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Foreword

It gives me great pleasure to write the foreword for this book, which gives a simple and lucid
understanding of Bayesian networks. Bayesian networks play a central role in the machine
learning research and have been successfully applied to different fields due to their flex-
ible nature. A Bayesian network is a high-level representation of a probability distribution
over a set of variables that are used for building models of specific problem domains. It is
represented by a graphical model where nodes represent the variables and arcs represent
the statistical dependence among the variables. The flexibility of choosing the variables and
of relationship among the variables based on domain specific nature and strong statistical
support lead to high and reliable performance of Bayesian networks.

The book is divided into three major parts. The first part addresses the intricacies involved
in modeling a Bayesian network. Modeling complex domains is an active area of research
which can be applied to database queries, reliability analysis and classification. Researchers
in machine learning will definitely find this part helpful for modeling and applying Bayesian
networks to complex domains. The second and third parts of the book present the applica-
tion of Bayesian networks to the highly mature but complex field of image processing and
the newer data intensive field of Bioinformatics.

This book will be very useful for researchers from diverse fields, such as computer science,
engineering, mathematics, physics, chemistry, and biology. The structure and applications
of the book are quite appealing and I hope the readers will find the book an interesting work
of knowledge enhancement tool.

Professor K. R. Rao, University of Texas at Arlington, USA
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Preface

Machine learning is an attempt to teach computers to use reasoning methods similar to those
employed by humans. In the study of machine learning, it becomes obvious that most of
these methods are founded in mathematical fields. The purpose of this book is to describe
the underlying concepts of Bayesian network in an interesting manner with the help of
diverse applications. A Bayesian network can be represented by a graph with probabilities
attached. Thus, a Bayesian network represents a set of variables together with a joint prob-
ability distribution with explicit independency assumptions.

A Bayesian network is a high-level representation of a probability distribution over a set of
variables that are used for building a model of the problem domain. Bayesian networks are
now being used in a variety of artificial intelligence (Al) applications. Bayesian networks
offer the Al researcher a convenient way to attack a multitude of problems in which one
wants to come to conclusions probabilistically. Because a large number of people are now
using Bayesian networks, there is a great deal of research on efficient exact solution methods
as well as a variety of approximation schemes. One advantage of Bayesian networks is that
itis intuitively easier for a human to understand direct dependencies and local distributions
than complete joint distribution. The benefit of the Bayesian network representation lies in
the way such a structure can be used as a compact representation for many naturally occur-
ring and complex problem domains. It is believed that Bayesian networks offer the potential
solutions to the existing problems in various domains.
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Bayesian networks have shown superior performance as compared to neural networks,
support vector machines, decision trees, and so forth, for several high-level classification
tasks such as data mining, fault monitoring, bioinformatics, and so forth. The time related
dependencies can also be encoded in Bayesian network to form a dynamic Bayesian network,
which can be applied to speech recognition, visual tracking, and several other problems.
Bayesian network shows the dependence-independence relations in a comprehensible form
that eases the tasks of decomposition, feature selection, or transformation, besides providing
a sound inference mechanism.

The book makes an attempt to make Bayesian networks more accessible to a wider com-
munity. Our intention through editing the book is that the ideas and techniques should spread
much beyond the research community responsible for developing them. This book fills
the lacuna in providing an excellent and well balanced collection of areas where Bayesian
network has been successfully applied. The chapters present the theory that make Bayesian
networks valid, describe some of the strengths and weaknesses of Bayesian networks, and
give specific examples of a Bayesian network in action. The key idea is to help the readers
appreciate the importance of Bayesian network as powerful machine learning tools and also
to come with grasp of utilizing it oneself for solving typical real-life problems. Several IT
applications are crucially dependent on performance of machine learning tools and can be
solved using Bayesian networks.

As the book demonstrates, the Bayesian networks can be used for modeling knowledge
in gene regulatory networks, medicine, engineering, text analysis, image processing, data
fusion, and decision support systems. The book is very relevant for the research commu-
nity, including graduate student and professors interested in applying Bayesian networks
to real-world problems. The book could serve as a reference textbook in several Bayesian
network courses that are being taught in numerous universities around the world. There are
practically hundreds of universities all over the world which offer courses in Bayesian net-
works, Al, and so forth, where book finds great relevance. In addition, because the special
emphasis in the book is on emerging areas such as bioinformatics, video tracking, and so
forth, it can be used by the students in these areas as a starting material to get into the field.
Our book takes a practical approach to applications of Bayesian networks. This would help
even the naive user in accomplishing the task of applying Bayesian networks in his or her
area. The stress is on how theoretical aspects of Bayesian network can be utilized to yield
practical solutions.

Organisation of This Book

The book contains 15 chapters organized under three sections. Each section addresses a
major area of applications of Bayesian networks. Within a section, each chapter addresses
a unique research or technology issue and how it could be handled by Bayesian networks
or its variants.



Section I: Modeling and Classification Using
Bayesian Networks

Chapter I, A Novel Discriminative Naive Bayesian Network for Classification (Huang, Xu,
King, Lyu, & Zhou) explains discriminative naive Bayesian classifier, which has merits of
both discriminative (SVM classifier) and generative (naive Bayesian) methods. This classifier
has good performance and works well in the case of missing information. Improvement is
achieved by preserving discriminative information by directly constructing decision rules
among data. This chapter explains algorithm, along with experiments which demonstrate
the advantages of this classifier. Comparison is given with both SVM and naive Bayesian
classifiers.

Chapter I1, A Bayesian Belief Network Approach for Modeling Complex Domains (Daniel,
Zapata-Rivera, & McCalla) describes use of Bayesian networks for modeling complex
environments like social sciences, humanities, and so forth. Bayesian brief networks are
used for modeling because brief Bayesian networks offer a mathematically rigorous way
to model a complex environment that is flexible and are able to mature as knowledge about
the system grows, and are computationally efficient. An example of social capital construct
is taken to illustrate BBN techniques for complex domains.

Chapter 111, Data Mining of Bayesian Network Structure Using a Semantic Genetic Algo-
rithm-Based Approach (Shetty, Song, & Alam) presents semantic genetic algorithm (SGA)
for Bayesian network structure generation from database. SGA is a modification of classical
GA with modified mutation and crossover operator that incorporates semantics of Bayesian
networks to improve accuracy. This chapter explains classical GA followed by SGA with
simulation, and shows how SGA is better than classical GA for Bayesian network learning
by proper analysis of results.

Chapter 1V, NetCube: Fast, Approximate Database Queries Using Bayesian Networks
(Margaritis, Faloutsos, & Thrun) describes NetCube, a method for fast and approximate
queries on large databases. NetCube uses Bayesian network as a model of the database,
which can answer aggregate queries approximately without accessing the database. In this
chapter we will study methods for producing Bayesian networks for large databases and
use of Bayesian networks to answer queries.

Chapter V, Applications of Bayesian Networks in Reliability Analysis (Langseth & Portinale)
provides insight into Bayesian networks and their application in reliability analysis. The
chapter starts with an explanation of Bayesian network and then explains how to model
reliability systems using Bayesian networks by using a step by step approach. The chapter
explains how to model reliability of both discrete and continuous real life systems under
environmental conditions that are given as input to model.

Chapter VI, Application of Bayesian Modeling to Management Information Systems: A La-
tent Scores Approach (Gupta & Kim) discusses the application of Bayesian modeling and
structural equation modeling (SEM) as a decision support tool for management information
systems (MIS) managers. It shows that SEM is good for empirical validation and Bayesian
networks are highly suitable for diagnosis and prediction of customer behavior.



Section II: Bayesian Network for Image Processing and
Related Applications

This section deals with the application of Bayesian networks to solve various image process-
ing and computer vision problems like tracking.

Chapter V11, Bayesian Networks for Image Understanding (Savakis, Luo, & Kane) describes
the use of Bayesian networks for scene classification and object detection. Scene classi-
fication means to classify scenes in known categories, such as outdoor or indoor, city or
landscape, and so forth, while object detection is to identify known objects. If information
is generated for whole image, then it is used for scene classification, and if it is generated
for different parts (or regions) then it is used for object detection. Both of these applica-
tions are based on generation of semantic information from image. In this chapter, a case
of indoor and outdoor scenes is taken for scene classification while a case of face detection
is taken for object detection.

Chapter V111, Long Term Tracking of Pedestrians with Groups and Occlusions (Jorge, Abran-
tes, Lemos, & Marques) explains a two step tracking algorithm for interacting pedestrians,
which can cope with occlusions and group tracking. This chapter explains the Bayesian
network model used to correctly identify pedestrians (i.e., the labeling problem) in the pres-
ence of occlusions and groups. It suggests two strategies, periodic inference and network
simplification, to deal with difficulties due to off-line analysis of video sequence.

Chapter 1X, DBN Models for Visual Tracking and Prediction (Diao, Lu, Hu, Zhang, & Brad-
ski) describes some dynamic Bayesian network (DBN) models for tracking in nonlinear,
nonGaussian and multimodal situations, which are difficult to model with traditional methods,
such as Kalman filter models. It also presents a prediction method to assist feature extraction
part by making a hypothesis for the new observations and demonstrates some experimental
results on sampling data and real data. It shows the potential of DBNs to provide a general
and flexible tracking tool kit for visual tracking in complex environments.

Chapter X, Multimodal Human Localization Using Bayesian Network Sensor Fusion (
Lo) presents a flexible, simple, and modular multimodal localization architecture using a
Bayesian network as the fusion engine. The issues related to the complexity of analyzing
the high amount of data coming out of multiple sensors are discussed. Later on, a case
study of deployment of this architecture in the area of video conferencing applications is
also presented.

Chapter XI, Retrieval of Bio-Geophysical Parameters from Remotely Sensing Data by Us-
ing Bayesian Methodology (Notarnicola) discusses the application of Bayesian techniques
for the estimation of surface features, soil, and vegetation water content. It describes an
algorithm development based on an experimental/modeling scheme aimed at extracting bio-
geophysical parameters, soil, and vegetation water content from remotely sensed data. This
algorithm uses the multisources information, such as different polarizations, frequencies,
and sensors for inversion system. This chapter also discusses inversion methodologies for
both active and passive systems.
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Section III: Bayesian Networks for Bioinformatics
Applications

This section explores the application of Bayesian networks in the emerging research area
of bioinformatics addressing problems related to gene expression, drug discovery, and
protein binding.

Chapter XII, Application of Bayesian Network in Drug Discovery and Development Process
(Chinnasamy, Patwardhan, & Sung) discusses the application of Bayesian networks in drug
discovery and development process. It shows how Bayesian networks revolutionize the
speed, quality, and effectiveness of the steps in the drug discovery process, that is, target
identification, gene network analysis, protein structure analysis, fold class prediction, protein
side chain prediction, protein-protein interaction, and clinical trials.

Chapter XI11, Bayesian Network Approach to Estimate Gene Networks (Imoto & Miyano)
shows that the Bayesian networks with nonparametric regression provides robust base for
the estimation of gene networks. In recent years, a large amount of gene expression data
has been collected, and estimating a gene network has become one of the central topics in
the field of bioinformatics. Several methodologies have been proposed for constructing a
gene network based on gene expression data, such as Boolean networks, and differential
equation models. The chapter shows the effectiveness of applying Bayesian networks to
this problem.

Chapter X1V, Bayesian Network Modeling of Transcription Factor Binding Sites: A Tuto-
rial (Narang, Chowdhary, Mittal, & Sung) discusses some recent improved techniques like
“time-delayed Bayesian network” and “semi-fixed Bayesian network™ to incorporate the
important biological information into Bayesian network to learn gene network.

Chapter XV, Application of Bayesian Network in Learning Gene Network (Liu, Sung, &
Muittal) introduces how temporal Bayesian network can be applied to learn gene networks and
how we can integrate important biological factors into the framework of Bayesian network
to improve the learning performance. The special emphasis of the chapter is to discover
time dependency in several features using Bayesian networks.
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Chapter 1

A Novel Discriminative
Naive Bayesian Network for
Classification

Kaizhu Huang, Fujitsu Research and Development Centre Co. Ltd., China
Zenglin Xu, Chinese University of Hong Kong Shatin, Hong Kong
Irwin King, Chinese University of Hong Kong Shatin, Hong Kong

Michael R. Lyu, Chinese University of Hong Kong Shatin, Hong Kong
Zhangbing Zhou, Bell-Labs, Lucent Technologies, China

Abstract

Naive Bayesian network (NB) is a simple yet powerful Bayesian network. Even with a
strong independency assumption among the features, it demonstrates competitive perfor-
mance against other state-of-the-art classifiers, such as support vector machines (SVM).
In this chapter, we propose a novel discriminative training approach originated from SVM
for deriving the parameters of NB. This new model, called discriminative naive Bayesian
network (DNB), combines both merits of discriminative methods (e.g., SVM) and Bayesian
networks. We provide theoretic justifications, outline the algorithm, and perform a series
of experiments on benchmark real-world datasets to demonstrate our model’s advantages.
Its performance outperforms NB in classification tasks and outperforms SVM in handling
missing information tasks.

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global. is prohibited.
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Introduction

Bayesian network classifiers, a school of generative classifiers, have shown their advantages
in many classification tasks, even though their overall performance is not as good as dis-
criminative classifiers, such as support vector machines (Huang, Yang, King, & Lyu, 2004;
Vapnik, 1999). The naive Bayesian network (NB) classifier is a simple yet effective Bayesian
network classifier (Duda & Hart, 1973; Langley, Iba, & Thompson, 1992).

NB assumes a conditional independency among the variables or attributes. When used for
classification, NB predicts a new data point as the class with the highest posterior probability.
This is shown in equation (1), where A <j <n) represents the attribute or variable, and
C,(1 <i<Kk) denotes the class variable. In equation (2), this posterior classification rule can
be transformed into a joint probability classification rule, because P(A, A,, ..., A) for a
given data point is a constant with respect to C. Finally, by incorporating the independency
assumption, that is, P(A, A | C) = P(A;| C) P(A,| C), for 1 <i#j <n, the classification rule
is changed in a decomposable form as equation (3).

c=argmaxP(C |A,A,.... A)

_argmax PGP AL A - A[C) )
G P(AL Ay AY)

=argmax P(C;)P(A, Ay,..., A, [C}) )

=argmax P(C; )ﬁ P(A[C) 3)

j-1

When used in real applications, NB first partitions the dataset into several subdatasets by the
class label. Then, in each subdataset labelled by C,, the maximum likelihood (ML) estimator
P(A]. =a, | C,) can be given by the frequency nijk/ N, Ny is the number of the occurrences of
the event {AJ. = ajk} in subdataset C; n. is the number of the samples in subdataset C,.

The above simple scheme achieves surprising success in many classification tasks (Duda
& Hart, 1973; Friedman, Geiger, & Goldszmidt, 1997; Langley et al., 1992). Importantly,
a great advantage of NB is its immediate ability to deal with the missing information
problem. Assume the attributes set {A , A,, ..., A } be A. When the values of a subset of
A, for example T, are unknown or missing, the marginalization inference can be obtained
immediately as follows:

c=argmaxP(C;)P(A-T|C))
C:

=argmax P(C;)P(A-T|C))
C;

=argmaxP(C;) H P(A[C) (4)

G jeA-T

Copyright © 2007, 1GI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global. is prohibited.
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No further computation is needed in handling this missing information problem, because each
term P(AJ. | C,) has been calculated in training NB. In comparison, other discriminative clas-
sifiers are difficult to deal with the missing information problem. Generally speaking, lack of
probability formulation makes this school of methods impossible to do marginalization.

However, there are still shortcomings in NB. More specifically, this approach models the
joint probability in each subset separately and then applies the Bayes rule to construct the
posterior classification rule. This framework appears to be incomplete, because this con-
struction procedure actually discards important discriminative information for classification.
Without considering the other classes of data, this method only tries to approximate the
information in each subdataset. On the other hand, the discriminative classifiers preserve
this information well by directly constructing decision rules among all the data. Therefore,
for the Naive Bayesian classifier, it is not enough to approximate the data in each subdataset
separately. It should provide a global scheme to preserve the discriminative information
among all the data.

One of the solutions is to directly learn a posterior probability model rather than a joint
probability model. However, within the framework of Bayesian network classifier, this kind
of approach is often computationally hard to perform the optimization. Even for the simple
naive Bayesian classifier, the corresponding posterior learning, known as the logistic regres-
sion (LR) (Jordan, 1995), will encounter problems in order to deal with missing information
tasks. In a two-category classification problem, LR defines the posterior probability as:

P(C:CO|A1,A2,...,AH):l/(1+exp(—ZBjAj -0)) 5)
j=1
P(c=Ci|A, Ay A) =1-P(c=Co| A, Ay, A) 6)

In the above, S and @ are two unknown parameters which can be estimated by the ML cri-
terion. When the values of a subset of attribute set T are unknown, the marginalization on
T is obtained in equation (7):

D P(c=Co| AP(A-T,T)

e ia : ™
(C 0| ) ZP(C=00|A)P(A_T’T)+Z P(C:Cl|A)P(A—T,T)
T T

The right hand side is hard to calculate. First, P (A —T, T) varies from T, and thus it cannot
be omitted. Second, in P(c = C; | A), the logistic form will be at least calculated r'™ times,
where r is the minimum number of values of attributes, and |T| represents the cardinality
of set T. This calculation is computationally intractable when the number of missing at-
tributes is large.

In this chapter, we develop a novel discriminative method to train the naive Bayesian classi-
fier. We call this model the discriminative naive Bayesian (DNB) classifier. Beginning with
modeling the joint probabilities for the data, we plug into the optimization function a penalty

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global. is prohibited.
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term which describes the divergence between two classes. On one hand, the optimization
of the new function tries to approximate the dataset as accurately as possible. On the other
hand, it also tries to enlarge the divergence among classes as large as possible. Importantly,
when improving the accuracy, this model inherits the NB’s ability in handling the missing
information problem.

Combining generative classifiers and discriminative classifiers has been one of the active
topics in machine learning. A lot of work has been done in this area (Bahl, Brown, de Souza,
& Mercer, 1993; Beaufays, Wintraub, & Konig, 1999; Hastie & Tibshirani, 1996; Valtchey,
Odell, Woodland, & Young, 1996). However, nearly all of these methods are designed for
the Gaussian mixture model (McLachlan & Basford, 1988) or the hidden Markov model
(Rabiner & Juang, 1986). By contrast, our discriminative approach is developed for one of
the Bayesian network classifiers, the naive Bayesian classifier. On the other hand, Jaakkola
& Haussler (1998) develop a method to explore generative models from discriminative clas-
sifiers. Different from this approach, our method performs a reverse way to use discrimina-
tive information in generative classifiers. In Huang, King, and Lyu (2003), a discriminative
training is performed on a kind of tree belief network, a Chow-Liu tree; however, it appears
hard to prove the convergence of the algorithm.

This chapter is organized as follows. First, we describe the discriminative naive Bayesian
classifier in detail. We then evaluate our algorithm on four benchmark datasets. The relation-
ship between our algorithm and other approaches, such as SVM, and Fisher discriminant
analysis, is discussed. Finally, we set out the conclusion.

Discriminative Naive Bayesian Network for
Classification

In this section, we first develop the discriminative naive Bayesian classifier in a two-cat-
egory classification task. Then, in the next section, we exploit a voting scheme to extend
our method into multicategory classification tasks.

Two-Category Discriminative Naive Bayesian Classifier

The NB firstly partitions the dataset into several subdatasets by the class variable. Typically,
in a two-category classification problem, two subdatasets, S, and S,, represent the data with
the class label C, and C,, respectively. Then, in each subdataset, the ML or the cross entropy
criterion can be used to find the optimal values for the parameters, namely, P(A]. | C,) and
P(AJ. | C,), 1<j<n.The cross entropy between a distribution p and a reference distribution
q is defined as the Kullback-Leibler function, shown in the following:

KL(@. p) = g Iog% ®)

Copyright © 2007, 1GI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global. is prohibited.
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Within the framework of Bayesian learning, the reference distribution is generally the empiri-
cal distribution. Therefore for NB, the optimization function in a two-category classification
problem can be written as follows:

{R. P} =argmin(KL(py, ;) + KL(p, = P,)) 9)
{p1. P2}

p, and p, represent the empirical distribution for the subdataset 1 and subdataset 2, respec-

tively. The first term and second term on the right hand side of equation 9 describe how
accurately the joint distributions p, and p, approximate the subdataset 1 and subdataset 2. It
is observed again that this function is incomplete, because only the innerclass information is
preserved. The important interclass information, namely the divergence information between
class 1 and class 2, is actually discarded. To fix this problem, we add into the optimization
function an interactive term, which represents the divergence between classes:

{R. R}=argmin f (R, R,)
{p1, P2}

= a{rg mi}n(KL(pl, Py) + KL(p, + Py) =W x Div(py, py)) (10)
P1: P2

Div(p,, p,) is a function of the divergence between p, and p,. This function value needs to
go up as the divergence goes down. W is a penalty parameter. In this chapter, we use the
reciprocal of the Kullback-Leibler measure to represent the function:

. 1
Div(py, p,) = —p (11)
x Py log— 1
)

Optimization on this function will make the innerdivergence described in the first two terms
on the right hand side as small as possible, while the interclass divergence among classes
will be as big as possible, which will benefit the classification greatly. Different from the
discriminative classifiers such as the LR, the discriminative information is finally incorpo-
rated into the joint probability p, and p,. Thus, the advantages of using joint probabilities
will be naturally inherited into the discriminative Naive Bayesian classifier.

However, the disadvantage of plugging this interactive item is that we cannot optimize p,
and p,, as in NB, separately in the subdataset 1 and subdataset 2. To clarify this problem, we
combine the NB assumption to expand the optimization function in a complete form:

{erPn ZZZ[pC(aJk)mg ch Jk;]+ . 1 (12)
c=l j=1 A Pe(@jc ZZ pl(ajk)IOQ(pl(ajk)/ pZ(aik))

=1 A

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global. is prohibited.
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s.t.0< pe(ay) <1, (13)

> pe(ag)=1c=12j=12..n

A

pc(ajk) is the short form of pC(AJ. = a,). This is the same for pc(ajk). p, and p, are a set of
parameters, namely, p, = {p,(A)), 1 <j <n}, p,={p, (A), 1 <j<n} This is a nonlinear
optimization problem under linear constraints. p, and p, are interactive variables. It is clear
that they cannot be separately optimized as in equation 9.

To solve this problem, we use a modified Rosen’s gradient projection method (Rosen, 1960).
We firstly calculate the gradients of the optimization function with respect to p, and p,. We
then project this gradient on the constraint plane. In our problem, the projection matrix can
be written as in equation 17. The optimal step length a is searched in the projected gradient
direction by using the quadratic interpolation method (Lasdon, 1970). The process is repeated
until a local minimal is obtained. We write down the detailed steps as follows:

1.  Calculate the gradient according to equation 14-16.

of _
a—pl(ajk) =—P(ay)/ pl(ajk)—g[lﬂog(pl(ajk)/ P2 (@)l (1)
_o - W
ap, (ay,) =—P,(ay)/ pz(ajk)_? p(ag)/ pa(aj) (15)
Z=">"log(pi(a)/ p,(a)) )

i=1 A

2. Project the gradient into the constraint plane: VfM = Vf.- M
M=1-A(A'A)TA’ (€]
where A is the coefficient matrix for the constraint, and | is the identity matrix.

3. Search the optimal step length o by quadratic interpolation method.
4. Update p, and p, by the following equations.

pl(ajk)new = pl(ajk)OId _anll}/lL (18)
P2 (aj)™ = p, (ajk)OId —anz'\fk 19)

5. Gotostep 1 until p, and p, converge.
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Figure 1. Discriminative naive Bayesian classifier committee machine for a four-category
problem S, ,1 <i <4 represent the subdataset for category i, respectively. C,m, 1< 1< 3,
| < m means the two-category discriminative naive Beyesian classifier for category [ and
category m.

Multicategory Discriminative Naive Classifier

We use a partly connected committee machine scheme to extend the two-category classifica-
tion problem into the multicategory one. We construct a two-category classifier for each pair
of classes. For an m-category problem, in total, m(m — 1)/2 classifiers will be constructed.
Each classifier will output a probability on how confident its vote is. We then sum up the
voting probabilities for each class, and return the class with the highest probabilities as the
final decision.

In Figure 1, we illustrate a four-category committee machine. In Figure 1, totally 4 x 3/2=6
DNB two-category classifiers are constructed. Then, these classifiers output the confidence
on the class they are voting for. These confidences or probabilities are summed up for each
class. Finally, the class with the maximum confidence is output as the classification result.

Table 1. Description of data sets used in the experiments

Dataset Variables Class Train Test
Iris 4 3 150 CV-5
Segment 19 7 2310 30%
Satimage 36 6 4435 2000
DNA 60 3 2000 1186
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Table 2. Parameters used in the experiments

Method Penalty parameter Kernel function
DNB 1000 N/A
SVM 1000 3-order polynomial
Evaluations

In this section, we implement the DNB algorithm to evaluate its performance on four bench-
mark datasets from Machine Learning Repository in UCI (Blake & Merz, 1998). The detailed
information for these datasets is listed in Table 3. These datasets vary in the variable number
and the sample size. As observed in Table 3, the variable number ranges from 4 to 60 and the
sample size varies from 150 to 6,435. The diversity in choosing the datasets will make the
evaluations on the algorithms more reliable. For the Iris dataset, which has a small number
of samples, we use a five-fold cross-validation method (CV5) to test the performance. We
compare our model’s performance with NB and a 3-order polynomial kernel SVM in two
cases, namely the case without information missing and the case with information missing.
The parameters for DNB and SVM used in the experiments are listed in Table 3.

Table 3. Prediction accuracy without information missing (%)

Dataset NB DNB SVM
Iris 93.33 97.33 95.33
Segment 88.44 90.88 95.96
Satimage 80.65 82.65 87.90
DNA 94.44 94.52 94.35

Figure 2. Error rates without information missing (%)
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Without Information Missing

We first implement our model in the case without information missing. The experimental
results are demonstrated in Table 3. To clearly see the comparison, we also plot the error
rates in Figure 2. It can be observed that DNB outperforms NB in all of the four datasets.
This implies that incorporating discriminative information in training the generative mod-
els benefits the classification greatly. When compared with SVM, DNB wins in two of the
datasets, while it loses in the other two. We note that in these two datasets, that is, Segment
and Setimage, SVM performs significantly better than DNB. This demerit of DNB roots in
the inner scheme of generative classifiers. Later in the chapter, we will present a detailed
discussion on this issue.

With Information Missing

Itisimportant to discuss the ability of the DNB in handling the missing information problem,
because one of the main advantages for generative classifiers lies in this point. Gradually,
we increase the percentages of the number of unknown or missing attributes randomly. We
then test the recognition rate on these datasets with different percentages. As mentioned
previously for DNB and NB, a principled way to handle the missing information problem

Figure 3. Error rates with information missing for four datasets. The figures on the upper-
left, upper-right, bottom-left, bottom-right are the curves for Iris, Segment, Satimage, and
DNA, respectively.
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is to use inference under uncertainty: ¢ = argmax P(Ci)HA r P(A; |Ci). For SVM, a
C; jEAT

normal way to force its application in missing ilnformation tasks is simply setting zero val-
ues for the missing attributes. Because in implementing SVM the values of attributes are
prenormalized to the range [-1,1], the zero value can be considered as the average value of
the attributes. Thus in a sense, this method can be regarded as replacing the missing values
with the corresponding average value. The experiment results for the four datasets are
shown in Figure 3. It is shown that NB demonstrates a robust ability to handle the missing
information problem. In four datasets, the error rate curves of NB maintain a flat trend when
the information does not decay too much. Furthermore, DNB shows a similar resistance
ability, while its accuracy is higher than NB. In comparison, SVM’s performance gradually
runs down as the number of the missing variables goes up. The superiority of DNB over
NB and SVM is especially prominent in the Iris dataset. In the Iris dataset the number of
samples is relatively small. Thus, the distribution from insufficient training data may not
represent the real distribution. Therefore, the discriminative item will contribute more in
constructing the classifiers.

Discussion

In this section, we discuss the connections of our model with SVM and Fisher discriminant
analysis (FDA) (Fukunaga, 1990) in the concept level. In SVM, a linear classifier y = w - X
+ b with the maximum margin between two classes is searched by minimizing the follow-
ing function in equation 20.

N
rwe) =y g+l
i=1

sty -((w-x)+b)21-¢;,& 20

(20)

where, X, € R", n'is the data dimension, y, € R is the class label corresponding to x, and w
€ R"and b € R are the variables to be optimized. To handle the nonlinear problem, usually
the so-called kernel trick will be used to map the input into a high-dimension feature space,

where a linear classifier can be found. This function consists of two parts. Because W
W
represents the margin between two classes, the second part on the right hand of equation

20, namely %”W"2 , describes the extent on how far away two classes are from each other.

The first term can be considered as the loss function in the training dataset, that is, how
accurate the sample in the training dataset can be classified into the corresponding class.
Interestingly, we note this optimization function of SVM is similar to the one of DNB. In
the DNB model, two terms form.

Copyright © 2007, 1GI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global. is prohibited.



A Novel Discriminative Naive Bayesian Network for Classification 11

The optimization function as equation 10. The second term represents a similar meaning
to the one in SVM. The first term in DNB also tries to approximate the training dataset as
accurately as possible. The difference is that in SVM, the first part directly minimizes the
recognition error rate, while in DNB, this part minimizes an intermediate term representing
the difference between the estimated joint distribution and the empirical distribution. As Box
once said, “all models are wrong (but some are useful)” (Box & Draper, 1987, p. 424). The
estimated distribution under the strong independency assumption may not always coincide
with the real data, and therefore may fail to work in practice.

It is also interesting that the Fisher discriminant analysis (FDA) also uses an idea similar
to ours to separate two classes. FDA minimizes the innerclass divergence described by the
average covariance of all classes and maximizes the interclass divergence represented by
the difference of the means between two classes. However, using the difference between
the mean values as the divergence between two classes may not be as informative a way as
the Kullback-Leibler divergence, a distribution-based approach.

Conclusion

In this chapter, we have improved a typical Bayesian network classifier, that is, the naive
Bayesian classifier. We exploit a discriminative way to train the naive Bayesian classifier. This
novel training enables the improved method called discriminative naive Bayesian classifier
both in merits of discriminative methods and generative methods. When handling the tasks
without information missing, the DNB demonstrates superior performance over the Naive
Bayesian classifier. When handling tasks with missing information, the DNB outperforms
the Support Vector Machine. A series of experiments has been conducted to evaluate our
model. The results have demonstrated the effectiveness of our model in comparison with
the Naive Bayesian classifier and the Support Vector Machine.
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Chapter 11

A Bayesian Beliet Network
Approach for Modeling
Complex Domains
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Juan-Diego Zapata-Rivera, Educational Testing Service, USA
Gordon I. McCalla, University of Saskatchewan, Canada

Abstract

Bayesian belief networks (BBNs) are increasingly used for understanding and simulat-
ing computational models in many domains. Though BBN techniques are elegant ways of
capturing uncertainties, knowledge engineering effort required to create and initialize the
network has prevented many researchers from using them. Even though the structure of the
network and its conditional & initial probabilities could be learned from data, data is not
always available or it is too costly to obtain. In addition, current algorithms that can be
used to learn relationships among variables, initial and conditional probabilities from data
are often complex and cumbersome to employ. Qualitative-based approaches applied to the
creation of graphical models can be used to create initial computational models that can
help researchers analyze complex problems and provide guidance and support for decision-
making. Initial BBN models can be refined once appropriate data is obtained. This chapter
extends the use of BBNs to help experts make sense of complex social systems (e.g., social
capital invirtual learning communities) using a Bayesian model as an interactive simulation
tool. Scenarios are used to find out whether the model is consistent with the experts beliefs.
The sensitivity analysis was conducted to help explain how the model reacted to different
sets of evidence. Currently, we are in the process of refining the initial probability values
presented in the model using empirical data and developing more authentic scenarios to
further validate the model.
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Introduction

Bayesian networks, Bayesian models, or Bayesian belief networks (BBNs) can be classified
as part of the probabilistic graphical model family. Graphical models provide an elegant
and mathematically sound approach to represent uncertainty. It combines advances in graph
theory and probability. BBNs are graphs composed of nodes and directional arrows (Pearl,
1988). Nodes in BBNs represent variables, and directed edges (arrows) between pairs of
nodes indicate relationships between variables. The nodes in a BBN are usually drawn as
circles or ovals. Further, BBNs offer a mathematically rigorous way to model a complex
environment that is flexible, able to mature as knowledge about the system grows, and
computationally efficient (Druzdzel & Gaag, 2000; Rusell & Norvig, 1995).

Research shows that BBN techniques have significant power to support the use of proba-
bilistic inference to update and revise belief values (Pearl, 1988). In addition, they can
readily permit qualitative inferences without the computational inefficiencies of traditional
joint probability determinations (Niedermayer, 1998). Furthermore, the causal information
encoded in BBNs facilitates the analysis of actions, sequences of events, observations,
consequences, and expected utility (Pearl, 1988).

Despite the relevance of BBNSs, the ideas and techniques have not spread into the social
sciences and humanities research communities. The goal of this chapter is to make Bayes-
ian networks more accessible to a wider community in the social sciences and humanities,
especially researchersinvolved in many aspects of social computing. The common problems,
which can prevent the wider use of BBN in other domains, include:

. Building BBNs requires considerable knowledge engineering effort, in which the
most difficult part of it is to obtain numerical parameters for the model and apply
them in complex, which are the kinds of problems social scientists are attempting to
address.

. Constructing a realistic and consistent graph (i.e., the structure of the model) often
requires collaboration between knowledge engineers and subject matter experts, which
in most cases is hard to establish.

. Combining knowledge from various sources such as textbooks, reports, and statistical
data to build models can be susceptible to gross statistical errors and by definition are
subjective.

. The graphical representation of a BBN is the outcome of domain specifications. How-
ever, in situations where domain knowledge is insufficient or inaccurate, the model’s
outcomes are prone to error.

. Acquiring knowledge from subject matter experts can be subjective.

Despite the problems outlined above, BBNSs still remain a viable modeling approach in
many domains, especially domains which are quite imprecise and volatile, such as weather
forecasting, stock market, and so forth. This chapter extends the use of BBN approaches
to complex and imprecise constructs. We use social capital as an example of showing the
modeling procedures involved. The approach presented in the chapter helps experts and
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researchers build and explore initial computational models and revise and validate them as
more data become available. We think that by providing appropriate tools and techniques,
the process of building Bayesian models can be extended to address social issues in other
domains in the social sciences and the humanities.

The rest of the chapter is described as follows. In section 2, basic Bayesian concepts are
presented. The goal is to provide the reader with some of the fundamental principles un-
derlying Bayesian probabilities and the modeling process. Section 3 briefly describes the
role of computational models in the area of artificial intelligence in education. In section 4,
we provide procedures for building Bayesian models and illustrate them with a model of
social capital in virtual communities, which is described in section 5. In section 6, various
stages of model construction, updating, and validation are described. Section 7 disuses and
summarizes the chapter. It also describes future research directions.

Background

Graphical models draw upon probability theory and graph theory. Graphical models provide
a natural way of dealing with two major problems, uncertainty and complexity. In addi-
tion, they provide intuitive ways in which both humans and machines can model a highly
interactive set of random variables, as well as complex data structures, to enable them to
make logical, useful, and valid inferences from data. In mathematical notation, a graph G
is simply a collection of vertices V and edges E, that is, G = (V, E) and a typical graph G
is associated with a set of variables (nodes) N = {X, X,, X,...X } and by establishing one-
to-one relationships among the variables in N. Each edge in a graph can be either directed
or undirected.

Directed graphs in particular consist only of directed edges. Acyclic directed graphs (ADGSs)
are special kinds of directed graphs that do not include cycles. One of the advantages of
directed graphs over undirected graphs is that ADGs can be used to represent causal rela-
tionships among two or more variables, for example an arc from A to B indicates that A
causes B. Such property can be used to construct a complex graph with many variables (a
causal graph). In addition, directed graphs can encode deterministic as well as probabilistic
relationships among variables. BBNs are examples of acyclic directed graphs, where nodes
represent random variables and the arcs represent direct probabilistic dependences among
the variables (Pearl, 1988).

Building on graph theory and conditional probability, Bayesian modeling is the process of
using initial knowledge and updating such belief using Bayes’ theorem in relation to prob-
ability theory, resulting in Bayesian belief networks (a.k.a., belief networks, Bayesian belief
networks, causal probabilistic networks, or causal networks). The Bayesian interpretation of
probability is based on the principles of conditional probability theory. In Bayesian statistics,
conditional probabilities are used with partial knowledge about an outcome of an experiment.
For example, such knowledge is conditional on relationships between two related events A
and B, such that the occurrence of one will affect the occurrence of the other. Suppose event
B istrue, thatis, it has occurred, then the probability that A is true given the knowledge about
B is expressed by: P (A|B). This notation suggests the following two assumptions:
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1. Two events A and B are independent of each other if P (A) = P (A|B) Q)

2. Two events A and B are conditionally independent of each other given C if P (A|C) =
P (A|B, C) )

Drawing from these two assumptions, Bayes’ theorem swaps the order of dependence be-
tween events. For instance:

_ P(AB)
3. P(A|B) = @) 3
4. And Bayes’ theorem states that:
P(AB) - P(B|A)P(A)
P(B) 4
P(B|A)P(A) P(B|A)P(A)
P(A|B) = =
(A[B) P(B) ZP(B|AJ-)P(AJ-)
J ®)

where j indicates all possible states of A.

From the above equations, the following can be stated about BBN models relationships to
conditional probability:

. P (A|B) is posterior probability given evidence B

. P (A) is the initial probability of A

. P (B|A) is the likelihood probability of the evidence given A
. P (B) is the initial probability of the evidence B

Modeling Process

Models in general are useful tools for representing abstractions and concrete realities. Models
provide various ways of organizing, analyzing, and understanding logical relationshipsamong
data, objects, and classes. There are several kinds of models used in a variety of contexts
and domains. Computational models are useful tools that can help researchers understand
social and technical aspect of systems, and provide systems designers and analysts with rich
insights to build processes, procedures, and tools to support systems’ operations.
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Figure 1. Modeling process
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In artificial intelligence in education (AIED), models are used to capture characteristics of
learners that can themselves be used by tools to support learning (McCalla, 2000). Models
can also be used for representing various educational systems. Baker (2000) summarized
three major uses of models within AIED: models as scientific tools for understanding learn-
ing problems, models as components of educational systems, and models as educational
artifacts. Baker (2000) further observed that the future of artificial intelligence in education
(AIED) would involve building models to support learners in learning communities and to
help educators manage learning under distributed circumstances.

The process of building models is an iterative one, involving organization of data, establish-
ing logical relationships among the data, and coming up with a knowledge representation
scheme. The process involves interaction of data, observation of a phenomenon, a knowledge
representation scheme, and an emergent model (see Figure 1).

A fundamental assumption underlying most of the model building process is that data is
available in which a researcher can be able to infer logical relationships and draw logical
and concrete conclusions from the model. There are modeling approaches that do not allow
the introduction of prior knowledge during the modeling process. These approaches nor-
mally prevent the introduction of extraneous data to avoid skewing the experimental results.
However, there are times when the use of prior knowledge would be a useful contribution
to the modeling and evaluation processes and the overall observation of the behaviour of
a model.

Related Research and Building Bayesian Models

BBN techniques are increasingly used in a variety of domains, including medical diagnostic
systems (Niedermayer, 1998; Pradhan, Provan, Middleton, & Henrion, 1994), student model-
ing (Conati, Gertner, & VanLehn, 2002; Reye, 2004; VVanLehn, Niu, Siler, & Gertner, 1998;
Vomlel, 2004; Zapata-Rivera, 2002, 2003; Zapata-Rivera & Greer, 2004), troubleshooting
of malfunctioning systems (Finn & Liang, 1994), and intelligent help assistant in Microsoft
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Figure 2. Fundamental phases and procedures in building BBN models
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Office (Heckerman & Horwitz, 1998). Recently, Daniel, Zapata-Rivera, and McCalla (2003)
extended the use of BBNs to model social interactions in virtual learning communities.

The construction of BBNs consists of several phases (see Figure 2). The first step involves
identifying and defining the problem domain, followed by the identification of the relevant
variables constituting the problem being modeled. Further, once the variables are established,
variable states and their relevant initial probabilities are assigned (Druzdzel & Gaag, 2000).
Probability values are normally estimated or appropriated based on certain sources of evidence
(empirical data, expert’sbelief, literature review, or intuition). The second step is to determine
the relationships among the variables and establish the graphical structure of the model. The

Copyright © 2007, 1GI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.



A Bayesian Belief Network Approach for Modeling Complex Domains 19

third step, then, is to apply Bayesian rules to compute conditional probability values for
each of variables in the model. The fourth stage of model building requires development of
scenarios to update and train the model. Once a model is updated, the fifth phase is to run
sensitivity analysis to assess the performance of the model against its parameters.

Model validation takes place during the sixth and the last phase of the model development.
Validation ensures that the model is useful and valid and that it reflects real world phenom-
enon. The modeling phases are normally conducted to reach a stable computational model.
In some circumstances these are only shown in three steps, but we extended this to 7 phases,
as shown in Figure 2. The different phases are elaborated and shown with an example of
modeling social capital discussed later in the chapter.

The joint probabilities in Bayesian models can grow exponentially given two or more
states of set of variables. For instance, assuming a binary set of variables with no graphical
structure specified, the number of probability values needed to determine the joint prob-
ability distribution in a BBN model is 2", where n = number of variables. In other words,
if there are 10 variables in a model, then their joint probability distribution is 21° = 2048
probability values. But sometimes it is seldom necessary that all these numbers be elicited
and stored in the model.

This can be reduced through factorization and exploring independencies among variables
through techniques of “explaining away.” The notion of “explaining away” suggests that
there are two competing causes, A and B, which are conditionally dependent given that their
common child, C, is observed, even though they are marginally independent. For example,
suppose the grass is wet, but that we also know that it is raining. Then the posterior prob-
ability that the sprinkler is on goes down.

The inherent structure of a Bayesian model can be defined in terms of dependency and in-
dependency assumptions between variables, and it greatly simplifies the representation of
the joint probability distribution capturing any dependencies, independences, conditional
independences, and marginal independences between variables.

A Bayesian model is usually composed of n variables and each variable is deliberately
associated with those variables that lie under its influence. This is known as conditional
independence (see equation 2), and it can be represented in different ways, for example,
causal chain, common cause, and common effect. Figure 3 shows a scenario in which A acts
as a common cause for B and C. If there is no evidence about A, knowing about B could
change the probability of C (by propagating new evidence through A). However, if A is
observed (i.e., evidence of A is available), knowing about B will not change the probability

Figure 3. Example of a conditional independence
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of C (i.e., the path between B and C is blocked given A — B and C are d-separated by A).
D-separation is a Bayesian rule describing relationships between two nodes X and Y with
respect to another node Z. X and Y are d-separated by Z if no information can flow between
them when Z is observed. More information about conditional independence and d-sepa-
ration can be found in Neapolitan (2004), Korb and Nicholson (2004), and Finn (1996).
Additional information regarding learning Bayesian networks can be found in Heckerman
(1996) and Neapolitan (2004).

Though initial probabilities can be obtained from many sources, these sources seldom offer
the requirements for the quantitative aspect of the model. As a result, several algorithms are
required to compute the values needed, most of which are time consuming and difficult to
apply in some domains, as noted previously in this chapter. Nonetheless, there are generally
two approaches for learning BBNs from data. The first is based on constraint-search (Pearl
& Verma, 1991) and the second uses a Bayesian search for graphs with the highest posterior
probability (Cooper & Herskovits, 1992).

Inbuilding Bayesian graphs, knowledge obtained from human experts is normally determined
by drawing causal links among nodes, and probabilities are based on subject estimates.
As described previously, the most daunting task of building models is to translate experts’
knowledge into numerical values. Subsequently, combinations of quantitative and qualitative
approaches are sometimes required. Eliciting probabilities from experts has some drawbacks.
For instance, it has been found that experts can exhibit problems such as overconfidence,
in initial estimation, disagreement among experts, assigning high probability values events
that are easy to remember (availability problem) (Morgan & Henrion, 1990). All these issues
are likely to affect the quality of the initial probabilities.

Wellman (1990) introduced a qualitative abstraction of BBNs known as qualitative Bayes-
ian networks (QBN), which uses the concept of positive and negative influences between
variables to determine causal relationships between variables in a graph. It assumes an
ordered relationship between variables. Qualitative propagation is based on the premise
that each variable in a network is provided a sign either positive (+) or negative (-), and
that the effect of an observation e on n variables in a network propagates the sign of change
throughout the network. In addition, Renooij and Witteman (1999) proposed a probability
scale that contains words as well as numbers to help researchers and domain experts during
the elicitation phase of building a belief network.

Drawing from QBN approaches, Daniel, Zapata-Rivera, and McCalla (2003) used a qualita-
tive and quantitative approach of eliciting knowledge from experts (i.e., structure and initial
and conditional probabilities) based on the descriptions of the strength of the relationship
among variables in a network. This approach takes into account the number of states of a
variable, number of parents, degree of strength (e.g., strong, medium, weak), and the kind
of relationship or influence (e.g., positive or negative influence) to produce initial and
conditional probabilities.

Once an initial model is elicited, particular scenarios are used to refine and document the
network. In contrastto QBN, which makes use of its own qualitative propagation algorithms,
this approach uses standard Bayesian propagation algorithms. Initial probabilities can also
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be refined when data becomes available. This approach is illustrated with the help of an
example of model social capital in the virtual communities discussed in the proceeding sec-
tion. In choosing a probabilistic approach to modeling, BBNs offer a number of advantages
over other methods for the following reasons:

. BBN models are powerful tools both for graphically representing the relationships
among a set of variables and for dealing with uncertainties in expert systems.

. The graphical structure of BBNs provides a visual method of relating relationships
among variables in a simple way.

. Graphs in probabilistic modeling are convenient means of expressing substantial as-
sumptions and they facilitate economical representation of a joint probability function
to enhance making efficient inferences from observations.

. BBN’s approach to modeling permits qualitative inferences without the computational
inefficiencies of traditional joint probability determinations (Niedermayer, 1998).

. In BBNs, a network can be easily refined, that is, additional variables can be easily
added and mapping from the mathematics to common understanding or reference
points could be quickly done.

. The BBN approach allows for evidence to be entered into the network, and updating
the network to propagate the probabilities to each node. The resulting probabilities
tend to reflect common sense notions, including effects such as “explaining away”
and “pooling of evidence.”

. BBNs offer an interactive graphical modeling mechanism that researchers can use
to understand the behaviour of a system or situation, (e.g., it is possible to add evi-
dence/observe variables and propagate it throughout the whole graphical model to
see/inspect the effects on particular variables of interest).

. The fact that BBN has a qualitative and quantitative part gives it more advantages
over other methods.

Modeling Social Capital in Virtual Learning
Communities

Current research on social capital (SC) suggests that there is no single construct constituting
social capital, but rather, social capital is a composite of different variables, each of which can
be interpreted independently (Daniel, McCalla, & Schwier, 2005). Daniel, Schwier, and Mc-
Calla (2003) define social capital in virtual learning communities as common social resource
that facilitates information exchange, knowledge sharing, and knowledge construction through
continuous interaction, built on trust and maintained through shared understanding.

There are fundamentally many variables constituting social capital in terrestrial communi-
ties. Results of the synthesis of current research on SC revealed that building social capital
requires continuous and positive interaction (Cohen & Prusak, 2001; Putnam, 2000; World
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Bank, 2000). More specifically, positive interaction provides value to its participants, es-
pecially when it is built upon positive attitudes among individuals in a community (Daniel,
Schwier, & McCalla, 2003). Interaction enables people to identify common goals, achieve
shared understanding and social protocols, build trust, and commit themselves to each other
(World Bank, 1999). The value derived from social interactions can include sharing experi-
ence, endorsing behavior, surfacing tacit knowledge, sharing information, recommending
options, and providing companionship and hospitality (Lee, Danis, Miller, & Jung, 2001).

In virtual learning communities, the quality of interactions can be used to understand the
presence or absence of a set of relationships among learners in virtual communities (Daniel,
Schwier, & McCalla, 2003). Resnick (2002) noted SC can be understood through the kinds
of relationships among individuals, and that the lack of SC in a community reveals the
absences of productive relationships. A productive relationship in virtual communities is
formed out of positive interactions and positive attitudes among members. Further, produc-
tive relationships occur when participants have a common set of expectations, mediated by
a set of shared social protocols.

Another important aspect of building SC in virtual communities is when members establish
a certain level of shared understanding. The process of establishing shared understanding
oftendraws upon aset of shared beliefs, shared goals and values, experiences, and knowledge
(Daniel, O’Brien, & Sarkar, 2003; Schwier & Daniel, in press). Further, research shows
that awareness is critical to effective interactions and productive relationships in virtual
settings (Gutwin & Greenberg, 1998). Maintaining different forms of awareness in a virtual
community can lubricate the value of interaction. For instance, in order to effectively col-
laborate and function as a community, people need to be aware of others, where they are
located (demographic awareness), what they do (professional awareness), what others know
(knowledge awareness), and what they are able to do (capability awareness).

