology, the designer invests in hardware, DBMS, application packages, tools,
other software, development, training, and implementation costs. The benefits
can range from such local measures as reductions in programmer time and cler-
ical time, to such broader issues as increased engineering, manufacturing, or
marketing productivity. Benefits from an IT solution can arise in the following
ways:

• Cost reduction. Some applications, for example, payroll, provide a more or
less standard functionality. The benefits come from achieving the standard
functionality at the lowest possible cost. A number of proposed systems may
perform the same functions as the current system but offer cost savings as the
benefit. Information systems also can reduce costs by substituting for other

higher cost resource inputs. For example, electronic data interchange in firms
and between firms combined with new systems may allow lower inventories.

• Cost displacement. A form of cost reduction, cost displacement substitutes a
new lower cost process for a more expensive current process. A system that
allows GB customers to enter video orders themselves on a terminal shows
an example of a cost displacement system. The system replaces paid clerk time
with unpaid customer time. Many retail stores now provide self-checkout for
customers—a cost displacement or disintermediation option marketed to cus-
tomers as a “time saver.”

• Cost avoidance. Some solutions provide the benefit of avoiding costs that oth-
erwise might occur in the future. Having a new solution may allow the firm
to avoid such costs as ones arising from the loss of business to competitors or
payments for penalties and fines.

• Revenue and performance enhancement. Increasingly IT creates products,
services, and situations that enhance revenue or another important measure
of performance identified during strategic alignment. For example, Dell’s
automated manufacturing control system produces quality levels in PC and
server products that appeared unattainable a few years ago and allow Dell to
steadily increase market share and revenue. Wal-Mart’s merchandising sys-
tems allow each store in the world’s largest retain chain to increase revenues
by serving the needs of the customers in its specific area. The performance
measures for some strategic objectives involve metrics not directly translat-
able to service, profits, or revenues, such as quality and customer satisfaction.

• Risk reduction. Many organizations are “risk adverse,” in that they value
reductions in the risk of incurring large losses. Sometimes risk reduction comes
from conservative compliance with laws or regulations. In other cases the risk
reduction may come from a system with low initial investment and/or low
shut-down costs. In the event the project fails, the organization will survive.

Intangible benefits no doubt exist but are subject to abuse. Unsupported
and unmeasured claims of wonderful intangible benefits, if accepted at face
value, can justify even the worst of alternatives. For example, a cost/benefit ana-
lyst might claim that the system will provide benefits of over a million dollars
from empowering users and strengthening morale. Empowering users and
strengthening morale probably is good, but what performance measures iden-
tified during the strategic alignment analysis will change, by how much, and
why? As a general rule, the team should (1) to the extent possible, translate the
intangible benefits into measurable changes in the key performance indicators
and (2) use any remaining, unevaluated intangible benefits to break near ties
between alternatives.

Costs

Projects incur costs for a wide variety of goods and services; and, in most proj-
ects, costs are easier to identify than benefits. Typically, the wage costs of peo-
ple, not the capital costs of computer equipment, are the largest cost component.
With extensive outsourcing, the outsource contract costs exceed the cost of people

Chapter 9 Alternatives, Evaluation, and Recommendation 317

318 Part Three Proposed System

on staff, but the vendor probably is billing mostly for personnel costs. Possible
sources or categories of cost include:

• Personnel

• Clients and users

• Managers

• Project staff

• Implementers

• Trainers

• Consultants

• Operators

• Maintainers

• Security

• Facilities

• Rental or use charge

• Construction

• Operation—utilities, maintenance

• Security features

• Furniture and supplies

• Information technology

• Hardware

• Software

• Communications use

• Maintenance and upgrade fees

• Supplies

Total costs include both one-time and ongoing costs over the life of the sys-
tem for the following categories:

• Initial development. Many costs occur prior to start-up of the system including
team salaries, consultants, hardware, system and application software, net-
work connections, and development tools.

• Implementation. A second major group of costs occurs at the time the new sys-
tem goes into operation including data conversion, testing, training, parallel
operation, and changing organization and procedures.

• Continuing operations. A final group of costs may continue to accrue over the
entire life of the system including utilities, hardware and software, ongoing
training, maintenance and upgrades, and people to operate and use the system.

The accumulation of all of the lifetime costs for a system across all of the orga-
nizational units affected by the system is called the total cost of ownership.
Managing the total cost of ownership is a major goal of many modern organi-
zations. In the legacy mainframe era, many of the costs of a system resided in
one cost center. With the distributed systems that exist in many organizations

today, the total system costs exist across the organization in many departments
or divisions. To the extent that design, training, operations, and maintenance take
place in the decentralized organizations, the costs tend to become commingled
and difficult to identify. For example, conversion to distributed systems may
appear to save money by reducing the cost of the IT group, when actually many
of the costs just shift to other units. If information processing responsibilities are
added to operating staff, the system should include the cost of user time devoted
to the information processing tasks.

The initial development of a new function or technology in an organization
will cost much more than subsequent ones—the traditional learning curve effect.
However, initial development of new systems is not the largest cost for many
organizations. Studies of IT groups suggest that much of their total people cost
and effort goes to training and to software maintenance and upgrade requests.
With outsourcing, some or most of these costs may come in bills from the out-
side vendor. Training costs can exceed even careful estimates by a factor of two
or more; and significant training loads can continue indefinitely due to software
upgrades, program modifications, and new hires. Because of continuing rapid
technology evolution, some training probably will utilize vendor courses. IT staff
members may require retraining every several years to maintain technical com-
petence. A typical system with extensive users, for example 100 or more, may
incur the cost of a group of people as a focal point for help and/or service, com-
monly called a help desk or information center. Help providers require training
to maintain skills for the applications, equipment, and software in use.

Evaluation Metrics
Organizations that make extensive use of projects tend to establish evaluation
metrics. An evaluation metric consists of a method for arriving at a measure of
merit for a project and an acceptance criterion, a target that an acceptable project
should reach or exceed. Financial analysis methods provide a framework for
computing a sum of net benefits, the benefits for the period minus the costs, for
each period, over the life of a project to get a measure of merit. Commonly used
methods include net present value (NPV), return on investment (ROI), and pay-
back or break even analysis. Each of these approaches can provide helpful infor-
mation. IT projects contain a large amount of uncertainty over costs and especially
benefits. As noted, estimation involves a number of difficult issues. In addition,
the environment in which information system solutions operate may change and
negate the value of the solution. In this situation, most organizations want to fol-
low a conservative path.

Payback period or break-even analysis offers a simple and often effective
metric to rank IT alternatives. The payback approach asks how long a period is
needed for the sum of the benefits to equal the sum of the costs of designing,
procuring, implementing, operating, and maintaining the new system. To use
payback analysis, the team simply adds the net benefits for each time period of
the project starting at the beginning of the project and going forward along the
time line of the system life cycle. Normally the sum starts out negative because a
new project incurs costs for some time until it starts to generate benefits. The

Chapter 9 Alternatives, Evaluation, and Recommendation 319

320 Part Three Proposed System

payback or break-even period is reached when the sum of the net benefits equals
zero. If a new system costs $10,000 to create and produces net benefits of $500
a month, the payback period is 20 months, the sum of the costs and benefits
equals zero after 20 months of operation. At this point, the organization has
earned back all of the money invested in the project.

To follow a conservative approach with payback period analysis, the team can
use a short payback period criterion. Organizations typically like to see payback
periods of 6 to 24 months for an IT solution. Clearly, payback period is simple
to understand and to use. Payback period also deals well with the shortened
time frame of IT activities. All time aspects of IT systems, for example, devel-
opment time, procurement time for purchases, implementation time, and modi-
fication time have decreased from the norms of 10 years ago. However, payback
period analysis tells little or nothing about the merit of the system over its life
cycle. A system with a short payback may produce no further benefits after the
payback period while another system with a longer payback period may pro-
duce massive amounts of benefits over the life of the system. Many organiza-
tions like and use payback analysis because project sponsors want to recover
their investment fast and believe that estimating costs and benefits over an
extended period in the dynamic modern world is difficult and often misleading.

Time-value-of-money methods weight each net benefit with time and an inter-
est rate. In Western societies, people accept the notion of earning interest on
investments. If a person invests $1 at i percent per year interest, the value of the
investment with compound interest after n years is (1 i/100)n. Compound inter-
est means that the interest earned each period is added to the amount of the
investment and earns interest in all following periods. For interest of 10 percent
per year, Table 9.1 shows the value of the investment at the end of a selected
number of years.

The converse of this relation is that a dollar of net benefit expended or earned
n years from now has a present value of $1/(1 i/100)n. A net benefit of $1 with
a 10 percent interest rate earned 20 years from now has a present value of $1/6.73
or $0.15. To calculate the net present value and return on investment for a project,
the team uses these time-value-of-money relationships to weight the net benefit
for each period of the project. The team also can use time-value-of-money calcu-
lations to weight the net benefits in payback period analysis; however, payback
analysis normally uses the unweighted net benefit numbers because of the short
time span involved.

The net present value (NPV) for a project is calculated by estimating the net
benefits for each period in the life cycle of the project, the same estimates that
the team made to calculate payback period. However, the estimates are made
over the life of the project. Once the net benefits are estimated for each period,

Year 1 2 5 10 20

Value $1.10 $1.21 $1.61 $2.59 $6.73

TABLE 9.1
The Value of
$1 Invested at
10 Percent
Annual
Compound
Interest

the team can convert each net benefit to a present value and sum the present
values over the life of the project to arrive at the NPV. The client or the organi-
zational standards give the team the interest rate to use, the rate that the orga-
nization wants to earn on its investments or selects as its cost of capital. The
team can set up a spreadsheet in Excel to calculate the NVP for alternatives or
can use one of many package programs for the task.

Many organizations use the NPV method and believe that NPV is helpful or
imperative. For example, a system with a short payback may produce a small or
even negative NPV, good information to have. However, NPV comes with seri-
ous reservations. Since NPV calculates the present value of a stream of future
events, NPV requires the team to forecast both the events for each period and
how long the system will continue to provide enough value to remain in use.
Reality may not follow the estimates. The system may never reach completion.
The system may cost more and/or produce fewer benefits than expected if and
when it starts to operate. New technologies and changing organizational envi-
ronments often make an even newer system more desirable than the proposed
system long before the end of the forecast life cycle. No one guarantees that IT
(or life) is kind or fair.

Two systems with the same NPV can look quite different to a sponsor. The
graph in Figure 9.1 shows the NPVs for System1 and System2 over their expected
life. System2 costs more initially than System1 and produces higher net benefits
once it starts to operate. Although both systems have the same NPV at their
respective expected lifetimes, the two probably will look different to a sponsor.
A risk-adverse sponsor probably prefers System1 because System 1 has a higher
NPV than System2 for all the time before the expected end-of-life point. A risk-
tolerant sponsor may gamble on getting big net benefits from System2 even past
the expected lifetime.

Chapter 9 Alternatives, Evaluation, and Recommendation 321

System1

Time

NPV

Expected

Lifetime

System2

FIGURE 9.1
Two Alterna-
tives with the
Same Final
NPV

322 Part Three Proposed System

If the team wants to take a conservative approach to an NPV analysis, possi-
ble actions include the following:

• Explain the problems of estimating net benefits and life span to the sponsor.

• Set the life span at the point the ability to estimate net benefits begins to
decline sharply, somewhere between now and not very long from now.

• Calculate the NPVs for various life spans and prepare a graph with the data.

• Run a sensitivity analysis to show what impact a low and a high estimate of
net benefits has on the NPVs.

The return on investment (ROI) or internal rate of return (IRR) for a proj-
ect is the interest rate that makes the NPV of the project equal to zero. The team
collects the same net benefit information needed for the NPV method and makes
the same estimate of the lifetime for the system. The team then finds the inter-
est rate that makes the NPV equal to zero. Teams often use trial and error to find
the ROI; try increasingly higher interest rates until one produces a zero NPV.
Package programs to compute ROI also exist.

The ROI method provides a way to compare projects of different sizes. One
might expect a good large project to produce a higher NPV than a good small
project. The size of the project does not affect the ROI. The ROI produces the
information that investors often want: the project that produces the highest
return on their investments. The ROI method faces all the same problems and
limitations as the NPV method. With all evaluations, the team has an obligation
to point out that financial measures give an appearance of precision that the esti-
mates from and limitations of the IT project environment may not warrant.

As part of the evaluation metric, many organizations set acceptance criteria for
IT projects. For example, an acceptable project must have a payback period of
less than 18 months or an ROI of 30 percent. Short payback period or high ROI
acceptance criteria reflect a conservative approach to recognizing the risks of esti-
mation and of the continuing and rapid change in both IT and the competitive
environment.

The Implied Benefits Method

In an ideal world, every project has explicit and measurable benefits. In the real
world, the team may find no reasonable way to determine or measure benefits for
some projects. One alternative is to look at implied benefits. The implied benefit
is the benefit amount needed to allow the project to meet the acceptance crite-
ria used by the company. The acceptance criterion can be a payback period or
an NPV or ROI over some period, normally the expected life of the system. The
implied benefits method will work with any and all acceptance criteria.

For example, a company might decide to create a Web site to display the daily
stock prices for the company and a set of its competitors. The sponsor in request-
ing the project, reasons that the Web site will encourage employees to think about
the stock price and about what steps might cause it to increase. A contractor
agrees to create the Web site for $40,000. Yearly operating and maintenance costs
will come to $10,000. For most projects, the company uses an 18-month payback

period as an acceptance criterion, that is, projects that pay back in 18 months or
less are accepted. If the stock price application is to pay back in 18 months, then
it must produce a monthly net benefit (benefits minus operating and maintenance
costs) of 40,000/18 = $2,333 per month or $26,000 per year. For the project to
meet the company’s rules, the implied annual total benefits must be at least
$36,000, the $26,000 plus the $10,000 for annual operating and maintenance costs.
The team can now ask the client if the Web site is worth $36,000 a year. Note
that the role of the team is to frame meaningful questions; in most cases, the
client and sponsor make the value judgments.

Cost/Benefit Table

A table provides a good way to examine the cost/benefit data as illustrated in
Table 9.2. The table helps the team to track what and when the costs and bene-
fits occur. The table format also deals directly with the issue of one-time versus
recurring costs by simply showing costs in the period that they occur. For short
projects of less than a year, the initial project costs often are shown in the first
column at time zero, the time at which the system begins to operate. Illustrative
tables for the GB Video example appear in Figure 9.2.

Part 1 of Table 9.2 shows for each period during the expected life of the sys-
tem: the costs, the benefits, the net benefit (benefits costs for the period), and
the cumulative net benefits. The system has an initial development cost of
$10,000 as shown in column zero. In periods 1 to 4, the system operates and
incurs costs and generates benefits as shown in the table. The cumulative net
benefit is the sum of the net benefit for a period and all previous periods. In this
example, a quick glance at the table shows the times at which the cost and ben-
efits occur and that the payback probably occurs at a little over one year if the
period of analysis is a year, that is, the cumulative net benefit becomes positive
in period 2. A table for an actual alternative could have more detail about costs

Chapter 9 Alternatives, Evaluation, and Recommendation 323

TABLE 9.2
A Cost/
Benefit Table

Period 0 1 2 3 4

Part 1. Costs and Benefits for Each Period

Costs $ 10,000 $ 3,000 $ 2,000 $ 2,000 $ 3,000

Benefits $ 0 $12,000 $15,000 $18,000 $ 9,000

Net benefit (NB) $–10,000 $ 9,000 $13,000 $16,000 $ 6,000

Cumulative NB $–10,000 $–1,000 $12,000 $28,000 $34,000

Part 2. Net Present Values (NPV) for Each Period

PV index @11% 1.00 0.901 0.812 0.731 0.659

NB present value $–10,000 $ 8,108 $10,551 $11,699 $ 3,952

Cumulative NPV $–10,000 $–1,892 $ 8,659 $20,358 $24,311

Part 3. Return on Investment (ROI) Example

PV index @101.37% 1.00 0.4966 0.2466 0.1225 0.0608

NB present value $–10,000 $ 4,469 $ 3,206 $ 1,959 $ 365

Cumulative NPV $–10,000 $–5,531 $–2,235 $ –365 $ 0

324 Part Three Proposed System

and benefits in additional rows. With payback period as a measure of merit, the
first section of the table is all the team may produce.

With an NPV measure of merit, the team may wish to add Part 2 of Table 9.2.
The first row shows the present value index for an assumed 11 percent interest rate
(the organization wants to earn 11 percent in its investment in the project) using
the formula discussed earlier: 1/(1 + i)n. The client needs to provide the cost of cap-
ital or interest rate for use in the calculations. The present value row is calculated
by multiplying the net benefit shown in Part 1 by the PV index for 11 percent in
Part 2. The sum of all the present values to date is the NPV up through the period.
For an assumed life of four years, the NPV of this proposed system is $24,311.

Given the uncertainty of the cost, benefit, and lifetime estimates, the team may
wish to state the NPV as around $20,000 or $24,000. Using the number $24,311
implies a level of precision that almost certainly is misleading. As noted, the NPV
number takes into account the net benefit flows, the effect of interest and the life
of the project. NPV may prove a better measure of merit than payback period for
projects with longer life. However, the longer the life of the project the higher the
risk that something unexpected may happen to invalidate the NPV calculations.

Part 3 of Table 9.2 shows that this project yields a high internal rate of return
or return on investment. An interest rate of 101.37 percent results in a net pres-
ent value of zero at the end of year four. In other words, the project earns an
average compound return of 101.37 percent on the invested capital for each year
of the four years. The team may want to refer to an ROI of around 100 percent
or an ROI much larger than the criterion of 30 percent. If the system collapses
or is no longer needed after a couple of years or the net benefit estimates are too
high, the ROI and the NPV will be less.

Features Analysis
When the total cost of a project is relatively small, usually within the signature
authority of the client, many managers believe that detailed economic justification
is excessive and unnecessary. Features analysis focuses on the features of a prod-
uct rather than the economic benefit of the solution. The manager makes a list
of mandatory features and a list of desirable or optional features. The team
rates each alternative on how well it supports these features. Any alternative that
meets the mandatory requirements and satisfies enough of the desirable ones is
acceptable. This approach seems reasonable when the cost and risk are relatively
small and the benefits intuitively obvious. Features analysis is discussed in more
detail and is illustrated in a GB Video example in Chapter 10.

AN EXAMPLE OF ALTERNATIVES

Figure 9.2 shows an example of alternatives for the GB Video project. Note that
the description of each alternative contains a section on evaluation. The evalua-
tion measures for each alternative form the basis for the evaluation comparison
discussed in the next section.

Chapter 9 Alternatives, Evaluation, and Recommendation 325

Alternatives

Based on discussions with Mr. Cosier, the team identified the set of alternatives shown
below. The team has defined and evaluated each of the alternatives. Before performing
in-depth analysis and evaluation of the four alternatives, the team conducted a feasibil-
ity study to determine if one or more of the alternatives fail to meet an important feasi-
bility constraint. This analysis indicated that Alternative 1: Improve the Current Manual
System and Alternative 3: Contract for Service do not meet constraints and should be
dropped from further analysis for reasons discussed below.

The team conducted an in-depth evaluation of Alternative 2: Procure a Package
System from a Vendor and Alternative 4: Contract for a Custom Package. Because
Mr. Cosier provided estimates of costs and benefits, the team applied cost/benefit
analysis, identified advantages and disadvantages, and examined the level of risk. In
accord with Mr. Cosier’s preferences, the team calculated the payback period for these
two alternatives.

Alternative 1. Improve the Current Manual System. Based on a preliminary review,
the team believes that several low-cost changes (probably less than $5,000) to the
current manual system could bring immediate improvement at GB Video. The team
estimates that these changes would achieve about 40% of the benefits mentioned by
Mr. Cosier or a cost reduction of about $20,000 a year giving a payback period of
3 months. The risk associated with this option is low. The primary risk is that the
changes may not result in the expected cost savings, but even if the savings do not
happen, the initial cost is less than $5,000.

When this option was discussed with Mr. Cosier, he repeated his statement that he does
not wish to continue with the current system unless all computer-based alternatives are
outside his payback criteria and his $200,000 up-front cost limit. Since the team found
other alternatives that will provide the desired functionality within the constraints, the
team did not give further consideration to improving the current manual system.

Alternative 2. Procure a Package System from a Vendor. Package systems are
software or computer program packages provided by third-party vendors. The team
identified four vendors that sell or lease packages for video rental and return activities.
After preliminary examination of specifications and demonstrations provided on the
vendor Web sites, all four packages appear to meet the features requested by the
client and the specifications derived by the team. The packages run under the NT
operating system on any Intel chip server. The packages will run with MS Access,
MS SQL server, or Oracle Server databases. The vendors claim that the packages can
be installed and in operation in three months.

Advantages of package systems for GB Video include
• Meet the proposed system conceptual specifications.
• Available for implementation in less than a month.
• Relatively inexpensive and within the client’s total investment constraint of

$200,000.

FIGURE 9.2 Alternatives for GB Video

Page 1

326 Part Three Proposed System

• Tested, proven functionality and performance.
• Relatively low risk.

Disadvantages include
• May require some organizational changes.
• Dependent on the vendor for maintenance and upgrades.
• Fixed yearly cost for upgrades independent of whether or not GB wants or needs

the upgrade.

The team analyzed the costs associated with this alternative. Package costs appear to
run around $15,000 for initial purchase with use at the three GB Video existing stores.
The vendors provide yearly maintenance and upgrades at around $2,000 a year. The
team estimates that installation including data conversion and training will cost $10,000
and that hardware purchase costs for the three stores will total $40,000. Hardware
maintenance is estimated at $1,000 a year.

The team examined the possible cost reductions from an automated system and con-
cluded that Mr. Cosier’s estimate of $50,000 a year appears reasonable. The possible
benefit of a 5% increase in sales is more difficult to analyze. Sales should increase by
at least 5% for the existing stores and should lead to a more than 5% increase in prof-
its. If Mr. Cosier opens additional stores as planned, the profits may increase by a
significantly larger amount. To be conservative, the team used a 5% increase in profits
for the existing stores or $6,650 ($133,000 .05).

The table below shows a summary of costs and benefits for purchase of a package.

Cost/Benefit Summary for Purchase of a Package

Initial Year 1 Year 2 Year 3

Costs

Computer hardware $40,000 0 0 0

Package cost $15,000 0 0 0

Data and training $10,000 0 0 0

Hardware maintenance 0 $1,000 $1,000 $1,000

Package support 0 $2,000 $2,000 $2,000

Benefits

Cost reduction 0 $50,000 $50,000 $50,000

Profit increase 0 $6,650 $6,650 $6,650

Net benefit ($65,000) $53,650 $53,650 $53,650

Cumulative net benefit ($65,000) ($11,350) $42,300 $95,950

Page 2

Chapter 9 Alternatives, Evaluation, and Recommendation 327

If everything goes as planned, GB will recover its investment early in year 2 for a pay-
back period of about 15 months (12 [11350/53650*12] 14.5 months). Even if profits
do not increase at all, the payback period of 17 months still meets the 2-year payback
constraint set forth by Mr. Cosier.

Alternative 3. Contract for Service. The team searched for possible ASP vendors
who might submit a bid to perform the functions identified in the conceptual specifica-
tions for the GB Video system. The team contacted a selection of current ASP vendors
and also talked with several large video rental companies to find possible bidders. The
video companies declined to bid. One said that providing such a service to help a
potential competitor was not in their best interests.

None of the ASP vendors currently provide a video rental system and none expressed
any interest in buying one of the available video packages and gearing up to offer such
a service. Several said that they did not think a viable market existed. The team did
find one ASP, Integrated Computer Services, that would develop a video rental package
and supply the service to GB Video via an Internet interface. ICS estimates that devel-
oping, testing, and installing the program at GB will take 18 months. ICS proposes that
GB Video pay for the initial development, setup and marketing of the service, estimated
at $500,000 and then share in the profits of subsequent sales of service to other video
rental companies. ICS estimated that GB Video would recover its investment in 4 years
and could make significant profits after that time. Mr. Cosier rejected this option as out-
side of the business plan for GB Video, high risk, and an unacceptable payback period.

Alternative 4. Contract for a Custom Package. The team identified a local software
company, OkieComp, which offered to submit a bid to write a software package to detail
design specifications provided by GB Video. OkieComp currently sells a similar well-
regarded package developed for equipment rental stores. OkieComp stressed the
company provides programming services, not system design services. GB must give
OkieComp that detail design specifications for the program and specify the infrastructure
in which the programs will operate. OkieComp will write the software and deliver an
extensively tested package to GB Video. OkieComp initially estimated a total initial cost of
$99,000 to develop, test, and install the system including hardware. Based on this
estimate, Mr. Cosier asked the team to proceed with further exploration of this alternative.

The team developed detail design specifications and incorporated them in an RFP
and Mr. Cosier sent the RFP to OkieComp. OkieComp’s bid contained the following
conditions.

1. The initial cost for developing, testing, and installing the software and hardware
that fully meets the specifications provided by GB Video in the RFP is $94,500.
The hardware list appears in Appendix A of the bid. The amount of $94,500 will
be paid at the time that GB accepts the software.

2. OkieComp will deliver the software 6 months after receiving a firm contract.
OkieComp will work with GB Video to help GB Video demonstrate that the soft-
ware works according to specs. OkieComp will correct any noncompliance issues
identified by GB at no cost for 5 years.

Page 3

328 Part Three Proposed System

3. If GB Video wishes to make any changes to the software or infrastructure,
OkieComp will charge GB the actual labor cost to OkieComp plus 70 percent to
make, test, and install changes to the software.

4. OkieComp will load the GB data into the new system and train the people at GB
for a cost of $5,000.

Advantages of OkieComp include:

• Product will perform exactly as specified by the team and client.

• No organizational changes required.

• No payment due until the product meets acceptance tests—reduces the risk of

damage to GB if OkieComp is unable to deliver.

• GB controls upgrades.

• Five-year guarantee.

Disadvantages of OkieComp include

• Possible risk that OkieComp cannot deliver estimated as small, and GB has

some protection.

• Possible risk that OkieComp will go out of business estimated as medium.

• Upgrade costs not fixed.

• Three months or more required to obtain the software.

The costs for this alternative appear in the OkieComp proposal. As in the package system
alternative, GB can obtain hardware maintenance from a third party for $1,000 a year and
the benefits remain a cost reduction of $50,000 and additional profits of $6,650 per year.

The table below shows a summary for the OkieComp alternative.

OkieComp Cost/Benefit Summary

Initial Year 1 Year 2 Year 3

Costs

Package and hardware $94,500 0 0 0

Data and training $5,000 0 0 0

Hardware maintenance 0 $1,000 $1,000 $1,000

Package support 0 0 0 0

Benefits

Cost reduction 0 $50,000 $50,000 $50,000

Profit increase 0 $6,650 $6,650 $6,650

Net benefit ($99,500) $55,650 $55,650 $55,650

Cumulative net benefit ($99,500) ($43,850) $12,200 $67,850

Page 4

THE EVALUATION COMPARISON AND THE RECOMMENDATION

At the end of the alternative evaluation process, the team has derived costs, ben-
efits, risk, and other measures, including perhaps, a list of advantages and disad-
vantages, for each alternative. A typical client may find it tedious and confusing
to look back and forth through the alternatives to compare them. The team can
simplify and improve the comparison process by putting the evaluation data in
a form that facilitates comparison. A good format is an evaluation summary
table with a row for each alternative as shown below in Table 9.3.

The Table 9.3 format can summarize the evaluation information. The key idea
is to present the essential data in a form that is easy to see and compare. The spe-
cific features included in the table will vary with each project. The team includes
the features that are important to the client and the organization. The table should
reflect the performance measures identified earlier for the organization. An actual
table may have more feature rows and might have a paragraph describing risk
in place of one word. An illustrative evaluation summary table for GB Video, for
example, appears in Figure 9.3. The summary table follows the rules for all sum-
maries: It presents only information that is discussed in the evaluation of each
alternative. When new, previously undiscussed information suddenly appears in
a summary table, the new material may both confuse and annoy the client.

The Recommendation
Normally, the recommendation, if present, follows the evaluation summary.
Some clients do not want the team to make a recommendation. In this event, the

Chapter 9 Alternatives, Evaluation, and Recommendation 329

If everything goes as planned, GB will recover its investment late in year 2 for a pay-
back period of about 22 months (12 [43850/55650*12] 21.5 months). This alterna-
tive appears to meet all the 2-year payback constraints set forth by Mr. Cosier but it
probably involves more risk than the package alternative. If profits do not increase, the
payback period is slightly more than 2 years. If OkieComp is unable to deliver on time
or at all, the risk to GB is small. GB can continue to use the existing manual system
and can purchase a package system if needed.

Page 5

TABLE 9.3
An Evaluation
Summary

Alternative

Feature 1 2 3

Description Current system Contractor Build in-house

Development cost $0 $50,000 $40,000

Payback period ——— 14 months 16 months

Risk Medium Low High

Meets constraints Yes No Yes

330 Part Three Proposed System

The team defined and evaluated four alternatives for the GB Video Rental System:

1. Improve the current manual system.
2. Procure a package system from a vendor.
3. Contract for service.
4. Contract for a custom package.

The table below summarizes the results of the evaluations of the alternatives. The fea-
tures listed in the evaluation table are ones that the client mentioned or stressed.

Evaluation Summary Table for GB Video

Alternative

Features 1 2 3 4

Description Current Package ASP Custom

Client preference Low High Low Possible

Improves performance Some Yes Yes Yes

Meets client constraints No Yes No Yes

Initial cost $5,000 $65,000 $500,000 $99,500

Estimate payback 3 months 15 months 48 months 22 months

Meets specs 70% 95% 100% 100%

Client controls updates Yes No Unclear Yes

Risk Low Low High Medium

Time until operational 0 3 months 18 months 6 months

Custom modifications Yes No No Yes

As noted earlier, the client and team agreed not to explore Alternatives 1 and 3 in
depth. The data on them is presented here to provide prospective. All of the
alternatives except the current system contribute to GB’s performance objectives, i.e.,
reduce cost by $50,000, provide support for additional stores and increase profits.
Alternatives 2 and 4 meet the constraints set forth by the client. While several
packages meet the mandatory specifications, none of the packages contain all of the
features desired by the client.

Recommendation

The team recommends Alternative 4: Contract for a Custom Package. After carefully
reviewing the summary evaluation table, the team concludes that the custom package
alternative does the best job of meeting the client’s needs. The solution meets the
constraints of a 2-year or less payback and an initial investment of $200,000 or less.

FIGURE 9.3 Evaluation Comparison and Recommendation

Page 1

Chapter 9 Alternatives, Evaluation, and Recommendation 331

While the custom package has a longer payback period and higher initial cost than the
off-the-shelf packages, it offers a number of advantages. It contains 100% of the
features desired by the client and thus does not require the client to change practices
and procedures to fit the package. The vendor also agrees to modify the package
when and as requested by the client.

The risk of this alternative is limited by the provision that GB does not pay for the
package until it is tested and accepted as operational. If for some reason, OkieComp
fails to deliver, GB can purchase an off-the-shelf package and have it operational in
3 months. The major risk to GB is that OkieComp may go out of business and not
correct problems or make modifications if desired. During an informal review, both
the team and Mr. Cosier concluded that the risk is acceptable and that the advan-
tages of the custom package outweigh the disadvantages.

Page 2

team provides the evaluation of alternatives and the client selects the solution.
In most cases, the team, often after coordination with the client, does make a rec-
ommendation. A good recommendation is clear, specific, and consistent with the
evaluation summary. The recommendation focuses on facts and avoids unsub-
stantiated rhetoric. Telling the client that the recommended solution is “optimal”
probably misstates the facts. A better statement is simply, “The team recommends
solution X because—(discussion of the evaluation table results).” Guarantees of
results and trouble-free implementation also probably represent misstatements.
A better alternative is a clear explanation of possible risks or problems as iden-
tified in the summary table and the contingency plan to deal with them

On the other hand, teams should “sell” their recommendations with a clear
and effective statement of the merits in the context of the client. The team can
emphasize what the client thinks is important and explain both why the selected
alternative is recommended and why the others are rejected. The team should
try to determine the client’s solution preferences before the final presentation. If
the client rejects or redesigns the recommended solution during the formal pre-
sentation, the team will look unprofessional and poorly prepared. If the team
recommends a solution other than the lowest cost or highest net benefit solution,
the team should take special care to justify the action. For example, in their rec-
ommendation, team members might state, “The project team recommends the
use of a contractor to fix the problems in the current system as outlined in alter-
native 2. While the contractor solution costs 25 percent more than an internally
developed system, the contractor solution is forecast to provide larger benefits
and thus has a slightly shorter forecast payback period. In addition, the con-
tractor has extensive experience in the area and a good history of performance
on similar projects for other companies. As a result, we believe the risks of cost
overruns or delays in completion are lower with the contractor alternative.”

332 Part Three Proposed System

An illustrative example of an evaluation summary table and recommendation
appears in Figure 9.3. Note that the table follows the general rule for a summary,
that is, it uses the information from the alternatives discussion in Figure 9.2. The
recommendation, in turn, builds on the data in the summary table.

Client Approval to Proceed
The decision to pursue in more depth one of several alternatives represents a
critical managerial decision point. While the team holds the primary responsi-
bility for developing and evaluating alternatives, the client holds the primary
responsibility for approving the selection of the specific alternative solution for
system delivery. Before proceeding, the team should present the evaluation and
recommendation to the client and obtain client approval. The recommendation
asks the client for approval to continue the project, not necessarily to complete
it. The client may wish to include additional decision points later in the project.
To make an intelligent decision the client needs to know:

• The evaluation and recommendation information.

• The cost and time for completing the next step (system delivery or a first part
thereof).

• A revised estimate of (1) the cost and (2) the time schedule for the project.

While informal discussion may suffice, the team may wish to prepare a mem-
orandum for the client’s signature that puts in writing the above information.

Summary Evaluation and alternatives remain central themes throughout the life cycle of a
system. The team begins the evaluation process with the strategic analysis of the
organization during project definition. Once the conceptual specifications for the
proposed system are known, the team may identify or construct several alter-
natives, examine feasibility, evaluate in-depth the feasible ones and select one,
or perhaps several, alternatives that appear to provide satisfactory solutions as
the recommended solution.

This team uses the strategic framework to develop and evaluate meaningful
alternatives for a proposed system. Today, many successful IS groups focus their
effort on locating and exploiting applications that directly impact the performance
of the company. The effectiveness of an IS application may be measured by how
it works to improve the overall performance of an organization. Finding the rec-
ommended solution involves four key areas: the mission, the goals and objectives,
the indicators of performance, and the impact on performance of the solution.

Alternatives include both feature and sourcing options. Features consist of
functionality, performance, and infrastructure. The team explores different levels
of functionality and infrastructure with the resulting levels of performance.
Sourcing options include in-house development and such outsourcing options as
packages, contract development, and application service providers (ASPs). The
team provides a full description of each of the alternatives including an evalua-
tion of the alternative.

Evaluation of alternatives is complex. The goals of evaluation are (1) to avoid
disasters; (2) to focus on promising courses of action; and (3) to find a satisfac-
tory or good solution. Feasibility analysis can help the team to avoid disasters
and eliminate unpromising alternatives from further consideration. A key con-
sideration in evaluating alternatives is risk. Risk may arise from many areas
including staff, client, vendor/architecture, and competition. Risk can lead to dis-
asters. Risk-adverse clients want the team to consider the lower risk alternatives.

The more promising alternatives are candidates for in-depth cost/benefit
analysis and/or features analysis. Cost/benefit analysis consists of three steps:
identify costs and benefits for each alternative, select an evaluation metric, and
rank alternatives. Applying such evaluation metrics as net present value (NPV),
return on investment (ROI), and payback period may identify one, several, or no
satisfactory solutions. Cost/benefit tables can help teams organize, examine, and
display the data for each alternative.

An evaluation summary compiles all evaluation data in a form (often a table)
that allows for a quick and thorough comparison of data forming the basis for
the recommendation. The evaluation summary follows the rule for all sum-
maries: all of the data in the summary must appear in the discussion of the alter-
natives. A good recommendation is clear and specific and made in conjunction
with the client. The data in the evaluation summary must support or be consis-
tent with the recommendation.

The recommendation represents a key decision point. When the client accepts
the recommendation, the team enters into the system delivery phase. The team
begins to procure a system from a vendor, to build a system, or some combina-
tion. In a few cases, the client may wish for the team to explore both build and
buy options in depth. The team may build a prototype that contains the exact
functions the client wants and also find packages that match as closely as pos-
sible with the client’s requirements. The team can demonstrate both the proto-
type and the packages and then let the client make a final choice. However, in
many cases the cost of detail design for multiple alternatives is too high. Evalu-
ation, along with most things in systems work, involves compromise.

Chapter 9 Alternatives, Evaluation, and Recommendation 333

Key Terms alternative, 300
application service

provider (ASP), 306
availability, 308
break even analysis, 319
contract

development, 306
cost avoidance, 317
cost/benefit

analysis, 311
cost displacement, 317
cost reduction, 316
design option, 300

desirable or optional
features, 328

evaluation, 309
evaluation metrics, 319
evaluation summary

table, 329
feasibility analysis, 311
features analysis, 311
implied benefits

method, 322
intangible benefits, 317
internal rate of return

(IRR), 322

interoperability, 307
legal feasibility, 312
mandatory features, 328
net present value

(NPV), 320
one-time costs, 318
ongoing costs, 318
operational feasibility, 312
outcome feasibility, 313
package system, 305
payback period, 319
performance, 308
recommendation, 299

334 Part Three Proposed System

response time, 308
return on investment

(ROI), 322
revenue and performance

enhancement, 317

risk analysis, 313
risk reduction, 317
schedule and cost

feasibility, 312
security feasibility, 313

sourcing option, 302
technical feasibility, 312
technology and vendor

risk, 313
total cost of ownership, 318

Review
Questions

Answer the following questions regarding these topics.

1. Alternatives.

a. Why should a team not explore all possible alternatives in depth?

b. How does the sourcing approach affect possible systems features?

2. Design options.

a. What are the design options that a team should consider?

b. Why should a team always consider the current system as an alternative?

c. When is zero-based design appropriate?

3. Functionality. Why might a legitimate alternative not have all of the features defined
in the proposed system analysis?

4. Sourcing.

a. What are key indicators that a solution should be built in-house?

b. What are key indicators that a solution should be outsourced?

5. Outsourced solutions.

a. What is the difference between hiring contractors to help build a system and con-
tracting for a solution?

b. Give an example of when each of the following sourcing options would be desired:
in-house development, contract development, package systems, or application ser-
vice providers.

6. Performance.

a. What are some standard measures of performance of a system?

b. What are the basic questions that a team should ask to address strategic or tacti-
cal requirements for the system?

7. Feasibility analysis.

a. What is a feasibility analysis?

b. What are each of the following types of feasibility: schedule, cost, technical, legal,
operational, outcome, and security.

c. What are overriding considerations that would make a new system essential in
spite of feasibility difficulties?

8. Recommended alternative. What are some factors, in addition to cost, that the team
should consider when choosing a recommended alternative?

9. Risk evaluation.

a. How do you handle risk in evaluating alternatives?

b. What are some of the factors that make a project risky?

c. How can you reduce risk in a project?

10. Cost.

a. Distinguish one-time costs, ongoing costs, and operational costs.

b. What are the primary sources of cost in a system?

11. Benefits

a. What are some of the key difficulties in evaluating benefits.

b. List the primary sources of benefit for a potential system. Give an example of
each one.

12. Evaluation.

a. What are the basic cost/benefit evaluation metrics that are normally used?

b. What are the strengths of each one?

Chapter 9 Alternatives, Evaluation, and Recommendation 335

Critical
Thinking
Exercises

Individual Exercises
1. Your client wants a new system to handle payroll in the company. Which sourcing

option would you choose? Explain your answer.

2. Give advantages and disadvantages associated with the different sourcing options.

3. For the data in the table below, solve the following:

a. Find the net benefit, cumulative net benefits, and payback period.

b. Calculate the NPV at the end of year 4.

c. Calculate ROI at the end of year 4.

Year 0 1 2 3 4

Costs $20,000 $10,000 $ 8,000 $ 9,000 $ 9,000

Benefits $ 0 $12,000 $15,000 $18,000 $18,000

Group Exercises
1. Your client needs a system to keep track of inventory. Inventory is currently tracked

by manually counting and entering the amounts at the end of each day.

a. What are the alternative solutions?

b. Write a description for each alternative solution.

2. What is your recommended solution for the inventory system in Group Exercise 1?
Justify your answer.

3. City Alarm billing system. You have been asked to recommend a billing system for
City Alarm company. The company monitors burglar alarms for businesses and resi-
dences in the city and bills clients on a monthly, quarterly, or annual basis, depending
on the customer. Your client, Bill Smith, identified two essential requirements:

1. The system must be able to print statements by month, quarter, or year.

2. The system must be able to determine the age of accounts so that bills more than
30 days late can be charged interest.

In addition it would be desirable for the system to be easy to use and to print
envelopes in zip code order.

Currently, City Alarm prepares bills by hand. Bill Smith estimates that it takes his
bookkeeper, who earns $20 per hour, about 75 hours per year to prepare bills. Of that
time, 50 hours is spent in organizing accounts and preparing labels. With the current
system, City Alarm mails first class. Sorting mail in zip code order would save 10 cents
per envelope for each of the 1,000 envelopes City Alarm mails each month.

Billing-dot-com. Billing-dot-com is a company that has a billing system for alarm
companies that sells for $1,000. The software will also require a new computer system

336 Part Three Proposed System

at a cost of $2,000. The product has an annual maintenance fee of $500 per year. City
Alarm estimates that it will take about 20 hours to train the bookkeeper.

a. Calculate the payback period for Billing-dot-com’s product. Show your work in a
table. List sources of cost and sources of benefit separated by startup and ongoing
values by year.

b. Calculate the net present value for this system assuming a life of eight years.

c. Calculate the return on investment assuming a life of eight years.

Atkinson, Anthony, et al. Management Accounting. Upper Saddle River, NJ: Prentice Hall,
1995.
Brigham, Eugene; and Louis Gapenski. Intermediate Financial Management, 5th ed.
New York: Dryden Press, 1996.
Emery, Douglas; John D. Finnerty; and John D. Stowe. Principles of Financial Management.
Upper Saddle River, NJ: Prentice Hall, 1998.
March, James G.; and Herbert A. Simon. Organizations. New York: Wiley, 1958.

References

Part Four

System Delivery
System delivery brings major challenges for both the clients and the team. The

team schedules and carries out such activities as:

• Preparing the final logical and physical design specifications for the proposed

system.

• Purchasing or building the production system and/or a proof of concept

model.

• Procuring any required additions or modifications to the physical infrastructure.

• Carefully and completely testing the system.

• Implementing the system or preparing an implementation plan.

• Preparing plans for maintenance and a post-implementation audit.

Many of the preceding activities can involve major expenditures of money.

Often the bulk of the total project costs occur during system delivery to pay for

people, software, hardware, testing, data conversion, and training. Implementa-

tion expands the group of people involved with designing the system to a possi-

bly much larger group of people who will use or be impacted by the system.

When the new system starts to operate, the system also will have an impact on

the organization ranging from highly beneficial to disastrous. For these reasons,

the client often closely follows the system delivery process and may wish to have

input on a number of the decisions.

At the end of the proposed systems phase, the team made a major decision:

build or buy the new system. With a buy decision, the team can prepare the

necessary analysis and documentation to outsource following the guidance in

Chapter 10. With a build decision, the team can follow the guidance in Chapter 11

to convert and expand the conceptual specifications into detailed logical and

physical design specifications. All teams may perform some or all of the activities

in Chapters 12 and 13: obtaining and using a proof of concept model, testing

the system, and preparing implementation plans.

Chapter 10 explores the issues associated with outsourcing. While outsourc-

ing often gives the client a beneficial option, outsourcing can bring far less

desirable results than expected unless managed carefully. Before entering into

an outsourcing contract, the team needs to understand a broad set of issues

including (1) the appropriate specifications for the product the team wishes to

purchase or lease, and (2) the abilities, products, and characteristics of vendors.

In many cases, the team tells the vendor what the client wants by the use of a

request for proposal (RFP). Vendors, if interested, can submit bids in response to

the RFP outlining what the vendors propose to do, when, and for how much.

The team evaluates the bids and prepares a summary and, if asked, presents a

recommendation to the client.

Chapter 11 covers the steps needed to build a system or to prepare detailed

specifications for another team or organization to build the system. At a mini-

mum, the team uses the conceptual specifications to create a detailed logical and

physical specification represented in such documentation as a narrative, a data

schema, program structure charts or page navigation maps, object-oriented

design diagrams, and metadata.

Chapter 12 discusses the characteristics of proof of concept models. Proof of

concept (POC) models are operational versions of the system—ones that convert

inputs to outputs. Often POC models represent a simplified, demonstration ver-

sion of the system, not the full production version. The team uses the POC

model to demonstrate the feel and function of the proposed system to clients

and to refine the features of the system. With the buy option, the team often

can obtain demonstration versions of the proposed system from vendors. Build

teams may construct a prototype, a simplified version of the production system.

Chapter 13 outlines the activities required to go from the final design and

code for the proposed system to a system that operates in the production envi-

ronment and, hopefully, solves the problem that led the client to create the pro-

ject in the first place. Critical activities for this stage include testing, selecting an

implementation strategy, training, documenting, and preparing such plans as

maintenance and post-implementation audit. If all goes well, the client, at last,

may begin to realize benefits from the new system.

10. Outsourcing

11. System Design

12. Proof of Concept

13. Project Completion

338 Part Four System Delivery

Chapter Ten

Outsourcing
Chapter outline

339

Introduction

The Outsourcing Process

Models of Outsourcing

Determining Requirements

Product Features

Functional Features

Process Features

Data Features

Learning from Products

Operational Features

Performance

Usability

Interoperability

Security

Maintainability

Software Licenses

Costs and Prices

Laws and Regulations

Product Flexibility

Contract Compliance

Organizational Fit

Vendor Roles

Vendor Features

Vendor Stability

Vendor Support

Delivery Record

Product/Vendor Selection Issues

Request for Proposal

RFP Content

GB Video RFP Example

Features Evaluation

Ranking Methods

Identifying Candidate Solutions

Assigning Ratings

Outcomes

GB Video Example of a Weighted Features

Analysis

Contracts

Summary

Key Terms

Review Questions

Critical Thinking Exercises

Individual Exercises

Group Exercises

340 Part Four System Delivery

INTRODUCTION

The paths of information system solutions resemble a tree. During project defi-
nition, most teams follow a similar path, the trunk of the tree. As work proceeds,
the nature and requirements of different projects take teams along diverging
branches. During the evaluation process discussed in Chapter 9, the team selects
a sourcing option—either to build or buy. As a result, in the system delivery
stage, teams may follow quite different paths. For example, some teams will
build or develop detailed specifications to build a system while others will
explore an outsourcing option. Similar differences arise from the nature of the
solution. A Web design project may require a different set of activities than a data
warehouse project. The chapter covers the activities for an outsourcing solution—
purchasing or leasing an application or service from a vendor. The activities for
building a new application system solution appear in Chapter 11.

The process for outsourcing begins at the same place as building a system: the
conceptual requirements. As discussed in Chapter 8, the team develops a set of
conceptual requirements or specifications for a new application. While building
a system focuses on identifying and coding detail logic to meet the requirements,
outsourcing focuses on identifying vendors and/or products, and evaluating fea-
tures of products against requirements. If the clients insist that a solution must
track their desired requirements exactly, then outsourcing may offer a poor alter-
native. Outsourcing may require some level of compromise in adjusting the exist-
ing organization and procedures to the functionality of the purchased product.

The inputs to the outsourcing task include:

• The project definition materials.

• The statement of work (SOW).

• The conceptual specifications for the proposed solution.

• The evaluation that led to selecting the outsourcing option.

Possible outputs from the outsourcing function include:

• An outsourcing relationship model, such as commodity or association.

• A features comparison matrix for vendors/product combinations.

• An evaluation metric.

• A request for proposal (RFP) document.

• An identification of possible vendors and products.

• An evaluation of vendors and products.

• A recommended solution.

• A demonstration of the recommended solution.

Outsourcing comes in a variety of forms. An outsourcing product may con-
sist of the purchase or lease of a package application and/or a contract for devel-
oping an application or providing a service. A common approach to evaluating
desired features of products and vendors involves the use of a features matrix
as described in the Features Evaluation section of this chapter.

THE OUTSOURCING PROCESS

As noted earlier, the field project activities for purchasing a solution differ sig-
nificantly from the activities for building one. In place of creating design docu-
mentation and building a prototype, the team that follows an outsourcing option
may execute some or all of the following sequence of steps:

1. Select an outsourcing model. The team selects an outsourcing model that deter-
mines the relative importance of product specifications and the relationship
with the vendor.

2. Refine the requirements. The team examines, revises, details, and expands the
conceptual specifications developed in Chapter 8 for the proposed system to
specify the logical and physical specifications for the new system. Normally
the team will prepare narrative and graphical models as appropriate that
describe the desired features and may note why the client wants or can ben-
efit from the feature.

3. Build a comparison matrix. The team determines the mandatory and desir-
able functions and features for the proposed product and vendor and decides
upon an evaluation metric: economic value, rating points, or a features list.
The team presents these results in a features matrix—a matrix containing a
quantitative or qualitative value for each feature of each product by vendor.

4. Specify a rating process. The team specifies the process to assign the value or
rating for each entry in the features matrix. Possible approaches to obtain rat-
ings include reading published reviews, surveying users, hiring an expert or
panel of experts, or using a combination.

5. Write an RFP. Many organizations solicit bids for a solution through a formal
request for proposal (RFP) or a request for quote (RFQ) process. The team
may prepare a request document that includes contract terms, solution
requirements, bid content, and evaluation methods.

6. Collect potential solutions. The team may search for and identify vendors, send
promising vendors the RFP, and receive bids from interested vendors.

7. Evaluate potential solutions. The team may conduct an evaluation of the bids
with the methodology specified in the RFP.

8. Select, justify, and demonstrate a recommended solution. When appropriate, the
team selects and demonstrates the recommended solution to the client.

Models of Outsourcing
With all outsourcing options, the team must decide on an appropriate frame-
work or model for the outsource action: a commodity model or an association
model. Table 10.1 shows the key features for each model of outsourcing.

A commodity product remains essentially the same, independent of the ven-
dor who provides it. Internet access and personal computers in the last few years
have moved close to becoming commodity products. While differences exist
among the products supplied by different vendors, the primary outsourcing deci-
sion focuses on the price for the desired functionality rather than on a long-term

Chapter 10 Outsourcing 341

342 Part Four System Delivery

relationship with the vendor. With commodity outsourcing, the team focuses on
defining the desired features and developing methods to measure them.

With commodity agreements, the purchaser tries to negotiate the best available
price for the desired feature set and verifies that the vendor provides the agreed-
upon performance. The ongoing process for a commodity purchase requires iden-
tifying and tracking the critical features of the product to assure that the features
in the vendor’s specification work as described and/or that the vendor meets the
contracted service levels. Commodity contracts for services require careful devel-
opment of service level agreements that specify such things as availability,
response, capacity, and quality.

Association outsourcing assumes that the vendor and the customer will enter
into an ongoing, mutually beneficial relationship. A successful association con-
sists both of establishing clear expectations and working out problems in a
mutually satisfactory way. Price remains important, but the initial purchase or
contract price may represent only a small fraction of the total life cycle cost for
the application. Serious problems can arise when the vendor and customer hold
different expectations or when one party tries to benefit at the expense of the
other. For purchases in the association category, the team wants to examine such
issues as vendor stability, vendor delivery performance, and ongoing vendor
support including upgrade plans. Association contracts benefit from careful
attention to dispute resolution procedures and personal relationships.

For example, a multimillion dollar acquisition of an enterprise resource plan-
ning (ERP) system focuses heavily on the features of a long-term relationship
with the vendor. The purchaser wants to build a relationship with an ERP ven-
dor who can supply a useful product over a number of years. The purchaser
wants to deal only with ERP vendors who the purchaser forecasts can and will
maintain, support, and upgrade their ERP product on an ongoing basis. The
expected total costs and benefits of ownership probably will reach more than
20 times the ERP package purchase price and may vary from vendor to vendor
by much larger amounts than the difference in package prices. In these cases, the
nature of the ongoing relationship generally holds more importance than the
package price. As a result, the team may spend as much or more time and effort
analyzing the vendor’s characteristics as the vendor’s product.

Many and probably most products, for example, a typical small package system,
fall in between the commodity and association classes. With a small package
procurement, the team may spend much of its time evaluating the features of the
product, but the relationship with and features of the vendor also are important.