Another influential variable of social capital in communities is trust. Several research
studies used trust as proxy for measuring SC in communities (World Bank, 1999; Putnam,
2000). Trust is a critical ingredient and a lubricant to almost any forms of social interactions
(Daniel, McCalla, & Schwier, 2002). Trust enables people to work together, collaborate, and
smoothly exchange information and share knowledge without time wasted on negotiation
and conflict (Cohan & Prusak, 2000). Trust can also be treated as an outcome of positive
attitudes among individuals in a community. Further, in virtual settings, trust can only be
created and sustained when individuals are provided with an environment that can support
different forms of awareness. Based on the literature on social capital, and validating the
literature with an expert’s knowledge drawn from our research into social capital in virtual
learning communities for the last six years, we have identified and summarized the funda-
mental variables constituting social capital presented in Table 1.

The second step in building a model of SC is to map the variables (see Table 1) into a graphi-
cal structure based on logical and coherent qualitative reasoning. Similarly, the knowledge
of the structure of the model was grounded in current research into social capital and our
work on social capital in virtual communities. The knowledge for specifying the structure
of the model was elicited from the literature and our research was based on qualitative
reasoning. During the qualitative reasoning, causal relationships among the variables are
conjured, resulting into an acyclical graph. For instance, in virtual learning communities,
people’s attitudes can strongly influence the level of their awareness on various issues,
which in turn can influence trust.
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Table 1. Social capital variables and their definitions (Daniel, McCalla, & Schwier, 2005)

Variable Name

Variable Definition

Variable States

A mutual or reciprocal action between two

Interaction or more agents determined by the number | Positive/Negative
of messages sent and received
Attitudes Individuals’ general perception about each Positive/Negative

other and others” actions

Community Type

The type of environment, tools, goals, and
tasks that define the group

Virtual learning community
(VLC) and Distributed
community of practice (DCoP)

Shared Understanding

A mutual agreement/consensus between
two or more agents about the meaning of
an object or idea

High/Low

Awareness

Knowledge of people, tasks, or
environment, or all of the above

Present/Absent

Demographic Awareness

Knowledge of an individual: country of
origin, language, and location

Present/Absent

Professional Awareness

Knowledge of people’s background
training, affiliation, and so forth

Present/Absent

Competence Awareness

Knowledge about an individual’s
capabilities, competencies, and skills

Present/Absent

Capability Awareness

Knowledge of people’s competences and
skills in regard to performing a particular
task

Present/Absent

Social protocols

The mutually agreed upon, acceptable
and unacceptable ways of behaviour in a
community

Present/Absent

Trust

A particular level of certainty or
confidence with which an agent uses to
assess the action of another agent.

High/Low

Figure 4. Bayesian model of social capital in virtual communities (Daniel, Zapata-Rivera,
& McCalla, 2003)
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This is indicated in the direction of the arrow, that is, attitudes influencing different forms
of awareness and the strength of the influence suggesting strongly positive relationships
among the variables. Further, because awareness can contribute to both trust and distrust, the
strength of the relationships can be medium positive, medium weak, and so forth, depend-
ing on the kind of the awareness. For instance, demographic awareness has a positive and
medium effect on trust (see Figure 4), meaning that it is more likely that people will trust
others regardless of their demographic backgrounds.

Extending this type of qualitative reasoning resulted in the BBN structure shown in Figure
4. In the model, those nodes that contribute to higher nodes align themselves in “child” to
“parent” relationships, where parent nodes are super-ordinate to child nodes. For example in
Figure 4, trust is the child of the following variables: shared understanding; different forms
of awareness (demographic awareness, competence awareness, professional awareness and
capability awareness) and social protocols. The parents of trust are in turn children of two
variables: interaction and attitudes.

Figure 4 relates to all forms of virtual communities (VLCs and DCoP), and the graph to-
pology enables different forms of experiments to be conducted, which can apply to both
types of communities. Once a BBN graph is developed, the third stage is to obtain initial
probability values to populate the network. Initial probabilities can be obtained from dif-
ferent sources, and sometimes obtaining accurate initial numbers that can yield valid and
meaningful posteriors can be difficult. This chapter offers an approach for building an initial
model that relies on minimal knowledge of sophisticated knowledge engineering techniques
for eliciting initial probabilities.

Eliciting and Computing Conditional Probabilities

In Bayesian network, every stage of situation assessment requires assigning initial probabilities
to the hypotheses. These initial probabilities are normally obtained from knowledge of the
prevailing situation. However, converting a state of knowledge to probability assignment
is a problem that lies at the heart of Bayesian probability theory.

In our approach, the initial conditional probabilities were obtained by examining qualitative
descriptions of the influence between two or more variables. Each probability value describes
strength of relationships, and the letters S (strong), M (medium), and W (weak) represent
the different degrees of influence among the variables in the model (Daniel, Zapata-Rivera
& McCalla, 2003). The signs + and - represent positive and negative relationships among
the variables.

Conditional probability values were obtained by adding weights to the values of the variables,
depending on the number of parents and the strength of the relationship between particular
parents and children. For example, say Attitudes and Interactions have positive and strong
(S+) relationships with Knowledge Awareness. The evidence of positive interactions and
positive attitudes will produce a conditional probability value for Knowledge Awareness
0.98 (threshold value for strong = 0.98). The weights were obtained by subtracting a base
value (1/number of states, 0.5 in this case) from the threshold value associated to the degree
of influence, and dividing the result by the number of parents (i.e., (0.98 - 0.5) /2 = 0.48
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Table 2. Threshold values and weights with two parents

Degree of influence Thresholds Weights
Strong l-a=1-0.02=0.98 | (0.98-0.5)/2=0.48/2=0.24
Medium 0.8 (0.8-0.5)/2=0.3/2=0.15
Weak 0.6 (0.6-0.5)/2=0.1/2=0.05

/ 2 = 0.24). This follows the fact that in the graph knowledge awareness is a child of both
interactions and attitudes.

Table 2 shows the threshold values and weights used in this example. Because it is more
likely that a certain degree of uncertainty can exist, value o = 0.02 leaves some room for
uncertainty when considering evidence coming from positive and strong relationships. These
threshold values can be adjusted based on expert opinion.

Using this approach, it is possible to generate conditional probability tables (CPTs) for each
node (variable) regardless of the number of parents, depending on how the initial knowledge
iselicited and what decisions are made to process the knowledge into initial probabilities. For
instance, assuming some subject matter experts are consulted to obtain initial probabilities,
this knowledge is translated into the threshold weighted values, as described in Table 2,
depending on the degree of influence among the variables (i.e., evidence coming from one
of the parent’s states), a decision which can also be obtained from the subject mater expert
in a particular domain. However, when experts define degrees of influence for more than one
of the parents’ states, adding weights could result in ties, which could generate inconsistent
CPT. In such cases, one could ask the expert which parent should be used, or which has the
most probable high degree of influence depending on the case under investigation.

Computation of Conditional Probability Values

As discussed earlier in the chapter, different forms of awareness are critical to interaction
that stimulates positive SC in VLCs. Following the structure of the BBN (see Figure 4),
task knowledge awareness is influenced by two parents: interactions and attitudes. Table 3
shows conditional probability values for task knowledge awareness.

Table 3. Conditional probability table for task knowledge awareness given two parents

Attitudes positive negative

Interactions | positive | negative | positive | negative

TaskKnowledge

Awareness High 0.98 0.74 0.74 0.5

Low 0.02 0.26 0.26 0.5
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Combining the Bayesian laws of computation already described, and the approach presented
in Table 3 in this chapter, the initial probabilities for task knowledge awareness, given dif-
ferent states of interactions and attitudes, are calculated as follows:

. P (TaskKnowledgeAwareness = high | Attitudes = positive & Interactions = positive)
=05+0.24+0.24=0.98

. P(TaskKnowledgeAwareness = low | Attitudes = positive & Interactions = positive)

=1-0.98=0.02

. P (TaskKnowledgeAwareness = high | Attitudes = positive & Interactions = negative)
=05+0.24=0.74

. P (TaskKnowledgeAwareness = low | Attitudes = positive & Interactions = negative)
=1-0.74=0.26

. P (TaskKnowledgeAwareness = high | Attitudes = negative & Interactions = positive)
=05+0.24=0.74

. P (TaskKnowledgeAwareness = low | Attitudes = negative & Interactions = positive)
=1-0.74=0.26

. P (TaskKnowledgeAwareness = high | Attitudes = negative & Interactions = negative)
= 05 **

. P (TaskKnowledgeAwareness = low |Attitudes = negative & Interactions = negative)
=1-05=05

We could ask experts for a threshold value or could offer experts several possibilities and
let them decide. Because the expert has not provided any information about what to do
when there is evidence of attitudes = negative and interactions = negative, no value has
been added to the base value (0.5 **), Which in most cases can be hypothetical, especially
in virtual communities, in that interaction is prerequisite for a community. However, one
expects to get a high conditional probability value of task knowledge awareness = negative
when attitudes = negative and interactions = negative, a possible alternative would be to use
p (task knowledge awareness = positive | attitudes = negative & interactions = negative) =
0.02 And p (task knowledge awareness = negative | attitudes = negative & interactions =
negative) = 0.98 Assuming that a positive strong relationship also occurs when attitudes =
negative and interactions = negative. Table 4 shows this conditional probability table.

Table 4. Alternative CPT for two parents with positive strong relationships

Attitudes positive negative

Interactions | positive | negative | positive | negative

TaskKnowledge .
High 0.98 0.74 0.74 0.02
Awareness

Low 0.02 0.26 0.26 0.98
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Querying the Model

The mechanism for drawing conclusions in BBNs is based on probability propagation of
evidence. Propagation also refers to model updating based upon a known set of evidence.
It is sometimes the case that a BBN contains many variables, each of which can be relevant
for some kind of reasoning, but rarely are all variables relevant for all kinds of reasoning at
once. Therefore, researchers need to identify the subset of the model, that is, relevant to their
needs. Such a decision can be made based on some qualitative inferences from real world
data or experts’ intuitive experience using scenarios to query relevant part of the network
(Daniel, Zapata-Rivera, & McCalla, 2005; Zapata-Rivera, 2002).

Querying a BBN refers to the process of updating the conditional probability table and mak-
ing inferences based on new evidence. One way of updating a BBN is to develop a detailed
number of scenarios that can be used to query the model. A scenario refers to a written
synopsis of inferences drawn from observed phenomenon or empirical data. Druzdzel and
Henrion (1993) described ascenario as an assignment of values to those variables in Bayesian
network which are relevant for a certain conclusion, ordered in such a way that they form a
coherent story, a causal story which is compatible with the evidence of the story.

The use of scenarios in Bayesian network is drawn from psychological research (Penning-
ton & Hastie, 1988). This research shows that humans tend to interpret and explain any
social situation by weighing up the most credible stories that include hypotheses to test and
understand social phenomena. Furthermore, updating a BBN using scenarios is an attempt
to understand various relationships among variables in a network. Druzdzel and Suemondt
(1994) suggested that one way of querying a network is to instantiate variables to their
observed values. They noted that observed evidence could be causally sufficient to imply
the values of other yet unobserved variables (for instance, if a patient is male, it implies he
is not pregnant).

Case Scenarios and Model Updating

In this section, a number of scenarios are described based on an expert’s opinion and knowl-
edge of the operations of virtual communities. The case scenarios described in the previous
sections were taken from real communities, in which one of the authors was a participant
observer for a period of 2 years. However, the description of the communities is not based
on formal experimental study, but rather the scenarios are shown to illustrate the process of
updating an initial Bayesian model using any kinds of evidence. It is likely that the results
of the model predictions could change in the face of empirical evidence. Though the sce-
narios presented are not empirically documented, we believe that the scenarios themselves
demonstrate real social phenomena in virtual communities.

Case 1

Community A was a formal virtual learning community of graduate students learning fun-
damental concepts and philosophies of e-learning. The members of this community were
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drawn from diverse cultural backgrounds and different professional training. In particular,
participants were practising teachers teaching in different domains at secondary and primary
schools levels. Some individuals in the community had extensive experiences with educa-
tional technologies, while others were novices but had extensive experience in classroom
pedagogy. These individuals were not exposed to each other beforehand, and thus were not
aware of each other’s talents and experiences.

Because the community was a formal one, there was a formalised discourse structure and
the social protocols for interactions were explained to participants in advance. The special
protocols required different forms of interactions, including posting messages, critiquing
others, providing feedback to others postings, asking for clarifications, and so forth. As the
interactions progressed in this community, intense disagreements were observed. Individuals
began to disagree more on the issues under discussion and there was little shared understand-
ing among the participants in most of the discourse.

Case 2

Community B was adistributed community of practice for software engineers who gathered
todiscussissues of software development. The main goals of the community were to facilitate
exchange of information, and knowledge and peer-support to the members of the community.
Members of this community shared common concerns and were drawn from all over the
world. In terms of skills, participants composed of highly experienced software developers
and novices. Participants were drawn from all over the world and were affiliated to different
organisations, including researchers at universities and software support groups.

After a considerable period of interaction, individuals were exposed to each other long
enough to start exchanging personal information among each other. It was also observed
that individuals offered a lot of help to each other throughout their interactions. Though no
formal social protocols were explained to the participants, members interacted as if there
were social protocols guiding their interactions. Further, there were no visible roles of
community leaders.

Case 3

Community C consisted of a group of individuals learning fundamentals of programming
in Java. It was an open community whose members were geographically distributed and
had diverse demographic backgrounds and professional cultures. They did not personally
know each other, and they used different aliases from time to time while interacting in the
community. Diverse programming experiences, skills, and knowledge were also observed
among the participants. It was interesting to observe that though these individuals did not
know each other in advance, they were willing to offer help and support to each other learn-
ing Java. Though there were no formal social protocols of interaction, individuals interacted
as if there were clear set social protocols to be followed in the community.
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Procedures for Updating the Model

In order to test and update the initial Bayesian model of SC, each case scenario was analysed
looking for various evidences regarding the impact of individual variables in the model.
Once a piece of evidence was added to the model, typically through tweaking a state of
a variable (i.e., observing a particular state of a variable) or through a process commonly
known as variable initialisation, the model is updated and results are propagated to the rest of
variables in the Bayesian model. This process generates a set of new marginal probabilities
for the variables in the model. In the three case scenarios, the goal was to observe changes
in probability values for trust and social capital.

The model prediction outcomes were based on the nature of the cases described in the
chapter. It is important to note that the cases themselves represent general characteristics
of virtual communities, and is not directly based on empirical evidence. However, this is a
step to come up with more cases to train the model and run some empirical experiments to
validate the model. This phase of a model development further helps experts to examine the
model and refine it based on their knowledge of the domain. The Bayesian model therefore
serves as an interactive tool that enables experts to create a probabilistic model, simulate
scenarios, and reflect on the results of the predictions.

Community A

Community Ais a virtual learning community (Community Type = VLC.) Based on the case
description, shared understanding is set to low and professional knowledge awareness is set
to doesnotexist. Individuals in this community are familiar with their geographical diversity,
and so demographic cultural awareness is set to exists. There is a well-established formal
set of social protocols set previously by the instructor (social protocols = known.). Figure
5 shows the Bayesian model after the evidence from community A has been added (shaded
nodes) and the results of the posterior probabilities.

Figure 5. A Bayesian model of SC when evidence from community A has been added and
propagated through the model
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The results of the predictions show the highest level of trust (P (Trust=high) =0.565) and a
corresponding probability level of SC (P (SC=high) =0.491). These values are relatively low.
Several explanations can be provided for the drop in the levels of SC and trust. There was a
negative interaction in the community and lack of shared understanding in the community.
The lack of shared understanding had possibly affected the level of trust and subsequently
social capital. It is also possible that negative interactions and attitudes have further affected
the levels of task knowledge awareness and individual capability awareness. It could also be
inferred that experiences of more knowledgeable individuals in the community were more
likely to have been ignored, making individuals less cooperative.

Community B

Variables observed in this case include community type which has been set to community
of practice (DCoP). Professional awareness culture was set to exists, because after interac-
tion, it was observed that individuals in that community became aware of their individuals
talents and skills. Individual’s capability awareness and task awareness were set to exists as
well. Individuals in this community shared common concerns and frame of reference, and so
shared understanding was set to high. Figure 6 shows the Bayesian model after the evidence
from community B has been added (shaded nodes) and propagated through the model.

Propagating this set of evidence, high levels of trust and SC (P (Trust = high) = 0.88 and P
(SC = high) = 0.542) were observed. Given the evidence, it was also observed that interac-
tions and attitudes in the model were positive, which have positively influenced demographic
cultural awareness and social protocols. Further, the presence of shared understanding and
the high degrees of different kinds of awareness and knowledge of social protocols in this
community have resulted into high levels of trust and SC.

In spite of the evidence, demographic cultural awareness has little influence on the level of
trust in this kind of a community and subsequently, it has not significantly affected SC. This
can be explained by the fact that professionals in most cases are likely to cherish their pro-
fessional identity more than their demographic backgrounds. This is in line with a previous

Figure 6. A Bayesian model of SC when evidence from community B has been added and
propagated through the model
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study, which suggested most people in distributed communities of practice mainly build and
maintain social relations based on common concerns other than geographical distribution
(Daniel, O’Brien, & Sarkar, 2003).

Community C

Variables extracted from this case scenario include community type (VLC), shared under-
standing, and professional cultural awareness, and thus demographic cultural awareness,
individual’s capability awareness and task awareness were set to exists. Figure 7 shows the
Bayesian model after the evidence from community C has been added (shaded nodes) and
propagated through the model.

In community C, high levels of trust and SC (P (Trust = high) = 0.920 and P (SC = high) =
0.766) were observed after the propagation of the evidence. These high levels of trust and
SC can be attributed to the fact that the community was based on an explicit and focused
domain and members, though they might have concealed their identities, were willing to
positively interact and participate in order to learn the domain. Further increase in the levels
of trust and social capital can also be attributed to the presence of shared understanding.
In other words, people in that community got along well and understood each other well
enough. They used the same frame of reference and had almost common goals of learning
a domain (Java programming language).

Model Validation and Sensitivity Analysis (SA)

Further, approximating probabilities elicited from experts and experts’ judgments can be
prone to errors, and sometimes due to uncertainty of the properties of an event, their accuracy
is not guaranteed. For example, if one is asked to toss a coin and estimate the probability
that the coin can either land head or tails suggests the probability value to be 0.5, which
only assumes that the coin is a fair, but in a situation where one has never seen the coin

Figure 7. A Bayesian model of SC when evidence from community C has been added and
propagated through the model

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.



32 Daniel, Zapata-Rivera, & McCalla

and is uncertain whether it is fair or not, then a degree of belief can be used as an initial
knowledge. In other words, initial assumptions are made that the coin is fair, and sometimes
such assumptions can be biased.

Sensitivity analysis is primarily used to validate the quantitative part of a Bayesian model.
There are two approaches to sensitivity analysis. One approach tests how sensitive the net-
work model is to changes in overall findings, and the other approach aims to find changes
in each variable in the model. In the former case, the influence of each of the nodes in the
network on a query node can be measured, using a measure such as entropy, and ranked.
The results of a sensitivity analysis can be used for initializing the portions of the model for
later iterations in the development cycle (Haddaway, 1999). In the latter case, the goal is to
determine whether more precision in estimating variables is required and whether it can be
useful in later iteration of model development cycle. Sensitivity analysis is a mathematical
technique for investigating the effects of inaccuracies in the parameters of a mathematical
model. It aims to study how variation in output of a model (numerical or otherwise) can be
apportioned, qualitatively or quantitatively, to different sources of data (Morgan & Henrion,
1990). In general, SA is conducted by:

. Defining the model with all its input and output variables
. Assigning probability density functions to each input parameter

. Generating an input matrix through an appropriate random sampling method and
evaluating the output

. Assessing the influences or relative importance of each input parameters on the output
variable

Sensitivity analysis is relevant to modeling SC model because the states of the input variables
are numerous and their individual influence on the model is not precisely known. Sensitive
analysis will also help here to further refine the model and conduct further studies to validate
the model (Chan & Darwiche, 2004). In order to identify which variables had dominating
effects on the query variables, automated analysis (support for this type of analysis was
provided in the Netica software package; https://www.norsys.com) on sensitivity of each
variable to the target variable in model was conducted.

One-way sensitivity analysis was performed to determine the relative sensitivity of each of
the individual variables to social capital and to understand the spread of the distribution of
the variables in the model. The results of the sensitivity analysis (see Appendix 1) show that
those variables with weak level of influence to social capital show low mutual information
values. Trust, capability awareness, and tasks awareness were relatively sensitive to social
capital compared to professional awareness, demographic awareness, social protocols, and
shared understanding.

In general terms, results indicated that social is not sensitive to only one variable, but rather
it is sensitive to a number of variables and even more so to variables that are in strong paths
(strong positive paths in the model; see Figure 7). The results of the sensitivity analysis
revealed at least three relatively high levels of entropy reduction for three variables, interac-
tions, and attitudes with the same entropy reduction of 0.1533, capability awareness with
entropy reduction of 0.1494, shared understanding at 0.1112, and trust at 0.1175. Higher
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values of entropy reduction correspond to variables in strong paths, and it generally suggests
that the qualitative reasoning used for deriving the initial probabilities presented in the social
capital model is reasonable. Although results of the sensitivity analysis seem to suggest that
different variables can affect social capital at different levels, at this point, further studies
are required to determine the effects of individual variables on social capital.

Nonetheless, the results of the sensitivity analysis can be used to improve the model by
changing the threshold initial probability values presented earlier in the chapter. Further,
drawing from the results, one could speculate that the individual variations in values could
be caused by partial knowledge of domain experts used for building the network and early
assumptions made during the development of the model, both of which are common prob-
lems inherent in the development of any Bayesian model.

Another possible way of rectifying inconsistence in a Bayesian model is to conduct model
validation. Model validation in essence is post sensitivity analysis, which is performed by
identifying sensitive set of variables given evidence, altering the parameters of a query
variable and observing the related changes in the posterior probabilities of the target vari-
able. This is done through help of evidence coming from empirical data (see last phase of
figure 2, building Bayesian networks). However, in a situation, where there are N-scenarios,
a straightforward analysis can be extremely time consuming and difficult to maintain, es-
pecially on larger networks. Coupe and Van der Gaag (1998) addressed this difficulty by
identifying a sensitivity set of a variable given evidence.

Discussion and Conclusion

Bayesian network is a tool that helps model a situation involving uncertainty. In the social
sciences and indeed in many other fields, uncertainty may arise due to a variety of causes.
For instance, it can be the result of gaps in knowledge, complexity, and imprecision of do-
main knowledge, ignorance, or volatility of a knowledge domain. And so, by representing
knowledge in graphical form, researchers can effectively communicate results.

A Bayesian model encodes domain knowledge, showing relationships, interdependencies,
and independence among variables. The qualitative part of the model is represented by
links showing direction of influence or independence among variables. The information
describing the details of the quantitative relationships among the variables is often stored
in conditional probability tables (CPT). This enables the model to use probability theory,
especially Bayesian statistics to calculate conditional dependencies among the variables in
the network, and resolve the uncertainties with probability inferences.

Though BBN techniques are elegant ways of capturing uncertainties, the knowledge en-
gineering effort required to create conditional probability values per each given variable
in a network has prevented many researchers from using them in many domains. In addi-
tion, current algorithms that can be used to learn initial and conditional probabilities from
data are often complex and cumbersome to employ and data is not always available. Even
though initial probabilities can be elicited from experts, it sometimes raises the problems
of accuracy in values.
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In addition, translating experts’ qualitative knowledge into numerical probabilistic values
is a daunting and often complex task. Because Bayesian network modeling involves es-
tablishing cause and effects among variables, it is sometimes difficult to determine causal
relationships or to adequately describe all the causes and effects. In such cases, Bayesian
networks can be described using probabilities describing what we know or believe is hap-
pening in a particular domain.

This chapter has extended the use of BBN techniques to complex domains, and illustrating
with an example of social capital construct, it has shown different phases in which a similar
model can be built. The approach described in the chapter combined both qualitative and
quantitative techniques to elicit knowledge from experts without worrying about computing
initial probabilities for training a model. In a later study of one of the virtual communities
(VLC A) presented earlier in the case scenarios, we have administered a survey to nine
members of the community to find out primarily their sense® of a community online. Overall
results revealed the presences and perceived importance of many instances of social capital
in promoting a sense of a community online, and in enhancing information exchange and
knowledge sharing. Among the variables reported were different forms of awareness, trust,
shared understanding, common goals, and shared values. We intend to use the results of
this study to refine the initial conditional probabilities of the variables in the social capital
model.
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Endnote

! McMillan and Chavis (1986) defined a sense of acommunity as a feeling that members
have of belonging, a feeling that members matter to one another and to the group, and
a shared understanding among the members and that their needs will be met through
their commitment to be together.
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Appendix: Results of the Sensitivity Analysis

Probability of new finding = 100 %, of all findings = 100 %.

Sensitivity of ‘SocialCapital’ to findings at ‘SocialCapital’:

Probability ranges: Min. Current Max. RMS.
Change
High 0 0.5423 1 0.4982
Low 0 0.4577 1 0.4982

Note: Entropy reduction = 0.9948 (100 %)
Belief Variance = 0.2482 (100 %)

Sensitivity of ‘SocialCapital’ to findings at ‘Interactions’:

Probability ranges: Min. Current Max. RMS.
Change
High 0.3168 0.5423 0.7677 0.2255
Low 0.2323 0.4577 0.6832 0.2255

Note: Entropy reduction = 0.1534 (15.4 %)
Belief Variance = 0.05083 (20.5 %)

Sensitivity of ‘SocialCapital’ to findings at ‘Attitudes’:

Probability ranges: Min. Current Max. RMS.
Change
High 0.3169 0.5423 0.7676 0.2254
Low 0.2324 0.4577 0.6831 0.2254

Note: Entropy reduction = 0.1533 (15.4 %)
Belief Variance = 0.05079 (20.5 %)
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Sensitivity of ‘SocialCapital’ to findings at ‘TaskKnowledge Awareness’:

Probability ranges: Min. Current Max. RMS.
Change
High 0.3162 0.5423 0.764 0.2239
Low 0.236 0.4577 0.6838 0.2239

Note: Entropy reduction = 0.1511 (15.2 %)
Belief Variance = 0.05012 (20.2 %)

Sensitivity of ‘SocialCapital’ to findings at ‘IndCapabAwareness’:

Probability ranges: Min. Current Max. RMS.
Change
High 0.3174 0.5423 0.7628 0.2227
Low 0.2372 0.4577 0.6826 0.2227

Note: Entropy reduction = 0.1494 (15 %)
Belief Variance = 0.04959 (20 %)

Sensitivity of ‘SocialCapital’ to findings at ‘Trust’:

Probability ranges: Min. Current Max. RMS.
Change
High 0.3148 0.5423 0.7158 0.1987
Low 0.2842 0.4577 0.6852 0.1987

Note: Entropy reduction = 0.1175 (11.8 %)
Belief Variance = 0.03948 (15.9 %)

Sensitivity of ‘SocialCapital’ to findings at ‘SharedUndertanding’:

Probability ranges: Min. Current Max. RMS.
Change
High 0.315 0.5423 0.7069 0.1934
Low 0.2931 0.4577 0.685 0.1934

Note: Entropy reduction = 0.1112 (11.2 %)
Belief Variance = 0.03742 (15.1 %)
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Sensitivity of ‘SocialCapital’ to findings at ‘ProfCultAwareness’:

41

Probability ranges: Min. Current Max. RMS.
Change
High 0.3279 0.5423 0.7076 0.1883
Low 0.2924 0.4577 0.6721 0.1883
Note: Entropy reduction = 0.1052 (10.6 %)
Belief Variance = 0.03544 (14.3 %)
Sensitivity of ‘SocialCapital’ to findings at ‘DemogCultAwareness’:
Probability ranges: Min. Current Max. RMS.
Change
High 0.4328 0.5423 0.6647 0.1157
Low 0.3353 0.4577 0.5672 0.1157
Note: Entropy reduction = 0.03937 (3.96 %)
Belief Variance = 0.0134 (5.4 %)
Sensitivity of ‘SocialCapital’ to findings at ‘Social Protocols’:
Probability ranges: Min. Current Max. RMS.
Change
High 0.4487 0.5423 0.6359 0.0936
Low 0.3641 0.4577 0.5513 0.0936
Note: Entropy reduction = 0.02562 (2.58 %)
Belief Variance = 0.008761 (3.53 %)
Sensitivity of ‘SocialCapital’ to findings at ‘CommType’:
Probability ranges: Min. Current Max. RMS.
Change
High 0.4873 0.5423 0.5972 0.05493
Low 0.4028 0.4577 0.5127 0.05493

Note: Entropy reduction = 0.008786 (0.883 %)

Belief Variance = 0.003017 (1.22 %)

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of

IGI Global is prohibited.




42 Shetty, Song, & Alam

Chapter 111

Data Mining of Bayesian
Network Structure Using a
Semantic Genetic
Algorithm-Based Approach

Sachin Shetty, Old Dominion University, USA
Min Song, Old Dominion University, USA
Mansoor Alam, University of Toledo, USA

Abstract

A Bayesian network model is a popular formalism for data mining due to its intuitive in-
terpretation. This chapter presents a semantic genetic algorithm (SGA) to learn the best
Bayesian network structure from a database. SGA builds on recent advances in the field and
focuses on the generation of initial population, crossover, and mutation operators. In SGA,
we introduce semantic crossover and mutation operators to aid in obtaining accurate solu-
tions. The crossover and mutation operators incorporate the semantic of Bayesian network
structures to learn the structure with very minimal errors. SGA has been proven to discover
Bayesian networks with greater accuracy than existing classical genetic algorithms. We
present empirical results to prove the accuracy of SGA in predicting the Bayesian network
structures.
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Introduction

One of the most important steps in data mining is building a descriptive model of the database
being mined. To do so, probability-based approaches have been considered an effective tool
because of the uncertain nature of descriptive models. Unfortunately, high computational
requirements and the lack of proper representation have hindered the building of probabilis-
tic models. To alleviate the above twin problems, probabilistic graphical models have been
proposed. In the past decade, many variants of probabilistic graphical models have been
developed, with the simplest variant being Bayesian networks (BN) (Pearl, 1988). BN is a
popular descriptive modeling technique for available data by giving an easily understand-
able way to see relationships between attributes of a set of records. It has been employed to
reason under uncertainty, with wide varying applications in the field of medicine, finance,
and military planning (Pearl, 1988; Jensen, 1996). Computationally, BN provides an efficient
way to represent relationships between attributes and allow reasonably fast inference of
probabilities. Learning BN from raw data can be viewed as an optimization problem where
a BN has to be found that best represents the probability distribution that has generated the
data in a given database (Heckerman, Geiger, & Chickering, 1995). This has lately been the
subject of considerable research because the traditional designer of a BN may not be able to
see all of the relationships between the attributes. In this chapter, we focus on the structure
learning of a BN from a complete database. The database stores the statistical values of
the variables as well as the conditional dependence relationship among the variables. We
employ a genetic algorithm technique to learn the structure of BN.

A typical genetic algorithm works with populations of individuals, each of which needs to
be coded using a representative function and be evaluated using afitness function to measure
the adaptiveness of each individual. These two functions are the basic building blocks of
a genetic algorithm. To actually perform the algorithm, three genetic operators are used to
explore the set of solutions: reproduction, mutation, and crossover. The reproduction operator
promotes the best individual structures to the next generation. That is, the individual with
the highest fitness in a population will reproduce with a highest probability than the one
with the lowest fitness. The mutation operator toggles a position in the symbolic representa-
tion of the potential solutions. Mutation avoids local optima by exploring new solutions by
introducing a variation in the population. The crossover operator exchanges genetic material
to generate new individuals by selecting a point where pieces of parents are swapped. The
main parameters, which influence the genetic algorithm search process, are initial popula-
tion, population size, mutation, and crossover operators.

In this chapter we first introduce the related work in BN structure learning and present the
details of our approach for structure learning in a BN structure using a modified genetic
algorithm. Then we experiment with two different genetic algorithms. The first one is the
genetic algorithm with classical genetic operatiors. In the second algorithm, we extend the
standard mutation and crossover operators to incorporate the semantic of the BN structures.
Finally, we conclude the chapter and proposes some thoughts for futher resarch.
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Related Work

Larranaga, Kuijpers, Murga, and Yurramendi (1996) proposed a genetic algorithm based
on the score-based greedy algorithm. In their algorithm, a directed acyclic graph (DAG) is
represented by a connectivity matrix that is stored as a string. The recombination is imple-
mented as one-point crossover on these strings, while mutation is implemented as random
bit flipping. In a related work, Larranaga, Poza, Yurramendi, Murga, and Kuijpers (1996)
employed a wrapper approach by implementing a genetic algorithm that searches for an
ordering that is passed on to K2 (Cooper & Herskovits, 1992), a score-based greedy learning
algorithm. The results of the wrapper approach were comparable to those of their previ-
ous genetic algorithms. Different crossover operators have been implemented in a genetic
algorithm to increase the adaptiveness of the learning problem, with good results (Cotta &
Muruzabal, 2002). Lam and Bacchus (1994) proposed a hybrid evolutionary programming
(HEP) algorithm that combines the use of independence tests with a quality-based search. In
the HEP algorithm, the search space of DAG is constrained in the sense that each possible
DAG only connects two nodes if they show a strong dependence in the available data. The
HEP algorithm evolves a population of DAG to find a solution that minimizes the minimal
description length (MDL) score. Acommon feature of the aforementioned algorithms is that
the mutation and crossover operators were classical in nature. These operators do not help
the evolution process reach the best solution.

Wong, Lam, and Leung (1999) developed an approach based on MDL score and evolutionary
programming. They have integrated a knowledge-guided genetic operator for optimization
in the search process. However, the fitness function is not taken into account to guide the
search process. Myers and Levitt (1999) have proposed an adaptive mutation operator for
learning structure of BN from incomplete data. It is a generalized approach to influence the
current recombination process based on previous population. It does not take into account
the fitness of a population either. Blanco, Inza, and Larranaga (2003) have adopted the
estimation of distribution algorithms method for learning BN without the use of crossover
and mutation operators. This is not in accordance with the classical genetic algorithm due
to the lack of recombination operators. Recently, Dijk et al. (2003) built another generalized
genetic algorithm to improve the search process without taking into account the specific
characteristics of the population. As we see, most of the genetic algorithm-based approaches
mentioned above adopt a generalized approach to improve the search process. The mutation
and crossover operators proposed in this chapter are semantically oriented and thus they aid
in a better convergence to the solution. Hence, our BN structure learning algorithm differs
from the above algorithms in the design of mutation and crossover operators.
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Semantic Genetic Algorithm-Based Approach

Structure Learning of Bayesian Networks

Formally, a BN consists of a set of nodes that represent variables, and a set of directed
edges between the nodes. Each node is featured by a finite set of mutually exclusive states.
The directed edges between nodes represent the dependence between the linked variables.
The strengths of the relationships between the variables are expressed as conditional prob-
ability tables (CPT). Thus, a BN efficiently encodes the joint probability distribution of its
variables. For n-dimensional random variable (X, . .., X ), the joint probability distribution
is determined as follows:

P(%, %) = [ [ P(x] pa(%)) L)

i=1

where x; represents the value of the random variable X, and pa(x;) represents the value of the
parents of X.. Thus, the structure learning problem of a BN is equivalent to the problem of
searching the optimuminthe space of all DAG. During the search process, a trade-off between
the structural network complexity and the network accuracy has to be made. The trade-off
is necessary as complex networks suffer from over fitting, making the run time of inference
very long. A popular measure to balance complexity and accuracy is based on the principle
of MDL from information theory (Lam & Bacchus, 1994). In this chapter, the BN structure
learning problem is solved by searching for a DAG that minimizes the MDL score.

Representative Function and Fitness Function

The first task in a genetic algorithm is the representation of initial population. To represent a

BN as a genetic algorithm individual, an edge matrix or adjacency matrix is needed. The set

of network structures for a specific database characterized by n variables can be represented

by an nxn connectivity matrix C. Each bit represents the edge between two nodes where
1, ifjisaparent of i

= . . The two-dimensional array of bits can be represented as an
0, otherwise

individual of the population by the following stringC, C,,...C, C,C,,..C, ..C C ..
C.,» where the first n bits represent the edges to the first node of the network, and so on. It
can be easily found that C,, are the irrelevant bits which represent an edge from node k to
itself, which can be ignored by the search process.

With the representative function decided, we need to devise the generation of the initial
population. There are several approaches to generate initial population. We implemented
the Box-Muller random number generator to select how many parents would be chosen for
each individual node. The parameters for the Box-Muller algorithm are the desired aver-
age and standard deviation. Based on these two input parameters, the algorithm generates
a number that fits the distribution. For our implementation, the average corresponds to the
average number of parents for each node in the resultant BN. After considerable experimen-

ij
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tation with databases whose Bayesian structure is similar to the ASIA network (Lauritzen
& Spiegelhalter, 1988), we found that the best average was 1.0 with a standard deviation
of 0.5. Although this approach is simple, it creates numerous illegal DAG due to cyclic
subnetworks. An algorithm to remove or fix these cyclic structures has to be designed. The
basic operation of the algorithm is to remove a random edge of a cycle until cycles are not
found in a DAG individual.

Now that the representative function and the population generation have been decided, we
need to find a good fitness function. Most of the state-of-the-art implementations use the
fitness function proposed in the algorithm K2 (Cooper & Herskovits, 1992). The K2 algo-
rithm assumes an ordered list of variables as its input. It maximizes the following function
by searching for every node from the ordered list of a set of parent nodes:

L

9%, pa(s)) - H 1),1—'[Ni,-k! @

Where r, represents the possible value assignments (v, . .. ,v, ) for the variable with index
”k representlng the number of instances in a database in WhICh a variable X; has value

v, and g, represents the number of unique instantiations of pa(x).

Mutation and Crossover Operators

We introduce two new operators, semantic mutation (SM) and single point semantic cross-
over (SPSC), to the existing standard mutation and crossover operators. The SM operator
is a heuristic operator that toggles the bit value of a position in the edge matrix to ensure
that the fitness function g(x,, pa(x;)) is maximized. The SPSC operator is specific to our
representation function. As the function is a two-dimensional edge matrix consisting of
columns and rows, our new crossover operator operates on either columns or rows. Thus,
the crossover operator generates two offspring by either manipulating columns or rows.

Box 1. Pseudo code for semantic crossover

Step 1. Initialization

Read the input individual and populate a parent table for each node
Step 2. Generate new individual

For each node in the individual do the following n times:

2.1 Execute the Box Mueller algorithm to find how many parents need
to be altered.

2.2 Ensure that the nodes selected as parents do not form cycles. If
cycles are formed repeat step 2.1.

2.3 Evaluate the network score of the resultant structure.

2.4 If current score is higher than previous score, then the chosen
parents are the new parents of the selected node.

Repeat steps 2.1 through 2.4.

Step 3. Return the final modified individual.
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The SPSC crosses two parents by manipulating columns or parents and maximizing the
function g(x,, pa(x;)), and b) manipulating rows or children and maximizing the function

19(x;, pa(x;)). By combining SM and SPSC, we implement our new genetic algorithm

1
called semantic genetic algorithm (SGA). Following is the pseudo code for the semantic
crossover operation. The algorithm expects an individual as input and returns the modified
individual after applying semantic crossover operations.

Simulations

SGA Implementation

The SGA algorithm has been implemented and incorporated into the Bayesian network
tools in Java (BNJ) (http://bnj.sourceforge.net). BNJ is an open-source suite of software
tool for research and development using graphical models of probability. Specifically, SGA
is implemented as a separate module using the BNJ API. To depict the Bayesian network,
BNJ visually provides a visualization tool to create and edit Bayesian networks.

Simulation Methodology

Figure 1 shows the overall simulation setup to evaluate our genetic algorithm. Following
are the main steps of the algorithm:

1.  Determine a BN and simulate it using a probabilistic logic sampling technique (Hen-
rion, 1988) to obtain a database D, which reflects the conditional relations between
the variables;

Figure 1. Simulation setup for learning Bayesian network structure

X1 X2 X3 X4 X5
@ Probabilistic | 1 e
Logic Sampling 2 SGA
:—_f e 10000 ( 5 @

Generating BN Database Learned BN

A 4
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2. Apply our SGA approach to obtain the BN structure B_, which maximizes the prob-
ability P(D | B); and

3. Evaluate the fitness of the solutions.

Simulations and Analysis

The BN sizes used in our simulations are 8, 12, 18, 24, 30, and 36. The 8-node BN used in
the simulations is from the ASIA networks (Lauritzen & Spiegelhalter, 1988) as shown in
Figure 2. The ASIA network illustrates their method of propagation of evidence, and con-
siders a small amount of fictitious qualitative medical knowledge. The remaining networks
were created by adding extra nodes to the basic ASIA network.

There are several techniques for simulating BN. For our experiments we have adopted
the probabilistic logic sampling technique. In this technique, the data generator generates
random samples based on the ASIA network’s joint probability distribution table. The data
generator sorts nodes topologically and picks a value for each root node using the prob-
ability distribution, and then generates values for each child node according to its parent’s
values in the joint probability table. The root mean square error (RMSE) of the data gener-
ated compared to the ASIA network is approximately zero. This indicates that the data was
generated correctly. We have populated the database with 2000, 3000, 5000, and 10,000
records. This was done to measure the effectiveness of the learning algorithm for a broad
range of information sizes. The following input is used in the simulations:

. Population size L. The experiments have been carried out with L = 100.

. Crossover probability p, we chose p_ = 0.9.
. Mutation rate p_ we considered p_=0.1.

Figure 2. The structure of the ASIA network

Tuberculosis

Dyspnea
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The fitness function used by our algorithm is based on the formula proposed by Cooper and
Herskovits (1992). For each of the samples (2000, 3000, 5000, 10000), we executed 10 runs
with each of the above parameter combinations. We considered the following four metrics
to evaluate the behavior of our algorithm.

. Average fitness value: This is an average of fitness function values over 10 runs.

. Best fitness value: This value corresponds to the best fitness value throughout the
evolution of the genetic algorithm.

. Average graph errors: This represents the average of the graph errors between the
best BN structure found in each search, and the initial BN structure. Graph errors are
defined to be an addition, a deletion, or a reversal of an edge.

. Average number of generations: This represents the number of generations taken
to find the best fitness function.

For comparison purposes, we also implemented the classical genetic algorithm (CGA) with
classical mutation (CM) and single point cyclic crossover (SPCC) operators. Figure 3 plots
the average fitness values for the following parameter combination. The average and best
fitness values are expressed in terms of log P(D | B)). The numbers of records are 10,000.
The figure also shows the best fitness value for the whole evolution process. One can see
that SGA performs better than CGA in the initial 15-20 generations. After 15-20 genera-
tions, the genetic algorithm using both operators stabilizes to a common fitness value. The
final fitness value is very close to the best fitness value. An important observation is that the
average fitness value does not deviate by any significant amount even after 100 generations.
The best fitness value is carried over to every generation and is not affected.

The final learned BN was constructed from the final individual generated after 100 gen-

Figure 3. Plot of generations vs. average fitness values (10000 Records)
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Figure 4. Learned BN after 100 generations for 5,000 records - graph errors = 3

erations. Figures 4 and 5 plot the final learned BN for 5,000 records and 10,000 records,
respectively. It can be observed that for both the scenarios, the learned BN differs from the
actual generating BN shown in Figure 2 by a small number of graph errors. It is also worth
noting that the numbers of graph errors reduce when the total numbers of records increase.
This could mean that to reduce the total number of graph errors, a large number of records
need to be provided.

Tables 1 and 2 provide the average number of generations and the average graph errors for
a different number of records. It is obvious that for 2000 records, the total number of gen-
erations taken to achieve the stabilized fitness value is very high. Also, the average number
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Table 1. Average number of generations

Table 2. Average graph errors for 8-node

Table 3. Average graph errors for 12-node

Table 4. Average graph errors for 18-node

Table 5. Average graph errors for 24-node
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Records SGA CGA
3000 25 30
5000 20 15
10000 20 15

Records SGA CGA
3000 3 4
5000 2 3

10000 2 3

Records SGA CGA
3000 21 28
5000 24 29

10000 20 25

Records SGA CGA
3000 19 24
5000 19.5 255

10000 20.7 26

Records SGA CGA
3000 14.8 22.2
5000 15.3 231

10000 10.9 13.3




52 Shetty, Song, & Alam

Table 6. Average graph errors for 30-node

Records SGA CGA
3000 15.7 215
5000 14.9 20.3

10000 14 18.9

Table 7. Average graph errors for 36-node

Records SGA CGA
3000 15.1 19.4
5000 15.6 20.5

10000 13.6 225

of graph errors is too high. For the 3,000, 5,000, and 10,000 records, the values for these
metrics are reasonable and acceptable.

To compare the performance of SGA with CGA in the presence of larger BN structures, we
modified the 8-node ASIA network and generated five additional BN with node sizes 12,
18, 24, 30, and 36. Tables 3-7 show results for simulations carried out on these additional
BNs. The tables compare the average graph errors in both approaches. The accuracy of SGA
does not deteriorate under increased network sizes.

Conclusion and Future Work

In this chapter, we have presented a new semantic genetic algorithm (SGA) for BN structure
learning. This algorithm is another effective contribution to the list of structure learning
algorithms. Our results show that SGA discovers BN structures with a greater accuracy than
existing classical genetic algorithms. Moreover, for large network sizes, the accuracy of SGA
does not degrade and this accuracy improvement does not come with an increase of search
space. In all our simulations, 100 to 150 individuals are used in each of the 100 genera-
tions. Thus 10,000 to 15,000 networks are completely searched to learn the BN structure.
Considering that the exhaustive search space is of 27° networks, only a small percentage of
the entire search space is needed by our algorithm to learn the BN structure.

One aspect for future work is to change the current random generation of adjacency matrices
for the initial population generation. The second is to improve scalability by implementing
our genetic algorithm on a distributed platform. We plan to adopt the island model (Tanese,
1989) of computation for implementing the distributed genetic algorithm. The novel aspect
of our future work would be to propose a distributed genetic algorithm for a peer-to-peer
networking environment. The proposed algorithm would combine the island model of
computation with epidemic communications (Birman, Hayden, Ozkasap, Xiao, Budiu,
& Minsky, 1999). The epidemic communication paradigm would be adapted to allow the
algorithm to be implemented on scalable platforms that would also include fault-tolerance
at different levels.
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Chapter 1V

NetCube:
Fast, Approximate Database

Queries Using Bayesian Networks

Dimitris Margaritis, lowa State University, USA
Christos Faloutsos, Carnegie Mellon University, USA
Sebastian Thrun, Stanford University, USA

Abstract

We present a novel method for answering count queries from a large database approximately
and quickly. Our method implements an approximate DataCube of the application domain,
which can be used to answer any conjunctive count query that can be formed by the user.
The DataCube is a conceptual device that in principle stores the number of matching records
for all possible such queries. However, because its size and generation time are inherently
exponential, our approach uses one or more Bayesian networks to implement it approxi-
mately. Bayesian networks are statistical graphical models that can succinctly represent the
underlying joint probability distribution of the domain, and can therefore be used to calculate
approximate counts for any conjunctive query combination of attribute values and “don’t
cares.” The structure and parameters of these networks are learned from the database in
a preprocessing stage. By means of such a network, the proposed method, called NetCube,
exploits correlations and independencies among attributes to answer a count query quickly
without accessing the database. Our preprocessing algorithm scales linearly on the size of
the database, and is thus scalable; it is also parallelizable with a straightforward parallel
implementation. We give an algorithm for estimating the count result of arbitrary queries
that is fast (constant) on the database size. Our experimental results show that NetCubes
have fast generation and use, achieve excellent compression and have low reconstruction
error. Moreover, they naturally allow for visualization and data mining, at no extra cost.
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Introduction

In this chapter we will focus on the problem of estimating the result of a count query on a
very large database, fast. The problem of computing counts of records from a database with
given desired characteristics isa commaon one in the area of decision support systems, online
analytical processing (OLAP), and data mining. A typical scenario is as follows: a customer
analyst has access to a database of customer transaction information (e.g., customer A bought
items B, C, and D at the store at location X), and is interested in discovering patterns that
exhibit an interesting or unusual behavior that might lead to possibly profitable insights into
the company’s customer behavior. In other words, the company wants to be able to create
a model of its customer base (possibly partial), and the better it is able to do that, the more
insights it can obtain from the model and more profitable it has the opportunity to be. In
this example scenario an analyst would, through an interactive query process, request count
information from the database, possibly drilling down in interesting subsets of the database
of customer information. It is very important that the results to these queries be returned
quickly, because that will greatly facilitate the process of discovery by the analyst. It is also
important that the answers to these queries are accurate up to a reasonable degree, although
it is not imperative that they are exact. The analyst wants an approximate figure of the result
of the query and getting it correct down to the last digit is not necessary.

The methods presented in this chapter are motivated by these observations, that is, the fact
that we need great speed coupled with only reasonable accuracy. In the following we present
NetCube, a method that can support fast, approximate queries on very large databases. Net-
Cube can fit approximately a database of billions of records in the main memory of a single
workstation. There is no “trick” to this—it is due to the fact that what is stored in memory
is not the actual data themselves, but only a model of the data. This model is a Bayesian
network (BN), which can be used to answer count queries quickly, albeit only approximately.
The speed comes from the fact that only the Bayesian network is used to answer the query,
and the database is not accessed at query time. The database is accessed only during the
one-time preprocessing phase, when a number of BN models are constructed from it.