TABLE 10.1
Models of
Outsourcing

Outsourcing Model Product Management Focus

Commodity Specified features as delivered Price and performance levels

for the product

Association Specified features as delivered Price and performance levels

plus future support including for the product plus the

features, not yet known, characteristics of and the

in upgrades relationship with the vendor

Determining Requirements
Once the team and the client come to an understanding on the appropriate out-
sourcing model, the team refines the specifications in sufficient detail to evalu-
ate the suitability of various products and vendors. Clearly, the more expensive
the contract, the more detail is warranted. The team determines the set of manda-
tory and desirable features for the product/vendor combinations. A purchased
product is the initial thing that the vendor provides to the client; a package pro-
gram or a service and product features describe the package or service. Vendor
features describe such vendor characteristics as stability and delivery record. The
output of this features requirements work normally appears in a narrative that
includes one or more paragraphs for each feature. For a complex, expensive
product these discussions may take tens or even hundreds of pages. For a typi-
cal field project with products of modest complexity, a discussion that covers a
couple of pages probably will suffice.

As noted in Chapter 9, features fall into several groups depending on how
important or essential the features are to the problem the client wishes to solve.
Mandatory features are ones that the client believes must exist in a solution.
A mandatory feature either is or is not present in a solution. If 80 percent of a manda-
tory feature is included, the feature is not present. One rule to identify a manda-
tory feature says, If the product/vendor solution does not contain the mandatory features,
the client may decide to reject the solution from further consideration. When all avail-
able and/or affordable solutions lack one or more mandatory features, clients
sometimes revise their mandatory requirements.

Desirable features are ones that the client wants, but the client may decide
to accept a solution without them. Desirable features can be present in part in a
solution. A solution might have 80 percent of the functionality that the client con-
siders to be a desirable feature. When a solution lacks some or all of a desirable
feature, the organization can work around the missing feature in a reasonable
fashion. A client may accept a solution that lacks part or all of one or more desir-
able features if the solution brings enough value with the features that are
included.

The client should rank the relative desirability of each desired feature. The
team can ask the client to generate a dollar value for each desired feature, but
often the client will find it difficult to estimate dollar values. Other simpler
alternatives include asking the client to rank order the desirable features or to
assign a measure of desirability—for example, high, medium, or low or a num-
ber measure on a scale of 1 to 10. These rankings allow the team and client to
focus attention on the most valuable of the desirable features rather than on a
long list.

“Nice to have” features are desirable ones that seem interesting and possibly
useful but do not relate directly to the client requirements. A number of the fea-
tures included in a product by the vendor may fall in the nice to have category.
Sometimes the client may suggest some nice to have features, but more often the
client lists them as desirable features with a low ranking. In most cases, the team
omits nice to have features from the features matrix and simply lists them as
other included features for the evaluation.

Chapter 10 Outsourcing 343

344 Part Four System Delivery

PRODUCT FEATURES

Product features include functionality and operationality. Functional features
describe what the product must do, the functionality of the product. Operational
features describe how the product works. Operating features can include options,
maintainability, architecture, and other properties that affect how the product will
operate.

Functional Features
Determining functional features or functions for a product starts with a review
of the conceptual requirements that the team prepared for the proposed solution
(see Chapter 8). The team may review the proposed system narrative and graph-
ical data and process models to identify these functional features.

Process Features

Process Features often appear as part of a hierarchy illustrated graphically by
data flow diagrams or function hierarchy diagrams. The boxes on the first explo-
sion DFD for the proposed system probably represent high-level processes that
the client will recognize and understand. These high-level processes may con-
tain a number of subprocesses as shown in the DFD explosions.

Data Features

The conceptual entity relationship diagram (ERD) specifies the required data
features. The team generally can take the graphical data and process models
and the metadata for the proposed system and incorporate this information
directly into a requirements narrative for the purchased product or service.

Learning from Products

The team also should determine the functionality contained in a representative
sample of available products and review the available functionality with the
client. The client and the team may wish to revise the conceptual requirements
after seeing the functions that are available in products. During the discussion
with the client, the team can begin the process of classifying functions as manda-
tory, desirable, and nice to have. If desired, the team, at the same time, can begin
assigning relative importance weights for each function. The clients decide the
weights, but the team needs to set up a procedure to gather the information.

Operational Features
In addition to functionality, clients want to evaluate such operational features
of products as performance, usability, maintainability, laws and regulations,
interoperability, security, contract compliance, and cost. The team probably
identified some of these features during the construction and evaluation of alter-
natives (see Chapter 9). At this point, the team further analyzes operational fea-
tures to determine which ones to include in the narrative and the features
matrix. The following material describes a number of areas the team may wish
to include. For a specific product, the team may include all or only some of the

areas as relevant. In common with functions, the team will develop and apply
a process for ranking the desirability of each operating feature.

Performance

Performance features measure how well or fast the product should run or oper-
ate and/or how large a database and transaction volume the product will han-
dle. Typical performance measures include response times for interactive mod-
ules, retrieval times for data, processing times for transactions, and error or crash
rates. Some packages that perform very well in environments with small files or
limited transaction volumes may crash or run very slowly as file sizes and/or
transaction volumes increase. For example, a Microsoft Access database may
work well for a departmental system but perform inadequately for a larger unit.
If the application will support multiple users, the team should determine how it
handles multiple access and how many users it can support. Other relevant ques-
tions might include, Is it Web-enabled and is it scalable? Performance measures
may depend on the total environment, including the package; the operating sys-
tem, database engine, and other software; the network; the servers and other
hardware; file and message sizes, and the usage pattern.

Usability

Usability or ease of use frequently appears among features desired by the client.
Users may avoid, degrade, or circumvent a system that they consider difficult
to use. Ease of use represents an ill-defined concept since “easy” depends on the
person. Ease of use breaks into two parts: ease of learning for inexperienced
users and efficiency for experienced users. For example, menu-driven systems
are easy for beginners to use, but slow and annoying for expert users. Keyboard
shortcuts are fast for expert users but difficult for beginners. A user interface that
matches well with the tasks the users must perform can facilitate learning and
use. Good design, good manuals, good help functions, and good training pro-
grams can contribute to ease of learning.

Efficiency for experienced users raises some complex issues. An efficient sys-
tem allows the user to accomplish frequent or common tasks by selecting or acti-
vating one function; infrequently performed tasks may require using multiple
functions. An efficient online interface for an experienced user allows the user
to accomplish the needed tasks rapidly by such approaches as the following:

• Placing input entries in the same order as input naturally occurs in the task.

• Retrieving related blocks of data in place of making the user initiate multiple
requests for data items, for example, retrieving all the customer data in place of
separate retrievals for name, address, phone, and so on, or retrieving the quan-
tities on hand for all the colors, not just for the color the customer requested.

• Reducing the number of keystrokes and mouse clicks required to accomplish
the task.

• Reducing the need to switch between screens.

In some cases the team can find a review or find an organization that has used
the product before. These sources can give helpful input on ease of use for the

Chapter 10 Outsourcing 345

346 Part Four System Delivery

product. If possible, the team also should obtain an actual or demonstration copy
of the product and let selected users from the client’s organization try it out.

Interoperability

Most systems in a company must work with other parts of the company operat-
ing environment. Since few systems really stand alone, the team investigates how
well the different solutions will integrate with the existing environment—data,
process, and infrastructure. Interoperability, the ability to work with other com-
ponents and systems, plays a critical role in determining the costs and benefits of
a new application. The team answers the following questions for each viable solu-
tion: With what operating system will it work? What database environment will
support it? How will it communicate: web or network? How will it import and
export data to other applications? What other technologies, for example, servers,
terminals, or other, will it need? Will it work within the existing organization?

If the product requires components or systems not in place at the client’s loca-
tion, the team needs to access both the cost and feasibility of providing the
needed environment. Many IT organizations develop shop standards that spec-
ify the allowed or supported environments. One shop may stress Microsoft oper-
ating systems; another may select UNIX. One group may understand and apply
Visual Basic; another may use DreamWeaver. Products that cannot operate effec-
tively within the IT standards pose procurement, training, skill, and support
problems for the organization, and the client may deem them unacceptable.
Application service providers (ASPs) also have technical environments that they
support. While the ASP environment need not match the internal customer envi-
ronment, the ease and effectiveness of interfaces between the customer and ASP
represents a major operational feature.

Security

Security features prevent unauthorized access and actions. Unauthorized access
or actions can result in theft of data or other resources, undesired or illegal mod-
ification of data, corruption of data, damage to the application code, or degra-
dation of performance. Some access and action control may reside in the net-
work; however, the team should determine what, if any, security functions
should reside in the application or package. In the modern world of hackers,
global communication, and potential terrorism, security features may deserve
heavy weight in an evaluation. Protecting a system against internal and external
threats is a full-time job for full-time professionals. Web systems, in particular,
are especially vulnerable. Teams should consider recommending outsourcing for
critical applications, particularly Web-enabled ones, for clients without a profes-
sional information system security staff.

Maintainability

Once an organization installs a product, someone—the client, the vendor, or a
third party—must maintain the product. Most features matrices contain entries
for one or more maintainability issues. Some products may offer easier or bet-
ter maintenance arrangements than others. If the client decides to maintain the

product with internal staff, a first issue is access to the source code. In some
cases, a vendor will not provide source code. Self-maintenance also requires that
the organization either has people who can provide technical and user support
for a product or can obtain such support from consultants or new hires.

A number of good products have pockets of usage in particular geographic
areas or within specific business categories. Such products are much easier to
maintain if there are a number of local professional experts available for perma-
nent hire or as consultants. The team may wish to look at the local environment
to determine the products that are in general use nearby. One client rejected a
preferred accounting software package because no internal staff members or
local consultants possessed the skills to maintain it. Many vendors offer main-
tenance themselves or through licensed or recommended third parties. When the
client decides to use vendor or third-party maintenance, the issues become cost,
availability, and quality as discussed under support.

Software Licenses

Package software typically sells or leases with some form of software license
arrangement. The salesperson may quote the price for a license that provides far
less service than the client requires. License terms deserve careful analysis and
inclusion in the features analysis. While actual rules vary from license to license,
typical number-of-copies provisions include:

• A single station license permits the installation of the software on one, and
only one, machine at a time. Backup copies may or may not be permitted.

• A single user license permits the installation of the software on a single
machine as well as on a home computer with the assumption that only one
machine will be in use at a time.

• Network licenses permit the installation of the software on a network, usu-
ally with a monitor that limits the number of concurrent users. This license is
the most common form for stand-alone network software.

• Site licenses permit the installation of up to a given number of instances of
the software on any machine the organization owns at the discretion of the
leasing company.

A second set of license issues defines the time duration the license. Typical pro-
visions are as follows:

• Lifetime license. In a lifetime license, the purchaser receives a lifetime autho-
rization to use the software. Free ongoing upgrades and service may be avail-
able for an initial period. Continuing support usually is on a fee for service
basis or requires a separate maintenance contract. Most PC software is sold
with a lifetime license. In some cases, the license may restrict the software to
use only on a single machine or processor, that is, the lifetime may refer to
the lifetime of the machine not to the lifetime of the client or the software.

• Fixed period license. Fixed period licenses permit use of the software for a
fixed period of time, usually one year. Continued use of the software may
require the payment of an annual license fee. Many mainframe, network, and

Chapter 10 Outsourcing 347

348 Part Four System Delivery

server software products come with fixed period licenses. Some vendors insert
“time-bomb” components in their products to disable the software after a cer-
tain date. The presence and nature of the bomb may constitute an important
evaluation feature. In the most dangerous versions, the bomb fully disables
the product without warning on the expiration date. Instant disabling can
electronically shut down the product and potentially damage a company that
wants to withhold payment from a vendor over a legitimate dispute.

Costs and Prices

Because of the wide range of acquisition options and the varying content of ser-
vices provided, comparing the cost of alternative products may require careful
analysis. Some systems are sold for a one-time charge, some are leased, and oth-
ers are sold with an optional or required annual fee for support and upgrades.
Some systems are licensed by site, some by user, and others permit network use
or offer a company license. Some include upgrades forever or for a defined time
period; others do not. Some include allowances for installation and/or for main-
tenance.

Contracts to develop and/or install software, perform maintenance, or pro-
vide other services may involve one of the following costing schemes:

• Fixed price. The client pays a predetermined price for the service. The vendor
benefits from spending as little as possible to provide the specified service.

• Cost plus fee. The client pays the vendors direct costs for labor, materials, and
other expenses plus a percentage or set amount for profit. The vendor may
see little incentive or even a disincentive to control costs.

• Incentive. If the project costs less than expected, the vendor and client share the
savings. The vendor and the client benefit jointly from spending as little as pos-
sible to provide the specified service; however, the vendor may prefer to keep
employees and equipment busy more than to receive a share of reduced costs.

Many combinations and permutations of cost or price schemes are possible.
Each approach has both advantages and disadvantages. The team must list all
of the relevant features to make a meaningful comparison. Even with the best
analysis, uncertainty remains. The team and client may never know in advance
the answers to such questions as how much maintenance will cost or how impor-
tant upgrades are. In addition, the monies paid to the vendor may represent only
a small fraction of the total life cycle cost for the product. Such additional costs
as training, staff, related hardware and software costs, and installation costs can
amount to far more than purchase price. The team may wish to refer to Chap-
ter 9 to prepare a complete cost analysis.

No organization likes to overpay for a product or service, and most organi-
zations consider cost management to be a survival skill. Despite this background,
most managers rank cost reduction well down in the list of reasons for out-
sourcing. In short, cost is only one of the concerns in a successful sourcing selec-
tion. Most organizations recognize that a low-cost vendor may not deliver the
most cost-effective solution. Joe’s TV shop may pull Ethernet cable at a very
attractive price, for example, but if the connections are loose or the strains too

large on the cables, the network may perform unreliably. Strict supervision of
unqualified vendors seldom yields a good outcome.

Laws and Regulations

Organizations operate under a number of governmental laws, rules, and regu-
lations. These rules include such areas as accounting practices, record-keeping
requirements, and privacy protection. Products can create liability for the client.
An expert system that purports to provide legal advice could open the client
organization up to civil liability. An accounting system that fails to track cus-
tomer assets correctly likewise could involve the client in expensive litigation.

Laws and regulations may vary by country, state, and organizational activity.
For example, energy companies, airlines, and hospitals operate under quite dif-
ferent legal and regulatory rules. A product vendor may not know or understand
the rules that apply to a specific purchaser. Legal and regulatory issues that
apply to the client’s organization normally lead to mandatory features. The team
has an obligation to raise legal and regulatory issues explicitly with the client,
to identify the features that apply to the client, and to evaluate them as a part
of the sourcing process.

Product Flexibility

Many products, especially larger ones, will not meet exactly the client’s required
features. Vendors try to deal with this issue with product flexibility options that
allow the client to customize the product. The client selects the options that come
closest to the features the client wants. A wide range of options facilitate tailor-
ing a product to the client’s needs and also may accommodate future changes
in requirements. However, options may increase the product’s costs for purchase
and support. Installing options takes time and effort, and some products may
require more effort than others. In a large ERP product, setting all the available
options and installing the system can require several years of work by a large
team. A client who does not need a multitude of options may find a simpler
product more cost effective.

Even with options, a product may not satisfy a client. Often clients want the
IT organization to “write some code” to modify the core functionality of the pur-
chased system. The golden rule of buying products is “Change the requirements
in place of changing the product.” Most organization’s current operations result
more from historical accidents than from excellent design. The package’s func-
tions may represent more careful and insightful thought about good approaches
to the problem than the current operation. Users and clients tend to resist chang-
ing their requirements on first contact but after discussion and thought often
agree that changing to fit the package offers advantages.

If unfilled client requirements remain after serious thought and discussion, a
cost-effective way to add features to a purchased product involves writing custom
“wrapper” modules that interface with the purchased system through application
program interfaces, (APIs) allow the product to export data to and import data
from other programs. When the client desires modification, the presence and func-
tionality of APIs can represent an important feature for product evaluation. The

Chapter 10 Outsourcing 349

350 Part Four System Delivery

team also should determine the availability of experienced staff or consultants in
the market area to help with customization problems.

The least desirable and most dangerous alternative to adding functionality
involves modifying the program code of the product. Code modification generally
leads to endless problems and great client dissatisfaction with both the vendor and
the IT group. Some vendors refuse to share the source code of a product with their
customers, making modification of the code very difficult and expensive. In addi-
tion, modifying the source code usually voids any warranty or service guarantee.

Even worse, modifications to source code make installation of upgrades and
patches costly or infeasible. Every time the client installs an upgrade or patch
from the vendor, the IT group always must analyze and debug the effect on the
modifications and may need to completely recode the custom modifications at a
cost to IT that may exceed the cost of the original modification. Vendors may
issue upgrades and patches several times a year or more often. Clients who fail
to install patches and upgrades may lose significant pieces of functionality, or
the product may cease to function at all. The team should strongly caution the
client against any modifications to the source code for a package.

Contract Compliance

Contract compliance issues refer to exercising and enforcing the terms of the
outsourcing agreement or contract. With any agreement, the organization must
identify and track appropriate performance metrics. Should the organization dis-
cover that it is not getting the agreed-upon performance, the organization may
decide to pursue a remedy. The kind of remedy may depend somewhat on the
company’s relationship with the vendor. With a commodity relationship, the pur-
chase and warranty agreement should spell out exactly what performance is
expected and what penalties apply for nonperformance. The scope and effec-
tiveness of the agreement may become part of the features analysis.

Typically a client cannot just buy software outright; instead the vendor gives
the client a license to use the software with a number of different license restric-
tions. License provisions and restrictions may vary from one vendor to another
in ways that impact the client’s intended uses for the product. If so, the contract
features become part of the features analysis and comparison. Contract compli-
ance involves serious issues. The Software and Information Industry Association
(SIIA), through its Software Publishers Association (SPA) Anti-Piracy Division,
actively pursues the identification and prosecution of organizations and indi-
viduals who illegally use software.

Some off-the-shelf products come with standard warranties. Larger, custom
products and services are protected by service agreements and performance
penalties. To minimize expensive legal wrangling, the contract must state clearly
and explicitly all the agreements. Agreements should specify penalties for non-
performance. If a vendor promises to deliver a product by May 1 or specifies
that a product will support 10,000 transactions per day, and the terms of the
agreement are breached, the contract should indicate the specific penalties or
consequences for nonperformance. Although the client can put large penalties
into contracts, the costs to the client for nonperformance often exceed the penal-
ties. The main purpose of a penalty is to provide a focus and incentive for the

vendor to comply with the terms of the agreement. Vendors who fear that they
may incur a performance penalty may increase their bid price to cover the risk.

Warranties and performance agreements, however well written, still require care-
ful monitoring and enforcement. If a person buys a defective toaster from a retail
store, he or she can return the defective toaster to the store or vendor for a refund
or exchange. Guarantees on expensive products or service agreements, however,
lead not to automatic replacement but to the remedies specified in the purchase
contract or to complex, expensive negotiation or litigation. In addition, once a prod-
uct or service is acquired, the organization needs to assure that it continues to meet
its ongoing needs. With large products, maintenance issues may cost from 2 per-
cent to 10 percent of the purchase price of the product every year. The client needs
to check that all agreed updates and patches are sent, any identified bugs or per-
formance glitches are resolved satisfactorily, and all service level standards are met.

For an association with the vendor for a large package or service contract, the
formal agreements should focus on dispute resolution. The agreement should
anticipate that problems might come up and specify a process for settling them.
Association sourcing arrangements work best when the client assigns a person
to work on a continuing basis with people from the vendor organization to solve
problems and promote a positive working relationship.

In the best of circumstances, the time may come when the client or vendor
wishes to terminate the association contract. Especially with large contracts, the
termination features belong in the features analysis. With termination-for-cause,
the aggrieved party must demonstrate that sufficient cause exists to void the
agreement. Termination for cause often leads to legal action over whether the
cause was sufficient under the contract terms. Termination-at-will specifies that
either of the parties may end the agreement at their sole discretion, and the con-
tract specifies what should happen at the time of termination. The agreement
should include notification requirements, the penalties, fees or settlements that
apply, a specification of data ownership, and any rights to service or product use
during a transition period.

Organizational Fit

Some products fit a particular organization better than others. One product may
support manufacturing; another may work with marketing. Sometimes products
contain specialized features for an industry, for example, insurance or a medical
practice. Choosing a product written for an organization similar to the client’s
may provide a product designed and customized to provide the most common
functions for such organizations. A general product or one developed for another
line of applications may work but probably will require more customization than
one developed specifically for similar applications.

VENDOR ROLES

When a client purchases a product or service, the client selects not only the prod-
uct but also the vendor. With the association model used for procurement of
mid- and large-sized packages and for most consulting and ASP contracts, the

Chapter 10 Outsourcing 351

352 Part Four System Delivery

characteristics of the vendor may weigh as much or more heavily on the deci-
sion than product features. A good product from a poor or unstable vendor can
lead to serious problems for the client.

Vendor Features
The team should investigate and evaluate the important vendor features and
characteristics. Some indicators of vendor desirability include vendor stability,
delivery record, and support record.

Vendor Stability

When possible, clients want to contract with vendors who will continue in
business over the life cycle of the product, anywhere from several to 20 or
more years. Many IT vendors start up, sell a number of products or services,
and then go out of the IT business. When the vendor goes out of business, the
client is left with the expense of supporting the product or replacing the prod-
uct. The client may find that self-support of some products is difficult or even
impossible.

The length of time the vendor has operated in the market is one indicator
of stability. A company that has operated for five or more years in the mar-
ket of interest to the team offers a good chance for a stable long-term asso-
ciation. The company’s market share for the product type that is being con-
sidered offers another indicator of stability. A company with one of the larger
shares in the market tends to have the resources and incentives to support the
product and remain in the market. Small divisions of large, stable companies
may not offer much stability unless the division meets longevity and market
share criteria on its own. Unless the small division can or does meet profit,
ROI, and market share targets, the parent company may sell or close the small
division.

Vendor Support

Other business issues that impact the likelihood that the company can provide
ongoing service include a local office, a strong balance sheet, good profits, patent or
copyright protection for products, a core group of talented employees, and
related issues. Clients may depend heavily upon support for the product pro-
vided by the vendor. The vendor may provide support to tailor the product to
the client, install the product, maintain the product, fix any design problems,
train staff or users, and provide improvements. The team may wish to examine
such factors as:

• The record and reputation of the vendor for support.

• The availability of technical support personnel.

• The conditions or rules the vendor sets for the client to obtain vendor sup-
port for problems. For example, vendors may provide support 24 7 or only
during regular working hours. Vendors may act to fix all the problems or only
the problems they agree are “covered.”

• The costs for the various types and levels of vendor support. Some types may
come free with the product or at preset rates; other may cost whatever the
vendor decides at the time they are needed.

• The type and level of help desk service the vendor provides. A good help desk
can allow the client to resolve many problems quickly without waiting for a
service call.

• The expected frequency of upgrade releases and the expense and skill
required to acquire and install them. Once a client has identified, acquired,
and installed a product, the organization still must assure that the product
functions effectively on an ongoing basis. For many products, an effective
ongoing operation requires installing patches and upgrades.

Delivery Record

The company’s record for delivering products on time that fully meet the spec-
ifications is an important vendor feature. Vendors that respond promptly and
truthfully to queries and concerns are more likely to respond as agreed and on
time with products. The failure of a vendor to deliver products as agreed can
devastate a project and cause the client to incur large expenses.

Product/Vendor Selection Issues
Finding the information needed to make a good product and vendor selection
decision can pose difficulties. Sales staff, brochures, and sales representatives
tend to present every product as outstanding and the vendor as stable, innova-
tive, and dedicated to customer support. In short, vendor literature and repre-
sentatives tend to present every vendor and product as the best or certainly far
above average. Clearly, the team should attempt to find an independent confir-
mation of vendor and product performance. Published reviews and consultant
reports provide a good starting point. A number of IT and business magazines
conduct periodic product evaluations that often include reports on product sup-
port. These reports can include responses from a wide variety of respondents.
However, the product the team is considering may not have any published
reviews, the reviews may not cover the issues of most importance to the team,
and some reviews are inaccurate and misleading.

Consulting and specialized evaluation organizations conduct formal product
reviews, either by request or for periodic distribution to clients. Consultants
bring a wider range of experiences to the analysis than any one organization pos-
sesses. They may have conducted tests, and they often provide valuable insight.
Consultants provide information for their livelihood; most charge fees, some-
times very high fees, for information. Specialized consulting organizations focus
largely or exclusively on product and vendor evaluation and on providing guid-
ance on IT issues. These organizations tend to provide high-quality evaluations
and also point out functionality, performance, interoperability, and other issues.
However, consulting organizations that provide information may not know the
specific application or situation faced by the client unless the client contracts with
the organization for a customized evaluation.

Chapter 10 Outsourcing 353

354 Part Four System Delivery

Previous customers offer a helpful source of information on both vendors and
products. Most vendors will provide a list of “satisfied” customers. While the
list may contain bias by omitting customers who have complained often and/or
stopped using the product or vendor, the customers on the list can relate some
specific positive or negative experiences that can help the team. Industry trade
associations and satisfied customers may identify other customers that the team
can contact for a broader sample of views. Other customers’ experiences, while
helpful, may not fully define what the client will experience. The product may
work better or worse in the client’s application depending on the use patterns
and expectations, and the vendor may provide better or worse support depend-
ing on the people assigned, location, and other factors. Project teams can ask the
client for permission to contact other firms and vendors in the name of the
client’s organization. Vendors tend to respond better to a contact in the name of
a person with the funds or authority to buy the product.

Looking at the aforementioned vendor criteria can help the team and client to
select a satisfactory product/vendor combination, but will not guarantee a suc-
cessful association. In the IT market, a large number of vendors with a long history
of success, for example, DEC, Compact, General Electric, and RCA encountered
problems and either withdrew from IT markets or merged. Sometimes another
organization takes over the support of the products offered by the disappearing
vendor, but many times some or all of the products become orphans without any
support or upgrades. A client with hardware or software products from a ven-
dor that has left the marketplace may encounter large expenses and disruptions
in a forced move to an alternative product.

The team may decide to select a vendor that does not meet the above condi-
tions for many reasons. For example, the vendor may be the sole or a local
provider of the desired product, may offer an attractive financial deal, may pos-
sess previous experience, and so forth. However, the team should realize and
inform the client that dealing with the vendor may involve additional risk.

REQUEST FOR PROPOSAL

When the procurement of product or service costs involves a significant amount
of money, most organizations require and/or use a competitive bidding process.
Federal, state, or local laws generally require public organizations to use com-
petitive bidding. Many organizations initiate the information-generating or bid-
ding process by preparing a document resembling one of the following:

• Request for information (RFI). A document sent to vendors describing a prob-
lem or need and asking for information about products or services to address
the problem. The information received is used to refine specifications and/or
identify potential bidders.

• Request for quote (RFQ). A document sent to prospective bidders with spec-
ifications for a commodity-type product or service and asking for prices and
related conditions.

• Request for proposal (RFP). A document sent to prospective bidders with
background and specifications for an association-type product or service and
asking for a detailed proposal on how the bidder would work with the client
to meet the needs.

Many information system outsourcing projects fall in the RFP category. The
client wants to establish a relationship with the vendor to acquire a software
system or another product or service. The RFP contains the information that a
vendor needs to submit a bid—information similar to the design specifications
for a proposed system plus procedural information on how, what, where, and
when to bid. The organization makes the same RFP document available to all
the potential bidders.

The goals of the RFP process are to encourage vendors to (1) perform part of the
design work for a solution and to (2) compete for the contract by prepared com-
prehensive bids that respond effectively to the organization’s problem. The explicit
specifications help the bidders to prepare a bid that addresses the organization’s
problem. The fair and open competition encourages bidders to spend the time and
effort needed to prepare a responsive bid. Vendors do not want to incur the costs
to prepare a bid if they have little or no chance of winning the competition.

Some RFPs include evaluation criteria in the bid. Not all organizations select
the lowest bidder, but all organizations should follow the rules and criteria they
provide in the RFP. Organizations, especially government offices, that fail to fol-
low the procedures outlined in the RFP run the risk of lawsuits. At a minimum,
an organization that regularly violates the conditions of or misuses the RFP
process will find few qualified bidders for their projects.

RFP Content
Most larger organizations have their own format for an RFP, and these formats
vary greatly. Some organizations may have multiple formats to use in bids for
different classes of products. The RFP structure for vendors to bid on such com-
moditylike items as PCs may look quite different from one used to select a vendor
to build and maintain a custom system. A typical RFP might include the fol-
lowing sections. Each of the section headings in the outline is explained in the
sample GB Video RFP in the next section.

• Instructions

• Objectives

• Contacts

• Timetable

• Bid and Contract Requirements

• Delivery

• Validation

• Review Points

• Termination

• Costs and Payments

Chapter 10 Outsourcing 355

356 Part Four System Delivery

• Subcontractors

• Warranty

• Solution Requirements

• Background and Problem Statement

• Solution Constraints

• Current Operations

• Problem Analysis

• System Specifications

• Mandatory Features

• Desirable Features

• Bid Contents

• Work Plan

• Performance Record

• Schedule

• Resources

• Costs

• Evaluation Method (sometimes not given to bidders)

Vendor selection often follows a multistage process. The selection team may
select the set of vendors to receive the RFP or may make the RFP available to all
interested parties. Each vendor can respond with a bid that defines the product
the vendor will provide, the price and the terms. Once bids are received, the
team often screens the responses to classify bidders as qualified and nonquali-
fied. The qualified bids meets all of the minimum requirements in the RFP. The
nonqualified bids are set aside. The best qualified bids go through an in-depth
evaluation to select the winner. Sometimes the team offers a group of vendors
with “good” bids a chance to make a “best and final” offer, whereby they can
revise and improve their original proposal prior to the final selection. Some
organizations will select a winning vendor and then negotiate with the vendor
to arrive at a final agreement. During the negotiations, the team may ask the
vendor to suggest ways to improve the product and/or to reduce the cost.

GB Video RFP Example
Figure 10.1 shows an example of an RFP prepared for vendors or contractors
who might bid on the contract development of a GB Video Rental System. The
Instructions section, comprised mostly of material prepared specifically for the
RFP, gives procedural requirements for submitting a bid. The bid and contract
procedures in the RFP in Figure 10.1 are only illustrations of possible content.
Practices and legal requirements will vary from organization to organization and
state to state. The analysis and design work described in the Project Definition
and Proposed System sections of this book should provide much of the content
for the Solution Requirements section of the RFP. The Evaluation Method sec-
tion is used for the GB Video Bid Analysis example in the next section.

Chapter 10 Outsourcing 357

FIGURE 10.1 RFP for GB Video

G.B. Video, Inc.

Request for Proposal: Computerized Video Rental System

INSTRUCTIONS

GB Video, Inc. is requesting bids from experienced systems developers to design and
build a new computer-based system for the rental and return of videos because the
current manual system maintains inadequate records and is too slow and expensive.
Each bidder should carefully review this RFP and follow the guidance therein. Bidders
who fail to follow the guidance in the RFP including due dates for meetings and mate-
rials may be summarily eliminated from further consideration.

All parties to the process are expected to behave with good faith and to resolve any
differences amicably and fairly within the intent of the RFP and any resulting contract.
Unresolved disputes, if any, that may arise from any part of the bidding or from a
resulting contract will be adjudicated under the laws of the state of Oklahoma.

Objective

The new system should contribute to improved customer service and lower handling
costs for each rental and return transaction. GB Video intends to have the new system
that meets the specifications set forth in this RFP installed and running in all stores by
April 1 of next year.

Contacts

All contacts regarding and materials submitted for this RFP should be addressed to:

Judy Olijer, Director of Purchasing
GB Video
100 Data Street
Jackson, OK 73099
Phone (405) 555-0011 FAX (405) 555-0022

e-mail: Judy.Olijer@gbvideo.com

GB Video takes no responsibility for and is not bound by communications with any
other GB employee or any other person.

Timetable

GB Video plans to follow the procurement timetable shown below. GB Video reserves
the right to extend the dates if circumstances warrant. GB will provide as much notice
as possible of any changes to the affected bidders.

• May 4, 3:00 p.m. Pre-bid Conference. A mandatory pre-bid conference for all
interested bidders will be scheduled for 3:00 p.m., May 4, at the home office of
GB Video, 100 Data Street, Jackson, OK. Only bidders present at this
conference may submit bids.

Page 1

358 Part Four System Delivery

• June 4, 5:00 p.m. Bid Due Date. Final written bids must be received at the GB
Video home office (the contact address above) by 5:00 p.m. on June 4. FAX and
e-mail delivery are not acceptable.

• June 24, 5:00 p.m. Notification. Finalists will be notified by 5:00 p.m. June 24
of their status. A best and final offer must be received by June 30.

• July. Presentation. Finalists may make a final presentation during the month of
July.

• August 15. Award. GB intends to award the contract by August 15 with a
required completion date of April 1 of the following year.

Bid and Contract Requirements

GB Video plans to incorporate the following general requirements into the contract. GB
reserves the right to negotiate the exact terms with the winning bidder.

Delivery. The vendor should complete, gain acceptance of, and install the system
by April 1. Bidders must submit a proposed solution that bidder can reasonably accom-
plish by the delivery date. A penalty of 2% of the total contract price shall be assessed
for each week that completion is delayed.

Validation. Upon written acceptance of the production system, GB Video has 90
days to identify any previously undetected system deficiencies. A deficiency is incorrect
operation or lack of any feature contained in or reasonably implied by the bid. GB will
notify bidder in writing of deficiencies. Bidder agrees to correct deficiencies within 30
days of notice at no cost to GB Video. If vendor fails to correct deficiencies, GB may
reduce the payment due the vendor in the amount of the fair and reasonable cost for
another contractor to correct the deficiencies.

Review Points. The project work plan should identify and clearly define three mile-
stones for GB Video review and authorization to continue.

1. Final Design Acceptance.
2. Functional and Operational Approval of the Production System.
3. Final Testing and Installation.

Termination. GB reserves the right to terminate at will the contract with the bidder
at any of the above review points.

Cost and Payment. The bidder shall specify a fixed, lump-sum price for the total
project and costs for termination of the contract at each of the above review points.
GB will pay all sums due in full at and only at the time GB accepts the software or at
the time of termination of the contract.

Ownership Rights. The vendor will give GB Video a lifetime license for an
unrestricted number of GB stores for the rental and return software produced by the

Page 2

Chapter 10 Outsourcing 359

vendor. GB agrees not to sell or lease the software to third parties. GB shall receive
the source code and have the right to modify the software, but modifications made by
any party other than the vendor may nullify the warranty.

Subcontractors. The bidder will indicate in detail any parts of the project, for exam-
ple coding, that the bidder plans to subcontract and fully identify the subcontractor.
Any subcontractors or subcontracted work not in the bid require prior approval by GB
Video.

Warranty. Should the system cease to operate as observed at the time of final vali-
dation through no fault of GB and its agents, bidder agrees to restore the system to
proper operation at no cost to GB for 5 years from the date of acceptance. Vendor
agrees to perform modifications and updates as requested by GB Video using the cost
reimbursement structure for such work as specified in the bid.

SOLUTION REQUIREMENTS

The materials in the following section provide background and specifications for the
video rental system.

Background and Problem Statement

GB Video operates three video stores in towns of about 10,000 people. Each store
operates largely independently although the headquarters performs some functions for
all three stores, for example, payroll, purchasing, and accounting. The company
employs 37 people and realized revenues of $1.5 million and profits of $133,000 last
year. The new system is mission-critical for GB. The company plans to open additional
stores if the new system results in improvements. The new information system should
increase profits by reducing labor cost per transaction and eliminating the cost of
videos rented to nonmembers and not returned. Faster checkout service and better
selections can lead to increased customer satisfaction, more members, and higher
sales. GB looks at labor costs, profits, and revenues per store as major performance
measures and at the total number of active members and the number of rentals per
member.

Solution Constraints. GB will consider solutions that will realize a payback in two
years or less and cost less than a total of $200,000 to acquire and implement. GB is
willing to consider changes in function and organization if the changes provide signifi-
cant benefits to GB. Adequate air-conditioned space in the headquarters exists for a
server and network room. The vendor may bid to supply equipment or specify with the
option for GB to acquire the necessary equipment. Equipment costs are included in the
$200,000 limit.

Current Operations. GB currently operates in a manner similar to most video
stores. However, the current GB system is manual and uses paper forms and files.
Appendix A contains a description of current operations.

Page 3

360 Part Four System Delivery

Problem Analysis. GB has identified the following problems in the current situation:

1. Because of the manual system, GB requires more clerks than similar stores with
automated systems, resulting in a higher cost and longer elapsed time per
transaction.

2. Customers complain about long lines and slow checkout of rentals. Some
frustrated customers dump their videos on the counter and go off without
completing the rental.

3. Delays occur when several clerks wish to use the member or video card file at
the same time.

4. Mistakes are common. For example, the video card may indicate that the video is
on the shelf— it shows a return date and no new rental date—but the actual video
cannot be found. Clerks make mistakes in computing the charges. Customers
often correct overcharges but remain silent when the clerk undercharges.

5. People, including some members, use false member numbers and names to rent
videos. If the customer does not show a member card, the clerk is supposed to
check the member file. Because of the time and effort needed to check the file,
the clerks omit checks most of the time, especially when the store is busy. GB
experiences a higher nonreturn or loss rate for videos than other similar stores.

6. Accounting gets busy and does not send overdue notices to customers on a
timely basis. Sometimes a video is several weeks overdue before the customer
receives a notice. Customers use the late notice as a reason to refuse to pay
overdue charges.

7. Because of the expense of preparing a manual mailing, GB does not do any
direct mail marketing to members. Other stores have successfully used direct
mail marketing to increase revenues.

8. The rental data summarized by video is costly to prepare and of questionable
accuracy. No data exist on customer preferences. Purchasing often uses
guesses, estimates, and periodic direct observation to determine which videos
and how many copies to buy.

GB video believes that installing a computerized rental system that meets the specifi-
cations in the RFP should address these problems.

System Specifications

The materials below describe both mandatory and desired features for the proposed
system. The bid is expected to include all of the mandatory features. The bidder must
clearly identify any mandatory feature not included. The bidder should note the desir-
able features included in the bid plus the extra cost, if any, for them.

Mandatory Features. The proposed rental and return system will include the
following mandatory functions:

1. Membership
a. Collect data and store data on new members.
b. Update data for existing members.
c. Issue a member card to members.

Page 4

Chapter 10 Outsourcing 361

2. Rental
a. Rent tapes only to members.
b. Create and store a rental record with identification of member and video.
c. Adjust an inventory record to reflect the rental.
d. Issue a receipt to the customer/member.

3. Return
a. Update the rental record and the inventory record to reflect the return.
b. Calculate the overdue charge, if any.

4. Overdue
a. Create overdue notices for videos that are overdue.
b. Bill customers for rentals more than 14 days overdue.

Detailed specifications for the proposed system’s mandatory features appear in the
appendixes listed below.

Appendix B. Narrative Specifications
Appendix C. Proposed Data Flow Diagram
Appendix D. Proposed Entity Relationship Diagram
Appendix E. System Metadata

Desirable Features. The bidder should note which if any of the desirable features
are included in the bid and the extra cost, if any. Desirable features in approximate
priority order include:

• Expandable at no or small cost for up to 100 additional stores and sites.
• Contain or compatible with a Web-enabled rental function.
• Operate in a technology environment for which experienced people are available

in the Oklahoma market.
• Generate rental number and customer number for a new member in place of

scanning or other entry method that requires clerk intervention.
• Automatically calculate sales tax for multiple city and county locations.
• Generate ready-to-mail overdue notices with postage.
• Contain the option for e-mail overdue notices and e-mail advertising or informa-

tion messages to customers.
• Generate internal reports and communications at specified times and on-demand.
• Minimize manual handling of paper documents.
• Intuitive and user friendly.
• Compatible with the current organizational environment at GB Video.

BID CONTENTS

Each bid must supply at least the following information:

1. Work plan. The statement of work for the bid must: (a) demonstrate that the
contractor understands the overall project and goals; and (b) indicate in detailed
fashion how the contractor will proceed to work to meet the specifications and
requirements; and (c) identify clearly any proposed deviations from specifications
and requirements.

Page 5

362 Part Four System Delivery

2. Performance record. Evidence of successful performance on similar projects.
Bidder will provide a project summary with a list of references for verification of
experience in similar projects or a suitable alternative.

3. Schedule. The date when each part will be complete and a date for the
completion of the total project.

4. Resources. Evidence that bidder has the proper resources and capabilities to
generate the desired results and specify exactly which resources will be
dedicated to this project. Include people, skills, and other resources. Preference
will be given to vendors with a local office.

5. Costs. An enumeration and explanation of relevant costs and charges for the
project. Although cost is important, the GB team will evaluate bids on the best
total value to GB, not necessarily the lowest cost.

EVALUATION METHOD

A panel of individuals from GB Video will evaluate the bids based on material in the
bid and supplementary materials, for example, talking with customers, collected by the
GB team. The items in the evaluation and their point weights are described below.

1. Compliance with requirements and specifications: 30 points
The degree to which the submitted bid conforms to or exceeds the specifications
in the RFP. The work plan should demonstrate in detailed fashion that the
contractor understands the overall project and goals and will meet the mandatory
specifications. To receive the highest score the contractor also must commit to
some or all of the desired features.

2. Experience with similar projects in other organizations: 30 points
The extent to which the bidder provides evidence of successful performance on
similar projects. A summary of similar projects with a list of references to contact
for each is the preferred way of demonstrating this experience.

3. Ability to meet required deadlines: 10 points
The level of confidence that the contractor will satisfactorily accomplish the
required tasks within the specified time frame. Demonstrated ability to meet
deadlines on other jobs is one indicator. A demonstrated record of completing
work prior to the deadlines will receive additional points.

4. Organizational capacity: 20 points
The extent to which the bidder provides evidence that bidder has the resources
and capabilities to generate the desired results. This measure includes both
human and technical resources. An outline of the resources the vendor will dedi-
cate to this project will clarify the level of available capacity.

5. Costs of the work: 10 points
The total cost and the cost for each of the three parts of the RFP.

6. Supplemental features. The evaluation team should note any features of the bid
not reflected in the above measures.

Page 6

Chapter 10 Outsourcing 363

APPENDIXES

Appendix A. Current Operations. (See Chapter 7.)
Appendix B. Narrative Specifications. (See Chapter 8.)
Appendix C. Proposed Data Flow Diagram. (See Chapter 8.)
Appendix D. Proposed Entity Relationship Diagram. (See Chapter 8.)
Appendix E. System Metadata. (See Chapter 8.)

Page 7

FEATURES EVALUATION

Once the team and client identify the system features of interest for a procure-
ment, the team must formulate a process for evaluation of potential vendors or
contractors. Normally, the team prepares a features matrix or table to summa-
rize and compare the results. The matrix lists the features on one axis and the
alternatives on the other. Each feature/alternative box in the matrix is assigned a
measure of merit, that is, a measure that describes how well the alternative
achieves the feature. Table 10.2 shows the format for a features analysis matrix.
The matrix may list anywhere from several to dozens of features. Each box in
the table gives the ranking for the solution/feature pairs. Ranking methods are
described in the next section.

Ranking Methods
Three commonly used ways to assign measures of merit are a features list, eco-
nomic value, and rating points. The client should determine the preferred
approach. A features list rates the features of a product using the format shown
in Table 10.2. Many published product reviews use this approach. A number or
symbol rates each feature of each solution. The table may or may not show a
sum of values for each solution. The client selects the solution with the profile
the client considers to be the most desirable. The ratings list approach is com-
monly used in purchasing lower cost products, for example, printers, scanners,
and displays.

With an economic value analysis, the client assigns a dollar value of each
solution/feature box using the format in Table 10.2. In some cases, the team can
estimate the values. In others, the team may ask the client to specify the value,

TABLE 10.2
Features
Analysis
Matrix

Features Solution 1 Solution 2

Feature 1 10 6

Feature 2 5 7

Total 15 13

364 Part Four System Delivery

for example, “A Web-enabled system is worth an additional $7,000 dollars to
me.” The costs for the solution, which include purchase, installation, and oper-
ations, appear as negative values. The overall score of each solution is the sum
of the values of each feature. The dollar value approach tends to consume a lot
of interaction time with the client. The field project team may lack enough
knowledge of the client’s organization to estimate the dollar value of a feature
or function to the organization. As discussed in Chapter 9, estimating costs and
benefits may involve great difficulty. A poorly executed dollar value analysis is
less convincing than none at all.

Many organizations prefer to use a rating point scheme. Sometimes manda-
tory features are assigned only a Yes or No value. The features matrix starts with
a list of mandatory functions and features. Each solution alternative receives
either a Yes or No for each feature. One or more No values for a solution alter-
native results in rejection of the alternative or a review with the client to deter-
mine a possible change in requirements. For all the other such features as costs,
vendor features, and desirable features, the client selects or agrees to a weight-
ing for each one.

The weights reflect the priorities or values of the client or the client’s organi-
zation. The weights should be consistent with the strategic alignment analysis
for the project. A feature that the client values highly receives a high weight. The
client may choose to assign point weights to each feature or to use a percent
weight. The percentages, when used, should add up to 100 (or 1 when the client
converts percentages to fractions) over all the features. For example, the client may
decide that the solution cost should have a weight of 50 percent (0.5) in the
matrix. The team then assigns points (perhaps with a 0 through 10 scale) to mea-
sure how well each product satisfies the feature. With a 0 through 10 scale, the
lowest cost solution may receive a 10 and the other solutions a lower number.
An example of a weighted features analysis appears in Table 10.3.

The actual weighted score for that feature is the product of the weight and
the rating score. Each solution score is the sum of the individual feature scores.
The advantage of this system is that the team does not have to understand the
organization as intimately to execute the evaluation. The client determines
organizational fit by using the percentage weighting. The team can then rate
each feature relatively independently of the organization priorities. As shown
in the example, the solution with the best total score for the ranking by them-
selves may not be the same as the solution with the best total score for weighted
rankings.

TABLE 10.3
Weighted
Features
Analysis

Solution 1 Solution 2

Features Weight Ranking Weighted Ranking Weighted

Feature 1 0.7 6 4.2 9 6.3

Feature 2 0.3 10 3.0 5 1.5

Total 16 7.2 14 7.8

Identifying Candidate Solutions
The client may ask the team to identify solution candidates. The first place to look
is vendor sites on the Web (most IT products have a Web site). A second place to
look is Web sites for trade associations and special interest sites. Many clients
have some suggestions for solutions and have either a library or subscriptions to
trade journals that they will share. The client may also belong to one or more
trade associations or may refer you to a contracted consultant or research group.
Vendors, when contacted, may offer additional suggestions for solutions. Instead
of asking the team to identify solutions, the client may ask the team to prepare a
plan and specifications that will allow the client to search for solutions.

Assigning Ratings
Features analysis approaches require someone to assign values. The team should
strive for objective and informed ratings. When team members are not experts
in the technology or system, the team may wish to consult more experienced
people. In government organizations, objectivity and consistency often are legal
requirements. Fair, objective evaluations can keep vendors coming back to work
with an organization.

Any careful evaluation of all possible alternative solutions may overwhelm
the team. A good first step is to eliminate solutions that do not meet the manda-
tory requirements or exceed the client’s budget. Vendor information in brochures
or on the Web may provide enough information for a first pass. The team should
ask vendors for a contact person, brochures, and other documentation as early
as possible in the process. The vendor contact person often will clarify issues by
telephone. The objective of the first analysis is to reduce to a handful the num-
ber of solutions for a more thorough review.

As noted earlier, customers, trade and professional journals, and consultants
may have ratings or information relevant to ratings for one or more of the solu-
tions. If the team cannot find a published review, then the team must set up a
process for scoring the products. A reasonable approach is to have two or more
evaluators (either individuals or groups of team members) conduct independent
reviews of the features of the products. The team can discuss disagreements and
come to a consensus. The groups make their evaluations based on as much infor-
mation as they can find.

The team also might install copies of each of the products and have a team
of analysts and users try them out and assign ratings for the matrix. Most field
projects are small enough that installation and use of several products is feasi-
ble. The team can apply the test procedures discussed in Chapter 13 for part of
the comparison. This approach may require the client to provide permission for
the team to use the organization’s name in contacting vendors. “Company X is
considering purchasing your product,” usually gets much better response than
“A student team wants a copy of your product for a class project.” This approach
may require the team to obtain test data—a possible sensitive issue for data
about customers or employees. The client may require the team to sign a confi-
dentiality or nondisclosure agreement before accessing data.

Chapter 10 Outsourcing 365

As instructed by Mr. Cosier, the team prepared an RFP and sent it to six potential bid-
ders that the team identified. Four bidders submitted proposals. Two of the four bids
were deemed nonqualified and were eliminated from the analysis. The team prepared
the bid summary below for the two finalists.

Bid Responses Adv. Software OkieComp

Met or exceeded minimum qualifications Yes Yes

Meet all mandatory and desired specs Yes Yes

Initial software cost $109,950 $94,500

Cost to load data into the new system $4,700 (with a $5,000
subcontractor)

Cost for upgrades and modifications Labor 80% Labor 70%

Experience with similar projects Good Very good

Customer responses on delivery performance Very good Excellent

Resources available for the project Adequate Excellent

An evaluation committee of two team members, the RFP consultant, President Cosier,
and Purchasing Director Olijer read the bids and assigned rankings to the evaluation
criteria in the RFP. The resulting evaluation by the committee appears below.

Advanced Software OkieComp, Inc.

Features Weight Ranking Weighted Ranking Weighted

Specifications 0.3 10 3.0 10 3.0

Experience 0.3 8 2.4 9 2.7

Deadlines 0.1 9 0.9 10 1.0

Capacity 0.2 8 1.6 10 2.0

Cost 0.1 7 0.7 10 1.0

Total 1.0 42 8.6 49 9.7

The evaluation committee recommends that GB enter into a contract with OkieComp,
Inc. Both vendors are well qualified and submitted good bids. Although the differences
are relatively modest, OkieComp received the highest raw and weighted scores and is
the vendor preferred by Ms. Olijer. Conversations with the proposed project manager
from OkieComp convinced the team that the company understands well both GB Video
and the video rental industry. While both bidders have been in business for more than
10 years, the high failure rate of software firms poses some risk for future support
from both bidders; the committee could not identify any risk differences between the
firms. If for some reason, GB is unable to reach a contract agreement with OkieComp,
the committee finds the Advanced Software bid an acceptable alternative.

FIGURE 10.2 GB Video Bidder Analysis

Some organizations use variations of this approach for some expensive pur-
chases. However, installing and running a number of software systems can
involve large expenses and a lot of time. For a large system, converting data, cus-
tomizing the product, and training users can take months or years. A simulation
or benchmark test may offer a better alternative. A simulation can calculate per-
formance based on published properties of the system or can run the system
against a generated set of test data. A benchmark uses an existing installed ver-
sion of the package and a sample of actual data to measure the performance of
the system.

Outcomes
The client may ask the team to provide (1) the evaluation framework; (2) the
results of the evaluation; and/or (3) a recommendation. When asked to recom-
mend a specific product, the team, as discussed in Chapter 9, can review the crit-
ical features of the recommended solution, organize the features in a clear way,
and discuss the rationale for the recommendations. The team’s recommendation
should consider all of the concerns raised by the client and not just look for the
“best” score. For example, the team might say, “Since these products received
similar total scores, the team recommends X because it appears to fit best with
the strategic alignment of the project.”

GB Video Example of a Weighted Features Analysis
Figure 10.2 shows an example of a weighted features analysis for GB Video based
on the valuation criteria identified in the GB Video RFP in Figure 10.1. The RFP
specifies point or percent value weights for each feature. In the table the team
converted the percents to fraction weights.

Contracts
After the bids are opened and the winner selected, the organization needs to exe-
cute a contract for the outsourced product or service. Many of the conditions for
the contract may appear in the RFP. Most organization have rules, standards, or
procedures for contracts and also work with a legal advisor who will wish to be
closely involved with any contract for a significant amount. Sometimes the orga-
nization has the legal and procedural freedom to sit down with the winning bid-
der and negotiate the terms of the deal. Such negotiations can benefit both parties.
The vendor often can suggest changes that reduce cost or delivery time with lit-
tle reduction in benefits for the client. The vendor also may suggest changes to
improve function or performance at little or no additional cost. Most government
entities prohibit such negotiations, but many nongovernment organizations find
them helpful.

Summary The paths of information system solutions resemble a tree. During project defi-
nition, most teams follow a similar path, the trunk of the tree. As work proceeds,
the nature and requirements of different projects take teams along diverging

Chapter 10 Outsourcing 367

368 Part Four System Delivery

branches. During the evaluation process discussed in Chapter 9, the team selects
a sourcing option—to build or buy. As a result, teams may follow quite differ-
ent paths in the system delivery stage. For example, some teams will build or
develop detailed specifications to build a system while others will explore an
outsourcing option. Similar differences arise from the nature of the solution. A
Web design project may require a different set of activities than a data warehouse
project. The chapter covers the activities for an outsourcing solution—purchasing
or leasing an application or service from a vendor. The activities for building a
new system solution are discussed in Chapter 11.

The team following an outsourcing option may execute some or all of the fol-
lowing steps:

• Select an outsourcing model.

• Refine the requirements.

• Build a features comparison matrix.

• Specify an evaluation method.

• Write an RFP, if appropriate.

• Collect potential solutions.

• Evaluate potential solutions.

• Select, justify, and demonstrate a recommended solution.

With all outsourcing options, the team must decide on an appropriate frame-
work or model for the outsource action: a commodity model or an association
model. With commodity outsourcing, the team focuses on defining the desired
features and developing methods to measure them. The purchaser tries to nego-
tiate the best available price for the desired feature set and verify that the vendor
provides the agreed-upon performance. For purchases in the association cate-
gory, the team wants to examine such issues as vendor stability, vendor integrity,
upgrade plans, policies and practices, ongoing product support, and warranties.
Association contracts benefit from careful attention to dispute resolution proce-
dures and personal relationships.

Once the team and the client come to an understanding on the appropriate
outsourcing model, the team refines the specifications in sufficient detail to
evaluate the suitability of various products and vendors. Clearly, the more
expensive the contract, the more detail is warranted. The output of this work
normally appears in a requirements narrative. If the product or system has a
significant cost, most organizations require some sort of competitive bidding
process using a request for proposal or RFP. The RFP process provides quali-
fied vendors with an opportunity to bid under open and fair competition with
understood criteria.

To outsource, the team communicates the desired features of a solution to the
potential vendors. Mandatory features are ones that the client believes must exist
in a solution. A set of mandatory features will exist for all purchased products.
Desirable features are ones that the client wants, but the client may decide to accept
a product without them. The features defined in the requirements may refer to

Chapter 10 Outsourcing 369

functional, operational, and vendor roles. Functional features describe what the
solution must do, the client requirements. Operational features describe how
the system meets the client’s needs and can include options, maintainability,
architecture, and other properties that affect how the system will operate. Vendor
features describe such vendor characteristics as stability, integrity, support, and
reputation. For association-type outsourcing, vendor features may weigh heav-
ily in the evaluation.

Once the team and client identify the system features of interest, the team
formulates a process for evaluating the information or bids received from ven-
dors. Normally, the team prepares a features matrix or table to summarize and
compare the results. Three commonly used ways to assign measures of merit
are economic value, rating points, and features list. The client should determine
the preferred approach. With economic value rating, the team assigns a dollar
value of each solution/feature box. Many organizations prefer to use a rating
point scheme (to assign points) to measure how well each product satisfies the
feature.

The client may ask the team to provide only the evaluation framework or the
results of the evaluation or a recommendation. When asked to recommend a
specific product, the team’s recommendation should consider all of the concerns
raised by the client and not just look for the “best” score. The team can review
the critical features of the recommended solution, organize the features in a
clear way, and discuss the rationale for the recommendations as discussed in
Chapter 9.

application service
provider (ASP), 346

association model, 341
bid, 356
commodity model, 341
comparison matrix, 341
contract compliance, 350
data features, 344
desirable features, 343
economic value analysis,

363

evaluation metric, 341
features list, 363
features matrix, 341
functional features, 344
interoperability, 346
maintainability, 346
mandatory features, 343
operational features, 344
outsourcing, 340
performance, 345
process features, 344

product flexibility, 349
rating point, 364
request for proposal

(RFP), 341
requirements, 343
security, 346
software license, 347
usability, 345
vendor features, 352
vendor stability, 352

Answer the following questions regarding these topics.

1. Outsourcing models.

a. What is an association outsourcing model? What is a commodity outsourcing
model?

b. How do the contracts for these two models differ?

Key Terms

Review
Questions

370 Part Four System Delivery

2. Requirements and features.

a. What is a mandatory feature of a system? Give an example from GB Video.

b. What is a desirable feature of a system? Give an example.

3. Types of features.

a. From GB Video give an example of a mandatory operational feature, a functional
feature, and a vendor feature.

b. From GB Video give an example of a desirable operational feature, a functional fea-
ture, and a vendor feature.

4. Licenses.

a. Describe four types of copy restrictions common with software licenses.

b. What are the license provisions for Microsoft Windows?

c. Your client needs software to control a customer database with information that will
be used by your mailing, billing, and sales departments. For the license, will you
need a single station, single user, network, or site license? Justify your answer.

5. Features analysis.

a. What are three common ways of evaluating features?

b. How does each one work?

c. When would a feature list evaluation be appropriate?

d. Who determines weights in a features matrix? Who evaluates scores?

6. Solutions.

a. What are the common ways of discovering candidate solutions?

b. When might a client select a solution that does not have the “best” score?

7. Request for proposal.

a. What is a request for proposal (RFP)?

b. What are the five sections included in most RFPs?

8. RFP contents.

a. What is the relationship between the proposed system analysis (see Chapter 8) and
an RFP?

b. Why should you not include the weighting scheme in the published RFP?

c. Is an RFP always necessary? Why or why not?

9. Outsourcing.

a. If your client has detailed specifications on which they are not willing to compro-
mise, would you want to outsource? Explain your answer.

b. If a new product lacks one or more desirable features, should the team automati-
cally dismiss the product? Explain.

Critical
Thinking
Exercises

Individual Exercises

1. Your client owns a gym and wants a system to keep track both of customers who have
memberships and of potential customers.

a. Prepare an RFP for the system.

b. Provide an evaluation framework for the client.

c. Prepare a features analysis for the gym system.

2. How might you determine that you have identified the major potential vendors for a
solution?

3. You have been asked to acquire a computerized system to automate the process of get-
ting appointments with a college advisor for academic advice.

a. What are mandatory features for this system?

b. What are desirable features for this system?

c. How will you evaluate these features?

Group Exercises
1. Use GB Video as an example. Describe how you would evaluate each of the func-

tional features listed in the text in such a way that you could defend the process to
an auditor.

2. Review the Motor Vehicle Pool exercise from Chapter 3 (Creative Thinking Group
Exercise 4). Write an RFP for the university to purchase a computer system to auto-
mate the rental process.

Chapter 10 Outsourcing 371

Chapter Eleven

System Design
Chapter outline

373

Introduction

A System Design Framework

Physical Infrastructure

Organizational Infrastructure

Infrastructure Example

Specifying Data Structure

Relational Schema

Metadata

Other Data Schema

Specifying Processes

Program Structure Charts

Physical Data Flow Diagrams

Process Model Metadata

Module Design

Module Specification

Pseudocode

Input Data

Transform Data

Operate on a Data Store

Perform a Procedure

Flow of Control

Output Data

Metadata for Module Logic

TIPOT Charts

Dialog-Driven Systems Design

Page Navigation Maps

Page Action Maps

Page Navigation and Action Map

Metadata

Data Warehouse Design

Dimensional Models

Data Warehouse Metadata

The Extraction-Transform-Load Process

Summary

Key Terms

Review Questions

Critical Thinking Exercises

Individual Exercises

Group Exercises

References

374 Part Four System Delivery

INTRODUCTION

Information system design focuses on program architecture and its interaction
with the physical and organizational infrastructure in which the programs will
operate. Unlike the conceptual solution requirements discussed in Chapter 8,
which are technology independent, system design addresses logical and physi-
cal issues within the structure of specific technologies and organizations that the
team plans to employ. As noted earlier, organizations increasingly purchase solu-
tions. However, sometimes no purchased solution meets the requirements at an
acceptable price or policy dictates in-house development. On these occasions, the
team proceeds to the system design phase.

System design builds directly on extensive prior work and, as always, the
team may wish to revise some of the prior work as more information is acquired.
The team brings the results from the project definition, proposed system require-
ments and the alternatives, and evaluation and recommendation activities into
systems design. These results include the following:

• An updated RD plan.

• Project definition materials that may include the statement of work, strategic
alignment, desired features, constraints, and a current situation narrative with
EDMs and DFDs.

• Proposed system requirements that may include a conceptual data model,
modified data flow diagrams, and metadata for the CDM and MDFDs.

• A recommendation to build or create the system design for a specific alternative.

In the traditional SDLC model view, the team performs system design after
the completion of the requirements determination phase. As noted in Chapter 9,
real-world teams may perform system design concurrently with requirements
specification. With prototyping, a team may carry out system design by building
the prototype without any formal requirements determination and then using
the prototype to define or refine the requirements.

The selection of the design approach for a given system is an art and often
depends on personal preferences and/or organizational policies. Some people
prefer procedural languages and design while others believe that object-oriented
design works better for many applications. Language choice tends to drive part
of the design approach. For example, such procedural languages as COBOL and
FORTRAN are structured around the executions of subroutines and statement
groups while such GUI languages as Visual Basic are organized around forms
and controls.

The goal of system design is to create code and/or documentation with
detailed specifications that will enable programmers to write and maintain cor-
rect and complete code for the proposed system. Many student field projects that
select the build option create documentation and not code, sometimes because
of time constraints, and at other times due to the client’s preference for IT staff
members to write the code. Good design documentation should communicate to
an experienced developer the information that he or she needs to write and/or

Chapter 11 System Design 375

maintain the code. The documentation specifies fully how the program works
and what it accomplishes in an easy-to-follow format. The content of the docu-
mentation depends both on the system content—data, process, and physical and
organizational infrastructure, and on the design approach selected by the team.
Design documentation matches the requirements of the program to the specifics
of database engines, operating systems, programming languages, access controls,
and a host of similar items. Good design and documentation work together to
simplify the coding and maintenance process.

System design utilizes the most detailed models of the systems solution
process. As noted in previous chapters, a model provides a simplified and styl-
ized version of the system that captures part of the essential features of the final
operational system. Each specific model, for example, text descriptions, lists,
charts, tables, DFDs, ERDs, relational schema, structure charts, pseudocode, code
and other tools, focuses in-depth on part of the system and leaves out other parts.
Because system design takes place at a detailed level in a specific technological
and organizational environment, the appropriate models depend on the envi-
ronment. For example, such process models as program structure charts may
work well for applications implemented in procedural languages. Other models
may better represent such applications as Web sites and data warehouses or such
approaches as object-oriented design and object-oriented programming lan-
guages. In other words, the appropriate design documentation for a system con-
sists of the set of models that best capture the critical features of the system. This
chapter tries to illustrate several different system design approaches.

A SYSTEM DESIGN FRAMEWORK

The content model in Chapter 1 identifies the major content areas of an infor-
mation system as data, process, and physical and organizational infrastructure.
During system design, the team reviews each of the content areas and adds con-
tent or detail to arrive at a complete design that when operational will solve the
problem posed by the client. These system design activities may include prepa-
ration of detailed design specifications for the following:

• Physical Infrastructure. Redefines the hardware and software as appropriate
to facilitate performing the activities of the new system. For example, the new
system may require some combination of new workstations, servers, telecom-
munications, data storage, operating system, database engine, or Web soft-
ware. Or, the client may require use of the existing infrastructure.

• Organizational infrastructure. Modifies the organization as needed to match
the functioning of the new system. Often, the new system requires the team
and/or client to define the people who have the authority to create, update,
retrieve, or delete data. The team also may need to prepare training plans for
users, operators, and maintainers.

• Data. Converts the CDM into a data design. For example, establish a new
database in the database engine, create a data schema of tables or files, and
specify keys and indexes.

376 Part Four System Delivery

• Process. Specifies the detailed system logic. For example, prepare a program
structure chart and write pseudocode for each program module and/or write
the actual code for a prototype.

In summary, the outputs of the system design process may include

1. Physical and organizational infrastructure changes for the proposed system.

2. A data schema, often a relational schema.

3. Metadata to define the tables or files and attributes, columns or data items.

4. An appropriate process model, perhaps a program structure chart or module
navigation map that describes the structure of the program.

5. Pseudo and/or actual code for each module in the program.

6. A prototype for the proposed system.

In addition to the central goal of meeting client requirements, good system
design addresses such additional goals as:

• Maintainability. Good system design strives to produce a system to make it
easier to make changes after the code has been developed. Good code struc-
ture and proper documentation make major contributions to supporting
maintainability.

• Inexpensive trial solutions. Modern design techniques and tools may allow
the development team to demonstrate trial solutions to clients and users with
only small or moderate extra coding and revision expenses if clients and/or
the team discover that parts of the trial solution are unacceptable.

• Workload allocation. A good design supports the allocation of code devel-
opment to multiple individuals. Writing computer code is fundamentally
an individual exercise. In order to allow more than one person to contribute
at the same time, the team must partition the development requirements
into units that interfere with each other as little as possible. Workload allo-
cation is essential in larger projects to achieve reasonably short develop-
ment times.

During the 1970s and 1980s, IT professionals, guided by the insights of Yourdon
and Constantine, 1986, and DeMarco, 1978, developed techniques for program
design that included such principles as structured code, module coupling and
cohesion, and the translation of data flow models into program structure charts.
These principles addressed the requirements of large transaction systems that
ran on large mainframe computers, which were the predominant form of sys-
tems constructed in the period. The systems automated and updated manual
processes or earlier generations of computer-based versions of core operating
and administrative support functions in organizations. The systems typically
used COBOL as a programming language and ran in batch rather than inter-
active mode.

Yourdon, Constantine, and DeMarco recognized that the primary mainte-
nance problem for 1980s mainframe systems arose from the use of “go to” struc-
tures that produced very complex flows of logic and control and introduced

Chapter 11 System Design 377

unexpected interactions between code changes in one part of a program with
the execution of code in other parts of the program. Data flow and structure
analysis developed (1) to plan and track control flow and (2) to avoid the unan-
ticipated consequences that arose from the use of global variables in transaction
systems driven by internal triggers and complex control flow. For these systems,
maintainability was improved by structured control sequences that use only
sequence, iteration, and selection to determine the execution sequence of cohe-
sive and decoupled modules. Modern programming languages and approaches
continue the principle of this structured approach in a variety of different
implementations.

For example, relational databases (RDBs) and similar database mechanisms
can reduce maintenance. Adding attributes to a table in an RDB to support a
new program has (almost) no impact on existing programs. Changing a file struc-
ture in a COBOL program environment required program changes in all of the
programs that used the file. Such languages as SQL, Visual Basic, and JAVA, have
highly modular or object type structures that localize the impact of changes and
reduce maintenance costs.

Programming guides contain a number of other suggestions for maintain-
ability, many of which date back several decades. For example, good practice
specifies that parameter values, for example, tax rates and discounts, always
appear in tables and never in the actual code statements. When parameter val-
ues appear in the code, changes require reprogramming that can lead to a main-
tenance disaster. A different type of practice specifies that modules should have
only one entry and one exit.

Physical Infrastructure
Physical infrastructure consists of such elements as database management sys-
tems, computers to perform the roles of workstations and servers, telecommu-
nications, operating systems, middleware, programming languages, and devel-
opment tools. The client’s standards, procedure, and policy manuals may set
forth guides and constraints for system design. For example, the client may spec-
ify a brand and configuration of PCs for users or may specify a database man-
agement system (DBMS) to serve as the database engine for all new applications.
Or the client may restrict new development to one or several programming lan-
guages or tools.

As part of the narrative on the current situation, the team defined the cur-
rent development environment and constraints established by the client. For
some projects, the constraints may allow the team little or no choice with
respect to the physical infrastructure for the proposed system. For example, the
client may require the team to use existing hardware and software. In other
projects, the team may receive agreement to make minor modifications, for
example, to add Microsoft Access to the existing portfolio of software on an
existing computer.

Occasionally, the team may select much of or the entire infrastructure for a
project. Because client/server and net-centric architectures are highly modular,
the client may wish to acquire new hardware and software for the proposed

378 Part Four System Delivery

application. If the client is not an IT person, the team should ask the client for
permission to talk with an IT staff person to assure that the proposed infra-
structure fits within company policy and standards.

The team prepares a comprehensive description of any proposed changes to
the physical infrastructure for the client. The description may include a text sum-
mary of changes and the following information as relevant for each new item of
infrastructure:

• Complete specifications for the item of infrastructure.

• Name, address, and contact information for the vendor(s).

• Price or cost, if available.

• Warranty or service agreement terms.

• Installation cost, method, and requirements.

• Maintenance cost and options—client, vendor, or third-party maintenance.

Software

Software specifications may address the operating system, database, and applica-
tion languages. When feasible, a good process to follow is to select the application
language or package program first, select a compatible database engine, and then
select the operating system that works best. Specifications should include rec-
ommended tools for analysis or code generation. Some tools are language or
product specific, for example, the Oracle toolset is designed to work with the
Oracle database engine.

Hardware

Ideally, the team wants to select the software first and then select hardware that
works well with the software. Server specifications normally include a make,
model, and other relevant specifications including processor speed, number of
processors, memory size, disk storage capacity, number of disks, caches, and net-
work interfaces. Workstation specifications add the monitor specifications and
such special input/output (I/O) devices as bar code readers. Routers are a com-
mon piece of hardware in many network systems.

Network

For those systems that operate over a network, the key issue addresses how the
new solution will impact the network. Larger systems may require new links or
components. The design team should specify the workstation, local area network
(LAN), server, and network “cloud” requirements for the system.

Security

Security features may including firewalls, virus checkers, and backup require-
ments.

Organizational Infrastructure
During design, the team identifies and describes any desired organizational
changes. For example, the new system may eliminate or reassign some of the

Chapter 11 System Design 379

tasks performed by people in the current organization or may change the author-
ity of people to create, update, delete, or retrieve information in the database.
Changes in job duties or authority tend to cause anxiety. Clear identification of
changes at this stage allows for appropriate training and counseling of the
affected employees.

Before proceeding with system design, the design team may wish to identify
clearly and/or review the following roles for the proposed system:

• Clients. The people or organizational unit responsible for providing the proj-
ect team with the requirements for the proposed system. The sponsor is a
client with the authority to request, control, accept, and revise the system.
The sponsor may provide or control funding for the steps needed to complete
the project. The sponsor may exercise or delegate authority and responsibil-
ity for implementing, training, operating, auditing, and maintaining for the
system.

• Users. The people or organizational unit responsible for providing input to
and/or using output from the system.

• Data owners. The people or organizational unit responsible for specifying data
access controls, including, who can retrieve, create, update, and delete data
and databases.

• Operators. The people or organizational unit responsible for running the pro-
grams in the system and for the correct operation of the system. Normally the
operator follows rules agreed to by the client for running, restarting, and stop-
ping the system.

• Maintainers. The people or organizational unit responsible for making
changes approved by the client to programs and procedures for the system.

One person or unit may function in multiple roles. For a small system, one per-
son might serve as client, data owner, and user, and another person as operator
and maintainer.

Infrastructure Example
An example of the physical and organizational infrastructure for the proposed
system for GB Video appears in Figure 11.1.

SPECIFYING DATA STRUCTURE

At this stage, the team designs the specific data schema for the proposed sys-
tem. The team converts the conceptual data model into a data schema of rela-
tional tables, objects, other kinds of tables, flat files, or other files. If the team
plans to utilize a relational database management system (RDBMS), the team
prepares a relational schema. Some CASE tools, for example, Oracle, with major
help from the analyst, will convert a CDM (in Oracle notation using first normal
form) into the corresponding relational table schema. With a flat file mechanism,
the team specifies the file format using COBOL or other appropriate conventions.

380 Part Four System Delivery

Physical Infrastructure

At present, the GB Video retail video rental and return environment operates manually.
To implement the proposed system, the team recommends that GB purchase the
following or equivalents:

Each of the three current stores will require two workstations (for a first version total of
six) and one cable modem. Specifications for a recommended workstation and modem
appear below.

Gentex Retail terminals Model 3301, $2,499 each, full one-year warranty with in-office
service Monday–Friday from 8:00 a.m. to 10:00 p.m. Includes MS Windows XP Profes-
sional, PC, 17 monitor, bar code scan gun, credit card reader and printer. The termi-
nals are connected within the store via twisted-pair and RJ45 connectors to the cable
modem. Vendor: Retail Systems, Inc., 7731 Main, Norman, OK 77019, Tel. 405-555-
0768, Customer Rep: Tom Jones. After first year, a 14 5 in-store maintenance con-
tract is available from Retail Systems at a current cost of $10 per month per terminal.

Fox Cable will provide each store with a high-speed cable connection including a
modem and installation for $49.97 with a one-year contract. Service is $37.95 per month
per store including cable and modem maintenance and Internet access. Each modem
will connect to up to three workstations (more with a separate router and additional
monthly fees). Vendor: Fox Cable Business Services Division, 755 Lost Lane, Moore, OK
73170, Tel. 1-800-555-1234.

The team proposes to locate two servers at headquarters. These servers will connect
to the existing router and Fox cable connection. Server specifications appear below.
Retail Systems will purchase and install the servers (included in the price below) and
make sure that they work correctly with the retail terminals. This server configuration
should allow GB to expand to as many as 10 branches without upgrading.

Delta Power 2000 Servers. $8948 total including software. Includes network interface,
high-speed link, dual processors, 100 GB hard drive, 1 GB of memory, and Windows
NT 5.2, SQL server 4.1, and Visual Basic 5.5 for application development. One year in
office warranty 24 7; warranty service provided through Retail Systems. All transac-
tions are shadowed on both servers so that full service is available as long as one is
running. Vendor: Delta Systems, 1347 Boyd St., Houston, TX 72211, Tel. 1-888-555-
4000. After the first year, maintenance is available from Retail Systems on a per call
rate of $30 plus $50 per hour (one hour minimum) plus part costs. Extra charge of $50
for weekend or evening service calls.

Organizational Infrastructure

The GB Finance Director (currently Sven Pasperson) in headquarters serves as the
client point of contact for the new system. All requests for changes will go to the
finance director. No direct changes in the store organization are required. All of the

FIGURE 11.1 Proposed GB Video Infrastructure

Page 1

Chapter 11 System Design 381

Relational Schema
Relational databases are widely used. Enterprise resource planning (ERP) sys-
tems from such providers as SAP, People Soft, and Oracle recommend storing
data in and retrieving it from relational database management systems (RDBMS).
Many other package programs operate with an RDBMS. Because of portability
and flexibility concerns, a majority of organizations design new applications for
an RDBM system. However, an enormous number of nonrelational data stores
remain in use for special applications and legacy systems.

If the team uses a relational database, the team may prepare a relational
schema with the following rules:

• The proposed system CDM provides the structure for the relational schema.
The schema should fully represent the complete data structure from the CDM.
If the team decides that physical database considerations warrant a schema
structure that differs from the CDM structure, the team should document the
reasons in the system design report.

• Set notation, table-heading formats, or table diagrams can represent graphi-
cally the table, column, and relationship structure.

• The analyst may use the entity name or the plural of the entity name on
the CDM for the table name. Column names normally correspond exactly
to attribute names.

• The diagram explicitly should identify primary keys. A note on the dia-
gram or in the text defines the convention used to identify keys, for exam-
ple, the column name for a primary key is underlined.

people in a branch continue to report to the branch manager. Central Purchasing will
continue to make decisions on the titles and number of video copies stocked at each
branch.

Some changes occur with respect to location, ownership, and control of data. With the
old system, each store owned and held physical possession of the data relating to
rentals at the store. With the new system, the data on rentals and returns are stored
on a server at GB headquarters. No data are stored at each branch. People at the
branch can create, retrieve, and update customer, rental and return data but cannot
delete it. Only the store operations manager at headquarters can delete data.

People at each branch can retrieve all data generated at any branch. A customer can
examine and change his/her customer data at any branch and can inquire about the
status of any open rental. No data are sent to Accounting. Instead, Accounting has
access to the data tables for the rental system and the accounting system retrieves
data as needed. The IS person at headquarters will operate and maintain the system.
The organizational assignments have been discussed with and agreed to by all parties.
No organizational problems or issues are anticipated.

Page 2

382 Part Four System Delivery

• Referential integrity arrows link from each foreign key to each primary key.
The arrows implicitly identify the foreign keys. Some analysts explicitly
identify the foreign keys by placing (FK) after the column name or using
some other convention.

• The team can use a CASE tool, drawing tool, MS Word, or similar tool to
prepare clear, neat printed diagrams.

• Relational schema always must observe first normal form (1NF) and contain
only a single value for each attribute in each row.

• If the schema is not in third normal form (3NF), the team should explain
briefly the reasons to denormalize.

A sample relational schema in table heading format for GB Video that follows
the aforementioned rules appears in Figure 11.2. In the schema, the entities Title
and Video on the CDM in Chapter 8 appear combined in to a single table. The
diagram contains notes explaining the convention for identifying primary keys
and why the schema is not in 3NF.

Metadata
As a critical part of the data design, the team selects metadata for the tables and
columns. Data items consist of the attributes or column headings in relational
tables or the data element names in flat file records. The team may need to define
data items for use in input, output, and transformation operations that are not
part of, or placed in, any data store. For example, the program may compute the
total cost for a rental. Total cost is a data item used to prepare and print an invoice
but is not part of any data store and thus is not an attribute or data-element. Data
items that are not part of a store are described in a separate section called “Data
Items” following the attribute or data element descriptions.

FIGURE 11.2 GB Video Relational Schema (in column heading format)

Rental No Date Clerk_No Pay_Type CC_No CC_ApprovalExpireCust_No

Line No Video_No Due_Date Return_Date Pay_TypeOD_Charge

Video No

Rental No

Extra_DaysOne_Day_Fee Weekend CostName

Cust No F_Name L_Name Ads2Ads1 City State Zip Tel_No CC_No CUSTOMERS

RENTALS

LINES

COMVIDEOS

Expire

Note 1. Primary keys are underlined.
Note 2. For data integrity control, Purchasing does not want the rental system to access their primary tables of Video and
Title. Instead Purchasing will replicate the relevant data as needed in a view or table for the Rental System called
COMVIDEOS. The denormalized table COMVIDEOS in the relational schema contains the combined attributes of the Video
and Title entities in the CDM except that the attributes “Title No” and “Vendor No” are omitted in the table prepared by
Purchasing. The combined table results in a simpler data structure and possibly, a faster response for the rental system.

Chapter 11 System Design 383

In practice, the metadata for a table or file and data items can include dozens
of categories. The categories selected for the system design deliverables may
depend both on (1) those categories included in the database engine and (2) the
standards and policies of the organization. A minimal set of table or file meta-
data might include:

1. A short text description of the table—normally identical to and copied from
the CDM entity description.

2. Retention policy—how long or under what circumstances is each record or
instance or row in the table retained. Good retention decisions balance control
of table size against the availability of data for operations and historical analy-
sis. For such entities as Item, the retention policy may be obvious. The record
for an item is retained as long as the item is stocked or sold, and deleted or
transferred to a history file when the item no longer is stocked. Retention pol-
icy is most important when files tend to increase as a result of activity. Trans-
action files for sales, rentals, and purchases exhibit this behavior.

3. File size—how many records or rows will the file or table contain and how
many megabytes of storage are required? As file size grows beyond the fore-
cast number, physical storage requirements often pose less of a problem than
processing time. Additional physical storage is easy to add and relatively inex-
pensive. But increased file sizes may cause a slowdown in file processing
activities that is more difficult to remedy. As noted above, file size sometimes
can and should be controlled by retention policy.

4. Authorization—identifies who is allowed to create, update, retrieve, and
delete records or rows in the table. Unless authorization is defined clearly,
organizational conflict and loss of data integrity may result.

A minimal set of data item metadata includes:

1. A short text description for each data item—normally copied from the
attribute descriptions in the CDM if relevant.

2. Optionality—whether the user is allowed to omit a value for the data item when
first creating a new row or record. Optionality is important for data integrity.
By using optionality the team can assure that the primary key and other manda-
tory or required attributes are present at the time a record first is created.

3. Data type—a specification that allows the physical system to store data efficiently.
The team normally will use the data types provided by the database engine
specified in the infrastructure for the proposed system or in the proof of concept
model, for example, Access, MS SQL Server, and others. In Access, the available
data types include text, number, date/time, memo, and yes/no. The team should
reference the source of the data types used in their system design documents.

4. Size—the maximum length to allow for each data type. Some data types, for
example date and integer, possess a size determined by the database engine.
Part of the size description for a decimal number includes the number of dec-
imal places.

A sample set of metadata for the GB Video relational data schema in Figure
11.2 appears in Figure 11.3. Note that in this example and in most cases, the table

384 Part Four System Delivery

Table and Column Descriptions

Note: (PK) shows a primary key and (FK) a foreign key. Data types are from MS
Access.

CUSTOMERS. Contains all the available information about each customer who has
made a transaction in the last year.
Retention. The records for customers who do not make a transaction for one year
are deleted.
Size. The database will initially contain 3,000 customer records and require about
1 MB.
Authorization. Clerk: create, update, and retrieve. System Manager: all.

Data-Item Description Optional Type Size Decimal

Cust_No A unique identifier assigned No Text 10
to each customer (PK)

F_Name First name and middle initial if Yes Text 15
any

L_Name Last name No Text 30

Ads1 Street or box address No Text 30

Ads2 Apartment number or other as Yes Text 30
needed

City Name of city No Text 20

State State id code No Text 2

Zip Zip code No Text 9

Tel_No Telephone number Yes Text 10

CC_No Original credit card number No Text 16

Expire Expiration date on the original No Date
credit card

FIGURE 11.3 GB Data Schema Metadata

Page 1

Chapter 11 System Design 385

RENTALS. Contains the header information on each rental transaction.
Retention: Transaction instances are removed to backup storage 15 days after a
transaction is complete.
Size: Approximately 1,500 records and less than one megabyte.
Authorization: Clerk: create, update, and retrieve.

Data-Item Description Optional Type Size Decimal

Rental_No Unique identifier assigned No Auto-
to each rental (PK) number

Cust_No The customer for the No Text 10
rental (FK)

Date Date of the rental No Date

Clerk_No Employee number of the No Text 3
clerk entering the rental

Pay_Type Cash, check, or credit No Text 1
card

CC_No Credit card used to rent Yes Text 16

Expire Expiration date of the credit Yes Date
card used for the rental

CC_Approval Credit card approval code Yes Text 6

LINES. Contains the information on each video associated with a rental transaction.
Retention: same as Rentals.
Size: Approximately 2,000 records and less than one megabyte.
Authorization: same as Rentals.

Data-Item Description Optional Type Size Decimal

Line_No Unique identifier assigned to No Auto-
each line (PK) number

Rental_No The rental number that this No Long 10
line belongs to (FK) Integer

Video_No Video rented on this line (FK) No Text 14

Due_Date Date video is to be returned No Date

Return_Date Actual return date Yes Date

OD_Charge Charge for days kept after Yes Currency 2
due date if applies

Pay_Type Method of payment for the Yes Text 1
overdue charge

Page 2

386 Part Four System Delivery

COMVIDEOS. Contains information on each video. This database table is maintained
and supplied to the rental system by purchasing.
Retention. NA.
Size. Approximately 500 records and less than one megabyte.
Authorization. Clerk: retrieve only.

Data-Item Description Optional Type Size Decimal

Video_No A unique identifier assigned No Text 14
to each video (PK)

Name The title of the video No Text 30

One_Day_Fee First day rental fee No Currency 2

Extra_Days Extra days rental fee Yes Currency 2

Weekend Rental fee for Sat. and Sun. Yes Currency 2

Cost Price GB paid for the video No Currency 2

Table Relationship Metadata

Relationship References

Description Table Foreign Key Table: Attribute

A customer may make RENTALS Cust_No Customers: Cust_No
one or more rentals

A rental may contain one LINES Rental_No Rentals: Rental_No
or more lines

A video copy may be rented LINES Video_No Comvideos: Video_No
on one or more lines

Page 3

and column descriptions follow the CDM entity and attribute descriptions. The
table relationship material describes in text form the table relationships on the
data schema diagram.

Other Data Schema
Some projects will involve a data schema other than relational tables. For exam-
ple, in a system that uses flat files, tables similar to those that make up the
COBOL data division may define the data schema. The model selected should
describe completely the data schema—the table, file, or object structure, and
include a full set of metadata.

Chapter 11 System Design 387

SPECIFYING PROCESSES

In this step, the team specifies both (1) the module or program structure and
(2) the logic or code within each module or process. The way that logic is speci-
fied will vary from project to project. Design documentation normally uses phys-
ical models—models that directly map the system as it will be built. Module, table,
and data element names, and calling and triggering sequences in the design docu-
mentation models should correspond exactly to the statements in the program code.
The basic approach for process logic specification is:

• Represent the structure of the logic in an appropriate graphical form—program
structure chart, physical data flow diagram, object schema, or page naviga-
tion map.

• Specify the detail logic within each module or procedure shown on the graph-
ical representation in pseudocode or program code.

As noted earlier, at the logical and physical levels, the content and form of
the system influences the selection of an appropriate process model. While
process-driven systems remain common, many new systems are either data-driven
or dialog-driven. Data warehouse and flexible reporting systems typically are
data-driven. The process logic for these systems consists of “feed and read,” with
simple modules that collect data from existing sources and straightforward
reporting modules to present reports. The critical issues for these systems focus
on organizing the data in a format that allows simple reporting logic. In a dialog-
driven system, interactions with the user control the flow of the program. Such
a process model as a program structure chart may not represent well the critical
design issues for dialog-driven systems.

The next section of this material describes the use of program structure charts
and physical DFDs to describe processes. Since most process models use the con-
cept of modules, additional sections describe module design, use pseudocode to
define logic in modules, and add structure to module metadata. Subsequent sec-
tions describe possible alternative process models for dialog-driven systems.

Program Structure Charts
A program structure chart (PSC) can provide a graphical model of process
structure for many programs, especially process-driven systems implemented
in a procedural language. Each module in the proposed system is represented
by a rectangle in the PSC. Each module receives a unique label and a descrip-
tion. In addition to the modules, structure charts show the triggering sequence
for modules and the control flows and data flows between modules. To show
trigger sequence, an arrow connects each module to the other modules that it
may trigger. Sequence arrows do not receive a name. The control flow is spec-
ified by the detail logic inside each module. Detail logic for each module (dis-
cussed in a later section) defines the operation of the module. In a hierarchical
design, each module has a unique path into it. Hierarchical designs tend to sim-
ply debugging and maintenance more than architectures that allow multiple
paths into modules.

388 Part Four System Delivery

Many variations of and symbol sets for structure charts exist. Some structure
charts show control flags and data flows passing from one module to another.
When control flags or data are passed between modules, a named arrow repre-
sents the flow. Arrows with an open circle on the tail represent data flows; arrows
with solid circles indicate control flags. Each flag or flow receives a descriptive
name that matches (as much as possible) the name of the element actually passed
between modules. Typically these diagrams do not include data flows to or from
data stores or externals. Physical data flow diagrams, covered in the next sec-
tion, provide a way to show those data flows.

The boxes on a structure chart correspond one-to-one with code components
in the final program. With such procedural languages as COBOL or C, the mod-
ules become paragraphs, subroutines, or functions. In such GUI-oriented lan-
guages as Visual Basic, modules may correspond to forms, controls, macros, or
queries. The name of the box on the structure chart should match the name of
the corresponding structure in the program code. In the metadata sections,
pseudocode or structured English details the process within the module.

A sample program structure chart for the GB Video Rental and Return pro-
gram appears in Figure 11.4. Note that modules shown on the chart resemble
the modules in the modified data flow diagrams for GB Video shown in Chap-
ter 8. Module 1.0 is a switchboard module that allows the system user to trig-
ger or call modules 2.0, 3.0, and 4.0. For example, when a video is returned,
module 3.0 is triggered. The arrows from one module to the next represent trig-
gers. As requested by the client, the first rental module, 2.1, is triggered by the
member module 2.0. The diamond attached to module 2.0 indicates a condi-
tional action; the rental module is triggered only when a customer wants to

FIGURE 11.4 Program Structure Chart for GB Video

1.0 GB Video
Rental and Return
Switchboard

2.0 Check and
update data or
enroll a new
member

3.0 Record
return of
video(s)

4.0 Identify
overdue
videos

2.1 Input the
data for a
rental

2.2 Calculate
cost and
process
payment

2.3 Create
rental and
lines

2.4 Print a
receipt

Video, Payment,
and Member
Data

Member Data

All Rental
Data

All Rental
Data

Chapter 11 System Design 389

make a rental. Sometimes the customer just wants to become a video store
member.

Since the arrows represent triggers, a special symbol of an arrow leading away
from an empty circle, is used to indicate data flowing from one process to
another. The arrow direction shows the direction of the flow. The name for the
data flow arrow identifies the data in the flow. Many of the modules shown in
Figure 11.4 contain multiple functions. An actual program structure chart prob-
ably would contain a number of additional modules. A later section describes
module design.

Physical Data Flow Diagrams
Physical data flow diagrams (DFDs) show graphically the same module struc-
ture that appears in the program structure chart plus data flows to and from
externals and data stores. Many programs consist of such modules as subrou-
tines and functions that receive data from another module or external, modify
the data, retrieve from and store data in data stores, and send data to another
module or external. In these systems, the flow of data drives the execution of
the system. Data flow diagrams capture the essentials of these systems.

Physical DFDs add more detail to the MDFDs discussed in Chapter 8. A
physical data flow diagram describes how the final system should work. In a
physical DFD, the modules on the diagram correspond to actual constructs in
the code. Processes have the same name as components in the program and are
sequenced in the order that they will execute in the program. Data elements in
flows, data stores, and queries have the same names as they do in the actual
database. Physical data flow diagrams also show the flags, audit trails, and error
checks that are included the actual system.

Process Model Metadata
All of the objects on the process models are defined further by metadata. The
exact metadata included depend upon the model used. Possible metadata follows:

• Data flows. The data items that make up each flow. The metadata for each
data item appears in the data model.

• Data store. Defined by a table schema or a data division with their metadata.

• External. Brief description.

• Link lines. No metadata.

• Modules. The pseudo or actual code for each module.

• Menu. The table showing menu number, text, and hypertext addresses for the
menu. Note: A menu is defined once although it may be used for multiple pages.

• Page. A brief description of the html text on the page or the actual text
enclosed in quotes. A table can show each hypertext link on the page that is
not part of a menu in the first column and the Web address for the link in the
second column.

• Procedures. A brief description of the procedure plus the detail logic for each
module in the procedure. Use an MDFD for complex procedures.

390 Part Four System Delivery

MODULE DESIGN

Several different names are used to refer to modules; the most common names
are program module, code module, process module, and functional module. Nor-
mally code or program module names are used at the detail design level. Orga-
nizational functions names are used for modules at the requirements level. A
program or code module contains a set of code, pseudocode, or logic statements
that work together toward a common purpose in a program. A module may cor-
respond to a box in a structure chart, or a module or several modules may con-
tain the code for a radio button in Visual Basic or for a procedure in an object.

Identifying a good set of program modules for a program requires skill and
careful thought. In general, a good module contains a high level of cohesion and
a low level of coupling. The strength of the interrelationships between the logic
statements in a module is called cohesion. In a functionally cohesive module,
all of the statements relate to the performance of the same function. For exam-
ple, one of the GB Video modules might focus on the function of inputting and
recording the ID numbers of the videos that a customer wishes to rent. Note that
GB Video is an event-driven system. In event-driven systems, actions by the sys-
tem user are events that cause modules to execute. The logic statements for the
functions associated with events also may possess temporal cohesion; they occur
in time sequence without interruption by statements from any other module.
Functional cohesion generally is the most important cohesion issue in designing
effective program modules. Functionally cohesive modules simplify program
design, testing, and maintenance.

The module structure in the program structure chart for GB Video is func-
tionally and temporally cohesive. Each module at each level deals with a set of
activities that relate to the same function and occur continuously in time, or one
after another without pause or interruption. One easily can devise modules that
do not show a high level of cohesion. For example, consider a module with the
description, “Read in the video identifier from the scanner, create a rental record,
and calculate the overdue charge for a late return of a videotape.” Intuitively,
most analysts would recognize that such a module seems like poor design. The
set of logic for calculating overdue charges for the late return of a video clearly
shows little cohesion with inputting video numbers and creating rental records
for a rental—the two sets of logic statements relate to different functions and
occur at different times.

Other forms of cohesion exist. For example, all the statements that utilize the
same set of data may be placed in the same module to enhance communicational
cohesion. With sequential cohesion; a statement requires the results produced by
a previous statement to perform its function. To compute the tax on a rental, the
program first needs to compute the total charge for the rental.

Coupling refers to the nature of the interactions between modules. Coupling
can occur in a variety of ways. With data coupling, a relative weak kind of cou-
pling, a module connects to another module only by the transfer of data or mes-
sages to and from the other module. In object-oriented design and subroutine
calls, message coupling is the only form of coupling allowed. Data coupling can

Chapter 11 System Design 391

cause a problem when data-sensitive actions or limits exist in a module. For exam-
ple, if a rental line module is set up to handle a maximum of 10 videos per rental,
the module may fail when the rental module sends more than 10 video IDs to it.
If the module receiving the data will perform the expected actions and only those
actions for all allowable values and sets of data, then data coupling presents few
problems. In most modern applications, modules are coupled mainly by data.

Older systems may contain more complex and difficult-to-predict forms of
coupling. When modules use or modify code from another module, coupling
often causes problems. With hybrid coupling, one module changes the code in
another module at run time. Systems with hybrid coupling are difficult or nearly
impossible to maintain. An analyst trying to maintain the code may not know
which statements actually will run when the code executes. A good design objec-
tive is to be able to maintain and modify modules without having to understand
the logic of other related modules.

Module Specification
Structured module and object-oriented design try to increase cohesion and
reduce coupling. However, no one knows how to design the “best set” of mod-
ules. As in many other parts of IT design, the analyst follows the procedure
called satisficing; avoid clearly bad structures of modules and strive to find a
structure that at least is satisfactory. Guidelines for structured module design at
the detail logic level include:

1. A module performs one and only one major function, such as to charge credit
card, prepare invoice, retrieve data, and update data. The statements within
the module should show a high degree of functional and temporal cohesion
unless another form of cohesion is more important.

2. Each module should work correctly for any data set that its trigger module(s)
may send to it. The less data transfer the less chance for data coupling prob-
lems, but good design involves trade-offs. Retrieving data from a data store
instead of receiving them from another module may reduce the incidence of
data coupling problems but may increase processing time.

3. Every module contains logic defined by pseudocode or actual program code.
To carry out their function, modules may (a) operate on data stores to retrieve,
create, update, or delete records; (b) read input from such external sources, as
keyboards or scanners; (c) send output to such external sinks, as printers or
other systems; (d) perform data transformations; (e) call or perform subrou-
tines or procedures; and (d) use sequence control logic to direct the control
flow within the module or to select the next module to trigger.

4. A module should have one and only one entrance—the statement executed
when the process is triggered. It may exit by transferring control to one or more
other modules, or it may cause the program either to close or to wait for an
external event trigger. A module may have sequence control logic at the exit
point, that is, it may trigger one of several modules or none depending on
internal conditions. Control transfers in one direction only: from the exit point
of the trigger module to the entrance point of the triggered module.

392 Part Four System Delivery

5. The only communication allowed between modules consists of the data items
passed from the trigger module to the triggered module at the time of the trig-
ger event. The data may include flag or switch values. Flags and switches increase
the potential for data coupling problems and should be used with caution.

Statements from a programming language or pseudocode specify the logic
within a module. When statements from a programming language are used, the
analyst specifies the specific language and version. The actual code statements
should follow the format and conventions of the language. The analyst can sub-
stitute pseudocode or a brief description for actual code in complex or stub mod-
ules to be coded at a later time.

Analysts use several different conventions to govern which modules may contain
code. With one convention, code may appear only in the lowest level modules,
those modules with no children or descendents. These modules are called basic func-
tional modules or elementary modules. With this convention, additional elementary
modules are added as appropriate to contain switchboards, menus, and setup
instructions. Other analysts find it more convenient to allow modules that are not
elementary modules to contain switchboards, menus, and setup instructions.

Pseudocode
Pseudocode or its close relative, structured English, offer a generalized pro-
gramming language to specify the detail logic associated with each module.
Pseudocode consists of a set of instructions or statements similar to those found
in programming languages. As in a programming language, the pseudocode
statements in each module must explicitly, completely, and unambiguously
define the actions performed by the module to transform inputs into the required
outputs including links to subroutines and other modules.

The actions or statements available in pseudocode include:

1. Read input data from an external source, such as a keyboard or scanner.

2. Transform data—assign a given or computed value to a data element.

3. Operate on a data store—retrieve or update attributes in an existing record
and create or delete records.

4. Call or perform subroutines or procedures.

5. Use a control to execute statements, macros, modules, or subroutines.

6. Manage the flow of control. Unless otherwise specified, control within a mod-
ule is assumed to flow sequentially, from each statement to the following state-
ment. Use conditional logic to control any other sequence of actions—if, case,
or do statements. Control flow in event-driven systems is managed by the user
activating a control event.

7. Write output data to an external sink. Output can include print a card, docu-
ment, or report, send data by EDI, and so on.

While some general conventions apply, much of pseudocode is flexible. Com-
panies and/or analysts may develop their own versions as needed. The mate-
rial to follow sketches out some pseudocode statements for use in a project. Team
members should be familiar with the actions performed by these statements from

Chapter 11 System Design 393

programming courses. Pseudocode may use standard programming conventions,
for example, separate data item names by commas. However, punctuation is not
critical in pseudocode as long as the meaning is clear. For example, either peri-
ods or semicolons can mark the end of a statement. For a number of situations,
an analyst may wish to invent or expand on core pseudocode to represent some
complex action in a simplified form.

The following sections illustrate pseudocode format and general conventions
for use in the field project. This material assumes that team members are familiar
with programming languages and conventions. Review an introductory pro-
gramming language book if any of the statements below are unclear.

Input Data

The general form of the pseudocode statement is, Read (data item names) [From
(source name)]. Any part of a statement in square brackets [xxx] is optional. The
following pseudocode statement reads in the customer number for a video rental:
Read I_Cust_No [From Scanner].

The “I” before the attribute name is an optional convention to identify the fact
that this data item, which contains input data from an external source, is not an
attribute or data element retrieved from a data store. The programmer may use
the Read statement only to bring in data from an external source; you may not
Read from a data store.

Transform Data

The Set statement sets a data item equal to the value of an expression. The for-
mat of the pseudocode is, [Set] (data-item) = (a given or computed value of an
expression). The word Set is optional but helpful to clarify that this statement sets
or assigns a value to the data item on the left-hand side of the equation. For exam-
ple, the statement “Set Tax-Rate = 0.07” will set the sales tax rate to a given value,
7 percent. The statement “Set Tax = Tax-Rate * Total-Cost” sets the value of tax
equal to a computed value: the tax rate multiplied by the total cost. All standard
functions—average, maximum, total, and others—may be used in pseudocode.

The analyst may use or invent a nonstandard function described in English,
as long as the analyst provides adequate detail on what the custom statement
does. For example, the statement “Set Cust-No = (next unused customer num-
ber in the sequence)” represents the automatic generation of customer numbers
more clearly than “Set Cust-No. = (next).”

Operate on a Data Store

SQL provides the basis for the pseudocode to specify data store operations, to
create, delete, retrieve, or update a row or record. The analyst may wish to
review SQL before trying to write pseudocode for data store operations. A
pseudocode statement to retrieve data about a GB Video customer might be
“Select * From Customers Where Cust-No = I-Cust-No.” This statement retrieves
all the data for the customer whose member number was scanned and stored in
I-Cust-No. Any valid form of the Select statement or any SQL statement may be
used in the pseudocode.

394 Part Four System Delivery

Pseudocode allows the analyst to invent English phrases to simplify the code as
long as the meaning is explicit and complete. For example, the system may provide
for retrieval of a customer record by customer number, telephone number, or
name—normally three different SQL statements. The customer number option
retrieves the data for one customer; the others may retrieve data for several
customers. Additional program logic is required to let the clerk select the desired
customer from multiple choices. A shorthand expression for this process that is
acceptable at the pseudocode level is “Select * From Customer Where” (the current
customer may be identified by customer number, telephone number, or name).

All SQL statements may appear in pseudocode. For example, an Insert state-
ment will create new rows or records. The statement, “Insert Into Rentals Values
(I-Rental-No, I-Cust-No, I-Date, I-Clerk-No, I-Pay-Type, I-CC-No, I-Expire)” will
take the values inputted to or generated in the GB Video rental process and place
them in a new row in the Rentals table. The Delete statement will delete an entire
row or record. An Update statement changes one or more values in an existing
row or record. The statement, “Update Lines Set Return-Date = (current date)
Where Video-No = I-Video-No and Return-Date = null” will update the record
to reflect the return of a video.

Statements to create new tables or files may be, but normally are not, included
in the pseudocode. The data schema and its metadata should provide an ade-
quate system design specification for the actual code to create the tables. Some
CASE tools will create the data schema from an ERD and (with some help from
the analyst) create the tables from the schema.

Perform a Procedure

The Perform statement is used to execute a procedure—a named block of code
inside the module, or to call a subroutine outside the module. Procedures inside
the module allow the programmer to use the same set of instructions at more than
one point inside the module or to simplify complex conditional expressions by
separating out the statements in the procedure. A procedure is created inside the
module by giving a set of statements a heading “Procedure (name)” where name
is any unique procedure name, a name not used by another procedure. In the
metadata for a module, the procedures follow the sequentially executed code
block. The format is:

Procedure Name-1

Begin

Statement 1

. . .

Statement n

End

Subroutines consist of procedures used by more than one module. The
descriptions for these procedures follow the module descriptions in a section
called “Common Subroutines.”

The format of the statement to execute both internal and subroutine proce-
dures is “Perform (name).”

Flow of Control

As noted earlier, control flows sequentially from statement to statement in the
pseudocode unless changed by a conditional statement. Conditional statements
in pseudocode include If, Then, Else, Do, and Class. The format for the If state-
ment is “If (condition) Then (action) [Else (action)].” Action can consist of any
pseudocode statement including a Perform. When a module wishes to pass con-
trol to another module, the statement is “Trigger (module ID number [{list of
data-items}]),” for example, the statement “Trigger P2.2 {Cust-No, Rental-No}”
may appear at the end of module P2.1. The flow of control and the values of the
data items pass from P2.1 to P2.2.

Do statements appear in many forms. Three general forms for pseudocode are:

While (condition) Do

(Actions)

EndWhile

Do

(actions)

Until (condition)

Do For (index = initial To limit)

(Actions)

EndDo

In Do statements, actions may consist of a set or block of pseudocode statements
including Performs.

The Case structure provides an efficient way to show the choice among sev-
eral alternatives. The format is:

Select (data-item)

Case (value-1, action-1)

.

Case (value-n, action-n)

Default Case (action)

EndSelect

The statement involves a set of linked values and actions. The action paired
with the case value that matches the value of the data element is executed. If
pushing the Member button, sets the data item choice = 1, Return sets choice =
2, and Overdue sets choice = 3, then the following pseudocode will select the
appropriate GB Video process:

Module 1.0

Read Choice

Select Choice

Chapter 11 System Design 395

396 Part Four System Delivery

Case 1 Trigger P2.0

Case 2 Trigger P3.0

Case 3 Trigger P4.0

Default Case Perform Error1

EndSelect

No data are passed in this example, only the flow of control. Note that the pro-
grammer may use embedded If statements to accomplish the above selection,
but the Case statement offers an easier-to-follow form.

Output Data

The Write statement is used only for output to an external sink. The programmer
may not write to a data store. The format is “Write (data-item list) {To (device)}.”

For example, Write Name To (member card imprinter) places the customer’s
name on a member card that already contains both a printed and bar-coded
member number.

Metadata for Module Logic
The metadata for each module in the program structure chart or the physical
DFD describes the logic for the module. The objective is to provide enough detail
so that a competent programmer can generate the actual code. The description
may contain all or some of the following items:

1. Trigger for. An identification of all the events that can trigger or start the oper-
ation for this module. Such events as an action (e.g., a button click) on a data
entry screen, a call, or message from another module, or a specified time or
count condition may serve as triggers for a module.

2. Input data. All possible data inputs to the module and the source of the data:
external, another module, or a data store. If an input form, diagram, or screen
shot is associated with the input, the associated diagram may be referenced.
Retrieval from a database may include appropriate code or pseudocode for
the retrieval.

3. Process. Descriptions in structured English, pseudocode, or actual code of the
processes that take place in the module.

4. Output. All output data and their destination: another module, data store, or
external.

5. Triggered by. Identification of all the potential modules triggered by this mod-
ule. The logic for determining which module is triggered appears in the
process description.

Figure 11.5 shows a sample set of module logic with pseudocode for modules
1.0, 2.0, 2.1, 2.2, 2.3, and 2.4 of the GB Video program structure chart. The mod-
ule logic carries out the processes shown in the program structure chart in Fig-
ure 11.4 and in the conceptual DFDs in Chapter 8 and uses the data structure of
the relational schema in Figure 11.2. Many of the statements resemble actual code
in a number of procedural programming languages. Some statements use brief

Chapter 11 System Design 397

1.0 GB Video Rental and Return Switchboard
The system manager or operator triggers this module. The module contains the code
to start and restart the system and to display the main switchboard that allows the
user to select or trigger 2.0, 3.0, or 4.0

Read (function) from Keyboard
Select (function)

Case (1, Trigger 2.0)
Case (2, Trigger 3.0)
Case (3, Trigger 4.0)
End Select

End

2.0 Check and update data or enroll a new member
Triggered by 1.0
Input (I_Customer_status)
Select (I_Customer_status)

Case(Old, Perform Old)
Case(New, Perform New)
End Select

Procedure Old
Begin
Read I_Cust_No, I_Tel_No
Select * From Customer Where Customer:Cust_No = I_Cust_No or Customer: Tel_No =
I_Tel_No
Display customer data
Input any corrections to customer data
Update Customer
End

Procedure New
Begin
Read (all attributes of customer except I_Cust_No)
Set I_Cust_No = (next unused customer number)
Insert Into Customer Values ()
Print “Member Card”
End

Display message “Select Yes to proceed with a rental; No to End”
Read (I_Rent)
If I_Rent = Yes, then trigger 2.1 and send customer data
End

2.1 Input the data for a rental
Triggered and sent customer data by 2.0
Generate (I_Rental_No, I_Date)

FIGURE 11.5 Metadata for Modules of the GB Video Rental System

Page 1

English expressions that describe the desired action in place of statements that
look like code. As noted earlier, pseudocode conventions will vary from orga-
nization to organization. Figure 11.5 uses the symbol {I_Video_No} to indicate
the multivalued attribute or set of video numbers included in each rental. The
code uses singular table names in place of the plural names on the relational
schema.