There are two important considerations relevant to the problem described above:

. First, the model should be a reasonably accurate description of our database, or at
the very least of the quantities derived from them that are of interest. In this problem
these quantities are the results of every interesting count query that can be applied to
it (e.g., queries with some minimum support such as 10,000 records or 1%).

. Second, the model should be simple enough so that using it instead of the actual data
to answer a query should not take an exorbitant amount of time (e.g., more than using
the actual database to answer the query) or consume an enormous amount of space
(e.g., more space than the actual database uses).

These two issues—accuracy vs. time/space complexity—are conflicting, and the problem
of balancing them is a central issue in the Al subfield of machine learning, which concerns
itself, among other topics, with the development of models of data. This is because it is al-
ways possible to describe the data (or the derived quantities we are interested in) better, or at
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least as well, with increasingly complex models. However, the cost of such models increases
with complexity, in terms of both size (to store the model structure and parameters) and time
that it takes to use it (for computing the relevant quantities, that is, the query counts in our
case). The reason we use Bayesian networks here is their good performance in estimating
probability distributions in practice and their sound mathematical foundations in probability
theory, compared to a multitude of other ad hoc approaches that exist in the literature.

In this chapter we first describe a conceptual solution to the problem, we then show how
this solution, even though it is difficult to implement exactly, can be done so approximately
using NetCube, which uses Bayesian networks. Next we describe methods for producing
Bayesian networks from a database and using them to answer database queries, followed by
implementation details. Finally we conclude with experimental results for two case studies
where NetCube is used.

DataCubes: Precomputing All Possible Aggregate
Queries

As described above, a typical data mining scenario involving a human requires real-time
interaction with the database. In particular, the analyst looking for unusual patterns in the
data might hypothesize a relationship and attempt to confirm or refute it by issuing a variety
of aggregation queries (e.g., counts or averages for combinations of values for different
subsets of attributes) possibly changing the set of attributes; for example, adding or deleting
attributes from it. If the current hypothesis is refuted, he or she might move to a completely
different subset of attributes to start examining a different hypothesis.

Asummary of this interactive data mining procedure, as given by Gray, Bosworth, Layman,
and Pirahesh (1996), divides it into four distinct steps:

Formulate a query that extracts data from the database.
Execute the query, extracting aggregated data from the database into a file or relation.
Visualize the results in a graphical way.

M w DN

Analyze the results and formulate a new query (go to step 1).

To facilitate the quick retrieval of the aggregated data, Gray et al. (1996) introduced the idea
of the DataCube. A DataCube is a conceptual device that contains all possible aggregates
over all possible subsets of attributes of a domain of interest. For example, for a hypothetical
database containing 1,000 records and 3 attributes A, B, C, each taking values 0 or 1, the
count DataCube is shown in Figure 1. There are 2° = 8 possible subsets of these 3 attributes
(from the empty set to the entire set {A, B, C}). For each of these subsets, a table is stored
in the DataCube containing the counts for every possible combination of values for the at-
tributes in the subset, for example, for {A, B} there are 4 entries in the corresponding table,
namely count(A =1, B =1) =400, count(A =1, B=0) =35, count(A =0, B =1) =400, and
count(A =0, B =0) = 165. We will restrict our attention to count DataCubes here, and refer
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Figure 1. An example count DataCube for a domain of 3 binary attributes A, B, and C,
containing 2°= 8 tables. The notation A corresponds to the assignment (A = 1) and 4 to
(A=0).
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to them simply as “DataCubes” from now on. However, other types of DataCubes exist that
correspond to other aggregates, for example, average, max, min, or median DataCubes. Note
that some of these can be computed from count DataCubes (e.g., average DataCubes).

We can see that, using the DataCube of a database, computation of any query takes constant
time (for a table-lookup implementation). In practice however, computation and storage
of the DataCube is exceedingly difficult because of its inherently exponential nature. To
solve this problem, several approaches have been proposed. Harinarayan, Rajaraman, and
Ullman (1996) suggest materializing only a subset of tables and propose a principled way
of selecting which ones to prefer. Their system computes the query from those tables at run
time. DataCubes containing only cells of some minimum support are suggested by Beyer
and Ramakrishnan (1999), who propose coarse-to-fine traversal that improves speed by
condensing cells of less than the minimum support. Histogram-based approaches also ex-
ist (loannidis & Poosala, 1999), as well as approximations such as histogram compression
using the DCT transform (Lee, Kim, & Chung, 1999) or wavelets (Vitter & Wang, 1999).
Perhaps closest to the methods described in this chapter is Barbara (1998), which uses linear
regression to model DataCubes. Bitmaps are another relatively recent method for efficiently
computing counts from highly compressed bitmapped information about the properties of
records in the database. Bitmaps are exact techniques that do not maintain counts, but instead
store, for every record in the database, one bit for every attribute and value combination.
To answer an aggregate query, they perform a pass over several bitmaps at runtime (Chan
& loannidis, 1999; Johnson, 1999). Even though query optimizers for bitmaps exist (Wu,
1999), the runtime is still linear in the size of the database.

In the next section, we describe the relation that exists between the DataCube of a database
and a Bayesian network. Following this, we present methods for constructing BNs from
data and using them to implement a DataCube approximately.
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Relation Between Bayesian Networks
and DataCubes

In this section, we highlight the aspects of Bayesian networks that relate to our implementa-
tion of approximate DataCubes for count queries. We illustrate the relation of DataCubes to
BNs using the DataCube of Figure 1, shown again here for convenience in Figure 2(a). This
DataCube, possibly taken from the research department of a company that manufactures
burglar alarms, is constructed from a database that contains 1,000 records and three Boolean
attributes A (“home alarm goes off”), B (“burglar enters the house”) and C (“earthquake
occurs”). Although we will assume that all attributes are binary, this is not necessary and
does not affect the generality of our methods. In Figure 2(b) we can see the correspond-
ing Bayesian network for this domain. The structure of the BN encodes independencies
that hold in the domain, for example, the fact that the edge between B and C in the BN is
missing indicates that although A may depend on B and A may depend on C, B and C are
(unconditionally) independent.

The main idea in this section is that the BN can be used to answer any count query that can
be posed on the original database. For example, count(A =1, B =1, C =0) = 360, as stored
in the DataCube; the same answer can be obtained using the BN as follows:

Pr(A=1,B=1,C=0)=Pr(A=1|B=1,C=0)Pr(B=1,C=0)
=Pr(A=1|B=1,C=0)Pr(B=1)Pr(C=0)

Figure 2. (a) Example DataCube from Figure 1 constructed from a database of 1,000 records
containing attributes A, B, and C. (b) Bayesian network generated from the same database.
The Bayesian network can describe exactly the same counts as the DataCube but consumes
less space in this example because B and C are independent (unconditionally).

AB | 400 burglar earthquake
LA P () [08 ] P(C)
AB | 400
A | 435 — ABC | 40
= AB | 165 =
~ | 565 ABC | 360 ’
ac | eo| [ aBC | 20 @
rai vl alarm
B [so0] [ac |37s]| [ aBC | 15
= = =
g [200] [Ac |190]| [ ABC | 160
acC |375| | ABC [ 240 P(AIBC) |02
€ 1250 ABC | 30 P(A|BC) |06
C 70| RS20 Mo s P(A|BC) |04
BC {600 P(AIBC) |oa
Bc | s0
BC | 150
(@) (b)

Copyright © 2007, 1GI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.



NetCube 59

=0.6-0.8-0.75
=0.36.

The estimated count can be calculated by multiplying with the size of the database, that is,
count(A=1,B=1,C=0)=0.36 - 1000 = 360.

In this case, answering the query was relatively easy because it was a saturated one. A query
is called saturated if it involves all attributes in the database. An unsaturated query may be
more difficult to answer using the BN. An example of an unsaturated query is count(A = 0,
B =1). Using the BN we can answer it as follows:

Pr(A=0,B=1)=Pr(A=0,B=1,C=0)+Pr(A=0,B=1,C=1)
=Pr(A=0|B=1,C=0)Pr(B=1)Pr(C=0)+
Pr(A=0|B=1,C=1)Pr(B=1)Pr(C=1)
=0.4-0.8-0.75+0.8-0.8-0.25
=04

which gives count(A =0, B =1) =0.4 - 1,000 = 400, coinciding with the value in the DataCube.

As is well known, a BN represents the joint probability distribution function (PDF) of a
domain. In general, a probability distribution can be specified with a set of numbers whose
size is exponential in the number of attributes in the domain, namely the entries in the joint
PDF table. One can represent such a table by a completely connected BN without any great
benefit. However, when independencies exist in the domain, using a BN instead of the full
joint probability table results in at least two major benefits:

1.  Storagesavings: These may be significant to the point where infeasibly large domains
may be representable, provided that they exhibit a sufficient number of independencies
among the variables of the domain.

2. Clear and intuitive representation of independencies: Given the graphical repre-
sentation of a BN, it is easy to determine the variables on which a quantity of interest
depends on statistically (under assumptions) and which are irrelevant and under what
conditions.

Edge omissions indicate the existence of conditional independencies among variables in
the domain. As mentioned above, if all variables in the domain are statistically dependent
on all others, then there is no storage advantage to using a BN, because the storage required
for the specification of the network is exponential in the number of attributes. Fortunately,
in practice this is not the norm, and in fact the most interesting domains for data mining are
those that exhibit a considerable number of independencies.

The storage space savings in this domain are illustrated in Figure 2(b). The humbers that
have to be stored in the DataCube are 20 essential counts. The numbers necessary in the
corresponding BN are 6 probability entries. We see that for this particular example this is
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certainly nota significantimprovement, especially considering the overhead of specifying the
parents of each node and using floating point numbers for the probability entries. However,
for large networks with tens or hundreds of variables, the savings increases exponentially
if the corresponding network is sparse. For n attributes, the DataCube has to store 2" tables
of counts, with each table having size equal to the product of the cardinalities of the at-
tributes they include (minus one). No full joint table for hundreds of variables containing
either probabilities or counts could ever be stored using today’s technology. However, such
adomain may be succinctly represented by a Bayesian network instead if a sufficient number
of conditional independencies exist.

An interesting application of Bayesian networks that highlights the fact that they can be used
to estimate counts is the approach by Getoor, Taskar, and Koller (2001). Getoor et al. (2001)
uses a relational extension of Bayesian networks, called probabilistic relational models, to
estimate the size of “select” or “select-join” database queries (returning the number of match-
ing records) in cases where data is stored in more than one relations of a database. Their
approach is useful for finding the optimal query execution plan before a query is executed,
which is an important and difficult problem in database query processing.

Learning Bayesian Networks from Data

Our approach, presented in the next section, uses one or more Bayesian networks to represent
the database. In this section we describe the prevalent techniques that are used for learning
Bayesian networks. We first describe the easier task of computing the parameters of a BN
when its structure is known, followed by one possible method for learning the structure in
the next section.

We first describe the notation and symbols we will use. The database is denoted as D and
its size N = |D|. Throughout the chapter, we refer to attributes and variables interchangeably
because BN variables correspond to attributes in the database. We assume that set U = {X,,
X, ..., X } contains all n attributes in the domain. ABN is a pair B = (E,T), where E is the
set of edges among the variables in U and T is the set of local conditional probability tables
(the BN parameters) for the structure defined by E. We denote sets of variables with bold
letters. The parents of X, in the BN are denoted as Pa, and their j-th value (attribute value
configuration) as pa;. We assume that variable X; can take one of r, values and its parents
one of g, configurations. We assume that all local probability distribution functions of a BN
are members of the multinomial family.

Learning the Parameters

A BN is essentially a statistical model. Learning the parameters of a statistical model is a
well-known problem in statistics. The parameters of a BN are the probabilities contained
in the conditional probability tables representing the local PDF for each variable in the do-
main. In the BN literature, where Bayesian approaches seem to be dominant, the parameters
themselves are assumed to follow a probability distribution.
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Before any data are observed, a prior distribution Pr(parameters) is assumed over the
parameters of the local PDFs (for example, this can be uniform). This prior distribution
may have parameters of its own—although usually fewer than the number of parameters
it covers—which are called hyperparameters. Given a data set, a posterior distribution
Pr(parameters | data) can be calculated according to Bayes’ law:

Pr(data| parameters) Pr( parameters)
Pr(data)

Pr(parameters | data) =

The term Pr(data | parameters) is called the data likelihood, or simply likelihood. Infor-
mally, the term Pr(data) can be calculated as a sum (or integral) over all possible parameter
values, that is,

Pr(data) = z Pr(data| parameters) Pr( parameters)

parameter values

The parameters of a BN are the probabilities stored in the local PDFs. Let Pi be the prob-
ability that variable X; takes its k-th value (out of r, possible ones) when its parents Pa, in
Bayesian network B = (E, T) take their j-th value pa, (out of g, possible ones). The likeli-
hood of a data set D that contains Ny records in which X, =x, and Pa, = pa, is given by the
multinomial distribution
Nijk

n_ G 5 Pijk

Pr(data | parameters) = Pr(D | {p,}) = N IHHH o

i=1 j=1 k=1 k-

For the prior distribution, it is frequently desirable to choose one from a family that is con-
jugate prior to the data distribution. A prior is called conjugate when its posterior belongs to
the same family as the prior (albeit possibly with different hyperparameters). The conjugate
prior family for multinomial data distribution is the Dirichlet; we present only this case in
some detail here. For other cases, such as linear regression with Gaussian noise, see Buntine
(1993) and Heckerman and Geiger (1995), or for more complicated ones representable by
artificial neural networks, see Monti and Cooper (1998). Also, for more details on conjugate
priors, see Casella and Berger (1990).

Ina BN, we have a number of Dirichlet priors, one for each variable X; and value pa, of
its parents Pa, in the network. The Dirichlet distribution over the parameters Py Py - -+
Pir is expressed by:

o —1
A _ f pijgk
Py Py -+ - Py | E) = Dir (ay,, &, - - -, aijri) = r(aij)g—r(aijk)

where o, are its hyperparameters, o; = %:—1 Gjj » and I'() is the Gamma function.! As-
suming local and global parameter independence (Cooper & Herskovits, 1992; Heckerman,
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Geiger, & Chickering, 1995; Spiegelhalter & Lauritzen, 1990), the prior distribution over
the entire set of parameters p = {pijk} of the BN is the product over all priors:

Prip )= [[ (e .J)H Py

Ewkn 1 Do)

Conditionally, onthe dataset D, the posterior probability over the parameters is alsoamember
of the Dirichlet family, because it is conjugate prior to the multinomial. It is given by:

Pr(pm, Pior -+ pijri |E, D)= Dir(Nijl oy, N 00 Nijri + aijri)'

The posterior over all parameters is then:

ik +etij—1

SO ) R § S &

-1 j-1

i

where N;; Njj is the number of records in D for which Pa, = pa, . Using this
dlstrlbutlon to ce'frculate the (posterior) expected value of an arbltrary quantlty Q(p), one
averages over all possible values of the (unknown) parameters, weighted by the posterior
probability of each value:

E[Q (p) | E, D] =1Q(X,, X, ..., X) Pr(p | E, D) dp.

This general formula can be used to calculate the parameter values stored in the conditional
probability tables of the BN, which are py, = E[pijk|E,D], that is:

IJk+N

Elp, |E.D Pr(p|E,D)d :
pl]k [pllk | ] J-p”k r(pl ) p u + Nij (2)

Due to the form above, the hyperparameters a, can be thought of as a number of “virtual
samples” that are added to the real samples M for each variable-parent value combination.
Popular choices for the hyperparameters are o =1 (a uniform prior over the parameters of
each X; for each parent value combination), and o, = 1/r..

Frequently, for convenience, especially in cases where data are abundant (i.e., when O
<< N.,k) and no N is zero, the hyperparameters are ignored and the maximum likelihood
estimator puk = Njj / Njj is used instead of Pijk . This happens, for example, in score-based
methods, where the BIC score is employed, which is itself a large-sample approximation of

the posterior and is already assuming that the effects of a prior are negligible.
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Learning the Structure: Score-Based Methods

Broadly speaking, there are two classes of algorithms for learning the structure of BNs. One
class “scores” a BN based on how well it fits the data, and attempts to find a structure that
maximizes that score, while another class attempts to model the independencies in the data. The
former is more appropriate in applications where fitting data well is a priority, while the latter
has been used to learn a BN model of the so-called “causal” structure of the domain. Because
our method falls into the former category, we only present the scoring approach here.

The score-based approach assigns a score to each candidate BN, typically one that measures
how well that BN describes the data set D. The score of structure E given data set D is

Score(E, D) = Pr(E | D)

that is, the posterior probability of E given the data set. A score-based algorithm attempts
to maximize this score, that is, to find arg max_ Score(E, D). Computation of the above can
be cast into a more convenient form by using Bayes’ law:

Pr(D|E)Pr(E)

Score(E, D) =Pr(E| D) = )

To maximize this we need only maximize the numerator, because the denominator does not
depend on E. There are several ways to assess Pr(E) from prior information; see Hecker-
man(1995) for a discussion and pointers to the literature. Here we will ignore Pr(E) (assume
it a constant), which is equivalent to assuming a uniform prior over structures.

To calculate Pr(D | E), the Bayesian approach averages over all possible parameters, weigh-
ing each by their probability:

Pr(D|E)=|Px(D | E,p) Pr(p | E)dp.

Cooper and Herskovits (1992) first showed that for multinomial local PDFs, and assuming
a Dirichlet prior (see previous section), this can be computed analytically:

L (o) i oy + Nye)

Pr(DIE) =[] o I1

i=1 j=1 k=1 F((xijk)

where, as usual, o, and N are respectively the hyperparameters and the counts for k-th
value of X; and the j-th configuration of Pa,. In the large sample limit the term Pr(D | E,p)
Pr(p | E) can be reasonably approximated as a multivariate Gaussian (Kass & Raftery, 1995;
Kass, Tierney, & Kadane, 1988). Doing that and, in addition approximating the mean of the
Gaussian with the maximum likelihood value p and ignoring terms that do not depend of
the data set size N, we end up with the BIC score approximation:
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BICscore(B, D) = logPr(D|p, E) —%Iog N,

©)

first derived by Schwartz (1978). |T| is the number of free parameters of the multivariate
Gaussian, that is, its number of dimensions; this equals the number of free parameters of

the multinomial local PDFs, that is, |T| = Zin:l% ( —1). The usefulness of the BIC score
comes from the fact that it does not depend on the prior over the parameters, which makes
it useful in practice in cases where prior information is not available or is difficult to obtain.
It also has the intuitive interpretation of being equal to the data likelihood minus a “penalty
T
term” —u|09 N) which has the effect of discouraging overly complicated structures and
acting to automatically protect from overfitting. The BIC score has been shown to be equal
to minus the minimum description length (MDL) score (described by Rissanen, 1987).

As we mentioned above, score-based algorithms attempt to find the structure whose score is
maximum. This poses considerable problems because the space of all possible structures is at
least exponential in the number of variables n: there are n(n — 1)/2 possible undirected edges
and 22 possible undirected structures for every subset of these edges. Moreover, there
may be more than one orientation of the edges for each such choice, resulting in at least one
BN for each undirected structure. Therefore a brute force approach that computes the score
of every BN structure is out of the question in all but the most trivial domains, and instead
heuristic search algorithms are employed in practice. One popular choice is hill-climbing,
shown graphically in an example in Figure 3 and in pseudocode in Figure 4. The search is
started from either an empty, full, or random network, although if background knowledge
exists, it can be used to seed the initial candidate network. The procedure ProbabilityTables()
estimates the parameters of the local PDFs given a BN structure (see previous section). The
algorithm’s main loop consists of evaluating the score of the structure resulting from every
possible single-edge addition, removal, or reversal, making the network that increases the
score the most the current candidate, and iterating. The process stops when there is no single-
edge change that increases the score. There is no guarantee that this algorithm will settle at
a global maximum so, to increase the chances of reaching a global maximum, techniques
such as a simple perturbation, multiple restarts from random points (initial networks), or
simulated annealing can be used.

It is worthwhile to note that the restricted case of tree-structured BNs has been solved opti-
mally, in the minimum KL-divergence sense, by Chow and Liu (1968). A similar approach
has been proposed for the case of polytrees (trees where each node can have more than one
parent) by Rebane and Pearl (1989), although its optimality has not been proven.

Hill-climbing is not the only method of heuristic search. Best-first search (e.g., Russell &
Norvig, 2002), genetic algorithms (Larranaga, Poza, Yurramendi, Murga, & Kuijpers, 1996),
and almost any kind of search procedure can also be used. A more principled approach is to
reduce the search space by searching among independence-equivalent classes of networks
instead (Chickering, 1996). Recently Chickering (2002) proved a conjecture of Meek (1997)
that in the limit of large sample sizes, his greedy equivalence search (GES) algorithm does
identify an inclusion-optimal equivalence class of BNs, that is, a class of models such that
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Figure 3. lllustration of the hill-climbing BN structure search procedure

score=100

score=114

Figure 4. Pseudocode for the algorithm that constructs a BN from a data set D using hill-
climbing search

Procedure B = BIChillclimb(D)

E—J

T « ProbabilityTables(E, D)
B (E,T)

SCOre «— —oo

do:

(a) maxscore « score
(b) for each attribute pair (X, Y) do

(c) foreach E'e{EU{X Y},

ar wNheE

E- {X ->Y }
(E-{X>Yphuly > X}
(d) T' < ProbabilityTables(E’, D)
(e) B'« (E"T')
) newscore < BICscore(B’, D)
(9) if newscore > score then

B « B’

score < newscore
6. while score > maxscore
7. Return B
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Figure 5. Algorithm for preprocessing the database

Procedure B = BuildFromDisk(D):

1. Partition the database D into K equal partitions D;,i =1,...,K so that each fits
in main memory. Let d = |D,| forall i.
2. Foreach i=1,...,K do the following:
(a) Read D, into memory.
(b) Build Bayesian network B, from D,: B;= BuildFromMemoryUsingData( D, ).
3. Foreach i=1,...,K do the following:
Merge the networks B, into asingle one: B = RecursivelyMerge(B,, B,,...,By) .
4. Return B.

(a) includes the probability distribution from which the dataset was drawn, and (b) no sub-
model contains that distribution, if one exists.

NetCube: Implementing the DataCube Using a
Bayesian Network

We are now ready to address our main problem, which can be stated as follows:

. Problem: We are given a database that may not fit in memory and a procedure Build-
FromMemoryUsingData(D) that is able to generate a BN from a memory-resident
database.

. Desired solution: Arepresentation that can fitinmemory, a procedure BuildFromDisk()
that generates it from disk, and an EstimateCount() procedure that uses it to compute
the approximate answer to count queries that may specify an arbitrary number of at-
tribute values.

Our representation is called NetCube and uses a single Bayesian network, created from the
entire database D, to represent the record counts in the database. Answering a count query
works by estimating its probability using the Bayesian network and multiplying by the size
of the database to obtain an approximate count of records that satisfy the query. Querying
in this way is therefore constant time (O(1)) in the size of the database, because the data-
base is not accessed. Perhaps the biggest practical problem in our approach is the fact that
frequently the database is too large to fit into main memory, something that is required for
the algorithms for learning the BN structure and parameters presented previously in this
chapter. Below we present a method for solving this problem.
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Learning a Single Bayesian Network from a Database that
Cannot Fit in Memory

To learn a BN from database D that fits in main memory, we can use the BIChillclimb()
procedure, described previously. If D cannot fit in main memory, we present in Figure 5 the
procedure BuildFromDisk(D) that can be used for that purpose.

The BmldFrolesk(D) procedure first partitions D into K subsets (called chunks here) D,

that is, U D,=Dand D, # D for i #j, such that each D, fits in memory. It then uses
the BU|IdFromMemoryUsngata() procedure to build a BN B, from each of them. The
BuildFromMemoryUsingData() contains the implementation of the algorithm for learning
the structure of a Bayesian network from data, that is, BuildFromMemoryUsingData(D),) =
BIChillclimb(D,). (We note that the generation of each B, can be done in parallel.) Having
produced the networks B,, i =1, . . ., K, we combine them into a single one B using the
RecursivelyMerge() procedure, shown in Figure 6.

The RecursivelyMerge() procedure uses the BuildFromMemoryUsingBNs(B,, . .., B,) pro-
cedure to combine K BN models from a lower level to one BN at one level higher. It is
implemented in exactly the same way as the BIChillclimb(D) one, with the exception that
the score is now computed from the BNs that are passed as its arguments instead of the
database, that is, the BICscore() procedure is replaced by:

representing D

o e —
BICscoreFromBNs(B, B, B,,...,B,) =

K K T
Zﬂ:%Z EstimateProbability(t, B, )1 log {%Z EstimateProbability(t, B, )}} __| logN

teT k=1 k=1

In the above formula, the outer sum goes over all table entries t in B =(E,T ). Each such
table entry corresponds to a configuration of variable assignments for the node and the par-

Figure 6. Algorithm for recursively merging K Bayesian networks into a single one

Procedure B = RecursivelyMerge(B,,...,B,):

If B,B,,..., By simultaneously fit in main memory then:
B = BuildFromMemoryUsingBNs(B,,..., B,)
else:
B, = RecursivelyMerge(B,,..., BH).
2

B, = RecursivelyMerge(B[KJ v By
— 1+l
2

B = RecursivelyMerge(B,, B,).

Return B.
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ents of the node that it is attached to—the remaining variables are ignored or equivalently
assigned “don’t care” values—see Relation Between Bayesian Networks and DataCubes
for an example. The inner equally-weighted sums are simply an average over all networks
B, i=1,..., Kofthe probability of that configuration. (The reason for the equal weighting
is the fact that all BNs B, have been generated from the same number of records from the
database.) The EstimateProbability() procedure is taken from the literature; possible choices
will be discussed in the next section.

The computation of the probability table entries Pr(t| E)inB= QE,T? is done from theB;’s
without accessing the database; it is also making use of the EstimateProbability() proce-
dure:

K
VteT, Pr(t|E)= %ZEstimateProbability(t, B,).
k=1

Because the database access is O(N) during the BuildFromDisk(D) procedure, where N
=|D| is the number of records in the database, the number of networks at the base of the
recursion is K = N/d = O(N) (where d = |D, for all i) and because accessing a BN does not
depend on the database size, it is easy to make the following observation:

. Observation: The entire BuildFromDisk() algorithm is O(N) time (linear in the
size of the original database) and thus scalable. Moreover, it is parallelizable, with a
straightforward parallel implementation.

This observation is supported by the experimental results (Figure 8).

Algorithm for Answering a Count Query from a Bayesian
Network

After generating a single BN from database D (using the BuildFromDisk() procedure), the
resulting BN B now acts as a representative of the entire database, and we can use it to
answer count queries approximately without accessing D. In order to do that, we estimate
the probability (expected relative frequency) of the query using the BN, and multiply it with
the number of records in the database.

More precisely, to estimate approximate counts for query Q from the Bayesian network B,
that is, the output of the BuildFromDisk() procedure, we use the EstimateCount() procedure,
shown below:

EstimateCount(Q, B) = N - EstimateProbability(Q, B).
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For the procedure EstimateProbability() in our implementation we use the join-tree algo-
rithm. EstimateProbability() returns the probability of query Q according to the probability
distribution represented by B. Because B is a representative of the N records contained in D,
(N - EstimateProbability(Q,B)) is an estimate of the number of records within D for which
Q evaluates to “true,” and thus is the (approximate) answer to the original query.

The computation of the probability of an arbitrary query is called probabilistic inference.?
Probabilistic inference may involve an exponential number of calculations and is NP-com-
plete in general. Two kinds of methods for probabilistic inference exist: approximate and
exact. Approximate ones (Henrion, 1988; Fung & Chang, 1989; Schachter & Peot, 1989)
are sample-based, and generate an artificial database of samples during the process of esti-
mation (the generated samples are discarded immediately and only the count of those than
matched the query is kept). Their main disadvantage is that they are slow and may need
a great number of samples to estimate the probability of the query to a sufficient degree.
For exact inference, the most popular method is the join-tree algorithm. The details of the
algorithm are beyond the scope of this chapter; see Pearl (1997) and Huang and Darwiche
(1994). Its running time depends on the number of variables and the complexity of the BN,
but in practice for typical BNs of a few tens of variables, it runs in under a second. This is
the method we use here, contained in the EstimateProbability() procedure.

Because the EstimateCount(Q,B) algorithm does not access the database, we can make the
following observation:

. Observation: The EstimateCount(Q,B) procedure is O(1) time in the size of the
database.

Note that the answers computed using the BN may be approximate. This happens for several
reasons:

. There are size and accuracy trade-offs during the learning of the BN using the database,
stemming from the use of the BIC score, which may produce a slightly less accurate
BN but consuming less space (compared to the fully connected one, for example,
which requires exponential space).

. An approximate algorithm for probabilistic inference may be used. In general, exact
probabilistic inference may take exponential time, and depends on the complexity of
the BN structure.

. The use of floating point numbers for the local PDF parameters may introduce round-
off errors.

Case Studies

We experimentally tested the above methods on real and synthetic data. The real data con-
sists of customer transaction data, obtained from a large anonymous retailer.® It consists
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of over 3 million (3,261,809) customer transactions containing information on whether the
customer purchased any of the 20 most popular items in the store. The data represents one
week of activity and its concise representation occupies around 8 MB. This size coincides
with the size of its uncompressed bitmap. Although this database is not large in size, we
use it in order to obtain performance results on the compression ratio we can hope to obtain
on real-world data.

In order to assess the scalability of our system as the database size grows, we need larger
sets that are usually not publicly available. For this reason we used synthetic data for our
scalability study. All remaining experiments, except the compression size results, used the

synthetic data produced by a program available from IBM’s QUEST site.* The generation
program produces a user-specified number of random association rules involving a number
of attributes (their number is also randomly distributed around a user-specified mean), and
then generates an arbitrarily large number of market-basket transactions whose statistical
behavior conforms to those rules. We produced a database of 100 thousand and 1, 10, and
100 million transaction records fromastore inventory of 5,000 items (products) using 10,000
customer patterns having an average length of 4 items. (Each customer pattern corresponds
to an “association rule.”) The average transaction length was 10 items. Contrary to our real
database, we used the 50 most frequently used items. Such a DataCube cannot fit in main
memory because it consists of 2%° tables totaling much more than 2% DataCube entries.

From both real and synthetic databases we then constructed a number of Bayesian net-
works from that data in order to model their joint probability distribution. We split the data
set in a number of chunks D, , each containing at most d records, where d = 815,452 for
the anonymous retailer data set (4 chunks) and d = 20,000 for the QUEST data set (5,000
chunks). We then used each chunk D, to construct the corresponding Bayesian network B, .
Finally, we recursively combined the networks using a two-level hierarchy for the real data
set and a six-level hierarchy, depicted in Figure 7, for the QUEST data set. For the latter,
at every level five networks are combined, with the exception of the last level where eight
networks were combined.

We compare our results against an uncompressed and compressed bitmap, as well as a com-
pressed bitmap produced after sampling the database for 1% and 10% of its records uniformly.
Our experiments evaluate our approach with respect to the following dimensions:

. Build time and scalability

. Space to store models and effective compression of the database
. Time to answer a query

. Query count accuracy

. Visualization of the dependencies in the database

Because the number of possible queries grows exponentially with the number of variables
that are involved in it, it was infeasible in practice to perform every possible query of any
length. Instead, we generated 10,000 random queries of length up to 5 variables. Each query is
more general than one traditionally used in association rule discovery, allowing testing for the
presence or absence of any particular item in a transaction, from the 20 or 50 most frequently
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Figure 7. llustration of the recursive combination of the QUEST database at 6 levels. At
every level, five networks are combined, with the exception of the last level, where the eight
networks of level 4 were combined into the final BN of level 5.

BN 2
BN3 BN 1 }\
BN 4
BN S5
([ ]

BN 4996
BN 4997
BN 4998 /
BN 4999
BN 5000

[ X X ]

100,000,000 records total LEVEL O LEVEL 1

@
=z

20,000 records

20,000 records

20,000 records

[
[
[
[

20,000 records

20,000 records

20,000 records

20,000 records

20,000 records

[
[
[
[

RN T T T T I A 2 29 2

[ 20,000 records

LEVEL 4 LEVEL 5

purchased items. For example, one such query may be “what is the number of transactions in
the database in which a customer purchased milk and orange juice but not bread?”

Build Time

To measure the effect of database size on build time (scalability) we used the QUEST data
set only, as it was the only one with a sufficient number of records. We plot build time vs.
number of records in Figure 8. As we can see, NetCube is linear on the database size, and
thus scalable. As we can observe from this plot, there exist a number of jumps at certain
sizes, which correspond to additional time spent combining BNs from lower levels (i.e.,
levels closer to the data in Figure 7) to the next higher one, and occur at 100,000, 200,000,
and so forth, of the records (level 0 to level 1), 500,000, 1,000,000, and so forth, of the
records (level 1 to level 2). However, because the total number of nodes in the recursion
tree of Figure 7 is at most twice the number of nodes at level 0, the overall build time is
also linear in the database size.
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Each database chunk can be processed in parallel, and the merging of the BNs can also be
done in parallel across the same recursion depth. Thus, our method is parallelizable in a
straightforward manner. Parallelization over a cluster of workstations scales linearly, mak-
ing the generation of a database of 200 million transactions a matter of hours on a modest
cluster of 10 workstations, as shown in Figure 8.

We note here that our attempts to create a single BN by using the straightforward BuildFrom-
MemoryUsingData() algorithm on the entire QUEST database (for comparison purposes)
were unsuccessful for very large problems of size 100 million records or more; the algorithm
did not terminate after 4 days and had to be manually aborted. This underscores the useful-
ness of using our recursive combination procedure (BuildFromDisk() procedure) for any
kind of practical application that involves very large databases.

Compression

In this set of experiments, we compare the size of our representation to that of compressed
bitmaps and sampling by 10%, also compressed. Compressing the bitmaps of each of our
databases produced an approximate 7:1 compression ratio for the synthetic QUEST databases
and a 3.8:1 ratio for the real-world data. Compressing the sampled database predictably
produces linear compression with respect to compressed bitmaps. In contrast, the NetCube
approach typically produced compression ratios of 85:1 to 1,211,477:1 for synthetic data,
and 1,800:1 or more for real data. The compression ratios and BN sizes are shown in Table
1 and are also plotted in Figure 9. The price for such a high compression performance is the
fact that it is lossy. However, if the user can tolerate a certain amount of error (see below),

Figure 8. Build time for the QUEST data set increases approximately linearly with the
number of records in the database. Parallelization over a number of workstation scales the
build time down linearly.
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Figure 9. Comparison of the size of the compressed database using bitmaps, sampling by
10%, and NetCubes. The difference between gzip and bzip2 is small (see Table 1), so
only the best of the two (bz1p2) is shown here.
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then it may be the method of choice for the data analyst, because its space requirements are
modest and has the inherent advantage of visualization.

Note that the network produced from real data, corresponding to one week of transactions,
occupies only 4 KB. If we are allowed to make the conservative assumption that the net-
work from any given week is 10 times this one (40 KB), and the assumption that doubling
the database size doubles the size of the resulting network (even though our experiments
indicate that it might not grow at that rate but a much smaller one), then a NetCube makes
it possible to fit 20 billion transactions in the memory of a regular workstation with 256
MB of main memory, corresponding to more than 100 years of transactions at this rate, ef-
fectively spanning the lifetime of most businesses.

Query Time

We used a workstation with 128 MB of physical memory for our query time experiments.
Running our set of queries on the bitmaps we noticed a slowdown for the larger QUEST
databases whose bitmap cannot fit into main memory. This happens because the bitmap
system had to use part of the virtual memory system which resides on the disk (thrashing).
An important observation we can make here is that although bitmap compression will
temporarily alleviate this problem, a database of more than 4.5 times our largest one would
again force the bitmap method into the same thrashing behavior (note the compression ratio
4.5:1 for bitmaps in Table 1). A database of such a problematic size would not be unusual
in today’s real-world problems.
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We plot query times in Figure 10. As we can see in general query times are modest except
in the case of the NetCube at levels 0 and 1, and compressed bitmaps. Most of the time for
queries on bitmaps is used for loading the bitmap into memory, and this can only become
worse as the size of the database grows since the bitmap size grows linearly. The NetCube
at levels 0 and 1 does poorly due to the large number of BN models it needs to query.

Figure 11 depicts the performance of querying using the NetCube as a function of the level
that we use to answer the query. For example, using only a level 1 NetCube for a QUEST
query would use 1,000 BNs at that level each being a representative of 100,000 records in
the database. As was noted above, using a low level incurs a large performance penalty due
to the large number of BNs that we need to use inference on in order to answer the query.
This is especially dramatic in the case of level 0, where 5,000 BNs need to be queried. On
the other end of the spectrum, a single BN used in level 5 is not ideal either, because it is
significantly more complex (densely connected) and thus a query takes more time. As Figure
11 suggests, the ideal level to use in this case is 4, which represents an interesting balance
between the number of BN models and their complexity.

Table 1. Comparison of compression ratios for various databases used for the experiments.
Thefirst rows correspond to the QUEST-generated databases, while the last one corresponds
to real data obtained from an anonymous retailer. The sampling figures refer to 10% sam-
pling and after bz i p2 compression. For the NetCube, the trend of compression ratios that
are increasing with database size is due to increasing benefits from using an approximately
fixed-sized probabilistic model of a domain in place of data drawn from it.

compression rations (before:after)
Database Records Bitmap size R B Sample 10%
(byte) gzip | bzip2 i NetCube
& bzip2
20,000 125,009 | 4.2:1 4.4:1 40:1 85:1 (1,469 bytes)
100,000 625,010 | 4.3:1 451 42:1 523:1  (1,195bytes)
500,000 3,125,010 | 4.4:1 45:1 43:1 2,741:1 (blytljs())
QUEST 7,508:1
2,500,000 | 15,625,011 | 4.4:1 451 43:1 (2,081bytes)
12,500,000 | 78125012 | 4.0:1 | 451 44:1 26,0501 (2,999
bytes)
100,000,000 | 625,000,013 | 4.4:1 45:1 45:1 1211477:1 (5,145
bytes)
Anonymous
il 3,261,809 8,154,540 | 3.8:1 3.8:1 37:1 1889:1 (4,317 bytes)
retailer
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Figure 10. Average query times for the QUEST data set as a function of the number of
variables in a query
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Figure 11. Average query times for the QUEST data set as a function of the recursion level
that was used to answer queries

Average query time vs. NetCube recursive combination level
700 T T T T

600

500

400

300

Average query time (sec)

200

100

0 1 1
0 1 2
(5,000 BNs) (1,000 BNs) (200 BNs)

3
(40 BNs) (8 BNs) (1 BN)

Level

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.



76 Margaritis, Faloutsos, & Thrun

Query Accuracy

We conducted an assessment of the query accuracy using a set of 10,000 random queries
containing up to 5 variables (only 300 queries were used for “NetCube level 0” and 1,000
queries for “NetCube level 1” due to large running times). Because relative error becomes
artificially large for queries of very little support even when the count difference is not very
large, we used queries that had support of 10,000 records or more. Apart from artificially
weighing the error rate, queries of very small support are arguably “uninteresting” or can be
due to spurious factors. Such treatment is consistent with other approaches in the literature
(e.g., Beyer and Ramakrishnan, 1999). Note that our minimum support is not a percent of
the entire database; this means that our assessment applies to cases where the user is looking
for subtle events even as the database size increases. We used 10,000 as the cutoff for the
support of these subtle events, but more research must be done to determine this threshold
of significance.

To better understand the effect that the chunk size has on the query accuracy, we compared
against another approach, namely sampling 20,000 records from the QUEST database (equal
to the number of records used in level 0 of the recursive combination depicted in Figure 7)
and producing a single Bayesian network from those. To answer a query using this method
we use only the resulting network as our estimate of the joint PDF. This is called “sampled
single BN” in the results of Figure 12.

In Table 2 we list the percentage of queries that achieve a 95% accuracy or more, for each
method. From the table we see that the NetCube does not achieve a good accuracy when
using levels greater than 0. That is to be expected given the levels of compression that are
achievable. The actual error distribution is shown in detail in Figure 12. As we can see i
this graph, there is significant mass at error levels less than 50%. We also notice that the
NetCube at level 0, as well as the sampled single BN, exhibit an increase in errors at around
200%, meaning that they return double the actual count of records of the database. Both
of these approaches essentially use 20,000 records per model (answering a query using a
NetCube at level O corresponds to averaging over all level 0 BN models, each constructed
from 20,000 records). Using higher levels of the NetCube alleviates this particular behavior,
and is consistent with the fact that they take into account a larger number of records when
creating the model, perhaps discounting certain transient effects which might be present
when using 20,000 records only. Further investigation and a detailed analysis of phenomena
of using different database chunk sizes and datasets that contain transient changes in the
distribution or slow “drifting” of the distribution is the subject of future work.

Visualization

As an additional benefit of NetCube, we can visualize the significant associations con-
tained in the database. For example, in Figure 13 we show the BN produced from real data
corresponding to a week of activity of the 20 most frequently purchased items at a large
anonymous retailer. We also show in Figure 14 the network produced at level 5 (top level)
using the 50 most frequently used attributes of the QUEST data set. The advantage of the
graphical representation of the BN, that our approach generates, is that it can be used to
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Figure 12. Error distribution for different approaches
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Table 2. Percent of queries for which the accuracy is at least 95%

Error (%)

Bitmap 1%
Bitmap 10% ---»-—-
NetCube level 0 ----*---
NetCube level 1 &
NetCube level 2 ——=-—-
NetCube level 3 ---o-
NetCube level 4 ----o---
NetCube level 5 -2 -
Sampled single BN ——

95-percentile of query

Method accuracy (%)

Bitmap 100
Sampled bitmap 10% 95
Sampled bitmap 01% 88
NetCube level 0 70
NetCube level 1 33
NetCube level 2 33
NetCube level 3 33
NetCube level 4 33
NetCube level 5 32
Sampled single BN 56
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clearly depict variables that are the most influential to the ones that the analyst might be
examining. Moreover, the conditional probability tables will give our analyst the exact
nature and strength of these influences. Therefore our approach fits well with the data min-
ing procedure and can save the analyst time that would be otherwise spent on exploration,
drill-down analysis, and so forth, of the customer database.

Summary

In this chapter, we presented NetCube, an approach for answering count queries approxi-
mately and fast. To accomplish that, NetCube constructs a Bayesian network model of the
database in a preprocessing phase, and uses it to answer count queries approximately without
accessing the database. In summary, the benefits of NetCube are:

Figure 13. Bayesian network produced from real data obtained from a large anonymous
retailer. For confidentiality reasons, we have anonymized the names of the products that
are displayed in the graph.
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. Small space: The resulting BN takes up a very small fraction of the space used for
the database. We produced greater than 1800:1 compression ratios on real data.

. Scalability: We can handle databases of arbitrarily large number of records; the
method’s preprocessing time scales linearly with the size of the database. Moreover,
it is parallelizable with a straightforward parallel implementation.

. Query time: The method can answer arbitrary queries in a short time when used ap-
propriately, that is, a few seconds for a NetCube of level 4.

. Accuracy: The method has reasonable accuracy when using low levels (closer to the
data) to answer queries. More research is needed for effective error reduction when
higher level, recursively combined BN models are used.

. Suitability to data mining: The representation that is used by the algorithm, namely
Bayesian networks, are an excellent method for visually eliciting the most relevant
causes of a quantity of interest and are a natural method to support data mining.
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Endnotes

The Gamma function is defined as I'(x) = Lme"tx’ldt. For the case where x is a non-
negative integer, I'(x + 1) = x!.

Probabilistic inference isageneralization of logical inference—givena BN, it computes
the probability of the truth of a compound predicate (query) rather than a true/false
value.

For confidentiality reasons, we cannot reveal the name of the retailer or the products
involved.

http://www.almaden.ibm.com/cs/quest/
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Chapter V

Applications of Bayesian
Networks in Reliability
Analysis

Helge Langseth, Norwegian University of Science and Technology, Norway
Luigi Portinale, University of Eastern Piedmont, Italy

Abstract

Over the last decade, Bayesian networks (BNs) have become a popular tool for modeling
many kinds of statistical problems. In this chapter we will discuss the properties of the
modeling framework that make BNs particularly well suited for reliability applications.
This discussion is closely linked to the analysis of a real-world example.

Introduction

Atypical task for the reliability analyst is to give inputs to a decision problem. An example
can be to examine the effect that environmental conditions have on a component’s time to
failure, and give this as input to a maintenance optimization problem. As the quantities in
such studies are uncertain or due to random fluctuations, the end result should be a statistical
model describing a set of random variables. This model must be mathematically sound, and
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at the same time easy to understand for the decision maker. Furthermore, the model must be
represented such that the quantities we are interested in can be calculated efficiently. In a
statistical setting, the numbers we would like to find are either conditional probabilities (e.g.,
the probability that a component will survive for more than one year in a given environment),
or deduced numbers (for instance, the expected life-length of the component).

All these requirements have led to an increased focus among reliability analysts on flex-
ible modeling frameworks like Bayesian network (BN) models. A current research-trend
is to compare classical reliability formalisms to BNs, and it has been shown that BNs have
significant advantages over the traditional frameworks, partly because BNs are easy to use
in interaction with domain experts in the reliability field (Sigurdsson, Walls, & Quigley,
2001). The history of BNs in reliability can (at least) be traced back to Barlow (1988) and
Almond (1992).

We see a partiality to discrete variables in the BN community, mainly due to the technicali-
ties of the calculation scheme (see, for example, Jensen, (2001)). We note that the BNs’
applicability in reliability analysis would be enormously limited if one would only consider
discrete variables, and we will therefore not limit our attention in this way, but rather em-
brace models containing both continuous as well as discrete variables. (See Moral, Rumi,
and Salmeron (2001) and Gilks, Richardson, and Spiegelhalter (1996) for two methods of
handling continuous distributions in BNs.)

In this chapter, we will consider applications for BNs in reliability, and discover some of the
most prominent reasons for the increasing popularity of BN models in that field of science.
The chapter is organized as follows: We start by giving the basics of the BN framework,
then we consider BN modeling. Next we analyze the reliability of a real-life system using
a BN. Finally, we offer some conclusions.

Bayesian Networks

A Bayesian Network (Cowell, Dawid, Lauritzen, & Spiegelhalter, 1999; Jensen,
2001; Pearl, 1988) is a compact representation of a multivariate statistical distribution
function. A BN encodes the probability density function governing a set of h random
variables X = (X, ..., X ) by specifying a set of conditional independence statements
together with a set of conditional probability functions (CPFs). More specifically, a
BN consists of a qualitative part, a directed acyclic graph where the nodes mirror the
random variables, and a quantitative part, the set of CPFs. An example of a BN over the
variables X = (X,, .. ., X,) is shown in Figure 1. Only the qualitative part is given.

The driving force when making BN models is the set of conditional independence state-
ments the model encodes. We will use the notation X L L Y | Z to denote that the random
variables in the two sets X and Y are conditionally independent given the variables in Z. If
Z is the empty set, we simply write X L1 Y to denote that the sets X and Y are marginally
independent. We use X .1 Y | Z to make explicit that X and Y are conditionally dependent
given Z.
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The qualitative part of the BN is used to encode the conditional independence statements,
but before we present the mathematical properties of the BN structure, we need some nota-
tion: We call the nodes with outgoing edges pointing into a specific node the parents of that
node, and say that X is a descendant of X, if and only if there exists a directed path from
X; to X; in the graph. In Figure 1, X, and X, are the parents of X, written pa(X,) = {X,, X,}
for short. Furthermore, pa (X,) = {X,} and because there are no directed paths from X, to
any of the other nodes, the descendants of X, are given by the empty set and, accordingly,
its nondescendants are {X,, X,, X,, X.}. The edges of the graph represent the assertion that
a variable is conditionally independent of its nondescendants in the graph given its parents
in the same graph. The graph in Figure 1 does, for instance, assert that for all distributions
compatible with it, we have that X, is conditionally independent of {X,, X,, X.} when
conditioned on {X_}, X, LL{X, X,, X.} | X,. Another example is obtained by looking at X
pa(X,) = &, and the descendants of X, are {X,, X,, X}, so its only nondescendant is X,. This
gives us that X, L L X, in this model.

All conditional independence statements can be read off a BN structure by using the rules
of d-separation (Pearl, 1988). The general analysis of d-separation centers around the three
categories of network fragments shown in Figure 2: The serial, the converging, and the
diverging connection. We will now look at examples where each of these three types of
connections are given meaning in the context of reliability analysis.

Let X, denote the planned preventive maintenance (PM) program for a given component, let
X, be the implemented PM, and X, the life-length of the component. To model the interplay
between the three quantities, we want to encode conditional independence statements in a
model s.t. If we do not know the implemented PM program, then the planned PM can tell
us something about the life-length of the component. However, as soon as we learn about
the implemented PM program, the plans are irrelevant for the life-length. This is exactly
the implications of the serial connection (Figure 2(a)), which encodes that X, L L X, | X,,
but X, LA X, marginally.

Figure 1. An example BN over the nodes {X,, . . ., X.}. Only the qualitative part of the BN
is shown.
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Next, let us look at the quality of the production from an assembly line. The three random
variables we will consider are the quality of the first item that was produced at this line (Y ),
the quality of the second item (Y,), and a measure of how well the assembly line operates
overall (Y,). Now, if Y, is unknown to us, information about Y, being good (bad) would
make us infer that the quality of the line as such (Y,) was good (bad) as well, and finally that
Y, therefore would be good (bad) too. Thus, Y, £ Y,. On the other hand, if the quality of
the production line is known, the quality of each produced item may be seen as independent
of each other. Figure 2(b), the diverging connection, dictates these properties: Y, L1 Y, |
Y, butY, k1Y, marginally. Note that parts (a) and (b) in Figure 2 in principle encode the
same conditional independence statements. However, if we look at the network fragments
as causal models (Pearl, 2000), the two are obviously different.