Several of the pseudocode procedures are stubbed, for example, the procedure
to charge a credit card. Normally, the credit card processing company supplies
the interface specifications and/or code to use for this process. In the pseudocode
shown, each module sends all the data it uses or generates to the next module.
In an actual program, the programmer might declare the input and retrieved
variables as available to all the modules of Process 2 and eliminate the need to
keep sending data to each newly-triggered module.

398 Part Four System Delivery

Set i=1
Perform

Read (I_Video_No[i])
Set i=i+1

Until no input
Read (I-Pay_Type)
If (I_Pay_Type) = 1, then Read (I_CC_No, I_Expire)
Trigger 2.2 and send video, payment and customer data
End

2.2 Calculate cost and process payment

Triggered and sent video, payment and customer data by 2.1
Perform Calculate_charge ({Video_No}, i, Charge)
If I_Pay_type = 1, then Perform CC approval (CC_No, Charge, CC_Apv) else trigger 2.3
[Note: Calculate-charge and CC-approval processes to be coded later]
If approval denied, then End else trigger 2.3 & send all rental data
End

2.3 Create rental and lines
Triggered and sent all rental data by 2.2
Insert Into Rental Values()
Perform for j=1 to i Insert Into Line Values ()
Trigger 2.4 and send all rental data

2.4 Print a receipt
Triggered and sent all rental data by 2.3
Retrieve the video titles from Title
Perform Print-receipt
End

Page 2

Chapter 11 System Design 399

Chapter 12 illustrates the steps necessary to implement either process- or dialog-
driven designs for the GB Video system. The Microsoft Access code that imple-
ments the modules on the GB program structure chart in Figure 11.4 appears on
this book’s Web site (http://www.mhhe.com/vanhorn). While the actual code
accomplishes the same functions as the pseudocode, the actual code illustrates a
look and organization in accord with the specific technology conventions and
structures of Microsoft Access.

TIPOT Charts
A TIPOT chart (Triggered-by, Input, Process, Output, Trigger-for) offers a struc-
tured way to document module logic. The TIPOT chart (pronounced as “teapot”)
adds trigger logic, psuedocode, and more physical details to the traditional IPO
charts discussed in Chapter 5 and is often used as a requirements documentation
tool. The chart contains much of the same information as the metadata described
in the previous section but uses a table format. Each row of the TIPOT table con-
tains the data for one module. The columns of the table are described below.

1. Triggered by. The first column lists all of the possible events that the module
in this row can be “triggered by.”

2. Input. The second column describes all required data inputs and the source
of the data—external, another module, or a data store.

3. Process. The third column contains the process descriptions in structured
English, pseudocode, or actual code.

4. Output. The fourth column describes all outputs and their destination—
another module, data store, or external.

5. Trigger for. The fifth column identifies all the potential modules that the mod-
ule in this row can serve as a “trigger for.”

Table 11.1 shows a TIPOT chart for the switchboard, member, and rental
processes in the GB Video structure chart in Figure 11.4. The TIPOT chart corre-
sponds to the metadata in Figure 11.5.

DIALOG-DRIVEN SYSTEMS DESIGN

In dialog-driven systems, the actions of a user determine, in large part, the
sequence of module execution. Such standard process models as program struc-
ture charts and physical DFDs can represent adequately the processes in some
event-driven systems, for example, the GB Video Rental and Return system.
However, many field projects, for example, Web site and interactive database
applications, involve relatively simple, straightforward processing options driv-
en by user menu choices. The visual languages that support them (Visual Basic,
DreamWeaver, etc.) are organized around screens with buttons and input data
boxes on them to execute the actions the user selects. The basic modules for these
systems consist of screens or forms and the actions associated with each screen.

Possible alternative process models for the design of these classes of systems
include page navigation maps and page action maps. Navigation maps iden-
tify the screens and the way that the program can proceed from screen to screen.

400 Part Four System Delivery

Triggered By Input Process Output Trigger For

External: Function 1.0 GB Video Rental and Return P2.0

Manager or Choice P3.0

operator Source: The system manager or operator triggers this P4.0

Keyboard module. The module contains the code to

start and restart the system and to display

the main switchboard that allows the user to

select or trigger 2.0, 3.0, or 4.0

Read (function) from Keyboard

Select (function)

Case (1, Trigger 2.0)

Case (2, Trigger 3.0)

Case (3, Trigger 4.0)

End Select

End

P1.0 Customer 2.0 Check and update data or enroll a new Member Data P2.1

Request Data member Destination:

Source: Triggered by 1.0 P2.1 and Screen

Keyboard Input (I_Customer_status)

Select (I_Customer_status)

Case(Old, Perform Old) CustomerData

Case(New, Perform New) Destination:

End Select Customer

Procedure Old Table

Begin

Read I_Cust_No, I_Tel_No Member Card

Select * From Customer Where Destination:

Customer: Cust_No = I_Cust_No or Printer

Customer: Tel_No = I_Tel_No

Display customer data

Input any corrections to customer data

Update Customer

End

Procedure New

Begin

Read (all attributes of customer except

I_Cust_No)

Set I_Cust_No = (next unused customer

number)

Insert Into Customer Values ()

Print “Member Card”

End

Display message “Select Yes to proceed

with a rental; No to End”

Read (I_Rent)

If I_Rent = Yes, then trigger 2.1 and send

customer data

End

TABLE 11.1 TIPOT Chart for GB Video

Chapter 11 System Design 401

P2.0 Member Data 2.1 Input the data for a rental Rental and P2.2

Source: P2.1 Member data

Generate (Rental_No, Date) Destination:

{I- Do P2.2

Video_No} Read {I_Video_No} from scanner

Source: Until no input

Customer via Read (I_Pay_Type) from keyboard

a scanner If (I_Pay_Type) = 1, then Read (CC_No) from

mag reader

I_Pay_Type Trigger 2.2 and send Rental and Member

Source: Data

Customer via End

keyboard

CC_No

Source:

Customer via

mag reader

P2.1 Rental and 2.2 Calculate cost and process payment CC number P2.3

Member Data Destination:

Source: P2.1 Triggered by 2.1 and sent Rental and CC company

Member Data

Approve_No Perform Calculate-charge ({Video_No}, Rental and

Source: CC Charge) Member data

company If Pay_Type = 1, then Perform CC approval Destination:

(CC_No, Charge, Approve_Code) else P2.3

Video Data trigger 2.3

Source: [Note: Calculate-charge and CC-approval

Video – processes to be coded later]

External If approval denied, then End else trigger 2.3

Database & send Rental and Member Data

End

P2.2 Rental Data 2.3 Create rental and lines Rental Data P2.4

Source: P2.2 Destination:

Triggered by 2.2 and sent all rental data P2.4

Insert Into Rental Values() Rental Data

Perform for j=1 to i Insert Into Line Values Destination:

() Rental

Trigger 2.4 and send all rental data Line Data

Destination:

Line

P2.3 All Rental 2.4 Print a receipt Receipt Data P1.0

Data Destination:

Source: P2.3 Triggered by 2.3 and sent all rental data Printer

Retrieve the video titles from Title

Title Data Perform Print-receipt

Source: End

Title,

External File

TABLE 11.1 (continued)

402 Part Four System Delivery

The maps can decompose the program into families of screens. A separate ana-
lyst can then program each family with minimal interaction with other analysts.
Page action maps describe the layout and specify the actions and controls on the
screens that hold the actions.

Page Navigation Maps
As noted in Chapter 8, Web sites and other dialog-driven systems can present a
challenge for modeling. The team may wish to try using a page navigation map
to provide a graphical framework for the system design of a Web site. Page nav-
igation maps can display the navigation paths and data access requirements of
a dialog-driven system. Dialog systems, especially Web designs, include simple
text retrieval and, in some cases, processing or computational components. A
Web site that displays course descriptions is a text retrieval system that requires
little design documentation. A Web site that allows students to enroll in courses
executes some complex functions in addition to text retrieval.

The page navigation map shows each page and the major links between pages.
A page is the set of text and graphics displayed at any point in time by the Web
browser. Menus and hypertext define many text retrieval systems. A menu dis-
plays a set of options. Clicking on a word, menu option, or box transfers the sys-
tem to that location, possibly on the same page. The selection results in a control
flow with no other data. Many modern Web sites contain a basic function menu
across the top of every page that transfers from one branch of the site to another.
Frequently, another menu along the left-hand side allows the user to select the
section or function to access. The logic of these menus consists only of a simple
list of display text and reference locations.

Web sites that perform some function or process logic require additional detail
in the documentation. The page navigation map shows access to data stores
using the same table symbols that appear on a DFD. Dotted arrows indicate the
direction(s) of data flow. The general rules appear below.

1. Page. Each page of the site is represented by a rectangle. A page is the unit
available from the browser to the viewer without clicking a hyperlink. Pages
are numbered consecutively, 1, 2, . . . , n. An optional descriptor may follow
the number, for example, P1. Home Page. The page name should correspond
to the name used in the code: a form name, an html file name, or a display
routine.

2. Links. Solid lines indicate links. They show the main links from the current
page to other pages. All links are bi-directional unless the back function is dis-
abled for a particular link.

3. Menus. The letter M followed by a number inside the page box indicates a
menu. The menu numbers should be unique across the entire diagram. Menus
with links to other pages receive labels that start with an M followed by a
number (e.g., M1, M2, etc.). The menu number may be followed by an
optional descriptor (e.g., M1. Main Menu). Frequently a site has one or sev-
eral menus that appear on a number of pages. The same menu (using the same
number and name) can appear on several pages.

Chapter 11 System Design 403

4. Processes. A page may contain one or more processes on sites that allow the
user to initiate some action, such as enter data, download a data set, trans-
form data, and retrieve from or write to a database. Normally the process is
triggered by the user clicking on an action button such as “Submit,” “Place in
Shopping Cart,” or “Compute.” An action button is represented by the letter
A followed by a number—A1, A2, and so on. A process may consist of one or
more modules in accord with the rules for good module design.

For complex processes, the analyst can create a DFD, structure chart, or
FHD to represent the details of the process. Use DFD label conventions for
the modules starting from the process label. Procedures may receive data from
external sources, send data to external sinks, and store data in or retrieve data
from a data store.

5. Data store. A procedure and only a procedure may interact with a data store
to store or retrieve data. Use the DFD symbol for a data store. A graphical
data model or data schema defines the data stores as discussed in the previ-
ous section.

6. Data flows. Flows show data transfers from or to externals, between modules,
and to or from data stores. Use DFD rules and symbols, for example, all flows
must have a process (i.e., a page with an action button) at one end, and the
flows actually go to and from the process initiated by the action button. (Note:
A user click on a hyperlink or menu represents a control flow not a data flow.
A hyperlink click is not shown as a data flow from the user to the page. The
control flow may initiate a data flow, for example, cause a procedure to
retrieve data from a data store.)

7. Externals. Externals, for example, the site user or a credit card processor, are
represented by the ellipse symbol.

An illustrative page navigation map for a Web-based GB Video rental system
appears in Figure 11.6. To find out more about GB Video, the customer may click
“About GB” on the main menu and view a page that tells about GB Video and
gives branch locations and telephone numbers. Most customers probably will
want to look at the availability of and/or rent videos. To make a rental, the cus-
tomer must be a member. If the customer is not a member, he or she can become
one by clicking “Become a Member” on the main menu. On the New Member
screen, the customer fills in the customer data (see Figures 11.2 and 11.3) and
presses a Submit button. The system creates a customer record and displays the
customer number on the screen. The text asks the customer to print the screen
for a written record of the customer number.

To rent a video, the customer clicks “Rent a Video” on the main menu. Note
that the main menu (M1) appears on every page. On this page (P2), an index of
videos appears. The customer can enter a member number, date, and the title of
a desired video and click the Find button (A2). Or the customer can use the index
to find a video. For each title on the selected date, the screen shows either
“Unavailable, try again later” or “Available.” When the customer finds a desired
video, the customer clicks the Rent button (A3). The customer selects either the
pick up option or the delivery option. The system charges the credit card in the

404 Part Four System Delivery

customer’s member record. The system displays the Rental data on the screen and
invites the customer to print a hard copy. As the system is designed in Figure 11.6,
each rental is for one video, but the customer can make multiple rentals if
desired. Return and overdue functions are handled by the non-Web-based
processes described earlier in the chapter.

Combinations of design tools may provide the best graphical process model for
a site. For processes in the page map that contain more than several modules, a
page action map, program structure chart, or physical DFD for the process (or one
for the entire site) can add clarity and reduce ambiguity. A data schema model
defines and clarifies the data store structure. Metadata further describes the objects
on a Web page map in the same fashion as other graphical process models.

Page Action Maps
A page action map describes screen layout and actions and thus can complement
the page navigation map that displays pages, data flows, and screen actions. The
page action map provides a sense of the layout or the code specifications for
actions, displays, or links on each page. Typical pages on an interactive system
contain some of the following components:

• Pictures that display static graphics such as a company logo.

• Display fields that show the contents of some attribute or file.

FIGURE 11.6 Page Navigation Map for the GB Web-based Rental System

P1. frmHomePage

M1. Main Menu

P2. frmMemberPage

M1. Main Menu
A1. Submit data

P3. frmRentalPage
M1. Main Menu
A2. Find a Title
A3. Rent Video

P4. frmAboutGBPage

M1. Main Menu

Customer
Rental
Data

Rental Data

Member
Number

Customer
Data

Member
Data

Member
Data

Request
Data

Video
Availability
Data

Customers DS Videos DS Rentals DS

• Links that connect to different locations in the system without passing or stor-
ing information.

• Controls that contain the code to execute some code or logic. Controls include
buttons, action tabs, and entry fields.

• Events that trigger control action. Typical events include “click,” “double-
click,” and “get focus.”

An action map indicates where these components should go and what they
should do. Legacy mainframe systems documented these features with
detailed character charts that specified exactly where each character, field, or
symbol would be displayed. Modern GUI-developed systems are seldom that
precise.

The page action map in Figure 11.7 shows an illustration for page P2, frm-
Member Page from the page navigation map in Figure 11.6. The layout of the
action diagram corresponds to the way that a designer might lay out the page.
The GB logo goes in the upper left corner. Menu M1 appears below the logo. D1
is a data entry area in which the customer enters name, address, and other data.
The rectangles at the bottom stand for action buttons that cause the following
actions when the user clicks on a button:

• cmdNewMember. Set up D1 to accept the member data from the user.

• cmdModify. Allow the user to modify the member data stored in the system.

• cmdClear. Clear all existing data from D1.

• cmdSubmit. Send the data in D1 for processing.

• cmdClose. End the actions on the member page.

Chapter 11 System Design 405

FIGURE 11.7 Page Action Map for the GB Video Member Screen

GB Video Logo

M1

cmdNewMember cmdModify cmdClear cmdSubmit cmdClose

D1

406 Part Four System Delivery

M1 contains links to frmHomePage, frmMemberPage, frmReservationPage,
frmAboutGBVideoPage

P2. frmModify

GBVideoLogo links to the image located at C:/GBVideo/Images/Logo

D1 contains individual text boxes linked to records from table Customer. Initial dis-
play should have Customer locked. Display should locate record matches for:

Cust_No
Tel_No
Partial letter entries for L_Name

Boxes display:
Cust_No. Text = Customer Number.
F_Name: dropdown. Text = First Name.
L_Name: dropdown. Text = Last Name.
Ads1. Text = Address.
Ads2. Text = Address.
City. Text = City.
State. Text = State.
Zip. Text = ZIP Code.
Tel_No. Text = Telephone Number.
CC_No. Text = Credit Card Number.
Expire. Text = Card Expiration Date.

cmdNewMember is a command button. Display regular. Status active. Text =
New Member.

(on click)
Present a blank customer record in D1 with an auto-generated Cust No for
user entry. Values should not be committed to the Customer table unless the
Submit button is activated.
Set display of cmdClear and cmdSubmit to regular.
Set display of Modify to shadow.
Set status of cmdClear and cmdSubmit to active.
Set status of cmdModify to not active.

cmdModify is a command button. Display regular. Status active. Text = Modify.
(on click)

Unlock the display D1 for modification of all attributes except
Cust_No. Values should not be committed unless the Submit
button is activated.
Set display of cmdNewMember to shadow.
Set display of cmdClear and cmdSubmit to regular.
Set status of cmdNewMember to not active.
Set status of cmdClear and cmdSubmit to active.

FIGURE 11.8 Metadata for frmMemberPage

Page 1

Chapter 11 System Design 407

cmdClear is a command button. Display shadow. Status not active. Text = Clear.
(on click)

Roll back any changes in D1.
Display current record from Customer.

cmdSubmit is a command button. Display shadow. Status not active. Text = Submit.
(on click)

Commit the values in D1 to table Customer.
Display current value of Customer.

cmdClose is a command button. Display regular. Status active. Text = Clear and
Close.
(on click)

Close frmModify.
frmModify

(on open)
Display blank values in D1
Set status of cmdNewMember, cmdModify, cmdHome to active.
Set status of cmdClear, cmdSubmit to not active.
Set display of cmdNewMember, cmdModify, cmdHome to regular.
Set display of cmdClear, cmdSubmit to shadow.

(on close)
Roll back values in D1.

Page 2

Each of the structures is described in more detail in the metadata. The labels on
the diagram and the descriptions use the names for forms and controls that will
appear in the actual code.

In some cases the design team may take a prototyping view of page design
and create the page before providing specifications for it. In those cases, the
design documentation can consist of copies of the screens the team built with
labels for each of the structures on the screens and corresponding descriptions
in the metadata for each label.

Page Navigation and Action Map Metadata
As noted previously, metadata should communicate with a competent pro-
grammer who is familiar with the language in which the system is written.
The documentation need not spell out how to create a control or display; rather
the documentation indicates what the programmer should do. The metadata
can consist of an abbreviated set of instructions for the page, written in terms
that fit the language. Figure 11.8 illustrates possible metadata for page P2 in
Figure 11.7.

408 Part Four System Delivery

DATA WAREHOUSE DESIGN

A data warehouse is the name for an information system that contains archived
operational and related data used to make organizational decisions. Data ware-
houses support ad hoc queries and “what-if” decision analysis using data to
identify problems or discover opportunities in time to take advantage of the
information. The users query the data to gain insight for strategic and tactical
decisions. Because data warehouse updates typically occur in batch mode, nor-
malization offers little advantage and massive indexes are sustainable.

Dimensional Models
Data warehouse designs follow a dimensional model rather than a relational
model. The dimensional modeling principle derives from work done at about
the same time as work on relational databases. Kimball and others, 1998, and
Inmon and Inmon, 2002, expanded and refined the original work and have
pioneered modern data warehouse thinking. Dimensional models strive to max-
imize user understanding and ease of retrieval. The typical dimensional struc-
ture, a data mart, is designed around a central fact table that contains numeric
values for analysis and dimension tables for keeping track of properties that
determine categories and groupings. The head of GB Video might want a sys-
tem that will allow him to examine the rental patterns of members so that GB
can create more attractive packages and better manage video purchases and
inventory levels. A data mart provides a tool to address this request.

Figure 11.9 shows the diagram for a data mart derived from the data model
used by the GB Video rental system. The data in the data mart:

• Come from the everyday processing of video rentals and returns; and

• Support managers who analyze the data to learn about the rental behavior of
customers.

The fact table “Line” is generated from the table with the same name in the GB
Video rental system. The fact table contains “facts” that describe properties of
each rental line and foreign keys that connect the fact records to records in asso-
ciated “dimension” tables. Dimension models can be implemented directly in
relational database engines and queried by SQL statements. More specialized
models are implemented in multidimensional data cubes and retrieve data with
spreadsheetlike queries.

The rules for converting the conceptual data model diagram for the GB rental
proposed system shown in Chapter 8 into a data mart proceeds as follows:

1. Select an associative entity to define the central fact table for the mart. If there is
more than one associative entity in the ER diagram, the system probably will
generate more than one potential data mart. The records in the table that cor-
respond to the associative entity define the grain of the fact table. The designer
should explicitly describe what that grain is in operational terms. In this case
the grain of the mart is, “An individual video rental line describing a specific
video rented as part of a specific rental.”

2. Replace all primary keys in data mart tables with artificially generated surrogate keys.
Using the original primary keys raises potential problems because the data mart
may span a longer time period than the operating database. For example, GB
Video might reuse rental numbers each year without causing any confusion in
the operational database. If the data mart contains data from several years,
duplications will occur in the original primary keys. For this reason, a good data
mart replaces the operational primary keys. Once the surrogate keys have been
inserted into the tables, the original primary keys become redundant. However,
the team may wish to retain the primary keys in case the need arises to research
the origin of some entries after the mart is in place.

Surrogate keys are generated in a surrogate key index table for each dimen-
sion table in the final design. This table has three columns: the original primary
key, the automatically generated key, and the permanent surrogate key. The
automatically generated key column allows an automatic numbering function
to continue generating keys as processing continues and rows are added to the
dimension tables. These numbers will not be duplicates. If two different pri-
mary key values in the transaction system refer to the same thing, the third
column can be adjusted to preserve the same surrogate key. If primary key val-
ues are reused over time, the designer may have to manage them separately.

Chapter 11 System Design 409

FIGURE 11.9
Data Mart for
GB Video
Rentals

Line

CustID
AddressID
RentalID
TitleID
RentalDateID
DueDateID
ReturndateID
ODCharge
OneDayCharge
ExtraDaysCharge
WeekendCharge
DaysReserved
DaysOverdue
VideoNo

Customer

CustID
CustNo
FName
LName

Rental

RentalID
RentalNo
ClerkNo
Store
PayType

Video

VideoID
VideoNo

Rental Date

RentalDateID
SQLDate
Day
Week
Quarter
Holiday

Address

AddressID
Address1
Address2
City
State
Zip
AreaCode
Phone

Title

TitleID
TitleNo
Name
Cost
VendorName

Due Date

DueDateID
SQLDate
Day
Week
Quarter
Holiday

Return Date

ReturnDateID
SQLDate
Day
Week
Quarter
Holiday

410 Part Four System Delivery

3. Create dimension tables from all the entities that relate to the central fact table by pro-
moting foreign keys into the fact table. In a relational database, a foreign key in
the Rental table expresses the relationship connecting records in the Customer
table to individual Rental occurrences. In a data mart, adding the foreign key
for customer for each rental into the Line table maintains the information con-
tent and makes for a simpler query structure. This action denormalizes the
table, that is, it creates a second normal form violation in the Lines table; how-
ever, it simplifies the structure and operation of the data mart.

4. Promote dates to the fact table and create a date dimension to replace the actual date
value. The date dimension should contain the date from the operational file
but also should contain properties of the date that are important for under-
standing. Retrospective analysis often requires grouping values by data prop-
erties that are difficult to derive from the SQL data stored in the transaction
system. Questions such as “How many sales were made on Mondays?” or
“Which holiday had the most video rentals?” require a complicated algorithm
to compute date information from the standard date representation. In a data
mart, date attributes of interest are generally precalculated.

When the data contain several dates, as in the GB Video example, the fact
table should contain a surrogate key for each date. The actual database should
implement these several copies of the date dimension as views or virtual
tables. This action both saves space and makes the generation of date attrib-
utes more consistent.

5. Identify the facts in the fact table. Facts are attributes that describe the records
in the fact table. The most significant facts are numeric and additive. Additive
facts are those that can be added up across records and still have meaning. In
sales marts like the GB Video mart, the most common facts are amount and
quantity. Most order systems can record price, quantity, and amount. Price,
for example, is not additive, but quantity and amount are. In the GB Data
Mart example, the overdue charge is an additive fact. One-day fee, extra days,
and weekend are not additive. The mart designer converted these into
ODCharge, OneDayCost, ExtraDayCost, and WeekendCost and moved them
from the Video table into the fact table. The designer also added DaysReserved
and DaysOverdue by calculating the duration of the rental from the dates in
the system. The new attributes are additive facts; they precalculate useful
information and make it easier to derive price, if necessary.

The promotion of pricing information from the Video table into the Line
table also solves another problem. Prices for videos often change as they get
older. Hot new titles command a higher fee than old classics. Entries in dimen-
sion tables do not change over time. Values in the fact table represent the
actual costs as they change over time.

6. Identify the attributes in the dimension table. Attributes are properties that are rele-
vant to the purpose of the mart. These attributes are usually text or categorical
variables. Occasionally numeric variables appear as attributes in dimension tables
when there is no expectation of doing arithmetic with the values. Attributes that
are irrelevant or that might provide a security risk should not be included. For
that reason, credit card number and expiration date do not appear in the mart.

In addition to keeping existing attributes, the designer should replace codes
with useful values. That is why the vendor number has been replaced with
VendorName in the Title table. The Store attribute has been added to the rental
table so that reports can be generated by store if needed.

7. Manage slowly changing attributes. A slowly changing attribute is an attribute in
a dimension that will change over time but much less frequently than values in
the fact table do. If these values change frequently then they should be included
as attributes in the fact table, in essentially the same way that the OneDayCost,
ExtraDayCost, and WeekendCost were included in the fact table rather than the
Video table. Customer address is another situation. Address may change, but it
would be a waste of space to include it in the fact table. There are three ratio-
nal approaches called Type 1, Type 2, and Type 3 approaches.

Type 1: Keep only the current values.

Type 2: Create another table to keep each change.

Type 3: Add an attribute to the dimension table to keep the previous value.

The choice depends on the purpose of the mart. In the GB Video case it would
be useful to understand where sales have come from based on where the cus-
tomer lived at the time of the rental. The design discussed above treats
address as a Type 2 variable, which is why there is a separate address table.

8. Remove unnecessary dimensions. Dimensions that are left with only a single
attribute serve no useful purpose and take space and processing power in the
fact table. In this example, the Video dimension that originally contained
information about the individual tape has only the VideoNo attribute in it.
Since that attribute has no value to the purpose of the mart, the designer has
chosen to omit that dimension.

The data mart for GB Video in Figure 11.9 contains essentially the same infor-
mation as the CDM for GB Video but follows a different structure tailored to its
purpose. The dimensional model is heavily denormalized to improve retrieval
performance.

Data Warehouse Metadata

Metadata on the GB Video data mart appear in Figure 11.10 using the format
from Kimball (1998).

The Extraction-Transform-Load Process

Once a data mart is designed, the team must populate it with data and must
establish an ongoing process to maintain the data in correct form. This process
is called the extraction-transform-load (ETL) process. Extraction refers to the
processing necessary to extract data from the source systems into a work area
where it can be prepared for the final data mart. The transform process includes
any edit or cleansing routines as well as the structural transformations (generating
surrogate keys, creating additive facts, splitting compound attributes) necessary
to generate data in the new form. Finally, the load process involves inserting the
appropriate data into the warehouse for use.

A data flow for a typical ETL process is shown in Figure 11.11. As indicated
by the table references in the diagram, much of the metadata for the processes

Chapter 11 System Design 411

412 Part Four System Delivery

1. A description of data sources.

Organization IT Data Source

Source Owner Owner Platform Location Description

GB Video Operations IT Director Corporate Home Office GB system for

Rental Server transaction

System processing.

2. A description of the source to target extraction tables used to create the initial
source for editing. These working tables are similar to the ultimate presentation tables
in the data mart. They contain data in the same format as the source system.

Target Target Column Data Len Target Column Source Source Source Col / Data

Table Type Description System Table Field Txform

/ File Notes

Customer CustID Integ 16 Surrogate

Customer CustNo Num 8 Old primary Rental Customer Cust_No

key

Customer FName Text 20 First Name Rental Customer F_Name

Customer LName Text 30 Last Name Rental Customer F_Name

Address AddressID Integ 16 Surrogate

Address CustNo Num 8 Customer Rental Customer Cust_No Delete

primary key after

surrogate

key

Address Address1 Text 40 Address line 1 Rental Customer Ads1

Address Address2 40 Address line 1 Rental Customer Ads2

Address City 25 City Rental Customer City

Address State 25 State Rental Customer State

Address Zip 10 ZIP Rental Customer ZIP

Address Phone Integ 10 Customer Rental Customer Tel_No

Phone

Rental RentalID Integ 16 Surrogate

Rental RentalNo 16 ID for rental Rental Rental Rental_No

receipt

FIGURE 11.10 Metadata for the GB Video Data Mart

Page 1

Rental ClerkNo 16 Clerk employee Rental Rental Clerk_No

number

Rental Store 40 Store Name External Look Up

Rental PayType 25 Method of Rental Line Pay_Type

payment

Title TitleID Integ 16 Surrogate

Title TitleNo Text 10 Video Primary Purchasing Title Title_No

Key

Title Title 70 Video Title Purchasing Title Title

Name

Title Cost Curr 10 Video cost Purchasing Title Cost

Title VendorName Text 50 Supplier for Purchasing Vendor Vendor-

video titls Name

Line CustID Integ 16 Customer SK Surrogate

Line AddressID Integ 16 Address SK Surrogate

Line RentalID Integ 16 Rental SK Surrogate

Line TitleID Integ 16 Title SK Surrogate

Line CustNo Text 8 Customer Rental Rental Cust_No Delete

Original after

Foreignoriginal Replace

Key with

surrogate

Line RentalNo Rental original Rental Line Rental_No Delete

foreign key after

Replace

with

surrogate

Line TitleNo Title original Purchasing Video Title_No Delete

foreign key after

Replace

with

surrogate

Line ODCharge Curr 12 Charge for Rental Line OD_Charge Delete

overdue returns after

transform

process

Chapter 11 System Design 413

Page 2

Line OneDayFee Curr 12 Daily fee for Rental Comvideo One_Day_ Delete

the first day Fee after

transform

process

Line ExtraDayFee Curr 12 Daily fee for Rental Video Extra_Days Delete

each day after Comvideo after

the first transform

process

Line WeekendFee Curr 12 Premium Rental Comvideo Weekend Delete

charged for after

weekend days transform

process

Line OneDayCharge Curr 12 One-day charge Calculate

for video

Line ExtraDaysCharge Curr 12 Charge for days Calculate

after the first

Line WeekendCharge Curr 12 Premium for Calculate

weekend use

Line DaysReserved Integ 8 Number of days Calculate

reserved

Line DaysOverdue Integ 8 Number of days Calculate

overdue

Line RentalDateID Integ 16 Date surrogate Surrogate

for rental date

Line DueDateID Integ 16 Date surrogate Surrogate

for due date

Line ReturnDateID Integ 16 Date surrogate Surrogate

for return date

Line SQLRentalDate Date 20 Rental date Rental Rental Date Replace

with

surrogate

Line SQLDueDate Date 20 Due date Rental Line Due_Date Replace

with

surrogate

Line SQLReturnDate Date 20 Returned date Rental Line Return_Date Replace

with

surrogate

Date DateID Integ 16 Surrogate

414 Part Four System Delivery

Page 3

Chapter 11 System Design 415

Page 4

Date SQLDate Date 20 SQL date value Calculate

Date Year Int 4 Year Calculate

Date Day Text 1 Day of week Calculate

Date Week Integ 4 Week of year Calculate

Date Quarter Integ 4 Quarter of year Calculate

Date Holiday Text 30 Holiday Name Calculate

3. A description of the transformation analysis needed to clean or reformat the

source data.

Derived Fact Name Type Agg Transfor-

Derived Fact Description Rule Formula Constraints mations

ExtraDaysCharge Charge for additional (Extra_Days)*

reserved days (DaysReserved 1)

WeekendCharge Additional charge for Weekend*(If reserved

weekend use over weekend)

DaysReserved Total days reserved Due_Date

Rental_Date

DaysOverdue Days kept in addition to Return_Date Due_

reserved days Date

4. A description of the ultimate data mart tables.

Table Name Column Name Data Len Column Description PK

Type Nulls? PK Order FK

Customer CustID Integ 16 N Y 1

Customer CustNo Num 8 Old primary key

Customer FName Text 20 N First Name

Customer LName Text 30 N Last Name

Address AddressID Integ 16 N Y 1

Address Address1 Text 40 Address line 1

Address Address2 40 Address line 1

Address City 25 City

Address State 25 State

Address Zip 10 ZIP

Address AreaCode Integ 5 Customer Area Code

Address Phone Integ 7 Customer Phone

Title TitleID Integ 16 N Y 1

Title TitleNo Text 10 Video ID from Rental

System

Title Name 70 Video Title

Title Cost Curr 10 Video cost

Title VendorName Text 50 Supplier for video title

Line CustID Integ 16 N Surrogate for Y 1 Y

Customer

Line AddressID Integ 16 N Surrogate for Address Y 2 Y

Line RentalID Integ 16 N Surrogate for Rental Y 3 Y

Line TitleID Integ 16 N Surrogate for Title Y 4 Y

Line RentalDateID Integ 16 N Date surrogate for Y 5 Y

rental date

Line DueDateID Integ 16 N Date surrogate for Y 6 Y

due date

Line ReturnDateID Integ 16 N Date surrogate for Y 7 Y

return date

Line DateID Integ 16 N Date surrogate for Y 11

rental date

Line ODCharge Curr 12 Overdue Charges

Line OneDayCharge Curr 12 One day charge

Line ExtraDayCharge Curr 12 Charge for an extra

day

Line WeekendCharge Curr 12 Charge for weekend

rental

Line DaysReserved Integ 8 Number of days

originally reserved

Line DaysOverdue Integ 8 Days overdue when

returned

Rental/ Due/ SQLDate Date 20 N

Return Date

416 Part Four System Delivery

Page 5

Rental/ Due/ Year Int 4 N Year

Return Date

Rental/ Due/ Day Text 1 N Day of week

Return Date

Rental/ Due/ Week Integ 4 N Week of year

Return Date

Rental/ Due/ Quarter Integ 4 N Quarter of year

Return Date

Rental/ Due/ Holiday Integ 4 Holiday Name

Return Date

Chapter 11 System Design 417

Page 6

FIGURE 11.11 ETL Data Flow for a Data Mart

Extract
Data
(Table 2)

Insert
Surrogate
Keys

Transform
Data
(Table 3)

Load Data
into Mart
(Table 4)

Generate
Surrogate
Keys

Source
Tables

Working Tables

Data Mart

Surrogate Tables

418 Part Four System Delivery

is contained in the tables. The diagram describes the operational sequence nec-
essary to actually load the data mart. The transformations described here are
quite simple and do not include any attribute reformatting or data editing that
may be needed. In practice, data preparation might be quite extensive and lead
to an expansion of the Transform Data process into a complex subprocess.

Summary System design focuses on program architecture and the interaction of programs
with the physical and organizational infrastructure in which the programs will
operate. Unlike the conceptual solution specifications discussed in Chapter 8,
system design addresses conceptual, logical, and physical issues within the
structure of the specific technologies and organizations that the system plans to
employ. The selection of the technologies for a system is an art and often depends
on personal preferences and/or organizational policies. For example, some peo-
ple prefer procedural languages and design while other believe that object-
oriented design works better for many applications.

The goal of system design is to create detailed specifications that will enable
programmers to write and maintain correct and complete code for the proposed
system. Good design documentation should communicate to an experienced
developer the information that he or she needs to write and/or maintain the
code. The documentation specifies fully how the program works in an easy-to-
follow format. The content of the documentation depends both on the system
content—data, process, and physical and organizational infrastructure, and on
the design approach selected by the team. Design documentation matches the
conceptual specifications for the program to the logical and physical specifics of
the program environment. Good design and documentation work together to
simplify the coding and maintenance process.

System design utilizes the most detailed models of the systems solution
process. Because system design takes place at a detailed level in a specific tech-
nological and organizational environment, the appropriate models depend on
the environment. For example, such process models as program structure charts
may work well for applications implemented in procedural languages. Other
models may better represent such applications as Web sites and data warehouses
or such approaches as object-oriented design.

During system design, the team reviews each of the content areas and adds
content or detail to arrive at a complete design that when operational will solve
the problem posed by the client. System design activities may include the prepa-
ration of specifications and models for:

• Physical infrastructure. Defines the hardware and software as appropriate to
facilitate performing the activities of the new system.

• Organizational infrastructure. Modifies the organization as needed to match
the functioning of the new system.

• Data. Converts the conceptual data model into such a graphical data design
as a relational schema with the associated metadata.

• Process. Expands the conceptual process model to specify the detailed system
logic with graphical models and metadata.

Chapter 11 System Design 419

The appropriate documentation for a system depends on the nature or function
of the system. Design documentation for process-driven systems may include a
DFD or program structure type process model and metadata. Most Web and visual
applications are dialog driven. Such user-activated events as key strokes and
mouse clicks determine the sequence of actions executed by the program. Design
documentation may include page navigation maps, page action maps, and detail
process models for screens that execute processes other than navigation.

Most designs involve modules—a related group of logic or program state-
ments. Program structure charts and physical DFDs directly show modules. Page
navigation maps may contain modules associated with actions for a page. In
OOD, modules appear as operations and their related messages. Good design
strives to create modules with high cohesion and limited coupling, primarily
data coupling. The logic of modules is specified in terms of triggers, input and
output, and code or pseudocode for the processes in the module. Pseudocode
provides a standardized framework for describing process logic that a pro-
grammer can translate into program code.

Data warehouses provide read-oriented database structures for such functions
as reporting and strategic data exploration. Documentation for a warehouse may
include source data, source to target extraction tables, data mart diagrams and
tables, transformations to clean and reformat data, and ELT process diagrams.

Key Terms central fact table, 408
cohesion, 390
coupling, 390
data-driven, 387
data mart, 408
data types, 383
data warehouse, 408
dialog-driven, 387
dimensional

model, 408

extraction-transform-load
(ETL), 411

link, 402
maintainability, 376
menu, 402
module, 387
module cohesion, 376
module coupling, 376
network, 378
page action map, 399

page navigation map, 399
physical data flow

diagrams, 389
program structure chart

(PSC), 387
pseudocode, 392
security, 378
structured code, 376
surrogate key, 409
TIPOT chart, 399

Review
Questions

Answer the following questions regarding these topics.

1. Design documentation.

a. Who is the audience for good design documentation?

b. How does design documentation differ with different development environments
or languages?

2. Design components.

a. What should design provide specifications for?

b. What are the goals of good design?

3. Good design.

a. What are some design rules that lead to code that is easy to maintain?

b. How does design support allocation of workload to more than one person?

c. What are the critical organization roles that a design team should identify?

420 Part Four System Delivery

4. Data.

a. What are the components of a complete data model?

b. How does a design model for a database differ from an analysis model (CDM)?

c. What metadata should be supplied for data in the design?

5. Process.

a. What are program structure charts, physical data flow diagrams, object schema, and
page navigation maps?

b. What is the difference between process-driven, data-driven, and dialog-driven
design? Why might the documentation requirements be different?

6. Modules.

a. What are coupling and cohesion?

b. What are guidelines for good structured modules?

7. Pseudocode.

a. What is pseudocode?

b. What are the basic functions described by pseudocode statements?

c. What is a TIPOT table?

d. What is a stubbed procedure module?

8. Dialog-driven systems.

a. What does a page navigation map show?

b. What does a page action diagram contain?

9. Data warehouses.

a. How does a data warehouse differ from a process-driven system?

b. How does a dimensional model differ from an ERD?

c. What is the ETL process?

Individual Exercises
1. For the logic in Process 3.0

a. Prepare the metadata.

b. Show the metadata in a TIPOT table.

2. Complete design documentation for GB Video

a. Using process-driven forms.

b. Using dialog-driven forms.

Group Exercises
1. Use the Motor Vehicle Pool case in Chapter Three for the following questions.

a. Produce a program structure chart. Use correct numbering and naming conventions.
Indicate any data that flow among modules. Prepare the relational schema for the
design.

b. Provide complete design documentation for the Return a Vehicle process mod-
ules in expanded IPO format. Include appropriate triggers, input, process, out-
put, and triggered events. Write a pseudocode (or similar) descriptions of the
process logic.

Critical
Thinking
Exercises

2. The administration for the Motor Vehicle Pool wants to create a data warehouse to
track vehicle use. Questions include

• How far has each vehicle been driven each month?

• What are the number of rentals, total miles, and total charges for each department
each month?

• What is the total mileage on each vehicle?

Data warehousing specialists have designed the following structure for the data mart.

a. Draw a data flow diagram for the update process (ETL) for the data mart.

b. Provide complete design documentation for the Load Data into Rental process.
Include appropriate input, process, and output. Write a pseudocode (or similar)
description of the process logic.

c. Write pseudocode (or SQL) to retrieve “Total miles rented by each Customer
Department each month” from the data mart.

3. OSU has decided to move the reservation part of the rental system to the Web. They
have indicated that they want a home screen for the rental program that includes a
description of the department and the mission of the program. From that page they
want to be able to select a Vehicles Owned sheet that describes the types of vehicles
available and their rate. They also want a Rent Vehicles screen that allows customers
to reserve a vehicle for rental. The Vehicles Owned link brings up a MS Word docu-
ment called Vehicles.doc stored in the folder OSURental on the OSU administrative
server. The Rent Vehicles link goes to a screen that allows users to browse and reserve
vehicles. The screen should operate as follows. The customer enters his or her Name,
Telephone, Address, Department, and departmental Account_no. Once the account
number has been verified (customer is on a list of people authorized to rent on the
account) the screen displays a box for the desired Date/Time_in and Date/Time_out.
When this information is entered, the system displays a list of all vehicles available
(LicPlateNo, Make, Model). A vehicle is available if there is no rental record for that
vehicle that overlaps with the rental time requested. The customer clicks on a vehicle
and the system records a rental entry for that vehicle and customer.

a. Draw a Web map to track the navigation through the system.

b. Draw a screen layout for the Rent Vehicles screen. Include any trigger buttons you
need.

c. Provide complete design documentation for the Rent Vehicle process. Include
appropriate input, process, and output. Write a pseudocode (or similar) description
of the process logic.

Chapter 11 System Design 421

RENTAL

RentalNum
LicPlateNo
Date/Time_out
CustDepartment
VehicleMake
EndingMileage
MilesDriven

VEHICLE

Make
Model
Rate
LastMileage

422 Part Four System Delivery

References
Demarco, Tom. Structured Analysis and System Specifications. Upper Saddle River, NJ:
Prentice Hall, 1978.
Inmon, W. H. Building the Data Warehouse. 3rd ed. New York: John Wiley & Sons, 2002.
Kimball, Ralph; Laura Reeves; Margy Ross; and Warren Thornthwaite. The Data
Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing, and Deploying Data
Warehouse. New York: John Wiley & Sons, 1998.
Yourdon, Edward; and Larry Constantine. Structured Design: Fundamentals of a Discipline
of Computer Program and Design. Englewood Cliffs, NJ: Yourdon Press, 1986.

Chapter Twelve

423

Introduction

Types of POC Models

Package POC Models

Prototype POC Models

Using a POC Model

Evaluating Operational Feasibility

Examining Functionality

Examining Usability

Evaluating Design Parameters and

Compatibility

Prototype-Based Design

Building a Prototype

Choosing a Focus

Evolutionary Model Issues

Model Content Issues

Making Initial Design Decisions

Generating Code

Schedules and Assignments

Coding and Design Specifications

Control Flow

Data Model

Naming

Data CURD Operations

Logic

Effective Coding

A GB Video Prototype

Creating the Tables

Creating the Table Design

Creating Table Relationships

Populating the Tables

Coding the GB Prototype

The Switchboard

frm20CreateOrUpdateMemberData

frm21InputCustomerAndVideoDataFor-

ARental

frm22ReceiveCashCheckOrPostACC-

Transaction

Module23CreateRentalAndLines

frm24PrintAReceipt

Summary

Key Terms

Review Questions

Critical Thinking Exercises

Individual Exercises

Group Exercises

Proof of Concept
Chapter outline

424 Part Four System Delivery

INTRODUCTION

A proof of concept (POC) model provides a representation of the final appli-
cation software for a project that allows the team and client to directly observe
some characteristics of the system. POC models exist in operational and static
versions. An operational proof of concept model converts inputs into outputs,
stores and retrieves data, and exercises some or all of the processes in the sys-
tem. A static POC model illustrates the outputs that result from a predefined set
of sample inputs. Sometimes an actual system produces the output that corre-
sponds to each input; at other times an analyst generates the outputs. The model
only demonstrates the relationship between the predefined inputs and the cor-
responding outputs. The client cannot suggest inputs and see the resulting out-
puts in real time.

Most of the analysis and design tools used in the earlier stages of the SDLC
are not operational models. A DFD provides a nonoperational graphical repre-
sentation of how a system transforms inputs to outputs. DFDs, while helpful
tools, may contain ambiguity, errors, or omissions that remain undetected until
the system begins to operate. Operational models provide a much higher confi-
dence level that selected aspects of a proposed system do or do not operate as
designed and/or as expected. Whenever possible, the team should use an oper-
ational POC model.

A proof of concept model may serve one or more of the following purposes:

• To verify operational feasibility.

• To improve or refine the system specifications.

• To evaluate compatibility with a physical infrastructure.

• To confirm system design parameters.

Operational feasibility assesses the impact of the solution on the way the orga-
nization wishes to operate. The team often uses a POC model to verify the oper-
ational feasibility of the proposed system—to demonstrate to the client and the
project team how a system based on the design specifications actually will per-
form. The proposed system specifications process described in Chapter 8 focuses
on determining the features for the new system. Operational feasibility evaluates
how and whether or not these features work together to solve the client’s prob-
lem. While operational models provide more confidence, static POC models can
help the team to explore some aspects of operational feasibility.

A POC model can demonstrate the two basic components of operational fea-
sibility: functionality and usability. To test functionality, the analyst or client can
present typical external inputs and let a POC model transform the inputs, for
example, update data stores, trigger processes, and/or produce external outputs.
The team and the client observe the POC model to determine whether all of the
desired features are included and work as intended. In addition to demonstrat-
ing function, many POC models also demonstrate the usability of a system—
how easy or satisfying or “likable” the system appears to users. Usability become
clear only with a physical representation of the system. For example, users want

the functions that they use together to appear in a group on an input display.
Users also want clear, informative display labels and help displays in the lan-
guage they use for their work. Users want easy ways to generate reports with
good summaries and graphics. A proof of concept model gives the client, users,
and team an opportunity to explore these usability issues.

A proof of concept model can help the team and client to refine and improve
the system specifications. Observing system operation and seeing actual output
often generates ideas that neither the clients nor the team thought of in advance.
While clients often find developing specifications difficult in the abstract, they
know what they want and what they like and dislike when they see it. Many times
clients identify some of the essential requirements and mandatory features only
after they interact with the POC model. The proof of concept model allows the
team to identify these additional issues prior to a final procurement or build action.

The team can use an operational POC model to confirm some of the system
design parameters if and when the POC representation contains the fully func-
tional design structure of the final system. With these models, the team can do
such things as test the database design, exercise import and export functions, or
check the module call sequences. However, some proof of concept models stub
parts of the logic and processing behind the input/output (I/O) interfaces that
are most important to the client and users. These I/O focused models may not
allow the team to confirm many of the design parameters for the final system.

In selected cases, an operational proof of concept model, particularly a POC
version of a purchased system, will allow the team to evaluate how well the pro-
posed system will interact with the organization’s infrastructure. Purchased sys-
tem vendors may provide trial systems that are a limited functionality version
of the production system. Installing and operating the trial system can give the
team a first reading on whether the existing infrastructure will interface with the
proposed product. However, the trial system may not offer much insight on such
system performance issues as response time under load.

The next part of the chapter discusses package and prototype POC models and
the use of POC models. The final materials discuss building POC prototype mod-
els and illustrate the steps to build a GB Video POC model in Microsoft Access.

TYPES OF POC MODELS

Proof of concept models consist of two major categories, prototypes and pack-
ages. The team builds a prototype POC model; the team sets up and populates
a data schema and writes the program code. The prototype contains a data
schema either identical to the final system or a close approximation. The code
for the prototype may simplify or even omit parts of the final system code as
long as the prototype meets the basic POC criterion by demonstrating the trans-
formation of key inputs to outputs for the client and the team.

When the team recommends that the client purchase a package, either the
actual package or a demonstration version of it may serve as the POC model.
Most vendors will provide a version of their product for demonstration purposes:

Chapter 12 Proof of Concept 425

426 Part Four System Delivery

the actual package, a demonstration version, a Web version, or a set of screen
shots. A package POC model may require substantial work by the team before
it will operate correctly or at all. If no trial version of the package is available,
the team may create a prototype to demonstrate the features of the package to
the client.

In certain cases, the team may be forced by circumstances to use a simulated
POC model. A simulated POC model, a static model, consists of actual or fab-
ricated screen shots or forms for input and output that tell a consistent story.
Using the design specifications for the system, the inputs should produce the
corresponding outputs. With this approach, the team shows and explains the
sample input and then shows and explains the output that is expected. This
approach can show the client what to expect, but gives up the major advantages
of operational models—the confidence that the system works as intended. When
a package vendor provides actual screen shots, the team and client can increase
their confidence that the system actually works as pictured by talking with other
users of the package.

When the team fabricates screen shots for the simulated POC model and no
operational version actually exists, the POC provides little confidence that the
final system will work as expected. A prototype that represents the I/O dialog
correctly but uses mostly stub modules and report generators is another varia-
tion of a simulated POC. These models accept realistic input and produce rep-
resentative output but may not use any of the logic or data structure for the
actual proposed system. The team should use a simulated POC model only as a
last result when an operational POC model is not available or is beyond the limit
of available team resources. The team may be unable to obtain a demo package
or may not have the skills and time to build a prototype.

Package POC Models
When the recommended solution specifies a package program, the team fre-
quently can demonstrate some version of the package as a POC model. The
amount that the team can learn from a demonstration version depends on what
the vendor will provide and on the complexity of installing the package. A ven-
dor may offer the following:

• A fully functional system on a short-term trial basis. Some vendors will pro-
vide a full version of their package with a limit on use to demonstration pur-
poses for a specified period of time.

• A limited function system available for trial use. The demonstration version
may contain such restrictions as limits on file sizes and simultaneous user
access to prevent the demonstration from being used as the final system.

• Remote (often Web) access to a demo package that may or may not be cus-
tomizable or operational. Some vendors provide access only to a static demo that
shows screen shots for a sample set of input and for output reports that corre-
spond to the sample input. This type of nonoperational demo provides a less
helpful POC than operational demos, but may be the only version available.

Demo versions of packages may include a set of sample data in the form of tables
already populated with some data. Sometimes, but not always, the team can cus-
tomize the demo by adding data specific to the client.

If the team decides to use a version of a package as the POC model, the team
can review the following checklist:

1. Cost. Is a demo available for free or at nominal cost? If not, will the client pay
for the cost of a demo? Some vendors charge for supplying a demo.

2. Schedule. Can the team obtain and install the demo on a schedule acceptable
to the client? If it takes months or years to get a demo, the client may need
to make a decision before the demo arrives. The team needs the demo well in
advance of the decision review time in order to install, test, and become famil-
iar with the demo prior to showing it to the client.

3. Configuration. Does the team understand how to set up the demo to demon-
strate the features of interest to the client? Large packages come with many
options and require extensive configuration, some of which may involve high
levels of complexity. The vendor may offer a package preconfigured to repre-
sent a typical installation that may serve well as a demo.

4. Infrastructure. Does the team or client have access to the necessary hardware
and software to run the demo? For example, the demo may require a UNIX
operating system and an Oracle Server database management system (DBMS).
The client may not have and be unwilling to get the resources to run the demo.

5. Effort. How much work and expertise are required to install and initialize the
demo? Some packages require effort and expertise well beyond that available to
most teams. Will the client or the vendor supply resources to help with the instal-
lation of the demo?

Although installing a package offers the best opportunity of evaluating all of the
functionality of the proposed system, package installation and operating issues can
raise serious problems for the team. Using a remote access demo that the vendor
installs and runs will eliminate the installation problems for the team. While many
remote demos give the team the same functionality and data choices as the full
package, some remote demos may not allow the team to provide data and may not
actually operate. When the team installs and runs the demo, the team normally can
provide data and select the functions to demonstrate. However, installing all of the
functionality of the actual package may take more time and effort than is available.
The more complex the system, the more effort is required to install, populate, and
customize the system. Small, simple packages present few problems, but the large,
complex systems available from such vendors as SAP, Oracle, and PeopleSoft can
take years to set up. In these cases, the team may actually prefer to use a noncus-
tomized system, perhaps installed at some other location, as the POC model.

With both installed packages and remote demos, the team must make certain
that it actually can operate the demo. Some demos contain so much functional-
ity and offer so many choices that learning to use all the features may require
special training and/or a lot of time. To reduce the learning problem, the team

Chapter 12 Proof of Concept 427

428 Part Four System Delivery

should determine the most critical functions or issues for the client and focus on
demonstrating them. A lot of practice and rehearsal prior to a client demonstra-
tion are essential. If the team encounters problems during a demonstration to the
client, the client may form a negative opinion of both the team and the package.

Prototype POC Models
When the team builds a solution or when no demo version of a package system
is available, the team may choose to build a prototype. The prototype may range
from a full-featured initial version of the actual production system to a highly
simplified version that only provides some input to output transformations.
Prototype-based POC models of a proposed system can reduce some of the fea-
tures, infrastructure, and installation problems of package POC models. The
team can build a prototype with features that match exactly to the design spec-
ifications. The team can tailor the prototype to already available or planned soft-
ware and hardware. Normally, the team configures and may implement the pro-
totype in part or in full during the process of constructing it. To incur these
benefits, the team must incur the costs, particularly the effort and time costs, of
actually building the prototype. Building the prototype is a subproject for sys-
tems development inside the main project, and all the tools and principles in this
book also can apply to the subproject.

Prototype designers face a number of choices, a main one of which relates to
the choice of a throwaway or evolutionary model. The team can create and use
a throwaway prototype to develop, refine, and demonstrate the system. The
prototype provides a tool to clarify the design and operations of the proposed
system before the client invests in an expensive and less flexible production
model. A throwaway prototype probably will not contain some of the features
of the production system. For example, the prototype may use Access; while for
scale reasons, the final application must use a large, multiuser DBMS, such as
Oracle, Informix, and MS SQL. The prototype may work for only one or several
users while the production system will build on a packaged transaction processing
module to support many users.

After the throwaway prototype has produced the desired learning and
insights, the client builds or contracts for a production system with new code
and schema. Because the throwaway prototype can represent the design specifi-
cations for the production system, good documentation is important. The docu-
mentation should focus on the features and specifications for the system and not
on how the prototype does it. Although some or all of the ideas and features
from the prototype are transferred to the production programs, the original pro-
totype itself is, in effect, thrown away.

An evolutionary prototype evolves into the final production programs, or pro-
grams that are implemented in the organization to carry out activities for the client.
To facilitate a smooth transition from prototype to production system, evolutionary
prototypes often are built with the languages, tools, data models, and infrastruc-
ture used by the client’s organization for production systems. In a number of field
projects, especially in smaller, low-budget operations, the client may wish to use
the prototype produced by the team for a POC model as the production system.

In many projects, a prototype that uses Microsoft Access or a similar tool may have
adequate capacity and features to handle small applications. In these situations,
the team builds an initial version of the production system and uses it as a POC
model to get client and user input. The prototype, perhaps with minor changes,
becomes the production program. Some organizations build evolutionary proto-
types for a range of systems from small to very large, very complex ones.

Prototyping also can represent a model for planning and managing system
development. The spiral model for system development assumes that the team
will use prototyping as part of the development process. Later sections of this
chapter discuss (1) prototyping as a development tool and (2) the process of build-
ing prototypes.

USING A POC MODEL

Once the team possesses a POC model, either a package or a prototype, the team
can use the model to validate and refine the design. The team normally starts by
using the prototype for just the team. After the team concludes that the POC is
performing as expected, the team can involve the client and/or users. The team
can use the POC to address the issues discussed earlier: to verify operational fea-
sibility, to improve and refine the system specifications, to evaluate compatibility
with a physical infrastructure, and to confirm system design parameters.

Evaluating Operational Feasibility
Many POC models focus primarily on operational feasibility. To evaluate oper-
ational feasibility, the team can execute typical use patterns for the system and
observe what happens. Asking users to identify typical use patterns and partic-
ipate in the walk-through can add realism to the exercise. The team can develop
scripts that follow the typical use of the system. The scripts should exercise most
of the common ways that the system will be used, both for input and for report-
ing. Or the team can let users try things out on their own. The script approach
works with both prototypes and packages, and, with a substantial amount of cre-
ativity, may work with a simulated POC.

Running against a script requires the POC model to execute against data. The
data for the POC exercises may differ from the data for testing evaluation (see
Chapter 13), but the POC data at a minimum should allow the team to demon-
strate realistically the functions of the system. Reports should contain at least sev-
eral data rows, and screens should scroll through several records. The system
should demonstrate complete transactions. POC data become more critical when
the team lets users run the system. Users who find unrealistic or incorrect data
may lose confidence in the new system.

Examining Functionality

A POC model session with a user or client should follow the typical use pattern
script to demonstrate the basic functionality of the proposed system. Users want
a demonstration of the system’s functions in the context of their job. In a POC
demonstration to users, the team may leave out less frequently used functions

Chapter 12 Proof of Concept 429

430 Part Four System Delivery

in order to focus on the users’ primary concerns. The demo tries to answer such
questions as:

• Will the system do the functions I currently use to perform my job with less or
the same effort as required now?

• Will the system perform functions I need that the current system does not
support?

At the end of the script, users appreciate the opportunity to suggest actions, such
as, “Show me how the system will do the following . . .” In general, the team asks
users to hold their questions until the end. Many questions are answered more
efficiently by running the script.

Examining Usability

Usability questions that the team can ask themselves and users during the walk-
through of the POC include:

• Do the input formats follow a logical sequence? A good design will flow nat-
urally along the most common use sequence. Functions normally performed
together should appear in the same screen or input form if possible. The team
wants to avoid having the users ping-pong back and forth between screens
or formats.

• Can a typical user easily learn the system? Clear labels for everything can help.
The system should provide help instructions when a user selects an invalid
choice or needs something unusual.

• Does the system trap and correct when possible invalid data input entries?
Common problems are alphabetical characters that are placed in numeric fields,
negative values in fields that always are positive, blank or null values in required
fields, and dates in incorrect formats. Trapped error routines should gracefully
prompt users for corrections and not lock up the system or e-mail a supervisor.

• Are the screens or formats both efficient and attractive? Putting too much on
one screen or not aligning appropriate fields can make a screen unpleasant to
use. Strident colors, unnecessary motion, or frequent flashes can distract and
irritate users.

• Is there a common “look and feel” for the various screens or formats in the
system? As the user moves from screen to screen, a common color scheme,
layout, and general appearance minimizes user confusion.

Evaluating Design Parameters and Compatibility
A client, project manager, or other systems professional may wish to examine
design parameter and compatibility issues. The demo used to examine these
issues may move sequentially through all or the most critical individual func-
tions with little or no script. This type of demonstration explores options and
flexibility more than organizational fit and can address the following questions:

• What features are supported? The team may provide a full list of functions
and demonstrate the most critical ones. A client demonstration can stress the
features requested by the client during the problem definition stage.

• How are the functions implemented? What options are available and how are
they accessed? A demonstration might take the most critical function and
work through all of the available options.

• How does the system fit with the current IT environment? Clients and man-
agers may wish to know how the proposed system will interact with exist-
ing systems, data, and infrastructure. A new system might extract data
directly from an operational data store or may require special new hard-
ware and/or the execution of a special-purpose extraction program for data
access.

A POC demonstration also can provide confirmation to clients and sponsors
that the system will produce the results they expect, particularly regarding
issues of accuracy and validity. A common way to demonstrate accuracy in a
POC is (1) either enter or display a small set of input data and (2) run the appro-
priate function in the system to verify that the output is as expected. Errors
discovered in this type of presentation can raise serious questions about the
credibility of the whole system. Questions for accuracy and validity include the
following:

• Does the system replicate known results? Clients want to start with the answer
and verify that the system gets the same result.

• Does the system behave correctly in the presence of known invalid data? The
presentation can include examples with invalid blank fields, improper nega-
tive entries, impossible dates, and other problems to show that the system will
not accept the invalid data and produce a misleading result.

• Are all results within intuitive bounds? Some things are difficult to estimate
exactly, but many clients know the difference between reasonable and unrea-
sonable answers. In the case of GB Video, a typical customer may rent one
or several videos at a time, but a report that shows that a typical customer
rents 73.2 videos at a time probably represents a system design or input
error.

PROTOTYPE-BASED DESIGN

In addition to serving as a POC model, a prototype can serve as a supplement
or alternative to a traditional SDLC project approach. A prototyping design
methodology can reduce or replace much of the documentation and analysis of
the SDLC approach. The prototyping life cycle shown in Figure 12.1 begins with
an initial analysis to identify the data and process specifications—a brief infor-
mal proposed systems stage.

To devise the initial specifications, the team can follow in abbreviated fashion
the following SDLC-type steps:

1. Obtain a general understanding of the problem and task. Normally, much of this
understanding will come from conversations with the client. The client iden-
tifies the features the proposed system should possess. Reviewing relevant
documents and observing the current operation may help.

Chapter 12 Proof of Concept 431

432 Part Four System Delivery

2. Scan the environment for ideas. Do team members have relevant experience? Do
similar applications exist in the literature or at organizations that are accessi-
ble? If so, copy the good ideas from them.

3. Use the information collected to set the initial specifications.

The analysis provides a starting point only; the prototype iterations that follow
will help the team to discover a more complete and correct set of design specifi-
cations. However, the more complete the set of features provided by the client, the
better the team can select the initial specifications and the faster the development
will proceed. The team builds the initial prototype to match the design specifica-
tions. Once the prototype operates correctly, the team uses the prototype to inter-
act with clients, often including users. The team runs the prototype for the clients
and encourages comments, corrections, and complaints. The team can forestall a
number of problems by managing client expectations: The team should stress
that the prototype is a tool for generating ideas and not a final product.

For the approach to work, the team needs to find ways to obtain feedback
from the clients. Often the clients provide feedback without much prompting. If
the team invites the clients to provide sample input for the prototype, the team
should offer to key in the input for managers and sponsors. Some managers and
sponsors may be offended or embarrassed by requests that they act as data entry
clerks. Users may wish to key in the input themselves.

While the prototyping life cycle approach can contribute to any system devel-
opment project, the way the team uses the prototype will depend on the task. In
developing an order entry system for a catalog store, for example, the team may
spend a great deal of time interacting with order clerks. For an e-commerce site,
the team may need some simulated users probably nontechnical staff members
acting as customers. For a utility billing system, the team may interact a little
with meter readers or data entry clerks but interact more with relevant managers
and project sponsors.

The team records the comments from each prototyping session and rapidly
implements changes in the model to address them. Every several days to sev-
eral weeks, the revision and evaluation sequence is repeated until the client is
satisfied, usually after three to five iterations. Some prototyping methodologies

Set Initial Specifications

Generate/Revise Prototype Code

Evaluate Prototype Operations

Document and Install

Revision and

evaluation

sequence

Iterate

FIGURE 12.1
The Prototyp-
ing Life Cycle

use one-day turnaround with small scope changes. The many-iteration method-
ology can generate dozens of iterations and can serve well for internal team use.
However, large numbers of iterations probably will exhaust quickly the time and
patience of the clients. In addition to interacting with clients, the team can use
the prototype to examine such technical design issues as network and infra-
structure ideas, database design, and response time. Some evolutionary proto-
types provide a good vehicle for testing design parameters and benchmarking
response times.

The initial specifications and prototype usually include a fairly complete and
populated data model. While the team can prototype data model development,
data prototyping generally takes more time than just preparing a “good guess”
data model and can make initial client reviews confusing. The initial data model
should not be viewed as a final version but should be complete enough to sup-
port the iteration exercises for the most essential functions of the system. The
data model must support the generation of outputs that are realistic enough to
allow the team and client to identify function, accuracy, and other problems and
issues with the design. A one-line report for one customer making one error-free
transaction probably will not allow the clients to determine if the system has the
features they want. When feasible, the team can ask the client to provide the data
to populate the data model. Actual data from operations or client-generated data
often will exercise the prototype better than data the team generates.

An initial prototype also needs substantial functionality in place for clients
to respond in a meaningful way. The prototype must execute at least the core
functions in a manner realistic enough for the clients to identify the things
they like and dislike. Although the initial prototype may implement only
selected functions and options, the functions and options included should
work correctly.

Once the team and client are satisfied that the current version of the proto-
type meets all the essential requirements, the prototype represents the final
design specifications and may represent the production code for the system. The
team may wish to add additional internal error checking and recovery features
and include features to enhance multiuser operation, response times, and effi-
cient operations. As a final step, the team generates the appropriate documen-
tation including implementation, testing, and maintenance plans.

Prototyping can offer a useful alternative or complement to the SDLC
approach for some projects. Many of the same steps occur with prototyping
and traditional approaches, but the steps occur in different time sequences
using different models and mechanisms. For smaller systems and for projects
where the client cannot verbalize clear requirements for the system, the proto-
typing life cycle may offer the most effective alternative. Prototypes also can
serve a useful role to complement other steps and mechanisms in SDLC type
approaches. As discussed, prototypes can serve as POC models. Some projects
include a prototyping phase to clarify user requirements and then follow tra-
ditional paths to define specifications for the proposed system and for system
delivery. Boehm includes prototyping as a component used in every cycle in
the spiral model discussed in Chapter 3.

Chapter 12 Proof of Concept 433

434 Part Four System Delivery

BUILDING A PROTOTYPE

Building a prototype involves a development subproject within the overall proj-
ect set forth by the client. Fortunately, the team may have completed some of
the work. The team may have developed the conceptual specifications for the
prototype following the guidelines in Chapter 8 and extended the work to log-
ical and physical specifications using the guidelines in Chapter 11. Otherwise,
the team needs to define a set of specifications that will meet the client’s
requirements. With initial specifications in hand, the team can proceed to select
a focus, prepare a database, write code, and test the result. Team members with
a lot of knowledge and organizational experience often can use a one-stop shop-
ping method—develop the specifications and select the focus while sitting at the
console writing the code.

Choosing a Focus
As discussed, prototypes come in different forms for different purposes. Before
starting actual construction, the team chooses the focus for the design. As part
of the focus the team chooses (1) either a throwaway or evolutionary plan; and
(2) the component emphasis: output, process, input, data, or often a combina-
tion. The choice between an evolutionary or a throwaway prototype involves
two basic issues: purpose and resources. Some clients want the team to provide
only design specifications. Client choice, policy, and/or culture dictate that the
IT staff, or a vendor, will build the production system. In these cases, the team
clearly wants to focus on a throwaway prototype. Other clients either want or
are willing for the team to build and deliver the production system which sug-
gests the choice of an evolutionary prototype.

Evolutionary Model Issues

When client considerations suggest the choice of an evolutionary prototype, the
team should make a best effort attempt to comply. With a small, simple system
and familiar technologies, the team probably can produce an acceptable evolu-
tionary prototype. With a large system and/or unfamiliar technologies, the team
should conduct a careful analysis of feasibility before proceeding. For reasons
including time, team skills, and availability technologies environment, the team
may decide that an evolutionary prototype is infeasible and choose a throwaway
prototype even though the client wants a production system. The team should
explain and discuss the decision with the client and if possible obtain client
agreement.

Time constraints may not allow for the construction of an evolutionary pro-
totype. A student field project exercise is constrained by the end of a semester
and a team in an organization may face similar constraints. Every project is a
learning experience and competent team members should expect to stretch their
technical skills if necessary. But when the stretch becomes too large, the team
may never reach the point of producing an evolutionary prototype or may pro-
duce a poor one. Developing systems in such “industrial-strength” languages as
C++ or Java to production code standards may present an infeasible task. Even

when the team can build the prototype, the need to change the prototype can
pose a problem. The team may need to change the prototype system a number
of times in response to unanticipated problems and client requests. The com-
plexity of the evolutionary prototype may require more time and effort for
changes than is available.

To produce a quality result within the relatively short time span available, the
team members may need to work in a language and environment that one or more
members know or can learn rapidly. For this reason the team may choose to use a
language, for example, Visual Basic (VB), which facilitates rapid development and
change, but may not produce efficient production code. A final issue concerns
the availability of the technology environment. The team may not have access to
the technologies the client wishes to use in the production system. The client
may agree to provide access and technical support at the client’s location. Unless
the team is able and willing to spend substantial amounts of learning and build-
ing time at the client’s site, the likelihood of completing a satisfactory evolu-
tionary prototype is small.

Model Content Issues

The team also chooses a content emphasis for the prototype. Many prototypes
emphasize the output portion of the system, although often not in the language
that the production version will use. A team may develop a user interface model
in MS Access and use a more powerful language such as DreamWeaver or Java
for the production version. When the purpose of the prototype is a POC model to
test the effectiveness of communication screens, the rest of the model may consist
only of modules that feed responses to the screens. While the various prototype
emphases are discussed separately below, the actual prototype may contain sev-
eral emphases in different degrees.

A process prototype can demonstrate the logic of the proposed system. The
critical issue in such a prototype is assuring that the internal logic in the design
specifications for each module works as intended. The process prototype also
can check module communication or message passing to assure that the control
and data flows are correct. The team should note any changes immediately in
the design specification documentation. The prototype will normally focus on the
basic function logic and add edit, error checking, and logging functions later to
the prototype or directly to the production system.

An input prototype models the data capture and interface functions of the sys-
tem. The client’s usually does not wish for the team to interface the prototype
with other in-use production systems until the prototype reaches a fully tested
production status. A data capture prototype usually tries to interface with a test
program and data set that contain the relevant features of the real data stream.
The client’s IT staff may provide the test programs and data set. The test data set
may consist of a small portion of data from the actual data stream. The prototype
can confirm such design issues as formats, input logic, handling of unusual data
inputs, and data updates. Once the team is satisfied that the basic input structure
works correctly, the team can add functions that manage flow validation, error
detection, logging for normal processing, and exception reporting.

Chapter 12 Proof of Concept 435

436 Part Four System Delivery

A data prototype can help the team to develop and exercise the data model
for the system. Such a model normally creates the initial data structure for the
system with a limited set of attributes. As the team uses the model with the client
and learns more about the client’s requirements, the team can identify and add
additional attributes, sizes, and formats, and confirm constraints. When the pro-
totype includes processing components, the team can assist with identifying
appropriate views and explore denormalization. The learning from the prototype
goes into the design specification documentation. When the documentation
exists online inside the database engine, the documentation probably updates
automatically when the team makes changes or additions.

Making Initial Design Decisions
To the extent feasible, the team wants to make design decisions for the prototype
that will allow for “rapid development.” As noted earlier, the basic tenant of rapid
development is, “Do only what is necessary to deliver an application that (1) meets
the client’s perceived needs; (2) in as short a time as possible; and (3) at the lowest
possible cost.” The following rules and guidelines should facilitate rapid develop-
ment. The team must look carefully at each rule to decide if the rule is feasible
given the team and client goals for the prototype. Using Access can offer a simple
and fast approach but is infeasible if the team agreed with the client to use Java
and Oracle.

1. Select a technology environment—infrastructure, language, and tool set—that enables
the team to rapidly build and modify the prototype. Microsoft Access provides input
and output forms and allows easy, direct entry of test data into tables. Visual Basic
can simplify the creation of full-function input screens. Tools for Web site proto-
types range from simple HTML to MS Front Page type applications to packages
that provide the framework for a catalog and retail order fulfillment system.
When Web pages read from or write to a database, Active Server Page (ASP) or
similar tools can help. A throwaway prototype development environment may
lack the efficiency, capacity, and security required for a production system.

2. Focus on the key functionality. Include the features that are of primary or most
interest to the client; leave out other features, at least, at the beginning. Key
features may include processes to enter external input, transform it, store and
retrieve data, and produce reports.

3. Include only limited edit and error handling capability. In a throwaway prototype,
these functions provide little value added unless they are the focus of client
requirements. In an evolutionary prototype, comprehensive error checks make
more sense after the team refines the basic functionality.

4. Put extra effort into input and output formats. Generally, the input screens and
the report or output screens are the things of most interest to the client.

5. Include a realistic and largely complete data schema. Remember that data tends to
change more slowly than processes. For example, relational tables often will
transfer with little change to the final system. The prototype schema should
include all of the major tables in the final system. Normally, the schema
includes all the attributes of the final schema; but in complex situations, the

team may omit some attributes in the initial version. Use mandatory (mini-
mum cardinality of one) relationships sparingly in data tables. Mandatory
relationships can make populating the tables with data more difficult.

6. If possible, populate tables with adequate but small data sets. An actual personnel
system may hold records for several thousand employees, but the prototype
may serve a POC role well with records for 10 employees. The prototype for
a POC model of a retail catalog system may need 10 products, three sizes, and
four colors, not the thousands of choices found in a real catalog.

7. Approximate or stub complex logic. The actual logic to evaluate a mortgage appli-
cation might involve tens of variables and maybe fuzzy logic or neural nets.
For a first-pass prototype, a simple scheme that rejects the bad and accepts
the good may be sufficient. Use a corresponding data set with only very good
and very bad applicants.

8. Omit, initially at least, features that add integrity to the production system—high
efficiency transaction processing modules, exception or operational logging, security,
and so on.

Generating Code
Generating code may involve such dimensions as module development, integra-
tion of modules, schedules, and work assignments. Module development focuses
on (1) identifying and coding the modules and (2) work assignments. Each of the
boxes on the process hierarchy chart (see Chapter 8) provide one approach to
identifying modules. Many times, the team will assign several people to code dif-
ferent modules or even a single complex module. The team needs some process
to assign modules to members and to develop a time and sequence schedule for
module coding.

Schedules and Assignments
Most projects have delivery deadlines that require finding ways to assign mod-
ule coding to several people at once. Assignment and schedule strategies include
the following:

• A top-down plan. A system that follows structured design principles uses a
structure chart with a master control module at the top. The top-down plan
builds the master control module first and develops the control and data
transfer protocols to communicate with the next level of modules. With the
control structure in place, different people can develop the next level mod-
ules. Coding proceeds down the diagram until finished. A similar strategy
works for a dialog-driven system with a hierarchical navigation structure.

• A bottom-up plan. With a bottom-up plan, the team assigns related groups
of the lowest level or elementary modules to the members for coding. When
the elementary groups are complete, the team assigns people to code the next
level until the work reaches the highest level. This approach depends on com-
plete and accurate design specifications to avoid writing and rewriting the
lower level modules as the team progresses and thus works best in a tradi-
tional SDLC project.

Chapter 12 Proof of Concept 437

438 Part Four System Delivery

• A component or object plan. An OOD-type design documents the complete
set of objects or components and the message interfaces for the objects. With
an object design, the team can assign objects to different team members.
Each team member then codes the object or, when possible, modifies an
existing generalized object to meet the design specifications. Because mod-
ules are encapsulated, OOD provides a good framework for dividing up
the work.

Coding and Design Specifications
During the proposed system phase discussed in Chapter 8 and the system design
activities described in Chapter 11, the team prepared design specifications,
extended the specifications into a data schema and a set of process modules, and
prepared metadata for the schema and modules. A team that plans to use the pro-
totyping life cycle will have to prepare the initial design specifications before
proceeding.

Modules of code are written to execute all the functionality of the module and
may range from a few lines to several pages of code. Some early textbooks sug-
gested that a module should be equal to or less than 24 lines. With the advent
of nonprocedural languages and object-oriented code, this restriction makes little
sense. The team should test each module as it is written, test module integration,
and test the complete prototype following the guidelines listed in Chapter 13.
Clients should develop or participate in developing the test data.

One of the primary purposes of a proof of concept model is to demonstrate
that the design decisions made by the team actually work. The two matching
rules are as follows:

1. The initial prototype code that the team produces must match the design documenta-
tion. The design documentation is the team’s formal specification of how to
solve the client’s problem. If the design does not match the code, the team
and client may spend a large amount of unnecessary time and effort deter-
mining whether any problems that occur reflect the original specification
design decision or a new coding design decision.

2. Any changes the team makes to the prototype code should be made to the docu-
mentation. The design documentation may become the maintenance guide
for the system. As a maintenance guide, the documentation must correctly
reflect the “as built” system and allow the maintenance programmer to
understand the code architecture and locate the spots in code that execute
specific functions.

A POC model of any sort should accurately reflect the design documentation.
In particular, the code and the design should have:

• Identical control flow.

• Identical data model.

• Like naming.

• Corresponding data access.

• The same execution logic.

Control Flow

The first requirement of a maintenance programmer is to understand the control
flow of the program. Control flow refers to the sequence in which the different
program components are executed in response to program input. The actual pro-
totype components are artifacts—pieces of code that perform a program function.
A good proof of concept model makes evident the correspondence between the
structure in the design and the structure in the code. The model artifacts should
match lines of pseudocode of functions described in the design.

Artifacts differ from language to language. In such procedural languages as
FORTRAN and COBOL, the artifacts correspond to subroutines and modules on
the program structure chart. In such environments as Visual Basic or MS Access,
the building blocks are screens or forms and controls on the forms. Page navi-
gation maps can describe design specifications for these environments. Regardless
of the environment, the triggers and sequence of execution for each of the artifacts
should match the design.

In most cases, the code artifacts—subroutines, functions, forms, or controls—
have names. These artifact names should match the names for the correspond-
ing functions in the design documentation. Choosing names with appropriate
prefixes can help readability by generating a sorted listing of code artifacts that
presents them in a logical order. In a MS Access implementation of the GB Video
system, the module “2.0. Create or update member data,” in the program struc-
ture chart for GB Video can correspond to a form named “20CreateOrUpdate-
MemberData.” Most programmers suppress blanks in variable names in code to
simplify code writing. The prefix 20, 21, and so on the variable name for arti-
facts corresponding to modules, 2.1, 2.2, and so on will cause an alphabetic sort
of form names to appear in an ordered list. Microsoft coding convention adds
the prefix “frm” to the names of all forms. Thus, the name used in the program
code is “frm20CreateOrUpdateMemberData.”

Data Model

A prototype model may use a data model that differs from the intended oper-
ational database for the proposed system for a number of reasons. The real model
may be too complex or may be part of a much larger system to which the team
does not have access. Developing test data for the actual system may consume
too much time. In these cases, the team produces a new data model for the POC
and explains the differences and reasons briefly in the documentation.

The original design data model, the revised model, if any, and the prototype
implementation should match as closely as possible. For the tables and attrib-
utes that appear in the prototype, all the representations should contain consis-
tent table names, foreign key relationships, referential integrity rules, and
attribute names and types. The actual system may record more metadata than
the design model, but the metadata present in both should match.

Naming

In addition to data and control structures, all the other names specified in process
metadata should correspond to the names used in the actual code, that is, the

Chapter 12 Proof of Concept 439

440 Part Four System Delivery

core name should match in all representation but prefixes may vary. The
pseudocode example in Chapter 11 uses a prefix letter “I” to indicate variables
input from an external source. The actual code may use other prefixes or con-
ventions to show input variables. Microsoft coding practice adds such control
prefixes as “frm,” “cmd,” “txt,” and others to indicate the type of control on the
form that implements the variable.

Data CURD Operations

The data operations logic in the prototype should follow the logic in the design
documentation. In particular, table create, update, retrieval, and delete (CURD)
actions should match the design documentation. The SQL-like statements in the
actual code should resemble but probably will not match exactly the pseudocode.
Pseudocode need not follow all of the correct syntax and can use English phrases
in place of complicated SQL statements. The names of views or queries in MS
Access should match the documentation.

Logic

One of the primary functions of good design documentation is to specify the pro-
cessing logic. The code in the POC model should follow the design documenta-
tion logic as closely as feasible. While considerable differences may exist between
the pseudocode and the actual code statements, the resulting functionality should
match.

Effective Coding

The keys to successful programming are as follows: (1) make sure the code does
what the user wants; (2) use the built-in tools in the language whenever appro-
priate; (3) use code that has already been tested when available; and (4) test, test,
and test some more using the procedures given in Chapter 13. Much coding con-
sists of a throughput effort where the code is developed, used, patched, or
thrown away as the system modules are integrated. Reusable code can save valu-
able programmer time. Many programming tools contain higher-level instruc-
tions or macros for a number of common functions that may appear in modules.
Some organizations maintain libraries of reusable code. The team should use
code from the libraries when feasible, but code modules may not be available in
the language chosen for the prototype.

A GB VIDEO PROTOTYPE

Chapter 11 contains tables and figures with the detailed data and process spec-
ifications required to build the production version of the proposed system. These
specifications also can serve as the specifications for a proof of concept proto-
type. This section of the chapter illustrates how a team can convert the specifi-
cations into a prototype. The GB Video prototype uses Microsoft Access as the
physical tool and represents a throwaway prototype. The team can use the pro-
totype to demonstrate system features to the client and to refine the specifica-
tions. Mr. Cosier and GB Video will either purchase a package or contract with
a vendor to obtain the production system.

Building a prototype in Access or a similar tool normally consists of six steps:

1. Create the tables defined in the relational schema.

2. Populate the tables with a small set of sample data.

3. Set up a switchboard.

4. Design the input forms.

5. Design the reports or output forms.

6. Insert logic into the forms as needed.

Each of the steps applied to the GB Video prototype is described in the following
materials. The materials provide only an overview on creating and populating
tables and creating forms, modules, and code. Access, while relatively easy to
use, is a physical tool with very specific features and conventions. Consult the
Help screens and/or an Access book for detailed information and a full set of
options.

Creating the Tables
Chapter 11 contains examples with the relational schema and metadata for the GB
Video database. The database consists of four tables: CUSTOMERS, RENTALS,
LINES, and COMVIDEOS. The relational schema and metadata used for the
prototype appear in Figure 12.2.

Several ways exist to create a new table in Access. This example describes cre-
ating tables from the Design view. In the Database window, select “Tables” on the
Objects list and either click “New” on the toolbar or double-click “Create table in
Design view.” The table design view window should now read “Table: Table1” and
show columns “Field Name,” “Data Type,” and “Description.”

Creating the Table Design

Start the table design by entering the field names, descriptions, and the data types
shown in the metadata. For example, start with the GB Video Customers table.
The metadata contain a description for each of the attributes in each table. The
selection of data types depends on the application and the usage of the attribute.
For example, to store a name, Social Security number, or a combination of text
and numbers, use the “Text” data type. Characteristics of data types include

• Field size. The number of allowable characters in data type.

• Input mask. A specific formatted data for the field (for example, (405) 555-4565
for phone numbers, date formats, etc.).

• Caption. Label for the attribute in forms.

• Default value. An automatic, standard value field.

• Validation rule and validation text. The limit enforced on the data range the
user can enter into a field and a text error message when the user violates the
limit.

• Required. An indicator to show if the attribute can be null.

• Indexed. An indicator to show if the attribute is indexed or not, and whether
duplicates are allowed or not. The primary key for the table is indexed with
no duplicates at default.

Chapter 12 Proof of Concept 441

442 Part Four System Delivery

Metadata for CUSTOMERS

FIGURE 12.2 Relational Schema and Table Metadata

Line No Video_No Due_date Return_Date Pay_typeOD_Charge

Video No

Rental No

Extra_dayOne_day Weekend CostName

Cust No F_Name L_Name Ads2Ads1 City State Zip Tel_No CC_No CUSTOMERS

Date Clerk_No Pay_type CC_No CC_ApvExpireCust_No RENTALS

LINES

COMVIDEOS

Expire

Rental No

Data-Item Description Optional Type Size Decimal

Cust_No A unique identifier assigned No Text 10

to each customer (PK)

F_Name First name and middle initial if Yes Text 15

any

L_Name Last name No Text 30

Ads1 Street or box address No Text 30

Ads2 Apartment number or other as Yes Text 30

needed

City Name of city No Text 20

State State id code No Text 2

Zip Zip code No Text 9

Tel_No Telephone number Yes Text 10

CC_No Credit card number No Text 16

Expire Expiration date on the credit No Date

card used to enroll

Page 1

Chapter 12 Proof of Concept 443

Metadata for RENTALS

Data-Item Description Optional Type Size Decimal

Rental_No Unique identifier assigned No Auto-

to each rental (PK) number

Cust_No The customer for the No Text 10

rental (FK)

Date Date of the rental No Date

Clerk_No Employee number of the No Text 3

clerk entering the rental

Pay_type Cash, check, or credit No Text 1

card

CC_No Credit card number Yes Text 16

Expire Expiration date of the credit Yes Date

card used for the rental

CC_Apv Credit card approval code Yes Text 6

Data-Item Description Optional Type Size Decimal

Line_No Unique identifier assigned to No Auto-

each line (PK) number

Rental_No The rental number that this No Long 10

line belongs to (FK) Integer

Video_No Video rented on this line (FK) No Text 14

Due_date Date video is to be returned No Date

Return_Date Actual return date Yes Date

OD_Charge Charge for days kept after Yes Currency 2

due date if applies

Pay_type Method of payment for the Yes Text 1

overdue charge

Page 2

Metadata for LINES

444 Part Four System Delivery

Table 12.1 shows some common data types and characteristics.
The relational schema and metadata identify the primary key (and/or foreign

keys) for each table. To create a key for the Customers table, click on the far-left
gray box of the Cust_No line. Then click the Key icon in the toolbar at the top of
the screen. For a composite key, hold the Control key down and click on all the
necessary key attributes to highlight the area, then click on the Key icon. With the
AutoNumber data type, Access automatically generates a unique index on the pri-
mary key field to guarantee the uniqueness of the key values. If the user does not
specify a primary key, Access prompts for permission to create a key for the table.
If the user selects “Yes” when prompted, Access generates an ID column as the pri-
mary key. When the user selects “No,” Access creates the table without a primary
key. The data type of a primary key must match the data type of the foreign key,
except an auto number primary key matches with a number-type foreign key.

To save the table design, follow normal Microsoft conventions: either click on
the Save icon or click “File” and “Save” on the toolbar.

Creating Table Relationships

To begin, either select “Relationships” from Tools on the menu bar, or return back
to the database window and click on the Relationships icon. In the Show Tables

Data Types Characteristics

Text Appropriate for data containing text, combinations of text and numbers,or

numbers that are not used for calculations.

Number Appropriate for data used for calculations.

AutoNumber Most appropriate for primary keys.

Date/ Time Appropriate for date and time data and calculations.

Currency Appropriate for currency values, and is most accurate in calculations.

Yes/No Appropriate for Boolean—true/false data types

TABLE 12.1
Data Types
and Charac-
teristics

Data-Item Description Optional Type Size Decimal

Video_No A unique identifier assigned No Text 14

to each video (PK)

Name The title of the video No Text 30

One_day First day rental fee No Currency 2

Extra_day Extra days rental fee Yes Currency 2

Weekend Rental fee for Sat. and Sun. Yes Currency 2

Cost Price GB paid for the video No Currency 2

Page 3

Metadata for COMVIDEOS

window, select the tables by double-clicking the table name. If the relationship
involves a query, click on the Query tab and double-click on the query name.
The relationship view now shows all the selected tables.

To connect the tables, click and hold on the primary key from the “one” table,
and drag to the corresponding foreign key in “many” table. For example, drag
the Cust_No attribute from the Customers table to the Cust_No attribute in
the Rentals table. Access creates a relationship line between the two attributes.
In the Edit Relationship window, check the “Enforce Referential Integrity”
check box. The window also shows the relationship type—one-to-many, one-
to-one, and others. Other options include the Join Properties. To select Join
Properties, click on “Join Type” and select the joins desired. Figure 12.3 shows
a screen shot from Access of the tables and table relationships in the GB Video
prototype.

Populating the Tables

Once the table structure exists, the team can add data to or populate the tables.
Access allows team members to type input data directly into the tables. Figure
12.4 shows a screen shot from Access for the Comvideos table populated with
test data to evaluate code execution. The test table omitted the attribute Cost,
which appears in the data schema but plays no role in the program testing. The
team can add the missing attribute and populate the tables with live data or with
a larger generated data set later as a part of the test plan.

Coding the GB Prototype
The GB Video structure chart in Chapter 11 shows the following modules:

1.0 GB Video Rental and Return Switchboard

2.0 Check and update data or enroll a new member

Chapter 12 Proof of Concept 445

FIGURE 12.3
Table
Structure for
the GB Video
Database

446 Part Four System Delivery

2.1 Input the data for a rental

2.2 Calculate cost and process payment

2.3 Create rental and lines

2.4 Print a receipt

3.0 Record return of video(s)

4.0 Identify overdue videos

The Access prototype implements these modules as forms or modules with
names that resemble the module names in the structure chart. Figure 12.5 shows
a list of forms (frm10, frm20, frm21, frm22, and frm24) that correspond to the
structure chart modules 1.0, 2.0, 2.1, 2.2, and 2.4.

Figure 12.6 shows the Access modules. Structure chart module 2.3 becomes an
Access module named Module23CreateRentalAndLines. Access ModulePostCCTransac-
tion is part of the pseudocode in the metadata for module 2.2 on the structure chart

FIGURE 12.5
Access Forms
for the GB
Video
Prototype

FIGURE 12.4
Populated
Comvideos
Table

and represents a call to a function supported by the credit card company. Modules
3.0 and 4.0 are not included in the prototype. The diagrams after Figure 12.6 show
the Access code for the forms and modules.

The Switchboard

Figure 12.7 shows the GB Video system switchboard implemented by
frm10GBVideoRentalReturnSwitchboard. The switchboard is simple to create and
uses three buttons to select each of the subsequent modules. Once the buttons are
in place, the team writes the code for each button to open the correct module.

Clicking the button Create or Update Member Info triggers or opens the form
called frm20CreateOrUpdateMemberData. As part of the trigger, a message box
opens to obtain input regarding the customer status: old or new. Two private

Chapter 12 Proof of Concept 447

FIGURE 12.6
Access
Modules for
the GB Video
Prototype

FIGURE 12.7
The GB Video
System
Switchboard

448 Part Four System Delivery

subroutines, PerformOld and PerformNew, open the member data form for either
a returning customer with data or a new customer without data. The message
box implements the “Input (I_Customer_status) and Select (I_Customer_status)”
pseudocode for module 2.0 on the structure chart, an example of how the pro-
grammer needs to show creativity to implement a system. The box represents
the physical or Access version of the logic in the design documentation.

frm20CreateOrUpdateMemberData

Figures 12.8 and 12.9 show the data entry screens that correspond to module 2.0
in the design documentation. Figure 12.8 shows the screen for an old or a return-
ing customer. The form fields correspond to the database attributes or columns in
the Customers table. In addition to the data fields, the form needs two buttons.

FIGURE 12.9

New

Customer

Screen

FIGURE 12.8

Old Customer

Screen

The form and the code attached to the buttons implement the pseudocode func-
tions for module 2.0.

1. Look up Member searches for an existing customer based on customer or
telephone number. The button creates a query based on the customer or tele-
phone number and displays the matching customer information. The proto-
type allows the clerk to search through the data for all (if more than one) of
the customers who match the search criteria until the desired one is found.
Once the correct customer data appears, the clerk can modify any of the data,
except the customer number, by typing new entries in the data boxes.

2. Update Member Data and Proceed to Checkout commits changes to the customer
data, if any, and then continues to the checkout. The code updates the CUS-
TOMERS table in the database with changes made in the form and then triggers
or calls the rental checkout form, frm21InputCustomerAndVideoDataForARental,
passing the customer name and number data to the new form. The physical
design implements Mr. Cosier’s requirement: the only entry into rental is from
the member form with a valid member number.

Figure 12.9 illustrates the display for a new customer. The form resembles the
old customer form except the Look up button is not active and the commit but-
ton changes to Create New Member Entry and Proceed to Checkout. The code for the
Create button is exactly the same as described for the old customer screen. The
production system probably will use one customer screen for both old and new
customers, and the prototype could have used one screen with a slight design
change. A major purpose of the prototype is to learn about design changes to
improve the system.

frm21InputCustomerAndVideoDataForARental

Figure 12.10 shows the video rental form that corresponds to module 2.1 on the
structure chart. After opening, generating a rental number, and displaying the

Chapter 12 Proof of Concept 449

FIGURE 12.10
GB Video
Rental Form

450 Part Four System Delivery

customer initialization data from the customer form, the rental form accepts
input from the clerk for the employee number. In the prototype, the Add Video
to Checkout button opens a message box in which the clerk manually enters each
video number. In the production system, the video numbers will come from a
scanner. A list box in the center of the form displays the videos selected by the
customer. A box in the lower right corner of the screen keeps a running total of
tax and total price for the rental. In the prototype, a 100-item single-dimension
array holds the video numbers for each rental, probably providing more space
than is needed. The Process Payment and Checkout button triggers the checkout
form and passes all of the information collected thus far to the checkout form.

frm22ReceiveCashCheckOrPostACCTransaction

Figure 12.11 shows the checkout form which executes the functions in structure
chart modules 2.2, 2.3, and 2.4. This form has three buttons to indicate (1) a cash
payment, (2) a check, and (3) a credit card payment. The Cash and Check buttons
trigger the create rental and lines module and pass the payment type data plus
the other data. The Credit Card button (1) calls a stub module that in the future
will process the credit card transaction and return an approval code; and (2) trig-
gers the create rental and lines module. The create rental and lines module,
explained in the next section, commits all of the data in the form, that is, it stores
all of the rental transaction data in the database (structure chart module 2.3). After
data is committed to the database, the code in the form opens the receipt form,
explained after the create module, and passes the rental number to it, and calls its
print subroutine (structure chart module 2.4). The clerk and customer never see
the “hidden” print form; the customer gets the result—the printed receipt. Finally,
the buttons open the switchboard to return the user to the starting state.

Module23CreateRentalAndLines

Figure 12.12 gives the code for Module23CreateRentalAndLines, which corresponds
to structure chart module 2.3. This module creates the new rental record in the

FIGURE 12.11
GB Video
Checkout
Form

Rentals table and then iterates through the array of video numbers creating the
line records for the rental in the Lines table.

frm24PrintAReceipt

Figure 12.13 provides the screen shot of the receipt form, which looks similar to the
rental form and corresponds to structure chart module 2.4. The receipt form code
uses a query based on the rental number that was passed to it by the checkout form

Chapter 12 Proof of Concept 451

FIGURE 12.12

Access Code
for Module23-
CreateRental-
AndLines

FIGURE 12.13

GB Video
Receipt Form

452 Part Four System Delivery

to (1) retrieve and fill in the rental information from the Rentals table and the
Customers table; and (2) retrieve and fill the list box with the video information
for the rental from the Lines table. Structure chart module 2.4 receives all of the
needed data from module 2.3 instead of retrieving it. The prototype is much
more parsimonious in the data it passes from module to module, a design that
simplifies keeping track of what is happening. The print subroutine prints all the
data in the form and then closes the form.

Summary A proof of concept (POC) model provides a representation of the final produc-
tion software for a project that allows the team and client to directly observe
some characteristics of the system. An operational proof of concept model con-
verts inputs into outputs, stores and retrieves data, and exercises some or all of
the processes in the system. A static POC model illustrates the outputs that result
from a predefined set of sample inputs. A proof of concept model may serve one
or more of the following purposes:

• To verify operational feasibility.

• To improve or refine the system specifications.

• To evaluate compatibility with a physical infrastructure.

• To confirm system design parameters.

A POC model can demonstrate the two basic components of operational fea-
sibility: functionality and usability. To test functionality, the analyst or client can
present typical external inputs and observe the POC model to determine whether
all of the desired features are included and that they work as intended. Many
POC models also demonstrate the usability of a system—how easy or satisfying
or “likable” the system appears to users.

Proof of concept models consist of two major categories: prototypes and pack-
ages. The team builds a prototype POC model; that is, the team sets up and pop-
ulates a data schema and writes the program code. When the team recommends
that the client purchase a package, either the actual package or a demonstration
version of it may serve as the POC model. A package may require substantial
work by the team before it will operate correctly or at all.

When the team builds a solution or when no demonstration version of a
package system is available, the team may choose to build a prototype. The pro-
totype may range from a full-featured initial version of the actual production
system to a highly simplified version that only provides some input to output
transformations. The team can create and use a throwaway prototype to
develop, refine, and demonstrate the system. The prototype provides a tool to
clarify the design and operations of the proposed system before the client
invests in an expensive and less flexible production model. An evolutionary pro-
totype evolves into the final production programs—the programs that are
implemented in the organization to carry out activities for the client. In a num-
ber of field projects, especially in smaller, low-budget operations, the client may
wish to use the prototype produced by the team for a POC model as the pro-
duction system.

Chapter 12 Proof of Concept 453

Once the team possesses a POC model, either a package or a prototype, the
team can use the model to validate and refine the design. A prototype also can
serve as a supplement or alternative to a traditional SDLC project approach. The
prototyping life cycle approach begins with an initial analysis to identify the data
and process specifications—a brief informal proposed systems stage. The team
builds the initial prototype to march the design specifications. Once the proto-
type operates correctly, the team uses the prototype to interact with clients, often
including users. The team records the comments from each prototyping session
and rapidly implements changes in the model to address them. Every several
days to several weeks, the revision and evaluation sequence is repeated until the
client is satisfied, usually after three to five iterations.

To the extent feasible, the team wants to make design decisions for the proto-
type that will allow for “rapid development.” As noted previously, the basic ten-
ant of rapid development is, “Do only what is necessary to deliver an application
that (1) meets the client’s perceived needs, (2) in as short a time as possible, and
(3) at the lowest possible cost.” One of the primary purposes of a prototype is to
demonstrate that the design decisions made by the team actually work. Two
design rules are:

1. The initial prototype code that the team produces must match the design documentation.

2. Any changes the team makes to the prototype code should be made to the
documentation.

The GB Video prototype implemented in Microsoft Access closely matches the
design specifications in Chapter 11. The Access tables correspond to the relational
schema in Chapter 11. The forms and modules in Access correspond directly to
the modules on the program structure chart in Chapter 11. Access conventions
and the physical model result in some changes in naming and also changes in
the way that modules execute.

Key Terms artifact, 439
bottom-up plan, 437
component plan, 438
content, 435
control flow, 439
CURD operations, 440
data model, 439
evolutionary prototype, 428
functionality, 424

logic, 440
object plan, 438
operational feasibility, 424
operational model, 424
package POC model, 426
production program, 428
proof of concept (POC)

model, 424
prototype, 425

prototyping life cycle, 431
simulated POC model, 426
static model, 424
throwaway prototype, 428
top-down plan, 437
usability, 424

Review
Questions

Answer the following questions regarding these topics.

1. Proof of concept.

a. What is the purpose of a proof of concept model?

b. What is the difference between an operational model and a static one?

c. What are the two components of operational feasibility?

454 Part Four System Delivery

2. Types of models.

a. Describe three types of proof of concept models.

b. What can each type of model test? Not test?

3. Purchased systems.

a. What are the normal proof of concepts that are available for a purchased system?

b. What are the considerations in determining whether to use a version of a vendor
demonstration system or rely on a simulated model?

4. Prototypes.

a. What is the difference between a throwaway prototype and an evolutionary one?

b. What are the advantages and disadvantages to throwaway and evolutionary
prototypes?

c. Why would you ever build a throwaway prototype?

5. Features.

a. What are some key features that should probably be included in the prototype?

b. What features are normally not implemented in a (throwaway) proof of concept model?

6. Walk-through.

a. What is the purpose of a walk-through?

b. Who should attend?

7. Proof of concept demonstration.

a. Why should a proof of concept demonstration for a client follow a prescribed script?

b. How would you demonstrate system functionality, usability, features, and validity?

c. What should the team do if you are unable to obtain an operational demo?

8. Prototyping life cycle.

a. Describe the prototyping life cycle.

b. Discuss the use of prototyping within the context of the spiral development
methodology.

9. Documentation.

a. What should match between documentation and the proof of concept model?

b. What should not match?

c. What are concrete checks that a team should go over to be sure that code and doc-
umentation match?

Individual Exercises
1. You are building a throwaway prototype for your client. The client needs a system to

keep track of inventory and orders for a book warehouse. What tables would you
include, and what fields would you include in the tables?

2. Create the tables in Individual Exercise 1 with metadata in Access or a similar physi-
cal implementation.

Group Exercises
1. Use Access or a similar tool to build a simple prototype for Individual Exercise 1 that

will provide a report on the inventory available for any book by title or ID number.

2. Find a demonstration of a package on the Web and develop the data schema and mod-
ule logic for it.

Critical
Thinking
Exercises

Project Completion
Chapter outline

455

Introduction

Testing Plans

Desk Checks

Walk-Through Tests

Design Specifications Walk-Through Tests

Operational Testing

Post-Implementation Tests

Documentation Clearance

Implementation

The Implementation Plan

Implementation Strategies

Direct Implementation

Parallel Implementation

Sequential Approaches

Training

Initial Training

Follow-on Training and Support

The Training Plan

Maintenance Plan

Documentation

System Controls

Disaster Plans

Post-Implementation Audit Plan

GB Video Implementation Plan

Closing the Project

Summary

Key Terms

Review Questions

Critical Thinking Exercises

Individual Exercises

Group Exercises

Reference

Chapter Thirteen

INTRODUCTION

Completing a project means different things for each manager and client. Some
clients want only the specifications to purchase or build a solution. Others want
an operational solution, that is, a system that meets their requirements, with
installed and tested production code, and with good, complete documentation.
In all projects, the team should prepare testing and implementation plans and
provide adequate documentation for all aspects of the project. In some projects
the team will carry out part or all of the testing and implementation activities.
In other projects, IT or contractor staff members will perform or assist the team
in this function.

456 Part Four System Delivery

One of the key problems in testing, conversion, and implementation involves
the time frame. Preparation and/or execution of test and implementation plans
fall in the last stage of the SDLC, near the end of the project. By this time the
team probably is tired and may expend little time and effort on implementation
issues. To address the problem, planning for testing and implementation should
begin at the start of the project. During project definition, the analyst should ask
such questions as (1) What problems or issues in the current situation should be
addressed during testing? and (2) What problems or issues in the current situa-
tion might be alleviated or eliminated by training? During the proposed system
phase, a number of additional issues related to testing and implementation will
emerge. For example, the team may place major weight on finding a low-risk
alternative, one that the client can implement with a high probability of success.
Finally during system design or procurement, the analyst may take a number of
steps to simplify the implementation and maintenance of the system.

Testing may produce valuable input for implementation. Any problems
detected during testing that remain in the production system should be addressed
by the team in the implementation and training plan. For example, if the client
decided not to include error checking on certain data inputs, the design team can
point out how to detect and deal with the error problems, if any, that arose dur-
ing testing. The team might recommend additional training for users to reduce
the errors as part of the implementation plan.

As noted, the role of the project team in testing and implementation will vary.
In some cases, the team will manage or conduct much or all of the testing, train-
ing, conversion, and implementation. In other situations, a different group of
people may perform part or all of the testing and, particularly, the implementa-
tion. The project team’s role may consist primarily of preparing plans and doc-
umentation for the follow on groups. The rest of this chapter covers the prepa-
ration of testing and implementation plans.

TESTING PLANS

Testing addresses how well the proposed system achieves the following broad
goals:

• The system logic performs as intended by the team.

• The system operates and performs in ways that meet or satisfy the require-
ments of the client.

• The system and documentation conform to the standards set forth by the
client and organizational standards, including consistency with all other work
prepared by the team.

Most testing plans strive to meet all of the aforementioned goals although occa-
sionally the team may wish to focus on one or two when substantial further work
by other people is required to finish and implement the system. As the team
designs each part of the system, the team can ask, “How should we test to see
that this part of the system meets the three goals?”

The test plan design begins during the project definition phase, and the team
updates the plan as the project proceeds. The team and the client will carry out
a number of test procedures as part of the project. The test plan states who is
responsible for each test procedure or component and shows the deliverables.
These test steps form part of the overall development plan for the project and
should appear in the project Gantt chart or activity table. Points in the project at
which the team should plan test activities include:

• System specifications tests. The team tests the conceptual specifications before
investing effort in detail design specifications.

• Design specifications tests. Does the solution match the specifications?

• Solution logic tests. Does the solution perform as specified?

• Solution value tests. Does the system in operation meet the client and user
requirements?

• Report and documentation tests. Does every report and document produced
by the team meet team, client, and organizational standards? A bad report to
management can damage the prospects for a good system.

The design team adds appropriate corrective action to the project plan for any test-
ing issues that the team encounters. When, as frequently happens, the design team
turns the system over to the client or another group for further work, the team
notes in the test plan the actions the team has taken and the results. In the plan,
the team also recommends additional test steps as appropriate for the new group
to conduct.

The test plan may include desk checks, system walk-throughs, operational
tests, documentation clearance, and other areas as appropriate. For example, the
plan may suggest a live data test or perhaps a pilot test by a selected group of
users. An example of a testing plan for GB Video is shown in Table 13.1. The
possible content areas for the plan are addressed in the next sections.

Desk Checks
Desk checks form the first line of defense against system errors and problems.
Every team member should conduct individual desk checks of his or her own work.
The team member mentally reviews the work to determine if the work is consis-
tent with other existing work by the team, contains correct logic, and meets the
manager and client requirements. Normally the analyst will desk check his or her
work at every significant milestone, including the completion of a major segment
of code, data, process, or procedure. If several people have worked on a segment,
the people who worked on the segment may join together for desk checks of the
joint work. Desk checking should catch most if not all of the major errors within
data and processes. Both correctness and completeness are important.