Finally, we consider again the assembly line, and let Z, be the quality of an assembly line,
Z, the environmental conditions of the production (temperature, humidity, etc.), and Z, the
quality of a product coming from the assembly line. The quality of the assembly line is a
priori independent of the environmental conditions; however, as soon as we observe the
quality of the product, we can make inference regarding the quality of the line from what is
known about the environmental conditions. If, for instance, the environment is poor when
the quality of the product is good, one would assume that the quality of the line is favorable
as well. The converging connection in part (c) encodes these properties, as we have Z, 1L
Z, but Z L+t Z, | Z,

When it comes to the quantitative part, we will use f(x | y) to denote the CPF of X given
y. The same notation is used whether X is a vector of discrete or continuous (or mixed)
variables. We will sometimes call f(x | y) a CPF even if y is empty, but will use f(x) as a
shortcut for f(x | ©).

Now, each variable is described by the CPF of that variable given its parents in the graph,
that is, the collection of CPFs {f (x| pa (x)))}",_,. The underlying assumptions of conditional
independence encoded in the graph allow us to calculate the joint probability function as:

Figure 2. Three small network fragments describing different structural situations: (a) se-
rial, (b) diverging, and (c) converging

PN PN
Z1 Za
(a) Serial (b) Diverging  (¢) Converging
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o, o) =] ] FOalpatx) (1)
i=1

and this is in fact the main point when working with BNs: assume that a distribution func-
tion f(Xl, ..., X,) factorizes according to Eq. 1. This defines the parent set of each X, which
in turn defines the graph, and from the graph we can read off the conditional independence
statements encoded in the model. Hence, the graphical representation is the bridging of the
gap between the (high level) conditional independence statements we want to encode in
the model and the (low level) constraints this enforces on the CPF. To fully specify the set
of CPFs, we must (i) select parametric families for each f(x; | pa (X)), and (ii) determine
values for all parameters of each CPF. Alternatively, we can make nonparametric statements
regarding f(x; | pa (x)).

Building BN Models

When we want to build a BN, we rely on two sources of information: Input from domain
experts and statistical data. In the reliability community, most applications are built in in-
teraction with domain experts. In this section, we will therefore briefly describe the basics
when building BN models based on elicitation of domain experts. Building BNs from expert
input can be a difficult and time consuming task. This is typically an assignment given to a
group of specialists. A BN expert guides the model building, asks relevant questions, and
explains the assumptions that are encoded in the model to the rest of the group. The domain
experts, on the other hand, supply their knowledge to the BN expert in astructured fashion. In
our experience, it will pay off to start the model building by familiarization. The BN expert
should study the domain, and the reliability analysts require basic knowledge about BNs.
As soon as this is established, model building will proceed through a number of phases:

0. Decide what to model: Select the boundary for what to include in the model, and
what to leave aside.

1. Defining variables: Select the important variables in the model. The range of the
continuous variables and the states of the discrete variables are also determined at
this point.

2.  The qualitative part: Next, we define the graphical structure that connects the vari-
ables. In this phase, it can be beneficial to consider the edges in the graph as causal,
but the trained domain expert may also be confident about conditional dependencies/
independencies to include in the model. Domain experts can often be very eager to
incorporate impractically many links in the structure in an attempt to “get it right.”
The BN expert’s task in this setting is to balance the model’s complexity with the
modeling assumptions the domain experts are willing to accept. Often, a post process-
ing of the structure may reveal void edges (e.g., those creating triangles in the graph
(Abramson, Brown, Edwards, Murphy, & Winkler, 1996)).

3.  The quantitative part: To define the quantitative part, one must select distributional
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families for all variables and fix parameters to specify the distributions. If the BN
structure has not been carefully elicited (and pruned) this may be a formidable task.
Luckily, the consistency problems common when eliciting large probability distribu-
tion functions are tackled by a “divide-and-conquer” strategy here. If each CPF f(x, |
pa (x;)) is defined consistently, then this implies global consistency as well (Charniak,
1991). To elicit the quantitative part from experts, one must acquire all CPFs {f(x, | pa
(x))}",_, inEq. 1, and once again the causal interpretation can come in as a handy tool.
Alternatively, the expert can supply a mix of both marginal and conditional distribu-
tions, which can then be glued together by the IPFP algorithm (Whittaker, 1990).

4.  Verification: Verification should be performed both through sensitivity analysis and
by testing how the model behaves when analyzing well-known scenarios. Typically,
this step gives need for refinement and redefinition of the model, and this is repeated
until the work put into improving the model does not lead to substantial benefits. As
pointed out by, for example, Druzdzel and van der Gaag (2000), the sensitivity with
respect to BN structure is relatively large, and the graph is thus the most vital part.
Sensitivity with respect to the parameters is in large dependent on the application.

Lately, some tools that are aimed at guiding the model-building have emerged. These tools
attempt to enable a domain expert to build a BN without interacting with a BN expert. For
instance, Skaanning (2000) describes a system that can be used to build troubleshooter
systems efficiently.

Reliability Analysis with Bayesian Networks

The aim of this section is to give some ideas regarding how BNs can be used to naturally
model systems that are considered in reliability analysis calculations. In particular, we will
study features like:

. Calculating the system’s reliability

. Uncertainty regarding local dependencies (i.e., probabilistic gates)

. Multistate variables (i.e., multiple behavioral modes)

. Uncertainty on model parameters

. Dependence between components (e.g., introduced by a common environment)

We will discuss these issues by way of a real-world example: A simple programmable logic
controller (PLC).

The most common technique for performing the type of calculations we will look into is
called fault tree analysis (FTA). However, as we will see in this section, BNs offer more than
FTAswhen it comes to modeling power. We will not dwell upon FTAs here, just mention that
a FTAmodel can be transformed into an equivalent discrete BN using quite straightforward

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.



90 Langseth & Portinale

techniques (Bobbio, Portinale, Minichino, & Ciancamerla, 2001).

System Description

We start by giving a brief description of the PLC controller. The block diagram of the system
is shown in Figure 3.

The PLC system is intended to process a digital signal by means of suitable processing units.
Aredundancy technique is adopted in order to achieve fault tolerance; three different chan-
nels are used to process the signal, and a voter hardware device (with 2-out-of-3 majority
voting), is collecting channel results to produce the output. For each channel (identified as
channels A, B, and C, respectively) a digital input unit (DI), a processing unit (CPU) and
a digital output unit (DO) are employed. The digital signal elaborated by a given channel
is transmitted among the units through a special dedicated bus called I0bus. This design
ensures that each channel has dedicated components to avoid common cause failures.

Next, the reliability of the system is increased even further by introducing redundancy also
at the CPU level. Each processing unit does not only relate to the digital input unit in its
own channel, but it also receives a copy of the signal from the other input channels. Three
buses called TriBus,, TriBus, and TriBus are used to obtain this. IOBus, of channel X
delivers the signal of DI, the digital input of that channel, to the tribuses of other channels
(i.e., to TriBus, with Y # X). Thereby, CPU, can read the signal from other input channels
using TriBus,. In case there are conflicts between the tree signals obtained by a processing
unit, it uses a majority voting to determine the input signal.

Figure 3. The PLC controller

Vi Vi \'s
vz DI, '/ DI, vz DI
I0busA Jl IObusB Jl I0busC Jl
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| TribusB
| TribusA
|
|
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Finally, the system is completed by a redundancy on the power supply system as two in-
dependent power supply units (PS, and PS,) are connected to the components. Failure of
only one PS unit is (in principle) not critical for the system’s operation. In the analysis we
consider the event that the controller fails to provide the correct control function. This hap-
pens if the power supply, the voter, or at least two of the three channels fail.

The Bayesian Network Model

In this section we follow the outline given in Section 3 to build a BN model of the controller:

Step 0: Decide What to Model

Only the physical system is modeled in this example. A more detailed model may try to
capture, for example, the effect that corrective maintenance, functional testing, and operating
conditions have on the availability of the system, but this is not considered here.

Step 1: Defining Variables

Each physical component’s state is modeled by a dedicated random variable. It also seems
reasonable to create a variable PLC, which models the status of the whole controller. Each
variable will have two states, and we use “F” for “Failed,” and “W” for “Working.”

Step 2: The Qualitative Part

As none of the physical components influence any of the others, they should be marginally
independent. All components influence the status of the PLC, as any component failure
would increase the probability of system failure. Furthermore, knowing the system’s state
would make the components conditionally dependent. Hence, at this stage of the modeling
we assume that a converging structure (Figure 2(c)) is the best modeling option. The result-
ing BN structure is shown in Figure 4.

Step 3: The Quantitative Part

The domain experts assumed that all the components had constant failure rates (as reported in
Table 1),and we used thatto allocate probabilities to the corresponding nodes. The probability
for a component being failed at a given mission time t is calculated as follows: Consider a
generic component C with failure rate 4 . Then, P(C = F) = 1 — e’ at any given time t.
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Figure 4. The first attempt to describe the system using a Bayesian network. Note the lack
of interpretability, and also the (way too) large parent set of the node PLC.
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A more difficult task is to determine the CPF of PLC. The BN structure has not made the
internal structure of the example system explicit, and we have not been able to break the
system model down into smaller parts. As usual we have to determine the probability dis-
tribution of the variable (PLC, in this case) given all possible combinations of the node’s
parents, but due to the lack of modularity, we have a total of 2!¥=262 144 different numbers
to elicit to define this CPF. Obviously, this is too much to take on, even if all numbers are
either 0 or 1. It therefore turns out to be difficult to create a BN using the structure we
selected in Step 2 above.

To overcome this problem, the most common method when working with such reliability
problems is to use the bottom-up principle, often combined with a top-down approach.
The bottom-up principle (closely related to the concept “divorcing,” (Jensen, 2001, p. 60))
means that one looks at how components combine to define the subfunctions that make the
system work. To this end, we decided to insert a number of extra variables into the model to
represent these subfunctions. These nodes are introduced to simplify the modeling, to make
the built-in redundancy in the controller system visible in the BN structure, and to make the
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model more modular. For instance, DI, and I0bus, together send the signal to CPU,. We
call this subfunction (sending the signal to CPU,) Inp,,, and introduce the node Inp,, to
denote whether the two components achieve that task. Hence, Inp,, takes on the two states
“Failed” and “Working;” whether it is working or not is determined by the status of DI
and 10bus,. Inp,, therefore gets these two nodes as its parents in the BN. Similarly, Inp,,
is introduced to control if a signal from input B reaches CPU, (so, Inp,, is monitoring the
combined effort by DI, IOBus;, and TriBus,), and Inp, . is introduced in the same way.
We also make new variables to model the signals arriving at CPU, and CPU._..

Next, we introduce the variable In,, which tells the state of the input signal received by
CPU, after majority voting (recall that each CPU will perform a 2-out-of-3 voting if there
is a conflict between the signals). In, will therefore tell how Inp,,, Inp,;, and Inp, . work
when combined. Due to the symmetry of the controller, we introduce the variables In, and
In_ in the same way.

Sig, is introduced to model the correctness of the signal sent from CPU,, to the output card,
and finally Ch, models the dependability of the signal from channel A to the voter. Again,
symmetry makes us introduce similar nodes taking care of the signals from channels B and
C. Figure 5 shows the final BN structure. The new nodes all model the availability of the
different substructures of the system, and we assume their statuses as given deterministically
by the status of their components.

Alternatively, one could use the top-down way of thinking, and would then ask questions
like “How does the PLC fail?”, and use the answer (“Failure to the power supply, voter, or
the signal channels™) to motivate the two new nodes PS (power supply, determined by PS,
and PS,) and Ch (telling whether at least two of the channels work). Next, one would focus
on how Ch could fail, which would give rise to Ch,, Ch_, Ch_, and so forth.

Step 4: Verification

Verification did not relieve any fundamental flaws in the modeling. The model was therefore
considered complete. Note that the BN is multiply connected (it has a number of undirected
cycles), essentially because of the influence the physical components have on the different
channels.

Basic Reliability Results

We can now evaluate the system’s unreliability by computing the probability P(PLC=F)
in our BN. The calculated unreliability is plotted with a solid line in Figure 7 as a function
of the mission time t.

Next, we consider how to analyze the criticality of the system components with respect to
system failure. To this end, we should consider system failure as evidence provided to the
BN. There are two main computations that can be performed:
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Figure 5. A Bayesian network model describing this system. A number of “dummy”” vari-
ables are introduced to improve readability; only the double-lined nodes were included in
the initial model. The PLC node models the status of the whole controller.

PLC Ps

1. Theposterior probability of each single component having failed given that the system
has failed

2. The most probable configuration over the set of components given system failure

The first analysis allows one to obtain information about the criticality of each component.
It is calculated by entering evidence that the top event has occurred, and the probability
of each component having failed is computed. The right column of Table 1 reports these
numbers computed at mission time t=4-10° hours. The component criticality is obviously
a more significant measure than their prior failure probability, for instance, when we want
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to repair the system. We notice that the processing units are the most critical components
with an importance measure of about 38%.

The second kind of analysis is more sophisticated, as it calculates failure probabilities over
sets of components. One can think of the calculations taking place as finding the posterior
joint probability of all sets of components, given the fact that the system has failed (see
Nilsson (1998) for practical algorithms).

Table 2 reports the sets of failed components that have the highest probability of failure
given that the system has failed. Table 2 should be read such that the mentioned components
are faulty, whereas all the others are working (e.g., out of the 262,144 possible configura-
tions, the most probable given system failure is that two CPUs are faulty, whereas all other
components work properly; the probability for this situation is about 4.5%).

Table 1. Failure rates (per hour) and component importance calculated at mission time t=4-10° h

Component Failure rate Posterior prob.
10bus A, =2.010° 0.002
Tribus A, =2.010° 0.002
\oter A, =6.610° 0.118

DO Ao = 2.45107 0.204
DI Ay, = 2.8107 0.172
PS Ay = 3.37107 0.176
CPU Ay = 4.82107 0.383

Table 2. Most probable posterior configurations

Components Posterior probability
{CpPU,, CPU_} 0.045
{CPU,, CPU_} 0.045
{CPU,, CPU.} 0.045

{\oter} 0.027

{CPU, DO} 0.022
{CPU,, DO_} 0.022
{CPU,, DO,} 0.022

{CPU,, DO} 0.022
{CPU_, DOA} 0.022
{CPU,, DO} 0.022

{PS,, PS;} 0.021
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Coverage Factors in BNs

An important modeling improvement in redundant systems considers coverage factors.
The coverage factor is defined as the probability that a single failure in a redundant system
entails a complete system failure. This accounts for the fact that the recovery mechanism
can be inaccurate, and that the redundancy therefore becomes inoperative even when only
one component has failed. Coverage factors find a natural application in BNs, where we
resort to defining probabilistic gates.

Figure 6 reports an excerpt of Figure 5 related to the gate labeled PS (modeling the power
supply subsystem composed of the two single units PS, and PS,). It shows a probabilistic
AND-gate and the CPF, which models the situation. Recall that the events are binary, with
values denoted by W (working) or F (failed). When using the deterministic AND-gate, PS
has failed (with probability 1) when both inputs are down, and working (with probability 1)
otherwise. In the probabilistic case, the power supply may be down with some probability
1-c even when only one input is down. Here, c is called the coverage factor, and in our case
we interpret it by noting that 1-c gives the probability that a failure of one power supply
unit destroys the whole power supply system (e.g., by short circuiting).

To show the effect of the coverage factor on the availability of the system, we introduced a
coverage factor c to the gate PS. We calculated the unavailability of the system for ¢=0.9,
¢=0.95, and ¢=0.99, and give the results in Figure 7 (for a time horizon of t=10° h). For the
sake of comparison, also the deterministic case (coverage factor c=1) is reported.

Multistate Nodes

Next, we will look at events whose behavior is best described by multistate variables. This
is usually related to another modeling issue that may be quite problematic to deal with when
using traditional tools in the reliability community, namely components failing in some
dependent way. Consider, for instance, the case in which the power supply may induce a
control logic failure when failing, for example, due to over voltage. This can be naturally
modeled in a BN by connecting each power supply to the CPU nodes. This simply means
that new edges are added from nodes PS, and PS, to each CPU node in the BN of Figure

Figure 6. An AND gate with coverage and the corresponding CPF

P(PS —F|PS; = W.PS; =) = 0
P(PS —FIPS; = W.PS; =F) = 1—c
P(PS —FIPS; = F.PS; =W) = 1—c

C_PS D p(PS—FPS; =F.PS, =F) = 1
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Figure 7. System unreliability for different coverage factors
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5. One can be even more precise by resorting to multistate variable modeling: Each PS,
unit (i=1, 2) can be modeled as having the three states Working, Over voltage, and Failed,
and connected as a parent to each CPU node CPU,, CPU,, and CPU_.

The CPF of each CPU is defined such that it is unaffected by the power-supply as long as
it is either working or failed, but as soon as PS goes into “over voltage,” we can assign a
probability to the event that the CPU immediately fails as well.

This shows how a flexible combination of basic features of a BN can naturally overcome
limitations of other modeling frameworks. The abnormal status of a power supply now
has both a direct as well as an indirect effect on the system dependability, where the latter
originates from the power supplies’ (potentially) negative influence on the processing units
in the system.

Note that we have introduced this extra aspect to our model without problems; in fact, only a
small part of the model is changed, and this is seamlessly integrated into the overall BN.

Parameter Uncertainty

Our next example takes a closer look at parameter uncertainty. In the Bayesian setting, pa-
rameters are considered random variables, and are modeled using probability distributions.
Accordingly, the system’s unreliability is calculated as a weighted average over the possible
parameters values, and do not reflect a single deterministic value.

To illustrate this point, we can carry out the following experiment, again focusing on the
power supply nodes. The parameter we require is in this case the failure rate of a power
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supply, A In the Bayesian setting, we may assume that A is a random variable, for in-
stance by using a Gamma-distribution: A, ~ G(a,B). It seems reasonable to assume that
the hyper-parameters o and B are chosen such that A  gets expectation corresponding to
the value given in Table 1 (i.e., E[A.g ]= 0-$=3.37-107). We can then set o to tune the head
and tail of the distribution.

Inthe BN structure, each PS node gets A  as anew parent (see Figure 8). We mustalso define
its CPF, and do that by insisting that P (PS, =F |A ;= ;) = 1 —exp(-4 - t) for i=1, 2.
We can now take the parameter uncertainty into account by calculating the system’s
unavailability at a given mission time t from our (extended) BN. Figure 9 provides the
system’s unreliability under the assumption of different Gamma-distribution for the power
supplies’ failure rates. We notice that there is a small sensitivity in the assumed distribu-
tion. However, as the system’s unavailability is essentially linear in A, (in particular
we have that 1-exp(-A,gt) = A st for small values of A 1), the effect of the parameter
uncertainty is limited in our example. A more interesting situation occurs when the pa-
rameter uncertainty induces dependence between the different components, and this is
examined in Section 4.7.

Figure 8. A is the failure rate of PS. It is modeled as a random variable.

Figure 9. Unreliability for different prior distributions for A
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Components Sharing a Common Environment

When modeling complex coherent systems, it is quite common to assume that components
can be considered independent, even when they are operating in a common environment.
Several researchers have been trying to overcome this defect by explicitly modeling the
correlation between components’ life-lengths that the shared environment introduces. In
this subsection we will elaborate on a solution to this problem described by Lindley and
Singpurwalla (1986).

Consider a system of two components, where the system works if at least one of the com-
ponents works. The components have life-lengths T, and T, respectively, and the system’s
life-length is thus given as R=max(T,,T,). Lindley and Singpurwalla (1986) assume that
when the components are operating in a controlled laboratory environment, their life-lengths
T, have constant failure rates A, (i=1,2).

Next, the two components are exposed to some common environment, and this introduces
a correlation between T, and T,. A rough environment will lead to reduced life-lengths for
both components, whereas a gentle environment would imply that the expected life-lengths
of both components were increased. We use a random variable E to model the effect of the
common environment. It is assumed that the effect of the environment is proportional to the
failure rate, that is, T,|{£=¢} is exponentially distributed with parameter ¢4 In this way,
a hash environment would correspond to a high value of E, whereas a friendlier environ-
ment corresponds to a smaller value of E. A correlation between T, and T, is introduced if
E is not observed, whereas T, L L T,|E (compare Figure 10(a) to Figure 2(b)). Lindley and
Singpurwalla (1986) continue their modeling by assuming E to follow a Gamma distribu-
tion with known parameters, and (amongst other things) derive the marginal distribution
of R when E is unobserved.

We can extend this example by assuming that we can characterize the environmental effect E
by regression. That is, we presume the existence of a number of covariates Y, . . ., Y, such
that E follows a distribution with parameters defined as functions of these covariates. The
corresponding model with ¢ = 2 is shown in Figure 10(b). Finally, in Figure 10(c) we have
included measurement uncertainty for the covariates. This model applies if we are not able to
measure the covariates (Y,) themselves; only the noisy measurements (Z) are observable.

To exemplify the use of this model, we quantify the CPFs as follows: The covariates Y, must
be assumed to be realizations of some distribution for this to work. Here we have no a priori
information, and they are therefore allocated vague prior distributions (Gaussian distributions
with expectation 0 and variance 10° were used). Measurements are assumed unbiased with
variance 0.1, that is, Z [{Y; = v}~ N (v,, 0.1). We follow Lindley and Singpurwalla (1986)
and let the environment be determined by a Gamma distribution, E ~ I'(r, p). We define the
rate by u = exp(-B™), and assume known shape r = 2. g = 0.01 and $,= 0.04 were chosen
rather arbitrarily in this example. Finally, T|{£=_} follows the exponential distribution with
parameter &4;; A, = 3-10° and A, = 2:10* respectively. We used BUGS (Gilks, Thomas, &
Spiegelhalter, 1994) to calculate P(R>1000|Z,=1, Z,=2)=0.29and corr(T ,T,|Z,=1,Z,=2)=0.90.
If we fail to model the correlation between the two life-lengths, and use the model depicted
in Figure 10(d), we would calculate P(R>1000|Z,=1, Z,=2)=0.41.

This example highlights the importance of being able to make mathematical models that
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Figure 10. (a) Two components in a parallel system have life-lengths T, and T, respectively,
giving the system a life-length of R = max(T,, T,). The random variables T, and T, are tradi-
tionally assumed independent, but when exposed to a common environment, E, dependence
is introduced. (b) Covariates Y, and Y, are measured to infer properties of the environment.
(c) The model is enhanced by introducing measurement error on the covariates. Z, and Z,
denote the measured values of Y, and Y, , respectively. (d) The model that is (implicitly)
used if the common environment is neglected. See text for further details.

(d)

we actually believe in. BNs can be a framework to make such models, also in the context
of reliability analysis.

Conclusion

In this chapter. we have considered the applicability of Bayesian networks for reliability
analysis. BNs constitute a modeling framework which is particularly easy to use for interac-
tion with domain experts, and this makes it a useful tool in practice. Furthermore, as BNs rest
upon probability theory, many of the fundamental discussions obstructing other modeling
frameworks are avoided. The sound mathematical formulation has been utilized to generate
efficient learning methods. BNs are equipped with an efficient calculation scheme, which
often makes them preferable to traditional tools like fault trees.
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Many BN tools are available to the practitioners. Examples of commercial tools available
online include Hugin (http://www.hugin.com/), BayesiaLab (http://www.bayesia.com/),
and Netica (http://www.norsys.com/). BUGS (http://www.mrc-bsu.cam.ac.uk/bugs/) is a
general-purpose modeling framework where inference is based on simulation.
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Chapter VI

Application of Bayesian
Modeling to Management

Information Systems:
A Latent Scores Approach

Sumeet Gupta, National University of Singapore, Singapore
Hee-Wong Kim, National University of Singapore, Singapore

Abstract

This chapter deals with the application of Bayesian modeling as a management decision
support tool for management information systems (MIS) managers. MIS managers have to
deal with problems which require prediction and diagnosis for decision making. Lacking a
proper tool for making informed decisions, MIS managers feel hard-pressed for a scenario
analysis which can take into account the proper causal relationships existing in the real
world. Bayesian modeling could be an appropriate support tool for such decision making.
However, its application to decision support in MIS is different from application to other
fields, as the variables in field of MIS are hypothetical. This brings in a need for Bayesian
modeling at a hypothetical variable level rather than at the observed variable level. In this
chapter we will study how Bayesian modeling can be used as a tool for managerial decision
support in MIS. The conclusions of this chapter can also be extended to other social science
researches where the variables are hypothetical in nature.
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Structural equation modeling (SEM) is good for empirical validation but it is not suitable
for prediction and diagnosis. Prediction and diagnosis are useful for managerial decision
support and can be done using Bayesian networks. Bayesian networks, however, do not dif-
ferentiate between causal and spurious relationships. The capability of SEM in empirical
validation combined with the prediction and diagnosis capabilities of Bayesian modeling
offers an excellent tool for managerial decision support. This study proposes the linkage of
SEM to Bayesian testing, for prediction and diagnosis from an empirically validated model.
We apply the proposed approach to management decision support for customer retention
in a virtual community. This research helps SEM researchers in extending their models for
managerial prediction and diagnosis. It benefits Bayesian researchers by providing for the
application of modeling causal relationships at a latent variable level. Modeling at the
latent variable level, before Bayesian testing, would help in simplifying and uncovering the
situation under study, and facilitating the identification of causal relationships.

Introduction

Structural equation modeling (SEM) is a causal modeling approach which combines cause-
effect information with statistical data to provide a quantitative assessment of relationships
among the studied variables. If the relationships are significant, the theoretical construction
is considered valid and can be used to provide guidelines for the application of the model
in practice. Although SEM is good for empirical validation of theoretically based causal
relationships, and to some extent for prediction also, it is not suitable for diagnosis of the
situation and thus has limitations in managerial decision making. Moreover, SEM primar-
ily models linear relationships. In case the relationships are nonlinear, the potential effect
of independent variables in explaining the variance in dependent variables would not be
accurately known, resulting in poor prediction and diagnosis.

These limitations of SEM can be overcome by using Bayesian networks. Bayesian networks
are especially suited for prediction and diagnosis and can be trained on the same structure
with new data. Moreover, Bayesian networks are suitable for modeling nonlinear relation-
ships. They are, therefore, useful for assessing the impact of changes in the modeled situation.
Bayesian networks, however, have certain limitations in causal modeling from the viewpoint
of social science research. To establish causality, three criteria, namely temporal order, as-
sociation, and elimination of plausible alternatives must be fulfilled (Neuman, 2003). In
Bayesian modeling, the relationships are based on association (conditional independence),
and to some extent temporal order, but the third criterion of elimination of plausible alter-
natives is not fulfilled. The result is that Bayesian networks do not differentiate between a
causal and a spurious relationship. Although, the theoretically valid structural model can
be forced as a Bayesian net, the Bayesian networks are not as capable as SEM for theoreti-
cal explanation (Anderson, Mackoy, Thompson, & Harrell, 2004). Another limitation of
Bayesian networks from MIS research perspective is that they do not differentiate between
a latent construct and its measures (observed variables).

These limitations of Bayesian networks can be overcome by using a theoretically based
and empirically validated model (which is possible by using SEM) and developing the
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Bayesian model at the hypothetical variable level. Therefore, this study aims to propose a
causal modeling approach for management decision making by linking SEM to Bayesian
modeling. We conduct our study in the context of a virtual community (VC). At the heart
of the success of a VC is increased traffic and participation among customers. Customer
retention in a VVC is therefore critical to its success (Efraim & King, 2003). This study shows
how the proposed approach can be used for identifying causal relationships and supporting
MIS decision-making.

Linking SEM to Bayesian Modeling

SEM and Bayesian networks are different from each other in numerous ways (Anderson &
Vastag, 2004). First, SEM is a causal modeling approach based on reasoning by cause and
effect, while Bayesian networks are based on probabilistic causation (occurrence of a cause
increasing the probability of an effect). Second, SEM is suitable for empirical validation of
atheoretical construction at the latent variable level, while Bayesian networks are especially
suited for prediction and diagnosis of any situation at the individual item (observed variable)
level. Third, while Bayesian networks can be trained further on the same structure with new
data, SEM is not suitable for modeling with new data as the structure may change. More-
over, unlike Bayesian networks, SEM does not support diagnosis. Despite their numerous
other differences (Anderson & Vastag, 2004), the two approaches may be combined on the
basis that Bayesian networks can represent causality under certain conditions, as explained
later in this section.

Causal Modeling and Probabilistic Causation

Probabilistic Causation Theory

Causal modeling is an interdisciplinary field devoted to the study of methods of causal infer-
ence. According to Hume (1969), causation can be characterized as regularity of constantly
conjoined pairs of events [effect = f(cause)] under conditions of temporal priority (a cause
must precede the effect) and contiguity (a cause is temporally adjacent to an effect). Hume
(1969), however, does notaccount for imperfect regularities and does not distinguish between
a genuine causal relation and a spurious association (Anderson & Vastag, 2004). This gives
rise to probabilistic causation, which characterizes the relationship between cause and effect
using the tools of probability theory (Hitchcock, 2002), and is a paradigm switch from the
absolute determination of an effect due to the occurrence of a cause to the occurrence of a
cause increasing the probability of an effect. The underlying assumption is that incomplete
knowledge of causes results in uncertain cause-effect relationships. Probabilistic causation
implies that the effect is produced by specified causes (direct or known causes) and un-
specified causes (indirect causes such as errors and unknown causes) (Anderson & Vastag,
2004). In other words, effect = f (specified causes, unspecified causes). This is the basis for
SEM. This idea can be represented by conditional probability as p(effect | cause) = p(effect
N cause) / p(cause), which forms the basis for Bayesian modeling.

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.



106 Gupta & Kim

SEM and Bayesian networks are viewed as causal models when they satisfy the conditions of
causal sufficiency, causal Markov and faithfulness conditions, and independence of specified
and unspecified causes (Anderson & Vastag, 2004). The principle of common cause states that
if two variables in a population are associated and neither is a cause of the other, they must
share a common cause (Reichenbach, 1956). For example, if variables X and Y are related,
but not causally, then they must share some (a set of) common cause(s), say Z. The justifica-
tion of the causal Markov condition states that every effect variable, conditional on its direct
causes, is independent of all variables that are not its causes (Spirtes, Glymour, & Schienes,
1993). This means if X does not cause Y, then p{X|Y & Parents(X)} = p{X/Parents(X)}. The
faithfulness condition states that probabilistic independencies are a stable result of the causal
structure and not due to happenstance or specific parameter values (Anderson & Vastag,
2004). Therefore, the joint population probability distribution over a defined variable set
is assumed to be stable or faithful to the underlying causal structure. A model is said to be
causally sufficient if the variable set includes all relevant common causes.

A causal model may be expressed as M = {S, @}, where S is the structure of the causal
assertion of the variable set V portrayed by a directed acyclic graph (DAG) and O, isa set
of parameters compatible with S (Anderson & Vastag, 2004). With the encoded structure
characterized asdirected (two-headed arrows depicting noncausal association are not allowed)
and acyclic (feedback loops such as “A—B —A” are not allowed), a DAG can be translated
into a set of recursive structural equations with independent errors, which satisfies the causal
Markov condition. A discrete Bayesian network is a specialization of a causal model M =
{S. 6}, where the structure S implies a set of conditional probability distributions and .=
[p{V, |Parents(V)),0,}, p{V,|Parents(V,),0,}, ...... , p{V, |Parents(V ),0 }].

Each variable has c, discrete values or states, and each ¢, is assumed to be a collection of
multinomial distributions, one for each parent configuration. The associated joint probability
distribution of the network is the product of the conditional probabilities in @, p(v,,....,v,)
= [1,, p{V/|Parents(V),6.}.

A Brief Overview of Bayesian Networks

A Bayesian network is used to model a domain containing uncertainty in some manner.
The network consists of a qualitative part and a quantitative part. The qualitative part is a
DAG consisting of nodes and arrows similar to constructs and their connectors in SEM.
The nodes represent stochastic variables and arrowheads represent dependencies among the
variables. The quantitative part is a set of conditional probability distributions. Thus, each
node contains the states of the random variable it represents and a conditional probability
table (CPT). The CPT of a node contains probabilities of the node being in a specific state,
given the states of its parents.

Figure 1 represents the technology acceptance model (TAM) as a Bayesian network. Con-
sider that the variables—perceived usefulness (PU), perceived ease of use (PEOU), and
adoption intention (Al)—can take the states {low, high}, {low, moderate, high}, and {yes,
no}, respectively. For example, this means that the variable, PU, of a system is deemed
either low or high by the user, and so forth for the other variables. Probabilities are as-
signed subjectively or according to frequency ratios from a database or a combination of
both (Anderson & Vastag, 2004). Assume that the prior probabilities of these states are as
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Figure 1. A Bayesian network

p(Low) [ p(High)
0.2 0.8

" Adoption Intention
Perceived PEOU PU
Usefulness pves) | p(No)
Adoption Low Low 0.7 0.3
Intention Low High 0.8 0.2

- Moderate Low 0.6 0.4

Perceived Moderate High 0.75 0.25
Ease of Use .

High Low 0.1 0.9

p(Low) | p(Moderate) | p(High) High High 02 0.8

0.1 0.2 0.7

shown in Figure 1. The values imply, for example, that 80% of the subjects perceive the PU
of the system as high and 20% perceive it as low. The CPT of the dependent variable IOU
shows the probability of the two states of Al for all combinations of the probabilities of the
independent variables, namely PU and PEOU.

Once the Bayesian network is defined, it can be used for making predictions (estimation of
forward inference from cause to effect) and diagnosis (backward inference from effect to
cause) about real or hypothetical cases. The basis of prediction and diagnosis is probabi-
listic inference, which is concerned with the revision of probabilities for a variable or a set
of variables when an intervention fixes the values of another variable or a set of variables
called evidence (Anderson & Vastag, 2004).

Prediction Using a Bayesian Network

Suppose we have evidence that the PU of a customer for an IT product is high and his PEOU
is low. We would want to know the probability that his Al for the IT product is “Yes.” This
can be computed using the chain rule of probability, according to which:

_ P(H)p(&y|H)...p(ey|H)
D" p(eifh)...p(e,|h) p(h)

heH

p(H|ey, ... )

p(Al =Yes)p(PU = High| Al =Yes)p(PEOU = Low| Al = Yes)

Z p(PU = High| Al =i)p(PEOU = Low| Al =i)p(Al =i)
ieAl

p(Al =Yes|PU = High, PEOU = Low) =
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P(Al =Yes|PU = High, PEOU = Low) = 0.34870.296*0.078 =0.526
0.296*0.078*0.348+0.504*0.022*0.652

Similarly, for Al being “No” given that perceived ease of use is low and perceived useful-
ness is high, the probability would be:

0.504*0.022*0.652 — 0473
0.296*0.078*0.348 +0.504*0.022*0.652

p(Al = No|PU = High, PEOU = Low) =

Thus, probability of intention to use being Yes is 0.526 and being No is 0.473. The likeli-
hood ratio is 0.526/0.473 = 1.11.

Diagnosis Using a Bayesian Network

Consider the case in which we have evidence that a person’s Al is “No.” We would want
to know which of PEOU and PU is the more likely reason for Al being “No.” We can use
Bayes’ rule to compute the posterior probability of each explanation:

p(PU = Lown Al = No) 3 Ze p(PU = Low, PEOU =g, Al = No) _ 0.148

p(PU = Low, Al = No) = = =0.226
p(Al = No) D, P(PU=U,PEOU =g, Al =No) 0652

... Where, u and e denote different states of PU and PEOU, respectively.

Similarly:
_ _ p(PU =u, PEOU = low, Al = No)

b(PU = Low, Al = No) = P(PU = Lown Al = No) _ Ze _0.02 oo

p(Al = No) >, .p(PU =u,PEOU =&, Al = No) " 0.652

p(Al = No) is a normalizing constant, equal to the probability (likelihood) of the data. The
results imply that a person’s perceived usefulness of the system is the more likely cause of
a person’s Al being “No” (the likelihood ratio is 0.226/0.033 = 6.84). By the chain rule of
probability, the joint probability of all the nodes in Figure 1 is p(PU,PEOU,AI) = p(PU) *
p(PEOU) * p(Al|PU,PEOU).

Linking SEM to Bayesian Testing

SEM can provide an empirically validated model based on theoretical construction. Also,
as SEM is particularly suited for latent variable modeling, it can provide the latent scores
of variables to serve as raw data for Bayesian modeling at the hypothetical construct (latent
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variable) level. The computation of latent variable scores has been briefly described below
and is discussed in detail by Joreskog (2000).

The measurement model in SEM can be written as:
x =A g + 9§, for exogenous or independent variables,

Where, x represents the individual items for independent variables,
€ is the latent variable corresponding to item X,
A, is the standardized coefficient of relationship between x and &, and
d Is the measurement error for item x.

Once the coefficients of Ax are estimated, they can be treated as fixed and the latent scores.
& can be computed for each observation in the sample by minimizing:

Z:il(xi —AE)T 0571 (% —A &), subject to the consraint: (1/ N)Z:iN:1 gel = o,

Where, N is the sample size,
‘i’ is the subscript for each observation,
O, is the covariance matrix of the residual errors,
¢ is the covariance matrix of latent variables, and
the superscript “T” denotes transpose of the computed matrix.

LISREL 8.54 (SEM software) facilitates computation of latent variable scores for the latent
variables of the model being tested. One of the possible uses of latent variable scores is
to estimate non-linear relationships among latent variables (Joreskog, 2000). As the func-
tional form of a Bayesian network is nonlinear, latent scores can be used for latent variable
modeling in Bayesian networks based on the assumptions under which Bayesian networks
represent causality. Based on the validated causal model resulting from SEM testing and the
latent variable scores, Bayesian modeling can facilitate management decision support such
as diagnosis and prediction of a business/managerial decision. Now we study the theoreti-
cal development and empirical validation of a model for customer retention in a VC. This
model would be an application ground for Bayesian modeling.
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Figure 2. A theoretical model for customer retention in a VC
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A Model for Customer Retention in a Virtual
Community

Virtual communities (VCs) can be defined as groups of people with common interests and
practices that communicate regularly and for some duration in an organized way over the
Internet through a common location or mechanism. A virtual community (VC) of committed
members is of great strategic value to online firms and vendors owing to its ability to attract
and retain members. However, online firms and vendors find it difficult to instill commit-
ment among their VC members. Based on the theory of reasoned action (TRA) (Fishbein &
Ajzen, 1975), Gupta and Kim (2007) developed a research model (Figure 2) for examining
customer commitment formation in a relationship-cum-interest based VVC. By understanding
the mechanism of customer commitment formation in a VC, online firms and vendors can
enhance customer commitment to the VC.

TRA is a widely-studied model from social psychology, which is concerned with the de-
terminants of consciously intended behaviors (Fishbein & Ajzen, 1975). TRA links beliefs,
attitudes, intentions, and behaviors. Beliefs influence one’s overall attitude about an object.
This, in turn, guides the individual’s intentions, which influence behaviors regarding the
subject. TRA can provide the basic framework for understanding the members’ commit-
mentto a VC.

As commitment is not the intended behavior of customer participation, but rather an outcome
of customer participation in the VC, Gupta & Kim (2007) proposed the direct link from at-
titude to behavior (commitment) rather than through commitment intention. This modification
is supported by attitude-behavior theory (e.g., Fazio, Powell, & Williams, 1989). According
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to Fazio et al. (1989), influence of attitude on behavior is strong when the attitude is based
on direct experience, or is readily accessible from memory when based on past experience.
As the VC members already have direct experience of participation, the likely outcome of
their positive attitude toward participation in the VC would be commitment to the VC.

According to TRA, customers’ attitude toward the attitude object is influenced by their
beliefs about the attitude object. The commonly used beliefs in IS studies are perceived
usefulness and perceived ease of use (Davis, 1989). Gupta and Kim (2007) used these beliefs
in studying members’ attitude toward participation in the VC. Usefulness of a \VC refers to
the degree to which individuals believe that interaction in a VC is useful for fulfilling their
purposes. Usefulness of a VC can be of two types, namely, functional usefulness and social
usefulness. Functional usefulness refers to the benefits related to functional, utilitarian, or
physical performance of a product or a service. In the case of a VC, such functional benefits
would be sharing information, sharing interests, or knowledge. Social usefulness refers to
the benefits related to the social standing one obtains in being a part of the VC, such as
recognition and social approval from other VC members. Ease of use refers to the degree
to which an individual believes that using a particular system would be free of physical
and mental effort. Gupta and Kim (2007) used system quality to represent the ease of us-
ing a VC (see McKinney, Yoon, & Zahedi, 2002). System quality is the basic component
of any information system and represents the effort required on the part of a member to
participate in the VC.

Usefulness and ease of use represent the cognitive aspect of human decision making. Studies
in consumer behavior (e.g., Batra & Ahtola, 1991) and social psychology (Zajonc, 1980)
also consider the affective aspects of human decision-making in studying attitude formation,
which represent the feelings side of consciousness (Oliver, 1997). From the affective per-
spective, Gupta and Kim (2007) considered pleasure and arousal. Pleasure and arousal allow

Table 1. Results of hypothesis testing using LISREL (SEM)

Dependent Variable Independent Variables Std. Beta R?

Attitude 0.28**

Functional Usefulness 0.22**

Social Usefulness ns
Commitment to VC - 0.32
System Quality -
Pleasure 0.21*
Arousal

Functional Usefulness 0.27%**

Social Usefulness ns
Attitude toward VC System Quality 0.13* 0.55

Pleasure 0.42%**

Arousal ns

Note: ns = not significant, * =p < 0.05; ** =p < 0.01; *** =p < 0.001
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for a greater range of positive emotions as compared to only joy, happiness, and interest in
other emotion models (Oliver, 1997). As members experience enjoyment in interacting with
other members of the VC (Hiltz & Wellman, 1997; Rheingold, 1993), affect can represent
the emotional experience of a member from such interaction in the VC.

This model was then subjected to empirical examination using SEM. The data for the
empirical examination was collected from the Web site of Urii.com—a relationship-cum-
interest-based VC—for 2 weeks. The reason for choosing a relationship-cum-interest-based
VC is that most of the VCs which are successful in terms of instilling commitment among
its members are either relationship-based or interest-based or a mixture of the two. The
survey results show that almost all (97.45%) the members in Urii.com are women (mostly
housewives). The mean age of the members of Urii.com is 30.43 years and the mean VC
usage experience is 1.27 years. The data was then subjected to analysis using SEM. The
outcome of SEM testing is shown in Table 1.

The fitindices (Normed y?=1.82, GFI=0.89, AGFI=0.86, NFI=0.96, NNFI=0.97, CFI=0.98,
RMSEA=0.055, Std. RMR=0.066) suggest an excellent fit (Gefen, Straub, & Boudreau,
2000). The hypothesis testing results indicate that functional usefulness, system quality,
and pleasure significantly influence attitude toward VC (R?=55%) and functional useful-
ness, pleasure, and attitude significantly influence customer commitment to VC (R?=32%).
The results support the significant role of affect in predicting attitude toward behavior. The
effect of functional usefulness and system quality on attitude is significant and is consis-
tent with the TAM model. The effect of pleasure is significant in predicting attitude and is
consistent with the previous studies (e.g., Batra & Ahtola, 1990) which study the role of
affect in predicting attitude. Now, we will subject this model for further examination us-
ing Bayesian modeling. Because social usefulness and arousal had insignificant effect on
attitude and commitment, we drop them for further examination. Also, because the effect
of system quality on commitment is insignificant, for the sake of simplicity, we also drop
system quality in Bayesian testing.

Causal Modeling Using Bayesian Networks

Developing a Bayesian Model

The two steps in developing a Bayesian model are structure learning and prior conditional
probability estimation. The empirically validated model using LISREL (Table 1) forms the
structure which is applied to the data for estimating conditional probabilities. The latent
variable scores obtained from LISREL are used as data for learning the conditional prob-
abilities of the latent variables in the structure obtained from LISREL. As depicted earlier,
the latent scores are computed by minimizing (Joreskog, 2000):

Z:il(xi — AL 05 7% — A ), subject to the constraint:(1/ N)ZL% E =@
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The matrices for the above computation are:

FUSE1 Aruser 0 SruseL
FUSE2 Aeuser 0 Srusk2
FUSE3 Aruses 0 FUSE Sruses 1
X E::E:; Ax 8 ;:PLEAl s (PLEAJ’S :PLEAl @ [%USE_PLEA 1]
PLEA2 PLEA2
PLEA3 0 ApLens SpLeAs
PLEA4 0 ApLEAL OpLEAL

Similarly, computations may be done for endogenous variables, namely, attitude and com-
mitment in this research.

Bayesian Network Structure Learning

Structure learning refers to the specification of the structure and the parameters of conditional
probability distribution of each node. Bayesian networks can either be generated by learning
the structure from the data or a structure can be forced. In case of the latter the conditional
probability of each node can be estimated either from the observed data or from experience.
In learning the structure from the observed data, there are chances of spurious relationships.
Hence, we apply a theoretically validated framework on the data for estimating conditional
probabilities. The set of model variables for Bayesian network application can be defined as
V = {Functional usefulness, Pleasure, Attitude, and Commitment} and U = {u,, u,, u,, u,}.
The complete structure of a Bayesian network (Figure 3) implies the following equations:

Functional Usefulness = f (u,)

Pleasure =f,(u,)

Attitude = f (Functional usefulness, Pleasure, u,)

Commitment = f,(Functional usefulness, Pleasure, Attitude, u,)

> w e

Figure 3. A Bayesian network of customer retention in an online store using a VC
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Prior Conditional Probability Estimation

Prior conditional probabilities are estimated from the latent scores obtained from SEM
(LISREL). Latent scores cannot be estimated in practice, but they can be computed (Jo-
reskog, 2000). The knowledge discoverer program (Sebastiani & Ramoni, 2000) was used
to estimate prior conditional probabilities. Each variable is first discretized into three states
(named as low, medium, and high). Any number of states could be chosen, but it is better to
use fewer states to identify a variable as this prevents complexities in judging the results.
The conditional probability of these states was estimated based on frequency. This means
that the data range is divided into three equal parts, and the frequency of each part in the data
is calculated. The prior conditional probabilities obtained, using the knowledge discoverer
program (Sebastiani & Ramoni, 2000) are shown in Table 2.

Table 2. Prior conditional probabilities

Variables
Functional . .
State Pleasure Attitude Commitment
Usefulness
Low 0.02 0.01 0.01 0.01
Medium 0.26 0.55 0.39 0.54
High 0.72 0.44 0.60 0.45

Figure 4. A Bayesian network of customer retention in an online store using a VC
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Based on the prior conditional probabilities, conditional probability distribution (CPD) for the
dependentvariablesis calculated using the knowledge discoverer program (Sebastiani & Ramoni,
2000). The CPD is shown in Figure 4. Once the structure is learned, it can be used to further
train the network if more data is available, in which case, the conditional probabilities (Table 2)
of the nodes in the network will change. The dynamic modeling does not change the theoretical
structure, unlike SEM, where new data may imply change in the model structure.

Table 3. Comparison of marginal log likelihood for various models

INDEPENDENT VARIABLES DEPENDENT MARGINAL
VARIABLES LOG-
FUSE | SUSE | SYSQ | PLEA | AROU | ATTI | comMm | LIKELIHOOD
v v v v v v v -1507.76
v x v v v v v -1181.19
x v v v v v v -1284.21
v v v v x v v -1292.33
v x x v v v v -929.36
x x v v v v v -966.68
v x v v x v v -970.16
v x v x v v v -985.46
x v x v v v v -1007.74
v v x v x v v -1016.95
v v x x v v v -1017.67
x v v v x v v -1057.89
x v v x v v v -1060.05
v v v x x v v -1062.39
v v x v v v v -1246.88
v v v x v v v -1265.71
v x x v x v v -709.65
x x x v v v v -713.53
v x x x v v v -729.84
x x v v x v v -757.44
v x v x x v v -783.11
x x v x v v v -790.56
x v x v x v v -790.91
x v x x v v v -811.06
v v x x x v v -812.57
x v v x x v v -861.87

FUSE: Functional Usefulness, SUSE: Social Usefulness, SYSQ: System Quality, PLEA: Pleasure,
AROU: Arousal, ATTI: Attitude, COMM: Commitment
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Model Evaluations

Parsimonious Model Based on Marginal Log-Likelihood

The Bayesian network gives marginal log-likelihood estimates for the network. Marginal
log-likelihood is a comparative measure proportional to posterior probability of the model
and is used to assess the goodness of fit of the model. It is a good enough measure for
identifying the best model but it does not give an idea of how much a model is better than
compared to another model. Our interest here is to assess the match between the Bayesian
scores of the model and the theoretically validated model obtained from SEM. We compare
various models in terms of their marginal log-likelihood value. Because the marginal log-
likelihood is minimized, the lesser its magnitude the closer is the predicted model to the
original one.

The comparison shows (Table 3) that the full model has a marginal log-likelihood value of
-1507.76. Inthe group of four variables, the best model includes functional usefulness, system
quality, pleasure, and arousal as independent variables, and the marginal log likelihood for
this model is -1181.19. In the group of three variables, the best model has functional useful-
ness, pleasure, and arousal as independent variables and the marginal log-likelihood for this
model is -929.36. In the group of two variables, the best model has functional usefulness and
pleasure as independent variables, and the marginal log-likelihood for this model is -709.65.
From SEM, we obtain the best model with functional usefulness and pleasure as significant
indicators. This is also confirmed using Bayesian modeling, which shows that the best model
has functional usefulness and pleasure as independent variables (-709.65).