Walk-Through Tests
Walk-through tests form a second tier of testing activities. In a walk-through,
the test participants as a group go step by step through the requirements as
found in the narrative, data models, and process models checking at each step

Chapter 13 Project Completion 457

458 Part Four System Delivery

to see that the work is consistent and meets the goals set by the client. The test
group may consist only of team members or of team members plus managers,
clients, and users. The team may wish to assign one or more specific testing
responsibilities to team members. For example, the team may ask one person to
check the work prior to the walk-through to identify and make a list of any
potential issues and questions. For each error or question identified during the
walk-through, the team can assign the problem to a specific person for correc-
tion. If the errors were substantial, the team should schedule additional walk-
throughs until all obvious errors are corrected.

The group may wish to conduct more elaborate walk-throughs that simulate
the operation of the system. In a simulation walk-through, the team members
play the role of system components: One person can play the role of a customer,
another a system user, another the database engine, and others the processor.
Following the specifications in the documentation, the group plays out what hap-
pens for some typical scenarios. As noted earlier, the team also may choose to
develop a computer-based prototype and use the prototype to test logic, client
and manager requirements during the walk-through.

When a team member or the team completes and has desk checked a section of
the project, the team may wish to conduct internal walk-throughs, walk-through

TABLE 13.1
Testing Plan

Responsible Anticipated

Test Procedure Deliverable Person Date

Desk checks and Project definition Dan Cartperson Jan. 31

walk-through and the team

Desk checks and Proposed system Terrie Shaftkopf Feb. 25

walk-through conceptual and the team

specifications test

Desk check and Solution logic test Al Price and team Mar. 10

design specs walk-

through

Simulation walk- Solution value test Terrie Shaftkopf Mar. 12–13

through test and the team

Operational test POC model initial Dick Von Kemp Mar. 30–

tests Apr. 14

Operational test Final POC test Dick Von Kemp Apr. 15

Desk checks and Final report and Team, manager Apr. 19–23

walk-throughs presentation and clients

clearance

Production system Acceptance test per IT staff and Feb 20–

operational test with the RFP vendor selection Mar. 20 of

live data committee next year

Desk checks and Production IT staff Mar. 20–27

walk-through by IT documentation of next year

and system users clearance

Production system Post-implementation IT staff and June 1–30

operational test with audit internal auditor of next year

actual users and

customers

tests conducted with only the team members in attendance. Normally, the group
will find problems missed by the team member, especially problems of interaction,
completeness, and consistency for the combination of work carried out by differ-
ent team members.

When the team becomes confident that the solution is free of obvious errors,
the next step involves external walk-throughs, which means reviewing the work
with the manager and/or with client representatives and users. Taking work to
the manager, clients, or users that contains obvious errors is inexcusable and may
lead to serious negative consequences. Obvious problems suggest that the team
either is unable to understand the standards and content for the project or that
the members do not care enough to do it right. In other words, the team either
ignored or put little effort into desk checks and internal walk-throughs.

The team may wish to begin with a review with the manager to whom the
team reports. Once the manager is satisfied with the work, the team can sched-
ule reviews with the client and users. Reviews with managers, clients, and users
can pose complex issues. Both the determination and communication of require-
ments often are difficult for clients and users. In addition, clients and users may
disagree on what they want. In an external walk-through, the team members pre-
sent their work and encourage an open and thorough discussion with the man-
ager, clients, and users. The team should expect at each review to find mistakes
or learn about new issues. A good team avoids defensive behavior and encour-
ages the clients and users to point out problems.

Design Specifications Walk-Through Tests
As noted previously, requirements and detail design may proceed sequentially,
in parallel, or a mix. If sequential, the team conducts the same desk checks and
walk-throughs for the detail design. The one new issue is checking the detail
design against the requirements design to make sure the two match. The team
continues to review the work with its manager and client. Once actual code or
pseudocode exists, additional testing is possible. During desk checks or walk-
throughs, the team can check the control flow to see that the trigger and condi-
tional statements work correctly. Every module must either end the program,
pause to await an external trigger, or trigger another module. Every module
must be triggered by another module or by an external trigger. Every condition
must lead to the correct action. Modules can be checked for functional and tem-
poral cohesion and for possible data coupling problems.

Operational Testing
Once an operational solution, that is, a program or programs that execute, exists,
the team can begin operation testing. Operation testing provides much more
rigor than other forms because the computer actually performs the actions
exactly as set forth in the program. This stage may reveal a number of problems
that escaped detection in all the earlier testing. When the team plans to rec-
ommend purchase of a package solution, actual or demonstration packages may
be available early in the project. These packages allow the team to perform some
operational testing before any decision is made on how to proceed. When the

Chapter 13 Project Completion 459

460 Part Four System Delivery

team plans to recommend building a solution, operational testing must wait until
the system or an initial version or prototype is built and working.

The design team can perform operational tests to determine that the program
compiles, performs actions as intended, and that the triggers and conditional
logic work correctly. Much of this testing can be conducted before the program
is complete. In place of the full logic for some modules, particularly the very
complex ones, the design team can substitute a few simple statements or write a
“The program reached Module P3.7 at (current time)” statement. This type of
testing sometimes is called stub testing. Trace programs exist that will record
and display the modules in the sequence as they execute and other parameters.

If the program logic and sequence control appear correct, the team can test the
program with data. The team may wish to construct a test data set or the team may
use live data. Often live test data for the system will exist in the form of a set
of actual inputs with the corresponding outputs they produced. The team may
have to write a program to reformat the inputs to use the live data. At some point
the team may convert the existing files and load the data into the new system. Live
data provides a good test but may not reveal problems with seldom used or newly
added features. In another type of live data test, the team asks a group of users to
exercise the system, by providing typical kinds of inputs and seeing if the system
produces the expected outputs. Users, for example, order clerks, often know the
kinds of issues that may cause problems for the system; however, their experiences
come from the current system, not the new one. User tests also help the team to
devise appropriate training procedures, manuals, and online help functions.

With constructed data the team can test seldomly used features of the system.
Part of constructing a test data set is devising the outputs expected for the con-
structed inputs. Constructing anything other than a small data set can involve a
lot of time and effort. Clients and users should participate in the creation of all
test data. IT-oriented analysts and programmers may not know about all the con-
ditions or may overlook problems that clients and users face every day.

Post-Implementation Tests
While careful testing of the system operation prior to implementation can provide
much insight, some problems will appear only during post-implementation opera-
tions, usually at the most inconvenient time, such as on weekends, in the middle
of the night, or during the busiest time of the year. A good test plan pays special
attention to post-implementation testing and monitoring. Undetected problems in
the post-implementation period can require very expensive corrective action.

Documentation Clearance
Documentation deserves the same complete and rigorous testing as all other
aspects of a solution. The test plan should provide for an appropriate person or
group to read, check, and certify every important piece of documentation. The
tests include checks for:

• Format. The documentation should be free of errors that might impede under-
standing, such as missing words or sections, or pages out of sequence.

• Correctness. Specifications should accurately describe the system as built or
in the final design. Instructions, data scheme, process diagrams, and metadata,
when implemented, should produce the desired results.

• Completeness. The documentation should cover every important issue or
action for successful operation and maintenance of the system.

• Policy. The actions, instructions, and implications of the documentation
should follow or, at least, not conflict with organizational policies and culture.

• Readability. The intended users should understand the meaning of the
documentation.

Documentation clearance often seems unglamorous and less important than
other tasks. However, when the documentation is needed and used, errors and
omissions can cause havoc. For this reason, the test plan should provide for
explicit and careful tests of documentation. Many times, the first good test of
documentation for completeness and accuracy occurs with the event of an emer-
gency. If the documentation contains errors, serious consequences may result.
The people who will use the documentation, and when possible, people who did
not prepare it, should participate in the testing. The deliverable is a specific sign-
off or clearance by a person or group for every piece of documentation. CASE
tools, some programming languages, and database engines can provide good
self-documentation when used properly.

IMPLEMENTATION

During implementation the proposed solution evolves into the operational or cur-
rent solution. Implementation may involve moving toward the use of a modified
existing system, a new built in-house system, or a purchased package or the trans-
fer of activities to an outsourcer. Implementation may or may not involve changes
to infrastructure and organization. As previously noted, the team may manage the
implementation or other groups may take partial or complete responsibility for it.

The Implementation Plan
In all events, the project team needs to prepare an implementation plan. A typ-
ical implementation plan, may address the following topics:

• Implementation strategy. The general framework for implementation.

• Integration requirements. Preimplementation changes or modifications required
to begin using the proposed system.

• Additional design. Work needed before the new system starts operation
including interfaces with other systems and correction of problems discov-
ered during testing.

• Data. Conversion of existing data files and input data formats to the new
design.

• Infrastructure. Converting the existing infrastructure to the facilities, soft-
ware, and hardware required to operate the new system.

Chapter 13 Project Completion 461

462 Part Four System Delivery

• Organization management. Who will manage the implementation and who
will do the tasks needed to implement and operate the new system?

• Documentation. Most of the tasks during implementation and subsequent
operation will rely on documentation provided or arranged for by the proj-
ect team. The team needs to specify what documentation is provided and
how to access it.

• System operations. Who will operate the system and under what rules or
procedures?

• People management. Hiring or assigning the people to operate and use the
new system and training them. Training often is a major and expensive task.

• Security management. Planing for backup and recovery, including specify-
ing the people with responsibility and authority for procedural changes, sys-
tem changes, data ownership, program and/or database changes.

• Database administration. Managing the database with people and rules.

• Maintenance. Who will make the modifications that most systems require dur-
ing the first months of operation to correct errors or omissions (and throughout
the life of the system)? Who will modify the system to add features or respond
to the changing environment and how this will change control work?

Data conversion includes all of the actions to allow the system to use, as
required, existing files or databases and to accept inputs from and provide out-
puts to other systems. Teams may forget about data conversion until the time
comes to run live tests. The functions of the conversion process may include the
following:

• Prepare for new formats. Many times the analyst will need completely new
formats for the I/O and the reports. This need may result from the use of a
new database or a change in the input source.

• Provide data validation techniques. The team sets up the methodology to val-
idate the data as converted to the new system.

• Specify new coding. The team may need to establish new coding structures for
the old legacy data. For example, when the U.S. Postal Service changed the
state abbreviations to a standardized two-digit format, systems using the old
abbreviation of states such as Alabama as Ala. converted to the new code, AL.

• Design new forms. Most new systems will use new forms. The team should
understand the impact of new forms and contribute to their design. As noted
earlier, the content and format of the forms must match the process and data
structure and allow the user to move through the form in a sequential path.

Implementation Strategies
As a first step in the implementation plan, the team selects an implementation
strategy. The two broad choices are:

1. Parallel implementation. The new system operates in parallel with the exist-
ing system for a period of time. Both systems process the same inputs. The

client can compare the outputs produced by the two systems to determine if
they agree.

2. Direct Implementation. The existing system is shut down at the time the new
system begins operation.

With each of these two strategies, the team may select substrategies or sequential
approaches known as pilot implementation and phased implementation. With phased
implementation, the proposed solution is implemented one piece at a time. With
pilot implementation, the new solution is implemented at one or several of many
possible locations. The choice between the various strategies reflects an evalua-
tion of the cost and risk that the team and client choose to accept.

Direct implementation

Clearly, the immediate costs of direct implementation are smaller than they are
for parallel implementation because the costs of operating both systems simul-
taneously are eliminated. However, the total costs may be larger if the new sys-
tem fails to operate correctly and causes such problems as data corruption that
can be very costly to correct. Even worse, the new system may fail to perform
with severe or even disastrous consequences to client, vendor, or customer rela-
tions; sales, and profits. When serious problems occur, top management, post
facto, may view direct implementation as reckless or ill-advised regardless of
how much thought and/or participation went into the decision.

The team normally selects direct implementation primarily for small or
non–mission-critical systems—those systems with little or no effect on an orga-
nization’s major performance measures. Direct implementation also may work
well for a system where secure backup data exist. For example, organizations
often use direct implementation for analysis and reporting systems that work off
copies of operating databases because no risk exists of damaging important data.
For small, noncritical or secure data applications, the extra costs of parallel
implementation probably exceed any benefits. Direct implementation involves
less risk when the team and client both have extensive experience with the con-
tent and technologies in the new system, for example, minor modifications to a
stable, existing system by the team that built it. Direct implementation, when
successful, allows the client to begin receiving the benefits of the new system
right away.

As part of the direct implementation procedures, the team must provide the
client with a viable backup or fallback option—a recovery plan in the event the
new system does not perform at a satisfactory level. When a crisis occurs, peo-
ple tend to make poor on-the-spot decisions. Making a backup plan requires the
team and client to come up with a recovery plan in a noncrisis environment that
can be invoked if and when a crisis occurs. When direct implementation is con-
sidered, the team also may wish to recommend much more extensive testing
prior to implementation, a costly activity that further reduces the cost advantage
of direct implementation. When prototype development is selected, both the
client and the team can observe the prototype in a number of simulated or actual
“live operations” often with actual users. These operations may provide enough

Chapter 13 Project Completion 463

464 Part Four System Delivery

confidence in the new system for the team and client to agree on direct imple-
mentation. If a current system does not exist, then direct implementation may
offer the only choice. The backup plan in this event may be simple: In a crisis,
go back to whatever you were doing until the problems with the new system
are corrected.

Parallel Implementation

Most large, mission-critical systems undergo some form of parallel implementation.
When any major doubts exist about the wisdom of direct implementation, the
team should look carefully at parallel implementation. In many cases, the poten-
tial extra costs of parallel implementation represent only a small part of the total
cost of a new system. Even with extensive testing, most clients want to see the
new system operate “online” for a while before authorizing the change or cut
over to it as the sole provider of IT services for the function. Both clients and
teams find parallel implementation less stressful than direct implementation.

How long to operate in parallel poses some difficult questions. For example,
in many retail operations, the Christmas season represents a much heavier sys-
tem load than the rest of the year. Typically, clients want to begin parallel oper-
ation when the load is light so people are available to address problems as they
arise. However, some problems with the new system may only show up under
high load conditions. Sometimes problems show up only when an unusual con-
dition occurs, perhaps a major recall. In short, parallel operation increases con-
fidence that the new system will perform as intended, but does not guarantee
that problems will not arise in the future.

Sequential Approaches

As noted in earlier chapters, sequential or step-by-step approaches to develop-
ment lower risk. Two sequential options may exist for implementation:

1. Phased implementation. Implement the new system one part or function at
a time.

2. Pilot implementation. Implement the new system at one or several of a num-
ber of locations that eventually will use it.

Phased implementation is most useful with large systems that perform a num-
ber of functions. The idea is to implement the major functions one or several at a
time. For example, consider the issues of replacing a large mainframe-based air-
line reservation system with a new client/server version. The risks associated with
direct implementation are very large, and the costs of parallel implementation also
are large. In this event, the team may elect to phase the implementation. For exam-
ple, the first step might involve moving the customer database from a flat file on
the mainframe to a relational database system on a separate server. This approach
starts with a relatively simple function and has the benefit of freeing up time on
the mainframe. The phased approach may incur significant costs to interface the
new function with the existing system. In the example, the new customer rela-
tional database system may need a complex application program interface (API)
to allow it to work with the rest of the mainframe reservation system.

Subsequent steps might be to convert the reservation records and then the
flight availability data to RDBs on servers. The last step might be to convert the
very complex logic for finding and organizing the appropriate flights to respond
to a customer request from the mainframe to a server. Note that the organiza-
tion can implement the individual functions with either general implementation
strategy—direct or parallel. With a parallel strategy, the cost is reduced because
only part of the system is operated in parallel. With a direct strategy, the risk or
potential cost of a major problem may be reduced compared to directly imple-
menting the entire new system.

Pilot implementation is most useful when a system will operate at multiple
locations, for example, the retail sale system for Wal-Mart or the inventory sys-
tem for Air Force bases. Pilot implementation may work well for GB Video. The
team can implement the new system at one store first and then implement at the
other stores when all works well. As with phased implementation, pilot imple-
mentation can occur with a direct or parallel strategy. In both cases the cost and
risks are reduced because the new system involves only a portion of the total
volume or activity of the organization. Table 13.2 shows a summary of imple-
mentation strategies.

Training
Adequate training for all the people involved in a proposed system implementa-
tion, including users, operators, administrators, managers, and maintainers can
exercise a critical impact on success. Breakdowns in training at any level can con-
tribute to system failure at worst or to reduced performance at best. Adequate
training will not ensure the success of a poorly designed system. But even with a
good system, inadequate training can result in input, output, and system errors;

Chapter 13 Project Completion 465

TABLE 13.2
A Summary of
Implementa-
tion Strategies

Option Advantages Disadvantages

Parallel—most May reduce the risk of major Incurs the extra expense of

appropriate for large operational problems. Less stressful operating two systems. May not

or mission-critical for the client and team—i.e., may find all the problems. Delays

systems save your job realizing the benefits of the

new system

Direct—most Faster realization of benefits and Possible additional expense or a

appropriate for smaller less expensive when it works disaster when major problems

or non–mission-critical without major problems occur. May appear “reckless” to

systems top management

Sequential phased— Lowers complexity and resource May involve significant extra

most appropriate for requirements and allows client and expense to create APIs. Delays

complex multifunction team to focus on one part at a realizing the benefits of the full

systems time. May allow faster realization new system

of some benefits

Sequential pilot—most Lowers or limits negative impact Involves extra expense to manage

appropriate for systems on the overall organization of any the pilot. May require APIs.

that will operate at problems that occur. Allows Delays realizing the benefits of

multiple locations changes and revision to be made the full new system

before widespread training occurs

466 Part Four System Delivery

frustrate users and customers; antagonize managers; increase downtime and costs;
and degrade performance. Training is expensive, but not training the relevant peo-
ple can cost a lot more. With small projects, training responsibilities may be
assigned to one of the team members. With large systems, training responsibilities
often are assigned to a separate training group or organization.

Training goals in approximate priority order are to prepare the trainee to:

• Perform routine activities, for example, use, operation, or maintenance of the
system.

• Handle promptly unusual events that may cause serious problems or dam-
age, for example, a serious problem encountered by an angry customer or a
virus attack on the system.

• Know how to obtain more information on unusual events that are less time-
critical or that were not covered in other training.

Training may consist of initial and follow-on training both in a variety of for-
mats. Individuals newly assigned to a role with a system normally receive some
form of initial training. Initial training may range from a few minutes talk with
a supervisor or co-worker to days, weeks, or months spent in formal training
activities. Initial training should address all three of the training goals. Unfortu-
nately, people forget, systems and conditions change, and unanticipated problems
arise. Follow-on training and support mechanisms provide periodic or continuing
training. Follow-on training may include such mechanisms as a help desk, online
help, built-in help, and refresher courses.

Initial Training

This type of training tends to focus on direct users, the people in close and reg-
ular contact with the system. Initial training should answer the specific questions
that the trainee will face, for example:

• How do I gain access to the system, log in, and so forth?

• How do I carry out my routine functions—rent videos or cars, take orders,
answer questions, update data, and so on?

• How do I correct errors that I may make?

• How and under what conditions can I override the system, for example,
change a price that the computer provides?

• What do I do when the unanticipated happens?

Format options for initial training include:

• Self-study.

• Informal conversations with a trainer, often a co-worker or manager.

• Computer-assisted instruction (CAI).

• Training sessions or courses.

The various options listed may utilize printed text and/or audio-visual mate-
rials. Many organizations now place training materials online. Online materials

can support initial training and also follow-on training. In common with all train-
ing materials, online materials quickly lose value unless they are updated as
needed. However, the online format tends to facilitate the updating and dis-
semination of new materials.

Follow-on Training and Support

Even the best initial training provides only a beginning. People soon forget what
they learned in initial training unless they use the information on a regular basis.
Most systems undergo frequent modifications to correct problems or to add
capability, and each change can lead to new training issues. While analysts and
trainers try to cover a full range of situations, unanticipated problems always
arise. People provide inputs and take actions that the designers never antici-
pated. Every system contains errors, some of which may not show up for years.
In short, training and support are ongoing functions.

Refresher training resembles initial training. The organization arranges for
people with substantial experience since initial training to undertake additional
training. Refresher training may use any of the options and materials for initial
training tailored to recognize the higher experience level of the trainees.
Refresher training offers a good way to train for system modifications or changes
in the work environment. Colleagues offer a major source for follow-on training.
When a person encounters a situation that he or she cannot handle, the natural
solution is to ask a co-worker or a supervisor. Initial training should encourage
this approach. Some people will know a “system expert,” a person, perhaps in
the IT organization, who knows the answers to a lot of the questions that arise. The
demand on the time of the system expert may become so great as to interfere
with the person’s primary duties.

Many organizations try to structure the on-demand dissemination of infor-
mation from system experts. The daily support or help desk organization con-
sists of a person or group of people with special tools and training to answer
questions about the systems they support. A system user with a problem can
telephone or e-mail the help desk for answers. A daily support group is an exam-
ple of the “Train the Trainer” concept. The system developers provide guidance
or prepare information for the intensive training of a small group of daily sup-
port people. The daily support people then train large numbers of system par-
ticipants as issues arise. The support group needs to have a mechanism in place
to acquire the necessary skills and information and to maintain and update the
skills and information as the system and people change. The support organiza-
tion may have a trainer assigned to the development team for the proposed sys-
tem in order to acquire detailed support information as the project proceeds.

The training plan should identify whether or not a daily support group is rec-
ommended and, if recommended, how it will operate. In small organizations, the
group may consist of one person with other duties. In large organizations, a mul-
tiperson group may exist. The support group working hours should match the
times of operation of mission-critical functions. If the system, for example, a reser-
vation system, functions 24 7 and the daily support group contains the only avail-
able “experts,” then the support group should function 24 7. Often, the support

Chapter 13 Project Completion 467

468 Part Four System Delivery

group sets up a Web site to relieve the load on the staff. The Web site contains
answers and instructions for common tasks and problems. In many situations, the
Web site may give the only help available outside of normal working hours.

The Training Plan

The training plan for a proposed system should cover both initial and follow-on
training. System participants may exist at widely diverse skill and responsibil-
ity levels ranging from clerks entering data to scientists and engineers to senior
managers. Direct users also may work at locations literally around the world,
for example, checkout associates at Wal-Mart or reservation agents at Hertz.
For these organizations and even for organizations that operate only domesti-
cally, training may involve language and culture differences. The training plan
may tailor or segment the training for direct users with the following classifica-
tions in mind:

• Job responsibilities

• Organization level

• Educational level

• Language skills

• Cultural background

Each major combination of the above factors may lead to a different set of
training materials and activities. Each trainee should receive training relevant to
his or her role in the system and in a format that he or she understands and
accepts.

The training plan specifies the training options and materials to be used. The
team provides training materials unless the client directs otherwise. In small
organizations, training materials probably will consist mostly of text instructions
and guidance from colleagues. When a team purchases a package system, the
vendor may provide printed and/or online text materials plus audio-visual
and/or computer-assisted training aids. As noted, the team may or may not con-
duct training, but the plan should specify who will conduct the training. The
plan also specifies how, when, and by whom these materials are used. The team
may need to provide for a variety of special training activities in the training
plan. For example, the people administering the organizational networks data-
bases and servers that provide the infrastructure for the proposed system may
need training on the operations and requirements. These people also may need
training to understand the impact of the new system on the existing systems and
other organizational units. System administrators need to understand how this
new system fits with the organizational goals and policies.

Management may benefit from training on features, limitations, costs, and
benefits including competitive advantages, if any, for the proposed system. Man-
agement may not want or need the detail provided to the direct participants;
however, they may want information to make good investment decisions tied to
strategic alignment in follow-on systems and to discuss competitive issues with
investors and other managers. Table 13.3 gives an example of a training plan.

Maintenance Plan
Fewer things are more certain in life than the fact the proposed system will
require maintenance. Some of the common problems that occur include incorrect
program logic, input data omissions or incorrect definitions, and missing error
checks. Even when the programs for the proposed system are complete and cor-
rect, changes in sponsor, client, and user preferences; organizational goals and
missions; laws and regulations; and the competitive environment lead to a
demand for system changes. Surveys suggest that IT organizations spend a
majority of their budget on maintenance of existing systems.

The maintenance plan specifies how the team recommends the client main-
tain the proposed system after it is implemented. A first consideration is who will
maintain the system. Many times the development team moves on to other tasks
and another group takes over maintenance. The organization may have an inter-
nal group maintain systems or the team may look at contracting with a third party
for the maintenance. When the team recommends the purchase of a package sys-
tem, the maintenance plan often recommends that the package vendor provide
the maintenance. In small organizations, maintenance may drive the selection of
a recommended system. A small organization may have little, if any, capability
for maintenance and may choose to outsource to an application service provider
or to purchase a package system with vendor-provided maintenance.

Regardless of the maintenance source, the plan should set up or specify a
process to identify, review, control, and track changes to the system. Some
changes are close to mandatory, for example, the correction of errors that pre-
vent the system from performing its functions. Some others may be largely
optional, for example, some uses want to change the colors on the input screens.
With package systems, many changes are made by the vendor. The client’s deci-
sion is whether or not to install each new release. At a minimum, the plan should
recommend that the client establish a change control process and hopefully, the
plan can provide guidance on how the process will operate.

Good system documentation is a prerequisite to effective system maintenance.
When a different group from the development team will maintain the system, doc-
umentation assumes an even more critical role. Documentation is discussed in the
next section. An example of a maintenance plan for GB Video is shown in Table 13.4.

Documentation
The primary purposes of system documentation are to facilitate correct opera-
tion of the system and program maintenance and modification. Documentation

Chapter 13 Project Completion 469

TABLE 13.3
Training Plan

Activity Person Responsible Completion Date

Training development Al Trainor Mar. 1

Initial training Ted Teecher Mar. 18

Follow-on training and Mary Occe As needed for

support new employees

Refresher training Mary Occe As needed after

conversion

470 Part Four System Delivery

also provides a base for training materials. In a sense, all programs have com-
plete documentation: The code provides the most explicit possible documenta-
tion for the program. However, most people, even programmers, find other
representations of the system easier to understand and follow. A critical part
of the implementation plan is defining the documentation that the client wants
or agrees to for key points in the implementation cycle. The plan also may
specify documentation requirements and procedures for system changes post-
implementation.

The system development plan should specify the kinds of documentation
beginning with the System Definition phase of the project and continuing to and
sometimes beyond the closing of the project. The best approach to documenta-
tion is generating it at each stage as the project goes along. Sometimes organi-
zations, because of time pressures, decide to postpone preparing documentation
until after the system is working correctly. History suggests that postponed doc-
umentation tends to never arrive. Once implementation occurs, issues other than
documentation always seem more urgent. Documentation poses a familiar
cost/benefit issue. Little or no documentation saves documentation costs but
may cause large extra operating and maintenance costs.

For work performed in-house or under contract, the team has a number of options
for documentation relating to media, format, and level of detail. Media may include
text and graphical materials, comments in the program or with fourth-generation
languages, the code itself. An organization may set up a number of format stan-
dards and conventions for documentation and may specify a desired level of detail.
Each section of this book illustrates the authors’ documentation standards in text
descriptions and examples. For example, Chapter 7 “Learning from the Current
Situation,” uses a narrative, a first explosion data flow diagram, an enterprise data
model, and associated metadata for documentation of the current operation.

With the purchase of package systems, the vendor makes most of the deci-
sions on documentation. The vendors focus in on configuration and use of the
product. The vendor often discourages changes in the code and sometimes
declines to provide any documentation on the source code. When a vendor is
involved, the implementation plan should specify the materials the vendor is to
provide and the delivery times for the materials. Manuals that arrive a month
after implementation is completed provide little or no help for initial training.

TABLE 13.4
Maintenance
Plan for GB
Video

Activity Responsible Party

Follow-on activity Jim Croates

Management-required Al Price

changes

Log errors from users Logged-on Web site

Review errors Al Price

Track changes Al Price

Changes to code Vendor

Changes in options and Al Price

configuration

At a minimum, documentation should provide enough information to allow
system participants to:

• Configure, load, and initiate the system.

• Format and load initial databases.

• Set data access and other security controls.

• Provide the needed input data in acceptable formats.

• Access all the desired system features.

• Recover in the event of a disaster or crash.

• Install new releases or updates.

The team reviews all documentation for clarity and accuracy. When the orga-
nization plans to maintain the system, the documentation should facilitate and
track maintenance and modifications.

System Controls
Once a system is implemented and in operation, the best time to establish con-
trols has passed. Good system controls must begin as part of implementation. The
system control portion of the implementation plan specifies the who, what, when,
and where for actions relating to the system. The plan may cover such areas as:

• Data access controls. Normally an access control list specifies who can create,
retrieve, update, and delete data. Access may be place and time specific, for
example, creates, updates, and deletions can occur only from a terminal directly
connected to the system and only during normal working hours.

• Program or process initiation controls. Controls on causing a program or process
within the program to execute.

• Database changes controls. Controls on changing the structure of the database,
for example, adding a new attribute to a table.

• Program change controls. Controls on modifying programs.

• Physical infrastructure controls. Controls on access to and making changes in
infrastructure.

• Organizational and procedure controls. Controls on changes to procedures
that relate to the use of the system.

Disaster Plans
Disasters happen to the best of systems. The system may crash or, hopefully
infrequently, be destroyed by fire, floods, tornadoes, disgruntled employees, ter-
rorism, or other disasters. Crashes are the most likely occurrence. Some crash
recovery features are built into the system; others are procedures that belong in
the implementation plan. For example, in the event of a crash, MS Windows pro-
vides the last auto-saved version of the document if one exists. The user decides
what to do next—replace the existing saved version of the document with the
recovered (auto-saved) document or whatever else the user desires. Every sys-
tem should have a plan for what to do after a crash and the plan may vary with
circumstances. In a mission-critical activity, reverting to the last saved version

Chapter 13 Project Completion 471

472 Part Four System Delivery

may result in the loss of a number of transactions or parts of transactions and
often is unacceptable. More complex procedures are used in this situation.

Major disasters that cause physical loss or massive data loss happen infre-
quently, but can cause large expenses or organizational destruction. Organiza-
tions frequently provide remote storage of critical data and options or the use
alternate physical facilities to protect from major disasters. An example of a dis-
aster plan for GB Video is shown in Table 13.5. For an additional discussion of
disaster plan recovery operations, see Weber, 1999.

Post-Implementation Audit Plan
Many times after a system goes into operation, an organization’s managers give
a sigh of relief and turn their attention elsewhere. Only when and if the system
destroys a lot of data, misleads the organization, or annoys most of the customers
do the managers check to see if the system is performing correctly. A post-
implementation audit can detect problems before they become serious. In addi-
tion, an audit can provide valuable information for future projects. If acceptable
to the client, the team should include a post-implementation audit in the imple-
mentation plan.

The post-implementation audit attempts to answer such questions as the
following:

• How well does the system perform with respect to the strategic alignment goals?

• Does the system meet the stated system requirements or vendor specifications?

• Does the system have the proper controls in place?

• Were the system personnel properly trained?

• Does the system achieve the desired standard of usability?

• Does the system documentation conform to the organization’s policy?

The team may include methods to collect data and an analysis process to answer
the questions in the implementation plan. To avoid any suspicion of bias, how-
ever, the development team normally plays no role in the audit other than to
provide background information.

GB Video Implementation Plan
The team in GB Video recommended that GB contact a vendor to custom build
a video rental and return system. The vendor is expected to deliver the software
about a year after the team completes the final report. The team’s implementa-
tion plan in Figure 13.1 reflects these circumstances.

TABLE 13.5
GB Video
Disaster Plan

Activity Responsible Party

Identify secondary storage devices with critical data IT Director

Set up call list for emergencies IT Director

Ensure that all data and programs are backed up Database Administrator

on a daily basis

Set up a cold off-site center Facilities Director

Set up password system for clerks IT Director

Chapter 13 Project Completion 473

IMPLEMENTATION

The team prepared the following guidelines for implementation with the assumption that

GB will contract with a vendor to build the new system. The GB staff can fill in the

implementation materials once more is known about the product the vendor will provide.

Schedule of Implementation Activities

The team identified activities required to implement the new system in the table below.

All dates refer to next year.

Activity Responsible Person Completion Date

Prepare a training plan Vendor and GB staff Mar. 1

Prepare a maintenance plan Vendor and GB staff Mar. 1

Prepare an operating plan Vendor and GB staff Mar. 1

Purchase hardware GB staff Jan. 5

Interface with existing systems Vendor and GB staff Apr. 1

Make organizational changes Richard Cosier Mar. 20

Conduct data conversion Vendor Feb. 1–Apr. 1

Train GB employees Vendor and GB staff Mar. 18–

continuing

Install production system Vendor and GB Feb. 15

Conduct online testing Vendor and GB Feb. 20–Mar. 20

Pilot implementation GB Mar. 21

Begin full operation GB Apr. 1

Implementation Strategy

The team recommends that GB use a direct, pilot implementation strategy. On the morn-

ing of March 21, GB will implement the new system in the main store and discontinue the

current system. GB will keep the forms and files from the current system until certain that

the new system works. If serious problems arise, GB can go back to the current system

with little cost and risk. Once the new system operates correctly, GB will implement the

new system sequentially at the two remaining stores by the April 1 target date.

Other Implementation Activities

The team recommends that GB purchase the hardware several months before the new

system test version is delivered. The vendor will suggest hardware and software that

works well with the system as part of the RFP response.

The vendor contracted to carry out the required data conversion activities including con-

verting the customer file and the video file. GB will need to make a decision about

FIGURE 13.1 GB Video Implementation Plan

Page 1

474 Part Four System Delivery

CLOSING THE PROJECT

Normally a manager or senior administrator makes the decision that a project is
closed. A project may close because the work is complete, progress has stalled, the
budget is exhausted, or other work has a higher priority. Closing the project
consists of obtaining the manager’s agreement that the team has completed all
or as much as possible of the required work and tasks. At this point, the team
members end their obligations to the project; however, they may still receive
frantic calls for help up to years later. Many organizations use a project closing
checklist that specifies the items for which the team must obtain sign-offs to close
the project. A closing check list for a student field project might include:

• Having a manager sign off on the final report.

• Obtaining manager agreement that the team is ready to make a final
presentation.

• Making the final presentation.

• Delivering the final report to the client complete with a program, or Web site
for the working proof of concept model if the client so desires. Make sure the
client has all of the instructions, passwords, and other items needed to run
the model.

• Completing and submitting peer evaluations.

Summary
Completing a project means different things for each manager and client. Some
clients want only the specifications to purchase or build a solution. Others want
an operational solution, in other words, a system that meets their requirements
installed and tested with good documentation. In all projects, the team should pre-
pare testing and implementation plans and provide adequate documentation. In
some cases the team will manage or conduct much or all of the testing, training,

rental transactions that are open on the date of conversion—enter into the new system

or continue to use the old system for open rentals.

The team estimates that only three hours of training are required for clerks. With good

design and help features, the system should be easy to use. The team recommends

that GB not train the clerks until a day or so before the clerks start to use the system.

The system operator(s) can receive training from the vendor.

The team understands that the vendor probably will maintain the system. GB also will

need to make arrangements for hardware maintenance. Finally GB will wish to come up

with an operating plan for the system.

Page 2

conversion, and implementation. In other situations, a different group of people
may perform part or all of the testing and, particularly, implementation.

Testing addresses how well the proposed system achieves three broad goals:

1. The system logic performs as intended by the designer.

2. The system transforms inputs to outputs in ways that meet or satisfy the
requirements of the client.

3. The system and documentation conform to the standards agreed to with the
project manager and client.

Points in the project at which the team should plan test activities include:

• System specifications tests.

• Design specifications tests.

• Solution logic tests.

• Solution value tests.

• Report and documentation tests.

The test plan may include desk checks, system walk-throughs, operational
tests, documentation clearance, and other areas as appropriate. Every team
member should conduct individual desk checks of his or her own work. The
member should mentally review the work to determine if the work is consistent
with other existing work by the team, contains correct logic, and meets the man-
ager and client requirements. In a walk-through, the test participants as a group
go step by step through the requirements as found in the narrative, data mod-
els, and process models; they check at each step to see that the work is consistent
and meets the goals set by the client. When the team completes a section of the
project, the team may wish to conduct internal walk-throughs, that is, walk-
through tests conducted with only the team members in attendance. When the
team gains confidence that the solution is free of obvious errors, a next step
involves external walk-throughs, which involve reviewing the work with the
manager and/or with client representatives and users.

Once an operational solution—a program or set of programs that execute—
exists, the team can begin operational testing. Operational testing provides much
more rigor than other forms because the computer actually performs the actions
exactly as set forth in the program. When the team plans to recommend pur-
chase of a package solution, actual or demonstration packages may be available
early in the project. When the team plans to recommend building a solution,
operational testing must wait until the system or an initial version or prototype
is built and working. If the program logic appears correct, the team can test the
program with data. Often live test data for the system will exist. Live test data
are a set of actual inputs and the corresponding outputs. With constructed data
the team can test seldomly used features of the system.

Documentation, including reports to clients and managers, deserves the same
complete and rigorous testing as all other aspects of a solution. The test plan
should provide for an appropriate person or group to read, check, and certify
every important piece of documentation. The tests include checks for format, cor-
rectness, completeness, policy, and readability.

Chapter 13 Project Completion 475

476 Part Four System Delivery

During implementation the proposed solution evolves into the operational
or current solution. A typical implementation plan may address the following
topics:

• Additional design work.

• Integration requirements. Pre-implementation changes or modifications to
other systems and procedures required to interface with the proposed system.

• Implementation strategy. The general framework for implementation.

• Organization management. Who will manage the implementation and who
will do the task needed to implement and operate the new system.

• Documentation. The team needs to specify what documentation is provided
and how to access it.

• Data management. Conversion of existing data and database administration.

• Infrastructure management. Converting the existing infrastructure to the facil-
ities, software, and hardware required to operate the new system.

• People management. Hiring or assigning the people to operate and use the
new system and training them. Training often is a major and expensive task.

• System operations. Determine who will operate the system and under what
rules or procedures.

• Maintenance. Determine who will make the modifications that most systems
require.

• Security management. Plans for protection, backup, and recovery.

As a first step in the implementation plan, the team selects an implementa-
tion strategy. The two broad choices are:

1. Parallel implementation. The new system operates in parallel with the exist-
ing system for a period of time. Both systems process the same inputs. The
client can compare the outputs produced by the two systems to determine if
they agree.

2. Direct Implementation. The existing system is shut down at the time the new
system begins operation.

With each of these two strategies, the team may select substrategies or sequen-
tial approaches known as pilot implementation and phased implementation.
With phased implementation, the proposed solution is implemented one piece
at a time. With pilot implementation, the new solution is implemented at one or
several of many possible locations.

Adequate training for all the people involved in a proposed system implemen-
tation, including users, operators, administrators, managers, and maintainers, can
exercise a critical impact on success. Training is expensive, but not training can cost
a lot more. Training goals direct system participants in approximate priority order
are to prepare the trainee to:

• Perform routine activities, for example, use, operation, or maintenance of the
system.

• Promptly handle unusual events that may cause serious problems or dam-
age, for example, a serious problem encountered by an angry customer or a
virus attack on the system.

• Know how to obtain more information on unusual events that are less time-
critical or that were not covered in other training.

Individuals newly assigned to a role with a system normally receive some
form of initial training. Initial training may range from a few minutes of talking
with a supervisor or co-worker to days, weeks, or months spent in formal train-
ing activities. Initial training should address all three of the training goals. Initial
training tends to focus on direct users, that is, the people in close and regular
contact with the system. Initial training should answer the specific questions that
the trainee will face, for example:

• How do I gain access to the system?

• How do I carry out my routine functions?

• How do I correct errors that I may make?

• How and under what conditions can I override the system?

• What do I do when the unanticipated happens?

Follow-on training and support mechanisms provide periodic or continuing
training. Follow-on training may include such mechanisms as a help desk, online
help, built-in help, and refresher courses. People may forget what they learned in
initial training; also, most systems undergo modifications and unanticipated prob-
lems always arise. Refresher training resembles initial training. The organization
arranges for people with substantial experience since their initial training to under-
take additional training. Colleagues offer a major source for follow-on training. The
daily support or help desk organization consists of a person or group of people
with special tools and training to answer questions about the systems they support.
A system user with a problem can telephone or e-mail the help desk for answers.

The training plan for a proposed system should cover both initial and follow-
on training. The training plan may tailor or segment the training with the fol-
lowing classifications in mind: job responsibilities, organization level, educational
level, language skills, and cultural background. Format options for initial train-
ing include self study; informal conversations with a trainer—often a co-worker
or manager; computer-assisted instruction (CAI); and training sessions or courses.
The various options may utilize printed text and/or audio-visual materials.
Online materials can support both initial training and follow-on training.

The maintenance plan specifies how the team recommends that the client
maintain the proposed system. Many times the development team moves on to
other tasks and another group takes over maintenance. The organization may
have an internal group to maintain systems, or the team may look at contract-
ing with a third party for the maintenance. When the team recommends the pur-
chase of a package system, the maintenance plan often recommends that the
package vendor provide the maintenance. Good documentation can facilitate
maintenance. The implementation plan defines the documentation that the client
wants or agrees to for key points in the implementation cycle.

Chapter 13 Project Completion 477

478 Part Four System Delivery

The system control portion of the implementation plan specifies the who,
what, when, and where for controls for data access, program or process initia-
tion, database changes, program change, physical infrastructure changes, and
changes to procedures. Every system should have a plan for what to do after a
crash and other more extreme disasters. In a mission-critical activity, reverting
to the last saved version may result in the loss of a number of transactions or
parts of transactions and often is unacceptable. Organizations frequently provide
remote storage of critical data and options on the use of alternate physical facil-
ities to protect from major disasters. If acceptable to the client, the team should
include a post-implementation audit in the implementation plan to answer ques-
tions about how the system actually performs.

Normally a manager or senior administrator makes the decision that a proj-
ect is closed. Many organizations use a project closing checklist that specifies
the items for which the team must obtain sign-offs to close the project. A clos-
ing check list for a student project might include sign-offs for:

• Manager approval on the final report.

• Manager approval for a final presentation.

• Team delivery of the final presentation to the client.

• Team delivery of the final report to the client.

• Team completion and submission of peer evaluations.

Key Terms constructed data, 460
data conversion, 462
design specifications

test, 457
desk check, 456
direct implementation, 463
disaster plan, 472
documentation, 460
documentation

clearance, 461
external walk-through, 459
follow-on training, 466
help desk, 467

implementation plan, 461
implementation

strategy, 461
initial training, 466
internal walk-through, 458
live test data, 460
maintenance plan, 469
parallel implementation, 462
phased implementation, 463
pilot implementation, 463
post-implementation

audit, 472

project closing, 474
refresher training, 467
report and documentation

test, 457
solution logic test, 457
solution value test, 457
stub testing, 460
system control, 471
system specification

test, 457
testing plan, 456
walk-through test, 457

Answer the following questions regarding these topics.

1. Testing plans.

a. What are the broad goals of a testing plan?

b. What should the test plan include?

2. Tests.

a. Describe desk checks, walk-through tests, and post-implementation tests. When is
each one appropriate to use?

Review

Questions

Chapter 13 Project Completion 479

b. What are the relative advantages of team-constructed test data and work sample data?

c. Why should the users be involved with developing the test data?

3. Module design. Explain the following:

a. Data coupling problems.

b. Functional cohesion.

c. Temporal cohesion.

4. Implementation.

a. What are the critical components of an implementation plan?

b. List the advantages and disadvantages to parallel and direct implementation.

5. Implementation planning: What has to be done to prepare for each of the following
during implementation?

a. Data conversion.

b. System installation.

c. Training.

d. Assure user acceptance.

6. Implementation strategies.

a. To install a new payroll program for your client, which implementation strategy
would you likely use? Justify your answer.

b. To install a new Web site for your client, which implementation strategy would you
use? Justify your answer.

7. Training. What is involved in:

a. Initial training?

b. Refresher training?

c. Ongoing training?

8. How would you tailor a training program based on students’

a. Educational level?

b. Job responsibilities?

c. Language skills?

Critical
Thinking
Exercises

Reference

Individual Exercises

1. Your client is a textbook publishing company. Your team is developing software to
keep track of inventory, orders, and customer information. Prepare an implementation
plan for the company.

2. You purchased a new computer. Develop an implementation plan for moving from
your current machine to the new one.

Group Exercises

1. Prepare a comprehensive training plan for all aspects of Individual Exercise 1.

2. Prepare a comprehensive training plan for all aspects of Individual Exercise 2.

Weber, Ron. Information Systems Control and Audit. Upper Saddle River, NJ: Prentice
Hall, 1999.

Appendix

GB Video Final Report
This appendix contains an example of a final report prepared for the GB Video
Rental System Project. Many of the materials in the report come from exam-
ples in the chapters. The materials are arranged and integrated to give a full
example of a final report that corresponds to the guidance in the book chap-
ters. The report format follows the outline for a final report in Chapter 3 as
shown below:

• Title Page

• Table of Contents

• Executive Summary

• Introduction

• Part I. Project Definition

• Part II. Proposed System Specifications

• Part III. Alternatives, Evaluation, and Recommendation

• Part IV. Design Specifications and/or RFP

• Part V. Implementation and Support

• Appendixes

Although the table of contents for the sample report does not display page
numbers, page numbers normally appear in a table of contents. The table in the
report shows first- and second-level headings. A team could display third-level
headings if desired, but the first and second levels provide all the guidance a
client needs.

A good team builds a final report as the project goes along. Most of the proj-
ect definition materials go in with little change. The alternatives, evaluation, and
recommendation material evolves as the project unfolds and the team learns
more about the options. The team should continue to refine the report as the proj-
ect proceeds. Team 7 made a few changes for the final report to the materials
that appear in the earlier chapters. From a quality standpoint, the report proba-
bly ranks a little above average. Many student teams can produce better final
reports.

A downloadable version of the final report in Microsoft Word appears on the
book Web site (www.mhhe.com/vanhorn).

481

482 Appendix GB Video Final Report

Final Report

GB Video Rental System Project

Prepared for:

Richard Cosier

President GB Video, Inc.

Prepared by

Team 7

Dan Cartperson
Dick Von Kemp

Al Price
Terrie Shaftkopf

April 23

Page 1

Appendix GB Video Final Report 483

TABLE OF CONTENTS

EXECUTIVE SUMMARY

INTRODUCTION

PART I. PROJECT DEFINITION
Project Statement
Strategic Alignment
Project Success Criteria
Features for the Proposed System
Constraints
Current Operations

PART II. PROPOSED SYSTEM SPECIFICATIONS
Problem Solving
Process Specifications
Data Specifications
Organizational Specifications

PART III. ALTERNATIVES, EVALUATION, AND RECOMMENDATION
Alternatives
Evaluation Comparison
Recommendation

PART IV. REQUEST FOR PROPOSAL
Qualified Bidders
Evaluation and Selection

PART V. IMPLEMENTATION AND SUPPORT
Implementation Schedule
Testing Plan
Implementation Strategy
Hardware and Data Conversion
Training
Maintenance
Emergency Plan

APPENDIXES
Appendix A. Statement of Work
Appendix B. Forms for the Current Situation
Appendix C. Current System Data and Process Models
Appendix D. Proposed Solution Data and Process Models
Appendix E. Request for Proposal

Page 2

Objective Measure Feature Impact Target

1.1. Reduce the labor Labor cost Automate the $50,000 per year
cost of renting and rental and return in labor cost
returning videos processes savings

1.2. Benefit from Increase in Automated system Increases in costs
economies of scale revenues versus handles increased equal to 85% or

increased costs volume with little less of increases in
or no new cost revenues

1.4 Reduce the cost Lost video costs System must $5,000 per year
of nonreturned confirm member
videos before renting

2.2 Faster checkout Checkout time Automate process Decrease from an
average of 4.5 to
1.5 minutes

2.3 Tie video Increase in sales Rentals database 5% increase a year
inventory to Increase in available to
customer preferences members Purchasing

2.4 Targeted mail Increase in sales Rentals and cus- 5% increase a year
advertising to tomer databases
members available for use

484 Appendix GB Video Final Report

EXECUTIVE SUMMARY

GB Video wishes to automate the current manual system for processing video rentals and
returns. Reporting will be handled by a separate system. The new system should address
improved customer service and lower handling costs for each transaction. GB asked
Team 7 to do the analysis and design work necessary to acquire a new video rental sys-
tem that will address the problems.

The team made every effort to align the project work with the strategic values of GB
Video and President Cosier. The objectives table shows the expected impact of the pro-
posed system features on the measures for the objectives that are important to President
Cosier. The team identified features for the proposed system based on discussions with
the client representatives. As shown in the table, these features contribute to the organi-
zational goals identified in the strategic analysis—increased profits and sales.

Mr. Cosier stated that GB Video will consider any solution that will realize a payback in
two years or less and cost less than $200,000 up front to acquire and implement. The
system should be in full operation in one year if possible. GB is willing to consider
changes in function and organization if the changes provide significant benefits to GB.
GB does not wish to continue with the current system unless all computer-based alter-
natives are prohibitively expensive, that is, outside the $200,000 limit.

Page 3

485

Mr. Cosier and his staff identified the following problems in the current situation:

• GB requires more clerks than similar stores with automated systems.

• Customers complain about long lines and slow checkout of rentals.

• Mistakes are common and some people use false member numbers and names
to rent videos.

• Customers use late overdue notices as a reason to refuse to pay overdue charges.

• The marketing and purchasing departments lack the rental data that they need to do
their jobs.

The team designed the specifications for the proposed system to alleviate all of the
problems and to achieve the goals set by the client. Based on discussions with
Mr. Cosier, the team identified four alternatives:

1. Improve the current manual system.

2. Procure a package system from a vendor.

3. Contract for service with an ASP.

4. Contract for a custom package.

Before performing in-depth analysis and evaluation of the four alternatives, the team
conducted a feasibility study to determine if one or more of the alternatives failed to
meet an important feasibility constraint. This analysis indicated that alternatives: 1.
Improve the current manual system and 3. Contract for service with an ASP do not
meet client constraints and should be dropped from further analysis. The team
conducted an in-depth evaluation of alternatives 2. Procure a package system from a
vendor and 4. Contract for a custom package. The team incorporated specifications for
a custom package into an RFP and GB solicited bids. After reviewing the bids, the
selection committee chose OkieComp, a local software company.

The features table summarizes the results of the evaluations of the alternatives. The
features listed in the evaluation table are ones that the client mentioned or stressed.

Alternative

Feature 1. Improve 2. Package 3. ASP 4. Custom

Client preference Low High Low Possible

Improves performance Some Yes Yes Yes

Meets client constraints No Yes No Yes

Initial cost $5,000 $65,000 $500,000 $99,500

Estimate payback 3 months 15 months 48 months 22 months

Meets specs 70% 95% 100% 100%

Client controls updates Yes No Unclear Yes

Risk Low Low High Medium

Time until operational 0 3 months 18 months 6 months

Custom modifications Yes No No Yes

Page 4

486 Appendix GB Video Final Report

Activity Responsible Person Completion Date

Prepare a training plan Vendor and GB staff Mar. 1

Prepare a maintenance plan Vendor and GB staff Mar. 1

Prepare an operating plan Vendor and GB staff Mar. 1

Purchase hardware Vendor Jan. 5

Interface with existing systems Vendor and GB staff Apr. 1

Make organizational changes Richard Cosier Mar. 20

Conduct data conversion Vendor Feb. 1–Apr. 1

Train GB employees Vendor and GB staff Mar. 18–
continuing

Install production system Vendor and GB Feb. 15

Conduct online testing Vendor and GB Feb. 20–Mar. 20

Pilot implementation GB Mar. 21

Begin full operation GB Apr. 1

The team provides the appropriate plans for implementation in the body of the final report.

INTRODUCTION

GB Video of Jackson, Oklahoma, asked Team 7 to perform the analysis and design
work required for acquiring a new video rental system that will add value to the organi-
zation. Basically, GB Video wishes to automate the current manual system for process-
ing video tape and DVD rentals and returns. A separate system will handle reporting

Page 5

All of the alternatives except the current system contribute to GB’s performance objec-
tives: they reduce cost by $50,000, provide support for additional stores, and increase
profits. The package and custom alternatives meet the constraints set by the client.
The custom and ASP alternatives meet all of the design specifications.

The team recommends alternative 4. Contract for a custom package. After carefully review-
ing the summary evaluation table, the team concludes that the custom package alternative
does the best job of meeting the client’s needs. The solution meets the constraints of a
two-year or less payback and an initial investment of $200,000 or less. The custom pack-
age contains all of the features desired by the client and thus does not require the client to
change practices and procedures to fit the package. Both the team and Mr. Cosier
concluded that the advantages of the custom package outweigh the disadvantages.

The activities required to implement the new system appear in the schedule table.

Appendix GB Video Final Report 487

Page 6

functions. The new system should address improved customer service and lower han-
dling costs for each transaction.

This report contains the materials prepared by Team 7 for the clients. The report con-
sists of five major parts and a number of appendixes. Part I. Project Definition
examines the organization and the client’s requirements for a new system. This part
contains (1) the strategic alignment analysis for GB Video that identifies what the orga-
nization values; (2) features and constraints for the new system; and (3) a review of
GB’s current operation. The review identifies components and aspects of the current
system to retain as well as the ones to change.