Network Validation

Network validation tests the predictive accuracy of a model. A cross-validation procedure
assesses the internal consistency of the adopted Bayesian model (Andersonetal., 2004; Stone,
1977). The method starts by dividing the database into “n” parts. Then, for each part, the
technique predicts the values of a set of variables by estimating the conditional probabilities
of the network from the remaining parts. In our current model, we choose five parts, as the

Table 4. Network validation results

ACCURACY
RESPONSE VARIABLE PERCENTAGE Is)teavr;g Z:;ﬂ
Attitude 85.38 213
Commitment 92.87 1.55
Functional Usefulness 73.82 2.65
Pleasure 89.53 1.85
Overall 85.40 2.13
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data set has only 275 points. The procedure selects 55 cases as the response set and uses the
remaining 220 cases to predict the response. This procedure is repeated five times, with each
case being included in a response set over the course of the cross-validation. Table 4 shows
the results of cross-validation for the four constructs. The prediction accuracy of individual
variables and the overall model is quite high and within three standard deviations.

Application of Bayesian Model to Managerial
Decision Supportin a VC

Prediction (Forward Inference) Using the Current Research
Model

When the variable set as evidence node allows inference from cause to effect, the process
of inference is called prediction or forward inference. For example, if a person joins a VC
having low functional usefulness perception, then this information can be fed to the network
as evidence that the probability of functional usefulness being low is 1.0. The revised con-
ditional probability of the consequent nodes (attitude and commitment) is then calculated
by the Bayesian network for the three states, namely, low, medium, and high. From Table
5 (state = low), it is clear that the conditional probability of his attitude and commitment
being low or medium is increasing, while the conditional probability of his attitude and
commitment being high is decreasing. This is known as prediction. Two applications of
prediction in VC, namely, modeling customer retention and modeling impact of changes
are discussed below.

Table 5. Forward inference due to change in different states of functional usefulness on
different states of attitude and commitment

Variables
State Functional Usefulness Attitude Commitment
PCP NCP PCP NCP PCP NCP
Low 0.02 1.00 0.01 0.01 0.01 0.18
Medium 0.26 0.00 0.39 0.81 0.54 0.81
High 0.72 0.00 0.60 0.18 0.45 0.00

PCP: Prior conditional probability, NCP: New conditional probability
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Customer Retention

A customer is considered retained if he/she has high commitment to the VC, a necessary
but not sufficient condition for which is a positive attitude toward interaction in the VC.
So, we need to model both attitude and commitment for modeling customer retention. The
expected changes in attitude due to changes in functional usefulness and pleasure are shown
in Figure 5.

From Figure 5 it can be noted that as functional usefulness changes from low to medium
to high, the high state of attitude shows an increasing trend, the medium state of attitude
shows a decreasing trend, and the low state of attitude shows a constant trend. It can also
be noted that as pleasure changes from low to medium to high, the high state of attitude
shows an increasing trend, the medium state of attitude shows a mixed trend, and low state
of attitude shows a decreasing trend. An increasing trend in high state means an increase in
attitude; increasing trend in medium state means a moderate attitude; an increasing trend
in low state means decrease in attitude. The results therefore imply a positive relationship
between functional usefulness and attitude and between pleasure and attitude. This is the
same as the results obtained from SEM. For gaining positive attitude of customers toward
interaction in the VC, a VC vendor would like to enhance the high state, and possibly the
medium state, and lower the low state of attitude. A VVC vendor should therefore make ef-
forts to enhance customers’ functional usefulness and pleasure in the VC, so that the overall
attitude of the customer towards the VC increases. Figure 5 also depicts that even when
functional usefulness is low, the probability of attitude being low is low (which means at-
titude is high). Meanwhile, when pleasure is low, the probability of attitude being low is high
(which means low attitude). This means pleasure has a stronger relationship with attitude;
hence, to increase the attitude of customers, it is more important to enhance their pleasure
than to enhance functional usefulness.

Figure 5. Separate influence of changes in functional usefulness and pleasure on attitude

|—— Atti-Low - = - Atti-Med —— Atti-High |

0.90
0.80 =0.81 0.82 _+0.81
0.70 7 A0.69 4
. Tep61] 7 il
0.60 .61 056
0.50 2 K 7
0.40 oal ;o 0.4%
: _~0.38| "+, y
0.30 - - =0.30 .
- . t.
0.20 A 18 57 =0.19
0.10 <0.09
0.00 =5-6% — 0700 601 000 U.0U
Low Med High Low Med High
Fuse Plea

ATTI: Attitude, FUSE: Functional usefulness, PLEA: Pleasure
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Figure 6. Separate influence of changes in functional usefulness, pleasure, and attitude on
commitment
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The effect of functional usefulness, pleasure, and attitude on commitment is modeled as
shown in Figure 6.

There is an increase in the high state of commitment with the increase in functional useful-
ness, pleasure, and attitude from low to high. The medium state of commitment shows a
mixed trend with increase in pleasure and attitude from low to high, and a decreasing trend
with increase in functional usefulness from low to high. The results are the same as obtained
from SEM. The medium state of commitment is high even when functional usefulness is low.
This implies that there is some commitment among customers, even when the functional
usefulness of the site is low. On the other hand, when the pleasure and attitude are low,
medium state of commitment is low. This implies that there is a strong direct relationship
between pleasure and commitment and attitude and commitment. In other words, pleasure
and attitude are more important predictors of the customer’s commitment to the VC.

The above prediction can also be accomplished using SEM. However, Bayesian modeling
offers some advantages over SEM. First, while, SEM gives the prediction output in terms
of mean and standard deviation at a particular data-point, the Bayesian output is in terms
of probability distribution of various states of the dependent variable at the given state of
independent variable, which is more accurate. The number of states can be increased, and
thus the right probability distribution can be obtained. Second, the Bayesian networks can
be trained with new data on the same structure very easily, which is not the case with SEM.
Third, SEM assumes linear relationships among variables, while Bayesian networks can
model a nonlinear relationship among variables as the output is in terms of probability of
various states. In such a case, SEM may avoid some crucial variables by rendering them
insignificant in case the relationship is nonlinear. The Bayesian network would capture its
effect. Fourth, SEM can model only one Y-variable at a time, whereas a Bayesian network
can show the impact of any number of Y- and X-variables at a time.
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Impact of Incorporating Changes ina VC

A Bayesian network can also be used to measure the likely impact of incorporating changes
ina VVC. Let us consider a scenario of a real VC, which was facing a problem of decreasing
attitude of customers when it attempted to sell the goods to its VC members (the names are
changed for privacy).

By way of background, a few years ago ABC.com was owned by the online retailer XYZ.
com. XYZ hoped to sell its goods (which included wristwatches) to the community. They
had little success, and many in the community were alienated by their cynical approach. In
2001, XYZ sold its VC to the current owner, who is an avid wristwatch collector. For him,
ABC is essentially a hobby, and he is very much concerned about the community’s happi-
ness, and their attitudes toward the site. To overcome the community’s hostility to the prior
“commercial’ owner, the new owner has gone to great lengths to avoid any perception that
ABC seeks to profit directly from the community.

The above scenario requires that the impact of such changes in the VC be ascertained
beforehand to avoid such problems in the future which may lead to closure of the VC. To
model the above scenario, let us consider a hypothetical case in which a vendor introduces
a new forum in the VVC for discussion on products sold at the VC Web site. In an attempt to
understand the impact on customers’ attitude and commitment to the VC, the vendor takes
the input of the VC customers on their likely functional usefulness and pleasure after the
introduction of such a forum on the scale of low, medium, and high.

Assume that 100 customers took part in the survey, and the frequency (Column a in Table
6) for various combinations of functional usefulness and pleasure is as shown in Table 5.
Columnband Column c are the probabilities of various states of attitude and commitment for
various combinations of functional usefulness and pleasure as obtained from the conditional
probability table in Figure 4. These values are then multiplied by the frequency and their total
is calculated for each state of attitude and commitment (Row d). The current state (Row e)
is obtained from prior conditional probabilities as shown in Table 2. The total value (Row
d) is then compared with the current state (Row €). The result as shown in Row f implies
that there is an increase in the low and medium states of attitude and a decrease in the high
state of attitude, thus implying an overall decrease of attitude among customers. Similarly,
there is an increase in the low state of commitment and a decrease in the medium and high
states of commitment, which implies an overall decrease of customer commitment toward
the VC. The survey results thus indicate that introduction of the forum in the VC may result
in an overall decrease of customers’ attitude and commitment to the VC. A vendor therefore
needs to take steps to enhance the image of the product forum in the minds of the custom-
ers, before introducing the forum. Similarly, the impact of other changes can be measured.
Usually, vendors organizing online/offline events and prediction using the Bayesian model
can help the vendor in evaluating his decision in terms of customers’ overall attitude and
commitment toward the VVC.
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Table 6. Measuring the impact of incorporating changes in the VC

Profiles Freq. Attitude (b) Commitment (c) Attitude (a*b/100) Commitment (a*c/100)
Fuse | Plea () p(low) | p(med) | p(high) | p(low) | p(med) | p(high) | p(low) | p(med) | p(high) | p(low) | p(med) | p(high)
Low | Low 0 0.99 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Low | Med 10 0.00 0.67 0.33 0.33 0.67 0.00 0.00 0.07 0.03 0.03 0.07 0.00
Low | High 5 0.00 0.99 0.00 0.00 0.99 0.00 0.00 0.05 0.00 0.00 0.05 0.00
Med | Low 15 0.33 0.33 0.33 0.33 0.33 0.33 0.05 0.05 0.05 0.05 0.05 0.05
Med | Med 15 0.00 0.79 0.21 0.00 0.95 0.05 0.00 0.12 0.03 0.00 0.14 0.01
Med | High 10 0.00 0.40 0.60 0.00 0.40 0.60 0.00 0.04 0.06 0.00 0.04 0.06
High | Low 5 0.99 0.00 0.00 0.99 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00
High | Med 20 0.00 0.47 0.53 0.00 0.77 0.23 0.00 0.09 0.11 0.00 0.15 0.05
High | High 20 0.00 0.09 0.91 0.00 0.13 0.87 0.00 0.02 0.18 0.00 0.03 0.17

Total (d) | 0.10 0.44 0.46 0.13 0.53 0.34
Current State (¢) | 0.01 0.39 0.6 0.01 0.54 0.45
Change (f) Inc Inc Dec Inc Dec Dec

Fuse: Functional usefulness, Plea: Pleasure

Diagnostic (Backward Inference) Using the Current Research
Model

When the variable which serves as an evidence node allows inference from effect to causes,
the process of inference is called diagnostic or backward inference. In this, the child nodes (at-
titude and commitment) are given evidence. Assume the evidence given is that the customers’
attitude toward the VC is high. This evidence is fed to the network by setting the probability of
the high state of attitude as 1.00 and observing the changes in the parent variables (functional
usefulness and pleasure). From Table 7, we can see that the probability of the high state of
pleasure and functional usefulness is increasing, while the probability of low and medium state
of pleasure and functional usefulness is decreasing. This implies that the members increased
attitude toward participation in the VC is due to his/her increased favorable perception of plea-
sure and functional usefulness in the VC. Two applications of diagnosis to decreasing customer
commitment and modeling contradictory behavior of customers are discussed next.

Table 7. Backward inference due to change in attitude on different states of functional
usefulness and pleasure

Variables
State Attitude Functional Pleasure
Usefulness
PCP | NCP | PCP | NCP | PCP | NCP
Low 0.01 0.00 0.02 0.01 0.01 0.00
Medium 0.39 0.00 0.26 0.17 0.55 0.40
High 0.60 1.00 0.72 0.83 0.44 0.60

PCP: Prior conditional probability, NCP: New conditional probability
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Table 8. Backward inference of low commitment on attitude, functional usefulness, and
pleasure

Variables
State Commitment Attitude Functional Usefulness Pleasure
PCP NCP PCP NCP PCP NCP PCP NCP
Low 0.01 1.00 0.01 0.59 0.02 0.36 0.01 0.64
Medium 0.54 0.00 0.39 0.02 0.26 0.07 0.55 0.36
High 0.45 0.00 0.60 0.39 0.72 0.57 0.44 0.00

PCP: Prior conditional probability, NCP: New conditional probability

Decreasing Customers’ Commitment to VC

Suppose the online vendor observes decreasing commitment toward participation among
its customers, he can then give evidence to the network that the probability of commitment
is low and see the effect on parent variables (attitude, functional usefulness, and pleasure).
From Table 8, it can be noted that there is an increase in low state of attitude, functional
usefulness, and pleasure, and decrease in medium and high state of attitude, functional use-
fulness, and pleasure. Functional usefulness and attitude are slightly higher than pleasure,
as is evident from Table 8 (the probability of high state of pleasure is zero, while there is
positive probability in high state of attitude and functional usefulness). A vendor, therefore,
needs to take corrective action to enhance customers’ pleasure in the VC, to improve cus-
tomers’ commitment toward the VC. Table 8 seems to give a static picture of commitment
and attitude toward the VC. As the customers of the VVC are changing, the vendor needs
to train the Bayesian structure with new data and obtain the conditional probabilities. The
modeling then becomes dynamic and gives proper feedback as to the aspect needed to be
improved for gaining customers’ commitment to the VC.

Modeling Contradictory Behavior of Customers

Apparent contradictory behavior of persons can be modeled using diagnosis with more than
one variable. For example, some customers interact in the VC to seek information from the
VC but do not participate in VC activities. Such customers can be characterized as persons
with high attitude and low commitment. The Bayesian tool can provide an answer to the
reasons behind such behavior. The probability of high state of attitude and low state of com-
mitment is setas 1.00. The resulting change in probabilities, as obtained from the knowledge
discoverer program (Sebastiani & Ramoni, 2000), of various states of functional usefulness
and pleasure is as shown in Table 9. From Table 9 it can be noted that the conditional prob-
ability of high and medium states of functional usefulness is decreasing and that of low state
is increasing. Moreover, conditional probability of high state of pleasure is decreasing and
that of medium and low state of pleasure is increasing. This implies that functional usefulness
is low and pleasure is medium. In other words, customers interact primarily because of fun,
and they do not perceive the VC to be sufficiently useful for them to commit to it.
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Table 9. Diagnostic of functional usefulness and pleasure from attitude and commitment

Attitude Commitment Functional Usefulness Pleasure
PCP NCP PCP NCP PCP NCP PCP NCP
Low 0.01 0.00 0.01 1.00 0.02 0.94 0.01 0.06
Medium 0.39 0.00 0.54 0.00 0.26 0.06 0.55 0.94
High 0.60 1.00 0.45 0.00 0.72 0.00 0.44 0.00

PCP: Prior conditional probability, NCP: New conditional probability

Discussion and Limitations

The Bayesian model validation results confirm that the model obtained from SEM is parsimo-
nious and better than other models; this is apparent from the lowest marginal log-likelihood
(-709.65) of the model. However, it is difficult to conclude from the marginal log-likelihood
why other models cannot be chosen. Therefore, the use of SEM for empirical validation
of the theoretical model is necessary and complements Bayesian modeling. The prediction
accuracy of the Bayesian model is quite high, ranging from 73.82% to 92.87%.

The linking of SEM to Bayesian modeling is in essence a two-step approach. Both SEM
and Bayesian modeling complement each other. The latent scores obtained from SEM have
been used as data for Bayesian modeling. The marginal log-likelihood results confirm that
the results obtained from Bayesian modeling using latent scores give results similar to SEM
(as the most parsimonious model predicted by both modeling approaches is the same.)

The prior conditional probabilities shown in Table 2 represent the current state of the model,
according to which attitude is more on the high side and commitment is more on the me-
dium side. The results in Figure 4 show the conditional probability distribution for various
combinations of states of functional usefulness, pleasure, and attitude. The results for many
combinations are a little abrupt (e.g., “med, low” for attitude; “med, low, low” for com-
mitment). This is because the data set used in the research is small. As Bayesian networks
work well with large data, it is better to obtain a large data set so that probabilities of all the
states and combinations can be observed and set optimally.

The limitation of this study is that it is based on one VVC. For generalizability, the Bayesian
model needs to be validated in more IS studies. Bayesian networks can also be used with
continuous data. However, we have adopted the discretization method to prevent mathemati-
cal complexity and to retain the managerial usefulness of the Bayesian model. The dataset
used in this research is a little too small to give an overall probability distribution for a
Bayesian network; a large dataset would give better results. Bayesian networks can be used
with new data to train the current model, which is not possible with SEM. However, due to
the limited scope of this chapter, we have not explored this possibility. It can be explored
in future research.
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Conclusion and Implications

The objective of our study was to develop an approach for managerial decision support in IS
studies. We developed a combinatorial SEM-Bayesian approach by combining the strengths
of both the SEM and Bayesian approaches. Latent variable modeling, as well as theoretical
prediction, are two primary requirements for applying Bayesian modeling in IS research.
The combinatorial SEM-Bayesian approach fulfills both these requirements.

From the theoretical perspective, the linking of SEM to Bayesian networks provides an
excellent tool for managerial decision support that offers numerous advantages. First, the
tool is based on an empirically validated theoretical construction and not on some structure
obtained from the data. Structure obtained from data does not account for differences be-
tween causal and spurious relationships and therefore any relationship found significant is
modeled. Second, the Bayesian modeling of latent variables gives a better understanding of
reality. Bayesian modeling of observed variables produces unwieldy networks, which are
difficult to interpret. Latent variable modeling helps to simplify the system and uncover the
underlying mechanism of the system. Third, in Bayesian networks, relationships are mea-
sured in terms of probability of various states of the variables. This adds to the flexibility of
managerial prediction and diagnosis by means of the probability distribution of the effect
variable. Fourth, linking SEM and Bayesian networks allows for diagnosis based on causal
relationships (and not spurious relationships).

SEM researchers can benefit from our proposed approach by extending their empirically
validated models to managerial decision support using prediction and diagnosis. As our
approach uses a theoretically-based and empirically-validated model for prediction and
diagnosis, prediction and diagnosis would strengthen the practical applicability of their
research models. Bayesian researchers can benefit by extending the application of latent
variable level modeling as used in this research in their domains. This research introduces
latent scores approach for latent variable modeling. A latent variable is any quantity which,
either in practice or in principle cannot be directly observed (Bartholomew, 1994). Social
science studiesare based on latent variable modeling. Bayesian modeling approaches in other
fields disregards the differences between spurious and causal relationship and therefore the
causality of the network generated from the data is in question. Although, it is possible to
force relationships which are causally related, theoretical explanation in Bayesian network
is poorer than SEM (Anderson et al., 2004). A model based on causal relationships would
depict a better picture of reality than a model randomly generated from data. Bayesian re-
searchers can benefit by developing a causal model of the situation they are modeling and
then testing using Bayesian networks at latent variable level.

From the practical perspective, our study has shown some examples of how combinatorial
approaches of SEM and Bayesian networks can be useful for prediction and diagnosis in IS
research. Prediction and diagnosis can be extended to various situations for decision making.
In this research we used prediction for modeling customer retention, modeling the impact
of changes in the VC, and diagnosis for problem diagnosis and modeling contradictory
behavior of the customers. Prediction and diagnosis can similarly be extended to provide
quantitative support to various other managerial decisions.
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Abstract

Image understanding deals with extracting and interpreting scene content for use in various
applications. Inthis chapter, we illustrate that Bayesian networks are particularly well-suited
for image understanding problems, and present case studies in indoor-outdoor scene clas-
sification and parts-based object detection. First, improved scene classification is accom-
plished using both low-level features, such as color and texture, and semantic features, such
as the presence of sky and grass. Integration of low-level and semantic features is achieved
using a Bayesian network framework. The network structure can be determined by expert
opinion or by automated structure learning methods. Second, object detection at multiple
views relies on a parts-based approach, where specialized detectors locate object parts
and a Bayesian network acts as the arbitrator in order to determine the object presence. In
general, Bayesian networks are found to be powerful integrators of different features and
help improve the performance of image understanding systems.
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Introduction

Bayesian networks, also known as belief networks or Bayes nets, have emerged as an ef-
fective tool for knowledge representation and inference (Neapolitan, 2003; Pearl, 1988). A
Bayesian network is a directed, acyclic graph that can be used to represent the dependency
between random variables, represented by nodes. Links between nodes represent conditional
probabilities and link directions represent causality between the parent and children nodes. A
distinct advantage of Bayesian networks is the ability to incorporate domain-specific knowl-
edge in the network structure, so that the overall joint probability distribution is expressed
as a set of conditionally independent relationships that are easier to characterize. According
to Bayes’ rule, the posterior probability can be expressed in terms of the joint probability,
which can be further expressed by conditional probability and prior probability:

P(S,E) P(E[S)P(S)
PE)y  P(E)

P(S|E) =

where S denotes semantic task and E denotes evidence. Probabilistic reasoning uses the joint
probability distribution of a given domain to answer a question about this domain. However,
as the number of variables grows, the joint probability can become intractable. With Bayes-
ian networks, the computation of the joint probability distribution over the entire system,
given partial evidences about the state of the system, is greatly simplified by using Bayes’
rule to exploit the conditional independence relationships among variables.

A Bayes network can be viewed as a knowledge representation and an inference engine
that can be useful for many problems. Its advantages include explicit uncertainty charac-
terization, representation of domain-specific knowledge in a human reasoning framework,
efficient computation, quick training, easy construction, adaptability, good generalization
with limited training data, and easy retraining when pruning or adding new features or new
training data. These advantages make them particularly suitable for real-world applications
where information can be incomplete or inaccurate. In this chapter, we discuss the appli-
cation of Bayes nets to two major types of image understanding problems, namely, scene
classification and object detection.

Image understanding is the highest processing level in computer vision (Sonka, Hlavac, &
Boyle, 1999), where semantic information is extracted from the image, in contrast to im-
age processing, which converts one image representation to another (e.g., by converting an
intensity image to an edge map). Early successes in image understanding were limited to
applications dealing with constrained environments, for example, military target recognition
(Dudgeon & Lacoss, 1993), document processing (Schurmann, Bartneck, Bayer, Franke,
Mandler, & Oberlander, 1992), and medical imaging (Robinson & Colchester, 1994). While
image understanding in unconstrained environments remains a challenging problem, prog-
ress is being made in object detection and scene classification. Object detection deals with
identifying known objects within the image, while scene classification characterizes an
image into one of the known categories, for example, indoor or outdoor, city or landscape,
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beach or sunset, and so forth (Serrano, Savakis, & Luo, 2004; Szummer & Picard, 1998;
Vailaya, Jain, & Zhang, 1998).

Both scene classification and object recognition can benefit significantly from the use of Bayes
nets, and this chapter outlines relevant work in this area. Section 2 provides an overview of
the methodology for Bayesian network training and model selection. Section 3 discusses
indoor vs. outdoor categorization as part of the larger scene classification problem. Section 4
presents work that incorporates the use of Bayesian networks to accomplish object detection
by parts. Section 5 includes conclusions and thoughts for future directions.

Bayesian Network Training and Topology

Bayesian Network Training

A Bayes net consists of four components: priors, the initial beliefs about various nodes in
the Bayes net; conditional probability matrices (CPMs), knowledge about the relationship
between two connected nodes in the Bayes net; evidences, observations from feature de-
tectors that are input to the Bayes net; and posteriors, the final computed beliefs after the
evidences have been propagated through the Bayes net. Various methods have been proposed
for learning the parameters (conditional probability matrices, priors, etc.) associated with a
Bayesian network (Heckerman, 1995). Given a network structure, acommon approach is to
use Bayesian statistics to learn the network parameters from data through simple frequency
counting where likelihoods of observing a set of variables are generated from the training
samples, that is, the observed data.

There are two standard methods, expert knowledge and frequency counting, for obtaining
the conditional probability matrices for each parent-child node pair. In expert knowledge-
based training, an expert, who has intimate knowledge of the relationships between vari-
ous entities in the domain, is consulted about the relationship between the label sets of the
two nodes joined by each link. Using this knowledge, the CPM for each node pair can be
generated. If the desired conditional relationships are well understood or reliable training
data is not available, then expert knowledge-based training of the network may be the best
option. Frequency counting-based training is a sampling and correlation method that can
be used for learning the CPMs directly from training data. A large set of observations and
ground truth is first collected. Ground truth, in its normal sense, refers to knowing the label
of each training sample with absolute certainty. The conditional probability matrix for a
link can be trained using frequency counting only when ground truth for the parent node is
available. Multiple observations of each child node are recorded along with ground truth on
the parent node. These observations are then compiled together to create frequency tables
which, when normalized, can be used as the CPM.
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Bayesian Network Model Selection

While Bayesian networks are often constructed by experts, thisis not always the best strategy,
and automatic structure learning provides a consistent alternative. Many times it is not clear
what the optimal structure should be for a given set of variables. In some cases, experts may
disagree on an accurate model. In other cases, a model may contain many variables with
complex interactions. Automatic structure learning in the former may confirm the validity
of a model, while in the latter, structure learning provides a model that is guaranteed to
have some degree of fidelity with respect to the training data. Structure learning may also
be used for knowledge discovery where, instead of using the model to perform a task such
as inference, the relationships between variables are of primary interest.

Bayesian network structure learning approaches generally fall into two categories. The first
analyzes dependency relationships between nodes and incorporates this information into an
asymptotically correct structure learning algorithm. Methods in this category are deemed
asymptotically correct, because the derived structure approaches the optimal asymptotically
as the number events in the database increases. One such algorithm (Cheng, Bell, & Liu,
1997), uses mutual information between nodes as a criterion for determining undirected par-
ent-child relationships. Dependency relationships between adjacent nodes are then analyzed
to determine arc orientation in the network. Algorithms such as these have the benefit of
relatively low computational complexity. In particular, Cheng’s algorithm is among the most
parsimonious structure finding algorithms with a computational complexity of O(N?).

Empirically, it has been found that when generating a database from a Bayesian network
and trying to relearn the network based on the database, the structure derived from the as-
ymptotically correct algorithm is generally very similar to the original structure. However,
there are structure learning algorithms that often come closer to the original structure.

The second category uses a scoring function to induce a search space in the space of pos-
sible networks. A local optimum is then found using techniques such as a gradient search,
genetic algorithms, or particle swarm optimization (de Campos, Fernandez, Gamez, &
Puerta, 2002; Larranaga, Poza, Yurramendi, Murga, & Kuijpers, 1996). In the selection of
an appropriate scoring function, one that mitigates expectation maximization of a structure
with the probability of the underlying event is desirable.

A variety of scoring functions have been proposed in the space search optimization in
structure learning. Akaike’s information criterion (AIC) and the Bayesian information cri-
terion (BIC), which were traditionally scoring functions for performing variable selection
in linear regression, are widely used. However, both scoring functions tend to overlearn
the data and thus yield a network with an overabundance of arcs, resulting in unnecessary
structure complexity. As complexity may cause difficulty in performing operations such as
inference and structure updating, this isa rather unappealing characteristic. Other techniques,
such as using the minimum description length (MDL) (Lam & Bacchus, 1994), have been
applied with varying degrees of success. It should be noted that, empirically, it has been
found that none of these scoring functions, when applied to a bottom-up search, yields a
structure that is as close to the original as the asymptotically correct information theory
approach discussed earlier.

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.



132 Savakis, Luo, & Kane

The Bayesian Dirichlet equivalent (BDE) (Heckerman, 1995) is a scoring function which,
when applied to a bottom-up search, empirically tends to generate structures that are closer
to the underlying model than the other techniques mentioned. This scoring function models
variables as Dirichelet distributions. The joint probability of a given structure (M,) and the
training data (D) is found and compared to another joint probability corresponding to a dif-
ferent structure (M,) to form a likelihood ratio, as shown below:

P(M,,D)
P(MyD)  P(D) _ P(M,D)
P(M,|D) P(My,D)  P(M,,D)
P(D)

Because the distribution of the data is the same in both cases, there is no need to marginalize
over all models to find the probability of the data.

Although they do have the potential to find structures that more accurately represent depen-
dence relationships between nodes, space searching techniques suffer from a high degree of
computational complexity. The complexity is generally O(N“) but may be as high as O(N®)
depending on the scoring function. The majority of this complexity comes from potentially
needing to iterate a space searching scheme many times.

Another structure learning approach attempts to alleviate the computational difficulty involved
in some fitness functions in the second category. It employs the computationally efficient,
although generally less accurate, first approach as an initial “guess” for the node conditional
relationships, and then uses the second approach to refine the initial network. This refining
step is sometimes called a middle-out search. This technique has been shown to reduce
the computational complexity incurred by a bottom-up gradient search, while retaining its
potential accuracy (Kane, Sahin, & Savakis, 2003). In the context of image understanding,
the work in Kane and Savakis (2004) proposes model selection to determine the structure
of a Bayesian network that provides for the knowledge representation and inference of the
indoor vs. outdoor scene classification problem, as will be discussed in Section 3.3.

Bayesian Networks for Scene Classification

Framework

The goal of image understanding is to generate a semantic description of a scene, so that
it can be used in a particular application. In essence, such a description can be done at the
whole scene level or at the parts level (e.g., image regions). The former is referred to as scene
classification (i.c., what type of scene this is; is it indoor or outdoor? is it sunset or beach?)
and the latter corresponds to object detection and recognition (what is the object and where
is it?). In this chapter, we describe the use of Bayesian networks in both scene classification
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and object detection, respectively. While there are differences in the ways Bayesian networks
are applied to these two problems, conceptually it is perhaps easier to incorporate Bayesian
networks first at the whole scene level and then progress to the object or parts level.

The primary approach to image understanding is based on collecting training data and iden-
tifying decision boundaries between classes in the feature space, that is, training a classifier.
After training is completed, these classifiers can be used to characterize novel samples.
Both low-level and semantic features have been used for scene classification, and Bayes
nets provide a framework for effective integration of such features. Low level features,
such as color, texture, and shape, have been widely used (Amit & Geman, 1999; Hjelmas
& Low, 2001) and were found to be effective for certain tasks, such as “query by example.”
However, they are of limited value in important multimedia applications, such as efficient
browsing and organization of large collections of digital photos and videos, which require
semantic content extraction (Vailaya, Figueriredo, Jain, & Zhang, 1999). Semantic features
are important when dealing with photographic images due to the unconstrained nature of
photographs and the difficulty in extracting low-level features reliably from them. Bayesian
networks provide a unified framework for fusing both low-level and semantic features and
allow for diversity in the feature extraction process, and ultimately can improve classifica-
tion results (Luo, Savakis, & Singhal, 2005).

For tasks such as indoor-outdoor image classification (Luo & Savakis, 2001; Serrano et al.,
2004) and scene classification (Valaiya et al., 1998), good performance has been achieved.
However, even for the same tasks, higher level features or cues are clearly demanded. For
instance, there are natural images where even a human may have difficulty determining the
correct orientation, particularly at a low resolution where object recognition is difficult or
impossible (Luo, Crandall, Singhal, Boutell, & Gray, 2003). Some may not even have a
preferred orientation. Another major concern with low-level feature-driven, exemplar-based
approaches is the ability to generalize to real-world, unconstrained images which do not fall
into well-defined scene prototypes, and for which a comprehensive collection of prototype
exemplars is not readily available.

Model-based approaches are built on expected configuration of a specific type of scene. A
scene configuration is the layout of its objects, created from expert or learned knowledge
of the scene. Relatively little research has been done on using model-based approaches for
unconstrained natural image understanding, because it is usually only possible to build a
model for a well-defined scene type, and such a model may not generalize to other scene
types (Lipson, Grimson, & Sinha, 1997). For example, while it is possible to build scene
models manually and individually for scene types such as “fields,” “snowy mountains,”
“snowy mountains with lakes,” and “waterfalls,” it would be far more difficult to do so for
other scenes types such as typical indoor scenes. A trainable scene configuration model called
composite region template was proposed in Smith and Li (1999) and shown to be promising
for a selected set of scene types exhibiting distinctive spatial configuration patterns.

The framework proposed in Luo et al. (2005) may be viewed as a hybrid approach. First,
both low-level and semantic features are utilized. In fact, it is a great challenge to find a way
to combine such diverse information, measured by different metrics, and represented by
different means. For example, color features are represented by histograms, and the presence
of a face is Boolean. A probabilistic knowledge integration framework would allow all the
information to be integrated in equal terms of probabilities. Bayesian networks allow domain
knowledge to be incorporated in the structure as well as parameters of the networks, which
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is more difficult, if not impossible, for other inference engines such as neural networks or
support vector machines (Bishop, 1996; Cristianini & Shawe-Taylor, 2000).

Ageneral framework for semantic understanding of pictorial images, such as the one in Luo
et al. (2005), would have an input that is a digital image of a natural scene and is used to
extract two sets of descriptors. The first set corresponds to low-level features, for example
color, texture, and edge information, and the second set corresponds to semantic objects
that can be automatically detected. The low-level features are extracted on a pixel or block
basis, using a bank of predetermined filters. The semantic features are obtained using a bank
of predesigned object detectors that have been trained for accuracy. The state of the art in
object detection, both in terms of accuracy and speed, determines what is included in the
object detector bank. The outputs of the low-level and semantic detectors are evidences that
are fed into a Bayesian network-based inference engine. The Bayes net is capable of incor-
porating domain knowledge, as well as dealing with a variable number of input evidences,
and producing semantic predicates, which may be in the forms of semantic labels of the
entire images or importance maps indicating different scene content. In the next section,
we provide an illustrative example of the Bayesian network-based scene classification in
indoor vs. outdoor categorization.

Indoor vs. Outdoor Classification

Scene categorization is important in a number of applications that deal with consumer
photographs. Knowledge of the scene type is useful for event classification, which consti-
tutes a fundamental component of automatic albuming systems (Loui & Savakis, 2003).
Scene categorization is also valuable in image retrieval from databases because it provides
high-level semantic understanding of scene content that can be used along with lower-level
features such as color, texture, and shape for database browsing (Vogel & Schiele, 2006).
Furthermore, when images are processed through a complex imaging path, processing
operations may be adjusted depending on the scene type so that the best image rendering
can be achieved.

The general problem of automatic scene categorization is difficult to solve and is best ap-
proached by a divide-and-conquer strategy. A good first step is to consider only two classes
such as indoor vs. outdoor (Serrano et al., 2004; Szummer & Picard, 1998), where outdoor
may be further subdivided into city vs. landscape (Vailaya et al., 1998), and so forth. Scene
categorization is often approached by computing low-level features, which are processed
with a classifier engine for inferring high-level information about the image. In (Szummer
& Picard, 1998), color and texture features were computed for the entire image or for image
subsections. One of the issues when dealing with a diverse set of features is how to integrate
them into a classification engine. The solution proposed was to independently classify image
subsections and obtain a final result using a majority classifier. One problem with the meth-
ods using low-level features in scene categorization is that it is often difficult to generalize
them to diverse image data beyond the training set. More importantly, they lack high-level
semantic image interpretation that is extremely valuable in determining the scene type.

Scene contentsuchasthe presence of people, sky, grass, and so forth, may be used as additional
cues for improving the classification performance obtained by low level features alone. Sky
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Figure 1. Bayesian network for indoor vs. outdoor classification
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and grass regions can be identified using color and texture features and classifiers that are
tuned in a supervised fashion for sky and grass detection (Singhal, Luo, & Zhu, 2003).

A Bayesian network approach can be used to integrate low-level color and texture features
and semantic features, including sky and grass, in order to improve the classification per-
formance over using low-level features alone. The Bayesian network structure shown in
Figure 1 was proposed for classifying images to indoor vs. outdoor (Luo & Savakis, 2001;
Serrano et al., 2004). The network integrates low-level features, that is, color and texture
classification, and semantic features, that is, sky and grass detection, using a single inference
engine. The conditional probability matrices for each node were derived using the frequency
counting method based on a Kodak database of consumer images (Luo & Savakis, 2001).
The color features are based on the quantized color histogram (3 x 64 bins) in the Ohta color
space with the following components: I, =R+ G + B, I,=R-B, I,=R-2G + B (Ohta,
Kanade, & Sakai, 1980). The texture features were based on the multiresolution simultane-
ous autoregressive (MRSAR) model (Mao & Jain, 1992). The classification based on color
or texture features used a k-nearest neighbor classifier (k=1), and yielded 74% and 82%,
respectively, for a database of 1300 images (Luo & Savakis, 2001).

The sky and grass features were extracted using two methods. First, the ground truth in-
formation about the images was used, that is, the sky and grass detection is always correct.
The indoor/outdoor classification results obtained with perfect semantic features reflect an
upper bound in performance, because the accuracy of any actual sky and grass classifier
would be suboptimal. The second method involved using actual detectors to obtain sky and
grass information (Luo & Etz, 2002; Vailaya & Jain, 2000). Sky and grass detectors are
based on color/texture features and yield an average accuracy of 95% true detection with
10% false positives.

After all the evidences propagate through the Bayesian network in Figure 1, a threshold is
chosen to determine whether the image is indoor or outdoor. When the output belief value
at the root node is above the threshold, the image is characterized as outdoor, and vice
versa. The threshold value was determined from one-fifth of the available data and applied

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.



136 Savakis, Luo, & Kane

Table 1. Indoor vs. outdoor classification results with integration of computed low-level
features and semantic sky/grass features obtained from ground truth data

Indoor vs. Outdoor Classification using “Best Case” Semantic Features
Semantic [S] SandC
Color [C] Texture [T] CandT and C TandS and T
Percent 74.2% 82.2% 82.3% 80.9% 86.9% 90.1%
Correct

Table 2. Indoor vs. outdoor classification results with integration of computed low-level
features and computed semantic sky/grass features

Indoor vs. Outdoor Classification using Computed Semantic Features
Semantic [S] SandC
Color [C] Texture [T] CandT and C TandS and T
Percent 74.2% 82.2% 82.3% 75.2% 84.0% 84.7%
Correct

to the remaining testing data. The value of 0.35 yielded the best overall results for both the
training and testing data. In fact, the performance is statistically the same on both data sets
under 2-fold cross-validation.

The indoor/outdoor classification results with ground truth information for sky and grass
are shown in Table 1, where an overall classification of 90.1% is obtained. This level of
performance can be viewed as an upper bound when these semantic features are used. The
indoor/outdoor classification results that are shown in Table 2 were obtained by computing
sky and grass detection and provide a more realistic performance estimate. In all the cases,
the use of semantic features improves the system performance, and an overall percent ac-
curacy of 84.7% was obtained when using both low-level and semantic features.

These results provide an improvement over the classification results based on color or texture
alone. The major reason for such an improvement is due to the incorporation of semantic
features. The Bayesian network provides a good framework for integrating all of the features,
as shown in Tables 1 and 2. It should be noted that the low threshold for the combined belief
values indicates that even moderate evidence of the presence of prominent outdoor features
(sky and grass) is sufficient reason to classify the image as outdoor. If the belief values were
to be strictly interpreted as probability, the threshold would have been 0.5.

Examples of correctly and incorrectly classified indoor and outdoor scenes are shown in
Figures 2 and 3, respectively. Figure 3 shows that classification errors can be attributed
to misleading illumination sources. For instance, the incorrectly classified outdoor scene
was taken at dusk and is largely illuminated by camera flash. Conversely, the incorrectly
classified indoor scene is highly textured, which is uncharacteristic of most indoor scenes.
On one hand, the small patch of sky in Figure 2(d) was correctly detected to help correctly
classify the image as outdoor. On the other hand, imperfect semantic feature detector actu-
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Figure 2. Examples of correctly classified indoor and outdoor scenes (left and right column,
respectively)

© (d)

(f)

Figure 3. Examples of incorrectly classified (a) indoor and (b) outdoor scenes

(b)
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ally further confounded the misclassification of Figure 3(a), while ironically helped classify
Figure 2(f) correctly.

Bayesian Network Structure Learning for
Scene Classification

Structure learning can sometimes be used to achieve improved classification performance
over applying expert opinion to structure determination. This section presents an overview
of the model selection technique employed, an overview of the inference technique used,
results using this technique, and a comparison with past results to show improvement in
accuracy.

The feature extraction techniques were employed on the same Kodak database of consumer
images, which consists of 1308 images. The feature probabilities for 654 of these images were
used for training and the remaining 654 were used in the inference experiment. The feature
extraction techniques for color, texture, blue sky, and grass, were the same as described in
the previous section. After the feature extraction stage, k-nearest neighbor probabilities were
extracted and quantized to the nearest 10% for a total of 11 possible states per feature node.
The total number of possible feature instantiations is found by taking the number of nodes
multiplied by the number of states per node yielding 29,282 possible node instantiations.

The total number of possible directed acyclic graphs given the number of nodes is given in
(Cowell, Dawid, Lauritzen, & Spiegelhalter, 1999) as:

f(n) Z( 1)(I+l) '2|(n )] f(n )

)I

where n is the number of nodes in the network. In the case of the presented five-node net-
work, there are potentially 29,281 possible graph structures. As this is a relatively small
network, it was decided to forgo the model refining technique in favor of a pure gradient
search. The fitness function used was the (BDE) score with a uniform prior on the space of
network structures. The result is the data given model (DGM) probability calculated using
the equation:

LG (c —1)!H°i_ n(x ;)"

k=1
P(D|M) HH (¢ +n(my)-!

i=1 j=1

where c, is the number of states of the i" node, x, is the i node with instantiation k and
nijdenotes the parent nodes of the i"" node with node instantiation j. The model derived using
this technique is shown in Figure 4.
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Figure 4. Flow graph for indoor vs. outdoor scene classification
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It is worth noting that the model selection structure prefers a naive Bayes probability model
compared to the multilayered structure crafted by experts. In this bottom-up approach, the
semantic task isan explanation for the feature probabilities, which serve as states of respective
nodes. The inference technique used differs from the one previously used. In the network
generated by expert opinion, the goal was to create an outdoor image detector. For a given
image, an indoor classification is implied, if the Bayesian Network response is below a
chosen threshold; otherwise the image is classified as outdoor. In the network derived from
structure learning, full inference was performed. In other words, an indoor classification is
implied if it has higher probability of being indoor than outdoor. The technique uses Bayes’
rule to compute the posterior probability of the indoor/outdoor states. This is accomplished
by first realizing that the joint probability of the network is given by:

P(10, C, T, B, G) = P(10) P(C | I0) P(T | I0) P(B | 10) P(G | 10),

where 10, C, T, B, G represent Indoor/Outdoor, Color, Texture, Blue Sky, and Grass, re-
spectively. Understanding this, we can then compute an indoor vs. outdoor probability with
the equation:

P(10=i0,C =c,T =t,B=h,G =)
}:mwmhnacquznszuezm

P(I0=i0|C=c,T=t,B=bG=0)=

Results of using the described inference technique on the model selection structure on the
testing half of the database are shown in Table 3. We see that the proposed procedure for
indoor vs. outdoor scene classification performs with approximately 12% greater accuracy
than when expert opinion and thresholding are employed.
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Table 3. Indoor vs. outdoor scene classification results using model selection

Indoor vs. Outdoor Classification using Computed Semantic Features

Model Selection Approach

Correct Incorrect Percent Correct
Indoor 288 9 97.0%
Outdoor 350 7 98.0%
Overall 638 16 97.3%

Along with inference, the posterior probabilities can also be used on the training set for error
estimation. For a given event, we can use the error estimated by expectation maximization
along with the frequency of the event to get some idea as to how often our inference will
be incorrect. The expected error rate can then be calculated as:

D @-P(Inf(10]..)|[C=c,T =t,B=b,G = g)n(C =c,T =t,B=b,G = q)

ct,s,g

where Inf(10]...) is the inferred state of the network give the feature probabilities and n(...)
is the number of events in the training set where the states are as given by the arguments.
This equation gives the expected rate per number of events in the database. By normalizing
by the number of events of the databases, the error rate can be expressed as a percentage
of the total number of training images. By employing this technique, a resulting error rate
of 18.6 per 654 images is found, where the actual error rate is 16 per 654 images. After
normalization, an expected error rate of 2.8% is obtained, which matches very well with
the actual error of 2.7%

The indoor/outdoor classification results show that, when model selection was used in model
determination and posterior probabilities were used in inference, there is a significant im-
provement in inference accuracy compared with previous results based on expert opinion.
In this case, by using model selection, a network structure is found that more accurately
encodes the conditional dependencies between network nodes given the training database.
In general, model selection is likely to outperform an expert if there is enough representa-
tive data available.
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Bayesian Networks for Object Detection

Overview

Bayesian networks are particularly well suited to the problem of object detection, and have
proven useful in the analysis of the intraclass variations of categories such as faces. Bayes-
ian networks provide a “smoothing” effect upon incomplete data. This feature reinforces
the collective power of part detectors without requiring that they detect parts with perfect
accuracy. In addition, Bayesian networks offer natural resistance to overfitting and ability
to incorporate incomplete data and cause-and-effect relationships (Heckerman, 1995). They
have been applied to a wide variety of tasks in machine learning, including high-level appli-
cations, such as extracting semantic information from consumer photographs (Luo, Savakis,
Etz, & Singhal, 2000), video frames (Vasconcelos & Lippman, 1998), and multimedia (Paek,
Sable, Hatzivassiloglou, Jaimes, Schiffman, Chang, & McKeown, 1999). All these works
utilize a number of detectors as inputs to Bayesian networks, which then make a decision on
multiple sources of information. Individual detectors do not need to be precise, as conflicting
information often can be effectively disambiguated by the modeling network.

One such example is using a Bayesian network to integrate the results of multiple individual
material detectors (Singhal et al., 2003). Material detection refers to the problem of identify-
ing key semantic material types, such as sky, grass, foliage, water, and snow. The limitation
with individual material detectors is the high percentage of misclassifications because of
the ambiguities in the color and texture characteristics of various material types. A holistic
approach was employed to determine the scene content from a set of individual material
detectors using a probabilistic spatial context model, which is encoded and enforced by a
Bayesian network. This approach helps reduce misclassification by constraining the material
beliefs to conform to the spatial context model, and in turn improve the accuracy of materials
detection significantly over the individual material detectors themselves. In the same spirit,
to capture the interplay among individually estimated elements of the scene (e.g., cars and
pedestrians), a Bayesian network model is used to capture the conditional independence for
viewpoint, objectidentities, and the 3D geometry of surfaces surrounding the objects (Hoiem,
Efros, & Hebert, 2006). Viewpoint describes the horizon position in the image and the height
of the camera in the 3D scene in relation to the objects of interest. Each image has n object
hypotheses, where n varies by image. The object hypothesis involves assigning an identity
(e.g., pedestrian or background) and a bounding box. The surface geometry describes the
3D orientations of the object surface and nearby surfaces in the scene.

Bayesian methods have been applied within the context of human face detection as well.
Rehg, Murphy, and Fieguth (1999) presented a videoconferencing system that used a Bayes
netto determine the speaker. Several features were incorporated, including a neural net-based
face detector and a motion-based mouth detector, so that the system could distinguish the
speaker if there were multiple faces present.

In particular, face detection using Bayesian networks was employed by Yow and Cipolla
(1996, 1997). They detected feature points using spatial filtering and grouped them into
face candidates using geometric constraints. Bayesian networks were used to reinforce
probabilities and evaluate the likelihood of a candidate as a face. This approach adopts a
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bottom-up feature-based approach where the face is modeled in terms of six oriented facial
features: two eyes, two eyebrows, a nose, and a mouth. Feature detection is simplified as
pairs of oriented edges that can be detected at various scales and illuminations. Due to the
simplicity of the feature detectors considered, there are many false positives and percep-
tual grouping is used to eliminate most of them. Feature candidates are grouped into face
candidates based on geometrical, intensity, and spatial constraints.

To deal with both frontal and profile faces, a new Bayesian network was constructed with
six child nodes, where each node corresponds to one of the facial features. Another stage of
processing was performed by a second, more complex multilayer Bayesian network, which
assembled the landmarks from primitive edge components based on similarity to spatial
relationships gathered from true face data.

A recently developed framework for generalized object detection (Higgs & Savakis, 2005)
is presented next, and it is tailored toward the specific application of human face detection
under pose variations. Face detection was selected because it is a well-explored area of
research, which allows new approaches to be evaluated on a comparative basis to existing,
known solutions. For ageneralized method, initially applying a new methodology to a known
problem can provide valuable feedback during the implementation process by illustrating the
limitations with respect to a specialized approach. Furthermore, human faces are expected
to be rigid geometric bodies with specific features (parts) that are always present (though
potentially occluded), which can be leveraged in the form of assumptions about the problem
set. Recent work on parts-based object detection has demonstrated the potential of this ap-
proach (Fergus, Perona, & Zisserman, 2003; Schneiderman & Kanade, 2004).

The presence and locations of specific features, for example eyes, nose, and mouth in a face,
lend themselves to a bottom-up approach to detection that is intuitive and computationally
tractable. If a significant number of these parts are detected, there stands to reason that the
object is probably present. The converse is also true: if an image contains none or few of
these parts, it is unlikely for the object to be present. If a parts-based detection scheme is
flexible enough, the detection of a partially-occluded object can still be successful, whereas
a top-down scheme may have more difficulty making an accurate decision.