Part II. Proposed System Specifications builds upon the problem definition analysis to
identify and refine the specifications for the proposed system. This part contains both
narrative and graphical models of conceptual-level specifications for data and processing
in the proposed system. Part III. Alternatives, Evaluation, and Recommendation exam-
ines alternative solutions for the client’s problem. The section evaluates both build and
buy options and makes a recommendation based on the evaluation.

Because the team and client decided to purchase a system, the team followed the pur-
chase or RFP format option for Part IV. This part discusses the development of a
request for proposal, the solicitation of bids, the evaluation of bid responses, and the
selection of a vendor. Part V. Implementation and Support defines the work remaining
to implement the new system for GB Video. Topics include the implementation sched-
ule and strategy, training, maintenance, and other steps necessary to start the
operation of the new system. The appendixes provide documentation and diagrams to
supplement and detail the material in the report.

PART I. PROJECT DEFINITION

The team conducted an analysis of the GB Video’s mission, vision, goals, and objectives
to align the project and solution with the client’s values. The team studied the organiza-
tional structure, the strategic alignment, and the goals and objectives of the
organization’s management team. The team evaluated the contribution of this project to
the performance of the organization. The team worked with the client to identify the
client’s constraints and features for the proposed system and the client’s success criteria
for the project. The second part of this section contains descriptions of the current opera-
tions and the current physical and organizational infrastructure, an analysis of problems
in the current operations and a determination of the aspects of the current situation to
retain and the aspects to change.

Project Statement

GB Video wishes to automate their current manual system for processing videotape
and DVD rentals and returns. Reporting will be handled by a separate system. The new
system should address improved customer service and lower handling costs for each
transaction. A discussion of activities the team agreed to undertake and client
deliverables appears in the Statement of Work in Appendix A.

488 Appendix GB Video Final Report

Page 7

Strategic Alignment

The team worked closely with Mr. Cosier to determine the strategic alignment for the
project. President Cosier has approved all statements on goals, objectives, and impacts
of features.

Organization. Mr. Cosier, the owner and president of GB Video, stated, “The mission
of GB Video is to serve the customer.” The vision of GB Video is, “In the markets
where GB owns stores, become the leading seller and renter of videos and related
supplies with the best selection of videos at competitive prices and with better
customer service than competitors.” Mr. Cosier expressed concern that, in the future,
national companies that rent videos from a Web site and mail them to customers may
reduce GB’s market. He hopes that the solution to current problems will offer GB the
flexibility to compete with the national firms.

GB Video, with headquarters in Jackson, Oklahoma, operates three video stores in towns
of about 10,000 people. Each store operates largely independently although the
headquarters performs some functions for all three stores, for example, payroll, purchas-
ing, and accounting. The company employs 37 people and realized revenues of $1.5 mil-
lion and profits of $133,000 last year. The stores operate from 10 a.m. to 10 p.m. except
on Sunday when the hours are 12 noon to 10 p.m. Each store has a store manager and
the store managers report to Mr. Cosier. Within a store, two assistant managers and a
number of full- and part-time clerks report to the store manager. The assistant managers
are in charge of store operations on shifts when the manager is not on duty. The
assistant managers and clerks perform any or all of the store functions as assigned by
the manager on duty such as serve customers, shelve new videos, shelve returned
videos, and send overdue reminders.

Goals and Objectives. Discussions with Mr. Cosier and his staff people identified the fol-
lowing strategic goals and objectives. GB wants to increase profit to 10 percent or more
of revenue and to increase sales by 5 percent per year after adjusting for inflation. The
profit increase will result from reducing the costs of renting and selling merchandise and
from economies of scale as the business grows. Mr. Cosier is in the process of renegoti-
ating the leases for his stores and expects to save money for current and future stores
with lower rent. The 5 percent sales increase will result from offering customers fair prices
at or slightly below those of competitors and providing faster checkout service and a wider
range of selections than competitors. Mr. Cosier also wants to begin a targeted direct mail
marketing effort using data about customers and rentals. The customer and rental data
also will allow purchasing to do a better job of stocking the videos that are most in
demand. He believes that these actions will increase the number of members, the number
of visits per member, and the average number of videos rented on each customer visit.

The GB goals and objectives are summarized in Table A.1. Some of the information in
the table comes for the proposed system features discussion in the next section of this
report.

Impact on Performance. Mr. Cosier states that the new system is mission-critical for
GB. Mr. Cosier plans to open additional stores if the new system does result in
improvements. The new information system should increase profits by reducing labor
cost per transaction and eliminating the cost of videos rented to nonmembers and not
returned. Faster checkout service and better selections can lead to increased customer
satisfaction, more members, and higher sales. GB looks at labor costs, profits, and rev-
enues per store as major performance measures and at the total number of active
members and the number of rentals per member. Table A.2 summarizes the impact of

Appendix GB Video Final Report 489

GB Video Goals Related Objectives

1. Increase GB Profitability to 10% or 1.1. Reduce the labor cost of renting and

more of revenue returning videos

1.2. Benefit from economies of scale

1.3. Lower rent for stores

1.4. Reduce cost of nonreturned videos rented to

unknown nonmembers

2. Increase sales by 5% a year or more 2.1. Competitive prices

after inflation adjustments 2.2. Faster checkout

2.3. Tie video inventory to customer preferences

2.4. Targeted mail advertising to members

Page 8

TABLE A.1 GB Video Goals and Objectives

Objective Measure Feature Impact Target

1.1. Reduce the labor Labor cost Automate the $50,000 per year in

cost of renting and rental and return labor cost savings

returning videos processes

1.2. Benefit from Increase in Automated system Increases in costs

economies of scale revenues versus handles increases in equal to 85% or less

increased costs volume with little or of increases in revenues

no new cost

1.4. Reduce the cost Lost video costs System must $5,000 per year

of nonreturned confirm member

videos before renting

2.2. Faster checkout Checkout time Automate process Decrease from an

average of 4.5

to 1.5 minutes

2.3. Tie video inventory Increase in sales; Rentals database 5% increase a year

to customer increase in available to

preferences members Purchasing

2.4. Targeted mail Increase in sales Rentals and 5% increase a year

advertising to customer databases

members available for use

TABLE A.2 Impact of Features of Objectives

490 Appendix GB Video Final Report

proposed system features on objectives. The impact target data in Table A.2 are
derived from discussions between Mr. Cosier and the team and approved by him.

Project Success Criteria

Discussions with Mr. Cosier led to the following “measures of success” for the project.
Mr. Cosier will consider the project a success if the team:

1. Completes the project on time. Since the team will not handle implementation, suc-
cess is defined as submitting a complete final report by April 23rd.

2. Identifies and fully specifies a solution that provides the features desired by the client
within the client’s constraints, or demonstrates clearly that no such solution exists. If
no solution can be found, Mr. Cosier wishes to know this information as soon as pos-
sible so that he can consider modifying the requirements.

While Mr. Cosier feels strongly about the profit and sales goals, he understands that
many factors other than the project influence profits and sales. He will consider the
project a success if the team accomplishes items 1 and 2 above.

Features for the Proposed System

The team identified the following features based on discussions with the client
representatives. As shown above, these features contribute to the organizational
goals identified in the strategic analysis—increased profits and sales. The client
wants the proposed rental and return system to include the following functions:

1. Membership

a. Collect data and store data on new members.

b. Update data for existing members.

c. Issue a member card to members.

2. Rental

a. Rent videos only to members.

b. Create and store a rental record with identification of member and video.

c. Adjust an inventory record to reflect the rental.

d. Issue a receipt to the customer/member.

3. Return

a. Update the rental record and the inventory record to reflect the return.

b. Calculate the overdue charge if any.

The client wants to change the processes above to require less clerk time.

The client also requests that the proposed system contain the following features:

1. Automate the entry of video ID and member number. The client asked the team to
look at bar code scanning.

Page 9

Appendix GB Video Final Report 491

Page 10

2. Automate the entry of the current date/time for rental and return.

3. Reduce the time the clerks spend working with the paper files—the files of return
forms, videos, and members.

4. Eliminate duplicate manual data entry and storage, for example, entering the rental
date and return date on both the video card and the rental form.

5. Eliminate the cost to manually send data to accounting.

6. Reduce the cost of separate credit card and rental transaction processing.

7. Move all reporting functions out of the rental and return system.

8. Automate the sending of overdue notices to customers as part of the rental system.

9. Provide rental data for a data warehouse to be used by purchasing.

10. Provide rental and customer data for a database for Marketing.

Constraints

Mr. Cosier states that GB will consider solutions that will realize a payback in two
years or less and cost less than $200,000 up front to acquire and implement. The
system should be in full operation in one year if possible. GB is willing to consider
changes in function and organization if the changes provide significant benefits to
GB. In particular, GB wishes to transfer reporting and overdue notice functions to the
accounting group. Adequate air-conditioned space in the headquarters exists for a
server and network room. GB will acquire the equipment if that is the best alternative.
Since GB currently owns no computers, interoperability with current hardware and soft-
ware is not a problem.

GB does not wish to continue with the current system unless all computer-based alter-
natives are prohibitively expensive, that is, outside the $200,000 limit. The procurement
options that GB will consider include:

1. Package System. Search for a package system that will handle the rental and return
tasks to the client’s satisfaction. GB prefers to purchase a package as long as the
costs to purchase and implement the package including infrastructure do not exceed
$200,000.

2. Contract for Service. Contract with an application service provider (ASP) to
provide and operate the rental and return system. Mr. Cosier will consider con-
tracting with an ASP if a suitable package is not available or cost-effective.

3. Contract for a Custom Package. Contract with an IT consulting company to create
a custom package program for the rental and return system. Mr. Cosier will consider
this alternative if a suitable package is not available or cost-effective.

4. Build the System In-House. Mr. Cosier states that GB Video has no in-house capa-
bility to build a system. Only if all other alternatives look unsatisfactory is he willing
to consider developing such a capability. He believes that the cost probably is
prohibitive.

492 Appendix GB Video Final Report

Page 11

Current Operations

In consonance with the request of Mr. Cosier, the team looked at video rental and
return and closely related activities. GB Video operates in a manner similar to most
video stores. GB rents only to customers who are members. If a customer wishes to
become a member, GB will issue a membership provided the customer has a credit
card, a telephone, and a government-issued picture ID such as a driver’s license. The
GB clerk obtains the name, address, credit card number, and expiration date from the
picture ID and credit card, asks the customer for a telephone number, prints this data
on a customer form, and assigns a unique member number. The clerk prepares a
membership card with the name and member number and gives it to the customer.
The customer form is placed in the customer file box. On every contact, the clerk asks
the customer about changes and updates the customer form anytime a customer
reports a change. Exhibit 1 in Appendix B shows a customer form.

Although most staff members at GB Video talk about renting “videotapes,” GB actually
rents more DVDs than tapes. This report uses the term video to refer to both tapes and
DVDs. Customers may rent one or more videos for one or more days. The customer finds
the desired videos and brings them to the counter. The clerk copies the name and num-
ber from the customer card and copies the title and unique ID number from the label on
each video onto a prenumbered invoice form. Exhibit 2 in Appendix B shows an invoice
form. If the customer forgets his or her member card, the clerk looks up the number in
the customer file. The clerk also enters his or her employee number, the date of rental,
and a due date for each video; computes the amount of the charge and tax; and gives a
copy of the invoice to the customer as a receipt. Customers may pay for rentals with
cash, check, or a credit card. The clerk notes the payment type on the invoice. For credit
card payments, the clerk runs the customer’s credit card through the credit card terminal
and keys in the amount. The credit card company approves or denies the charge.

As time permits, a back office clerk processes the invoices. The date and rental num-
ber for each rental are entered on the file card for the video in the video rental file.
The header data on the card for each video owned by the store shows the video num-
ber, title, vendor number, and date acquired. Purchasing enters this header data when
a video is received. In this manner, the store can track the status of each video.
Exhibit 3 in Appendix B shows a video rental card.

When a video is returned, a back office clerk retrieves the card for the video rental and
the invoice, records the return date on the invoice and the video rental card, calculates
overdue charges if any, and processes the credit card transaction. The credit card number
is obtained by retrieving the customer form from the customer file. The overdue charges
are noted on the invoice. The videos from a rental may be returned on different dates.

Once a week, the office uses the copies of the invoices and an employee file to
prepare a report for the store manager showing the number of rentals for each video
and for each clerk. The completed invoices and copies of video rental forms for videos
that are more than three days overdue are sent to Accounting. As part of a separate

Appendix GB Video Final Report 493

Page 12

system, the accounting clerk uses the invoices to get revenue data for accounting
records and sends out overdue notices to members as required.

The office also uses the video rental cards and the vendor file to prepare and mail a
monthly report to each vendor showing the rentals for each video supplied by the ven-
dor grouped by title. Graphical data and process models for the current operation
appear in Appendix C.

Physical and Organizational Infrastructure. As noted in the description of current
operations, GB Video operates a mostly manual system. The system uses paper
forms and index cards in file boxes for data input, output, and storage. The clerks
write on the forms and cards with pencil or pen. The credit card terminal is the only
electronic communication device in the system. Each store owns and manages its
own data. The store manager controls the operation of the store information system.
The clerks and all other employees in the store report to the manager. Clerks are
allowed to create and update invoice and customer records. Video rental records are
created by Purchasing and updated by the clerks.

Problem Analysis. Mr. Cosier and his staff identified the following problems in the
current situation:

• Because of the manual system, GB requires more clerks than similar stores with auto-
mated systems resulting in a higher cost and longer elapsed time per transaction.

• Customers complain about long lines and slow checkout of rentals. Some frustrated
customers dump their videos on the counter and go off without completing the rental.

• Delays occur when several clerks wish to use the member or video card file at the
same time.

• Mistakes are common. For example, the video card may indicate that the video is
on the shelf—it shows a return date and no new rental date, but the actual video
cannot be found. Clerks make mistakes in computing the charges. Customers often
correct overcharges but remain silent when the clerk undercharges.

• People, including some members, use false member numbers and names to rent
videos. If the customer does not show a member card, the clerk is supposed to
check the member file. Because of the time and effort needed to check the file, the
clerks omit checks most of the time especially when the store is busy. GB
experiences a higher nonreturn or loss rate for videos than other similar stores.

• Accounting gets busy and does not send overdue notices to customers on a timely
basis. Sometimes a video is several weeks’ overdue before the customer receives a
notice. Customers use the late notice as a reason to refuse to pay overdue charges.

• Because of the expense of preparing a manual mailing, GB does not do any direct
mail marketing to members. Other stores have successfully used direct mail market-
ing to increase revenues.

• The rental data summarized by video is costly to prepare and of questionable accuracy.
No data exist on customer preferences. Purchasing often uses guesses, estimates, and
periodic direct observation to determine which videos and how many copies to buy.

494 Appendix GB Video Final Report

Mr. Cosier estimates that correcting these problems should increase revenue by at
least 5 percent and at the same time reduce costs by more than $55,000 a year.

Retention and Change Analysis. The proposed system will retain, at the conceptual
level, the functions in the current system for enrolling a member, renting a video, and
returning a video. The proposed system will continue to collect all of the data collected
by the current operation. However, the data model will change to one based on the
“things” about which data are collected rather than on the forms and file cards in use.
The proposed system may contain additional functionality to prevent nonmembers from
renting videos.

The reporting functions will move to another system. The Rental and Return system
will make the data it collects and stores available to the other systems. As a result of
the move of the reporting functions and the new data model, a number of the data
flows will change. Since the purchasing, reporting, and accounting functions will
access the rental return data with their own systems, the Rental and Return system
will show no flows to Accounting, Management, and Vendor. The contents of flows to
and from the Invoice and Video Rental stores will change to match the new data
model. The flows to and from the externals Customer and Credit Card Company
remain unchanged in content.

The physical infrastructure will change from one based on manual operations to a
computer-based infrastructure. The proposed system will have computer input and
output devices that do not exist in the current system. The organization infrastructure
will change in one respect—the clerks will interact with computer I/O devices. For the
GB project, the analysis of the current situation provides a good base upon which to
design the proposed system. With the structure outlined above, GB Video should
realize its strategic goals of increases in profits and sales.

PART II. PROPOSED SYSTEM SPECIFICATIONS

The proposed computer-based Rental and Return system will focus on improved cus-
tomer service and lower handling costs for each transaction. This narrative addresses
the conceptual specifications for the proposed system. The specifications described in
this model derive from the problems, features, and functions identified by GB Video
during project definition. The team applied experience, difference reduction techniques,
and best practices to arrive at the conceptual data and process specifications
described in both narrative and graphical form in the following materials. The team rec-
ommends sourcing and evaluation in the next part.

Problem Solving

The proposed system builds on a modification of the current operation. The team mem-
bers used their experiences with video rental systems plus information in the literature

Page 13

to arrive at a tentative set of features for the proposed system. The team incorporated
the following best practices in the desired system:

• Capture rental and return input data only once. After the initial capture, retrieve the
data from storage when they are needed.

• Single-point data storage of rental and customer data for use by the Rental and
Return system and by Accounting.

• Automatic generation and insertion of rental number and customer number for a
new member.

• System calculation of tax and total cost.

• System verification of customer data on each contact with a customer.

The team also used difference reduction. The difference reduction for problems appears
in Table A.3 and for client-desired features in Table A.4. All of the features suggested
by these tables are incorporated in the proposed system narrative and graphical
models.

Appendix GB Video Final Report 495

Reduction Action or Operation to Arrive at a

Problems in the Current Operation Problem-Free Proposed System (PS)

Incorrect rental charges Include a calculation function in the PS

False or missing member numbers Access the rental function only from the member

function in the PS

Nontimely overdue notices Include an overdue notice function in the PS

Client-Desired Proposed

Current Operation System (PS) Features Reduction Action

Member, rental, and return Faster, simpler, member, Redesign rental, return, and

functions rental, and return functions member functions

Duplicate data entry and Reduce the cost and errors Include single-point entry

data storage of data entry and storage

Send data to accounting Eliminate data transfer Give accounting access to

data stores

Credit card and rental form Save the cost of separate Integrate credit card

processing are entirely processing of the rental processing into the rental

separate form and the credit card function

Rental and return system No reporting functions in Transfer reporting functions

contains two reporting the rental return system to Accounting

functions

Page 14

TABLE A.3 Difference Reduction Applied to Problems

TABLE A.4 Difference Reduction Applied to Features

496 Appendix GB Video Final Report

Page 15

Process Specifications

The proposed GB Video Rental and Return system contains the following functions:
(1) Member—create a new member record or update an existing one; (2) Rental—rent
videos; (3) Return—return videos; and (4) Overdue—create overdue notices for videos
that are overdue. These functions resemble the ones in the current operation. However,
using the problem-solving methods previously described, the team introduced a number
of changes to achieve the customer service and cost goals specified by the client. The
client considers all of the functions described in the narrative mandatory.

The customers of GB Video identify the videos that they wish to rent and go to a check-
out position. To improve the likelihood that GB rents only to customers who are members,
the member option must be selected at the beginning of every rental transaction. The
graphical process models in Appendix D provide further details on specifications.

Member. The member process is triggered by a customer request to (1) rent
videos and/or (2) become a member. If the customer has and knows the customer
number, the number is entered; the system retrieves the record from the Customer
data store and displays the customer data. If the customer does not have the number,
the customer can provide a telephone number (or a name and zip code). The system
tries to retrieve the customer’s record from the Customer data store. If the system is
unable to retrieve the customer record or if the customer is not a member, the new
member subprocess is initiated. The system will create a new member record provided
the person has a credit card, telephone, and government-issued ID. The customer
supplies the customer data and the data are entered. The system generates a
customer number, creates a membership card output, and gives the output to the new
member. The system creates a record in the Customer data store for the new member.

Once the appropriate customer record is available, the customer is shown and asked
(1) to verify the name, address, telephone, and credit card data and (2) to report any
changes or corrections. This subprocess increases the likelihood that the system will
contain current information for the customer. Any change data are entered and the
customer data store is updated. When a verified customer record is available and the
customer wishes to rent, the member process triggers the rental option and the mem-
ber data are sent to the rental process. The rental process can be accessed only from
the member process; the rental process cannot be accessed directly.

Rental. The rental process is triggered by and only by the member process. The rental
process accepts the member data from the member process and generates a new
rental transaction number and the rental date. The customer provides the video number
and the proposed return date, which is the due date. The video number and the due
date are entered into the system. The system retrieves the video data from the Video
data store and, based on the due date, calculates the rental price for each tape or DVD
rental. This process is repeated for each video. After all the videos are processed, the
system adds the rental price for each video to get a rental subtotal. The system

Appendix GB Video Final Report 497

Page 16

multiplies the rental subtotal by the tax rate (state sales tax county sales tax city
sales tax) to get the tax. The total rental cost is the rental subtotal plus the tax.

The payment type—cash, check, or credit card—is supplied by the customer and
entered into the system. If payment is by credit card, the credit card data are entered.
The system sends the credit card data and the total rental cost to the credit card
processor. If the transaction is approved (or is for cash or a check), the system “com-
mits” the rental and line records; in other words, the records are created in the data
stores. The rental number, date, clerk number, pay type, and credit card data go to the
rental record. The due dates go to the line records for each video. The system then
generates a receipt for the customer. The receipt data includes all of the data supplied
by the customer, sent from the member process, and generated by the system during
the rental transaction. The system also retrieves the title data from the Title data store
and includes the name in the receipt data.

Return. When a video is returned, the video number is entered into the system. The
system retrieves the corresponding line and rental records, enters the return date, and
calculates overdue charges if any. The customer may charge the overdue fee to the credit
card used for the rental or may pay by cash or check. About 95 percent of the time,
customers return videos with no payment-type input, for example, drop them in a return
box. In the absence of customer input on payment, the system retrieves a credit card
number from the customer record and processes the overdue charge against the credit
card. The system records the charge and payment type in the Line data store. The
system may create a return receipt for the customer.

Overdue. After the overnight returns are processed, a clerk instructs the system to run
the overdue program, that is, the clerk triggers the overdue function. The system
processes the Line records. For each video that is two or more days overdue (i.e.,
today’s date due date 2), the system retrieves the rental record for the video,
retrieves the customer record for the rental, generates an overdue notice, and sends the
notice to the customer. When a video is 14 days overdue, the system retrieves the
customer’s credit card number from the Customer data store and the video cost from the
Video and Title data stores, charges the customer’s credit card for the amount of the
cost of the video, and sends a notice informing the customer of the charge. If a
customer has a complaint about overdue charges, the complaint is handled and
processed by Accounting.

Data Specifications

The new computerized system will contain data about Customer, Rental, Line, Video,
and Title. The conceptual data model in Appendix D shows a graphical representation
of the data structure. The Customer entity will contain customer number, name,
address, telephone number, credit card number, and expiration date. If a member does
not rent a tape for 24 months, the record is deleted and the person must rejoin as a
new member to rent videos. GB expects to start with about 4,000 members and this
number will grow over time.

498 Appendix GB Video Final Report

Page 17

The Rental data will contain rental number, rental date, clerk number, payment type
(cash, credit card, or check), and for credit card payments credit card number,
expiration date, and the credit card approval code received from the credit card
company. About 80 percent of rental payments consist of cash, 10 percent checks, and
10 percent credit cards. The Line data for each video rented will contain line number,
due date, return date, overdue charge if any, and payment type for the overdue charge.
An average rental consists of two videos, which results in two lines. Some rentals may
consist of 10 or more videos. At the end of each week, the Accounting system will
process the Rental and Line data, will transfer the data on completed rentals to a data
warehouse, and will delete the records for completed rentals. On average, the rental file
is expected to contain about 800 rental records just before processing by Accounting.

The Video data contain the rental fees for each video number. A video may have three
fees: the one-day rental fee, a lower fee for additional days, and a special fee for a
weekend and or/holiday. Since GB closes on Sundays and holidays, the special fee
encourages members to rent several videos for Sunday and holiday periods. The Title
data contain the title number, the name of the video, the vendor code, and the cost
paid by GB to acquire the video. Title and Video define data stores that are accessed
by the Rental and Return system but are created and maintained outside of the
system.

Organizational Specifications

The organizational sources and destinations for external data are shown in the
Context-Level DFD in Appendix D. The sales clerks, who report to each store
manager, have authority to retrieve, create, or update records in the Member, Rental,
and Line data stores and to retrieve records in the Video and Title stores. The
Accounting department at headquarters has authority to retrieve records from all stores
and to delete records in the Customer, Rental, and Line stores. Accounting produces all
reports on rental activities. Records in the Title and Video data stores are created,
updated, and deleted by Purchasing at headquarters.

PART III. ALTERNATIVES, EVALUATION, AND RECOMMENDATION

This section reviews the alternative approaches for acquiring a system that meets the
needs of GB Video and evaluates the feasibility and cost-effectiveness of each one.
Based on this information, the team compares the alternatives and makes a
recommendation which Mr. Cosier accepted.

Alternatives

Based on discussions with Mr. Cosier, the team identified the set of alternatives shown
below. The team has defined and evaluated each of the alternatives. Before performing
in-depth analysis and evaluation of the four alternatives, the team conducted a feasibil-
ity study to determine if one or more of the alternatives fail to meet an important feasi-
bility constraint. This analysis indicated that Alternative 1. Improve the Current Manual

Appendix GB Video Final Report 499

Page 18

System and Alternative 3. Contract for Service do not meet constraints and should be
dropped from further analysis for reasons discussed below.

The team conducted an in-depth evaluation of Alternative 2. Procure a Package System
from a Vendor and Alternative 4. Contract for a Custom Package. Because Mr. Cosier
provided estimates of costs and benefits, the team applied cost/benefit analysis, identi-
fied advantages and disadvantages, and examined the level of risk. In accord with Mr.
Cosier’s preferences, the team calculated the payback period for these two alternatives.

Alternative 1. Improve the Current Manual System. Based on a preliminary review,
the team believes that several low-cost changes (probably less than $5,000) to the cur-
rent manual system could bring immediate improvement at GB Video. The team
estimates that these changes would achieve about 40 percent of the benefits
mentioned by Mr. Cosier or a cost reduction of about $20,000 a year giving a payback
period of three months. The risk associated with this option is low. The primary risk is
that the changes may not result in the expected cost savings, but even if the savings
do not happen, the initial cost is less than $5,000. When this option was discussed
with Mr. Cosier, he repeated his statement that he does not wish to continue with the
current system unless all computer-based alternatives are outside his payback criteria and
his $200,000 up-front cost limit. Since the team found other alternatives that will provide
the desired functionality within the constraints, the team did not given further consideration
to improving the current manual system.

Alternative 2. Procure a Package System from a Vendor. Package systems are
software or computer program packages provided by third-party vendors. The team
identified four vendors that sell or lease packages for video rental and return activities.
After preliminary examination of specifications and demonstrations provided on the vendor
Web sites, all four packages appear to meet the features requested by the client and the
specifications derived by the team. The packages run under the NT operating system on
any Intel chip server. The packages will run with MS Access, MS SQL server, or Oracle
Server databases. The vendors claim that the packages can be installed and in operation
in three months. Advantages of package systems for GB Video include the following:

• They meet most of the proposed system conceptual specifications.

• They are available for implementation in less than a month.

• They are relatively inexpensive and within the client’s total investment constraint of
$200,000.

• They are tested, and have proven functionality and performance.

• They have relatively low risk.

Disadvantages include the following:

• They may require some organizational changes.

• They are dependent on the vendor for maintenance and upgrades.

• The fixed yearly cost for upgrades are independent of whether or not GB wants or
needs the upgrade.

500 Appendix GB Video Final Report

The team analyzed the costs associated with this alternative. Package costs appear to
run around $15,000 for initial purchase with use at the three GB Video existing stores.
The vendors provide yearly maintenance and upgrades at around $2,000 a year. The
team estimates that installation, including data conversion and training, will cost
$10,000 and that hardware purchase costs for the three stores will total $40,000. Hard-
ware maintenance is estimated at $1,000 a year.

The team examined the possible cost reductions from an automated system and con-
cluded that Mr. Cosier’s estimate of $50,000 a year appears reasonable. The possible
benefit of a 5 percent increase in sales is more difficult to analyze. Sales should
increase by at least 5 percent for the existing stores and should lead to a more than 5
percent increase in profits. If Mr. Cosier opens additional stores as planned, the profits
may increase by a significantly larger amount. To be conservative, the team used a 5
percent increase in profits for the existing stores or $6,650 ($133,000 * .05). Table A.5
shows a summary of costs and benefits for purchase of a package.

If everything goes as planned, GB will recover its investment early in year 2 for a pay-
back period of about 15 months (12 [11350/53650] * 12 14.5 months). Even if
profits do not increase at all, the payback period of 17 months still meets the two-year
payback constraint set by Mr. Cosier.

Alternative 3. Contract for Service. The team searched for possible ASP vendors who
might submit a bid to perform the functions identified in the conceptual specifications for
the GB Video system. The team contacted a selection of current ASP vendors and also
talked with several large video rental companies to find possible bidders. The video
companies declined to bid. One said that providing such a service to help a potential
competitor was not in their best interests.

Costs Initial Year 1 Year 2 Year 3

Computer hardware $40,000 0 0 0

Package cost $15,000 0 0 0

Data and training $10,000 0 0 0

Hardware maintenance 0 $1,000 $1,000 $1,000

Package support 0 $2,000 $2,000 $2,000

Benefits

Cost reduction 0 $50,000 $50,000 $50,000

Profit increase 0 $6,650 $6,650 $6,650

Net benefit ($65,000) $53,650 $53,650 $53,650

Cumulative net benefit ($65,000) ($11,350) $42,300 $95,950

Page 19

TABLE A.5 Cost Benefit Summary for Purchase of a Package

Appendix GB Video Final Report 501

Page 20

None of the ASP vendors currently provide a video rental system and none expressed
any interest in buying one of the available video packages and gearing up to offer
such a service. Several said that they did not think a viable market existed. The team
did find one ASP, Integrated Computer Services (ICS), that would develop a video
rental package and supply the service to GB Video via an Internet interface. ICS esti-
mates that developing, testing, and installing the program at GB will take 18 months.
ICS proposes that GB Video pay for the initial development, setup, and marketing of
the service, estimated at $500,000 and then share in the profits of subsequent sales of
service to other video rental companies. ICS estimated that GB Video would recover
its investment in four years and could make significant profits after that time. Mr.
Cosier rejected this option as outside of the business plan for GB Video, incurring high
risk, and providing an unacceptable payback period.

Alternative 4. Contract for a Custom Package. As discussed in the next part, the
team incorporated specifications for a custom package in an RFP. GB sent the RFP to
six potential contractors or bidders. After reviewing the bids, the selection committee
chose OkieComp, a local software company. OkieComp submitted a bid to write a
software package to detail design specifications provided by GB Video. OkieComp
currently sells a similar well-regarded package developed for equipment rental stores.
OkieComp stressed that the company provides programming services, not system design
services. GB must give OkieComp detailed design specifications for the program and
specify the infrastructure in which the programs will operate. OkieComp will write the
software and deliver an extensively tested package to GB Video. OkieComp quoted a
total initial cost of $99,500 to develop, test, convert data, and install the system including
hardware. OkieComp’s bid contained the following conditions:

1. The initial cost for developing, testing, and installing the software and hardware that
fully meets the specifications provided by GB Video in the RFP is $94,500. The
hardware list appears in Appendix A of the bid. The amount of $94,500 will be paid
at the time that GB accepts the software.

2. OkieComp will deliver the software six months after receiving a firm contract.
OkieComp will work with GB Video to help GB Video demonstrate that the software
works according to specs. OkieComp will correct any noncompliance issues identi-
fied by GB at no cost for five years.

3. If GB Video wishes to make any changes to the software or infrastructure,
OkieComp will charge GB the actual labor cost to OkieComp plus 70 percent to
make, test, and install changes to the software.

4. OkieComp will load the GB data into the new system and train the people at GB for
a cost of $5,000.

Advantages of OkieComp include the following:

• The product will perform exactly as specified by the team and client.

• No organizational changes are required.

• No payment is due until the product meets acceptance tests. This provision reduces
the risk of damage to GB if OkieComp is unable to deliver.

Costs Initial Year 1 Year 2 Year 3

Package and hardware $94,500 0 0 0

Data and training $5,000 0 0 0

Hardware maintenance 0 $1,000 $1,000 $1,000

Package support 0 0 0 0

Benefits

Cost reduction 0 $50,000 $50,000 $50,000

Profit increase 0 $6,650 $6,650 $6,650

Net benefit ($99,500) $55,650 $55,650 $55,650

Cumulative Net Benefit ($99,500) ($43,850) $12,200 $67,850

Page 21

• GB controls the upgrades.

• There is a five-year guarantee.

Disadvantages of OkieComp include the following:

• A possible risk exists that OkieComp cannot deliver. This risk is estimated as small
and GB has some protection.

• A possible risk exists that OkieComp will go out of business. This risk is estimated as
medium.

• Upgrade costs are not fixed.

• Three months or more are required to obtain the software.

The costs for this alternative appear in the OkieComp proposal. As in the package sys-
tem alternative, GB can obtain hardware maintenance from a third party for $1,000 a
year, and the benefits remain a cost reduction of $50,000 and additional profits of
$6,650 per year. Table A.6 shows a summary for the OkieComp alternative.

If everything goes as planned, GB will recover its investment late in year 2 for a pay-
back period of about 22 months (12 [43850/55650] * 12 21.5 months). This alter-
native appears to meet the two-year payback constraints set by Mr. Cosier, but it prob-
ably involves more risk than the package alternative. If profits do not increase, the
payback period is slightly more than two years. If OkieComp is unable to deliver on
time or at all, the risk to GB is small. GB can continue to use the existing manual sys-
tem and can purchase a package system if needed.

Evaluation Comparison

The team defined and evaluated four alternatives for the GB Video Rental System:

1. Improve the Current Manual System.

2. Procure a Package System from a Vendor.

3. Contract for Service.

4. Contract for a Custom Package.

TABLE A.6 Costs and Benefits for the OkieComp Proposal

502

Table A.7 summarizes the results of the evaluations of these alternatives. The features
listed in the evaluation table are ones that the client mentioned or stressed.

As noted earlier, the client and team agreed not to explore alternatives 1 and 3 in
depth. The data on them is presented here to provide perspective. All of the alternatives
except the current system contribute to GB’s performance objectives, that is, they
reduce cost by $50,000, provide support for additional stores, and increase profits. Alter-
natives 2 and 4 meet the constraints set forth by the client. Alternative 4 is the only
alternative that meets all of the client’s desired features.

Recommendation

The team recommends Alternative 4: Contract for a Custom Package. After carefully
reviewing the summary evaluation table, the team concludes that the custom package
alternative does the best job of meeting the client’s needs. The solution meets the
constraints of a two-year or less payback and an initial investment of $200,000 or less.
While the custom package has a longer payback period and higher initial cost than the
off-the-shelf packages, it offers a number of advantages. It contains 100 percent of the
features desired by the client and thus does not require the client to change practices
and procedures to fit the package. The vendor also agrees to modify the package when
and as requested by the client.

The risk of this alternative is limited by the provision that GB does not pay for the
package until it is tested and accepted as operational. If, for some reason, OkieComp fails
to deliver, GB can purchase an off-the-shelf package and have it operational in three
months. The major risk to GB is that OkieComp may go out of business and not correct
problems or make modifications if desired. During an informal review, both the team and

Appendix GB Video Final Report 503

Alternative

Feature 1. Improve 2. Package 3. Contract 4. Custom

Client preference Low High Low Possible

Improves performance Some Yes Yes Yes

Meets client constraints No Yes No Yes

Initial cost $5,000 $65,000 $500,000 $99,500

Estimate payback 3 months 15 months 48 months 22 months

Meets specs 70% 95% 100% 100%

Client controls updates Yes No Unclear Yes

Risk Low Low High Medium

Time until operational 0 3 months 18 months 6 months

Custom modifications Yes No No Yes

Page 22

TABLE A.7 Evaluation Summary Table for GB Video

504 Appendix GB Video Final Report

Mr. Cosier concluded that the risk is acceptable and that the advantages of the custom
package outweigh the disadvantages.

PART IV. REQUEST FOR PROPOSAL

This section describes the work done to prepare a request for proposal, to solicit
responses, and to evaluate the responses. The section describes the responses and
provides a recommended product. The text of the RFP appears in Appendix E.

Qualified Bidders

As instructed by Mr. Cosier, the team prepared an RFP and sent it to six potential
bidders that the team identified. Four bidders submitted proposals. Two of the four bids
were deemed non-qualified and were eliminated from the analysis. The team prepared
the bid summary in Table A.8 for the two finalists.

Evaluation and Selection

An evaluation committee of two team members, the RFP consultant, President Cosier,
and Purchasing Director Olijer read the bids and assigned rankings to the evaluation
criteria in the RFP. The resulting evaluation by the committee appears in Table A.9.

Advanced Software OkieComp, Inc.

Features Weight Ranking Weighted Ranking Weighted

Specifications 0.3 10 3.0 10 3.0

Experience 0.3 8 2.4 9 2.7

Deadlines 0.1 9 0.9 10 1.0

Capacity 0.2 8 1.6 10 2.0

Cost 0.1 7 0.7 10 1.0

Total 1.0 42 8.6 49 9.7

Bid Responses Adv. Software OkieComp

Met or exceeded minimum qualifications Yes Yes

Meet all mandatory and desired specs Yes Yes

Initial software cost $109,950 $94,500

Cost to load data into the new system $4,700 (with a $5,000

subcontractor)

Cost for upgrades and modifications Labor 80% Labor 70%

Experience with similar projects Good Very good

Customer responses on delivery performance Very good Excellent

Resources available for the project Adequate Excellent

Page 23

TABLE A.8 Bid Summary

TABLE A.9 Bid Evaluation Using Weighted, Ranked Features

Appendix GB Video Final Report 505

Activity Responsible Person Completion Date

Prepare a training plan Vendor and GB staff Mar. 1

Prepare a maintenance plan Vendor and GB staff Mar. 1

Prepare an operating plan Vendor and GB staff Mar. 1

Purchase hardware Vendor Jan. 5

Interface with existing systems Vendor and GB staff Apr. 1

Make organizational changes Richard Cosier Mar. 20

Conduct data conversion Vendor Feb. 1–Apr. 1

Train GB employees Vendor and GB staff Mar. 18–continuing

Install production system Vendor and GB Feb. 15

Conduct online testing Vendor and GB Feb. 20–Mar. 20

Pilot implementation GB Mar. 21

Begin full operation GB Apr. 1

Page 24

TABLE A.10 GB Video Rental System Implementation Schedule

The evaluation committee recommends that GB enter into a contract with OkieComp,
Inc. Both vendors are well qualified and submitted good bids. Although the differences
are relatively modest, OkieComp received the highest raw and weighted scores and is
the vendor preferred by Ms. Olijer. Conversations with the proposed project manager
from OkieComp convinced the team that the company understands well both GB
Video and the video rental industry. While both bidders have been in business for
more than 10 years, the high failure rate of software firms poses some risk for future
support from both bidders; the committee could not identify any risk differences
between the two firms. If for some reason, GB is unable to reach a contract
agreement with OkieComp, the committee finds the Advanced Software bid an accept-
able alternative.

PART V. IMPLEMENTATION AND SUPPORT

This section contains implementation and support plans for the production rental
system that OkieComp will deliver in about one year. The team prepared guidelines for
implementation. Team members and/or GB staff will need to fill in the implementation
materials once more is known about the product that OkieComp will provide.

Implementation Schedule

The activities required to implement the new system appear in Table A.10. All of the
dates in the table refer to next year.

Testing Plan

The testing plan appears in Table A.11. The team completed all of the testing activities
through April of this year. The team recommends additional testing as shown after
OkieComp delivers the production programs and documentation.

506 Appendix GB Video Final Report

Implementation Strategy

The team recommends that GB use a direct, pilot implementation strategy. On the
morning of March 21, GB will implement the new system at the main store and
discontinue the current system. GB will keep the forms and files from the current sys-
tem until company managers are certain that the new system works. If serious prob-
lems arise, GB can go back to the current system with little cost and risk. Once the
new system operates correctly, GB will implement the new system sequentially at the
two remaining stores by the April 1 target date.

Hardware and Data Conversion

As part of the bid, OkieComp will purchase and install the hardware and convert the
current data to the new system. The team recommends that GB ask OkieComp to
purchase the hardware several months before the new system test version is
delivered in order to allow time to install and test the hardware prior to any
production software testing. Although the vendor will carry out the required data

Responsible Anticipated

Test Procedure Deliverable Person Date

Desk checks and walk- Project definition Dan Cartperson and Jan. 31

through the team

Desk checks and walk- Proposed system Terrie Shaftkopf Feb. 25

through conceptual and the team

specifications test

Desk check and design Solution logic test Al Price and the team Mar. 10

specs walk-through

Simulation walk- Solution value test Terrie Shaftkopf Mar. 12–13

through test and the team

Operational test POC model initial tests Dick Von Kemp Mar. 30–

Apr. 14

Operational test Final POC test Dick Von Kemp Apr. 15

Desk checks and Final report and Team, manager, and Apr. 19–23

walk-throughs presentation clearance clients

Production system Acceptance test per IT staff and vendor Feb 20–

operational test with the RFP selection committee Mar. 20 of

live data next year

Desk checks and Production IT staff Mar. 20–27

walk-through by IT and documentation of next year

system users clearance

Production system Post-implementation IT staff and internal June 1–30 of

operational test with audit auditor next year

actual users and

customers

Page 25

TABLE A.11 Testing Plan

conversion activities including converting the customer file and the video file, GB will
need to make a decision about rental transactions that are open on the date of con-
version—enter them into the new system or continue to use the old system for open
rentals.

Training

The team estimates that only a few hours of training are required for clerks. With good
design and help features, the system should be easy to use. The team recommends
that GB not train the clerks on the system until a day or so before the clerks start to
use the system. The system operator(s) can receive training from the vendor. The train-
ing plan in Table A.12 lists the GB responsibilities and dates for training.

Maintenance

The team understands that the vendor will maintain the production system code. GB
will arrange for hardware maintenance. The planned responsibilities for maintenance
appear in Table A.13.

Emergency Plan

While everyone hopes that emergencies will never happen, the team believes that GB
should have a plan. In anticipation of a possible fire, tornado, major equipment failure,

Appendix GB Video Final Report 507

Activity Person Responsible Completion Date

Training development Al Trainor Mar. 1

Initial training Ted Teecher Mar. 18

Follow-on training and Mary Occe As needed for

support new employees

Refresher training Mary Occe As needed

Activity Responsible Party

Hardware maintenance Jim Croates

Program change control Al Price

Log errors from users Logged-on Web site

Review errors Al Price

Track changes Al Price

Make changes to code Vendor

Changes in options and configuration Al Price

Page 26

TABLE A.12 Training Plan

TABLE A.13 Maintenance Plan for GB Video

508 Appendix GB Video Final Report

or other disruption, GB needs to assign responsibilities for planning in advance to
recover from any disruptive events. The assignments are shown in Table A.14.

APPENDIXES

Appendix A. Statement of Work

Appendix A contains the statement of work that the team prepared and discussed with
the client. See Chapter 3 for the sample statement of work.

Appendix B. Forms for the Current Situation

Appendix B contains copies of currently used forms. The appendix contains the

• Member Data Card

• Invoice and Customer Receipt

• Video Rental Card

These forms appear in Chapter 7.

Appendix C. Current System Data and Process Models

Appendix C contains the graphical data and process models for the GB Video system.
The models included in the appendix include:

• Exhibit 1. Context-Level DFD for GB Video Current Operation.

• Exhibit 2. First Explosion DFD for GB Video Current Operation.

• Exhibit 3. Metadata for the GB Video Current Operation DFD.

• Exhibit 4. Enterprise Data Model for GB Video.

The graphical models appear in Chapter 7.

Activity Responsible Party

Identify secondary storage devices with IT Director

critical data

Set up call list for emergencies IT Director

Ensure that all data and programs are Database Administrator

backed up on a daily basis

Set up a cold off-site center Facilities Director

Set up password system for clerks IT Director

Page 27

TABLE A.14 GB Video Disaster Plan

Appendix GB Video Final Report 509

Page 28

Appendix D. Proposed Solution Data and Process Models

Appendix D contains the conceptual data and process models for the GB Video
proposed system. The models included in the appendix include:

• Exhibit 1. Proposed System Narrative Specifications.

• Exhibit 2. Proposed System Data Flow Diagram.

• Exhibit 3. Proposed System Entity Relationship Diagram.

• Exhibit 4. Proposed System Metadata.

The graphical models appear in Chapter 8.

Appendix E. Request for Proposal

Appendix E contains the request for proposal. The request for proposal appears in
Chapter 10.

Index

A

Acceptance and credibility, of project team, 196
Access control, for documents, 52
Accuracy, of POC model, 431
Action diagram, 405
Action map, 405
Active present-tense verbs, 97
Activity/task

schedule table, 79–80
selection. see Generation of project plans

Actors, use case diagrams, 179
Adjourning stage, of team maturation, 38
Agendas

project presentation slide, 100
for team, 51
for visits to clients, 218

Alignment, of IT, with organization values.
see Strategic alignment

Alternative solutions, 208, 216, 300–329. see also

Evaluation, of alternative solutions
availability of, 308
client approval, 332
client preferences and, 299–300
current system and, 300
describing, 308–309
design options, 300–301
full description, requirements for, 309
functionality of, 301–302
infrastructure choices, 307
logic tests for, 457
outsourced system features, 365
performance evaluations, 307, 308
in project definition report, 208–209
recommended. see Recommendation
report contents, 309
response times, 308
SDLC and, 18
slide, in project presentations, 100
solution classes, 6
sourcing options, 302–307

in-house system build, 303
outsourcing, 303–307

ASPs, 301, 306–307, 346

contract development, 306
package systems, 305–306
situations, 304

value tests at project completion, 457
zero-base design option, 301

Analyst, 42
Anchor, on presentation team, 99
Anomalies, in logical data models, 145
Appearance, of written reports, 98
Application program interfaces (APIs),

349–350
Application service provider (ASP), 301,

306–307, 346
Approval, of work to date, 247
Architecture, in alternative solutions report, 309
Artifacts, POC models, 439
Assignments, prototype-based POC design,

437–438
Assistants, relationships with, 218
Association, in class diagrams, 181
Association model, for outsourcing, 341–342
Associative entities, 125–126

data marts and, 408
Atkinson, Anthony, 336
Attributes

attribute metadata, 134–135
composite, 120
default, 182
derived, 121
in dimension table, 410–411
entity relationship model, 117
identification, simple ERD, 120–121
multivalued, 124
of object classes, 182
property strings, 182
slowly changing, 411
type attribute, 182
visibility attribute, 182

Audit plan, post-implementation, 472
Augustine, Norman, 111
Automate (difference reduction) method,

261–262
Automatic table/code generators, 67
Availability, 308

511

512 Index

B

Backups
for copies of communication, 52
for high risk solutions, 315

Baron, Robert A., 35, 38, 62
Basic function module (BFM), 392

DFDs, 170
Behavior

guidelines, 37
professional, 215–216

Benefits. see also Evaluation, of alternative
solutions

estimating, 316–317
evaluating, 315–319
of structured system acquisition, 15

Bentley, Lonnie D., 10, 31, 153, 190, 295
Berra, Yogi, 220
Best practice, 28, 260–261
Best set, of modules, 391
Bids, outsourcing and RFPs, 356, 367
Binary relationship, 126–128
Boehm, Barry W., 111
Booch, Grady, 156, 190
Bottom-up POC design, 437
Box schema, 140
Brainstorming, 259–260
Break even analysis, 319–320
Brigham, Eugene, 336
Budget constraints, 208
Building a prototype. see Prototype-based POC

design
Burd, Stephen D., 31

C

Calculation/Optimization, of proposed system,
259, 262–263

Candidate primary key, 122
Cardinality, minimum, 128–129
CASE (computer-aided software engineering),

26–27, 67
Central fact table, 408
Change

analysis, retention and, 234–239
inevitability of, 84
in operations, 85–86
requirements, controlling, 86–87
resistance to, 85–86

Chen, P. P.-S., 114, 153
Class, entity relationship model, 117
Class diagrams, 26, 181–182, 288–291
Client(s), 6

approval by, 332
client/server systems, 68
client/team contract approach, 69–70
contact person, 218
deliverables, statement of work and, 81
directives, 313
errors by, correcting, 219
expectations, of the team, 52
meetings with, project plans and, 76
relationships with, managing, 53
requirements and organization, 193–228

strategic alignment. see Strategic alignment
resources, statement of work and, 81
roles, in system design, 379
working with, 210–220

behavior, professional, 215–216
visiting with clients, 218–220

Closing the project, 474
COCOMO, 77
Codd, E. F., 136, 146, 153
Code generation

CASE tools for, 67
prototype-based POC design, 437, 438–440

Code modification, adding functionality, 350
Code of conduct, 42–43, 45
Cohesion, 376, 390
Column heading schema, 140
Commodity model, for outsourcing, 341–342
Commodity relationship, 350
Communication, 42, 91–104

allowing client to finish sentences, 219
electronic, 51–52
presentations. see Presentations, project
progress reports, 91–92
within project teams, 36
safe, alternative solutions and, 315
working in a team and, 51–52
written reports. see Written reports

Communicator, 42
Compaq Computer Co., 354
Comparison matrix, outsourcing, 341
Compatibility with physical infrastructure, 424,

425, 430–431
Competency, of team, 247
Competition risk, 314
Competitive necessity, 313

Completeness, 230
of final documentation, 461
narrative model of current situation, 239–240

Completion of projects, 455–480
completeness of final documentation, 461
correctness of final documentation, 461
design specifications walk-through tests, 459
desk checks, 457
documentation clearance, 460–461
external walk-throughs, 459
format of final documentation, 460
implementation phase. see Implementation
internal walk-throughs, 458–459
live test data, 460
operational testing, 459–460
policies followed by final documentation, 461
post-implementation audit plan, 472
post-implementation tests, 460
readability of final documentation, 461
report and documentation tests, 457
solution logic tests, 457
solution value tests, 457
stub testing, 460
testing plans, 456–461
time to complete

increasing risk and, 315
as problem, 209

walk-through tests, 457–459
Component model, of information systems, 9
Component plan, prototype-based POC design, 438
Composite attribute, 120
Composite primary key, 123
Compound process, DFDs, 170
Comprehensive description, alternative solutions, 309
Computer-assisted software engineering (CASE),

26–27, 67
Conceptual data models (CDMs), 7, 18, 121, 131–133

proposed system, 258, 278–281
Conceptual design cycle, spiral planning, 67
Conceptual models, 11. see also Conceptual data

models (CDMs)
Conceptual specifications, 256–257
Consistency rule, explosion DFDs, 174, 230
Constantine, Larry, 156, 190, 376–377, 422
Constraints on solutions

in project definition report, 207–209
project presentation slide, 100

Constructed data, 460
Consultants, corrective action and, 88
Content emphasis, for prototypes, 435–436

Content model, of information systems, 9–11
Context-level DFD, 165–170, 240, 275
Continuing operations, costs of, 318
Contracts

contract development, 306
outsourcing and, 2, 350–351, 367
project team. see Project team contract

Contributions of projects. see also Benefits;
Evaluation, of alternative solutions

project definition report, 205
strategic alignment and, 200–201
strategic objectives and, 197–198

Control, 84
execution and. see Project

Control flow, POC model, 439
Coordinator, 42
Copies, to all members, 52
Correcting client errors, 219
Corrective action, 88
Correctness, 230

of final documentation, 461
narrative model of current situation, 239–240
of project definition, 247

Cost/benefit analyses, 311, 315–319
benefits, estimating, 316–317
continuing operations, costs of, 318
cost avoidance, 317
cost displacement, 317
cost reduction, 316–317
costs, identifying, 317–319
desirable features, 324, 343
evaluation summary table, 329
example of, 325–329
extreme risks, understanding, 315
facility costs, 318
feasibility analysis, 311–313
features analysis, 311, 324
implementation costs, 318
implied benefits method, 322–323
initial development costs, 318
intangible benefits, 317
internal rate of return (IRR), 315, 322
IT costs, 318
legal feasibility, 312
mandatory features, 324, 343
net present value (NPV), 320–322
“nice to have” features, 343
one-time costs, 318
ongoing costs, 318
operational feasibility, 312–313

Index 513

514 Index

Cost/benefit analyses (cont.)
optional features, 324
outcome feasibility, 313
outsourcing evaluation metrics, 341
payback period, 315, 319–320
performance enhancement, 317
personnel costs, 318
project presentation summary slide, 100
return on investment (ROI), 322
revenue enhancement, 317
risk analysis, 313–315
risk estimates, 315
risk reduction, 314–315, 317
safe communication, 315
safe design practices, 314
schedule and cost feasibility, 312
security feasibility, 313
sponsor risk, 314
staff risk, 314
table for, 323–328
technical feasibility, 312
technology risk, 313–314
time-value-of-money methods, 320
total cost of ownership, 318
vendor risk, 313–314