Another common problem in the field of object detection is caused by the nature of three-
dimensional objects being projected onto atwo dimensional plane (Schneiderman & Kanade,
2000; Jones & Viola, 2001). Because a true 3D representation is typically unavailable, it is
hard to register matching object features between two different views. The task becomes
even more complex when applied to flexible objects, as in the case of limbs on an animal.
One way to combat this difficulty is to create a detection system explicitly with the capacity
to detect multiple views. Within a parts-based framework, the parts for object detection can
be selected to correspond to different object pose angles. The easiest way is to separate the
object detection into discrete views; for example, a car detector might use headlights for a
frontal view and wheel parts for a side view. Alternatively, a more flexible model could use
part detectors that activate for multiple views; for example, the same car detection scenario
might utilize both curved contour detectors and right-angle detectors for many possible
viewing angles.

An object detection system combining these two important concepts, parts-based detection
and multiple viewpoints, is presented in this section. To introduce and establish a compara-
tive benchmark with other object detection schemes, it has been applied to the specific task
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Figure 5. Parts-based object detection framework
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of human face detection. Within the field of face detection, there are roughly two different
schools of thought with respect to the overall approach: feature-based and image-based.
Surveys of recent work can be found in Hjelmas and Low (2001) and Yang, Kriegman, and
Ahuja (2002). The detection framework presented here is feature-based and uses neural net-
work part detectors that are typically used independently for detecting and locating objects
or their parts (Rowley, Baluja, & Kanade, 1998; Schimmel, Savakis, & Ray, 2004).

System Architecture

The basic framework for a parts-based object detection system is shown in Figure 5. Special-
ized part detectors scan an image to find the part for which they have been tuned. The belief
value for each part is passed on to an arbitrator, which determines the likelihood that the object
is present, given the individual part probabilities. Splitting objects into various component
features allows for detection that can account for occlusion over small portions of the object,
without requiring that the training set model all possible ways of obscuring parts. This structure
is more suited for a single view, in which the appearance is relatively constant.

Expanding on the basic framework to support multiple, discrete views results in a structure
where the parts for each view are arbitrated separately, providing a belief value or probability
to the final view arbitration stage. If the presence of an object can be established by any of
the individual views, the arbitration can be performed by a simple comparison operation.
Otherwise, if the views are competitive or mutually exclusive, the arbitrator should leverage
any correlation between the view responses to make a more informed decision.

By tying multiple parts to specific views, rather than selecting a number of parts that cor-
respond to multiple views, hierarchical arbitration methods and structures can be used. In
this manner, the detection of parts common to one view avoids “competition” with those in
a second, which could result in a decreased chance of detecting either view.
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Figure 6. Bayesian network for parts-based object detection

Each part detector is a standard multilayer feed-forward network with an input layer, a
fixed-size hidden layer, and a single output neuron. The input layer for each part is imple-
mented as a rectangular window, with dimensions specific to the part size on an object at
some reference scale. The neural network is used as a sliding window, such that the network
responses for each possible subwindow are recorded in an activation map.

Bayesian networks exhibit excellent “smoothing” capabilities across incomplete datasets, as
well as resistance to overfitting. It is safe to assume that no part detector is 100% accurate, and
therefore Bayes nets are chosen as view arbitrators due to their ability to implicitly account
for these inaccuracies. Figure 6 illustrates a sample Bayesian network and how it would be
used to arbitrate over a single view. The node hierarchy and arrow direction indicate that
the presence of an object within an image “causes” the detection of the object’s constituent
parts. The conditional probability table (CPT) for each part shows that they are all treated
in a conditionally independent manner, and thus network is a naive Bayes model.

A second design decision made when using Bayesian techniques relates to the variable
representation at each node. An object’s detection is a binary value: either present or absent;
however, the neural network part detectors output a continuous value. Thus, the part activa-
tion values must be similarly discretized into presence and absence. Because the continuous
distributions underlying neural nets are inherently unknown and very difficult to model, this
is a helpful and intuitive step. A view can be detected by making observations of the part
states, and selecting the view state that maximizes the network probability, as calculated
by inference.

Because detection at different pose angles can never be evidence against the presence of the
object, the final decision can be made with a simple logical OR operation. As long as any
single view can represent the object and there is no destructive interference, little additional
leverage can be gained by applying a more complex decision-making process.

Performance Evaluation

The FERET database (Phillips, Moon, Rizvi, & Rauss, 2000) was chosen to provide images
of human faces for training and testing, primarily because it contains multiple viewing angles
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of human faces. Other desirable characteristics include the large number of different subjects,
and good diversity across age, race, and gender. Although various pose angles were available
within the FERET image database, only the Frontal A and Quarter Left views were selected
to illustrate the capabilities of the system, henceforth referred to as “frontal” and “side.” The
four parts most commonly associated with the human face detection are the two eyes, the
nose, and the mouth. The choices of pose angles allow for all four facial subfeatures to be
visible in both views. The size of the window used to detect individual parts was selected
so that each part would fully fit into the neural network input at a reference scale, that is,
with 400 or less input neurons. All eyes were detected by a 12x20 pixel window, with the
exception of the right eye of the side view; it was 12x16 pixels due to foreshortening ef-
fects. The nose and mouth detectors were 18x20 and 14x32 pixel windows, respectively.
The resulting faces had approximate dimensions of 50 pixels high by 55 wide.

Bootstrapping was used to train the part detectors (Sung & Poggio, 1998), and a corpus
of “non-face” images was required to provide false-positives. The Background dataset in
Weber (1999) was chosen; it consists of several hundred images showing a variety of clut-
tered indoor office settings as well as outdoor scenes with both natural flora and man-made
architecture.

The detection system was trained and tested under a cross-validation scheme, with each
dataset divided into four subsets. The bootstrapping process similar to the work in Sung
and Poggio (1998) was used to train individual parts detectors. Artificial neural networks
for part detection were trained using standard backpropagation. The component parts were
extracted from the training images, preprocessed, and added to the training set as positive
examples. The background images were scanned for false-positive examples to add to the
training set and the image order was randomized for each bootstrap iteration. Once a suf-
ficient number of false-positives were found, the neural networks were retrained. This step
was repeated until the number of false-positives fell below a particular threshold, at which
point the bootstrapping process was considered complete.

The goal of training the individual view arbitration networks was to “teach” the arbitration
components how to use the detection patterns of a view’s parts to make a decision about the
presence or absence of the object in the scene. Using these separate training images from
both object-present and no-object-present databases, part activation values were gathered
using a search similar to that in the bootstrapping process. Activation responses were used
to determine event thresholds for determining a part’s detection by plotting a receiver op-
erating characteristic (ROC) curve.

Table 4. Part detection thresholds and CPT entries

Frontal View Side View
Left Right Nose Mouth Left Right Nose Mouth
Eye Eye Eye Eye
Threshold 0.5926  0.6097 0.5190 0.5605 0.3959 0.5290 0.3270 0.5096

P(Part=T | View=F) 0.0798  0.1079 0.0458 0.0790 0.0791 0.0924  0.0658 0.1145
P(Part=T | View=T) 0.8964  0.8624 0.9519 0.8663 0.9111 0.8560  0.9227 0.8449
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Table 5. Detection rates on testing images

Face images detected (%) Non-face images detected (%)
Frontal Face 96.7% 3.3%
Side Face 97.2% 2.8%
Background 5.7% 94.3%
Overall Face 96.9% 3.1%

The use of Bayes nets allowed for the integration of the individual neural network responses.
Conditional probability tables were constructed by counting the frequency of detection with
respect to whether the candidate image contained a face or not, as shown in summarized
form in Table 4. Note that the entries in Table 4 reflect the performance of the individual
part detectors.

Bayes’ rule was applied to each view’s arbitration network to find an expression relating
the presence of an object at a certain view to the conditional part probabilities, as shown
in the equation below:

P(v|d,d, d, d,)=P(v)P(d, | V) P(d,|v) P(d, | v) P(d,]| V)

where v represents view and d, - d, represent detected features. For a given set of part
detections, the equation was evaluated twice: once for each state of the view detection,
substituting in the corresponding CPTs for each part. The view state with the larger network
probability was the view belief for the image. In most cases, two or more of the four parts
at any particular view indicated the presence of the object.

The testing results illustrate the face detection capabilities of the system on images outside
the training set, and are summarized in Table 5. It is worth noting that the overall detection
performance is better than that of any of the individual part detectors, which illustrates the
strength of using Bayesian Networks to make decisions in this context.

Conclusion

In this chapter, we illustrate the usefulness of Bayesian networks for image understanding
applications including object detection and scene classification, and we outline the principles
and methodologies for applying Bayesian networksto suchapplications. We provide examples
that demonstrate that Bayes nets can be built according to specific domain knowledge and
available training data to solve inherently uncertain vision problems.

In particular, the latter part of the chapter focuses on an extension of parts-based object
detection that utilizes Bayesian networks for decision making and includes support for
multiple viewing angles. The domain of human face detection was used to investigate the
power of this approach. The detectors were implemented using neural networks trained
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through bootstrapping and against manually selected facial features from frontal and side
images. Four features were chosen from each view: the right and left eyes, the nose, and the
mouth. Bayesian networks were used to integrate part detections in a flexible manner, and
were trained on a separate dataset so that the experimental performance of each part detector
could be incorporated into the final decision. Future work will apply this framework to the
detection of other types of objects.
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Abstract

This chapter describes an algorithm for tracking groups of pedestrians in video sequences.
The main difficulties addressed in this work concern total occlusions of the objects to be
tracked, as well as group merging and splitting. Because there is ambiguity, the algorithm
should be able to provide the most probable interpretation of the data. A two layer solution
is proposed. The first layer produces a set of spatio-temporal trajectories based on low level
operations which manage to track the pedestrians most of the time. The second layer performs
a consistent labeling of the detected segments using a statistical model based on Bayesian
networks. The Bayesian network is recursively computed during the tracking operation and
allows the update of the tracker results every time new information is available. Interpreta-
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tion/recognition errors can thus be detected after receiving enough information about the
group of interacting objects. Experimental tests are included to show the performance of
the algorithm in complex situations. This work was supported by FEDER and FCT under
project LT (POSI 37844/01).

Introduction

Pedestrian tracking has been extensively studied because it is a key operation in many image
analysis systems (Bar-Shalom & Fortmann, 1998; Bredmond & Thonnat, 1998; Cohen &
Medioni, 1999; Collins, Lipton, Kanade, Fujiyoshi, Duggins, Tsin et al., 2000; Comaniciu
& Meer, 2002; Cox & Hingorani, 1996; Haritaoglu, Harwood, & Davis, 2000; Hue, Le,
& Cadre, 2002; Isard & Blake, 1998; Isard & MacCormick, 2001; Okuma, Taleghani, De
Freitas, Little, & Lowe, 2004, Oliver, Rosario, & Pentland, 2000; Stauffer & Grimson,
2000; Wren, Azabayejani, Darrel, & Pentland, 1997). This is an easy task when pedestrians
appear isolated in the scene. The main difficulties concern occlusions that is, when the
pedestrians are occluded by the scene or by another group of pedestrians and cannot be
easily detected. In these cases, it is not possible to track each pedestrian with simple image
analysis techniques.

The goal of this chapter is to develop a tracking algorithm for interacting pedestrians, which
can cope with occlusions and groups. The proposed tracker should be able to recover the
track of a pedestrian after its occlusion by the scene or by other objects.

This seems to be possible because a human being is able to solve these situations in many
cases. How do we do that? To solve ambiguous situations, as the ones mentioned before,
we often wait until objects become separate again. Let us consider an example to illustrate
the difficulties. Figure 1 shows a group of four persons. Suppose the group splits into two
subgroups, each one with two persons. At this point, it is not easy to know who is in each

Figure 1. Tracking a group of pedestrians: Merge and split
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subgroup. However, if after a while, one of the subgroups separates, then we can reliably
identify each active region.

Most tracking systems are not able to solve this problem because they attempt to provide an
instantaneous and independent classification of the active regions, detected in the scene. In
order to obtain a reliable interpretation of the moving regions we must be able to consider
multiple interpretations and delay the decision, in order to integrate information along time.
This provides an uncertainty propagation strategy which is necessary to cope with the oc-
clusion problem.

The tracking algorithm should have the following properties:

. online operation

. detect and track active regions even in the presence of groups and occlusions
. recover from groups and occlusions

. correct wrong decisions when new information is available

The algorithm proposed in this chapter meets these requirements in two steps. First, simple
image analysis techniques are used to track moving regions in the video signal. These tech-
niques efficiently track the pedestrians most of the time. However, they can not deal with
occlusions or groups. This problem is solved by data interpretation techniques in the second
step. The estimation of the pedestrians trajectories in a long time horizon (with groups and
occlusions) is obtained by associating elementary trajectories detected by the simple track-
ing methods. This operation is formulated as a labeling problem, modeled by a Bayesian
network and solved by probabilistic inference methods.

Both steps can be incorporated in an online surveillance system. The first step updates the
tracks of the moving pedestrians every new frame and the second step periodically (e.g.,
every 2 seconds) assigns labels (object identifiers) to the detected tracks.

The chapter is organized as follows. Firstly we describe the previous work. Secondly we
present the overall ideas of the proposed tracker. Next we consider the Bayesian network
model. Then we address online tracking and extensions of the tracker to more complex
situations. Lastly we present the experimental results and offer our conclusion.

Previous Work

Many tracking systems are based on two stages. First, active regions are detected in the video
signal using motion detection algorithms performed by, for example, optical flow segmenta-
tion, background subtraction, frame differences, or a combination of techniques (Collins et
al, 2000; Haritaoglu et al., 2000; Wren et al., 1997). These operations can be considered as
low level processing because they do not use specific information about the object shape,
color, or motion. In a second stage, the detected regions are tracked using region association
methods, which can be considered as middle level processing.
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Region association methods attempt to match pairs of active regions in consecutive images.
This operation should be able to deal with the birth and death of video objects, ambiguous
matching, and detection errors. Asimple approach consists of using anearest neighbor tracker
which associates each estimated trajectory with the closest moving region (Bar-Shalom &
Fortmann, 1998). Because the coordinates of the detected regions are corrupted by measure-
ment noise, Kalman filters have been used to reduce the uncertainty about the target position
and velocity. However, the Kalman filter is not able to deal with outliers generated by object
detection methods. Robust estimation techniques (e.g., the probabilistic data association filter
(PDAF) and its extensions to multiple objects (Bar-Shalom & Fortmann, 1998)) have been
used to overcome these difficulties. Another way of propagating the uncertainty under non-
Gaussian conditions is based on particle filters which approximate the probability distribution
of the unknown parameters (e.g., target location) by a set of samples (particles) drawn from
the a posteriori distribution, given the observed data (Isard & Blake, 1998; Okuma et al.,
2004). These methods were first proposed to deal with outliers and nonGaussian distribu-
tions in single target problems, but they were later extended to cope with multiple targets
and temporary occlusions (Hue et al., 2002; Okuma et al., 2004).

Another alternative is the multihypothesis tree (MHT), which considers multiple associa-
tion scenarios and chooses the best at each instant of time (Cox & Hingorani, 1996). This
approach is able to cope with outliers. Furthermore, it also allows delayed decisions that is,
to delay the labeling of an active region in order to improve the performance.

Some of these techniques were initially proposed in a target tracking paradigm, which has
been extensively used in radar surveillance systems since the *80s (Bar-Shalom & Fortmann,
1998). However, object tracking in video sequences is a different problem. Video objects are
much larger than point targets. Therefore, there is much more information about the target
properties (e.g., color distribution, shape, texture) which is not available in radar systems. As
a consequence, the low level operations associated with object detection in video sequences
are more reliable. However, the pedestrian motion in video signals is less predictable than a
point target (e.g., airplane) in a radar system. Therefore, it is not easy to accurately predict
the object position many frames ahead. These differences make pedestrian tracking different
from point target tracking, for example, in radar systems.

The tracking operations become harder in the presence of occlusions and groups.

Several attempts have also been recently made to deal with groups of objects. For example,
in Haritaoglu et al. (2000) a method is proposed to locate the position of each pedestrian
inside the group, using silhouette boundaries. A histogram representation is used in McK-
enna, Jabri, Duric, Rosenfeld, and Wechsler (2000) to compute the visibility indices of each
pedestrian inside the group and to recognize the group members.

This chapter proposes a tracking system for multiple pedestrians in video signals. There is
a difference between the previous trackers and the methods proposed in this chapter. While
many trackers try to accurately estimate the position of each object, the emphasis of the
proposed algorithm lies in the correct identification of pedestrians (labeling problem) in the
presence of occlusions and groups.
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Figure 2. Two step approach: Stroke detection (left) and labeling (right)

Time Time

Overall Description

The approach described in this work is based on two steps. First, simple algorithms are used
to track moving active regions. Second, the pedestrians’ trajectories are labeled in such a
way that trajectories associated to the same object receive the same label. Figure 2 shows the
two steps for a specific problem in which two persons meet and separate. It is assumed that
the first step can be easily solved by standard image analysis techniques (e.g., background
subtraction with region matching based on the mutual choice criterion). Short trajectories
lasting less than 10 frames are eliminated and considered as false alarms.

Because pedestrian motion is slow compared to the frame rate of 25 fps, no motion model
is explicitly used, that is, we assume that the position of each pedestrian in the next frame
is close to the position of the pedestrian in the current frame.

The main difficulty in this strategy concerns how to label the detected trajectories, denoted
here as strokes, in order to obtain a consistent interpretation of the data, that is, in order to
know where each object is at each instant of time: this is formulated below as a probabilistic
inference problem to be solved by Bayesian networks.

Let {(s,y,)} be the set of detected strokes, s,, and corresponding measurements, y., ( €.g., color
histogram, speed) and let x; be the label associated to the i-th stroke s.. It is assumed that x;
L, is a random variable where L, = {1} is the set of admissible labels and y, € R™; the label I,
identifies a person or a group of persons. For example |, = 3 means that the i — th region is as-
sociated with pedestrian 3, while |, = (1,3) is a group of two pedestrians with labels 1 and 3.

The labeling problem can be formulated as follows: how can we estimate the unknown
labels x = {x} given the observations y = {y.}? This can be seen as an inference problem
to be solved by Bayesian inference techniques. The most probable labeling configuration
is obtained by solving
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Figure 3. Bayesian network tracker
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where p(y | x) is the observation model and P(x) is the prior. As mentioned before, x = {x }
is the set of all stroke labels to be estimated and y = {y.} is the set of stroke observations.

Furthermore, the observation model can be written as:

P(Y| X) =H p(Yi |Xi): yi eR™,x ely 3)

assuming that observations of different strokes are conditionally independent random vari-
ables if the stroke labels are known.

To solve the labeling problem, one has to define the observation model p(y, | x,) which ac-
counts for the visual appearance of the pedestrian (or group) x, and the prior distribution
P(x) which model the interaction among pedestrians. For example, P(x) should be zero if
X is an inconsistent labeling. This happens, for example, if the same pedestrian appears in
two different strokes at the same time instant.

Both model (pior and observation) will be represented using a Bayesian network, which is built
in real time during the tracking operation. The estimation of the most probable labeling (1) is
preformed by inference techniques for Bayesian network every T seconds (see Figure 3).

Bayesian Network Model

ABayesian network (BN) isagraph model which represents the joint probability distribution of aset
of random variables x , . . ., X in terms of simple factors involving few variables (Jensen, 2001).

A Bayesian network is defined by a directed acyclic graph (an oriented graph without
loops) where each node is associated to a random variable x; and the links represent causal
dependencies (Pearl, 1997). After defining the graph, the user must also specify the condi-
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tional distribution of each node x; given its parents a,. This is usually a simple distribution,
involving a small number of variables.

The joint probability density function associated to a BN is the product of all the node
conditional distributions.

PO) =] [P0xla) @)
i=1

The Bayesian network is therefore a simple way to model complex distributions of a large
number of variables in terms of factors. Furthermore, there are inference algorithms to com-
pute the most probable configuration which efficiently exploit the structure of the probability
distribution (equation 4) (e.g., see Jensen, 2001 and Murphy, 2001).

Network Architecture

As mentioned before, the BN used in this chapter is automatically built from the video signal.
Themainquestionis: howisthe BN generated? Figure 4(a) shows anexample for the two-person
problem shown in Figure 2. This model associates a node x; to each stroke s, detected in the
video signal; x; is the label of the stroke s, that is, a variable which identifies all the pedestrians
associated to the stroke trajectory, for example, x, = 1 if s, is the trajectory of pedestrian 1 and
X, =(1,2) if s, is the trajectory of a group of two pedestrains with labels 1 and 2. In this model,
the unknown variables are the node labels x; which can not be directly observed.

The next question is how to define the links which represent causal dependencies. The main
idea is simple: two hidden nodes x,, x; are linked if s, s, may correspond to sub trajectories
of the same object or group. Link creation is performed using simple criteria: (i) causality

Figure 4. Bayesian network: (a) hidden labels; (b) full network
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Figure 5. Basic topologies: Occlusion, merge, split, and three merge-splits
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(sj should start after the end of s,); (ii) maximum speed (the mean speed of the pedestrian
during occlusion should be smaller than a threshold). The speed threshold allows the sys-
tem to eliminate fast motions during occlusion times, which could not be performed by a
pedestrian. The threshold may depend on the image location as well as the average velocity
of the pedestrian before the occlusion.

The measurements {y } can also be included in the BN because they are considered as realiza-
tions of a random variable which depends on the stroke labels {x } : x. is the parent of y. . Figure
4(b) shows the complete BN for the two-person problem. (r is a restriction node associated to
the split, which will be explained at the end of this section). The network conveys information
about the stroke interaction, namely the propagation of causal dependencies in the presence of
occlusions, group merging, and splitting. It also describes the relationship between the stroke
labels x, and the image features y.. Finally, it also guarantees that physical restrictions hold,
for example, the same object cannot belong to two strokes at the same time.

To keep the network simple each node is only allowed to have a maximum number of two
parents and two children (this restriction is relaxed in Online Tracking). This is done by
pruning the network. Pruning can be based on several criteria. For example, if a node has
more than two children, the links corresponding to larger occlusion times are eliminated
because they are considered as less probable.

Assuming that the number of parents and children is limited to two, there are six basic to-
pologies (see Figure 5). They correspond to the following situations: total occlusion, group
merge,group split, and three types of merge-splits. The first topology is used to represent the
trajectory of a pedestrian (or group) which is being tracked (stroke s,), becomes occluded
and it is then detected after a while (stroke sj). The second topology corresponds to a merge
of two trajectories (s, sj) into a single trajectory (s,). This topology corresponds to a merge
of two pedestrians (or groups) into a single group. It also accounts for the possibility of x,
being the continuation of x; (or xj), and X, (x,) disappears. The third topology corresponds
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to a split of a trajectory into two trajectories. This accounts for group splits and it may also
represent other situations for example, x; (or x,) is the continuation of x; and x, (x) is a new
stroke. The other topologies correspond to merge-splits.

Every time there is a split, a mutual dependency is created between the children x,, X;- This
happens because the same person cannot be in two active regions at the same time. To model
this dependency, a binary restriction node M is created. This node takes the binary value 1
if we have a consistent labeling (no common labels are assigned to the children nodes) and
it takes the value 0 otherwise. This variable guarantees that the network does not produce
inconsistent configurations in which the same object belongs to two or more trajectories at
the same time. To guarantee that the inference algorithm produces a consistent labeling, the
restriction nodes are considered as observable nodes with r; = 1.

Admissible Labels

Let us consider the computation of the set of admissible labels L, for each node x. Isolated
objects are identified by an integer label | and groups are characterized by a set of labels of
the group members, for example, (1,2) is a group with the objects 1 and 2.

The set of admissible labels for each node is obtained by recursively propagating the labels
through the network (see below). This operation depends on the graph links in the vicinity of
each node x, which can be classified into one of the six basic topologies: occlusion, merge,
split, or tree types of merge-splits (see Figure 5). Therefore only six label propagation rules
have to be defined.

The label propagation rules for the first three topologies are:

occlusion: L=Lul,, ()
merge: L=LulLul .V leue (6)
L :{aub:acLi,bch,amb:Q} @)

merge

Table 1. Admissible node labels: creation (1,2), merge (3), occlusion (4), and split (5,6)

L

k

1
2

12(12)3
12(1,2)34
12(1,2)345
12(1,2)3456

o | O~ W NP
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Spht Lk = 7) (L|) o Inewk Lj = 7) (LI) Y Inew]- (8)

where P(L) is the partition of the set L, excluding the empty set. Label propagation in
merge-splits is performed by combining the merge and split rules.

Inall these examples, | stands for a new label, corresponding to a new object entering the
scene. Table 1 shows the admissible labels for the example considered in this section. For
example, nodes 1,2 correspond to new pedestrians entering the scene, node 3 is a merge of
two pedestrians, node 4 is a group occlusion, and nodes 5,6 correspond to a group split.

Node Conditional Distributions

There are three types of nodes in the BN network: hidden nodes, observation nodes, and
restriction nodes. We have to automatically define the conditional probability tables p(X, |
a)) for each type of node. Let us consider the hidden nodes first because they represent the
variables we want to estimate.

Hidden Nodes

Hidden nodes can either have simple labels, representing a single pedestrian, or acompound
label. The label of a given node is inherited from the parent nodes using one of three mecha-
nisms: occlusion, group merge, or group split. In addition, we also assume that each node
can have a new label corresponding to new objects entering the scene.

To define a probability distribution of the node variable x, we must specify the probability
of each of the four previous mechanisms (new, occlusion, merge, split) which will be de-
noted by P, Py Prrger Pgii: These probabilities can be set as constant or they may vary
according to the stroke geometry and position.

Because there are six basic topologies, we have six types of conditional distributions p(x,
|a). For example, in the case of occlusion (first topology) the node X, is either equal to its
parent label or it is a new label. Therefore:

1-P X, = X
P(Xk X-) :{ new k i 9
| I Pnew Xy _Inew ( )

In the other cases, the probability distribution is slightly more complex. For example, if x,
has a merge topology with parents x,, X, then we must consider 4 hypotheses: (i) x, receives
the label of x,, (ii) x,_receives the label of X, (iii) x, is a merge of both labels, or (iv) it is a
new label. This leads to:
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I:’merge X =X UX;

R X =%

i
P(X| %, X}) = PZZ;J' I (10)
J
Pnew X = Inew

In the case of splits, similar arguments lead to:

Pepiit 2% =2) x = P(x)\x

P(X | X;) = Pocclu Xe =X (11)
Pnew X = Inew

where N, > 2 is the number of objects in the group label x.. If x, = P (x) \ X, X, is a subset of
the group x,, we assume that all the 2" — 2 subsets are equiprobable. If x, = x; then the node k
has all the labels of the parent node. In this case, the group does not separate and has simply
suffered a temporary occlusion. Ifx, =1 the stroke k corresponds to a new pedestrian and
is not related to the parent node.

The conditional distributions of the other topologies follow similar guidelines and they
are defined in the appendix. The above parameters P, P__, Pmerge, Pspm, are heuristically
defined or learned from the data. They can be independently specified provided that their
sum is equal to 1 for each type of topology. In this chapter, the parameters were heuristically
chosen, but they depend on the stroke geometry for example, the occlusion probability is

higher if the occlusion time is smaller.

Restriction Nodes

Every time there is a split, a binary node is included to create a dependency between the two chil-
dren: the same object cannot simultaneously belong to two groups at the same instant of time.

The conditional probability table of the restriction node r, is created in such a way that =
1 if there is no labelling conflict (common labels) and r;, = 0 otherwise. Therefore:

r=1x,x.)=
! "7 1o otherwise (12)

Because we want to avoid common labels in group splits, r is considered as an observed
node with value 1 and it does not have to be estimated by the inference algorithms.
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Figure 6. Dominant colors: (a) image dominant colors and (b) color matching between
dominant colors of a stroke and a color model
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Each stroke detected in the video signal is characterized by a set of features for example,
average color histogram, average speed, region shape, key colors obtained by clustering, or
by the mean shift (Comaniciu & Meer, 2002) or invariant features such as scale invariant
feature transform (SIFT) (Lowe, 1999).

Lety, be the set of features extracted in stroke s,. It is assumed that y, is a random variable
which depends onthe label x,. Therefore, we mustbe able to define the conditional probability
p(y, | X)) This distribution depends on the specific choice we make about the features.

In this chapter, we have used a simple set of features consisting of the M (M = 5) dominant
colors obtained by clustering the color components of the pixels of all the active regions
associated to a given stroke s,. Each color is represented by two features: the normalized r
and g color coefficients. Therefore, y, is @ 2M dimensional feature vector. The computation
of the dominant colors is performed using the k-means algorithm.

Every time a new pedestrian enters the scene, the set of dominant colors is computed and
used to characterize the pedestrian during its evolution in the camera field of view. Therefore,
each simple label is defined by M dominant colors c, € R?™. A group of labels is character-
ized by the dominant colors of all the objects inside the group. We assume that a stroke s,
is well represented by a tentative label x, if the dominant colors of s,_match the dominant
colors of a tentative label x,. Figure 6 shows the color scatter diagram of a given stroke and
its dominant colors, computed by clustering in the rg space. It is also shown the dominant
colors of a tentative label. The matched colors are represented by circles.
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Lety,, be the i —th dominant color of the video stroke k and let ¢, ; be the j — th dominant

color of the label x,. We will assume that: g
M

p(yk|xk):Hp(yki|Xk) (13)
i=1

where p(y,, | X)) has a high value « in the case of matched colors and a low value f in the
case of unmatched ones

inlly.—c :|l<d
o mjmllyk. il

kil %)=
PO 1) {B otherwise (14)

where ¢ is a matching threshold.

Inference

Inference methods are used to compute the most probable configuration of the hidden nodes
(labels) given the observed nodes {y,} and restriction nodes {rij}. This is equivalent to the
solution of (1). Fortunately, there are several well known methods to compute the most
probable configuration for example, message passing method for polytrees (Pearl, 1997)
or the junction tree algorithm (Jensen, 2001). The complexity of the inference procedure
grows if there are multiple paths. In this chapter, inference was performed using the Bayes
Net Matlab toolbox, developped by Murphy (2001).

The system described before is able to track moving objects in video sequences, managing
to deal with complex situations (occlusions and groups). However, it has two major draw-
backs: it is an off-line algorithm (the network complexity and delay grow to infinity as time
goes by) and the topological restrictions (two parents and two children) cannot cope with
complex situations involving several objects.

These issues are addressed in the following sections and the proposed algorithm is then
experimentally evaluated in real video sequences.

Online Tracking

Thealgorithm previously described in Bayesian Network Model is tailored to off-line analysis
of video sequences in batch mode. We have to wait until the end of the sequence before doing
inference. Furthermore, it cannot be applied to long video sequences because the network
complexity and the computational time grow to infinity as time goes by.
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Atracking system should provide labeling results in real time, with a small delay. Therefore
it is not possible to analise the video sequence in a batch mode, that is, performing inference
after detecting the object trajectories in the whole video sequence.

To avoid these difficulties, two strategies are suggested: periodic inference and network sim-
plification. The first strategy consists of incrementally building the network and performing
the inference every T seconds. Denoting by x(0 : kT), y(0 : KT) the variables of the Bayesian
network associated to strokes detected in the interval [0,kT], then the object labeling can be
periodically performed by solving:

X(0:kT) =arg Xr(’g%) p(x(0:KT), y(0:KT)) (15)

The network grows as before but the labeling delay is reduced to less than T seconds. The
solution of (15) can be obtained by standard techniques as before ( e.g., junction tree algo-
rithm (Jensen, 2001)).

Figure 7. Evolution of the Bayesian network at three time instants. Gray circles represent frozen
past nodes and white circles represent active nodes to be labeled by the inference process.
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In practice we wish to have an instantaneous labeling of all the objects, that is, we do not
wish to wait T seconds for a new global inference. Can we obtain an instantaneous label-
ing of the trajectories with a Bayesian network ? To obtain online labeling, a suboptimal
approach can be devised which combines the optimal decision obtained at the instant kT
with the new information collected after the instant KT.

Let x, be a hidden node associated to a trajectory active in the interval [KT,t]. Exact inference
is performed by computing P(x, | y(0 : t)). In order to derive a suboptimal estimate, we shall
assume that the information available to estimate x; is the combination of y(0 : kT) (past)
and y,(KT : t) (recent) that is, we consider the recent observations of stroke s, and neglect the
observations of the other strokes after the last inference instant kT. Applying the Bayes law:

P(x|y(0:1)) = P(x| y(0:KT), y; (kT :1)) (16)
=a p(y; (KT 1) % )P (x| y(0:kT))

where a = 1/P(y,(KT : t) | y(0 : kT)) is a normalization constant, P(x;| y(0 : kT)) is a global
prior, computed before in the inference step at time kT using all the information about the
interaction among nodes and p(y,(kT : t) | x;) represents new local information. The choice

of the best label x; is performed by selecting the highest a posteriori probability P(x; | y(0:
t)). When x; is a new variable that is, when a new stroke is detected after kT, we assume a
uniform prior: no label is preferred based on past information.

The above strategies convert the batch algorithm into a online algorithm that is, they solve
the first problem. However, the network size increases as before. To overcome this difficulty,
a simplification is needed. The main idea used in this work is to bound the memory of the
system by freezing a subset of the network nodes with their most probable values.

Old (hidden and observed) nodes influence the labeling assignment of current nodes. However,
this influence decreases and tends to zero as time goes by: recent variables are more important
than old ones. So, we need to use techniques to forget the past. In this chapter, we allow a

Figure 8. General network: (a) merge-split (b) merge; (c) split)
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maximum of N active nodes and freeze all the other nodes by assigning them the most prob-
able label obtained in previous inferences. In this way, the complexity of the network remains
bounded and can be adapted to the computational resources available for tracking.

Several strategies can be used to select the nodes to be frozen (dead nodes). A simple approach is
used for this purpose: oldest nodes are eliminated and the most recent N nodes are kept active.

Figure 7 shows the evolution of the Bayesian network at three instants, fora PETS 2001 sequence.
Although the number of nodes grows linearly with time, only the most recent ones are active and
updated by the inference algorithm, therefore keeping the computational burden under control.

Extensions

Until now, we have restricted the number of children and parents of each node to a maximum
of 21, This is too restrictive to cope with many practical situations. The key question is: how
can we deal with more complex situations as shown in Figure 8(a)?

The extension of merge and split topologies defined in section 3 to deal with arbitrary
numbers of parents or children is straightforward. The most difficult problem concerns the
merge-splits because there is a combinatorial explosion of different merge-split topologies.
In the sequel, we will first define the extensions of merge and split nodes to the general case
and then address the merge-split problem.

Figures 8(b) and 8(c) show the merge and split topologies with multiple parents and children.
The simplest case is the split because the label propagation rules and conditional probability
distribution defined in (8,11) remain valid. The merge has different rules however, because
we must consider the association of 2" — n — 1 subsets of parent nodes, that is, we should

Figure 9. Modified Bayesian net with mediating nodes x,,
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consider the association of any pair of nodes (x;, x), any triplet (x;, X, x), and so forth. The
set of admissible labels L can be recursively computed as follows:

L=Lul, A7)
Lt=Merge (L'}, L) i=1,...,p LO=¢ (18)

where L. is the set of admissible labels of x.. The Merge(.,.) is defined in (7). The set of
admissible labels L can be split into three subsets L , Lerger Loew = | .., associated with

stroke continuation, merge, and new. The conditional distribution must consider all these
three types of labels as follows:

PocclJ X= Xj
P(X| X seen Xp) = I:’merge /|Lmerge| Xe I-merge (19)
Prew X = lhew

where | L erge | denotes the number of elements of set L

Concerning the merge-splits, it is not possible to explicitly consider all the different topolo-
gies when the number of children or parents is higher than 2. A different approach is fol-
lowed. We will detect all such nodes, %, in the BN and introduce mediating nodes between

merge”

Figure 10. Example PETS 2001: (a) detected strokes; (b) most probable labeling obtained
with the online algorithm
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Table 2. Experimental results: Number of strokes (NS); number of objects (NO); number of groups
(NG); duration (D sec.); number of labeling errors (NE); computational time (CT sec.)

Seq. NS NO NG D NE CT
PETS 2001 34 8 5 120 2 12.8
Campus 62 11 10 54.8 2 42.8
PETS 2004 67 7 4 36 5 26.6

X, and its parents with more children (see Figure 9). In this way, splits and merges become
separate and can be dealt with the previous rules. Mediating nodes allow solving the split-
merge problem in an elegant way.

Tracking Experiments

The proposed algorithm was used to track multiple pedestrians in video sequences. This sec-
tion shows tracking results obtained in three video sequences: an indoor sequence extracted
from PETS 2004 database (“Meet Split 3rd Guy”) (http://www.dai.ed.ac.uk/homes/rbf/
CAVIAR.) and two outdoor sequences, one from the PETS 2001 database (test set example
1 (ftp://pets2001.cs.rdg.ac.uk.)) and one sequence recorded at a university campus. All these

Figure 11. PETS 2001: labeling results at time instants (in sec.) (a) 32.8; (b) 42.4; (c) 49.2;
(d) 49.9; (e) 57.6 and (f) 60.8
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sequences have multiple interacting objects (typically less than 10) with group associations
and occlusions. The sampling rate is 25 fps.

Inference was performed every 15 seconds using the online algorithm?and a maximum number
of ancestor nodes N =10, which prevents the network from growing. The Bayesian network was
automatically built during the tracking operation without human intervention and the inference
results were obtained using Murphy’s Bayes Net toolbox for Matlab (Murphy, 2001).

Example 1: PETS 2001

Figure 10 shows the performance of the tracker in the PETS 2001 sequence sampled at 25 fps,
during the first 120 seconds. Figure 10(a) shows the evolution of all active regions detected
in the video stream. This figure displays one of the coordinates of the mass center (column)
as a function of time. Every time there is an occlusion or when two or more objects overlap
it is no longer possible to associate the detected regions with past ones. In such cases the
trajectories are interrupted.

Figure 10(b) shows the labeling results obtained with the online algorithm described in the
chapter with a maximum of two parents and two children per node. The algorithm manages
to disambiguate most of the occlusions well. Only two labeling errors are observed in a total
of 34 strokes (3000 frames). The errors are in label 6 and in a switch of labels 3and 8 at t =
110sec. The output of the online algorithm was compared with the results of the batch version
of the tracker. The same labeling was obtained in both cases with important computational
savings (CPU times?: 258 sec (batch) and 12.8 sec (online)). In this example, the computa-

Figure 12. Campus sequence: (a) detected strokes; (b) most probable labeling obtained
with the online algorithm
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Figure 13. Campus sequence: Labeling results at time instants (in sec.) (a) 4.4; (b) 10.4;
(c) 22.5; (d) 31.9; (e) 34.8 and (f) 36.2

Figure 14. PETS 2004: (a) detected strokes; (b) most probable labeling obtained with the
online algorithm
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tion time of the labeling algorithm is about 10% of the sequence duration. The statistics of
the sequence complexity (number of objects, number of groups, number of tracks, duration)
and tracker performance (labeling errors, computational time) are shown in Table 2.

Figure 11 shows an example of the labeling interpretation obtained with the proposed algo-
rithm. This example shows a group merging and splitting involving two vehicles, while the
other objects are being tracked by the system. This situation is correctly solved.

Example 2: University Campus

This sequence contains the trajectories of 10 pedestrians walking in an university campus for
54.8 s. The number of groups (10) is much larger than in the previous example. Figure 12
shows the detected stokes as well as the labeling results obtained by the Bayesian network.
The BN tracker managed to solve most of the occlusions and group merging and splitting
well. Only two labeling errors were obtained (see Table 2).

Figure 13 illustrates the performance of the tracker in a typical situation in which two persons
meet, forming a group and then separate (pedestrians with labels 2 and 3).

Figure 7 shows the Bayesian network architecture at three time instants (visible nodes are
not represented). Although the number of nodes grows quickly with time, only the most
recent ones are updated by the inference algorithm, therefore keeping the computational
burden under control. The gray nodes were classified as frozen by the pruning algorithm,
and their labels and are not allowed to change.

Figure 15. PETS 2004: Labeling results at time instants (in sec.) (a) 9.6; (b) 12.3; (c) 14.4;
(d) 15.0; (e) 15.5, and (f) 17.3
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Example 3: PETS 2004

Figure 14 shows the performance of the tracker in the indoor sequence “Meet Split 3rd
Guy” (PETS 2004) allowing general topologies, that is, more than two parents and two
children per node. This is a difficult example, and useful to illustrate the performance of the
tracker in the presence of occlusions, group merging, and splitting. The low level operations
needed for object detection produce detection errors (mainly false positives) due to drastic
illumination changes and the presence of static objects (persons) which remain undetected
during some intervals of time and generate small active regions due to small movements.
Even under these conditions the BN tracker manages to produce good results.

Figure 14(a) shows the evolution of all active regions detected in the video stream as in
previous examples. Figure 4(b) shows the labeling results obtained with the online algorithm
described in the chapter. The BN tracker manages to disambiguate most of the occlusions
well (only the yellow stroke is misclassified).

Figure 14(b) shows examples of the tracker performance in group merging and splitting.
This sequence has three moving objects (3,4,6) and three static objects. The tracker man-
ages to correctly track the three moving objects most of the time, as shown in Figure 15.
Three persons walk in separately (Figure 15(a)), they merge in groups of two (Figures
15(b), 15(c), 15(e)) and they split after a while (Figures 15(d), 15(f)). All these events are
correctly interpreted by the tracker. Namely, the correct label is assigned after the two splits
of Figures 15(d) and 15(f).

The tracker has some difficulty dealing with the static objects (labels 1, 2, and 5) because they
are not correctly detected by the low level algorithms (background subtraction). These objects
remain inthe same place during the whole sequence. They should be considered as background.
However, there are small movements which are detected and appear in Figure 14.

The performance of the BN tracker in this example is summarized in Table 2.

We have tried to repeat the experimental tests without freezing past nodes, but the amount
of memory needed increases exponentially and exhausts the computer resources. This is an
important issue to be addressed in the future.

Future Work

Future work should consider several issues. Complexity is an important problem to be further
addressed in the future. Because the system complexity depends on the video stream, it is
important to devise strategies to monitor and control the network complexity. A first step
toward this direction is proposed here by network pruning and the use of frozen nodes asso-
ciated with past information. However, additional work is needed to prevent an exponential
increase of the number of labels. Future work should consider label pruning by discarding
the less probable labels, keeping, however, the model consistency.

The image features characterizing each stroke should also be studied. The use of dominant
colors is a crude representation of the object appearance. More sophisticated features (e.g.,
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local and invariant features (Lowe, 1999; Wren et al., 1997) should be studied in this context
as a way to improve the systems performance.

Conclusion

This chapter presents a system for long term tracking of multiple pedestrians in the presence
of occlusions and group merging and splitting. The system tries to follow all moving objects
present in the scene by performing a low level detection of spatio-temporal trajectories
(strokes), followed by a labeling procedure which attempts to assign consistent labels to all
the strokes associated to the same pedestrian. The interaction among pedestrians is modeled
using a Bayesian network, that is automatically built during the surveillance task. This al-
lows formulation of the labeling problem as an inference task that integrates all the available
information extracted from the video stream, allowing to update the interpretation of the
detected tracks every time new information is available. For example, sometimes when a
group of objects splits, there is not enough information to perform a reliable identification
of each object. However the proposed system is able to improve its output, when additional
information is extracted from the video signal.

The proposed system is able to deal with occlusions of pedestrians by static objects or by
other pedestrians forming groups. The system estimates the identifier (label) of each isolated
object (or group) after the end of the occlusion.

The labeling model used in this chapter (Bayesian network) is not time driven. It is event
driven: it tries to assign labels to the object trajectories (strokes) detected by simple low
level operations. Therefore, only a single variable is used to identify each stroke even if the
stroke lasts for tens or hundreds of frames. The Bayesian network does not try to describe
the evolution of labels from frame to frame. It describes data conflicts: occlusions, group
merging, and splitting.
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Endnotes

! This restriction applies to hidden nodes only.

2 The update rate depends on the application; 15sec is an acceptable delay in some
surveillance tasks.

3 These tests were performed on a P4 at 2.8 GHz.
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Appendix: Merge-Splits

This appendix defines the expressions for the conditional probability tables of merge-splits.

Merge-Split 1

Paiic /2" =2) % = PO\
l:)merge /(2Nj _2) X < Ivlij

P(Xk | Xi y Xj ) = POCCli Xk = Xi (20)
Poccl i X = Xj
Prew X = Inew

where M, contains group labels including label x; and a subgroup of x, without common
objects. Specifically,

M,={aub:a=x,bcP(x),anb=g} (21)

Merge-Split 2

Py, /(2" =2) X < PO\ %
Popii, 12" -2) X, = P(X))\X;
POt x;) = | Prerge 1™ =D =D] 3 =M 22)
Pocel, X =X,
Focel, X = Xj
Prew X = lew

where M*ij contains the group labels of all subset of x, merged with a subgroup of X, without
common objects. Specifically:

M ={aubracP(x),bcP(x)anb=g¢} (23)

Merge-Split 3 is a special case of merge-split 2 when two of the parent nodes are the same.
The conditional distribution of the merge-split 3 is therefore given by (22).
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Abstract

Inavisual tracking task, the object may exhibit rich dynamic behavior in complex environments
that can corrupt target observations via background clutter and occlusion. Such dynamics
and background induce nonlinear, nonGaussian and multimodal observation densities.
These densities are difficult to model with traditional methods such as Kalman filter models
(KFMs) due to their Gaussian assumptions. Dynamic Bayesian networks (DBNSs) provide
a more general framework in which to solve these problems. DBNs generalize KFMs by
allowing arbitrary probability distributions, not just (unimodal) linear-Gaussian. Under the
DBN umbrella, a broad class of learning and inference algorithms for time-series models
can be used in visual tracking. Furthermore, DBNs provide a natural way to combine mul-
tiple vision cues. In this chapter, we describe some DBN models for tracking in nonlinear,
nonGaussian and multimodal situations, and present a prediction method to assist feature
extraction part by making a hypothesis for the new observations.
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Introduction

Reliable visual tracking in complex environments is an important task. Its applications in-
clude human computer interaction, teleconferencing, smart surveillance, virtual reality, and
motion analysis. It is a very challenging task because the objects’ state space representation
can be highly nonlinear and the observations are often corrupted by background clutter or
occlusion. Traditional tracking methods, such as KFMs, are limited by their Gaussian as-
sumptions. KFMs assume that the dynamics of the target can be modeled, and that noise
affecting the target dynamics and sensor data is stationary and zero mean. In cases where
the target is actively maneuvering, the disturbance is not zero mean, and the performance
of the KFM degrades.

Dynamic Bayesian networks (DBNSs) provide a more general framework in which to solve
these problems. DBNs are directed graphical models of stochastic processes. They generalize
hidden Markov models (HMMs) and linear dynamical systems (LDSs), also called KFMs,
by representing the hidden (and observed) state in terms of state variables, which can have
complex interdependencies. Bayesian networks (BN) are attractive for vision applications
because they combine a natural mechanism for expressing domain knowledge with efficient
algorithms for learning and inference (Rehg, Murphy, & Fieguth, 1999). DBNSs provide
two distinct benefits: Flexible modeling choices and schemes that can be tailored to fit
the complexity of the visual tracking task, all of which can be conceptualized in a single
framework with an intuitively-appealing graph notation. Second, there exists many effective
and efficient inference and learning algorithms for BN that can be applied to visual tracking
systems (Pavlovic, Rehg, Cham, & Murphy, 1999).

This chapter makes two contributions. First, we design some DBN models for nonlinear,
nonGaussian and multimodal assumptions, and test tracking performance using exact and
approximate DBN inference algorithms. The models in Figure 3 combine the advantages of
models in references Wu and Huang (2001) and Pavlovic et al. (1999), and handle the case
where observations have nonGaussian noise, by approximating it as a mixture of Gaussians.
We also consider methods of seamlessly combining multiple cues with the DBN models.
Multiple cues tracking is more robust in cluttered environments. Second, we present a pre-
diction method based on online junction tree filtering algorithm for the models.

In section 2, we introduce some DBN models which have been used for visual tracking
tasks, and design some DBN models with multiple observations cues under nonlinear,
nonGaussian and multimodal assumptions for our visual tracking system, and in section 3
we describe the exact and approximate inference for the models, and present a prediction
approach. In section 4, we demonstrate some experiment results on sampling data and real
data. Section 5 is the summary.

DBN Models for Visual Tracking

Wu and Huang (2001), Murphy (1998), Murphy (2003), and Pavlovic, et al. (1999) describe
some DBN models which have been used in visual tracking tasks. For example, Figure 1 shows
a state space model (SSM) (Murphy, 2003a) and a factorial SSM (Wu & Huang, 2001).
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Figure 1. DBN models with linear Gaussian. For all models, subscripts denote two time
slices because the current state depends only on the previous state. Oval nodes are continu-
ous and shaded nodes are observed.

(@) (b)

The DBN model in Figure 1(a) is a state space model (SSM) which looks identical to the
graph structure of HMM. In Figure 1(b), the states of target can be decomposed into shape
states and color states and the observation representation can also be separated into color
and shape observations. All the nodes are continuous, and all the conditional probability
distributions (CPDs) are linear-Gaussian. Shaded nodes are observed, and clear nodes are
hidden.

In fact, the model in Figure 1(a) is a DBN representation of KFM, which is also called linear
dynamic system (LDS). It can be defined as:

P(X, = x| X, =X%,) = N(X; Ax_, Q)
P(Y, =y [X=%) =N(y; Cx R) )

That is, the conditional probability distributions are just normal distributions with scaled
means and fixed variances. To use multiple visual cues, Wu and Huang (2001) used the
model in Figure 1(b). The factorial SSM in Figure 1(b) can be defined as:

P(X1t = x1t | X1t-1 = x1t-1) = N(x1t; Al x1t-1, Q1)

P(X2t = x2t | X2t-1 =x2t-1) = N(x2t; a2 x2t-1, Q2)

P(Y1t =yl | X1t = x1,X2t = x2) = N(y1; C1 x1 + C2 x2, R1)

P(Y2t =y2 | X1t = x1, X2t = x2) = N(y2;D1x1 + D2x2, R2) 2

The DBN model in Figure 2(a) (Murphy, 2003a) is a switching dynamic model. The model
in Figure 2(b) (Murphy, 2002) is a switching dynamic model with switching observation
for modeling nonGaussian observation noise. Square nodes are discrete, and oval ones are
continuous. The dotted arcs are optional.
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Figure 2. Switching DBN models with conditional Gaussian (CG) nodes. Square nodes are
discrete.

The basic idea of the switching SSM in Figure 2(a) is that the model can switch between
different kinds of dynamical “modes” or “regimes” (the resulting piece-wise linearity is
one way to approximate nonlinear dynamics). The dynamics of the modes themselves are
governed by a discrete-state Markov chain. After decoding, we can obtain the best sequence
of switching states. The CPDs in Figure 2(a) are as follows (Murphy, 2003a):

P(Xt = XI I Xt-l = Xl-l’ St = I) = N(Xl; AiXt-l’ QI)
P(Y,=y | X, =x) =N(y;Cx, R) 3)
PGS, =jlS,=D)=M(,])

The basic idea of the switching SSM in Figure 2(b) is that the model can switch between
different kinds of dynamical “modes” or “regimes.” The image observations are corrupted
by background clutter modeled by switched observations which make for a nonGaussian
observation density. The CPDs for Figure 2(b) are as follows:

P(Xt =% I Xt-l = Xips Stx = i) = N(Xt; Ai Xips Qu)

P(Y,=yIX =x8"=])=N(y; Cx,R) 4)
P} =j|8,=1)=AiI)

PS=il S, =D)=A",]))

In our visual tracking system, we used the DBN switching SSMs in Figure 3, and experiment
with single and multiple cues. Multiple feature representation for the target can be helpful
for verifying various aspects of the image observations. For example, combining the color
distribution of the target could enhance the robustness of contour tracking in a heavily clut-
tered background, and integrating shape and color feature representations could improve
tracking against color distracters. If the target and the clutter become indistinguishable in
terms of one stream of representation, the tracking has to be determined from the other
streams. This problem motivates the research of tracking and integrating multiple visual
cues (Wu & Huang, 2001).

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.



180 Diao, Lu, Hu, Zhang, & Bradski

Figure 3. DBN models for our visual tracking system

Figure 3(a) shows a model that allows for switched background clutter. It uses multiple cues
such as color and shape observations. 3(b) is a switching observation model with single cue.
3(c) is a switching dynamic model with allowance for multiple cues of switching observa-
tion. 3(d) is the same as Figure 2(b).

The basic idea of using the switching SSM in Figure 3(a) is to model multiple nonGaussian
observation noise. The CPDs of the model in Figure 3(a) are as follows:

P(Xt =% I Xt-l = Xl-l) = N(Xt; AXt-l‘ Q)

P(Y!=y'[ X =x§=1) =N, Cx, R} (5)
P(YZ =y X =x,§,=1)=N(y> Cx,R?

PGS, =]1S,,=1)=A(,])

When the image observation is represented by a single cue and corrupted by background
clutter, the resulting observation density is nonGaussian. Hence, we can use the DBN model
in Figure 3(b) to model tracking with single cue by approximating the noise as a mixture
of Gaussians. The CPDs are as follows:

P(X,=x | X, =x,) =N(x; Ax , Q)
P(Y,=yIX =xS=1) =Ny, Cx,R") (6)
PS,=jIS,=1)=A(,])
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The basic idea of the switching SSM in Figure 3(c) is similar to 2(b), but it uses multiple
observation cues. The CPDs in DBN model of Figure 3(c) are as follows:

P(Xt = XI | Xt-l = Xt-l’ Stx = i) =N (Xt; Aixt_p Q,)
P(Y! =y [ X =% S =]) =N(* Cx, RYj)

P(YZ =y | X, =% 87 =]) = N(y* Cx, R) @)
P(S*=]|S*,=1)=A*(,])

PG =jIS",=)=A"(])

After using the above models to express domain knowledge of visual tracking task, we try
some DBN inference algorithms to make the tracking (filtering) and prediction.

Inference and Prediction

Here we overview some possible inference problems which appear in the visual tracking tasks,
and give some analysis of time and space complexity for the inference algorithms involved,
and then present a new DBN approach to make prediction in our visual tracking task.

Inference

In our tracking system, we used the models in Figure 3 with both exact and approximate
inference algorithms for the DBNSs. The exact inference algorithm is the junction tree algo-
rithm, and we will discuss the details in the next section. The approximate algorithms are
Boyen-Koller (BK) (Boyen & Koller, 1998), generalized pseudo Bayesian (GPB) (Kim,
1994) and particle filtering (PF) with likelihood weighting (importance sampling). PF is
also known as sequential importance sampling (SIS), sequential Monte Carlo, the bootstrap
filter (Gordon, 1993), or the condensation algorithm (Isard & Blake, 1996).

In practice, we implemented GPB and PF algorithms using the Bayesian networks toolKkits
(BNT) (Murphy, 2003b) and Intel’s OpenPNL (Sysoyev, Bradski, Dash, Eruhimov, & Tara-
sov, 2003). There is a good description of PF using the likelihood weighting (LW) routine
and GPB algorithms for DBNSs, each with 2 variants we call 1 & 2 in Murphy (2002). It
also includes pseudo code of PF and LW algorithms. BNT has an inference engine for LW
approximate inference on static Bayesian networks, so we modified it for DBNs by using
LW in a PF routine. The pseudo code of PF in a DBN is in Figure 4.

In the pseudo code of Figure 4, [x, '] = LW(X' ,, y,) is the process of likelihood weighting
routine just as the pseudo code in Murphy (2002). X, = LW(X' , y,) is the likelihood weigh-
ing only containing sample X' and without computing ' .

t-17
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Figure 4. Pseudo code of the particle filtering in a DBN

function [{x, Wi Hs1=PF({x W 35, v,)
/I Use LW to sample X', and compute weights ',
if t is the first time slice
for each node i in topological order
X, W] = LW (X )
else
Reshape the y, to t and t — 1time slices

for each node i in topology of first slice of DBN
X, = LW(X, ., Y)

for each node i in topology of second slice of
DBN
X, W] = LW (X', y)
end
Wi = xwl
Normalize W, =w} /Y "W

/IResample step

1
New =, o
2w
if N, < threshold
n = resample({w;}

X =X
w! = 1/N,

Inference Problems in Visual Tracking Tasks (Murphy, 2002, 2-4)

1. Filtering: Computing P(X, | y,,), that is, monitoring (tracking) the state over time.
This is used as a subroutine for online tracking. In some cases, the filtering output is
the corrected value of the observations.

2. Prediction: Computing P(X,, | y,,) for some horizon h > 0 into the future. In visual
tracking, the prediction output can assist feature extraction by making a hypothesis
for the new observations.

3. Fixed-interval smoothing (off-line): Computing P(X |y, ). This is used as a subrou-
tine for off-line training. Given the sequence of observation values, we use off-line
smoothing for training.

4.  Viterbi decoding: Computing arg max, P(x,, |Y,,), that is, figuring out the most
likely cause/ explanation/ state sequenceé of the observed data. For example, when
tracking a hand gesture, the decoded result can be used to explain the meaning of the
gesture.
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5. Classification: Computing P(y,.) = Zm P(X.» ¥,,)- This can be used to compute the
likelihood of a sequence under different models. For example, when tracking a figure,
the result is the recognition of different kinds of figure motions.

Time and Space Complexity

The models in Figure 1(a) and 1(b) are linear-Gaussian DBNs, and the time and space
complexity of exact inference algorithm is O((KD)?) time per step, If we have D hidden
continuous variables, each a vector of size K, the compound state-space will have size KD.
Here a standard Kalman filter/smoother will usually be as efficient as using the junction tree
algorithm. The switching SSMs in Figure 2(a), 2(b) and Figure 3 are conditional Gaussian
(CG) models. If the belief state at time t is a mixture of K Gaussians, exact inference in a
switching SSM takes O(K)) operations at the t’th time step.

Prediction

Asmentioned in section 3.1, a prediction output can assist feature extraction parts by making
a hypothesis for new observations. A prediction scheme may greatly improve the behavior
of the tracker because it removes any restriction on the maximum lateral velocity of the
subject, and only the amount of acceleration is limited (Birchfield, 1998). Hence, we design
a DBN approach to make prediction in our visual tracking task.

Suppose the tracked object is modeled by an ellipse with a fixed vertical orientation and a
fixed aspect ratio, then each time a new image becomes available, the ellipse’s observation
is:y =(m, n, ), (M, n)is the position in a 2D space and o is the size (length of the minor
axis), so in the DBN framework, a filtering process is computing P(X |y,.) = P(X | (m**, n*
¢ 61)), which is monitoring (tracking) the state over time. A prediction process is comput-
ing P(X,,, 1Y, = P(X,, | (m*, n**, ™)) for some horizon h >0 into the future. That is, the
predicted state X ,, in the time slice t + 1 can be computed by the input of the observations
in time slices (1: t). The process is similar with the filtering process. Hence, we refer to a
classical filtering algorithm in DBN framework, online junction tree filtering algorithm, to
design our prediction method.

Online Junction Tree Filtering Algorithm

Junction tree algorithm is a very classical inference algorithm in DBN framework. Murphy
(2002) has a good description of junction tree inference, so we will not discuss the detail
of the algorithm here.

To hide the details from higher-level algorithm, we use abstract operators, Fwd 1, Fwd, and
Back. The pseudo code of online junction tree filtering is shown in Figure 5.

Fwd 1, Fwd, and Back are the abstract forward and backward operators. Fwd1 is the forwards
pass for the first time slice. Below is how to compute these operators.
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Figure 5. Pseudo code of the online junction tree filtering algorithm

function Jtree_Filtering (y,)
ift=1

f..= Fwdl(y,)
else

fl:t = FWd (ft—l:t—l' yt)
end

bt:t = BaCk (ft:t)

Suppose the DBN model is a KFM, then to compute the forward operator, (xm, whd =
Fwd (X0 VoY As Cp Qu R), “First, we compute the predicted mean and variance, X,
Ay ANV, = AV“tlA'+Q, then we First, we compute the predicted mean and vari-
ance, the variance of the error, the Kalman gain matrix, and the conditional log-likelihood

of this observation:

e =y, —Cx K.=V,,CS*

t-1 and ft-1

S,=CV,,C+R L,=1logN(e;0,S)

ft-1

Finally, we update our estimates of the mean and variance:

Xt|t m ATt K &

V, = (1-KC)V - KSK;” (Murphy, 2002).

1 m 1

To compute the backward operator, (x,., V.V, ) = Back(X,,, Vi, Xm' Vm; A, Q.
“First we compute the predicted quantities: X, = A_,x, andV,, =A_V, A "+Q,,, then
we compute the smoother gain matrix, J, =V A V1 . Finally, we compute our estimates

; X fit el Al
of the mean, variance, and cross varlance.

= Cov[X_,, X, Y]

n —1|T
- X +J (Xt+1|T t+1\t)
thT +J (Vt+1|T Hm)J ”(Murphy, 2002).
V = J V

t=LT =1 4T

Prediction Method

Considering the similarity between the filtering and prediction process for DBN models,
we modify the online junction tree filtering algorithm to design the prediction method and
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Figure 6. Pseudo code of the prediction method

function Prediction (y,)
ift=1
f.,=Fwdl (y))
for j = 1:h// prediction step
Yy = ¥y 11 Yil// new observation is null
f = Fwd(f

1+j:1+]j 1+j—1:1+j—1’y1+j)
end
else
ft:t: FWd (fl—l:l—l’ yt)
forj=1:h/lprediction step
Yoo, = [yHJ._1 Yy .}/ new observation is null
fl+j:l+j = FWd(ij—l t+j-1? y1+j)
end
end

b = Back(f

t+h:t+h Hh:Hh)

implement it by Bayesian network toolkit (BNT) (Murphy, 2003b). The pseudo code is
shown in Figure 6.

Compared with the pseudo codes in Figure 5, the prediction code has h more forward passes.
The forward passes are similar with that in the filtering process. The only difference is that
in the prediction step the new observation is null. That is, in the forward operator:

Vt+h|t+h’ Lt+h):
FWd(XHh—l\Hh—l’ Vt+h—l|t+h—l’ yt+h; At+h’ Ct+h' Qt+h’ Rt+h)’
the observation is defined as: y,, . = [y, ¥, - Yl

(Xt+h|t+h‘

Experiments

Our system contains two elements: the tracking engine and the observation stream. In
experiments, we test both random sampled data from the DBN and real vision data as the
observation source. For the tracking engine, we use models in Figure 2 to express nonlinear,
nonGaussian and multimodal assumptions and test some approximate inference for these
models. The approximate inference algorithms include expectation propagation (EP) and
generalized pseudo Bayesian (GPB) algorithms. There is a good description of EP and
GPB algorithm, each with two variants we call 1 & 2, in Murphy (2002). Hence, we will
not discuss the details here.
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In practice, we implement all the algorithms using the Bayesian networks toolkits (BNT)
(Murphy, 2003b) and Intel’s OpenPNL (Sysoyev et al., 2003).

Observations from Random Samples

To create ground truth data, we performed “random sampling” from the models by recording
observations resulting from randomly generated state trajectories. The tracking result with
different inference algorithms is shown in Figures 10 and 11. The tracking speed of different
inference algorithms in different DBN models are shown in Table 1.

In Figure 10, Figure 11, and Table 1, we can see exact inference has the best performance,
and BK tracks well. BK is in fact slower here than exact, but for more complex models, the
computations in junction tree grow exponentially in maximum clique size so that junction
tree would become much slower. GPB’s approximation is too inaccurate here to track a
random trajectory well.

Figure 12 shows that the prediction method can predict both observation and hidden state.
When the DBN models support multiple observations, it can also predict multiple obser-
vations. But when the models become more complicated, as shown in Table 2, the speed
is slower. Hence, in visual tracking system with real vision data, which may induce more
complicated DBN models, we do not use the method.

Observations from Real Data

To test our DBN models on the real data, we follow the experiments of Birchfield (1997,
1998), trying to detect and track a person’s head in some unmodified environments with a

Table 1. Tracking speed of different algorithms in DBN models with random sample ob-
servations

Speed (s/frame) Model Model Model Model
3(a) 3(b) 3(c) 3(d)

Junction tree 0.078 0.062 0.141 0.094
BK 0.468 0.313 0.547 0.531

PF1 1.797 1.375 2.25 1.891

PF2 0.8531 0.786 0.7838 0.7844

GPB1 0.0032 0.0031 0.0052 0.0032

GPB2 0.0047 0.0047 0.0053 0.0046

Table 2. Speed of online junction tree filtering and prediction with random sample observation

Speed (s/frame) Model 1(b) Model 2(a) Model 1(a)
Filtering 0.015 0.078 0.015
Prediction 0.031 0.3 0.016
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simple ellipse contour model (raw video data comes from Birchfield, 2003). In that system,
when anew image comes in, a local search determines the location of the ellipse according to
some evaluation function. In order to provide different evidence stream for the track engine,
we use two matching evaluation functions based on head’s shape and color, respectively.

The first image cue is based on shape information that uses the dot product of the intensity

gradient vector and the ellipse normal around the ellipse perimeter, considering both the
gradient magnitude and the gradient direction as follows (Birchfield, 1998):

1 &
g (s) =N—z

s i=l

n, (i)-g, (D) ®)

where n_ (i) is the unit vector normal to the ellipse at perimeter pixel i, g, (i) is the intensity
gradient at the same pixel, N_is the number of pixels on the perimeter of the ellipse for
an ellipse of size o, and (-) denotes the dot product. In practice, this method runs well in
uniform backgrounds, including moderate amounts of occlusions, but fails when distracted
by heavily cluttered backgrounds in complex environments.

The other image cue is based on color histograms which can implicitly capture complex,
multimodal patterns of color. We use this to represent the head’s color distribution. When a
candidate location is considered, pixels inside the contour are collected to build a histogram.
The intersection of such a histogram and a predefined one reflects the match goodness, as
follows (Birchfield, 1998):

> min(1, (i), M (7))

¢c(s): N .
20

©)

where 1 (i) and M(i) are the numbers of pixels in the ith bin of the histograms, and N is the
number of bins. In practice, this method demonstrates robust performance against some
nonrigid and out-of-plane rotations. However, it suffers from lighting changes and from
backgrounds which contain similar colors.

The DBN models in Figure 3(b) and 3(d) are switching SSMs using single cues where the
target is solely represented by its color or shape. The DBN models in Figure 3(a) and 3(c)
are switching SSMs using multiple cues, and the target is represented by both its color and
shape.

Figure 7. Tracking results with shape alone using EP and GPBL1 inference

(2) Model 2(b) (b) Model 2(d)
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Figure 8. Tracking results using GPB1 with shape and color cues

(c) Model 2(c) (d) Model 2(c)

Figure 9. Tracking result of different DBN models in occlusion

(d) Tracking result of model 3(c), observations are shape (green circle) and color (blue circle)
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Figure 7(b) shows the tracking result of model 2(d) using junction tree (EP) and GPB1 al-
gorithms in DBN. The tracking speed of EP is about 0.078 s/frame, and the tracking speed
of GPB1 is about 0.0015 s/frame.

In Figure 7, you can see that model 2(d) has better tracking performance than model 2(b),
because it has more flexible assumptions. Both models 2(b) and 2(d) allow for nonGauss-
ian observation densities in order to handle cluttered backgrounds, but model 2(d) allows
different kinds of dynamical “modes” or “regimes” as a response, while model 2(b) allows
only one mode of response.

Also, In Figure 7, although EP has better performance than GPB1 inference, its speed is
far slower than GPB1.

Figure 8(a) and 8(b) are the tracking results of model 2(a) using GPBL1. 8(c) and 8(d)
are the tracking result of model 2(c) using GPBL1. The tracking speed of GPBL1 is about
0.0017s/frame.

In Figure 8, model 2(a) and 2(c) use both color and shape observations to track, and their
results are similar. In Figure 8(a) and 8(c), when the background is cluttered, the observation
is bad in terms of shape, but color is better, so models 2(a) and 2(c) still get good tracking
results. In Figure 8(b) and 8(d), when the background has similar colors to the targets, the
observation is bad in terms of color, but shape is better, so models 2(a) and 2(c) still get
good tracking results.

Figure 9 shows the examples of our models and algorithms handling occlusion. Note that
in all the figures, our models 3(c) and 3(d) always keep a consistent, generally tight bound
and never lost tracking in any sequence.

Conclusion

In this chapter, firstly we describe DBN models with nonlinear, nonGaussian and multi-
modal assumptions, and use exact and approximate inference algorithms for visual track-
ing. The models are able to fuse multiple cues for increased robustness. Our experiments
show that these DBN models track robustly in complex environments in which the state of
target becomes nonlinear, nonGaussian and multimodal. Second, we present a prediction
method based on online junction tree filtering algorithm for the DBN models. We show the
potential of DBNs to provide a general and flexible “tracking tool kit” for visual tracking
in complex environments.
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Appendix: Additional Figures

Figure 10. Tracking result of different algorithms in DBN models, the single observation
is random samples

& true
+  ohsened

(a) DBN model in Figure 3(b)

(b) DBN model in Figure 3(d)
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Figure 11. Tracking result of different algorithms in DBN models, the multiple observations
are random samples
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(a) DBN model in Figure 3(a)

(b) DBN model in Figure 3(c)
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Figure 12. Prediction result of different DBN models

(c) Prediction result of DBN model in figure 1(a)
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Chapter X

Multimodal Human
Localization Using
Bayesian Network Sensor
Fusion

David Lo, Carleton University, Canada

Abstract

In applications where the locations of human subjects are needed, for example, human-
computer interface, video conferencing, and security surveillance applications, localizations
are often performed using single sensing modalities. These mono localization modalities,
such as beamforming microphone array and video-graphical localization techniques, are
often prone to errors. In this chapter, a modular multimodal localization framework was
constructed by combining multiple mono localization modalities using a Bayesian network.
As a case study, a joint audio-video talker localization system for the video conferencing ap-
plication was presented. Based on the results, the proposed multimodal localization method
outperforms localization methods, in terms of accuracy and robustness, when compare with
mono modal modalities that rely only on audio or video.
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Introduction

Today’s multisensor systems are becoming more complex with an increasing number of
sensors, different types of sensors and increasing complexity of the sensor. Information
gathered from multiple sensors often needs to be combined to form a more complete picture
of the monitored environment. The dynamics of these modern sensor systems can be very
complex. Sensors can be working cooperatively, competitively, or complimentarily (Tebo,
1997). Cooperative sensors work together to collect information of the environment that
neither sensor alone can provide. Competitive sensors provide similar information, hence
allowing informational redundancy. Complimentary sensors do not depend on each other,
but can be combined to provide a more accurate picture of the environment. The complex
nature of these sensor systems makes them difficult to combine coherently. Furthermore, the
large amount of raw data these sensors generate also make them very difficult to combine. In
recent years, the area of data fusion has gained research interest in multisensor applications
because it provides a systematic approach to combine and extract useful information from
the data. This chapter starts with the high level architectural view and the basic mechanics
on how a Bayesian network and its improved variant can be used to fuse data from a multi-
modal multisensor system. A multimodal human localization system and its implementation
are given as an example in the later part of this chapter.

Multimodal Sensor Fusion

Often, a multimodal multisensor system is favored over a single sensor system. By adding
more or different types of sensors, the overall system’s accuracy and robustness is improved.
For example, the system’s temporal and spatial coverage can be extended by adding more
sensors whereas, adding different types of sensors can improve the system’s coverage in
the measurement space (Waltz & Llinas, 1990). However, in order to realize these benefits,
the system has to be able to take advantage of the extra information introduced by the ex-
tra sensors. Data fusion provides a mean for doing that (Waltz & Llinas, 1990). It allows
information to be systematically combined from multiple sources while refining the states
the system is trying to estimate (Steinberg, Bowman, & White, 1999). Data fusion has been
successfully deployed in the field of robotics (Petriu, [onescu, Petriu, Groen, Spoelder, Yeung
et al., 1996; Yeung, McMath, Petriu, Trif, & Gal, 1994) and object tracking in a variety of
environments (Strobel, Spors, & Rabenstein, 2001).

Figure 1 shows the general architecture of a multimodal sensor fusion system as block dia-
gram. The Sensor block represents any single sensor modality using either a single sensor
or a cluster of similar sensors. The Data Processing block processes the raw sensor data.
Often, in a multimodal sensor system, fusion happens at both the raw data level and the
information level (Lo, 2004a). Therefore, the type of processing performed by the Data
Processing block can range from simple data filtering at the sensor level to complex statisti-
cal analyses and features extraction at the information level. The Mapping block transforms
the processed data into a common space in which all processing modules can refer to; for
example, a common coordinate system or common measuring unit. The Data Fusion and
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Figure 1. General modular multimodal sensor fusion architecture

Sensor Module 1 Sensor Module m
Sensor 1 Sensor m
‘ Raw Sensor Data Raw Sensor Data ‘
—>| Data Processing 1 Data Processing m I"
l Processed Data Processed Data l
Mapping 1 e Mapping m
Mapped Data . . Mapped Data
> Data Fusion & Decision <

v
Final Estimated State

Data Fusion and Decision Module

Decision block is responsible for performing the actual data fusion and contains the deci-
sion logic for the final output.

The architecture shown in Figure 1 is designed to be modular in nature. Data streams from
each Sensor are kept separated at the beginning. Each Sensor Module represents a different
sensor modality, and has its own associated Sensor, Data Processing, and Mapping blocks.
The final estimate of the state, which the system is trying to approximate, is obtained by
combining all the mapped data streams at the Data Fusion and Decision block. The modu-
lar nature of the architecture has the advantage of allowing high degrees of flexibility. The
type of sensing device, number of sensing devices, the processing method, and the fusion
method used can easily be changed without affecting the rest of the system. Furthermore,
the architecture can easily accommodate an additional Sensor Module by simply duplicating
the functional blocks and then just plugging it into the system. Because the modular design
decouples the processing required by each sensor modality and the data fusion computation,
this architecture is well suited for performing multiprocessor computing and distributed
computing. The decoupling also allows sensing devices with different data rates to be used
without blocking the computation of the Final Estimated States.

Multimodal Sensor Fusion Using Bayesian Network

More than one fusion method can be used (Lo, 2005b). In this chapter, we focus on the use
of a Bayesian network to fuse high level information like extracted features. Consider a
Bayesian network over universe U with observed evidence e expressed as the probability

P(U.e)=][P(Apa(A) [ Te, (1)
AeU i
where P(U,e) is the joint probability of U and e, and pa(A) is the parent set of A.
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Figure 2. Inference model for Bayesian network multimodal sensor fusion

P(Mod,|Fy;,...Fy,)

Modality Mod

Modality Mod

P(S|Mod,,...Mod,,)

Observed Evidence

Unobserved Evidence

Assuming the Data Processing block of sensor modality m extracts n features from the raw
data: F_,, ..., F_,the inference modal of the Bayesian network fusion can be represented
as direct acyclic graph (DAG) (Pearl, 1988, pp. 150-197) as shown in Figure 2. The nodes
in the DAG represent the variables, both observed and unobserved, in the universe U, and
the lines between the nodes represent probabilistic dependencies as conditional probabilities.
The arrows represent the direction of information flow. Therefore, DAGs used in this chapter
adopt the convention of putting the lowest level of information at the top. Informational
fusion starts from the extracted features on the top, transversing down one level at a time
with the final fused state at the bottom of the DAG.

The extracted features of each sensor modality are treated as observed evidences to sup-
port the modality’s output in estimating state (S). With the observed evidences, equation
(1) can be applied onto the inference modal shown in Figure 2 and the State node (S) can
be found using:

P(S,e)=P(F;.....F,,,Mod,,..Mod )

U mns

:ﬁP(Modi|E1,...,Fin)-P(5|M0dp---yM0dm) @
i=1

where S is the state the system is estimating, e are the evidences, and F__is the n extracted
feature of modality m.

There is more than one way to compute P(S,e). In this chapter, we focus on the application
of a Bayesian network on multimodal data fusion and how the components are built. How to
solve a Bayesian network is left to the reader to look up references and learn how it is done.
Also, there is public domain software, for example, the Microsoft MSBNx and the Bayes
Net Toolbox for Matlab, which can be used to perform the mechanical aspect of solving a
Bayesian network. In this particular example, the bucket elimination (Pearl, 1988, pp. 150-
197) is used. Bucket elimination transverses the nodes in the inference model one by one. It
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marginalizes one nonobserved variable at a time and has it replaced with the simplified result.
Only the nonobserved variables need to be marginalized (Pearl, 1988, pp. 150-197). Before
the inference model can be used, each node is populated with its a priori knowledge.

Multimodal Sensor Fusion with Weights

The architecture shown in Figure 1 assumes each sensor module contributes equally in the
fusion process. However, if the confidence level of one of the sensors is known to be lower
than the others, less emphasis should be put on the data stream coming from this particular
sensor. This can be accomplished by adding weights to the architecture. Figure 3 shows the
modified fusion architecture. The architectural components are the same as Figure 1 with
the exception of the added Weight block. The Weight block provides a mechanism to control
how much each sensor contributes in the fusion process. By modulating the value of these
weights, the system can be dynamically adjusted to adapt changes in the environment (Lo,
2004b), and accounted for failed sensors (Lo, 2005b).

Multimodal Sensor Fusion Using Bayesian Network
with Weights

A simple modification of the Bayesian network inference equation shown in equation (1)
and the inference model shown in Figure 2 are made to include weights. Each feature is

Figure 3. General architecture for multimodal data fusion with weights

Sensor Module 1 Sensor Module m
Sensor 1 Sensor m
‘ Raw Sensor Data Raw Sensor Data ‘
—»| Data Processing 1 | Data Processing m |"
l Processed Data Processed Data l
Mapping 1  PWeight 1| | * * ®|Weight m«  Mapping m
Mapped Data - . _'_ Mapped Data
> Data Fusion & Decision <

Final Estimated State
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Figure 4. Inference model for Bayesian network multimodal sensor fusion with weights
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modified by its corresponding weight, and a new variable Weighted Feature WF is used to
represent the result. Figure 4 shows the modified inference model, and the corresponding
fusion equation becomes:
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Application Example: Multimodal Talker
Localization in Video Conferencing

In this section, we study how a Bayesian network is used to improve the overall accuracy and
robustness of talker localization for a video conferencing system. We started off by building
thearchitecture for the talker localization system using the developed multimodal architecture
shown in Figure 3 and the Bayesian network inference model shown in 4. We then show
how the individual single-modal localization methods, and the mechanics for the dynamic
weight adjustment are built. These single-modal localizers are then combined to form the
final multimodal system. Last but not least, the experimental results are presented.

In a video conferencing environment, it is desirable to isolate the active talker (Lo, 2004b;
Lo, 2005b; Wang & Brandstein, 1998). Often, the isolation is done by means of audio or
video localization (Lo, 2004b; Lo, 2005b; Messom, Demidenko, Subramaniam, & Gupta,
2002; Wang & Brandstein, 1998; Wang, griebel, & Brandstein, 2000; Zotkin, Duraiswami,
Davis, & Haritaoglu, 2000). Most commercial systems use a beamforming microphone array
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to locate the active talker acoustically. Once the talker’s location is found, the microphone
array sends the talker’s direction to the camera. The video camera is then pointed in the talk-
ers’ direction to capture their image. Although less popular, systems that rely on the video
to perform localization are becoming more common as video equipment gets cheaper and
computers become more powerful. Unfortunately, audio and video localization alone are
prone to errors. For example, audio localization is very susceptible to acoustic reflections
(Omologo & Svaizer, 1996), and video localization is susceptible to changes in lighting
conditions (Hsu, Abdel-Mottaleb, & Jain, 2002) and complex backgrounds. Multimodal
localization takes advantage of the complementing nature of multiple sources, giving a more
robust localization (Strobel et al., 2001).

Multimodal Talker Localization Architecture

The general multimodal data fusion architecture shown in Figure 3 can be applied to a wide
range of applications like surveillance (Davis, 1997), and robotics (Petriu etal., 1996; Yeung
etal., 1994) . As an exploration platform and case study, the application of this architecture
in video conferencing for the purpose of talker localization is studied. Figure 5 shows the
architecture of the general multimodal talker localization. Detectable features of the talker,
like speech, movements, and skin-color, trigger events that can be sensed by different lo-
calization modalities. The detection of these features maps well into the Analysis block in
the general architecture. The State being estimated in this particular example is the talker’s
location.

Figure 5. Architecture of the general multimodal talker localization system
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There are several approaches to perform multimodal talker localization in video conferenc-
ing. Some researchers approach it by cascading different localizers (Wang & Brandstein,
1998, 1999) while others might use one modality as the primary localization method with
additional modalities as a means of confirmation (Fiala, Green, & Roth, 2004). The disad-
vantage of these approaches is that they are essentially “hard-wired” with limited flexibility
or are still relying heavily on a particular localization method.

Taking advantage of the modular architecture, data streams are decoupled early in the be-
ginning. Each stream feeds a different Localization Module. Each Localization Module is
responsible for one localization modality, and a purpose specific localizer is used to locate
the talker. Localization results from each Localization Module are then combined using
the Data Fusion and Decision Module to form the final estimate of the talker’s location.
The multimodal nature of the architecture allows the system to use multiple localization
modalities. Any one of these components can be changed without affecting the rest of the
system. Also, the degree of influence from each localization modality in the final result is
not fixed but controlled by a weighting function outlined as Weight in the block diagram.
Consequently, how much the system relies on a particular modality can be dynamically
adjusted according to the localization quality of each modality.

Each Localization Module contains a Sensor block which is any device that can sense the
presence of the talker. The Localizer block is responsible for performing the localization.
Because different sensors and localizers can have different coordinate systems, the Coordi-
nate Mapping block is needed to transform the localizer’s output into a common coordinate
system that is used by the Analysis block, and the Data Fusion and Decision modules. Al-
though localization results from different localizers can be contradicting at times, the Data
Fusion and Decision module is responsible for drawing the best out of the available results
from the individual localizers, and makes a collective output based on a predefined decision
rule. The Analysis block performs statistical analysis on the localization data. Based on the
results of the Analysis block, the Weight block provides an optional bias so that the data
fusion engine can put different weights on the result from a specific localizer.

Single-Modal Talker Localization Methods

Three different localization methods, one audio and two video methods, are used in the talker
localization system. Single-modal localizers are first constructed using each of these methods.
These single-modal talker localizers are then combined to form the final multimodal system.
In this section, we will look at the basics of constructing the single-modal localizers.

Beamforming Microphone Array

Traditionally, talker localization in video conferencing was done acoustically using a beam-
forming microphone array (Brandstein & Ward, 2001, pp. 3-16). A microphone array is a
collection of two or more microphones distributed in space, working collectively as a single
device. With a single microphone, the direction of an audio source cannot be determined
(Johnson & Dudgeon, 1993, pp. 112-113). However, using two or more microphones, with
the help of abeamforming technique, the spatial-temporal relationship can be used to recover
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Figure 6. Localization sectors of the microphone array
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directional information about the source (Johnson & Dudgeon, 1993, pp. 112-113). Audio
beamforming is a signal processing technique that is used to enhance the audio signal in
the incoming direction and at the same time attenuates the signal in all other directions. The
microphone array used in this particular localization example has six microphone elements.
Through delay-and-sum beamforming, the microphone array is capable of segmenting the
space around it into 12 sectors with each sector spanning 30°, as shown in Figure 6. These
sectors are labeled from 1 to 12.

The beamforming algorithm combines the signals from the various microphones to enhance
the audio signal originating from a desired location and attenuates the audio signals originat-
ing from all other locations. Given a microphone array with any number of microphones
and beamforming algorithm capable of detecting audio signals originating from N different
directions (sectors), the N beamforming algorithms have N output signals B (t), B,(t), ...,
B, (t). The delay-and-sum algorithm is a commonly used beamforming technique (Johnson
& Dudgeon, 1993, pp. 112-113) and it is chosen for this example because of its simplicity.
The required delays are calculated based on the physical layout of the microphone array
with the assumption that the source is in the far field. The outputs of the microphone array
are the windowed power signals P (t), i = 1,...,N, for each sector which are calculated over
the time window [t — A, t] from the beamformed signals B (t) using:

R(t)zAi j BZ(t)cl i [LN] )

tt-A
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A
where A, is the width of the time window. Using the sampling notation B,[n]=B; (nf), where
n € Z and f_ is the sampling frequency, then for the numeric implementation we used:

Pi‘k)—ﬁmz_: “In+(k-1)D,] ie[LN] (5)

where M = [A f] samples is the width of the window and D, controls the spacing of the
windows in B [n] for the k" window forming P ®. Notice that if D, = M, then the windows
extracted from B,[n] are nonoverlapping. In this particular study D, = M, A =1 ms, f =
8000 Hz, N=12 sectors, and M = [(0.001)(8000)] = 8 samples.

Once the windowed power signals P,% are computed for the k™ window, then a decision must
be made as to which sector i =1i_, . is active (i.e., enough sound to be identified as voice

activities). The approach used in this study is to set a predetermined power threshold T

active

and take the sector with the maximum power that is greater than this threshold such that:

—argmax £ > T, (6)

aCtI ve

We assume that the background noise power is small compared to the speech signals. If
the noise levels are higher, then extensions to this approach will be needed to distinguish
speech from background noise (Lo, 2005a). If multiple talkers are speaking, then the one
with the greatest windowed power is considered active. Note that this approach to determine
the active sector can produce undesirable results when steering a camera because it may
erroneously swap back and forth between a talker and an acoustic reflection.

Motion Detection Using Video

The motion detection localizer identifies movements of the talker. There is more than one
way in motion detection, and these methods can vary widely. Frame subtraction (Pingali,
Tunali, & Carlbom, 1999; Toyama & Horvitz, 2000) and optical flow (Meier & Ngan, 1999)
are two of the well-established methods used in performing motion detection. Frame sub-
traction operates based on the assumption that if a camera is perfectly stationary, changes
between subsequent image frames can only be caused by the motions of objects. Optical
flow operates based on the assumption that if an object is moving with constant velocity,
the path and the direction (i.e., motion vector) of the image pixels reveals information about
the object’s distance from the camera (Archibald & Kwok, 1995). Frame subtraction has
the advantages of being simple and easy to implement. However, it requires the camera to
be perfectly stationary, and has low accuracy in measuring motions that are moving directly
toward or away from the camera. Optical flow has the advantage of allowing the camera
to move, and can measure motions in all directions. Because the experimental setup in this
example used a fixed camera, background subtraction is chosen because of its simplicity.

To perform background subtraction, 24-bit RGB color video frames are first converted to
8-bit grayscale video frames according to ITU-R BT.709 standard using
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Grey = 0.2125 * Red + 0.7154 * Green + 0.0721 * Blue @)

The i grayscale frame is then subtracted from the (i+k)" grayscale frame, where k is used
to control the time interval between frame comparisons which will, in part, depend on the
video frame rate. The resulting difference frame is pixels that have changed.

Dy = F(D)y,, — F(i + k), x = L..width; y = 1...height (8)

where D, |s the resulting difference frame, F(|) ) is video frame at time index i, F(|+k)

is video frame at time index (i+k), (x,y) is the location of the pixel, and width and helght
are the respective width and height of the video image. Binary thresholding is then applied
to the resulting difference frame. In order to eliminate unnecessary computations during
image processing, images often need to be segmented so that the area of interest (AOI) can
be isolated. Again, there is more than one way to identify AOls in an image. These methods
vary widely and they are still an active area of research in the image processing field. Two
of the more popular methods are defining the AOIs manually on the first video frame and
then letting the system track the AOlIs in the subsequent video frames (Lo, 1994, pp. 14-21),
and defining the AOIs automatically using a human visual system (HVS) model (Agarwal,
Anbu, & Sinha, 2003; Osberger & Maeder, 1998). In a video conferencing system, user
intervention decreases the usability of the system; therefore, defining the AOIs manually
is not desirable. In this talker localization example, a simple HVS method (Lo, 2004b,
2005b) is used.

When more than one object is moving in the video scene, multiple AOIs will be detected.
Motion detection can identify where motions happen, but it cannot distinguish whether the
source of the motions is a talker or something else. Therefore, using just motion detection
alone is not sufficient to localize the talker accurately.

Skin-Color Detection Using Video

Using color images, skin-color detection can be used to identify objects with skin-like color
(Hsu et al., 2002; Terrillon, Shirazi, Fukamachi, & Akamatsu, 2000). Color can be repre-
sented using different color spaces. The most popular color space used by digital storage is
the red-green-blue (RGB) color space. Although variations in the RGB space, such as the
R-G space, has the advantage of reducing the sensitivity of segmentation to the changes in
amount of light (Terrillon et al., 2000), RGB color space spreads skin-color pixels over a
large range, making the detection difficult (Terrillon et al., 2000). It has been shown that
color analysis done in luma-chroma space, such as the YCrCb, concentrates the skin-color
pixelsinatightrange (Terrillon etal., 2000) as shown in Figure 7. Therefore, a luma-chroma
space is well-suited for detecting skin color pixel.

Hsu et al. (2002) used 137 images from nine subjects in the Heinrich-Hertz-Institute image
database to define the skin tone cluster in the YCrCb space. They used a nonlinear model to
compensate the luminance in low light and then fitted an ellipse to the skin tone cluster (Hsu
etal., 2002). To reduce computational complexity, a system of eight linear equations, equa-
tion (9), is used to enclose the skin tone cluster and the fitted ellipse as shown in Figure 7.
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Figure 7. A system of 8 equations enclosing the skin pixel area in Cr-Cb color domain (Hsu
et al., 2002))

200 2 SN .............'..; '.,.’.

150

100t

Line 1: Cr>-0.702 - Ch + 209.945;

Line 2: Cr<-2.12 - Ch + 420.184;

Line 3: Cr>-5.984 - Ch + 669.481,;

Line 4: Cr > 2.012 - Cb — 115.329; 9)
Line 5: Cr<0.7389 - Ch + 99.171;

Line 6: Cr>-0.0333 - Cb + 138.122;

Line 7: Cr < -0.142 - Cb + 183.425;

Line 8: Cr <-0.681 - Ch + 241.713;

To perform skin-color detection, the 24-bit RGB color video frame is first transformed into
the CCIR601-4 YCrCb color space (Poynton, 1996, pp. 176-177) using:

Y 16 65.738 129.057 25.064 || Red
Cr |=(128 +2—é6 -37.945 -74.494 112.439 || Green (10)
Ch 128 112.439 -94.154 -18.285|| Blue
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equation (9) is then used to determine the thresholding values for detecting skin-color pixels.
Each pixel is checked using:

if (Cr,, ,, >TestCr1) & (Cr,, ,, <TestCr2) & (Cr,, ,, > TestCr3) & (Cr,, ,, > TestCr4) & (Cr(x‘y) <TestCr5)
&(Cr,, ,, > TestCr6) & (Cr,, ,, <TestCr7) & (Cr,, ,, <TestCr8) =True = pixel
else pixel, ., =0

(x.y) (x.y) oy =

(x.y)

(11)

where Cr, s the r-chrominance value of the pixel located at (x,y), plxel( - is the resulting
skin- color mask TestCrl is the r-chrominance value computed using the equation of Line
1 in equation (9), TestCr2 is using the equation of Line 2 in equation (9), and so forth.

Figure 8 demonstrates the skin-color detection process. Figure 8(a) shows the original im-
age. The resulting image is a skin-color pixel mask (Figure 8(b)). To clean up the mask,
morphological closing is applied to emphasize large groups of pixels such as faces (Figure
8(c)). Often, small holes exist within a large group of pixels, such as the eyes and the mouth.
Therefore, a flood fill operation is used to fill out any small holes in it (Figure 8(d)). Morpho-

Figure 8. An example of skin-color detection
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(a) Original image

1 (d) After flood filling (c) After morphological closing

(e) Final mask obtained after
morphological opening
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(g) Automatic AOI detection
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logical opening is then used to eliminate any small cluster of pixels and background noises
(Figure 8(e)). The resulting mask represents large skin-color objects such as faces. The mask
is then multiplied with the original image giving only objects with skin-color (Figure 8(f)).
AOIs are then identified using an automatic AOI identifier (Figure 8(g)).

The outlined skin-color detection method is robust and works well in most well illuminated
images of the upper body and full body that occupied big portion of the frame. However,
localization methods based on skin-color can only identify the human faces in the image;
it has no ability to distinguish who is the active talker. Furthermore, if there are pictures or
posters with human faces in the video scene, the skin-color detection method will treat them
just as another potential human talker.

Using Occupancy Estimates as Weights

The fusion architecture shown in Figure 5 assumes the accuracy and reliability of each
localizer are equal. However, if the temporal correctness of the output of each localizer can
be estimated, the Weight block can be used to bias the less reliable localizers away from the
fusion process so that they contribute less in the final fused output.

In this section, we investigate the use of the occupancy information as weights. The confi-
dence level of each localizer’s output is estimated using the occupancy grid mapping tech-
nique. The occupancy grid mapping technique is widely used in robotics, especially for the
purpose of navigation (Elfes, 1989; Petriu et al., 1996; Yeung et al., 1994). The technique
divides the environment into a discrete grid and assigns each grid location a value related
to the probability that the location is occupied by an object. Initially, the entire grid is as-
signed with equal value. Sensor readings are then used to modify the grid value to reflect
the probability that a specific grid location is being occupied.

In order to compute the occupancy information, the grid is set up so that it coincides with
the activation sectors of the microphone array, as shown in Figure 6. As the localizers locate
the talker in the conferencing environment, we estimate the probability of a talker occupying
a particular sector. The occupancy estimates are derived based on known physical proper-
ties of each individual localizer and the current measurement of that localizer. Occupancy
estimates allow including the unique physical characteristics of each localizer as part of the
fusion process, and therefore further improve the overall localization performance. In order
to achieve better localization performance, the occupancy estimates are introduced into the
fusion engines to influence the weights, which in turn control how much individuals can
contribute in the data fusion process. Also, when one or more localizers fail, the persistent
erroneous data streams from the failed localizers can negatively affect a statistically based
data fusion method, like the Bayesian network, resulting in poor localization accuracy
(Chaodhury, Rehg, Pavlovic, & Pentland, 2002). The occupancy estimates provide a means
to automatically stop the failed devices from contributing in the data fusion process, hence
improving the overall robustness of the system. In thistalker localization example, the impact
of adding occupancy estimates into the fusion engine, and how occupancy estimates can be
used to eliminate the failed localizers from the fusion process, are investigated.
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Talker’s Occupancy Estimates G and Correctness Probability P for
Grid Location n and Localization Modality m

The video conferencing space is divided into a discrete two-dimensional polar grid which
coincides with the activation sectors used by microphone array, as shown in Figure 6. The
occupancy estimates for each detection modality are derived and computed based on the
specific physical properties of the sensors and their current output. The following section
outlines how the occupancy information is estimated and why.

Occupancy Estimates for Audio Localization

In a video conferencing environment, acoustic reflections and multiple talkers often confuse
the microphone array and cause the microphone array to locate the active talker incorrectly
(Omologo & Svaizer, 1996). The occupancy measurement G augion) of the audio localizer is
designed to discriminate localization errors from these sources.

The main concept for deriving the occupancy estimates for the audio detection is based on
the averaged power profile method developed in Lo (2004b, 2005b). Because of the use of
a delay-and-sum beamformer, a single talker gives a unique power profile. If the averaged
power profile is collected for one active sector at a time in an ideal condition, such as the
anechoic chamber, these averaged power profiles can be normalized and stored as a set of
reference profiles. When the averaged power profile of the current detection is cross-correlated
with the reference profile, the amount of deviation can be used to estimate the likelihood
that the current detected sector is occupied by a talker.

After audio localization is performed, the output is used to calculate its occupancy G,
and the associated correctness probability P _ .. .. First, the average power of each sector is
computed, and normalized by dividing by its root-mean-square (RMS) value using:

s k e[LN] (11)

where a[k] is the averaged power profile, a[k] is the RMS normalized averaged power
profile, and N is the number of sectors, which is 12 in this example.

The RMS normalized power profile is then cross-correlated with the corresponding N refer-
ence profile. Because the maximum cross-correlation result between the two RMS normalized
series is N, the cross-correlation result is first divided by N so that it ranges from zero to one.
The maximum value of the scaled cross-correlation result is then used as G

(audio,n)”

N—i__ _
Rim @)= ;an[k +i]- p,[K] i=123,..2N-Lk e[,N]

G(audio,n) = % max(R () (13)
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where R(CTP N (i) is the cross-correlation between an[k] and En[k] and N is the dimension
of the profile, which is also the total number of sectors in this case. o n[Kk]is the RMS nor-

malized averaged power profile for sector n, and En[k]is the reference averaged power
profile for sector n.

The reference averaged power profile En[k] is generated through controlled experiments
done in an anechoic chamber where audio source is presented from the same distance to
only one sector at a time. The averaged sector power is RMS normalized and subsequently
stored as the reference averaged power profile. There are a few situations where an averaged
power profile can deviate from its reference profile, which will result in a low cross-correla-
tion value. For example, the current sector is not the active sector at all, and the microphone
array is picking up reflections instead of the active talker, or multiple talkers are speaking
simultaneously.

Occupancy Estimates for Video Localization

Inthis localization example, the occupancy of the motion detection G (motionn) andthe occupancy
of the skin-color detection G, ., are derived from the changes of the foreground-to-
background ratio (f-b ratio) within an area-of-interest (AOI) (Toyama & Horvitz, 2000). The
f-b ratio is computed as the ratio of black pixels (foreground) to white pixels (background)
within a binary thresholded AOI. Changes in the f-b ratio should be gradual. Any sudden
jumps in the f-b ratio indicate questionable localization result.

Similar to its audio counterpart, video localization results are used to compute the reliabili-
ties and the correctness probabilities for both the motion and skin-color detection. Because
the degree of motion should be limited in finite time, large changes of the f-b ratio suggest
questionable localization results. Based on the changes in f-b ratio, a detection quality, Q,
is assigned. In order to allow the occupancy calculation to have better stability in a highly

Table 1. Foreground-to-background ratio to detection quality assignment

Changes In Foreground- | Assigned Detection
to-Background Ratio (%) Quality Q
0-9.99 1

10-19.99 J0.9<0.95
20-29.99 J0.8=0.89
30-39.99 J0.7~0.84
40-49.99 J0.6~0.77
50-59.99 J0.5=0.71
60-69.99 J0.4=0.63
70-79.99 J0.3%0.55
80-89.99 J0.2=0.45
90->100 J0.01=0.1
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dynamic conferencing environment, the detection quality assignments are set up in a way
that small fluctuations of the change of f-b ratio do not affect the assigned value of the
detection quality significantly. However, when the change in f-b ratio is large, it is heavily
penalized. Consequently, an inverted power curve like distribution, power of square root, is
used to assign the detection quality to the corresponding changes in f-b ratio. Table 1 shows
the assignment values used in this example. The occupancy of the active sectors is then
computed using equation (14) and sectors which are not reported as active are assumed to
have equal occupancy and are computed using equation (15)

G for the active sector = Q (14)

(video, n)

‘Js __ Z G(video,i)
G ieo, ) TOT the inactive sector = Loaclive sector N <J, (15)
video, n N _ \]S

where Q is the assigned detection quality based on the mapped grading scale in Table 7-1,
J, is the total number of detected active sectors, N is the number of sectors, and video can
be either motion or skin-color detection.