Cost(s). see also Cost/benefit analyses
avoiding, 317
displacement of, 317
feasibility of solutions and, 312
identifying, 317–319
of outsourcing, 348–349
reducing, 316–317
of refinement/modification, 14

Cotterman, Howard, 111
Coupling, 390–391
Creating new objects (CURD), 177
Critical success measures, 92
CURD operations, 177, 182, 440
Current operations/systems/situation

alternative solutions and, 300
analysis, project definition and, 247–248
data models of. see Graphical data models
described, 233–234
DFDs for, 240
documenting, 222
EDMs for, 17–18
features of systems. see Features, proposed

system
graphical data model of, 243–247
graphical process model of, 240–243

information collection on, 231–232
modification of, 265, 300
narrative model of. see Narrative model
project definition presentation, 247–248
replacing, systems development for, 6
retention and change analysis, 234–239
situation analysis goals, 230

D

Data, 113
conversion, at implementation, 462
defined, 8
features, 344
in narrative model of current situation, 233
outputting, pseudocode and, 396
system design and, 375
transforming, pseudocode and, 393

Databases, 23
Data control language, 146
Data coupling, 390–391
Data CURD operations, 177, 182

POC models, 440
Data definition language (DDL), 145–146
Data-driven development, 23–24
Data-driven systems, 387
Data flow, 157, 158

diagrams. see Data flow diagrams (DFDs)
dialog-driven systems, 403
in narrative model of current situation, 233

Data flow diagrams (DFDs), 10, 24–25, 157–174.
see also Object models

basic function module (BFM), 170
building, 159–162
compound process, 170
consistency rule, 174
context-level, 275
for current operations, 240
data flow symbol, 158
for a data mart, 417
data store completeness rule, 163
data store sufficiency rule, 164
data store symbol, 158
decomposition rule, 174
elementary process (EP), 170
ERD/DFD integration, 274
external symbol, 159
as graphical process models, 239–240
hierarchical. see Hierarchical data flow diagrams

labeling rules, 163–164, 174
object models. see Object models
object-oriented design (OOD) versus, 177
physical, 389
primitive process, 170
process completeness rule, 163
process data sufficiency rule, 164
process dominance rule, 162
process symbol, 159
rules for, 162–165
split data flow, 164–165
sufficiency rules, 164
symbols used in, 158–159

Data input
form, 115
pseudocode and, 393

Data items, 382
metadata for, 383

Data manipulation language (DML), 146
Data mart, 146, 408, 412–417
Data mining, 147
Data models, 17, 113–154, 243

conceptual (CDMs). see Conceptual data
models (CDMs)

of current situation, 243–247
EDMs. see Enterprise data models (EDMs)
entity. see Entity relationship model

(ER model)
ERDs. see Entity relationship diagrams (ERDs)
graphical. see Graphical data models
logical. see Logical data models
metadata, 133–136
POC models, 439

Data output form, 115
Data owners, roles in system design, 379
Data schema, system design and, 386
Data section, of content model, 10
Data specifications, in proposed system,

267–268
Data stores, 241

completeness rule, DFDs, 163
dialog-driven systems design, 403
operations on, pseudocode and, 393–394
sufficiency rules, DFDs, 164
symbol, DFDs, 158

Data structure
alternative solutions report, 309
systems design and. see System design
traditional model, 115

Data types, 383

Data warehouse, 146–147, 408–418
dimensional models, 408–411
ETL process, 411–418
metadata for, 411, 412–417

Date dimension, fact tables, 410
DEC, 354
Decision making, strategic alignment and, 196
Decomposition rule, explosion DFDs, 174
Default attribute, of object classes, 182
Degrees, of a relationship, 126–128
Deleting objects (CURD), 177
Deletion anomaly, 145
Deliverables, 7
Delivery, of project presentations, 102–103
Delivery record, vendors, 352, 353
DeMarco, Tom, 376–377, 422
Departures (exemptions) from plan, 91–92
Derived attributes, 121
Design

approaches, proposed system, 264–266
option, for alternative solutions, 300–301
parameter evaluation, POC model, 430–431
safe practices, 314
specifications

coding and, POC models, 438–440
walk-through at project completion, 459

Designer, 42
Desirable features, 324, 343
Desk checks, at project completion, 457
Development activities, 21–27

CASE tool-driven, 26–27
data-driven, 23–24
DFDs. see Data flow diagrams (DFDs)
ERDs. see Entity relationship diagrams (ERDs)
event-driven, 25–26
field project challenges, 27–28
OOD. see Object-oriented design (OOD)
output-driven, 22–23
process-driven, 24–25
prototyping. see Prototyping
structuring of, 27
technology-driven, 21–22

Diagram symbols. see Symbols
Dialog-driven systems, 387, 399–407

data flows, 403
data stores, 403
externals, 403
links, 402
menus, 402
page action maps, 399, 404–407

Index 515

516 Index

Dialog-driven systems (cont.)
page navigation maps, 399, 402–404, 407
page representations, 402
processes, 403

Difference reduction methods, 259, 261–262
Dimensional models, 146–147

data warehouse design, 408–411
Dimension table, 410–411
Direct implementation, 463–464, 465
Disaster plans, 471–472
Discover (difference reduction) method, 261–262
Disjoint supertype links, 130
Dittman, Kevin C., 10, 31, 153, 190, 295
Documentation

clearance of, at project completion, 460–461
at implementation phase, 469–471
for information collection, 222
SDLC, 18

Due date (end date), 77, 78
extensions of due date, 78, 88

Dysfunctional teams. see Nonperforming/
dysfunctional members

E

Economic value analysis, 363–364
Editor, 42
Education. see also Training

regarding client problems, 217
Effective coding, POC models, 440
Effectiveness

improving, 88
of project teams, 36, 47–48

Efficiency, of outsourced products, 345
Electronic communications, 51–52
Elementary modules, 392
Elementary process (EP), DFDs, 170
E-mail, 51–52

in place of meetings, 218
to schedule client visits, 217–218

Emerging technologies, project risk and, 315
Emery, Douglas, 336
Encapsulated procedures/operations, 178
End of visits, managing, 220
Enterprise data models (EDMs), 133–136

attribute metadata, 134–135
correspondence with relational models, 137
for current operations, 17–18
data models, 133–136

entity metadata, 134
graphical data model of current operation, 246
metadata, 133–136
relationships, 135
rules for, 136
in use case diagrams, 180

Enterprise resource planning (ERP), 342, 381
Entities, 115–117. see also Entity relationship

diagrams (ERDs); Entity relationship
model (ER model)

associative, 125–126
entity identification, simple ERD, 119
weak, 124–125

Entity metadata, 134
Entity relationship diagrams (ERDs), 23–24, 114,

117–131, 344. see also Entity relationship
model (ER model)

additional constructs for, 124–130
associative entities, 125–126
converting to relational schema, 141–142
degree of relationship, 126–128
DFD integration with, for MDFDs, 274
as graphical data models, 239–240
multivalued attributes, 124
naming rules, 123–124
rules/guidelines for, 122–124
simple, 118–121, 130–131
subtypes, 129–130
supertypes, 129–130
symbols for, 117–118
weak entities, 124–125

Entity relationship model (ER model). see also

Entity relationship diagrams (ERDs)
attribute identification step, 120–121
conceptual data models (CDMs), 121
entity identification step, 119
logical data models, 121
maximum cardinalities, 120
minimum cardinality, 128–129
model components, 115–117
physical data models, 121
relational model terms, compared, 137
relationship identification step, 120

Environmental issues, 20
Evaluation, of alternative solutions, 309–329.

see also Alternative solutions
backup for high risk solutions, 315
break even analysis, 319–320
client directive and, 313
comparing alternatives, 324

competition risk, 314
competitive necessity and, 313
cost/benefit analyses. see Cost/benefit analyses

Evaluation metrics. see Evaluation, of alternative
solutions

Event-driven development, 25–26
Events, in narrative model, 233
Evolution, of project teams, 37–38
Evolutionary prototypes, 72, 428, 434–435
Execution and control, for projects. see Project
Executive summary, written reports, 96
Experience, lack of, project risk and, 315
Experienced-based methods, proposed system,

259–260
Explosion DFDs, 165, 170–174

consistency rule, 174, 230
context-level, 172–174
decomposition rule, 174
first-level explosion, 170–172, 240–242, 344
labeling of, 174
rules, additional, 174

Explosion MDFDs, 275–278
Extensions, of due dates, 88
Externals, dialog-driven systems design, 403
External symbol, DFDs, 159
External walk-throughs, project completion, 459
Extraction-transform-load process, 411–418

F

Face-to-face discussions, 51
Facilitation vs. domination, 37
Facility costs, 318
Fact tables, 408, 410
Familiarity, lack of, project risk and, 315
Feasibility

analysis, 311–313
infeasibility of statements of work, in the future, 84
legal, 312
operational, 312–313

POC model, 424–425, 429–430
outcome, 313
schedule and cost, 312
security, 313
technical, 312

Features, proposed system, 198, 201, 255–296, 311,
324, 363

analysis matrix, 341, 363
of an object class, 182

best practice, 260–261
brainstorming for, 259–260
calculation/optimization methods, 259, 262–263
concepts for, 258–266
conceptual data models (CDM) for, 258, 278–281
conceptual specifications, 256–257
cost/benefit analysis of. see Cost/benefit analyses
data, 344
design approaches, 264–266
desirable, 324, 343
difference reduction methods, 259, 261–262
evaluation of, 2
experienced-based methods and, 259–260
functional product, 344
generation of project plans, 75
goals and outcomes, 257–258
graphical data models, 258
graphical data specifications, 278–281
graphical object models, 258
graphical process models, 258
graphical process specifications. see Graphical

process specifications
heuristic methods and, 259, 260–261
impact of, 206–207
list, 363
mandatory, 324, 343
matrix, 341, 363
MDFDs. see Modified data flow diagrams

(MDFDs)
metadata and, 281–282
modification of current system, 265
narrative specifications. see Narrative model
narrative statements, 258
new design vs. modifications, 265–266
“nice to have,” 343
object-oriented design (OOD) and, 258, 282–291

class diagrams, 288–291
use case diagrams, 287–288

optional, 324
organizational models and, 263–264
outsourcing and. see Outsourcing
problem-solving methods. see Problem-solving

methods
process, 344
of products. see Products
in project definition report, 205–207
ranking methods, 363–364
ratings assigned to, 364, 365–367
review of, 89
SDLC, 18

Index 517

518 Index

Features, proposed system (cont.)
security, 378
slide, in project presentations, 100
specifications defined, 258–259
Value Chain Model, 263–264
vendor, 352–353
weighted features analysis, 364, 366

Feedback
at project presentations, 247
at visits with clients, 220

Field project challenges, 27–28
File metadata, 383
Final deliverables, 19
Final design review, 89
Final presentation, 103–104
Financial sponsorship, 196
Finnerty, John D., 336
First-level explosion

DFDs, 170–172, 240–242, 344
MDFDs, 275–278

First normal form, logical data models, 144
Fixed period software license, 347–348
Fixed price, outsourcing and, 348
Flaming, 52
Flexibility, of project team members, 37
Flexible project planning, 67–69
Flow of control, pseudocode and, 395–396
Focus groups, 222
Follow-on training, 466, 467–468
Foreign key, 137, 139
Format

of final documentation, 460
for narrative model, 266–269

Forming stage, of team maturation, 38
Forsberg, Kevin, 64, 111
Fourth-generation languages (4GLs), 67
Fowler, Martin, 10, 31, 157, 190
Fragmentation, 55–56
Frequency, of reports, 92
Functional dependency, 144
Functionality. see also Functions

alternative solutions and, 301–302
POC model, 424, 429–430
of product features, 344
as a variable, 301

Function hierarchy diagrams (FHDs), 10.
see also Process(es)

Functions, 206. see also Functionality
alternative solutions and, 301
constraining solutions, 208

G

Gane, Chris, 156, 190
Gantt charts, 16

project plan generation and, 78–79
Gapenski, Louis, 336
General Electric, 354
Generated surrogate key, 409
Generation of project plans, 73–80

activity schedule table, 79–80
activity/task selection, 74–76

project and team organization, 75
project definition, 75
proposed system, 75
system delivery, 75

activity/task times and sequence, 76–77
client meetings, 76
constructing the schedule, 77–80
Gantt chart schedule, 78–79
person-hours of work required, 77
slack, 78
slippage, 78
start date and end date (due date), 77, 78

extensions of due date, 88
George, Joey F., 10, 31, 153, 190, 295
Goals, 197

current situation analysis, 230
in project definition report, 204–205
of project teams, 35–36
proposed system specifications, 257–258
strategic alignment and, 197, 199–200

Good writing, for written reports, 96–97
Graphical data models, 239–240

of current operation, 243–247
object models, 258
process models, 239–243, 258

metadata, 243, 244–245
Graphical data specifications, 258, 267, 278–281
Graphical process specifications, 269–278

context-level DFDs, 275
MDFDs. see Modified data flow diagrams (MDFDs)

Graphic user interfaces (GUI), 67
Greenberg, Jerald, 35, 38, 62
Group interviews, 221–222

H

Handouts, 51
Hardware specifications, 378
Headings and fonts, written reports, 95–96

Headship, for project teams, 43
Help desk, 467
Heuristic methods, 259, 260–261
Hewlett-Packard, 10
Hierarchical data flow diagrams, 165–174

added explosion levels, 172–174
context-level, 165–170, 240
first-level explosion, 170–172, 240–242, 344
rules for, 169–170, 174
written narrative prepared from, 168

Hijacked teams, 56
Historical role of information, 4–5
Hoffer, Jeffrey A., 10, 31, 114, 146, 153, 156, 190, 295
Host, on presentation team, 99

I

IBM, 70
Immediacy, MDFDs and, 274
Impact of a feature, 206–207
Implementation, 461–474

closing the project, 474
costs of, 318
data conversion, 462
direct implementation, 463–464, 465
disaster plans, 471–472
documentation, 469–471
GB Video example, 472–474
help desk, 467
issues slide, project presentations, 101
maintenance plan, 469
parallel, 462–463, 464, 465
phased, 463, 464–465
pilot, 463, 464–465
plans/strategies for, 461–469
post-implementation audit plan, 472
SDLC and, 19
sequential approaches, 464–465
system controls, 471
training, 465–469

Implied benefits, 322–323
Incentive pricing, outsourcing and, 348
Individual needs, team motivation and, 48–50
Inexpensive trial solutions, 376
Infeasibility, of statements of work, 84
Information

confidentiality of, 219
historical role of, 4–5

Information age, 4

Information collection, 195, 220–223
on current situation, 231–232
documents, 222
focus groups, 222
group interviews, 221–222
interviews, 221
observation, 222–223
sampling, 223
surveys, 223

Information processing, 4–5
Information system life cycle, 12–14
Information systems. see also Information system

solutions
benefits of, determining, 14
development. see Development activities
life cycle of, 12–14
proposed. see Features, proposed system
roles for, 12
solutions. see Information system solutions
use and refinement, 14

Information Systems Group (IS), 6
Information system solutions, 5–15. see also

Alternative solutions; Information systems
component model, 9
concepts and models for, 8–11
content model, 9–11
design of, 5
models. see Models
system solution activities, 6–8
technology level of models, 11

Information technology (IT), 4, 6, 12
activities vs. organizational values. see Strategic

alignment
cost/benefit analysis. see Cost/benefit analyses
outsourcing of, 72–73, 303–307
typical project, 5

Inform (difference reduction) method, 261–262
Infrastructure options, 301, 307
In-house system builds, 303
Initial analysis, spiral planning model, 67
Initial development costs, 318
Initial prototype-based POC design, 436–437
Initial role assignments, 41–42
Initial training, 466–467
Inmon, W. H., 408, 422
Input/process/output charts, 157, 174–175
Input(s)

of data, 115, 393
input/process/output charts, 157, 174–175
to outsourcing task, 340

Index 519

520 Index

Insertion anomaly, 145
Instance, entity relationship model, 117
Institution-specific applications, 303
Intangible benefits, 317
Integration, of theory and applications, 11
Interactions/critiques from client, encouraging, 220
Internal rate of return (IRR), 315, 322
Internal walk-through, 458–459
Interoperability, 307, 346
Interviews, 221
Introductions

in proposed system narratives, 267
in written reports, 96

IPO (input/process/output) charts, 157, 174–175
IT. see Information technology (IT)

J

Jacobson, Ivar, 156, 190
Joint team approach, project planning, 70
“Just-do-it” system acquisition model, 15, 16

K

Kendall, Julie E., 228
Kendall, Kenneth E., 228
Kimball, Ralph, 408, 422

L

Labeling
of DFDs, 163–164, 174
of MDFDs, 274

Laws and regulations
legal feasibility, 312
outsourcing and, 349

Leadership, 43, 50–51
Legal feasibility, 312
Lifetime software license, 347
Links, 402
Listening skills, 220
Live test data, 460
Logic, POC models, 440
Logical data models, 121, 136–147

anomalies in, 145
data control language, 146
data definition language (DDL), 145–146
data manipulation language (DML), 146

dimensional models, 146–147
normalization of, 144–145
relational model, 136–139

basic concepts, 137–138
correspondence with ER models, 137
foreign key, 137, 139
relational schema. see Relational schema
rules for, 138–139
table, 137
unique key, 137

standard query language (SQL), 145–146
Logical design cycle, spiral planning model, 67
Logical models, 11. see also Logical data models
Logic and functionality section, alternative

solutions report, 309

M

Mainframes, 68
Maintainability

of outsourced products, 346–347
system design and, 376

Maintainers, role in system design, 379
Maintenance plan, 469
Management of project teams. see Project team
Manager deliverables, statement of work and, 81
Manager relations, working in a team, 52–53
Mandatory items

features, 324, 343
processes, 268
relationship, 128

Many-to-many relationships, 120
unary, 143

March, James G., 299, 311, 336
Marginal net benefits, 13, 14
Maturation, of project teams, 37–38
Maximum cardinality, 120
McClelland, David C., 48, 50, 62
McFadden, F. R., 10, 31, 153, 295
Meaning checking, 97–98
Meetings, code of conduct, 42
Members of teams. see Project team
Menus, dialog-driven systems design, 402
Messages

coupling, 390–391
object interactions and, 178

Metadata, 133–136, 241
attribute metadata, 134–135
data items, 383

data models, 133–136
data structure, 382–386, 389, 396–399
data structure and system design, 382–386, 389
for data warehouse, 411, 412–417
entity metadata, 134
file metadata, 383
for module logic, 396–399
page navigation/action maps, 407
process model, 243, 244–245, 389
proposed system example, 283–287
proposed system features/specifications,

281–282
relationships, 135
specifications, proposed system, 281–282
table, 383
in use case diagrams, 180

Microsoft Project, 90–91
Minimum cardinality, 128–129
Mission statement, 198
Models, 8–11

commodity, for outsourcing, 341–342
component-based, 9
conceptual, 11. see also Conceptual data models

(CDMs)
content-based, 9–11
content of information systems, 9–11
data. see Data models
dimensional. see Dimensional models
enterprise data. see Enterprise data models

(EDMs)
entity relationship (ER model). see Entity

relationship model (ER model)
graphical data. see Graphical data models
logical, 11. see also Logical data models
metadata and. see Metadata
narrative model. see Narrative model
object. see Object models
organizational, proposed features and,

263–264
of outsourcing, 341–342
physical, 11, 121
physical data, 121
POC. see Proof of concept (POC) models
relational, ER model compared, 137
technology level of, 11

Modification anomaly, 145
Modification of current system, proposed system

and, 265
Modified data flow diagrams (MDFDs), 258, 269–275

DFD/ERG integration, 274

explosions
additional, 278
first, 275–278

first explosion MDFD, 275–278
guidelines for creating, 274–275
labeling, 274
process triggers, 274
time and immediacy, 274
triggers, 269–275

Module design, 387, 390–399
basic functional modules, 392
cohesion and, 390
coupling, 376, 390–391
data coupling, 390–391
elementary modules, 392
message coupling, 390–391
metadata for module logic, 396–399
pseudocode. see Pseudocode
satisficing and, 391
specifications for, 391–392
TIPOT charts, 399, 400–401

Monitor progress, 87–88
Mooz, Hal, 111
Morris, Chuck (IBM), 70
Motivating project teams, 47–51

individual needs and, 48–50
leadership, motivational perspective, 50–51
need for achievement (nAch), 48–49
need for affiliation (nAff), 49
need for power or influence (nPow), 49–50

Multiple representations, 239–240
Multiplicity attributes, 182
Multivalued attributes, 124
Mutual accountability, 36

N

Naming rules
ERD, 123–124
POC models, 439–440

Narrative model
current situation, 232–240

correct/complete representations, 239–240
data content, 233
data flows and processes, 233
description of, 233–234
events, 233
organizational infrastructure, 234
physical infrastructure, 234

Index 521

522 Index

Narrative model (cont.)
current situation (cont.)

problem analysis, 234
retention and change analysis, 234–239

proposed system
introduction, 267
data specifications, 267–268
process specifications, 268
organizational specifications, 269
example, 270–273
format for, 266–269
mandatory processes, 268
optional processes, 268

Need for achievement (nAch), 48–49
Need for affiliation (nAff), 49
Need for power or influence (nPow), 49–50
Negative net benefit, 14
Net benefit, 323
Net marginal value, 13, 14
Net present value (NPV), 14, 320–322
Network diagram, 91
Network impacts, system design, 378
New design, vs. modifications, 265–266
Nonperforming/dysfunctional members,

53–57
appropriate handling of, 54
described, 53
fragmentation of teams, 55–56
hijacked teams, 56
removal of a member, 54–55
resignation of a team member, 55
the secretive genius, 56–57

Normalization, of logical data models,
144–145

Norming stage, of team maturation, 38
Note taking

on presentation team, 99
in visits with clients and, 220

O

Object class, 177, 182
in class diagrams, 181
CURD operations and, 182

Objectives, 197
project definition report and, 204–205
strategic, 197–200
strategic alignment and, 197, 199–200

The Object Management Group, 178

Object models, 155–157, 176–184. see also Object-
oriented design (OOD)

class diagrams, 181–182
objects defined, 156, 177
sequence diagrams, 183–184
Unified Modeling Language (UML), 156
use case diagrams, 178–180

Object-oriented design (OOD), 26. see also Object
models

advantages of, 184
specifications, proposed. see Features,

proposed system
Object plan, prototype-based POC design, 438
Objects, 156, 177
Observation, for information collection,

222–223
One-time costs, 318
One-to-many relationships, 120

unary, 143
One-to-one relationships, 120

unary, 143
Ongoing costs, 318. see also Cost/benefit analyses
Operational feasibility

alternative solutions, 312–313
POC model, 424–425, 429–430

Operational POC model, 424
Operational product features. see Products
Operational testing, at project completion,

459–460
Operations, 177

in class diagrams, 181
data stores and pseudocode, 393–394
project team code of conduct, 42

Operators, role in system design, 379
Optimization, for problem solving, 263
Optional features, 324
Optionality, 128–129
Optional processes, 268
Optional relationship, 128
Oracle, 10, 22, 26, 378, 379, 381, 427
Organization, 6

infrastructure. see Organizational
infrastructure

organizational case, 196–198
project definition report, 204–205
strategic alignment and, 197. see also Strategic

alignment
Organizational case, 196–198
Organizational culture, 199
Organizational fit, of outsourced product, 351

Organizational infrastructure, 10–11
example, 380–381
narrative model of current situation, 234
system design and, 375, 378–379

Organizational models, proposed features and,
263–264

Organizational specifications, in system narrative, 269
Organization constraints, on solutions, 208
Outcomes

feasibility of alternatives, 313
outsourcing and, 367
of proposed systems, 257–258

Output
of data, pseudocode and, 396
data output form, 115
input/process/output charts, 157, 174–175
output-driven development, 22–23

Outsourcing, 72–73, 303–307, 339–369
association model, 341–342
candidate solutions, identifying, 365
commodity model, 341–342
comparison matrix, 341
contracts for products/services, 367
economic value analysis, 363–364
evaluation metric, 341
features analysis, 2, 341, 363

weighted, 364, 366
inputs to outsourcing task, 340
models of, 341–342
outcomes, 367
process of, 341–343
product features and. see Products
ranking methods, 363–364
rating points, 364
ratings, assigning, 365–367
request for quote (RFQ), 341
requirements, refining, 341, 343–351. see also

Products
RFP. see Request for proposal (RFP)
vendor roles. see Vendors
weighted features analysis, 364, 366

Overlap supertype links, 130
Ownership of documents, 52

P

Package systems, 73, 305–306
package POC models, 426–428

Page action maps, 399, 404–407

Page navigation maps, 399, 402–404, 407
Page representations, dialog-driven

design, 402
Parallel implementation, 462–463, 464, 465
Partial specialization, supertypes, 130
Payback period, 14, 319–320

shorter, for riskier projects, 315
Payments, for supportive behavior, 50
Peer evaluations, 57–59
PeopleSoft, 381, 427
Performance, 206

alternative solutions and, 301
enhancing, 317
infrastructure choices and, 307, 308
measuring, 198, 201
of outsourced products, 345
performance-oriented design, 198

Performing stage, of team maturation, 38
Person-hours required, generation of project

plans, 77
Personnel costs, 318
PERT/CPM charts, 16, 77, 91
Phased implementation, 463, 464–465
Physical data flow diagrams, 389
Physical data models, 11, 121
Physical design cycle, spiral planning, 67
Physical infrastructure

of an information system, 10
as constraint on solutions, 208
example, 380
narrative model of current situation, 234
system design and, 375, 377–378

Physical models, 11, 121
Pilot implementation, 463, 464–465
Ping-pong paragraphs, avoiding, 97
Piracy of software, 350
Planning and management, 15. see also

Project Management (PM); Project
planning

POC models. see Proof of concept (POC) models
Policies, final documentation following, 461
Popkin, 26
Porter, Michael E., 295
Post, Gerald V., 31, 114, 146, 153, 295
Post-implementation audit, 298, 472
Post-implementation reviews, 89–90
Post-implementation tests, 460
Pratt, Philip J., 146, 153
Pre-implementation reviews, 89
Prescott, M. B., 10, 31, 153, 295

Index 523

524 Index

Presentations, project, 98–104
delivery of, 102–103
final presentation, 103–104
guidelines for, 98–99
presenter, on presentation team, 99
project definition presentation, 247–248
rehearsals, 101
roles of team members, 99
setup tips, 102
visual aids, 99–101

Presenter, on presentation team, 99
Present value, 320. see also Net present

value (NPV)
Primary key, 122

data marts and, 409
entity relationship model, 117

Primitive process, DFDs, 170
Problem analysis, narrative model, 234
Problem-solving methods, 259–263

automate (difference reduction), 261–262
best practice, 260–261
brainstorming, 259–260
calculation and optimization, 259, 262–263
difference reduction (discover), 259, 261–262
experienced-based, 259–260
heuristics, 259, 260–261
inform (difference reduction), 261–262
optimization, 263
process specifications identified using, 268
transform (difference reduction), 261–262
trial and error, 259, 260

Procedures
encapsulated, 178
performing, pseudocode and, 394

Process(es), 8
completeness rule, DFDs, 163
data sufficiency rules, DFDs, 164
design of, 376, 387–389
dialog-driven systems design and, 403
dominance rule, DFDs, 162
features, 344
hierarchy charts, 18–19, 24, 157, 175–176
modeling, 17, 155–176, 239–240

DFDs. see Data flow diagrams (DFDs)
input/process/output charts, 157, 174–175
metadata, 243, 244–245, 389
process models defined, 156

process-driven development, 24–25
section, of content model, 10
specifications, proposed system, 268

symbol, DFDs, 159
triggers, MDFDs and, 274

Procurement options, 208
Production programs, from proof of concept,

428–429
Products

data features, 344
flexibility of, outsourcing and, 349–350
functional, 344
operational features, 344–351

contract compliance, 350–351
costs and prices, 348–349
efficiency, 345
fixed period software license, 347–348
interoperability, 346
laws and regulations, 349
lifetime software license, 347
maintainability, 346–347
organizational fit, 351
performance, 345
product flexibility, 349–350
security, 346
software licenses, 347–348
time-bomb components, 348
usability, 345

process features, 344
selling, 12

Professional behavior, 215–216
Professional integrity, 216
Program structure charts (PSCs), 387–389
Progress

informing team manager of, 53
versus plan, monitoring, 87–88
reports, 91–92, 93

Project, 1, 5. see also Project definition; Project
planning

approach, historical role of information, 4–5
communication. see Communication
description, statement of work and, 80
director of, 47
execution and control, 84–90

change, inevitability of, 84
changes in operations, controlling, 85–86
corrective action, 88
monitoring progress against the plan, 87–88
project execution explained, 85
requirements, controlling changes in, 86–87
resistance to change, 85–86
review points, 89–90

organization, 75

project teams. see Project team
schedules, statement of work and, 81
successful. see Successful projects

Project definition, 191–252. see also Project
definition report

completion of, 249
explained, 191, 194
generation of project plans, 75
information collection. see Information collection
materials, examples, 210, 211–215
presentation, current situation, 247–248
questions to be answered, 194
review, 89
SDLC, 17–18
strategic alignment. see Strategic alignment
working with the client. see Client(s)

Project definition report, 202–210
constraints on solutions, 207–209
the organization section, 204
the organization’s goals/objectives section,

204–205
procurement options, 208
project contribution, 205
project definition materials, 210, 211–215
project statement, 203–204
project success criteria, 205
project success index, 210
proposed system features, 205–207
scope of the project, 209–210
solution options, 208–209
strategic alignment and, 204

Project management (PM), 8, 15–21, 63–112
communication. see Communication
execution and control. see Project
project planning. see Project planning
project teams. see Project team
SOW. see Statement of work (SOW)
structure and flexibility, balancing, 20–21
SDLC. see Systems development life cycle (SDLC)
tools, 90–91

Project Management Institute, 15
Project manager, 47
Project organization, SDLC, 16–17
Project planning, 64–80

CASE tools, 67
client/team contract approach, 69–70
flexible project planning, 67–69
generating the plan. see Generation of project plans
joint team approach, 70
outsourcing of IT, 72–73, 303–307

packaged applications, purchasing, 73
planning mechanisms, 69–73
proof of concept versions of systems, 72
prototype-based plans, 70–72
rapid development planning model, 20–21, 68–73
SDLC for, 65, 67
spiral model, 66–67
team member turnover, 69

Project statement
in project definition report, 203–204
slide, in project presentations, 100

Project success. see Successful projects
Project team, 6, 33–62

behavior guidelines, 37
code of conduct, 42–43, 45
communication within, 36
contract. see Project team contract
contributions of team members, 34
defined, 33
effective, 36–38, 47–48
evolution of, 37–38
facilitation, not domination, 37
flexibility of members, 37
goals of, 35–36
initial impressions of, 34
management of, 36, 43–51

headship, 43
leadership, 43
project director, 47
project manager, 47
team lead, 47

maturing of, 34, 37–38
members of, 34, 35, 37, 47

best skilled person, 88
motivating. see Motivating project teams
nonperforming. see Nonperforming/

dysfunctional members
organization of, SDLC and, 16–17
roles of, 99
turnover of, 69

mutual accountability, 36
obligations of members, meeting, 37
peer evaluations, 57–59
punctuated-equilibrium maturation, 38
skill sets required, 36, 39–41, 46
speaking up, 37
start up, 36–37
successful, 36–38, 47–48
theory and principles, 35–36
working in a team, 51–53

Index 525

526 Index

Project team contract, 39–43
analyst, 42
code of conduct, 42–43, 45
communicator, 42
coordinator, 42
designer, 42
editor, 42
role assignments, 41–42
sample of, 44
skills inventory, 36, 39–41, 46
standards manager, 42
team self-management and, 39
writer, 42

Proof of concept (POC) models, 423–454
accuracy of, 431
compatibility with physical infrastructure, 424,

425, 430–431
configuration of demo setups, 427
cost of, 427
decision variables, 427
design parameter evaluation, 430–431
effort to install and initialize the demo, 427
evolutionary prototypes, 428
functionality, 424, 429–430
infrastructure to run model, 427
operational feasibility, 424–425, 429–430
operational POC model, 424
package POC models, 426–428
production programs, 428–429
prototype-based design. see Prototype-based

POC design
purposes of, 424–425
schedule for obtaining, 427
simulated POC models, 426
slides for project presentations, 101
static POC model, 424
system design parameters confirmation, 424, 425
system specification, refining, 424, 425
throwaway prototypes, 71–72, 428, 434
types of POC models, 425–429
usability, 424, 429–431
validity of, 431

Properties, of object classes, 182
Property string attribute, 182
Proposed system features. see Features, proposed

system
Prototype-based POC design, 425, 428–429,

431–452
building a prototype, 434–440

artifacts, 439

bottom-up plan, 437
code, generation of, 437, 438–440
component plan, 438
control flow, 439
data CURD operations, 440
data model, 439
design specifications, coding and,

438–440
effective coding, 440
evolutionary model issues, 434–435
focus, choosing, 434–436
initial design decisions, 436–437
logic, 440
model content issues, 435–436
naming conventions, 439–440
object plan, 438
schedules and assignments, 437–438
top-down plan, 437

demonstration, SDLC, 18–19
evolutionary prototypes, 428, 434–435
GB Video example, 440–452
prototyping life cycle, 431–432
throwaway prototypes, 71–72, 428, 434

Prototype-based project planning, 70–72
Prototyping, 22–23, 70–72. see also Prototype-based

POC design
life cycle, 431–432
prototype-based project planning, 70–72

Pseudocode, 392–396
flow of control and, 395–396
inputting data, 393
operating on a data store, 393–394
outputting data, 396
performing a procedure, 394
transforming data, 393

Punctuated-equilibrium maturation, of project
teams, 38

R

Ranking methods, outsourced systems,
363–364

Rapid application development (RAD), 20.
see also Rapid development (RD)

Rapid development (RD), 20–21
project planning model, 68–73
SOW approach. see Statement of work (SOW)

Ratings, for outsourced software, 364–367
RCA, 354

Readability of final documentation, 461
Recommendation, 299, 329–332

justification of, strategic alignment and, 196
slide, in project presentations, 101

Recording client meetings, 219
Reeves, Laura, 422
Referential integrity arrow, 140
Refresher training, 467
Rehearsals, of project presentations, 101
Relational database, 381–382

ERD model for, 10
Relational model. see also Logical data models

ER model terms/concepts, compared, 137
Relational schema, 140–144

box schema, 140
column heading schema, 140
data structure and system design, 381–382
ERDs converted to, 141–142
set notation schema, 140
for unary relationships, 142–144

Relationships
entity relationship model, 117, 126–128
identification step, simple ERD, 120
metadata, 135
relationship lines, use case diagrams, 179

Removal, of a team member, 54–55
Repeating groups, of multivalued attributes, 124
Report/documentation tests, at project completion,

457
Request for information (RFI), 354
Request for proposal (RFP), 18, 72, 341, 354–363

bids, 356, 367
content of, 355–356
defined, 355

Request for quote (RFQ), 341, 354
Requirements

changing, 84, 86–87
refining, outsourcing. see Outsourcing

Resignation, of a team member, 55
Resistance to change, 85–86
Resource reallocations, 88
Respecting clients, 219
Response times, 308
Retention/change analysis, narrative model,

234–239
Retrieving object data (CURD), 177
Return on investment (ROI), 14, 322
Reusability, object design and, 184
Revenue enhancement, 317
Review points, 89–90

Risk, 313. see also Cost/benefit analyses
of alternative solutions, 313–315
analysis, SDLC, 18
reduction, 15, 314–315, 317
sponsor risk, 314
staff risk, 314

Role assignments, 41–42
project team code of conduct and, 42
for visits to clients, 218
workload and, 43

Ross, Margy, 422
Rumbaugh, James, 156, 190

S

Safe communication, 315
Safe design practices, 314
Samples, 223
SAP, 73, 381, 427
Sarson, Trish, 156, 190
Satisficing, 69, 391
Scenarios, use case diagrams, 180
Schedules of completion

constructing, 77–80
and cost feasibility of alternatives, 312
prototype-based POC design, 437–438
updating, example, 94

Scheduling visits to clients, 217
Schneider, G., 10, 31, 190
Schwalbe, Kathy, 64, 77, 111
Scope of projects

in project definition report, 209–210
reducing, 88
scope creep, 68

SDLC. see Systems development life cycle (SDLC)
Second normal form, logical data models, 144
Secretaries, relationships with, 218
Secretive genius, 56–57
Security

feasibility of alternative solutions, 313
features in system design, 378
of outsourced products, 346

Self-management, of project teams, 39
Selling, of products and services, 12
Sequence constraints, 76–77, 78
Sequence diagrams, 26, 183–184
Sequential implementation, 464–465
Services, selling, 12
Set notation schema, 140

Index 527

528 Index

Setup tips, project presentations, 102
Sharing, of written documents, 51
Signing and dating

communications, 52
statements of work (SOW), 81

Silver, Denise, 70, 111
Simon, Herbert A., 299, 311, 336
Simplified, reduced-form ERD (SERD), 130–131
Simulated POC models, 426
Sink, 159
Size of projects, as potential problem, 209
Skills inventory, 36, 39–41, 46
Slack, 78
Slippage, 78
Slowly changing attributes, 411
Software licenses, outsourcing and, 347–348
Software specifications, system design, 378.

see also Features, proposed system
Solutions. see Alternative solutions
Source, 159
Sourcing option. see Alternative solutions
SOW. see Statement of work (SOW)
Specialization, of supertypes, 130
Specifications, 17–18, 19. see also Features,

proposed system
for module design, 391–392
slide, project presentations, 100

Spiral model, 66–67, 429
Split data flow, in DFDs, 164–165
Sponsor risk, 314
Sponsors, 6, 314
Stability, of vendors, 352
Staff risk, 314
Standard query language (SQL), 145–146
Standards manager, 42
Start date and end date (due date), 77, 78

extensions of due date, 78, 88
Start up, of project teams, 36–37
State diagram, 26
Statement of work (SOW), 70, 80–84

client deliverables, 81
client resources, 81
elements of, 80–81
example, 82–83
infeasibility of, future, 84
project description, 80
project schedule, 81
project success criteria, 81
requirements, changing, 84
signatures required, 81
work product, 80–81

Static data, 146
Static POC model, 424
Status reports, 87–88
Storming stage, of team maturation, 38
Stowe, John D., 336
Strategic alignment, 8, 195–202

for acceptance/credibility, organizational, 196
determining alignment, 198–202

objectives and goals, identifying, 199–200
organizational culture and, 199
project contribution, identifying, 200–201
project success, 202
understanding the organization, 198–199

financial sponsorship from, 196
ongoing project decisions and, 196
for organizational value support, 196
the organization case, 196–198

the organization, 197
the organization’s goals and

objectives, 197
project contribution, 197–198
project success criteria, 198

project definition report and, 204
recommended solution justification and, 196
slide, project presentations, 100

Structural analysis/design, CASE tools for, 67
Structure, 206
Structured code, 376
Structured system acquisition, 14–15
Stub testing, at project completion, 460
Subtypes, 129–130
Successful projects

criteria, 202, 205
in project definition report, 205
statement of work and, 81
strategic alignment and, 198, 202

critical success measures, 92
project teams and, 36–38, 47–48, 92
strategic alignment and, 202
success index, 210

Sufficiency rules, DFDs, 164
Summary slide, project presentations, 101
Supertypes, 129–130
Support, from vendors, 352–353
Supportive behavior, payments for, 50
Surrogate keys, 409
Surveys, 198

for information collection, 223
Symbols, 156

used in DFDs, 158–159
used in ERDs, 117–118

Synthesis phase, 256. see also Features, proposed
system

System acquisition, 13
System boundary, use case diagrams, 179
System controls, 471
System delivery

generation of project plans, 75
SDLC, 18–19

System design, 6, 373–422. see also Systems
development life cycle (SDLC)

clients, roles in, 379
cohesion and, 376, 390
data/data design, 375
data owners, roles in, 379
data structure, specifying, 379–386

data item metadata, 383
data types, 383
metadata, 382–386, 389, 396–399
other data schema, 386
relational schema, 381–382

data warehouse design. see Data warehouse
dialog-driven. see Dialog-driven systems
framework for, 375–379
hardware specifications, 378
inexpensive trial solutions and, 376
maintainability and, 376
maintainers, roles in, 379
module coupling, 376, 390–391
module design. see Module design
network impacts, 378
operators, roles in, 379
organizational infrastructure and, 375, 378–379
parameter confirmation, POC model, 424, 425
physical data flow diagrams, 389
physical infrastructure and, 375, 377–378
process design, 376, 387–389
process model metadata, 389
program structure charts (PSCs), 387–389
security features, 378
software specifications, 378
structured code, 376
users, roles in, 379
workload allocation and, 376

System operation and maintenance, 19
Systems analysis and design. see System design
Systems development. see System design; Systems

development life cycle (SDLC)
Systems development life cycle (SDLC), 16–19

project and team organization, 16–17
project definition, 17–18
for project planning, 65, 67

proposed system, 18
prototyping and, 433
questions to ask clients, 74–76
system delivery, 18–19
waterfall concept, 17

System solutions. see Information system solutions
System specification, POC model, 424, 425

T

Table, 137
Table metadata, 383
Table of contents, 95
Task times/sequence, project plans, 76–77
Teams. see Project team
Team lead, 47
Technical complexity, 209
Technical feasibility, 312
Technology-driven development, 21–22
Technology driver, on presentation team, 99
Technology risk, 313–315
Telephone calls, 51

in place of meetings, 218
to schedule client visits, 217–218

Ternary relationship, 126–128
Testing

at project completion, 456–461
SDLC and, 19

Third normal form, logical data models, 144–145
Thornthwaite, Warren, 422
Throwaway prototypes, 71–72, 428, 434
Time-bomb components, 348
Time/timing

activity/task times and sequence, 76–77
arriving at meetings with clients, 219
constraints on solutions, 208
immediacy, time and, 274
MDFDs and, 274
of reports, 92
respecting, 53
response times, 308
of tasks, 76–77
time-value-of-money methods, 320

TIPOT charts, 399, 400–401
Title, alternative solutions report, 309
Title slide, project presentations, 100
Top-down plan, prototype-based POC design, 437
Total cost of ownership, 318
Total specialization, supertypes, 130
Traditional data structure model, 115

Index 529

530 Index

Training, 10–11
education regarding client problems, 217
follow-on, 466, 467–468
implementation phase, 465–469
initial, 466–467
refresher, 467

Transform (difference reduction) method, 261–262
Transforming data, pseudocode and, 393
Transitive dependency, 144–145
Trial and error, proposed systems and, 259, 260
Triggers, 269–275
Trivial projects, 209
Type attribute, of object classes, 182

U

UML (Uniform Modeling Language), 26
Unary relationship, 126–128

relational schema for, 142–144
Unified Modeling Language (UML), 26, 156, 178
Unique key, 137
Updated schedules, example, 94
Updating object data (CURD), 177
Usability

of outsourced products, 345
POC model, 424, 430
reusability, object design and, 184

Use case, 26, 179
diagrams, 178–180, 287–288

Users, 6
roles of, in system design, 379

V

Valacich, Joseph S., 10, 31, 153, 190, 295
Validity, of POC models, 431
Value Chain Model, 263–264
Vendors, 7

roles in outsourcing, 351–354
delivery record, 352, 353
selecting vendors, 353–354
vendor features, 352–353
vendor stability, 352
vendor support, 352–353

vendor risk, 313–314
Verbs, active, present-tense, 97
Visibility attribute, of object classes, 182
Vision, of an organization, 198–199

Visiting with clients, 218–220
preparing for, 216–218

Visual aids, for project presentations, 99–101

W

Walk-through tests, at project completion, 457–459
Waterfall concept, 17
Weak entities, 124–125
Web-based systems, 68
Weber, Ron, 479
Weekly report, 92
Weighted features analysis, 364, 366
Whitten, Jeffrey L., 10, 31, 114, 153, 156, 190, 295
Winters, J. P., 10, 31, 190
Wood, Jane, 70, 111
Working in a team, 51–53

communication and, 51–52
manager relations, 52–53

Working with the client. see Client(s)
Workloads

allocation of, 376
roles and, 42

Work product, statement of work and, 80–81
Wrapper modules, 349
Writer, 42
Written narratives, context-level DFD prepared

from, 168
Written reports, 92–98

appearance requirements, 98
contents of, example, 95
editing, 97–98
executive summary, 96
good writing for, 96–97
headings and fonts, 95–96
introduction, 96
progress report example, 93
table of contents, 95
updated schedules, example, 94

Y

Yourdon, Edward, 156, 190, 376–377, 422

Z

Zero-base design option, 301
Zuboff, Shoshana, 295

	Tittle
	Contents
	PART ONE PROJECT AND TEAM ORGANIZATION
	1 Introduction to the Project Approach
	Introduction
	The Historical Role of Information
	A Typical IT Project

	Information System Solutions
	System Solution Activities
	Concepts and Models for Information Systems
	Roles for Information Systems
	The Information System Life Cycle
	Adding Structure to System Acquisition

	Project Management
	Systems Development Life Cycle
	Balancing Structure and Flexibility

	Performing Development Activities
	Technology-Driven Development
	Output-Driven Development
	Data-Driven Development
	Process-Driven Development
	Event-Driven Development
	Object-Oriented Design
	CASE Tool–Driven Development
	Structuring Development Activities in an IT Project

	Field Project Challenges
	Summary
	Key Terms
	Review Questions
	Critical Thinking Exercises
	Individual Exercises
	Group Exercises

	References

	2 Organizing and Working in a Project Team
	Introduction
	Team Theory and Principles
	Building an Effective Team
	Start Up
	Team Evolution

	Team Contract
	Skills Inventory
	Assigning Roles
	Code of Conduct

	Managing a Team
	Successful Teams
	Individual Needs
	Leadership from a Motivational Perspective

	Working in a Team
	Communication
	Manager Relations

	Dealing with Nonperforming Members
	Removing a Member
	Resignation
	Dysfunctional Teams

	Peer Evaluations
	Summary
	Key Terms
	Review Questions
	Critical Thinking Exercises
	Individual Exercises
	Group Exercises

	References

	3 Project Management
	Introduction
	Project Planning
	Using the SDLC for Planning
	The Spiral Model for Project Planning
	Flexible Project Planning
	Planning Mechanisms
	Generating the Plan

	Statement of Work
	Project Execution and Control
	Project Execution
	Controlling Changes in Operations
	Controlling Changes in Requirements
	Monitoring Progress against the Plan
	Taking Corrective Action
	Project Review Points

	Project Management Tools
	Project Communication
	Progress Reports
	Written Reports
	Presentations
	The Final Presentation

	Summary
	Key Terms
	Review Questions
	Critical Thinking Exercises
	Individual Exercises
	Group Exercises

	References

	4 Data Modeling
	Introduction
	Entity Relationship Data Modeling
	Model Components
	Entity Relationship Diagram Symbols
	Building a Simple ERD
	ERD Rules
	Additional Constructs for ERDs
	Simplified, Reduced-Form ERDs

	Conceptual Data Models
	Metadata
	Enterprise Data Models
	Logical Data Models
	The Relational Model
	Relational Schema
	Normalization
	Structured Query Language
	Dimensional Models

	Summary
	Key Terms
	Review Questions
	Critical Thinking Exercises
	Individual Exercises
	Group Exercises

	References

	5 Process and Object Modeling
	Introduction
	Process Models
	Data Flow Diagrams
	DFD Symbols
	Building a Simple DFD
	DFD Rules
	Creating Hierarchical DFDs

	Other Process Models
	IPO Charts
	Process Hierarchy Charts

	Object Models
	Use Case Diagrams
	Class Diagrams
	Sequence Diagrams
	Advantages of Object-Oriented Design

	Summary
	Key Terms
	Review Questions
	Critical Thinking Exercises
	Individual Exercises
	Group Exercises

	References

	PART TWO PROJECT DEFINITION
	6 Understanding the Client’s Problem and Organization
	Introduction
	Strategic Alignment
	The Organization Case
	Determining Alignment

	The Project Definition Report
	Project Statement
	Strategic Alignment
	Proposed System Features
	Constraints
	Scope
	Examples of Project Definition Materials

	Working with the Client
	Professional Behavior
	Prepare for a Visit
	Make a Visit

	Information Collection Approaches
	Interviews
	Group Interviews
	Documents
	Observation
	Surveys and Sampling

	Summary
	Key Terms
	Review Questions
	Critical Thinking Exercises
	Individual Exercises
	Group Exercises

	Reference

	7 Learning from the Current Situation
	Introduction
	Information Collection
	Current Situation Narrative Model
	Description of Current Operations
	Physical and Organizational Infrastructure
	Problem Analysis
	Retention and Change Analysis
	Correctness and Completeness with Multiple Representations

	Current Operation Graphical Process Model
	Guidelines
	Process Model Metadata

	Current Operation Graphical Data Model
	The Project Definition Presentation
	Completing the Project Definition Stage
	Summary
	Key Terms
	Review Questions
	Critical Thinking Exercises
	Individual Exercises
	Group Exercises

	PART THREE PROPOSED SYSTEM
	8 Proposed System Specifications
	Introduction
	Goals and Outcomes
	Concepts for the Proposed System
	Problem-Solving Methods
	Organizational Models
	Design Approaches

	Narrative Specifications
	Narrative Format
	GB Video Narrative Model

	Graphical Process Specifications
	Modified Data Flow Diagrams
	The Context-Level DFD
	The First Explosion MDFD
	Additional Explosions

	Graphical Data Specifications
	Metadata Specifications
	Object-Oriented Design Specifications
	Use Case Diagrams
	Class Diagrams

	Summary
	Key Terms
	Review Questions
	Critical Thinking Exercises
	Individual Exercises
	Group Exercises

	References

	9 Alternatives, Evaluation, and Recommendation
	Introduction
	Making Choices
	Alternative Solutions
	Choosing a Design Option
	Choosing Functionality
	Choosing a Sourcing Option
	Choosing Infrastructure
	Evaluating Performance
	Describing Alternative Solutions

	Evaluation
	Feasibility
	Risk Analysis
	Cost/Benefit Analysis
	Evaluation Metrics
	Features Analysis

	An Example of Alternatives
	The Evaluation Comparison and the Recommendation
	The Recommendation
	Client Approval to Proceed

	Summary
	Key Terms
	Review Questions
	Critical Thinking Exercises
	Individual Exercises
	Group Exercises

	References

	PART FOUR SYSTEM DELIVERY
	10 Outsourcing
	Introduction
	The Outsourcing Process
	Models of Outsourcing
	Determining Requirements

	Product Features
	Functional Features
	Operational Features

	Vendor Roles
	Vendor Features
	Product/Vendor Selection Issues

	Request for Proposal
	RFP Content
	GB Video RFP Example

	Features Evaluation
	Ranking Methods
	Identifying Candidate Solutions
	Assigning Ratings
	Outcomes
	GB Video Example of a Weighted Features Analysis
	Contracts

	Summary
	Key Terms
	Review Questions
	Critical Thinking Exercises
	Individual Exercises
	Group Exercises

	11 System Design
	Introduction
	A System Design Framework
	Physical Infrastructure
	Organizational Infrastructure
	Infrastructure Example

	Specifying Data Structure
	Relational Schema
	Metadata
	Other Data Schema

	Specifying Processes
	Program Structure Charts
	Physical Data Flow Diagrams
	Process Model Metadata

	Module Design
	Module Specification
	Pseudocode
	Metadata for Module Logic
	TIPOT Charts

	Dialog-Driven Systems Design
	Page Navigation Maps
	Page Action Maps
	Page Navigation and Action Map Metadata

	Data Warehouse Design
	Dimensional Models
	Data Warehouse Metadata
	The Extraction-Transform-Load Process

	Summary
	Key Terms
	Review Questions
	Critical Thinking Exercises
	Individual Exercises
	Group Exercises

	References

	12 Proof of Concept
	Introduction
	Types of POC Models
	Package POC Models
	Prototype POC Models

	Using a POC Model
	Evaluating Operational Feasibility
	Evaluating Design Parameters and Compatibility

	Prototype-Based Design
	Building a Prototype
	Choosing a Focus
	Making Initial Design Decisions
	Generating Code
	Schedules and Assignments
	Coding and Design Specifications

	A GB Video Prototype
	Creating the Tables
	Coding the GB Prototype

	Summary
	Key Terms
	Review Questions
	Critical Thinking Exercises
	Individual Exercises
	Group Exercises

	13 Project Completion
	Introduction
	Testing Plans
	Desk Checks
	Walk-Through Tests
	Design Specifications Walk-Through Tests
	Operational Testing
	Post-Implementation Tests
	Documentation Clearance

	Implementation
	The Implementation Plan
	Implementation Strategies
	Training
	Maintenance Plan
	Documentation
	System Controls
	Disaster Plans
	Post-Implementation Audit Plan
	GB Video Implementation Plan

	Closing the Project
	Summary
	Key Terms
	Review Questions
	Critical Thinking Exercises
	Individual Exercises
	Group Exercises

	Reference

	Appendix GB Video Final Report
	Index