Correctness Probability for Audio and Video Localization

The probability of correctness for the current audio and video localization output are statisti-
cal measurements of how often the output sector was detected in the past.

> D,k
Pl =37 1—— (16)

PIPIRRALY

s=1 k=i—td

where D, [K] is the number of detections in sector n at time, k and td is the width of the
window of time to look back to from the current data point, N is the number of sectors,
and m is the detection method which can be the audio beamforming, motion, or skin-color
detection for this talker localization example.

Motion detection identifies people, as well as any periodic movements like fan blades and
monitors flicker. Similarly, skin-color detection identifies people as well as any objects that
have skin-like color. Therefore, additional steps are necessary to reduce the chance of detecting
artifacts. Periodic motions give little averaged change over a long period of time; therefore,
active sectors with small averaged change in the f-b ratio over a long period of time are
treated as static background objects in the experiment. In this talker localization example,
a simple method is developed to check for periodic or static objects. AOIs containing the
objects are first found using an automatic AOI identifying algorithm. A sliding window is
then used to compute the running average of the changes of the f-b ratio in each AOI. Only
AOIs with the averaged change above a predefined threshold are identified as valid AOIs.
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Device Failure Detection

When a localizer fails, its output should be considered erroneous. Because the output of a
failed localizer is usually persistent, statistically based fusion methods, such as a Bayesian
network, often have no choice but to fuse the failed output along with the other outputs,
causing significant degradation on the overall localization accuracy (Chaodhury et al.,
2002). For example, when the lights are dimmed to give a presentation, the skin-color video
localizers produce erroneous outputs in establishing the AOI. Therefore, it is important to
eliminate any contribution from the failed localizers. As an improvement to the Bayesian
network, the occupancy estimates are used to bias the Bayesian network away from fus-
ing the erroneous data from the failed localizers, hence eliminating their contribution. For
motion and skin-color detection, if all the pixels in the video scene are black, the localizers
will assume that there is a device failure and force the corresponding occupancy estimate
to zero, as shown in equation (17). Similarly, if there is no detectable audio signal from the
microphones within a time window, the microphone array will assume that there is a device
failure and force its occupancy estimate to zero, as shown in (18).

X y
If ( Z Z I:’(row,column)) < Tvideo = G(vitﬁleo,n) = 0' n= 112 (17)
row=1 column=1
6
If > Mic; <T,50 = Gagion =0; n=1..12 (18)
i=1
where P is a video pixel located at (row, column) in the video image, X and Y are

(row,column)

the respective width and height of the video image, T, _and T_ . are predefined threshold
values, which are zero in this study, Mic, is the microphone number of the microphone array,
G ieon 1S the occupancy estimates of the motion detection and skin-color detection, and
G a0y 1S the occupancy estimates of the microphone array.

If the failed device is repaired and comes back to life, or conditions are improved (i.e.,
light levels improve for video), the corresponding G igeory O Caution will no longer trigger
the device failure detection mechanism and, hence, will not be forced to zero. As a result,
the output of the repaired device will be included in the fusion process automatically. How
often the device failure check is performed will determine how fast the system responds to
a device failure or after the fault has been repaired. Also, as the number of devices used in
the system increases, the computational load imposed by the device failure checking will

also increase.

Talker Localization Using Multimodal Methods

Audio localization using beamforming generally works flawlessly when the talker speaks
directly toward the microphone array and no other interfering sounds exist. However, mi-
crophone array often fails to locate the talker correctly due to acoustic reflections (Omologo
& Svaizer, 1996). Video localization does not suffer from acoustic reflections, but does fail
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when the lighting conditions in the scene change drastically (Hsu, 2002), or when other
people enter and leave the video scene in the background. Because using only audio or
only video for localization is prone to failure, researchers are now exploring multimodal
approaches by combing audio and video localization methods (Brandstein & Ward, 2001,
pp. 3-16; Hsu et al., 2002; Lo, 2004a, 2004b; Messom et al., 2002; Toyama & Horvitz,
2000; Wang & Brandstein, 1998; Wang et al., 2000; Wu, Siegel, Stiefelhagen, & Yang,
2002). Joint audio-video localization takes advantage of the complementary nature of the
two methods, giving a more robust localization (Wu et al., 2002). In this talker localization
example, the single modal localization methods are combined using the fusion architecture
shown in Figure 5 to perform multimodal talker localization.

Joint Audio-Video Talker Localization using Occupancy Assisted Bayesian
Network Fusion

The Bayesian network, Figure 4, and the fusion equation, equation (3), are modified to
accommodate the specifics for the talker localization system. Figure 9 shows the Bayesian
inference model for performing data fusion on the localization results and the occupancy

information. The observed evidence € is the localization outputs from the microphone array,
the motion detection localizer, and skin-color detection localizer, as well as their corresponding
occupancy estimates. The localizers are represented by the nodes Microphone Array (MA),
Motion Detection (MD), Skin-color Detection (CD) and their corresponding weightis repre-
sented by node G, ...+ Gmotionry 3N G gin-cororny FESPECLIVElY. Motion (M), Color (C), Voice
(V), and Image (1) are the unobserved random variables. The Talker node (T) is the talker’s
location which we are trying to find. Each arrow represents a conditional probability. The
values of the observed evidence are represented by MA=ma, MD=md, CD=cd, G augion =91,
G otionny =92, aNd G .., =93, respectively. With the observed evidence, equation (3) can
be applied into the inference model and the Talker node (T) can be found using:

P(T|V,I)=P(ma, md, cd, gl, 92,93, M,C, V, I, T)
=P(ma) - P(md) - P(cd) - P(gl) - P(g2) - P(g3) - P(V | g1, ma)- (19)
P(M | g2, md)-P(C| g3, cd)-P(l | M,C)

Bucketelimination (Pearl, 1988, pp. 150-197) isused to marginalize the nonobserved variables.
The values of MA, MD, CD, G, i, 1+ Gmotionny @M G giin-coror.ny @7€ Observed variables and M,
C, V, and | are nonobserved variables. Before the inference model can be used, each node is
populated with its a priori knowledge. The a priori knowledge can be obtained during ini-

tialization runs before the start of an experiment and from other standalone experiments.

Camera’s Field of View to Active Sector Mapping

In a video conferencing system, the camera and the microphone array use a different frame
of reference to localize objects. The camera usually uses the room or a fixed point in the
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Figure 9. Bayesian inference model with occupancy estimates for joint audio-video local-
ization

Motion Detection (MD)
=md

Skin-Tone Detection (CD)
=cd

Microphone Array (MA)
=ma

G(skin—tone,n)

:gS

G(aludio,n) G(motion,n)

P(V|gl,ma)

v

room as the reference point (Lo, 1994, pp. 14-21). A video localizer that uses the camera
will then report the relative position of an object with respect to the reference point. On the
other hand, the microphone array uses itself as a point of reference and reports all acoustic
localizations relative to the locations of the microphone array. Therefore, localization results
from each of the localizer will need to be mapped to a common frame of reference, which
is the function of the Coordination Mapping block in the multimodal talker localization
architecture shown in Figure 5. If the video and the microphone array are co-located, using
two different frames of reference causes little problem because the relative location between
the two is fixed and is known. Locations from one reference frame can be mapped to the
other one or vice versa. For example, the simplest way to co-locate the camera and the mi-
crophone array is to set them up in such a way that the principle axis for the camera’s pan
is aligned with the center of the microphone array, so that every 30° of the camera’s pan is
mapped to a microphone array sector.

Observed Evidence

Unobserved Evidence

Inthistalker localization example, the cameraand the microphone array are placed separately
inthe conference room. Because the spatial resolution of the microphone array is less than the
camera, the field of view of the camera is mapped to the regions defined by the microphone
array sectors, as shown in Figure 10, so that the locations of the active talker are reported
using a common frame of reference. The sectors in which the AOIs fall on are identified as
the active sectors. A calibration run performed before the start of the experiment provides
the locations of these sectors.
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Figure 10. Camera's field of view to microphone array active sector mapping

Experimental Results

Experiments were done in a similar manner as in Lo (2004b). Recordings were done ina 3.3
m x 6.3 m x 3 m high reverberant room with concrete walls, concrete floor, and suspended
acoustic tiled ceiling. A six-element circular microphone array was placed on a table. A
Canon VC-C4 video camera was placed two meters away from the microphone array, as
shown in Figure 11. Acoustic data was sampled at 8 kHz and source localization was done
using delay-and-sum beamformer running on a DSP board (BTPC-4062-2) equipped with
a 40 MHz ADI DSP processor. The video data was digitized at 320x240 pixels, 15 frame/s
with a Belkin F5U208 USB frame grabber. The experiments were done with the talker stand-
ing at 1 m in front of the microphone array giving a presentation. Because the range of the
talker’s motion was limited, a fixed camera was used to simplify the experiment. The camera
was set up so that the field-of-view captured motion in sectors 4 — 10 (see Figure 11). The
Bayes Net Toolbox for Matlab is used to perform inference on the Bayesian network. The
experiments are set up so that if the talker is talking directly toward the microphone, audio
localization will always give sector 7 as the active sector. However, when the talker turns
toward the sidewalls, reflections will cause the microphone array to localize incorrectly.
Before the experiments were started, initialization runs were done to populate the inference
model with a priori knowledge, and to calibrate the mapping required for relating the loca-
tions of the sectors and the camera’s field of view. The a priori knowledge of each localizer
is computed using the histogram of its localization output for every four video frames.

Six different scenarios, as outlined in Table 2, are considered in the experiments. These six
scenarios represent different permutations of the audio and video localization disturbances
the localization system can potentially face. In order to compare the performance between
different sensor fusion techniques, the total localization error rate for scenarios (1) — (6) and
the error rate for just scenario (6) are computed. The error rate for scenario (6) is especially
of interest because it represents the tracking error rate, and it reflects the dynamic behavior
of the system. The error rate for a given time frame t__ tot_, is computed as:

start
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Figure 11. Experimental setup for camera and microphone array

Camera
Left Right
Wall Wall
Microphone
Array g
Field of
View
" Direction
of Voice
tend .
z terror (I)
Error Rate =t t, >t (20)

tend _tstart)
where t__is the duration of the localization error.
Figure 12 shows the localization results for the occupancy assisted Bayesian network fu-
sion engine. Figure 12(a) shows the localization output using only the microphone array.
Figure 12(b) shows the localization output using only the motion detection. Figure 12(c)
shows the localization output using only skin-color detection. These three cases represent
the localization performance if only one of the localizers is used. Figure 12(d) shows the
fused localization results and Figure 12(e) shows the hypothetical ideal localization result
for comparison.

In order to study the effect of device failure, a new set of experiments was conducted us-
ing the same experiment. Device failure was simulated by turning off the camera during
the experiment 7.1 s after the experiment was started. Figure 13(a) and Figure 14(a) show
the microphone array location output. However, without any video input, both the motion
detection (Figure 13(b) and Figure 14(b)) and the skin-color detection (Figure 13(c) and
Figure 14(c)) malfunctioned, and reported sector 5 as the active sector, which is their default
AOI location. Figure 13(d) and Figure 14(d) show the Bayesian network fused results with
and without occupancy estimates added in the case of devices failure. Without the help
of the occupancy estimates, the fused localization output (Figure 13(d)) was incorrectly
reporting sector 5 as the active sector. However, with the occupancy estimates added, the
Bayesian network was biased away from the motion detection and the skin-color detection
localizers. The fused localization output (Figure 14(d)) was correctly reporting sector 7 as
the active sector.
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Table 2. Scenarios for audio and video disturbances

Scenario

1) Talker giving a presentation in front of the camera and
directing his voice toward the microphone array.

) Talker giving a presentation in front of the camera and
directing his voice toward sidewalls causing strong
acoustic reflections.

?3) Scenario (2) + Another person sitting in the background at
sector 10 facing the camera.

4) Scenario (1) + Lights were dimmed.

(5) Scenario (2) + another person, facing the camera,

conducting tasks in the background at sector 10.

(6) Talker walk around the microphone array in the following
sequence: sector 5, sector 4, sector 5, sector 6, sector 7,
sector 8

The results show that adding occupancy estimates to the Bayesian network fusion engine
significantly improves the accuracy of the overall localization performance with total error
rate of 3.2% and tracking error rate of 4.3%. The use of the occupancy estimates with the
Bayesian network is important, because without the occupancy estimates adjusting how
much the system relies on each modality, the Bayesian network will by default rely more
on the audio localizer than the other two. In the inference model, Figure 9, the inference of
the talker’s localization is derived from its two immediate parent nodes Voice (V) and Im-
age (1). The V node is directly affected by the microphone array, whereas | is the combined
effect of both the motion detection and the skin-color detection node. Nodes V, | are placed
in the network as anchor points for adding the occupancy estimates into the network. With-
out the occupancy estimates controlling how much each localization modality contributes
to the overall fusion, the Bayesian network is putting roughly twice as much weight on the
microphone array localizer than the other two video localizers.

In the case of a device failure, its output should be considered erroneous (Figure 13). The
simulated results show that the occupancy information automatically biases the Bayesian
fusion engine away from failed localizers, thus making the overall system less sensitive to
device failure and resulting in improved overall robustness (Figure 14). For this to function
correctly, the occupancy estimator or the localizers themselves have to be capable of detecting
device failure. In essence, the occupancy information effectively controls how the statistical
distribution (a priori knowledge) places inference on the Bayesian fusion process.

Conclusion

Bayesian network is a powerful tool for performing data fusion. In this chapter, we presented
a modular multimodal localization architecture using a Bayesian network as the fusion
engine. The developed multimodal architecture is very flexible and yet allows individual
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Figure 12. Results for joint audio-video localization using Bayesian network fusion with
occupancy estimates
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Figure 13. Results for joint audio-video localization using Bayesian network fusion estimates
in the case of device failure
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Figure 14. Results for joint audio-video localization using Bayesian network fusion with
occupancy estimates in the case of device failure
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localizers to be kept relatively simple. With the flexibility of the modular architecture, spe-
cific refinements can easily be implemented without affecting the operation of other parts
in the architecture. As a case study, the deployment of this modular architecture in the area
of video conferencing applications is studied.

Video conferencing allows users to communicate more naturally using both sight and sound.
Most commercially available video conferencing systems rely only on audio or video to
locate the active talker. Challenges in the conferencing environment like acoustic reflections,
changes in lighting condition, and complex backgrounds often make single-modal audio
and video localizers unrealizable. In this chapter, we investigate how the Bayesian network
based multimodal architecture can be used to combine three traditional single-modal local-
izers, audio and video, to form a more accurate one.

As a refinement to the basic Bayesian network fusion method, the occupancy information
is used to improve the localization accuracy and robustness. The occupancy information
uses known physical properties of the localizers to estimate the temporal trustworthiness of
the localization results. These estimates are then used to dynamically bias the fusion engine
away from erroneous data resulting in better overall localization accuracy. Also, with the
help of simple device failure detection, the occupancy estimates provide a means for the
fusion engine to handle failed localizers automatically by biasing the fusion engine away
from the failed localizers. This method reduces the system sensitivity to device failure, thus
improving the overall robustness.
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The talker localization example shown in this chapter, although realistic, is still relatively
simple. The purpose of this example is to show the reader how a Bayesian network can be
used to fuse data in the outlined multimodal fusion architecture, Figure 3, and how each
of the components in the architecture can be built. The multimodal fusion architecture and
the methods developed can be equally valuable to other applications like surveillance and
mobile robotics. With the flexibility and modularity of the architecture, how this architecture
can be applied is really an open-ended question.
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Chapter XI

Retrieval of Bio-Geophysical
Parameters from Remotely
Sensing Data by Using
Bayesian Methodology

C. Notarnicola, University of Bari, Italy

Abstract

This chapter introduces the use of Bayesian methodology for inversion purposes: the extrac-
tion of bio-geophysical parameters from remotely sensed data. Multisources information,
such as different polarizations, frequencies, and sensors are fundamental to the development
of operationally useful inversion systems. In this context, Bayesian methodologies offer a
convenient tool of combining two or more disparate sources of information, models, and data.
The chapter describes the development of a general model starting from a theoretical model,
including the sensor noise and the model errors, by using a Bayesian approach. Furthermore,
the developed procedure is applied to some experimental data sets. The author hopes that
considering theoretical models and experimental data in many different configurations can
give an idea of the versatility and robustness of the Bayesian framework.
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Introduction

During the last years, remote sensing has become an important method for the areal and
temporal derivation of Earth surface parameters. In this context, the evaluation of the spatial
and temporal soil and vegetation moisture changes is of primary importance.

The prediction of soil moisture variations isequally important at mesoscale and smaller scales.
Mesoscale atmospheric models have demonstrated sensitivity to spatial gradients (Fast &
McMorcle, 1991). Furthermore, the initialization of the global climate model weather forecast
(GCMWEF) with current soil moisture values can lead to improved rainfall predictions.

In addition to the role of soil moisture in the interactions between land surface and the
atmosphere, soil moisture is storage of water between rainfalls and evaporations that acts
as a regulator to a fundamental hydrologic process, infiltration, and runoff production from
rainfall (Delworth & Manabe, 1988).

The vegetation water content yields information about the physiological condition of the
plants and system losses due to mowing or harvesting of agricultural fields. Furthermore,
estimation of vegetation water content from local to global scales is central to the under-
standing of biomass burning processes.

Ground measurements are time consuming and they cannot take into account the great vari-
ability of soil and vegetation moisture from one point to the other of the same field. Due to
high resolution combined with an extensive coverage, spaceborne and airborne sensors can
provide a unique perspective on the spatial and temporal variation in soil and vegetation
moisture both at a relatively high resolution (e.g., gradient of moisture within a field or along
the slope of a hill) and at a global scale (feature of the order of 10 km).

Spaceborne and airborne sensors that operate in the microwave domain are best suited for
the detection of water content. These sensors are classified as active and passive systems.
Active systems, synthetic aperture radars, and scatterometers (Ulaby, Moore, & Fung, 1986)
transmit short bursts or “pulses” of electromagnetic energy in the direction of interest and
record the strength of the backscatter received from objects within the system’s field of view.
Passive systems, and radiometers (Ulaby et al., 1986), sense low level microwave radiation
given off by all objects in the natural environment. Active and passive microwave data has
been shown to depend on several natural surface parameters such as soil and vegetation
dielectric constant and surface roughness (Ulaby et al., 1986). Among surface features,
the dielectric constant, €, is highly dependent on soil moisture due to the large difference
between dry conditions (€ of 2-3) and water (approximately 80).

Thischapter discussesthe application of Bayesian techniques for the estimation of surface features,
soil, and vegetation water content, starting with the acquisitions of remotely sensed data.

The retrieval of bio-geophysical parameters from remotely sensed data falls within the
category of inverse problems where, from a vector of measured values, m, one wishes to
infer the set of ground parameters, x, that gave rise to them. The inverse problem is a typi-
cally ill-posed problem. It presents many difficulties due to the nonlinearity between remote
sensing measurements and ground parameters, and generally because more than one value
of x could produce the same measured vector m (Satalino, Pasquariello, Mattia, Le Toan,
Davidson, & Borgeaud, 1999).

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.



224 Notarnicola

Even if many theoretical models have been developed describing the interaction between
the electromagnetic radiation and natural surfaces, parameter estimation is always a difficult
task. Noise corruption and lack of extensive in situ measurements are only two of many
problems that make the work hard. Moreover, the effect of different parameters on radar
response is not easy to disentangle.

Inthis view, the use of multisources information, such as different polarizations, frequencies,
and sensors, are fundamental to the development of operationally useful inversion systems
in which the interference among different parameters in the microwave system response
can be disentangled.

Bayesian methodologies offer a convenient tool of combining two or more disparate sources
of information, models and data (Haddad & Dubois, 1995). Furthermore, it can be used
to combine prior information on an arbitrary number of parameters, with the information
content of related data, to obtain parameter estimates.

This methodology is particularly useful when one would like to extract target characteristics
from remotely sensed data. The efficacy of conventional parameter estimation techniques
drops sharply as the number of parameters to be estimated increases, particularly if the model
representing the sensor responses is nonlinear. In contrast, procedures based on Bayesian
methodologies can generate full probability distributions for an arbitrary number of param-
eters. Conceptually, probability distributions may represent the lack of knowledge regarding
the “true” value of a parameter, the natural variability of a parameter, or a combination of
both (Roy & Georgopoulos, 1998).

Taking intoaccountall these considerations, this chapter describes analgorithm development
based on an experimental/modeling scheme aimed at extracting bio-geophysical parameters,
soil, and vegetation water content from remotely sensed data. The algorithm that uses the
synergy of experimental data of different microwave sensors and simulated data is based
on a Bayesian approach.

The inversion procedure has been tested in numerous situations that illustrate the method
versatility:

. Microwave measurements of a radiometer and a scatterometer over bare fields

. synthetic aperture radar (SAR) acquisitions on bare and vegetated fields

The chapter is organized as follows.

In part 1, the background on inversion methodologies for both active and passive systems
is illustrated. This part also introduces some background information about the theoretical
models whose simulated data are used in synergy with the experimental measurements.
The last section is dedicated to a brief description of inversion algorithms that are based on
Bayesian techniques.

Part 11 is completely dedicated to the description of the three experimental data sets to be
used in the proposed inversion procedure.

Part 111 describes the inversion procedure that is based on a Bayesian approach. The results
of the application of this procedure to three datasets are illustrated in Part IV.
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Part V lists the advantages and disadvantages of the inversion approach and exploits the
feasibility of the approach for the inversion of remotely sensed data. Future developments
are also indicated.

Background

Background on Inversion Methodologies

The use of remotely sensed data to retrieve soil moisture and other surface characteristics is
fundamental in many disciplines. The retrieval of surface parameters can be considered as
a mapping problem from the domain of measured signals to the range of surface character-
istics that quantify the observed portion of earth (Fung, 1994). This mapping is not always
unique. In some circumstances, equivalent sensor responses can be generated from distinct
media that have very dissimilar characteristics.

One of the common approaches for soil moisture retrieval is the development of direct
models by simulating the radar observations in terms of the soil attributes, such as the di-
electric constantand the surface roughness, for an area with known characteristics. Dielectric
constant and roughness are the main features that govern the interaction of electromagnetic
radiation with a bare natural surface:

. The dielectric constant is directly dependent on soil moisture and soil texture con-
stituents

. The roughness description is mainly based on two parameters: the standard devia-
tion of heights, s, and the correlation length, I. The standard deviation of height is an
estimate of the variance of the surface profile vertical dimension, while its correlation
function relates the statistical correlation between any two points on a given surface.
If the surface statistics are assumed to remain constant across the horizontal plane
(wide-sense stationary), then the correlation function is dependent only on the distance
between any two points. The surface correlation length, |, is usually defined as the
displacement for which the correlation function is equal to 1/e (Ulaby et al., 1986)

These direct models are subsequently used in the inverse mode to estimate the surface param-
eters, given the sensor measurements. Several empirical and theoretical models have been
introduced in order to link microwave remote sensing measurements to soil features. At the
sametime several inversion techniques have been exploited: simple and multiple regressions,
iterative methods and statistical approaches. Among these methods, the Bayesian approaches
and neural networks are widely applied. In all the cases, the use of a specific model and the
application of the relative inversion technique present advantages and disadvantages.

As in this chapter, active and passive sensor data are considered, and a review of the inver-
sion methodologies for both these kinds of data are briefly illustrated.
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Active Sensors

The development of empirical models has been studied both as a first approach in order to
study the relationship between backscatter and soil moisture and to obtain a simple inversion
model initself. The frequently used linear approach is based on regression coefficients gener-
ated by the observations over a specific site (Lin, Wood, Bevan, & Saatchi, 1994; Prevot &
Dechambre, 1993). As a result, they may not be suitable for the features estimation applied
to data that are acquired on other sites. Some empirical approaches have been developed,
and are based on the knowledge of scattering behavior of experimental observations. For
example, one of the first empirical models was proposed by Oh, Sarabandi, and Ulaby (1992)
on bare soils. In this model, the copolarized and cross-polarized ratios of the backscattering
coefficients are expressed in terms of the surface parameters. Subsequently Dubois, van
Zyl, and Engman (1995) developed an empirical that described only the copolarized back-
scatter coefficients of bare surfaces as a function of surface roughness, dielectric constant,
incidence angle, and frequency. The model originally derived from scatterometer data and
was subsequently applied to SAR data in the case of bare soils. Oh et al.’s model, developed
from multipolarization radar data, was revealed to be poorly effective when tested on SAR
data. In contrast, Dubois et al.’s model was revealed to be applicable to different forms of
data measured, and tended to be quite accurate. The results indicate values of soil moisture
with a rms error of 4.2 %. Although the model performed highly, it is however, site specific
and is valid under the conditions in which the measurements were taken.

As a result, the conclusive effect of development of empirical models and their relative
inversion procedure is that they have a limited range of applicability. The complexity and
the nonlinearity of the problems cannot be taken into account in empirical formulations,
thus leading to the necessity of considering theoretical backscattering models.

Theoretical models can represent a great variety of situations and still have the possibility to
consider situations that have not been taken into account by the empirical models. However,
the theoretical models are developed under several hypotheses that may not be completely
verified in field conditions. As an example, the description of the surface morphology is
considered a limitation of a theoretical model. One of the most widely used descriptions is
based on two parameters: the standard deviation of heights, s, and the correlation length, I.
This parametrization is often considered critical because they do not describe completely
the variability of natural surfaces (Mattia & Le Toan, 1999).While the standard deviation
of height can be accurate on the order of 10%, the correlation length measurements vary
as much as an order of magnitude (Dubois et al., 1995; Notarnicola, D’ Alessio, Casarano,
Posa, & Sabatelli, 2003).

Theoretical scattering forward models are of a certain complexity and sometimes are dif-
ficult to invert due to the requirement of several parameters in the computations. This is the
reason that typical inversion techniques are iterative methods and statistical approaches.
Bindlish and Barros(2000) used the integral equation model (IEM) with the Jacobian method,
an iterative scheme, to perform the inversion on multifrequency, multipolarizarion SAR
data. In this case, the retrieval can be performed on all the surface parameters, as they are
included in the IEM model. This algorithm, tested only with one data set in a single sensor
configuration, produces soil moisture estimates with an average error of 3.4%.
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Actheoretical model can be also used to train a system that, after such training, will represent
the inverse model. A suitable method for this kind of multidimensional retrieval is the neural
network. In particular, it can be trained to extract surface parameters from remotely sensed
data and so can perform the same function as a statistical inversion method. The training
data for the neural networks can be obtained from theoretical forward scattering models,
thus allowing the control of the range of parameters with which the network is trained.
The main drawback of neural networks is that the inverse empirical mapping established
between remotely sensed data and surface parameters cannot be explicitly written down.
In this way, the neural network can be sometimes considered as a “close system” where
the user can generally only act on some configuration parameters but not on the analytical
expression that lead to the results.

Once more, the accuracy of the system relies on the accuracy of the data or models used
during the training phase. To overcome this difficulty, the used models should be previously
validated in a wide range of experimental situations.

Validation is another critical problem, because soil moisture measurements are acquired in
some points and are generally not representative of the whole area observed by the radar;
this makes the comparison between extracted values of soil moisture from remote sensed
data and those measured on the fields somewhat difficult.

Passive Sensors

Many approaches have also been developed to retrieve soil moisture from microwave ra-
diometric measurements where each of the various effects (i.e., vegetation and soil surface
roughness) contributing to the surface microwave emission can be taken into account. The
first generation of the soil moisture retrieval method has been developed from airborne
observations with a single sensor configuration sensor (Jackson, Le Vine, Swift, Schmugge,
& Schiebe, 1995; Schmugge & Jackson, 1994; Wang, Shiue, Schmugge, & Engman, 1990).
Generally, when a single measurement is available, only soil moisture can be retrieved
from microwave measurements. In most recent methods (Kerr, Waldteufem, Wigneron,
Font, & Berger, 2001; Njoku & Li, 1999) based on multiconfiguration measurements, other
parameters such as vegetation attenuation and surface temperature can be retrieved along
with soil moisture.

On the other hand, in order to extract some soil parameters, such as soil dielectric constant,
roughness, and vegetation, a single sensor configuration model could also be used but
should be implemented into a more complex inversion system than regression techniques
or iterative schemes, that is, Bayesian methods or neural networks. However, it is necessary
that such inversion systems provide for a good parameterization of all the parameters to be
extracted. In this application, a simple semiempirical approach, the Wang and Choudhury
model (1995) can be considered adequate.
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Background on Inversion Methodologies with
Bayesian Approach

Statistically based inversion methods, such as the Bayesian approach, have been in existence
for a long time and are based on probabilities that a given set of measurements come from
certain surface parameter values. The Bayesian methodology obtains much of its power from
the ability to incorporate new information derived from measurements as conditional prob-
abilities.

The probability density functions are estimated by training, where examples of sensor and
surface measurements are presented to the algorithm. Another important aspect is that, in order
to derive these general probability density functions as performed with Bayesian methodology,
a large amount of experimental data is requested. The experimental data should cover a wide
spectrum of real situations in order to obtain reliable statistical functions.

One of the first examples is the algorithm developed by Haddad and Dubois (1994) where they
exploited a Bayesian estimation method of soil standard deviation of heights and soil moisture.
Their procedure does not take into account an important soil parameter, that of the correlation
length. Eventhoughthis parameterishighly variable, itis fundamental if in the inversion process
one wishes to consider some theoretical models. These models mainly characterize the surface
with two parameters: the standard deviations of heights and the correlation length.

Although this built-in limitation, the methodology presents a drastic simplification of the in-
version process and potentially more accurate estimation of soil physical properties, based on
Bayesian theorem to calculate the posterior probability density function. This function is useful
for the calculation of the probability to obtain surface parameters, given some remotely sensor
data. In another paper, Haddad and Dubois (1995), starting from the forward model proposed
by Oh et al. (1992), used a Bayesian approach to determine the inverse model. Because the
model was based on a data set with low correlation length, it failed to be applicable to data
sets that do not verify this condition.

The proposed algorithm is based on experimental data and theoretical models. The approach
is justified by two important observations. First, an algorithm based only on measurements
could be of limited applicability, as it represents a specific situation. It requires a large number
of experimental measurements in order to derive empirical models (Oh et al., 1992), which are
dependent on the site and surface type where they were developed and tested. Second, on the
other hand, whenadopting theoretical models, the inversion procedure might be general purpose,
in which the data can be simulated for different sensor parameters (frequency, polarization,
and incidence angle) and surface conditions (surface roughness and soil moisture). Theoretical
models are excellent tools for studying the effect of soil parameter variations on measured
responses; however, the physical approximations introduced in these models should be veri-
fied (Remond, 1997; Zribi, Taconet, Le Hegarat-Mascle, Vidar-Madjar, Emblanch, Loumagne,
& Normand, 1994). The development of the algorithm follows the guidelines of the Haddad
and Dubois (1994) methodology, but tries to extend the applicability of the algorithm to more
sources of information and to include as many experimental situations as possible.

The adopted Bayesian procedure takes advantage of several remotely sensed data configu-
rations, such as active and passive data, multifrequency and multipolarization active data,
optical and radar data, and the corresponding simulated data, in order to extract dielectric
constant values.
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Theoretical Models for Emissivity and Backscattering
Coefficients in the Microwave Domain

As the proposed approach also considers simulated data, theoretical models for emissiv-
ity and backscattering coefficients are briefly introduced. Active and passive microwave
instruments are both sensitive to soil moisture changes, but they also markedly differ with
regard to the quantities they detect and the responses they generate. Active sensors measure
the backscattering coefficients of soil surfaces that depend on both roughness and dielectric
characteristics.

Their responses were modeled by means of the integral equation model (IEM) (Fung, 1994).
The cited model has the advantage of being applicable to a wide range of roughness scales.
For the IEM, the input parameters are the real part of the dielectric constant, the standard
deviation of height, and the correlation length.

In the IEM formulation, the like polarized backscattering coefficients for surfaces with small
or medium size roughness are given by:

W (=2k_,0)
— 1)

n
IPP

2 0
o :k?exp(—Zkfsz)z
k=1

where k is the wave number, ¢ is the incidence angle, k, = kcos6, k = ksen6, and pp refers
to the horizontal (HH) or vertical (VV) polarization state and s is the standard deviation of
terrain heights. The term ", depends onk, s, and R, R, the Fresnel reflection coefficients
in horizontal and vertical polarizations. The Fresnel coefficients depend directly on the
dielectric constant. The symbol W (-2k ,0) is the Fourier transform of the n™ power of the
surface correlation coefficient. In this context, an exponential correlation function has been
adopted that seems to better describe the properties of natural surfaces (Fung, 1994).

Passive sensors measure the natural thermal emission of land surfaces at microwave wave-
lengths using extremely sensitive radiometers.

When the radiometer response is analyzed, the simplest soil-emission configuration is
represented by a homogeneous isothermal soil medium with a plain air-soil boundary. In
this case, the brightness temperature of the soil surface when viewed from the air at a nadir
angle 0, is:

To(0,p)=e*(0,P)T, @

where T_is the soil temperature and e*(6,, p) is the soil emissivity evaluated at 6, with po-
larization p. For the evaluation of emissivity, a semiempirical expression proposed by Wang
and Choudhury (1995) including the effect of roughness, has been introduced:

e,=1-[(1-Q)r,+Qr ] exp(-4 k*s’>cos? )
e,=1-[(1-Q)r,+ Qr ] exp(-4 k?s?cos?*0) 3)
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where r,, and r,, are the smooth surface reflectivities for the horizontal and vertical polar-
ization and depend on soil dielectric constant values. Q is a mixing polarization parameter
depending on the operating frequency and s.

Both models have been extensively analyzed and validated with many data sets (Fung, 1994,
Ruf & Zhang, 2001; Wang & Choudhury, 1995) including those analyzed in this chapter.

Experimental Data Sets

Active and Passive Data on Bare Soils

The experimental data sets were acquired by the University of Bern’s truck-mounted radiom-
eter-scatterometer operating with the following frequencies: 2.5, 3.1, 4.6, 7.2,10.2,and 11 GHz
over the incidence angle range from 10° to 70° (Wegmueller, Maetzler, Hueppi, & Schanda,
1994). The same antennae were used for the active and passive instrument in order to ensure
that they observed the target under identical spatial conditions. The bare fields analyzed in this
study were essentially smooth. For the collection of the ground truth data, the researchers at
the University of Bern followed the guidelines given by Cihlar, Dobson, Schmugge, Hooge-
boom, Janse, Baret et al. (1987), as indicated in Wegmueller et al. (1994). The volumetric soil
moisture is the average water content of the top 4 cm of the soil and was measured by taking
five soil samples of a known volume and drying them at 105°. The percentage error is around
10%. A special effort was made in order to characterize the surface roughness of bare soils
and fields with little vegetation cover.

A laser surface height profiler was used to determine 1-m-long height profiles with a hori-
zontal spacing of 0.5 mm and a vertical accuracy of 0.1 mm. For each surface height profile,
the azimuth angle between the direction of the height profile and the row direction caused
by mechanical cultivation (0 being parallel and 90 perpendicular to the cultivation direction)
was indicated. The soil temperature is the average temperature of the top 3 cm of soil. The
prevailing soil composition was 45% loam, 18% clay, and 37% sand. In this analysis, only
bare soils, whose parameters were within the limits of the IEM (Fung, 1994) and Wang models
(Wang & Choudhury, 1995), were selected. Their characteristics are listed in Table 1. With
regard to sensor data, the experimental accuracy, as indicated in the dataset, is approximately
1 dB for backscattering coefficients and 1-2 K for brightness temperatures, which determines
an error of 0.01 for emissivity.

The considered inversion configurations are the following:

1. Backscattering coefficients HH polarization and emissivity H polarization both at 4.6
GHz and at an incidence angle of 20° (indicated as 1f1p);

2. Backscattering coefficients HH polarization at 4.6 GHz and emissivity H polarization
at 2.5 GHz both at an incidence angle of 20° (indicated as 2f1p);

3. Backscattering coefficients HH and V'V polarizations and emissivity H and V polar-
izations at 4.6 GHz and an incidence angle of 20° (indicated as 1f2p).
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Table 1. Main characteristics of the fields analyzed for active and passive data inversion

Field type Roughness, s and 1, range Soil moisture, mv, range
3 bare or lightly vegetated 0.50 cm < s < 1.20 cm

fields with sensor acquisitions T 6% <mv<38%
in 12 different dates 2.00cm <1<5.00 cm

The choice of 20° for testing the algorithm has been driven by the possible comparison with
satellite sensors such as ERS and ENVISAT data. Furthermore, the effect of roughness is
minimised for data acquired at low incidence angles (Ulaby et al., 1986) and the discrepancy
between models and measured data generally increases with incidence angle (Boisvert, Gwyn,
Chanzy, Major, Brisco, & Brown, 1997; Oh et al., 1992; Rakotoarivony, 1995).

C-Band Scatterometer Data on Bare Soils

Five experiments were carried out with a C-band scatterometer from 1998 to 2004. They ac-
quired backscattering coefficients for HH and VV polarizations at an incidence angle of 23°
and 40° (Mattia, Le Toan, Picard, Posa, D’Alessio, Notarnicola et al., 2003; Notarnicola et
al., 2003) and ground data, namely soil moisture and roughness. The acquisitions were run on
bare fields with various roughness conditions. Main field characteristics are reported in Table
2. The mean rms error for volumetric soil moisture values is 10%. The roughness parameters
were computed from digitized photos of a three-meter long profile-meter placed at different
points in the area. Because a row structure was present in the test fields due to the ploughing
practice, which was more evident for the smoother field, the soil profiles were taken in three
directions, namely “range,” “azimuth,” and ““diagonal.”” Also, the correlation lengths were
calculated from the digitized photos. This parameter showed an extreme variability (from 1.5
to 21 cm), even within the same field (Notarnicola et al., 2003).

The analyzed configurations are as follows:

1. Backscattering coefficients for HH and V'V polarizations at incidence angle of 23°

2. Backscattering coefficients for HH and V'V polarizations at incidence angles of 23° and 40°

The experimental error on scatterometer backscattering coefficients is around 1dB.

Washita ’92 Data on Bare Soils

Washita ’92 experiment (Jackson & Shiebe, 1993) was designed to provide ground truth soil
moisture data and the supporting hydrological data for microwave remote sensing algorithm
development and hydrological studies, with a focus on remotely sensed soil moisture. The
USDAARS Little Washita Watershed was selected for these efforts because of the extensive
hydrological research that has been conducted there in the past, and the ongoing hydrologi-
cal data collection efforts.
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Table 2. Main characteristics of the fields analyzed for scatterometer data inversion

Field type Roughness, s and 1, range Soil moisture, mv, range
i 1.3lecm<s<2.49cm

_2 ba_re fields with acquisitions 8 9% < my < 32%

in different dates 6.50 cm <1<21.00 cm

Table 3. AIRSAR calibration accuracy

Absolute/relative C-BAND L-BAND
AIRSAR +1.0dB/+0.4dB +1.2dB/+0.5dB

The Little Washita Watershed is a 610 km? drainage basin situated in the southern part of the
Great Plains in southwest Oklahoma. The climate is classified as moist or sub humid with
an average annual rainfall of about 640 mm. During the field experiments, extensive soil
moisture measurements were taken, surface roughness data obtained, and vegetation cover
was characterised and sampled. Washita *92 was a multisensor aircraft campaign conducted
from June 10 to June 18, 1992. The observations followed a period of heavy rain so that the
conditions on June 10 were very wet with standing water and saturated soils fairly common.
No further rain fell during the following nine days and so it has been possible to follow a
drying pattern. SAR data (AirSAR) and extensive field data were collected each day dur-
ing this period. The data of this experiment are available online at the site: http://hydrolab.
arsusda.gov/washita92/airsar.htm.

The area covered is around 8 km by 10 km. It was imaged by the AIRSAR system on five
different days on June 10, 13, 14, 16, and 18, 1992, with incidence angles respectively of
19.2°,18.4°,18.4°,15.2°, and 14.8°. The pixel spacing is 10 x 10 m?. The five L- and C-band
images were processed by the AirSAR operational processor providing calibrated data sets.
The absolute and relative calibration accuracy obtained for each sensor, as reported in the
literature (van Zyl, Carande, Lou, Miller, & Wheeler, 1992), are listed in Table 3.

Table 4. Field AG002 characteristics

Field AG002 (bare)

Standard deviation of height s = 1.82 cm
Surface roughness .
Correlation length | = 17.75 cm

Soil texture Sand = 45.5 %, silt = 41.1 %, clay = 13.4 %
Bulk density 1.33 g/cm?®
Comments Western ploughed section (on the right in AIRSAR images)

Site dimensions 700 by 1400 m?
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From sensitivity studies (Dubois et al., 1995), in order to avoid errors in the soil moisture
estimation larger than 4.2%, the relative calibration error should be less than 0.5 dB and
the absolute calibration error should be less than 2.0 dB, because the inversion is also more
sensitive to relative than absolute calibration errors.

The bare field denominated AG002 was extensively characterised during the experiment
and it is the object of the present algorithm test. Table 4 illustrates its characteristics. There
was no indication of where the ground data was collected within the field.

SMEX’02 Data on Vegetated Soils

The inversion procedure has been applied to a subset of data acquired during the SMEX’02
Experiment (http://nsidc.org/data/amsr_validation/soil_moisture/smex02/). The SMEX’02
experiment took place in lowa from June 24 - July 12, 2002. The study area was chosen in
order to obtain microwave and optical observations over a range of soil moisture conditions
with moderate to high vegetation biomass conditions.

The main site chosen for intensive sampling was the Walnut Creek watershed, where 32
field sites were identified and sampled intensively. The fields were mainly cultivated with
soybean and corn.

Table 5 provides information about the remote sensing and ground data utilized in this
analysis, while Table 6 gives some important information about the fields analyzed in this
inversion procedure.

Volumetric soil moisture values are calculated by using gravimetric soil moisture and bulk
density that are the parameters directly measured in the fields. Furthermore, soil texture is
of the utmost importance in physical models for estimation of soil dielectric properties due
to the fact that in the Hallikainen empirical formula, soil dielectric constant is derived from
soil moisture using soil texture values (Hallikainen, Ulaby, Dobson, EI-Rayes, & Wu, 1985).
The values of the real part of the dielectric constant, along with the roughness parameters,
are the inputs to the theoretical models used in this inversion approach. This part is described
in the following section.

Table 5. Remote sensing and ground data from SMEX’02 used in this analysis

Remote sensing data

Sensor Acquisition date
AirSAR(microwave, res. 8-12 m ground range) 1,5,7,8,9July 2002
Landsat (optical, res. 30 m) 1, 8 July 2002

Ground data

Parameter Acquisition date
Soil moisture 1,5,7,8,9July 2002
Soil roughness 1,5,7,8,9July 2002
Vegetation water content Few days during the acquisition period
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Table 6. Some characteristics of the SMEX 02 fields analysed in the inversion procedure

- Volumetric soil - Biomass range
Fields Roughness range moisture range Vegetation (kg/m2)
0.34 cm <s<0.72 cm
WCO03 11 % <mv <29% Soybean 0.13-041

1.40 cm <I< 13.05 cm

0.45 cm <s< 1.80 cm
WCO05 10 % <mv <16% Corn 1.14-2.36
348 cm <I<5.92 cm

0.37 cm <s< 0.73 cm
WCO06 9% <mv <24% Corn 0.35-2.23
3.06 cm <I< 10.55 cm

0.85 cm <s<2.56 cm
WCO08 9 % <mv <24% Corn 1.06-1.62
2.32.em <I< 19.19 cm

0.41 cm <s<1.10 cm
WC09 9% <mv<25% Soybean 0.28 -0.60
1.91 cm <I< 14.74 cm

0.41 cm <s<1.10 cm
WCO010 7 % <mv <27% Soybean 0.21-0.75
5.15 cm <I< 16.06 cm

0.64 cm <s< 1.65 cm
WCO012 7 % <mv < 14% Soybean 1.06 -2.32
8.17cm <1< 16.94 cm

0.33 cm <s< 1.35cm
WCO013 10 % <mv <24% Soybean 0.10-0.42
047 cm <I< 11.17 cm

Bayesian Approach for Inversion of Remotely
Sensed Data (Bare Soil Approach)

Bayesian Methodology

The main aim is to infer the soil parameter values, S, that for bare soils can be the dielectric
constant ¢, the standard deviations of heights, s, and the correlation length, I, by measuring
features f, f, ..., in this case backscattering coefficients or emissivities acquired by the
sensors such as those considered in this work scatterometer, radiometer, and AirSAR data.
The procedure is divided into the training and test phase.

Training Phase

The conditional probability density function (PDF) P(f, f,, ..., | S,) can be estimated from
training data. This is the probability of finding that particular vector of features, given specific
values of S,. The conditional PDF is supposed to be normal (Nezry, Yakam-Simen, Supit,
& Zagolsky, 1997). To evaluate the conditional PDF, the half part of acquired data is used
as training data. For these data, both the sensor responses and the ground truth informa-
tion are utilized. This is necessary in order to build the PDF that represents the “forward”
model between sensor responses and soil parameters. Using theoretical models, in this case
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the integral equation model (IEM) (Fung, 1994), for backscattering coefficients and the
Wang model for emissivities (Wang & Choudhury, 1995), theoretical values of the sensors
responses, in correspondence to ground truth, are obtained.

The theoretical values calculated with (1) and (3) are compared to the experimental values
introducing random variables, N, not depending on ¢, s, and | and representing a function
that takes into account the sensor noise and model errors (Haddad & Dubois, 1995):

f =Nf Q)

i ith

where f,_and f,are respectively the measured and theoretical values of sensor responses.
The problem consists in finding an estimate of the P(f, f,, ..., | S,) taking into account the
presence of a noise factor N.. Pdf parameters, namely mean and standard deviation, are de-
termined by using the Maximum Likelihood Principle (MLP). Subsequently, the joint PDF
is tested for goodness-of-fit with a 2 test (Notarnicola & Posa, 2004). The Bayes’ theorem
allows for the calculation of the posterior probability from the above conditional probability
and the prior probability. It is stated formally as:

~ P(S)P(f, f,,.]S)
Y PGIP(f fyn[S) 5)

P(S|f,. f.n)

where the denominator is the normalisation factor. The posterior PDF P (S, |f, f,, ...) is the

probability about parameters S, after measuring the feature vector f, f,, ..., .

P(S,) is the prior joint density probability about parameters S, in which one includes all the
prior information about these parameters, such as estimates based on other instruments. In
case one does not know anything “a priori”” about them except its physical range of values,
this would be a uniform density function over the length of the corresponding interval.

Inthe calculation, it is more convenient to express P(f , f,, ...| S) in terms of the variables N,
that is in terms of the probability density function P(N.). In order to transform the probability
density from one pair of variables to another, a Jacobian is used (Stuart & Ord, 1996):

P(N,N,,..|S) =P(f,f,..|S) - J (6)

where

g2 0 B )
A(N,,N,,...)

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of
IGI Global is prohibited.



236 Notarnicola

As an example, we can consider one of the cases that will be illustrated in the next section:

. Backscattering coefficients HH polarization and emissivity H polarization both at 4.6
GHz and at an incidence angle of 20° (indicated as 1f1p).

The joint density function P(N,, N,) is determined by calculating the ratios:

N, = m . = CHHm
= , =
€Hitn G Hth (8)

wheree,, ande, arethe measured and theoretical emissivity values, respectively, and ¢
m Hth HHm

and o, are the measured and theoretical backscattering coefficient values, respectively.

The ratios N, and N, are computed using the experimental data set and the corresponding
simulated values. It is well known that the family of gamma density functions is a suitable
solution for representation of the statistical properties of a natural scene. However, a Gaussian
probability density function is introduced, being commonly used to describe natural scenes
and more convenient as mathematical approach (Nezry et al., 1997). In this case, the joint
distribution function can be written as:

e—(Nl—unZ/zsf e—(Nz—uz)Z/bZZ

P(N:, N.)= \/271',(51 \/275(52 ©)

The hypothesis underlying the use of this expression is that N, and N, are independent
gaussian distributed random variables. In fact, N, and N, represent the noise element in
measurements obtained from different sensors, sensible to different soil processes. To evalu-
ate the conditional probability, the principle of the maximum likelihood (MLP) is applied,
so the parameters |, W, 6,, o, are those that maximize the joint distribution function. The
parameter values at which the maximum is achieved are the following: p, = 0.96, p,= 1.14,
6,=0.04, 5, = 0.25. Figure 1 illustrates the joint distribution of N, and N, obtained with the
MAP principle. Now, the joint density function obtained can be tested for goodness-of-fit,
by integrating (9) directly. So all the ratios between experimental and theoretical values
are computed and then the 2 test is applied to verify that these ratio values are consistent
with the assumption that the joint distribution of N, and N, is as equation (9). The data are
segmented into nine disjoint events, and using the integral of equation (9), the predicted
frequencies for each event are computed. The ratio of predicted to observed counts is sum-
marised in Table 7.

The 2 statistic for these counts is 1.03 and for y variable with five degrees of freedom, t